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A B S T R A C T

This study describes direct numerical simulation (DNS) of radially inward spiralling corotating disk flow
with a narrow disk spacing, using the open source solver Nek5000 and the supercomputer SuperMUC-NG
at Leibniz Supercomputing Centre. Knowledge about laminar and turbulent regime boundaries in this flow
scenario is important for modelling and performance prediction of friction turbines. Simulations are performed
in differently sized sections of the flat annulus that is formed by two opposing corotating disk surfaces. Three
sets of operating conditions are covered, from the laminar, transitional and turbulent region of a previously
determined stability chart respectively. Directly downstream of the inlet boundary, the flow is artificially
perturbed with a random body force acting normal to the disk surfaces. Fourier analysis of the DNS flow field
reveals that the artificial perturbation is dampened across all wavenumbers for the laminar conditions, while
at the transitional conditions a small range of modes is weakly amplified towards the outlet. The identified
unstable modes were previously correctly predicted by linear stability analysis. Comparison to experimental
velocity profile measurements from a previous study at the same transitional operating conditions suggests
strongly perturbed flow during the experiment. For inflow conditions leading to turbulent flow, average
velocity profiles from DNS coincide with those from experiment and from commercial fluid simulation software
with turbulence modelling (ANSYS CFX). Close to the walls, turbulent dissipation and turbulent kinetic energy
distributions do not agree with the ANSYS CFX results. Friction Reynolds number settles at about 118 after
turbulent flow has developed from the initial perturbation. Two point correlations and corresponding energy
spectra are presented.
1. Previous work and goals

Radially inward flow between corotating disks is found in friction
turbines, where the rotor consists of a set of circular disks that is driven
by a working medium flowing in between them along an inward spiral
path. Fig. 1 visualizes the basic setup. Performance prediction of such
turbines can be done efficiently through analytical and numerical flow
models of the inter-disk flow based on simplified Navier–Stokes equa-
tions. Various approaches exist for laminar flow, such as the asymptotic
solution by Breiter and Pohlhausen [1], the method based on parabolic
velocity profiles by Beans [2] or the series-based approach by Batista
3]. For modelling turbulent flow, apart from conventional fluid sim-
lation with turbulence modelling, an approach based on power law
elocity profiles has been suggested by Beans [2]. The selection of a
uitable modelling approach requires beforehand knowledge about the
low regime. Regime boundaries were previously determined through
inear stability analysis by Flaherty and DiPrima [4] and Klingl et al.
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[5], and through experiment by Pater et al. [6] and Dibelius and Nendl
[7]. The new results from direct numerical simulation (DNS) that are
presented here are intended to give further insight into the nature
of flow instability inside the corotating cavity and validate previous
results from theory and experiment.

An important classical example of flows involving rotating disks is
the flow in a semi-infinite medium above a single rotating disk, known
as von Kármán flow. It can be characterized by a single Reynolds num-
ber that is calculated from disk rotational speed, radial position and
fluid viscosity. Laminar-turbulent transition mechanics in von Kármán
flow are well researched. As an example, the recent study by Appelquist
et al. [8] breaks down the transition mechanism involving secondary,
absolute and global instability phenomena. Rotating disk flow with
imposed free stream radial velocity is analysed by Turkyilmazoglu [9],
who finds an overall stabilizing effect of radial outward free stream
velocity on the flow.
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Fig. 1. Schematic view of the flow setup.
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Flows involving two rotating disks bear additional complexity, since
adial flow rate, disk rotational speed, disk spacing and inlet flow
irection can be chosen independently of each other. Fundamentally
ifferent types of flows develop between the disks, depending on the
hoice of characteristic parameters. This study investigates a set of op-
rating conditions that resembles the friction turbine application, with
arrow disk spacing and spiralling radial inward flow that induces a
orque on the disk surfaces in the direction of rotation. The simulations
hare some similarities with the direct numerical simulation of von
ármán flow by Appelquist et al. [10], which also uses Nek5000 and
imilarly implemented body forces for perturbing and dampening the
low.
One of the goals of the present study is to numerically reproduce

ome of the conditions which were analysed before experimentally
y Schosser [11]. The author obtained spatially resolved, temporally
veraged velocity distributions from inside the disk gap through 3D par-
icle tracking velocimetry (PTV) measurements using a specialized test
acility featuring a single corotating disk gap with optical access and
ir as working medium. Comparing the experimental velocity profiles
o results from DNS and linear stability theory allows understanding
he flow conditions that were prevalent in the experiment.
Another main objective of the present study is to verify results from

inear stability analysis. Klingl et al. [5,12] describe three different
pproaches to identify unstable modes that are amplified by the flow
nd possibly lead to transition into turbulence. A stability limit can be
ocated below which all flow disturbances are dampened, as a function
f a mass flow parameter and a rotational speed parameter. Contrary to
on Kármán flow, no absolute instability is found for the narrow disk
pacing analysed in Klingl et al. [5]. As a consequence, disturbances
re expected to only propagate downstream and the flow inside the
omain will always return to an undisturbed state, unless a disturbance
s applied continuously in time.
There are further theoretical and experimental studies regarding

low stability that can be applied to Tesla turbine flow, for example
y Pater [13], Pater et al. [6], Wollkind and DiPrima [14] and Flaherty
nd DiPrima [4]. A brief overview and comparison is provided by Klingl
t al. [12]. The results roughly agree, instability in the experiments is
owever observed at, or even slightly below, the theoretical stability
imit. This has yet to be explained.
Finally, direct numerical simulation results give the opportunity to

ompare turbulence parameters and average velocity profiles to simula-
ion data obtained from conventional fluid simulation with turbulence
odelling. The comparison gives an impression of how accurately the
onventional methods are predicting the flow field in the turbulent and
120

ransitional regime.
Fig. 2. Location of the computations in the stability plane. The stability boundary
from linear theory is shown as solid line, the dashed lines indicate the ranges of local
parameters covered by the computations, with filled circles referring to the inlet radius
𝑟1 and empty circles to the outlet radius 𝑟2.

The main investigations are performed for laminar, transitional and
urbulent operating conditions, labelled with A, B and C respectively.
ig. 2 locates the computations relative to the theoretical stability
oundary by Klingl et al. [5]. The local Reynolds number Re∗ can be
nterpreted as radial mass flow parameter, the local Taylor number Ta∗
s rotational speed parameter. Definitions are given in the next section.
he solid points refer to the inlet radius 𝑟1, where local and global
arameters are equal, so Re∗(𝑟1) = Re and Ta∗(𝑟1) = Ta.
The study is conducted using the open source fluid simulation

ode Nek5000 [15]. Some key results of the direct numerical simulation
re also shown in a dissertation that is expected to be published towards
he beginning of 2024, refer to Klingl [16]. Explanations of symbols and
bbreviations are given in Appendices A and B.

. Study outline

.1. Definitions

The numerical method solves the incompressible Navier–Stokes
quations in a stationary frame of reference.
𝜕𝑼 + (𝑼 ⋅ ∇)𝑼

)

= 𝑭 − ∇𝑃 + Re𝛥𝑼 (1)

𝜕𝑇 𝜎
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∇ ⋅ 𝑼 = 0 (2)

𝑭 is an artificial body force vector for perturbing the flow in the inlet
region and dampening in the outlet region. A cylindrical coordinate
system is employed, using the coordinates 𝑅, 𝜙 and 𝑍 and the velocity
vector 𝑼 = (𝑈𝑟, 𝑈𝜙, 𝑈𝑧). Throughout this study, the circumferential
velocity components 𝑢𝜙 and 𝑈𝜙 are to be understood as absolute
velocities, relative to a stationary frame of reference.

