
Vol.:(0123456789)

SN Computer Science (2024) 5:375
https://doi.org/10.1007/s42979-024-02732-5

SN Computer Science

ORIGINAL RESEARCH

MPC‑Based Routing and Tracking Architecture for Safe Autonomous
Driving in Urban Traffic

Mostafa Emam1  · Matthias Gerdts1

Received: 27 September 2022 / Accepted: 18 February 2024
© The Author(s) 2024

Abstract
This paper presents a configurable routing and tracking architecture that uses multi-objective Model Predictive Control (MPC)
as its driving algorithm to guarantee safe autonomous driving of different vehicle types. The architecture consists of three
main components and primarily relies on labeled map data to generate optimal path and velocity trajectories in accordance
with the vehicle type and the desired control objectives. We begin with introducing the overall system architecture and its
different inputs, outputs, and components. We also briefly explain the open-source services utilized in this work for trajectory
generation, namely OpenStreetMap and GraphHopper. We then focus on formulating the multi-objective MPC problem and
its vehicle-specific constraints, which is solved offline to generate the reference path and velocity trajectories. Afterwards,
we discuss some adaptions to the system model and the controller operating strategy to incorporate real-time tracking of
these trajectories while guaranteeing collision avoidance. Finally, we successfully demonstrate the system’s feasibility by
numerically evaluating its performance in a typical urban driving scenario for different vehicles.

Keywords  Autonomous vehicles · Route planning · Trajectory following · Multi-objective MPC · GraphHopper ·
OpenStreetMap

Introduction

Nowadays, road traffic accidents represent a major public
health concern as they are the primary cause of death and
disability worldwide, resulting in over a million deaths annu-
ally and between 20 and 50 million injuries, some of which
can lead to permanent disabilities. Moreover, expenditure
on traffic accidents can account for up to 3% of a country’s
GDP, which is a significant financial burden, especially for
developing countries [1, 2]. Therefore, it is imperative to
explore innovative solutions that can create a safer driving

and transportation environment from both a humanitarian
and pragmatic perspective.

Autonomous Driving is a promising solution to this
problem, as it has the potential to eliminate traffic accidents
induced by human-driver error, such as speeding, drink-driv-
ing, delayed reaction time, and other forms of inattentive or
aggressive driving [3]. In addition, it contributes to optimiz-
ing traffic flow, reducing fuel consumption, and enhancing
passenger comfort. However, since it requires collaborative
research across several domains, including computer vision,
sensor data fusion, networks, and control theory, high-level
automated driving has yet to be fully realized [4]. In this
paper, we focus on the control aspects of the autonomous
vehicles (AV) and present our research contribution to
further advance the state-of-the-art in AV control, i.e., a
generic, highly compatible architecture that can be applied
for a variety of control systems and vehicle types with minor
configurations.

Model Predictive Control (MPC) has recently become
one of the most prevalent control methods in autonomous
driving applications, owing to its flexibility, reliability, and
effectiveness when dealing with multi-objective problems
[5]. For example, it has been used in path following and lane

This article is part of the topical collection “Vehicle Technology and
Intelligent Transport Systems” guest edited by Oleg Gusikhin and
Markus Helfert.

 *	 Mostafa Emam
	 mostafa.emam@unibw.de

	 Matthias Gerdts
	 matthias.gerdts@unibw.de

1	 Department of Aerospace Engineering, Institute of Applied
Mathematics and Scientific Computing, University
of the Bundeswehr Munich, Werner‑Heisenberg‑Weg 39,
Neubiberg, 85579 Munich, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02732-5&domain=pdf
http://orcid.org/0000-0003-4942-1183

	 SN Computer Science (2024) 5:375 375   Page 2 of 14

SN Computer Science

keeping systems to promote driver safety and comfort while
guaranteeing efficient fuel consumption, thus improving traf-
fic flow and reducing air pollution [6, 7].

In a previous study [8], we introduced a deterministic
MPC-based path tracker with collision-avoidance
capabilities, in which multiple controllers were developed
and fine-tuned for generic urban driving situations.
Moreover, a Finite-State Machine (FSM) was implemented
to analyze the current driving situation and appropriately
activate the most suitable controller, as well as ensure
smooth switching between the different controllers. This
approach required modeling the path to be followed as a
spline curve �ref∶ [s0, sf] → ℝ

2 that spans from the desired
start location A to the destination B and passes through the
way-points �ref (s) ∶= [xref (s), yref (s)]

T . Accordingly, the
control system was responsible for traversing this path as fast
as possible while fulfilling some objectives (like minimizing
the system controls) and adhering to some constraints (like
speed limits).

Here, we continue to explore this idea by following
a more standardized approach, in which we construct
a configurable routing and tracking architecture that
can control different vehicles in real-life urban driving
scenarios. We take inspiration from sources like [9, 10] to
understand how a typical autonomous driving architecture
is designed, including expected system inputs and outputs
and the characterization and responsibilities of each of
the system components. To improve the applicability
of our approach, we utilize the open-source geographic
database OpenStreetMap (OSM) [11] and the open-source
routing library GraphHopper [12] to construct feasible
travel paths between desired locations across real-world
street maps. Moreover, we consider sources like [13–15]
to model the ego-vehicle and appropriately specify the
system dynamics and constraints. Accordingly, we build
vehicle- and objective-specific optimal reference path
and velocity trajectories, which can be used as a baseline
for online tracking. Finally, with the aid of [16, 17], we
make some adaptations to our controller to create a real-
time capable control system, which tracks the previously
computed reference path and velocity trajectories while
guaranteeing collision avoidance. This rounds up our
proposed architecture, as it includes both path routing and
real-time trajectory tracking while being configurable for
different vehicle types and control objectives.

This paper is structured as follows. In “Control
Architecture” section, we describe the overall system
architecture and the inputs, outputs, and functionality
of each of its components. We also briefly introduce the
open-source services used in this study, namely OSM and
GraphHopper. In “Trajectory Generation” section, we
focus on the trajectory planning components, where we
explain the algorithm that generates the reference path

to be followed formulate the offline control problem that
computes the vehicle-specific optimal velocity trajectory
across the reference path. Afterwards, we discuss the
tracking component in “Trajectory Tracking” section,
with an emphasis on the modifications done to the system
model and constraints to support real-time tracking of the
reference trajectories. Finally, we evaluate the proposed
architecture in numerical simulations and display the
achieved results in “Numerical Simulation and Results”
section, then summarize our work and ideas for future work
in “Conclusion and Future Work” section.

Control Architecture

Autonomous driving has been the subject of extensive
research over the past few decades, yet some challenges
remain unsolved that hinder the development of fully autono-
mous vehicles (AVs) to this day, such as legal, technical, and
ethical issues [18]. For example, one of the more controversial
topics is the creation of a standardized development archi-
tecture for AVs, as it has been proven difficult to construct a
single architecture suitable for all possible AV applications.
Therefore, we can find multiple architectures that were devel-
oped to accommodate a specific scope, objective, or field of
application [9, 10, 19], but on inspecting these architectures
conjointly with an industrial approach to this problem [20],
we realize that there are some characteristic components that
recurrently appear in every architecture, such as the trajectory
generation and trajectory execution components-albeit under
different names. So in our proposed architecture, we primarily
focus on the implementation of these two components, as they
represent cornerstone elements that can be easily integrated
into other existing architectures.

