
IFAC PapersOnLine 55-20 (2022) 97–102

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.09.078

10.1016/j.ifacol.2022.09.078 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Constrained Training for Guided Feedback
Controller

Simon Gottschalk ∗ Matthias Gerdts ∗

∗ Universität der Bundeswehr München, 85579 Neubiberg (e-mail:
simon.gottschalk@unibw.de, matthias.gerdts@unibw.de)

Abstract: In this paper, we are focusing on a neural network feedback controller tailored to
a lane following application. Besides a classical goal like avoiding a collision with obstacles, we
aim at investigating an approach in order to guarantee not to leave the street at any point,
since this is of major importance for the safety of the passengers. Unfortunately, guarantees
like this are quite rare since the training of neural networks is often based on data, which only
allows statistical conclusions. We derive a deterministic inequality equation guaranteeing this
safety. Furthermore, we introduce a penalty strategy in order to integrate this inequality into a
Reinforcement Learning algorithm.
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1. INTRODUCTION

Nowadays, the range of applications, where neural net-
works (NNs) (Haykin, 1999) are used, expanses on and
on. One of the reasons is their versatility since they can be
used in the context of supervised, unsupervised and Re-
inforcement Learning (RL) (Bertsekas, 2019; Sutton and
Barto, 2018). Statistical learning in order to train these
NNs benefits from its ability to recognize structures, learn
complex controls or mimic behaviors without needing a
deeper insight into mathematical modeling. Unfortunately,
this goes often along with a challenging quality assurance
for trained results. In this contribution, we aim at focusing
on such a quality assurance in the case of a trained feed-
back controller for a lane following task. We are interested
in the assurance to stay always on the street. This should
be the key property of the feedback controller, which we
will found by applying a RL algorithm.

The assurance not to leave the street, can also be described
by demanding trajectories which do not leave a tubular
neighborhood around a reference trajectory. Thus, the
described property belongs in a sense to the concept of sta-
bility. For plain differential equations (Grüne and Junge,
2016, pp.103 ff.) and for feedback controls especially in
the context of linear systems (Kisačanin and Agarwal,
2001, pp. 178 ff), stability properties are well understood
and known for years. Taking into account the NN, basic
stability properties are, for example, considered in (Haber
and Ruthotto, 2017). Furthermore, NNs embedded into
a closed loop feedback control system are discussed in
(Khlaeo-om et al., 2011). Therein, the authors derive con-
ditions for stability at least for very basic neural networks
(and control systems). In (Suykens et al., 1999), again a
simple network architecture in a feedback control loop is
treated. This time, the nonlinear system and the controller
are parameterized by a multilayer perceptron with one
hidden layer and based on this restriction stability is dis-
cussed. Even those publications restrict themselves to ba-
sic architectures, in the end the authors receive conditions,

which are often based on the Lyapunov stability and can
be taken into account in the training of the NN, e.g. via a
modified backpropagation algorithm (Ekachaiworasin and
Kuntanapreeda, 2000).

Beyond that, in the last years, publications regarding Safe
Reinforcement Learning gain in interest. For instance, in
(Berkenkamp et al., 2017) the authors train policies, which
provide the largest level set of a suitable Lyapunov func-
tion, wherein the Lyapunov function is forward invariant.
Since all these approaches aim at asymptotic stability, a
safe state needs to be predefined. Such a safe state can
hardly be assumed in our context, since a safe trajectory
on the street can not be specified due to obstacles. In
(Zanon and Gros, 2021) RL and Model Predictive Control
(MPC) are combined in such a way that a safe controller is
the result. In this framework, RL trains a parametrized Q
function approximator of the underlying problem, which
is only given as a Markov Process. Additional safety
constraints are integrated in this approximator and the
predictive solution provides the control for the original
dynamical system. This approach falls back on the prop-
erties of MPC and thus highly depends on the capabilities
of the approximator and the solvability of the resulting
optimization problem with MPC.

In this contribution we train a NN feedback controller by a
pure model-free RL methods in order to be independent on
a potential model approximation. Thereby, we introduce
a guidance for the controller, which is flexible enough to
avoid collisions with obstacles, but ensures that the car
does not leave the street. To this end, we furthermore
aim at introducing simple deterministic constraints and
integrating them into the RL approach.

2. GUIDED STABILITY CONTROLLER

In order to specify our goals, we start with an introduction
into our underlying framework. We consider a dynamical
system ẋ(t) = f (x(t), u(t)) with control u ∈ Rnu , nu ∈ N
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system ẋ(t) = f (x(t), u(t)) with control u ∈ Rnu , nu ∈ N

Constrained Training for Guided Feedback
Controller

Simon Gottschalk ∗ Matthias Gerdts ∗

∗ Universität der Bundeswehr München, 85579 Neubiberg (e-mail:
simon.gottschalk@unibw.de, matthias.gerdts@unibw.de)

Abstract: In this paper, we are focusing on a neural network feedback controller tailored to
a lane following application. Besides a classical goal like avoiding a collision with obstacles, we
aim at investigating an approach in order to guarantee not to leave the street at any point,
since this is of major importance for the safety of the passengers. Unfortunately, guarantees
like this are quite rare since the training of neural networks is often based on data, which only
allows statistical conclusions. We derive a deterministic inequality equation guaranteeing this
safety. Furthermore, we introduce a penalty strategy in order to integrate this inequality into a
Reinforcement Learning algorithm.