Simulations are performed in terms of nondimensional parameters,
with the disk outer radius 𝑟1 as a reference length and the average
radial fluid velocity at the disk outer radius 𝑢̂𝑟1 as a reference velocity.
Consequently, dimensionless quantities are expressed as follows:

𝑅 = 𝑟
𝑟1
, 𝑍 = 𝑧

𝑟1
(3)

𝑈𝑟 =
𝑢𝑟
𝑢̂𝑟1

, 𝑈𝜙 =
𝑢𝜙
𝑢̂𝑟1

, 𝑈𝑧 =
𝑢𝑧
𝑢̂𝑟1

(4)

=
𝑝

𝜌𝑢̂2𝑟1
, 𝑇 =

𝑡 𝑢̂𝑟1
𝑟1

(5)

The velocity 𝑢̂𝑟1 is the absolute value of the integral average velocity
at the radial position 𝑟1. The hat indicates averaging in 𝑧. The same
way, an average circumferential inlet velocity component 𝑢̂𝜙1 can be
computed.

𝑢̂𝑟1 = 𝑢̂𝑟(𝑟1) =
|

|

|

|

1
2𝑠 ∫

𝑠

−𝑠
𝑢𝑟(𝑟1, 𝑧)d𝑧

|

|

|

|

(6)

̂𝜙1 = 𝑢̂𝜙(𝑟1) =
|

|

|

|

1
2𝑠 ∫

𝑠

−𝑠
𝑢𝜙(𝑟1, 𝑧)d𝑧

|

|

|

|

. (7)

he averages are independent of time and circumferential position
ecause the boundary conditions at 𝑟1 are stationary and axisymmetric.
hey are related to each other through the inlet flow angle 𝛼1:

1 = arctan
(

𝑢̂𝑟1
𝑢̂𝜙1

)

(8)

Axisymmetric radial and circumferential inlet velocity distributions
re given as boundary condition at the outer disk radius 𝑟1 and an outlet
ondition at the inner radius 𝑟2. At the surfaces in axial direction, a
all velocity corresponding to rotation around the centre of the disks
s imposed. The circumferential boundaries are periodic.
The nondimensional parameters that govern the flow are:

e =
𝑠𝑢̂𝑟1
𝜈

= 𝑚̇
4𝜋𝑟1𝜇

(9)

Ta =
𝑠𝑟1𝜔
𝜈

(10)

𝜎 = 𝑠
𝑟1

(11)

The Reynolds number is based on radial mass flow, Taylor number is
based on wall rotational speed. The reference length for Reynolds and
Taylor number is half the disk spacing 𝑠. Since the reference length
in the present setup is the outer disk radius, the aspect ratio 𝜎 in
ntroduced in addition. The domain boundaries in radial and axial
irection are located in nondimensional parameter space at:

𝑅𝑚𝑖𝑛 = 𝑅2 =
𝑟2
𝑟1

(12)

𝑅𝑚𝑎𝑥 = 𝑅1 = 1, (13)

𝑍𝑚𝑖𝑛 = −𝜎 (14)

𝑍𝑚𝑎𝑥 = 𝜎 (15)

For comparison of results in different domains, it is useful to drop
the somewhat arbitrary reference length 𝑟1 and express parameters as
function of the local radial position 𝑟.

Re∗(𝑟) =
𝑠𝑢̂𝑟(𝑟)
𝜈

= 𝑚̇
4𝜋𝑟𝜇

(16)

Ta∗(𝑟) = 𝑠𝑟𝜔
𝜈

(17)

𝜎∗(𝑟) = 𝑠 (18)
121

𝑟

Each computation thus covers a range of local nondimensional param-
eters, limited by the set of values corresponding to 𝑟1 and 𝑟2.

e = Re∗(𝑟1) < Re∗(𝑟) < Re∗(𝑟2) (19)

Ta∗(𝑟2) < Ta∗(𝑟) < Ta∗(𝑟1) = Ta (20)

𝜎 = 𝜎∗(𝑟1) < 𝜎∗(𝑟) < 𝜎∗(𝑟2) (21)

he parameter ranges covered by the direct numerical simulations,
ere previously shown in Fig. 2.
For analysing turbulent flow, the wall friction based velocity scale,

ength scale and Reynolds number are defined as:

𝑢𝜏 =
√

𝜏𝑤
𝜌

(22)

𝛿𝑣 = 𝜈
𝑢𝜏

(23)

Re𝜏 =
𝑢𝜏𝑠
𝜈

(24)

𝑧+ = 𝑧
𝛿𝑣

(25)

In dimensionless parameter space, these are:

𝑈𝜏 =
√

𝑤 (26)

𝛥𝑣 = 𝜎
Re𝑈𝜏

(27)

Re𝜏 = Re𝑈𝜏 (28)

𝑍+ = 𝑍
𝛥𝑣

(29)

To account for radial inhomogeneity of the flow, the domain is divided
into radial sectors, in each of which the average nondimensional wall
shear stress 𝑤 is computed from multiplying the viscous stress tensor
with a corresponding surface normal at each wall mesh point and
summing over all wall mesh points in the sector. Consequently, all
friction parameters are also dependent on the radial position 𝑅.

For further analysis of turbulent flow fields, one-dimensional two
point correlations are introduced.

𝑅𝑖𝑗 (𝑿0, 𝑋𝑘) = 𝑈 ′
𝑖 (𝑿0)𝑈 ′

𝑗 (𝑿0 +𝑋𝑘) (30)

where 𝑖, 𝑗 and 𝑘 can each be either coordinate direction 𝑟, 𝜙 or 𝑧.
he local coordinate 𝑋𝑘 originates at the point 𝑿0 and runs along
line in coordinate direction 𝑘 from 𝑋𝑘𝑚𝑖𝑛 to 𝑋𝑘𝑚𝑎𝑥. The overbar
enotes temporal averaging. 𝑈 ′

𝑖 is the fluctuating component of the
ondimensional velocity as in 𝑈𝑖 = 𝑈 ′

𝑖 + 𝑈̄𝑖. As an example, 𝑅𝑟𝑟(𝑿0, 𝑋𝜙)
orrelates the radial velocity component at 𝑿0 with its own value
t some distance 𝑋𝜙 in circumferential direction. Numerical data for
𝑖𝑗 is available on the simulation mesh. Energy spectra result from
nterpolation of 𝑅𝑖𝑗 onto an evenly spaced mesh and taking the discrete
ourier transform.

