
Side-Channel and Fault Attacks
in

Modern Lattice-Based Cryptography

Julius Johannes Hermelink

Vollständiger Abdruck der von der Fakultät für Informatik der Universität der
Bundeswehr München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

angenommenen Dissertation.

Gutachter/Gutachterin:

1. Prof. Dr. Gabi Dreo Rodosek
2. Prof. Dr. Mark Manulis

Die Dissertation wurde am 06.12.2023 bei der Universität der Bundeswehr München
eingereicht und durch die Fakultät für Informatik am 06.03.2024 angenommen. Die
mündliche Prüfung fand am 15.03.2024 statt.

Side-Channel and Fault Attacks
in

Modern Lattice-Based Cryptography

Julius Johannes Hermelink

Vollständiger Abdruck der von der Fakultät für Informatik der Universität der
Bundeswehr München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

angenommenen Dissertation.

Gutachter/Gutachterin:

1. Prof. Dr. Gabi Dreo Rodosek
2. Prof. Dr. Mark Manulis

Die Dissertation wurde am 06.12.2023 bei der Universität der Bundeswehr München
eingereicht und durch die Fakultät für Informatik am 06.03.2024 angenommen. Die
mündliche Prüfung fand am 15.03.2024 statt.

Acknowledgments

First and foremost, I want to thank Dr. Thomas Pöppelmann for his support, encouragement,
and helpful feedback over more than five years. You raised my enthusiasm for cryptography while
I was a working student at Infineon, enabled me to learn in these two years, and then made me
aware of the position I ended up applying to, which lead to this thesis. Thank you, Thomas, I
would not have found my way into cryptography without you!

Prof. Dr. Gabi Dreo deserves huge and sincere thanks. You provided constant and helpful
advice, insights, and constructive feedback while I was your PhD student for more than three
years. Not only did you enable this thesis, improved my work, and showed me how to enhance
my skills and critical thinking, but you managed to create a work environment that brings out
the best in everyone. I owe you, Gabi, a lot of knowledge and skills, and this thesis would not
have been possible without you!

I am indebted to Dr. Simona Samardjiska and Dr. Peter Pessl: Your incredible knowledge,
willingness to pass it on, and the selfless help you offered me whenever I needed it did not go
unnoticed. In the more than two years I was lucky to know you, you both offered me a lot of
your time, which was very helpful and is greatly appreciated. Moreover, you provided advice in
every regard needed and connected me to the people I now work with.

I want to thank my second supervisor, Prof. Dr. Mark Manulis, for his helpful comments and
advice in the last year, in regard to the thesis and to academia as well as on how to continue
from hereon. Introducing me to your team is something else I am grateful for!

The team of Prof. Dr. Gabi Dreo’s chair played a large role for writing this thesis: Thank you,
Daniel Heinz, for the always insightful and interesting discussions on cryptography and on our
theses. I would like to especially thank Nils Rodday for always finding times to discuss problems
and provide feedback. Apart from that your cheerful personality was one of the reasons going
to work was something I always looked forward to. This is true for Klement Hagenhoff as well,
whom I also need to thank for feedback and the technical and philosophical debates we had.
Tobias Fritz, you are not only a colleague, but have also been a good friend for many years, thank
you for the support and the discussions we have had for so many years.

It should also be noted that several other people at UniBwM and Infineon helped me before
and during my thesis. Most notably, this includes PD Dr. Corinna Schmidt, Dr. Markus Gail,
and Dr. Florian Mendel. Working with all of you has always been a pleasure, and I am grateful
for the opportunities you provided me with. I also want to thank Silvan Streit and Emanuele
Strieder of Fraunhofer AISEC for the many helpful discussions and the work we did together!

Far beyond this thesis, I am incredible lucky with my two supportive parents, Dr. Kerstin
Hermelink and Jan Hermelink. I could not have wished for better parents; thank you for everything
you did for me, including your support during this thesis. I have to thank my siblings, Kai
Hermelink and Ada Hermelink – I could not imagine life without you!

Most importantly, I want to thank the love of my life Daniela Regler. You are the reason for
the path in life I chose in the first place and where I am today.

v

Abstract

The prospect of large-scale quantum computers threatens currently used asymmetric cryptography
– Shor’s algorithm could render commonly used cryptography unsafe. In 2022, the National
Institute for Standards and Technology (NIST) announced several quantum-secure cryptographic
algorithms for key exchanges and digital signatures for standardization, and three out of four are
based on hard lattice problems. The main candidate for key exchanges is a key encapsulation
mechanism called Kyber, which bases its security on the Module Learning with Errors problem.
In contrast to quantum cryptography, these post-quantum algorithms run on classical computers
and currently available hardware.

Data that is encrypted now often needs to be secured for a long time. In addition, potentially
vulnerable cryptography is present in many products, protocols, and use cases; therefore, deploying
different algorithms is a difficult task that could take a substantial amount of time and effort.
Clearly, migrating to quantum-safe cryptography cannot wait until large-scale quantum computers
are available. Thus, and due to the imminent standardization, lattice-based cryptography is likely
to run on a wide variety of devices in the near future.

In this work, we present attack strategies against lattice-based cryptography. Our attack
strategies combine chosen-ciphertext attacks with side-channel analysis as well as with fault
attacks and target two major components of the decapsulation that process the secret key.
Moreover, we present techniques to recover the secret key from the obtained information and
show how to combine those methods with algebraic approaches.

We first present an attack strategy on the number theoretic transform: A chosen ciphertext is
pre-computed such that it cancels out values during the inverse number theoretic transform that
processes the secret key. The reduced entropy allows for an improved subsequent side-channel
analysis. Using our technique, the number theoretic transform can be targeted with highly
increased noise tolerance. We take countermeasures into account and state techniques that enable
the adaptation of belief-propagation-based attacks to protected settings.

Then, we target the error correction and the Fujiskai-Okamoto transform. We show how a
fault may turn the Fujisaki-Okamoto transform into a decryption failure oracle; this enables
a chosen-ciphertext attack targeting the error correction. Our fault-enabled chosen-ciphertext
attack requires an adversary to target only public data, may be administered in various locations,
and allows the use of an unreliable fault. In addition, we show how belief propagation can be
employed to recover the secret key from decryption failure information. We then propose using a
combination of countermeasures to mitigate our attack strategy.

Finally, we explain how to recover the secret key from decryption failure information in an
error-resistant way that also allows for security estimates. We modify the belief-propagation-based
approach to achieve error-resistance and explain how belief propagation may be combined with
lattice reduction. Our method outperforms previous algorithms in terms of required information,
is error-tolerant, and allows for security estimates in cases where the secret key cannot be fully
recovered. These security estimates enable the design and evaluation of countermeasures and
provide an assessment of the impact of several attacks that exploit decryption failures.

vii

Kurzfassung

Die Entwicklung von Quantencomputern bedroht die aktuell verwendete asymmetrische Kryp-
tographie – Shors Algoritmus könnte weit verbreitete kryptographische Verfahren brechen. Im
Jahr 2022 hat das National Institute for Standards and Technology (NIST) mehrere Kandidation
für quantensichere Verschlüsselung als Standardisierungskandidaten vorgestellt und drei von vier
davon basieren auf Gitterproblemen. Der Hauptkandidat für Schlüsselaustausche ist ein Key En-
capsulation Mechanismus namens Kyber, dessen Sicherheit auf dem Module Learning with Errors
Problem basiert. Im Gegensatz zur Quantenkryptographie laufen diese Postquantenverfahren auf
aktuell verfügbarer, klassischer Hardware.

Daten die zurzeit verschlüsselt werden, müssen oft noch für lange Zeit ausreichend sicher bleiben.
Zusätzlich ist potentiell vulnerable Kryptographie weite verbreitet und kommt in vielen Produkten,
Protokollen und Anwendungsfällen vor; deshalb könnte der Wechsel zu quantensicheren Verfahren
substanziell viel Zeit und Aufwand kosten. Ganz eindeutig kann der Wechsel zu quantensichereren
Verfahren also nicht erst passieren, nachdem ausreichend leistungsstarke Quantencomputer bereits
verfügbar sind. Deshalb, und aufgrund der anstehenden Standardisierung, werden gitterbasierete
Algorithmen vermutlich in Kürze weit verbreitet sein und auf vielen Geräten laufen.

In dieser Arbeit stellen wir mehrere Strategien vor, mit denen gitterbasiere Verfahren ange-
griffen werden können. Unsere Angriffsstrategien kombinieren Chosen-Ciphertext Angriffe mit
Seitenkanalanalyse und Fehlerangriffen und zielen auf zwei Hauptkomponenten der Decapsulation-
Routine ab. Außerdem präsentieren wir Techniken, mit denen der geheime Schlüssel aus den in
den Angriffen gewonnen Informationen gewonnen werden kann und zeigen wie diese Methoden
mit algebraischen Ansätzen kombiniert werden können.

Zunächst erklären wir eine Angriffsstrategie auf die Number Theoretic Transform: Ein Ci-
phertext wird vorberechnet, sodass er Werte innerhalb der inverse Number Theoretic Transform,
die den geheim Schlüssel transformiert, auslöscht Die dadurch reduzierte Entropie erlaubt an-
schließend eine verbesserte Seitenkanalanalyse. Durch die Verwendung unserer Methode kann
die Number Theoretic Transform mit stark erhöhter Rauschresistenz angegriffen werden. Wir
untersuchen zudem Gegenmaßnahmen und geben Techniken an, mit denen Belief Propagation an
diese angepasst werden kann.

Anschließend zielen wir auf die Fehlerkorrektur und die Fujisaki-Okamoto Transformation ab.
Wir zeigen, wie ein Fehlerangriff die Fujisaki-Okamoto Transformation zu einem Entschlüsselungs-
fehlerorakel werden lassen kann; dies passiert durch einen Chosen-Ciphertext Angriff, der auf die
Fehlerkorrektur abzielt. Unser durch einen Fehlerangriff ermöglichter Chosen-Ciphertext Angriff
kann von einem Angreifer durchgeführt werden, der lediglich öffentliche Daten manipulieren kann,
kann mehreren Zeitpunkten durchgeführt werden und benötigt lediglich einen unzuverlässigen
Fehlerangriff. Zusätzlich zeigen wir, wie Belief Propagation verwendet werden kann, um den
geheimen Schlüssel aus Entschlüsselungsfehlerinformation zu gewinnen. Anschließend geben wir
dann mögliche Gegenmaßnahmen an, die unseren Angriff abschwächen können.

Schließlich erklären wir, wie der geheime Schlüssel aus Enschlüsselungsfehlerinformation in
fehlertorleranter Weise mit einem Verfahren, das Sicherheitsabschätzungen zulässt, gewonnen

ix

werden kann. Wir modifizieren den Belief Propagation basierten Ansatz, um Fehlertoleranz
zu erreichen und erklären, wie Belief Propagation mit Gitterreduktion verbunden werden kann.
Unsere Methode liefert bessere Ergebnisse als frühere Algorithmen in Bezug auf benötigte Infor-
mation, ist fehlertolerant, und gibt Sicherheitsabschätzungen in allen Fällen, in denen der geheime
Schlüssel nicht direkt vollständig zurückgewonnen werden kann. Diese Sicherheitsabschätzungen
ermöglichen das Design und die Evaluation von Gegenmaßnahmen und erlauben eine Einschätzung
der Auswirkungen mehrere Angriffe, die auf Entschlüsselungsfehlern basieren.

x

Contents

1 Introduction 1
1.1 Problem Description . 3

1.1.1 Research Objective . 4
1.1.2 Research Questions . 7

1.2 Contributions . 8
1.3 Thesis Organization . 11

2 Background 13
2.1 Cryptographic Schemes . 15

2.1.1 Chosen-Ciphertext Attacks . 17
2.1.2 Fujisaki-Okamoto Transform . 18

2.2 Lattice-Based Cryptography . 18
2.2.1 Mathematical Background . 18
2.2.2 Learning with Errors Problems . 23
2.2.3 Learning with Errors Schemes . 24

2.3 Implementation Attacks . 35
2.3.1 Side-Channel Analysis . 35
2.3.2 Fault Attacks . 40
2.3.3 Countermeasures . 40

2.4 Belief Propagation . 41
2.4.1 Factor Graph . 42
2.4.2 Message Passing . 42
2.4.3 Update Functions . 43
2.4.4 Marginal Distributions . 44

3 Related Work 45
3.1 Attacks on Number Theoretic Transforms . 46

3.1.1 The NTT as Target . 46
3.1.2 The Attack of Primas, Pessl, and Mangard 47
3.1.3 The Attack of Pessl and Primas . 50
3.1.4 The Attack of Xu et al. 53
3.1.5 The Countermeasures of Ravi et al. 53
3.1.6 Limitations of Prior Attacks . 58
3.1.7 Defeating Countermeasures . 58

3.2 Attacks using Decryption Failures . 59
3.2.1 Decryption Failures in Kyber . 60
3.2.2 The Attack of Pessl and Prokop . 63
3.2.3 The Attacks of Bhasin et al. and D’Anvers et al. 65
3.2.4 The Attack of Delvaux . 66

xi

Contents

3.2.5 Fault Attacks with Different Targets . 66
3.2.6 Limitations of Priors Attacks . 66

3.3 Key Recovery Methods . 66
3.3.1 Attacker Model . 67
3.3.2 The Frameworks of Dachman-Soled et al. 67
3.3.3 Recovery Method of Pessl and Prokop. 69
3.3.4 Recovery Method of Delvaux. 71
3.3.5 Limitations of Prior Methods . 72

3.4 Summary . 73

4 Chosen-Ciphertexts k-Trace Attacks 75
4.1 Attacker Model . 76
4.2 Attack Strategy . 76
4.3 Construction of the Ciphertext . 77

4.3.1 Compression and Compressibility . 78
4.3.2 NTT-Sparseness as Lattice-Problem . 80
4.3.3 Combining Comressibility and Sparseness 80

4.4 Recovery of the Secret Key . 82
4.4.1 Belief Propagation . 82
4.4.2 Recovering From Partial Keys . 83

4.5 Adaptation to Countermeasures . 86
4.5.1 Adaptation to Fine-Shuffling . 87
4.5.2 Adaptation to Coarse Shuffling . 89

4.6 Summary . 96

5 Fault-Enabled Chosen-Ciphertext Attacks 97
5.1 Attacker Model . 98
5.2 Attack Strategy . 98
5.3 Construction of the Ciphertext . 99

5.3.1 Introducing an Error . 100
5.3.2 Constraints on the Ciphertext . 100

5.4 Recovery of the Secret Key . 101
5.4.1 Recovery using Belief Propagation . 102
5.4.2 Final Recovery . 104

5.5 Impact of Countermeasures . 105
5.5.1 Shuffling Countermeasures . 106
5.5.2 Redundancy . 107

5.6 Summary . 108

6 Security Estimates for Error-Tolerant Key Recovery 109
6.1 Recovery Model . 110
6.2 Recovery Strategy . 110

6.2.1 Number of Decryption Failures . 111
6.2.2 Belief Propagation Output . 112
6.2.3 Information Theoretic Analysis . 113

6.3 Error Resistant Belief Propagation . 114
6.3.1 Error Resistant Check Nodes . 114
6.3.2 Computational Complexity . 115

xii

Contents

6.4 Belief Propagation and Lattice Reduction . 115
6.4.1 Integration of Recovered Coefficients . 115
6.4.2 Integration of Probability Information . 117

6.5 Summary . 119

7 Evaluation and Results 121
7.1 Attacks on the Number Theoretic Transform . 122

7.1.1 Simulation . 123
7.1.2 Results . 124
7.1.3 Comparison to Prior Work . 127

7.2 Decryption Errors and Key Recovery . 128
7.2.1 Simulation . 129
7.2.2 Fault-Enabled Chosen-Ciphertext Attacks 130
7.2.3 Improved Recovery . 131
7.2.4 Comparison to Prior Work . 133

7.3 Summary . 134

8 Conclusions and Outlook 137
8.1 Main Findings . 137

8.1.1 Attack Strategies . 137
8.1.2 Attack Techniques . 138
8.1.3 Vulnerability Analysis . 138
8.1.4 Revisiting the Research Questions . 139

8.2 Future Work . 141
8.2.1 Attacks on the NTT . 141
8.2.2 Decryption Failure Attacks . 142
8.2.3 Key Recovery Methods . 142
8.2.4 Post-Quantum Signature Schemes . 143
8.2.5 Physical Attacks and Deep Learning . 143

Bibliography 143

Acronyms 179

List of Publications 181

List of Figures 183

List of Tables 187

List of Algorithms 189

xiii

Chapter 1

Introduction

The need to secure and authenticate communication has existed for millennia. From simple
substitution of letters and handwritten signatures to complex machinery – humanity has always
searched for algorithms verifying authenticity and keeping information secret. Accessing encrypted
information has been equally crucial, especially during wartime. For example, breaking the
“Enigma” machine using a device co-developed by the mathematician Alan Turing – who also
laid the foundation for modern computers – led to enemy communications being accessible by
allied troops. While thus even historically the significance of cryptography cannot be overstated,
it affects almost every aspect of everyone’s life in the modern connected world.

Computers communicating over the Internet send their information over various hops until it
reaches their intended destination. Without encryption and authentication, everyone could access
and manipulate all messages passing through their servers. But not only devices connected to the
Internet require secured cryptography. Devices such as smartcards, digital locks, and even modern
car keys use cryptographic schemes to keep unauthorized users from accessing the corresponding
service. If current cryptography was to be broken, our digital world would be entirely defenseless,
and the majority of applications would not be appropriately secure anymore and soon cease to
exist. From private social media accounts to online banking and smartcards opening the doors to
secured areas to military communications – every connected digital service could be accessed by
those being able to break current schemes. The digital world fully relies on modern cryptography
being appropriately secure.

Fortunately, current cryptographic schemes are widely considered appropriately secure even
against state-level attackers. Asymmetric cryptography is commonly used to authenticate and
establish a shared secret between two parties willing to communicate, and symmetric cryptography
provides the confidentiality and integrity of further exchanged information. A simple example to
illustrate the difference between and applications of asymmetric and symmetric cryptography is
depicted in Figure 1.1. Asymmetric cryptography relies on one-way functions, which are efficient
to compute but computationally very expensive to invert. It is, for example, efficient to multiply
large prime numbers but no fast algorithm for factorization running on classical computers is
known. Cryptographic schemes that base their security on these kind of hard problems might be
flawed in how they are implemented, but the algorithms themselves are unlikely to be broken
without significant technological advances.

The advent of quantum computers in the early twenty-first century gave rise to concerns
regarding the long-term security warranted by established problems. A large-scale quantum
computer could break hard problems such as integer factorization or discrete logarithm problems
using Shor’s algorithm [Sho94, Sho97]. This would allow anyone in possession of such a device
to break commonly used asymmetric cryptography. Grover’s search [Gro96], another quantum

1

Chapter 1 Introduction

Alice Bob

Key Generation

Encapsulation

Decapsulation

En-/Decrypt En-/Decrypt

Public Key

Ciphertext

Encrypted Communication

Using Shared Secret

Secret Key

Shared Secret Shared Secret

Asymmetric cryptography

Symmetric cryptography

Figure 1.1: Simplified usage of symmetric and asymmetric cryptography. A key encapsulation
mechanism (asymmetric) is used to establish a shared secret from which a common but secret
key is derived. This enables Alice and Bob to communicate using symmetric cryptography.

algorithm, could lower the security of symmetric schemes by about half of their current bit security.
While the vulnerability of symmetric cryptography to quantum-computing can be mitigated by
using longer keys, asymmetric cryptography relying on many currently used problems is likely to
be completely broken (see e.g., [BL17]). Considering the importance of cryptography, this calls
for schemes that rely on different, “quantum-secure” problems.

Current quantum computers do not possess the computational capacities to break cryptographic
schemes in use [NistPqc, BsiQu, BDH+21a]. It is unclear how fast current quantum technology
will improve and when a major breakthrough that accelerates development will happen. But
even though such developments might take several decades, the migration to post-quantum
cryptography has to happen sooner because many products and currently processed information
need to stay secure beyond this time frame. Sensitive information recorded today and being
decrypted many decades later could still have serious implications. Additionally, protocols and
products that are in development today might still be in use several decades later – to replace them
for security reasons could be a major problem in many cases. Therefore, achieving post-quantum
security is a pressing matter that cannot be postponed.

In 2016, the National Institute of Standards and Technology (NIST) initiated a standardization
process for post-quantum cryptography aiming to develop quantum-safe standards for the future
of secure communications [NistCfp]. The following years brought many new cryptographic
algorithms based on several hard problems falling into different categories, each with its own
merits and caveats. The process is currently in the fourth round [NistCfpv4], and a supplementary
call [NistSig] for newly submitted signatures has started.

After several schemes have been ruled out, many of them either broken or with severe dis-
advantages, NIST selected several schemes for standardization after the third round of the
process [NistR3]. These include one single primary candidate as key encapsulation mechanism,
used to exchange keys for, e.g., use with symmetric cryptography, and three signature schemes used
to verify the authenticity of a message. Other “alternate candidates” might also be standardized

2

1.1 Problem Description

to allow for a comprehensive choice depending on the individual use case [NistR3].
Several candidates in the NIST process were based on hard lattice problems [NistR1]. Lattices

are algebraic structures from which several computational problems arise for which no classical or
quantum algorithm for efficient solving is known. From these problems, for example from variants
of the (unique) shortest vector problem and closest vector problem, cryptographic schemes have
been derived for several decades. An early example is the NTRU scheme [HPS98] of which several
variants have been submitted to the NIST process [NistR1]. An example of a 2-dimensional
lattice and the shortest and the closest vector problem is depicted in Figure 1.2.

Schemes based on the learning with errors problem are among the most efficient candidates in
the NIST process in terms of performance and key sizes. The learning with errors problem was
introduced by Regev in 2005 [Reg05, Reg09] and can be reduced (randomized) to lattice problems
that are assumed to be hard even for a quantum computer [Reg05, Reg09, Pei09a, APS15].
Especially the ring- [LPR13] and the module learning with errors problems [BGV14, LS15], which
are more structured variants of learning with errors, lead to efficient algorithms. The scheme
selected for standardization by the NIST, Kyber [BDK+18, ABD+21b], is based on the module
learning with errors problems and therefore lattice-based. This makes lattice-based cryptography
and especially learning with errors based protocols particularly interesting for embedded devices,
which are usually more constrained in terms of performance and key sizes.

While the process is running, some lattice-based post-quantum schemes have been tested and
are already used in practice. For example, NewHope [ADPS16b] has been used in a test run
in the Google Chrome browser in combination with Transport Layer Security (TLS) to secure
key exchanges in an experiment conducted in 2016 [Bra16]. NewHope is a lattice-based scheme
that is similar, but based on a slightly different problem, to the now selected algorithm Kyber.
Kyber itself is available for certain Amazon web services and has been evaluated in this context
for hybrid TLS [Jar22], a recent release of libsignal (powering the Signal messenger) implements
Kyber [Sig23], and the latest version of the Chrome browser uses hybrid key exchanges for TLS
that combine elliptic curve cryptography and Kyber [OBr23].

It has been shown that schemes based on these problems are suitable in practical use cases with
full protocols even on constraint devices, e.g., in [HPS+20], and several – secured and unsecured –
implementations of learning-with-error-based schemes exist, see for example [OG17, BGR+21,
FBR+22, KSSW22, HKL+22, BBC+23]. But also in settings such as TLS, the performance of
lattice-based cryptography has been evaluated [Pei14, BCNS15, SSW20, GW22] and is already
used in practice [Jar22, OBr23]. The currently primarily selected scheme for key encapsulation
and a selected scheme for signatures are module learning with errors schemes, additionally drawing
attention to learning with errors and especially to module learning with errors.

1.1 Problem Description

As learning with errors based schemes rely on different hard problems compared to currently
used cryptography, they come with different properties and are constructed from distinct kinds of
building blocks. For example, in learning with errors schemes, fast multiplication algorithms are
often realized using a number theoretic transform. In terms of scheme design, key encapsulation
mechanisms based on the learning with errors problem are often constructed from a public key
encryption scheme using a Fujisaki-Okamoto transform [FO99, FO13, TU16, HHK17] to obtain a
key encapsulation mechanism and achieve security against chosen-ciphertext attacks. Another
notable property is the usage of an error correction to remove noise from a message. The error
correction may in many schemes fail with very low probability even without manipulation.

The theoretic security of lattice-based schemes has been thoroughly analyzed and is debated

3

Chapter 1 Introduction

x

y

(a) The lattice.

x

y

(b) CVP

x

y

(c) SVP

Figure 1.2: Lattice problems in two dimensions. Figure 1.2a shows a two dimension lattice. The
closest vector problem (Figure 1.2b) asks to find the closest lattice element to a given point. The
shortest vector problem (Figure 1.2c) is posed as finding the shortest non-zero vector in a lattice.

extensively (see, e.g., [BDH+21a, BsiPqc, NistR3, PqcFo]). But whenever cryptographic schemes
are used in practice, side-channel and fault attacks are an attack vector that has to be considered.
The threat posed by physical attacks on embedded devices has been a major concern since the
seminal work by Kocher [Koc96] on timing attacks and by Kocher et al. [KJJ99] on differential
power analysis in 1999. For example, an application may leak through a side-channel such
as timing, electromagnetic radiation, or power consumption, or an adversary may manipulate
execution by introducing a fault. Implementation security is especially relevant when considering
embedded or mobile devices as these kinds of use cases often allow an attacker to – at least
temporarily – gain access to a device running a cryptographic algorithm that contains secrets that
the adversary wants to extract. As lattice-based cryptography utilizes entirely different building
blocks and deviates from classic algorithms in many regards, migrating to learning with errors
schemes opens up new implementation vulnerabilities (as already shown e.g., in [PPM17, GJN20,
RRCB20, RBRC20]) and requires analysis before post-quantum cryptography can be deployed on
a large scale.

1.1.1 Research Objective
Securing key exchange schemes in the near future is particularly important: An adversary may
record current encrypted data for later decryption by a large-scale quantum computer. In addition,
post-quantum key Key Encapsulation Mechanisms (KEMs) have been proven to be practical
in terms of performance in several use cases, e.g., [Bra16, SSW20, HPS+20, Jar22, GW22].
Moreover, the standardization process is near its end and NIST has already selected the KEM
Kyber for standardization [NistR3].

The secret key of the KEM, which is the long-term secret in non-ephemeral key establishment
protocols, is a particularly interesting target as it may allow an attacker, depending on the protocol,
to obtain not only the current but also past and future session keys. The long-term secret may
be targeted during the key generation and the decapsulation routine. The key generation is
only called once per key pair and may be performed offline or while the device is not under
the control of an attacker. Therefore, the building blocks of the decapsulation are especially
valuable targets. Evaluating their security, finding conceptual attack strategies, and designing
countermeasures to these threats is fundamental to the migration and widespread adoption of
post-quantum cryptography. For these reasons, this thesis focuses on the decapsulation routine
in Learning with Errors (LWE) based key exchange schemes with a focus on the following areas.

4

1.1 Problem Description

The Number Theoretic Transform

The number theoretic transform is an algorithm enabling fast multiplication. This routine is used
in several lattice based schemes, e.g., [ADPS16b, DKL+18, BDK+18, LS19], including Kyber.
The usage of a Number Theoretic Transform (NTT) has also been proposed for schemes where
the underlying algebraic structure does not directly allow for the usage of an NTT [CHK+21,
ACC+21]. In particular, the inverse NTT processes the secret key during the decapsulation; the
input depends on the ciphertext, which allows an attacker to influence its execution. Vulnerability
of the number theoretic transform against side-channel attacks has been shown in [PPM17, PP19].
These works show that the NTT may be targeted during key generation, encapsulation, and
decapsulation and require only a single trace after having created a template. The vulnerability
of the NTT is not a purely theoretical matter, and attacks have been verified on physical devices.
But in current attacks the noise tolerance is reduced when targeting the long-term secret or a
masked1 implementation (compared to targeting the session key in an unprotected setting). This
means, in a realistic setting, the adversary needs to be able to take precise measurements of
intermediate variables2 to recover the long-term secret. It is unclear whether the long-term secret
can be extracted in masked settings with increased measurement noise.

To understand the degree of vulnerability of the NTT, is necessary to quantify the capabilities
required by an adversary to launch an attack. Therefore, finding and – in a second step – mitigating
attack strategies allowing for attacks with increased noise-tolerance on the NTT is of high
relevance to the security of affected lattice-based schemes. Moreover, shuffling countermeasures,
e.g., presented in [RPBC20], could prevent these attacks, and adaptations for these types of
attacks are not yet known. The extent of vulnerability of the number theoretic transform is
therefore a major open question with regard to implementation security. In our first research
question, we aim to give an answer to this issue.

Error Correction and Fujisaki-Okamoto Transform

Current lattice-based schemes make use of an error correction to recover the message (from which,
e.g., the session key is derived) from a noisy polynomial. The error correction is used during
the decryption, which is called in the decapsulation routine. Even though the error correction
recovers the session key, the input to the error correction directly depends on the long-term secret.
With very high probability, the noise is small enough to allow for correct recovery. In rare cases, a
decryption failure may occur, which allows an observer to obtain information about the secret key;
this is taken into account by security estimates. Decryption failures may also be caused by the
usage of a manipulated ciphertext; if an adversary can potentially cause and then observe whether
a decryption failure happens, they obtain information about the secret key. Previous schemes
have been attacked, and in some cases even broken without the usage of a side-channel, using
this attack strategy [JJ00, HNP+03, Flu16, BBLP18, GJY19, BGRR19]. A Fujisaki-Okamoto
Transform [FO99, FO13, TU16, HHK17] prevents chosen-ciphertext attacks in the IND-CCA2
model and thereby, in particular, prevents the observation of decryption failures caused by a
chosen-ciphertext. Invasive attacks target the comparison of the Fujisaki-Okamoto (FO)-transform
and thereby remove the protection the FO-transform offers – the need to protect the comparison
and similar operations against faults is therefore well-known [VOGR18, OSPG18, BGRR19,
XIU+21]. Another attack path has been the exploitation of either side-channel leakage [BGRR19,
GJN20, RRCB20, BDH+21b, DHP+22] during the error correction. Note that countermeasures
mitigating these attacks have already been provided in the respective work. Nevertheless, an
attack similar to [GJN20, BDH+21b, DHP+22] applies whenever side-channel leakage allows
1Masking is a countermeasure, see Section 2.3.3.
2For a high-level comparison of required noise levels see Table 1.1.

5

Chapter 1 Introduction

observing the outcome of the decryption subroutine during the decapsulation. Moreover, in these
attacks, the ciphertext only differs by a single bit from a valid ciphertext and is therefore hard to
detect. The attack of [PP21] applies a fault – but only a fault and no chosen-ciphertext – and
can fully recover the secret key in practice. However, it is focused on a particular implementation
of the decoder and requires a reliable fault on a single unprotected location.

Thus, regarding the area of invasive attacks, it is unclear whether the error correction may be
targeted with an unreliable fault that can be administered in various locations, i.e., allows for
a large attack surface, and is independent of the exact implementation. Therefore, it is mostly
an open question under which conditions and to what extent implementation attacks allow to
exploit decryption failures in the presence of an FO-transform. The second research question
focuses on attacks that exploit decryption failures and target the FO-transform.

Recovery Methods for Decryption Failure Information

Side-channel and fault attacks commonly make use of statistical information obtained during the
attack. Veyrat-Charvillon et al. [VGS14] proposed the usage of a coding theoretic approach, and
since then, many attacks rely on belief propagation, e.g., [PPM17, GRO18, PP19, KPP20]. Using
belief propagation, an adversary may recover the secret key if a sufficient amount of information
has been obtained, and belief propagation has also previously been combined with an algebraic
step that, for example, exploits the structure of an NTT [PPM17]. In many cases, however,
there is currently no technique to make use of the underlying lattice problem, which is posed
by the public key equation and targeted by classical attacks on learning with errors schemes.
In particular, the recovery of the secret key from decryption failure information that occurs in
attacks such as, e.g., [BDH+21b, PP21, HPP21, DHP+22]3 yet misses a comprehensive recovery
method which combines the advantages of different approaches. The side-channel information
framework of Dachman-Soled et al. [DDGR20, DGHK22] considers different kinds decryption
failure information and offers estimates for information as occurring in the attacks of [BDH+21b,
PP21, HPP21, DHP+22]. However, full key recovery in these latter cases is computationally
expensive, and estimates indicated that it requires more information than current statistical
algorithms (see [DHP+22, Section 3.1]).

Previous statistical methods [PP21, HPP21, Del22] can practically recover the secret key
from sufficient information. However, those methods either do not allow for error tolerant
recovery or require more information than necessary; in addition, those approaches do not offer
security estimates in case of partial attacks. Error tolerance enables attacks in which information
about decryption failures cannot be classified with certainty – a property often required in
real-world scenarios. Estimates on the remaining security after an attack on an instance of a
scheme are particularly important to understand the impact of attacks and design appropriate
countermeasures. Unfortunately, current methods allowing for error-tolerant key recovery do not
achieve the performance in terms of required information that other methods offer, and practical
methods do not offer security estimates at all. This has several implications: The key can only be
recovered if no incorrect information is obtained from the attack – often an unrealistic assumption
–, or the adversary needs to obtain more information than other methods would require. Further,
in case an adversary retrieves insufficient information to recover the secret key, the current state
of the art does not allow to estimate the remaining security.

The lack of security estimates leads to uncertainty about the impact of attacks exploiting
decryption failures, e.g., [BDH+21b, PP21, DHP+22, Del22], and could result in the deployment
of insufficient countermeasures that do not achieve the required security level. The issue of
security estimates for decryption failure information is covered in the third research question.

3Note that these attacks obtain different information than failure boosting attacks (e.g., [DVV19]).

6

1.1 Problem Description

1.1.2 Research Questions

From the problems described in the previous section, we derive the following research questions:

Research Question 1: To what extent is the number theoretic transform vulnerable
to side-channel analysis?

Fast multiplication in several lattice-based schemes, e.g., [ADPS16b, DKL+18, BDK+18, LS19],
including Kyber, is realized through the usage of a so-called NTT. This procedure is used
throughout the whole scheme and therefore offers multiple points of attack. In particular, the
inverse NTT of the product of the long-term secret and a component of the ciphertext is
computed during every key exchange, making it a valuable target. The vulnerability of the
NTT to side-channel analysis has previously been shown [PPM17, PP19]. These attacks are
practical, have been carried out on physical devices, and, after a template has been recorded, only
require a single-trace. Current attacks, however, do not yet target the long-term secret or masked
settings under high-noise conditions. Moreover, shuffling countermeasures are not considered and
prevent these attacks. A general attack strategy targeting the long-term secret that considers
high noise levels and an assessment of vulnerabilities of the NTT, especially in the presence
of countermeasures, is yet missing. Understanding the security of the NTT, in regard to the
required noise level as well as countermeasures, is of high relevance as the long-term secret is
processed over a long execution time during the decryption routine.

Research Question 2: How can implementation attacks target the error correction
and exploit decryption failure leakage in the presence of an FO-Transform?

In LWE-based schemes, during the decryption step, the message has to be recovered from
noisy polynomial coefficients – small errors have to be corrected. The error correction and the
FO-transform have previously been identified as a target (see, e.g., [VOGR18, OSPG18, BGRR19,
GJN20, XIU+21, BDH+21b, PP21, DHP+22]). An attack strategy for side-channel analysis
already exists and has been exploited in [GJN20, BDH+21b, DHP+22]. However, current invasive
attacks require an implementation to be vulnerable or unprotected in a specific location, have a
small attack surface, or they require a reliable fault. In addition, these attacks target operations
that are already considered sensitive (e.g., the comparison operation of the FO-transform or the
error correction of the session key), and no attack strategies targeting only public data are known.
It is yet unclear if decryption failure leakage can be utilized for more general fault attacks and to
what extent the FO-transform in lattice-based cryptography is vulnerable. The error correction
processes the secret key and may be targeted using a chosen ciphertext. Therefore, understanding
the impact of decryption failures in regard to side-channel and fault attacks is of high importance.

Research Question 3: Which techniques allow for key recovery from partially leaked
decryption failure information?

Side-channel and fault attacks often require a key recovery step because recorded information does
not directly reveal the key but, instead, allows for the key to be retrieved from it. In particular,
solving for the secret key from decryption failure leakage requires sophisticated methods as the
information occurs in terms of inequalities in a high-dimensional space. This type of key recovery
from decryption failure leakage is of high relevance for security of lattice-based cryptography, as
such information occurs in a variety of attacks such as [PP21, BDH+21b, HPP21, Del22]. Several
techniques exist [DDGR20, PP21, HPP21, Del22, DGHK22], each with their own merits and
caveats, using either statistical or algebraic methods but not both. Current recovery methods are
either not error-tolerant, i.e., they fail in the presence of incorrect information, need substantially4

4This is quantified in Table 1.3 as well as Section 7.2.2.

7

Chapter 1 Introduction

more information than required by other algorithms, or do not allow for security estimates. In
addition, security estimates are not available for any practically used method in this area, and
other means overestimate the remaining security, i.e., underestimate the loss of security caused
by these attacks. The lack of a practical approach that allows for security estimates leads to
uncertainty about the impact of attacks that exploit decryption failures. Therefore, it is unclear
what countermeasures are needed to achieve the required level of security. As a consequence,
attacks could be underestimated, and deployed countermeasures might not achieve the targeted
level of security.

1.2 Contributions

This thesis builds upon several previously published works the author contributed to. The author
of this thesis was a main contributor to each of the following work. The authors of [HHP+21]
and [HSST23] are mentioned in alphabetic order5; in [HHP+21] the role of main contributor is
shared with several other researchers, mainly Silvan Streit, and in [HSST23], it is shared with
Silvan Streit. The first research questions is addressed in [HHP+21] and [HSST23]. The second
research question is mainly addressed in [HPP21] with some improvements in [HMS+23], and the
third research question is addressed in [HMS+23].

In [HHP+21], we show how to exploit algebraic properties of the NTT in order to enable
noise-resistant side-channel analysis. A chosen-ciphertext, which is crafted using either lattice
reduction or a less costly but also less effective algorithm, is first sent to the device under attack.
This ciphertext is created such that decompression and subsequent transformation into NTT
domain result in a sparse polynomial. The pointwise multiplication with the secret then reduces
the entropy inside the inverse NTT, allowing for improved side-channel analysis. A subsequent
belief propagation that is similar to the belief propagation used in [PP19] but works in the
setting of attacking the decapsulation and thereby targeting the secret key, can then recover
parts of the key. Using the algebraic structure of the NTT – essentially a computation of
the Chinese remainder theorem – additionally allows for recovering even more coefficients of
the key. This can be achieved by using lattice reduction or, again, by using a less expensive
but also less effective algorithm. We evaluate our proposed attack strategy and give results in
terms of measurement-noise tolerance. The noise tolerance in terms of standard deviation of the
measurement error when targeting the long-term secret is increased by a factor of up to greater
than five. We thereby give an answer to the first research question by stating an attack on the
NTT in lattice based schemes, giving a strategy to reduce the entropy during the inverse NTT
using a chosen-ciphertext which increases the noise tolerance, and explaining how to recover the
secret key in such attacks. Further, we provide an evaluation of the vulnerability of the inverse
NTT during the decryption routine which processes the long-term secret.

Following up with the previous analysis of susceptibility of the NTT to side-channel analysis, we
examine the impact of hiding countermeasures in [HSST23]. A standard masking countermeasure,
e.g., the one used in [RRVV15, RRC+16, OSPG18], affects the attack of [HHP+21] only to a
low degree. This leads to the question of the impact of standard hiding countermeasures on the
attack proposed in [HHP+21]. Several countermeasures have already been proposed by Ravi et
al. in [RPBC20]; these include three hiding countermeasures which are realized by shuffling the
computations inside the NTT. We propose several ways of adapting to these countermeasures.
The first one is a computationally inexpensive method that is realized by mixing priors and
counters the lowest degree of protection proposed by [RPBC20]. A more sophisticated method, a

5This is common in the areas of cryptography and mathematics, see https://www.ams.org/profession/leaders/
CultureStatement04.pdf.

8

https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

1.2 Contributions

so-called shuffle node, targets the same countermeasure and allows for higher noise resistance.
Shuffle nodes are adaptive nodes that modify the belief propagation algorithm based on the
processed information. Finally, we adapt the attacker model and develop a matching algorithm
that allows adapting to higher levels of protection but is computationally expensive and has
higher requirements on the attacker. Thereby, we complement our answer to the first research
question by taking countermeasures into account, providing an analysis of their impact, and
explaining general strategies to adapt such attacks to countermeasures. A high-level comparison
to previous work is given in Table 1.1.

Table 1.1: Comparison of [HHP+21] to previous work (targeting Kyber or [LPR13]) in terms
of noise tolerance, target of the attack, and the consideration of countermeasures. The noise
tolerance is given as standard deviation of the error distribution. Table as depicted in [Her23b].

Work Noise Tolerance Long-Term Secret Countermeasures
Primas, Pessl, and Mangard [PPM17] σ ď 0.6 Yes Masking
Pessl and Primas [PP19] σ ď 2.0 No Masking

This Thesis [HHP+21, HSST23] σ ď 1.7 p3.1q6 Yes Masking and Hiding

In [HPP21], we show how decryption failures can be exploited using the combination of a chosen
ciphertext and a fault attack. A chosen ciphertext contains an additional term that potentially –
depending on the coefficients of the secret key – causes a decryption failure in the decryption
routine. The FO-transform prevents an attacker to observe such failures and thus, without an
implementation attack, no information can be obtained (in the appropriate model). Whenever
an implementation attack allows observing such decryption failures, an adversary may retrieve
inequalities over the secret key by using the chosen ciphertext also used in this work. Previous
work [GJN20, BDH+21b] exploited a faulty comparison operation using a similar technique or
used a fault to directly cause a decryption failure [PP21]. In this work, we show that a fault
may be used to turn the FO-transform – in place to prevent chosen-ciphertext attacks – into a
decryption failure oracle leaking inequalities that hold secret information. As noted in [DHP+22],
our approach is comparable to the concept of safe-error attack [YJ00] in symmetric cryptography.
Subsequently, the secret key has to be recovered from those inequalities. For this purpose, we
present a new technique using belief propagation which improves upon the previous technique
of [PP21]. It allows working with a very unreliable fault, requires to target only public data,
and may be administered at a wide variety of locations. We thus answer the second question by
explaining how the FO-transform may be turned into a decryption failure oracle using a fault,
which is a more generally applicable attack strategy. A high-level comparison to previous work is
given in Table 1.2.

As decryption failure leakage occurs in a variety of attacks, for example in [PP21, BDH+21b,
HPP21, Del22], several recovery methods, such as [DDGR20, PP21, HPP21, Del22, DGHK22],
exist. Every single recovery method comes with advantages and caveats. Until now, no recovery
method offered a minimum of required inequalities, error tolerance, security estimates, and
practicability on commonly available hardware. In [HMS+23], we show that a combination
of statistical and algebraic tools offers all those properties in the case of the most commonly
occurring types of decryption failures. By first using an improved belief propagation that achieves
error tolerance, we can recover the secret key in all cases where previous algorithms could. If the
given information was not sufficient for immediate recovery, we explain how belief propagation
6The number in brackets applies only to the highest Kyber security level.
7The work of [Del22] is a follow-up up attack to our work further enlarging the attack surface.
8A fault that may fail or targets incorrect locations; our attack may still make use of such a fault.

9

Chapter 1 Introduction

Table 1.2: Comparison of [HPP21] to previous work (targeting Kyber or FrodoKEM) in terms
of type of attack (side-channel analysis (SCA) or fault), point of attack, and requirements, and
robustness. Grayed out entries were published after our work. Table adapted from [Her23b].

Work Type Attack Vector Requirement/Robustness
Guo et al. [GJN20] SCA Comparison Timing Leakage
Bhasin et al. [BDH+21b] SCA Comparison Faulty Comparison
Pessl and Prokop [PP21] Fault Decoding Reliable Fault
D’Anvers et al. [DHP+22] SCA Comparison Max. First Order Protection
Delvaux [Del22]7 Fault Multiple Unreliable Fault
Fahr et al. [FKK+22] Failure Boosting Key Generation Rowhammer on Key Generation

This Thesis [HPP21] Fault Multiple Unreliable Fault8

output may be integrated into lattice problems. Thereby, we can further lower the number of
inequalities and, in addition, give estimates on the remaining security for partially successful
attacks. The work of [HMS+23] thereby answers the third research question of how to work with
partially leaked information in regard to decryption failure leakage, and, in addition, it provides
a more general applicable technique for attacks on lattice-based cryptography utilizing belief
propagation. A high-level comparison to previous work is given in Table 1.3; by being applicable,
we denote that a method has been used in practice for end-to-end key recovery in an attack on
Kyber retrieving inequalities such as, e.g., [BDH+21b, PP21, HPP21, DHP+22].

Table 1.3: Comparison of [HMS+23] to previous work in terms of required inequalities in Kyber512,
applicability to decryption failure information as arising in the aforementioned attacks, error
tolerance, and availability of security estimates. Table as depicted in [Her23b].

Work Inequalities Applicable Error Tolerant Estimates
Pessl and Prokop [PP21] 7500 Yes No No
Delvaux [Del22] 8500 Yes Yes No
Dachman-Soled et al. [DDGR20] ě 100009 No No Yes
Dachman-Soled et al. [DGHK22] n.a. No No Yes

This Thesis [HMS+23] 5500 Yes Yes Yes

Approaches used to answer the research questions. To exploit algebraic properties of the
scheme under attack, an adversary often needs to interact with the device in an active, as opposed
to a purely measuring-observing, way. Therefore, the techniques to answer the first and the second
research question include chosen-ciphertexts, i.e., a dishonestly generated ciphertext crafted to
manipulate the device into certain computations that expose information. Lattice problems
do not only appear in the security proofs of learning with errors but are also useful to recover
the secret key in a variety of scenarios when information was obtained from implementation
attacks. Thus, the technique of lattice reduction – used to find a short vector in a lattice –
appears in several chapters. Furthermore, throughout this work, the belief propagation algorithm
is used as a statistical tool allowing efficient processing of probability information. In fact, we
show that belief propagation may be used to recover the secret key from decryption failure
information. Further, we provide several techniques related to belief propagation in the context of
Soft Analytical Side-Channel Attack (SASCA) [VGS14] and solving inequalities; these methods
9As estimated in [BDH+21b] using obtained approximate equations.

10

1.3 Thesis Organization

allow to circumvent countermeasures, to deal with incorrect information, or to combine belief
propagation with lattice reduction. As Kyber is the primary KEM selected for standardization
by the NIST, we evaluate our findings on the example of Kyber.

1.3 Thesis Organization
This thesis is structured as follows: In Chapter 2 we introduce concepts such as cryptographic
schemes in general, in Section 2.1 we give an overview of lattice-based cryptography in Section 2.2,
and explain implementation attacks in Section 2.3. The chapter contains a brief overview of the
necessary background required to state our results, and it introduces notation.

In Chapter 3, we provide an overview of the current state of the art regarding our research
questions. The chapter describes directly related work; in contrast to Chapter 2, it goes into
more detail where this is required to understand our work and the current state of the art.

Chapter 4 addresses the first research question by proposing and analyzing an attack strategy
that targets the NTT using a chosen ciphertext. We answer the first research question by
proposing an attack scheme on the NTT which improves upon previous work by targeting the
long-term secret while maintaining a high noise tolerance.

Chapter 5 addresses the second research question; we provide a fault-enabled chosen-ciphertext
attack on Kyber which is an instantiation of a more general class of implementation attacks. We
explain how a fault may be used to turn the FO-transform into a decryption failure oracle – this
allows for a variety of concrete instantiations of fault attacks and thereby answers the second
research question.

Chapter 6 addresses the third research question by providing a new recovery method for
decryption failure leakage, which, in particular, explains how to integrate belief propagation
output into a lattice problem. In addition, we provide security estimates and state a more
generally applicable way to integrate belief propagation output into lattice problems occurring in
LWE schemes. Such kinds of leakage – both decryption failure and general belief propagation
output – occur in a variety of attacks; therefore, improving the recovery method impacts the
implementation security of LWE schemes.

We provide evaluation of our attacks and methods in Chapter 7, and we compare them against
the previous state of the art. Finally, Chapter 8 concludes the thesis and discusses future work.
The outline of the thesis is depicted in Figure 1.3.

11

Chapter 1 Introduction

Chapter 1 – Introduction

Chapter 2 – Background

Chapter 3 – Related Work

Section 3.1
Attacks on the NTT

Section 3.2
Exploiting Decryption Failures

Section 3.3
Key Recovery Methods

Chapter 4
Chosen-Ciphertext
k-Trace Attacks

Chapter 5
Fault-Enabled Chosen-

Ciphertext Attacks

Chapter 6
Security Estimates for Error-

Tolerant Key Recovery

Chapter 7 – Evaluation

Section 7.1
Vulnerability of the NTT

Section 7.2
Decryption Failures and Key Recovery

Chapter 8 – Conclusion and Outlook

preliminaries for preliminaries for preliminaries forpreliminaries for

evaluated in evaluated in evaluated in

improves

motivates

Figure 1.3: Outline: The left column of the figure provides an answer to the first research question,
the middle column to the second research question, and the right column to the third research
question. However, the evaluation of the second and third research question make use of similar
methodologies and are both presented in Section 7.2

.

12

Chapter 2

Background

The National Institute of Standards and Technology (NIST) contest [NistCfp] aims to find
post-quantum replacements for current asymmetric schemes with a focus on signature and
key establishment schemes. In this work, we state attacks on lattice-based key encapsulation
algorithms with a focus on the to-be standardized scheme Kyber [BDK+18, ABD+21b]. In this
chapter, we establish the necessary background and give commonly used definitions and notations.

This includes fundamentals of cryptographic key exchanges, focusing on Public-Key Encryption
(PKE) and Key Encapsulation Mechanism (KEM), and common security notions regarding
chosen-ciphertext attacks. Symmetric encryption is not repeated in this work; for this, and in
general, for a more extensive introduction, we refer to [PP10].

After having established the necessary basics of cryptographic schemes, we turn to lattice-
based cryptography. This kind of cryptography is very relevant in the context of Post-Quantum
Cryptography (PQC), and we reiterate a main problem, the Learning with Errors (LWE) problem
[Reg05]. To give an introduction to the LWE problem, we first require some mathematical
background. Then, LWE and the sub-problems Ring Learning with Errors (RLWE) [LPR13],
and Module Learning with Errors (MLWE) [LS15] are reiterated. We explain how common
schemes, including the NIST standardization contest winner Kyber, are defined. If such algorithms
are running on embedded devices, an important factor is implementation security. Therefore, we
summarize implementation attacks such as Side Channel Attacks (SCAs) as well as fault attacks.

For more comprehensive introductions, we refer to [PP10] for cryptographic schemes in general,
to [BL17] and [BDH+21a] for an overview over post-quantum cryptography, to [Pei16, BsiPqc,
BDH+21a] for lattice-based cryptography, and to [MOP07] and [JT12] for side-channel and fault
attacks.

Notation. In this thesis, the natural numbers contain 0, that is 0 P N “ N0. We generally
count beginning with 0, and indices start at 0. Finite fields are denoted by Fq where q is a prime
power; in the case of q being prime, this means that Fq “ Z{qZ. Polynomial rings over a ring R
are denoted as Rrxs where x is the variable (and might also be replaced by y or any other letter).
Depending on the context, there usually is a base ring we work over, in the case of Kyber this is
Fqrxs{pfq with f “ xn ` 1 where n “ 256.

We denote vectors and matrices over the corresponding base ring in bold letters, for example,
e for a vector over R for some ring k, i.e., e P Rk for some k P N with k ą 1. The coefficients of a
vector or matrix are denoted by subscripts (ignoring co- and contravariance) and are not bold.
For a vector e P Rk, we write e0 for the first component, e1 for the second component, and so on.
For a polynomial, we denote the coefficient in the same way, unless the polynomial is denoted as
a component of a vector of polynomials. This means, let R “ Fqrxs, v P R, and b P Rk for some

13

Chapter 2 Background

k P N with k ą 1, then the first coefficient of v is denoted as v0, but the second coefficient of the
third component of b is denoted by pb3q2. To illustrate this, let k “ 2,

v “ 1 ` 2x ` 3x2 (2.1)

and

b “

ˆ

4 ` 5x ` 6x2

7 ` 8x

˙

(2.2)

then v1 “ 2 and pb0q2 “ 6. Using this notation, it should always be clear what kind of
mathematical object a letter with subscripts denotes.

Vectors are generally denoted as row vectors; for a vector b P Rk, we denote the corresponding
column vector by bJ. The scalar product of two vectors is denoted by matrix multiplication, i.e.,
for a,b P Rk, we write abJ to denote

abJ “

k
ÿ

i“0

aibi. (2.3)

This is regardless of R, for example, R may be a polynomial ring R “ Fqrxs, in which case

abJ “

k
ÿ

i“0

degpaq`degpbq
ÿ

j“0

j
ÿ

l“0

paiqlpbiqj´lx
j (2.4)

where degp¨q denotes the degree of a polynomial. To illustrate this further, let

a “

ˆ

0 ` 1x ` 2x2

2 ` 4x

˙

(2.5)

and

b “

ˆ

6
7 ` 8x

˙

(2.6)

then
abJ “ 6p0 ` x ` 2x2q ` p2 ` 4xqp7 ` 8xq “ 14 ` 50x ` 44x2 (2.7)

Note that the base ring will often be of the form Fqrxs{pfq, and then, elements can be seen as
n-dimensional vectors, where n “ degpfq, with an additional multiplicative structure. In this
case, where a Number Theoretic Transform (NTT) exists (c.f. Section 2.2.3), we denote the
vector corresponding to a in the NTT domain by â. Vectors in NTT domain are multiplied as
polynomials of a lower degree or pointwise; we will not indicate this by a special notation.

We often denote equivalence classes by a representative of that equivalence class without further
indication if it is clear from the context which ring the object is from. Addition, multiplication,
and other operations will take place in the specified ring without denoting it by, e.g., a “mod”. For
example, let a, b P F5 with a “ 2 and b “ 3, then ab “ 1 and what we mean is that a “ 2 ` 5Z,
b “ 3 ` 5Z, and thus ab “ 6 ` 5Z “ 1 ` 5Z. If we need a, b to be considered as elements of Z,
then we will explicitly state it.

If a, b P Z and we desire to multiply them modulo a natural number l, we denote this by
abmod l P Z, where the result is an integer again. We thereby differentiate between the operation
of reducing modulo l, which results in an integer in t0, . . . , l ´ 1u and the map to Z{lZ, which is
denoted as c “ ab ` lZ P Z{lZ. A similar notation is applied in general and not only for Z and
integer ideals.

14

2.1 Cryptographic Schemes

Reducing a P Z modulo l P Z such that the residue x fulfills ´l{2 ă x ď l{2 is denoted by
amod` l P Z. Rounding a P Z to the closest smaller integer is denoted by tau; rounding to the
closest greater integer is denoted by ras; and rounding to the closest integer is denoted by rau,
where a ` 1{2 is rounded to a ` 1.

We denote functions in a mathematical context as, e.g., Decode. Ciphertext, secret key, public
key, and message/plaintext are denoted by ct, sk, pk, m, respectively. We denote the Gaussian
distribution with mean µ and standard deviation σ by N pσ, µq and sampling from it when the
exact algorithm does not matter by e Ð N pσ, µq. By a binomial distribution, we denote a
centered binomial distribution (as only centered binomial distributions occur in this work); such
a distribution has the parameter η that defines the number of trials occurring with probability 1

2 .
Sampling in other contexts will be denoted as described in the text.

2.1 Cryptographic Schemes
Cryptographic schemes consist of algorithms that together achieve a cryptographic goal such as,
e.g., encrypting a message. Asymmetric cryptography, often called public key cryptography, is the
set of schemes working with key pairs consisting of a public and a private key. The former may
be published and enables a certain operation, for example, encryption or verifying a signature,
while the latter has to be kept private and allows a related operation for example decryption or
creation of a signature. Commonly, asymmetric cryptographic schemes define a key generation,
an encryption, encapsulation, or verify function, and a decryption, decapsulate, or sign function,
respectively. On the other hand, in symmetric cryptography, both operations are enabled by the
same key or no key is required.

A common example of the usage of several asymmetric and symmetric schemes is an au-
thenticated key exchange using public key cryptography and subsequent communication using
symmetric cryptography: First, a shared secret is exchanged and, in the process, one or both
parties authenticate themselves. Then, this shared secret serves as a basis for derivation of a
common key. Finally, further communication is secured using symmetric cryptography which is
usually more performant allowing for encryption of large amounts of data. An example of such a
scheme is depicted in Figure 2.1 – this specific example is as in Hermelink et al. [HPS+20]; we,
in [HPS+20], instantiate a scheme proposed by Guilhem, Smart, and Warinschi [SSW17] with
post-quantum algorithms.

Quantum computers could break currently used asymmetric cryptography and could halve the
bit security of symmetric schemes using Shor’s [Sho94, Sho97] and Grover’s [Gro96] algorithm,
respectively. The later can be mitigated by doubling key lengths of currently used symmetric
algorithms (see, e.g., [BL17]). Therefore, the NIST contest [NistCfp], which aims to find
and standardize replacement candidates, focuses on public-key cryptography, in particular key
establishment schemes and digital signatures. The main candidate for standardization in the area
of key establishment is Kyber – internally defining a public key encryption scheme (KyberPKE)
and a key encapsulation mechanism (KyberKEM). In the following, we give an overview of
PKEs, KEMs, and the class of attacks called Chosen-Ciphertext Attacks (CCAs) as well as
corresponding security notions.

Public key encryption schemes A PKE defines the following operations:

• Key generation: Input : Randomness. Output : Public key pk, secret key sk.

• Encryption: Input : Randomness, message m, public key pk. Output : Ciphertext ct.

• Decryption: Input : Ciphertext ct, secret key sk. Output : Message m1 or K.

15

Chapter 2 Background

Alice Bob

Key Generation

Response Bob

Response Alice Final Bob

En-/Decrypt En-/Decrypt

m1

m2

m3

Encrypted Communication

Using Shared Secret

Secret Key

Shared Secret

Shared Secret

Asymmetric cryptography

Symmetric cryptography

Figure 2.1: Example of an authenticated key exchange with subsequent symmetrically secured
communication as, e.g., proposed by Guilhem, Smart, and Warinschi [SSW17] and instantiated
with post-quantum schemes in an automotive context by Hermelink et al. [HPS+20]. Compared
to a pure key exchange, this example features a third message, and Alice commits to a value in
her first message; this can later be checked by Bob.

Note that the randomness is either passed as a seed or only an implicit parameter and realized
through a Random Number Generator (RNG) call. The PKE is correct if m1 is equal to m given
the correct secret key sk belonging to the pk used for ciphertext creation. In the PQC domain,
many schemes, most notably lattice-based schemes, are only correct with a high probability but
may fail (without any manipulation). The message m is also called plaintext.

Key Exchange Mechanisms A KEM defines the following operations:

• Key generation: Input : Randomness. Output : Public key pk, secret key sk.

• Encapsulation: Input : Randomness, public key pk. Output : Ciphertext ct, shared secret
K.

• Decapsulation: Input : Ciphertext ct, secret key sk. Output : Shared secret K’ or K.

The comments about the randomness, definitions, and failures of PKEs in the previous paragraph
apply to for KEM as well. Often, the KEM is built from a PKE and internally samples a
message m, which is encrypted and from which the shared secret is derived (c.f. Section 2.1.2).
In this case, the message m is commonly called the plaintext (of the underlying PKE). In a
hybrid encryption scheme, i.e., key establishment using public key cryptography and subsequent
symmetrically secured communication, we will sometimes call the exchanged key the session key,
and the secret key of the asymmetric scheme the long-term secret. Note that the key pair of
the asymmetric scheme may also be ephemeral – re-generated after every or a certain number
of key exchanges. While ephemeral schemes do prevent attacks requiring multiple observed key
exchanges, they are also less efficient due to the repeated key generation.

16

2.1 Cryptographic Schemes

2.1.1 Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks (CCAs) were first formalized by Naor and Yung [NY90] with various
notions and relations in-between those notions introduced by Bellare et al. [BDPR98]. One notable
representative of this class of attacks are the Bleichenberger attack [Ble98] and its derivates, for
example [JSS12] and [NSS+17]. We give an introduction based on the work of Bellare, Desai,
Pointcheval, and Rogaway [BDPR98].

Informally, Chosen-Plaintext Attacks (CPAs) are a class of attacks where the attacker chooses
a plaintext to be encrypted causing the decryption routine to leak information through some
mechanism. CCAs, a stronger class of attacks, utilize a chosen ciphertext instead of a plaintext –
the ciphertext does not need to come from a valid plaintext. In the non-adaptive version of a
CCA, the attacker may not modify their ciphertext depending on the information learned from
the routing under attack, whereas the adaptive version allows this.

Formal definitions. A more formal description, following [BDPR98], works as follows: Let
pK,E,Dq “ pKeyGen,Enc,Decq be an instance of a PKE or a KEM with keypair ppk, skq

where K,E,D run in polynomial time. The adversary is defined by two deterministic algorithms
A “ pA1, A2q where A1 models the first stage and A2 the second stage of the attack. In the
first stage, described by A1, the attacker is given access to the public key pk and may query
certain functions depending on the scenario. In the second stage, described by A2, the attacker is
issued a challenge ciphertext ct and asked to solve the challenge given arbitrary state information
previously returned by A1.

In the CPA scenario, A1 is given access to the public key allowing them to compute the
ciphertext for any plaintext. The non-adaptive CCA (CCA1) calls A1 with the public key as a
parameter and gives access to a decryption oracle – in the first phase of the attack, any ciphertext
can be decrypted. A2 on the other hand does not have access to the decryption oracle but only
to the public key. In the adaptive CCA (CCA2), the attacker additionally has access to the
decryption error oracle but merely may not query it on ct itself.

A CCA2 attack may model a CCA1 attack which again is allowed to take every action a CPA
attack is permitted to perform. Thus, the order in which the models are presented here is in
order of growing strength.

Security against chosen-plaintext/ciphertext attacks. Three main security notions in
regard to CPA and CCA attacks exist; we summarize them, again following [BDPR98]. All
three notions are based on indistinguishably of encryption [GM84] and the definition of negligible
function; a function f : N Ñ R is negligible if it converges faster against zero than any polynomial
function, i.e., if for every c P R there is nc P N such that fpnq ď k´c for n ě nc. Let again
Π “ pK,E,Dq be an encryption scheme, and A “ pA1, A2q an attacker. A1 now outputs a triple
pm0,m1, sq where mi are valid plaintexts and s is a state passed to A2. A2 is passed the triple as
well as a ciphertext ct which either encrypts m0 or m1; A2 is asked to decide whether m0 or m1

were used to generate ct. For attack P tCPA,CCA1,CCA2u and the respective oracle accesses

17

Chapter 2 Background

in A1, A2, the advantage of the attacker is defined as

Advattack
A,Π “ 2P p (2.8)

ppk, skq Ð K; (2.9)
pm0,m1, sq Ð A1; (2.10)

b Ð t0, 1u ; (2.11)
ct Ð Epmbq; (2.12)

A2pm0,m1, s, ctq “ b (2.13)
q ´ 1. (2.14)

A scheme is called IND-attack (secure), for attack P tCPA,CCA1, CCA2u if the advantage
AdvattackA,Π is negligible.

2.1.2 Fujisaki-Okamoto Transform

Public key encryption schemes, in particular in the post-quantum domain, often fulfill IND-CPA
but not IND-CCA security (e.g., [LP11, LPR13]). A Fujisaki-Okamoto (FO)-transform [FO99,
FO13] allows turning an IND-CPA secure PKE into a IND-CCA2 secure KEM; note that many
differing variants exist (see, e.g., [HHK17]). The variant of the FO-transform used in Kyber is
similar to the transform presented in [TU16].

Let in the following pKpke, Epke, Dpkeq again be a PKE and let pKkem, Ekem, Dkemq be the
KEM given by the FO-transform. Informally, the encapsulation routine, Ekem, commonly consists
of sampling a random message m, deriving randomness from m, and deterministically (depending
on the randomness) encrypting the message m using Epke to a ciphertext ct. The decapsulation
routine now not only decrypts ct to m using Epke but also re-encrypts m to ct1, using the same
randomness derivation from m, and comparing ct to ct1. If the ciphertexts do not match, no
shared secret is returned. Thereby, the decapsulation routine essentially checks whether ct

was honestly generated by re-performing the relevant steps. In the case that the ciphertext is
manipulated, the decapsulation routine outputs a rejection from which an attacker does not learn
anything. An exemplary, and high-level, depiction is given in Figure 2.2, and a depiction of the
decapsulation routine is shown in Figure 2.3. We do not give a fully formal treatment of the
topic as the highly complex nuances are not relevant to this work because we only work with the
FO-transform used in Kyber; instead, we refer to [HHK17].

