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Abstract
This paper presents a configurable routing and tracking architecture that uses multi-objective Model Predictive Control (MPC) 
as its driving algorithm to guarantee safe autonomous driving of different vehicle types. The architecture consists of three 
main components and primarily relies on labeled map data to generate optimal path and velocity trajectories in accordance 
with the vehicle type and the desired control objectives. We begin with introducing the overall system architecture and its 
different inputs, outputs, and components. We also briefly explain the open-source services utilized in this work for trajectory 
generation, namely OpenStreetMap and GraphHopper. We then focus on formulating the multi-objective MPC problem and 
its vehicle-specific constraints, which is solved offline to generate the reference path and velocity trajectories. Afterwards, 
we discuss some adaptions to the system model and the controller operating strategy to incorporate real-time tracking of 
these trajectories while guaranteeing collision avoidance. Finally, we successfully demonstrate the system’s feasibility by 
numerically evaluating its performance in a typical urban driving scenario for different vehicles.

Keywords  Autonomous vehicles · Route planning · Trajectory following · Multi-objective MPC · GraphHopper · 
OpenStreetMap

Introduction

Nowadays, road traffic accidents represent a major public 
health concern as they are the primary cause of death and 
disability worldwide, resulting in over a million deaths annu-
ally and between 20 and 50 million injuries, some of which 
can lead to permanent disabilities. Moreover, expenditure 
on traffic accidents can account for up to 3% of a country’s 
GDP, which is a significant financial burden, especially for 
developing countries [1, 2]. Therefore, it is imperative to 
explore innovative solutions that can create a safer driving 

and transportation environment from both a humanitarian 
and pragmatic perspective.

Autonomous Driving is a promising solution to this 
problem, as it has the potential to eliminate traffic accidents 
induced by human-driver error, such as speeding, drink-driv-
ing, delayed reaction time, and other forms of inattentive or 
aggressive driving [3]. In addition, it contributes to optimiz-
ing traffic flow, reducing fuel consumption, and enhancing 
passenger comfort. However, since it requires collaborative 
research across several domains, including computer vision, 
sensor data fusion, networks, and control theory, high-level 
automated driving has yet to be fully realized [4]. In this 
paper, we focus on the control aspects of the autonomous 
vehicles (AV) and present our research contribution to 
further advance the state-of-the-art in AV control, i.e., a 
generic, highly compatible architecture that can be applied 
for a variety of control systems and vehicle types with minor 
configurations.

Model Predictive Control (MPC) has recently become 
one of the most prevalent control methods in autonomous 
driving applications, owing to its flexibility, reliability, and 
effectiveness when dealing with multi-objective problems 
[5]. For example, it has been used in path following and lane 
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keeping systems to promote driver safety and comfort while 
guaranteeing efficient fuel consumption, thus improving traf-
fic flow and reducing air pollution [6, 7].

In a previous study [8], we introduced a deterministic 
MPC-based path tracker with collision-avoidance 
capabilities, in which multiple controllers were developed 
and fine-tuned for generic urban driving situations. 
Moreover, a Finite-State Machine (FSM) was implemented 
to analyze the current driving situation and appropriately 
activate the most suitable controller, as well as ensure 
smooth switching between the different controllers. This 
approach required modeling the path to be followed as a 
spline curve �ref∶ [s0, sf ] → ℝ

2 that spans from the desired 
start location A to the destination B and passes through the 
way-points �ref (s) ∶= [xref (s), yref (s)]

T . Accordingly, the 
control system was responsible for traversing this path as fast 
as possible while fulfilling some objectives (like minimizing 
the system controls) and adhering to some constraints (like 
speed limits).

Here, we continue to explore this idea by following 
a more standardized approach, in which we construct 
a configurable routing and tracking architecture that 
can control different vehicles in real-life urban driving 
scenarios. We take inspiration from sources like [9, 10] to 
understand how a typical autonomous driving architecture 
is designed, including expected system inputs and outputs 
and the characterization and responsibilities of each of 
the system components. To improve the applicability 
of our approach, we utilize the open-source geographic 
database OpenStreetMap (OSM) [11] and the open-source 
routing library GraphHopper [12] to construct feasible 
travel paths between desired locations across real-world 
street maps. Moreover, we consider sources like [13–15] 
to model the ego-vehicle and appropriately specify the 
system dynamics and constraints. Accordingly, we build 
vehicle- and objective-specific optimal reference path 
and velocity trajectories, which can be used as a baseline 
for online tracking. Finally, with the aid of [16, 17], we 
make some adaptations to our controller to create a real-
time capable control system, which tracks the previously 
computed reference path and velocity trajectories while 
guaranteeing collision avoidance. This rounds up our 
proposed architecture, as it includes both path routing and 
real-time trajectory tracking while being configurable for 
different vehicle types and control objectives.