𝑖𝑗 (𝑿0, 𝜅𝑘𝑐) =
2
𝑚

𝑚−1
∑

𝑏=0
𝑅𝑖𝑗 (𝑿0, 𝑋𝑘𝑏) exp(−2𝜋i 𝑐 𝑏∕𝑚) (31)

𝑐 = 0, 1,… , 𝑚 − 1. (32)

The 𝜅𝑘𝑐 are wavenumbers in coordinate direction 𝑘, 𝑋𝑘𝑏 are the discrete
values of the coordinate 𝑋𝑘 at mesh point index 𝑏 and 𝑚 is the number
of mesh points along the correlation line. The factor of two follows
the convention by Pope [17]. The series indices 𝑏 and 𝑐 relate to the
discrete wavenumbers and coordinates the following way:

𝜅𝑘𝑐 =
2𝜋 𝑐

𝑋𝑘𝑚𝑎𝑥 −𝑋𝑘𝑚𝑖𝑛
(33)

𝑋𝑘𝑏 = 𝑋𝑘𝑚𝑖𝑛 + (𝑋𝑘𝑚𝑎𝑥 −𝑋𝑘𝑚𝑖𝑛)
𝑏
𝑚

(34)

𝑅𝑖𝑗 (𝑿0, 𝑋𝑘𝑏) can be retrieved by:

𝑅𝑖𝑗 (𝑿0, 𝑋𝑘𝑏) =
1

𝑚−1
∑

𝐸𝑖𝑗 (𝑿0, 𝜅𝑘𝑐 ) exp(2𝜋i 𝑐 𝑏∕𝑚) (35)

2 𝑐=0
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Fig. 3. Schematic view of the computational domain.
Source: Figure by Klingl [16].

Fig. 4. Visualization of the volume force in 𝑍-direction that is applied to the fluid
ield at the planes 𝑍 = 0 (top) and 𝜙 = 0 (bottom) at one point in time during run C1.

= 0, 1,… , 𝑚 − 1. (36)

Values of turbulent dissipation are collected during runtime of the
simulation in nondimensional form by

𝜖 = 𝜎
2 Re

(

𝜕𝑈 ′
𝑖

𝜕𝑗
+

𝜕𝑈 ′
𝑗

𝜕𝑖

)(

𝜕𝑈 ′
𝑖

𝜕𝑗
+

𝜕𝑈 ′
𝑗

𝜕𝑖

)

(37)

where the indices 𝑖 and 𝑗 each represent one of the coordinate di-
rections 𝑟, 𝜙, and 𝑧 and summation over repeated indices is implied.
Turbulent kinetic energy in nondimensional form is calculated by

𝐾 = 1
2
(𝑈 ′2

𝑟 + 𝑈 ′2
𝜙 + 𝑈 ′2

𝑧 ) (38)

For modal analysis of the flow field, two dimensional discrete Fourier
transforms are computed.

 ′(𝑿0, 𝛾𝑘𝑑 , 𝛾𝑙𝑒) =
1
𝑚𝑛

𝑚−1
∑

𝑏=0

𝑛−1
∑

𝑐=0
𝑉 ′(𝑿0, 𝑋𝑘𝑏, 𝑋𝑙𝑐 ) exp(−2𝜋i(𝑑 𝑏∕𝑚 + 𝑒 𝑐∕𝑛))

(39)

= 0, 1,… , 𝑚 − 1 (40)

𝑒 = 0, 1,… , 𝑛 − 1 (41)

′ is the fluctuating component of any of the velocity components or
he pressure. Its values are extracted on a plane spanned by the 𝑘 and 𝑙
oordinate directions that intersects the point 𝑿0. Here, 𝑘 and 𝑙 can
e either spatial coordinate or time. The Fourier coefficients  ′ are
unctions of the wavenumbers 𝛾𝑘 and 𝛾𝑙, whereas the variables 𝑉 ′ are
unctions of the coordinates 𝑋𝑘 and 𝑋𝑙. The discrete coordinates 𝑋𝑘𝑏
nd 𝑋𝑙𝑐 and wavenumbers 𝛾𝑘𝑑 and 𝛾𝑙𝑒 relate to the respective series
ndices 𝑏, 𝑐, 𝑑 and 𝑒 in a similar manner as shown in Eqs. (33) and
34). For consistency with the linear stability investigations by Klingl
t al. [5,12], temporal wavenumbers 𝛾𝑡 will be presented in the results
ections with an inverted sign.
122
.2. Geometry and domain

The domain of interest is a narrow annulus limited by two flat
orotating surfaces in axial direction and cylindrical in- and outflow
oundaries in radial direction. The dimensions of the annulus are
hosen to resemble the test facility by Schosser [11], for which exper-
mental velocity distributions are available. Fig. 3 shows a schematic
verview. The computational domain does not cover the full circum-
erence of the test facility annulus but rather a sector with rotationally
eriodic boundary conditions, spanning a certain angle 𝜃. Table 1
ists the nondimensional domain geometries for all simulation runs as
ell as the dimensional test facility geometry that the nondimensional
arameters are based on.

.3. Mesh

The domain is covered by a regular, cylindrical mesh, constituted
f approximately cubic spectral elements. Each element is internally
esolved with a polynomial order of seven in each spatial direction,
hich is the recommended polynomial order for Nek5000 [15]. The
lement height has a small linear growth normal to the disks, to make
he elements adjacent to the disks flatter. Table 2 summarizes the mesh
izes of all simulation runs.

.4. Boundary conditions

The disk surfaces are modelled as corotating no slip walls. In
adial direction, there is a velocity inlet boundary at 𝑅1 and an outlet
oundary at 𝑅2. To match the numerical simulations to experimental
perating conditions by Schosser [11], the radial mass flow is ap-
roximated from averaged experimental radial velocities and density
stimates based on measured temperature and pressure data during
xperiment. The flow angle at the inlet is also approximated from the
xperimental velocity distributions.
The circumferential boundaries are rotationally periodic. Initial

onditions as well as the inlet boundary condition are calculated from
n analytical model of the inter-disk flow from simplified Navier–
tokes equations with velocity profiles assumed to be axisymmetric
nd parabolic. The model is based on ideas by Beans [2]. Table 3
ummarizes the operating conditions. The mass flow values 𝑚̇ refer to
he mass flow thorough the full disk gap, not just the periodic sector
overed by the simulation.
Directly downstream of the inlet boundary, a random body force is

mposed in the direction normal to the disks, to disturb the flow and
ossibly trigger transition. The forcing is implemented after Schlatter
nd Örlü [18] and consists of a superposition of a specified number of
adial and circumferential modes with unity amplitude and a random
hase shift 𝜉𝑎𝑏𝑐 between 0 and 2𝜋.

𝑎(𝑅,𝜙) =
1
𝑚

𝑏𝑚𝑎𝑥
∑

𝑏=𝑏𝑚𝑖𝑛

𝑐𝑚𝑎𝑥
∑

𝑐=𝑐𝑚𝑖𝑛

sin(𝑏𝑅𝛾𝑟0 + 𝑐𝜙𝛾𝜙0 + 𝜉𝑎𝑏𝑐 ) (42)

𝑚 = (𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛 + 1)(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛 + 1) (43)

The random number generator that determines 𝜉𝑎𝑏𝑐 is tied to simulation
time, so that the random numbers between simulations are the same
and runs can be restarted smoothly. The wavenumbers in radial and
circumferential directions are multiples of the base wavenumbers 𝛾𝑟0
and 𝛾𝜙0. 𝑚 is the total number of modes. In circumferential direction,
only modes that fit into the domain according to the rotationally
periodic boundary conditions are taken into account. In time, the
forcing changes smoothly between different random versions of ℎ𝑎. The
‘‘floor(𝑥)’’-function takes any real argument 𝑥 and rounds it down to the
nearest integer smaller than or equal to 𝑥.