2.2 Lattice-Based Cryptography

Several schemes competing in the NIST competition were and are lattice based [NistCfp, NistR1,
NistR2, NistR3]. The main candidate for key establishment is Kyber, which is based on the
MLWE problem [LS15] and therefore lattice-based. In this section, we provide a short overview
over lattice-based cryptography from a practical viewpoint with focus on LWE. For a more
thorough introduction, we refer to [NS13] for the general mathematical background, to [MG02]
for background on lattices in particular, and to [MR09] for LWE-based schemes.

2.2.1 Mathematical Background

We give a very short overview over basic definitions in regard to lattice we require in the following
chapters following [NS13]: A lattice L is a discrete subgroup of the Rn which is isomorphic to Zk.

18

2.2 Lattice-Based Cryptography

Alice Bob

Key Generation

Encapsulation

Decapsulation

Public Key

Ciphertext
Secret Key

Shared Secret Shared Secret

KyberKEM

Decrypt ciphertext
Encrypt m (same seed)
Compare ciphertexts

Sample m
Derive seed

Encrypt m (with seed)

Figure 2.2: Exemplary high-level depiction of an FO-transform as used in Kyber (which is similar
to the transform presented in [TU16]). The routines defined by the KEM rely on the method
defined by the PKE. Figure adapted from [Her23b].

This is equivalent (see, e.g., [NS13, Proposition 4.2]) to L being the linear Z-span of k linearly
independent vectors bi P Rn, i.e.

L “ xb0, . . . bk´1yZ (2.15)

with all bi P Rn being linearly independent; the set

B “ tb0, b1, . . . , bk´1u (2.16)

is then called a basis of L, and k “ |B| is the dimension. For any basis B, any element of v P L
may thus be written as

v “

k´1
ÿ

i“0

aibi (2.17)

for some ai P Z.
In a sense, a lattice may be thought of as a discrete analogue of a (sub-) vector space; but note

that many properties of vector spaces do not translate to lattices. For example, lattice L0, L1

generated by bases B0, B1, respectively, with |B0| “ |B1| do not necessarily generate the same
lattice. Let

B0 “ tp1, 0q, p0, 1qu (2.18)

and
B1 “ tp2, 0q, p0, 1qu (2.19)

then clearly
xB0yR “ xB1yR (2.20)

by basic linear algebra (as 2´1 P R). But

Z2 “ L0 “ xB0yZ ‰ xB1yZ “ L1 (2.21)

19

Chapter 2 Background

ct

store

decrypt

re-encrypt compare

K

abort

ct

incoming

shared secret reject

Figure 2.3: Exemplary depiction of the decapsulation routine of an FO-transform as used in
Kyber (which is similar to the transform presented in [TU16]). An incoming ciphertext is stored,
decrypted, encrypted again, and the result is compared against the stored ciphertext. If the
submitted and re-computed ciphertext match, a shared secret (based on the message) is returned.
Figure first presented in [Her23a]

as the system of equation
`

x0 x1

˘

ˆ

2 0
0 1

˙

“
`

1 0
˘

(2.22)

clearly has no solution over Z (as 2´1 R Z); instead, only L1 Ă L0 holds. The lattices L0 “ Z
and L1 are depicted in Figure 2.4, and a third lattice with basis vectors arising from a rotation
and scaling of Z2 is shown in Figure 2.5a.

The determinant of a lattice L with basis B “ tb0, b1, . . . , bk´1u is defined as

detpLq “
?
BBJ “

g

f

f

e

k´1
ÿ

i“0

n´1
ÿ

j“0

bijbji. (2.23)

The determinant is the volume of a fundamental mesh of the lattice which is defined as

FL “

#

k´1
ÿ

i“0

aibi | ai P R, 0 ď ai ă 1

+

(2.24)

and can be thought of the “base” mesh spanned by the basis vectors – x „ y ô x ´ y P L, which
defines an equivalence relation on Rn with the fundamental mesh forming a representation system.
The fundamental mesh is exemplarily depicted in Figure 2.5b. The successive minima λipLq for
i P t1, . . . , nu, first defined by Minkowski to prove that every compact subset of the Rn of volume
greater or equal 2n contains a lattice point, are the smallest radii such that i linearly independent
lattice vectors of norm λi exist. Clearly, the relation

λ1pLq “ min
0‰v1

pv1q (2.25)

holds. λ1pLq may be approximated using the Gaussian heuristic

λ1pLq «
Γp1 ` n

2 q
1
n

?
π

detpλq
1
n (2.26)

where Γ is the Γ-function, relating determinant, dimension, and shortest vector length.

20

2.2 Lattice-Based Cryptography

x

y

(a) L0, equal to Z2.

x

y

(b) L1, not equal to Z2.

Figure 2.4: Two lattices generated by a basis of the same length which are not equal. Basis of B0

and B1 are depicted as vectors.

NP-Hard Lattice Problems

Several NP-hard (for randomized reduction) problems in relation to lattices are known; we here
focus on the shortest and closest vector problem following [MG02]. The classical NP-hardness
of the Closest Vector Problem (CVP) problem and of the Shortest Vector Problem (SVP) in
infinity norm has been shown in [Emd81]. Ajtai [Ajt96, Ajt98] showed NP-hardness in Euclidean
norm for randomized reductions, and both problems are conjectured to be quantum-hard.

The SVP is defined as follows: Given a lattice L Ă Rn, find v P L such that

||v|| “ λ1pLq “ min
v1

p||v1||q (2.27)

where || ¨ || denotes the Euclidean norm. A more general problem is the CVP: Given a lattice
L Ă Rn, a vector x P Rn, find 0 ‰ v P L such that

||v ´ x|| “ min
v1PL

p||v1 ´ x||q. (2.28)

The problems are related, and the SVP may be reduced to the CVP [GMSS99]. These problems
also occur in their Gapγ variants where an algorithm is asked to output if the shortest/closest
lattice vector is within distance smaller than γ ě 1. The unique Shortest Vector Problem (uSVP)
with parameter γ ě asks to find a shortest non-zero vector if λ2pLq ě γλ1pLq; clearly, for γ “ 1
this directly gives the SVP.

Another closely related problem is the Bounded Distance Decoding (BDD) problem with
parameter γ: Given a lattice L Ă Rn, a vector x P Rn with the closest vector v P L having
distance smaller than λpLq

2γ , find v. The BDD may be reduced to the SVP using Kannan’s
embedding [Kan87]: Let B be a basis of L, then we define the lattice Lsvp with dimension
dimpLq ` 1 as generated by the basis

ˆ

Bsvp 0
x c

˙

(2.29)

21

Chapter 2 Background

x

y

(a) Another lattice.

x

y

(b) Fundamental mesh of the lattice.

Figure 2.5: The lattice generated by tp1.5,´1q, p1, 0.5qu, which is also two-dimensional but neither
equal to L0 nor L1 and its fundamental mesh.

for some c P R (which may be set to an optimal value or, as often done in practice in the LWE
setting, to 1). Finding a shortest vector 0 ‰ vsvp P Lsvp gives a vector

v “ vsvp ´ x (2.30)

which directly gives an element of L that is a closest vector to x.

Lattice Reduction

Lattice reduction algorithms aim to find a reduced basis given any basis B of a lattice L. Several
notions of reduced exist; they depend on the algorithm and define properties to control the size of
the resulting basis vectors. Thereby, in particular, (Gap-)SVP may be solved if the reduction is of
sufficiently high quality. A commonly used algorithm was proposed by Lenstra Jr., Lenstra, and
Lovász [LLL82] – the Lenstra, Lenstra, and Lovasz (LLL) algorithm. This led to numerous other
lattice reduction algorithms, for example [Sch87, SE94, SH95, GN08a, HPS11, MW16], improving
upon LLL. The current state of the art in practical attacks are Blockwise Korkine-Zolotarev
(BKZ) variants, such as [CN11], derived from the original BKZ algorithm [SE94]. BKZ and its
derivates feature a block-size, commonly denoted β. The block size determines the dimension of a
sub-lattice in which an exhaustive search (often leaving out some nodes) is performed. Therefore,
the block-size is a trade-off between runtime and quality of the reduced basis: A block size
of 2 is similar to LLL whereas a block-size of dimpLq is similar to an exhaustive search. The
runtime of LLL on a lattice L with basis B and largest basis vector bmax is Opk5nlog3||bmax||q

(see, e.g., [NS09, Fig. 1]), i.e., in polynomial time, whereas BKZ was experimentally observed
to run in exponential time in practice [GN08b]. To solve a uSVP instance on a lattice L with
λ1pLq “ v, the required β can be estimated using the formula given by [ADPS16b, AGVW17]:

||v||
a

β{dimpLq ď δ
2β´dimpLq´1
β detpLq1{ dimpLq (2.31)

22

2.2 Lattice-Based Cryptography

where δβ is the smallest integer satisfying

a

β ď δ
2β´dimpLq´1
β detpLq1{ dimpLq. (2.32)

In this thesis, we think of BKZ as a black box with the aforementioned properties and use the
implementation of [CN11] given in FPLLL [Fplll].

2.2.2 Learning with Errors Problems

The Learning with Errors (LWE) problem, introduced by Regev in [Reg05], serves as a basis for
several cryptographic schemes. It may be reduced to (a variant of) Gap-CVP and the Shortest
Independent Vector Problem (SIVP) [Reg05, Pei09a, BLP+13] (under certain conditions we omit
here) and allows for the construction of cryptographic schemes. We give a short overview and
refer to [MR09] for a more thorough treatment of the subject. In addition, we refer to [Reg10] for
a concise and less technical overview.

Learning with Errors

The LWE problem is commonly (for example in [Reg10, LP11]) defined as follows: For the
modulus q, the error distribution χ over Z, and a secret vector s P Z let As,χ be the distribution
on Zn ˆ Z that outputs a tuple

pa,asJ ` emod qq P Zn ˆ Z (2.33)

where e Ð χ and a is uniformly random. The LWE problem asks to find s given access to samples
of As,χ. For a fixed amount of samples, the problem can be thought of as solving a distorted
system of equations

ASJ ` E “ B P Zmˆn (2.34)

where A P Znˆm is made up of the samples a, S P Znˆm are multiple secrets (in the language of
the definition), and E P Zm are the errors. In cryptographic practice, S is often sampled from χ
as well, χ is commonly chosen as discrete Gaussian or binomial distribution with small support,
and n “ m (see, e.g., [LP11, LPR13, BCD+16, ADPS16b, BDK+18]). Note that several small
variations and generalizations exist.

A closely related problem is the Decision Learning with Errors (D-LWE) problem which asks
to differentiate between an LWE sample and a uniformly randomly sampled vector. D-LWE
may be reduced to LWE as shown by Peikert in [Reg09]; we shortly repeat the basic argument
and refer to [Reg09] for details. Given access to an algorithm that allows differentiating between
a uniformly sampled vector and a LWE sample, the secret s may be found as follows: For pa, bq
and a guess g P Z{qZ, the first component of s may be found by deciding whether

pa ` pl, 0, . . . , 0q, b ` lgq (2.35)

is a LWE sample (for uniformly random l P Z{qZ). For l P Z{qZ, we have that for g “ s0,
the distribution of Equation (2.35) follows As,χ and is otherwise uniformly random. Therefore,
coefficients of s may be found by iterating through all possible values (for a single coefficient at a
time) and creating sufficiently many samples to differentiate between a LWE sample and uniform
randomness.

23

Chapter 2 Background

Ring Learning with Errors

The Ring Learning with Errors (RLWE) problem, first introduced in [LPR13], is a variant of
the LWE problem. Instead of working with vectors, RLWE utilizes polynomials over a ring
R “ Fqrxs{pfq for some polynomial f . We may think of polynomials in R as vectors of length
n “ degpfq with a multiplicative structure. The RLWE problem is then posed as finding s given
outputs of Arlwe,s,χ, where s P R, χ is a distribution over Z, and Arlwe,s,χ outputs samples

pa, as ` eq P R ˆ R (2.36)

for coefficient-wise uniformly samples a and coefficient-wise χ-sample e.
A single RLWE equation, i.e., an equation of the form

as ` e “ b P R (2.37)

with known a, b and secret s, e can be seen as n LWE samples. This is because multiplication
with a may be written as matrix multiplication with an nˆn matrix over Fq and two polynomials
are equal if and only if all their coefficients are equal. In contrast to an LWE sample according
to the LWE problem, these samples follow a structure determined by f . This structure allows for
particularly efficient schemes. The potential security implications have previously been discussed
(see, e.g., [Ber21, NistSt21]), but currently no attacks which may be carried out in practice
against candidates in the standardization contest are known. Potential security risks concerning
NTTs (the existence of an NTT is a consequence of the structure RLWE introduces) have been
discussed in [BBPS19, DGKS20].

Module Learning with Errors

The Module Learning with Errors (MLWE) problem, introduced in [BGV14, LS15], is a variant
of the LWE problem and a generalization of the RLWE problem. Using the definitions from
the previous section on RLWE and introducing a parameter k, the problem is defined as finding
s given outputs of Amlwe,s,χ, where s P Rk, χ is a distribution over Z, and Amlwe,s,χ outputs
samples

pa,as ` eq P Rk ˆ Rk (2.38)

for coefficient-wise uniformly samples a and coefficient-wise χ-sample e.
For k “ 1 we directly obtain the RLWE problem; for k ą 1, n “ 1 and monic f , we obtain the

standard LWE problem. For k ą 1 and n ą 1, we may see MLWE as a generalization offering a
trade-off in terms of introduced structure between LWE and RLWE. Therefore, the discussions
about security implications referenced in the previous sections apply as well.

2.2.3 Learning with Errors Schemes

The different variants of the LWE problem may be used to construct cryptographic schemes. Sev-
eral of the schemes were considered in the NIST contest on post-quantum cryptography [NistR1].
In this section, we give a short overview over the final candidate for key exchanges, the KEM
Kyber [BDK+18, ABD+21b], as well as an RLWE scheme introduced in [LPR13] and the
LWE scheme of [LP11]. For a more comprehensive overview on Kyber, we refer to the official
specification [ABD+21b]. In the context of the NIST contest, the status reports [NistR1, NistR2,
NistR3] provide an overview over all considered schemes. In addition, the German Bundesamt
für Sicherheit in der Informationstechnik (BSI) provides an overview and evaluations in [BsiPqc].

24

2.2 Lattice-Based Cryptography

Number Theoretic Transform

Common techniques used in the context of lattice-based cryptography for fast multiplication of
polynomials include Karatsuba’s algorithm [KO62, WP06], the Toom-Cook algorithm [Too63,
CA69], and the number theoretic transform [Pol71, AB75, Nus81, Win96, BJL08, GG13]. Several
schemes based on the RLWE or MLWE problem make use of an Number Theoretic Transform
(NTT), e.g., [ADPS16b, DKL+18, BDK+18], and the usage of an NTT has been proposed
[CHK+21, ACC+21] for schemes using constructions which do not directly allow for the usage
of an NTT, e.g., for NTRU [HPS98], NTRUPrime [BCLV17], and Saber [DKRV18]. The
NTT may be seen as the algebraic equivalent to a Fast-Fourier Transformation (FFT) and
allows for fast multiplication of polynomials. For a ring R “ Fqrxs{pfq with f factoring into
f “

ś

i fi, it provides an efficient way to compute the Chinese Remainder Theorem (CRT), i.e.,
the isomorphism

R Ñ
ź

i

Fqrxs{pfiq, (2.39)

and its inverse; the latter is called inverse NTT or INTT.

Efficient computation. For R “ Fqrxs{pxn ` 1q where q is (a power of) a prime, an NTT
mapping to Fn

q exists if and only if Fq contains a primitive 2n-th root of unity ζ as, in this
case, xn ` 1 factors into n polynomials of the form fi “ x ´ ζi. The NTT of a polynomial
a “

řn´1
i“0 aix

i P Fqrxs may then be computed as â “ pâ0, â1, . . . , ân´1q P Fn
q with

âi “ apζiq “

n´1
ÿ

j“0

ajζ
ij (2.40)

and the inverse NTT as

ai “
1

n

n´1
ÿ

j“0

ajζ
´ij . (2.41)

These equations may be computed in Opn logpnqq using Cooley-Tukey [CT65] or Gentleman-
Sande [GS66] butterfly operations. Cooley-Tukey [CT65] employ the following divide and conquer
strategy: The computation of âi, i ă n{2 may be split up in sums of even, respective odd, terms,
i.e.

âi “

n´1
ÿ

j“0

ajζ
ij “

pn´1q{2
ÿ

k“0

a2kζ
2ik ` ζi

pn´1q{2
ÿ

k“0

a2k`1ζ
2ik (2.42)

and an easy computation shows

âi`n{2 “

n´1
ÿ

j“0

ajζ
pi`n{2qj “

pn´1q{2
ÿ

k“0

a2kζ
2ik ´ ζi

pn´1q{2
ÿ

k“0

a2k`1ζ
2ik. (2.43)

The terms

Seven “

pn´1q{2
ÿ

k“0

a2kζ
2ik (2.44)

and

Sodd “

pn´1q{2
ÿ

k“0

a2k`1ζ
2ik (2.45)

25

Chapter 2 Background

a

b

c

d´

`

¨ζ

Figure 2.6: A butterfly operation as used in an NTT following Cooley-Tukey [CT65] computing
c “ a ` ωb and d “ a ´ ωb.

a0

â1

â2

â3

â4

â5

â6

â7

a10

a11

a12

a13

a14

a15

a16

a17

a20

a21

a22

a23

a24

a25

a26

a27

a0

a1

a2

a3

a4

a5

a6

a7

´

´

´

´

`

¨ω00

`

¨ω00

`

¨ω00

`

¨ω00

´

´

`

¨ω10

`

¨ω10

´

´

`

¨ω11

`

¨ω11

´

`

¨ω20

´

`

¨ω21

´

`

¨ω22

´

`

¨ω23

Figure 2.7: Computational graph of an inverse NTT with intermediate values in Cooley-Tukey
decimation. Note that ωi does not denote ζi.

occur in both computations and are itself NTTs with input length n{2. We have

âi “ Seven ` ζiSodd (2.46)

and

âi`n{2 “ Seven ´ ζiSodd. (2.47)

Splitting up the smaller NTTs log2pnq times leads to the computation of n ¨ log2pnq additions
and subtractions. This may be thought of as performing n{2 butterflies (Equation (2.46) and
Equation (2.47)) with twiddle factors ω “ ζi in log2pnq layers. We will denote primitive roots
of unity by ζ and roots of unity which are not necessarily primitive by ω. Note that ωi is not
necessarily denoting ζi, often the indices merely express belonging to a block in the NTT. As a
computational graph, this may be depicted as in Figure 2.7; a butterfly is shown in Figure 2.6.
The computation of the inverse NTT is performed in a similar manner.

As a linear function. The NTT and the inverse NTT are an isomorphism,

R Ñ
ź

i

Fqrxs{pfiq, (2.48)

of vector spaces over Fq. Thus, as a linear function, they may be expressed as matrices N and
N´1 over Fq. The matrix N can be obtained by computing the number theoretic transform on
the basis vectors of R. As the number theoretic transform consists of substitution of 2n-th roots

26

2.2 Lattice-Based Cryptography

of unity ζi for the indeterminate x, we obtain a matrix of the form

N “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 . . . 1 1
1 ζ ζ2 . . . ζn´2 ζn´1

1 ζ2 ζ4 . . . ´ζn´2 ´ζn´2

1 ζ3 ζ6 . . . ζn´6 ζn´3

...
1 ζn´1 ζn´2 . . . ζpn´1qpn´2q ζpn´1q

2

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (2.49)

We will often interpret N and N´1 as matrices over Fq which when applied to a vector give the
not-reduced NTT- (or normal-) domain representation.

Smaller groups of roots of unity. For a smaller group of unities over R, the number of layers
is reduced and the degree of the fi is greater or equal than 0. In terms of a splitting up into
butterflies and layers, this means the number of layers is reduced. This is the case in Kyber and
described at the end of the next section. For a smaller group of unities, the NTT matrix N has
different entries and is of smaller dimension. It may be obtained in the same way by inserting
basis vectors into the NTT.

Error Correction

To function correctly, LWE-based schemes require an error correction. This is because both
parties only agree on a noisy version of a shared secret or message. For a not only approximate
but exact version, an error correction or a reconciliation mechanism is required.

For example, in Kyber or NewHope, during encryption, a message (in bits) is mapped to a
vector (or vector of polynomials) over a finite field Fq or ring Z{lZ for prime-power q or l P N.
During decryption, the other party obtains a noisy version of the vector and has to coefficient-wise
recover the original message from these noisy coefficients. This is called error correction or
decoding depending on the scheme. In Kyber, the compression routine is used to describe the
error correction step as well. Depending on the context, we will use both decoding and error
correction to describe this method; note that in Kyber Decode denotes a different function, but
the error correction is still sometimes called decoding. In this work we mainly reiterate the
error correction of Kyber in Section 2.2.3. In addition, we give a short overview over existing
reconciliation methods based on the summary of [ADPS16a].

Encryption-based approaches. Using the terminology of [ADPS16a], encryption-based
approaches encode a secret message m into the high bits of a vector or a polynomial. The message
is then recovered by ignoring low-bits of the noisy message. In case of a low enough noise, which
does not affect the high bits, the message can be recovered without error. This approach has
been mentioned in the presentations of [Pei09b] and [Gab10], described in [LP11] and [LPR12,
LPR13], used in a NewHope variant presented in [ADPS16a], and is also used in Kyber. For the
case of Kyber, a description in more detail is given in Section 2.2.3.

Reconciliation-based approaches. The approach called reconciliation-based by [ADPS16a]
works similar to fuzzy extractors [DORS08] (see also [BGS+08, HKM+12]). Instead of encoding
the information into the high-bits of a message, Ding [Din12]1, proposes sending an addition
reconciliation vector. This vector allows for recovery of a shared secret and can reduce bandwidth
1In later versions: Ding and Lin [Jin12a] and Ding, Lin, and Lin [Jin12b]

27

Chapter 2 Background

requirements (for an analysis see, e.g., [Pei14, Section 3]). In its original version, this approach
led to a biased secret; this was noted and fixed in [Pei14, Section 3]. Ding, Xie, and Lin [Jin12b]
proposed a similar technique to avoid this bias as well. The approach is also used in NewHope
as presented in [ADPS16b]. A version of NewHope without reconciliation was presented in
[ADPS16a].

The LP Encryption Scheme

The public key encryption scheme of Lindner and Peikert [LP11] improves upon previous LWE
encryption schemes [PVW08, GPV08] derived from the scheme of [Reg05]. We state a simplified
variant with the notation chosen similar to those used in later schemes such as Kyber. Note that
the defined PKE per se does not fulfill the IND-CCA property; later schemes based upon [LP11]
commonly use a variant of the FO-transform to define an IND-CCA2 secure KEM.

The scheme is parameterized by the triple (n, q, σ), where n is the dimension2, q is the
modulus, and σ is the standard deviation of the error distribution Dσ. The key pair is given by
pB,Sq P Fnˆn

q ˆ Fnˆn
q where B “ SAJ ` E with A being uniformly random and either a public

parameter or part of the public key. The scheme additionally requires an encoding and a decoding
function which maps bits to coefficients of a vector over Fq and vice-versa. Gaussian noise is
obtained from the error distribution Dσ; for vectors this is done coefficient-wise. Applying first
encoding and then decoding is the identity; and, additionally, encoding a bit, adding a small
additive noise term, and decoding it has to result in the original bit. The key generation is given
in Algorithm 1, the encryption of a message m in Algorithm 2, and the decryption in Algorithm 3.

Algorithm 1 Key generation as defined in the scheme of [LP11] in a notation similar
to [ABD+21b].
Require: Uniformly sampled a P R
Ensure: Secret key sk, public key pk

1: E,S P Fnˆn
q Ð Dσ

2: T Ð E ´ AS
3: return ppk “ T, sk “ Sq

Algorithm 2 Encryption as defined in the scheme of [LP11] in a notation similar to [ABD+21b].
Require: Public key T “ pk, Message m as bit string
Ensure: ct “ pc1, c2q

1: r, e1, e2 Ð Dσ

2: m Ð Encodepmq

3: u Ð rAJ ` e1
4: v Ð rTJ ` e2 ` m
5: return ct “ pu,vq

The LPR Encryption Scheme

In [LPR13], Lyubashevsky, Peikert, and Regev introduce the RLWE problem and note how
a PKE may be defined based on it. The scheme is, again, not IND-CCA secure (but only
IND-CPA) and later schemes (e.g., [ADPS16b]) building upon the work of [LPR13] often use

2Note that the scheme as described in [LP11] defines 3 instead of a single dimension.

28

2.2 Lattice-Based Cryptography

Algorithm 3 Decryption as defined in the scheme of [LP11] in a notation similar to [ABD+21b].
Require: Secret key r2 “ sk, ciphertext ct “ pu,vq

Ensure: Message m1

1: m1 Ð usJ ` v
2: m1 Ð Decodepm1q

3: return m1

an FO-transform. First works on the security of RLWE-based schemes proposed attacks on a
scheme designed in this way, which is why we reiterate it here. Among those attacks is the work
of Primas, Pessl, and Mangard [PPM17], which is summarized in Section 3.1.2.

The scheme is parameterized by the triple (n, q, σ) with n being the dimension, q the
prime modulus, and σ the standard deviation of the error distribution Dσ. It works over
R “ Fqrxs{pxn ` 1q, and the key pair is given by a s P R and pa, bq P R ˆ R with b “ as ` e P R.
An encoding function, Encode, maps a bit string to polynomial coefficients, and a decoding
function, Decode, maps coefficients back to bit; the concatenation of encoding and decoding is
the identity, and a sufficiently small additive noise term on previously encoded coefficients must
not affect the results of decoding3. Gaussian noise is obtained from the error distribution Dσ,
coefficient-wise for polynomials. The key generation is given in Algorithm 4, the encryption of a
message m in Algorithm 5, and the decryption in Algorithm 6.

For appropriately chosen parameters, the scheme allows for the usage of an NTT which enables
fast multiplication. To multiply two polynomials, they are mapped to the NTT-domain, pointwise
multiplication is performed, and the result is mapped back to the normal domain. Therefore, if
using an NTT, Algorithm 6 features, an inverse NTT call on the term c1r2 (and r2 is the secret
key).

Algorithm 4 Key generation as defined in the scheme of [LPR13] in a notation similar
to [ABD+21b].
Require: Uniformly sampled a P R
Ensure: Secret key sk, public key pk

1: e, s P R Ð Dσ

2: t Ð e ´ as
3: return ppk “ t, sk “ sq

Algorithm 5 Encryption as defined in the scheme of [LPR13] in a notation similar to [ABD+21b].
Require: Public key p “ pk, Message m as bit string
Ensure: ct “ pc1, c2q

1: r, e1, e2 Ð Dσ

2: m Ð Encodepmq

3: u Ð ar ` e1
4: v Ð tr ` e2 ` m
5: return ct “ pu, vq

3Note that the terminology in other schemes is the other way around: Encode maps from polynomial to bit string
and Decode from bits to polynomial.

29

Chapter 2 Background

Algorithm 6 Decryption as defined in the scheme of [LPR13] in a notation similar to [ABD+21b].
Require: Secret key r2 “ sk, ciphertext ct “ pu, vq

Ensure: Message m1

1: m1 Ð us ` v
2: m1 Ð Decodepm1q

3: return m1

Crystals-Kyber

Kyber [BDK+18, ABD+21b] is a finalist in the NIST contest [NistCfp] and was selected for
standardization after the third round [NistR3]. It was first introduced in [BDK+18], and its
current version is specified in [ABD+21b]4.

Kyber works over the ring R “ Fqrxs{pxn ` 1q where q “ 3329 and n “ 256; the parameters
k P t2, 3, 4u, η1 P t2, 3u, du P t10, 11u, and dv P t4, 5u depend on the security level, η2 is set to 2.
The parameters per security level are stated in Table 2.1. As an MLWE scheme, the key pair is
given by s P Rk and pA,bq P Rkˆk ˆ Rk where b “ sAJ ` e.

Security Level n k q η1 η2 du dv

Kyber512 256 2 3329 3 2 10 4
Kyber768 256 3 3329 2 2 10 4
Kyber1024 256 4 3329 2 2 11 5

Table 2.1: Kyber parameters as stated in [ABD+21b].

Kyber uses an FO-transform to define an IND-CCA2 secure KEM from an IND-CPA secure
PKE. The key generation of KyberPKE is given in Algorithm 7, the encryption of a message
m in Algorithm 8, and the decryption in Algorithm 9. The method Sampleuniform samples
deterministically (depending on ρ) samples from a uniform distribution over Fq. The method
Samplebinom samples deterministically (depending on σ) from a binomial distribution centered
around 0. Note that in our high-level description of the algorithm, the sampling methods have an
internal state reset after exiting the parent method; a counter and an extendable output function
or a pseudo-random function are used. Sampling of polynomials or vectors of polynomials is
understood to be component- and coefficient-wise. The compression and encoding functions are
explained in the following paragraphs.

The KyberKEM, also called Kyber, algorithms are given in Algorithm 10, Algorithm 11,
Algorithm 12. The functions H and G are (distinct) hash functions, and KDF is a Key Derivation
Function (KDF) (realized as SHA-256 in all current variants).

Compression. The compression and decompression with compression parameter d map a
coefficient in Fq to a d-bit integer. Applied component- and coefficient-wise to vectors of
polynomials, the size of the ciphertext is reduced. Moreover, compression and decompression
add noise and thereby provide additional security [ABD+21b, Section 4.4]. In the case of attacks
utilizing decryption failure leakage (see Section 3.2 and Chapter 5) decreases the information that
may be obtained as described in [BDH+21b] and reiterated in Section 3.2.

The compression and decompression functions are defined as

Compresspx, dq “

R

x
2d

q

^

mod2d (2.50)

4The official website may be found under https://pq-crystals.org/kyber/.

30

https://pq-crystals.org/kyber/

2.2 Lattice-Based Cryptography

Algorithm 7 Key generation of KyberPKE as specified in [ABD+21b].
Ensure: Secret key sk, public key pk

1: d Ð U32

2: pρ, σq Ð Gpdq

3: Â P Rkˆk Ð Sampleuniformpρq

4: s P Rk Ð Samplebinomial,η1
pσq

5: e P Rk Ð Samplebinomial,η2
pσq

6: ŝ, ê Ð NTTpsq,NTTpeq

7: t̂ ŝJ Ð Â ` ê
8: return ppk “ Encode12pt̂||ρq, sk “ Encode12pŝqq

Algorithm 8 Encryption of KyberPKE as specified in [ABD+21b].

Require: Public key pk, Message m P t0, 1u
32, Seed r P t0, 1u

32

Ensure: ct “ pc1, c2q

1: t̂, ρ Ð Decode12ppkq

2: Â P Rkˆk Ð Sampleuniformpρq

3: r Ð Samplebinom,η1
prq

4: e1 Ð Samplebinom,η2
prq

5: e2 Ð Samplebinom,η2
prq

6: r̂ Ð NTTprq

7: u Ð NTT´1
pr̂Âq ` e1

8: v Ð NTT´1
pr̂t̂Jq ` e2 ` DecompresspDecode1pmq, 1q

9: c1 Ð EncodedupCompressqpu, duqq

10: c2 Ð Encodedv pCompressqpv, dvqq

11: return ct “ pc1, c2q

and

Decompresspx, dq “

Q

x
q

2d

]

. (2.51)

Compression maps to the index of the closest multiple of q
2d

, i.e., to l P
␣

0, . . . , 2d ´ 1
(

where
l is the integer such that x is closest to q

2d
for all l1 q

2d
with l1 P

␣

0, . . . , 2d ´ 1
(

. Decompression
maps, and integer l (back) to l q

2d
. Visually, we may imagine the field Fq as discrete points on a

circle with circumference q on which 2d evenly spaced compression points are selected starting
at 0. Compression then maps any value to the index of the closest compression point, and
decompression maps back to a compression point. This visualization is depicted in Figure 2.8.

Algorithm 9 Decryption of KyberPKE as specified in [ABD+21b].
Require: Secret key sk, ciphertext ct “ pc1, c2q

Ensure: Message m1

1: u Ð DecompresspDecodedupc1q, duq

2: v Ð DecompresspDecodedv pc2q, dvq

3: ŝ Ð Decode12pskq

4: m1 Ð Encode1pCompresspv ´ NTT´1
pŝNTTpuqJq, 1qq

5: return m1

31

Chapter 2 Background

Algorithm 10 Key generation of Kyber as specified in [ABD+21b].
Ensure: Secret key sk, public key pk

1: z P t0, 1u
32

Ð Sampleuniformpq

2: ppk, skpkeq Ð KeyGenpkepq

3: return ppk, sk “ pskpke, pk,Hppkq, zqq

Algorithm 11 Encapsulation of Kyber as specified in [ABD+21b].
Require: Public key pk,
Ensure: ct “ pc1, c2q, shared secret K

1: m P t0, 1u
32

Ð HpSampleuniformpqq

2: pK̄, rq Ð Gpm||Hppkqq

3: ct Ð Encryptppk, m, rq

4: K Ð KDFpK̄||Hpctqq

5: return pct,Kq

Encoding. The function Decodel maps 32l byte arrays to (vectors of) polynomials and the
function Encodingl is its inverse. Encoding of vectors of polynomials is done per component of
the vector and concatenation. Decoding is defined to interpret the byte array as concatenated
l-bit integers where each integer represents a polynomial coefficient. Polynomial coefficients in
Kyber are elements of t0, . . . , q ´ 1u and may be represented by l-bit integers with l “ rlog2pqqs “

rlog2p3329qs “ 12. The encode function with l “ 1 represents interpreting an element in t0, 1u as
bit.

Error correction. During the encryption the message is decoded to a polynomial as described
in the previous paragraph. The other party, during the decryption, retrieves a noisy version of
this polynomial with an additional, additive noise term on every coefficient. The noise term is
given by

erJ ´ spe1 ` ∆uqJ ` e2 ` ∆v (2.52)

where the ∆-terms arise from compression; the polynomial is coefficient-wise small with very
high probability. Recovering the original bit from the noisy message is often called decoding,
but this terminology is not used in Kyber. In Kyber, the error correction is described by using
the compression function with compression parameter 1. Compression with parameter 1 maps a
value x in Fq to either 0 or 1 depending on whether x is closer to 0 or to

P

q
2

\

. The noise removal

Algorithm 12 Decapsulation of Kyber as specified in [ABD+21b].
Require: Secret key sk “ pskpke, pk,Hppkq, zq, ciphertext ct
Ensure: Shared secret K
1: m1 Ð Decryptpskpke, ctq

2: pK̄ 1, r1q Ð Gpm1||Hppkqq

3: ct1 Ð Encryptppk, m1, r1q

4: if ct “ ct1 then
5: return K Ð KDFpK̄||Hpctqq

6: else
7: return K Ð KDFpz||Hpctqq

8: end if

32

2.2 Lattice-Based Cryptography

0 1 2 3

0

1

2

3

Figure 2.8: Compression visualized with d “ 2 and q “ 23. Points are mapped to the index of the
closest compression point. The compression points are at 0, q

4 ,
q
2 , and 3q

4 .

0

q
2

q
4

3q
4

Figure 2.9: Removing noise realized as compression with d “ 1. The upper half of the circle is
closer to 0 and mapped to a 0-bit; the lower half is closer to q

2 and therefore mapped to a 1-bit.

is depicted in Figure 2.9.

Number Theoretic Transform. The ring R “ Fqrxs{pxn ` 1q with q “ 3329 and n “ 256, as
used in Kyber, does not contain a 512-root of unity, which is equivalent to not containing the nth
root of ´1. Instead, the root of unity used in Kyber is a 256th root-of-unity, i.e., a 128-th root of
´1, namely ζ “ 17. Therefore, R is not isomorphic to a product of dimension-0 rings, and we
only have

R “ Fqrxs{pxn ` 1q –

128
ź

i“0

Fqrxs{px2 ´ aiq (2.53)

for some factors ai. In other words: R splits into F
n
2

q2 instead of Fn
q . The computational graph of

the NTT therefore consists of log2pnq ´ 1 “ 7 instead of 8 layers – the last layer is left out. The
inverse NTT consists of 7 layers as well and the first layer does not exist. Multiplication in NTT
domain is not pointwise (degree 0 multiplication) but the multiplication of polynomials of degree
1.

Attacks

Common attacks used for security estimates in schemes such as Kyber, FrodoKEM, Saber,
or NewHope are the primal and the dual attack (see specifications [ABD+21b, ABD+21a,
BMJ+21, AAB+19] as well as [ACD+18]). These attacks allow to obtain a SVP from the given

33

Chapter 2 Background

LWE instance. The lattice problem may then be solved using lattice reduction, for example,
by employing BKZ 2.0 [CN11] (see Section 2.2.1). Note that these attacks depend on many
properties of the concretely posed scheme such as the modulus q, the number of samples m, the
quality of the basis reduction, the error distributions, etc.; for detailed analysis and proofs, we
refer to [Reg09], [Pei14], and [Pei16] as well as the security analysis of, e.g., NewHope [ADPS16b]
and Kyber [BDK+18] and the algorithm specifications which include security analyses (see,
e.g., [ABD+21b]).

The primal attack. A LWE instance occurring in LWE-based schemes is typically given by
a matrix A P Zmˆn

q , vectors b, e P Zm
q , s P Zn

q where sAJ ` e “ b. The vectors s and e are
unknown to the attacker and are to be found. To achieve this, the LWE (which gives a BDD
instance) can be embedded into a CVP instance: The secret vector pe, sq can be found by looking
for an element of the lattice generated by the rows of

B “

ˆ

qIm 0
AJ In

˙

(2.54)

close to the target vector pb,0q. To solve the CVP instance, the attacker may use Kannan’s
embedding [Kan87] to obtain a uSVP instance given by the matrix

Bsvp “

¨

˝

qIm 0 0
AJ In 0
b 0 c

˛

‚ (2.55)

where c is commonly chosen to be 1. An optimal choice for c is to set it to the standard deviation
of the secret distribution (see, e.g., [DDGR20]). The secrets pe, sq may be recovered by finding
a short vector in lattice generated by the rows of Bsvp. A detailed introduction to the primal
attack and other attacks on LWE may be found in [APS15].

The dual attack. The dual attack, see [MR09, RS10, LP11], works by finding a short vector
in the dual lattice (to the lattice L generated by A) which is given by

LJ “
␣

pv,wq P Zn ˆ Zm | AJvJ ” w mod q
(

. (2.56)

For a small vector pv,wq in LJ, we have that for

zpxq “ xvJ (2.57)

zpbq is equal equivalent to

zpbq ” sAJvJ ` evJ ” wvJ ` evJ mod q (2.58)

modulo q and is therefore small. For uniformly random vectors x, zpxq is uniformly random.
Using z, we may therefore differentiate between an LWE sample and a uniformly random vector,
i.e., solve the D-LWE and in turn, depending on the concrete situation, the posed LWE problem.

Security estimates. The runtime of BKZ depends mostly on the block-size β. The required
BKZ-β can be estimated using the formula given in [ADPS16b, AGVW17] (refined in [DDGR20]):
Denoting the lattice generated by the rows of Bsvp by L and the root Hermite factor by δβ , the
BKZ-β needed to solve the uSVP instance can be estimated as the smallest β P N satisfying

||s||
a

β{dimpΛq ď δ
2β´dimpΛq´1
β VolpΛq1{ dimpΛq. (2.59)

34

2.3 Implementation Attacks

The volume in the case of Equation (2.55) is given by qn´r and the root Hermite factor may be
estimated using the following equation (see [CN11])

δβ “ ppπβq
1
β

β

2πe
q

1
2β´2 . (2.60)

Note that there is no clear consensus on the most fitting model of estimating the security of LWE
schemes. In [ADPS16b], it was proposed to use the Core-SVP hardness which is the computational
effort of a single SVP-oracle call as arising during BKZ. It is noted in [ABD+21b, Section 5.2]
that while this leads to conservative estimates, it does, for example, not take lattice sieving into
account, which has seen considerable improvements since the introduction of Core-SVP [BDGL16,
MLB17, Duc18, ADH+19]. As the details on the exact classical hardness of lattice-based schemes
is of lesser relevance to our attacks, we do not expand on this topic. We do require the estimate
of BKZ-β for our attacks and treat BKZ as a black box fulfilling Equation (2.59).

2.3 Implementation Attacks
Implementation attacks target an implementation or device instead of (purely) the mathematical
description or model of an algorithm. The publications of Kocher [Koc96] on timing and Kocher,
Jaffe, and Jun [KJJ99] on differential power analysis showed that implementations attacks can be a
threat to devices running cryptographic algorithms. In this section, we give a brief introduction to
side-channel analysis and fault attacks and the models we evaluate our work in. Our work does not
focus on the practical, physical aspects of SCA but on the properties of lattice-based cryptography
which allow for implementation attacks, and on strategies to exploit them. Therefore, we limit
ourselves to giving a brief overview of simple and differential power analysis, template attacks
including the appropriate model for evaluation, Soft Analytical Side-Channel Attack (SASCA),
recent developments in regard to neural networks and deep learning, and the results of carrying
out fault attacks. For a comprehensive introduction, we refer to [MOP07] for side-channel analysis
and to [JT12] for fault attacks.

2.3.1 Side-Channel Analysis
Side Channel Attack (SCA) makes use of information leaked during the execution of a cryp-
tographic algorithm. Common types of leakage are for example timing, power consumption,
or electromagnetic radiation. Recording such leakage may result in information that allows an
adversary to obtain secret values, for example, to recover the secret key. Figure 2.10 shows an
exemplary setup for recording power traces, i.e., measurements of power consumption, using a
ChipWhisperer [OC14], and Figure 2.11 shows and example of a power trace as obtained from
such a setup.

Timing Attacks

Timing attacks, published in [Koc96], make use of leakage in the time domain. If the execution
time of a cryptographic algorithm depends on secret values, an attacker may infer information.
These attacks are especially threatening as they may in some cases be executed remotely, i.e.,
without the device under attack being in control of the adversary. This has been shown, for
example, by Brumley and Boneh [BB05] in an attack against the OpenSSL library. For this
reason, cryptographic implementations should always be implemented such that their execution
time does not depend on (secret) values, i.e., without conditional branching. This property is
called being constant time. Related types of attacks are cache-timing and cache attacks, presented

35

Chapter 2 Background

Figure 2.10: Recording power traces using a ChipWhisperer [OC14].

in [Ber05] and [OST06], respectively. There have been several attacks on lattice-based schemes
exploiting or being improved by leakage in time, for example [SW07, PPM17, DTVV19, GJN20].

Simple and Differential Power Analysis

Power analysis makes use of measurements of the power consumption of a device. Such attacks
were published by Kocher, Jaffe, and Jun [KJJ99] in 1999 and are still a highly relevant threat to
modern cryptography. It has been shown in [MD99] that power consumption correlates with the
Hamming weight of processed values. This also led to the more general Hamming distance model
and Correlation Power Analysis (CPA) [BCO04]. These types of attacks have been shown to
be relevant for lattice-based cryptography as well, see, e.g., [WZW13, PPM17, PP19, ACLZ20,
RRCB20, NDGJ21, RBRC22, XPR+22, UXT+22].

We here give an overview over Simple Power Analysis (SPA) and Differential Power Analysis
(DPA). Other closely related techniques, summarized under the term DPA by, e.g., [SIH+23],
are Mutual Information Analysis (MIA) [GBTP08], Linear Regression (LR) [SLP05], Collision
Attacks (CA) [SLFP04], and Template Attacks [CRR02]; the latter is summarized in the next
section. Note that the classification differs slightly, and, for example, template attacks are also
sometimes classified as SPA (e.g., in [MOP07]).

Simple Power Analysis. SPA as described in [KJJ99] involves the inference of information
from a single power trace, i.e., a measurement of the power consumption while the targeted
algorithm is running on the device under attack. For example, a conditional branch depending
on the secret key may be visible in a measurement of power consumption while the operation is
carried out. This then leads to leaked information about the value the branching depends on.
In [MOP07, Chapter 5], SPA is described as an attack in which the adversary “tries to derive the

36

2.3 Implementation Attacks

0 0.5 1 1.5 2 2.5 3

´0.2

0

0.2

Time [ms]

P
ow

er
C

on
su

m
pt

io
n

Power Trace

Figure 2.11: A power trace recorded using a ChipWhisperer [OC14].

key more or less directly from a single trace”. The authors note that SPA often requires precise
knowledge of the algorithm and the device under attack.

Differential Power Analysis. DPA as presented in [KJJ99] and [KJJR11] employs a divide-
and-conquer approach by testing for values of sub-keys. In contrast to SPA, DPA does not
require as detailed knowledge on the exact implementation of the algorithm and the internals
of the device under attack. The adversary first chooses a selection function depending on a
ciphertext and a sub-key mapping to t0, 1u. In the online phase, the adversary then first records
a larger amount of traces of the encryption and stores the corresponding ciphertexts5. In the
offline phase, the adversary then takes guesses for the sub-key. The recorded traces are grouped
by the selection function, and the average of traces corresponding to a zero bit and of traces
corresponding to a one bit are computed. If the sub-key guess is incorrect, the output of the
selection function will be distributed uniformly random, and therefore the power trace will be
uncorrelated with the averaged traces. For a correct guess, the output of the selection function
will be constant and therefore correlated with the averaged traces. Therefore, the difference of
the averaged traces (one corresponding to a zero bit and the other corresponding to a one bit)
will be close to constant zero for an incorrect guess and differ to a larger extent for a correct
guess (if a good selection function had been chosen).

In [MOP07, Chapter 7], DPA attacks are described as attacks depending on a large number
of traces recorded of the device under attack (e.g., in contrast to template attacks which record
a large number of traces of a similar device). According to the authors, the advantage is the
reduction in required knowledge about the algorithm and device under attack.

Template Attacks

Template attacks, published by Chari, Rao, and Rohatgi [CRR02], are a type of so-called profiling
attacks. An adversary first records a large amount of traces of a device to create a template, i.e.,
a “profile” of a cryptographic algorithm running on a device in terms of power consumption per
targeted intermediate value. A trace which is recorded while secret data is processed can then be
matched against the template to obtain probability distributions of the intermediate values. An
introduction in more detail is given in [MOP07, Chapter 5.3].

5Note that depending on the attack the plaintext needs to be known and stored.

37

Chapter 2 Background

Noisy Hamming weight model. Template attacks require a leakage model upon which the
model creation is based. A common model is the Noisy Hamming weight model (compare with
the results of [MD99, BCO04]). This model assumes that measurements of a variable with true
value a are of the form

HWpaq ` N p0, σq (2.61)

where HWpaq is the Hamming weight of a and N p0, σq denotes the normal distribution with
mean 0 and standard deviation σ.

Template building. To create the template, the adversary first records a large amount of
traces using a similar (or in evaluation labs often the same) device. These will be required to
create an accurate model of the computations running on the device. Then, points of interest
corresponding to targeted operations are selected. Every point of interest will later result in
a distribution for a processed value. Assuming the model, the adversary then computes the
distribution giving Hamming weights per power consumption.

Template matching. By recording a single trace (or more with subsequent averaging) and
matching the points of interest against the template, i.e., obtaining the distribution of Hamming
weight for the recorded values at the points of interest, the adversary may retrieve a probability
distribution for every value at every point of interest.

Model and simulation. Using the assumed model, e.g., the noisy Hamming weight model, a
template attack may be simulated. First, the true value a of an intermediate is obtained from
the simulation, and its Hamming weight is computed. Then, an error sampled from a normal
distribution with standard deviation σ is added to the Hamming weight. This means we obtain

ã “ HWpaq ` e (2.62)

for
e Ð N p0, σq. (2.63)

We then simulate the obtained distribution from the template matching as a Gaussian distribution
around ã, i.e., the probability distribution (on Hamming weights) we obtain for the intermediate
is

N pã, σq. (2.64)

The recovery methods making use of these distributions for the intermediates usually require
values in the integers or in a finite field and not Hamming weights. This is because the key and
therefore intermediates have to be recovered as integers, and mapping to Hamming weights in
almost all cases loses a lot of information. If we, for example, record intermediate values during
an (inverse) NTT in Kyber in a masked setting (see Section 2.3.3), values from a range of length
(at least, depending on the implementation) q “ 3329 are mapped to the set ranging from 0 to bit
length required to store q, i.e., to t0, 1, . . . , rlog2pqqsu “ t0, 1, . . . , 12u. To obtain distributions on
integer values in a larger range instead of Hamming weights, the Gaussian distributions around ã
will often be mapped to distributions on integers in a certain range.

Soft-Analytical Side-Channel Analysis

Data obtained in side-channel attacks, in particular from template attacks, often does not
immediately yield the secret key. Veyrat-Charvillon, Gèrard, and Standaert [VGS14] propose a
coding-theoretic approach to side-channel attacks. In practice, this is realized by performing a

38

2.3 Implementation Attacks

template attack and then using the obtained probability information as priors for belief propagation.
Soft Analytical Side-Channel Attack (SASCA) aims to improve upon the noise tolerance and
complexity of other approaches such as Algebraic Side-Channel Attack (ASCA) [RS09] (see
also [RSV09] and [CFGR12]), which rely on building an algebraic model and then using e.g.,
a SAT solver to obtain the secret key (as well as on Tolerant Algebraic Side-Channel Attack
(TASCA) [OKPW10, ORSW12] which employs an optimizer instead of a solver). Comparisons
between ASCA, TASCA, and SASCA have been conducted in, e.g., [GS15] or [SIH+23].

Our work in Chapter 4 is an instantiation of SASCA, and we additionally show that belief
propagation can be used more generally in implementation attacks. Belief propagation is
summarized in Section 2.4.

Neural Networks and Deep Learning

Recent advances in side-channel analysis in combination with neural networks were able to break
several implementations including some which were higher-order protected. Several works target
(protected) Advanced Encryption Standard (AES) [DR98, NistAes] implementations and show
how countermeasures may be defeated using neural networks and deep learning, e.g., [MZ13,
GHO15, MDM16, MPP16, CDP17, KPH+19, Tim19, PHJ+19, MS23].

While many works (see above) target AES, lattice-based cryptography has recently seen
an increased focus: Ngo et al. [NDGJ21] target the message in the implementation of Saber
in [BDK+21b]. The works of Ngo et al. [NWDP22] shows how higher-order masked implemen-
tations of lattice-based schemes may be targeted using a neural network. A message recovery
attack on Kyber and Saber using deep learning has been proposed by Wang et al. [WND22]. The
work of Dubrova et al. [DNG22] improves upon previous work using a technique the authors call
recursive learning and targets Kyber.

Note that these techniques are being actively developed with very recent, conceptual improve-
ments; in particular regarding threat and leakage models: In 2023, Masure et al. [MCLS23] answer
the question of how to make use of knowledge on a masking schemes without relying on data
usually not available to an adversary in practical machine learning-based attacks; they propose the
scheme-aware threat model. A recent work, also from 2023, by Wu et al. [WAR+23], introduces
a deep learning technique that does not depend on leakage models such as the Hamming weight
or Hamming distance model, but that instead learns on independent bits.

The combination of belief propagation and neural networks has also already been proposed; some
examples include the following works: Nachmani, Be’ery, and Burshtein [NBB16] introduce a belief
propagation variant in which edges are weighted with weights that can be learned. Knobelreiter
et al. [KSS+20] propose using belief propagation as a (trainable) layer in a neural network. Kuck
et al. [KCT+20] propose belief propagation neural networks, which is a generalization of belief
propagation using neural networks. Satorras and Welling [SW21] combine belief propagation with
graph neural networks [SGT+09] and show that their method can improve upon the decoding of
Low-Density Parity Check (LDPC)-codes [Gal62] under certain conditions.

Side-Channel Analysis and Chosen-Ciphertexts

Several attacks on lattice-based cryptography have previously been enabled or improved by using
a chosen ciphertext. This includes attacks that cause decryption failures, e.g., [BGRR19, GJN20,
BDH+21b, DHP+22] (see Section 3.2). Another example of side-channel analysis improved by a
chosen ciphertext is presented by Park and Han [PH16]; their work targets modular addition in
the RLWE scheme presented in [LPR13] aided by a ciphertext in which every coefficient is set
to one. Ravi et al. [RRCB20] use a chosen ciphertext and side-channel analysis to establish a
plaintext checking oracle in Kyber and several other lattice-based schemes. Ngo et al. [NDGJ21]

39

Chapter 2 Background

use a chosen ciphertext to launch an attack on the message in Saber enabled by deep learning
techniques (c.f. Section 2.3.1). A side-channel attack that targets the message in several lattice
based schemes (including Kyber) and is assisted by a side-channel was presented by Ravi et al.
[RBRC22]. The work of Xu et al. [XPR+22] targets the secret key during the inverse NTT as
well as the message in Kyber (see Section 3.1.4). Xu et al. [XPOZ22] target NTRU variants with
a chosen ciphertext that enables side-channel analysis using Electro-Magnetic Radiation (EM)
leakage. Sim, Park, and Han [SPH22] target the Barret reduction in Kyber to recover the secret
key with six to eight traces. Ravi et al. [REB+22] state several attacks on variants of NTRU
that make use of plaintext-checking oracles, decryption-failure oracle, and full-decryption oracles.

2.3.2 Fault Attacks

A fault attack is an invasive type of attack that manipulates data or execution of a device during
its runtime. This includes, for example, voltage or clock glitching (see, e.g., [AK96, AK97]),
manipulating the execution of instructions, or the usage of a laser to manipulate bits of data stored
in memory [SA02, WWM11]. Another notable example is the Rowhammer attack [KDK+14],
which allows manipulating DRAM memory by using malicious memory access patterns. The
threat of fault attacks to cryptographic applications has been known for considerable time; among
the first published works in this area is the “Bellcore Attack“ by Boneh, DeMillo, and Lipton
[BDL97] who present attacks in the context of attacks on cryptographic schemes including the
Rivest–Shamir–Adleman (RSA) scheme [RSA78, RSA83] and Fiat-Shamir schemes [FFS87].

The physical properties and the exact manner of fault attacks are of lesser relevance to our
work. We treat the application of faults as a black box and describe the outcome an adversary
needs to be able to achieve to carry out our attack presented in Chapter 5. Therefore, we do not
give further details in this section and refer to [JT12] instead.

2.3.3 Countermeasures

Countermeasures against implementation attacks have already been proposed in the first papers
on timing attacks and differential power analysis by Kocher [Koc96] and Kocher, Jaffe, and
Jun [KJJ99], respectively. In general, countermeasures come in the form of hardware countermea-
sures and in form of software countermeasures. Important classes of software countermeasures
relevant to our work in this thesis are constant time implementations, hiding countermeasures,
and masking countermeasures.

Constant Time

To avoid dependency on secret data, cryptographic algorithms should be constant time as already
proposed in [Koc96]. That means no conditional branching depending on secret data should take
place. Note that it is often difficult to determine which parts of a cryptographic algorithm may
potentially leak secret data if not implemented in constant time. For example, Guo et al. [GJN20]
show that in a lattice-based setting an FO-transform, which is not implemented in constant time
may leak information about the secret key even though no secret data is being processed directly.
This is because a manipulated ciphertext may lead to the input to the FO-transform depending
on the secret key. Thereby, the data processed in the FO-transform does indirectly depend on
the secret key, and timing differences may leak information to an adversary.

40

2.4 Belief Propagation

Hiding

Hiding countermeasures, already proposed in [KJJ99], randomize the execution of an algorithm,
in time or amplitude dimension, to prevent an attacker from correlating a measurement with an
intermediate variable. If an adversary cannot map a measurement to an intermediate value because
they have been randomized, attacks are often mitigated to a certain extent. The countermeasures
and known adaptations relevant to our work are summarized in Section 3.1.7; for a broader
overview we refer to [MOP07, Chapter 7].

Masking

Masking countermeasures, introduced in [GP99, CJRR99] (see also [Mes00, CG00, ISW03]),
randomize the values processed by a cryptographic algorithm and thereby prevent an attacker
from correlating the measurement with the true value of an intermediate. Common masking
techniques include Boolean and arithmetic masking. This means a value to be randomized is
either xor’ed with, added to, or multiplied with a random mask, i.e., a random value. The
computation then takes place on the masked value which may be removed later by carrying out
the operation or a similar operation on the mask as well. For example, to additively mask a linear
function f with input x, one could choose n values m0, . . . ,mn´1 and compute

fpx ` m0 ` m1 ` ¨ ¨ ¨ ` mn´1q (2.65)

as well as all
fpmiq (2.66)

for i P t0, . . . , n ´ 1u. Then, fpxq is computed as

fpxq “ fpx ` m0 ` m1 ` ¨ ¨ ¨ ` mn´1q ´ fpm0q ´ fpm1q ´ ¨ ¨ ¨ ´ fpmn´1q. (2.67)

Thereby, fpxq may be computed without having the computation of f depending on x alone.
The number n is called masking order; note that higher-order masking may be attacked by, e.g.,
higher order DPA. Masking is explained in more detail in [MOP07, Chapter 9]

2.4 Belief Propagation

Belief propagation is a message-passing algorithm first introduced in [Gal62] to decode LDPC
codes and is also known as sum-product algorithm. Given probability distributions on several
random variables with constraints/relationships, belief propagation computes the marginals of the
joint probability distribution. While originally proposed for usage in coding theory, in particular,
to decode LDPC codes, belief propagation has also proven to be a valuable tool for side-channel
analysis [VGS14] (c.f. Section 2.3.1). Several works have identified use cases for belief propagation
in the area of implementation attacks, e.g., targeting AES [VGS14, GRO18], Keccak [KPP20], or
lattice-based cryptography [PPM17, PP19]. Theoretic analysis in regard to SASCA using belief
propagation is provided by Guo et al. [GGSB20]. Note that belief propagation is only guaranteed
to converge on graphs without loops, which is not the case in the aforementioned works, but
loopy belief propagation has been known to provide useful results as well (see also [FM97]). In
this work, we use belief propagation for side-channel analysis of the NTT as well as for recovery
of information in case of side-channel or fault attacks. This section gives a short introduction
based on [Mac03].

41

Chapter 2 Background

Notation. We denote elements u which are in NTT-domain by û; the same notation is used
for FFTs. The inverse NTT is either simply called “inverse NTT” or INTT. Primitive roots of
unity are denoted by ζ while potentially non-primitive roots of unity are denoted ω; an index
does not indicate a certain power of a primitive root of unity. Messages in belief propagation
instantiations from node i to node j at time t are denoted by µi,j,t.

2.4.1 Factor Graph

Belief propagation works by passing messages along edges of a bipartite graph, called Tanner
or factor graph. The factor graph consists of variable nodes and factor nodes: Variable nodes
represent (potentially unknown) variables, and factor nodes model constraints on the variables.
In other words: Belief propagation models the relationships between variables using variable and
factor nodes. Variable nodes and factor nodes are connected if and only if the factor node models
a constraint of the variable node. Nodes only connect to the respective other type of node.

More formally, the belief propagation graph is defined as follows: Given random variables
X “ pX0, . . . , Xn´1q with joint mass function ppXq with

ppXq “

n1
ź

i“0

fipIiq (2.68)

for n1 ă n, Ii Ď tX0, . . . , Xn´1u, and functions

fi : Ii Ñ r0, 1s Ď R, (2.69)

the factor graph consists of variable nodes for the Xj and factor nodes representing fi. Edges
from variable node j to factor node i express the relationship Xj P Ii, i.e., that fi depends on Xj .
Using this factor graph, belief propagation now aims at computing the marginal distributions,

ppX0q, . . . , ppXn´1q (2.70)

of the joint mass function ppXq.

2.4.2 Message Passing

Belief propagation works by passing messages from variable to factor nodes and vice-versa.
Messages represent beliefs in the value of a random variable and are proportional to probability
distributions. Nodes, variable nodes as well as factor nodes, update messages based on the
messages received from their neighbors.

Many different proposals for scheduling methods for message-passing exist (see, e.g., [EMK06,
SLG07, GK08, SM12]). In the area of side-channel attack, for example, Pessl and Primas [PP19]
propose a different scheduling to improve upon a previous belief propagation instantiation.

In this work, we rely on a straightforward approach in which variable nodes hold a prior
distribution which is being sent to factor nodes in the first step. This prior distribution can be
thought of as an initial belief and comes from measurements or known values. The prior can
also be realized as a separate factor node connected to a single variable node sending a constant
message (as in, e.g., [PPM17, PP19]). In the second iteration, the factor nodes send out their
updated messages to the variable nodes. We call an update process from variable to factor nodes
and vice-versa, as shown in Figure 2.12, a full iteration.

42

2.4 Belief Propagation

xi

fk

xj

mi,k

mj,k

(a) Variable to factor nodes.

xi

fk

xj

mk,i

mk,j

(b) Factor to variable nodes.

Figure 2.12: Belief propagation iteration phases as shown in [HMS+23]. The sub-graph consists
of a factor node fk and two variable nodes xi and xj .

2.4.3 Update Functions

Each node updates its beliefs based on the incoming messages (representing beliefs) from neigh-
boring nodes (which all are of the respective other type of node). Denoting messages from node i
to node j at iteration t as µi,j,t, the update rules are given as follows:

• From variables to factors: Variable nodes (here with index i) compute messages pµ1
i,j , which

are sent to factor nodes with index j, as

µi,j,t`1pxq “
ź

j1‰j

µj1,i,tpxq. (2.71)

The message represents the belief of the variable not taking into account the j-th node itself
and is computed from all other adjacent factor nodes.

• From factors to variables: Factor nodes (here with index j) compute messages µj,i,t`1pxq,
which are sent to the i-th variable node, as

µj,i,t`1pxq “
ÿ

x,xi“x

fjpxq
ź

i1‰i

µi1,j,tpxq. (2.72)

The message is computed from all received messages, i.e., from all neighboring variable
nodes, by marginalizing over all beliefs except for the i-th one.

• Belief Update: After the two passes, variable nodes hold updated beliefs given by

bipxq “
ź

j

µj,ipxq. (2.73)

This means that the beliefs at a variable node are given by the product of the beliefs of all
adjacent nodes. Note that the belief bi does not need to be computed in every iteration but
only whenever results for the i-th variable are to be obtained.

43

Chapter 2 Background

2.4.4 Marginal Distributions
Upon convergence or after an abort criterion has been reached (see Section 7.1.1), the computed
(approximate for the) marginal distribution at a variable node with index i is given by the
normalization of bi. Note that convergence is not guaranteed for cyclic belief propagation graphs.
Nodes can be merged; merging all nodes corresponds to an exact computation, and merging factor
nodes means computing this sub-function in an exact manner. From this point of view, belief
propagation offers a trade-off between exactness and computational complexity. This principle is
being made use of in SASCA – an exact computation would yield the same or better results but
is, in many cases, computationally infeasible.

44

Chapter 3

Related Work

Implementation vulnerabilities in post-quantum cryptography, especially Learning with Errors
(LWE)-based schemes, are an important and pressing matter. In particular, the vulnerabilities of
major building blocks such as the Number Theoretic Transform (NTT), the Fujisaki-Okamoto
(FO)-transform, and the error correction (which may leak information due to decryption failures)
require profound understanding before being implemented and used in a wide variety of use cases.
Some analysis of the vulnerability of major building blocks of LWE based schemes has already
been provided by previous work, but the questions posed in Section 1.1.2 are yet unanswered. In
this chapter, we give an overview of related work and summarize the state of the art concerning
vulnerabilities of the NTT, the utilization of decryption for implementation attacks, and the
recovery of secret information from decryption failure information.

We evaluate related work with regard to our research questions stated in Section 1.1.2. The
relevant properties are thus the targeted secret value, the requirements on the capabilities of the
attacker, whether straight-forward or known countermeasures prevent the attack, and if security
estimates are available in cases where the attacker cannot fully recover the secret (c.f. Table 1.1,
Table 1.2, and Table 1.3). In this chapter, we first and foremost reiterate previous work that fulfills
particularly many of these desired properties as well as works that are necessary to understand
our methods. We also give a short overview of other approaches, e.g., with different targets, that
are less relevant regarding our research questions. An overview of the related work is provided in
Section 3.4 and summarized in Table 3.4.