This paper is structured as follows. In “Control 
Architecture” section, we describe the overall system 
architecture and the inputs, outputs, and functionality 
of each of its components. We also briefly introduce the 
open-source services used in this study, namely OSM and 
GraphHopper. In “Trajectory Generation” section, we 
focus on the trajectory planning components, where we 
explain the algorithm that generates the reference path 

to be followed formulate the offline control problem that 
computes the vehicle-specific optimal velocity trajectory 
across the reference path. Afterwards, we discuss the 
tracking component in “Trajectory Tracking” section, 
with an emphasis on the modifications done to the system 
model and constraints to support real-time tracking of the 
reference trajectories. Finally, we evaluate the proposed 
architecture in numerical simulations and display the 
achieved results in “Numerical Simulation and Results” 
section, then summarize our work and ideas for future work 
in “Conclusion and Future Work” section.

Control Architecture

Autonomous driving has been the subject of extensive 
research over the past few decades, yet some challenges 
remain unsolved that hinder the development of fully autono-
mous vehicles (AVs) to this day, such as legal, technical, and 
ethical issues [18]. For example, one of the more controversial 
topics is the creation of a standardized development archi-
tecture for AVs, as it has been proven difficult to construct a 
single architecture suitable for all possible AV applications. 
Therefore, we can find multiple architectures that were devel-
oped to accommodate a specific scope, objective, or field of 
application [9, 10, 19], but on inspecting these architectures 
conjointly with an industrial approach to this problem [20], 
we realize that there are some characteristic components that 
recurrently appear in every architecture, such as the trajectory 
generation and trajectory execution components-albeit under 
different names. So in our proposed architecture, we primarily 
focus on the implementation of these two components, as they 
represent cornerstone elements that can be easily integrated 
into other existing architectures.

Other notable components are the environment- and self-
perception modules, such as cameras, radar sensors, and data 
fusion modules. These modules may operate in a localized 
or cooperative manner with neighboring AVs, leveraging the 
vehicle’s sensor set and communication devices, as well as 
the available Internet of Vehicles (IoV) environment [21]. 
However, the configuration and selection of perception mod-
ules as well as their cost represent separate research topics 
that are beyond the scope of this study. Similarly, the actua-
tion modules are typically vehicle and model-dependent and 
require considerable scientific contribution [22], so they will 
only be briefly discussed in the sequel.

Figure 1 illustrates a comprehensive summary of the 
typical components present in AV system architectures [19] 
from a control perspective, and can be explained as follows:

•	 Perception In this stage, the AV uses various sensors 
and algorithms to gather information about itself and 
its environment [23]. For example, camera modules 
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produce images that, when processed by the lane 
marks recognition module, yield feature points about 
the admissible driving area. By combining this with a 
localization algorithm, we can accurately determine the 
position of the ego-vehicle with respect to its travel lane 
to ensure safe driving [19]. The data fusion module is 
reserved for more complex functions, like pedestrian 
recognition and tracking, which require information from 
multiple sensors (e.g., cameras and LiDAR) to reliably 
extract the desired features [10].

•	 Decision and planning Here, the AV uses the acquired 
information from the perception modules to plan and 
decide the motion and behavior of the ego-vehicle, 
which includes trajectory planning, obstacle and 
collision avoidance, action prediction, and so on [24]. 
We can categorize these components into two groups: 
trajectory generation, i.e., the high-level path planning, 
and trajectory execution, i.e., the low-level real-time path 
tracking. Furthermore, some interactive modules exist 
that enable the driver to influence the decision-making 
process of the AV, e.g., to set a desired travel speed or to 
override a planned autonomous maneuver [9].

•	 Actuation After determining the desired driving maneu-
vers, the control modules convert these actions into physi-
cal controls of the ego-vehicle, such as steering and accel-
erating/braking. Consequently, they are transferred to and 
executed by the hardware drivers, as they directly interface 
with the chassis components of the AV (e.g., the steer-
ing wheel motor and the accelerator pedal motor) [10]. 
In some cases, the actuation modules may also be used to 
alert an inattentive driver with the aid of vibrant lights or 
loud sounds if the system detects an emergency [23].

In order to maximize compatibility with existing archi-
tectures, we propose a simplistic architecture to implement 

the decision and planning components, in which we assume 
prior knowledge of the required road data (e.g., driving 
lanes), ego data (e.g., speed and steering angle), and traf-
fic data (e.g., positions and velocities of other traffic par-
ticipants). Moreover, we configure our system to compute 
generic control actions, such that they can be converted later 
into the specific controls of different vehicles. Thus, the pro-
posed architecture is displayed in Fig. 2 and the components 
of interest are highlighted in gray.

The implementation of these components will be 
discussed in detail in the upcoming sections, but first we 
will give a brief description of the open-source services 
we intend to use, namely OSM and GraphHopper. It is 
pertinent to mention that these services offer free solutions 
for academic purposes and were accordingly used at no cost 
in this study, so further research may be necessary to assess 
their financial viability in commercial applications.