Keywords: Neural Networks, Reinforcement Learning, Reinforce, Stability, Penalty method

1. INTRODUCTION

Nowadays, the range of applications, where neural net-
works (NNs) (Haykin, 1999) are used, expanses on and
on. One of the reasons is their versatility since they can be
used in the context of supervised, unsupervised and Re-
inforcement Learning (RL) (Bertsekas, 2019; Sutton and
Barto, 2018). Statistical learning in order to train these
NNs benefits from its ability to recognize structures, learn
complex controls or mimic behaviors without needing a
deeper insight into mathematical modeling. Unfortunately,
this goes often along with a challenging quality assurance
for trained results. In this contribution, we aim at focusing
on such a quality assurance in the case of a trained feed-
back controller for a lane following task. We are interested
in the assurance to stay always on the street. This should
be the key property of the feedback controller, which we
will found by applying a RL algorithm.

The assurance not to leave the street, can also be described
by demanding trajectories which do not leave a tubular
neighborhood around a reference trajectory. Thus, the
described property belongs in a sense to the concept of sta-
bility. For plain differential equations (Grüne and Junge,
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and state x ∈ Rnx , nx ∈ N. For this dynamical system,
a reference control uref(t) is given, which produces a ref-
erence trajectory xref(t). We assume that they are suffi-
ciently smooth. This trajectory and control exist for com-
parison reasons and describe the middle of the lane. We
further assume the normalized orthogonal vector nref(t) to
be perpendicular to xref(t). Although we know a reference
trajectory, we are actually interested in a feedback control
u(x(t)), which steers the dynamical system close to the
middle lane, but is also able to avoid obstacles. In other
words, our control is allowed to cause deviations of the
corresponding trajectory from the middle of the lane with
the restriction not to leave the street. We write uNN(x(t))
for the control generated from the NN based on the current
state x(t). Overall, we have:

ẋref(t) = f

(
xref(t), uref(t)

)
, xref(0) = x0,

˙̃x(t) = f

(
x̃(t), uNN(x̃(t))

)
, x̃(0) = x̃0.

For the sake of simplicity, we assume, that the controls
are bounded between minus one and one. At first glance,
this looks like a restriction but since scaling is always
possible, we allow for arbitrary bounded controls. Figure 1
visualizes the idea of the considered scenario. The course
of the lane can be seen as a trajectory, which is given
by the reference trajectory (gray dotted line). Obviously,
following the line would be easy, since we can just apply
the reference control. But we are now interested in finding
a controller, which is able to circumvent obstacles (red
circle), which might appear on the street. Nevertheless, it
is of crucial importance to stay on the street.

Fig. 1. Test track.

Thus, our goal is to find a controller, based on a NN, which
is able to do an avoidance manoeuvre and for which we
can guarantee that it is still close enough to the reference
trajectory representing the lane center. Therefore, we will
deduce constraints, which we include into the training of
the NN.

2.1 Constraint for the Guided Controller

Typically, if one is interested in the discrepancy between
two realizations of a dynamical system with different con-
trols, one makes use of Gronwall’s Lemma (see (Hale,
1977)). Unfortunately, this lemma leads to an estimation
of an upper bound of this discrepancy, which grows expo-
nentially with the time. Thus, this is not the right tool
for guaranteeing that the trajectory stays close to the
reference trajectory. Instead, we derive a guarantee by
introducing a suitable constraint based on the idea of an

xref(t)

f
(
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inward pointing condition (Frankowska, 2009). We stress
at this point that the lane following example naturally
arises in a two dimensional setting. This is not a restriction
for the following discussion. Applications of higher dimen-
sionality, i.e. a plane following an flight corridor in three
dimensions, can be considered with small adjustments. We
will motivate the derivation by considering Figure 2a and
Figure 2b. In Figure 2a, we see a state xref(t) on the ref-
erence trajectory. The red arrow, which is pointing out of
the state is its derivative (the right hand side function f).
States of other realizations of the dynamical system with
the NN controller and a disturbance in the initial value
may lay on the black line perpendicular to the derivative.
Their directions of movement are exemplarily visualized
by green arrows. By drawing red arrows parallel to the
reference derivative at the borders of the track, it becomes
clear that the green arrows are not allowed to point out
of the corridor included by the red arrows. Thus, it is
important to find a simple inequality or equality constraint
ensuring this property. Figure 2b visualizes the idea for
this constraint. For each point x of the black line with

length d (roadway width), we define a direction, f̂ , which
guides the actual derivative. Of course it is too restrictive
to predefine the exact direction and this is, why we allow
a deviation from this direction (gray scale circle segments)

up to a certain angle β
2 (0 < β ≤ π). Thereby, we need to

ensure, that no deviation of the guiding direction leaves
the corridor of the reference solution. Thus, the guiding
arrows close to the boundary have to point in the interior
of the corridor. A smooth definition of these guiding arrows
at position x(s, t) := xref(t) + s ∗ nref(t), −d

2 ≤ s ≤ d
2 can

be defined using a rotation matrix A(s):

f̂(s, t) :=

[
cos

(
β s

d

)
− sin

(
β s

d

)
sin

(
β s

d

)
cos

(
β s

d

)
]

︸ ︷︷ ︸
=:A(s)

f(xref(t), uref(t))

with the normalized orthogonal vector:

nref(t) =

[
0 1
−1 0

]
f(xref(t), uref(t))

‖f(xref(t), uref(t))‖
.