We first summarize two previous attacks [PPM17, PP19] targeting the NTT: Primas, Pessl,
and Mangard [PPM17] present a side-channel attack on the inverse NTT during the decryption
process of an Ring Learning with Errors (RLWE) scheme as proposed by [LPR13]. Pessl and
Primas [PP19] target the NTT during encryption and improve the belief propagation of [PPM17];
they thereby achieve a higher noise tolerance but, in most cases, cannot recover the long-term
secret. In addition, Xu et al. [XPRO20] propose an Simple Power Analysis (SPA)-like approach
to target the inverse NTT using a chosen ciphertext but cannot target protected implementations.
We then reiterate the countermeasures of Ravi et al. [RPBC20], which were proposed in response
to previous attacks on the NTT. Finally, we discuss how countermeasures have previously been
circumvented in different settings.

In regard to targeting the error correction and utilizing decryption failures for implementation
attacks, several attacks have previously been published. In this section, we reiterate the following
works that target Kyber and use a chosen ciphertext that differs from a valid ciphertext by a
single bit; these chosen-ciphertext attacks cannot be prevented by a straight-forward statistical
countermeasure. The works of Bhasin et al. [BDH+21b] and D’Anvers et al. [DHP+22] use a
side-channel to observe the outcome of the FO-transform after a chosen-ciphertext attack; similar

45

Chapter 3 Related Work

strategies have been discussed in [BGRR19] and used in [GJN20]. Pessl and Prokop [PP21] use a
fault in the decoding routine to potentially cause a decryption failure in Kyber. Delvaux [Del22]
improves upon an attack presented in this thesis in Chapter 5. We give a short overview of
fault attacks with different targets and their limitations in Section 3.2.5, but these works are
out-of-scope in regard to our research questions.

Several approaches to solving for the secret key from decryption failure information exist. The
framework of Dachman-Soled et al. [DDGR20] allows dealing with side-channel information in
a widely applicable way. Bhasin et al. [BDH+21b] show that it can be used to estimate the
required information in the case of decryption failures in Kyber as arising in the attacks of
[PP21, BDH+21b, HPP21, DHP+22], but do not perform an end-to-end key recovery, which is
computationally expensive (see, e.g., [DHP+22, Section 3.1]). An extension to the framework of
[DDGR20] published by Dachman-Soled et al. [DGHK22] allows solving the information obtained
in the attack of Fahr et al. [FKK+22]; due to the different nature of inequalities in [FKK+22]
and the aforementioned attacks on Kyber, an end-to-end key recovery – again – proves to be
computationally expensive. The work of Pessl and Prokop [PP21] uses a statistical approach
and requires less information compared to the amount estimated to be required with [DDGR20].
Delvaux [Del22] improves the methods presented in [HPP21] as part of this thesis and [PP19] to
include error tolerance and reduce the runtime1.

This chapter first summarizes the state of the art on attacks on the (inverse) NTT in Section 3.1;
this section serves as a basis for Chapter 4. The second section, Section 3.2, states current
implementation attacks utilizing decryption failures, relating to Chapter 5. The last section,
Section 3.3, gives current recovery methods to obtain the secret key from decryption failure
information; our method is presented in Chapter 6.

3.1 Attacks on Number Theoretic Transforms

Multiplication of polynomials in several RLWE and Module Learning with Errors (MLWE)
schemes, including Kyber and NewHope, is performed using an NTT. As a main building block
realizing multiplication, the NTT is a particularly valuable target. To multiply two polynomials,
they are transferred to the NTT-domain using the NTT (in Opn log nq). In NTT-domain, the
polynomials may be multiplied point wise or almost point wise. The inverse NTT on the result
of the multiplication in NTT domain gives the product of both polynomials in normal domain.

The attacks presented in [PPM17] and [PP19] are single-trace attacks. Another example of
a single trace attack targeting lattice-based cryptography is stated by Amiet et al. [ACLZ20];
they target the message in an unprotected NewHope implementation. Note that similar attacks
could apply to different multiplication schemes as well. The work of Mujdei et al. [MBB+22]
targets the polynomial multiplication in several lattice-based schemes using Correlation Power
Analysis (CPA). Their analysis includes Saber [DKRV18], NTRU [HPS98], and Kyber in an older
version [ABD+19a].

3.1.1 The NTT as Target

In MLWE-based schemes an incoming ciphertext commonly contains two components, namely
pv,uq. During the decryption the polynomial

m̃ “ v ´ usJ (3.1)

1The method in [HPP21] did not include error tolerance; the improved method [HMS+23], presented in this work,
does.

46

3.1 Attacks on Number Theoretic Transforms

has to be computed where s is the secret polynomial, and m̃ is the noisy message. If an NTT is
used, this computation involves an inverse NTT (INTT) and is commonly carried out as

m̃ “ v ´ INTTpûŝJq (3.2)

where û, ŝ are the respective NTT-images of u and s. Therefore, the decryption step of an
MLWE based scheme calls an inverse NTT with secret input. Obtaining side-channel information
may therefore reveal the secret key, and this makes the inverse NTT during decryption a valuable
target. In addition, the NTT is used during the encryption to compute

r̂ “ NTTprq, (3.3)

which is used to compute pv,uq in the first place as

u “ NTT´1
pr̂Âq ` e1 (3.4)

and
v “ NTT´1

pNTTptqr̂Jq ` e2 ` Decompress1pDecode1pmqq, (3.5)

where the variables t, e2 are as defined in Section 2.2.3, and Decompress1pDecode1pmqq is the
message mapped to a polynomial. Thus, an attack targeting the NTT during encryption may
recover the message (which could, e.g., be used to derive the session key).

The NTT does not allow for a direct, full key recovery as the secret key is only loaded or
stored at the very beginning or end. But, during the NTT, information about the secret key is
processed over a comparably long execution time, and therefore the NTT offers many different,
uncorrelated points of measurement. In addition, as noted in [PPM17], the intermediate values
are connected arithmetically by relatively simple operations. Information on intermediate values
may be obtained by using a template attack (c.f. Section 2.3.1). The information arises in the
form of probability distribution for each intermediate value; those probability distributions are
correlated with the secret key but usually do not allow for direct recovery due to measurement
noise. Instead, the distributions are processed using belief propagation, which allows recovering
secret key in some cases and requires an additional lattice reduction step in others.

Belief propagation is a statistical, message-passing algorithm that allows computing the marginal
distributions of a joint probability function (see Section 2.4). In this case, an attacker retrieves
probability distributions for intermediate values from the template attack, which are used as
priors in the belief propagation. Belief propagation then computes the marginal for the joint
probability function, i.e., the probability distribution of each coefficient given the distributions of
all coefficients. To achieve this, a factor graph representing the computation graph of the NTT
and all targeted intermediate values is initiated with the measured priors. Message passing and
Bayesian updating then result in the marginals. Depending on the attack, the key can then either
be directly re-constructed or fed into a lattice reduction algorithm.

3.1.2 The Attack of Primas, Pessl, and Mangard
The first attack on the (inverse) NTT in the fashion described above was published by Primas,
Pessl, and Mangard [PPM17] in 2017. For their practical evaluations on a real device, the
authors of [PPM17] target a Cortex-M4F using Electro-Magnetic Radiation (EM) leakage. They
recover the secret key from a single observation of the decryption routine of an RLWE scheme as
presented in [LPR13] (c.f. Section 2.2.3) featuring an NTT with parameters n “ 256, q “ 7681,
σ “ 4.51. Similar parameters are used in a variety of implementations, e.g., [CRVV15, GFS+12,
PG13, LSR+15, POG15, RRVV15]. Note that in the case of an RLWE scheme, k “ 1 and

47

Chapter 3 Related Work

here, the subtraction of Equation (3.2) is turned into an addition due to a slightly differently
constructed scheme. This means that the targeted point of computation is the calculation of

m̃ “ v ` INTTpûŝq. (3.6)

The attack works by first employing a template attack on the NTT computation in Equa-
tion (3.2), running a belief propagation, and then a lattice reduction step. The lattice reduction
step is needed as, to optimize the belief propagation run-time, the NTT graph is reduced in
size and splits into two separate graphs. While this reduces computational effort, it prevents an
immediate recovery without an additional lattice reduction step.

Template Attack on the NTT

The work in [PPM17] targets the modular arithmetic in the butterflies of the inverse NTT in the
implementation of [CRVV15] on a Cortex M4. The modular arithmetic in this implementation is
realized by using the internal multiplication and division instructions, and, to reduce modulo q, a
conditional statement potentially causes a subtraction/addition. The authors of [PPM17] are
able to detect the chosen branch (of this conditional statement) in a template attack with high
accuracy; this is featured in their attacker model.

For each twiddle factor, i.e., for each block of butterflies per layer and each operand, they
record 100 traces leading to a total number of about 100 million traces. The first trace is used to
distinguish the division operations (by timing), which depends on the bit size of the operand and
allows classifying values by Hamming weight in a first step. The remaining traces are used to
create templates for the multiplications. The authors report that in the metric of [SMY09], the
average entropy per key coefficient lies at around 7 bit, but depends on the twiddle factor; the
entropy without further information is log2pqq which is about 12.9 bit.

Hamming weight leakage model and simulation. In addition to their attack on a physical
device, a simulated attack is provided, which makes their work reproducible. To simulate the
attack, the Hamming weight leakage model (see Section 2.3.1) is used. The simulations are carried
out with different noise levels given by a standard deviation σ ą 0. For a targeted value a an
attacker obtains a normal distribution with expected value

a ` e where e Ð Nσp0q. (3.7)

This means for every butterfly with twiddle factor ω, the attacker obtains two distributions,

Nσpa ` e0q and Nσppaω mod qq ` e1q, (3.8)

where
e0, e1 Ð Nσp0q. (3.9)

Belief Propagation

From the template attack, the authors obtain distributions for intermediate values in the inverse
NTT. Those are now modeled as variable nodes in a belief propagation graph. The factor nodes are
multiplication, addition, and subtraction nodes; those represent the arithmetic operations carried
out during the NTT as well as whether a reduction in the respective computation happened.
The addition and subtraction are operations of degree 3, whereas “mul” is multiplication with the
(constant) twiddle factor and therefore of degree 1. Using these nodes, the computational graph
of the NTT is represented as a belief propagation graph. Figure 3.1 shows a butterfly modeled

48

3.1 Attacks on Number Theoretic Transforms

x00

x01

add

sub

mul

x10

x11

Figure 3.1: A butterfly representing a belief propagation graph as used and depicted in [PPM17].
The nodes x00 and x01 represent inputs to the butterfly, and the remaining variable nodes (circles)
represent outputs. The factor nodes (squared) represent addition, subtraction, and multiplication
as well as whether a reduction happened in the respective computation.

by belief propagation nodes as depicted and used in [PPM17]. The node function for addition,
fadd is given by

faddpx00, x01, x10q “

#

1 if x00 ` x01 ” x10 mod q, x00 ` pωx01 mod qq ě q

0 else
, (3.10)

and for subtraction, fsub is given by

fsubpx00, x01, x11q “

#

1 if x00 ´ x01 ” x11 mod q, x00 ´ pωx01 mod qq ă q

0 else
(3.11)

where x00 and x01 are the inputs to the butterfly and x10 and x11 are the outputs. The first
condition in both nodes represents the computation, and the second is the information about if
a reduction happened. This means, the first condition corresponds to the EM, and the second
condition to the timing leakage.

The authors now build a graph modeling the inverse NTT from these nodes. As a single
graph, the belief propagation does not converge well due to multiplications spreading unevenly
throughout the NTT and due to varying behavior of the template attack depending on the
twiddle factor. Therefore, the NTT graph is split up into three different sub-graphs which do not
include the first layer.

Performance optimizations. Note that a naive execution of the belief propagation as described
previously is computationally expensive; to reduce the runtime of the belief propagation, the
authors propose using the Fast-Fourier Transformation (FFT) to speed up the updating process.
This is possible due to the fact that the addition of random variables is the convolution of
distributions, and pointwise multiplication in FFT-domain is convolution in normal domain.
Therefore, for example, given the butterfly calculation a ` b, the following is computed: Let A, B
be the random variables corresponding to a, respectively b, and let µa, µb be the corresponding
distributions arising in belief propagation. To compute the distributions µa`b, i.e., the distribution
of A ` B, the Fourier transforms µ̂a “ FFTpµaq and µ̂b “ FFTpµbq are computed. Then, the
inverse FFT of the product of µ̂a, µ̂b

IFFTpµ̂aµ̂bq “ IFFTpFFTpµaqFFTpµbqq (3.12)

is the distribution of A ` B, i.e., µa`b.

49

Chapter 3 Related Work

Lattice Decoding

Using the full belief propagation graph, the inverse NTT would be modeled completely, and the
first layer would allow to recover the key in NTT domain. As the sub-graphs do not include
all results of the inverse NTT computation, an additional lattice reduction step is required.
The NTT is linear; therefore, recovering intermediate values of a layer immediately gives linear
equations involving the secret key. The solution space generated by those equations is then
intersected with the public key equation reducing the dimension by the amount of equations
coming from intermediate values. In practice, this means solving the obtained equations for
key coefficients and then substituting the solution into the public key equation. In this scheme,
192 intermediates are available coming from the 3 sub-graphs resulting in a lattice problem of
dimension 64, which is solvable in practice on widely available hardware.

Results

The authors evaluated their attack on a real device as well as in the Hamming weight leakage
model. In the case of the real device, their attack is successful with 20 iterations of belief
propagation. In the Hamming weight leakage model, they report a success rate of over 0.9 for
both masked and unmasked setting up to σ “ 0.4. Then, the masked setting drops around σ “ 0.4
and the unmasked setting shortly after, at σ “ 0.5. The success rate is 0 for both settings at
around σ “ 0.7.

3.1.3 The Attack of Pessl and Primas

The attack of [PPM17] is improved by timing leakage and requires a large amount of traces
to create the templates. Pessl and Primas [PP19] present an attack on the NTT that targets
constant time implementations and requires fewer traces to obtain the templates. This is possible
as, firstly, their attack targets the NTT during the encryption step, while [PPM17] targets the
decryption step. Secondly, they introduce several improvements to the belief propagation, which
leads to a more efficient (in terms of required information) recovery of the secret key. Their
improvements allow for a practical, more noise-tolerant attack on an implementation that does
not leak timing information. The downside to targeting the encryption step is that the secret key
sk (often the long-term secret) may not be extracted, but only the message m (often the session
key) can be recovered.

Instead of targeting the computation of the inverse NTT in

m̃ “ v ´ INTTpûŝJq (3.13)

during decryption, the authors target the computation of

r̂ “ NTTprq (3.14)

during encryption. The vector of polynomials r̂ is used to compute the ciphertext and recovering
it allows recovering the message m.

The belief propagation features three separate improvements: First, they introduce message
damping; this may lead to improvements in factor graphs with short loops. Second, they explain
how the results may be improved by a different message scheduling. Third, to eliminate the short
loops in the factor graph, they introduce a butterfly node unifying the three factor nodes that
are used to model a butterfly in [PPM17] into a single node.

50

3.1 Attacks on Number Theoretic Transforms

Belief Propagation Improvements

The improvements to the belief propagation incorporated by the authors of [PP19] are inspired by
well-known results in the area of decoding algorithms. In particular, the works of Storkey [Sto03]
and Yedida [Yed04] provide in-depth analysis of belief propagation in different but comparable
contexts. The work of [Sto03] analyses belief propagation in the context of FFTs – which are
conceptually similar to NTTs – and [Yed04] provides analysis on Reed-Solomon codes, which can
be decoded using an NTT.

The first improvement is message damping with factor of α “ 0.9. The goal is to reduce
oscillation, which may occur as the factor graph is far from being a tree. Message damping
computes the average between previous messages with the currently computed distribution where
the current message is weighted with factor α, and the previous one is weighted with p1 ´ αq.

The second improvement is a different message scheduling. The straightforward approach
used in [PPM17] is to update all nodes simultaneously. This approach leads to nodes with large
distances, which take a long time before influencing each other, while the shortest loops are
completed in a single full iteration. The more balanced scheduling that is used in [PP19] consists
of first passing messages in only one direction from input to output before reversing and passing
in the other direction.

The third improvement is using a factor node that models a butterfly and combines the three
factor nodes used in [PPM17] into a single node. This butterfly node represents multiplication
with the twiddle factor ω, addition of the inputs, and subtraction of the inputs. Thereby, the
joint probability function of a single butterfly is computed in an exact manner and the amount of
loops in the factor graph is reduced. The node function for a butterfly node is given by

fbfpx00, x01, x10, x11q “

#

1 if x00 ` x01 ” x10 and x00 ´ ωx01 ” x11 mod q

0 else
. (3.15)

x00

x01

add

sub

mul

x10

x11

(a) Separate nodes as in [PPM17].

BF

a

b

c

d

(b) Butterfly node as in [PP19].

Figure 3.2: A butterfly modeled with separate factor nodes, and a butterfly modeled by a single
butterfly node. The butterfly node computes the joint probability function of intermediates at
one butterfly in an exact manner.

Targeting Encryption

The work of [PPM17] targets the decryption process recovering the secret key of them Key
Encapsulation Mechanism (KEM) (i.e., in many use cases the long-term secret key). The routine
targeted in both [PPM17] and [PP19] is the computation of INTTpûŝJq (but in [PPM17] only
with k “ 1). But in [PPM17] coefficients of u are distributed uniformly random over the full
range of the base field and not restricted in size (apart from being coefficients of Fq).

51

Chapter 3 Related Work

On the other hand, when targeting encryption, as in [PP19], the input values are small, as the
value r is sampled from a binomial distribution with small support, η1 in Kyber (c.f. Section 2.2.3).
This arrows down the support of the prior distributions and, at the same time, gives more precise
measurements of intermediate values (c.f. Section 2.3.1).

Note that the encryption subroutine is used in the decapsulation as well, and the key generation
features a similar NTT call – this gives an additional target for the attack of [PP19]. During the
key generation, the computation which may be targeted is

ŝ “ NTTpsq. (3.16)

Therefore, the attack of [PP19] may target the session key in encapsulation, decapsulation, and,
in exceptions, even the secret key (and not just the message) during key generation.

Masked Implementations

Masking the NTT takes away a large advantage of the attack described in [PP19]: The inputs to
the NTT are no longer small. The authors therefore propose to join the factor graph so that the
implicit unmasked result is taken into account. This approach allows retaining some advantage of
the small coefficients of the unmasked version of r. Nevertheless, in contrast to [PPM17] the noise
tolerance (in terms of σ in the noisy Hamming weight model) is more than halved by employing
masking.

Recovering the Shared Secret

In the main scenario, when targeting the message during encryption, the authors do not immedi-
ately recover the message. Instead, the value of r is recovered which is used during encryption
to compute the ciphertext. Note that r is a vector of polynomials, and the attack has to be
carried out for each of the k components of r. The message can be computed as follows: With
the notation of Section 2.2.3 we have

v “ trJ ` e2 ` Decompress1pDecode1pmqq (3.17)

and
c2 “ Encodedv

pCompressdv
pvqq (3.18)

where c2 is known to the attacker by additionally observing communications, r was recovered
through the side-channel analysis, and t can be obtained from the public key. Thus, m can be
obtained by first computing

c1
2 “ trJ (3.19)

and then decoding the difference between c2 and c1
2, i.e., computing

m “ Decode1pc2 ´ c1
2q. (3.20)

As the difference between c2 ´ c1
2 is approximately

e2 ` Decompress1pDecode1pmqq (3.21)

and e2 is also small, this in fact yields the correct value m.

52

3.1 Attacks on Number Theoretic Transforms

Results

The authors evaluate their attack in both the parameter set used in [PPM17] and on Kyber. In
both cases, the noisy Hamming weight model with variance σ is used. Additionally, they evaluate
the belief propagation without employing their improvements. The results for different parameter
sets differ only slightly both with a success rate of 1 for σ ă 1.4 and a positive success rate for
σ ď 2 in the unmasked case. In the unmasked case, the success rate for the factor graph without
improvements is 1 up to a σ of 0.5 and positive up to a σ of 1.7. In the masked case, the separate
graph does not produce satisfactory results, a success rate of greater than 0.5 is not reached
regardless of σ, and the success rate is 0 beginning with σ “ 0.4. The joined factor graphs achieve
a positive success rate for σ ď 0.3 but drop to zero quickly after; with σ ě 0.5, no successes are
reported.

Additionally, the authors provide analysis on a real device, an STM32F405, using a ChipWhis-
perer UFO board [CwUfo, Cw32F4, OC14], measuring power consumption. They record 1900
traces to obtain the template and evaluate their attack on 100 traces. For the practical attack on
the real device, they report a success rate of 0.57, coming from a success rate of 0.83 per targeted
NTT.

3.1.4 The Attack of Xu et al.

Xu et al. [XPR+22]2 provide another attack on the inverse NTT targeting the secret key at the
same location. Their attack relies on a chosen ciphertext and EM leakage targeting the modular
reduction during the inverse NTT. In addition, they propose an attack on the mapping from
message bits to polynomials and vice-versa. The authors note that operations after the NTT
could be targeted as well but do not carry out these proposals.

The attack of [XPR+22] uses a chosen ciphertext in which components of u are set to certain
constants. In the device under attack, the coefficients of u are multiplied with the secret key
coefficients in t´2,´1, 0, 1, 2u during the inverse NTT. The authors choose the coefficients such
that this multiplication leads to different Hamming weights depending on whether the respective
secret key coefficient is in certain subsets of t´2,´1, 0, 1, 2u. A subsequent SPA allows partitioning
key coefficients into these subsets by their Hamming weight from which the coefficients can be
reconstructed after four traces with different constants and subsets. Their attack has been carried
out in practice, does not require a profiling device, and can thus be assumed to be more portable
(compared to [PPM17, PP19]) because no templates are required. While this is a clear advantage,
the approach to target the inverse NTT relies on having few possible values for the secret key;
therefore, it is fully prevented by masking countermeasures, which have to be assumed to be in
place in a realistic scenario.

3.1.5 The Countermeasures of Ravi et al.

The NTT is a major building block of several RLWE and MLWE based schemes, e.g., [ADPS16b,
BDK+18], and the usage of an NTT has been proposed for other schemes as well [LS19, CHK+21].
The attacks of [PPM17] and [PP19] show that the (inverse) NTT is a valuable target for side-
channel attacks as message m as well as the secret key sk may be recovered. Therefore, protecting
the NTT as well as the inverse NTT against side-channel attacks and understanding the cost
of such countermeasures is crucial. Ravi et al. [RPBC20], in response to [PPM17] and [PP19],
present several masking and shuffling countermeasures for the (inverse) NTTs used in Kyber

2Note that there is a preprint [XPRO20] first published in 2020.

53

Chapter 3 Related Work

and Dilithium (the latter is a signature scheme introduced in [DKL+18] and currently specified
in [BDK+21a]).

Their work proposes several masking countermeasures protecting the atomic operations of the
(inverse) NTT by masking the twiddle factor multiplication. The outputs to a butterfly are
multiplied with an additional twiddle factor ω, a power of a 2n-th root of unity, i.e., ω “ ζk for
some k where ζ is the Kyber root of unity as in Section 2.2.3. Thereby, the relationship between
the in- and outputs of a butterfly is randomized, and the authors conjecture that this leads to
worsened belief propagation performance. The masking countermeasures come in several variants
that offer different levels of protection and result in varying performance degradation; the more
entropy is introduced and protection is offered, the more expensive is the countermeasure.

As another main contribution, the authors propose shuffling countermeasures randomizing the
order of operations. They propose to randomize computations of butterfly nodes or operations
inside a butterfly. Thereby, the values an attacker measures by, e.g., using a template do not
match the true variable processed in the butterfly that the adversary expects to be computed at
a given time. Again, these countermeasures come in several variants that offer different levels of
protection and performance degradation.

The authors then provide performance evaluations for their proposed countermeasures. They
evaluate a variety of settings of their countermeasures integrated into pqm4 [KPR+]. Depending
on the setting and level of protection, they report a performance overhead of about 7%-78% for
Kyber and 12-490% for Dilithium. Evaluations of the level of protection and information on
whether previous attacks may be adapted to the proposed countermeasures are not provided; this
question is partly answered by this thesis in Section 4.5.

Masking Countermeasures

As described in Section 2.2.3, an unmasked butterfly implementation with twiddle factor ω
commonly computes either the function

pa, bq ÞÑ pa ` ωb, a ´ ωbq (3.22)

or
pa, bq ÞÑ pa ` b, ωpa ´ bqq. (3.23)

Twiddle factors are a constant of an implementation and accessible to an attacker. In an
unprotected implementation, the twiddle factors belonging to a targeted butterfly can be assumed
to be known to the attacker. This knowledge is modeled in the belief propagation by either
the multiplication nodes of [PPM17] or the butterfly nodes of [PP19]. Ravi et al. [RPBC20]
propose masking with an additional twiddle factor. This means, at a butterfly with twiddle
factor ωbf “ ζx instead of computing Equation (3.23), the device chooses an ωmask “ ζy – with y
depending on the configuration of the countermeasure – and computes

pa, bq ÞÑ ωmaskpa ` b, ωbfpa ´ bqq (3.24)
“ pωmaskpa ` bq, ωmaskωbfpa ´ bqq (3.25)

“ pζxpa ` bq, ζx`ypa ´ bqq. (3.26)

Based on this construction, several masked butterfly nodes are defined by setting ωmask in different
manners. These butterflies either have the same input and same output masks, the same input
but different output, or different input and different output masks. This then allows defining
coarse and fine masking as well as generic masking as a trade-off between the two variants. Coarse
masking uses the same input/same output butterflies and the same mask for all inputs, whereas

54

3.1 Attacks on Number Theoretic Transforms

fine masking makes use of different input/different output butterflies and uses a different mask
for every input. By utilizing combinations of butterfly nodes including the same input/different
output nodes, more configurations allowing for a trade-off between security and performance are
possible.

Shuffling Countermeasures

The shuffling countermeasures of [RPBC20] permute the order in which butterfly computations
take place. This prevents an attacker from mapping measured values to the correct (intermediate)
variables. Thereby, practically, the NTT graph in an attack such as [PPM17, PP19] would
assign measurements to incorrect intermediates – the values actually measured do not match
the variables the measurement is assigned to. The belief propagation after the template attack
therefore works on incorrect priors – i.e., the priors do not match the variables, and the arithmetic
model of the NTT is incorrect – preventing key recovery. These permutations in the order
of execution are again defined in a configurable way, i.e., on different sets of to-be-permuted
computations. The first and least protective countermeasure is fine shuffling, which permutes
in- and outputs on a single butterfly level. The countermeasure called coarse shuffling permutes
butterflies as a whole and comes in two variants – permuting butterflies in a block, which is called
coarse in-group shuffle, or in a layer, called coarse full shuffle. The latter is the countermeasure
offering the most protection but is also the most expensive in terms of execution time.

In an unprotected execution, a layer of the NTT or inverse NTT is computed in a fixed order;
e.g., butterflies are computed by the order of the attached coefficients. That means that the first
butterfly to be computed is connected to the first coefficient of the previous layer as well as to the
coefficient having the layer distance d as index. The second butterfly is connected to the second
coefficient and the coefficient at d ` 1. This is continued until reaching input d ´ 1, and the next
d inputs are skipped, because they are connected to the already computed butterflies. Inside the
butterfly, the order of operations is fixed as well, commonly computing the output consisting
of the addition of the two values first with loads and stores arising just before (directly after)
a value is used (is stored). Coarse shuffling now randomly permutes the order of execution of
butterflies, and fine shuffling randomizes the load and stores inside a butterfly.

a0

â1

â2

â3

â4

â5

â6

â7

a10

a11

a12

a13

a14

a15

a16

a17

a20

a21

a22

a23

a24

a25

a26

a27

a0

a1

a2

a3

a4

a5

a6

a7

´

´

´

´

`

¨ω00

`

¨ω00

`

¨ω00

`

¨ω00

´

´

`

¨ω10

`

¨ω10

´

´

`

¨ω11

`

¨ω11

´

`

¨ω20

´

`

¨ω21

´

`

¨ω22

´

`

¨ω23

Figure 3.3: Different shuffling methods from [RPBC20] on an inverse NTT graph. Fine shuffling
(rightmost arrow in blue) permutes load and stores, coarse in-group shuffling (middle arrow in
green) permutes on butterflies with the same twiddle factor, and coarse full-shuffling permutes on
all butterflies of a layer. Note that this depiction is only illustrative; it does not show all possible
permutations, only permutes stores, and only depicts permutations of the second layer.

55

Chapter 3 Related Work

Fine shuffling. The countermeasure of fine shuffling permutes the load and store operations
inside the execution of a butterfly. This means the order in which an input is loaded into a
register is randomized; after both inputs are loaded, the butterfly operations are computed, and
then finally stored again in a randomized manner. The randomized load operations are achieved
using an arithmetic swap operation previously used in [HS13]. This operation has previously been
a target of side-channel attacks itself [NCOS16, NC17]. Therefore, a variation of fine shuffling,
bitwise fine shuffling, is proposed; this variation is not explained here and is not considered
in Section 4.5. When applying a template attack targeting load and/or stores, as in [PP19],
measurements will be assigned to incorrect intermediates with probability 1

2 per pair of in- and
outputs. During the belief propagation, the priors then do not match the variables they are
assigned to, and the modeling of the arithmetic relationship is therefore incorrect and bound to
fail. This is exemplarily shown in Figure 3.4. For an (inverse) NTT with l layers and h inputs

BF

a

b

c

d

Figure 3.4: Permuted in- and outputs in a butterfly belief propagation node after a template
attack on an implementation using fine-shuffling. In a template attack as in [PP19] or [HHP+21]
on load and stores with subsequent belief propagation, measurements are randomly permuted as
a consequence of the countermeasure.

per layer, fine shuffling has 2h{2l possible permutations. Combining the attack of [PP19] with
a brute-force approach to adapt to the countermeasure would therefore result in having to run
2128 ¨ 7 belief propagation instances. The authors of [RPBC20] note that a template attack is
still feasible if an attacker targets the modular multiplication as for example in [PPM17], but
requires a largely increased amount of traces. Also note that the results presented for the attack
of [PPM17] made use of additional leakage.

Coarse in-group shuffling. In contrast to fine shuffling, coarse in-group shuffling does not
permute load and store operations of a single butterfly but instead permutes butterflies as a single
unit of operation. This means the order in which butterflies are computed in a single layer is
permuted; for in-group shuffling, the permutation is restricted to a single block, i.e., the set of
butterflies sharing their twiddle factors. In-group shuffling is shown in Figure 3.5.

In a common NTT a block is given by
␣

k2l`1, k2l`1 ` 1, . . . , k2l`2, k2l`2 ` 1, . . . , k2l`2 ´ 1
(

where l is the current layer, and k is the index of the block. For an (inverse) NTT the number
of permutations per layer with n inputs and m butterfly blocks is p n

2m !qm; the total number of
permutations is the product over the complexities of a layer. For Kyber, where the number of
groups in the i-th layer is n{2i, this results in p2i´1{mqm different possible permutations. In the
case of the layer where a block consists of a single butterfly, the authors suggest using coarse
full shuffling for this layer; note that this layer does not exist in a Kyber inverse NTT (c.f.
Section 2.2.3).

56

3.1 Attacks on Number Theoretic Transforms

permutation of first block

permutation of second block

Figure 3.5: Possible permutations of butterflies after a template attack on an implementation
using coarse in-group shuffling in a layer with distance 2 and 8 nodes. The permutation on
the outputs has to be symmetric to the permutation on the inputs as complete butterflies are
permuted.

Coarse full shuffling. Coarse full shuffling is similar to coarse in-group shuffling. In contrast
to in-group shuffling, as the name suggests, the permutation is not limited to a block but instead
all butterflies of a layer may be permuted. The concept of full shuffling is shown in Figure 3.5.
This results in a higher brute-force complexity for an attacker, but additional twiddle factors
need to be loaded (in a secured way!) per butterfly worsening performance; in addition, loading
twiddle factors may leak information which would result in an attacker reaching the brute-force
complexity of coarse in-group shuffling again. For an (inverse) NTT with l layers and h inputs
per layer, coarse full shuffling results in ph!ql possible permutations.

permutation of first block

permutation of second block

inter-block permutations

Figure 3.6: Possible permutations of butterflies after a template attack on an implementation
using coarse full shuffling in a layer with distance 2 and 8 nodes. The permutation on the outputs
has to be symmetric to the permutation on the inputs as complete butterflies are permuted. In
addition to the in-block permutations, nodes in different blocks may also be permuted.

Performance Results

The authors implemented their countermeasures using the Kyber and Dilithium (at National
Institute of Standards and Technology (NIST) level 3, i.e., for Kyber768 and Dilithium3)
implementations provided by PQM4 [KPR+] and evaluate their countermeasures in comparison

57

Chapter 3 Related Work

to an unprotected implementation. Both masking and shuffling countermeasures are reported to
not increase dynamic memory consumption. In terms of performance, the computational overhead
depends on the masking or shuffling method employed. The overhead ranges from 6.9% to 77.6%
for masking and from 30.2% to 69.5% for shuffling countermeasures. Table 3.1 permutations the
results for shuffling countermeasures as reported in [RPBC20].

Table 3.1: Cycle count (in millions) and performance overhead (in brackets, in percent) of shuffling
countermeasures as reported in [RPBC20]. Note that [RPBC20] provides data on more masking
variants and uses a slightly different naming scheme.

Countermeasure Key Generation Encapsulation Decapsulation

Unprotected 1.178 (0) 1.301 (0) 1.358 (0)
Coarse Masked 1.259 (6.9) 1.395 (7.2) 1.466 (7.9)
Fine Masked 1.979 (68) 2.229 (71.3) 2.413 (77.6)

Coarse Full Shuffled 1.534 (30.2) 1.72 (32.2) 1.841 (35.4)
Coarse In-Group Shuffled 1.49 (26.5) 1.664 (27.9) 1.772 (30.4)

Fine Shuffled 1.468 (24.7) 1.643 (26.3) 1.752 (28.9)
Bitwise-Fine-Shuffled 1.878 (59.4) 2.123 (63.2) 2.303 (69.5)

3.1.6 Limitations of Prior Attacks

The attack of [PP19] does not target the secret key sk (and therefore in many use cases not
the long-term secret) and can only recover the message m (in many use cases the session key).
Taking into account that an application may often use ephemeral session keys or combine session
keys with previous keys, this is a heavy restriction. Both attacks, [PPM17] and [PP19], do
not take shuffling countermeasures into account. Therefore, an implementation using a shuffled
(inverse) NTT is adequately protected against these attacks unless further adaptations are taken
by the adversary (c.f. Section 3.1.7). In addition, the noise tolerance of [PPM17] is very low,
with a standard deviation of less than 0.7 compared to 1.7 in [PP19], and the noise tolerance
of [PP19] is substantially reduced by masking the NTT (see [PP19, Fig. 4]). Depending on the
achievable noise tolerance, this may already prevent attacks in practice, especially considering
that these template attacks assume access to an almost perfect clone of the device. The attack
of Xu et al. [XPR+22] allows for a more portable approach that does not require a profiling
device. While this is a major advantage, the attack is prevented by masking countermeasures,
and implementations, which are not protected by masking are well-known to be vulnerable.

Summarizing, the noise tolerance in masked implementations is comparably low3 for both
attacks, shuffling countermeasures are not taken into account, and [PP19] does not target the
secret key but only the message.

3.1.7 Defeating Countermeasures

It is yet unclear how an attacker can evade the proposed countermeasures in a Soft Analytical
Side-Channel Attack (SASCA) on a post-quantum scheme using an NTT, but a wide variety of
adaptions to countermeasures has previously been proposed in different contexts: In [CCD00]
Clavier, Coron, and Dabbous present the techniques Hamming integration and sliding window
differential power analysis, which are subsequently used and studied by several attacks on AES.
3Compared to an attack on the message m in an unprotected setting.

58

3.2 Attacks using Decryption Failures

Rivain et al. [RPD09] use both techniques to attack an AES implementation protected by a shuffling
countermeasure. Tilich et al. [THM07] employ the windowing approach against a masked and
randomized AES implementation, and Tilich and Tilich and Herbst [TH08] study the techniques in
practice on a smartcard. Veyrat-Charvillon et al. [VMKS12] provide extensive analysis of shuffling
countermeasures and how do adapt in a variety of scenarios using Bayesian updating – this can be
seen as similar to adaptations to belief propagation; Azouaoui et al. [ABG+22] further improved
upon their work. Bronchain and Standaert [BS20] dissect an AES implementation in practice
while proposing several techniques to adapt attacks to countermeasures; this attack is also based
on Bayesian updating similar to the techniques used in belief propagation. Guo et al. [GGSB20]
provide information theoretic analysis for SASCA that allows for bounds on the amount of leaked
information that is obtained in an attack. A theoretical analysis of shuffling countermeasures in
the context of Pseudo-Random Functions is provided by Grosso et al. in [GPSG14], and Bruneau
et al. [BGNT15, BGNT18] counter local shuffling. Udvarhelyi et al. [UBS21] counter shuffling in
an implementation of lightweight cryptography on low-end platforms; they obtain leakage of the
shuffling permutation and employ an enumeration technique.

Several adaptations to countermeasures are known, and some occur in settings similar to belief
propagation. Nevertheless, it is unclear how to defeat countermeasures such as those presented by
Ravi et al. in [RPBC20] in a lattice-based scheme using an (inverse) NTT targeted by an attack
using belief propagation. In particular, the impact of shuffling countermeasures in these settings
without considering the leakage of permutations is yet unanswered.

3.2 Attacks using Decryption Failures

In many LWE-based schemes, decryption failures may occur, i.e., the decryption operation may
fail. This is because, as described in Section 2.2.3, the message is recovered from a noisy version
of the message polynomial. Every term of the message polynomial, each representing one bit,
contains a (with very high probability) small additive noise term – those noise terms are called the
error polynomial in Kyber. If this noise is too large in any coefficient, a bit is decoded incorrectly
– i.e., a 0 bit is decoded to a 1 or vice-versa. In this case, the decryption fails, and an observer may
deduce information about the noise term. The noise term itself depends on the secret key and
thus leaks information about it. In LWE-based schemes in the context of non-implementation
attacks, this was first noted in [Flu16] and used for example in [BBLP18, GJY19, BGRR19]. In
the context of NTRU, this principle has previously been analyzed [HNP+03]. Guo, Johansson,
and Nilsson [GJN20] first applied this principle in an implementation attack to a lattice-based
scheme using an FO-transform by exploiting timing leakage in the comparison operation that
allows detecting decryption failures. Ravi et al. [RRCB20] give yet another example of how chosen
ciphertexts may exploit the FO-transform but use a different approach with ciphertext that is
not close to a valid ciphertext. A generic side-channel methodology targeting the FO-transform
of several post-quantum schemes through the creation of a plaintext checking oracle, a deep
learning approach, and analysis on the applicability of attacks similar to [GJN20], [BDH+21b],
and [PP21] is provided by Ueno et al. [UXT+22].

In the following, we reiterate the attacks of [BDH+21b, PP21, DHP+22, Del22] on Kyber.
Note that another attack exists as a master’s thesis [Wei22] but is unfortunately unpublished; the
author uses machine learning to differentiate between decryption failures and successes. The key
recovery methods utilized in the attacks presented in this section are described in Section 3.3
because they are relevant in a broader context.

59

Chapter 3 Related Work

3.2.1 Decryption Failures in Kyber

All attacks presented in this section as well as in Chapter 5 depend on the same principle of
potentially causing and observing decryption failures and thereby obtaining information. In the
context of LWE-based schemes, this was first noted in [Flu16] and first used in a side-channel
attack in the context of an FO-transform [GJN20]. In the following, we explain this principle in
the context of Kyber as used in [BDH+21b, PP21, HPP21, DHP+22, Del22].

Message Bits and Polynomial Coefficients

Recall from Section 2.2.3 that in Kyber bits of a message m are mapped to polynomial coefficients
by mapping a 0 bit to the 0 coefficient and a 1 bit to

P

q
2

\

during the encryption, which is visualized
in Figure 3.7a. During the decryption process, the message bits are recovered from a noisy version
of those coefficients. This works by mapping a coefficient x P Fq to 0 if and only if x as an is closer
to 0 than to q

2 and to 1 otherwise; where x is considered to be an integer in
␣

´
q´1
2 , . . . , q´1

2

(

.
When interpreting Fq as discrete points on a circle, as visualized in Figure 3.7b, this can be seen
as mapping the upper half of the circle to 0 and the lower half to 1.

0

q
2

t0, 1u 1

(a) Mapping bits to message coefficients.
0

q
2

t0, 1u 1

(b) Mapping noisy coefficients to message bits.

Figure 3.7: Mapping bits to coefficients and vice-versa with q “ 23 (adapted from [Her23a]). 0
bits are mapped to 0, and 1 bits are mapped to q

2 . To recover a bit, the upper half of the circle
(closer to 0) is mapped to a zero bit while the lower part of the circle (closer to q

2) is mapped to a
1 bit. A small error (blue) does not change the result (c.f. Figure 2.8 and Figure 2.9).

60

3.2 Attacks using Decryption Failures

Error Polynomial

The error polynomial in Kyber is given by

eJr ´ sJpe1 ` ∆uq ` e2 ` ∆v (3.27)

with the notation of Section 2.2.3; note that all terms are small, and therefore the noise term can
be interpreted as a vector of small integers. If an attacker can observe a (naturally occurring)
decryption failure, they may deduce that the absolute value of the noise term in at least one
coefficient must have been large. Without manipulation, decryption failures happen with very
low frequency as the noise term is small with very high probability, for example in Kyber, the
probability for a decryption failure is less than 2´139 [ABD+21b].

Causing Decryption Failures

If an attacker can cause an additional noise term in one coefficient occurring before or during the
error-correction phase, they may cause decryption failures depending on the noise term which,
in turn, depends on the secret key. In a decryption without manipulation, the noisy message
coefficient is distributed around either 0 or

P

q
2

\

, and the distribution is symmetric and has a
small variance. If an adversary adds or subtracts

P

q
4

\

– in the visualization of Figure 3.8b this
is a quarter rotation – the noisy message coefficient is distributed exactly around the boundary
of where a decryption failure occurs – either

P

3q
4

\

or
P

q
4

\

, respectively. This causes decryption
failures to happen with probability (almost) 1

2 ; whether a decryption failure is caused depends on
the sign of the noise term. If the attacker can observe such decryption failures they therefore
learn an inequality of the form

p´1qobsperJ ´ spe1 ` ∆uqJ ` e2 ` ∆vq0 ď 0 (3.28)

where obs is 1 if a decryption failure occurred and 0 otherwise4, and the 0-th coefficient was being
targeted5. Figure 3.8 visualizes the occurrence of decryption failures depending on the noise term:
The situation where no decryption failure is caused is shown in Figure 3.8a, and the situation
with a positive noise term is depicted in Figure 3.8b.

Clearly, the obtained inequality is linear in the secrets e and s and may be written as an
inequality over the integers. This means that after m such observations, the attacker obtains a
linear system of inequalities

`

e s
˘

M ď b (3.29)

where e and s are flattened to integer vectors with M P Zmˆ2kn and b P Zm.

The impact of compression. Note that in a scheme without compression, the attacker may
obtain equations instead of inequalities as described in [GJN20]: By using different introduced
errors, i.e., terms other than

P

q
4

\

, they may determine the minimum value causing an error. This
is equivalent to finding a value E two inequalities,

perJ ´ spe1 ` ∆uqJ ` e2 ` ∆vq0 ` E ď 0 (3.30)

and
perJ ´ spe1 ` ∆uqJ ` e2 ` ∆vq0 ` E ` 1 ą 0, (3.31)

4In the case of a decryption failure, the inequality is strict.
5Note that different coefficients may be targeted; 0 is then replaced by the corresponding index.

61

Chapter 3 Related Work

1 1

(a) If the noise term is negative, no decryption failure is caused.
0

q
2

1 0

(b) If the noise term is positive, a decryption failure is caused.

Figure 3.8: A maliciously introduced error may cause a decryption failure depending on the noise
term (adapted from [Her23a]).

where the 0-th coefficient was targeted. As the compression used on the relevant ciphertext
component in Kyber rounds a coefficient, including the introduced error, to the nearest multiple
of

P

q
2dv

\

“
P

q
24

\

, this is implicitly prevented. Instead, an attacker may obtain more refined
inequalities using the same technique as demonstrated in [BDH+21b].

Impact of the FO-Transform

The additional error that potentially causes a decryption failure may be introduced by a chosen
ciphertext: As the decryption process is linear up until the error correction if an attacker adds
a
P

q
4

\

term to a ciphertext coefficient v, this error propagates into the recovery method; this
causes the situation described above. To be precise, the attacker first honestly generates a valid
ciphertext pu, vq, adds

P

q
4

\

to coefficient l of the ciphertext component vl. This causes a decryption
failure depending on the noise term as described above. If the Public-Key Encryption (PKE)
variant of Kyber, KyberPKE, were to be deployed in a non-ephemeral scenario, the following
attack would recover the key:

1. Honestly6 generate a valid ciphertext ct for a random message m.

2. Manipulate the first coefficient of ct by adding a
P

q
4

\

term obtaining c̃t.

3. Send the ciphertext c̃t to the device or algorithm under attack.

4. Observe whether a decryption failure happens, and derive an inequality as described above.

6This means: By calling the encapsulation routine without any manipulation.

62

3.2 Attacks using Decryption Failures

5. Repeat until a sufficient number of inequalities have been derived.

6. Solve inequalities using the method described in this thesis in Chapter 67.

As already described in Section 2.2.3, Kyber uses an FO-transform similar to the one presented
in [TU16] to turn the IND-CPA secure KyberPKE into the IND-CCA2 secure KyberKEM, which
is commonly called Kyber. Clearly, the FO-transform prevents a pure chosen-ciphertext attack.

In the presence of an FO-transform, the decryption failure is still occurring, as the decapsulation
routine calls decrypt on the ciphertext. But regardless of whether a decryption failure occurs,
the decapsulation will fail: The comparison of the submitted ciphertext to the re-computed
ciphertext yields invalid – if no decryption failure happens, the decryption routine computes the
valid ciphertext ct and compares against c̃t.

If an implementation attack allows an attacker to observe whether a decryption failure occurred,
i.e., replaces step 4., the attack is possible again. This principle, in combination with an
implementation attack, is used by, e.g., [GJN20, BDH+21b, DHP+22, HPP21].

3.2.2 The Attack of Pessl and Prokop
Pessl and Prokop [PP21] use a fault attack on the decoding routine in New Hope and Kyber. They
thereby prevent an addition of

P

q
4

\

to one coefficient. This leads to the leakage of information
through inequalities as described in the previous section.

Attack Target

The attack of Pessl and Prokop [PP19] targets the decoding routine Compressp¨, 1q. The decoding
routine is the function described above mapping a noisy polynomial coefficient back to the original
message bit m – a coefficient is mapped to a 1 bit if and only if it is in

␣P

q
4

\

, . . . ,
P

3q
4

\

´ 1
(

. In
Kyber, this is described by re-using the compression function with compression parameter d “ 1.
A coefficient x is mapped to

Compresspx, 1q “

R

2x

q

^

mod2. (3.32)

This is directly equivalent to the above description as an easy computation shows.
In the reference implementation (associated with the submission to the NIST contest [NistCfp]),

this is implemented in the function poly_tomsg which computes

(((x << 1) + q/2) / q) & 1;

for each coefficient x. The bitshift to the left, <<, is mathematically equivalent to multiplication
with 2. Adding

X

q
2

\

causes the coefficient bit to be as if it was encoded to
X

q
2

\

(coming from a 0
bit) or

X

3q
2

\

(coming from a 1 bit). Dividing by q then thereby causes the least significant bit to
be 0 in the first and 1 in the second case. The & 1 retrieves the least significant bit – which is 0
if a 0 bit was encoded and 1 if a 1 bit was encoded8.

The authors now target the addition of
X

q
2

\

and prevent the addition of the term. Then, instead
of being close to

X

q
2

\

(coming from a 0 bit) or
X

3q
2

\

(coming from a 1 bit), the coefficient is close
to either 0 or

X

q
4

\

. This is equivalent to subtracting
X

q
4

\

from x before calling the function (x is
multiplied by 2). This causes the effect described in the previous section: If the decryption noise
is negative, a decryption failure happens, otherwise, the decryption is successful.
7Note that solving these inequalities is not a trivial task.
8With very high probability.

63

Chapter 3 Related Work

Attacker Model

The attacker model assumes the attacker to hold the public key pk and allows performing
arbitrary encapsulations resulting in a ciphertext ct and a shared secret K. They may then
submit the resulting (honestly generated and valid) ciphertexts to the device under attack. In
the decapsulation routine, a fault may be injected in the decoding function (poly_tomsg) of the
decryption routine as described in the previous section. The attacker can observe the result of
the decapsulation by observing the output K1 of the decapsulation and comparing it against K.

Countermeasures

The authors of [PP21] take an already published countermeasure into account and additionally
state countermeasures potentially preventing the attack.

The masking countermeasure of Oder et al. Pessl and Prokop [PP21] take the counter-
measures of a masked decoder presented in [OSPG18] into account. They conclude that the
attack is neither prevented nor requires more faults. This may not be the case for all masking
implementations, but the masking of [OSPG18] does not protect against their attacks. Note that
work of [OSPG18] additionally allows for another attack presented in the next section.

Proposed countermeasures. The authors also propose several countermeasures: Depending
on the use case a trusted third party may only sign ciphertexts or hold the public key. Thereby,
the attack is prevented as the possibility of generating or submitting ciphertexts is taken from
adversaries. Another generally applicable countermeasure against fault attacks is the introduction
of redundancy. The authors propose using double computations and note that using error-
correcting codes on the message m likely prevents their attack in its current form. The usage of
shuffling likely prevents their attack as the faulted coefficients cannot be determined in a shuffled
implementation. Finally, control flow integrity prevents their attack as the control flow is altered
by a skipping fault.

Ciphertext Filtering

The information contained in an inequality of the form of Equation (3.28) strongly depends on
the size of ∆v and e2. Both values are under the control of the attacker (c.f. Algorithm 11).
Therefore, a straightforward but effective way to increase the obtained information is to filter
ciphertexts sent to the device if they surpass a certain threshold in ∆v and e2. Note that ∆v is
potentially large 9 while |e2| ď 3 (see Section 2.2.3 and Table 2.1). The authors use the filtering
condition

|∆v ` e2| ď 10. (3.33)

Note that our work provides an analysis of ciphertext filtering in Section 6.2.3.

Inefficient Faults

In case of an unreliable fault, the attack may derive an incorrect inequality. This significantly
hinders the recovery process in general (see Section 7.2.3 for a precise evaluation), and with the
recovery method of this work prevents the attack with just ą 1% of incorrect faults. Therefore,
the authors propose using only failing decapsulations as this rules out an inefficient (but not an
incorrect) fault. This requires about twice as many fault injections for a perfect fault. For a fault

9For example, ∆v P t´104, . . . , 104u for Kyber512 and Kyber768.

64

3.2 Attacks using Decryption Failures

with f of all tries being effective, 1´f
2 of all faults lead to a decapsulation failure, and therefore

factor 2
1´f as many faults are required.

Results

To evaluate their recovery method, the authors use a simulation that relies on the Kyber reference
implementation associated to submission specified in [ABD+19b]. Their recovery method is
described in detail in Section 3.3.3 where we also state the required number of inequalities. In
addition, they perform their attack using a ChipWhisperer [OC14] setup. Their experiments
confirm the feasibility but show a low success rate with their setup leading to a high number of
applied faults.

3.2.3 The Attacks of Bhasin et al. and D’Anvers et al.

Bhasin et al. [BDH+21b] and D’Anvers et al. [DHP+22] present secured comparisons for the
FO-transform in Kyber as well as attacks on previous, flawed comparison operations in [OSPG18]
and [BPO+20] (for [OSPG18] the fix is similar to [BDK+21b]). The attacks of [BDH+21b]
are part of a larger class of attacks: If an attacker can use a Side Channel Attack (SCA) to
differentiate whether a decryption failure happened, they may use a chosen ciphertext as described
in Section 3.2.1 to potentially cause a decryption failure and observe it using the side-channel.
This principle has been exploited on the example of timing leakage in the FO-transform of
FrodoKEM in [GJN20].

In addition to their countermeasures and attacks, the authors of [BDH+21b] provide a test
framework to find such leakage; practical evaluation of their attacks is included as well. We give
a brief overview of their attacks and refer to their works for details; the relevant principle for this
thesis is already described in Section 3.2.1. The attack of [DHP+22] uses a higher-order attack
on [OSPG18] and the fixed versions in [BDH+21b, BDK+21b], and the authors describe how to
protect the comparison against such attacks.

Attack Targets

The authors of [BDH+21b] target the masked FO-transform comparisons presented in [OSPG18]
and [BPO+20] (c.f. Section 3.2.2). The implementation of [OSPG18] leaks through a side-
channel while [BPO+20] leaks through a side-channel and is, in addition, vulnerable to a pure
chosen-ciphertext attack – without exploiting any implementation vulnerabilities. The targeted
comparison operation is part of the FO-transform and checks whether the re-encrypted ciphertext
is equal to the originally submitted ciphertext. The authors of [BDH+21b] exploit the fact that
both masked implementations unmask partial comparisons and thereby leak information. In
addition, they show that the method of [BPO+20] in some cases accepts manipulated ciphertexts
and that this allows launching a collision attack.

Results

The authors of [BDH+21b] evaluate their attack experimentally on the ARM-Cortex M4 imple-
mentation PQM4 [KPR+] with integrated implementation of both comparison operations. They
thereby show the feasibility of their attack but do not perform a full end-to-end key recovery.
The authors of [DHP+22] perform a full key recovery utilizing the method presented in [HPP21]
and in this thesis.

65

Chapter 3 Related Work

3.2.4 The Attack of Delvaux

The attack of Delvaux [Del22] is a follow-up work to the attack strategy presented in this thesis
and in [HPP21]. We only very briefly describe the difference regarding the attack target and refer
to Chapter 5 as preliminary for this section.

The attack of [Del22] uses a similar principle to [HPP21]: A chosen ciphertext carrying an
additional

P

q
4

\

term is submitted to the device under attack, and a subsequent fault removes this
in the temporarily stored ciphertext which is used for the comparison operation. In contrast
to our attacks, they fault a wider variety of locations and operations circumventing various
countermeasures. In addition, they carry out the attack on a physical device confirming that the
class of attacks is feasible in practice.

3.2.5 Fault Attacks with Different Targets

Using a fault, multiple works suggested countermeasures against or variants of attacks skipping
the re-encryption check of the FO-transform as well as multiple other skipping faults that allow
for key recovery [VOGR18, OSPG18, BGRR19, XIU+21]. As the FO-transform is the chosen
measure to avoid chosen-ciphertext attacks, disabling it again allows for chosen-ciphertext attacks.
In turn, the FO-transform comparison step is usually protected mitigating the impact of such
attacks. Ravi et al. [RRB+19] target key generation and encapsulation by using a fault to prevent
using a domain separator during the expansion of a secret. Valencia et al. [VOGR18] attack plain
RLWE schemes in numerous ways; their methods do not target IND-CCA2 secure schemes and
do not apply to, e.g., Kyber. Thus, these fault attacks either do not evade known countermeasures
or do not target the error correction in Kyber and are therefore out-of-scope in regard to our
research questions.

3.2.6 Limitations of Priors Attacks

The attack of Pessl and Prokop [PP21] requires that a specific point of attack is insufficiently
protected (standard countermeasures prevent the attack). In addition, it targets a specific imple-
mentation and requires a reliable fault; while ineffective faults do not prevent the attack (only lead
to more faults being required), incorrect faults, i.e., faults faulting the wrong operation. Therefore,
shuffling countermeasures thwart the attack even with a low level of incorrect faults/entropy.

The attacks of [BDH+21b] and [DHP+22] have been carried out in practice on a physical
device and represent a class of attacks that likely applies in a wide range of scenarios. But those
attacks require side-channel leakage and the authors already explain how to prevent – or at least
reduce – such leakage in the analyzed comparison operations. The attack of Delvaux [Del22] is a
follow-up work to [HPP21], which is part of this thesis and their work makes use of our attack
strategy.

3.3 Key Recovery Methods

The attacks in Section 3.2 and Chapter 5 show the relevance of decryption failures in LWE-based
cryptography. Whenever an implementation attack allows observing whether a decryption failure
happens – be it using a side-channel or a fault turning the FO-transform into a decryption failure
oracle – an adversary obtains information about the secret key. As we saw in Section 3.2.1, the
leaked information is obtained in the form of inequalities. Obtaining the secret key from this kind
of information leakage is not a trivial task, and several recovery methods have been proposed:
Pessl and Prokop [PP21] developed a method for their attack (c.f. Section 3.2.2). Delvaux [Del22]

66

3.3 Key Recovery Methods

improved upon the method of [PP21] and the method proposed as part of this thesis in [HPP21].
The attack of [BDH+21b] utilizes the more general framework of Dachman-Soled et al. [DDGR20]
for estimates but does not perform a full key recovery. The attack of [DHP+22] uses the
method presented in [HPP21] as part of this thesis. In addition, the failure boosting attack
of Fahr et al. [FKK+22] on FrodoKEM [BCD+16, ABD+21a] retrieves and solves inequalities;
those inequalities differ from the previously described inequalities as the coefficients are strongly
correlated to the secret key coefficients. For this attack, another key recovery method has been
developed by Dachman-Soled et al. [DGHK22] and published as an extension of the framework
of [DDGR20].

3.3.1 Attacker Model

Recall from Section 3.2.1 that the attacks described above retrieve inequalities of the form

perJ ´ spe1 ` ∆uqJ ` e2 ` ∆vql ă b (3.34)

where l is the index of the erroneous coefficient. The coefficients of all coefficients are small enough
for no reduction modulo q to happen, and this is clearly a linear equation in pe, sq. Therefore,
the inequalities may be written using M P Z2knˆm as

xM ď b (3.35)

where x P Z2kn is the flattened key pe, sq over Z, and m is the number of inequalities. The
coefficients of x are the key coefficients sampled as specified by the Kyber algorithm descrip-
tion [ABD+21b]. Additionally, the adversary is given access to the public key equation

sAJ ` e “ b P Rk. (3.36)

From these equations and inequalities, the adversary is asked to find the secret key x. Note that
finding half of the coefficients of x is sufficient, as the public key equation is an n-dimensional
system of equations over x with 2n unknowns. Therefore, recovering n coefficients of x gives the
remaining n coefficients by solving the system of equations.

3.3.2 The Frameworks of Dachman-Soled et al.

The framework of Dachman-Soled et al. [DDGR20] provides a general approach to side-channel
information in LWE-based schemes. The authors define several types of hints which allow to
reduce the security of the LWE instance. To be precise, the LWE instance directly gives a
Bounded Distance Decoding (BDD) instance. This instance is then embedded into a Distorted
Bounded Distance Decoding Problem (DBDD) instance. The DBDD is related to the BDD
problem (see [DDGR20] for details).

Applying a hint, as proposed by the authors, gives another DBDD instance that is easier
to solve. After all hints have been integrated, the final DBDD instance is embedded into a
unique Shortest Vector Problem (uSVP) instance which can be used to recover the secret key
using lattice reduction. The main difference to the standard primal attack, i.e., using Kannan’s
embedding from BDD to uSVP and then using lattice reduction to solve the uSVP problem, is
the integration into DBDD allowing for hints integration.

Given an LWE secret x “ pe, sq, the corresponding lattice L, a known vector v, a value l, a
modulus k10, and a variance σ, the authors define the following hints:
10This is not the Kyber parameter k.

67

Chapter 3 Related Work

• Perfect hints: xvJ “ l.

• Modular hints: xvJ ” l mod k.

• Approximate hints: xvJ “ l ` Nσp0q.

• Short vector hints: v P L where v is small.

The authors explain how approximate hints may be used to model decryption failure information.
Note that the decryption failures integrated in [DDGR20] are assumed to occur without manipula-
tion, and therefore the results differ from the inequalities obtained in the attacks we consider; the
information obtained in [FKK+22] may be solved with an extension the framework [DGHK22].
Therefore, we here describe the method of [BDH+21b] which relies on [DDGR20] to estimate the
security after having obtained inequalities.

The authors of [BDH+21b] use an approach similar to [GJN20] to obtain their inequalities;
they use the same honestly generated ciphertext with several varying introduced errors. Due to
the Kyber compression, this does not allow them to obtain an equation. Instead, inequalities
are obtained, which only give an approximate value for v ´ suJ in a range of length 2dv`1 “ 25.
Assuming a uniform distribution on the set S “

␣

´2dv , . . . , 2dv ´ 1
(

, the authors of [BDH+21b]
use an approximate error distribution with variance σ to obtain the hint

xvJ “ l ` Nσp0q, (3.37)

where v, l, and σ can be computed from the inequalities.
These approximate values may then be used in the framework of [DDGR20]. The resulting

lattice L, after integrating an approximate hint, is given by iterating over all possible values
e P supportpNσp0qq and intersecting with all

Ie “
␣

x1 P L | x1vJ “ l ` e
(

. (3.38)

The remaining DBDD parameters are adjusted accordingly.

Extension to Decryption Failures

The failure boosting attack of Fahr et al. [FKK+22] on FrodoKEM obtains decryption failure
information in the form of inequalities. They notice that the framework of [DDGR20] is com-
putationally difficult to use in practice for an end-to-end key recovery in their case. Therefore,
the authors of [FKK+22] present their own statistical recovery method. Subsequently, to im-
prove upon the results of [FKK+22], Dachman-Soled et al. [DGHK22] extend the framework of
Dachman-Soled et al. [DDGR20] with a method solving inequalities of the form as [FKK+22]
obtains them. The decryption failures arising in [FKK+22] conceptually differ from the decryption
failures arising in attacks such as [PP21, BDH+21b, BDH+21b] as the failure boosting technique
causes inequality coefficients to be strongly correlated to secret key coefficients, which occurs
similarly in decryption failures without manipulation.

Limitations in this Use Case

Pessl and Prokop in [PP21] note that the framework of Dachman-Soled et al. [DDGR20] may
be used to solve for the secret key; nevertheless they developed their own method. Later, the
authors of [DHP+22] note that the framework seems to be challenging to use for this concrete
use case due to computationally complexity; in addition, the estimates of [BDH+21b] yield higher
numbers than required for the full key recovery in [HPP21]. This implies that the framework is

68

3.3 Key Recovery Methods

suboptimal in the case of this kind of decryption failure (c.f. [DHP+22, Section 3.1]), which is
not surprising given its generality, and the fact that it was not specifically made for decryption
failures on Kyber. Fahr et al. [FKK+22] also develop their own method, but their inequalities
differ due to a higher correlation coefficient. Dachman-Soled et al. in [DGHK22] subsequently
improved upon the method of [FKK+22], but neither method is directly applicable to decryption
failures arising in previous attacks such as [PP21, BDH+21b, BDH+21b] due to the different
nature of the inequalities.

3.3.3 Recovery Method of Pessl and Prokop.
Pessl and Prokop [PP21] developed a first method to practically solve the arising inequalities.
They noticed that more information than the algebraic information from the public key equation,
i.e., the lattice problem, and the inequalities are available: For every coefficient, the attacker
knows the exact distribution it was sampled from. In Kyber, these distributions are binomial
with η “ 3 for Kyber512 and η “ 2 for Kyber768 and Kyber102411. The distributions represent
the initial probability for every coefficient; the inequalities allow for an updating of probability
distributions. Thereby, using repeated updating, the vector of distributions converges against
distributions giving the secret key by taking the likeliest value in every coefficient; that is if
enough inequalities are available. The authors also report an unsuccessful attempt at using a
linear programming solver.

Updating Process

The recovery method work iteratively updates the probability distributions for the unknown key
coefficients of x “ pe, sq P Z2n. We denote the vector of random variables representing x as

Xs “ pXs,0, . . . , Xs,2n´1q (3.39)

and the corresponding distributions as

Ds “ pDs,0, . . . , Ds,2n´1q (3.40)

where i is the index of the coefficient, and t is current step. For t “ 0,

D “
`

Binompηq, . . . ,Binompηq
˘

(3.41)

The i-th inequality is denoted as
2n´1
ÿ

j“0

ajxj ď bi. (3.42)

In each step s ` 1, for every inequality and every index i P t0, . . . , 2nu, the leave-one-out
distribution to the random variable

St`1,j “

2n´1
ÿ

j“0,i‰j

ajXt,j (3.43)

is computed. This allows computing

P pXt`1,i `
ÿ

j“0,i‰j

ajXt`1,j ď bi|Xt,j “ x1q (3.44)

11Note that at the time of the attack of [PP21], the parameters slightly differed.