Other notable components are the environment- and self-
perception modules, such as cameras, radar sensors, and data
fusion modules. These modules may operate in a localized
or cooperative manner with neighboring AVs, leveraging the
vehicle’s sensor set and communication devices, as well as
the available Internet of Vehicles (IoV) environment [21].
However, the configuration and selection of perception mod-
ules as well as their cost represent separate research topics
that are beyond the scope of this study. Similarly, the actua-
tion modules are typically vehicle and model-dependent and
require considerable scientific contribution [22], so they will
only be briefly discussed in the sequel.

Figure 1 illustrates a comprehensive summary of the
typical components present in AV system architectures [19]
from a control perspective, and can be explained as follows:

•	 Perception In this stage, the AV uses various sensors
and algorithms to gather information about itself and
its environment [23]. For example, camera modules

SN Computer Science (2024) 5:375 	 Page 3 of 14  375

SN Computer Science

produce images that, when processed by the lane
marks recognition module, yield feature points about
the admissible driving area. By combining this with a
localization algorithm, we can accurately determine the
position of the ego-vehicle with respect to its travel lane
to ensure safe driving [19]. The data fusion module is
reserved for more complex functions, like pedestrian
recognition and tracking, which require information from
multiple sensors (e.g., cameras and LiDAR) to reliably
extract the desired features [10].

•	 Decision and planning Here, the AV uses the acquired
information from the perception modules to plan and
decide the motion and behavior of the ego-vehicle,
which includes trajectory planning, obstacle and
collision avoidance, action prediction, and so on [24].
We can categorize these components into two groups:
trajectory generation, i.e., the high-level path planning,
and trajectory execution, i.e., the low-level real-time path
tracking. Furthermore, some interactive modules exist
that enable the driver to influence the decision-making
process of the AV, e.g., to set a desired travel speed or to
override a planned autonomous maneuver [9].

•	 Actuation After determining the desired driving maneu-
vers, the control modules convert these actions into physi-
cal controls of the ego-vehicle, such as steering and accel-
erating/braking. Consequently, they are transferred to and
executed by the hardware drivers, as they directly interface
with the chassis components of the AV (e.g., the steer-
ing wheel motor and the accelerator pedal motor) [10].
In some cases, the actuation modules may also be used to
alert an inattentive driver with the aid of vibrant lights or
loud sounds if the system detects an emergency [23].

In order to maximize compatibility with existing archi-
tectures, we propose a simplistic architecture to implement

the decision and planning components, in which we assume
prior knowledge of the required road data (e.g., driving
lanes), ego data (e.g., speed and steering angle), and traf-
fic data (e.g., positions and velocities of other traffic par-
ticipants). Moreover, we configure our system to compute
generic control actions, such that they can be converted later
into the specific controls of different vehicles. Thus, the pro-
posed architecture is displayed in Fig. 2 and the components
of interest are highlighted in gray.

The implementation of these components will be
discussed in detail in the upcoming sections, but first we
will give a brief description of the open-source services
we intend to use, namely OSM and GraphHopper. It is
pertinent to mention that these services offer free solutions
for academic purposes and were accordingly used at no cost
in this study, so further research may be necessary to assess
their financial viability in commercial applications.

OpenStreetMap

OSM [11] is a collaborative, volunteer-driven project that
was launched in 2004 with the aim of creating a freely
available geographic database of the world, that can be used
in mapping, navigation, or similar applications without being
limited by proprietary or monetary restrictions [25]. Since
then, it has become one of the largest and most recognized
Volunteered Graphical Information (VGI) projects, with
millions of registered contributors and billions of data
points covering countries across the entire world [25, 26].
Moreover, the OSM datasets are constantly increasing both
in quality and magnitude, since their contributors include
not only volunteers and non-profit organizations, but also
professional editors from major tech corporations such as
Facebook, Amazon, and Apple [27]. Finally, OSM datasets
have already been utilized in navigation systems [26]

Fig. 1   System architecture of
AVs with generic components

Fig. 2   Proposed routing and
tracking architecture

	 SN Computer Science (2024) 5:375 375   Page 4 of 14

SN Computer Science

and autonomous vehicle applications [27], which further
supports our decision to use OSM in the path planning
components of this study.

GraphHopper

GraphHopper is an efficient, open-source routing engine
that offers multiple free and commercial solutions for traffic
routing, such as turn-by-turn navigation, route planning
and optimization, geocoding, and map matching [28]. It
primarily utilizes OSM datasets for its road networks, and it
can be configured to use different path-finding algorithms,
such as Dijkstra, A*, and their bidirectional variations,
to determine the fastest/shortest path between two given
locations. GraphHopper works pretty efficiently, where it
can calculate routes across hundreds of kilometers in mere
seconds [29]. Additionally, it analyzes the map routes’
metadata (e.g., road type, speed limits, and road dimensions),
and thus can be configured for custom routing of different
vehicles, cyclists, or pedestrians [26]. It can also be adapted
to offer custom routing for specific driving objectives, such
as finding the shortest path while optimizing nitrogen oxide
emissions [30]. Overall, GraphHopper presents us with
a free, fast, and customizable method for route planning,
which perfectly fits our current problem.

Trajectory Generation

As previously discussed, we need to develop two
components to generate the reference path and velocity
trajectories that will be tracked by the ego-vehicle, which
we will discuss in the following sections.

Path Planning

We start with the path planning component, which, when
given a start location A and a destination B, must generate
a feasible travel path �ref between them through the road
network. To achieve this, we write the locations A and B
in terms of their geographic coordinates (latA∕B, lonA∕B)
and use the GraphHopper Routing service to calculate the
fastest route connecting them. If needed, we may also use
the GraphHopper Geocoding service to convert desired
addresses into (lat, lon) points. Figure 3 displays a sample
of the different vehicle-specific fastest routes generated by
GraphHopper between given start and end locations.

The web interface offers basic routing options, such as
setting multiple stops between A and B and optimizing for a
selected traffic participant type (e.g., car, truck, pedestrian,
etc.). Accordingly, the generated route is a set of labeled
geographic way-points with navigational instructions, as
well as some rudimentary information like traveled distance
and elevation data. However, the GraphHopper Routing API
offers more capabilities, such as specifying a custom routing
vehicle profile and selecting the language for navigational
instructions, but more importantly, it can embed additional
information in the metadata of the generated way-points, like
road class, number of lanes, maximum speed, street name,
and many more [12].