Now, we can deduce a condition, which ensures that the
derivative f(x(s, t), uNN(x(s, t))) is close to the guiding

directions f̂(s, t), using ε := cos β
2 :

ε ≤
f
(
x(s, t), uNN(x(s, t))

)T
f̂
(
s, t

)

‖f
(
x(s, t), uNN(x(s, t))

)
‖‖f̂

(
s, t

)
‖
=: η(s, t), (1)

Note, that this condition has to be fulfilled for all s
relating to the street width d and t going along the
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and state x ∈ Rnx , nx ∈ N. For this dynamical system,
a reference control uref(t) is given, which produces a ref-
erence trajectory xref(t). We assume that they are suffi-
ciently smooth. This trajectory and control exist for com-
parison reasons and describe the middle of the lane. We
further assume the normalized orthogonal vector nref(t) to
be perpendicular to xref(t). Although we know a reference
trajectory, we are actually interested in a feedback control
u(x(t)), which steers the dynamical system close to the
middle lane, but is also able to avoid obstacles. In other
words, our control is allowed to cause deviations of the
corresponding trajectory from the middle of the lane with
the restriction not to leave the street. We write uNN(x(t))
for the control generated from the NN based on the current
state x(t). Overall, we have:

ẋref(t) = f

(
xref(t), uref(t)

)
, xref(0) = x0,

˙̃x(t) = f

(
x̃(t), uNN(x̃(t))

)
, x̃(0) = x̃0.

For the sake of simplicity, we assume, that the controls
are bounded between minus one and one. At first glance,
this looks like a restriction but since scaling is always
possible, we allow for arbitrary bounded controls. Figure 1
visualizes the idea of the considered scenario. The course
of the lane can be seen as a trajectory, which is given
by the reference trajectory (gray dotted line). Obviously,
following the line would be easy, since we can just apply
the reference control. But we are now interested in finding
a controller, which is able to circumvent obstacles (red
circle), which might appear on the street. Nevertheless, it
is of crucial importance to stay on the street.

Fig. 1. Test track.

Thus, our goal is to find a controller, based on a NN, which
is able to do an avoidance manoeuvre and for which we
can guarantee that it is still close enough to the reference
trajectory representing the lane center. Therefore, we will
deduce constraints, which we include into the training of
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2.1 Constraint for the Guided Controller

Typically, if one is interested in the discrepancy between
two realizations of a dynamical system with different con-
trols, one makes use of Gronwall’s Lemma (see (Hale,
1977)). Unfortunately, this lemma leads to an estimation
of an upper bound of this discrepancy, which grows expo-
nentially with the time. Thus, this is not the right tool
for guaranteeing that the trajectory stays close to the
reference trajectory. Instead, we derive a guarantee by
introducing a suitable constraint based on the idea of an
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inward pointing condition (Frankowska, 2009). We stress
at this point that the lane following example naturally
arises in a two dimensional setting. This is not a restriction
for the following discussion. Applications of higher dimen-
sionality, i.e. a plane following an flight corridor in three
dimensions, can be considered with small adjustments. We
will motivate the derivation by considering Figure 2a and
Figure 2b. In Figure 2a, we see a state xref(t) on the ref-
erence trajectory. The red arrow, which is pointing out of
the state is its derivative (the right hand side function f).
States of other realizations of the dynamical system with
the NN controller and a disturbance in the initial value
may lay on the black line perpendicular to the derivative.
Their directions of movement are exemplarily visualized
by green arrows. By drawing red arrows parallel to the
reference derivative at the borders of the track, it becomes
clear that the green arrows are not allowed to point out
of the corridor included by the red arrows. Thus, it is
important to find a simple inequality or equality constraint
ensuring this property. Figure 2b visualizes the idea for
this constraint. For each point x of the black line with

length d (roadway width), we define a direction, f̂ , which
guides the actual derivative. Of course it is too restrictive
to predefine the exact direction and this is, why we allow
a deviation from this direction (gray scale circle segments)

up to a certain angle β
2 (0 < β ≤ π). Thereby, we need to

ensure, that no deviation of the guiding direction leaves
the corridor of the reference solution. Thus, the guiding
arrows close to the boundary have to point in the interior
of the corridor. A smooth definition of these guiding arrows
at position x(s, t) := xref(t) + s ∗ nref(t), −d

2 ≤ s ≤ d
2 can

be defined using a rotation matrix A(s):
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(
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d
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(
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(
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=:A(s)

f(xref(t), uref(t))

with the normalized orthogonal vector:

nref(t) =

[
0 1
−1 0

]
f(xref(t), uref(t))

‖f(xref(t), uref(t))‖
.