69

Chapter 3 Related Work

for all x1 P supportpBinompηqq. The updated distributions,

P pXt`1,i “ x1 |

2n´1
ÿ

j“0

ajXj ď bkq, (3.45)

are then given by computing

P pBinompηq “ x1q ¨ P pXt,i `
ř

j“0,i‰j ajXt,j ď bi|Xt,j “ x1q
ř

x2 P pBinompηq “ x2q ¨ P pXt,i `
ř

j“0,i‰j ajXt,j ď bi|Xt,j “ x2q
. (3.46)

Thereby all Xi,s`1 for the i-th inequality, Equation (3.42), are computed. Repeating the routine
for all inequalities gives updated probabilities for all coefficients. After each step, the likeliest
coefficient is plugged into the public key equation – if the equation is fulfilled, the secret key has
been found.

Optimizations.

Pessl and Prokop [PP21] use several optimizations for improved convergence as well as for
performance.

Clustering. The first optimization improves the convergence rate: Instead of working with a
probability distribution per key coefficient, they consider the joint probability distributions for a
cluster of coefficients. The clusters are recomputed during the update iterations, and unlikely
values are dropped (improving performance). Note that using one cluster with all key coefficients
corresponds to an exact computation of the probability, which would result in optimal values but
is computationally infeasible.

Sums of Random Variables For two random variables, X, Y the distribution of X ` Y is
given by the convolution of the distributions of X and Y , i.e., in the discrete case

P pX ` Y “ aq “
ÿ

xPsupportpXq

P pX “ xqP pY “ a ´ xq (3.47)

Thus, an FFT may be used to efficiently compute the distribution of X ` Y . The authors use
this fact to efficiently compute Equation (3.43).

In addition, they use a binary tree structure to avoid re-computations arising when computing
all Equation (3.43); this structure is also used and described in detail in [HPP21]. First, all the
Fourier-transforms of all µi,j are computed; we denote them ŷi here for convenience. Then, the
upward tree is constructed, and the first layer is initialized with the ŷi for i P t0, . . . , 2nu. In the
following layers, each node has two parents and contains the point-wise product of their parents.
The last layer, of index log2pnq ´ 1, has only two nodes which are the products of half of the ŷi.
Lastly, the downward tree is computed: The top layer of the downward tree is initialized with the
two nodes of the upward tree’s last layer but in swapped order. Every following layer is computed
by multiplying the child node of the downward tree (which is already computed) with the sibling
node in the upward tree. The first layer at index i1 now holds the products

ź

i‰i1

ŷi, (3.48)

which allows obtaining the leave-one-out distributions we aimed to compute.

70

3.3 Key Recovery Methods

Table 3.2: Approximate number of required inequalities required for a success rate (SR) greater
than 0 and equal to 1 as reported by Pessl and Prokop [PP21]. Note that Kyber512 has since
been updated and the required number of inequalities will be higher for the newest version.

Variant Inequalities SR ą 0 Inequalities SR “ 1

Kyber512 5500 7500
Kyber768 8500 10500
Kyber1024 11000 12500

Results

We differentiate between results regarding performance and regarding the success rate per number
of obtained inequalities.

Performance. While the recovery method of [PP21] is fairly efficient in terms of computation
time, the amount of required RAM is rather large. They report a runtime well below an hour
for all their tested scenarios featuring up to 15000 inequalities. The RAM consumption is at a
minimum of 24 GB for Kyber512 (with 6300 inequalities) and at a maximum 61 GB for Kyber1024
(with 13000 inequalities).

Number of inequalities. The authors of [PP21] report numbers stated in Table 3.2 of required
inequalities for a success rate greater than 0 and for a success rate of 1.

Error Resistance The method of [PP21] allows for a very small amount of incorrect inequalities
but drops to a single-digit success rate when more than 1% of inequalities are incorrect.

3.3.4 Recovery Method of Delvaux.
The recovery method of Delvaux [Del22] improves upon the original method presented in [HPP21].
The author simplifies several computations by replacing them with approximations; this brings
the runtime down from a few minutes on a multithreaded machine to a few seconds on a single
thread. Unfortunately, the performance in terms of required inequalities is also increased by
about 50% (see Section 7.2.3).

The main improvement in the method of [Del22] (note that their work additionally improves
the fault attack itself) is introducing error resistance. This means that they are able to recover
the key in the presence of up to 60% incorrect inequalities. The error resistance is achieved by
including the probability of an inequality being incorrect in their Bayesian updating process
which is, apart from this, an approximation to the updating process used in [HPP21].

Recovery Method

The author of [Del22] proposes to use the central limit theorem to approximate the term computed
in Equation (3.43). They note that a large number12 of binomial distributions are summed up
in early iterations. Such a sum converges against a normal distribution by the central limit
theorem. Thus, the author approximates by a normal distribution, which reduces the computation
time. Note that their approximation only holds in early iterations, but they conjecture that the
distributions in later stages are close enough to point distributions for this to not be relevant.
12To be precise: 2kn binomial distributions.

71

Chapter 3 Related Work

Their practical experiments show that this is true for large numbers of inequalities, but the
performance in terms of required inequalities to retrieve the key is worsened.

Apart from the performance improvements, the author integrated error resistance into their
solving method. This is achieved by implementing a proposed already mentioned in [PP21]: In
every update step, they consider the probability p of an inequality to be correct, and the update
process for the i-th coefficients computes

p ¨ P pXs,i “ x1 | inequality correctq` (3.49)
p1 ´ pq ¨ P pXs,i “ x1 | inequality incorrectq. (3.50)

This value is then used to update the probability distributions instead of

P pXs,i “ x1 | inequality correctq. (3.51)

Thereby, the updating process takes incorrect inequalities into account and thus allows retrieving
the secret key even in the presence of incorrect inequalities.

Performance

In terms of memory and computation time, the implementation of [Del22] is extremely lightweight
for a key recovery method and is reported to be able to run in a virtual machine on a normal
laptop finishing in no more than a few seconds. In terms of required inequalities, the author
of [Del22] considers two main scenarios: In the first scenario, all inequalities are correct and
assumed to be correct; this is then evaluated with filtered and unfiltered ciphertexts on the
example of Kyber512. The filtered scenario is also evaluated for all three Kyber security levels. In
the second scenario, they simulate their attack and assume inequalities to be potentially incorrect;
this scenario is evaluated for fault correctness probability f P t0.1, 0.2, 0.3, 0.4, 0.5u; in this case,
only filtered ciphertexts are used to create the inequalities. As the author does not state their
success rate but the success probability per coefficient (leading to a success probability of about
0.33 with no inequalities, i.e., without attacking), we only state the number of inequalities leading
to a success rate of 1. Note that the attack uses the Kyber512 as specified in [ABD+21b] as
opposed to [PP21] which targets an older version [ABD+19b]. Their results for Kyber512 in
terms of the number of inequalities required for success rates “ 1 are depicted in Table 3.3.

Table 3.3: Approximate number of required inequalities to recover the secret key with success rate
1 for Kyber512 as stated in [Del22]. Note that the f P t0.5, 0.4u are left out as in those scenarios
inequalities do not give any information and should be removed; the results for those scenarios
can be found in [Del22].

Filtered Unfiltered f “ 0.9 f “ 0.8 f “ 0.7 f “ 0.6

8500 14500 11000 14500 19000 20500

3.3.5 Limitations of Prior Methods
Several types of recovery methods exist as reiterated in this section. Of those methods, three
statistical solutions are engineered for the particular use case of inequalities in Kyber as occurring
in, e.g., [BDH+21b, PP21]. The framework of [DDGR20, DGHK22] uses an algebraic approach for
decryption failure information but is not practical in the case of the aforementioned inequalities.
The statistical methods do not allow for security estimates in partial attacks, i.e., they give no

72

3.4 Summary

information on remaining bit security if the number of inequalities does not suffice to recover the
key. Delvaux [Del22] offers error resistance but requires a suboptimal number of inequalities for
key recovery. A computationally practical method achieving the current minimum of required
inequalities and error resistance that also gives security estimates for partial attacks is yet missing.

3.4 Summary
Summarizing, we conclude that while several evaluations of implementation attacks on lattice-
based key exchange schemes already exist, some areas are yet underanalyzed, and the questions
posed in Section 1.1.2 are still unanswered. This particularly affects the vulnerability of the NTT,
the exploitation of information leakage through decryption failures, and key recovery methods
to obtain the secret key from decryption failure information. As these building blocks of the
decapsulation routine process the secret key, understanding attacks that are not prevented by
known or straight-forward countermeasures is highly relevant.

In the area of side-channel analysis on the NTT, the attacks of [PPM17] and [PP19] are
powerful – in the sense that they only require a single trace and have been carried out on a
physical device in practice – but cannot target the secret key or a masked implementation in a
setting with increased measurement noise. The attack of [XPR+22] does not require recording
templates but depends on small values as output of the inverse NTT and does not target masked
implementations. In addition, no adaptations to shuffling countermeasures in attacks on the NTTs
have yet been proposed; therefore, a realistic vulnerability analysis that takes countermeasures
into account is missing.

Further, it is yet unclear how decryption failures can be used for generic implementation
attacks that do not require an obvious target to be unprotected13. The vulnerabilities pointed
out in [GJN20], [BDH+21b], and [DHP+22] require either timing leakage or an inadequately
protected comparison operation; these works also propose appropriate countermeasures. Pessl
and Prokop [PP21] target the error correction and exploit decryption failures using a fault, but
the attack is prevented by shuffling the decoder, and the fault need to be reliable.

In the area of key recovery using belief propagation, it is yet unclear how incomplete retrievals
may be improved upon using the underlying lattice problem. This is particularly important for
attacks in which decryption failure information occurs, as in [PP21, BDH+21b, HPP21, DHP+22,
Del22]. While several methods [PP21, HPP21, Del22] and a general framework [DDGR20,
DGHK22] exist, a comprehensive method allowing for error-tolerant key recovery in practice that
enables security estimates is still missing. This means that in cases where the secret key cannot
be recovered fully, the remaining bit security in the instance of the scheme cannot be estimated.

In summary, several questions regarding attacks on the main components of the decapsulation
are yet unanswered. These concern the requirements on the capabilities of the adversary, the
target of the attack, prevention by single or standard countermeasures, and the availability of
security estimates for partial attacks. Table 3.4 summarizes the aforementioned attacks as well as
the attacks presented in this thesis in regard to the relevant criteria.

13Note that [Del22] provides an answer to this question but is follow-up work to our results in [HPP21].

73

Chapter 3 Related Work
T
able

3.4:O
verview

of
related

w
ork

regarding
the

required
capabilities

to
carry

out
the

attack,the
target

of
the

attack,if
such

attacks
are

prevented
by

counterm
easures

or
incorrect

data,and
w

hether
security

estim
ates

are
available

after
partialattacks.

N
ote

that
security

estim
ates

for
belief

propagation
based

attacks
can

be
obtained

using
techniques

presented
in

this
thesis.

A
lso

note
that

the
table,in

particular
in

regard
to

counterm
easures,m

erely
gives

a
strongly

sim
plified

overview
,details

can
be

found
in

the
previous

chapter.
G

reen
indicates

m
ore

favorable
properties.

W
ork

A
ttacker

C
apabilities

Long-T
erm

Secret
C

ounterm
easures/E

rror-T
olerance

Security
E

stim
ates

A
ttacks

on
the

N
T

T
–

Section
3.1

[P
P

M
17]

T
em

plate
A

ttack
(σ

ď
0
.6)

Y
es

E
vades

M
asking,P

revented
by

Shuffl
ing

N
o

[P
P

19]
T
em

plate
A

ttack
(σ

ď
2
.0)

N
o

E
vades

M
asking,P

revented
by

Shuffl
ing

N
o

[X
P

R
+

22]
Sim

ple
P
ow

er
A

nalysis
Y

es
P

revented
by

M
asking

N
o

T
his

T
hesis

T
em

plate
A

ttack
(up

to
σ

ď
3.1)

Y
es

E
vades

M
asking

and
Shuffl

ing
Y

es

A
ttacks

on
the

E
rror

C
orrection

–
Section

3.2

[G
JN

20]
T

im
ing

A
ttack

(on
C

om
parison)

Y
es

P
revented

by
C

onstant
T

im
e

N
o

[B
D

H
+

21b]
P
ow

er
A

nalysis
(on

C
om

parison)
Y
es

R
equires

Faulty
C

om
parison

Y
es,but

overestim
ates

security
[P

P
21]

R
eliable

Fault
(on

D
ecoding)

Y
es

P
revented

by
Shuffl

ing
N

o
[D

H
P

+
22]

P
ow

er
A

nalysis
(on

C
om

parison)
Y

es
P

revented
by

2
nd-order

M
asking

N
o

[D
el22] a

U
nreliable

Fault
(M

ultiple
Locations)

Y
es

E
vades

M
ultiple

C
ounterm

easures,P
revented

by
R

edundancy
and

Shuffl
ing

N
o

[F
K

K
+

22]
R

ow
ham

m
er

(K
ey

G
eneration)

Y
es

P
revented

by
H

ardw
are

O
ptim

izations,
R

e-
quires

R
ow

ham
m

er
V
ulnerability,R

equires
A

c-
cess

to
K

ey
G

eneration

Y
es b

T
his

T
hesis

U
nreliable

Fault
(M

ultiple
Locations)

Y
es

E
vades

M
ultiple

C
ounterm

easures,P
revented

by
R

edundancy
and

Shuffl
ing

Y
es

K
ey

R
ecovery

from
D

ecryption
Failures

–
Section

3.3

[P
P

21]
O

btain
750

0
Inequalities c

Y
es

M
arginally

E
rror-T

olerant
N

o
[D

el22]
O

btain
8
500

Inequalities c
Y

es
E

rror-T
olerant

N
o

[D
D

G
R

20]
O

btain
ě

1
000

0
Inequalities d

Y
es

P
revented

by
Incorrect

Inequalities
Y
es

[D
G

H
K

22]
O

btain
C

orrelated
Inequalities e

Y
es

P
revented

by
Incorrect

Inequalities
Y
es

T
his

T
hesis

O
btain

5500
Inequalities c

Y
es

E
rror-T

olerant
Y

es

aT
he

w
ork

of
[D

el22]
is

a
follow

-up
up

attack
to

our
w

ork.
bU

sing
the

m
ethod

presented
in

[D
G

H
K

22].
cIn

K
yber512,

uncorrelated
w

ith
the

coeffi
cients

of
the

secret
key,

for
a

success
rate

of
1,

obtained
using

filtered
chosen

ciphertexts.
dA

s
estim

ated
in

[B
D

H
+

21b]
using

obtained
approxim

ate
equations.

eC
orrelated

inequalities
arise

in
failure

boosting
attacks

w
hich

are
out-of-scope

for
this

thesis/our
research

question

74

Chapter 4

Chosen-Ciphertexts k-Trace Attacks

The Number Theoretic Transform (NTT) enables fast multiplication in some Ring Learning
with Errors (RLWE) and Module Learning with Errors (MLWE) based schemes, and proposals
for broader usage exist as well [LS19, CHK+21]. In a common construction of MLWE based
schemes the inverse NTT processes the secret key; this is also the case for Kyber, which is the
primary candidate for Key Encapsulation Mechanisms (KEMs) selected for standardization by
the National Institute of Standards and Technology (NIST). Therefore, the NTT is a target for
side-channel analysis, and understanding attack strategies against the (inverse) NTT is crucial to
develop countermeasures and secured cryptographic devices.

Primas, Pessl, and Mangard [PPM17] introduced a template attack on the inverse NTT during
decryption that targets the long-term secret. As this allows only for low noise tolerance, Pessl and
Primas [PP19] target the key generation and introduced modifications to the belief propagation
of [PPM17]; they thereby improve the noise tolerance. While the latter attack increases noise
tolerance by a large amount, it – in most use cases – fails to target the secret key of the KEM.
In addition, masking effectively reduces the noise tolerance.

In [HHP+21], we present an attack strategy exploiting the lower dimensionality of the rings in
the NTT domain. By exploiting this fundamental property used to speed up the multiplication,
our method allows an adversary to reduce entropy during the computation of the NTT by
canceling out values using a chosen ciphertext. The ciphertext is sent to the device, and the
following decryption process is targeted by a template attack. A subsequent recovery phase
consists of belief propagation and an algorithm recovering the key from the obtained coefficients.
Thereby, we may target the secret key with substantially increased noise tolerance – the standard
deviation of the noise can be increased by a factor of up to greater than 5 (see Section 7.1.2).

In [HSST23], we explain how to adapt the attack strategy to the shuffling countermeasures
of [RPBC20]. We introduce novel statistical techniques to adapt belief-propagation-based attacks
to shuffling countermeasures. We propose an adaptive belief propagation node, which modifies
the algorithm during execution based on observed data, as well as an algorithm that reverts
permutations based on interlayer information. Using these techniques, as well as a straightforward
adaptation to a masking technique, we show that these countermeasures can be circumvented –
but this lowers the noise tolerance –, and we provide an assessment of their impact.

Our methods and techniques improve upon the noise tolerance and allow for a vulnerability
assessment of the number theoretic transforms, in particular in regard to countermeasures. We
explain our attack strategy on the example of Kyber but similar strategies very likely also apply
in different settings as the principle of reducing the entropy during multiplication is not only
beneficial when targeting NTTs. Further, our techniques to adapt to shuffling countermeasures
is first and foremost a belief propagation technique and not limited to the NTT in Kyber.

75

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

4.1 Attacker Model

We assume that the adversary has the ability to submit ciphertexts to the device under attack;
access to the public key is not necessarily required but likely allows improving upon the key
recovery (but this is not part of our work). In addition, the adversary may perform a template
attack on the execution of the inverse NTT and correctly assign probability distribution to
individual load and store operations of butterfly in-and outputs. In the plain attack without
shuffling countermeasures, load operations are only required to leak information in the first layer;
parts of the adaptation to shuffling countermeasures require all load and store operations on
intermediate butterfly in- and outputs to leak. In [PPM17] and [PP19], a similar attacker model
(excluding the chosen ciphertext and only targeting either load or store operations per layer) was
used in addition to targeting a real-world device to prove the practicability of the attacks.

4.2 Attack Strategy

The attack works in four main phases as depicted in Section 4.2: First, a ciphertext is computed

Craft ciphertext

Device Oscilloscope Template
Matching

Belief
PropagationRecover s

0 0.5 1 1.5 2 2.5 3

´0.2

0

0.2

Time [ms]

P
ow

er
C

on
su

m
pt

io
n

Power Trace

Figure 4.1: Attack strategy of k-trace attacks (adapted from [Her23b]): A chosen ciphertext is
sent to a device. The ciphertext has the property that it leads to a large amount of zeros in the
NTT. A template attack as in [PPM17] and [PP19] is employed (dashed box in the upper row)
and results in probability distributions for intermediate inverse NTT value. These distributions
are fed into a belief propagation and the final recovery obtains the secret key.

which has the desired feature to be sparse in NTT domain. This ciphertext is sent to the device
under attack, where it is decompressed and fed into, firstly, an NTT. Then, the dot product
between the secret key s and the ciphertext is computed. The result, now containing information
about the secret key, is transformed using an inverse NTT – this is the computation we target.

To be precise, the device, given a ciphertext consisting of pv,uq, computes

v ´ INTTpNTTpDecompresspuqŝJq (4.1)

As our ciphertext was sparse in NTT domain and the multiplication of components during the
computation of the dot product is pointwise, the entropy during the inverse NTT (INTT) is
reduced. This leads to the second part of the attack, namely the template attack on the inverse
NTT targeting load and store operations; the template attack is as in [PP19], and we refer to

76

4.3 Construction of the Ciphertext

their work (also summarized in Section 3.1.3) for details. Section 4.2 depicts the point of attack
in the decryption routine.

As in previous work, we assume that in the first layer, load operations, and in all following layers,
store operations are targeted. From the template attack, we obtain probability distributions for
intermediate values.

The third and fourth part deal with recovering the key. As in previous work, we first employ
a belief propagation step to recover the parts of the key which are directly contained in the
measurements. Then, as the final step, we need to recover from partial information – as the secret
key is only partially contained in our data, we need to recover the full key from partial data. This
works by exploiting the NTT structure again and thereby using one to eight runs to recover the
key.

ct

decompress

decompress

INTTpNTTpuq ˝ ŝ)

subtract remove noise

m

decode
u

v

us

v ´ us

ŝ

Figure 4.2: Point of attack for the side-channel analysis as part of the attack; the figure details
the upper row of Section 4.2. The targeted subroutine, the inverse NTT, is depicted in red.

4.3 Construction of the Ciphertext
The first step of the attack is the pre-computation of a ciphertext with the property to reduce
entropy in the inverse NTT call during decryption. As reiterated in Section 2.2.3, a ciphertext ct
in Kyber has two components: u and v. The computation we target is the inverse NTT (INTT)
in the following calculation:

INTTpNTTpuqŝJqq. (4.2)

The input to the inverse NTT is

ûŝJ “

k´1
ÿ

l“0

ûlŝl. (4.3)

Therefore, to reduce the entropy during the NTT, u should be component-wise sparse when
transformed to NTT domain. We call this property being NTT-sparse, i.e., a polynomial a P R
is NTT-sparse on Z if

âi “ 0 @i P Z (4.4)

and a vector of polynomials pa0, . . . , ak´1q P Rk is NTT-sparse on Z0, . . . , Zk´1 if al is NTT-
sparse on Zl for all l P t0, . . . , k ´ 1u. In other words, the zero set Z contains indices of a that have
to be zero. We require u “ pu0, . . . , uk´1q to be NTT-sparse, this means to have NTT-sparse
components with (possibly different) Z0, . . . Zk´1; for example, one component, say ul, could
NTT-sparse on a set Zl and all others might be 0 P R, i.e., Zl1 “ t0, . . . , 255u for l1 ‰ l.

Kyber uses a lossy compression routine to compress u. This compression routine is applied
coefficient-wise, i.e., every coefficient of every component of u is compressed separately. The

77

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

compression prohibits a trivial computation to obtain an NTT-sparse ciphertext component: If
we merely compute an NTT-sparse ciphertext component a P R, then

a1 “ DecompresspCompresspaqq ‰ a (4.5)

with very high probability. The NTT which is applied to a after decompression mingles up
(almost) all coefficients, and thus no sparseness in NTT-domain is retained. Therefore, if we
naively computed an NTT-sparse ciphertext component u, the compression, later decompression,
and NTT would result in a non-sparse polynomial û; see Figure 4.3. We therefore also require
the components of our ciphertext u to be compressible. A polynomial a P R is compressible if

DecompresspCompresspaqq “ a (4.6)

and a vector of polynomials is compressible if all of its components are compressible. If a ciphertext
component u is NTT-sparse and compressible, it stays the same and therefore NTT-sparse under
compression and decompression. Thus, a NTT-sparse and compressible ciphertext component u
allows us to reduce the entropy during the computation of the targeted inverse NTT. Figure 4.3
shows the functions applied to a chosen ciphertext sent to a device.

decompress NTT dot product INTT

u ŝ

Figure 4.3: Kyber processing an NTT-sparse ciphertext u: The first component of an incoming
ciphertext is first decompressed, then transformed into NTT domain where it becomes sparse,
multiplied with the secret, and then, finally, the result is re-transformed to normal domain.
Sparseness is needed in the multiplication step and needs to be maintained during decompression
while still being in normal domain.

4.3.1 Compression and Compressibility
We first explain how to obtain compressible polynomials. Compression does not only work
component-wise on a vector of polynomials but in fact coefficient-wise, i.e., every coefficient is
compressed separately. Therefore, we may define compressibility for a coefficient c P Z, with
c P t0, . . . , q ´ 1u, as well:

DecompresspCompresspcqq “ c. (4.7)

For an element c P Fq, compressibility is defined as being compressible as element of Z in
t0, . . . , q ´ 1u. With this definition, a polynomial is compressible if and only if all coefficients,
interpreted as integers, are compressible. As reiterated in Section 2.2.3, compression and decom-
pression in Kyber is given by the functions

Compresspcq “
P

p2d{qqc
\

mod2d, (4.8)

Decompresspcq “
P

pq{2dqc
\

, (4.9)

for a compression factor d. In the relevant compression calls, d is chosen to be either 10 or 11.
Recall from Section 2.2.3 that during compression, the q values of Fq are mapped to a multiple

78

4.3 Construction of the Ciphertext

of 2d{q, and that during decompression, k2d{q, for k P
␣

0, 1, . . . , 2d ´ 1
(

is mapped to kq{2d.
Thus, as visualized in Section 4.3.1, c P Z (in our case a coefficient of a polynomial a P R) is
compressible if and only if it is the closest integer to a multiple of 2d{q. The closest integer
multiple to c is given by Compresspcqq{2d. Therefore, to be compressible,

2dc ´ Compresspcqq (4.10)

needs to be sufficiently small1.

0 1 2 3 4 5 6 7

0
q
8

2q
8

Figure 4.4: Visualization of the compressibility property with d “ 3 and q “ 23: Grey polynomial
coefficients are mapped to the index of the closest blue compression point. The two arrows show
two coefficients mapped to the same index (3), but only the lower point is mapped back to itself
and is therefore compressible. In general, only the closest coefficient to a compression point is
compressible.

We can now formulate compressibility as a lattice problem: Let Lcompr be the lattice generated
by the rows of

Gcompr “

ˆ

2dIn
qIn

˙

. (4.11)

Then for
b “ pa,Compresspaqq (4.12)

for a P Zn we have

c “ bGcompress (4.13)

“ p2da0 ´ qCompresspa0q, . . . , 2dan´1 ´ qCompresspan´1qq (4.14)

and a is compressible if and only if c is sufficiently small. Additionally, we may obtain a from c
by reducing c modulo q and divide by 2d ` qZ, i.e.,

a ` qZ “
c ` qZ
2d ` qZ

. (4.15)

Therefore, to find compressible polynomials in R “ Fqrxs{pxn ` 1q, we may block reduce the
lattice L given by G to obtain a vector c P Zn which we interpret as an element of R and divide
by 2d ` qZ.

1That is, small enough to fulfill the property above, i.e., c being the closest to a compression point.

79

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

4.3.2 NTT-Sparseness as Lattice-Problem
If a, b P R are NTT-sparse on an index set Z Ď t0, . . . , n ´ 1u, then clearly so are a ` b as well
as λa for λ P Z because the NTT is an isomorphism of modules. Therefore, the vectors a P Zn

which are sparse in R̂ when interpreted as elements of R and transformed to R̂ by the NTT
form a lattice. Let N´1 be the NTT-matrix (see Section 2.2.3) where rows with indices in Z are
removed; i.e., the matrix

N´1 “ pINTTpeiqq for i P t0, . . . , n ´ 1u zZ (4.16)

where ei denotes the i-th standard basis vector of the Rn. For a P Zn with corresponding â P Zn,
we have

â ” N´1a mod q (4.17)

and therefore, for some k P Zn

â “ N´1a ` qk. (4.18)

Thus, the lattice Lsparse of vectors which give sparse polynomials is generated by

Gsparse “

ˆ

N´1

qIn

˙

. (4.19)

4.3.3 Combining Comressibility and Sparseness
We may now formulate the problem of finding an NTT-sparse polynomial a as a lattice problem:
For a vector a P Zn to map to a compressible and NTT-sparse polynomial a P R, it suffices to be
a sufficiently small element of Lcompr and any element of Lsparse. Therefore, clearly, it suffices to
be a sufficiently small element of Lcompr X Lsparse. As Lcompr is generated by

Gcompr “

ˆ

2dIn
qIn

˙

(4.20)

and Lsparse is generated by

Gsparse “

ˆ

N´1

qIn

˙

, (4.21)

the intersection is generated by

G “

ˆ

2dN´1

qIn.

˙

(4.22)

We can easily verify that an element of the lattice generated by G gives an NTT-sparse compressible
vector: Let a P Zn with corresponding NTT-vector â P Zn and let

b “ pâ,Compresspaqq (4.23)

then

c “ bG (4.24)

“ p2da0 ´ qCompresspa0q, . . . , 2dan´1 ´ qCompresspan´1qq. (4.25)

If c is sufficiently small, a is compressible. In addition, a is NTT-sparse by definition of N´1.
Therefore, we may find compressible NTT-sparse polynomial a P R by finding a small vector c in
G and then computing

a “
c ` qZ
2d ` qZ

P R. (4.26)

80

4.3 Construction of the Ciphertext

From a single polynomial to a vector. The procedure described above results in a single
polynomial a P R. This polynomial is then used as a component ul of u and, in some cases, all
other components of u are set to 0. In other cases – that is when using our advanced recovery
method – choosing Z0, . . . , Zk´1 for the components of u, u0, . . . , uk´1 such that more than one
ul is non-zero is beneficial. The number of non-zero inputs to the inverse NTT is the number of
indices not in all the Zl as the input to the NTT is given by

ûŝJ “

k´1
ÿ

l“0

ulsl. (4.27)

Conversely, the coefficients of the input to the inverse NTT set to zero are at the indices which
are in all the Zl. Coefficients with an index that is an element of all but exactly on Zl can be
recovered directly. Using our recovery method described in the following section, the directly
recovered coefficients may be used to recover the remaining coefficients. Indices being elements of
more than one but not all zero sets do not result in a zero (which would reduce entropy) but
also do not allow for a coefficient to be recovered. Thus, all zero sets should be disjoint whenever
possible. If there are no countermeasures in place checking for repeated usage of a polynomial, a
may be re-used for all components (in different runs); this spares an adversary from having to
run more than one lattice reduction, which is computationally expensive.

Reducing the computation effort. In Kyber, the ring R does not contain an nth root
of unity and, therefore, the NTT maps to F

n
2

q2 instead of Fn
q . This also means that the NTT

has only 7 layers and the computational graph is disconnected. Therefore, we may reduce the
computational effort by running the above procedure separately for half of the NTT. In practice,
this means taking only the even, respectively odd, indices for every row of N in Equation (4.22).
Clearly, this reduces the dimension of the lattice by a factor of 2.

Choice of Z. The choice of Z greatly influences the results: We show in Section 7.1 that an
optimum in regard to measurement noise is reached if the amount of zeros is as distributed as
evenly as possible. The amount of zeros, as we will see in the following sections, influences not
only noise tolerance but also the amount of required traces. Therefore, an adversary has to choose
Z depending on noise tolerance and the number of traces that can be recorded. In the case of
Kyber, for each component of u a Z can be chosen separately. Note that arbitrary sets of Z may
not be possible (or desirable), or they may require a large amount of computational effort; the
possibilities and the required computational effort are highlighted in Section 7.1.

Different methods. A method avoiding block reduction and the resulting computational
complexity is described in [HHP+21]. The lattice reduction is avoided by exploiting the NTT
structure. While the computational effort is greatly reduced, it only allows for non-distributed
zeros and therefore slightly worse results. The trade-off may be favorable for an adversary with
little computational resources. The technique is not described here as the author of this thesis
was not involved in its creation.

Different schemes. In the case of NewHope, the vector u is a single, uncompressed polynomial
which significantly decreases the effort required to create a sparse polynomial. A single zero set
Z is used for all components of u. In fact, for NewHope, the procedure is trivial, and no lattice
reduction is required. For FrodoKEM, u is a matrix over Fq and uncompressed as well, but as no
NTT is used, the usefulness of sparse ciphertexts might differ from Kyber. Saber uses a rounded

81

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

u which is a vector of polynomial similar to in Kyber, but in the originally specified algorithm,
no NTT is used. Note that proposals for NTTs for NTT-unfriendly rings exist which could
enable the usage of an NTT in FrodoKEM as well as in Saber [CHK+21]. In addition, other fast
multiplication algorithms likely allow for similar attacks and sparse ciphertext can reduce the
entropy in such cases as well.

4.4 Recovery of the Secret Key

By running a template attack, as described in [PPM17] and [PP19], we obtain information about
intermediate values of the inverse NTT computed with usJ as input. Assuming loads in the
first layer and stores in all other layers are targeted, this information comes in the form of a
probability distribution for each in- and output of every butterfly. That means, we have hpl ` 1q

probability distributions where h is the height of the NTT – 256 in Kyber – and l is the number
of layers, 7 in Kyber. The distributions in the last or first layer are distributions on the secret
key coefficients multiplied with a known polynomial. Unless in settings with exceptionally low
noise, we may not recover coefficients of the targeted vector from those layers alone. Instead, the
joint probability distributions and the corresponding marginals need to be computed to retrieve
usJ. Similar to prior work, we use belief propagation to achieve this. As the known polynomial
that is multiplied with the secret is our manipulated ciphertext component u, which is sparse,
the resulting recovered coefficients do not hold information about the full secret. In addition,
usJ is a dot product which, even if recovered completely, does not immediately allow for a full
key recovery in a single run (in contrast to previous work where different parts of algorithms
were targeted). To account for this and reduce the number of required traces, we introduce an
additional algorithm reducing the number of required traces, again relying on lattice reduction.
The in- and outputs to the inverse NTT under attack are shown in Section 4.4.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

puiq0psiq0
0

puiq2psiq2
0

puiq4psiq4
0
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

J

INTT

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

pusJq0

pusJq1

pusJq2

pusJq3

pusJq4

pusJq5

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

J

measurement

Figure 4.5: In- and outputs to the inverse NTT in the i-th component and Z “ t1, 3, 5, . . . , 255u

with all other component set to zero; the polynomials are written as vectors. The in- and outputs
are also the values measured in the first and last layer of the inverse NTT. This figure details the
upper middle square (partially red) of Section 4.2 and shows the situation during the attack with
a sparse and compressible ciphertext.

4.4.1 Belief Propagation

The belief propagation part of the key recovery is similar to [PP19] but applied to our setting.
Pessl and Prokop, in [PP19], targeted the key generation and proposed several improvements. We
use their improved butterfly node but, as depicted in Section 4.2, target the inverse NTT during
the decapsulation, leading to several differences, especially a substantially larger value range for

82

4.4 Recovery of the Secret Key

a0

0

0

0

â4

0

0

0

a10

0

0

0

a14

0

0

0

a20

0

a22

0

a24

0

a26

0

bf00

bf01

bf02

bf03

bf10

bf11

bf12

bf13

Figure 4.6: A belief propagation graph as arising in our attack but with n “ 8 instead of n “ 256
and 6 zeros. Variable nodes are depicted by circles, and the squared nodes represent butterflies
(for details on the node types see Section 3.1.3). Zeroed-out nodes contain a zero instead of the
variable name (with variable names following the notation in Figure 2.7).

intermediate values (see Section 2.2.3). We do not use message damping or an advanced schedule
mechanism. Additionally, our implementation is improved – especially in terms of parallelism –
and is not specific to this attack2. The implementation details are described in Section 7.1.1, and
the generic belief propagation is described in Chapter 7. A typical belief propagation graph as
arising in our attack (but in lower dimension) is shown in Figure 4.6.

4.4.2 Recovering From Partial Keys

After a successful belief propagation run, we obtain the vector ûŝJ. Due to the component-wise
NTT-sparseness of u, the dot product does not contain any information about some coefficients
of s. Additionally, the dot product makes it impossible to directly recover s from usJ, even if u
were not sparse. Previous attacks differed in this as either a different NTT or a different (part of
the) algorithm was targeted.

Recovery without Lattice Reduction

A straightforward solution to recovering s is to run the attack again with different |Z|-sets for
different components of u multiple times; thereby, we may successively recover all coefficients
of ŝ, run an inverse NTT on the recovered secret, and obtain s. In more detail, this works as
follows: An adversary sets Z0, i.e., the set of zeros for the first component, to some decimation
and all other Z-sets to contain all indices in the first run. Thereby, as with such an u, we have

ûŝJ “

k´1
ÿ

l“0

ûlŝl “ û0ŝ0 pP Rqq (4.28)

2It can be used in different attacks as update rules can be exchanged quickly.

83

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

and coefficients of s0 can be recovered if their index is not in t0, 1, . . . , 255u zZ; this is because u
(and thereby u0) are known, the multiplication is (almost) pointwise, and coefficients of û are
invertible where non-zero as Fq2 is a field. Repeating this with different Z allows recovering all
coefficients of s0. Then, the same procedure for u1, i.e., with setting the Z1 to what previously
were the Z0 and setting all other components of u to zero, recovers s1. Repeating this for all
indices of u, i.e., from 0 to k ´ 1, allows the adversary to recover s completely. While this is
a valid strategy, it also requires at least k 256

256´|Z|
traces. For example, with 128 zeros, we start

with Z “ t0, 2, 4, . . . , 254u for the first component u0 and ui “ 0 for i P t1, . . . , k ´ 1u; this allows
recovering half of the coefficients of ŝ0. Then, we set Z “ t1, 3, 5, . . . , 255u, again for u0 and
recover the other half of coefficients of ŝ0. This is repeated with ul for 0 ă l ă k to recover ŝ
completely, requiring a total of 2k traces. Table 4.1 shows the amount of traces required per k
and per zero level. An adversary is usually interested in having to perform as few measurements

Table 4.1: Amount of traces with straightforward recovery without using a block reduction
algorithm per Kyber-k. The values for k correspond to the different Kyber versions. Note that
for 64 zeros, the non-zero blocks overlap and do not allow for fewer traces but the noise tolerance
is decreased. Therefore, this scenario is not recommended without our recovery algorithm.

k 192 zeros 128 zeros 64 zeros 0 zeros
k “ 2 8 4 4 2
k “ 3 12 6 6 3
k “ 4 16 8 8 4

as possible and the amount of traces required with this recovery strategy is suboptimal.

Recovery using Lattice Reduction

To reduce the number of required traces, we provide a more sophisticated recovery method. Using
our recovery algorithm, an adversary requires merely k traces in most cases and even fewer if
only a small noise tolerance is required; this is where the name of the attack derives from. To
achieve this, our method recovers sl from ν coefficients of ŝl. Recall from Section 2.2.3 that the
coefficients of the components of s are elements of t´2, . . . , 2u for Kyber512 and Kyber1024, and
elements of t´3, . . . , 3u for Kyber1024. This means the coefficients are already comparably small
(in relation to the range from t0, . . . , q ´ 1u), and if we recover sufficiently many, we obtain a
unique Shortest Vector Problem (uSVP). Taking into account that the NTT is disjoint, and we
can reduce our problem to half of the keys; there are 5128 possible half-keys, and for Kyber1024
there are 7128 possible half-keys. This means if qν ą 5128 for the first two Kyber security levels
and qν ą 7128, the key can be recovered using lattice reduction (assuming an adversary with
sufficient computational resources):

We again denote the NTT-function on the identity matrix rows, with index in Z left out, as
matrix N´1. To account for the disconnectedness of the NTT in Kyber, we again halve the
dimension by only taking either the even or the odd indices of N´1 in every row, and carry out
the routine twice; we will from here on ignore this to keep the description simple. Then, let a be
given by the inverse NTT of â as vector a over Z, this means

N´1â ” a mod q. (4.29)

Equation (4.29) means that for some vector k over Z, we have

N´1â ` qk “ a (4.30)

84

4.4 Recovery of the Secret Key

which is close to sl (when interpreted as vector sl over Z) as it differs only on Z. We may therefore
recover sl by solving the Closest Vector Problem (CVP) in the lattice generated by the rows of

GINTT “

ˆ

N´1

qIn

˙

(4.31)

for the vector a. We may now, again, translate a CVP into an uSVP (see Chapter 2): Finding a
short vector in the lattice generated by the rows of

G “

ˆ

GINTT

a

˙

(4.32)

using, e.g., BKZ allows us to recover s. As before, the computational effort can be reduced by
applying the algorithm separately to half of the coefficients if the NTT is disjoint as in Kyber.
The procedure has to be carried out for all components of s.

Employing the recovery method. The recovery method can be used in the attack as
described in the following: We first generate ρ different u “ pu0, . . . , ukq each with components
being sparse on Z0, . . . Zk such that the non-zero values of the ûl are disjoint. Each u is used for
a separate run, this means we require ρ traces. The goal is to recover ν ě 32 coefficients of each
component of s. With u chosen such that the non-zeros in the components are disjoint, we can
obtain coefficients of different ŝl in a single run. This works because, due to the disjointedness,
the coefficients of the components do not add up with each other in the dot product. Therefore,
as before, by multiplying with the coefficient-wise inverse of û we may obtain a total of 256 ´ |Z|

coefficients, but not necessarily of a single component.
Without the previously discussed recovery method, this approach does not provide a benefit, as

all coefficients of all components have to be recovered. But using the algorithm described above,
we can then recover the complete secret key from only ν coefficients of each component. In the
k-trace attack, we have ν “ 32 and ρ “ k, as shown in Section 7.1.

For example, for k “ 2 and ν “ 128, we would, in the first run, set Z0, Z1 choose to contain
n ´ 64 indices with the indices not in Z0 being in Z1 and vice-versa. Then, choosing distributed
zeros (which is optimal in terms of noise resistance), i.e.,

Z0 “ ti | imod8 P t2, 3, 4, 5, 6, 7uu and Z1 “ ti | imod8 P t0, 1, 4, 5, 6, 7uu

we have

usJ “ u0s0 ` u1s1 (4.33)

“
`

, , 0, 0, 0, 0, . . . , , , 0, 0
˘

s0 (4.34)

`
`

0, 0, ‚, ‚, 0, 0, . . . , 0, 0, ‚, ‚
˘

s1 (4.35)

where ‚ and denote non-zero values3. This way, we have a vector that is sparse in 128 positions
and contains information about ν “ 64 coefficients of each component. This is enough to recover
the secret key as described above; therefore, in this case, we have a single trace attack, i.e., ρ “ 1.
The exact amount of required traces depends on the quality of lattice reduction; for BKZ, this
depends on the block size. The minimal amount of required traces (which can be achieved for an
adversary with access to commonly available hardware; c.f. Section 7.1) is shown in Table 4.2.

3Not to be understood as variables; each ‚ may have a different value (and as well).

85

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

Table 4.2: Minimal amount of traces with lattice reduction based recovery per Kyber-k with the
number of zeros in the input vector to the inverse NTT. The values for k correspond to the
different security levels. The amount of traces without lattice reduction is shown in brackets.

k 192 zeros 128 zeros 64 zeros 0 zeros
k “ 2 2 (8) 1 (4) 1 (4) 1 (2)
k “ 3 3 (12) 2 (6) 1 (6) 1 (3)
k “ 4 4 (16) 2 (8) 2 (8) 1 (4)

4.5 Adaptation to Countermeasures
The existence of implementation attacks is well-known and countermeasures protecting devices to
a certain degree are commonly employed. A realistic evaluation of vulnerabilities therefore needs
to take countermeasures into account. In the case of the attack described in this chapter, first
published in [HHP+21], a common masking scheme [RRC+16, OSPG18] is already defeated by
the nature of the attack itself – linear masking of the NTT is defeated by running the attack on
all shares. But countermeasures presented by [RPBC20], reiterated in Section 3.1, designed to
counter [PPM17] and [PP19], also prevent our attack when not adaptations are taken.

We exemplary explain how to adapt to a subset of the presented countermeasures, namely
the shuffling countermeasures. This is achieved in software in the case of fine shuffling and by
extending the adversary model in the case of coarse shuffling. Note that the masking of [RPBC20],
as well as various other types of countermeasures, are out of scope; defeating standard masking
and first shuffling countermeasures exemplary explains how to adapt Soft Analytical Side-Channel
Attack (SASCA)/belief propagation to countermeasures in the case of post-quantum schemes.

While several works on countering shuffling in various settings exist (see Section 3.1.7), the
impact of shuffling countermeasures in the settings of [PPM17], [PP19], and [HHP+21] is yet
unclear. Note that we do not attack a real-world protected implementation but instead exemplary
explain and evaluate adaptation to hiding countermeasures in belief propagation based SASCA
on (inverse) NTTs.

Adaptation to standard masking. A straightforward way to mask the (inverse) NTT is to
arithmetically mask the input to the (inverse) NTT using n ` 1 shares; this is described, e.g.,
in [RRC+16] or [OSPG18]. This means instead of a single inverse NTT on the input x̂, here
x̂ “ ûŝJ, n ` 1 inverse NTTs are computed on

x̂ ` pmp0q ` pmp1q ` ¨ ¨ ¨ ` pmpn´1q (4.36)

and

pmp0q, pmp1q, . . . , pmpn´1q (4.37)

where pmpiq are randomly sampled masking vectors. As the (inverse) NTT is linear, x may be
computed from the results of the inverse NTTs by subtracting all mpiq from x ` mp0q ` mp1q `

¨ ¨ ¨ ` mpn´1q.
In the masked case, the attack described above works by targeting the NTTs on all shares. If the

adversary may obtain x`mp0q `mp1q ` ¨ ¨ ¨ `mpn´1q as well as all mpiq, they can clearly compute
the secret themselves; the attack on the single shares is not prevented by standard masking.
Whenever the success rate psr is smaller than 1, the success rate for a masked implementation
with n ` 1 shares is reduced to pn`1

sr .

86

4.5 Adaptation to Countermeasures

4.5.1 Adaptation to Fine-Shuffling

Adapting to fine shuffling, as proposed by Ravi et al. in [RPBC20] (see Section 3.1.7), is not as
straightforward as the adaptation to standard masking. Fine shuffling permutes the load and
store operations of butterflies inside the (inverse) NTT. Therefore, if employing the attack on
a protected (inverse) NTT, the priors at variable nodes in the belief propagation are assigned
incorrectly with probability p “ 1

2 . Figure 4.7 shows an example of wrongly assigned priors for
the inputs at a butterfly node. We propose two different methods to defeat fine shuffling: Mixing

BF

0

7

c

d

5 7 9

´2 0 2

Figure 4.7: Incorrectly assigned priors at a butterfly node of an (inverse) NTT. The prior
distributions of the inputs are permuted and therefore the butterfly node models an arithmetic
that does not fit the priors.

priors and the usage of a shuffle node. Mixing priors gives worse results than using a shuffle node
but is easy to deploy, as it only requires an inexpensive preprocessing step; therefore, it is also
more likely suited to be used in other belief propagation based attacks. Shuffle nodes change
the Bayesian updating process by adapting an internal factor to the currently observed beliefs.
This then leads to the shuffle node obtaining the permutation applied to the in- and outputs of a
butterfly. In contrast to prior work that combines belief propagation with neural networks (see
Section 2.3.1), our shuffle node adapts to data observed during the belief propagation run but no
training phase is required.

Mixing Priors

The potentially permuted priors at a butterfly node cause the belief propagation to fail – it runs
into an invalid state because a vector with high joint probability with very high probability does
not fulfill the NTT equations. To ensure that the belief propagation does not fail and has the
chance to converge against the correct key, we may mix up priors. Instead of working with an
individual prior per in- and output, a single prior for all possibly permuted priors is computed.

For a butterfly node with input a, b and outputs c, d and measurements resulting in priors
Da, Db, Dc, Dd (where Da and Db as well as Dc and Dd may be permuted), we compute

Dmix,in “

"

x ÞÑ
PDa

pa “ xq ` PDb
pb “ xq

2
| x P domDa X domDb

*

(4.38)

and

Dmix,out “

"

x ÞÑ
PDc

pa “ xq ` PDd
pb “ xq

2
| x P domDc X domDd

*

. (4.39)

87

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

Then, the distribution assigned to both inputs, i.e., to model the values of a and b, is Dmix,in,
and the distribution assigned to the outputs is Dmix,out. Thereby, the correct value at all in-
and outputs certainly has a positive probability if the original priors have not been incorrect in
the first place. To be precise, the probability of the correct value of an in- or output is at most
halved by fine shuffling when adapting by the use of mixing priors. The situation is depicted in
Figure 4.8.

BF

0

7

c

d

´2 0 2 5 7 9

´2 0 2 5 7 9

Figure 4.8: Priors at a butterfly node of an (inverse) NTT after mixing priors. The original prior
distributions of the inputs are permuted (c.f. Figure 4.7), and therefore the butterfly node models
an arithmetic which does not fit the priors – mixing up the priors resolves the inconsistency.

Shuffle Nodes

Mixing priors is a practical and easy-to-implement adaptation to fine shuffling, but it ignores
available information. In an undisturbed (i.e., after attacking an implementation with no shuffling
countermeasures) belief propagation, the in- and output distributions of a butterfly node converge
against distributions matching with regard to the arithmetic relation represented by the node.

Let a, b again be inputs with outputs c, d and beliefs Da, Db, Dc, Dd at a butterfly computing
c “ a`b and d “ ζpa´bq. In a successful run, Dx with true value vx converges against a probability
distribution that is 1 a vx and 0 everywhere else, i.e., v ÞÑ δvxpvq, and we say that Dx converges
against vx. With sufficiently4 precise measurements and in this notation, each distribution will
converge against a value with high probability; this value is also likely to have a reasonably
high probability in the prior. In a shuffled situation with mixed priors, convergence is less likely,
even with precise measurements, but we may leverage additional information by comparing the
current distributions against the priors. The Kullback-Leibler (KL) divergence [KL51], expressing
the similarity of two probability distributions, between current distributions and priors allows
reasoning about the shuffling permutation.

In each step, we compute incoming messages (representing distributions) at two potentially
shuffled nodes against the priors of those nodes. Thereby, we compare which permutations of
in- and outputs give the best (relative) match. An absolute decision would prevent the belief
propagation from converging, as this is not clearly determined except in scenarios with very low
noise and a wrong. Therefore, we use a continuous factor representing the current belief in the
permutations of in- and outputs. This factor, which we denote by ξ, is updated in every factor
node step of the belief propagation from incoming beliefs. The updated priors, P 1

a and P 1
b, are

4See Section 7.1 for the required noise level.

88

4.5 Adaptation to Countermeasures

then computed as

P 1
a “ ξPa ` p1 ´ ξqPb

P 1
b “ ξPb ` p1 ´ ξqPa

where Pa, Pb are the measured priors and P 1
a, P

1
b are the priors used in the adapted version. In

other words, messages are computed as in an undisturbed run, but priors at variable nodes are
mixed according to the current beliefs at two variable nodes. This means, ξ “ 0 corresponds to
an unshuffled situation (at a single node), ξ “ 1 represents the belief into shuffled priors, and
ξ Ps0, 1r corresponds to uncertainty and leads to mixing priors. The technique of mixing priors
described in the previous section is a special case with fixed ξ “ 1

2 .
The (input) shuffling factor ξ is computed by first calculating the Kullback-Leibler divergences

of all inputs with all priors, i.e., calculating

Da,a “ DKLpma,i, Paq (4.40)
Db,b “ DKLpmb,i, Pbq (4.41)
Da,b “ DKLpma,i, Pbq (4.42)
Db,a “ DKLpmb,i, Paq (4.43)

where P denotes the respective priors and mx,i are the messages in the i-th step. From this, we
may compute the evidence for shuffling/no-shuffling as

Eshuffling “ Da,a ` Db,b (4.44)
Eno-shuffling “ Da,b ` Db,a (4.45)

and the shuffling factor as

ξ “
Eshuffling

Eshuffling ` Eno-shuffling
. (4.46)

The computation of the shuffling factor takes place in a shuffle node attached to potentially
shuffled variable nodes as shown in Figure 4.9. This node represents the prior of both nodes and
changes the priors according to the shuffle factor. The mixing process is visualized in Figure 4.10.

The shuffle node enables our belief propagation to continuously adapt by comparing computed
information to information given as priors. This enables us to infer the shuffling permutations
during a belief propagation run while gradually adapting and converging against the correct key
in the presence of shuffling – if the noise levels are low enough.

4.5.2 Adaptation to Coarse Shuffling

The adaptation to coarse shuffling is unexpectedly more difficult because it is the countermeasure
providing more entropy and, therefore, achieves a higher level of protection – adapting is
computationally more expensive and requires lower noise levels. Coarse shuffling, also introduced
by Ravi et al. [RPBC20], in contrast to fine shuffling permutes butterflies instead of inputs
to butterflies (see Section 3.1.7). This results in a much higher introduced entropy. As this
countermeasure does not permute in- and output distributions of a butterfly, we may not compare
distributions against priors and thereby learn the shuffling permutation. Instead, we are missing
the knowledge about how butterflies between layers are connected.

89

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

BF

0

7

c

d

5 7 9

´2 0 2

ξa,b ξc,d

compare..

compare..

.. and mix

Figure 4.9: Priors at a butterfly node of an (inverse) NTT when using a shuffle node. The original
priors of the input nodes are permuted (c.f. Figure 4.7 and Figure 4.8), and therefore the butterfly
node models an arithmetic relationship that does not fit the priors – the shuffle nodes resolve this
inconsistency by computing a shuffle factor which determines how the distributions are mixed.

´2 0 2 5 7 9

scaled by 0.8 scaled by 0.2

(a) ξ “ 0.8

´2 0 2 5 7 9

scaled by 0.1 scaled by 0.9

(b) ξ “ 0.1

Figure 4.10: Mixed priors at a shuffle node with ζ “ 0.8 and ζ “ 0.1. The part of the distribution
centered around 2 is the measurement taken at the first input while the part of the distribution
centered around 7 is the measurement taken at the second input.

Extended Attacker Model

The attacks of [PP19] and [HHP+21] did not target load and store operations in every layer
but load operations in the first layer and store operation in every other layer. In the case of
coarse shuffling, we extend the attacker model: To enable our methods, we target load and store
operations in all intermediate layers, load operations in the first layer, and store operations in
the last layer. This means that we have two measurements of all intermediate values shuffled
with different permutations. If we can match intermediate values correctly, we obtain a graph
that is correctly connected but the first and last layers may be permuted. Figure 4.11 shows the
situation after having obtained measurements of both load and store operations in two layers.

For a successful belief propagation run, the adversary needs to find the correct connections
between two layers. This is equivalent to finding the relative permutation of layer i to layer i ´ 1
starting with i being the first layer. We achieve this by matching store operations of layer i ´ 1
to load operations of layer i – those measurements are measurements of the same values but with
different permutations. As no information about the permutation of the first layer is available in
our model, it has to be dealt with separately. We first explain how the matching process works in
general between single nodes and call this One-Point Matching. More information is available –

90

4.5 Adaptation to Countermeasures

BF

BF

BF

BF

BF

BF

BF

BF

load

store

Figure 4.11: The extended attacker model as described and depicted in [HSST23]. Instead of only
store operations, load and store operations are targeted for intermediate layers.

butterflies are connected to more than one node – and may be used to improve the accuracy; this
improved process is called Two-Point Matching.

Notation. In the following, we describe the situation in a block between two layers, given store
and load measurements, and the task of the adversary is to match those correctly. We denote load
distributions as li and stores as si where i is the index of the node the measurement was taken
at. True values, i.e., the value a node at i actually has, are denoted by vi with Hamming weight
hi “ HWpviq. Note that the adaptation to shuffling countermeasures assumes the Hamming
weight leakage model (see Section 2.3.1); this is also used for evaluation (see Chapter 7). In
general, the attack does not necessarily require leakage following the Hamming weight leakage
model, but a similar procedure may be carried out for different models.

One-Point Matching

To match the set of loads L “ tl0, . . . , lm´1u, where m P t4, 8, 16, . . . , nu is the length of the
permuted block or layer, to the set of stores S “ ts0, . . . , sm´1u, we first compute the probability
for all distributions d P L Y S with corresponding true value v with hamming weight h and
expected value µ. For ϵ ą 0, Iϵ “sµ ´ ϵ, µ ` ϵr and a Hamming weight h1, we have

P ph “ h1 | v P Iϵq “
P pv P Iϵ|h “ h1q ¨ P ph “ h1q

P pv P Iϵq
. (4.47)

This can be computed by using

P pv P Iϵq “
ÿ

h2

P pv P Iϵ | h “ h2q ¨ P ph “ h2q. (4.48)

and
P pv P Iϵ | h “ h1q “ PNσphqpv P Iϵq. (4.49)

The former formula, Equation (4.48), can be computed using the occurrences of Hamming
weights on the inputs as well as the latter formula, Equation (4.49), which follows from the

91

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

assumption of the model. Then, using both Equation (4.48) and Equation (4.49) allows computing
Equation (4.47).

From Equation (4.47) we may compute the probability of a true value v when measuring d by
taking the limit ϵ Ñ 0:

P ph “ h1 | measured xq “ lim
ϵÑ0

P ph “ h1 | v P Iϵq. (4.50)

In practice, ϵ is simply chosen to be very small. For two measurements li and sj we may compute
the probability of belonging together as

pi,j “ P pli and sj are measurements of the same variableq (4.51)

“
ÿ

h1

P phi “ h1 | observing liq ¨ P phi “ h1 | observing sjq. (4.52)

Using the above equations, we compute P ph “ h1 | measured xq for all x P LYS and all Hamming
weights h1.

From these formulas, we compute the probability of belonging together for all nodes and store
them in a matrix

A “

¨

˚

˚

˝

p0,0 p0,1 . . . p0,h´1

p1,0 p1,1 . . . p1,h´1

. . .
ph´1,0 ph´1,1 . . . ph´1,h´1

˛

‹

‹

‚

. (4.53)

The i-th row of A holds the probability of the i-th store measurement belonging to the j load
measurement in the j-th column. In other words: The entry pi,j is the probability of the i-th
measurement being of the same variable as the j-th store measurement. Clearly, A is right
stochastic, i.e., the rows sum to 1, and A is symmetric.

The probabilities in A are not independent – if two measurements belong together with high
probability this reduces the probability for other measurements to match to these two. Instead,
we are looking for the likeliest permutation with respect to A. This means we are searching for a
matrix with exactly one non-zero entry in every row in such a manner that this represents the
likeliest permutation given A. In a sense, we simultaneously want to normalize rows and columns,
i.e., achieve a fully stochastic matrix.

To achieve this, we employ the Sinkhorn-Knopp algorithm [Sin64], which consists of repeated
normalization of rows and columns. First, columns are normalized, which leads to the matrix
being left stochastic but losing the right stochastic property; then columns are normalized again.
We repeat these steps until either a maximum number of iterations is reached or the entries in
the matrix do not change more than a chosen bound.

The result of this procedure is a matrix with a single 1 per row (and column) directly
representing a permutation in case of sufficiently precise measurements. In case of insufficiently
precise measurements, the result explains how to mix up distributions (see Section 7.1.2); in this
case, we do not get a perfect result allowing us to unshuffle the (inverse) NTT, but we may still
remove entropy of the countermeasure and thereby inconsistencies in the belief propagation. We
call matrices such as A and the result of the above procedure mix matrices.

From a single layer to multiple layers. The above procedure allows us to find the relative
permutation in-between two layers. To unshuffle the complete (inverse) NTT, we may start
with the first space between two layers, that is between layers 0 and 1, compute the mix matrix,
and apply it to the loads and stores of layer 1. We emphasize that the permutation needs to be
applied to the stores of layer 1 (which have not been considered in the matching process) as well.

92

4.5 Adaptation to Countermeasures

This is because we match against the first, fixed layer and re-permute the butterflies of the second
layers (with index 1). In addition, the mix matrix of layers 0 and 1 needs to be applied to the mix
matrices of all subsequent layers. Then, the second and the first layer are considered fixed, and
the procedure is applied to layer 2 using the stores of layer 1 and the loads of layer 2. Figure 4.12
visualizes the matching and unshuffling process, and Algorithm 13 states the algorithms as given
in [HSST23].

BF

BF

BF

BF

BF

BF

BF

BF

load

store

Fixed Matching Mixed

Figure 4.12: The unshuffling process shown in the attacker model as depicted in [HSST23]. The
left layer is fixed while the right layer is matched against the left layer and subsequently permuted.

The effects of zeros. When applying our technique to the attack of [HHP+21], the zeros
applied by using a chosen ciphertext may make matching either impossible (if all values in a
block are zeroed out) or harder. Zeroed-out values may not be matched as at these positions,
no information is available – the true values are the same in the first place. This leads to a less
precise matching and negates previously achieved entropy reduction (which was introduced by
the usage of a chosen ciphertext).

Two-Point Matching

When using One-Point Matching, we ignore that not all permutations are possible. As butterflies
are shuffled as a whole, nodes connected to the same butterfly have the same relative position.
We may use this to improve upon the probabilities passed into Algorithm 13. Instead of using the
probabilities of single measurements coming from the same variable, we consider the probability
of si belonging to li and, simultaneously, of si`d belonging to li`d. This means the entries of A
are given by

pi,j “ P pli and sj are measurements of the same variableq (4.54)
¨ P pli`d and sj`d are measurements of the same variableq (4.55)

93

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

Algorithm 13 One-point matching as stated and depicted in [HSST23].
Require: li,j , si,j for i P t0 . . . , n ´ 1u , j P t0, . . . , layers ´ 1u

Ensure: Mix matrices Ãj for j P t1, . . . , layersu and mixed measurements
1: for all j P t0, . . . , layers ´ 1u do
2: Aj Ð Compute priors
3: Ãj Ð Sinkhorn-Knopp(Aj)
4: end for
5: for all j P t1, . . . , layers ´ 1u do
6: lj “ pl0,j , l1,j , . . . , ln´1,jq

7: lj Ð Ãj ¨ lj
8: si,j “ ps0,j , s1,j , . . . , sn´1,jq

9: si,j Ð Ãl ¨ si,j
10: Ãj`1 Ð Ãj ¨ Ãj`1

11: end for
12: return Ãj , li,j , si,j , for all i, j

for i in the first half of the block and otherwise by subtracting d.
Note that this does not only improve upon the priors (used for the belief propagation) but also

reduces the effect introduced by using a chosen ciphertext that causes zeros in the inverse NTT:
Even without any measurement noise, the usage of One-Point Matching causes noise, because
variables that do not belong together may have the same value (recall that we work on Hamming
weights). In Two-Point Matching, this occurs with quadratically lower frequency due to matching
at two points.

Exact Permutation Matching

The algorithm described in Algorithm 13 causes additional noise unless it is used on very precise
measurements with very few values; this happens regardless of the usage of One-Point or Two-Point
Matching due to the mixing process. With very low noise, the resulting matrices may not mix
but purely permute, i.e., have a single 1 per row, but in most cases, measurement distributions
will be mixed. The noise introduced by this process propagates and increases throughout layers.
Therefore, mixing in early layers causes more increase than in later layers. At the same time,
mixing in early layers of an inverse NTT happens less often as the blocks have fewer nodes
(assuming coarse in-block shuffled inverse NTT).

To avoid mixing, especially in earlier layers, we additionally introduce exact permutation
matching. After having obtained a mix matrix as in one- or two-point matching, in exact
permutation matching, we do not apply it to the measurements. Instead, we select the row with
the highest entropy – this belongs to the value that is the least determined – and create a list of
all values with a probability higher than a fixed threshold. We then iterate through the list of
values and, at each iteration, set that row to contain a single 1 at this position; this means we
manually fix a single pair of nodes to be matched to each other. With the resulting matrix we,
again, perform two-point matching and return the best result. Thereby, we essentially brute-force
the permutation for a single pair. We may repeat the procedure with different values either
separately or recursively. The algorithm is stated in Algorithm 14 as in [HSST23].

We note that this exhaustive search approach requires a large amount of computational power.
Nevertheless, it may be used on early layers and reduce the noise caused by mixing in those and
all further layers. In addition, an adversary with access to more (computational) resources or
leakage could improve upon the attack by applying it to later layers as well.

94

4.5 Adaptation to Countermeasures

Algorithm 14 Exact permutation matching as stated and depicted in [HSST23].
Require: Prior matrix A “ Aj for some layer j, depth level d, max depth dmax, entropy threshold

te, probability threshold tp
Ensure: A list of permutations.
1: if d ą dmax then
2: return []
3: end if
4: result_list Ð rs

5: Ã Ð Sinkhorn-Knopp(A)
6: I Ð Find indices of rows with entropy higher than te
7: for all i P I do
8: J Ð Find indices of columns with probability greater tp
9: for all j P J do

10: Ã1
ij Ð Set row i to pδjkqk where δ denotes the Kronecker delta.

11: permutations Ð MatchExact(Ã1
ij , d ` 1, dmax, te, tp)

12: result_list Ð Append permutations to result_list
13: end for
14: end for
15: result_list Ð Sort result_list by likelihood and remove duplicates
16: return result_list

From Block Shuffling to Full Shuffling

The performance of the above algorithms greatly depends on the number of nodes to be matched.
In coarse-block shuffling, the number of nodes shuffled, and therefore the length of the permutation
is greatly reduced compared to coarse-full shuffling. Therefore, our methods perform better in the
case of coarse-block shuffling. We note that additional leakage, for example, caused by different
twiddle factors if not protected appropriately, may allow an adversary to differentiate between
blocks and therefore diminish the advantage of coarse-block shuffling. In addition, coarse-full
shuffling is more expensive in terms of performance (see [RPBC20, Table 3]) because of the high
number of twiddle factor loads, and requires additional protection of the load operations.