This API can be called over HTTP, where it responds
with a JSON formatted data file containing the generated
routing way-points with the requested metadata. To simplify
the API calling process, we used MATLAB to develop the
GUI depicted in Fig. 4, where the user can specify the rout-
ing options and desired metadata. Then, the GUI calls the
API and exports the received generated route either to an

Fig. 3   Generated routes for a car (left) and a bicycle (right) between the same points using the GraphHopper web interface [12]

SN Computer Science (2024) 5:375 	 Page 5 of 14  375

SN Computer Science

external data file or to the MATLAB workspace for further
data manipulation. Also, we added a simple map display-
ing the generated way-points data in the GUI for clarity
purposes.

On observing the generated route data, we notice two
main issues: first, the way-points are specified in the
geographic coordinates system, which is unsuitable for
local positioning and trajectory following. To tackle this
problem, we must redefine the 3D geodetic data in a local
Cartesian coordinates system, which is achieved by using
a map projection (e.g., the Universal Transverse Mercator)
to transform the route map from ellipsoidal into plane
coordinates [31]. We can then create a local Cartesian map
with the projected way-points, which, in accordance with a
GPS sensory module and an adequate vehicle model, enables
system localization and tracking [4]. Luckily, MATLAB
readily offers the function latlon2local that directly
converts (lat, lon, alt) data points into (x, y, z) coordinates,
where the local coordinate system is anchored around a
desired origin point.

The second issue is that the received way-points resem-
ble simple positions on a coordinates system, but we need
a spline curve �ref for the path tracking component. We can
solve this by constructing continuous natural cubic splines
between the way-points to create �ref from A to B, which
theoretically works, yet may yield infeasible routes due to
the nature of the received way-points. As GraphHopper
attempts to minimize the number of returned data points,
it omits sequential points in a straight line, which results in
having poorly defined road segments with few way-points,
such that generating splines for these road segments may
result in routes that span outside the allowed road network.
We address this by analyzing the locations of each pair
of sequential way-points and if their inter-distance is less
than a specific threshold, we use interpolation to insert
additional way-points between them. Thus, we can ensure
that all of our road segments are adequately defined.

Fig. 4   Developed GUI to facili-
tate calling the GraphHopper
Routing API

	 SN Computer Science (2024) 5:375 375   Page 6 of 14

SN Computer Science

Algorithm 1   Compute Reference Path

Require: way-points in geo-coordinates
Step 1: Map Projection

1: Set the first way-point as origin for local coordinates
2: for all way-points in geo-coordinates do
3: Calculate projected way-points in local Cartesian coordinates
4: end for

Step 2: Add Missing Way-points
5: Create list of way-points in Cartesian coordinates
6: for all i with 1 ≤ i < number of way-points do
7: AddExtraPoints(point(i),point(i + 1))
8: end for
9: Sort the list of way-points

Step 3: Adapt Location of Way-points
10: Create preliminary spline from sorted list of way-points
11: for all i with 1 ≤ i < number of way-points do
12: if number of lanes at point(i) > 1 then
13: Use spline to project point(i) to the right with offset lanes
14: else if Navigation instructs to turn left/right at point(i) then
15: Use spline to project point(i) to the left/right with constant offset
16: end if
17: end for
18: Create final spline from adapted way-points
19: return Reference path as a spline

1: procedure AddExtraPoints(A,B)
2: if distance between A and B < threshold then
3: Calculate midpoint M of A and B
4: Add midpoint M to the list of way-points
5: AddExtraPoints(A, M) recurse for points A and M
6: AddExtraPoints(M , B) recurse for points M and B
7: end if
8: end procedure

Additionally, GraphHopper returns way-points exactly
in the center of road segments, which may yield incorrect
paths in case of multi-lane roads. So, by checking the num-
ber of lanes (from the metadata) in all road segments, we can
appropriately shift the way-points’ locations to favor trave-
ling in the rightmost lane to promote safe driving. Similarly,
we can analyze navigational instructions to identify turning
maneuvers to the right/left and correspondingly shift the
way-points to produce smoother travel paths. Lastly, we cre-
ate continuous splines across the adapted way-points to form
our reference path �ref  . The complete process of way-points
manipulation is summarized in Algorithm 1 and an example
of the resulting spline is demonstrated in Fig. 5.

It is important to mention that the generated reference
path serves only as a baseline for the ego-vehicle and that
during real-time tracking, the sensor modules will provide
the AV with additional data about the lane constraints, which
will be used to ensure driving in admissible areas.

Velocity Planning

After generating the reference path, we now move unto
calculating the optimal velocity trajectory corresponding
to this path. We take the road data and the vehicle-specific
dynamics and constraints into account and accordingly

compute an explicit baseline for the velocity trajectory across
this path. This ensures a safe, efficient, and comfortable trip,
as well as simplifies the tracking problem, which facilitates
achieving real-time trajectory tracking. We formulate this
as an optimal control problem and solve it using Nonlinear
MPC to guarantee feasible and smooth trajectories [32].
Since we intend to create generalized components for
modeling various AVs, we need to use a generic model that
describes the dynamic motion of the ego-vehicle while being
independent of vehicle-specific parameters. So, we utilize
the kinematic vehicle model [13] in coordination with a
curvilinear coordinate system to describe the AV’s motion
across a reference curve �ref∶ [0, L] → ℝ

2 as follows:

This yields the system state vector xT = [s, d,� , �, v] ,
where s is the arc length of a reference point on the ego-
vehicle relative to �ref  , d is the normal distance between this
point and �ref  , � is the deviation in orientation with respect
to �ref  , and � and �ref represent the curvature of the vehicle’s
trajectory and reference trajectory respectively. Another
benefit of using the kinematic model is that there exists a
subset of the system states yT = [d,�] that represent tracking
errors to the reference trajectory, such that the path tracking
problem equates to stabilizing y(t) to 0. In addition, this

(1a)s�(t) =
v(t) cos�(t)

1 − d(t) ⋅ �ref (s(t))

(1b)d�(t) = v(t) sin�(t)

(1c)� �(t) = � �(t) − � �
ref
(t) = v(t)�(t) − s�(t)�ref (s(t))

(1d)��(t) = u1(t)

(1e)v�(t) = u2(t)

Fig. 5   Original way-points (blue) versus final spline from adapted
way-points (red)

SN Computer Science (2024) 5:375 	 Page 7 of 14  375

SN Computer Science

model offers generic quantities for the system inputs ( �′ , v′ ),
and they can later be converted to the controls of different
vehicles by using the mapping (x, u,X) ↦ U = �(x, u,X) [8].

To define the system constraints, we first need to revisit the
metadata of the way-points we received from GraphHopper,
as they include information on the speed limits at the start and
end of each of the road segments in the reference path. We
use a simple heuristic to create continuous functions for the
speed limits vmin and vmax , in which we assume constant values
across a road segment if the speed limits remain unchanged,
and otherwise use interpolation to determine the intermediate
speed limit values. Consequently, we can impose the following
restriction on the vehicle’s velocity:

such that vmin(s(t)) and vmax(s(t)) are computed with respect
to the traveled arc length, and �v is an additional slack
variable for constraint relaxation, which increases the
chances of finding feasible solutions without sacrificing
system stability [33]. Second, we consider the AV’s physical
construction that may limit the behavior of its components,
e.g., by imposing restrictions on its maximum acceleration/
deceleration or its driving curvature. So, we add:

 which are vehicle-specific constraints that are determined
and set for different vehicles independently [15]. Finally,
we introduce a safety constraint that restricts the vehicle’s
lateral acceleration to a maximum allowed value an,max , in
order to avoid excessive lateral forces when making sharp
turns [13]:

As for the MPC cost function, we use the weighted multi-
objective function:

in which the first term incorporates minimization of the
tracking errors to the reference trajectory, the second is a
normalized incentive to minimize the difference between the
vehicle’s traveled distance s and the destination sf [8], the
third is a traditional objective to reduce energy consumption
and maximize passenger comfort, and the fourth minimizes
the slack variable for velocity relaxation �v . By solving the
problem, we get the desired reference path and velocity
trajectories that will be later used in online tracking.

(2)vmin(s(t)) ≤ v(t) + �v ≤ vmax(s(t))

(3a)umin ≤ u(t) ≤ umax

(3b)�min ≤ �(t) ≤ �max

(4)−an,max ≤ �(t)v(t)2 ≤ an,max

(5)min∫
T

0

�y||y|| + �s

(sf − s

sf − s0

)2

+�u||u|| + �v�v
2dt

Trajectory Tracking

Nonlinear system models are suitable for describing the
motion and dynamical behavior of complex systems, yet
they impose an additional layer of complexity that optimal
solvers may struggle against, which limits their usability in
real-time applications [34]. Therefore, it is often beneficial
to linearize the system dynamics around an operating point
and attempt to find an optimal solution for the linearized
model instead, as the problem structure can then be exploited
to reach feasible solutions faster [35].

As the ego-vehicle is expected to closely follow the
reference path, we can safely assume that its deviation in
orientation � with respect to �ref is small enough, such that
sin(�) ≈ � and cos(�) ≈ 1 . Moreover, we can assume that
its lateral deviation d is small with respect to the reference
curve (which is defined as rref =

1

�ref
 ), such that

d

rref
= d ⋅ 𝜅ref ≪ 1 [16]. This simplifies the model introduced

in Equation 1 and yields:

Nevertheless, this model still includes some nonlinearities
due to the coupled system dynamics in d and � . To address
this problem, some approaches proposed to assume a
constant velocity profile [36], others suggested decoupling
the longitudinal and lateral system dynamics and solving
them in two sequential phases [37], however we argue
that this can only yield sub-optimal trajectories. A more
interesting idea would be to locally linearize the coupled
system model using Taylor expansion at each time step and
then solve for the fully linearized model, which may yield
better results provided that the model is discretized with
a small enough time step Ts , but we leave this for future
studies. For the sake of this study and the application at
hand, we proceed with the simplified model in Eq. 6 as it is
sufficient to achieve acceptable real-time results.

For trajectory tracking, we use the constraints introduced
in Eqs. 2 and 3, but ignore the constraint for an,max as it has
already been considered in computing the optimal velocity
trajectory vref to simplify our problem further. In addition,
we primarily reuse the constraints for safe following and

(6a)s�(t) = v(t)

(6b)d�(t) = v(t)�(t)

(6c)� �(t) = v(t) ⋅ (�(t) − �ref (s(t)))

(6d)��(t) = u1(t)

(6e)v�(t) = u2(t)

	 SN Computer Science (2024) 5:375 375   Page 8 of 14

SN Computer Science

driving within the permissible area previously proposed in
[8], which we summarize in the following.

We define the occupancy region of the ego-vehicle as a
rectangular area encompassing its complete 2-D footprint
and optimally cover it with circular disks, then use a
simple heuristic for collision detection, i.e., a collision
occurs if an object (or lane markings) overlaps with the
footprint of any of the covering disks. Accordingly, we
guarantee driving within the admissible area by adding
a set of clearance constraints clearLN that restrict the
lateral deviation of the disks covering the ego-vehicle as
demonstrated in Fig. 6. These constraints are defined as
dmin,i + r ≤ di ≤ dmax,i − r,∀i ∈ 1,… , nrDiskego , where di is
calculated using trigonometric functions for each disk and
r is the common disk radius. Determining dmax,i and dmin,i
depends on the data we receive from the sensory modules
[24], e.g., on receiving way-points corresponding to the
lane markings, we may create the splines �min and �max , from
which we can compute the minimum/maximum allowed
lateral deviation with respect to arc length dmin∕max(s(t)) .
Nonetheless, this is a rather irrelevant task to the MPC as
it can be completely realized by an independent component
that takes s and returns the corresponding dmin∕max values.
So, in this work we rewrite the constraints to guarantee
driving in one permissible lane with width wLN , such that �ref
lies in the middle of it, which yields the linear constraints:

(7a)r −
wLN

2
≤ d ≤ wLN

2
− r

(7b)r −
wLN

2
≤ d +

ld

2
� ≤ wLN

2
− r

(7c)r −
wLN

2
≤ d + ld� ≤ wLN

2
− r

Moreover, we introduced a probabilistic component that
determines the closest road user driving in the same lane
as the ego-vehicle in [8]. We employ this component in
accordance with a modified constant time headway policy to
specify the safety distance sSF(t) = max(sSF,min, v(t)th) , which
must always be kept to avoid collisions. Subsequently, we
add a constraint for safe following:

in which srel is the relative distance between the arc length
of the leading traffic participant and the ego-vehicle
respectively, and �SF is the slack variable for safe following.
Finally, we formulate the modified MPC objective function
as:

which operates in the time span t ∈ [t0, tf] and consists of a
terminal term for following the reference velocity trajectory
vref  , in addition to a running cost for tracking the path
trajectory as well as minimization of system controls and
slack variables. We now solve the optimal control problem
iteratively, where we start at t = t0 and solve for the states,
constraints, and cost function on the interval ΔT = tf − t0 to
determine the optimal control u∗ , where u∗ is applied for one
time step Ts =

ΔT

N
 . Afterwards, we shift the prediction

horizon by one time step and measure the system states, then
solve the problem again for the updated states, constraints,
and cost function. This is repeated until an exit condition is
met, which, in our case, is reaching the destination. Notice
that the terminal term v(T) − vref (s(T)) in Eq. 9 now replaces
the normalized incentive sf−s

sf−s0
 , as the vehicle shall continue

to move with the optimal velocity trajectory until it finally
stops at its destination.

FSM Operating Strategy

Similarly, we revise the FSM architecture previously dis-
cussed in [8] and add some modifications to incorporate the
changes we made to our control problem due to introducing
the velocity planning component. We present the modified
configuration in Fig. 7 and switch conditions in Table 1, as
we briefly discuss the formulation of the transition condi-
tions in the following equations. For more details on the
FSM modes, we refer to “Appendix”.

On switching from one state to the other, we may have
multiple exit conditions and in this case, we prioritize the
conditions according to their indices, i.e., �1 is evaluated before
�2 . In case no exit condition is satisfied, the active state remains

(8)srel ≥ sSF + �SF

(9)
min(v(tf) − vref (s(tf)))

2 + ∫
tf

t0

�y||y||
+ �u||u|| + �SF�SF

2dt

Fig. 6   The clearance constraints for driving inside the permissible
area [8]

SN Computer Science (2024) 5:375 	 Page 9 of 14  375

SN Computer Science

unchanged, which is denoted by OW in Table 1. Moreover, we
primarily use sigmoid functions f (x) = 1

1+e�+�x
 to calculate

smoothing factors �� for state exit conditions, such that we
prevent aggressive switching from one state to the other, as
well as guarantee smooth reversible switching if a condition is
no longer satisfied. Notice that we will switch from one state
to the other only when a condition is fully satisfied � = 1 ,
otherwise, we remain in the same state and calculate a
transition factor �� to gradually modify the system objectives
and constraints, then accordingly formulate a new control
problem to find the optimal system controls [8].

For the first state XP, we have two exit conditions: �1 to
PF and �2 to PU. Both are initially triggered on leaving the
initial parking area (i.e., s ≥ sXP ), in which sXP is a traveled
distance threshold for the parking area that is determined
based on geographic data in accordance with �ref  . Likewise,
both transitions are completed after the ego-vehicle passes the
relaxed threshold s ≥ sXP,� . The main difference between �1
and �2 is the maximum speed limit in each of their respective
states, which appropriately affects the acceleration and
deceleration limits for driving comfort. We define �1 as:

where ��1
∶=f (s) is a sigmoid function, such that

lims→sXP
��1

= 0 and lims→sXP,�
��1

= 1 . Note that �2 is defined
in a similar manner by using ��1

 as the smoothing function,
but with a different speed limit vmax ≥ 8[m∕s] . Next, we have
the common exit condition �3 for both states PF and PU,
which is defined in a complementary manner to �1 as:

with sNP and sNP,� being the distance threshold and relaxed
threshold for the final parking area respectively. We now
move unto the transition condition �4 from PF to PU, which
is triggered either on following/approaching a slow road
user, or when the road regulations specify a lower maximum
speed limit than the current, i.e., 30 [km∕h] instead of
50 [km∕h] . Subsequently, we set �4 as:

with the velocity-dependent sigmoid function
��4

∶=f (v[m∕s])  , s uch t ha t limv→13.5 ��4
= 0 and

lims→8 ��4
= 1 . Note that we use marginally lower values for

the speed limits ( 8 [m∕s] , 13.5 [m∕s] instead of 30 [km∕h] ,
50 [km∕h] ), since it promotes safe driving without
sacrificing speed, while being slightly easier to formulate
programmatically. Complementary to �4 , we define the
return transition �5 from PU to PF as:

(10)𝜏1∶=

⎧
⎪⎨⎪⎩

1, (s ≥ sXP,𝜂) ∧ (vmax ≥ 13.5[m∕s])

𝜔𝜏1
, (sXP ≤ s < sXP,𝜂) ∧ (vmax ≥ 13.5[m∕s])

0, s < sXP

(11)𝜏3∶=

⎧
⎪⎨⎪⎩

1, s ≥ sNP
𝜔𝜏3

, sNP,𝜂 ≤ s < sNP
0, s < sNP,𝜂

(12)

𝜏4∶=

⎧
⎪⎨⎪⎩

1, ¬𝜏3 ∧ (v ≤ 8) ∧ ((OinLN ≠ �) ∨ (vmax ≤ 8.4))

𝜔𝜏4
, ¬𝜏3 ∧ ((vmax < 13.5) ∨ ((OinLN ≠ �) ∧ (v < 13.5)))

0, otherwise

Path
Following

(PF)

Pulling
Up
(PU)

Standstill
(SS)

Enter
Parking
(NP)

End
(ND)

Exit
Parking
(XP)

τ1 τ2

τ3

τ4

τ3

τ5

τ6

τ7

τ8

Fig. 7   FSM state configuration and possible transitions

Table 1   Conditions for
switching between the different
FSM modes

S
0

f

XP PF PU NP SS ND

XP OW �
1

�
2

– – –
PF – OW �

4
�
3

– –
PU – �

5
OW �

3
�
6

–
SS – – – �

7
OW –

NP – – – OW – �
8

	 SN Computer Science (2024) 5:375 375   Page 10 of 14

SN Computer Science

where ��5
= 1 − ��4

 . Afterwards, we examine the transitions
for the utility state SS, which can be sufficiently implemented
as hard constraints due to the nature of the state itself. The
transitions for entering and exiting the state are:

Finally, we define the final transition �8 by specifying
some threshold sND for reaching the destination sf  , such that:

after which the ND state is fully activated and promptly
decelerates the ego-vehicle until it comes to a complete halt,
thus completing the trip.

Numerical Simulation and Results

Next, we will assess the performance of the proposed
architecture under the following assumptions: first, that
the ego-vehicle is equipped with the necessary sensor set
to accurately determine the vehicle’s position and obtain
the control-relevant states, such as velocity and curvature.
Second, that the sensor data is high-fidelity, reliable, and
instantaneously available without any data loss or delay
after being filtered (similarly for the communication with
the virtual traffic light). Finally, we assume that the vehicle
control is consistent and prompt with no delays.

As a compromise between simplicity and performance,
we implemented the proposed architecture as a combination
of MATLAB and FORTRAN code, in which the software

(13)

𝜏5∶=

⎧
⎪⎨⎪⎩

1, ¬𝜏3 ∧ (vmax ≥ 13.5) ∧ ((OinLN = �) ∨ (v ≥ 13.5))

𝜔𝜏5
, ¬𝜏3 ∧ (vmax > 8.4) ∧ ((OinLN = �) ∨ (v ≥ 8))

0, otherwise

(14)
�6 ∶= ¬�5 ∧ (v ≤ 0.5[m∕s]) ∧ (a ≤ 0[m∕s2]) ∧ (srel ≤ sSF)

(15)�7 ∶= (OinLN = �) ∨ (srel ≥ sSF + sSF,�).

(16)�8 ∶= (sf − s ≤ sND)

OCPID-DAE1 [38] is used to solve the optimal control
problems, namely velocity trajectory planning and real-time
tracking. The simulation results were obtained on a Linux
system with the processor i5-5200U of 2.20 GHz and 8 GB
of RAM. For the MPC parameters, we selected a prediction
horizon of ΔT = 3.0 [s] with N = 15 control points and
a time step of Ts = 0.2 [s] for the velocity planning and
ΔT = 2.0 [s] , N = 10 , and Ts = 0.2 [s] for the real-time
tracking. Model parameters were primarily defined using
a variety of sources [15, 39] to guarantee feasibility and
maximize passenger comfort, where we created two different
sets of parameters for the kinematic vehicle to resemble a
car and a small truck. Furthermore, the weights in the MPC
objective function in Eqs. 5 and 9 were reused from [8], then
slightly modified to improve performance based on trial and
error.

Using the knowledge of local streets around the Uni-
versity of the Bundeswehr Munich, we formed a basic
scenario with a route of about 1.5 [km] and a lane width
of wLN = 3.25m that ensures activation of the main FSM
states. This route is displayed in Fig. 8, where it is obvious
that the path planning for both vehicles yields very similar
routes, yet we get different velocity trajectories based on the
model parameters and system constraints. This is especially
true for the constraint due to an,max , which is responsible
for the sharp dip in the velocity of both vehicles at around
s ≈ 215m and s ≈ 520m . For evaluating the performance
of the real-time tracking controller, we augment the sce-
nario with a virtual traffic light that is located at s = 1270m
and gets activated (turns red) during the time interval
t = [150 s, 180 s] , so as to verify the approach in a typical
urban environment.

As shown in Fig. 9, both vehicles are able to travel across
the reference path with minimal deviation from start to fin-
ish. In addition, they travel with smooth velocity trajecto-
ries that generally adhere to their respective maximum and
optimal velocity trajectories as depicted in Fig. 10. Note that

Fig. 8   Reference path (left) and velocity (right) trajectories generated for the different vehicle types

SN Computer Science (2024) 5:375 	 Page 11 of 14  375

SN Computer Science

these figures are displayed with respect to the arc length s
and not time t in order to present a meaningful comparison.

Subsequently, Fig. 11 provides additional insight into the
vehicles’ real-time motion, as we see that both vehicles halt
in the time period when the traffic light is activated. Finally,
we can see in Fig. 12 that trajectory tracking problem was
successfully solved in real-time, in which a solution was

always found before our specified time step Ts = 200 [ms]
had passed. To be precise, the average CPU time for solv-
ing the car problem was 15.33 [ms] with a maximum of
96.2 [ms] , and the average CPU time for the truck prob-
lem was 15.53 [ms] with a maximum of 92.03 [ms] , which
solidifies the validity of our proposed approach for real-time
applications.

Fig. 9   Error states d, � for both vehicles in the test scenario

Fig. 10   Velocity trajectories for both vehicles with respect to their maximum and optimal velocities

Fig. 11   The time-dependent velocity trajectories signify the effect of
the traffic light in our test scenario

Fig. 12   Execution time for solving the online tracking control prob-
lem

	 SN Computer Science (2024) 5:375 375   Page 12 of 14

SN Computer Science

Conclusion and Future Work

In this paper, we introduced a multi-component flexible
architecture for autonomous driving, which integrates path
routing, velocity planning, and real-time tracking of pre-
computed path and velocity trajectories for different vehicle
types. We utilized open-source services, i.e., GraphHop-
per and OSM, to receive preliminary routing way-points
between desired start and end locations, and applied a
manipulation algorithm that analyzes the way-points’ meta-
data to construct an initial continuous spline that can be fol-
lowed by a traditional MPC controller. Moreover, we divided
the optimal control problem into two steps, the first of which
is solved offline to calculate the optimal path and velocity
trajectories for a nonlinear model, and the second is solved
online for a simplified model to follow the trajectories in
real-time while guaranteeing safe following of leading traffic
participants. The architecture was tested successfully and it
shows promising results with respect to real-time autono-
mous driving.

Ideas for future studies include more comprehensive sim-
ulations in a virtual environment with realistic sensor models
and system delays, as well as optimization of the system
models to achieve improved real-time capabilities, e.g., sup-
port longer prediction horizons and shorter time steps. Ulti-
mately, the architecture shall be tested on physical hardware
to verify its applicability in real-life, for instance on scale
RC cars initially, then on actual test vehicles. Screenshots in
Fig. 3 are excerpted from the web interface of GraphHop-
per https://​graph​hopper.​com/​maps. The developed routing
Algorithm 1 and corresponding GUI in Figs. 4, 5 are pub-
licly available at the following repository: https://​doi.​org/​10.​
5281/​zenodo.​10882​122. Moreover, this repository includes
the code and data files used in the test scenario demonstrated
in Figs. 8, 9, 10, 11, 12, namely: the FORTRAN code files
for velocity planning and trajectory tracking using the FSM
approach, as well as the generated data files.

Appendix: Description of FSM Modes

The FSM modes were first introduced in [8] and they
correspond to typical urban driving sequences, with the
idea that different controllers may be developed and fine-
tuned to better fit each driving sequence, and the FSM will
optimally switch between these modes/controllers while
guaranteeing smooth system controls. The FSM modes are
defined as follows:

•	 Exit Parking (XP) The initial state that is activated on
starting the trip. It signifies that the ego-vehicle is driv-

ing inside a parking area and imposes a restriction on the
maximum velocity to be no faster than walking speed.

•	 Path Following (PF) The most common urban driving
state, which corresponds to traveling with a maximum
speed of 13.5 [m∕s] ≈ 50 [km∕h] inside the city. This is
either activated on exiting the parking area unto a main
road, or when the road specifies the aforementioned
speed limit and there are no slower traffic participants
(or traffic lights) that hinder moving with this speed.

•	 Pulling Up (PU) The second most common urban
driving state, which corresponds to traveling with a
maximum speed of 8 [m∕s] ≈ 30 [km∕h] . This state is
either activated when there are roadworks (or similar
restrictions) that limit the maximum speed inside the
city, or when the ego-vehicle is traveling behind a very
slow leading road user. This state allows more aggressive
controls as the ego-vehicle is traveling at a much slower
speed than PF.

•	 Stand Still (SS) A utility state that temporarily stops
the ego-vehicle behind a stationary object (or at a
traffic light). This state acts as a buffer that prevents
unnecessary start-stop maneuvers behind a very slow
leading user, e.g., in a traffic jam, or when waiting at a
traffic light to minimize fuel consumption.

•	 Enter Parking (NP) Similar to XP, with the difference
being that it gets activated when the ego-vehicle enters
the parking area close to its destination.

•	 End (ND) The final state, which gets activated on
approaching the destination and is responsible for rapidly
decelerating the ego-vehicle until it reaches a complete
stop at its destination. Also, this state acts as a flag to
notify the user that the trip has been concluded.

Acknowledgements  This research paper is part of [project MORE -
Munich Mobility Research Campus] and is funded by dtec.bw—Digi-
talization and Technology Research Center of the Bundeswehr. dtec.
bw is funded by the European Union—NextGenerationEU. Map data
copyrighted OpenStreetMap contributors are available from https://​
www.​opens​treet​map.​org.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Data availability  Source code and data files are now available at the
repository: https://​doi.​org/​10.​5281/​zenodo.​10882​122.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes

https://graphhopper.com/maps
https://doi.org/10.5281/zenodo.10882122
https://doi.org/10.5281/zenodo.10882122
https://www.openstreetmap.org
https://www.openstreetmap.org
https://doi.org/10.5281/zenodo.10882122

SN Computer Science (2024) 5:375 	 Page 13 of 14  375

SN Computer Science

were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Mohammed AA, Ambak K, Mosa AM, Syamsunur D. A review of
the traffic accidents and related practices worldwide. Open Transp
J. 2019;13(1):65–83. https://​doi.​org/​10.​2174/​18744​47801​91301​
0065.

	 2.	 Cruz OGD, Padilla JA, Victoria AN. Managing road traffic acci-
dents: a review on its contributing factors. IOP Conf Ser Earth
Environ Sci. 2021;822(1):012015. https://​doi.​org/​10.​1088/​1755-​
1315/​822/1/​012015.

	 3.	 Winkle T. Autonomous driving. In: Maurer M, Gerdes JC, Lenz B,
Winner H, editors. Safety benefits of automated vehicles: extended
findings from accident research for development, validation and
testing. Berlin: Springer; 2016. p. 335–64. https://​doi.​org/​10.​1007/​
978-3-​662-​48847-8_​17.

	 4.	 Yurtsever E, Lambert J, Carballo A, Takeda K. A survey of
autonomous driving: common practices and emerging technolo-
gies. IEEE Access. 2020;8:58443–69. https://​doi.​org/​10.​1109/​
ACCESS.​2020.​29831​49.

	 5.	 Luo L, Liu H, Li P, Wang H. Model predictive control for adap-
tive cruise control with multi-objectives: comfort, fuel-economy,
safety and car-following. J Zhejiang Univ Sci A. 2010;11:191–
201. https://​doi.​org/​10.​1631/​jzus.​A0900​374.

	 6.	 Musa A, Pipicelli M, Spano M, Tufano F, De Nola F, Di Blasio G,
Gimelli A, Misul DA, Toscano G. A review of model predictive
controls applied to advanced driver-assistance systems. Energies.
2021;14(23):7974. https://​doi.​org/​10.​3390/​en142​37974.

	 7.	 Yu S, Hirche M, Huang Y, Chen H, Allgöwer F. Model predictive
control for autonomous ground vehicles: a review. Auton Intell
Syst. 2021;1(1):4. https://​doi.​org/​10.​1007/​s43684-​021-​00005-z.

	 8.	 Emam M, Gerdts M. Deterministic operating strategy for multi-
objective NMPC for safe autonomous driving in urban traffic.
In: Proceedings of the 8th international conference on vehicle
technology and intelligent transport systems—VEHITS; 2022. p.
152–161. https://​doi.​org/​10.​5220/​00111​15400​003191

	 9.	 Nolte M, Rose M, Stolte T, Maurer M. Model predictive control
based trajectory generation for autonomous vehicles—an archi-
tectural approach. In: 2017 IEEE intelligent vehicles symposium
(IV); 2017. https://​doi.​org/​10.​1109/​ivs.​2017.​79958​14

	10.	 Behere S, Törngren M. A functional architecture for autonomous
driving. In: Proceedings of the first international workshop on
automotive software architecture; 2015. https://​doi.​org/​10.​1145/​
27524​89.​27524​91

	11.	 OpenStreetMap contributors: Planet dump. Retrieved from https://​
planet.​osm.​org. https://​www.​opens​treet​map.​org; 2017.

	12.	 GraphHopper GmbH: GraphHopper Directions API. https://​
github.​com/​graph​hopper/​graph​hopper

	13.	 Burger M, Gerdts M. Applications of differential-algebraic equa-
tions: examples and benchmarks. In: Campbell S, Ilchmann A,
Mehrmann V, Reis T, editors. DAE aspects in vehicle dynamics
and mobile robotics. Cham: Springer; 2019. p. 37–80. https://​doi.​
org/​10.​1007/​11221_​2018_6.

	14.	 Polack P, Altche F, d’Andrea-Novel B, de La Fortelle A. The kin-
ematic bicycle model: a consistent model for planning feasible
trajectories for autonomous vehicles? In: 2017 IEEE Intelligent

Vehicles Symposium (IV); 2017. https://​doi.​org/​10.​1109/​ivs.​2017.​
79958​16

	15.	 Bokare PS, Maurya AK. Acceleration-deceleration behaviour of
various vehicle types. Transp Res Proc. 2017;25:4733–49. https://​
doi.​org/​10.​1016/j.​trpro.​2017.​05.​486.

	16.	 Gutjahr B, Gröll L, Werling M. Lateral vehicle trajectory optimi-
zation using constrained linear time-varying MPC. IEEE Trans
Intell Transp Syst. 2017;18(6):1586–95. https://​doi.​org/​10.​1109/​
TITS.​2016.​26147​05.

	17.	 Chen C, Guo J, Guo C, Chen C, Zhang Y, Wang J. Adaptive cruise
control for cut-in scenarios based on model predictive control
algorithm. Appl Sci. 2021;11(11):5293. https://​doi.​org/​10.​3390/​
app11​115293.

	18.	 Kröger F. Autonomous driving. In: Maurer M, Gerdes JC, Lenz
B, Winner H, editors. Automated driving in its social, historical
and cultural contexts. Berlin: Springer; 2016. p. 41–68. https://​
doi.​org/​10.​1007/​978-3-​662-​48847-8_3.

	19.	 Zong W, Zhang C, Wang Z, Zhu J, Chen Q. Architecture design
and implementation of an autonomous vehicle. IEEE Access.
2018;6:21956–70. https://​doi.​org/​10.​1109/​access.​2018.​28282​60.

	20.	 ISO Central Secretary: Intelligent transport systems—Reference
model architecture(s) for the ITS sector—Part 5: Requirements for
architecture description in ITS standards. Standard, International
Organization for Standardization, Geneva; 2020. https://​www.​iso.​
org/​stand​ard/​73746.​html

	21.	 Cui G, Zhang W, Xiao Y, Yao L, Fang Z. Cooperative percep-
tion technology of autonomous driving in the internet of vehicles
environment: a review. Sensors. 2022;22(15):5535. https://​doi.​org/​
10.​3390/​s2215​5535.

	22.	 Balerna C, Neumann M-P, Robuschi N, Duhr P, Cerofolini A,
Ravaglioli V, Onder C. Time-optimal low-level control and gear-
shift strategies for the formula 1 hybrid electric powertrain. Ener-
gies. 2020;14(1):171. https://​doi.​org/​10.​3390/​en140​10171.

	23.	 Zanchin BC, Adamshuk R, Santos MM, Collazos KS. On the
instrumentation and classification of autonomous cars. In: 2017
IEEE international conference on systems, man, and cybernetics
(SMC); 2017. https://​doi.​org/​10.​1109/​smc.​2017.​81230​22

	24.	 Ahangar MN, Ahmed QZ, Khan FA, Hafeez M. A survey of
autonomous vehicles: enabling communication technologies and
challenges. Sensors. 2021;21(3):706. https://​doi.​org/​10.​3390/​
s2103​0706.

	25.	 Neis P, Zielstra D. Recent developments and future trends in vol-
unteered geographic information research: the case of OpenStreet-
Map. Future Internet. 2014;6(1):76–106. https://​doi.​org/​10.​3390/​
fi601​0076.

	26.	 Samah KAFA, Ibrahim S, Ghazali N, Suffian M, Mansor M, Latif
WA. Mapping a hospital using OpenStreetMap and GraphHopper:
a navigation system. Bull Electr Eng Inf. 2020. https://​doi.​org/​10.​
11591/​eei.​v9i2.​2082.

	27.	 Anderson J, Sarkar D, Palen L. Corporate editors in the evolv-
ing landscape of OpenStreetMap. ISPRS Int J of Geo-Inf.
2019;8(5):232. https://​doi.​org/​10.​3390/​ijgi8​050232.

	28.	 Karich P. Flexible Routenplanung mit GraphHopper. FOSSGIS
e.V.; 2016. https://​doi.​org/​10.​5446/​19732. https://​av.​tib.​eu/​media/​
19732

	29.	 Johnson I, Henderson J, Perry C, Schöning J, Hecht B. Beautiful...
but at what cost? Proc ACM Interact Mobile Wearable Ubiquitous
Technol. 2017;1(2):1–21. https://​doi.​org/​10.​1145/​30900​80.

	30.	 Engelmann M, Schulze P, Wittmann J. Emission-based rout-
ing using the GraphHopper API and OpenStreetMap. In:
Progress in IS; 2019. pp. 91–104. https://​doi.​org/​10.​1007/​
978-3-​030-​30862-9_7

	31.	 Usery E, Finn M, Mugnier C. Chapter 8—Coordinate Systems
and Map Projections; 2009. p. 87–112.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2174/1874447801913010065
https://doi.org/10.2174/1874447801913010065
https://doi.org/10.1088/1755-1315/822/1/012015
https://doi.org/10.1088/1755-1315/822/1/012015
https://doi.org/10.1007/978-3-662-48847-8_17
https://doi.org/10.1007/978-3-662-48847-8_17
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1631/jzus.A0900374
https://doi.org/10.3390/en14237974
https://doi.org/10.1007/s43684-021-00005-z
https://doi.org/10.5220/0011115400003191
https://doi.org/10.1109/ivs.2017.7995814
https://doi.org/10.1145/2752489.2752491
https://doi.org/10.1145/2752489.2752491
https://planet.osm.org
https://planet.osm.org
https://www.openstreetmap.org
https://github.com/graphhopper/graphhopper
https://github.com/graphhopper/graphhopper
https://doi.org/10.1007/11221_2018_6
https://doi.org/10.1007/11221_2018_6
https://doi.org/10.1109/ivs.2017.7995816
https://doi.org/10.1109/ivs.2017.7995816
https://doi.org/10.1016/j.trpro.2017.05.486
https://doi.org/10.1016/j.trpro.2017.05.486
https://doi.org/10.1109/TITS.2016.2614705
https://doi.org/10.1109/TITS.2016.2614705
https://doi.org/10.3390/app11115293
https://doi.org/10.3390/app11115293
https://doi.org/10.1007/978-3-662-48847-8_3
https://doi.org/10.1007/978-3-662-48847-8_3
https://doi.org/10.1109/access.2018.2828260
https://www.iso.org/standard/73746.html
https://www.iso.org/standard/73746.html
https://doi.org/10.3390/s22155535
https://doi.org/10.3390/s22155535
https://doi.org/10.3390/en14010171
https://doi.org/10.1109/smc.2017.8123022
https://doi.org/10.3390/s21030706
https://doi.org/10.3390/s21030706
https://doi.org/10.3390/fi6010076
https://doi.org/10.3390/fi6010076
https://doi.org/10.11591/eei.v9i2.2082
https://doi.org/10.11591/eei.v9i2.2082
https://doi.org/10.3390/ijgi8050232
https://doi.org/10.5446/19732
https://av.tib.eu/media/19732
https://av.tib.eu/media/19732
https://doi.org/10.1145/3090080
https://doi.org/10.1007/978-3-030-30862-9_7
https://doi.org/10.1007/978-3-030-30862-9_7

	 SN Computer Science (2024) 5:375 375   Page 14 of 14

SN Computer Science

	32.	 Grüne L, Pannek J. Nonlinear model predictive control: theory and
algorithms, communications and control engineering. London:
Springer; 2011.

	33.	 Vu TM, Moezzi R, Cyrus J, Hlava J. Model predictive control
for autonomous driving vehicles. Electronics. 2021;10(21):2593.
https://​doi.​org/​10.​3390/​elect​ronic​s1021​2593.

	34.	 Falcone P, Tufo M, Borrelli F, Asgari J, Tseng H.E. A linear time
varying model predictive control approach to the integrated vehi-
cle dynamics control problem in autonomous systems. In: 2007
46th IEEE conference on decision and control; 2007. p. 2980–
2985. https://​doi.​org/​10.​1109/​CDC.​2007.​44341​37

	35.	 Huber AK-P. Methoden zur berechnung optimaler rennlinien
im dynamischen grenzbereich. PhD thesis, Universität der Bun-
deswehr München; 2020. https://​athene-​forsc​hung.​unibw.​de/​
135181

	36.	 Pereira GC, Svensson L, Lima PF, Martensson J. Lateral model
predictive control for over-actuated autonomous vehicle. In: 2017
IEEE Intelligent Vehicles Symposium (IV); 2017. p. 310–316.
https://​doi.​org/​10.​1109/​ivs.​2017.​79957​37

	37.	 Turri V, Carvalho A, Tseng H.E, Johansson K.H, Borrelli F. Lin-
ear model predictive control for lane keeping and obstacle avoid-
ance on low curvature roads. In: 16th international IEEE con-
ference on intelligent transportation systems (ITSC 2013); 2013.
https://​doi.​org/​10.​1109/​itsc.​2013.​67282​61

	38.	 Matthias Gerdts: OCPID-DAE1 : Optimal Control and Parameter
Identification with Differential-Algebraic Equations of Index 1.
https://​www.​unibw.​de/​ingma​the/​teach​ing/​prako​pt/​2018/​ocpid​
dae1.​pdf

	39.	 ISO Central Secretary: Intelligent transport systems—Adaptive
cruise control systems—Performance requirements and test pro-
cedures. Standard, International Organization for Standardization;
2018. https://​www.​iso.​org/​stand​ard/​71515.​html

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3390/electronics10212593
https://doi.org/10.1109/CDC.2007.4434137
https://athene-forschung.unibw.de/135181
https://athene-forschung.unibw.de/135181
https://doi.org/10.1109/ivs.2017.7995737
https://doi.org/10.1109/itsc.2013.6728261
https://www.unibw.de/ingmathe/teaching/prakopt/2018/ocpiddae1.pdf
https://www.unibw.de/ingmathe/teaching/prakopt/2018/ocpiddae1.pdf
https://www.iso.org/standard/71515.html

	MPC-Based Routing and Tracking Architecture for Safe Autonomous Driving in Urban Traffic
	Abstract
	Introduction
	Control Architecture
	OpenStreetMap
	GraphHopper

	Trajectory Generation
	Path Planning
	Velocity Planning

	Trajectory Tracking
	FSM Operating Strategy

	Numerical Simulation and Results
	Conclusion and Future Work
	Appendix: Description of FSM Modes
	Acknowledgements
	References