Now, we can deduce a condition, which ensures that the
derivative f(x(s, t), uNN(x(s, t))) is close to the guiding

directions f̂(s, t), using ε := cos β
2 :

ε ≤
f
(
x(s, t), uNN(x(s, t))

)T
f̂
(
s, t

)

‖f
(
x(s, t), uNN(x(s, t))

)
‖‖f̂

(
s, t

)
‖
=: η(s, t), (1)

Note, that this condition has to be fulfilled for all s
relating to the street width d and t going along the

reference trajectory. We stress at this point that for some
dynamical system no controller can be defined such that
this constraint is fulfilled. In order to guarantee that it is
solvable, we need to restrict ourselves to systems, which are
able to directly control the direction of change arbitrarily
by the current control. Despite the very simple formulation
of the inequality constraint (1), it is not clear, how we
can best fulfill this condition. Since finding the global
minimum of η(s, t) analytically is futile, we make use of a
numerical approach with a suitable error estimation. The
idea is to compute the value of η at discretization points of
a specified grid. A straightforward way to find such a grid
would be to discretize the time interval [0, T ] with final
time T and the interval

[
−d

2 ,
d
2

]
and to evaluate η on these

grid points. Thereon, we can directly check the inequality
constraint. Nevertheless, we aim at fulfilling this condition
on points in between these grid points as well. Thus, we
consider s ∈ [si, si+1] and t ∈ [tj , tj+1]. Then, the question
is: How much can η(s, t) deviate from the value at the grid
point η(si, tj) at most? In order to answer this question,
we use Taylor’s theorem applied to η(s, t) to obtain:

η(s, t) = η(si, tj) + ηs(sξ, tξ)(s− si) + ηt(sξ, tξ)(t− tj),
(2)

for sξ := (1−ξ)si+ξs, tξ := (1−ξ)tj+ξt and a suitable ξ ∈
[0, 1]. Here, ηs and ηt denote the derivative with respect
to s, respectively t. The estimation of the remainder is
based on the Lagrange formula (see (Abramowitz and
Stegun, 1964, p.14)). If we are able to show that the
derivatives of η are bounded, which is our next step, we
know that the deviation between η(s, t) and η(si, tj) is
bounded by equation (2). In order to estimate such a
bound, we introduce the following definitions for a better
overview:

F1(s, t) := f
(
x(s, t), uNN(x(s, t))

)
,

F2(t) := f(xref(t), uref(t)).

Then, the derivatives can be stated as:

∂η(s, t)

∂s
=

(
∂
∂sF1(s, t)

TA+ β
dF1(s, t)

TA′
)
F2(t)

‖F1(s, t)‖‖F2(t)‖

−
F1(s, t)

TAF2(t)F1(s, t)
T ∂

∂sF1(s, t)

‖F1(s, t)‖3‖F2(t)‖
,

∂η(s, t)

∂t
=

(
∂
∂tF1(s, t)

TAF2(t) + F1(s, t)
TA d

dtF2(t)
)

‖F1(s, t)‖‖F2(t)‖

−
F1(s, t)

TAF2(t)F1(s, t)
T ∂

∂tF1(s, t)

‖F1(s, t)‖3‖F2(t)‖

−
F1(s, t)

TAF2(t)F2(t)
T d

dtF2(t)

‖F1(s, t)‖‖F2(t)‖3
.

Here, the notation A′ represents the derivative of the
rotation matrix with respect to s. Finally, based on these
computations, we can deduce an estimation of the norm
of the derivatives ηs and ηt:∥∥∥∥

∂η(s, t)

∂s

∥∥∥∥ ≤ 2
‖ ∂
∂sF1(s, t)‖
‖F1(s, t)‖

+
β

d
,

∥∥∥∥
∂η(s, t)

∂t

∥∥∥∥ ≤ 2
‖ ∂
∂tF1(s, t)‖
‖F1(s, t)‖

+ 2
‖ d
dtF2(t)‖
‖F2(t)‖

.

This estimation results from the triangle inequality of
norms, the inequality of Cauchy-Schwarz (Grinshpan,
2005, p.72) and the fact, that the euclidean norm of the
rotation matrix is one. Now, it is clear that we can estimate
the derivatives of η, if we can assume that the norms of
F1 and F2 are bounded from below with values greater
than zero and that the norms of the derivatives of them
are bounded from above. In the numeric section, we will
show how this can look like for a lane following example.
First, we will discuss how the constraint can be integrated
into a learning algorithm.

2.2 Integration into Reinforcement Learning

Up to now we have a rather abstract condition for guar-
anteeing to stay in the neighborhood of the reference
trajectory. In the next step, we ask ourselves, how we
can benefit from it. Therefore, we have a look at how a
controller can be found for a dynamical system like the
one describing a car driving on the street. One way to do
this is RL, which we want to consider in this paper.

In general, RL is based on the idea, that the dynam-
ical system is simulated forward in time with a given,
incomplete controller and then the controller is updated
based on these generated data afterwards. The underlying
framework bases on a Markov Decision Process (Feinberg
and Shwartz, 2002), which consists of the state space S,
the action space A, a transition probability p (o′|o, a) for
o, o′ ∈ S and a ∈ A, an initial distribution p0 as well as a
reward/cost function r : S × A → R. Note that the state
space in our context is given as S := Rnx . Since the tran-
sition probability represents the actual dynamical system,
we only assume to have a probability for the next state
under the condition that the previous state and the action
are given. A further assumption is, that a reward/cost
function rates the current situation of the system. This
function is needed in order to compare the performance of
different controllers. Finally, we assume that a distribution
for the initial state is given. It remains to formalize the
controller fitting into this setting. The controller is given
by a policy πθ(a|o), which shows the probability that the
controller outputs the action a under the condition that
the current state o is given. In the following, we consider
parameterized controller πθ with parameters θ such as a
NN, where the weights and biases are trained. Overall, the
controller consists of a NN, which maps the current state to
parameters of a distribution (e.g. mean value of Gaussian
distribution), from which the next action is sampled.

Based on these assumptions, the optimization problem is
established. It is clear that we are interested in finding the
best possible reward or, in our case, the minimal costs,
which can be stated as:

min
θ

E[R], with R =

N−1∑
k=0

γkr(ok, ak). (3)

Here, the costs of one trajectory are given by R, which
sums up all costs of the trajectory and weights them
by a discount factor γ. The objective function is written
down by an expected value. With p̃ (o0, a0, . . . , oN ) =

p0(o0)
∏N−1

k=0 p (ok+1|ok, ak)πθ (ak|ok), it is given by:



100 Simon Gottschalk  et al. / IFAC PapersOnLine 55-20 (2022) 97–102

E[R] :=

∫

S

∫

A

· · ·
∫

A

∫

S

p̃ (o0, a0, o1, . . . , aN−1, oN )

·R daN−1 . . . da0do0.

This optimization problem (3) can be solved in several
ways. One example is Reinforce (Williams, 1992), which
estimates a gradient direction of the objective function
based on simulated data (the p-th trajectory consisting of
op0,a

p
0,o

p
1,a

p
1,. . . , a

p
N−1):

∇θE[R] ≈
∑
p,l

∇θ ln (πθ (a
p
l |o

p
l ))

(
N−1∑
k=0

γkr(opk, a
p
k)

)
. (4)

Overall, the general procedure is to initialize a random
controller. Afterwards, this controller is used to generate
several trajectories. These trajectories contain all data we
need to improve the parameters of the controller in the
direction of the estimated derivative.

Now, we aim at integrating the constraint (1) into this
procedure. One can think of a projected gradient method
(e.g. (Bertsekas, 1976)), where the new parameters are
projected into the feasible set. But, since the amount of
parameters of a controller like a NN is very high, this
is very expensive. Thus, we do not further follow this
idea. Instead, the gradient need to be adjusted such that
our inequality condition is improved as well. However, it
does not make sense to check the inequality only on the
simulated trajectories, since we cannot deduce an overall
guarantee from it. Rather, we additionally consider a fine
grid on the whole street. It is not enough to modify the
cost function. We circumvent this problem by introducing
a penalty term in the cost function. This new part should
vanish, if the inequality is fulfilled everywhere, but increase
rapidly if it is not. For deeper insights into penalty
approaches and their convergence, we refer to (Nocedal
and Wright, 2006, p.487 ff.). This approach leads us to
an artificial, second cost function rart(s, t) := 100 (ε −
η(s, t))1[η(s,t)<ε]. Note, that these costs are deterministic.
Unfortunately, in this form the cost function does not
fit into our RL framework. Thus, we need to adjust our
notation a little bit. Remember, that s and t represent
a specific position in the two dimensional space. In order
to compute η(s, t), we apply the NN to this position and
follow the computation rule (1). In order to fit the new
costs in the RL framework, we need data with distributed
controls for every position. Only in this way, we can
compare them by the cost function and update in the
direction of improvement. Therefore, we introduce:

η̃(s, t, u) :=
F̃1(s, t, u)

TAF2(t)

‖F̃1(s, t, u)‖‖F2(t)‖
,

F̃1(s, t, u) := f
(
xref(t) + s · nref(t), u

)
,

rart(s, t, u) := 100 (ε− η̃(s, t, u))1[η(s,t)<ε].

Then, we get the penalty part of the objective function
based on the grid points (si, tj)i=0,...,N,j=0,...,M :

M,N∑
j=0,i=0

Eu [rart(si, tj , u)] .

In this context, Eu [rart(si, tj , u)] denotes the expected
value with respect to the stochastic variable u, which is
normally distributed (u ∼ N (uNN(xref(t) + snref(t)), σ))
with the mean value generated by the NN and a fixed

variance σ. In order to integrate it into our RL algorithm
based on a gradient method, we consider the derivative:

∇θEu [rart(si, tj , u)] = Eu [∇θū(si, tj , u) rart(si, tj , u)] ,

with ū(si, tj , u) =
(u− uNN(xref(tj)− sinref(tj)))

2

−2σ2
. (5)

In order to rewrite the derivative of the expected value
again into an expected value (see Appendix A), we used
the same steps as they are used in the derivation of the
derivative in (4) for the Reinforce algorithm. Together, the
derivatives (4) and the sum of the sampled estimation of
(5) over all grid points form the new update direction,
which we will test on an application case in the next
section.

3. NUMERICAL RESULTS

As a suitable representative of a first order dynamical
system, we consider the following right hand side for
control u = [v, φ]T and state x = [x1, x2]

T :

f(x, u) :=

[
(v + 1.5) cos(πφ+ π)
(v + 1.5) sin(πφ+ π)

]
. (6)

As reference trajectory, we decide to take a semicircle:

xref(t) :=

[
cos(t)
sin(t)

]
, nref(t) =

[
− sin(t)
cos(t)

]
, t ∈

[
0,

3π

2

]
. (7)

In Figure 1, the idea of our task is sketched. We aim at
steering the blue car to the finishing flag. Thereby, obsta-
cles on the street like a parking car (red) should be avoided.
Furthermore, the road width is set to d = 1. Note, that
in our application case the norm of the derivative of the
normalized orthogonal vector is ‖ṅref‖ = 1. Furthermore,
we can deduce, that the control in order to generate the

reference trajectory is given as uref(t) =
[
−0.5, t

π − 0.5
]T

with u̇ref(t) =
[
0, 1

π

]T
and ‖u̇ref(t)‖ ≤ bref := 1

π , for all
points in time t. As a controller, we choose a NN controller
with two hidden layers and an output layer. Its parameters
θ consists of weights Wq and biases bq, q = 1, 2, 3. The
activation function is the hyperbolic tangent for each layer:

uNN(x) := tanh (y3) , with y3 = tanh (y2)W3 + b3,

y2 = tanh (y1)W2 + b2, y1 = xTW1 + b1.

Then, the derivative with respect to the input is given as:

(uNN)x(x) := D3W
T
3 D2W

T
2 D1W

T
1 (8)

with Dq := diag
(
tanh′ (yq)

)
.

Since tanh′ = 1− tanh2 is bounded, we obtain a bounded
derivative of the NN controller by assuming, that the
weights are bounded as well. We denote this bound by
bNN = ‖|W3|T · |W2|T · |W1|T ‖. Having all these informa-
tion, we can estimate the norm of F1 and F2:

0.5 ≤ ‖F1(s, t)‖ = (v + 1.5) ≤ 2.5 and

0.5 ≤ ‖F2(t)‖ = (vref + 1.5) ≤ 2.5 with

[v, φ]T =uNN(x(s, t)) and [vref, φref]
T = uref(t).

For an estimation of the norms of the derivatives of F1

and F2, we need to discuss a few estimations before. First,
the norm of the normalized orthogonal vector nref is by
definition one. Furthermore, the norm of the Jacobi matrix
of f with respect to u (fu) is bounded by 2.5π as discussed
in the appendix (B.4). Based on the inequalities in the
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p̃ (o0, a0, o1, . . . , aN−1, oN )
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ways. One example is Reinforce (Williams, 1992), which
estimates a gradient direction of the objective function
based on simulated data (the p-th trajectory consisting of
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p
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p
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p
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k=0

γkr(opk, a
p
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)
. (4)

Overall, the general procedure is to initialize a random
controller. Afterwards, this controller is used to generate
several trajectories. These trajectories contain all data we
need to improve the parameters of the controller in the
direction of the estimated derivative.

Now, we aim at integrating the constraint (1) into this
procedure. One can think of a projected gradient method
(e.g. (Bertsekas, 1976)), where the new parameters are
projected into the feasible set. But, since the amount of
parameters of a controller like a NN is very high, this
is very expensive. Thus, we do not further follow this
idea. Instead, the gradient need to be adjusted such that
our inequality condition is improved as well. However, it
does not make sense to check the inequality only on the
simulated trajectories, since we cannot deduce an overall
guarantee from it. Rather, we additionally consider a fine
grid on the whole street. It is not enough to modify the
cost function. We circumvent this problem by introducing
a penalty term in the cost function. This new part should
vanish, if the inequality is fulfilled everywhere, but increase
rapidly if it is not. For deeper insights into penalty
approaches and their convergence, we refer to (Nocedal
and Wright, 2006, p.487 ff.). This approach leads us to
an artificial, second cost function rart(s, t) := 100 (ε −
η(s, t))1[η(s,t)<ε]. Note, that these costs are deterministic.
Unfortunately, in this form the cost function does not
fit into our RL framework. Thus, we need to adjust our
notation a little bit. Remember, that s and t represent
a specific position in the two dimensional space. In order
to compute η(s, t), we apply the NN to this position and
follow the computation rule (1). In order to fit the new
costs in the RL framework, we need data with distributed
controls for every position. Only in this way, we can
compare them by the cost function and update in the
direction of improvement. Therefore, we introduce:

η̃(s, t, u) :=
F̃1(s, t, u)

TAF2(t)

‖F̃1(s, t, u)‖‖F2(t)‖
,

F̃1(s, t, u) := f
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xref(t) + s · nref(t), u

)
,

rart(s, t, u) := 100 (ε− η̃(s, t, u))1[η(s,t)<ε].

Then, we get the penalty part of the objective function
based on the grid points (si, tj)i=0,...,N,j=0,...,M :

M,N∑
j=0,i=0

Eu [rart(si, tj , u)] .

In this context, Eu [rart(si, tj , u)] denotes the expected
value with respect to the stochastic variable u, which is
normally distributed (u ∼ N (uNN(xref(t) + snref(t)), σ))
with the mean value generated by the NN and a fixed

variance σ. In order to integrate it into our RL algorithm
based on a gradient method, we consider the derivative:

∇θEu [rart(si, tj , u)] = Eu [∇θū(si, tj , u) rart(si, tj , u)] ,

with ū(si, tj , u) =
(u− uNN(xref(tj)− sinref(tj)))

2

−2σ2
. (5)

In order to rewrite the derivative of the expected value
again into an expected value (see Appendix A), we used
the same steps as they are used in the derivation of the
derivative in (4) for the Reinforce algorithm. Together, the
derivatives (4) and the sum of the sampled estimation of
(5) over all grid points form the new update direction,
which we will test on an application case in the next
section.

3. NUMERICAL RESULTS

As a suitable representative of a first order dynamical
system, we consider the following right hand side for
control u = [v, φ]T and state x = [x1, x2]

T :

f(x, u) :=

[
(v + 1.5) cos(πφ+ π)
(v + 1.5) sin(πφ+ π)

]
. (6)

As reference trajectory, we decide to take a semicircle:

xref(t) :=
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sin(t)

]
, nref(t) =

[
− sin(t)
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]
, t ∈
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In Figure 1, the idea of our task is sketched. We aim at
steering the blue car to the finishing flag. Thereby, obsta-
cles on the street like a parking car (red) should be avoided.
Furthermore, the road width is set to d = 1. Note, that
in our application case the norm of the derivative of the
normalized orthogonal vector is ‖ṅref‖ = 1. Furthermore,
we can deduce, that the control in order to generate the

reference trajectory is given as uref(t) =
[
−0.5, t

π − 0.5
]T

with u̇ref(t) =
[
0, 1

π

]T
and ‖u̇ref(t)‖ ≤ bref := 1

π , for all
points in time t. As a controller, we choose a NN controller
with two hidden layers and an output layer. Its parameters
θ consists of weights Wq and biases bq, q = 1, 2, 3. The
activation function is the hyperbolic tangent for each layer:

uNN(x) := tanh (y3) , with y3 = tanh (y2)W3 + b3,

y2 = tanh (y1)W2 + b2, y1 = xTW1 + b1.

Then, the derivative with respect to the input is given as:

(uNN)x(x) := D3W
T
3 D2W

T
2 D1W

T
1 (8)

with Dq := diag
(
tanh′ (yq)

)
.

Since tanh′ = 1− tanh2 is bounded, we obtain a bounded
derivative of the NN controller by assuming, that the
weights are bounded as well. We denote this bound by
bNN = ‖|W3|T · |W2|T · |W1|T ‖. Having all these informa-
tion, we can estimate the norm of F1 and F2:

0.5 ≤ ‖F1(s, t)‖ = (v + 1.5) ≤ 2.5 and

0.5 ≤ ‖F2(t)‖ = (vref + 1.5) ≤ 2.5 with

[v, φ]T =uNN(x(s, t)) and [vref, φref]
T = uref(t).

For an estimation of the norms of the derivatives of F1

and F2, we need to discuss a few estimations before. First,
the norm of the normalized orthogonal vector nref is by
definition one. Furthermore, the norm of the Jacobi matrix
of f with respect to u (fu) is bounded by 2.5π as discussed
in the appendix (B.4). Based on the inequalities in the
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Fig. 3. Training results.

appendix (B.1)-(B.3), inequality (B.4) and the estimations
discussed so far, we end up with:∥∥∥∥

∂ (F1(s, t))

∂s

∥∥∥∥ ≤ 2.5π · bNN,

∥∥∥∥
d (F2(t))

dt

∥∥∥∥ ≤ 2.5π · bref, (9)

∥∥∥∥
∂ (F1(s, t))

∂t

∥∥∥∥ ≤ 2.5π · bNN

(
2.5 +

d

2
‖ṅref(t)‖

)
. (10)

This leads to the final estimate of the derivatives of η:∥∥∥∥
∂η(s, t)

∂s

∥∥∥∥ ≤ 2 · 2.5π · bNN

0.5
+

β

d
,

∥∥∥∥
∂η(s, t)

∂t

∥∥∥∥ ≤ 2

(
2.5π

(
bNN

(
2.5 + d

2 ‖ṅref(t)‖
)
+ bref

)
0.5

)
.

It remains to estimate the bound bNN based on (8). We set
bNN := 11 and ensure its correctness during the training
by monitoring the product of the absolute weight matrices.
Overall, we have the estimations:∥∥∥∥

∂η(s, t)

∂s

∥∥∥∥ ≤ 347,

∥∥∥∥
∂η(s, t)

∂t

∥∥∥∥ ≤ 1047.

Thus, we demand to fulfill the inequality constraint on the

grid points with the angle β̂ = π
4 in order to guarantee

the conditions for all points with angle β = π
3 . Since,

∆ε = cos
(

π
4·2

)
− cos

(
π
3·2

)
≥ 0.05, we need to ensure that

the discretization size for the interval [−0.5, 0.5] fulfills
hs ≤ 0.05

347 and ht ≤ 0.05
1047 for the interval [0, 2π

3 ].

Then, we applied the RL approach, which we discussed
in the previous sections. In order to receive an impression
of the influence of the penalty term, we also apply the
Reinforce algorithm without further adjustments. More
details about the applied approach can be found in the
Appendix B. In Figure 3a, the total costs during the
training phase are depicted. It can be observed, that both
strategies decrease the total costs during the training. The
higher initial cost of the penalty approach obviously results
from the additional penalty term in the objective function.
Nevertheless, the learning curve is much steeper than the
curve of the pure Reinforce and is reaching its stage much
earlier. By contrast, the black curve has a plateau during
its training, which is the part of the training, where the
blue car has to figure out, how to avoid the red obstacle.
Nevertheless, both algorithms lead to feasible trajectories
as it can be observed in Figure 3b. There, the trajectory of
each trained controller is depicted. They avoid a collision
with the red obstacle and follow the street. The most
interesting observation can be seen in Figure 4. Here,

(a) Constraints for training with-
out guidance.

(b) Constraints for training with
guidance.

Fig. 4. Visualization of the corresponding stability con-
straint at grid points (blue=fulfilled, red=failed).

we draw the guiding black arrows and the final actual
directions of the right hand side and a phase field of
the ODE incorporating both controllers. In the case of a
fulfilled inequality, the arrow appears in blue. Otherwise,
it is red. We directly see, that in the pure Reinforce case
red arrows appear. This means that the inequality (1) is
not fulfilled and that there is the risk to leave the street.
In the case of the penalty approach, everything is blue
and also a test on a finer grid, which is due to a better
overview not depicted here, was successful. Thus, we can
ensure that the blue car does stay on the street, if the
trained controller is used.

4. CONCLUSION AND FUTURE WORK

In this paper, we established a criterion for guaranteeing
a stable trajectory staying on the street. It enables to
determine, whether a controller can lead to an accident
by leaving the street or not. It is shown how this criterion,
which appears in form of an inequality constraint, can be
successfully integrated into a RL approach.

The described procedure is limited in the range of appli-
cation cases. For us it is of major importance to have a
dynamical system, which allows a direct influence of the
control into the right hand side of the system. Otherwise,
the derived inequality is too restrictive. In future works,
we aim at extending our theory to more complex models,
which are able to describe the lane following situation even
more realistically. We expect that the inequality constraint
remains unchanged and only the set of points, which need
to fulfill this inequality, varies. The new set may be deter-
mined by computing an estimation of a reachability set.
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Appendix A. THE PENALTY DERIVATIVE

For the sake of completeness, we carry out the steps, which
are needed in order to rewrite the gradient of the penalty
term into an expected value. These steps are the same as
used for the actual objective function in Reinforce:

∇θEu [rart(si, tj , u)]

=

∫
1√
2πσ2

∇θ exp(ū(si, tj , u)) rart(si, tj , u)du

=Eu

[
∇θ exp(ū(si, tj , u))

exp(ū(si, tj , u))
rart(si, tj , u)

]

=Eu [∇θ ln exp(ū(si, tj , u)) rart(si, tj , u)]

=Eu [∇θū(si, tj , u) rart(si, tj , u)] .

Appendix B. DETAILS FOR THE NUMERICS

In order to find an upper bound for ηs and ηt in the case
of our application example, we add a few intermediate
results for the sake of completeness. After computing the
derivatives of F1 and F2 by means of the chain rule, we
end up with the following estimations:∥∥∥∥

∂ (F1(s, t))

∂t

∥∥∥∥ ≤ D(s, t) (‖F2(t)‖+ ‖sṅref(t)‖) , (B.1)

∥∥∥∥
d (F2(t))

dt

∥∥∥∥ ≤
∥∥∥∥fu

(
xref(t), uref(t)

)∥∥∥∥
∥∥∥∥
duref(t)

dt

∥∥∥∥ , (B.2)

∥∥∥∥
∂ (F1(s, t))

∂s

∥∥∥∥ ≤ D(s, t) ‖nref(t)‖ , for (B.3)

D(s, t) :=
∥∥fu

(
x(s, t), uNN(x(s, t))

)∥∥ ∥∥(uNN)x
(
x(s, t)

)∥∥ .
The estimate ‖fu(x, u)‖ ≤ 2.5π can be deduced by consid-
ering the eigenvalues of the matrix:

fu(x, u)
T fu(x, u) =

[
1 0
0 (v + 1.5)2π2

]
. (B.4)

For the training, we used a batch of 2500 trajectories.
The penalty term in the objective function is computed
on a coarse grid, which turns out to be enough for the
training part. For the final assurance the constraint has to
be fulfilled on the finer grid, which we checked after the
training. The ingredients of the cost function are based on
the arc length from the starting point to the projection
of the current state to the reference trajectory (quadratic
influence), the distance to the obstacle (linear) and the
distance to the left (linear) and right boundary (linear).
We used a fixed learning rate of the NN α := 10−7.
The input layer of the NN has the size five and gets the
normalized positions, distance to rotation center of the
semicircle reference trajectory, distance to obstacle center
and the arc length of its projected position. The hidden
layers contain 20, respectively 16, neurons. The output
layer has two neurons, which represent the manipulating
quantities: velocity and steering angle. Each neuron uses
the hyperbolic tangent. The main algorithm as well as the
implementation of the environment, the policy and the
class for checking the stability are implemented in Python
3.8.8. In case of the policy, we make use of the open
source platform TensorFlow 2.4.1 (Abadi et al., 2015),
which enables an efficient implementation of the under-
lying NN. For generating the trajectories we parallelize
the computations on an AMD Ryzen Threadripper 3990X
with 64-Cores and a boost clock of 4.3 GHz.