Unshuffling the First Layer

Using the previously discussed methods, the permutation of the first layer cannot be found.
Because all layers are shuffled, only relative permutations may be found by comparing layers.
Therefore, we have to employ a different way to find the permutation applied to the first layer.
Note that in the first layer the block size of an inverse NTT as used in Kyber is 4, i.e., only two
butterflies may be permuted per block. In the case of coarse in-block shuffling, the brute-force
complexity is therefore merely 2

n1

4 where n1 is the number of non-zeroed nodes. We propose
working with 64 non-zero values, which leads to having to run at most 216 belief propagation
instances – this is also the scenario we evaluate in Section 7.1. Incorrectly shuffled belief
propagation will terminate early and with lower computational effort due to the inconsistencies
caused by the first layer. In addition, we note that the convergence of sub-graphs often allows an
adversary to draw conclusions about the location of an incorrectly assigned node; this is described
in more detail in [HSST23].

95

Chapter 4 Chosen-Ciphertexts k-Trace Attacks

4.6 Summary
The NTT is a valuable target, and previous work [PPM17, PP19] shows how it may be attacked.
But these attacks either do not target the secret key sk – but instead the message m – or offer
only very limited5 noise tolerance. Moreover, when targeting a masked implementation the noise
tolerance in template attacks is low regardless of the target of the attack. In addition, while
masking countermeasures are circumvented, shuffling countermeasures fully prevent these attacks
in their current form, and no adaptations have yet been provided.

We introduce a novel attack strategy that allows reducing the entropy during the computation
of the inverse NTT by use of a chosen ciphertext. The chosen ciphertext that is submitted to
a device cancels out values during the NTT. A subsequent template attack is then more noise
resistant and achieves similar noise tolerance as [PP19] but targets the secret key of the KEM.
We thereby achieve higher, more practical noise tolerance and provide an extended evaluation of
the vulnerability of NTTs used in lattice-based schemes. Further, our analysis shows how chosen
ciphertext may be used to reduce the entropy for a subsequent attack: Similar strategies could
apply against different multiplication methods and on different schemes as well.

We additionally take countermeasures into account: Linear masking of the NTT is coun-
tered by applying the attack to both shares separately. To adapt to shuffling countermeasures
presented in [RPBC20], we propose two different adaptations that counter the two different
types of countermeasures. We show that some countermeasures can be circumvented purely in
software, while others can be circumvented using an extended attacker model. Our adaptations
to countermeasures likely also apply more generally and extend the currently known techniques
for SASCA using belief propagation to attacks on the NTTs in a lattice-based setting.

The NTT is one of the key building blocks of Kyber and processes the secret key during the
decapsulation. We show that the inverse NTT is vulnerable to side-channel analysis even in
settings with increased measurement noise and with countermeasures in place. Moreover, we show
how shuffling countermeasures may be circumvented in SASCA on lattice-based post-quantum
schemes. Thus, our findings impact the necessary security considerations regarding devices that
run the new NIST standard for post-quantum key exchanges and call for more comprehensive
countermeasures.

5Compared to when targeting the message or using our technique; c.f. Section 3.2.2 and Section 7.1.

96

Chapter 5

Fault-Enabled Chosen-Ciphertext
Attacks

Current schemes based on the Learning with Errors (LWE) problem need to recover the message
from a noisy version. During the encryption routine, bits are mapped to coefficients of a vector or
a (vector of) polynomials; and during the decryption routine, a noisy version of these coefficients
may be retrieved using the secret key. An error correction then recovers a bit message from these
noisy coefficients, and if the noise is sufficiently small, this results in the original message. This
routine has previously been targeted using a chosen ciphertext or a fault (see Section 3.2).

A Fujisaki-Okamoto (FO)-transform turns an IND-CPA secure Public-Key Encryption (PKE)
into an IND-CCA2 secure Key Encapsulation Mechanism (KEM). Thereby, chosen-ciphertext
attacks are prevented in the IND-CCA2 model. In particular, the transform prevents an adversary
from observing a decryption failure caused by a chosen-ciphertext attack containing an addi-
tional error term. Previous attacks, e.g. [GJN20, PP21, BDH+21b], exploited implementation
vulnerabilities to launch decryption failure attacks on Kyber and FrodoKEM. Those attacks
require an incorrectly implemented comparison operation [GJN20, BDH+21b] or a reliable fault
targeting a specific operation in an inappropriately protected decoder [PP21]. While these have
been validated in practice on a physical device, it is also known how they can be mitigated, at
least in principle; in fact, the works proposing the attacks already state countermeasures.

In [HPP21], we state a fault attack that does not rely on a single attack target and allows
for an unreliable fault. As noted in [DHP+22], our attack can be seen as similar to a safe-error
attack [YJ00] – we introduce an error that is corrected in a later stage. A ciphertext potentially
causing a decryption failure is submitted to the device under attack; the device decrypts the
ciphertext, and while it is stored in memory as part of the FO-transform, we reverse the error using
a fault. This causes the device to decrypt a faulty ciphertext while comparing the re-encrypted
ciphertext against the honestly generated ciphertext. We thereby turn the FO-transform, which
is in place to protect against chosen-ciphertext attacks, into a decryption failure oracle.

The attack can be applied at a wide variety of points in execution time; this includes – but is
not limited to – routines that are similar to targets of previous attacks. Therefore, the attack
surface is enlarged, and single countermeasures do not mitigate the attack. Another advantage
of our safe error approach is that a decapsulation success cannot happen if the fault fails. This
means the information from decapsulation successes is almost certainly1 correct. We explain and
evaluate our attack strategy on Kyber; however, we note that it applies more generally to LWE
based schemes using an FO-transform.

1To be precise: An incorrect inequality from a decapsulation success is as likely as finding a SHA3 collision.

97

Chapter 5 Fault-Enabled Chosen-Ciphertext Attacks

5.1 Attacker Model
The attacker model requires the adversary to be able to create valid ciphertexts for a device
using the public key pk belonging to a secret key sk similar to the IND-CPA model. In addition,
the attacker needs to be able to fault either ct1 or ct to remove or add, respectively, the error
introduced by the chosen ciphertext. The fault is applied on a compressed ciphertext. As the
ciphertext is under the control of the attacker, and the bit(s) to be faulted can be chosen freely,
it is sufficient to be able to fault

• either a single bit as either set, reset, or flip, or

• multiple bits in an admissible pattern,

of the dv “ 4 bit ciphertext component v. The section representing the coefficient to be faulted is
4 or 5 bit long (4 for Kyber512 and Kyber768, 5 for Kyber1024) and every pattern changing a
4-bit (5-bit) integer by adding 4 (8) is admissible.

Regarding the fault model, it should be noted that the adversary may choose whether to set,
reset, or flip a bit, and the fault can be applied over almost the complete execution time. Moreover,
observing the outcome of the comparison of the FO-transform may help with profiling and finding
the fault location. Under these conditions, single-bit faults can be considered a realistic threat
(depending on the targeted device, the adversary’s capabilities, and countermeasures in place)
assuming that the adversary has good knowledge and understanding of the device under attack
[RSDT13, OGM17].

5.2 Attack Strategy
Our attack strategy starts off similar to the general attack description given in Section 3.2.1; we
here repeat all steps for the convenience of the reader.

The first part of the attack is performed offline: The adversary honestly generates a ciphertext
ct for a message m using the public key of the device under attack pk, which belongs to a secret
key sk; the latter is the target of the attack. To potentially cause a decryption failure, we
add E to one coefficient of the ciphertext creating a manipulated ciphertext c̃t. The targeted
coefficient does not matter for the general description of the attack; we conveniently choose the
first coefficient. If the ciphertext matches the required properties described in the next section, it
is submitted to the device under attack.

The device, as part of the decapsulation routine, first stores the ciphertext to memory and
then calls the decryption routine2 on the ciphertext. The decryption routine obtains a message
m1, which allows deriving randomness that is used to re-encrypt m1 to c̃t. While the decryption
and re-encryption are carried out, we fault the ciphertext stored in memory, c̃t, creating the
faulted ciphertext Ďct; if the fault succeeds, then Ďct “ ct. Finally, the device compares ct1 to
Ďct and a decryption failure occurs if ct1 ‰ Ďct; otherwise the correct shared secret is returned3.
Observing whether a decryption failure happens allows deriving an inequality about the error
term (see Section 3.2.1).

Summarizing, to obtain a single inequality, the adversary carries out the following steps:

1. Honestly generate ciphertext ct for message m.

2. Manipulate ciphertext ct to obtain c̃t by adding error term to a coefficient of v as described
in the next section.

2Note the difference between decapsulation and decryption routine.
3With overwhelming probability

98

5.3 Construction of the Ciphertext

3. Submit ciphertext c̃t to the device under attack.

4. Fault c̃t stored in memory back to ensure Ďct “ ct.

5. Observe whether a decapsulation error happens.

6. Derive inequality about the error term as described in Section 3.2.1.

The procedure is repeated until a sufficient number of inequalities is obtained. We then solve for
the secret key using a belief propagation similar to the one used in Low-Density Parity Check
(LDPC) codes [Gal62]. The attack strategy (with a key of length 4) is depicted in Figure 5.1.

c̃t

store

decrypt

re-encrypt compare

K

abort

c̃t

observe

fault

incoming

Decrypts c̃t . . .
. . . but compares
against Ďct “ ct

Encrypt m to ct; add
P

q
4

\

in coeff. 0

Fault c̃t back to
Ďct “ ct

x0 x1 x2 x3

Check 0 Check 1

derive inequality

Represent unknown key coefficients

Figure 5.1: Attack strategy of [HPP21] targeting a secret key with 4 coefficients (adapted
from [Her23b]).

5.3 Construction of the Ciphertext

The ciphertext is constructed by first honestly generating a ciphertext ct. This uncompressed
ciphertext is of the form pv,uq, and the device under attack will, after it has been submitted,
compute

mpoly “ v ´ suJ (5.1)

during the decryption routine. From this, subsequently, the message m1 is obtained by removing
the noise using the decoding routine, which is realized as compression in Kyber. The noise on the
coefficients on mpoly is given by the polynomial

erJ ´ spe1 ` ∆uqJ ` e2 ` ∆v (5.2)

and if any term of this polynomial is larger than
P

q
4

\

, a decryption failure occurs. As all terms of
the error polynomial are small, they may be interpreted as integers and linear inequalities can be
seen as holding over Z.

99

Chapter 5 Fault-Enabled Chosen-Ciphertext Attacks

5.3.1 Introducing an Error
Equation (5.1) is clearly linear in v, and v is under the control of the adversary as it is part
of the ciphertext. We can therefore introduce an additional error to the error polynomial (in
one coefficient) and thereby cause a decryption failure if the sum of the coefficient’s error term
and the additional error is larger than

P

q
4

\

. This allows deriving an inequality, which is linear in
the secret key x “ pe, sq P Z2kn. We see the inequalities coefficients as a flattened vector over
Z (c.f. Section 3.2.1). Note that the comment about compression in Kyber from Section 3.2.1
applies here as well and only multiplies of

P

q
2dv

\

may be used as error. Using E “
P

q
4

\

causes
the error distribution to be centered around E “

P

q
4

\

instead of 0, which means a decryption
failure happens if the original error term was greater than (or equal to) zero. To be precise, if the
encoded message bit was 0, a decryption failure happens if

perJ ´ spe1 ` ∆uqJ ` e2 ` ∆vq0 ą 0, (5.3)

and if the encoded message bit was 1, a decryption failure happens if

perJ ´ spe1 ` ∆uqJ ` e2 ` ∆vq0 ě 0. (5.4)

Thus, we create the ciphertext by sampling an honest uncompressed ciphertext pv,uq and
calculating c̃t as

pCompresspv1, dvq,Compresspu, duqq (5.5)

where
v1 “ pv0 ` E, v1, . . . , vn´1q, (5.6)

with E “
P

q
4

\

. The manipulated ciphertext c̃t is the compressed version of pv1,uq. The ciphertext
is similar to the ciphertext used in [GJN20, BDH+21b], but we only use a single error value
E. Using multiple values for E to obtain a more restricting inequality, which then holds more
information, is of less use due to the compression used in Kyber.

5.3.2 Constraints on the Ciphertext
We have two requirements on the ciphertext: The ciphertext should differ by specified bit-distance
or pattern and, depending on the fault model, the faulted bits should be either 0 or 1 or do not
matter. Additionally, we filter the ciphertext using the condition described by [PP21].

To achieve these properties, we first create a ciphertext, check for the conditions, and re-sample
if they are not fulfilled. As the ciphertext generation is done offline and the conditions can also
be checked before submitting the ciphertext to the device, these conditions introduce no more
than a very small penalty in the (fully parallelizable) offline phase of the attack.

Ciphertext Filtering

We rely on the technique of ciphertext filtering similar to the one proposed by [PP21]. This
technique maximizes the amount of information contained in an inequality by controlling the
constant term of the inequality, i.e., by bounding

|e2 ` ∆v| ď c (5.7)

for some c which was chosen to be 10 in [PP21]. We analyze the impact of ciphertext filtering in
Section 6.2.3. Note that the main impact on the information contained in an inequality comes
from ∆v with an absolute value maximum of

P

q
2dv`1

\

“ 104 (for Kyber512, Kyber768; 52 for
Kyber1024) [ABD+21b] as e2 P t´2,´1, 0, 1, 2u is comparably small due to being sampled from
a binomial distribution with η “ 2.

100

5.4 Recovery of the Secret Key

0 1 2 3 4 5 6 7 8 9 101112131415

0

q
2

Figure 5.2: Adding
P

q
4

\

to a coefficient in uncompressed form is the same as adding 4 in compressed
form when using a compression factor of d “ 4; visualized with d “ 4 and q “ 23.

Required Bit Difference

The adversary is required to remove the additionally introduced error term using a fault. If c̃t
denotes the manipulated ciphertext and ct is the honestly generated ciphertext, the Exclusive-Or
(XOR) determines the required fault.

The compression function in Kyber is given by

Compresspxq “

R

x
2d

q

^

mod2d (5.8)

applied coefficient-wise. Therefore, adding
Q

q

2d1

]

in uncompressed form results in the addition of

R

Q q

2d1

]

¨
2d

q

^

“ 2d
1
´d mod2d (5.9)

to the compressed ciphertext interpreted as (overflowing) 4-bit integer.
The relevant section of the compressed coefficient of v is 4 bit long as here dv “ 4. Interpreting

the compressed ciphertext component’s coefficient as 4 bit integer, adding
P

q
4

\

in uncompressed
form is adding (with overflow) 4 in compressed form; this is shown in Figure 5.2. In Kyber1024,
the coefficient is compressed to dv “ 5 bits, and adding

P

q
4

\

corresponds to adding 8.
Note that in practice, the adversary may compute an honestly generated ciphertext, apply the

error in uncompressed form, and then compare the compressed ciphertext to see if it matches the
required fault pattern. As the ciphertext generation is performed offline, this is a valid strategy.
The ciphertext generation for an adversary requiring a one-bit fault is given in Algorithm 15.

5.4 Recovery of the Secret Key
Just as previous attacks [PP21, BDH+21b], our attack strategy allows recovering inequalities
that are linear in the secret key. To solve such inequalities, several methods have been suggested
as summarized in Section 3.3. In particular, the methods of Pessl and Prokop [PP21] and
Delvaux [Del22] have been used in practice in similar attacks. We propose a belief-propagation-
based approach in [HPP21] improving upon [PP21]. This was improved on in [Del22] by adding
error resistance, i.e., by being able to solve for the secret key in the presence of incorrect inequalities
while requiring more inequalities than our previous method. Subsequently, we propose an improved

101

Chapter 5 Fault-Enabled Chosen-Ciphertext Attacks

Algorithm 15 Generating a ciphertext which may be faulted by a single-bit fault with ciphertext
filtering. Encapsulate1 is the encapsulation routine of Kyber but with setting/output of e2 and v
in uncompressed form.
Require: Public key pk, ciphertext filtering value c.
Ensure: Ciphertext ct and c̃t which differ by one bit.
1: repeat
2: ct, e2, v Ð Encapsulate’ppk,_,_q

3: if |e2 ` v| ď c then
4: continue
5: end if
6: v1 Ð pv0 `

P

q
4

\

, v1, . . . , vn´1q

7: c̃t,_,_ Ð Encapsulate’ppk, e2, v
1q

8: until HammingDifferencepct, c̃tq ““ 1 //Replace by required conditions
9: return ct, c̃t

x0 x1 x2 x3

Check 0 Check 1 Check 2 Check 3 Check 4

Figure 5.3: A graph used to represent an inequality with 4 variables and 5 inequalities (adapted
from [HPP21]).

version in [HMS+23] (see Chapter 6) adding error resistance to the method of [HPP21] while
lowering the number of inequalities compared to [Del22]. In [HMS+23], we additionally explain
how to integrate the belief propagation output obtained by a method as described here into a
lattice problem.

5.4.1 Recovery using Belief Propagation
The work of [PP21] uses a Bayesian update method which is related to updating in belief
propagation works. Instead of using an ad-hoc updating method, we employ the technique used
to solve LDPC codes (introduced in [Gal62]; see e.g. [Mac03] for a comprehensive introduction):
A belief propagation graph consisting of variable nodes and check nodes is used to represent
inequalities (equations in LDPC-codes). The variable nodes model an unknown variable while the
check nodes model an inequality; an example of a low-dimensional graph is shown in Figure 5.3.
An inequality is connected to every variable with a non-zero coefficient; in our case, this means the
graph is fully connected/full density (or almost fully connected) in contrast to LDPC-codes which
are, by definition, of low density. To keep the recovery practical, we use several optimizations in
computations carried out in both variable nodes and check nodes.

Notation. In the remainder of the section, we assume to be given a system of inequalities

xM ď b (5.10)

where x “ pe, sq and the coefficients of M are small. We denote the j´th inequality by mj “ m¨,j

(as it is the j-th column of M) and the i-th coefficient of mj to be mi,j to be in line with standard

102

5.4 Recovery of the Secret Key

matrix notation. The amount of inequalities is denoted by m and M P Zmˆ2kn.

Messages

A message in belief propagation run represents the belief about the true value of a coefficient. A
belief µ is given by a discrete probability distribution on t´η, . . . , 0, . . . , ηu, i.e., by a function

µ “ tx ÞÑ px | x P t´η, . . . , 0, . . . , ηuu (5.11)

such that
ÿ

x

µpxq “ 1 (5.12)

but in practice the condition of Equation (5.12) is relaxed; before obtaining probabilities the
messages then have to be normalized. As η P t2, 3u in Kyber, depending on the security level,
messages are fairly small and may be stored as floating point arrays of size 5 or 7. The sizes per
security level are shown in Table 5.1.

Table 5.1: Sizes in byte of a single message and 2kn messages per Kyber security level when using
64-bit floats. Note that in practice, more than 2kn messages have to be stored simultaneously,
especially when using a multithreaded approach.

Kyber Security Level Kyber512 Kyber768 Kyber1024

η 3 2 2
Message Size 56 40 40

Total Message Sizes 57.344 61.440 81.920

Variable Nodes

A variable node represents an unknown variable and aims to compute the same value as in the
generic description of belief propagation given in Section 2.4. The variable nodes are initialized
with Kyber’s error distribution as priors, i.e., with binomial distributions centered around 0
with η P t2, 3u, as the coefficients represented by variable nodes were initially sampled from this
distribution (in an honest key generation).

Initially, the priors, µprior, are sent out to the factor nodes; after that, in every other step,
every variable node receives messages from all check nodes (ignoring that some connections
are unnecessary). In step t ě 1 a variable node with index i and arriving messages µj,i,t,
j P t0, . . . , 2kn ´ 1u, the variable node computes the messages

µi,j,t`1 “ µprior

2kn
ź

i‰j1“0

µj,i,t “

#

x ÞÑ µpriorpxq
ź

j1‰i

µj,i,tpxq

+

. (5.13)

Due to the full density, a straightforward computation leads to high run-times – after all
2kn ¨ p2kn ´ 1q ¨ m products have to be computed with 2kn P t512, 768, 1024u and m, the number
of inequalities, commonly being a 4- to 5- digit number. Using the two-binary-tree strategy
of [PP21] is valid, but an even easier and comparably efficient algorithm consists of a forward
and backward multiplication: An array is first initialized to contain the neutral messages, i.e.,
the message mapping everything to 1. Then, forward and backward accumulators are initialized
to the prior. A loop over j P t0, . . .mu multiplies the message at j with the forward accumulator,

103

Chapter 5 Fault-Enabled Chosen-Ciphertext Attacks

the message at n ´ 1 ´ j with the backward accumulator, and the accumulators with the µi,j,t

and µi,n´1´j,t, respectively. After the loop finishes, the array contains all µi,j,t`1 as specified in
Equation (5.13). These messages are sent to the variable nodes.

Factor Nodes

The messages sent from the variable nodes are received at check nodes. A check node with index
j represents an inequality

2kn
ÿ

i“0

mi,jxi ď bj . (5.14)

The messages arriving from the variable nodes represent beliefs over the xi, and, to update the
belief for xi, the factor nodes aim to compute

P pxi “ y |
ÿ

i1

mi;,jxi1 ď bjq. (5.15)

We may compute this as

P pxi “ y |
ÿ

i1

mi1,jxi1 ď bj , x1
i „ µi1,j,tq (5.16)

“ P pxi “ y | mi,jy `
ÿ

i1‰i

mi1,jxi1 ď bj , x1
i „ µi1,j,tq (5.17)

“ P p
ÿ

i1‰i

mi1,jxi1 ď bj ´ mi,jy, x1
i „ µi1,j,tq. (5.18)

To compute Equation (5.18) and thereby Equation (5.18), we compute the leave-one-out
distributions for all coefficients. The leave-one-out distribution for the i-th coefficient is the
distributions of

si “
ÿ

i1‰i

mi,jxi1 . (5.19)

To compute si, all the convolutions of all but one µi,j , representing the beliefs in xi, have to
be computed. We originally used the approach two-tree approach of [PP21], but note that are
simplified algorithm could be advantageous in terms of memory consumption and copies of large
arrays. This approach two-tree approach is described in Section 3.3.3 and allows computing
the leave-one-out distributions which are contained in the leaves of the downtree at the end of
the computation. It may be replaced by a forward and backward accumulator which is slightly
less computationally expensive. The computations taking place in the check node are stated in
Algorithm 16.

5.4.2 Final Recovery
The work of [PP21] already notes that not all coefficients need to be recovered. Given half of the
coefficients of x “ pe, sq, the public key equation

sAJ ` e “ b (5.20)

can be turned into a kn-dimensional (undisturbed) system of linear equations with kn unknowns.
Therefore, recovering kn coefficients is sufficient to recover the full key x.

As before in Chapter 4, we define a coefficient to be correct if its likeliest value is the true value
of the coefficient. A coefficient is called recovered if there is some order (known to the adversary)

104

5.5 Impact of Countermeasures

Algorithm 16 Computations taking place in a check node for an inequality with coefficients ai
as stated in [HPP21].
Require: Incoming messages m0, . . . ,m2n´1

Ensure: Outgoing messages m1
0, . . . ,m

1
2n´1

1: for all i P t0, . . . , 2n ´ 1u do
2: for all v P V do
3: mirai ¨ vs1 Ð mirxs Ź Distribution of aixi

4: end for
5: pm1

i Ð FFTpmmiq

6: end for
7: downtree Ð BinaryTrees. computeppm1

0, . . . , pm
1
2n´1q Ź Multiply leaving one out

8: for all i P t0, . . . , 2n ´ 1u do
9: pm2

i Ð downtree. leafpiq Ź downtree. leafpiq “
ś

j‰i pm
1
j

10: m2 Ð FFT´1
ppm2

i q Ź Holds distribution of
ř

j‰i ajxj

11: for all v P V do
12: m1

irvs Ð m2
i . sum_lesseq_thanpb ´ vq Ź m1

irvs “ P p
ř

j‰i ajxj ď b ´ vq

13: end for
14: end for
15: return m1

0, . . . ,m
1
2n´1

of the probability distributions in which at least all coefficients up to and including this coefficient
are correct. Even without an attack, just taking the priors into account, a lot of coefficients will
be correct – but not recovered.

In every step, we apply our orders and check whether the first n coefficients are recovered by
solving the public key equation for the likeliest value. The latter can be done in linear time, and
we may therefore carry out this step after every belief propagation step. We propose four orders
to check for recovered coefficients:

• Entropy per node.

• Change in Entropy per node.

• Min-Entropy4.

• Entropy and min-entropy.

The recovery algorithm is stated in Algorithm 17.

5.5 Impact of Countermeasures

The most general countermeasure preventing decryption failure attacks, including previous attacks
as well as ours, is to shut down or regenerate the secret key after a certain number of decryption
failures that is lower than required to solve for the secret key. But as already noted in [PP21],
this opens the possibility for a Denial of Service (DoS) attack on the device.

Several other countermeasures could mitigate or even prevent a concrete instantiation of our
attack. We did not specify the exact point of the physical part of our attack and leave this open
as it depends on the vulnerabilities of an implementation or device as well as the possibilities
4The logarithm of the probability of the likeliest value.

105

Chapter 5 Fault-Enabled Chosen-Ciphertext Attacks

Algorithm 17 Recovering the secret value using belief propagation.
Require: Belief propagation graph g returning probability distributions Di for key coefficients

xi, step size s, orders ≀j for j P t0, . . . , lu.
Ensure: True and the secret key if the secret key has been found; false otherwise.
1: repeat
2: g .propagatepsq

3: D Ð g . get_resultspq

4: for all j P t0, . . . , lu do
5: L Ð Order Di according to ≀j
6: for all i P t0, . . . , knu do
7: x1

Lpiq Ð Likeliest value of DLpiq

8: Solve sAJ ` e “ b for remaining kn values.
9: if Found solution x1 then

10: return true,x1

11: end if
12: end for
13: end for
14: until Abort conditions of g reached
15: return false

of an adversary. Therefore, we may not provide an in-depth analysis of the effect of specific
countermeasures; instead, we give an overview of how our attack is impacted by a class of
countermeasures.

In general, if a countermeasure prevents the fault from succeeding in all but every l-th fault,
we require 2l times more faults, but the attack is not prevented. This straightforward adaptation
to countermeasures is achieved by disregarding decapsulation failures and only working with
inequalities resulting from decapsulation successes. As a decapsulation success may not occur
with an incorrectly applied fault (be it an inefficient fault or a fault targeting an incorrect value),
inequalities obtained from decryption successes are always correct. If the correctness probability
for inequalities from decapsulation failures is greater than about 0.6, including these inequalities
gives an additional benefit (see Chapter 6 and Section 7.2.3).

5.5.1 Shuffling Countermeasures

While the attack of [PP21] is prevented by shuffling the error correction5, our attack is not affected.
This is because we do not target the error correction in the first place but either the stored or
the recomputed ciphertext. A potential point of attack against the re-computed ciphertext may
be the compression method of the encryption routine during the re-encryption step. In the case
of shuffled compression, the difficulty of manipulating the re-computed ciphertext is increased.
We may still target the re-encrypted ciphertext, but for l shuffling positions, we require 2l times
more faults. If we target the originally submitted ciphertext, our attack is not mitigated at all.
This means, that shuffling the compression together with additional appropriate countermeasures
to ensure the integrity of the recomputed ciphertext, may mitigate the attack when targeting the
recomputed ciphertext, but the main attack location is still vulnerable.

5Called decoder in the work of [PP21].

106

5.5 Impact of Countermeasures

5.5.2 Redundancy

Storing the ciphertext in a redundant form, differing from the original ciphertext, prevents an
adversary form targeting the stored ciphertext. Instead, they are required to be able to fault the
re-encrypted ciphertext or fault the comparison itself. A countermeasure could, for example, be
the following, also shown in Figure 5.4:

1. Hash the incoming ciphertext before calling the decryption routine.

2. Store hash and ciphertext while performing the re-encryption.

3. Hash re-encrypted ciphertext in the same manner as the submitted cihpertext.

4. Compare ciphertexts and hashes instead of only ciphertexts.

As the hash values will not differ by a single bit and are of much longer length, faulting the hashes
is very likely not an option (assuming the adversary may change arbitrarily long values to their
liking, the device under attack may be targeted in numerous other ways as well). Therefore, an
adversary is required to either also fault the comparison of the hashes, target the re-computed
ciphertext, or fault the ciphertext before the hash is performed first. Note that the attack is not
prevented, but the attack surface is greatly decreased.

Redundancy in combination with shuffling countermeasures and additional protection of the
recomputed ciphertext, a secured comparison, and additional countermeasures such as randomized
memory layouts likely prevent our attack in threat models that exclude state-level adversaries. In
this case, the adversary needs to target the submitted ciphertext before the computation of the
hash takes place.

ct

store

decrypt

re-encrypt compare

K

abort

ct

hash hash

Figure 5.4: A countermeasure adding redundancy and thereby preventing the fault on the stored
ciphertext as proposed in [HPP21] (figure adapted from [Her23b]). An additionally computed
hash (in bold) is stored and later compared.

Note that [PP21] discuss another countermeasures: A device may shut down or regenerate
the key pair after having observed a certain number of decryption failures. They note that this
countermeasure causes devices to be vulnerable DoS attacks. If this countermeasure is designed
without taking our results into account, our attack may circumvent it, due to the reduced required
number of inequalities. Our results in Chapter 6 explain how to deploy this countermeasure to
achieve the required security level.

107

Chapter 5 Fault-Enabled Chosen-Ciphertext Attacks

5.6 Summary
In lattice-based cryptography, the error correction has been a target in classical as well as in
side-channel and fault attacks. In the case of Kyber, the work of [BDH+21b] uses side-channel
analysis combined with a chosen-ciphertext, and the work of [PP21] uses a fault to potentially
cause a decryption failure and obtain information from observing the outcome. These have been
validated in practice and can recover the secret key from a physical device, but the side-channel
analysis presented in [BDH+21b] is mitigated by appropriate protection of the comparison – in
fact, a main contribution of [BDH+21b] –, and the fault attack of [PP21] requires a reliable fault
and a specific point of attack that is insufficiently protected.

We introduce a novel attack strategy: Previous work introduced an error using a chosen
ciphertext and then passively observed the decryption result [GJN20, BDH+21b] or used a fault
to introduce an error and then observed the decapsulation result [PP21]. Instead, we use a chosen
ciphertext to introduce an error (and potentially cause a decryption failure) and a fault to correct
the error during storage of the ciphertext or after the re-encryption has been carried out. Thereby,
we may target multiple locations over a long execution time, only need to target public data and
routines, do not require a reliable fault, circumvent standard countermeasures that prevented
previous attacks, and achieve a larger attack surface.

In addition, we explain how belief propagation may be used to recover the secret key from
decryption failure information. This technique requires less information to recover the secret key.
In comparison to previous attacks, the adversary has to apply fewer faults as they may obtain
the secret key from less information. Moreover, countermeasures that shut down the device after
a certain number of decryption failures (c.f. [PP21]) could become ineffective. Furthermore, our
approach outperforms previous approaches in terms of required computational power and can
be carried out on a normal laptop as opposed to requiring large amounts of RAM. In total, our
technique relaxes the attacker model, reduces the costs of the attack, and thereby increases the
threat the attack poses. We further improve upon this technique in the following chapter by
combining belief propagation with an algebraic approach. Evaluations of our attack, in particular
the required number of faults to fully recover the key, are given in Section 7.2.

The FO-transform and the error correction are major building blocks of several lattice-based
schemes. We show that these components may be targeted with an unreliable fault and in the
presence of several standard countermeasures. Moreover, we show that public data has to be
protected with countermeasures similar to the measures taken to secure secret data. Thus, our
findings impact the security considerations of devices running the new National Institute of
Standards and Technology (NIST) standard for post-quantum key exchanges in several aspects:
Public data has to be considered vulnerable in the targeted class of schemes, the amount of
required information for full key recovery is lower than previously believed, the attack surface is
larger than previously known, and devices running such schemes are vulnerable to attacks on the
error correction even when only an unreliable fault can be applied.

108

Chapter 6

Security Estimates for Error-Tolerant
Key Recovery

Implementation attacks commonly require the adversary to recover the key from noisy data.
Veyrat-Charvillon [VGS14] introduced the approach to interpret the recovery task as a decoding
problem and use coding-theoretic algorithms. For side-channel attacks, they coined the term
Soft Analytical Side-Channel Attack (SASCA), and since then, the method has been applied
more generally in implementation attacks (e.g. in [PP21, HPP21]). Attack strategies presented
in this thesis [HHP+21, HSST23, HPP21] as well as several other attacks targeting post- and
pre-quantum cryptography, e.g. [KPP20], utilize belief propagation or a variant thereof.

Many of these attacks rely on the measurement noise level being low enough or an adversary
applying a sufficient number of faults. If these conditions are not satisfied, the decoding problem
may not be solved and the belief propagation does not converge against probability distributions
having the true coefficient as likeliest value. The attacks of, for example, [HHP+21, HSST23,
HPP21], abort if the belief propagation has not recovered the secret key after some abort criteria,
e.g. a specified number of iterations, has been reached. The public key equation is merely used
for testing a potential solution for correctness.

Due to the “all-or-nothing” approach in these attacks, no security estimates are available; this
means, that if an adversary can retrieve information that is not sufficient for full key recovery, the
remaining security of the instance of the scheme is yet undetermined. In edge cases, coefficients
can be assumed to be fully recovered, and estimates may be obtained from a primal attack by
taking them into account or by using the more sophisticated framework of Dachman-Soled et
al. [DDGR20]. But in many cases, neither can coefficients be directly seen as recovered nor are
many coefficients recovered in the first place. As the belief propagation output does not fall into
any of the cases covered by [DDGR20], to the best of our knowledge, no method to combine
belief propagation with an algebraic attack, e.g. a primal attack, is known. Therefore, these
attacks perform suboptimal as available information, i.e., the lattice information coming from the
public key equation, is not taken into account. Moreover, the lack of security estimates leads
to uncertainty regarding countermeasures which, for example, increase the measurement noise
or restrict the number of decryption failures. Even if an adversary may not be able to recover
the secret key directly, they could have lowered the bit security enough to launch a successful
algebraic attack and then still recover the full secret key.

In [HMS+23], we present a key recovery method for decryption failure; this information
occurs in, e.g., [BDH+21b, PP21, HPP21, DHP+22, Del22]. Note that the decryption failure
information that occurs in these attacks differs from the information obtained from failures that
occur without manipulation or in failure boosting attacks [DVV19, DB22] or failure boosting

109

Chapter 6 Security Estimates for Error-Tolerant Key Recovery

attacks that manipulate the key generation [FKK+22]. Our recovery method improves upon the
work of [HPP21] by achieving error-resistance and combining an approach based on Bayesian
updating with lattice reduction. In particular, we give a method to combine a belief-propagation-
based approach with a lattice-based recovery. In the first step, we adapt the belief propagation
approach from [HPP21] to achieve error resistance. We then integrate belief propagation output
into a lattice problem using the public key equation.

While we first and foremost target decryption failure information – due to its high relevance
– our method applies more generally. We state a technique to adjust belief propagation to
account for incorrect information and, moreover, explain how to combine belief propagation with
lattice reduction. Both techniques are highly relevant as belief propagation is used in a wide
variety of side-channel attacks, and lattice reduction is used for attacks and security estimates on
lattice-based cryptography.

Notation. As in the previous chapter, we denote the matrix of inequalities by M with entries
mi,j where j belongs to the j-th inequality and i is the index of the key coefficient corresponding
to the inequality coefficient. The corresponding vector is denoted by b. The dimension of M is
m; this means M P Zmˆ2kn and b P Zm. The inequalities are given as

xM ď b (6.1)

and a single inequality is of the form

xJmj “

2kn
ÿ

i“0

mi,j ď bj (6.2)

where x “ pe, sq is the secret key.

6.1 Recovery Model
For our recovery method, we assume an adversary has carried out an attack resulting in decryption
failure inequalities in Kyber in which the coefficients are not or only slightly correlated to the
ciphertext coefficients as e.g. in [PP21, BDH+21b, HPP21, Del22, Wei22]. They obtained m
inequalities each being in the form of

p´1qobspeJr ´ sJpe1 ` ∆uq ` e2 ` ∆vq0 ď 0. (6.3)

Inequalities are not necessarily correct, and each inequality with index i, i P t0, . . . ,m ´ 1u, comes
with a probability of correctness pi.

Moreover, the adversary has access to the public key equation. Given this kind of information,
they are asked to find the secret key x “ pe, sq. In addition, our method, in particular Section 6.4.1,
applies more generally whenever an attack results in belief propagation output and the adversary
is given access to a public key equation similar to Equation (6.18).

6.2 Recovery Strategy
We provide two main techniques to recover the secret key from given decryption failure inequalities.
Firstly, we achieve the error resistance provided by [Del22], also already mentioned in [PP21],
in the belief propagation of [HPP21]. Secondly, we use belief propagation output to obtain a
computationally less challenging lattice problem from the public key equation.

110

6.2 Recovery Strategy

Inequalities Belief Propagation

Section 6.3.1

Integrate Recovered

Section 6.4.1

Integrate Remaining

Section 6.4.2

CVP

Public Key Equation

Figure 6.1: Parts of the recovery strategy and sections in which they are described (figure adapted
from [HMS+23]).

The error resistance is achieved by taking the correctness probability of every inequality
into account. We assign a correctness probability pj for every inequality (with index j); the
probabilities are a property of the attack the inequalities are obtained from, for example, a fault
success probability or from measurement noise. During the update process (c.f. Section 5.4.1), we
compute probabilities for the inequality as well as for the inequality multiplied by negative one.
The resulting probabilities are used for the updated message scaled by the correctness probability
of the inequality.

After the abort criteria of the belief propagation have been reached (c.f. Section 5.4.2 and
Chapter 7), the adversary is left with probability distributions – one for every key coefficient.
These probability distributions are integrated in two steps: Firstly, the recovered coefficients are
used on the public key equation

sAJ ` e “ b (6.4)

by substituting given values. This is done in such a way that unknowns are eliminated in the
order of reliability; we thereby utilize available information coming from the belief propagation
output on non-recovered coefficients. Secondly, we obtain a vector b1 from the belief propagation
output which is closer to the lattice vector in the Closest Vector Problem (CVP) instance given
by the public key equation. This results in a CVP instance that, when embedded into a Shortest
Vector Problem (SVP) problem, proves to be computationally easier to solve and results in the
secret key as well. The key recovery process is visualized in Figure 6.1, and a high-level depiction
of the integration routine in three dimensions is given in Figure 6.2.

6.2.1 Number of Decryption Failures

Previous methods already provide a way to recover the secret key. The method of [PP21] requires
a large but not impractical amount of RAM (which can likely be optimized further) and requires a
maximum of a lower five-digit number of inequalities (see Section 3.3.3). The algorithm proposed
in [Del22] provides error resistance and requires a number of inequalities that is comparable
to [PP21]. Assuming an adversary can reliably apply thousands of faults, one could speculate
that a few thousand faults more do not matter.

This is not the case when taking a basic countermeasure into account, which has already been
proposed in [PP21]: To mitigate attacks that rely on decryption failures, a device may be designed
to either shut down or regenerate a key after a certain number of decryption failures happen.
The number of decryption failures to shut down after has to be determined based on the security
level per number of inequalities (and the type of inequality taking e.g. key manipulation into
account, as in [FKK+22]). A lower bound can be obtained by an information theoretic analysis
as provided in Section 6.2.3. But the consequences of this kind of countermeasures are that the
device becomes vulnerable to a simple Denial of Service (DoS) attack – an adversary merely has

111

Chapter 6 Security Estimates for Error-Tolerant Key Recovery

x

y

z

b

sAJb1
c

Figure 6.2: A high-level depiction of the integration of belief propagation output into a CVP
instance as shown in [HMS+23]: Recovered coefficients reduce the dimension of the problem
(from b to b1), and remaining information gives a closer vector c.

to submit a certain number of manipulated ciphertexts to shut down a device (no key recovery
attack needs to be carried out).

Therefore, when considering this countermeasure, regenerating the long-term secret key after
as many as possible, i.e., without undermining the targeted security level in practice, inequalities,
is likely a favorable scenario. Knowing the minimum required number of decryption failures in
practice as well as having security estimates for any number of inequalities is thus crucial to
assess the security of systems defended this way. Our method lowers the number of required
inequalities compared to previous work and allows for security estimates in partial attacks.

6.2.2 Belief Propagation Output

After a belief propagation run, the adversary is left with probability distributions Di for i P

t0, . . . , 2kn ´ 1u, where Di belongs to the i-th key coefficient xi. We recall the notation used in
previous chapters: We say distributions are converged if there is a single value with probability 1
(and other values have probability 0). A distribution is correct if the likeliest value is the true
value of the represented coefficient. A coefficient is recovered if the coefficient is correct and there
is an order (known to the adversary) in which all coefficients with a smaller index are correct.

We again assume recovered coefficients are known to the adversary, i.e., that the adversary
chose an order and knows the first r coefficients are correct. Even though an adversary has no
direct way of checking whether a coefficient is actually recovered, they may perform the following
algorithm:

1. Order the coefficients.

2. Assume r1 coefficients are correct.

3. Run the remaining attack to obtain an estimate β1 for required BKZ-β.

4. In case of failure increase r1 and go back to 2.

112

6.2 Recovery Strategy

If the attack ends with an estimate β for the required BKZ-β, and the adversary is able to perform
BKZ with β1, a failure is defined as estimated β ą β1. In the case that r1 is correctly chosen but
β ą β1, the adversary will in the next step use an incorrectly high r; but as the attack is bound
to fail in any case due to insufficient computational resources, this does not affect the validity
of our assumption. Note that a low computational complexity of step 3 and step 4 (detecting
failures) is crucial for our assumption to be correct. As this is the case in our situation, we may
assume the adversary to know the correct number r of recovered coefficients.

6.2.3 Information Theoretic Analysis

While several works obtain similar inequalities and either solve or estimate the remaining security
using a recovery method [PP21, BDH+21b, HPP21, Del22, Wei22], the theoretical information
contained per inequality/in a system of inequalities has not yet been stated. We show that with
perfect ciphertext filtering (c.f. Section 3.2.2 and Section 5.3.2), every inequality gives exactly one
bit, and we explain how to simulate the amount of information contained with different filtering
values.

Mutual Information

For a random matrix M of inequalities (as rows) sampled as in an attack, without taking the
observations into account (i.e., without fixing the inequality signs), we may see the observations
o and the secret key as random variables and compute the mutual information for key space X
and observation space O “ t0, 1u

m as

ÿ

xPX

ÿ

oPO

P px,oq log2

ˆ

P px,oq

P pxqP poq

˙

. (6.5)

The observation is determined by x and M; therefore, denoting the correct observation to a key
as ox, this can equivalently be written as

ÿ

xPX

P pxq log2

ˆ

1

P poxq

˙

. (6.6)

In the case of b “ 0, for a random key, every observation is equally likely; thus, in this case, the
mutual information is

ÿ

xPX

1

|X|
log2 p2mq “ m. (6.7)

In other words, with perfect ciphertext filtering, every inequality holds one bit of information.
Note that we implicitly used the linear independence of the columns of M to obtain Equation (6.7).

Intuition and Simulation

The problem can be seen as obtaining an affine hyperplane that partitions the key space as
illustrated in Figure 6.3. In the case of perfect filtering, i.e., b “ 0, the hyperplane is a subspace
and therefore halves the key space. If b ‰ 0, the computation of P poxq is more difficult as b and
M influence by what degree the key space is diminished and therefore how likely an observation is.
Taking into account that the left side of Equation (3.28) is approximately binomially distributed,
the probabilities of P poq may be simulated for b ‰ 0. Another (slightly different) approach is
stated in [HMS+23].

113

Chapter 6 Security Estimates for Error-Tolerant Key Recovery

x

y

(a) b “ 0.

x

y

b

(b) b ‰ 0.

Figure 6.3: A single inequality in a two-dimensional key space, in the first case with b “ 0 and in
the second case with b ‰ 0.

6.3 Error Resistant Belief Propagation

We first augment the belief propagation recovery by error resistance. This allows combining the
benefit of being able to work on potentially incorrect inequalities, first provided by [Del22], with
the lower number of required inequalities in [HPP21].

6.3.1 Error Resistant Check Nodes

To achieve error resistance using the method of [HPP21], we have to modify the check nodes.
Recall from Section 5.4.1 that the factor node for the j-inequality in [HPP21] computes the
probability for the i-th coefficient, µj,i,t`1, based on the beliefs on all other coefficients. Denoting
our inequality coefficients by mi,j , where i is the coefficient index and j is the inequality index,
the outgoing messages are given by

µj,i,t`1pyq “ P pxi “ y |
ÿ

i1

mi1,jxi1 ď bj , x1
i „ µi1,j,tq (6.8)

where the right side may be computed using

P pxi “ y |
ÿ

i1

mi1,jxi1 ď bj , x1
i „ µi1,j,tq (6.9)

“P pxi “ y | mi,jy `
ÿ

i1‰i

mi1,jxi1 ď bj , x1
i „ µi1,j,tq (6.10)

“P p
ÿ

i1‰i

mi1,jxi1 ď bj ´ mi,jy, x1
i „ µi1,j,tq. (6.11)

114

6.4 Belief Propagation and Lattice Reduction

We now additionally store the correctness probability pj for every inequality in the corresponding
check node. Taking into account that inequalities are potentially incorrect, we get

P pxi “ y | given mj and pj , x1
i „ µi1,j,tq (6.12)

“pP pxi “ y |
ÿ

i1

mi,jxi1 ď bj , x1
i „ µi1,j,t, mj correctq (6.13)

`p1 ´ pqP pxi “ y |
ÿ

i1

mi,jxi1 ą bj , x1
i „ µi1,j,t, mj correctq (6.14)

and
P pxi “ y |

ÿ

i1

mi,jxi1 ą bj , x1
i „ µi1,j,tq (6.15)

may be computed similar to Equation (6.11). The messages coming from check nodes are given as

µj,i,t`1pyq “ P pxi “ y | given mj and pj , x1
i „ µi1,j,tq. (6.16)

The error-resistant variant has to compute the leave-one-out distributions Si, i.e., the distribu-
tions of

ÿ

i1

mi,jxi1 , where x1
i „ µi1,j,t. (6.17)

Therefore, the computation carried out in the check nodes uses similar optimizations compared
to [HPP21] to compute the Si. In the computation of Equation (6.14), the check node now, for
every coefficient and every possible value, sums over the complete probability density function of
Si instead of only up bj ´ mi,jy. The sum up to bj ´ mi,jy is weighted by p, while the remaining
sum is weighted by 1 ´ p.

6.3.2 Computational Complexity

We require about twice the computational effort compared to [HPP21] because every check
node has to sum over all values of all the probability distributions of all leave-one-out sums (c.f.
Section 5.4.1). Compared to [Del22], the computational overhead is very large; nevertheless, note
that we still only require an adversary to run our algorithm for less than a few hours on a laptop
or merely minutes to seconds on more powerful Central Processing Units (CPUs). As this part
of the attack is purely offline, we argue that such runtimes, especially as they can be reduced by
using appropriate hardware1, are irrelevant.

6.4 Belief Propagation and Lattice Reduction
After the abort conditions of the belief propagation have been reached, we are left with 2kn
probability distributions – one for each coefficient. Those are used for an improved lattice problem
compared to the one obtained in classical primal attack.

6.4.1 Integration of Recovered Coefficients

We first order all coefficients by some order, for example, min-entropy. In this order, we assume
that the first r coefficients are correct. Of these r coefficients, we denote the number of recovered
coefficients of s by rs and the number of recovered coefficients of e by re (and r “ rs ` re). We

1This is because the implementation is parallelized.

115

Chapter 6 Security Estimates for Error-Tolerant Key Recovery

could integrate these coefficients using [DDGR20], but thereby we would disregard available
information: We know the unknown coefficient’s reliability from observed belief propagation
output. Moreover, our integration of remaining probability information relies on working on the
original Learning with Errors (LWE) equation.

The LWE equation is given by
sAJ ` e “ b. (6.18)

In this section, the LWE equation is stated over Fq and not over Z, and we, when integrating
recovered coefficients, do work over Fq (but not R). We reuse the variable n to denote the
dimension of e and s, this means we assign n to be 2kn; in other words, we obtain the LWE
problem from the Module Learning with Errors (MLWE) equation and reuse the variable n.
To simplify notation, we assume the recovered coefficients to come in default order meaning
that the most reliable and often the first recovered coefficient has the index 0, and the least
reliable coefficient has the index n ´ 1. We denote the recovered coefficients as e1

0, . . . , e
1
re´1 and

s1
0, . . . , s

1
rs´1.

Integrating Recovered e

Given a recovered value of e, i.e., ej “ e1
j , we may obtain an (undisturbed) linear equation from

Equation (6.18). This equation is of the form

n
ÿ

i“0

siAj,i “ bj , (6.19)

and as most coefficients Aj,i will not be zero, we may solve for most coefficients of s. The chosen
coefficient can then be eliminated by using the recovered value of e.

The coefficients of s are already sorted by some order which we see as correctness reliability.
We now use that order again to determine which coefficients to remove first – naturally, we aim to
substitute those that are the least converged. This means for recovered ej “ e1

j and least reliable
value si, we eliminate si from the system of equation by substituting

si “ A´1
j,i pbj ´ e1

j ´
ÿ

i1‰i

si1Aj,i1 q (6.20)

and then computing

A Ð pA ´ Te,jqî (6.21)
b Ð b ´ te,j , (6.22)

where ¨̂i denotes the i-th column to be removed,

Te,j “

¨

˚

˚

˝

A´1
j,i Aj,0

A´1
j,i Aj,1

. . .
A´1

j,i Aj,n´1

˛

‹

‹

‚

, (6.23)

and

te,j “
`

A´1
j,i pbj ´ ejq, A´1

j,i pbj ´ ejq, . . . , A´1
j,i pbj ´ ejq

˘

. (6.24)

In matrix-vector notation, the transformation for all recovered values can be written as

A Ð T1
epA ´ Teq, (6.25)

116

6.4 Belief Propagation and Lattice Reduction

where T1
e is the matrix resulting from the identity when removing the columns in t0, . . . , re´1u,

Te “
ÿ

j

Te,j (6.26)

and
b Ð b ´ te for te “

ÿ

j

te,j . (6.27)

Integrating Recovered s

The integration of s is comparably straightforward as eliminating a coefficient of s can be done
directly and does not involve a decision that is based on reliability. The elimination of known
values of s consists of substituting known values sj “ s1

j into Equation (6.18) for j P t0, . . . , rs ´ 1u.
This means that for every j, we set

A Ð Aĵ (6.28)

b Ð b ´ ts (6.29)

where ¨ĵ denotes the j-th column to be removed and

ts,j “
`

Ai,0s
1
j , Ai,1s

1
j , . . . , Ai,n´1s

1
j

˘

. (6.30)

In matrix-vector notation, the transformation for all recovered values can be written as

A Ð ATs, (6.31)

where Ts is the matrix resulting from the identity when removing the rows in t0, . . . , rs´1u, and

b Ð b ´ ts for ts “
ÿ

j

ts,j . (6.32)

6.4.2 Integration of Probability Information
After having integrated the recovered coefficients, i.e., after having computed

A Ð T1
epA ´ TeqTs and b Ð b ´ ts ´ te, (6.33)

the dimension of the equation is n´ r, and we are left with just as many probability distributions
– one for each of the remaining coefficients. The vectors e and b have n ´ re coefficients, s has
n ´ rs coefficients, and A is of dimensionality pn ´ rsq ˆ pn ´ req.

A straightforward approach could be to use key enumeration, e.g. as suggested in [PSG16],
interpreting the probability distributions as key ranking per coefficient. But the belief propagation
algorithm usually recovers either all coefficients or only very few (c.f. Section 7.2.2), i.e., r is
usually small and this leads to a large number of potential keys. Therefore, this only allows
for recovery in edge cases and does not improve upon the majority of cases where a direct key
recovery is not possible.

Instead, we leverage the additional information for a variant of the primal attack2. The equation
(over Fq) given by (the transformed) A and b (now interpreted over Z) defines a lattice Lsvp
through the basis

Bsvp “

ˆ

qIn´rs 0
A In´re

˙

P Zpn´rqˆpn´rq. (6.34)

2Note that in [HMS+23] we further discuss the option of using the dual attack.

117

Chapter 6 Security Estimates for Error-Tolerant Key Recovery

It can easily be verified that

ttarget “ p´e, sq ` pb,0q (6.35)

is an element of Lcvp and the primal attack consists of finding a lattice element close to pb,0q

(which is given); this leads to finding ttarget and thus x “ pe, sq.
Through the obtained probability distributions and potentially key enumeration, we are now

given guesses for x, which we denote by x1 “ pe1, s1q. Under the assumption that we found the
correct number of recovered coefficients, x ‰ x1. But x1 can be assumed to be closer to x than 0
if we consider the belief propagation to work correctly. Denoting the difference between guess
and key by pê, ŝq, we have

ttarget “ p´ê, ŝq ` pb,0q ` p´e1, s1q, (6.36)

and

||ttarget ´ ppb,0q ` p´e1, s1qq|| ď ||ttarget ´ pb,0q||. (6.37)

Thus, searching for a lattice vector close to ppb,0q ` p´e1, s1qq will be computationally less
expensive than searching close to pb,0q.

Embedding into the SVP problem using Kannan’s embedding [Kan87], we obtain the lattice
Lsvp defined by the basis

BCVP “

¨

˝

qIn´rs 0 0
A In´re 0

b ´ e1 s1 c

˛

‚P Zpn´rqˆpn´rq, (6.38)

where c can be chosen in an optimal way as described previously, e.g. in [DDGR20]; for our
evaluations, we use c “ 1 which is close to optimal in Kyber512 and optimal in Kyber768 and
Kyber1024. Note that for different schemes, such as, e.g., FrodoKEM, the choice of c “ 1 is far from
optimal. The lattice Lsvp given by Bsvp may be used to find the secret key using lattice reduction,
most commonly using BKZ 2.0 [CN11] (implemented e.g. in [Fplll]). Moreover, [ADPS16b,
AGVW17] explain how security estimates in terms of required BKZ-β may be obtained from this
kind of SVP instance (also reiterated and used in [DDGR20]). We reiterate this approach in
Section 2.2.1, and our estimates in Section 7.2.3 are obtained by employing it.

Additional key enumeration. As already mentioned, taking the likeliest value as key guess
x1 is not the only option. Instead, the adversary may use key enumeration to compile a list of
likeliest guesses and create an SVP instance from them. Thereby, a guess with fewer incorrect
coefficients may be taken into consideration and further reduce security. This approach differs
from a purely enumeration-based approach as the enumerated keys do not need to be correct,
i.e., the key enumeration is not used to find the true key. Instead, the key enumeration merely
improves upon the guess but is not required to find the correct key; this is enabled by the approach
based on lattice reduction.

Note that an additional key enumeration also enables a parallelized approach. By enumerating
k likely keys for large k, and then running lattice reduction all resulting instance, the adversary
can run k instances. It is unlikely, that an attacker with widely-available computational resources
sees large improvements by this approach – the block size used for the lattice reduction is the
determining factor. However, as these instance run completely independent, a state-level adversary
may be able to further improve upon the results.

118

6.5 Summary

6.5 Summary
Several attacks, in particular attacks that exploit decryption failures, rely on statistical algorithms
such as belief propagation. Classical state-of-the-art attacks on lattice-based cryptography target
the underlying lattice problem and recover the secret by using lattice reduction. In the case
of decryption failures, statistical methods are currently used in practice as they perform well
in end-to-end key recovery. Those methods, however, are either not error-tolerant or require a
larger-than-necessary amount of information, and – most importantly – do not offer security
estimates in partial attacks. This not only leads to underestimating attacks that exploit decryption
failures, but also hinders proper evaluation of countermeasures and the security of devices.

We introduce a novel method to recover the secret key from decryption failure information. Our
method combines statistical and coding theoretic approaches used in previous work [PP21, HPP21,
Del22] and the algebraic approach of using information arising from the public key equation
used in the classical attacks as well as in [DDGR20, DGHK22]. We first employ an improved
belief propagation technique achieving error resistance and then explain how belief propagation
output may be integrated into the lattice problem arising from the LWE instance. Thereby, we
provide an improved recovery algorithm that is error-resistant, requires less information to recover
the secret key, and outputs security estimates under the assumption of an adversary who uses
state-of-the-art recovery methods.

The presented method directly improves upon several previously published attacks that target
the error correction in the new National Institute of Standards and Technology (NIST) standard
for post-quantum key exchange and other lattice-based schemes, e.g., [BDH+21b, DHP+22,
Del22]. In addition, our recovery method is also relevant for potential future attacks that exploit
decryption failures using a chosen ciphertext. Such attacks arise whenever a side channel allows
observation of the comparison operation or a fault allows manipulation of the submitted ciphertext,
which could be enabled by various types of leakages in different locations of the algorithm. Thus,
understanding the impact of decryption failures is highly relevant to understanding the threat
posed by side-channel and fault attacks against lattice-based cryptography.

Moreover, we conjecture that our error-resistant belief propagation techniques and integration
of statistical information into a lattice problem may be used more generally to improve upon
implementation attacks on lattice-based schemes. This is, e.g., the case for the attacks presented
in this thesis, but most likely also applies more generally. Thus, we improve upon several previous
attacks, enable novel attacks, and provide concrete security estimates for partial attacks, which
allow for designing and evaluating countermeasures.

119

Chapter 7

Evaluation and Results

We evaluate the previously presented attacks and methods on the example of Kyber. We rely on
simulations and refer to previous work such as [PP19] or [Del22] for attacks on physical hardware
confirming our models. The adaptation of Chapter 4 to countermeasures, described in Section 4.5,
as well as the method described in Chapter 6 are only evaluated on the example of Kyber512.
The adaptations presented in Section 4.5 are independent of the security level and, therefore, do
not require separate evaluations. In the case of Chapter 6, the error distribution in Kyber512 is
particularly unfavorable1, and the performance on other security levels can be inferred from the
evaluation of Chapter 5. To access the methods defined by Kyber, our attacks rely on either a
modified PQClean [KSSW22, PQClean] implementation or a Python [PyRef] implementation
of Kyber, which is close to the reference implementation [ABD+] of Kyber submitted to the
National Institute of Standards and Technology (NIST) contest in the second round [NistR2].
In the case of Section 4.5, the effects of countermeasures are directly modeled into the belief
propagation instantiation. Due to the varying nature of our attacks and methods, the evaluation
models differ.

Belief propagation implementation. All attacks and methods rely on belief propagation.
This work is accompanied by a generic belief propagation implementation [HSS21], which forms
the basis of all our implementations. It was originally developed for the work of [HHP+21] by
the author of this thesis with the help of several co-authors. The implementation is written
in Rust [MI14, RustRef], deployed as a library, and allows changing the node functions with
comparably little effort. The base implementation features a graph class that holds edges and nodes.
Nodes are objects containing an abstract node function object (implemented as a trait), which also
allows the graph to extract several parameters to, e.g., influence the message scheduling. Based
on those parameters and the node function, the graph class offers fully parallelized computation
of the node functions and takes care of correct message passing between nodes connected by
an edge. To implement a different type of belief propagation, e.g. for one of the here presented
attacks, only the node function objects have to be reimplemented.

Recovered coefficients. All of our attacks attempt to recover secret key coefficients from
belief propagation. Depending on the available information and/or the measurement noise, the
belief propagation output varies from having almost no additional information (compared to the
priors) to giving distributions where the likeliest value is the correct/true one for all coefficients.
When evaluating, we may check whether a coefficient is correctly recovered, but an actual attacker
does not have this option as they do not know the true value. Therefore, counting coefficients as
1Both other security levels use the same, more narrow error distribution.

121

Chapter 7 Evaluation and Results

“recovered” whenever their distributions have the true value as the likeliest result is obviously
incorrect – even when using only the public error distribution as model, this definition would
give about a third of “recovered” coefficients in Kyber. Instead, we sort coefficient distributions
after a belief propagation run by one or several metrics. In this metric/order, we check how
many correct coefficients occur before the first incorrect one. This means we look for the longest
chain of correct coefficients we can find in some order. The coefficients in this chain are what we
call recovered. This method is available to an attacker with a computational overhead that is
linear (or even logarithmic using binary search) in the cost of checking whether a key is correct:
An attacker can simply run the key recovery for every possible length of the chain and check if
this yields the correct result, or use an estimate of hardness for the remaining attack. Checking
if a secret key is correct is a linear operation itself, and quickly commutable estimates for the
hardness of lattice reduction are available. Therefore, in the case of the attacks and methods
presented in this thesis, assuming that an attack may recover these coefficients is valid.

Hamming weight model. To evaluate side-channel attacks, i.e., mainly the attacks presented
in Chapter 4, we rely on the Hamming weight model, which we already reiterated in Section 3.1.2.
This model was shown to be realistic in the similar attack of [PP19] by confirming it against
measurements performed on a physical device (c.f. Section 3.1.2). Our attack in general does not
depend on the assumed leakage model, but the adaption to shuffling countermeasures does, in
parts, assume the measurements to follow the Hamming weight model distributions.

Fault model. Our fault model for the evaluation of our fault attacks, i.e., the attack strategy
described in Chapter 5, are single bit flips, bit resets, or bit sets. This means an attacker may flip
a bit, set a bit to zero, or set a bit to one. Which of the cases applies depends on the ciphertext
under (offline) control of the attacker. While requiring an attacker to be able to precisely fault a
single bit, we note that in the case of the attack of Chapter 5, the attack can be modified to allow
for a more relaxed assumption: If an attacker derives information from decapsulation success
alone, they may work with an arbitrary imprecise or unreliable fault. In turn, the number of
required faults is multiplied by 2

f where f is the fraction of correct faults per total number of
faults. Note that in this case, multi-bit faults are also an option an attacker may target; this
choice is again taken offline by the attacker. While we did not carry out the attack, the work of
Delvaux [Del22] carries out a similar attack but with an even more relaxed fault model, which is
achieved by their improvements on our attack.

Decryption error model. The model for recovering the secret key from decryption failure
information is on its own very straightforward: The method described works on decryption failure
information in which the secret key coefficients are not correlated to the inequalities coefficients.
The relation to concrete attacks and their properties is more complicated, but not required for
evaluation. For example, for an attack such as described in Chapter 5, a possible model would
again be the previously described one, which we use to evaluate fault attacks. But for an attack
using a side channel to observe decryption failures, the appropriate model may be based on the
Hamming weight model. Thus, our method should instead be seen as enabling and improving a
wide array of attacks rather than one concrete attack having a specific evaluation model.

7.1 Attacks on the Number Theoretic Transform

For the attacks on the inverse Number Theoretic Transform (NTT), we evaluate the success rate
of the belief propagation per noise level for all Kyber security levels and different amounts of

122

7.1 Attacks on the Number Theoretic Transform

zeros. We also report on the number of required traces per amount of zeros, taking the practical
maximum noise level into consideration. We then analyze the success rate of the final key recovery
and derive a final success probability for the complete attack. In addition, we give security
estimates for partial attacks and explain how they can be improved using the techniques described
in Chapter 6.

7.1.1 Simulation
We evaluate the attacks using the Hamming weight model as described above. A Python [PyRef]
implementation of Kyber close to the reference implementation of [BDK+18] and [KSSW22,
PQClean] gives access to the internal Kyber routines. Most notably, a modified (inverse) NTT
implementation allows computing partial (inverse) NTTs and output intermediate values and
enables the simulation of the leakage parts of the recovery method.

Our implementation receives several input parameters allowing us to specify the precise variant
of the attack. Firstly, a key pair is generated as in a normal Kyber key exchange. To simulate the
attack, we then generate a chosen ciphertext component u (according to the method described in
Section 4.3), compute the NTT of u and the scalar product of u and the secret key. The result is
fed into our modified NTT routine, which records all intermediate values vi,j , i P t0, . . . , nu and
j P t0, . . . , layersu; the latter serves as basis for the simulated leakage. For each intermediate value
as well as in- and outputs of the inverse NTT, we compute a probability distribution according
to the Hamming weight model. This means for standard deviation σ, we compute the array of
measured values

v1
i,j “ vi,j ` ei,j (7.1)

where
ei,j Ð Nσp0q. (7.2)

The measurements are then given by

mi,j “ Nσpv1
i,jq (7.3)

and used as priors for the belief propagation graph.
We state our results in measurement noise level σ. A positive success rate for a certain σ means

that the attack succeeds with this noise level. A higher σ means a higher noise level and that the
attack is more difficult to carry out. This means that we aim to achieve a σ that is as high as
possible while still maintaining a positive success rate.