OpenStreetMap

OSM [11] is a collaborative, volunteer-driven project that 
was launched in 2004 with the aim of creating a freely 
available geographic database of the world, that can be used 
in mapping, navigation, or similar applications without being 
limited by proprietary or monetary restrictions [25]. Since 
then, it has become one of the largest and most recognized 
Volunteered Graphical Information (VGI) projects, with 
millions of registered contributors and billions of data 
points covering countries across the entire world [25, 26]. 
Moreover, the OSM datasets are constantly increasing both 
in quality and magnitude, since their contributors include 
not only volunteers and non-profit organizations, but also 
professional editors from major tech corporations such as 
Facebook, Amazon, and Apple [27]. Finally, OSM datasets 
have already been utilized in navigation systems [26] 

Fig. 1   System architecture of 
AVs with generic components

Fig. 2   Proposed routing and 
tracking architecture
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and autonomous vehicle applications [27], which further 
supports our decision to use OSM in the path planning 
components of this study.

GraphHopper

GraphHopper is an efficient, open-source routing engine 
that offers multiple free and commercial solutions for traffic 
routing, such as turn-by-turn navigation, route planning 
and optimization, geocoding, and map matching [28]. It 
primarily utilizes OSM datasets for its road networks, and it 
can be configured to use different path-finding algorithms, 
such as Dijkstra, A*, and their bidirectional variations, 
to determine the fastest/shortest path between two given 
locations. GraphHopper works pretty efficiently, where it 
can calculate routes across hundreds of kilometers in mere 
seconds [29]. Additionally, it analyzes the map routes’ 
metadata (e.g., road type, speed limits, and road dimensions), 
and thus can be configured for custom routing of different 
vehicles, cyclists, or pedestrians [26]. It can also be adapted 
to offer custom routing for specific driving objectives, such 
as finding the shortest path while optimizing nitrogen oxide 
emissions [30]. Overall, GraphHopper presents us with 
a free, fast, and customizable method for route planning, 
which perfectly fits our current problem.

Trajectory Generation

As previously discussed, we need to develop two 
components to generate the reference path and velocity 
trajectories that will be tracked by the ego-vehicle, which 
we will discuss in the following sections.

Path Planning

We start with the path planning component, which, when 
given a start location A and a destination B, must generate 
a feasible travel path �ref  between them through the road 
network. To achieve this, we write the locations A and B 
in terms of their geographic coordinates (latA∕B, lonA∕B) 
and use the GraphHopper Routing service to calculate the 
fastest route connecting them. If needed, we may also use 
the GraphHopper Geocoding service to convert desired 
addresses into (lat, lon) points. Figure 3 displays a sample 
of the different vehicle-specific fastest routes generated by 
GraphHopper between given start and end locations.

The web interface offers basic routing options, such as 
setting multiple stops between A and B and optimizing for a 
selected traffic participant type (e.g., car, truck, pedestrian, 
etc.). Accordingly, the generated route is a set of labeled 
geographic way-points with navigational instructions, as 
well as some rudimentary information like traveled distance 
and elevation data. However, the GraphHopper Routing API 
offers more capabilities, such as specifying a custom routing 
vehicle profile and selecting the language for navigational 
instructions, but more importantly, it can embed additional 
information in the metadata of the generated way-points, like 
road class, number of lanes, maximum speed, street name, 
and many more [12].

This API can be called over HTTP, where it responds 
with a JSON formatted data file containing the generated 
routing way-points with the requested metadata. To simplify 
the API calling process, we used MATLAB to develop the 
GUI depicted in Fig. 4, where the user can specify the rout-
ing options and desired metadata. Then, the GUI calls the 
API and exports the received generated route either to an 

Fig. 3   Generated routes for a car (left) and a bicycle (right) between the same points using the GraphHopper web interface [12]
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external data file or to the MATLAB workspace for further 
data manipulation. Also, we added a simple map display-
ing the generated way-points data in the GUI for clarity 
purposes.

On observing the generated route data, we notice two 
main issues: first, the way-points are specified in the 
geographic coordinates system, which is unsuitable for 
local positioning and trajectory following. To tackle this 
problem, we must redefine the 3D geodetic data in a local 
Cartesian coordinates system, which is achieved by using 
a map projection (e.g., the Universal Transverse Mercator) 
to transform the route map from ellipsoidal into plane 
coordinates [31]. We can then create a local Cartesian map 
with the projected way-points, which, in accordance with a 
GPS sensory module and an adequate vehicle model, enables 
system localization and tracking [4]. Luckily, MATLAB 
readily offers the function latlon2local that directly 
converts (lat, lon, alt) data points into (x, y, z) coordinates, 
where the local coordinate system is anchored around a 
desired origin point.

The second issue is that the received way-points resem-
ble simple positions on a coordinates system, but we need 
a spline curve �ref  for the path tracking component. We can 
solve this by constructing continuous natural cubic splines 
between the way-points to create �ref  from A to B, which 
theoretically works, yet may yield infeasible routes due to 
the nature of the received way-points. As GraphHopper 
attempts to minimize the number of returned data points, 
it omits sequential points in a straight line, which results in 
having poorly defined road segments with few way-points, 
such that generating splines for these road segments may 
result in routes that span outside the allowed road network. 
We address this by analyzing the locations of each pair 
of sequential way-points and if their inter-distance is less 
than a specific threshold, we use interpolation to insert 
additional way-points between them. Thus, we can ensure 
that all of our road segments are adequately defined. 