𝑎(𝑇 ) = floor
( 𝑇
𝛥𝑇

)

(44)

𝑔 (𝑇 ) = 𝑇 − 𝑎(𝑇 ) (45)
0 𝛥𝑇
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Table 1
Domain dimensions for the computations.
Run A1 A2 B1 B2 B3 B4 B5 B6 C1

𝑅1 – 1 1 1 1 1 1 1 1 1
𝑅2 – 0.467 0.467 0.467 0.467 0.467 0.467 0.333 0.467 0.789
𝜎 – 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00439
𝜃 ◦ 30 30 30 30 30 45 30 30 3.6
𝑟1 mm 75 75 75 75 75 75 75 75 57
𝑟2 mm 35 35 35 35 35 35 25 35 45
𝑠 mm 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Table 2
Number of spectral elements used in the simulation meshes.
Run A1 A2 B1 B2 B3 B4 B5 B6 C1

𝑛𝑟 480 480 480 560 400 480 600 480 648
𝑛𝜙 347 347 347 382 333 520 347 347 171
𝑛𝑧 6 6 6 7 5 6 6 6 27
𝑛 999360 999360 999360 1497440 666000 1497600 1249200 999360 2991816
c
f

Table 3
Operating conditions for the computations. Expected flow regime is either laminar
(lam.), transitional (tra.) or turbulent (tur.).
Run A1 A2 B1 B2 B3 B4 B5 B6 C1

𝑚̇ g∕s 3.12 3.12 6.91 6.91 6.91 6.91 6.91 6.91 12.7
𝑢̂𝑟1 m∕s 11.5 11.5 24.2 24.2 24.2 24.2 24.2 24.2 44.6
𝜔 1∕s 104.7 104.7 104.7 104.7 104.7 104.7 104.7 104.7 523.6
𝜌 kg∕m3 1.15 1.15 1.21 1.21 1.21 1.21 1.21 1.21 1.59
𝜇 μPa s 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
𝛼1 ◦ 44 44 50 50 50 50 50 50 31
Re – 182 182 403 403 403 403 403 403 974
Ta – 124 124 131 131 131 131 131 131 652
regime lam. lam. tra. tra. tra. tra. tra. tra. tur.

Table 4
Inlet region body force parameters.
Run A1 A2 B1 B2 B3 B4 B5 B6 C1

𝜆𝑡 1000 10000 10 10 10 10 10 1000 10000
𝛾𝑟0 1 1 1 1 1 1 1 1 1
𝑏𝑚𝑖𝑛 −1000 −1000 −1000 −1000 −1000 −1000 −1000 −1000 400
𝑏𝑚𝑎𝑥 1000 1000 1000 1000 1000 1000 1000 1000 1000
𝛾𝜙0 12 12 12 12 12 8 12 12 100
𝑐𝑚𝑖𝑛 1 1 1 1 1 1 1 1 1
𝑐𝑚𝑎𝑥 100 100 100 100 100 100 100 100 20

𝑔1(𝑇 ) = 3𝑔0(𝑇 )2 − 2𝑔0(𝑇 )3 (46)

𝑔2(𝑇 ,𝑅, 𝜙) = (1 − 𝑔1(𝑇 ))ℎ𝑎(𝑅,𝜙) + 𝑔1(𝑇 )ℎ𝑎+1(𝑅,𝜙) (47)

The forcing is multiplied with a Gaussian distribution to restrict it to a
few percent of the radial domain length right after the inlet boundary.
The parameter 𝜆𝑡 is there to adjust the intensity of the forcing.

𝑭 𝑡(𝑇 ,𝑅, 𝜙,𝑍) = 𝒆𝑧 𝜆𝑡 𝑔2(𝑇 ,𝑅, 𝜙) exp

(

−
(

𝑅 − 𝑅0𝑡
𝐿𝑟𝑡

)2
−
(

𝑍 −𝑍0𝑡
𝐿𝑧𝑡

)2
)

(48)

Table 4 summarizes the ranges of imposed radial and circumfer-
ntial modes as well as the strength parameter for each simulation
un.
In the outlet region, there is a sponge region, implemented af-

er Chevalier et al. [19], where a second body force is applied that
orces the flow back to the parabolic solution 𝑼 𝑖𝑐 . The region is
estricted to approximately five percent of the radial domain length just
pstream of the outlet by multiplication with a smooth step function.
he intensity of the dampening can be adjusted with the parameter 𝜆𝑑 .

𝑑 =
𝑅 − 𝑅0𝑑 (49)
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𝐿𝑟𝑑
𝑞(𝑅𝑑 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for 𝑅𝑑 ≥ 1

(1 + exp(− 1
𝑅𝑑−1

− 1
𝑅𝑑

))−1 for 0 ≤ 𝑅𝑑 ≤ 1

1 for 𝑅𝑑 ≤ 0

(50)

𝑭 𝑑 (𝑇 ,𝑅, 𝜙,𝑍) = 𝜆𝑑 𝑞(𝑅𝑑 )(𝑼 𝑖𝑐(𝑇 ,𝑅, 𝜙,𝑍) − 𝑼 (𝑇 ,𝑅, 𝜙,𝑍)) (51)

Fig. 4 shows the imposed forcing at one point in time during the
simulation run C1 on two slices of the simulation domain. Both the
inlet perturbation and the outlet dampening are visible.

For comparison with results later on, Fig. 5 shows the two-
dimensional Fourier analysis of the inlet perturbation during run B1.
The figures show the forcing 𝐹𝑧 on two-dimensional slices in space
and time, together with the corresponding Fourier transform 𝑧 ac-
ording to Eq. (39). The forcing evenly covers rectangular areas in the
requency planes, where the spatial wavenumber limits from Table 4
can be observed. In time, the forcing covers wavenumbers between
approximately −500 and 500.

2.5. Software and hardware

Fluid simulations are conducted using the open source solver
Nek5000 [15]. It employs a spectral element method to solve the
Navier–Stokes equations for an incompressible fluid. For all computa-
tions in this study, the Pn-Pn formulation is selected, time is advanced
through third order backward differentiation with a CFL number of 0.5.
All filtering is turned off.

At each time step during runtime, averaging of velocities, pres-
sure, Reynolds stresses, wall shear stress and fluctuating rate of strain
tensor (see Eq. (37)) is performed. Full snapshots of the fluid field
are saved in certain intervals of simulation time. In addition to that,
the fluid field is interpolated onto a more coarse, regular mesh for
Fourier analysis and saved with a higher output frequency than for
the full snapshots. During postprocessing, visualizations of the flow
fields are generated by VisIt (refer to Childs et al. [20]). All other
analysis, for example Fourier analysis and two-point correlations, are
calculated and visualized through custom implementations in Math-
ematica [21]. Computations are performed on SuperMUC-NG at the
Leibniz-Rechenzentrum in Garching, Germany. 35 million core hours
were granted for the project, computation jobs utilized up to 50000
compute cores in parallel.

2.6. ANSYS CFX fluid simulation setup

For comparison of the results to commercial fluid simulation soft-
ware, an accompanying computation is set up in ANSYS CFX [22]. It

covers the same domain size and operating conditions as the direct
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Fig. 5. Fourier analysis of the inlet forcing during run B1, across two-dimensional slices of the simulation domain in time and space. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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numerical simulations from Tables 1 and 3, only the circumferential ex-
ent of the domain is restricted to 𝜃 =1°. The medium is incompressible
ir. In terms of turbulence modelling, the SST model is enabled for the
urbulent operating conditions (C) and the Gamma-Theta transitional
urbulence model is active for the transitional operating conditions
B). Medium turbulence intensity is specified at the inlet boundary.
aminar conditions (A) are simulated without turbulence modelling.
t the inlet, parabolic velocity profiles are specified, consistent with
he DNS inlet boundary condition. The outlet boundary has a given
ressure level. Walls are rotating and rotational periodicity is specified
t the circumferential boundaries. A regular mesh is employed, with
ecreasing element size towards the rotating walls and towards the
nlet and outlet. A mesh independence study is set up for the turbulent
perating conditions of run C1, to determine an appropriate mesh
esolution. Three meshes with varying number of elements in all spatial
irections are compared. As indicator variables, velocity, turbulent ki-
etic energy and turbulent dissipation profiles at 𝑅 = 0.825 are chosen.
he results from the three meshes are visually almost indistinguishable,
ig. 6 shows the circumferential velocity profile as an example. The
‘medium’’ mesh with 158400 elements is selected for further analysis.
t features 48 mesh elements between the disk surfaces and the mesh
oints closest to the walls below 𝑍+ = 1.1.

. Mesh and domain size independence

Regarding the direct numerical simulation of laminar and transi-
ional conditions, comparison of simulation runs B1 to B6 serves as
esh independence study to rule out mesh and domain boundary influ-
124

nce. The computations are set up with identical operating conditions, e
Fig. 6. Comparison of circumferential velocity profiles at 𝑅 = 0.825 from ANSYS CFX
simulations on fine (324900 elements), medium (158400 elements) and coarse (79 380
elements) meshes.

but with longer and wider domain, coarser and finer mesh as well
as bigger perturbation amplitude compared to a reference case. For a
visual comparison of the cases, Figs. 7 and 8 give close up views of the
low field and the corresponding spectra computed from Eq. (39). Only
he spatio-temporal analysis of the radial velocity component in the
-𝑅-plane is shown, because the other results for slices in other coor-
inate directions and for other velocity components and pressure agree
qually well across all runs. The structures in Fig. 7(d) do not match
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Fig. 7. Detail view of the fluctuating component 𝑈 ′
𝑟 of the radial velocity on a plane for constant 𝜙 = 15◦ and 𝑍 = −0.0005 across runs B1–B6. For the colour scales see Fig. 9.

Fig. 8. Fourier transforms | ′
𝑟 | corresponding to Fig. 7 across runs B1–B6. The colours show absolute values of the Fourier coefficients on a logarithmic scale. For the colour

scales see Fig. 9.
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Fig. 9. Colour scales for Fourier analysis of simulation runs B1–B6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Fig. 10. Velocity profile comparison during run A1 at 𝑅 = 0.6667. Experimental data was recorded by Schosser [11].
the other cases because for the wider domain, other circumferential
modes are imposed. This influences the phase shift of the radial modes
as well, because the state of the random number generator is affected.
Looking at the spectral analysis in Fig. 8 however, the dominant modes
are consistent with the other runs.

4. Laminar simulations (cases A1 and A2)

This section describes results from the two laminar runs A1 and
A2. They differ in the strength of the perturbation forcing, which is
increased by a factor of 10 for run A2. The results from the two runs
turned out very similar, except for the amplitude of the unsteady flow
structures. Because of this, this section only displays results from run
A1.
126
Velocity profiles from DNS, ANSYS CFX and experiment are com-
pared by Fig. 10. There is a slight mismatch in the radial velocity
between numerical data and experiment since there is some inaccuracy
in the estimation of air density and mass flow from the measurements.
The circumferential velocity component on the other hand is under-
estimated to a small degree. Furthermore, the DNS flow field is not
entirely stationary because of the artificial perturbation. This does not
visibly alter radial and circumferential velocity profiles because of the
small perturbation amplitude, it does however result in asymmetry of
the axial velocity profile at the particular point in time that is captured
in the figure.

Fig. 11 shows the Fourier analysis of a slice of the fluid domain
in radial direction and in time for constant axial and circumferential
coordinates. The forced perturbation in the inlet region, right after
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Fig. 11. Fourier analysis of the fluctuating component of radial velocity 𝑈 ′
𝑟 during run

A1. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 12. Radial development of perturbation amplitude during run A1. The chart shows
the two-dimensional Fourier transform of the radial velocity on 𝑇 -𝜙-slices through the
omain at 𝑍 = −0.0005 and different radial positions. The slices cover a timespan from
= 0.6 to 𝑇 = 1. Temporal wavenumbers are not distinguished.

= 1 is visibly dampened with decreasing radius towards the outlet.
he spectral plot on the right-hand side can be compared to the broad
pectrum of artificially induced modes from Fig. 5 between 𝛾𝑡 = ±500
and between 𝛾𝑟 = 0 to 𝛾𝑟 = 1000. It becomes apparent that some modes
are dampened faster than others.

A clearer visualization of the radial development of the fluctuation
amplitude is depicted by Fig. 12. Here, the two-dimensional Fourier
transforms of 𝑇 -𝜙-slices of the domain, each with constant radial and
axial coordinates are shown for different radii. It can be seen that the
induced fluctuations are dampened across the whole range of circum-
ferential wavenumbers for decreasing 𝑅. In a region around 𝛾𝜙 = 300,
the dampening is very weak. This is consistent with the location of the
laminar operating conditions in the stability plane, shown in Fig. 2,
lose to the stability boundary, but mostly in the stable region. The
eak dampening rate of some perturbation wavelengths is a possible
xplanation for the spread of experimental data points in Fig. 10,
127

hich is larger than the estimated measurement uncertainty of ±4.1%
Fig. 13. Velocity magnitude on a colour scale and velocity vectors on planes at
𝑍 = 0.0050 (top) and 𝜙 = 0 (bottom) from computation B6. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

by Schosser [11]. Certain unsteady flow structures that develop in the
nozzle or during transition between nozzle and rotor might remain in
the flow throughout the rotor even if the flow is theoretically stable.

5. Onset of instability (cases B1 to B6)

5.1. Flow visualization and Fourier analysis

Fig. 13 visualizes the velocity magnitude and flow direction on a
plane at 75% of the domain height in 𝑍-direction at a point in time at
transitional operating conditions.

The bottom part of the figure shows a 𝜙-normal slice to scale,
to visualize the small aspect ratio of the gap. The plot is based on
simulation run B6, which features a stronger inlet perturbation so that
the flow oscillations are actually visible. In the other runs B1–B5, the
oscillations caused by the inlet perturbation are so small, that they
visually vanish in the velocity magnitude plot.

A comparison of velocity profiles at the same radial position as
previously in the laminar case is displayed in Fig. 14. The experimental
velocity profiles now show a pronounced flattened centre in the radial
component, together with a larger spread of data points than before.
Since the conditions in theory are only weakly unstable, close to the
theoretical stability boundary, it seems likely that the flat region in
the experimental profile is a consequence of strong perturbations that
originated before or during entry of the flow into the disk gap. Because
the imposed perturbation in the DNS is of very small amplitude, the
DNS velocity profiles are essentially laminar profiles. In contrast, the
Gamma-Theta transitional turbulence model in ANSYS CFX captures
the experimental circumferential velocity profile quite well. In radial
direction however, the CFX results resemble more the quasi-laminar
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Fig. 14. Velocity profile comparison during run B1 at 𝑅 = 0.6667. Experimental data was recorded by Schosser [11].
DNS results. Two reruns of the transitional CFX case, one with standard
SST turbulence modelling and one without turbulence modelling, re-
sulted in an underestimated and overestimated circumferential velocity
component respectively.

For further characterization, Fig. 15 shows Fourier analyses in
two-dimensional slices through the simulation domain in radial and
circumferential direction, over a simulation time period from 0.6 to
1. All three slices are located at a constant 𝑍 coordinate at 𝑍 =
−0.0005, close to the centre plane between the rotating disk surfaces.
Only the analysis of the radial velocity component is shown because
the other flow field components have a similar spectral structure. The
𝑇 -𝑅-plot and the 𝑅-𝜙-plot exhibit a rising perturbation amplitude in
radial inward direction. The corresponding spectral plots in the lower
half of the figure show the Fourier coefficients calculated according
to Eq. (39). Again, they can be compared to the spectra of the imposed
perturbation from Fig. 5. Most of the imposed modes are dampened,
some of them are amplified.

Fig. 17 shows the radial development of the 𝑇 -𝜙-Fourier coeffi-
cients more clearly, in a similar manner as previously for the laminar
conditions in Fig. 12, but with reversed colours for clarity. Again,
the absolute value of the Fourier coefficients is shown, from a two-
dimensional Fourier transform of the fluctuating part of radial velocity,
on slices for different constant values of 𝑅 and 𝑍 as function of the
circumferential wavenumber. As the flow progresses towards smaller
radii, wavenumbers around 𝛾𝜙 = 350 get amplified by the flow, the rest
s dampened.
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5.2. Comparison to linear stability analysis

Fourier analysis of the DNS flow field also allows to verify results
from linear stability analysis by Klingl et al. [12], which are based on
the same domain geometry and operating conditions. Fig. 16 shows
a comparison of the spectral maps and the unstable modes from the
local linear stability analysis. The approach is termed ‘‘local’’ because it
assumes radial homogeneity of the flow and is thus limited to a certain
radial position. For comparison to the DNS results, the radial extent of
the slices for Fourier analysis is limited to a small range surrounding
the radial position of the local approach, which in this case is 𝑅 = 0.733.
The unstable modes predicted by linear stability analysis agree with the
DNS results in terms of spatial wavenumbers, but slightly disagree in
temporal wavenumber for some modes. Also, some of the points in the
wavenumber planes that were probed by local linear stability analysis
lie in the amplified region from the DNS spectra but showed up as stable
in the linear analysis.

The remaining inconsistency between local linear theory and DNS
is most likely a consequence of the assumption of radial homogeneity
in the former analysis. This is demonstrated in Fig. 18 by comparison
of DNS results and biglobal linear stability results by Klingl et al.
[12]. The biglobal approach takes the radial development of the flow
into account and yields circumferential and temporal wavenumbers of
stable and unstable modes, while the radial and axial coordinate di-
rections are numerically resolved with two-dimensional eigenfunctions.
The comparison shows that the unstable modes from linear theory now
coincide very well with the amplified region in the spectral map and
are consistent with Fig. 17.
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Fig. 15. Fourier analysis of the fluctuating component of radial velocity 𝑈 ′
𝑟 during run B1. For the colour scales see Fig. 9.

Fig. 16. Fourier analysis of the fluctuating component of radial velocity 𝑈 ′
𝑟 during run B1. The black dots are unstable modes found in the local linear stability analysis by Klingl

et al. [12]. For the colour scales see Fig. 9.
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Fig. 17. Radial development of perturbation amplitude during run B1. The charts show
the two-dimensional Fourier transform of 𝑇 -𝜙-slices at 𝑍 = −0.0005 and different radial
ositions. The slices cover a timespan from 𝑇 = 0.6 to 𝑇 = 1. Temporal wavenumbers
are not distinguished.

Fig. 18. Fourier analysis of the fluctuating component of radial velocity 𝑈 ′
𝑟 during run

B1. The black dots are unstable modes found in the biglobal linear stability analysis
by Klingl et al. [12]. For the colour scales see Fig. 9.

6. Turbulent simulation (case C1)

For a visual impression of the turbulent operating conditions, Fig. 21
shows axial and circumferential slices of a snapshot of velocity mag-
nitude during simulation run C1. Upon entering the domain on the
right hand side of the figure, the flow is initially laminar and then
passes a strong perturbation forcing that induces oscillations. Further
downstream, these break down into a chaotic velocity field.

At the same point in simulation time, Figs. 22 and 23 visualize
vortices in the flow field by showing three-dimensional isosurfaces of
the 𝜆2-criterion. Apparently, the strong oscillation of the flow in the
inlet region causes small vortices to develop close to the wall, which
then grow towards the channel centre as they travel downstream. The
density of vortices in the chaotic velocity field that develops from this
is initially high around 𝑅 ≈ 0.925 and then decreases again and stays
visually approximately constant between 𝑅 ≈ 0.9 and the outlet.

In the following sections, the turbulent flow field is further analysed
along lines through the domain in 𝑅 and 𝑍-direction. Results gener-
ally look the same for different circumferential positions. Analysis of
simulation run C1 is based on a total amount of 4.55 nondimensional
simulation time units. This is enough for the fluid to travel through the
domain more than 22 times at average radial velocity. It took about 2.3
million time steps for the solver to cover this timespan.
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Fig. 19. Radial distribution of the friction Reynolds number Re𝜏 during run C1.

Fig. 20. Temporal average flow velocity in 𝑍-direction at 𝑅 = 0.825 and 𝜙 = 2.08°,
normalized with the friction velocity 𝑈𝜏 . The solid lines are 𝑈𝜏 = 𝑍+ and 𝑈𝜏 =
1

0.41
ln(𝑍+) + 5 [23].

6.1. Friction variables

For analysing friction variables, the domain is divided into 24 radial
sectors, each with a width of 0.0088 nondimensional radial length
units, which is equal to the axial distance between the rotating surfaces.
In each of the sectors, the wall shear stress 𝑤 is averaged during
runtime of the simulation and friction velocity and friction Reynolds
number are calculated using Eqs. (26) and (28). Fig. 19 shows friction
Reynolds number for all radial sectors. After about half the radial
domain length, Re𝜏 settles at values just below 120.

Fig. 20 compares the temporal average velocity magnitude, normal-
ized with friction velocity, to the analytical law of the wall velocity
profiles. There is good agreement in the viscous sublayer. In the centre
of the channel, the numerical velocity profile overshoots the log-law.
The black data points in the figure also show the distribution of mesh
points close to the wall, with the closest point lying at 𝑍+ = 0.466. The
local friction Reynolds number is Re𝜏 = 118, the width of the domain
is 237 wall units.

6.2. Averaged quantities

The averaged quantities to be analysed in this section include
average velocities, Reynolds stresses, turbulent kinetic energy and tur-
bulent dissipation. These are collected during runtime of the simulation
and can be compared to experiment and ANSYS CFX. Figs. 24 and
25 show velocity profiles from direct numerical simulation, experi-
ment by Schosser [11] and from the reference case with active SST-

turbulence modelling in ANSYS CFX. Apparently, simulation runtime
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Fig. 21. Velocity magnitude at the planes 𝑍 = 0 (top) and 𝜙 = 0 (bottom) at one point in time during simulation run C1. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 22. Three-dimensional isosurfaces of the 𝜆2 criterion at 𝜆2 = −100 000 at the same point in time as displayed in Fig. 21. Topview towards negative 𝑍 (top) and side view
towards positive 𝜙 (bottom). For the detail views see Fig. 23.

Fig. 23. Detail views indicated in Fig. 22.
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Fig. 24. Comparison of average velocity profiles from run C1 in axial direction at 𝑅 = 0.825 and 𝜙 = 2.08°. Experimental data was recorded by Schosser [11].
as not enough for the average axial velocity profile to reduce to zero.
ompared to the instantaneous axial velocity profiles, its amplitude is
owever quite small.
For comparison, a 10th order polynomial is fitted to the experi-
ental data points. All results agree very well. A rerun of the CFX
omputation with fluid compressibility does not change the results
oticeably, however changing the inlet boundary condition from the
ustom parabolic velocity profile to the default rectangular bulk profile
eads to a noticeable mismatch in circumferential velocity between the
FX results and DNS and experiment. The spread of the instantaneous
elocity profiles from DNS matches the experimental data points in
ig. 25 very well.
Turbulent dissipation and turbulent kinetic energy along the axial

irection are compared in Figs. 26(a) and 26(b) between ANSYS CFX
and DNS. While the curves agree in the centre region of the chan-
nel, there is substantial deviation near the walls. The nondimensional
Kolmogorov length scale based on the integral average of the DNS
dissipation curve in Fig. 26(a) is 7.82 × 10−5. The distance between
mesh points is approximately equal to this measure in the centre of
the channel and gets smaller towards the walls.

The distribution of those quantities along the radial direction, close
to the centre of the disk channel, is displayed by Figs. 27(a) and 27(b).

Again, the radial development of the flow during DNS can be
observed, with zero turbulence at the inlet boundary, then a rapid rise
due to the perturbation and a slight decrease towards the outlet before
turbulence is dampened away again. Naturally, DNS and CFX results
disagree in the inlet region, but they approach each other towards
132

smaller radii.
Figs. 28(a) and 28(b) show the diagonal and off-diagonal compo-
nents of the Reynolds stress tensor from the DNS results. The magnitude
of the tensor components is highest for the main flow directions 𝑅 and
𝜙.

6.3. Autocorrelations and energy spectra

Figs. 29 and 30 show the two point correlations of all three velocity
components along the radial and circumferential direction, approxi-
mately in the centre between the disk surfaces.

The correlations are calculated according to Eq. (30). The run time
of the simulation is not enough for the correlation functions to reduce
to zero far away from the origin, but their general structure is already
apparent. The width of the peaks at the origin is a measure for the
size of turbulent structures. The 𝑋𝜙-axis in Fig. 30 shows the arc
length along the curve in circumferential direction, so it can directly
be compared to the radial correlation. In radial direction, the axial
velocity component develops smaller structures than the radial and
circumferential component. In the circumferential correlation function,
the circumferential velocity component of the structures appear to be
larger than the radial and axial components.

The Fourier transforms of the two point correlations, calculated
from Eq. (31), are displayed in Figs. 31 and 32. The Fourier coefficients
𝐸𝑖𝑗 cover more than 5 orders of magnitude and a section with a slope
of −5∕3 can very vaguely be made out. For wavenumbers larger than
about 20 000 the spectra flatten out, which marks the lower limit of
resolved structures.
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Fig. 25. Comparison of instantaneous velocity profiles from run C1 in axial direction at 𝑅 = 0.825 and 𝜙 = 2.08°.

Fig. 26. Comparison of turbulent kinetic energy and dissipation profiles in axial direction at 𝑅 = 0.825 and 𝜙 = 2.08°.
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Fig. 27. Comparison of turbulent kinetic energy and dissipation in radial direction at 𝑍 = 0.000191 and 𝜙 = 2.08°.
Fig. 28. Reynolds stress tensor from DNS along the axial direction at 𝑅 = 0.825 and 𝜙 = 2.08°.
Fig. 29. Two point correlations in radial direction at 𝜙 = 2.08° and 𝑍 = 0.000191, the
orrelation origin 𝑿0 lies at 𝑅 = 0.825.
134
Fig. 30. Two point correlations in circumferential direction at 𝑅 = 0.825 and 𝑍 =
0.000191, the correlation origin 𝑿0 lies at 𝜙 = 1.79°.
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Fig. 31. Energy spectrum corresponding to Fig. 29. The dashed line has a slope of
5∕3.

Fig. 32. Energy spectrum corresponding to Fig. 30. The dashed line has a slope of
5∕3.

. Conclusion

Radial inward flow between corotating disk for a geometry suitable
or a friction turbomachinery application was examined using direct
umerical simulation. The simulations cover sections of a flat annulus,
ith inlet and outlet boundaries in radial direction and rotating walls
n axial direction. As operating conditions, three sets of parameters
ere chosen to reproduce the experimental conditions from the PTV
easurements by Schosser [11]. When compared to the flow regime
oundary from linear stability analysis by Klingl et al. [5], the three
ets of parameters correspond to laminar, transitional and turbulent
onditions.
For operating conditions corresponding to laminar flow, all imposed

erturbations are shown to decrease in amplitude towards the out-
et, with some modes however being dampened very slowly. At the
ransitional conditions on the other hand, a limited range of modes is
mplified towards the outlet. The amplification is however quite small
o that a transition to turbulence does not occur. Amplified modes from
he DNS coincide with the modes that were previously identified to
e unstable by Klingl et al. [5,12] through linear stability analysis.
he linear stability approach with resolved axial and radial coordinates
grees better with DNS data than the local approach with assumed
adial homogeneity.
For operating conditions leading to turbulent flow, velocity profile

hapes between experiment by Schosser [11], DNS and a reference
FX case with SST turbulence modelling agree very well. It takes
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bout half the radial domain length for turbulence to develop from the
initial random perturbation. Turbulent kinetic energy and dissipation
predictions from the CFX simulation agree with DNS data in the centre
of the channel, but disagree near the walls. Two point correlations give
an impression of the size of turbulent structures.

In conclusion, it was confirmed that transitional and turbulent flow
structures have a convective nature and thus are strongly dependent
on upstream perturbations. Instability that was observed in previous
experiments at, or even below, the theoretical stability boundary is
most likely a consequence of strong perturbation of the flow upon
entering the disk gap during the experiments. Even if the flow is
theoretically stable, the dampening rate of certain modes can be small,
so that unsteady structures persist throughout the domain.

The present study is intended to serve as a reference and starting
point for future computations. Transition mechanics and how they are
affected by centrifugal and Coriolis effects require further investigation.
Regarding the friction turbine application it would be interesting how
transition and turbulence affects turbine performance. To generate
more realistic inlet conditions, the domain could be extended radially
outward to take into account the outer lateral surfaces of the disks to
form a realistic disk gap inlet that can be supplied with a turbulent inlet
boundary or a simulated nozzle.
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ppendix A. Symbols
ppercase

𝐸𝑖𝑗 Nondimensional energy spectrum (–)
𝑭 Nondimensional body force vector (–)
𝑭 𝒅 Imposed dampening forcing (–)
𝑭 𝒕 Imposed perturbation forcing (–)
𝑧 Fourier transform of axial component of imposed

body forcing (–)
𝐹𝑧 Axial component of imposed body forcing (–)
𝐾 Nondimensional turbulent kinetic energy (–)
𝐿𝑟𝑑 Dampening radial extent (–)
𝐿𝑟𝑡 Perturbation forcing radial extent (–)
𝐿𝑧𝑡 Perturbation forcing axial extent (–)
𝑃 Nondimensional pressure (–)

http://www.lrz.de
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𝑅 Nondimensional radial coordinate (–)
𝑅0𝑑 Dampening radial limit (–)
𝑅0𝑡 Perturbation forcing radial origin (–)
𝑅1 Nondimensional disk outer radius (–)
𝑅2 Nondimensional disk inner radius (–)
𝑅𝑑 Dampening helper function (–)
Re Reynolds number (–)
Re(...) Real part of ... (–)
Re∗ Local Reynolds number (–)
Re𝜏 Wall friction Reynolds number (–)
𝑅𝑖𝑗 Nondimensional velocity two point correlation (–)
𝑇 Nondimensional time (–)
Ta Taylor number (–)
Ta∗ Local Taylor number (–)
𝑤 Nondimensional wall shear stress (–)
𝑼 Nondimensional velocity vector (–)
𝑈 Nondimensional velocity magnitude (–)
𝑈̄𝑖 Temporal average of velocity 𝑈𝑖 (–)
𝑈 ′
𝑖 Fluctuating component of velocity 𝑈𝑖 (–)

𝑼 𝑖𝑐 Parabolic analytical velocity field (–)
𝑈̄𝜙 Temporal average of circumferential velocity (–)
𝑈𝜙 Nondimensional circumferential velocity (–)
𝑈̄𝑟 Temporal average of radial velocity (–)
 ′

𝑟 Fourier transform of fluctuating component of
radial velocity (–)

𝑈 ′
𝑟 Fluctuating component of radial velocity (–)

𝑈𝑟 Nondimensional radial velocity (–)
𝑈𝜏 Nondimensional friction velocity (–)
𝑈𝑧 Nondimensional axial velocity (–)
 ′ Fourier transform of any nondimensional flow

field variable fluctuating component (–)
𝑿0 Two point correlation origin point (–)
𝑋𝑘 Local coordinate in 𝑘-direction, originating from

𝑿0 (–)
𝑋𝑘𝑚𝑖𝑛 Lower bound of 𝑋𝑘 (–)
𝑋𝑘𝑚𝑎𝑥 Upper bound of 𝑋𝑘 (–)
𝑍 Nondimensional axial coordinate (–)
𝑍0𝑡 Perturbation forcing axial origin (–)
𝑍+ Nondimensional wall friction coordinate (–)

Lowercase

𝑎 Perturbation interval index (–)
𝑏 Summation series index (–)
𝑏𝑚𝑎𝑥 Maximum radial perturbation wavenumber index

(–)
𝑏𝑚𝑖𝑛 Minimum radial perturbation wavenumber index

(–)
𝑐 Summation series index (–)
𝑐𝑚𝑎𝑥 Maximum circumferential perturbation

wavenumber index (–)
𝑐𝑚𝑖𝑛 Minimum circumferential perturbation

wavenumber index (–)
𝑑 Summation series index (–)
𝑒 Summation series index (–)
𝒆𝑧 Unit vector in axial direction (–)
𝑔0 Perturbation helper function (–)
𝑔1 Perturbation helper function (–)
𝑔2 Perturbation helper function (–)
ℎ𝑎 Superposition of perturbation modes (–)
i Imaginary unit (–)
𝑖 Placeholder for arbitrary coordinate direction (–)
136
𝑗 Placeholder for arbitrary coordinate direction (–)
𝑘 Placeholder for arbitrary coordinate direction (–)
𝑙 Placeholder for arbitrary coordinate direction (–)
𝑚̇ Mass flow per disk gap (kg∕s)
𝑚 Number of summation series terms (–)
𝑛 Number of summation series terms (–)
𝑛 Total number of spectral elements (–)
𝑛𝜙 Number of spectral elements in 𝜙-direction (–)
𝑛𝑟 Number of spectral elements in 𝑟-direction (–)
𝑛𝑧 Number of spectral elements in 𝑧-direction (–)
𝑝 Pressure (Pa)
𝑝1 Rotor inlet pressure (Pa)
𝑞 Dampening helper function (–)
𝑟 Radial coordinate (m)
𝑟1 Outer disk radius (m)
𝑟2 Inner disk radius (m)
𝑠 Half the disk spacing (m)
𝑡 Time (s)
𝑢̂𝜙1 Average circumferential velocity magnitude at 𝑟1

(m∕s)
𝑢𝜙 Circumferential velocity (m∕s)
𝑢̂𝑟1 Average radial velocity magnitude at 𝑟1 (m∕s)
𝑢𝑟 Radial velocity (m∕s)
𝑢𝜏 Friction velocity (m∕s)
𝑢𝑧 Axial velocity (m∕s)
𝑤̇ Power output per disk gap (W)
𝑧 Axial coordinate (m)
𝑧+ Wall friction coordinate (m)

Greek

𝛼1 Inlet flow angle (–)
𝛾𝑘 Wavenumber in 𝑘-direction (–)
𝛾𝜙 Circumferential wavenumber (–)
𝛾𝜙0 Circumferential perturbation wavenumber step (–)
𝛾𝑟 Radial wavenumber (–)
𝛾𝑟0 Radial perturbation wavenumber step (–)
𝛾𝑡 Temporal wavenumber (–)
𝛾𝑧 Axial wavenumber (–)
𝛿𝑣 Wall friction length scale (m)
𝛥𝑣 Nondimensional wall friction length scale (–)
𝜖 Nondimensional turbulent dissipation (–)
𝜃 Domain size in circumferential direction (–)
𝜅𝑘 Wavenumber in 𝑘-direction (–)
𝜆𝑑 Dampening strength parameter (–)
𝜆𝑡 Perturbation strength parameter (–)
𝜇 Fluid dynamic viscosity (Pa s)
𝜈 Fluid kinematic viscosity (m2∕s)
𝜉𝑎𝑏𝑐 Random perturbation phase shift (–)
𝜌 Fluid density (kg∕m3)
𝜎∗ Local disk gap aspect ratio (–)
𝜎 Disk gap aspect ratio (–)
𝜏𝑤 Wall shear stress (N∕m2)
𝜙 Circumferential coordinate ( - )
𝜔 Angular velocity (1∕s)

Appendix B. Abbreviations

CFD Computational fluid dynamics
DNS Direct numerical simulation
PTV Particle tracking velocimetry
RANS Reynolds averaged Navier–Stokes
SST Shear stress transport
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