The belief propagation is implemented using the generic belief propagation library, and it
models the inverse NTT. Upon convergence, the resulting probability distributions are used to
restore the key by assigning the likeliest value to a key coefficient. This means, denoting the
resulting distributions by Di where i is the coefficient index, we retrieve the partial secret key s1

by setting
s1
i “ argmaxx Dipxq (7.4)

for all positions that were not zeroed out. The full secret key s2 is then restored by our recovery
method; if both parts of the attack succeed, the secret key s is equal to s2.

Convergence/Abort Criteria

We run the belief propagation for a maximum of 1000 full iterations (which means for 2000
message passes). Additionally, we abort the belief propagation based on a number of empirically
derived convergence criteria: We abort if the Shannon entropy at all nodes is less than 0.1 bit,
if the entropy change is less than 0.05 bit in 20 iterations, or if no more coefficients have been

123

Chapter 7 Evaluation and Results

recovered in the last 200 steps. The first criterion is mostly a convergence criterion while the
second and third criteria do in most cases signal an abort after an unsuccessful run. Note that the
last criterion can only be employed for evaluation and is not available to a real-world attacker.

Runtime

With these criteria, a belief propagation run takes, on average, 20 minutes on two Intel Xeon
E5-2650 v4 2.20GHz (having 24 cores with hyper-threading enabled). The run time greatly differs
depending on the priors: With a low noise level, convergence is almost instant, i.e., after very few
iterations. With a very high noise level, the runs take more computation time but the second and
third abort criteria do cause the belief propagation to fail after in a reasonable time. In settings
with a noise level that is close to allowing for a successful run, the consumed time is the highest
as neither abort nor convergence criteria are triggered. We emphasize that our belief propagation
can be run on an ordinary laptop and does not require specialized hardware.

The final key recovery requires an attacker to run BKZ-70 to BKZ-80, which is computationally
more challenging than the belief propagation algorithm. The reduction without lattice reduction
(not described in this thesis but only in [HHP+21]) allows for an instant recovery on any ordinary
laptop. In addition, instead of running the final recovery method, an attacker may use another
trace to recover the remaining key coefficients and thereby trade measurements for required
computational power.

7.1.2 Results
The success rate of the belief propagation depends on the noise level only – the security level
is irrelevant. On the other hand, the results of the final key recovery on the other hand differ
between the security level due to differing vector length k and different error distributions.

Belief Propagation

After having obtained data from the template attack, the belief propagation computes the
marginal distribution for each key coefficient. Recovering coefficients using belief propagation
forms the basis for the subsequent recovery algorithms. We first report on its success rate in
unprotected, masked, and shuffled settings.

Masked and unmasked settings. We first state our results for an unprotected standard
linearly masked setting as proposed in e.g. [RRC+16, OSPG18]. We ran our experiments for
a variety of distributions of zeros, in steps of ∆σ “ 0.1, and state them in standard deviation
σ of the noise. Per noise level, we run 25 experiments and compute the number of recovered
coefficients as an average.

The masked and unmasked settings do not differ for all noise levels where the success rate is
1. This is because, in the masked setting, the success rate drops quadratically compared to the
unprotected setting as the attack succeeds if and only if both graphs succeed. Figure 7.1 depicts
the success rate in an unmasked and unprotected setting, and Figure 7.2 states the result of a
masked setting. The number of recovered coefficients is shown in Figure 7.3 for the unprotected
scenario and in Figure 7.4 for the standard masked scenario.

Required traces. The number of required traces is already shown in Table 4.2 in a masked
setting. We re-state the number of required traces in combination with the required noise level.
Note that in the case of Kyber512, an attacker with limited computational resources would likely
require one extra trace.

124

7.1 Attacks on the Number Theoretic Transform

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

Measurement Noise [σ]

Su
cc

es
s

R
at

e
Success Rate of k-Trace Attacks

0 Zeros
64 zeros
128 zeros
192 zeros
224 zeros

Figure 7.1: The success rate, without countermeasures, of the belief propagation part of the
attack on the inverse NTT per measurement noise level (in σ) and number of zeros as stated
in [HHP+21].

Table 7.1: Number of required traces and required noise level in a masked setting as similarly
depicted in [HHP+21]. The name of our attacks stems from the setting with 192 zero coefficients.

Sparseness Kyber512 Kyber768 Kyber1024 SR ą 0.7 SR ą 0
zero coeffs. # traces # traces # traces max. σ max. σ

224 – – 8 2.2 2.7
192 2 3 4 1.2 1.4
128 1 2 2 0.6 0.8
64 1 1 2 0.5 0.7
0 1 1 1 0.5 0.5

Shuffling countermeasures. In the case of shuffling countermeasures, we take several scenarios
into account. We evaluate the effects of fine shuffling when using our shuffle node as well as of
coarse in-group shuffling when using our matching algorithm. Success rates in terms of noise level
are shown in Figure 7.5. Using the shuffle node, we may target a fine-shuffled implementation
with positive success rate with a noise level of σ ď 1. Two-point matching allows attacking a
coarse-in-group shuffled implementation with a positive success rate as long as σ is smaller than
0.5. As expected, we lose some noise tolerance in both cases, but may still perform a successful
attack on a protected implementation while maintaining a noise level that is comparable to
previous attacks on unprotected implementation.

The entropy caused by mixing priors is stated in Section 7.1.2, Section 7.1.2 shows the average
entropy per layer when using two-point matching with a mix matrix, and Section 7.1.2 states
information about the mix matrix itself. These values correlate with the protection offered by the
employed countermeasures and the effectiveness of our adaptation. It can be seen that higher
layers are affected to a larger extend as fewer sparse values occur and because noise from lower
layers accumulates in higher layers. The rank of the correct permutation, which signifies the
computational complexity of exact permutation matching, is depicted in Figure 7.6.

Mixing statistics were obtained by performing 100 runs per sigma, while success rates were

125

Chapter 7 Evaluation and Results

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

Measurment Noise [σ]

Su
cc

es
s

R
at

e

Success Rate of k-Trace Attacks with Masking

0 Zeros
64 zeros
128 zeros
192 zeros
224 zeros

Figure 7.2: The success rate, with standard masking, of the belief propagation part of the attack on
the inverse NTT per measurement noise level (in σ) and number of zeros as stated in [HHP+21].

Table 7.2: Entropy per belief propagation node when applying mixing priors in comparison to an
attack against an unprotected inverse NTT as stated and depicted in [HSST23].

σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

No shuffling 8.60 8.63 8.90 9.30 9.59 9.79 9.96 10.09 10.20 10.30
Mixing priors 9.63 9.63 9.76 10.05 10.29 10.44 10.54 10.63 10.70 10.77

computed with 10 runs per sigma. We do not evaluate the effects of coarse full shuffling due to
the required computational power and note the high level of protection by these countermeasures.
Our methods apply to full shuffling as well but are unavailable for an ordinary attacker without
extraordinary computational resources. To the best of our knowledge, possible improvements as
well as theoretic security evaluations of these countermeasures are still an open question.

Final Key Recovery

The final attack step is the key recovery using lattice reduction. We implemented this step using
the BKZ implementation of [Fplll]. In Kyber768 and Kyber1024, using BKZ-70, we achieve a
success rate of 92.7% in 590 attempts with 64 (out of 256) non-zero values. As the final key
recovery works independently on even and odd entries of our vector, we in fact run two key
recoveries each working on 32 (out of 128) non-zero values. With a block size of 80, the success
rate was 1. Kyber512 uses an error distribution with a larger support and therefore requires more
computational effort. Using BKZ-80, we could solve only 54% out of 100 attempts; this can very
likely be improved using a larger block size but could be infeasible for an adversary. Therefore,
we recommend using more non-zero components or to record more traces. With 96 non-zero
coefficients, all 100 attempts to recover the key were successful.

We summarize that for Kyber768 and Kyber1024 with 64 non-zero values, BKZ-70 suffices
in over 90% of the cases, and BKZ-80 can solve for the secret key in all cases. For Kyber512,
an attacker may need to run one more trace than theoretically required when being able to run
BKZ-80; this can be avoided by using more non-zero components.

126

7.1 Attacks on the Number Theoretic Transform

0 0.5 1 1.5 2 2.5 3
0

64

128

192

256

Measurement Noise [σ]

R
ec

ov
er

ed
C

oe
ffi

ci
en

ts
[#

]
Recovered Coefficients of k-Trace Attacks

0 Zeros
64 zeros
128 zeros
192 zeros
224 zeros

Figure 7.3: The number of recovered coefficients, without deployed countermeasures, of the belief
propagation part of the attack on the inverse NTT per measurement noise level (in σ) and
number of zeros as stated in [HHP+21].

Table 7.3: The entropy increase, as stated and depicted in [HSST23], caused by applying two-point
matching compared to an attack on unprotected implementation. Note that the sixth layer
contains a large amount of butterflies with one input node being zero.

σ 0.1 0.2 0.3 0.4 0.5 0.6

No shuffling (avg) 8.69 8.71 8.97 9.35 9.66 9.85
Layer 1 8.70 8.71 8.97 9.38 9.67 9.86
Layer 2 8.68 8.70 8.94 9.43 9.72 9.92
Layer 3 8.79 8.83 9.10 9.61 9.96 10.14
Layer 4 8.92 8.94 9.19 9.75 10.07 10.33
Layer 5 9.01 9.00 9.28 10.06 10.48 10.78
Layer 6 9.82 9.83 9.98 10.51 11.13 11.48
Layer 7 10.21 10.21 10.37 10.89 11.32 11.49

7.1.3 Comparison to Prior Work

Our attack strategy improves the attack presented in [PPM17] and [PP19]. Similar to [PPM17], we
target the decryption routine and thereby the long-term secret in contrast to [PP19]. As [PPM17]
targets a different scheme and different leakage, a direct comparison is hard. Instead, the subset
of our attack that does not use a chosen ciphertext, denoted “0 Zeros” (in e.g. Figure 7.2), may
be seen as adapting the attack of [PPM17] to our situation while using improvements of [PP19].
Additionally, we provide the chosen ciphertext and the recovery technique to substantially improve
upon the noise level (see Section 7.1.2). Using our technique increases the maximal possible noise
level, allowing an adversary to launch an attack even if their measurements are less precise. In
fact, the required standard deviation σ for a successful attack without a chosen ciphertext is
about 0.6, whereas it increases to more than 2.5 using our attack strategy. But note that for
maximally required noise level, more measurements are required as stated in Section 7.1.2.

In regard to countermeasures, comparable, but more extensive, analysis exists for symmetric
cryptography (see Section 3.1.7). But to the best of our knowledge, no adaptations to belief-

127

Chapter 7 Evaluation and Results

0 0.5 1 1.5 2 2.5 3
0

64

128

192

256

Measurement Noise [σ]

R
ec

ov
er

ed
C

oe
ffi

ci
en

ts
[#

]

Recovered Coefficients of k-Trace Attacks with Masking

0 Zeros
64 zeros
128 zeros
192 zeros
224 zeros

Figure 7.4: The number of recovered coefficients, with standard masking, of the belief propagation
part of the attack on the inverse NTT per measurement noise level (in σ) and number of zeros as
stated in [HHP+21].

Table 7.4: Entries in a mix matrix with probability greater than 0.005 when using two-point
matching as stated and depicted in [HSST23]. The entropy per row is stated in brackets.

σ 0.1 0.2 0.3 0.4 0.5

Layer 1 1.02 (0.02) 1.02 (0.02) 1.08 (0.05) 1.23 (0.12) 1.36 (0.2)
Layer 2 1.06 (0.06) 1.07 (0.06) 1.23 (0.13) 1.70 (0.33) 2.18 (0.58)
Layer 3 1.15 (0.14) 1.17 (0.15) 1.58 (0.30) 2.96 (0.82) 4.54 (1.43)
Layer 4 1.33 (0.03) 1.37 (0.32) 2.76 (0.75) 6.60 (1.94) 11.58 (2.99)
Layer 5 8.74 (2.85) 8.91 (2.87) 13.07 (3.45) 25.93 (4.80) 37.95 (5.50)
Layer 6 29.13 (4.77) 28.90 (4.79) 30.36 (5.35) 33.52 (6.43) 26.78 (6.80)

propagation-based attacks on post-quantum schemes have yet been proposed. Whether shuffling
countermeasures prevent attacks on the NTT or to what level these attacks are mitigated is
not yet known. Our techniques allow an adversary to target devices protected by shuffling
countermeasures with similar noise tolerance as previous attacks achieved against unprotected
implementations. We thereby provide previously missing analysis of countermeasures against
attacks on the NTT.

Summarizing, our attack strategy in its weakest form is similar to [PPM17] but targets Kyber,
assumes a different leakage model, and makes use of improvements from [PP19]. Our attack
strategy allows for an increase in the maximal standard deviation of the noise by a factor of up
to 5 when targeting the secret key in an attack on the NTT. Moreover, we take countermeasures
into account, give techniques to circumvent them, and provide an assessment of their impact.

7.2 Decryption Errors and Key Recovery

We evaluate the attack stated in Chapter 5 in the described fault model. We simulate a fault
by using a manipulated implementation which manually introduces the required error. Using a
chosen ciphertext, we thereby obtain decryption failure inequalities which are solved using belief

128

7.2 Decryption Errors and Key Recovery

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

Measurement Noise [σ]

Su
cc

es
s

R
at

e
Success Rate of Adaptations to Hiding

Two-Point Matching
Shuffle Node (distributed)
Unshuffled (contiguous)
Unshuffled (distributed)

Figure 7.5: The success rate, in the presence of shuffling countermeasures as stated in [HHP+21],
of the belief propagation part of the attack on the inverse NTT per measurement noise level (in
σ) and number of zeros used in the chosen ciphertext. Note that the zero distributions differ
depending on the countermeasure. Therefore, we re-state the distributed results from Figure 7.1
and, additionally, state the result for contiguous zeros as given (only) in [HHP+21].

propagation. The ciphertexts may be pre-filtered to simulate the technique of ciphertext filtering.
Using a similar method, we may also simulate more generally applicable decryption failures. We

use those to evaluate our recovery method described in Chapter 6. By additionally introducing
incorrect inequalities in several ways, we obtain inequalities as they occur in a variety of attacks,
e.g. [PP21, BDH+21b, HPP21, DHP+22, Wei22]. Moreover, the evaluation of Chapter 6 results
in security estimates for partial attacks for the strategy described Chapter 5.

7.2.1 Simulation
To simulate a fault or obtain decryption failure inequalities, we use a modified PQClean [KSSW22,
PQClean] implementation. We added a manipulated decapsulation routine that has a second
ciphertext as a parameter; this second ciphertext is the ciphertext that the re-encrypted one
is compared against. Thereby, we may simulate a fault during the storage of the submitted
ciphertext. The remainder of the attack is implemented in Python [PyRef] calling the modified
PQClean implementation.

To evaluate the attack presented in Chapter 5, we first honestly2 generate a key pair using the key
generation routine which is the target of our attack. Then, we honestly sample ciphertexts using
the encapsulation routine with the public key; we store the shared secret that the encapsulation
routine returns. The generated ciphertexts are manipulated such that they carry an additional

P

q
4

\

term in the first coefficient; the original ciphertext is stored as well. We check if ciphertext and bit-
fault requirements are met before submitting both ciphertexts to the manipulated decapsulation
routine. If the ciphertext causes a decryption failure, the decapsulation routine results in a
different shared secret than the one obtained from the encapsulation routine.

The implementation cannot only be used to simulate the described attack but also gives a
general decryption failure oracle by using the manipulated decapsulation routine. To evaluate
our method described in Chapter 6, we merely need to add potentially incorrect inequalities. We
add a correctness probability to every inequality and – according to the probability – flip the
2This means without manipulation by a call to the key generation.

129

Chapter 7 Evaluation and Results

0 0.1 0.2 0.3 0.4 0.5
0

25

50

75

Noise Level [σ]

R
an

k

Rank of the Correct Permutation

Layer 1
Layer 2
Layer 3
Layer 4

Figure 7.6: The rank of the correct permutation as stated in [HSST23] per noise level and layer
when using exact permutation matching.

Table 7.5: Runtimes as stated and depicted in [HPP21] on an Intel(R) Xeon(R) Gold 6242 per
security level with a fixed number of inequalities in minutes.

Kyber security level Iterations 32 threads 8 threads

Kyber512 (6000 inequalities) 6.8 3.25 9.3
Kyber768 (7000 inequalities) 6.75 6.7 18.6
Kyber1024 (9000 inequalities) 9 16.9 39.25

sign of the required number of inequalities. For our evaluation, we use three main scenarios with
incorrect inequalities: Firstly, we consider the case that all inequalities are incorrect. Secondly,
we simulate an attack such as [HPP21] or [Del22] under the assumption of an unreliable fault but
with certainly correct decapsulation successes. Thirdly, we assume that half of the inequalities
are potentially incorrect and the other half of the inequalities are potentially incorrect.

7.2.2 Fault-Enabled Chosen-Ciphertext Attacks

We evaluate the method of Chapter 5 in terms of success rate and recovered coefficients per fault.
In this case, we assume the fault to work in all cases with no unreliability. Results for unreliable
faults are stated in the next section in a more general setting; moreover, an attacker may use
decryption success only. In this case, the number of required faults is increased by a factor of 2 1

f ,
where f is the fault success rate. Note that faults in Section 7.2.2 correspond to inequalities in
Section 7.2.3.

The amount of recovered coefficients is shown in Figure 7.7 and the success rate in Figure 7.8.
Additionally, we state the runtime of the belief propagation in Table 7.5 as given in [HPP21].
The attack presented in Chapter 5 is improved by the recovery method stated in Chapter 6; the
average number of required faults for an adversary that can run BKZ-70 are shown in Table 7.6
(also as stated in [HMS+23]).

130

7.2 Decryption Errors and Key Recovery

0 2,500 5,000 7,500 10,000
0

250

500

750

1,000

Faults [#]

C
oe

ffi
ci

en
ts

[#
]

Recovered Coefficients per Number of Faults

Kyber512
Kyber768
Kyber1024

Figure 7.7: Average number of recovered coefficients per administered faults in [HPP21]. Note
that recovering 512, 768, or 1024 coefficients, for the respective Kyber security level, is sufficient.

0 2,500 5,000 7,500 10,000
0

0.25

0.5

0.75

1

Faults [#]

Su
cc

es
s

R
at

e

Success Rate per Number of Faults

Kyber512
Kyber768
Kyber1024

Figure 7.8: Average success rate per administered faults in [HPP21].

7.2.3 Improved Recovery
We state the results regarding the improved recovery method presented in Chapter 6 in terms of
BKZ-β per number of inequalities (for BKZ-β and lattice reduction in general, see Section 2.2.1).
The inequalities are assumed (and sampled under this assumption) to be the result of an
attack where the inequalities coefficients are uncorrelated to the secret key coefficient. We first
state the results for a setting in which all inequalities are certainly correct, i.e., pi “ 1 for all
i P t0, . . . ,m ´ 1u where m is the number of inequalities and p is the correctness probability.
Then, we give the results for three settings that contain inequalities with pi ă 1.

For correct inequalities, we differentiate between two settings: With and without ciphertext
filtering. The results are shown in Figure 7.9.

For potentially incorrect inequalities, the first scenario, shown in Figure 7.10, is one where all
inequalities are incorrect with pi “ p for p P t0.6, 0.7, 0.8, 0.9u. This corresponds for example to a
side-channel attack in which the attacker may detect a decryption failure correctly in p of the
cases; an example would be the attacks of [Wei22] or attacks similar to [BDH+21b, DHP+22].

131

Chapter 7 Evaluation and Results

Table 7.6: Approximate required number of faults with fault success probability f assuming the
adversary can run BKZ-70 as stated in [HMS+23].

Method Correct f “ 0.9 f “ 0.8 f “ 0.7 f “ 0.6

Number of Faults 5500 8000 9000 11000 15000

0 2,500 5,000 7,500 10,000 12,500
0

100

200

300

400

Number of Inequalities [#]

β

BKZ-β per Number of Inequalities

Filtered
Unfiltered

Figure 7.9: Security level per number of inequalities with and without ciphertext filtering as
stated in [HMS+23].

Another example would be a fault attack such as [PP21] in which a fault works in p of the cases
and no chosen ciphertext is used.

The second scenario, shown in Figure 7.11, corresponds to the attacks of [HPP21] or [Del22]
when assuming an incorrect fault but certainty about the result in the case of a decapsulation
success. In this scenario, the adversary uses a fault with success rate f , and an inequality derived
from a decapsulation failure is potentially incorrect; an inequality derived from a decapsulation
success has correctness p “ 1.

In the chosen-ciphertext attacks used in the mentioned attacks, the amount of decryption
failures is approximately the same as the number of successes, but as the fault fails in f of the
cases, not all decryption successes can be identified. An observed decapsulation failure may either
be an actual decryption failure with a successful fault (with probability f

2), a decryption success
with a failed fault (with probability 1´f

2), or a decryption failure with an unsuccessful fault (with
probability 1´f

2). Therefore, under the condition of having observed a decapsulation failure, we
may deduce that a decryption failure happened with probability

p “
pf{2q ` p1 ´ fq{2

pf{2q ` pp1 ´ fq{2q ` p1 ´ fq{2
“

1

2 ´ f
. (7.5)

The final scenario, Figure 7.12, is stated mainly for evaluation purposes and features half the
inequalities potentially incorrect with probability phalf P t0.6, 0.7, 0.8, 0.9u. To the best of our
knowledge, no currently published attack corresponds to this setting, but it allows for better
intuition on the effect of incorrect inequalities per total number of inequalities in a mixed setting
(i.e., a setting containing correct and incorrect inequalities).

We also compare our work to the work of [PP21] and [Del22]. Their presented methods do
not allow for security estimates – one of our main contributions – but we may compare the

132

7.2 Decryption Errors and Key Recovery

10 10,000 20,000 30,000 40,000
0

100

200

300

400

Number of Inequalities [#]

β
BKZ-β per Number of Inequalities

p “ 0.9 filtered
p “ 0.9 unfiltered
p “ 0.8 filtered

p “ 0.8 unfiltered

Figure 7.10: Security level per number of inequalities when all inequalities are potentially incorrect
with probability p as stated in [HMS+23].

Table 7.7: Comparison of recovery methods with different fault success probabilities (denoted by
f) and correctness probability (denoted by p) as depicted in [HMS+23].

Method Correct p “ 0.9 p “ 0.8 f “ 0.9 f “ 0.6

Pessl and Prokop [PP21] 7500 n.a. n.a. n.a. n.a.
Delvaux [Del22] 8500 34000 not solved 12000 21000
This work 5500 12000 24000 8000 15000

required number of inequalities with different correctness probabilities. A comparison of required
inequalities, as stated in [HMS+23], is given in Table 7.7.

7.2.4 Comparison to Prior Work

Several previous attacks [PP21, BDH+21b, DHP+22], as well as the follow-up attack [Del22]
to our work, exploit decryption failures. The main improvement to previous attacks in the case
of [HPP21] is the relaxed fault model (only requiring an unreliable fault) and that the attack
has a large attack surface, which does not depend on a single routine or a faulty comparison.
Additionally, we only target public data and points in execution time, some of which did not
obviously require protection. These properties are inherited by [Del22] as their work builds upon
our attack strategy and improves it further. Our improvements in Chapter 5 are not quantified
in this section, as all of these attacks obtain the same kind of inequalities; the main contribution
lies in the properties of the attack itself, i.e, in the enlarged attack surface and the relaxed
requirements on the fault injection.

In terms of recovery methods, we mainly compare our work to the recovery method of [Del22]
as they are the most competitive among the methods which have been used in practice in this
setting. We require about 58% to 68% of the inequalities required by [Del22] depending on the
setting. This means that we may recover the secret key with slightly more than half of the data
required by [Del22], which not only further reduces the requirements on the attacker, but may
also circumvent certain countermeasures proposed in [PP21]. In addition, we provide security
estimates that consider a practical recovery method, which previously were not available. These

133

Chapter 7 Evaluation and Results

10 5,000 10,000 15,000 20,000
0

100

200

300

400

Number of Inequalities [#]

β

BKZ-β per Number of Inequalities

Fault success f “ 0.9
Fault success f “ 0.8
Fault success f “ 0.7
Fault success f “ 0.6

Figure 7.11: Security level per number of inequalities in an attack with fault success rate f and
resulting probability p “ p1 ´ fq{2 for decryption failures as stated in [HMS+23].

enable the design of countermeasures as well as appropriate evaluation models that consider the
usage of lattice reduction after a partially successful attack.

In summary, the main improvements of [HPP21] are not expressed in the evaluations of this
section but lie in the nature of the attack itself. In comparison to previous attacks, [HPP21] only
requires an unreliable fault, i.e., even if the fault fails in a certain fraction of cases or targets an
incorrect value, the attack can still be carried out. This is because with out attack strategy, a
successful decapsulation can only happen with a successfully applied fault. Thus, failed faults
can be detected and do not prevent the recovery of the secret key.

The improvements of [HMS+23] are a reduced amount of required inequalities and security
estimates in case of partial attacks. The former, depending on the setting, reduces the number
of required faults or measurements, may circumvent countermeasures, or increases the noise
tolerance. The latter gives a basis for designing countermeasures and quantifies the effect of
inequalities by providing a translation from required computational power to required inequalities.

7.3 Summary

We evaluate our work under the assumptions of the attacker models described in the respective
previous sections and simulate our attacks and recovery methods in software. To evaluate the
template attack of Chapter 4, we employ the noisy Hamming weight model; to evaluate the
impact of countermeasures, we additionally state the noise level and entropy increase due to the
countermeasure in the presence of our adaptation.

For Chapter 5, we assume that an attacker may apply a one-bit flip, set, or reset to either the
stored ciphertext or the re-computed ciphertext. We simulate the attack and state the success rate
as well as the recovered coefficients per number of inequalities. In this case, the main contribution
of our work lies in the methodology and expresses itself in the type of faulted data, in the multiple
locations that we may target, and in the fact that we can use an unreliable fault.

Chapter 6 is evaluated in a similar model as Chapter 5, but in addition, we assume that some
decryptions are classified incorrectly. Moreover, we also provide security estimates for a variety of
potential or previous attacks.

Our evaluations show an improvement on the state of the art in all evaluated settings. Using

134

7.3 Summary

10 2,500 5,000 7,500 10,000
0

100

200

300

400

Number of Inequalities [#]

β
BKZ-β per Number of Inequalities

phalf “ 0.9
phalf “ 0.8
phalf “ 0.7
phalf “ 0.6

Figure 7.12: Security level in BKZ-β per number of inequalities when half of the inequalities are
incorrect with probability phalf as stated in [HMS+23].

the attack strategy presented in Chapter 4, we improve upon the noise tolerance the adversary
has to achieve for a successful key recovery when targeting the secret key during the inverse NTT.
In this setting, previous work required the adversary to achieve a noise level of σ ď 0.6 for a
positive success rate, while we only require the attacker to achieve a noise level from σ ď 1.7 to
σ ď 3.1, depending on the security level3. Thereby, the requirements on the attacker are relaxed.
This means targeting the NTT is more realistic using the presented methods. In addition, we
take shuffling countermeasures into account and show that our attacks can be adapted in certain
settings, depending on the security level of the countermeasure.

In the case of Chapter 5, the main advantage lies in the attack itself, namely the reduced
requirements on the attacker. When using our attack strategy, the adversary is only required to
be able to apply an unreliable fault in one of several possible locations over a long execution time.
Nevertheless, we also improve upon the number of required inequalities for full key recovery, and
we greatly reduce the memory requirements of previous methods.

Our key recovery method in Chapter 6 improves upon previous algorithms in terms of required
inequalities. The difference is particularly visible in cases where incorrect inequalities have to be
considered or no ciphertext filtering is in place. For full key recovery, the number of inequalities
the attacker needs is reduced by a factor of 0.73 to 0.35, and we can recover the secret key in
settings where previous methods failed. This lowers the requirements on the attacker and may
circumvent previously proposed countermeasures. In addition, we offer security estimates for
partially successful attacks; this means that the remaining bit security after having obtained any
number of inequalities is evaluated.

3In the unmasked k-trace attack setting.

135

Chapter 8

Conclusions and Outlook

The standardization of post-quantum cryptography, with Kyber as the current main candidate
for key exchanges, is imminent. In the near future, Kyber will likely be used in a vast variety of
use cases. Therefore, understanding the vulnerability of Kyber – and lattice-based cryptography
in general – in regard to side-channel and fault attacks is crucial. In our work, we present
and analyze attack strategies, methods and techniques for current and future attacks, including
vulnerability assessment on major building blocks. We conclude this thesis by summarizing our
findings, revisiting the research questions, and outlining open questions that result from our work.

8.1 Main Findings

We first give an overview of the strategies and techniques used in our work and then revisit our
research questions and summarize the answers provided in previous chapters.

8.1.1 Attack Strategies

The attack strategies presented in Chapter 4 and Chapter 5 rely on the combination of a
chosen-ciphertext attack with either side-channel analysis or a fault attack. Compared to pure
side-channel or fault attacks, by using a chosen ciphertext, the adversary may (further) influence
the computation taking place in an attacked device. Similar kinds of chosen-ciphertext attacks
have previously been used to enable implementation attacks (see e.g. [GJN20, BDH+21b]).

We provide two new attack strategies using chosen-ciphertexts in the context of lattice-based
schemes; the first reduces the entropy during the computation of the Number Theoretic Transform
(NTT), and the second potentially introduces a decryption failure that can be observed when
combined with a fault. We thereby improve previous attacks by allowing for a greater noise
tolerance, requiring a less reliable1 fault, and enhancing the attack surface.

Our attack strategies can be used to improve, adapt, and construct different attacks as well. The
method to reduce the entropy arising during the inverse NTT is not dependent on a subsequent
template attack. It could be used with any kind of attack that targets the inverse NTT and
benefits from reduced entropy. The strategy of using manipulated ciphertext and a correcting
fault can be used with other types of invasive implementation attacks. Our strategy has already
been used and extended in the follow-up work of Delvaux [Del22]2, who shows that more locations
are potentially vulnerable using this strategy.

1A fault that can fail and not target the correct or any value.
2Note that [Del22] was published after [HPP21] which is part of this thesis.

137

Chapter 8 Conclusions and Outlook

In conclusion, our methods are not limited to the specific attacks presented in this thesis, and
our attack strategies have already enabled novel attacks. Furthermore, awareness of potential
vulnerabilities is necessary to adequately protect cryptographic operations and devices.

8.1.2 Attack Techniques

All presented methods and techniques rely on belief propagation, which enables our attacks in
the first place. Since having been proposed for the usage in Soft Analytical Side-Channel Attacks
(SASCAs) [VGS14], belief propagation has been used in a variety of side-channel attacks, e.g.
in [PPM17, GRO18, PP19, KPP20]. We additionally use belief propagation in the context of
a fault attack retrieving decryption failure information; this is similar to the usage of belief
propagation for the decoding of Low-Density Parity Check (LDPC)-codes [Gal62]. For this
use case, we show how belief propagation may be used to efficiently (in terms of time and
memory complexity) solve a system of inequalities. This – as well as our belief-propagation-based
adaptations to countermeasures – further stresses the effectiveness of coding-theoretic perspectives
in side-channel and fault attacks on lattice-based cryptography.

Our techniques again apply to a wider variety of situations: In the context of shuffling
countermeasures, we show that belief propagation may be extended to adapt an attack to
countermeasures. This adaptation is not dependent on the attack we evaluated it on; instead, it
may be used more generally in the context of belief-propagation-based attacks to adapt to hiding
countermeasures. Our results are in line with previous work (see Section 3.1.7) that shows how
shuffling countermeasures may be circumvented in symmetric cryptography.

We propose using belief propagation to solve inequalities arising from decryption failure
information. This technique outperforms previous approaches in terms of required inequalities
and has already been used in [DHP+22] and [Wei22]. We also show how approaches such as belief
propagation may be combined with lattice reduction by the integration of statistical output into a
lattice problem. We explain how belief propagation can be made error-resistant in the context of
decryption failure information. This technique is also not limited to a specific situation used for
evaluation but may be applied whenever side-channel analysis data may not be classified correctly
in an attack using belief propagation. Further, attacks not yet relying on belief propagation may
use our technique to work with potentially incorrectly classified data.

Moreover, our work shows how to make use of statistical information while also leveraging
the algebraic data from the public key equation in lattice-based schemes. This is achieved by
the integration of probability information into the lattice problem derived from the public key
equation. Thereby, we achieve an improved recovery and may provide security estimates for
partial attacks, i.e., attacks that did not obtain sufficient information for a full key recovery. This
technique likely applies to a wide variety of belief-propagation-based attacks; it may already be
used for improvements and to provide security estimates for the works presented in [BDH+21b,
PP21, DHP+22, Del22], and it likely also applies to [HHP+21].

In conclusion, the approaches we presented apply beyond the scope we chose for evaluation. Our
methods allow adapting to countermeasures, and they enable current and potential future attacks.
In addition, our methods are required to deploy appropriate countermeasures that achieve the
required security levels and to understand the security of several types of attacks.

8.1.3 Vulnerability Analysis

By applying our attack strategies and techniques and evaluating them on the example of Kyber,
we provide vulnerability analyses of major building blocks of modern lattice-based schemes.
This includes the number theoretic transform, the error correction, and the Fujisaki-Okamoto

138

8.1 Main Findings

(FO)-transform. These are common building blocks of lattice-based schemes (not only of Kyber),
and as the National Institute of Standards and Technology (NIST) selected lattice-based schemes
for standardization, understanding their security is crucial for the migration the post-quantum
cryptography.

Number Theoretic Transform

We provide analysis in terms of required attacker capabilities to perform a template attack on the
inverse NTT. Our assessment is given in terms of noise tolerance, i.e., in the standard deviation
that an attacker needs to achieve for the probability distributions obtained from the template
attack. In addition, we provide an analysis of the impact of a standard masking countermeasure
as proposed in [RRC+16, OSPG18] and hiding countermeasures proposed in [RPBC20]. We state
the decrease in noise tolerance when these countermeasures are in place and the attack is adapted
accordingly.

Error Correction

We evaluate the vulnerability of the error correction in terms of information an attacker gains
from potentially causing and then observing a decryption failure. We provide an evaluation of
the required number to fully recover the secret key, security estimates for partial attacks, and an
information-theoretic analysis resulting in an upper bound on the obtained information. These
estimates in theory and practice are important not only to understand the security of modern
lattice-based schemes but also to deploy appropriate countermeasures that allow for sufficiently
secured cryptographic operations and devices. Otherwise, the impact of attacks that exploit
decryption failures could be underestimated and countermeasures could fail to reach the targeted
security level.

FO-Transform

Our analysis in regard to the FO-transform points out that public data may as well be vulnerable
to fault attacks targeting the secret key. Even with an unreliable fault on public data alone,
we may turn the FO-transform into a decryption failure oracle and obtain reliable information
about the secrets. Our assessment provides additional potential points of attack which need to
be protected to achieve appropriately secured implementations.

8.1.4 Revisiting the Research Questions

In Section 1.1.2, we identified several research questions; given the previously described findings,
we may now answer our research questions.

To what extent is the number theoretic transform vulnerable to side-channel analysis?

Our work in Chapter 4 shows that the entropy during the inverse NTT may be reduced using
a chosen-ciphertext attack. A ciphertext component that is compressible, i.e., unaffected by
compression and subsequent decompression, and NTT-sparse, i.e., sparse in NTT-domain, is
computed using lattice reduction. This ciphertext is submitted to the device under attack; the
device decompresses the ciphertext, and the component is transformed to NTT domain and
multiplied with the secret. The result of this computation is the input to a subsequent inverse
NTT. As the component is NTT-sparse, so is the input to the NTT; it therefore greatly reduces

139

Chapter 8 Conclusions and Outlook

the entropy and increases the noise tolerance when performing a side-channel analysis – in our
case a template attack – on the inverse NTT.

Our strategy enables far more noise tolerant – and therefore more realistic – attacks on the
inverse NTT. The technique is easily deployed3 and only requires widely available resources in
terms of computational power. Additionally, all our computations are performed offline, and
the ciphertext generation has to be carried out only once. Compared to previous attacks, the
additional requirements on an adversary are therefore minimal. As previous attacks have been
carried out on physical devices, our attack is realistic using a common setup for template attacks.
Moreover, we show that first countermeasures may be circumvented using adaptations either in
software or in software and attacker model.

We conclude that a combined side-channel and chosen-ciphertext attack allows for high noise
tolerance. Circumventing shuffling countermeasures is possible using our techniques but reduces
the noise tolerance. Moreover, our attack strategy allows reducing the entropy in an arbitrary
implementation attack on the NTT that can be combined with a chosen-ciphertext attack. Our
work suggests that public data should be protected by masking countermeasures as well and
provides further evidence that ciphertexts should be checked for irregularities. We thus highlight
and evaluate the vulnerabilities of the NTT in modern lattice-based cryptography.

How can implementation attacks target the error correction and exploit decryption
failure leakage in the presence of an FO-Transform?

In Chapter 5, we present the combination of a chosen ciphertext potentially causing a decryption
failure with a fault attack. Our attack strategy causes the FO-transform to function as a
decryption failure oracle for the submitted ciphertext – observing a decryption failure allows
deriving an inequality in the secret key. These inequalities are solved using belief propagation,
which outperforms previous methods in terms of required information.

Our strategy allows for the usage of an unreliable fault and enlarges the attack surface compared
to previous attacks. Regardless of the fault success rate, the attacker may still recover information
about the secret key – merely the required number of required faults is increased. In addition, the
fault may be applied to public data, which is less likely to be protected appropriately. Further,
the fault may be applied at a variety of places and is therefore not impacted by a single currently
known countermeasure; in particular, it is not prevented by the shuffling countermeasures that
prevented previous invasive attacks.

We conclude that our combined method consisting of a chosen ciphertext and a fault attack
offers advantages over previous methods and requires careful protection of the decapsulation
routine in a wide variety of places. We show that FO-transform is vulnerable to this class of
attacks, which use a fault to obtain a decryption failure oracle.

Our analysis shows that even an unreliable fault can be used to target the error correction.
Therefore, our work shows that protecting the error correction against side-channel attacks or
fault attacks in specific locations is insufficient to prevent attacks exploiting decryption failure
leakage. In addition to protecting against previous attacks, further countermeasures that protect
the submitted and recomputed ciphertexts from manipulation are required.

Which techniques allow for key recovery from (partially) leaked information?

In Chapter 6, we present a recovery method to retrieve the secret key from decryption failure
information. We first employ a belief propagation method, which is similar to the algorithm used
in Chapter 5, but enhance it with additional probability information to achieve error resistance.
The probabilistic output of the belief propagation method is subsequently integrated into a lattice

3It merely requires a computationally inexpensive preprocessing step.

140

8.2 Future Work

problem, similar to the primal attack, which may be solved using lattice reduction. In addition,
we provide an information-theoretic analysis of the obtained inequalities.

Our method requires a lower number of inequalities compared to previous methods, is error-
resistant, and allows for security estimates. Error resistance enables attacks in which information
cannot be classified with certainty – often a realistic assumption –, and our method allows
combining this property with a reduced amount of required information. The availability of
security estimates is important to deploy countermeasures that prevent decryption failure attacks
within a certain security level. Thereby, our technique improves upon the state of the art in
recovery methods for decryption failure information and offers valuable results for the deployment
of appropriate countermeasures against decryption failure attacks. Moreover, our method generally
explains how belief-propagation-based attacks may be combined with lattice reduction.

We conclude that a hybrid method consisting of belief propagation, a statistical/coding theoretic
approach, and a lattice-based attack, an algebraic approach, outperforms previous techniques. A
hybrid approach enhances the understanding of previous attacks and provides an assessment of
their impact that enables the deployment of appropriate countermeasures.

8.2 Future Work

Our work opens several questions which are to be answered by future work. In the following, we
address those questions sorted by the attack domain.

8.2.1 Attacks on the NTT

In regard to attacks on the (inverse) NTT presented in this thesis and [HHP+21], the most
pressing open question are more comprehensive countermeasures in real-world use cases. We
did not provide any evaluation in this regard due to the lack of a production-ready protected
implementation used in a real-world scenario.

We adapted the attacks described in Chapter 4 to a common masking scheme as well as
to hiding countermeasures proposed in [RPBC20]. Other masking schemes might also protect
the public input including u. In this case, we lose the option to apply zeros using a chosen
ciphertext. While our attack is not fully prevented, its main advantage compared to previous
attacks is lost unless further adaptations – yet unknown – are taken. We, exemplary, adapted
our attack to the hiding countermeasures published in [RPBC20] and a general masking scheme.
The work of [RPBC20] additionally defines a specific masking scheme for an (inverse) NTT. The
adaptation and the impact of such schemes are out-of-scope for our work. Again, attacking such
a countermeasure is interesting mainly on a real device that runs a protected implementation
using a variety of countermeasures.

In the case of partial attacks, we only consider attacks that can fully recover a sub-key. While
we give security estimates based on the sub-key, neither recovered coefficients nor statistical
information in the form of belief propagation output is taken into account. We conjecture that a
method similar to the one explained in Chapter 6 allows improving upon the results and, more
importantly, offers more precise security estimates for partial attacks.

Previous attacks, including ours as well as [PPM17] and [PP21], perform a profiled attack,
which is a stronger attacker model. Another interesting question concerns the application of
our technique to non-profiled attacks such as [MBB+22], which could achieve improvements.
In addition, applying recent advances in deep learning in the area of side-channel analysis,
e.g. [NDGJ21, NWDP22, DNG22] to our setting could lead to a more relaxed attacker model and
pose an increased threat to protected implementations.

141

Chapter 8 Conclusions and Outlook

8.2.2 Decryption Failure Attacks

The attack presented in this thesis and [HPP21] has already been extended by the attack presented
in [Del22]. In [Del22], the fault model was further relaxed, and the attack surface increased; i.e.,
their attack can obtain the secret key with less reliable data and works with a fault that can
be applied at more locations. Nevertheless, the attack surface and the fault model can almost
certainly be improved even further. Additionally, this type of attack can be extended to different
lattice-based schemes that achieve IND-CCA2 security using an FO-transform.

The main open question concerns comprehensive countermeasures: A combination of counter-
measures likely prevents our attack in its current form, but it is not unlikely that adaptations exist
– the work of [Del22] already improves upon the resistance against countermeasures. In [AKSV22],
a general countermeasure through ciphertext verification by a third party was presented, but it
only applies to use cases where a trustworthy third party is available. The authors of [PP21]
already propose shutting down after a certain amount of decryption failures. However, they
also note that this leaves a device vulnerable to Denial of Service (DoS) attacks. A more
comprehensive and generally applicable countermeasure to decryption failure attacks that neither
requires a third party nor allows for DoS attacks is yet missing.

Various models and notions to prove the side-channel security of cryptographic schemes exist.
Common models such as t-probing security [ISW03] or t-strong non-interference [BBD+16],
assume that the adversary can observe t intermediate variables. The practicality in some real-
world applications of t-probing security has previously been questioned (see, e.g., [KGM+21]). In
decryption failure attacks targeting the comparison, the attacker is merely interested in whether
a decryption failure has occurred or not – accessing single intermediates (or their Hamming
weights) is not necessarily required, and the adversary is only interested a single bit of information.
Therefore, in this case, a horizontal higher-order attack can be less costly than in other attacks,
and different models to assess side-channel security of the comparison of the FO-transform in the
presence of decryption failures could be more realistic.

8.2.3 Key Recovery Methods

The key recovery method presented in this thesis and [HMS+23] outperforms previous approaches
in the area of recovering the secret key from decryption failure information by combining belief
propagation with lattice reduction techniques. Nevertheless, we note that our method does not
reach the information-theoretic optimum; the code given by inequalities is likely a “good” code
(see [CG90]), and the secret key is determined by fewer inequalities (c.f. Section 6.2.3) than we
require. While the information-theoretic optimum is a lower bound unlikely to be reached – as
decoding random linear codes is NP-hard (see [BMT78]) –, there could be further improvements
in terms of lowering the amount of inequalities.

Moreover, our method in its current form is unsuitable for the inequalities arising in failure-
boosting attacks such as [FKK+22]. These inequalities have coefficients strongly correlated to
the secret key coefficients and may be solved using the method of [FKK+22] or [DGHK22]. Our
method is not applicable to inequalities of [FKK+22], and the techniques used to solve those
inequalities seems not to apply to the inequalities we considered. An interesting question is
whether a unified approach exists that allows solving both kinds of inequalities.

Another important topic is the question for different types of leakage on the error term. Different
leakage could lead to difference in the required recovery method. In these question different
applications of recovery methods based on belief propagation or algebraic methods could be
beneficial.

142

8.2 Future Work

8.2.4 Post-Quantum Signature Schemes
Due to the store-now-decrypt-later threat, secured post-quantum Key Encapsulation Mechanisms
(KEMs) are arguably a more pressing matter than signature schemes. However, the signature
scheme Dilithium [DKL+18, BDK+21a] will be standardized [NistCfpv4], and has already seen
side-channel and fault analysis (see, e.g., [RJH+18, MUTS22, IMS+22, BVC+23, EAB+23])
as well as discussion on countermeasures (see, e.g., [MGTF19, ABC+23, CGTZ23]). Moreover,
NIST extended the standardization process for signature schemes [NistSig]. Understanding
vulnerabilities and the security against physical attacks of these schemes has been out-of-scope for
this thesis, but it is crucial to deploy protocols that also rely on post-quantum signature schemes.

8.2.5 Physical Attacks and Deep Learning
Deep learning and neural networks have been proven to enable and simplify physical attacks.
This already included several post-quantum schemes (c.f. Section 2.3.1). These techniques
could drastically lower the required expertise to carry out side-channel attacks. In addition,
neural networks could reduce difficulties that arise in profiled attacks where the device used for
profiling differs from the targeted device. Moreover, neural networks that learn from side-channel
information while taking the underlying mathematical structure into account could lead to new
types of attacks. This could be particularly effective if neural networks can be combined with
belief propagation in side-channel attacks. Therefore, these developments make it necessary to
assess the impact of attacks and to revise the corresponding threat models.

143

Bibliography

[AAB+19] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,
Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. NewHope – Submission
to the NIST post-quantum project. 2019. url: https://newhopecrypto.org/
data/NewHope_2019_07_10.pdf.

[AB75] Ramesh C. Agarwal and C. Sidney Burrus. “Number theoretic transforms to
implement fast digital convolution”. In: Proceedings of the IEEE 63 (1975), pp. 550–
560.

[ABC+23] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann, Yulia
Kuzovkova, Joost Renes, Tobias Schneider, Markus Schönauer, François-Xavier
Standaert, and Christine van Vredendaal. “Protecting Dilithium against Leakage
Revisited Sensitivity Analysis and Improved Implementations”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2023.4 (2023), pp. 58–79. doi: 10.46586/TCHES.
V2023.I4.58-79. url: https://doi.org/10.46586/tches.v2023.i4.58-79.

[ABD+] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-KYBER reference implementation. Available at https://github.
com/pq-crystals/kyber/, commit ’8e9308bd0f25fa698e4f37aba216249261f8b352’,
last accessed 2021-04-11.

[ABD+19a] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber Algorithm Specifications And Supporting Documentation
(version 1.0). 2019. url: https://pq- crystals.org/kyber/data/kyber-
specification.pdf.

[ABD+19b] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber Algorithm Specifications And Supporting Documentation
(version 2.0). 2019. url: https://pq- crystals.org/kyber/data/kyber-
specification-round2.pdf.

[ABD+21a] Erdem Alkim, Joppe W. Bos, Leo Ducas, Patrick Longa, Ilya Mironov, Michael
Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan, and Douglas
Stebila. FrodoKEM Learning With Errors Key Encapsulation. 2021. url: https:
//frodokem.org/files/FrodoKEM-specification-20210604.pdf.

[ABD+21b] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber Algorithm Specifications And Supporting Documentation
(version 3.02). 2021. url: https://pq- crystals.org/kyber/data/kyber-
specification-round3-20210804.pdf.

145

https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://doi.org/10.46586/TCHES.V2023.I4.58-79
https://doi.org/10.46586/TCHES.V2023.I4.58-79
https://doi.org/10.46586/tches.v2023.i4.58-79
https://github.com/pq-crystals/kyber/
https://github.com/pq-crystals/kyber/
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

Bibliography

[ABG+22] Melissa Azouaoui, Olivier Bronchain, Vincent Grosso, Kostas Papagiannopoulos,
and François-Xavier Standaert. “Bitslice Masking and Improved Shuffling: How
and When to Mix Them in Software?” In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2022.2 (2022), pp. 140–165. doi: 10.46586/tches.v2022.i2.140-165. url:
https://doi.org/10.46586/tches.v2022.i2.140-165.

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan, Leo
Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen, Cheng-
Jhih Shih, Julian Wälde, and Bo-Yin Yang. “Polynomial Multiplication in NTRU
Prime Comparison of Optimization Strategies on Cortex-M4”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021.1 (2021), pp. 217–238. doi: 10.46586/tches.
v2021.i1.217-238. url: https://doi.org/10.46586/tches.v2021.i1.217-
238.

[ACD+18] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player,
Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer. “Estimate
All the {LWE, NTRU} Schemes!” In: Security and Cryptography for Networks
- 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018,
Proceedings. Ed. by Dario Catalano and Roberto De Prisco. Vol. 11035. Lecture
Notes in Computer Science. Springer, 2018, pp. 351–367. doi: 10.1007/978-3-
319-98113-0_19. url: https://doi.org/10.1007/978-3-319-98113-0_19.

[ACLZ20] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden. “Defeating
NewHope with a Single Trace”. In: Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings. Ed.
by Jintai Ding and Jean-Pierre Tillich. Vol. 12100. Lecture Notes in Computer
Science. Springer, 2020, pp. 189–205. doi: 10.1007/978-3-030-44223-1_11. url:
https://doi.org/10.1007/978-3-030-44223-1_11.

[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W.
Postlethwaite, and Marc Stevens. “The General Sieve Kernel and New Records
in Lattice Reduction”. In: Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II. Ed. by
Yuval Ishai and Vincent Rijmen. Vol. 11477. Lecture Notes in Computer Science.
Springer, 2019, pp. 717–746. doi: 10.1007/978- 3- 030- 17656- 3_25. url:
https://doi.org/10.1007/978-3-030-17656-3_25.

[ADPS16a] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. “NewHope
without reconciliation”. In: IACR Cryptol. ePrint Arch. (2016), p. 1157. url:
http://eprint.iacr.org/2016/1157.

[ADPS16b] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. “Post-quantum
Key Exchange - A New Hope”. In: 25th USENIX Security Symposium, USENIX Se-
curity 16, Austin, TX, USA, August 10-12, 2016. Ed. by Thorsten Holz and Stefan
Savage. USENIX Association, 2016, pp. 327–343. url: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/alkim.

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer.
“Revisiting the Expected Cost of Solving uSVP and Applications to LWE”. In:
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I. Ed. by Tsuyoshi Takagi and
Thomas Peyrin. Vol. 10624. Lecture Notes in Computer Science. Springer, 2017,

146

https://doi.org/10.46586/tches.v2022.i2.140-165
https://doi.org/10.46586/tches.v2022.i2.140-165
https://doi.org/10.46586/tches.v2021.i1.217-238
https://doi.org/10.46586/tches.v2021.i1.217-238
https://doi.org/10.46586/tches.v2021.i1.217-238
https://doi.org/10.46586/tches.v2021.i1.217-238
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-44223-1_11
https://doi.org/10.1007/978-3-030-44223-1_11
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
http://eprint.iacr.org/2016/1157
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim

Bibliography

pp. 297–322. doi: 10.1007/978-3-319-70694-8_11. url: https://doi.org/10.
1007/978-3-319-70694-8_11.

[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended Abstract)”.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. Ed. by Gary
L. Miller. ACM, 1996, pp. 99–108. doi: 10.1145/237814.237838. url: https:
//doi.org/10.1145/237814.237838.

[Ajt98] Miklós Ajtai. “The Shortest Vector Problem in L2 is NP -hard for Randomized
Reductions (Extended Abstract)”. In: Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998.
Ed. by Jeffrey Scott Vitter. ACM, 1998, pp. 10–19. doi: 10.1145/276698.276705.
url: https://doi.org/10.1145/276698.276705.

[AK96] Ross Anderson and Markus Kuhn. “Tamper Resistance – a Cautionary Note
new”. In: 2nd USENIX Workshop on Electronic Commerce (EC 96). Oakland, CA:
USENIX Association, Nov. 1996. url: https://www.usenix.org/conference/
2nd-usenix-workshop-electronic-commerce/tamper-resistance-cautionary-
note.

[AK97] Ross J. Anderson and Markus G. Kuhn. “Low Cost Attacks on Tamper Resistant
Devices”. In: Security Protocols, 5th International Workshop, Paris, France, April
7-9, 1997, Proceedings. Ed. by Bruce Christianson, Bruno Crispo, T. Mark A.
Lomas, and Michael Roe. Vol. 1361. Lecture Notes in Computer Science. Springer,
1997, pp. 125–136. doi: 10.1007/BFb0028165. url: https://doi.org/10.1007/
BFb0028165.

[AKSV22] Melissa Azouaoui, Yulia Kuzovkova, Tobias Schneider, and Christine van Vre-
dendaal. “Post-Quantum Authenticated Encryption against Chosen-Ciphertext
Side-Channel Attacks”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.4
(2022), pp. 372–396. doi: 10.46586/tches.v2022.i4.372-396. url: https:
//doi.org/10.46586/tches.v2022.i4.372-396.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness of
Learning with Errors”. In: Journal of Mathematical Cryptology 9.3 (2015), pp. 169–
203. doi: doi:10.1515/jmc-2015-0016. url: https://doi.org/10.1515/jmc-
2015-0016.

[BB05] David Brumley and Dan Boneh. “Remote timing attacks are practical”. In: Comput.
Networks 48.5 (2005), pp. 701–716. doi: 10.1016/j.comnet.2005.01.010. url:
https://doi.org/10.1016/j.comnet.2005.01.010.

[BBC+23] Joppe W. Bos, Olivier Bronchain, Frank Custers, Joost Renes, Denise Verbakel, and
Christine van Vredendaal. Enabling FrodoKEM on Embedded Devices. Cryptology
ePrint Archive, Paper 2023/158. https://eprint.iacr.org/2023/158. 2023.
url: https://eprint.iacr.org/2023/158.

[BBD+16] Gilles Barthe, Sonia Belaıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. “Strong Non-Interference and
Type-Directed Higher-Order Masking”. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October
24-28, 2016. Ed. by Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi. ACM, 2016, pp. 116–129. doi: 10.1145/
2976749.2978427. url: https://doi.org/10.1145/2976749.2978427.

147

https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/276698.276705
https://www.usenix.org/conference/2nd-usenix-workshop-electronic-commerce/tamper-resistance-cautionary-note
https://www.usenix.org/conference/2nd-usenix-workshop-electronic-commerce/tamper-resistance-cautionary-note
https://www.usenix.org/conference/2nd-usenix-workshop-electronic-commerce/tamper-resistance-cautionary-note
https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/BFb0028165
https://doi.org/10.1007/BFb0028165
https://doi.org/10.46586/tches.v2022.i4.372-396
https://doi.org/10.46586/tches.v2022.i4.372-396
https://doi.org/10.46586/tches.v2022.i4.372-396
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
https://eprint.iacr.org/2023/158
https://eprint.iacr.org/2023/158
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427

Bibliography

[BBLP18] Daniel J. Bernstein, Leon Groot Bruinderink, Tanja Lange, and Lorenz Panny.
“HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption with Error
Correction”. In: Progress in Cryptology - AFRICACRYPT 2018 - 10th Interna-
tional Conference on Cryptology in Africa, Marrakesh, Morocco, May 7-9, 2018,
Proceedings. Ed. by Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi.
Vol. 10831. Lecture Notes in Computer Science. Springer, 2018, pp. 203–216. doi:
10.1007/978-3-319-89339-6_12. url: https://doi.org/10.1007/978-3-
319-89339-6_12.

[BBPS19] Madalina Bolboceanu, Zvika Brakerski, Renen Perlman, and Devika Sharma.
“Order-LWE and the Hardness of Ring-LWE with Entropic Secrets”. In: Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part II. Ed. by Steven D. Galbraith and Shiho Moriai.
Vol. 11922. Lecture Notes in Computer Science. Springer, 2019, pp. 91–120. doi:
10.1007/978-3-030-34621-8_4. url: https://doi.org/10.1007/978-3-030-
34621-8_4.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. “Frodo: Take off the Ring!
Practical, Quantum-Secure Key Exchange from LWE”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. Ed. by Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi. ACM, 2016, pp. 1006–
1018. doi: 10.1145/2976749.2978425. url: https://doi.org/10.1145/
2976749.2978425.

[BCLV17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal. “NTRU Prime: Reducing Attack Surface at Low Cost”. In: Selected
Areas in Cryptography - SAC 2017 - 24th International Conference, Ottawa, ON,
Canada, August 16-18, 2017, Revised Selected Papers. Ed. by Carlisle Adams and
Jan Camenisch. Vol. 10719. Lecture Notes in Computer Science. Springer, 2017,
pp. 235–260. doi: 10.1007/978-3-319-72565-9_12. url: https://doi.org/10.
1007/978-3-319-72565-9_12.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. “Post-
Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors
Problem”. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. IEEE Computer Society, 2015, pp. 553–570. doi:
10.1109/SP.2015.40. url: https://doi.org/10.1109/SP.2015.40.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power Analysis
with a Leakage Model”. In: Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004. Proceedings. Ed. by Marc Joye and Jean-Jacques Quisquater. Vol. 3156.
Lecture Notes in Computer Science. Springer, 2004, pp. 16–29. doi: 10.1007/978-
3-540-28632-5_2. url: https://doi.org/10.1007/978-3-540-28632-5_2.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. “New directions in
nearest neighbor searching with applications to lattice sieving”. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016. Ed. by Robert Krauthgamer.

148

https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-030-34621-8_4
https://doi.org/10.1007/978-3-030-34621-8_4
https://doi.org/10.1007/978-3-030-34621-8_4
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2

Bibliography

SIAM, 2016, pp. 10–24. doi: 10.1137/1.9781611974331.ch2. url: https:
//doi.org/10.1137/1.9781611974331.ch2.

[BDH+21a] Ward Beullens, Jan-Pieter D’Anvers, Andreas Hülsing, Tanja Lange, Lorenz Panny,
Cyprien de Saint Guilhem, and Nigel P. Smart. Post-Quantum Cryptography: Cur-
rent state and quantum mitigation. 2021. url: https://www.enisa.europa.eu/
publications/post-quantum-cryptography-current-state-and-quantum-
mitigation.

[BDH+21b] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and
Michiel Van Beirendonck. “Attacking and Defending Masked Polynomial Compari-
son for Lattice-Based Cryptography”. In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021.3 (2021), pp. 334–359. doi: 10.46586/tches.v2021.i3.334-359. url:
https://doi.org/10.46586/tches.v2021.i3.334-359.

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS
- Kyber: A CCA-Secure Module-Lattice-Based KEM”. In: 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom,
April 24-26 , 2018. IEEE, 2018, pp. 353–367. doi: 10.1109/EuroSP.2018.00032.
url: https://doi.org/10.1109/EuroSP.2018.00032.

[BDK+21a] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium Algorithm
Specifications and Supporting Documentation (Version 3.1). 2021. url: https:
//pq- crystals.org/dilithium/data/dilithium- specification- round3-
20210208.pdf.

[BDK+21b] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. “A Side-Channel-Resistant Implementation of
SABER”. In: ACM J. Emerg. Technol. Comput. Syst. 17.2 (2021), 10:1–10:26. doi:
10.1145/3429983. url: https://doi.org/10.1145/3429983.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of
Checking Cryptographic Protocols for Faults (Extended Abstract)”. In: Advances
in Cryptology - EUROCRYPT ’97, International Conference on the Theory and
Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding. Ed. by Walter Fumy. Vol. 1233. Lecture Notes in Computer Science.
Springer, 1997, pp. 37–51. doi: 10.1007/3- 540- 69053- 0_4. url: https:
//doi.org/10.1007/3-540-69053-0_4.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. “Relations
Among Notions of Security for Public-Key Encryption Schemes”. In: Advances
in Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 23-27, 1998, Proceedings. Ed. by Hugo
Krawczyk. Vol. 1462. Lecture Notes in Computer Science. Springer, 1998, pp. 26–45.
doi: 10.1007/BFb0055718. url: https://doi.org/10.1007/BFb0055718.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. 2005. url: https://cr.yp.
to/antiforgery/cachetiming-20050414.pdf.

[Ber21] Daniel J. Bernstein. S-units attacks. 2021. url: https://cr.yp.to/talks/2021.
08.20/slides-djb-20210820-sunitattacks-4x3.pdf.

149

https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.1145/3429983
https://doi.org/10.1145/3429983
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/talks/2021.08.20/slides-djb-20210820-sunitattacks-4x3.pdf
https://cr.yp.to/talks/2021.08.20/slides-djb-20210820-sunitattacks-4x3.pdf

Bibliography

[BGNT15] Nicolas Bruneau, Sylvain Guilley, Zakaria Najm, and Yannick Teglia. “Multi-
variate High-Order Attacks of Shuffled Tables Recomputation”. In: Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings. Ed. by Tim Güneysu and
Helena Handschuh. Vol. 9293. Lecture Notes in Computer Science. Springer, 2015,
pp. 475–494. doi: 10.1007/978-3-662-48324-4_24. url: https://doi.org/10.
1007/978-3-662-48324-4_24.

[BGNT18] Nicolas Bruneau, Sylvain Guilley, Zakaria Najm, and Yannick Teglia. “Multivariate
High-Order Attacks of Shuffled Tables Recomputation”. In: J. Cryptol. 31.2 (2018),
pp. 351–393. doi: 10.1007/s00145-017-9259-7. url: https://doi.org/10.
1007/s00145-017-9259-7.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. “Masking Kyber: First- and Higher-Order Implementations”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021.4 (2021), pp. 173–214. doi:
10.46586/tches.v2021.i4.173-214. url: https://doi.org/10.46586/tches.
v2021.i4.173-214.

[BGRR19] Aurélie Bauer, Henri Gilbert, Guénaël Renault, and Mélissa Rossi. “Assessment of
the Key-Reuse Resilience of NewHope”. In: Topics in Cryptology - CT-RSA 2019
- The Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA,
USA, March 4-8, 2019, Proceedings. Ed. by Mitsuru Matsui. Vol. 11405. Lecture
Notes in Computer Science. Springer, 2019, pp. 272–292. doi: 10.1007/978-3-
030-12612-4_14. url: https://doi.org/10.1007/978-3-030-12612-4_14.

[BGS+08] Christoph Bösch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid Shokrollahi, and
Pim Tuyls. “Efficient Helper Data Key Extractor on FPGAs”. In: Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings. Ed. by Elisabeth Oswald
and Pankaj Rohatgi. Vol. 5154. Lecture Notes in Computer Science. Springer, 2008,
pp. 181–197. doi: 10.1007/978-3-540-85053-3_12. url: https://doi.org/10.
1007/978-3-540-85053-3_12.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully Ho-
momorphic Encryption without Bootstrapping”. In: ACM Trans. Comput. Theory
6.3 (2014), 13:1–13:36. doi: 10.1145/2633600. url: https://doi.org/10.1145/
2633600.

[BJL08] Guoan Bi, Yingtuo Ju, and Xiumei Li. “Fast Algorithms for Polynomial Time-
Frequency Transforms of Real-Valued Sequences”. In: IEEE Trans. Signal Process.
56.5 (2008), pp. 1905–1915. doi: 10 . 1109 / TSP . 2007 . 913162. url: https :
//doi.org/10.1109/TSP.2007.913162.

[BL17] Daniel J. Bernstein and Tanja Lange. “Post-quantum cryptography”. In: Nat.
549.7671 (2017), pp. 188–194. doi: 10.1038/nature23461. url: https://doi.
org/10.1038/nature23461.

[Ble98] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS #1”. In: Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings. Ed. by Hugo Krawczyk. Vol. 1462. Lecture
Notes in Computer Science. Springer, 1998, pp. 1–12. doi: 10.1007/BFb0055716.
url: https://doi.org/10.1007/BFb0055716.