Fig. 4   Developed GUI to facili-
tate calling the GraphHopper 
Routing API
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Algorithm 1   Compute Reference Path

Require: way-points in geo-coordinates
Step 1: Map Projection

1: Set the first way-point as origin for local coordinates
2: for all way-points in geo-coordinates do
3: Calculate projected way-points in local Cartesian coordinates
4: end for

Step 2: Add Missing Way-points
5: Create list of way-points in Cartesian coordinates
6: for all i with 1 ≤ i < number of way-points do
7: AddExtraPoints(point(i),point(i + 1))
8: end for
9: Sort the list of way-points

Step 3: Adapt Location of Way-points
10: Create preliminary spline from sorted list of way-points
11: for all i with 1 ≤ i < number of way-points do
12: if number of lanes at point(i) > 1 then
13: Use spline to project point(i) to the right with offset lanes
14: else if Navigation instructs to turn left/right at point(i) then
15: Use spline to project point(i) to the left/right with constant offset
16: end if
17: end for
18: Create final spline from adapted way-points
19: return Reference path as a spline

1: procedure AddExtraPoints(A,B)
2: if distance between A and B < threshold then
3: Calculate midpoint M of A and B
4: Add midpoint M to the list of way-points
5: AddExtraPoints(A, M) recurse for points A and M
6: AddExtraPoints(M , B) recurse for points M and B
7: end if
8: end procedure

Additionally, GraphHopper returns way-points exactly 
in the center of road segments, which may yield incorrect 
paths in case of multi-lane roads. So, by checking the num-
ber of lanes (from the metadata) in all road segments, we can 
appropriately shift the way-points’ locations to favor trave-
ling in the rightmost lane to promote safe driving. Similarly, 
we can analyze navigational instructions to identify turning 
maneuvers to the right/left and correspondingly shift the 
way-points to produce smoother travel paths. Lastly, we cre-
ate continuous splines across the adapted way-points to form 
our reference path �ref  . The complete process of way-points 
manipulation is summarized in Algorithm 1 and an example 
of the resulting spline is demonstrated in Fig. 5.

It is important to mention that the generated reference 
path serves only as a baseline for the ego-vehicle and that 
during real-time tracking, the sensor modules will provide 
the AV with additional data about the lane constraints, which 
will be used to ensure driving in admissible areas.

Velocity Planning

After generating the reference path, we now move unto 
calculating the optimal velocity trajectory corresponding 
to this path. We take the road data and the vehicle-specific 
dynamics and constraints into account and accordingly 

compute an explicit baseline for the velocity trajectory across 
this path. This ensures a safe, efficient, and comfortable trip, 
as well as simplifies the tracking problem, which facilitates 
achieving real-time trajectory tracking. We formulate this 
as an optimal control problem and solve it using Nonlinear 
MPC to guarantee feasible and smooth trajectories [32]. 
Since we intend to create generalized components for 
modeling various AVs, we need to use a generic model that 
describes the dynamic motion of the ego-vehicle while being 
independent of vehicle-specific parameters. So, we utilize 
the kinematic vehicle model [13] in coordination with a 
curvilinear coordinate system to describe the AV’s motion 
across a reference curve �ref∶ [0, L] → ℝ

2 as follows: 

This yields the system state vector xT = [s, d,� , �, v] , 
where s is the arc length of a reference point on the ego-
vehicle relative to �ref  , d is the normal distance between this 
point and �ref  , � is the deviation in orientation with respect 
to �ref  , and � and �ref  represent the curvature of the vehicle’s 
trajectory and reference trajectory respectively. Another 
benefit of using the kinematic model is that there exists a 
subset of the system states yT = [d,�] that represent tracking 
errors to the reference trajectory, such that the path tracking 
problem equates to stabilizing y(t) to 0. In addition, this 

(1a)s�(t) =
v(t) cos�(t)

1 − d(t) ⋅ �ref (s(t))

(1b)d�(t) = v(t) sin�(t)

(1c)� �(t) = � �(t) − � �
ref
(t) = v(t)�(t) − s�(t)�ref (s(t))

(1d)��(t) = u1(t)

(1e)v�(t) = u2(t)

Fig. 5   Original way-points (blue) versus final spline from adapted 
way-points (red)
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model offers generic quantities for the system inputs ( �′ , v′ ), 
and they can later be converted to the controls of different 
vehicles by using the mapping (x, u,X) ↦ U = �(x, u,X) [8].

To define the system constraints, we first need to revisit the 
metadata of the way-points we received from GraphHopper, 
as they include information on the speed limits at the start and 
end of each of the road segments in the reference path. We 
use a simple heuristic to create continuous functions for the 
speed limits vmin and vmax , in which we assume constant values 
across a road segment if the speed limits remain unchanged, 
and otherwise use interpolation to determine the intermediate 
speed limit values. Consequently, we can impose the following 
restriction on the vehicle’s velocity:

such that vmin(s(t)) and vmax(s(t)) are computed with respect 
to the traveled arc length, and �v is an additional slack 
variable for constraint relaxation, which increases the 
chances of finding feasible solutions without sacrificing 
system stability [33]. Second, we consider the AV’s physical 
construction that may limit the behavior of its components, 
e.g., by imposing restrictions on its maximum acceleration/
deceleration or its driving curvature. So, we add: 

 which are vehicle-specific constraints that are determined 
and set for different vehicles independently [15]. Finally, 
we introduce a safety constraint that restricts the vehicle’s 
lateral acceleration to a maximum allowed value an,max , in 
order to avoid excessive lateral forces when making sharp 
turns [13]:

As for the MPC cost function, we use the weighted multi-
objective function:

in which the first term incorporates minimization of the 
tracking errors to the reference trajectory, the second is a 
normalized incentive to minimize the difference between the 
vehicle’s traveled distance s and the destination sf  [8], the 
third is a traditional objective to reduce energy consumption 
and maximize passenger comfort, and the fourth minimizes 
the slack variable for velocity relaxation �v . By solving the 
problem, we get the desired reference path and velocity 
trajectories that will be later used in online tracking.

(2)vmin(s(t)) ≤ v(t) + �v ≤ vmax(s(t))

(3a)umin ≤ u(t) ≤ umax

(3b)�min ≤ �(t) ≤ �max

(4)−an,max ≤ �(t)v(t)2 ≤ an,max

(5)min∫
T

0

�y||y|| + �s

( sf − s

sf − s0

)2

+�u||u|| + �v�v
2dt

Trajectory Tracking

Nonlinear system models are suitable for describing the 
motion and dynamical behavior of complex systems, yet 
they impose an additional layer of complexity that optimal 
solvers may struggle against, which limits their usability in 
real-time applications [34]. Therefore, it is often beneficial 
to linearize the system dynamics around an operating point 
and attempt to find an optimal solution for the linearized 
model instead, as the problem structure can then be exploited 
to reach feasible solutions faster [35].

As the ego-vehicle is expected to closely follow the 
reference path, we can safely assume that its deviation in 
orientation � with respect to �ref  is small enough, such that 
sin(�) ≈ � and cos(�) ≈ 1 . Moreover, we can assume that 
its lateral deviation d is small with respect to the reference 
curve (which is defined as rref =

1

�ref
 ), such that 

d

rref
= d ⋅ 𝜅ref ≪ 1 [16]. This simplifies the model introduced 

in Equation 1 and yields: 

Nevertheless, this model still includes some nonlinearities 
due to the coupled system dynamics in d and � . To address 
this problem, some approaches proposed to assume a 
constant velocity profile [36], others suggested decoupling 
the longitudinal and lateral system dynamics and solving 
them in two sequential phases [37], however we argue 
that this can only yield sub-optimal trajectories. A more 
interesting idea would be to locally linearize the coupled 
system model using Taylor expansion at each time step and 
then solve for the fully linearized model, which may yield 
better results provided that the model is discretized with 
a small enough time step Ts , but we leave this for future 
studies. For the sake of this study and the application at 
hand, we proceed with the simplified model in Eq. 6 as it is 
sufficient to achieve acceptable real-time results.

For trajectory tracking, we use the constraints introduced 
in Eqs. 2 and 3, but ignore the constraint for an,max as it has 
already been considered in computing the optimal velocity 
trajectory vref  to simplify our problem further. In addition, 
we primarily reuse the constraints for safe following and 

(6a)s�(t) = v(t)

(6b)d�(t) = v(t)�(t)

(6c)� �(t) = v(t) ⋅ (�(t) − �ref (s(t)))

(6d)��(t) = u1(t)

(6e)v�(t) = u2(t)
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driving within the permissible area previously proposed in 
[8], which we summarize in the following.

We define the occupancy region of the ego-vehicle as a 
rectangular area encompassing its complete 2-D footprint 
and optimally cover it with circular disks, then use a 
simple heuristic for collision detection, i.e., a collision 
occurs if an object (or lane markings) overlaps with the 
footprint of any of the covering disks. Accordingly, we 
guarantee driving within the admissible area by adding 
a set of clearance constraints clearLN  that restrict the 
lateral deviation of the disks covering the ego-vehicle as 
demonstrated in Fig. 6. These constraints are defined as 
dmin,i + r ≤ di ≤ dmax,i − r,∀i ∈ 1,… , nrDiskego , where di is 
calculated using trigonometric functions for each disk and 
r is the common disk radius. Determining dmax,i and dmin,i 
depends on the data we receive from the sensory modules 
[24], e.g., on receiving way-points corresponding to the 
lane markings, we may create the splines �min and �max , from 
which we can compute the minimum/maximum allowed 
lateral deviation with respect to arc length dmin∕max(s(t)) . 
Nonetheless, this is a rather irrelevant task to the MPC as 
it can be completely realized by an independent component 
that takes s and returns the corresponding dmin∕max values. 
So, in this work we rewrite the constraints to guarantee 
driving in one permissible lane with width wLN , such that �ref  
lies in the middle of it, which yields the linear constraints: 

(7a)r −
wLN

2
≤ d ≤ wLN

2
− r

(7b)r −
wLN

2
≤ d +

ld

2
� ≤ wLN

2
− r

(7c)r −
wLN

2
≤ d + ld� ≤ wLN

2
− r

Moreover, we introduced a probabilistic component that 
determines the closest road user driving in the same lane 
as the ego-vehicle in [8]. We employ this component in 
accordance with a modified constant time headway policy to 
specify the safety distance sSF(t) = max(sSF,min, v(t)th) , which 
must always be kept to avoid collisions. Subsequently, we 
add a constraint for safe following:

in which srel is the relative distance between the arc length 
of the leading traffic participant and the ego-vehicle 
respectively, and �SF is the slack variable for safe following. 
Finally, we formulate the modified MPC objective function 
as:

which operates in the time span t ∈ [t0, tf ] and consists of a 
terminal term for following the reference velocity trajectory 
vref  , in addition to a running cost for tracking the path 
trajectory as well as minimization of system controls and 
slack variables. We now solve the optimal control problem 
iteratively, where we start at t = t0 and solve for the states, 
constraints, and cost function on the interval ΔT = tf − t0 to 
determine the optimal control u∗ , where u∗ is applied for one 
time step Ts =

ΔT

N
 . Afterwards, we shift the prediction 

horizon by one time step and measure the system states, then 
solve the problem again for the updated states, constraints, 
and cost function. This is repeated until an exit condition is 
met, which, in our case, is reaching the destination. Notice 
that the terminal term v(T) − vref (s(T)) in Eq. 9 now replaces 
the normalized incentive sf−s

sf−s0
 , as the vehicle shall continue 

to move with the optimal velocity trajectory until it finally 
stops at its destination.

FSM Operating Strategy

Similarly, we revise the FSM architecture previously dis-
cussed in [8] and add some modifications to incorporate the 
changes we made to our control problem due to introducing 
the velocity planning component. We present the modified 
configuration in Fig. 7 and switch conditions in Table 1, as 
we briefly discuss the formulation of the transition condi-
tions in the following equations. For more details on the 
FSM modes, we refer to “Appendix”.

On switching from one state to the other, we may have 
multiple exit conditions and in this case, we prioritize the 
conditions according to their indices, i.e., �1 is evaluated before 
�2 . In case no exit condition is satisfied, the active state remains 

(8)srel ≥ sSF + �SF

(9)
min(v(tf ) − vref (s(tf )))

2 + ∫
tf

t0

�y||y||
+ �u||u|| + �SF�SF

2dt

Fig. 6   The clearance constraints for driving inside the permissible 
area [8]
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unchanged, which is denoted by OW in Table 1. Moreover, we 
primarily use sigmoid functions f (x) = 1

1+e�+�x
 to calculate 

smoothing factors �� for state exit conditions, such that we 
prevent aggressive switching from one state to the other, as 
well as guarantee smooth reversible switching if a condition is 
no longer satisfied. Notice that we will switch from one state 
to the other only when a condition is fully satisfied � = 1 , 
otherwise, we remain in the same state and calculate a 
transition factor �� to gradually modify the system objectives 
and constraints, then accordingly formulate a new control 
problem to find the optimal system controls [8].

For the first state XP, we have two exit conditions: �1 to 
PF and �2 to PU. Both are initially triggered on leaving the 
initial parking area (i.e., s ≥ sXP ), in which sXP is a traveled 
distance threshold for the parking area that is determined 
based on geographic data in accordance with �ref  . Likewise, 
both transitions are completed after the ego-vehicle passes the 
relaxed threshold s ≥ sXP,� . The main difference between �1 
and �2 is the maximum speed limit in each of their respective 
states, which appropriately affects the acceleration and 
deceleration limits for driving comfort. We define �1 as:

where ��1
∶=f (s) is a sigmoid function, such that 

lims→sXP
��1

= 0 and lims→sXP,�
��1

= 1 . Note that �2 is defined 
in a similar manner by using ��1

 as the smoothing function, 
but with a different speed limit vmax ≥ 8[m∕s] . Next, we have 
the common exit condition �3 for both states PF and PU, 
which is defined in a complementary manner to �1 as:

with sNP and sNP,� being the distance threshold and relaxed 
threshold for the final parking area respectively. We now 
move unto the transition condition �4 from PF to PU, which 
is triggered either on following/approaching a slow road 
user, or when the road regulations specify a lower maximum 
speed limit than the current, i.e., 30 [km∕h] instead of 
50 [km∕h] . Subsequently, we set �4 as:

with the velocity-dependent sigmoid function 
��4

∶=f (v[m∕s])  ,  s uch  t ha t  limv→13.5 ��4
= 0  and 

lims→8 ��4
= 1 . Note that we use marginally lower values for 

the speed limits ( 8 [m∕s] , 13.5 [m∕s] instead of 30 [km∕h] , 
50 [km∕h] ), since it promotes safe driving without 
sacrificing speed, while being slightly easier to formulate 
programmatically. Complementary to �4 , we define the 
return transition �5 from PU to PF as:

(10)𝜏1∶=

⎧
⎪⎨⎪⎩

1, (s ≥ sXP,𝜂) ∧ (vmax ≥ 13.5[m∕s])

𝜔𝜏1
, (sXP ≤ s < sXP,𝜂) ∧ (vmax ≥ 13.5[m∕s])

0, s < sXP

(11)𝜏3∶=

⎧
⎪⎨⎪⎩

1, s ≥ sNP
𝜔𝜏3

, sNP,𝜂 ≤ s < sNP
0, s < sNP,𝜂

(12)

𝜏4∶=

⎧
⎪⎨⎪⎩

1, ¬𝜏3 ∧ (v ≤ 8) ∧ ((OinLN ≠ �) ∨ (vmax ≤ 8.4))

𝜔𝜏4
, ¬𝜏3 ∧ ((vmax < 13.5) ∨ ((OinLN ≠ �) ∧ (v < 13.5)))

0, otherwise

Path
Following

(PF)

Pulling
Up
(PU)

Standstill
(SS)

Enter
Parking
(NP)

End
(ND)

Exit
Parking
(XP)

τ1 τ2

τ3

τ4

τ3

τ5

τ6

τ7

τ8

Fig. 7   FSM state configuration and possible transitions

Table 1   Conditions for 
switching between the different 
FSM modes

S
0

f

XP PF PU NP SS ND

XP OW �
1

�
2

– – –
PF – OW �

4
�
3

– –
PU – �

5
OW �

3
�
6

–
SS – – – �

7
OW –

NP – – – OW – �
8
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where ��5
= 1 − ��4

 . Afterwards, we examine the transitions 
for the utility state SS, which can be sufficiently implemented 
as hard constraints due to the nature of the state itself. The 
transitions for entering and exiting the state are:

Finally, we define the final transition �8 by specifying 
some threshold sND for reaching the destination sf  , such that:

after which the ND state is fully activated and promptly 
decelerates the ego-vehicle until it comes to a complete halt, 
thus completing the trip.

Numerical Simulation and Results

Next, we will assess the performance of the proposed 
architecture under the following assumptions: first, that 
the ego-vehicle is equipped with the necessary sensor set 
to accurately determine the vehicle’s position and obtain 
the control-relevant states, such as velocity and curvature. 
Second, that the sensor data is high-fidelity, reliable, and 
instantaneously available without any data loss or delay 
after being filtered (similarly for the communication with 
the virtual traffic light). Finally, we assume that the vehicle 
control is consistent and prompt with no delays.

As a compromise between simplicity and performance, 
we implemented the proposed architecture as a combination 
of MATLAB and FORTRAN code, in which the software 

(13)

𝜏5∶=

⎧
⎪⎨⎪⎩

1, ¬𝜏3 ∧ (vmax ≥ 13.5) ∧ ((OinLN = �) ∨ (v ≥ 13.5))

𝜔𝜏5
, ¬𝜏3 ∧ (vmax > 8.4) ∧ ((OinLN = �) ∨ (v ≥ 8))

0, otherwise

(14)
�6 ∶= ¬�5 ∧ (v ≤ 0.5[m∕s]) ∧ (a ≤ 0[m∕s2]) ∧ (srel ≤ sSF)

(15)�7 ∶= (OinLN = �) ∨ (srel ≥ sSF + sSF,�).

(16)�8 ∶= (sf − s ≤ sND)

OCPID-DAE1 [38] is used to solve the optimal control 
problems, namely velocity trajectory planning and real-time 
tracking. The simulation results were obtained on a Linux 
system with the processor i5-5200U of 2.20 GHz and 8 GB 
of RAM. For the MPC parameters, we selected a prediction 
horizon of ΔT = 3.0 [s] with N = 15 control points and 
a time step of Ts = 0.2 [s] for the velocity planning and 
ΔT = 2.0 [s] , N = 10 , and Ts = 0.2 [s] for the real-time 
tracking. Model parameters were primarily defined using 
a variety of sources [15, 39] to guarantee feasibility and 
maximize passenger comfort, where we created two different 
sets of parameters for the kinematic vehicle to resemble a 
car and a small truck. Furthermore, the weights in the MPC 
objective function in Eqs. 5 and 9 were reused from [8], then 
slightly modified to improve performance based on trial and 
error.

Using the knowledge of local streets around the Uni-
versity of the Bundeswehr Munich, we formed a basic 
scenario with a route of about 1.5 [km] and a lane width 
of wLN = 3.25m that ensures activation of the main FSM 
states. This route is displayed in Fig. 8, where it is obvious 
that the path planning for both vehicles yields very similar 
routes, yet we get different velocity trajectories based on the 
model parameters and system constraints. This is especially 
true for the constraint due to an,max , which is responsible 
for the sharp dip in the velocity of both vehicles at around 
s ≈ 215m and s ≈ 520m . For evaluating the performance 
of the real-time tracking controller, we augment the sce-
nario with a virtual traffic light that is located at s = 1270m 
and gets activated (turns red) during the time interval 
t = [150 s, 180 s] , so as to verify the approach in a typical 
urban environment.

As shown in Fig. 9, both vehicles are able to travel across 
the reference path with minimal deviation from start to fin-
ish. In addition, they travel with smooth velocity trajecto-
ries that generally adhere to their respective maximum and 
optimal velocity trajectories as depicted in Fig. 10. Note that 

Fig. 8   Reference path (left) and velocity (right) trajectories generated for the different vehicle types
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these figures are displayed with respect to the arc length s 
and not time t in order to present a meaningful comparison.

Subsequently, Fig. 11 provides additional insight into the 
vehicles’ real-time motion, as we see that both vehicles halt 
in the time period when the traffic light is activated. Finally, 
we can see in Fig. 12 that trajectory tracking problem was 
successfully solved in real-time, in which a solution was 

always found before our specified time step Ts = 200 [ms] 
had passed. To be precise, the average CPU time for solv-
ing the car problem was 15.33 [ms] with a maximum of 
96.2 [ms] , and the average CPU time for the truck prob-
lem was 15.53 [ms] with a maximum of 92.03 [ms] , which 
solidifies the validity of our proposed approach for real-time 
applications.

Fig. 9   Error states d, � for both vehicles in the test scenario

Fig. 10   Velocity trajectories for both vehicles with respect to their maximum and optimal velocities

Fig. 11   The time-dependent velocity trajectories signify the effect of 
the traffic light in our test scenario

Fig. 12   Execution time for solving the online tracking control prob-
lem
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Conclusion and Future Work

In this paper, we introduced a multi-component flexible 
architecture for autonomous driving, which integrates path 
routing, velocity planning, and real-time tracking of pre-
computed path and velocity trajectories for different vehicle 
types. We utilized open-source services, i.e., GraphHop-
per and OSM, to receive preliminary routing way-points 
between desired start and end locations, and applied a 
manipulation algorithm that analyzes the way-points’ meta-
data to construct an initial continuous spline that can be fol-
lowed by a traditional MPC controller. Moreover, we divided 
the optimal control problem into two steps, the first of which 
is solved offline to calculate the optimal path and velocity 
trajectories for a nonlinear model, and the second is solved 
online for a simplified model to follow the trajectories in 
real-time while guaranteeing safe following of leading traffic 
participants. The architecture was tested successfully and it 
shows promising results with respect to real-time autono-
mous driving.

Ideas for future studies include more comprehensive sim-
ulations in a virtual environment with realistic sensor models 
and system delays, as well as optimization of the system 
models to achieve improved real-time capabilities, e.g., sup-
port longer prediction horizons and shorter time steps. Ulti-
mately, the architecture shall be tested on physical hardware 
to verify its applicability in real-life, for instance on scale 
RC cars initially, then on actual test vehicles. Screenshots in 
Fig. 3 are excerpted from the web interface of GraphHop-
per https://​graph​hopper.​com/​maps. The developed routing 
Algorithm 1 and corresponding GUI in Figs. 4, 5 are pub-
licly available at the following repository: https://​doi.​org/​10.​
5281/​zenodo.​10882​122. Moreover, this repository includes 
the code and data files used in the test scenario demonstrated 
in Figs. 8, 9, 10, 11, 12, namely: the FORTRAN code files 
for velocity planning and trajectory tracking using the FSM 
approach, as well as the generated data files.

Appendix: Description of FSM Modes

The FSM modes were first introduced in [8] and they 
correspond to typical urban driving sequences, with the 
idea that different controllers may be developed and fine-
tuned to better fit each driving sequence, and the FSM will 
optimally switch between these modes/controllers while 
guaranteeing smooth system controls. The FSM modes are 
defined as follows:

•	 Exit Parking (XP) The initial state that is activated on 
starting the trip. It signifies that the ego-vehicle is driv-

ing inside a parking area and imposes a restriction on the 
maximum velocity to be no faster than walking speed.

•	 Path Following (PF) The most common urban driving 
state, which corresponds to traveling with a maximum 
speed of 13.5 [m∕s] ≈ 50 [km∕h] inside the city. This is 
either activated on exiting the parking area unto a main 
road, or when the road specifies the aforementioned 
speed limit and there are no slower traffic participants 
(or traffic lights) that hinder moving with this speed.

•	 Pulling Up (PU) The second most common urban 
driving state, which corresponds to traveling with a 
maximum speed of 8 [m∕s] ≈ 30 [km∕h] . This state is 
either activated when there are roadworks (or similar 
restrictions) that limit the maximum speed inside the 
city, or when the ego-vehicle is traveling behind a very 
slow leading road user. This state allows more aggressive 
controls as the ego-vehicle is traveling at a much slower 
speed than PF.

•	 Stand Still (SS) A utility state that temporarily stops 
the ego-vehicle behind a stationary object (or at a 
traffic light). This state acts as a buffer that prevents 
unnecessary start-stop maneuvers behind a very slow 
leading user, e.g., in a traffic jam, or when waiting at a 
traffic light to minimize fuel consumption.

•	 Enter Parking (NP) Similar to XP, with the difference 
being that it gets activated when the ego-vehicle enters 
the parking area close to its destination.

•	 End (ND) The final state, which gets activated on 
approaching the destination and is responsible for rapidly 
decelerating the ego-vehicle until it reaches a complete 
stop at its destination. Also, this state acts as a flag to 
notify the user that the trip has been concluded.
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