150

https://doi.org/10.1007/978-3-662-48324-4_24
https://doi.org/10.1007/978-3-662-48324-4_24
https://doi.org/10.1007/978-3-662-48324-4_24
https://doi.org/10.1007/s00145-017-9259-7
https://doi.org/10.1007/s00145-017-9259-7
https://doi.org/10.1007/s00145-017-9259-7
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-540-85053-3_12
https://doi.org/10.1007/978-3-540-85053-3_12
https://doi.org/10.1007/978-3-540-85053-3_12
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1109/TSP.2007.913162
https://doi.org/10.1109/TSP.2007.913162
https://doi.org/10.1109/TSP.2007.913162
https://doi.org/10.1038/nature23461
https://doi.org/10.1038/nature23461
https://doi.org/10.1038/nature23461
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/BFb0055716

Bibliography

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
“Classical hardness of learning with errors”. In: Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. Ed. by Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum. ACM, 2013, pp. 575–584. doi: 10.1145/
2488608.2488680. url: https://doi.org/10.1145/2488608.2488680.

[BMJ+21] Andrea Basso, Jose Maria Bermudo Mera, Angshuman Karmakar Jan-Pieter
D’Anvers, Sujoy Sinha Roy, Michiel Van Beirendonck, and Frederik Vercauteren.
SABER: Mod-LWR based KEM (Round 3 Submission). 2021. url: https://
frodokem.org/files/FrodoKEM-specification-20210604.pdf.

[BMT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. “On the
inherent intractability of certain coding problems (Corresp.)” In: IEEE Trans.
Inf. Theory 24.3 (1978), pp. 384–386. doi: 10.1109/TIT.1978.1055873. url:
https://doi.org/10.1109/TIT.1978.1055873.

[BPO+20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim Güneysu.
“High-Speed Masking for Polynomial Comparison in Lattice-based KEMs”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.3 (2020), pp. 483–507. doi:
10.13154/tches.v2020.i3.483-507. url: https://doi.org/10.13154/tches.
v2020.i3.483-507.

[Bra16] Matt Braithwaite. Experimenting with Post-Quantum Cryptography. 2016. url:
https://security.googleblog.com/2016/07/experimenting-with-post-
quantum.html.

[BS20] Olivier Bronchain and François-Xavier Standaert. “Side-Channel Countermeasures’
Dissection and the Limits of Closed Source Security Evaluations”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020.2 (2020), pp. 1–25. doi: 10.13154/tches.
v2020.i2.1-25. url: https://doi.org/10.13154/tches.v2020.i2.1-25.

[BsiPqc] Johannes Buchmann, Juliane Krämer, Nabil Alkeilani Alkadri, Nina Bindel, Rachid
El Bansarkhari, Florian Göpfert, and Thomas Wunderer. Bewertung gitterbasierter
kryptografischer Verfahren. 2017. url: https://csrc.nist.gov/News/2022/pqc-
candidates-to-be-standardized-and-round-4.

[BsiQu] Frank K. Wilhelm, Rainer Steinwandt, Brandon Langenberg, Per J. Liebermann,
Anette Messinger, Peter K. Schuhmacher, and Aditi Misra-Spieldenner. Sta-
tus of quantum computer development. 2020. url: https://www.bsi.bund.
de / EN / Themen / Unternehmen - und - Organisationen / Informationen - und -
Empfehlungen / Quantentechnologien - und - Post - Quanten - Kryptografie /
Entwicklungsstand-Quantencomputer/entwicklungsstand-quantencomputer.
html.

[BVC+23] Alexandre Berzati, Andersson Calle Viera, Maya Chartouni, Steven Madec, Damien
Vergnaud, and David Vigilant. “A Practical Template Attack on CRYSTALS-
Dilithium”. In: IACR Cryptol. ePrint Arch. (2023), p. 50. url: https://eprint.
iacr.org/2023/050.

[CA69] Stephen A. Cook and Stål O. Aanderaa. “On the Minimum Computation Time of
Functions”. In: Transactions of the American Mathematical Society 142 (1969),
pp. 291–314.

151

https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.13154/tches.v2020.i3.483-507
https://doi.org/10.13154/tches.v2020.i3.483-507
https://doi.org/10.13154/tches.v2020.i3.483-507
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://doi.org/10.13154/tches.v2020.i2.1-25
https://doi.org/10.13154/tches.v2020.i2.1-25
https://doi.org/10.13154/tches.v2020.i2.1-25
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/Entwicklungsstand-Quantencomputer/entwicklungsstand-quantencomputer.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/Entwicklungsstand-Quantencomputer/entwicklungsstand-quantencomputer.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/Entwicklungsstand-Quantencomputer/entwicklungsstand-quantencomputer.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/Entwicklungsstand-Quantencomputer/entwicklungsstand-quantencomputer.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/Entwicklungsstand-Quantencomputer/entwicklungsstand-quantencomputer.html
https://eprint.iacr.org/2023/050
https://eprint.iacr.org/2023/050

Bibliography

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. “Differential Power
Analysis in the Presence of Hardware Countermeasures”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2000, Second International Workshop, Worces-
ter, MA, USA, August 17-18, 2000, Proceedings. Ed. by Çetin Kaya Koç and
Christof Paar. Vol. 1965. Lecture Notes in Computer Science. Springer, 2000,
pp. 252–263. doi: 10.1007/3-540-44499-8_20. url: https://doi.org/10.
1007/3-540-44499-8_20.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Convolutional Neural Net-
works with Data Augmentation Against Jitter-Based Countermeasures - Profiling
Attacks Without Pre-processing”. In: Cryptographic Hardware and Embedded Sys-
tems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings. Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529.
Lecture Notes in Computer Science. Springer, 2017, pp. 45–68. doi: 10.1007/978-
3-319-66787-4_3. url: https://doi.org/10.1007/978-3-319-66787-4_3.

[CFGR12] Claude Carlet, Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault.
“Analysis of the algebraic side channel attack”. In: J. Cryptogr. Eng. 2.1 (2012),
pp. 45–62. doi: 10.1007/s13389-012-0028-0. url: https://doi.org/10.1007/
s13389-012-0028-0.

[CG00] Jean-Sébastien Coron and Louis Goubin. “On Boolean and Arithmetic Masking
against Differential Power Analysis”. In: Cryptographic Hardware and Embedded
Systems - CHES 2000, Second International Workshop, Worcester, MA, USA,
August 17-18, 2000, Proceedings. Ed. by Çetin Kaya Koç and Christof Paar.
Vol. 1965. Lecture Notes in Computer Science. Springer, 2000, pp. 231–237. doi:
10.1007/3-540-44499-8_18. url: https://doi.org/10.1007/3-540-44499-
8_18.

[CG90] John T. Coffey and Rodney M. Goodman. “Any code of which we cannot think is
good”. In: IEEE Trans. Inf. Theory 36.6 (1990), pp. 1453–1461. doi: 10.1109/18.
59944. url: https://doi.org/10.1109/18.59944.

[CGTZ23] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun.
“Improved Gadgets for the High-Order Masking of Dilithium”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2023.4 (2023), pp. 110–145. doi: 10.46586/TCHES.
V2023.I4.110-145. url: https://doi.org/10.46586/tches.v2023.i4.110-
145.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler,
Cheng-Jhih Shih, and Bo-Yin Yang. “NTT Multiplication for NTT-unfriendly
Rings New Speed Records for Saber and NTRU on Cortex-M4 and AVX2”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021.2 (2021), pp. 159–188. doi:
10.46586/tches.v2021.i2.159-188. url: https://doi.org/10.46586/tches.
v2021.i2.159-188.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. “Towards
Sound Approaches to Counteract Power-Analysis Attacks”. In: Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. Ed. by Michael J.
Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer, 1999, pp. 398–412.
doi: 10.1007/3-540-48405-1_26. url: https://doi.org/10.1007/3-540-
48405-1_26.

152

https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/s13389-012-0028-0
https://doi.org/10.1007/s13389-012-0028-0
https://doi.org/10.1007/s13389-012-0028-0
https://doi.org/10.1007/3-540-44499-8_18
https://doi.org/10.1007/3-540-44499-8_18
https://doi.org/10.1007/3-540-44499-8_18
https://doi.org/10.1109/18.59944
https://doi.org/10.1109/18.59944
https://doi.org/10.1109/18.59944
https://doi.org/10.46586/TCHES.V2023.I4.110-145
https://doi.org/10.46586/TCHES.V2023.I4.110-145
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26

Bibliography

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Estimates”.
In: Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference
on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings. Ed. by Dong Hoon Lee and Xiaoyun
Wang. Vol. 7073. Lecture Notes in Computer Science. Springer, 2011, pp. 1–20.
doi: 10.1007/978-3-642-25385-0_1. url: https://doi.org/10.1007/978-3-
642-25385-0_1.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. Ed. by Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar. Vol. 2523. Lecture Notes in
Computer Science. Springer, 2002, pp. 13–28. doi: 10.1007/3-540-36400-5_3.
url: https://doi.org/10.1007/3-540-36400-5_3.

[CRVV15] Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
“Efficient software implementation of ring-LWE encryption”. In: Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition, DATE 2015,
Grenoble, France, March 9-13, 2015. Ed. by Wolfgang Nebel and David Atienza.
ACM, 2015, pp. 339–344. url: http://dl.acm.org/citation.cfm?id=2755830.

[CT65] James W Cooley and John W Tukey. “An algorithm for the machine calculation of
complex Fourier series”. In: Mathematics of computation 19.90 (1965), pp. 297–301.

[Cw32F4] NewAE Technology Inc. CW308 UFO STM32F4. url: https://rtfm.newae.
com/Targets/UFO%5C%20Targets/CW308T-STM32F/.

[CwUfo] NewAE Technology Inc. CW308 UFO. url: https://rtfm.newae.com/Targets/
CW308%5C%20UFO/.

[DB22] Jan-Pieter D’Anvers and Senne Batsleer. “Multitarget Decryption Failure Attacks
and Their Application to Saber and Kyber”. In: Public-Key Cryptography - PKC
2022 - 25th IACR International Conference on Practice and Theory of Public-
Key Cryptography, Virtual Event, March 8-11, 2022, Proceedings, Part I. Ed. by
Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe. Vol. 13177. Lecture Notes in
Computer Science. Springer, 2022, pp. 3–33. doi: 10.1007/978-3-030-97121-2_1.
url: https://doi.org/10.1007/978-3-030-97121-2_1.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. “LWE with
Side Information: Attacks and Concrete Security Estimation”. In: Advances in
Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
II. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. Lecture Notes
in Computer Science. Springer, 2020, pp. 329–358. doi: 10.1007/978-3-030-
56880-1_12. url: https://doi.org/10.1007/978-3-030-56880-1_12.

[Del22] Jeroen Delvaux. “Roulette: A Diverse Family of Feasible Fault Attacks on Masked
Kyber”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.4 (2022), pp. 637–660.
doi: 10.46586/tches.v2022.i4.637-660. url: https://doi.org/10.46586/
tches.v2022.i4.637-660.

153

https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
http://dl.acm.org/citation.cfm?id=2755830
https://rtfm.newae.com/Targets/UFO%5C%20Targets/CW308T-STM32F/
https://rtfm.newae.com/Targets/UFO%5C%20Targets/CW308T-STM32F/
https://rtfm.newae.com/Targets/CW308%5C%20UFO/
https://rtfm.newae.com/Targets/CW308%5C%20UFO/
https://doi.org/10.1007/978-3-030-97121-2_1
https://doi.org/10.1007/978-3-030-97121-2_1
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.46586/tches.v2022.i4.637-660
https://doi.org/10.46586/tches.v2022.i4.637-660
https://doi.org/10.46586/tches.v2022.i4.637-660

Bibliography

[DGHK22] Dana Dachman-Soled, Huijing Gong, Tom Hanson, and Hunter Kippen. “Revisit-
ing Security Estimation for LWE with Hints from a Geometric Perspective”. In:
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Pro-
ceedings, Part V. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14085. Lec-
ture Notes in Computer Science. Springer, 2022, pp. 748–781. doi: 10.1007/978-
3-031-38554-4_24. url: https://doi.org/10.1007/978-3-031-38554-4_24.

[DGKS20] Dana Dachman-Soled, Huijing Gong, Mukul Kulkarni, and Aria Shahverdi. “(In)Security
of Ring-LWE Under Partial Key Exposure”. In: J. Math. Cryptol. 15.1 (2020),
pp. 72–86. doi: 10.1515/jmc-2020-0075. url: https://doi.org/10.1515/jmc-
2020-0075.

[DHP+22] Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel Van Beirendonck, and
Ingrid Verbauwhede. “Higher-Order Masked Ciphertext Comparison for Lattice-
Based Cryptography”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.2
(2022), pp. 115–139. doi: 10.46586/tches.v2022.i2.115-139. url: https:
//doi.org/10.46586/tches.v2022.i2.115-139.

[Din12] Jintai Ding. “A Simple Provably Secure Key Exchange Scheme Based on the
Learning with Errors Problem”. In: IACR Cryptol. ePrint Arch. (2012), p. 688.
url: https://eprint.iacr.org/archive/2012/688/20121210:115748.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. “CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018.1 (2018),
pp. 238–268. doi: 10.13154/tches.v2018.i1.238-268. url: https://doi.org/
10.13154/tches.v2018.i1.238-268.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. “Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and
CCA-Secure KEM”. In: Progress in Cryptology - AFRICACRYPT 2018 - 10th Inter-
national Conference on Cryptology in Africa, Marrakesh, Morocco, May 7-9, 2018,
Proceedings. Ed. by Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi.
Vol. 10831. Lecture Notes in Computer Science. Springer, 2018, pp. 282–305. doi:
10.1007/978-3-319-89339-6_16. url: https://doi.org/10.1007/978-3-
319-89339-6_16.

[DNG22] Elena Dubrova, Kalle Ngo, and Joel Gärtner. “Breaking a Fifth-Order Masked
Implementation of CRYSTALS-Kyber by Copy-Paste”. In: IACR Cryptol. ePrint
Arch. (2022), p. 1713. url: https://eprint.iacr.org/2022/1713.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. “Fuzzy
Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data”.
In: SIAM J. Comput. 38.1 (2008), pp. 97–139. doi: 10.1137/060651380. url:
https://doi.org/10.1137/060651380.

[DR98] Joan Daemen and Vincent Rijmen. “The Block Cipher Rijndael”. In: Smart Card
Research and Applications, This International Conference, CARDIS ’98, Louvain-
la-Neuve, Belgium, September 14-16, 1998, Proceedings. Ed. by Jean-Jacques
Quisquater and Bruce Schneier. Vol. 1820. Lecture Notes in Computer Science.
Springer, 1998, pp. 277–284. doi: 10.1007/10721064_26. url: https://doi.
org/10.1007/10721064_26.

154

https://doi.org/10.1007/978-3-031-38554-4_24
https://doi.org/10.1007/978-3-031-38554-4_24
https://doi.org/10.1007/978-3-031-38554-4_24
https://doi.org/10.1515/jmc-2020-0075
https://doi.org/10.1515/jmc-2020-0075
https://doi.org/10.1515/jmc-2020-0075
https://doi.org/10.46586/tches.v2022.i2.115-139
https://doi.org/10.46586/tches.v2022.i2.115-139
https://doi.org/10.46586/tches.v2022.i2.115-139
https://eprint.iacr.org/archive/2012/688/20121210:115748
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://eprint.iacr.org/2022/1713
https://doi.org/10.1137/060651380
https://doi.org/10.1137/060651380
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/10721064_26

Bibliography

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede.
“Timing Attacks on Error Correcting Codes in Post-Quantum Schemes”. In: Pro-
ceedings of ACM Workshop on Theory of Implementation Security, TIS@CCS 2019,
London, UK, November 11, 2019. Ed. by Begül Bilgin, Svetla Petkova-Nikova,
and Vincent Rijmen. ACM, 2019, pp. 2–9. doi: 10.1145/3338467.3358948. url:
https://doi.org/10.1145/3338467.3358948.

[Duc18] Léo Ducas. “Shortest Vector from Lattice Sieving: A Few Dimensions for Free”.
In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I. Ed. by Jesper Buus
Nielsen and Vincent Rijmen. Vol. 10820. Lecture Notes in Computer Science.
Springer, 2018, pp. 125–145. doi: 10.1007/978-3-319-78381-9_5. url: https:
//doi.org/10.1007/978-3-319-78381-9_5.

[DVV19] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. “The Im-
pact of Error Dependencies on Ring/Mod-LWE/LWR Based Schemes”. In: Post-
Quantum Cryptography - 10th International Conference, PQCrypto 2019, Chongqing,
China, May 8-10, 2019 Revised Selected Papers. Ed. by Jintai Ding and Rainer Stein-
wandt. Vol. 11505. Lecture Notes in Computer Science. Springer, 2019, pp. 103–115.
doi: 10.1007/978-3-030-25510-7_6. url: https://doi.org/10.1007/978-3-
030-25510-7_6.

[EAB+23] Mohamed ElGhamrawy, Melissa Azouaoui, Olivier Bronchain, Joost Renes, Tobias
Schneider, Markus Schönauer, Okan Seker, and Christine van Vredendaal. “From
MLWE to RLWE: A Differential Fault Attack on Randomized & Deterministic
Dilithium”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023.4 (2023), pp. 262–
286. doi: 10.46586/TCHES.V2023.I4.262-286. url: https://doi.org/10.
46586/tches.v2023.i4.262-286.

[Emd81] P. van Emde-Boas. Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. Report. Department of Mathematics.
University of Amsterdam. Department, Univ., 1981. url: https://books.google.
de/books?id=tCQiHQAACAAJ.

[EMK06] Gal Elidan, Ian McGraw, and Daphne Koller. “Residual Belief Propagation: In-
formed Scheduling for Asynchronous Message Passing”. In: UAI ’06, Proceedings
of the 22nd Conference in Uncertainty in Artificial Intelligence, Cambridge, MA,
USA, July 13-16, 2006. AUAI Press, 2006. url: https://dslpitt.org/uai/
displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&%20article_id=1308%
5C&proceeding_id=22.

[FBR+22] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick Karl,
Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. “Masked Accelerators
and Instruction Set Extensions for Post-Quantum Cryptography”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022.1 (2022), pp. 414–460. doi: 10.46586/tches.
v2022.i1.414-460. url: https://doi.org/10.46586/tches.v2022.i1.414-
460.

[FFS87] Uriel Feige, Amos Fiat, and Adi Shamir. “Zero Knowledge Proofs of Identity”. In:
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA. Ed. by Alfred V. Aho. ACM, 1987, pp. 210–217. doi:
10.1145/28395.28419. url: https://doi.org/10.1145/28395.28419.

155

https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.46586/TCHES.V2023.I4.262-286
https://doi.org/10.46586/tches.v2023.i4.262-286
https://doi.org/10.46586/tches.v2023.i4.262-286
https://books.google.de/books?id=tCQiHQAACAAJ
https://books.google.de/books?id=tCQiHQAACAAJ
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&%20article_id=1308%5C&proceeding_id=22
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&%20article_id=1308%5C&proceeding_id=22
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&%20article_id=1308%5C&proceeding_id=22
https://doi.org/10.46586/tches.v2022.i1.414-460
https://doi.org/10.46586/tches.v2022.i1.414-460
https://doi.org/10.46586/tches.v2022.i1.414-460
https://doi.org/10.46586/tches.v2022.i1.414-460
https://doi.org/10.1145/28395.28419
https://doi.org/10.1145/28395.28419

Bibliography

[FKK+22] Michael Fahr, Hunter Kippen, Andrew Kwong, Thinh Dang, Jacob Lichtinger,
Dana Dachman-Soled, Daniel Genkin, Alexander Nelson, Ray A. Perlner, Arkady
Yerukhimovich, and Daniel Apon. “When Frodo Flips: End-to-End Key Recovery
on FrodoKEM via Rowhammer”. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi. ACM, 2022, pp. 979–993. doi: 10.1145/3548606.3560673. url:
https://doi.org/10.1145/3548606.3560673.

[Flu16] Scott R. Fluhrer. “Cryptanalysis of ring-LWE based key exchange with key share
reuse”. In: IACR Cryptol. ePrint Arch. (2016), p. 85. url: http://eprint.iacr.
org/2016/085.

[FM97] Brendan J. Frey and David J. C. MacKay. “A Revolution: Belief Propagation
in Graphs with Cycles”. In: Advances in Neural Information Processing Systems
10, [NIPS Conference, Denver, Colorado, USA, 1997]. Ed. by Michael I. Jordan,
Michael J. Kearns, and Sara A. Solla. The MIT Press, 1997, pp. 479–485. url:
http://papers.nips.cc/paper/1467-a-revolution-belief-propagation-
in-graphs-with-cycles.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and
Symmetric Encryption Schemes”. In: J. Cryptol. 26.1 (2013), pp. 80–101. doi:
10.1007/s00145-011-9114-1. url: https://doi.org/10.1007/s00145-011-
9114-1.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and
Symmetric Encryption Schemes”. In: Advances in Cryptology - CRYPTO ’99, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. Ed. by Michael J.
Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 537–554. doi: 10.1007/3-540-
48405-1_34. url: https://doi.org/10.1007/3-540-48405-1_34.

[Fplll] The FPLLL development team. “fplll, a lattice reduction library, Version: 5.4.5”.
Available at https://github.com/fplll/fplll. 2023. url: https://github.
com/fplll/fplll.

[Gab10] Philippe Gaborit. Noisy diffie-hellman protocols. Slides of a talk in the recent results
session at the Third International Workshop on Post-Quantum Cryptography –
PQCRYPTO 2010. 2010.

[Gal62] Robert G. Gallager. “Low-density parity-check codes”. In: IRE Trans. Inf. Theory
8.1 (1962), pp. 21–28. doi: 10.1109/TIT.1962.1057683. url: https://doi.org/
10.1109/TIT.1962.1057683.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. “Mutual Information
Analysis”. In: Cryptographic Hardware and Embedded Systems - CHES 2008, 10th
International Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings.
Ed. by Elisabeth Oswald and Pankaj Rohatgi. Vol. 5154. Lecture Notes in Computer
Science. Springer, 2008, pp. 426–442. doi: 10.1007/978-3-540-85053-3_27. url:
https://doi.org/10.1007/978-3-540-85053-3_27.

[GFS+12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and
Sorin A. Huss. “On the Design of Hardware Building Blocks for Modern Lattice-
Based Encryption Schemes”. In: Cryptographic Hardware and Embedded Systems -
CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings. Ed. by Emmanuel Prouff and Patrick Schaumont. Vol. 7428. Lecture

156

https://doi.org/10.1145/3548606.3560673
https://doi.org/10.1145/3548606.3560673
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
http://papers.nips.cc/paper/1467-a-revolution-belief-propagation-in-graphs-with-cycles
http://papers.nips.cc/paper/1467-a-revolution-belief-propagation-in-graphs-with-cycles
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-540-85053-3_27

Bibliography

Notes in Computer Science. Springer, 2012, pp. 512–529. doi: 10.1007/978-3-
642-33027-8_30. url: https://doi.org/10.1007/978-3-642-33027-8_30.

[GG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.)
Cambridge University Press, 2013. isbn: 978-1-107-03903-2.

[GGSB20] Qian Guo, Vincent Grosso, François-Xavier Standaert, and Olivier Bronchain.
“Modeling Soft Analytical Side-Channel Attacks from a Coding Theory Viewpoint”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.4 (2020), pp. 209–238. doi:
10.13154/tches.v2020.i4.209-238. url: https://doi.org/10.13154/tches.
v2020.i4.209-238.

[GHO15] Richard Gilmore, Neil Hanley, and Máire O’Neill. “Neural network based attack on
a masked implementation of AES”. In: IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5-7 May, 2015.
IEEE Computer Society, 2015, pp. 106–111. doi: 10.1109/HST.2015.7140247.
url: https://doi.org/10.1109/HST.2015.7140247.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. “A Key-Recovery Timing
Attack on Post-quantum Primitives Using the Fujisaki-Okamoto Transformation
and Its Application on FrodoKEM”. In: Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II. Ed. by Daniele
Micciancio and Thomas Ristenpart. Vol. 12171. Lecture Notes in Computer Science.
Springer, 2020, pp. 359–386. doi: 10.1007/978-3-030-56880-1_13. url: https:
//doi.org/10.1007/978-3-030-56880-1_13.

[GJY19] Qian Guo, Thomas Johansson, and Jing Yang. “A Novel CCA Attack Using
Decryption Errors Against LAC”. In: Advances in Cryptology - ASIACRYPT 2019
- 25th International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I. Ed.
by Steven D. Galbraith and Shiho Moriai. Vol. 11921. Lecture Notes in Computer
Science. Springer, 2019, pp. 82–111. doi: 10.1007/978-3-030-34578-5_4. url:
https://doi.org/10.1007/978-3-030-34578-5_4.

[GK08] Jacob Goldberger and Haggai Kfir. “Serial Schedules for Belief-Propagation: Analy-
sis of Convergence Time”. In: IEEE Trans. Inf. Theory 54.3 (2008), pp. 1316–1319.
doi: 10.1109/TIT.2007.915702. url: https://doi.org/10.1109/TIT.2007.
915702.

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption”. In: Journal of
Computer and System Sciences 28.2 (1984), pp. 270–299. issn: 0022-0000. doi:
https://doi.org/10.1016/0022- 0000(84)90070- 9. url: https://www.
sciencedirect.com/science/article/pii/0022000084900709.

[GMSS99] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean- Pierre Seifert. “Ap-
proximating Shortest Lattice Vectors is not Harder than Approximating Closest
Lattice Vectors”. In: Inf. Process. Lett. 71.2 (1999), pp. 55–61. doi: 10.1016/S0020-
0190(99)00083-6. url: https://doi.org/10.1016/S0020-0190(99)00083-6.

[GN08a] Nicolas Gama and Phong Q. Nguyen. “Finding short lattice vectors within mordell’s
inequality”. In: Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008. Ed. by Cynthia
Dwork. ACM, 2008, pp. 207–216. doi: 10.1145/1374376.1374408. url: https:
//doi.org/10.1145/1374376.1374408.

157

https://doi.org/10.1007/978-3-642-33027-8_30
https://doi.org/10.1007/978-3-642-33027-8_30
https://doi.org/10.1007/978-3-642-33027-8_30
https://doi.org/10.13154/tches.v2020.i4.209-238
https://doi.org/10.13154/tches.v2020.i4.209-238
https://doi.org/10.13154/tches.v2020.i4.209-238
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1109/TIT.2007.915702
https://doi.org/10.1109/TIT.2007.915702
https://doi.org/10.1109/TIT.2007.915702
https://doi.org/https://doi.org/10.1016/0022-0000(84)90070-9
https://www.sciencedirect.com/science/article/pii/0022000084900709
https://www.sciencedirect.com/science/article/pii/0022000084900709
https://doi.org/10.1016/S0020-0190(99)00083-6
https://doi.org/10.1016/S0020-0190(99)00083-6
https://doi.org/10.1016/S0020-0190(99)00083-6
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1145/1374376.1374408

Bibliography

[GN08b] Nicolas Gama and Phong Q. Nguyen. “Predicting Lattice Reduction”. In: Advances
in Cryptology - EUROCRYPT 2008, 27th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-
17, 2008. Proceedings. Ed. by Nigel P. Smart. Vol. 4965. Lecture Notes in Computer
Science. Springer, 2008, pp. 31–51. doi: 10.1007/978-3-540-78967-3_3. url:
https://doi.org/10.1007/978-3-540-78967-3_3.

[GP99] Louis Goubin and Jacques Patarin. “DES and Differential Power Analysis (The
"Duplication" Method)”. In: Cryptographic Hardware and Embedded Systems, First
International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings. Ed. by Çetin Kaya Koç and Christof Paar. Vol. 1717. Lecture Notes in
Computer Science. Springer, 1999, pp. 158–172. doi: 10.1007/3-540-48059-5_15.
url: https://doi.org/10.1007/3-540-48059-5_15.

[GPSG14] Vincent Grosso, Romain Poussier, François-Xavier Standaert, and Lubos Gaspar.
“Combining Leakage-Resilient PRFs and Shuffling - Towards Bounded Security for
Small Embedded Devices”. In: Smart Card Research and Advanced Applications -
13th International Conference, CARDIS 2014, Paris, France, November 5-7, 2014.
Revised Selected Papers. Ed. by Marc Joye and Amir Moradi. Vol. 8968. Lecture
Notes in Computer Science. Springer, 2014, pp. 122–136. doi: 10.1007/978-3-
319-16763-3_8. url: https://doi.org/10.1007/978-3-319-16763-3_8.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard
lattices and new cryptographic constructions”. In: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008. Ed. by Cynthia Dwork. ACM, 2008, pp. 197–206. doi: 10.1145/
1374376.1374407. url: https://doi.org/10.1145/1374376.1374407.

[GRO18] Joey Green, Arnab Roy, and Elisabeth Oswald. “A Systematic Study of the
Impact of Graphical Models on Inference-Based Attacks on AES”. In: Smart Card
Research and Advanced Applications, 17th International Conference, CARDIS
2018, Montpellier, France, November 12-14, 2018, Revised Selected Papers. Ed. by
Begül Bilgin and Jean-Bernard Fischer. Vol. 11389. Lecture Notes in Computer
Science. Springer, 2018, pp. 18–34. doi: 10.1007/978-3-030-15462-2_2. url:
https://doi.org/10.1007/978-3-030-15462-2_2.

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. Ed. by Gary L.
Miller. ACM, 1996, pp. 212–219. doi: 10.1145/237814.237866. url: https:
//doi.org/10.1145/237814.237866.

[GS15] Vincent Grosso and François-Xavier Standaert. “ASCA, SASCA and DPA with
Enumeration: Which One Beats the Other and When?” In: Advances in Cryptology
- ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II. Ed. by Tetsu Iwata and Jung Hee Cheon.
Vol. 9453. Lecture Notes in Computer Science. Springer, 2015, pp. 291–312. doi:
10.1007/978-3-662-48800-3_12. url: https://doi.org/10.1007/978-3-
662-48800-3_12.

[GS66] W. Morven Gentleman and Gordon Sande. “Fast Fourier Transforms: for fun and
profit”. In: AFIPS ’66 (Fall). 1966.

158

https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-16763-3_8
https://doi.org/10.1007/978-3-319-16763-3_8
https://doi.org/10.1007/978-3-319-16763-3_8
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-15462-2_2
https://doi.org/10.1007/978-3-030-15462-2_2
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-662-48800-3_12
https://doi.org/10.1007/978-3-662-48800-3_12
https://doi.org/10.1007/978-3-662-48800-3_12

Bibliography

[GW22] Ruben Gonzalez and Thom Wiggers. “KEMTLS vs. Post-quantum TLS: Perfor-
mance on Embedded Systems”. In: Security, Privacy, and Applied Cryptography
Engineering - 12th International Conference, SPACE 2022, Jaipur, India, De-
cember 9-12, 2022, Proceedings. Ed. by Lejla Batina, Stjepan Picek, and Mainack
Mondal. Vol. 13783. Lecture Notes in Computer Science. Springer, 2022, pp. 99–117.
doi: 10.1007/978-3-031-22829-2_6. url: https://doi.org/10.1007/978-3-
031-22829-2_6.

[Her23a] Julius Hermelink. Decryption Errors and Implementation Attacks on Kyber. Talk
at the Institute für IT-Sicherheit at Universität zu Lübeck. Apr. 2023.

[Her23b] Julius Hermelink. Side-Channel and Fault Attacks in Modern Lattice-Based Cryp-
tography. Oberseminar talk at the Fakultät für Informatik of the Universität der
Bundeswehr München. June 2023.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis of the
Fujisaki-Okamoto Transformation”. In: Theory of Cryptography - 15th International
Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,
Part I. Ed. by Yael Kalai and Leonid Reyzin. Vol. 10677. Lecture Notes in Computer
Science. Springer, 2017, pp. 341–371. doi: 10.1007/978-3-319-70500-2_12. url:
https://doi.org/10.1007/978-3-319-70500-2_12.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas
Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal.
“Chosen Ciphertext k-Trace Attacks on Masked CCA2 Secure Kyber”. In: IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021.4 (2021), pp. 88–113. doi: 10.46586/
tches.v2021.i4.88-113. url: https://doi.org/10.46586/tches.v2021.i4.
88-113.

[HHP+21p] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas
Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal.
“Chosen Ciphertext k-Trace Attacks on Masked CCA2 Secure Kyber”. In: IACR
Cryptol. ePrint Arch. (2021), p. 956. url: https://eprint.iacr.org/2021/956.

[HKL+22] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann, Peter
Schwabe, and Amber Sprenkels. “First-Order Masked Kyber on ARM Cortex-M4”.
In: IACR Cryptol. ePrint Arch. (2022), p. 58. url: https://eprint.iacr.org/
2022/058.

[HKM+12] Anthony Van Herrewege, Stefan Katzenbeisser, Roel Maes, Roel Peeters, Ahmad-
Reza Sadeghi, Ingrid Verbauwhede, and Christian Wachsmann. “Reverse Fuzzy
Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs”.
In: Financial Cryptography and Data Security - 16th International Conference, FC
2012, Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers.
Ed. by Angelos D. Keromytis. Vol. 7397. Lecture Notes in Computer Science.
Springer, 2012, pp. 374–389. doi: 10.1007/978- 3- 642- 32946- 3_27. url:
https://doi.org/10.1007/978-3-642-32946-3_27.

[HMS+23] Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl, and Gabi
Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for
Error-Tolerant Key Recovery from Decryption Errors”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2023.4 (2023), pp. 287–317. doi: 10.46586/tches.v2023.
i4.287-317. url: https://doi.org/10.46586/tches.v2023.i4.287-317.

159

https://doi.org/10.1007/978-3-031-22829-2_6
https://doi.org/10.1007/978-3-031-22829-2_6
https://doi.org/10.1007/978-3-031-22829-2_6
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://eprint.iacr.org/2021/956
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://doi.org/10.1007/978-3-642-32946-3_27
https://doi.org/10.1007/978-3-642-32946-3_27
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317

Bibliography

[HMS+23p] Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl, and Gabi
Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for
Error-Tolerant Key Recovery from Decryption Errors”. In: IACR Cryptol. ePrint
Arch. (2023), p. 98. url: https://eprint.iacr.org/2023/098.

[HNP+03] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph
H. Silverman, Ari Singer, and William Whyte. “The Impact of Decryption Failures
on the Security of NTRU Encryption”. In: Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings. Ed. by Dan Boneh. Vol. 2729. Lecture
Notes in Computer Science. Springer, 2003, pp. 226–246. doi: 10.1007/978-3-
540-45146-4_14. url: https://doi.org/10.1007/978-3-540-45146-4_14.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. “Fault-Enabled Chosen-
Ciphertext Attacks on Kyber”. In: Progress in Cryptology - INDOCRYPT 2021 -
22nd International Conference on Cryptology in India, Jaipur, India, December
12-15 , 2021, Proceedings. Ed. by Avishek Adhikari, Ralf Küsters, and Bart Preneel.
Vol. 13143. Lecture Notes in Computer Science. Springer, 2021, pp. 311–334. doi:
10.1007/978-3-030-92518-5_15. url: https://doi.org/10.1007/978-3-
030-92518-5_15.

[HPP21p] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. “Fault-enabled chosen-
ciphertext attacks on Kyber”. In: IACR Cryptol. ePrint Arch. (2021), p. 1222. url:
https://eprint.iacr.org/2021/1222.

[HPS+20] Julius Hermelink, Thomas Pöppelmann, Marc Stöttinger, Yi Wang, and Yong Wan.
“Quantum safe authenticated key exchange protocol for automotive application”. In:
18-th escar Europe : The World’s Leading Automotive Cyber Security Conference
(Konferenzveröffentlichung). 2020. doi: 10.13154/294-7549.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. “Analyzing Blockwise Lattice
Algorithms Using Dynamical Systems”. In: Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings. Ed. by Phillip Rogaway. Vol. 6841. Lecture Notes in Computer
Science. Springer, 2011, pp. 447–464. doi: 10.1007/978-3-642-22792-9_25. url:
https://doi.org/10.1007/978-3-642-22792-9_25.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A Ring-Based
Public Key Cryptosystem”. In: Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings.
Ed. by Joe Buhler. Vol. 1423. Lecture Notes in Computer Science. Springer, 1998,
pp. 267–288. doi: 10.1007/BFb0054868. url: https://doi.org/10.1007/
BFb0054868.

[HS13] Michael Hutter and Peter Schwabe. “NaCl on 8-Bit AVR Microcontrollers”. In:
Progress in Cryptology - AFRICACRYPT 2013, 6th International Conference on
Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings. Ed. by Amr M.
Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien. Vol. 7918. Lecture Notes
in Computer Science. Springer, 2013, pp. 156–172. doi: 10.1007/978-3-642-
38553-7_9. url: https://doi.org/10.1007/978-3-642-38553-7_9.

[HSS21] Julius Hermelink, Silvan Streit, and Emanuelle Strieder. Belief Propagation Imple-
mentation. 2021. url: https://github.com/juliusjh/belief_propagation.

160

https://eprint.iacr.org/2023/098
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://eprint.iacr.org/2021/1222
https://doi.org/10.13154/294-7549
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-38553-7_9
https://doi.org/10.1007/978-3-642-38553-7_9
https://doi.org/10.1007/978-3-642-38553-7_9
https://github.com/juliusjh/belief_propagation

Bibliography

[HSST+23p] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme. “Adapt-
ing Belief Propagation to Counter Shuffling of NTTs”. In: IACR Cryptol. ePrint
Arch. (2022), p. 555. url: https://eprint.iacr.org/2022/555.

[HSST23] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme. “Adapt-
ing Belief Propagation to Counter Shuffling of NTTs”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2023.1 (2023), pp. 60–88. doi: 10.46586/tches.v2023.i1.
60-88. url: https://doi.org/10.46586/tches.v2023.i1.60-88.

[IMS+22] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar. “Sig-
nature Correction Attack on Dilithium Signature Scheme”. In: 7th IEEE European
Symposium on Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10,
2022. IEEE, 2022, pp. 647–663. doi: 10.1109/EUROSP53844.2022.00046. url:
https://doi.org/10.1109/EuroSP53844.2022.00046.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. “Private Circuits: Securing Hard-
ware against Probing Attacks”. In: Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings. Ed. by Dan Boneh. Vol. 2729. Lecture Notes in
Computer Science. Springer, 2003, pp. 463–481. doi: 10.1007/978-3-540-45146-
4_27. url: https://doi.org/10.1007/978-3-540-45146-4_27.

[Jar22] Brian Jarvis. How to tune TLS for hybrid post-quantum cryptography with Kyber.
2022. url: https://aws.amazon.com/blogs/security/how-to-tune-tls-for-
hybrid-post-quantum-cryptography-with-kyber.

[Jin12a] Xiaodong Lin Jintai Ding. “A Simple Provably Secure Key Exchange Scheme Based
on the Learning with Errors Problem”. In: IACR Cryptol. ePrint Arch. (2012),
p. 688. url: https://eprint.iacr.org/archive/2012/688/20130303:142425.

[Jin12b] Xiaodong Lin Jintai Ding Xiaodong Lin. “A Simple Provably Secure Key Exchange
Scheme Based on the Learning with Errors Problem”. In: IACR Cryptol. ePrint
Arch. (2012), p. 688. url: https://eprint.iacr.org/archive/2012/688.

[JJ00] Éliane Jaulmes and Antoine Joux. “A Chosen-Ciphertext Attack against NTRU”.
In: Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings.
Ed. by Mihir Bellare. Vol. 1880. Lecture Notes in Computer Science. Springer, 2000,
pp. 20–35. doi: 10.1007/3-540-44598-6_2. url: https://doi.org/10.1007/3-
540-44598-6_2.

[JSS12] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. “Bleichenbacher’s Attack
Strikes again: Breaking PKCS#1 v1.5 in XML Encryption”. In: Computer Security
- ESORICS 2012 - 17th European Symposium on Research in Computer Security,
Pisa, Italy, September 10-12, 2012. Proceedings. Ed. by Sara Foresti, Moti Yung,
and Fabio Martinelli. Vol. 7459. Lecture Notes in Computer Science. Springer,
2012, pp. 752–769. doi: 10.1007/978-3-642-33167-1_43. url: https://doi.
org/10.1007/978-3-642-33167-1_43.

[JT12] Marc Joye and Michael Tunstall, eds. Fault Analysis in Cryptography. Information
Security and Cryptography. Springer, 2012. isbn: 978-3-642-29655-0. doi: 10.1007/
978-3-642-29656-7. url: https://doi.org/10.1007/978-3-642-29656-7.

[Kan87] Ravi Kannan. “Minkowski’s Convex Body Theorem and Integer Programming”. In:
Math. Oper. Res. 12.3 (1987), pp. 415–440. doi: 10.1287/moor.12.3.415. url:
https://doi.org/10.1287/moor.12.3.415.

161

https://eprint.iacr.org/2022/555
https://doi.org/10.46586/tches.v2023.i1.60-88
https://doi.org/10.46586/tches.v2023.i1.60-88
https://doi.org/10.46586/tches.v2023.i1.60-88
https://doi.org/10.1109/EUROSP53844.2022.00046
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://aws.amazon.com/blogs/security/how-to-tune-tls-for-hybrid-post-quantum-cryptography-with-kyber
https://aws.amazon.com/blogs/security/how-to-tune-tls-for-hybrid-post-quantum-cryptography-with-kyber
https://eprint.iacr.org/archive/2012/688/20130303:142425
https://eprint.iacr.org/archive/2012/688
https://doi.org/10.1007/3-540-44598-6_2
https://doi.org/10.1007/3-540-44598-6_2
https://doi.org/10.1007/3-540-44598-6_2
https://doi.org/10.1007/978-3-642-33167-1_43
https://doi.org/10.1007/978-3-642-33167-1_43
https://doi.org/10.1007/978-3-642-33167-1_43
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1287/moor.12.3.415

Bibliography

[KCT+20] Jonathan Kuck, Shuvam Chakraborty, Hao Tang, Rachel Luo, Jiaming Song,
Ashish Sabharwal, and Stefano Ermon. “Belief Propagation Neural Networks”.
In: Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin. 2020. url: https://proceedings.neurips.
cc/paper/2020/hash/07217414eb3fbe24d4e5b6cafb91ca18-Abstract.html.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors”.
In: ACM/IEEE 41st International Symposium on Computer Architecture, ISCA
2014, Minneapolis, MN, USA, June 14-18, 2014. IEEE Computer Society, 2014,
pp. 361–372. doi: 10.1109/ISCA.2014.6853210. url: https://doi.org/10.
1109/ISCA.2014.6853210.

[KGM+21] Thilo Krachenfels, Fatemeh Ganji, Amir Moradi, Shahin Tajik, and Jean-Pierre
Seifert. “Real-World Snapshots vs. Theory: Questioning the t-Probing Security
Model”. In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Fran-
cisco, CA, USA, 24-27 May 2021. IEEE, 2021, pp. 1955–1971. doi: 10.1109/
SP40001.2021.00029. url: https://doi.org/10.1109/SP40001.2021.00029.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”.
In: Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings.
Ed. by Michael J. Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer,
1999, pp. 388–397. doi: 10.1007/3-540-48405-1_25. url: https://doi.org/
10.1007/3-540-48405-1_25.

[KJJR11] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. “Introduction
to differential power analysis”. In: J. Cryptogr. Eng. 1.1 (2011), pp. 5–27. doi:
10.1007/s13389-011-0006-y. url: https://doi.org/10.1007/s13389-011-
0006-y.

[KL51] Solomon Kullback and Richard A Leibler. “On Information and Sufficiency”. In:
The Annals of Mathematical Statistics 22.1 (1951), pp. 79–86. doi: 10.1214/aoms/
1177729694. url: https://doi.org/10.1214/aoms/1177729694.

[KO62] Anatolii Karatsuba and Yu Ofman. “Multiplication of Multidigit Numbers on
Automata”. In: Soviet Physics Doklady 7 (Dec. 1962), p. 595.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”. In: Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-
22, 1996, Proceedings. Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in Computer
Science. Springer, 1996, pp. 104–113. doi: 10.1007/3-540-68697-5_9. url:
https://doi.org/10.1007/3-540-68697-5_9.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
“Make Some Noise. Unleashing the Power of Convolutional Neural Networks for
Profiled Side-channel Analysis”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2019.3 (2019), pp. 148–179. doi: 10.13154/tches.v2019.i3.148-179. url:
https://doi.org/10.13154/tches.v2019.i3.148-179.

162

https://proceedings.neurips.cc/paper/2020/hash/07217414eb3fbe24d4e5b6cafb91ca18-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/07217414eb3fbe24d4e5b6cafb91ca18-Abstract.html
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/SP40001.2021.00029
https://doi.org/10.1109/SP40001.2021.00029
https://doi.org/10.1109/SP40001.2021.00029
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.13154/tches.v2019.i3.148-179
https://doi.org/10.13154/tches.v2019.i3.148-179

Bibliography

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. “Single-Trace Attacks on
Keccak”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.3 (2020), pp. 243–
268. doi: 10.13154/tches.v2020.i3.243-268. url: https://doi.org/10.
13154/tches.v2020.i3.243-268.

[KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4. url:
https://github.com/mupq/pqm4.

[KSS+20] Patrick Knöbelreiter, Christian Sormann, Alexander Shekhovtsov, Friedrich Fraun-
dorfer, and Thomas Pock. “Belief Propagation Reloaded: Learning BP-Layers for
Labeling Problems”. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer
Vision Foundation / IEEE, 2020, pp. 7897–7906. doi: 10.1109/CVPR42600.2020.
00792. url: https://openaccess.thecvf.com/content_CVPR_2020/html/
Knobelreiter_Belief_Propagation_Reloaded_Learning_BP- Layers_for_
Labeling_Problems_CVPR_2020_paper.html.

[KSSW22] Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers.
“Improving Software Quality in Cryptography Standardization Projects”. In: IEEE
European Symposium on Security and Privacy, EuroS&P 2022 - Workshops, Genoa,
Italy, June 6-10, 2022. IEEE, 2022, pp. 19–30. doi: 10.1109/EuroSPW55150.2022.
00010. url: https://doi.org/10.1109/EuroSPW55150.2022.00010.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Miklós Lovász. “Factoring
Polynomials with Rational Coefficients.” In: Mathematische Annalen 261 (1982),
pp. 515–534. url: https://gdz.sub.uni-goettingen.de/id/PPN235181684_
0261.

[LP11] Richard Lindner and Chris Peikert. “Better Key Sizes (and Attacks) for LWE-
Based Encryption”. In: Topics in Cryptology - CT-RSA 2011 - The Cryptographers’
Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18,
2011. Proceedings. Ed. by Aggelos Kiayias. Vol. 6558. Lecture Notes in Computer
Science. Springer, 2011, pp. 319–339. doi: 10.1007/978-3-642-19074-2_21. url:
https://doi.org/10.1007/978-3-642-19074-2_21.

[LPR12] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and
Learning with Errors Over Rings. Cryptology ePrint Archive, Paper 2012/230.
https://eprint.iacr.org/archive/2012/230/20120430:153308. 2012. url:
https://eprint.iacr.org/archive/2012/230/20120430:153308.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: J. ACM 60.6 (2013), 43:1–43:35. doi:
10.1145/2535925. url: https://doi.org/10.1145/2535925.

[LS15] Adeline Langlois and Damien Stehlé. “Worst-case to average-case reductions for
module lattices”. In: Des. Codes Cryptogr. 75.3 (2015), pp. 565–599. doi: 10.1007/
s10623-014-9938-4. url: https://doi.org/10.1007/s10623-014-9938-4.

[LS19] Vadim Lyubashevsky and Gregor Seiler. “NTTRU: Truly Fast NTRU Using NTT”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.3 (2019), pp. 180–201. doi:
10.13154/tches.v2019.i3.180-201. url: https://doi.org/10.13154/tches.
v2019.i3.180-201.

163

https://doi.org/10.13154/tches.v2020.i3.243-268
https://doi.org/10.13154/tches.v2020.i3.243-268
https://doi.org/10.13154/tches.v2020.i3.243-268
https://github.com/mupq/pqm4
https://doi.org/10.1109/CVPR42600.2020.00792
https://doi.org/10.1109/CVPR42600.2020.00792
https://openaccess.thecvf.com/content_CVPR_2020/html/Knobelreiter_Belief_Propagation_Reloaded_Learning_BP-Layers_for_Labeling_Problems_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Knobelreiter_Belief_Propagation_Reloaded_Learning_BP-Layers_for_Labeling_Problems_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Knobelreiter_Belief_Propagation_Reloaded_Learning_BP-Layers_for_Labeling_Problems_CVPR_2020_paper.html
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0261
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0261
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-19074-2_21
https://eprint.iacr.org/archive/2012/230/20120430:153308
https://eprint.iacr.org/archive/2012/230/20120430:153308
https://doi.org/10.1145/2535925
https://doi.org/10.1145/2535925
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.13154/tches.v2019.i3.180-201
https://doi.org/10.13154/tches.v2019.i3.180-201
https://doi.org/10.13154/tches.v2019.i3.180-201

Bibliography

[LSR+15] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Groß schädl, Howon Kim, and
Ingrid Verbauwhede. “Efficient Ring-LWE Encryption on 8-Bit AVR Processors”. In:
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16 , 2015, Proceedings. Ed. by Tim
Güneysu and Helena Handschuh. Vol. 9293. Lecture Notes in Computer Science.
Springer, 2015, pp. 663–682. doi: 10.1007/978- 3- 662- 48324- 4_33. url:
https://doi.org/10.1007/978-3-662-48324-4_33.

[Mac03] David J. C. MacKay. Information theory, inference, and learning algorithms. Cam-
bridge University Press, 2003. isbn: 0521642981. url: https://www.inference.
org.uk/itprnn/book.pdf.

[MBB+22] Catinca Mujdei, Arthur Beckers, Jose Bermundo, Angshuman Karmakar, Lennert
Wouters, and Ingrid Verbauwhede. “Side-Channel Analysis of Lattice-Based Post-
Quantum Cryptography: Exploiting Polynomial Multiplication”. In: IACR Cryptol.
ePrint Arch. (2022), p. 474. url: https://eprint.iacr.org/2022/474.

[MCLS23] Loïc Masure, Valence Cristiani, Maxime Lecomte, and François-Xavier Standaert.
“Don’t Learn What You Already Know Scheme-Aware Modeling for Profiling Side-
Channel Analysis against Masking”. In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2023.1 (2023), pp. 32–59. doi: 10.46586/tches.v2023.i1.32-59. url:
https://doi.org/10.46586/tches.v2023.i1.32-59.

[MD99] Thomas S. Messerges and Ezzy A. Dabbish. “Investigations of Power Analysis At-
tacks on Smartcards”. In: Proceedings of the 1st Workshop on Smartcard Technology,
Smartcard 1999, Chicago, Illinois, USA, May 10-11, 1999. Ed. by Scott B. Guthery
and Peter Honeyman. USENIX Association, 1999. url: https://www.usenix.
org/conference/usenix-workshop-smartcard-technology/investigations-
power-analysis-attacks-smartcards.

[MDM16] Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. “Profiling power analysis
attack based on MLP in DPA contest V4.2”. In: 39th International Conference
on Telecommunications and Signal Processing, TSP 2016, Vienna, Austria, June
27-29, 2016. IEEE, 2016, pp. 223–226. doi: 10.1109/TSP.2016.7760865. url:
https://doi.org/10.1109/TSP.2016.7760865.

[Mes00] Thomas S. Messerges. “Securing the AES Finalists Against Power Analysis Attacks”.
In: Fast Software Encryption, 7th International Workshop, FSE 2000, New York,
NY, USA, April 10-12, 2000, Proceedings. Ed. by Bruce Schneier. Vol. 1978. Lecture
Notes in Computer Science. Springer, 2000, pp. 150–164. doi: 10.1007/3-540-
44706-7_11. url: https://doi.org/10.1007/3-540-44706-7_11.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems - a
cryptographic perspective. Vol. 671. The Kluwer international series in engineering
and computer science. Springer, 2002. isbn: 978-0-7923-7688-0. doi: 10.1007/978-
1-4615-0897-7. url: https://doi.org/10.1007/978-1-4615-0897-7.

[MGTF19] Vincent Migliore, Benoıt Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. “Mask-
ing Dilithium - Efficient Implementation and Side-Channel Evaluation”. In: Applied
Cryptography and Network Security - 17th International Conference, ACNS 2019,
Bogota, Colombia, June 5-7, 2019, Proceedings. Ed. by Robert H. Deng, Valérie
Gauthier-Umaña, Martın Ochoa, and Moti Yung. Vol. 11464. Lecture Notes in
Computer Science. Springer, 2019, pp. 344–362. doi: 10.1007/978-3-030-21568-
2_17. url: https://doi.org/10.1007/978-3-030-21568-2%5C_17.

164

https://doi.org/10.1007/978-3-662-48324-4_33
https://doi.org/10.1007/978-3-662-48324-4_33
https://www.inference.org.uk/itprnn/book.pdf
https://www.inference.org.uk/itprnn/book.pdf
https://eprint.iacr.org/2022/474
https://doi.org/10.46586/tches.v2023.i1.32-59
https://doi.org/10.46586/tches.v2023.i1.32-59
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/investigations-power-analysis-attacks-smartcards
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/investigations-power-analysis-attacks-smartcards
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/investigations-power-analysis-attacks-smartcards
https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2%5C_17

Bibliography

[MI14] Nicholas D. Matsakis and Felix S. Klock II. “The rust language”. In: Proceedings of
the 2014 ACM SIGAda annual conference on High integrity language technology,
HILT 2014, Portland, Oregon, USA, October 18-21, 2014. Ed. by Michael B.
Feldman and S. Tucker Taft. ACM, 2014, pp. 103–104. doi: 10.1145/2663171.
2663188. url: https://doi.org/10.1145/2663171.2663188.

[MLB17] Artur Mariano, Thijs Laarhoven, and Christian H. Bischof. “A Parallel Variant of
LDSieve for the SVP on Lattices”. In: 25th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, PDP 2017, St. Petersburg,
Russia, March 6-8, 2017. Ed. by Igor V. Kotenko, Yiannis Cotronis, and Masoud
Daneshtalab. IEEE Computer Society, 2017, pp. 23–30. doi: 10.1109/PDP.2017.
60. url: https://doi.org/10.1109/PDP.2017.60.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007. isbn: 978-0-387-30857-9. doi:
10.1007/978-0-387-38162-6. url: https://doi.org/10.1007/978-0-387-
38162-6.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. “Breaking Cryp-
tographic Implementations Using Deep Learning Techniques”. In: Security, Privacy,
and Applied Cryptography Engineering - 6th International Conference, SPACE
2016, Hyderabad, India, December 14-18, 2016, Proceedings. Ed. by Claude Carlet,
M. Anwar Hasan, and Vishal Saraswat. Vol. 10076. Lecture Notes in Computer
Science. Springer, 2016, pp. 3–26. doi: 10.1007/978-3-319-49445-6_1. url:
https://doi.org/10.1007/978-3-319-49445-6_1.

[MR09] Daniele Micciancio and Oded Regev. “Lattice-based Cryptography”. In: Post-
Quantum Cryptography. Ed. by Daniel J. Bernstein, Johannes Buchmann, and
Erik Dahmen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191.
isbn: 978-3-540-88702-7. doi: 10.1007/978-3-540-88702-7_5. url: https:
//doi.org/10.1007/978-3-540-88702-7_5.

[MS23] Loïc Masure and Rémi Strullu. “Side-channel analysis against ANSSI’s protected
AES implementation on ARM: end-to-end attacks with multi-task learning”. In:
J. Cryptogr. Eng. 13.2 (2023), pp. 129–147. doi: 10.1007/s13389-023-00311-7.
url: https://doi.org/10.1007/s13389-023-00311-7.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
“Profiling Side-Channel Attacks on Dilithium: A Small Bit-Fiddling Leak Breaks It
All”. In: IACR Cryptol. ePrint Arch. (2022), p. 106. url: https://eprint.iacr.
org/2022/106.

[MW16] Daniele Micciancio and Michael Walter. “Practical, Predictable Lattice Basis
Reduction”. In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I. Ed. by Marc Fis-
chlin and Jean-Sébastien Coron. Vol. 9665. Lecture Notes in Computer Science.
Springer, 2016, pp. 820–849. doi: 10.1007/978- 3- 662- 49890- 3_31. url:
https://doi.org/10.1007/978-3-662-49890-3_31.

[MZ13] Zdenek Martinasek and Vaclav Zeman. “Innovative Method of the Power Analysis”.
In: Radioengineering 22.2 (June 2013), pp. 586–594. issn: 1805-9600. url: https:
//www.radioeng.cz/fulltexts/2013/13_02_0586_0594.pdf.

165

https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1109/PDP.2017.60
https://doi.org/10.1109/PDP.2017.60
https://doi.org/10.1109/PDP.2017.60
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/s13389-023-00311-7
https://doi.org/10.1007/s13389-023-00311-7
https://eprint.iacr.org/2022/106
https://eprint.iacr.org/2022/106
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://www.radioeng.cz/fulltexts/2013/13_02_0586_0594.pdf
https://www.radioeng.cz/fulltexts/2013/13_02_0586_0594.pdf

Bibliography

[NBB16] Eliya Nachmani, Yair Be’ery, and David Burshtein. “Learning to decode linear codes
using deep learning”. In: 54th Annual Allerton Conference on Communication,
Control, and Computing, Allerton 2016, Monticello, IL, USA, September 27-30,
2016. IEEE, 2016, pp. 341–346. doi: 10.1109/ALLERTON.2016.7852251. url:
https://doi.org/10.1109/ALLERTON.2016.7852251.

[NC17] Erick Nascimento and Lukasz Chmielewski. “Applying Horizontal Clustering Side-
Channel Attacks on Embedded ECC Implementations”. In: Smart Card Research
and Advanced Applications - 16th International Conference, CARDIS 2017, Lugano,
Switzerland, November 13-15, 2017, Revised Selected Papers. Ed. by Thomas
Eisenbarth and Yannick Teglia. Vol. 10728. Lecture Notes in Computer Science.
Springer, 2017, pp. 213–231. doi: 10.1007/978- 3- 319- 75208- 2_13. url:
https://doi.org/10.1007/978-3-319-75208-2_13.

[NCOS16] Erick Nascimento, Lukasz Chmielewski, David F. Oswald, and Peter Schwabe.
“Attacking Embedded ECC Implementations Through cmov Side Channels”. In:
Selected Areas in Cryptography - SAC 2016 - 23rd International Conference,
St. John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers. Ed. by
Roberto Avanzi and Howard M. Heys. Vol. 10532. Lecture Notes in Computer
Science. Springer, 2016, pp. 99–119. doi: 10.1007/978-3-319-69453-5_6. url:
https://doi.org/10.1007/978-3-319-69453-5_6.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. “A Side-Channel
Attack on a Masked IND-CCA Secure Saber KEM Implementation”. In: IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021.4 (2021), pp. 676–707. doi: 10.46586/
tches.v2021.i4.676-707. url: https://doi.org/10.46586/tches.v2021.i4.
676-707.

[NistAes] National Institute of Standards and Technology. Advanced Encryption Standard
(AES). Nov. 2001. doi: 10.6028/NIST.FIPS.197-upd1. url: https://doi.org/
10.6028/NIST.FIPS.197-upd1.

[NistCfp] National Institute of Standards and Technology. Post-Quantum Cryptography
Standardization. url: https://csrc.nist.gov/Projects/Post- Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization.

[NistCfpv4] National Institute of Standards and Technology. PQC Standardization Process: An-
nouncing Four Candidates to be Standardized, Plus Fourth Round Candidates. url:
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-
and-round-4.

[NistPqc] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. Report on Post-Quantum Cryptography. url: https:
//csrc.nist.gov/Pubs/ir/8105/Final.

[NistR1] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Daniel
Smith-Tone, and Yi-Kai Liu. Status Report on the First Round of the NIST Post-
Quantum Cryptography Standardization Process. url: https://nvlpubs.nist.
gov/nistpubs/ir/2019/NIST.IR.8240.pdf.

[NistR2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status Report on the Second Round
of the NIST Post-Quantum Cryptography Standardization Process. url: https:
//nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf.

166

https://doi.org/10.1109/ALLERTON.2016.7852251
https://doi.org/10.1109/ALLERTON.2016.7852251
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/Pubs/ir/8105/Final
https://csrc.nist.gov/Pubs/ir/8105/Final
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

Bibliography

[NistR3] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, and Yi-Kai Liu. Status Report on the Third
Round of the NIST Post-Quantum Cryptography Standardization Process. url:
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf.

[NistSig] National Institute of Standards and Technology. Post-Quantum Cryptography:
Digital Signature Schemes. url: https://csrc.nist.gov/projects/pqc-dig-
sig.

[NistSt21] Contributors to the pqc-forum thread on S-unit attacks. National Institute for
Standards and Technology pqc-forum thread on S-unit attacks. 2021. url: https://
groups.google.com/a/list.nist.gov/g/pqc-forum/c/3mVeyEfYnUY?pli=1.

[NS09] Phong Q. Nguyen and Damien Stehlé. “An LLL Algorithm with Quadratic Com-
plexity”. In: SIAM J. Comput. 39.3 (2009), pp. 874–903. doi: 10.1137/070705702.
url: https://doi.org/10.1137/070705702.

[NS13] J. Neukirch and N. Schappacher. Algebraic Number Theory. Grundlehren der math-
ematischen Wissenschaften. Springer Berlin Heidelberg, 2013. isbn: 9783662039830.
url: https://books.google.de/books?id=hS3qCAAAQBAJ.

[NSS+17] Matús Nemec, Marek Sýs, Petr Svenda, Dusan Klinec, and Vashek Matyas. “The
Return of Coppersmith’s Attack: Practical Factorization of Widely Used RSA
Moduli”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017. Ed. by Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu. ACM, 2017, pp. 1631–1648. doi: 10.1145/3133956.3133969. url: https:
//doi.org/10.1145/3133956.3133969.

[Nus81] H.J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer Se-
ries in Information Sciences. Springer Berlin Heidelberg, 1981. isbn: 9780387101590.
url: https://books.google.de/books?id=88sfAQAAIAAJ.

[NWDP22] Kalle Ngo, Ruize Wang, Elena Dubrova, and Nils Paulsrud. “Side-Channel Attacks
on Lattice-Based KEMs Are Not Prevented by Higher-Order Masking”. In: IACR
Cryptol. ePrint Arch. (2022), p. 919. url: https://eprint.iacr.org/2022/919.

[NY90] Moni Naor and Moti Yung. “Public-key cryptosystems provably secure against
chosen ciphertext attacks”. In: Proceedings of the twenty-second annual ACM
symposium on Theory of computing. 1990, pp. 427–437.

[OBr23] Devon O’Brien. Protecting Chrome Traffic with Hybrid Kyber KEM. 2023. url:
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-
hybrid.html.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An Open-Source
Platform for Hardware Embedded Security Research. Cryptology ePrint Archive,
Paper 2014/204. https://eprint.iacr.org/2014/204. 2014. url: https:
//eprint.iacr.org/2014/204.

167

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/3mVeyEfYnUY?pli=1
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/3mVeyEfYnUY?pli=1
https://doi.org/10.1137/070705702
https://doi.org/10.1137/070705702
https://books.google.de/books?id=hS3qCAAAQBAJ
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/3133956.3133969
https://books.google.de/books?id=88sfAQAAIAAJ
https://eprint.iacr.org/2022/919
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://eprint.iacr.org/2014/204
https://eprint.iacr.org/2014/204
https://eprint.iacr.org/2014/204

Bibliography

[OG17] Tobias Oder and Tim Güneysu. “Implementing the NewHope-Simple Key Exchange
on Low-Cost FPGAs”. In: Progress in Cryptology - LATINCRYPT 2017 - 5th
International Conference on Cryptology and Information Security in Latin America,
Havana, Cuba, September 20-22, 2017, Revised Selected Papers. Ed. by Tanja
Lange and Orr Dunkelman. Vol. 11368. Lecture Notes in Computer Science.
Springer, 2017, pp. 128–142. doi: 10.1007/978-3-030-25283-0_7. url: https:
//doi.org/10.1007/978-3-030-25283-0_7.

[OGM17] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. “Electromagnetic
fault injection: the curse of flip-flops”. In: J. Cryptogr. Eng. 7.3 (2017), pp. 183–197.
doi: 10.1007/s13389-016-0128-3. url: https://doi.org/10.1007/s13389-
016-0128-3.

[OKPW10] Yossef Oren, Mario Kirschbaum, Thomas Popp, and Avishai Wool. “Algebraic
Side-Channel Analysis in the Presence of Errors”. In: Cryptographic Hardware
and Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara,
CA, USA, August 17-20, 2010. Proceedings. Ed. by Stefan Mangard and François-
Xavier Standaert. Vol. 6225. Lecture Notes in Computer Science. Springer, 2010,
pp. 428–442. doi: 10.1007/978-3-642-15031-9_29. url: https://doi.org/10.
1007/978-3-642-15031-9_29.

[ORSW12] Yossef Oren, Mathieu Renauld, François-Xavier Standaert, and Avishai Wool.
“Algebraic Side-Channel Attacks Beyond the Hamming Weight Leakage Model”. In:
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings. Ed. by Emmanuel
Prouff and Patrick Schaumont. Vol. 7428. Lecture Notes in Computer Science.
Springer, 2012, pp. 140–154. doi: 10.1007/978-3-642-33027-8_9. url: https:
//doi.org/10.1007/978-3-642-33027-8_9.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. “Practical
CCA2-Secure and Masked Ring-LWE Implementation”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018.1 (2018), pp. 142–174. doi: 10.13154/tches.v2018.
i1.142-174. url: https://doi.org/10.13154/tches.v2018.i1.142-174.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and Counter-
measures: The Case of AES”. In: Topics in Cryptology - CT-RSA 2006, The
Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February
13-17, 2006, Proceedings. Ed. by David Pointcheval. Vol. 3860. Lecture Notes in
Computer Science. Springer, 2006, pp. 1–20. doi: 10.1007/11605805_1. url:
https://doi.org/10.1007/11605805_1.

[Pei09a] Chris Peikert. “Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract”. In: Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009. Ed. by Michael Mitzenmacher. ACM, 2009, pp. 333–342. doi: 10.1145/
1536414.1536461. url: https://doi.org/10.1145/1536414.1536461.

[Pei09b] Chris Peikert. “Some Recent Progress in Lattice-Based Cryptography”. In: Theory of
Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco,
CA, USA, March 15-17, 2009. Proceedings. Ed. by Omer Reingold. Vol. 5444.
Lecture Notes in Computer Science. Springer, 2009, p. 72. doi: 10.1007/978-3-
642-00457-5_5. url: https://doi.org/10.1007/978-3-642-00457-5_5.

168

https://doi.org/10.1007/978-3-030-25283-0_7
https://doi.org/10.1007/978-3-030-25283-0_7
https://doi.org/10.1007/978-3-030-25283-0_7
https://doi.org/10.1007/s13389-016-0128-3
https://doi.org/10.1007/s13389-016-0128-3
https://doi.org/10.1007/s13389-016-0128-3
https://doi.org/10.1007/978-3-642-15031-9_29
https://doi.org/10.1007/978-3-642-15031-9_29
https://doi.org/10.1007/978-3-642-15031-9_29
https://doi.org/10.1007/978-3-642-33027-8_9
https://doi.org/10.1007/978-3-642-33027-8_9
https://doi.org/10.1007/978-3-642-33027-8_9
https://doi.org/10.13154/tches.v2018.i1.142-174
https://doi.org/10.13154/tches.v2018.i1.142-174
https://doi.org/10.13154/tches.v2018.i1.142-174
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1007/978-3-642-00457-5_5
https://doi.org/10.1007/978-3-642-00457-5_5
https://doi.org/10.1007/978-3-642-00457-5_5

Bibliography

[Pei14] Chris Peikert. “Lattice Cryptography for the Internet”. In: Post-Quantum Cryp-
tography - 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada,
October 1-3, 2014. Proceedings. Ed. by Michele Mosca. Vol. 8772. Lecture Notes in
Computer Science. Springer, 2014, pp. 197–219. doi: 10.1007/978-3-319-11659-
4_12. url: https://doi.org/10.1007/978-3-319-11659-4_12.

[Pei16] Chris Peikert. “A Decade of Lattice Cryptography”. In: Found. Trends Theor.
Comput. Sci. 10.4 (2016), pp. 283–424. doi: 10.1561/0400000074. url: https:
//doi.org/10.1561/0400000074.

[PG13] Thomas Pöppelmann and Tim Güneysu. “Towards Practical Lattice-Based Public-
Key Encryption on Reconfigurable Hardware”. In: Selected Areas in Cryptography
- SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-16,
2013, Revised Selected Papers. Ed. by Tanja Lange, Kristin E. Lauter, and Petr
Lisonek. Vol. 8282. Lecture Notes in Computer Science. Springer, 2013, pp. 68–85.
doi: 10.1007/978-3-662-43414-7_4. url: https://doi.org/10.1007/978-3-
662-43414-7_4.

[PH16] Aesun Park and Dong-Guk Han. “Chosen ciphertext Simple Power Analysis on
software 8-bit implementation of ring-LWE encryption”. In: 2016 IEEE Asian
Hardware-Oriented Security and Trust, AsianHOST 2016, Yilan, Taiwan, December
19-20, 2016. IEEE Computer Society, 2016, pp. 1–6. doi: 10.1109/AsianHOST.
2016.7835555. url: %7Bhttps://doi.org/10.1109/AsianHOST.2016.7835555%
7D.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regaz-
zoni. “The Curse of Class Imbalance and Conflicting Metrics with Machine Learning
for Side-channel Evaluations”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2019.1 (2019), pp. 209–237. doi: 10.13154/tches.v2019.i1.209-237. url:
https://doi.org/10.13154/tches.v2019.i1.209-237.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. “High-Performance Ideal
Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers”. In: Progress in
Cryptology - LATINCRYPT 2015 - 4th International Conference on Cryptology
and Information Security in Latin America, Guadalajara, Mexico, August 23-26,
2015, Proceedings. Ed. by Kristin E. Lauter and Francisco Rodríguez-Henríquez.
Vol. 9230. Lecture Notes in Computer Science. Springer, 2015, pp. 346–365. doi:
10.1007/978-3-319-22174-8_19. url: https://doi.org/10.1007/978-3-
319-22174-8_19.

[Pol71] John M. Pollard. “The fast Fourier transform in a finite field”. In: Mathematics of
Computation 25 (1971), pp. 365–374.

[PP10] Christof Paar and Jan Pelzl. Understanding Cryptography - A Textbook for Students
and Practitioners. Springer, 2010. isbn: 978-3-642-04100-6. doi: 10.1007/978-3-
642-04101-3. url: https://doi.org/10.1007/978-3-642-04101-3.

[PP19] Peter Pessl and Robert Primas. “More Practical Single-Trace Attacks on the
Number Theoretic Transform”. In: Progress in Cryptology - LATINCRYPT 2019
- 6th International Conference on Cryptology and Information Security in Latin
America, Santiago de Chile, Chile, October 2-4, 2019, Proceedings. Ed. by Peter
Schwabe and Nicolas Thériault. Vol. 11774. Lecture Notes in Computer Science.
Springer, 2019, pp. 130–149. doi: 10.1007/978-3-030-30530-7_7. url: https:
//doi.org/10.1007/978-3-030-30530-7_7.

169

https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1561/0400000074
https://doi.org/10.1561/0400000074
https://doi.org/10.1561/0400000074
https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1109/AsianHOST.2016.7835555
https://doi.org/10.1109/AsianHOST.2016.7835555
%7Bhttps://doi.org/10.1109/AsianHOST.2016.7835555%7D
%7Bhttps://doi.org/10.1109/AsianHOST.2016.7835555%7D
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7

Bibliography

[PP21] Peter Pessl and Lukas Prokop. “Fault Attacks on CCA-secure Lattice KEMs”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021.2 (2021), pp. 37–60. doi:
10.46586/tches.v2021.i2.37-60. url: https://doi.org/10.46586/tches.
v2021.i2.37-60.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. “Single-Trace Side-Channel
Attacks on Masked Lattice-Based Encryption”. In: Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Ed. by Wieland Fischer and Naofumi Homma.
Vol. 10529. Lecture Notes in Computer Science. Springer, 2017, pp. 513–533. doi:
10.1007/978-3-319-66787-4_25. url: https://doi.org/10.1007/978-3-
319-66787-4_25.

[PqcFo] Constributors to the pqc-forum. National Institute for Standards and Technology
pqc-forum. url: https://groups.google.com/a/list.nist.gov/g/pqc-forum.

[PQClean] Contributors to PQClean. PQClean. url: https : / / github . com / PQClean /
PQClean.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. “Simple Key Enu-
meration (and Rank Estimation) Using Histograms: An Integrated Approach”. In:
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th International
Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings. Ed. by
Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813. Lecture Notes in Computer
Science. Springer, 2016, pp. 61–81. doi: 10.1007/978-3-662-53140-2_4. url:
https://doi.org/10.1007/978-3-662-53140-2_4.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. “A Framework for Efficient
and Composable Oblivious Transfer”. In: Advances in Cryptology - CRYPTO
2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2008. Proceedings. Ed. by David A. Wagner. Vol. 5157. Lecture
Notes in Computer Science. Springer, 2008, pp. 554–571. doi: 10.1007/978-3-
540-85174-5_31. url: https://doi.org/10.1007/978-3-540-85174-5_31.

[PyRef] Contributors to the Python Language Reference. The Python Language Reference.
url: https://docs.python.org/3/reference/.

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
“Drop by Drop you break the rock - Exploiting generic vulnerabilities in Lattice-
based PKE/KEMs using EM-based Physical Attacks”. In: IACR Cryptol. ePrint
Arch. (2020), p. 549. url: https://eprint.iacr.org/2020/549.

[RBRC22] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
“On Exploiting Message Leakage in (Few) NIST PQC Candidates for Practical
Message Recovery Attacks”. In: IEEE Trans. Inf. Forensics Secur. 17 (2022),
pp. 684–699. doi: 10.1109/TIFS.2021.3139268. url: https://doi.org/10.
1109/TIFS.2021.3139268.

[REB+22] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chattopad-
hyay, and Sujoy Sinha Roy. “Will You Cross the Threshold for Me? Generic
Side-Channel Assisted Chosen-Ciphertext Attacks on NTRU-based KEMs”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.1 (2022), pp. 722–761. doi:
10.46586/tches.v2022.i1.722-761. url: https://doi.org/10.46586/tches.
v2022.i1.722-761.

170

https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://github.com/PQClean/PQClean
https://github.com/PQClean/PQClean
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://docs.python.org/3/reference/
https://eprint.iacr.org/2020/549
https://doi.org/10.1109/TIFS.2021.3139268
https://doi.org/10.1109/TIFS.2021.3139268
https://doi.org/10.1109/TIFS.2021.3139268
https://doi.org/10.46586/tches.v2022.i1.722-761
https://doi.org/10.46586/tches.v2022.i1.722-761
https://doi.org/10.46586/tches.v2022.i1.722-761

Bibliography

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography”. In: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, May 22-24, 2005. Ed. by Harold N. Gabow
and Ronald Fagin. ACM, 2005, pp. 84–93. doi: 10.1145/1060590.1060603. url:
https://doi.org/10.1145/1060590.1060603.

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography”. In: J. ACM 56.6 (2009), 34:1–34:40. doi: 10.1145/1568318.1568324.
url: http://doi.acm.org/10.1145/1568318.1568324.

[Reg10] Oded Regev. “The Learning with Errors Problem (Invited Survey)”. In: Proceedings
of the 25th Annual IEEE Conference on Computational Complexity, CCC 2010,
Cambridge, Massachusetts, USA, June 9-12, 2010. IEEE Computer Society, 2010,
pp. 191–204. doi: 10.1109/CCC.2010.26. url: https://doi.org/10.1109/CCC.
2010.26.

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin. “Side-channel Assisted Existential Forgery Attack on Dilithium
- A NIST PQC candidate”. In: IACR Cryptol. ePrint Arch. (2018), p. 821. url:
https://eprint.iacr.org/2018/821.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay.
“On Configurable SCA Countermeasures Against Single Trace Attacks for the
NTT - A Performance Evaluation Study over Kyber and Dilithium on the ARM
Cortex-M4”. In: Security, Privacy, and Applied Cryptography Engineering - 10th
International Conference, SPACE 2020, Kolkata, India, December 17-21, 2020,
Proceedings. Ed. by Lejla Batina, Stjepan Picek, and Mainack Mondal. Vol. 12586.
Lecture Notes in Computer Science. Springer, 2020, pp. 123–146. doi: 10.1007/
978-3-030-66626-2_7. url: https://doi.org/10.1007/978-3-030-66626-
2_7.

[RPD09] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. “Higher-Order Masking
and Shuffling for Software Implementations of Block Ciphers”. In: Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th International Workshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings. Ed. by Christophe
Clavier and Kris Gaj. Vol. 5747. Lecture Notes in Computer Science. Springer,
2009, pp. 171–188. doi: 10.1007/978-3-642-04138-9_13. url: https://doi.
org/10.1007/978-3-642-04138-9_13.

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. “Number "Not Used" Once - Practical Fault Attack on
pqm4 Implementations of NIST Candidates”. In: Constructive Side-Channel Anal-
ysis and Secure Design - 10th International Workshop, COSADE 2019, Darmstadt,
Germany, April 3-5, 2019, Proceedings. Ed. by Ilia Polian and Marc Stöttinger.
Vol. 11421. Lecture Notes in Computer Science. Springer, 2019, pp. 232–250. doi:
10.1007/978-3-030-16350-1_13. url: https://doi.org/10.1007/978-3-
030-16350-1_13.

[RRC+16] Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and Ingrid
Verbauwhede. “Masking ring-LWE”. In: J. Cryptogr. Eng. 6.2 (2016), pp. 139–153.
doi: 10.1007/s13389-016-0126-5. url: https://doi.org/10.1007/s13389-
016-0126-5.

171

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1568318.1568324
http://doi.acm.org/10.1145/1568318.1568324
https://doi.org/10.1109/CCC.2010.26
https://doi.org/10.1109/CCC.2010.26
https://doi.org/10.1109/CCC.2010.26
https://eprint.iacr.org/2018/821
https://doi.org/10.1007/978-3-030-66626-2_7
https://doi.org/10.1007/978-3-030-66626-2_7
https://doi.org/10.1007/978-3-030-66626-2_7
https://doi.org/10.1007/978-3-030-66626-2_7
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-030-16350-1_13
https://doi.org/10.1007/978-3-030-16350-1_13
https://doi.org/10.1007/978-3-030-16350-1_13
https://doi.org/10.1007/s13389-016-0126-5
https://doi.org/10.1007/s13389-016-0126-5
https://doi.org/10.1007/s13389-016-0126-5

Bibliography

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
“Generic Side-channel attacks on CCA-secure lattice-based PKE and KEMs”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.3 (2020), pp. 307–335. doi:
10.13154/tches.v2020.i3.307-335. url: https://doi.org/10.13154/tches.
v2020.i3.307-335.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
“A Masked Ring-LWE Implementation”. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings. Ed. by Tim Güneysu and Helena Handschuh.
Vol. 9293. Lecture Notes in Computer Science. Springer, 2015, pp. 683–702. doi:
10.1007/978-3-662-48324-4_34. url: https://doi.org/10.1007/978-3-
662-48324-4_34.

[RS09] Mathieu Renauld and François-Xavier Standaert. “Algebraic Side-Channel Attacks”.
In: Information Security and Cryptology - 5th International Conference, Inscrypt
2009, Beijing, China, December 12-15, 2009. Revised Selected Papers. Ed. by Feng
Bao, Moti Yung, Dongdai Lin, and Jiwu Jing. Vol. 6151. Lecture Notes in Computer
Science. Springer, 2009, pp. 393–410. doi: 10.1007/978-3-642-16342-5_29. url:
https://doi.org/10.1007/978-3-642-16342-5_29.

[RS10] Markus Rückert and Michael Schneider. “Estimating the Security of Lattice-
based Cryptosystems”. In: IACR Cryptol. ePrint Arch. (2010), p. 137. url: http:
//eprint.iacr.org/2010/137.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”. In: Commun. ACM 21.2 (1978),
pp. 120–126. doi: 10.1145/359340.359342. url: https://doi.org/10.1145/
359340.359342.

[RSA83] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems (Reprint)”. In: Commun. ACM
26.1 (1983), pp. 96–99. doi: 10.1145/357980.358017. url: https://doi.org/
10.1145/357980.358017.

[RSDT13] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria. “Fault
Model Analysis of Laser-Induced Faults in SRAM Memory Cells”. In: 2013 Work-
shop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA,
August 20, 2013. Ed. by Wieland Fischer and Jörn-Marc Schmidt. IEEE Com-
puter Society, 2013, pp. 89–98. doi: 10 . 1109 / FDTC . 2013 . 17. url: https :
//doi.org/10.1109/FDTC.2013.17.

[RSV09] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. “Al-
gebraic Side-Channel Attacks on the AES: Why Time also Matters in DPA”.
In: Cryptographic Hardware and Embedded Systems - CHES 2009, 11th Inter-
national Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings.
Ed. by Christophe Clavier and Kris Gaj. Vol. 5747. Lecture Notes in Computer
Science. Springer, 2009, pp. 97–111. doi: 10.1007/978-3-642-04138-9_8. url:
https://doi.org/10.1007/978-3-642-04138-9_8.

[RustRef] Contributors to the Rust Reference. The Rust Reference. url: https://doc.rust-
lang.org/reference/index.html.

172

https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.1007/978-3-662-48324-4_34
https://doi.org/10.1007/978-3-662-48324-4_34
https://doi.org/10.1007/978-3-662-48324-4_34
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/978-3-642-16342-5_29
http://eprint.iacr.org/2010/137
http://eprint.iacr.org/2010/137
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/357980.358017
https://doi.org/10.1145/357980.358017
https://doi.org/10.1145/357980.358017
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1109/FDTC.2013.17
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-04138-9_8
https://doc.rust-lang.org/reference/index.html
https://doc.rust-lang.org/reference/index.html

Bibliography

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induction Attacks”.
In: Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. Ed. by
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar. Vol. 2523. Lecture Notes
in Computer Science. Springer, 2002, pp. 2–12. doi: 10.1007/3-540-36400-5_2.
url: https://doi.org/10.1007/3-540-36400-5_2.

[Sch87] Claus-Peter Schnorr. “A Hierarchy of Polynomial Time Lattice Basis Reduction
Algorithms”. In: Theor. Comput. Sci. 53 (1987), pp. 201–224. doi: 10.1016/0304-
3975(87)90064-8. url: https://doi.org/10.1016/0304-3975(87)90064-8.

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Improved practical
algorithms and solving subset sum problems”. In: Math. Program. 66 (1994),
pp. 181–199. doi: 10.1007/BF01581144. url: https://doi.org/10.1007/
BF01581144.

[SGT+09] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. “The Graph Neural Network Model”. In: IEEE Trans. Neural Networks
20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.2005605. url: https://doi.
org/10.1109/TNN.2008.2005605.

[SH95] Claus-Peter Schnorr and Horst Helmut Hörner. “Attacking the Chor-Rivest Cryp-
tosystem by Improved Lattice Reduction”. In: Advances in Cryptology - EURO-
CRYPT ’95, International Conference on the Theory and Application of Cryp-
tographic Techniques, Saint-Malo, France, May 21-25, 1995, Proceeding. Ed. by
Louis C. Guillou and Jean-Jacques Quisquater. Vol. 921. Lecture Notes in Com-
puter Science. Springer, 1995, pp. 1–12. doi: 10.1007/3-540-49264-X_1. url:
https://doi.org/10.1007/3-540-49264-X_1.

[Sho94] Peter W. Shor. “Polynominal time algorithms for discrete logarithms and factoring
on a quantum computer”. In: Algorithmic Number Theory, First International
Symposium, ANTS-I, Ithaca, NY, USA, May 6-9, 1994, Proceedings. Ed. by
Leonard M. Adleman and Ming-Deh A. Huang. Vol. 877. Lecture Notes in Computer
Science. Springer, 1994, p. 289. doi: 10.1007/3-540-58691-1_68. url: https:
//doi.org/10.1007/3-540-58691-1_68.

[Sho97] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. In: SIAM J. Comput. 26.5 (1997), pp. 1484–
1509. doi: 10.1137/S0097539795293172. url: https://doi.org/10.1137/
S0097539795293172.

[Sig23] Contributors to libsignal. Release v0.27.0. 2023. url: https://github.com/
signalapp/libsignal/releases/tag/v0.27.0.

[SIH+23] Emanuele Strieder, Manuel Ilg, Johann Heyszl, Florian Unterstein, and Silvan Streit.
“ASCA vs. SASCA - A Closer Look at the AES Key Schedule”. In: Constructive
Side-Channel Analysis and Secure Design - 14th International Workshop, COSADE
2023, Munich, Germany, April 3-4, 2023, Proceedings. Ed. by Elif Bilge Kavun
and Michael Pehl. Vol. 13979. Lecture Notes in Computer Science. Springer, 2023,
pp. 65–85. doi: 10.1007/978-3-031-29497-6_4. url: https://doi.org/10.
1007/978-3-031-29497-6_4.

[Sin64] Richard Sinkhorn. “A Relationship Between Arbitrary Positive Matrices and
Doubly Stochastic Matrices”. In: The Annals of Mathematical Statistics 35.2
(1964), pp. 876–879. doi: 10.1214/aoms/1177703591. url: https://doi.org/
10.1214/aoms/1177703591.

173

https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1007/3-540-49264-X_1
https://doi.org/10.1007/3-540-49264-X_1
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://github.com/signalapp/libsignal/releases/tag/v0.27.0
https://github.com/signalapp/libsignal/releases/tag/v0.27.0
https://doi.org/10.1007/978-3-031-29497-6_4
https://doi.org/10.1007/978-3-031-29497-6_4
https://doi.org/10.1007/978-3-031-29497-6_4
https://doi.org/10.1214/aoms/1177703591
https://doi.org/10.1214/aoms/1177703591
https://doi.org/10.1214/aoms/1177703591

Bibliography

[SLFP04] Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. “A Collision-
Attack on AES: Combining Side Channel- and Differential-Attack”. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2004: 6th International Work-
shop Cambridge, MA, USA, August 11-13, 2004. Proceedings. Ed. by Marc Joye
and Jean-Jacques Quisquater. Vol. 3156. Lecture Notes in Computer Science.
Springer, 2004, pp. 163–175. doi: 10.1007/978- 3- 540- 28632- 5_12. url:
https://doi.org/10.1007/978-3-540-28632-5_12.

[SLG07] Eran Sharon, Simon Litsyn, and Jacob Goldberger. “Efficient Serial Message-
Passing Schedules for LDPC Decoding”. In: IEEE Trans. Inf. Theory 53.11 (2007),
pp. 4076–4091. doi: 10.1109/TIT.2007.907507. url: https://doi.org/10.
1109/TIT.2007.907507.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. “A Stochastic Model for
Differential Side Channel Cryptanalysis”. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August
29 - September 1, 2005, Proceedings. Ed. by Josyula R. Rao and Berk Sunar.
Vol. 3659. Lecture Notes in Computer Science. Springer, 2005, pp. 30–46. doi:
10.1007/11545262_3. url: https://doi.org/10.1007/11545262_3.

[SM12] Charles Sutton and Andrew McCallum. “Improved Dynamic Schedules for Belief
Propagation”. In: CoRR abs/1206.5291 (2012). arXiv: 1206.5291. url: http:
//arxiv.org/abs/1206.5291.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. “A Unified Framework for
the Analysis of Side-Channel Key Recovery Attacks”. In: Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings. Ed. by Antoine Joux. Vol. 5479. Lecture Notes in Computer Science.
Springer, 2009, pp. 443–461. doi: 10.1007/978- 3- 642- 01001- 9_26. url:
https://doi.org/10.1007/978-3-642-01001-9_26.

[SPH22] Bo-Yeon Sim, Aesun Park, and Dong-Guk Han. “Chosen-Ciphertext Clustering
Attack on CRYSTALS-KYBER Using the Side-Channel Leakage of Barrett Reduc-
tion”. In: IEEE Internet Things J. 9.21 (2022), pp. 21382–21397. doi: 10.1109/
JIOT.2022.3179683. url: https://doi.org/10.1109/JIOT.2022.3179683.

[SSW17] Cyprien de Saint Guilhem, Nigel P. Smart, and Bogdan Warinschi. “Generic
Forward-Secure Key Agreement Without Signatures”. In: Information Security -
20th International Conference, ISC 2017, Ho Chi Minh City, Vietnam, November
22-24, 2017, Proceedings. Ed. by Phong Q. Nguyen and Jianying Zhou. Vol. 10599.
Lecture Notes in Computer Science. Springer, 2017, pp. 114–133. doi: 10.1007/
978-3-319-69659-1_7. url: https://doi.org/10.1007/978-3-319-69659-
1_7.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS Without
Handshake Signatures”. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’20. Virtual Event, USA: Association
for Computing Machinery, 2020, pp. 1461–1480. isbn: 9781450370899. doi: 10.
1145/3372297.3423350. url: https://doi.org/10.1145/3372297.3423350.

174

https://doi.org/10.1007/978-3-540-28632-5_12
https://doi.org/10.1007/978-3-540-28632-5_12
https://doi.org/10.1109/TIT.2007.907507
https://doi.org/10.1109/TIT.2007.907507
https://doi.org/10.1109/TIT.2007.907507
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://arxiv.org/abs/1206.5291
http://arxiv.org/abs/1206.5291
http://arxiv.org/abs/1206.5291
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1109/JIOT.2022.3179683
https://doi.org/10.1109/JIOT.2022.3179683
https://doi.org/10.1109/JIOT.2022.3179683
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350

Bibliography

[Sto03] Amos J. Storkey. “Generalised Propagation for Fast Fourier Transforms with Partial
or Missing Data”. In: Advances in Neural Information Processing Systems 16 [Neu-
ral Information Processing Systems, NIPS 2003, December 8-13, 2003 , Vancouver
and Whistler, British Columbia, Canada]. Ed. by Sebastian Thrun, Lawrence K.
Saul, and Bernhard Schölkopf. MIT Press, 2003, pp. 433–440. url: https://
proceedings.neurips.cc/paper/2003/hash/8c1b6fa97c4288a4514365198566c6fa-
Abstract.html.

[SW07] Joseph H. Silverman and William Whyte. “Timing Attacks on NTRUEncrypt Via
Variation in the Number of Hash Calls”. In: Topics in Cryptology - CT-RSA 2007,
The Cryptographers’ Track at the RSA Conference 2007, San Francisco, CA, USA,
February 5-9, 2007, Proceedings. Ed. by Masayuki Abe. Vol. 4377. Lecture Notes
in Computer Science. Springer, 2007, pp. 208–224. doi: 10.1007/11967668_14.
url: https://doi.org/10.1007/11967668_14.

[SW21] Victor Garcia Satorras and Max Welling. “Neural Enhanced Belief Propagation on
Factor Graphs”. In: The 24th International Conference on Artificial Intelligence
and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event. Ed. by Arindam
Banerjee and Kenji Fukumizu. Vol. 130. Proceedings of Machine Learning Research.
PMLR, 2021, pp. 685–693. url: http://proceedings.mlr.press/v130/garcia-
satorras21a.html.

[TH08] Stefan Tillich and Christoph Herbst. “Attacking State-of-the-Art Software Countermeasures-
A Case Study for AES”. In: Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13,
2008. Proceedings. Ed. by Elisabeth Oswald and Pankaj Rohatgi. Vol. 5154. Lecture
Notes in Computer Science. Springer, 2008, pp. 228–243. doi: 10.1007/978-3-
540-85053-3_15. url: https://doi.org/10.1007/978-3-540-85053-3_15.

[THM07] Stefan Tillich, Christoph Herbst, and Stefan Mangard. “Protecting AES Soft-
ware Implementations on 32-Bit Processors Against Power Analysis”. In: Applied
Cryptography and Network Security, 5th International Conference, ACNS 2007,
Zhuhai, China, June 5-8, 2007, Proceedings. Ed. by Jonathan Katz and Moti Yung.
Vol. 4521. Lecture Notes in Computer Science. Springer, 2007, pp. 141–157. doi:
10.1007/978-3-540-72738-5_10. url: https://doi.org/10.1007/978-3-
540-72738-5_10.

[Tim19] Benjamin Timon. “Non-Profiled Deep Learning-based Side-Channel attacks with
Sensitivity Analysis”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.2
(2019), pp. 107–131. doi: 10.13154/tches.v2019.i2.107-131. url: https:
//doi.org/10.13154/tches.v2019.i2.107-131.

[Too63] A.L. Toom. “The Complexity of a Scheme of Functional Elements Realizing the
Multiplication of Integers”. In: Soviet Physics Doklady 3 (May 1963), pp. 714–716.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. “Post-Quantum Security of the
Fujisaki-Okamoto and OAEP Transforms”. In: Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November
3, 2016, Proceedings, Part II. Ed. by Martin Hirt and Adam D. Smith. Vol. 9986.
Lecture Notes in Computer Science. 2016, pp. 192–216. doi: 10.1007/978-3-662-
53644-5_8. url: https://doi.org/10.1007/978-3-662-53644-5_8.

175

https://proceedings.neurips.cc/paper/2003/hash/8c1b6fa97c4288a4514365198566c6fa-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/8c1b6fa97c4288a4514365198566c6fa-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/8c1b6fa97c4288a4514365198566c6fa-Abstract.html
https://doi.org/10.1007/11967668_14
https://doi.org/10.1007/11967668_14
http://proceedings.mlr.press/v130/garcia-satorras21a.html
http://proceedings.mlr.press/v130/garcia-satorras21a.html
https://doi.org/10.1007/978-3-540-85053-3_15
https://doi.org/10.1007/978-3-540-85053-3_15
https://doi.org/10.1007/978-3-540-85053-3_15
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.13154/tches.v2019.i2.107-131
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8

Bibliography

[UBS21] Balazs Udvarhelyi, Olivier Bronchain, and François-Xavier Standaert. “Security
Analysis of Deterministic Re-keying with Masking and Shuffling: Application to
ISAP”. In: Constructive Side-Channel Analysis and Secure Design - 12th Inter-
national Workshop, COSADE 2021, Lugano, Switzerland, October 25-27, 2021,
Proceedings. Ed. by Shivam Bhasin and Fabrizio De Santis. Vol. 12910. Lecture
Notes in Computer Science. Springer, 2021, pp. 168–183. doi: 10.1007/978-3-
030-89915-8_8. url: https://doi.org/10.1007/978-3-030-89915-8_8.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Naofumi
Homma. “Curse of Re-encryption: A Generic Power/EM Analysis on Post-Quantum
KEMs”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.1 (2022), pp. 296–
322. doi: 10.46586/tches.v2022.i1.296-322. url: https://doi.org/10.
46586/tches.v2022.i1.296-322.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. “Soft
Analytical Side-Channel Attacks”. In: Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I. Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873. Lecture
Notes in Computer Science. Springer, 2014, pp. 282–296. doi: 10.1007/978-3-
662-45611-8_15. url: https://doi.org/10.1007/978-3-662-45611-8_15.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. “Shuffling against Side-Channel Attacks: A Comprehensive
Study with Cautionary Note”. In: Advances in Cryptology - ASIACRYPT 2012 -
18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings. Ed. by
Xiaoyun Wang and Kazue Sako. Vol. 7658. Lecture Notes in Computer Science.
Springer, 2012, pp. 740–757. doi: 10.1007/978- 3- 642- 34961- 4_44. url:
https://doi.org/10.1007/978-3-642-34961-4_44.

[VOGR18] Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni. “Exploring
the Vulnerability of R-LWE Encryption to Fault Attacks”. In: Proceedings of
the Fifth Workshop on Cryptography and Security in Computing Systems, CS2
2018, Manchester, United Kingdom, January 24, 2018. Ed. by John Goodacre,
Mikel Luján, Giovanni Agosta, Alessandro Barenghi, Israel Koren, and Gerardo
Pelosi. ACM, 2018, pp. 7–12. doi: 10.1145/3178291.3178294. url: https:
//doi.org/10.1145/3178291.3178294.

[WAR+23] Lichao Wu, Amir Ali-pour, Azade Rezaeezade, Guilherme Perin, and Stjepan Picek.
Breaking Free: Leakage Model-free Deep Learning-based Side-channel Analysis.
Cryptology ePrint Archive, Paper 2023/1110. https://eprint.iacr.org/2023/
1110. 2023. url: https://eprint.iacr.org/2023/1110.

[Wei22] Andreas Weik. “Machine-Learning-based Side-Channel Attacks on Lattice-based
Key Encapsulation Mechanisms”. Master’s Thesis at the Technical University of
Munich 2022. Oct. 2022.

[Win96] Franz Winkler. Polynomial Algorithms in Computer Algebra. Texts & Monographs
in Symbolic Computation. Springer, 1996. isbn: 978-3-211-82759-8. doi: 10.1007/
978-3-7091-6571-3. url: https://doi.org/10.1007/978-3-7091-6571-3.

176

https://doi.org/10.1007/978-3-030-89915-8_8
https://doi.org/10.1007/978-3-030-89915-8_8
https://doi.org/10.1007/978-3-030-89915-8_8
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1145/3178291.3178294
https://doi.org/10.1145/3178291.3178294
https://doi.org/10.1145/3178291.3178294
https://eprint.iacr.org/2023/1110
https://eprint.iacr.org/2023/1110
https://eprint.iacr.org/2023/1110
https://doi.org/10.1007/978-3-7091-6571-3
https://doi.org/10.1007/978-3-7091-6571-3
https://doi.org/10.1007/978-3-7091-6571-3

Bibliography

[WND22] Ruize Wang, Kalle Ngo, and Elena Dubrova. “A Message Recovery Attack on
LWE/LWR-Based PKE/KEMs Using Amplitude-Modulated EM Emanations”. In:
Information Security and Cryptology - ICISC 2022 - 25th International Conference,
ICISC 2022, Seoul, South Korea, November 30 - December 2, 2022, Revised Selected
Papers. Ed. by Seung-Hyun Seo and Hwajeong Seo. Vol. 13849. Lecture Notes in
Computer Science. Springer, 2022, pp. 450–471. doi: 10.1007/978-3-031-29371-
9_22. url: https://doi.org/10.1007/978-3-031-29371-9_22.

[WP06] André Weimerskirch and Christof Paar. “Generalizations of the Karatsuba Al-
gorithm for Efficient Implementations”. In: IACR Cryptol. ePrint Arch. (2006),
p. 224. url: http://eprint.iacr.org/2006/224.

[WWM11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico Menarini. “Practical
Optical Fault Injection on Secure Microcontrollers”. In: 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2011, Tokyo, Japan, September
29, 2011. Ed. by Luca Breveglieri, Sylvain Guilley, Israel Koren, David Naccache,
and Junko Takahashi. IEEE Computer Society, 2011, pp. 91–99. doi: 10.1109/
FDTC.2011.12. url: https://doi.org/10.1109/FDTC.2011.12.

[WZW13] An Wang, Xuexin Zheng, and Zongyue Wang. “Power Analysis Attacks and
Countermeasures on NTRU-Based Wireless Body Area Networks”. In: KSII Trans.
Internet Inf. Syst. 7.5 (2013), pp. 1094–1107. doi: 10.3837/tiis.2013.05.009.
url: https://doi.org/10.3837/tiis.2013.05.009.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. “Fault-
Injection Attacks Against NIST’s Post-Quantum Cryptography Round 3 KEM
Candidates”. In: Advances in Cryptology - ASIACRYPT 2021 - 27th International
Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 6-10, 2021, Proceedings, Part II. Ed. by Mehdi Tibouchi and
Huaxiong Wang. Vol. 13091. Lecture Notes in Computer Science. Springer, 2021,
pp. 33–61. doi: 10.1007/978-3-030-92075-3_2. url: https://doi.org/10.
1007/978-3-030-92075-3%5C_2.

[XPOZ22] Zhuang Xu, Owen Pemberton, David F. Oswald, and Zhiming Zheng. “Reveal
the Invisible Secret: Chosen-Ciphertext Side-Channel Attacks on NTRU”. In:
Smart Card Research and Advanced Applications - 21st International Conference,
CARDIS 2022, Birmingham, UK, November 7-9, 2022, Revised Selected Papers.
Ed. by Ileana Buhan and Tobias Schneider. Vol. 13820. Lecture Notes in Computer
Science. Springer, 2022, pp. 227–247. doi: 10.1007/978-3-031-25319-5_12. url:
https://doi.org/10.1007/978-3-031-25319-5_12.

[XPR+22] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David F. Oswald, Wang Yao, and
Zhiming Zheng. “Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems
With Chosen Ciphertexts: The Case Study of Kyber”. In: IEEE Trans. Computers
71.9 (2022), pp. 2163–2176. doi: 10 . 1109 / TC . 2021 . 3122997. url: https :
//doi.org/10.1109/TC.2021.3122997.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David F. Oswald. “Magnifying
Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts:
The Case Study of Kyber”. In: IACR Cryptol. ePrint Arch. (2020), p. 912. url:
https://eprint.iacr.org/2020/912.

177

https://doi.org/10.1007/978-3-031-29371-9_22
https://doi.org/10.1007/978-3-031-29371-9_22
https://doi.org/10.1007/978-3-031-29371-9_22
http://eprint.iacr.org/2006/224
https://doi.org/10.1109/FDTC.2011.12
https://doi.org/10.1109/FDTC.2011.12
https://doi.org/10.1109/FDTC.2011.12
https://doi.org/10.3837/tiis.2013.05.009
https://doi.org/10.3837/tiis.2013.05.009
https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.1007/978-3-030-92075-3%5C_2
https://doi.org/10.1007/978-3-030-92075-3%5C_2
https://doi.org/10.1007/978-3-031-25319-5_12
https://doi.org/10.1007/978-3-031-25319-5_12
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://eprint.iacr.org/2020/912

Bibliography

[Yed04] Jonathan S. Yedidia. “Sparse factor graph representations of Reed-Solomon and
related codes”. In: Proceedings of the 2004 IEEE International Symposium on
Information Theory, ISIT 2004, Chicago Downtown Marriott, Chicago, Illinois,
USA, June 27 - July 2, 2004. IEEE, 2004, p. 260. doi: 10.1109/ISIT.2004.
1365296. url: https://doi.org/10.1109/ISIT.2004.1365296.

[YJ00] Sung-Ming Yen and Marc Joye. “Checking Before Output May Not Be Enough
Against Fault-Based Cryptanalysis”. In: IEEE Trans. Computers 49.9 (2000),
pp. 967–970. doi: 10.1109/12.869328. url: https://doi.org/10.1109/12.
869328.

178

https://doi.org/10.1109/ISIT.2004.1365296
https://doi.org/10.1109/ISIT.2004.1365296
https://doi.org/10.1109/ISIT.2004.1365296
https://doi.org/10.1109/12.869328
https://doi.org/10.1109/12.869328
https://doi.org/10.1109/12.869328

Acronyms

AES Advanced Encryption Standard

ASCA Algebraic Side-Channel Attack

BDD Bounded Distance Decoding

BKZ Blockwise Korkine-Zolotarev

BP Belief Propagation

BSI Bundesamt für Sicherheit in der Informationstechnik

CA Collision Attacks

CCA Chosen-Ciphertext Attack

CPA Chosen-Plaintext Attack

CPA Correlation Power Analysis

CPU Central Processing Unit

CRT Chinese Remainder Theorem

CVP Closest Vector Problem

DBDD Distorted Bounded Distance Decoding Problem

DFT Discrete Fourier Transform

D-LWE Decision Learning with Errors

DoS Denial of Service

DPA Differential Power Analysis

EM Electro-Magnetic Radiation

FFT Fast-Fourier Transformation

FO Fujisaki-Okamoto

HW Hamming Weight

179

Acronyms

INTT Inverse Number Theoretic Transform

KDF Key Derivation Function

KEM Key Encapsulation Mechanism

KL Kullback-Leibler

LDPC Low-Density Parity Check

LLL Lenstra, Lenstra, and Lovasz

LR Linear Regression

LWE Learning with Errors

MIA Mutual Information Analysis

MLWE Module Learning with Errors

NIST National Institute of Standards and Technology

NTRU NTRU

NTT Number Theoretic Transform

PKE Public-Key Encryption

PQ Post-Quantum

PQC Post-Quantum Cryptography

PRF Pseudo-Random Function

RLWE Ring Learning with Errors

RNG Random Number Generator

RSA Rivest–Shamir–Adleman

SASCA Soft Analytical Side-Channel Attack

SCA Side Channel Attack

SIVP Shortest Independent Vector Problem

SNR Signal-to-noise ratio

SPA Simple Power Analysis

SVP Shortest Vector Problem

TASCA Tolerant Algebraic Side-Channel Attack

TLS Transport Layer Security

uSVP unique Shortest Vector Problem

XOR Exclusive-Or

180

List of Publications

This thesis builds upon several published works the author contributed to. Summaries and
contributions made by the author of this thesis can be found in Section 1.2. We list the
publications, the corresponding preprints, and talks given by the author from which figures have
been used in this thesis. Note that preprints come in different versions; we do not list them
separately. We do not list talks from which no contents were used and that are therefore not
cited in this thesis. The work in [HPS+20] is referenced but not fully part of this thesis.

Peer-Reviewed Journal Publications
• [HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas

Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. “Chosen
Ciphertext k-Trace Attacks on Masked CCA2 Secure Kyber”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021.4 (2021), pp. 88–113. doi: 10.46586/tches.v2021.i4.88-113.
url: https://doi.org/10.46586/tches.v2021.i4.88-113

• [HSST23] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme.
“Adapting Belief Propagation to Counter Shuffling of NTTs”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2023.1 (2023), pp. 60–88. doi: 10.46586/tches.v2023.i1.60-88.
url: https://doi.org/10.46586/tches.v2023.i1.60-88

• [HMS+23] Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl, and
Gabi Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for
Error-Tolerant Key Recovery from Decryption Errors”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2023.4 (2023), pp. 287–317. doi: 10.46586/tches.v2023.i4.287-317. url:
https://doi.org/10.46586/tches.v2023.i4.287-317

Peer-Reviewed Conference Proceedings
• [HPS+20] Julius Hermelink, Thomas Pöppelmann, Marc Stöttinger, Yi Wang, and Yong

Wan. “Quantum safe authenticated key exchange protocol for automotive application”.
In: 18-th escar Europe : The World’s Leading Automotive Cyber Security Conference
(Konferenzveröffentlichung). 2020. doi: 10.13154/294-7549

• [HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. “Fault-Enabled Chosen-
Ciphertext Attacks on Kyber”. In: Progress in Cryptology - INDOCRYPT 2021 - 22nd
International Conference on Cryptology in India, Jaipur, India, December 12-15 , 2021,
Proceedings. Ed. by Avishek Adhikari, Ralf Küsters, and Bart Preneel. Vol. 13143. Lecture
Notes in Computer Science. Springer, 2021, pp. 311–334. doi: 10.1007/978-3-030-
92518-5_15. url: https://doi.org/10.1007/978-3-030-92518-5_15

181

https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2023.i1.60-88
https://doi.org/10.46586/tches.v2023.i1.60-88
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.13154/294-7549
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15

Acronyms

Preprints
• [HHP+21p] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas

Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. “Chosen
Ciphertext k-Trace Attacks on Masked CCA2 Secure Kyber”. In: IACR Cryptol. ePrint
Arch. (2021), p. 956. url: https://eprint.iacr.org/2021/956

• [HPP21p] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. “Fault-enabled chosen-
ciphertext attacks on Kyber”. In: IACR Cryptol. ePrint Arch. (2021), p. 1222. url:
https://eprint.iacr.org/2021/1222

• [HSST+23p] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme.
“Adapting Belief Propagation to Counter Shuffling of NTTs”. In: IACR Cryptol. ePrint
Arch. (2022), p. 555. url: https://eprint.iacr.org/2022/555

• [HMS+23p] Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl, and
Gabi Dreo Rodosek. “Belief Propagation Meets Lattice Reduction: Security Estimates for
Error-Tolerant Key Recovery from Decryption Errors”. In: IACR Cryptol. ePrint Arch.
(2023), p. 98. url: https://eprint.iacr.org/2023/098 (accepted at IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2023/4)

Talks
• [Her23b] Julius Hermelink. Side-Channel and Fault Attacks in Modern Lattice-Based

Cryptography. Oberseminar talk at the Fakultät für Informatik of the Universität der
Bundeswehr München. June 2023

• [Her23a] Julius Hermelink. Decryption Errors and Implementation Attacks on Kyber. Talk
at the Institute für IT-Sicherheit at Universität zu Lübeck. Apr. 2023

182

https://eprint.iacr.org/2021/956
https://eprint.iacr.org/2021/1222
https://eprint.iacr.org/2022/555
https://eprint.iacr.org/2023/098

List of Figures

1.1 Simplified usage of symmetric and asymmetric cryptography. A key encapsulation
mechanism (asymmetric) is used to establish a shared secret from which a common
but secret key is derived. This enables Alice and Bob to communicate using
symmetric cryptography. 2

1.2 Lattice problems in two dimensions. Figure 1.2a shows a two dimension lattice.
The closest vector problem (Figure 1.2b) asks to find the closest lattice element to
a given point. The shortest vector problem (Figure 1.2c) is posed as finding the
shortest non-zero vector in a lattice. 4

1.3 Outline: The left column of the figure provides an answer to the first research
question, the middle column to the second research question, and the right column
to the third research question. However, the evaluation of the second and third
research question make use of similar methodologies and are both presented in
Section 7.2 . 12

2.1 Example of an authenticated key exchange with subsequent symmetrically secured
communication as, e.g., proposed by Guilhem, Smart, and Warinschi [SSW17] and
instantiated with post-quantum schemes in an automotive context by Hermelink
et al. [HPS+20]. Compared to a pure key exchange, this example features a third
message, and Alice commits to a value in her first message; this can later be
checked by Bob. 16

2.2 Exemplary high-level depiction of an FO-transform as used in Kyber (which is
similar to the transform presented in [TU16]). The routines defined by the KEM
rely on the method defined by the Public-Key Encryption (PKE). Figure adapted
from [Her23b]. 19

2.3 Exemplary depiction of the decapsulation routine of an FO-transform as used
in Kyber (which is similar to the transform presented in [TU16]). An incoming
ciphertext is stored, decrypted, encrypted again, and the result is compared against
the stored ciphertext. If the submitted and re-computed ciphertext match, a shared
secret (based on the message) is returned. Figure first presented in [Her23a] . . . 20

2.4 Two lattices generated by a basis of the same length which are not equal. Basis of
B0 and B1 are depicted as vectors. 21

2.5 The lattice generated by tp1.5,´1q, p1, 0.5qu, which is also two-dimensional but
neither equal to L0 nor L1 and its fundamental mesh. 22

2.6 A butterfly operation as used in an NTT following Cooley-Tukey [CT65] computing
c “ a ` ωb and d “ a ´ ωb. 26

2.7 Computational graph of an inverse NTT with intermediate values in Cooley-Tukey
decimation. Note that ωi does not denote ζi. 26

2.8 Compression visualized with d “ 2 and q “ 23. Points are mapped to the index of
the closest compression point. The compression points are at 0, q

4 ,
q
2 , and 3q

4 . . . 33

183

List of Figures

2.9 Removing noise realized as compression with d “ 1. The upper half of the circle
is closer to 0 and mapped to a 0-bit; the lower half is closer to q

2 and therefore
mapped to a 1-bit. 33

2.10 Recording power traces using a ChipWhisperer [OC14]. 36
2.11 A power trace recorded using a ChipWhisperer [OC14]. 37
2.12 Belief propagation iteration phases as shown in [HMS+23]. The sub-graph consists

of a factor node fk and two variable nodes xi and xj 43

3.1 A butterfly representing a belief propagation graph as used and depicted in [PPM17].
The nodes x00 and x01 represent inputs to the butterfly, and the remaining variable
nodes (circles) represent outputs. The factor nodes (squared) represent addition,
subtraction, and multiplication as well as whether a reduction happened in the
respective computation. 49

3.2 A butterfly modeled with separate factor nodes, and a butterfly modeled by a
single butterfly node. The butterfly node computes the joint probability function
of intermediates at one butterfly in an exact manner. 51

3.3 Different shuffling methods from [RPBC20] on an inverse NTT graph. Fine
shuffling (rightmost arrow in blue) permutes load and stores, coarse in-group
shuffling (middle arrow in green) permutes on butterflies with the same twiddle
factor, and coarse full-shuffling permutes on all butterflies of a layer. Note that
this depiction is only illustrative; it does not show all possible permutations, only
permutes stores, and only depicts permutations of the second layer. 55

3.4 Permuted in- and outputs in a butterfly belief propagation node after a template
attack on an implementation using fine-shuffling. In a template attack as in [PP19]
or [HHP+21] on load and stores with subsequent belief propagation, measurements
are randomly permuted as a consequence of the countermeasure. 56

3.5 Possible permutations of butterflies after a template attack on an implementation
using coarse in-group shuffling in a layer with distance 2 and 8 nodes. The
permutation on the outputs has to be symmetric to the permutation on the inputs
as complete butterflies are permuted. 57

3.6 Possible permutations of butterflies after a template attack on an implementation
using coarse full shuffling in a layer with distance 2 and 8 nodes. The permutation
on the outputs has to be symmetric to the permutation on the inputs as complete
butterflies are permuted. In addition to the in-block permutations, nodes in
different blocks may also be permuted. 57

3.7 Mapping bits to coefficients and vice-versa with q “ 23 (adapted from [Her23a]). 0
bits are mapped to 0, and 1 bits are mapped to q

2 . To recover a bit, the upper half
of the circle (closer to 0) is mapped to a zero bit while the lower part of the circle
(closer to q

2) is mapped to a 1 bit. A small error (blue) does not change the result
(c.f. Figure 2.8 and Figure 2.9). 60

3.8 A maliciously introduced error may cause a decryption failure depending on the
noise term (adapted from [Her23a]). 62

4.1 Attack strategy of k-trace attacks (adapted from [Her23b]): A chosen ciphertext is
sent to a device. The ciphertext has the property that it leads to a large amount of
zeros in the NTT. A template attack as in [PPM17] and [PP19] is employed (dashed
box in the upper row) and results in probability distributions for intermediate
inverse NTT value. These distributions are fed into a belief propagation and the
final recovery obtains the secret key. 76

184

List of Figures

4.2 Point of attack for the side-channel analysis as part of the attack; the figure details
the upper row of Section 4.2. The targeted subroutine, the inverse NTT, is depicted
in red. 77

4.3 Kyber processing an NTT-sparse ciphertext u: The first component of an incoming
ciphertext is first decompressed, then transformed into NTT domain where it
becomes sparse, multiplied with the secret, and then, finally, the result is re-
transformed to normal domain. Sparseness is needed in the multiplication step and
needs to be maintained during decompression while still being in normal domain. 78

4.4 Visualization of the compressibility property with d “ 3 and q “ 23: Grey
polynomial coefficients are mapped to the index of the closest blue compression
point. The two arrows show two coefficients mapped to the same index (3), but
only the lower point is mapped back to itself and is therefore compressible. In
general, only the closest coefficient to a compression point is compressible. 79

4.5 In- and outputs to the inverse NTT in the i-th component and Z “ t1, 3, 5, . . . , 255u

with all other component set to zero; the polynomials are written as vectors. The
in- and outputs are also the values measured in the first and last layer of the inverse
NTT. This figure details the upper middle square (partially red) of Section 4.2
and shows the situation during the attack with a sparse and compressible ciphertext. 82

4.6 A belief propagation graph as arising in our attack but with n “ 8 instead of
n “ 256 and 6 zeros. Variable nodes are depicted by circles, and the squared nodes
represent butterflies (for details on the node types see Section 3.1.3). Zeroed-out
nodes contain a zero instead of the variable name (with variable names following
the notation in Figure 2.7). 83

4.7 Incorrectly assigned priors at a butterfly node of an (inverse) NTT. The prior
distributions of the inputs are permuted and therefore the butterfly node models
an arithmetic that does not fit the priors. 87

4.8 Priors at a butterfly node of an (inverse) NTT after mixing priors. The original
prior distributions of the inputs are permuted (c.f. Figure 4.7), and therefore the
butterfly node models an arithmetic which does not fit the priors – mixing up the
priors resolves the inconsistency. 88

4.9 Priors at a butterfly node of an (inverse) NTT when using a shuffle node. The
original priors of the input nodes are permuted (c.f. Figure 4.7 and Figure 4.8),
and therefore the butterfly node models an arithmetic relationship that does not
fit the priors – the shuffle nodes resolve this inconsistency by computing a shuffle
factor which determines how the distributions are mixed. 90

4.10 Mixed priors at a shuffle node with ζ “ 0.8 and ζ “ 0.1. The part of the distribution
centered around 2 is the measurement taken at the first input while the part of
the distribution centered around 7 is the measurement taken at the second input. 90

4.11 The extended attacker model as described and depicted in [HSST23]. Instead of
only store operations, load and store operations are targeted for intermediate layers. 91

4.12 The unshuffling process shown in the attacker model as depicted in [HSST23].
The left layer is fixed while the right layer is matched against the left layer and
subsequently permuted. 93

5.1 Attack strategy of [HPP21] targeting a secret key with 4 coefficients (adapted
from [Her23b]). 99

5.2 Adding
P

q
4

\

to a coefficient in uncompressed form is the same as adding 4 in
compressed form when using a compression factor of d “ 4; visualized with d “ 4
and q “ 23. 101

185

List of Figures

5.3 A graph used to represent an inequality with 4 variables and 5 inequalities (adapted
from [HPP21]). 102

5.4 A countermeasure adding redundancy and thereby preventing the fault on the
stored ciphertext as proposed in [HPP21] (figure adapted from [Her23b]). An
additionally computed hash (in bold) is stored and later compared. 107

6.1 Parts of the recovery strategy and sections in which they are described (figure
adapted from [HMS+23]). 111

6.2 A high-level depiction of the integration of belief propagation output into a Closest
Vector Problem (CVP) instance as shown in [HMS+23]: Recovered coefficients
reduce the dimension of the problem (from b to b1), and remaining information
gives a closer vector c. 112

6.3 A single inequality in a two-dimensional key space, in the first case with b “ 0
and in the second case with b ‰ 0. 114

7.1 The success rate, without countermeasures, of the belief propagation part of the
attack on the inverse NTT per measurement noise level (in σ) and number of zeros
as stated in [HHP+21]. 125

7.2 The success rate, with standard masking, of the belief propagation part of the
attack on the inverse NTT per measurement noise level (in σ) and number of zeros
as stated in [HHP+21]. 126

7.3 The number of recovered coefficients, without deployed countermeasures, of the
belief propagation part of the attack on the inverse NTT per measurement noise
level (in σ) and number of zeros as stated in [HHP+21]. 127

7.4 The number of recovered coefficients, with standard masking, of the belief propa-
gation part of the attack on the inverse NTT per measurement noise level (in σ)
and number of zeros as stated in [HHP+21]. 128

7.5 The success rate, in the presence of shuffling countermeasures as stated in [HHP+21],
of the belief propagation part of the attack on the inverse NTT per measurement
noise level (in σ) and number of zeros used in the chosen ciphertext. Note that
the zero distributions differ depending on the countermeasure. Therefore, we
re-state the distributed results from Figure 7.1 and, additionally, state the result
for contiguous zeros as given (only) in [HHP+21]. 129

7.6 The rank of the correct permutation as stated in [HSST23] per noise level and
layer when using exact permutation matching. 130

7.7 Average number of recovered coefficients per administered faults in [HPP21]. Note
that recovering 512, 768, or 1024 coefficients, for the respective Kyber security
level, is sufficient. 131

7.8 Average success rate per administered faults in [HPP21]. 131
7.9 Security level per number of inequalities with and without ciphertext filtering as

stated in [HMS+23]. 132
7.10 Security level per number of inequalities when all inequalities are potentially

incorrect with probability p as stated in [HMS+23]. 133
7.11 Security level per number of inequalities in an attack with fault success rate f and

resulting probability p “ p1 ´ fq{2 for decryption failures as stated in [HMS+23]. 134
7.12 Security level in BKZ-β per number of inequalities when half of the inequalities

are incorrect with probability phalf as stated in [HMS+23]. 135

186

List of Tables

1.1 Comparison of [HHP+21] to previous work (targeting Kyber or [LPR13]) in terms
of noise tolerance, target of the attack, and the consideration of countermeasures.
The noise tolerance is given as standard deviation of the error distribution. Table
as depicted in [Her23b]. 9

1.2 Comparison of [HPP21] to previous work (targeting Kyber or FrodoKEM) in
terms of type of attack (side-channel analysis (SCA) or fault), point of attack, and
requirements, and robustness. Grayed out entries were published after our work.
Table adapted from [Her23b]. 10

1.3 Comparison of [HMS+23] to previous work in terms of required inequalities in
Kyber512, applicability to decryption failure information as arising in the afore-
mentioned attacks, error tolerance, and availability of security estimates. Table as
depicted in [Her23b]. 10

2.1 Kyber parameters as stated in [ABD+21b]. 30

3.1 Cycle count (in millions) and performance overhead (in brackets, in percent) of
shuffling countermeasures as reported in [RPBC20]. Note that [RPBC20] provides
data on more masking variants and uses a slightly different naming scheme. . . . 58

3.2 Approximate number of required inequalities required for a success rate (SR)
greater than 0 and equal to 1 as reported by Pessl and Prokop [PP21]. Note that
Kyber512 has since been updated and the required number of inequalities will be
higher for the newest version. 71

3.3 Approximate number of required inequalities to recover the secret key with success
rate 1 for Kyber512 as stated in [Del22]. Note that the f P t0.5, 0.4u are left out as
in those scenarios inequalities do not give any information and should be removed;
the results for those scenarios can be found in [Del22]. 72

3.4 Overview of related work regarding the required capabilities to carry out the
attack, the target of the attack, if such attacks are prevented by countermeasures
or incorrect data, and whether security estimates are available after partial attacks.
Note that security estimates for belief propagation based attacks can be obtained
using techniques presented in this thesis. Also note that the table, in particular in
regard to countermeasures, merely gives a strongly simplified overview, details can
be found in the previous chapter. Green indicates more favorable properties. . . 74

4.1 Amount of traces with straightforward recovery without using a block reduction
algorithm per Kyber-k. The values for k correspond to the different Kyber versions.
Note that for 64 zeros, the non-zero blocks overlap and do not allow for fewer traces
but the noise tolerance is decreased. Therefore, this scenario is not recommended
without our recovery algorithm. 84

187

List of Tables

4.2 Minimal amount of traces with lattice reduction based recovery per Kyber-k with
the number of zeros in the input vector to the inverse NTT. The values for k
correspond to the different security levels. The amount of traces without lattice
reduction is shown in brackets. 86

5.1 Sizes in byte of a single message and 2kn messages per Kyber security level when
using 64-bit floats. Note that in practice, more than 2kn messages have to be
stored simultaneously, especially when using a multithreaded approach. 103

7.1 Number of required traces and required noise level in a masked setting as similarly
depicted in [HHP+21]. The name of our attacks stems from the setting with 192
zero coefficients. 125

7.2 Entropy per belief propagation node when applying mixing priors in comparison to
an attack against an unprotected inverse NTT as stated and depicted in [HSST23].126

7.3 The entropy increase, as stated and depicted in [HSST23], caused by applying
two-point matching compared to an attack on unprotected implementation. Note
that the sixth layer contains a large amount of butterflies with one input node
being zero. 127

7.4 Entries in a mix matrix with probability greater than 0.005 when using two-point
matching as stated and depicted in [HSST23]. The entropy per row is stated in
brackets. 128

7.5 Runtimes as stated and depicted in [HPP21] on an Intel(R) Xeon(R) Gold 6242
per security level with a fixed number of inequalities in minutes. 130

7.6 Approximate required number of faults with fault success probability f assuming
the adversary can run BKZ-70 as stated in [HMS+23]. 132

7.7 Comparison of recovery methods with different fault success probabilities (denoted
by f) and correctness probability (denoted by p) as depicted in [HMS+23]. . . . 133

188

List of Algorithms

1 Key generation as defined in the scheme of [LP11] in a notation similar to [ABD+21b]. 28
2 Encryption as defined in the scheme of [LP11] in a notation similar to [ABD+21b]. 28
3 Decryption as defined in the scheme of [LP11] in a notation similar to [ABD+21b]. 29
4 Key generation as defined in the scheme of [LPR13] in a notation similar to [ABD+21b]. 29
5 Encryption as defined in the scheme of [LPR13] in a notation similar to [ABD+21b]. 29
6 Decryption as defined in the scheme of [LPR13] in a notation similar to [ABD+21b]. 30
7 Key generation of KyberPKE as specified in [ABD+21b]. 31
8 Encryption of KyberPKE as specified in [ABD+21b]. 31
9 Decryption of KyberPKE as specified in [ABD+21b]. 31
10 Key generation of Kyber as specified in [ABD+21b]. 32
11 Encapsulation of Kyber as specified in [ABD+21b]. 32
12 Decapsulation of Kyber as specified in [ABD+21b]. 32

13 One-point matching as stated and depicted in [HSST23]. 94
14 Exact permutation matching as stated and depicted in [HSST23]. 95

15 Generating a ciphertext which may be faulted by a single-bit fault with ciphertext fil-
tering. Encapsulate1 is the encapsulation routine of Kyber but with setting/output
of e2 and v in uncompressed form. 102

16 Computations taking place in a check node for an inequality with coefficients ai as
stated in [HPP21]. 105

17 Recovering the secret value using belief propagation. 106

189

	Introduction
	Problem Description
	Research Objective
	Research Questions

	Contributions
	Thesis Organization

	Background
	Cryptographic Schemes
	Chosen-Ciphertext Attacks
	Fujisaki-Okamoto Transform

	Lattice-Based Cryptography
	Mathematical Background
	Learning with Errors Problems
	Learning with Errors Schemes

	Implementation Attacks
	Side-Channel Analysis
	Fault Attacks
	Countermeasures

	Belief Propagation
	Factor Graph
	Message Passing
	Update Functions
	Marginal Distributions

	Related Work
	Attacks on Number Theoretic Transforms
	The NTT as Target
	The Attack of Primas, Pessl, and Mangard
	The Attack of Pessl and Primas
	The Attack of Xu et al.
	The Countermeasures of Ravi et al.
	Limitations of Prior Attacks
	Defeating Countermeasures

	Attacks using Decryption Failures
	Decryption Failures in Kyber
	The Attack of Pessl and Prokop
	The Attacks of Bhasin et al. and D'Anvers et al.
	The Attack of Delvaux
	Fault Attacks with Different Targets
	Limitations of Priors Attacks

	Key Recovery Methods
	Attacker Model
	The Frameworks of Dachman-Soled et al.
	Recovery Method of Pessl and Prokop.
	Recovery Method of Delvaux.
	Limitations of Prior Methods

	Summary

	Chosen-Ciphertexts k-Trace Attacks
	Attacker Model
	Attack Strategy
	Construction of the Ciphertext
	Compression and Compressibility
	NTT-Sparseness as Lattice-Problem
	Combining Comressibility and Sparseness

	Recovery of the Secret Key
	Belief Propagation
	Recovering From Partial Keys

	Adaptation to Countermeasures
	Adaptation to Fine-Shuffling
	Adaptation to Coarse Shuffling

	Summary

	Fault-Enabled Chosen-Ciphertext Attacks
	Attacker Model
	Attack Strategy
	Construction of the Ciphertext
	Introducing an Error
	Constraints on the Ciphertext

	Recovery of the Secret Key
	Recovery using Belief Propagation
	Final Recovery

	Impact of Countermeasures
	Shuffling Countermeasures
	Redundancy

	Summary

	Security Estimates for Error-Tolerant Key Recovery
	Recovery Model
	Recovery Strategy
	Number of Decryption Failures
	Belief Propagation Output
	Information Theoretic Analysis

	Error Resistant Belief Propagation
	Error Resistant Check Nodes
	Computational Complexity

	Belief Propagation and Lattice Reduction
	Integration of Recovered Coefficients
	Integration of Probability Information

	Summary

	Evaluation and Results
	Attacks on the Number Theoretic Transform
	Simulation
	Results
	Comparison to Prior Work

	Decryption Errors and Key Recovery
	Simulation
	Fault-Enabled Chosen-Ciphertext Attacks
	Improved Recovery
	Comparison to Prior Work

	Summary

	Conclusions and Outlook
	Main Findings
	Attack Strategies
	Attack Techniques
	Vulnerability Analysis
	Revisiting the Research Questions

	Future Work
	Attacks on the NTT
	Decryption Failure Attacks
	Key Recovery Methods
	Post-Quantum Signature Schemes
	Physical Attacks and Deep Learning

	Bibliography
	Acronyms
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms

