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Abstract

In recent years, interest in hypersonic flight was renewed due to promising new civil
and military applications. Because of the high Mach number, hypersonic flows are
characterized by a large thermal load on the vehicle, accurate prediction of which
is crucial for mission success. Coupled fluid/solid simulations, also known as Con-
jugate Heat Transfer (CHT) simulations can be used to determine the temperature
distribution in the fluid and solid simultaneously.

In this thesis, the fluid mechanics solver NSMB (Navier Stokes Multi Block) was
extended with CHT functionality. The solid domain is spatially discretized with
the 3D finite-volume method, a time-accurate explicit Runge-Kutta method is used
for the temporal discretization, and the two domains are tightly coupled. Along
the domain interface, the CHT boundary condition is solved, which ensures energy
conservation and temperature continuity. In addition to the conductive heat fluxes,
the heat fluxes due to species diffusion and convex surface radiation are included.
Constant and temperature-dependent material properties can be used for the solid
material. Improvements for the turbulent heat flux model and bow shock mesh
adaptation are also implemented in NSMB to improve the fluid solution. The CHT
method was then successfully validated against multiple test cases.

An analysis of the implemented algorithm shows that a method that is first-order
accurate in space at the solid/fluid interface is more robust than a second-order
method. Furthermore, it was found that the heat flux due to species diffusion is neg-
ligible in equilibrium flows at moderate freestream Mach numbers. CHT analysis of
a challenging shock/turbulent boundary layer interaction case reveals that unsteady
heating effects can also be important for short duration experiments. The CHT sim-
ulation matched experimental results significantly better than fluid-only simulations.
Finally, coupled simulations of a generic flap at different flap angles and forebody
nose radii in hypersonic flow showed that a thick entropy layer can decrease the
flap temperature and increase the flap effectiveness. Additionally, separation length
increases due to the higher surface temperature in coupled simulations.
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Kurzfassung

In den letzten Jahren gab es, aufgrund vielversprechender neuer ziviler und mili-
tärischer Anwendungen, ein erneuertes Interesse an Hyperschall-Flug. Wegen der
hohen Machzahl zeichnen sich Hyperschall-Strömungen durch eine hohe thermische
Last auf den Flugkörper aus. Diese muss korrekt bestimmt werden, um Hyperschall-
Missionen erfolgreich durchführen zu können. Mittels gekoppelter Fluid/Festkörper
Simulationen, auch Conjugate Heat Transfer (CHT) Simulationen genannt, kann die
Temperaturverteilung in Fluid und Festkörper simultan bestimmt werden.

In dieser Arbeit wurde der Strömungslöser NSMB (Navier Stokes Multi Block)
um CHT Funktionalität erweitert. Der Festkörper wird dabei mit der 3D-Finite-
Volumen Methode diskretisiert, ein zeitechtes, explizites Runge-Kutta Verfahren wird
für die Zeitdiskretisierung verwendet, und Fluid und Festkörper sind eng gekoppelt.
An der Grenzfläche zwischen den beiden Bereichen wird die CHT Randbedingung
aufgeprägt, die sicherstellt, dass Energie erhalten wird und der Temperaturverlauf
kontinuierlich ist. Zusätzlich zu den Wärmeströmen durch Wärmeleitung wird Wär-
metransport durch Spezies-Diffusion und der konvexe Wandwärmestrom berücksich-
tigt. Konstante und temperaturabhängige Materialeigenschaften des Festkörpers sind
möglich. Des Weiteren wurde NSMB um ein verbessertes Modell für den turbulenten
Wärmestrom und einen neuen Algorithmus zur Netzanpassung erweitert. Die CHT
Methodik wurde dann mittels mehrerer Testfälle erfolgreich validiert.

Eine Analyse des implementierten Algorithmus zeigt, dass die Methode erster
Ordnung an der Fluid/Festkörper-Grenzfläche robuster ist, als die Methode zweiter
Ordnung. Des Weiteren stellte sich heraus, dass der Wärmestrom durch Spezies-
Diffusion für Gleichgewichts-Strömungen bei moderaten Machzahlen vernachlässig-
bar ist. Die gekoppelte Simulation eines Falls mit Stoß/Grenzschicht Interaktion
zeigt, dass instationäre Aufheizungseffekte auch für Strömungs-Probleme mit kur-
zer Dauer relevant sein können. In der CHT Simulation ist die Übereinstimmung
mit den experimentellen Daten wesentlich besser als in der Simulation des Fluids
allein. Zuletzt wurde eine generische Klappe mit verschiedenen Klappenwinkeln und
Nasenradien mit Anströmung im Hyperschall untersucht. Die gekoppelte Simula-
tion zeigt, dass eine dicke Entropieschicht die Klappentemperatur verringern und
die Klappeneffektivität vergrößern kann. Außerdem vergrößert sich die Länge der
Ablösung aufgrund der höheren Wandtemperatur in gekoppelten Simulationen.
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CHAPTER 1
Introduction

In the second half of the last century, significant efforts were made by multiple coun-
tries to achieve hypersonic flight [1]. Large milestones were achieved, such as the first
manned reentry from space and the first flight of a hypersonic airplane [2]. During
the past couple of years, interest renewed in hypersonic flight with proposals of civil
hypersonic planes by newly formed companies and the looming threat of hypersonic
weapon systems.

Early hypersonic flight was achieved by reentry vehicles, such as the Apollo and
Soyuz capsules. Current development sees the introduction of hypersonic cruise mis-
siles, while other programs shift towards hypersonic glide vehicles. Another concept
that has recently been pursued is the hypersonic passenger or cargo plane. In addition
to the significant reduction in travel times at hypersonic speed, there are even some
claims of possible energy savings for high-speed passenger flight [3]. These are based
on two factors: Firstly, the reduced travel time reduces the gravity losses during
flight. Secondly, since the proposed hypersonic passenger flight takes place at much
higher altitudes of around 30 km compared to current passenger air traffic at around
11 km, the ambient air density is significantly lower, which reduces the aerodynamic
drag.

Unlike the supersonic and subsonic flow regimes, the realm of hypersonic flow
is best not defined by a single value of Mach number, but rather by the occurring
physical effects. In the hypersonic regime, the kinetic energy of the incoming flow
is large, resulting in high temperatures in the flow. This affects the boundary layer
thickness and the thermodynamic state of the fluid. Typically, these processes become
relevant at a Mach number Ma = U/c > 5.

It is important to note, however, that the total energy consumption of a flight not
only consists of the energy consumption at cruise speed, but also the energy required
to reach the cruise altitude. Whether hypersonic flight can become a fast and energy
efficient mode of transport therefore depends on a range of other factors, such as
vehicle weight, distance traveled, and possible flight corridors.

Hypersonic aerodynamic flight might also be the future of space missions, since
a hypersonic airbreathing vehicle could accelerate the payload in the atmosphere.
Concepts for such vehicles were proposed in the second half of the last century, but
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2 1. Introduction

ultimately failed due to engineering difficulties [2]. Since airbreathing engines only
carry the fuel and use the ingested air as oxidizer, their specific impulse Isp is sig-
nificantly larger compared to rocket engines. While typical rocket engines have an
Isp of around 350 s, the Isp of Ramjets and Scramjets can be one order of magni-
tude larger, depending on the operating conditions [4]. This significant increase in
efficiency reduces the fuel consumption for space access and might help make space
flight acceptable even in the face of climate change. To this day, however, access to
space via an airbreathing vehicle has not yet been achieved.

1.1 Motivation
The new interest in hypersonic flight brings new challenges in vehicle design, which
stem from the harsh environment that the vehicles must withstand. Ever-evolving
computational capabilities together with new modeling approaches open the door for
better numerical analysis. This, in turn, reduces the need for experimental data and
in-flight testing, which lowers the cost and development time of new projects.

For the success of civil hypersonic flight, an accurate understanding of the
aerothermodynamic behavior of the vehicle is crucial. Better understanding of aero-
dynamic heating allows engineers to optimize, i.e., reduce the thickness of thermal
protection systems, which results in a lower overall vehicle weight. This lowers the
energy consumption and operating cost. If hypersonic flight is to be used for passen-
ger flight, a good understanding of the flow is especially important for safety reasons.
In this thesis, numerical methods for simulating the heating of hypersonic vehicles
are developed to progress towards these goals.

1.2 Aerodynamic Heating in High-Speed Flight
Unlike low-speed flows, which can have a cooling effect on a vehicle with T∞ < Tvehicle,
high speed flows are characterized by their strong aerodynamic heating. This is a
result of the high kinetic energy of the gas, which is converted into internal energy
during the compression at the front of the body. The resulting gas temperature near
the body is therefore significantly higher than the freestream temperature. The ratio
of the total temperature Tt to the static temperature T of a perfect gas scales with
the square of the Mach number:

Tt
T

= 1 + γ − 1
2 Ma2. (1.1)

Along the stagnation streamline of a blunt body, which is approximately an inviscid
1D compression, the total temperature is equal to the stagnation temperature. Fig-
ure 1.1 shows the ratio over the freestream Mach number for a ratio of specific heats
γ = 1.4. While the value is near unity for Ma∞ < 1, it increases strongly with the
Mach number, and exceeds Tt/T = 6 for hypersonic flight.
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Figure 1.1: Ratio of total temperature to static temperature over freestream Mach
number

An additional effect that has shown to affect the heating is entropy layer swal-
lowing. To withstand the high heat load, the nose sections of hypersonic vehicles
are blunt. This results in a curved bow shock around the vehicle with a variable
entropy and temperature downstream. Since the boundary layer grows along the
vehicle, it ingests the external inviscid flow, including the hot, high entropy gas that
the near-normal shock portion produces. [1]

Due to the high velocity, many hypersonic flows are also characterized by a high
Reynolds number Re = ρUL/µ that exceeds the critical Reynolds number. Turbulence
must therefore be taken into account. Turbulence increases the transport of momen-
tum and energy, which results in a steeper temperature gradient in the boundary
layer and, in turn, increases the heat flux towards the body.

Locally, shock waves impinging on the vehicle, e.g., near control surfaces, are
sources of significant heating to the body, due to the associated temperature increase
across the shock. Furthermore, the shock amplifies the turbulence, resulting in in-
creased heat transfer towards the body [1, 5]. The structural damage to the X-15
hypersonic plane is a prominent example why accurate prediction of aerodynamic
heating due to impinging shocks is crucial. A dummy engine was mounted under-
neath the vehicle during a test flight, which generated a shock wave that impinged on
the mounting structure. The resulting heating exceeded expected values and nearly
caused a loss of vehicle [6].

While the external flow affects the wall temperature significantly, the thermal
state of the wall also affects the external flow. On a small scale, the temperature
distribution in the boundary layer strongly depends on the thermal state of the wall.
Since the wall-normal pressure gradient is negligible in boundary layers, the density
is also directly affected. It has been shown that these small-scale effects also impact
the structure of the external flow on a larger structure.
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Figure 1.2: Flight envelope map for selected hypersonic flight programs

Brown et al. investigate separation at a laminar compression corner in hypersonic
flow with theoretical triple-deck equations and numerical simulations [7]. They find
that wall temperature affects separation bubble size, with a lower temperature moving
the bubble further downstream. The results are confirmed by Exposito et al., who
investigate wall temperature effects and nose bluntness for laminar separation on a
blunted flat plate/compression corner [8]. They show that an increase of the ratio
of wall temperature to stagnation temperature TW/Tt results in an increase of the
separation length. This may be connected to the thicker boundary layer at higher
wall temperatures, which decreases the boundary layer stability. A similar effect is
described by Brauckmann et al., who investigate the Space Shuttle trim anomaly
experimentally and numerically [9]. They show that the effectiveness of the Space
Shuttle flap increases with Reynolds number due to a thinner boundary layer, which
increases the flap exposure to the external flow.

Based on these basic properties of aerodynamic heating in hypersonic flows, hy-
personic flight programs from literature can be analyzed. Figure 1.2 shows the flight
paths of some vehicles flying at hypersonic speeds in Mach number and unit Reynolds
number space. The flight data was extracted from the given sources. Missing ther-
modynamic data was computed with the US 1976 standard atmosphere model [10],
viscosity values were computed with Sutherland’s model [11]. The most demanding,
and therefore most relevant cases are the ones with high Mach numbers Ma > 5 and
high unit Reynolds numbers Re1 > 106. Based on figure 1.2, the most interesting
conditions are LAPCAT and X-15. The X-15 was the first vehicle that achieved
manned hypersonic flight in the atmosphere. LAPCAT was a research vehicle used
to investigate the possibilities of hypersonic passenger flight, designed to cruise at
Ma = 8 at an altitude of around 32 km. These are also especially interesting since
they represent cases of civil hypersonic flight.
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1.3 Numerical Treatment of Aerodynamic Heat-
ing

Historically, aerodynamic heating in hypersonic flows was computed using exact an-
alytical solutions and empirical engineering relations. Methods with acceptable ac-
curacy are available for the stagnation point heating, such as the one by Fay-Riddell
[16]. Correlations for the heat flux distribution over the vehicle either require signifi-
cant simplifications, or some numerical solution of the underlying governing equations
[17]. When an estimation of the heating of more complicated vehicle shapes is re-
quired, these methods frequently fail to capture the underlying physics, and more
complex methods must be used.

Another option for validating and testing hypersonic vehicles are experimental
measurements. For high-enthalpy flows, shock tunnels and plasma wind tunnels are
the most relevant test facilities. Shock tunnels may replicate velocity and Reynolds
number of flight conditions, but are limited by very short measuring times in the order
of milliseconds [18]. This reduces their usefulness for material heating experiments.
Plasma wind tunnels on the other hand enable long experimental investigations in
the order of minutes or hours and are able to reproduce the thermal state upstream of
the vehicle in flight. However, they typically fail to reproduce the Mach and Reynolds
numbers [19].

Flight tests allow an exact replication of the flight trajectory and its environmental
conditions but due to their nature they are very expensive and time consuming.
Instrumentation and reproducibility are additional challenges.

In this thesis, numerical fluid and fluid/structure interaction simulations are car-
ried out. Compared to experiments and especially flight tests, they are a very cost-
effective way of simulating hypersonic flight. Numerical simulations are also not
limited by the operating conditions of experimental laboratories and can reproduce
all parameters of any flight trajectory. Results of numerical simulations can also be
reproduced exactly.

Numerical methods rely, however, on physical and chemical models and numerical
methods to reproduce the physical behavior. For the success of a numerical simula-
tion, it is crucial that the applied models and methods can represent the occurring
physical phenomena properly. The thermal state of the wall in typical simulations of
hypersonic flows, uses one of the following three assumptions:

• adiabatic wall: the wall-normal temperature gradient vanishes at the wall

• radiation-adiabatic wall: the conductive wall normal heat flux is in equilibrium
with the divergent radiative heat flux

• cold isothermal wall: a constant wall temperature is set, usually walls are as-
sumed cold TW < Tt,∞

Neither of these represent the near-wall physics accurately. Using an adiabatic wall
overpredicts the wall temperature significantly. The radiation-adiabatic assumption
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improves this, but still neglects any heat flux towards the body. Both adiabatic
results can be interpreted as the asymptotic result after an infinitely long flight of a
vehicle with vanishing wall thickness.

Since the heat flux towards the body depends directly on the wall temperature,
choosing an appropriate isothermal wall temperature is crucial. Along hypersonic
vehicles in flight, the wall temperature can vary significantly, which makes choosing
an appropriate wall temperature, or an appropriate wall temperature distribution
difficult a priori. The assumption of a cold isothermal wall is usually only acceptable
in short-duration experimental conditions, e.g, shock tunnels.

These basic thermal boundary conditions are insufficient because the aerodynamic
heating of a body is inherently a coupled problem of the external fluid solution and
the material heating response of the solid walls. This is referred to as the conjugate
problem of convective heat transfer. The solution in the fluid and solid domains are
computed in a coupled manner with an appropriate boundary condition between the
two domains, which ensures conservation of energy.

Conjugate Heat Transfer (CHT) is routinely used in engineering domains, such as
thermal treatment of materials, thermal processing of materials in industrial appli-
cations, design of heat exchangers, turbine blade cooling and more [20]. Numerical
simulations of hypersonic vehicles often still rely on the thermal boundary conditions
given above, but there are some examples in literature of CHT analysis for hypersonic
flows.

Ferrero and D’Ambrosio employed a Finite-Volume Method (FVM) of the fluid
and solid domains [21]. Coupling was achieved with a temperature boundary condi-
tion (Dirichlet) for the fluid and a heat flux condition for the solid (Neumann). They
compared loose and tight coupling strategies to simulate the heating of some typi-
cal geometries for hypersonic applications. They found that the loose coupling may
produce good agreement to experimental data, but is sensitive to the temperature
threshold that is used to determine the coupling frequency.

Murty et al. conducted a CHT analysis of the heating process of multiple 2D
vehicle shapes that consisted of multiple materials [22]. They used a commercial
code with an iterative procedure to couple the two domains. Temperature-dependent
solid material properties were used and have shown to impact the surface temperature
distribution significantly.

Peetala used coupled and decoupled algorithms to study aerodynamic heating in
hypersonic flow [23]. The investigated cases were 2D planar or axisymmetric and
consisted of flat plates, cylinders, and a double wedge. The double wedge cases
showed a noticeable variation of the separation bubble length with wall temperature
between isothermal, adiabatic, and CHT cases.

Zhang et al. investigated the heating of a cylinder in Ma∞ = 6.47 flow [24]. They
used the FVM for the fluid domain and the Finite-Element Method (FEM) for the
solid region. The two domains were loosely coupled with a time-adaptive choice of
the coupling intervals, which showed that the efficiency can be improved significantly
by choosing the coupling frequency adaptively based on the temporal variation of the
solid temperature.
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Guo et al. [25] and Qin et al. [26] used a loosely coupled algorithm to investigate
a spiked blunt body. They also used the FVM for the fluid and the FEM for the
solid. Different geometries of the main body and the spike were simulated. The main
finding was that the change in the temperature field with CHT walls also affected
the pressure distribution. This resulted in about a 5% drag reduction with CHT.

Pogudalina et al. conducted a CHT analysis of a blunt steel sphere-cylinder with a
copper sensor embedded in the stagnation region to determine the time lag of the sen-
sor response during experiments [27]. The commercial solver Ansys Fluent was used,
and no details were given about the coupling procedure. They experienced issues
reproducing the experimental temperature signal since they neglected the thermal
inertia of the sensor itself.

Reinert coupled a proprietary FEM thermal solver with the US3D fluid solver to
investigate some more realistic geometries, including the HIFiRE and BOLT vehicles
[28]. A loose coupling was used with non-coinciding meshes at the solid/fluid inter-
face. The results show that the geometry of the vortex roll-up changes when CHT
walls are used.

Zope et al. performed CHT simulations of a blunt cone over a flight trajectory
with a loosely coupled algorithm [29]. Investigations include the coupling frequency of
the solid/fluid interface and show significant efficiency gains by using a quasi-steady
method, which may also decrease the accuracy of the solution when the coupling
frequency is too low.

This overview of past investigations shows that CHT simulations are essential to
accurately simulate vehicle temperatures in hypersonic flow. They also indicate that
the structure of the flow away from the wall is influenced more strongly by the wall
temperature than expected. For hypersonic flows this may mainly be due to the large
difference between cold isothermal, adiabatic, and real CHT wall temperatures.

From the literature review it also appears that there is no consensus on the applied
numerical methods for CHT simulations, since both FVM and FEM have been applied
successfully. There is also a range of coupling techniques with different properties
regarding efficiency and accuracy. The increased efficiency of loosely coupled methods
may be outweighed by the loss of accuracy and the difficulty choosing an appropriate
coupling frequency.

Most of the reviewed studies are limited to simple 2D and 2D axisymmetric prob-
lems with canonical geometries. There appears to be a lack of investigations of more
complex and more realistic geometries.

1.4 Objectives and Outline
In this thesis, the development of an accurate method for CHT simulations is de-
scribed. The method is intended to include all physical and chemical effects of heat
transfer at the wall. A tightly coupled method is chosen since it offers the highest
level of accuracy and algorithmic simplicity. The routines are implemented in the
existing fluid dynamics code NSMB (Navier Stokes Multi Block). This removes the



8 1. Introduction

need for interpolation of wall values between fluid and solid codes and produces the
least amount of communication overhead.

The development focuses on applying and improving the physical and numerical
methods to predict occurring effects accurately. Validation of the implementation
is done with simple heat transfer and CHT problems. Investigations of hypersonic
vehicle parts at operating conditions should give better insight into the heating in
flight. Since it is important for mission planning, the analyses also show how the
external flow and, therefore, the aerodynamic properties of a vehicle change when the
wall temperature increases. Additionally, it is analyzed how local flow features, such
as shock/boundary layer interaction, are affected by wall heating and the resulting
change in boundary layer thickness.

This thesis is organized as follows: The basics of hypersonic flows and heat transfer
are explained in chapter 2. Chapter 3 details the applied algorithmic and numerical
methods. In chapter 4, the validation results of the implemented CHT method are
shown. Chapter 5 shows results of CHT analysis of more realistic vehicle parts to
analyze both the heating of the vehicle itself and the impact of the heated walls on
the flow field. Finally, chapter 6 concludes this thesis and gives an overview of future
research opportunities.



CHAPTER 2
Theory

The simulations in the following chapters are performed using Conjugate Heat Trans-
fer analysis, which refers to the heat transfer between solid and fluids. Instances of
conjugate heat transfer can be found in all applications, where a fluid is in contact
with a solid. Some examples include:

• air-cooling of electrical components,

• internal cooling of turbine blades,

• aerodynamic heating in high-speed flow.

From a fluid mechanics point-of-view, conjugate heat transfer is relevant because
some thermal boundary condition must be specified at solid walls. Typical choices are
isothermal walls (TW = const) or adiabatic walls (qW = 0), but real walls are usually
neither isothermal nor adiabatic. Furthermore, engineers are often not interested in
the flow around a part per se, but in the impact of the fluid on the part itself, e.g.,
the heating or cooling. With conjugate heat transfer simulations, wall temperatures
and heating information are naturally available on the surface and inside the solid
material.

There are generally three modes of heat transport: conduction, radiation, and
convection. Conduction refers to the energy exchange between molecules through
collisions and is relevant in any medium. Radiation describes the energy exchange
via photons and can therefore even occur in vacuum and over long distances [30].
Convection refers to the energy transfer via motion of a medium. Even though it
can also be understood as the combination of conduction and advection, it is usually
listed as a mode of heat transfer due to its importance [31].

An illustration of conjugate heat transfer for hypersonic vehicles is shown in fig-
ure 2.1. At the interface between solid and fluid, four types of heat flux are in
equilibrium: conduction in the fluid qW,F, conduction in the solid qW,S, radiation
to/from the solid qrad, and heat transport due to mass diffusion qdiff . The directions
of the heat fluxes in figure 2.1 represent the typical processes in hypersonic flows. The
hot surrounding fluid transfers heat to the colder solid body, while radiation trans-
ports energy away from the body and diffusion typically has a heating effect. The

9
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Figure 2.1: Conjugate heat transfer effects for hypersonic vehicles

figure also shows relevant physical and chemical processes that affect heat transfer
in hypersonic flight: turbulence in the boundary layer and high-temperature effects
behind the shock wave. In the following chapter, these effects are described in more
detail.

The convective heat transfer to the wall can be divided into forced and natural
convection. Natural convection occurs when the motion of the fluid is generated by
density variations in a gravitational field, forced convection refers to processes where
the motion of the fluid is caused by an external source. For the high-speed cases in
this work, forced convection is expected to dominate [31] and gravity was neglected.

Due to the complexity of the problem, analytical solutions of conjugate heat trans-
fer problems only exist for simple cases. Dorfman and Renner give an overview of
analytical and numerical solutions of CHT problems [20]. For engineering applica-
tions, the convective heat flux is often computed using the heat transfer coefficient
α:

qconvective = α(TW − T∞). (2.1)

In non-dimensional form, the heat transfer can be expressed with the Nusselt number
Nu = αL/λ, which is a function of the Reynolds and Prandtl numbers. For simple
cases, exact solutions of Nu = f(Re,Pr) can be found, more complex cases require
empirical correlations that must be found experimentally or through numerical sim-
ulations [31]. In hypersonic flows, the aerodynamic heating of the gas requires more
complex relations. The temperatures in the shock layer may be in the order of mul-
tiple thousand Kelvin, while the temperature of the wall is often significantly lower.
Due to these large temperature variations, the density, and the laminar transport
coefficients are not constant. The Nusselt number in hypersonic boundary layers is
therefore also a function of the wall temperature Nu = f(Re,Pr,TW) [32]. Finding
engineering relations for that is difficult and conjugate heat transfer simulations are
therefore required.
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The heat flux at the solid/fluid interface is determined by the temperature gradi-
ent in the boundary layer, which is strongly affected by turbulence and the structure
of the external flow. For an accurate representation of the heat transfer, an accurate
representation of the turbulent boundary layer is therefore necessary. In section 2.3
an overview of turbulence modeling techniques is given, with an emphasis on the cor-
rect heat flux representation. Since the error of a numerical solution depends as much
on the applied models as it does on their numerical implementation, an overview of
the numerical methods is given in chapter 3.

2.1 Governing Equations
In the following section, the governing equations for the fluid and thermal solvers
are presented. Note that the thermal response simulation is implemented in the
same code, but because different solution methods are applied, the thermal solver is
separately referenced here.

2.1.1 Fluid Solver
In the most general form, the motion of fluids can be described by the Boltzmann
equation. It gives the statistical distribution of particles in six-dimensional posi-
tion/momentum phase space. The solution of the Boltzmann equation is mathemat-
ically complex. Usually, stochastic methods such as the Direct Simulation Monte
Carlo (DSMC) method are used. These methods, however, become exponentially
more expensive for larger numbers of particles.

Most practical applications therefore use the Navier-Stokes equations instead.
Based on the Chapman-Enskog theory [33], they represent a simplification of the
Boltzmann equation that is valid for continuum flows, where the Knudsen number

Kn = mean free path
characteristic length (2.2)

is much smaller than unity. A common threshold is Kn < 0.03 [2].
Technically, the term Navier-Stokes equations only refers to the conservation equa-

tions for momentum, but is commonly used for the set of conservation equations for
mass, momentum, and energy. The Navier-Stokes equations are a system of nonlin-
ear second-order partial differential equations that describe the motion of fluids [34].
Using tensor notation, the conservation of mass can be written as:

∂

∂t
(ρ) + ∂

∂xi
(ρui) = 0, (2.3)

the conservation equations for momentum are:

∂

∂t

(
ρuj

)
+ ∂

∂xi

(
ρuiuj + δijp

)
= ∂

∂xi

(
τij
)
, (2.4)
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and the conservation of total energy is:

∂

∂t
(ρE) + ∂

∂xi
(ρuiE + uip) = ∂

∂xi

(
ujτij

)
− ∂

∂xi
(qi) . (2.5)

ρ is the fluid density, ui are the velocity components, and p is the pressure. τij refers
to the components of the shear stress tensor and qi are the components of the heat
flux vector. E denotes the total energy per unit mass and is the sum of the internal
energy and the kinetic energy:

E = e+ ekin = e+ 1
2uiui. (2.6)

δij is the Kronecker delta, which is defined as:

δij =
0 for i ̸= j,

1 for i = j.
(2.7)

Assuming the fluid is Newtonian, the shear stress tensor can be written as:

τij = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
+ δijζ

∂uk
∂xk

, (2.8)

= 2µ
(
Sij − 1

3
∂ui
∂xj

δij

)
(2.9)

where µ is the dynamic viscosity and Sij is the strain rate tensor

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2.10)

For the bulk viscosity ζ, Stokes’ hypothesis is used, which assumes ζ = −2/3 µ. There
is, however, some debate over the accuracy of this assumption [34].
The heat flux qi can be modeled with Fourier’s law, which postulates a linear relation
between the heat flux vector and the temperature gradient:

qi = −λ ∂T
∂xi

, (2.11)

where λ is the thermal conductivity.

2.1.2 Thermal Solver
The governing equation for the thermal solver is a simplification of the energy equa-
tion (2.5) for a medium at rest ui = 0 and at constant pressure p = const:

∂

∂t
(ρE) = − ∂

∂xi
(qi) (2.12)
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For a non-moving body with constant specific heat capacity c, the total energy is

E = e+ ekin︸︷︷︸
=0

= cT. (2.13)

With the definition of the thermal diffusivity a = λ/(ρc), the heat equation in three
dimensions follows:

∂T

∂t
− a

∂2T

∂x2
i

= 0. (2.14)

Equation (2.14) is only valid for materials with constant thermal conductivity and
density. The more general energy equation (2.12) was therefore implemented, which
requires the computation of the temperature from the energy after each timestep.

2.2 Fluid and Thermal Properties

2.2.1 Thermodynamic Closure
The five Navier-Stokes equations (2.3) to (2.5) contain seven unknowns: ρ, p, T, ui, e.
Two additional equations are therefore required to close the system of equations.
In principle, closure could be achieved by two relations between any of the seven
unknowns. For application in fluid dynamics, the equations are closed using a thermal
equation of state and a caloric equation of state. For an ideal gas the thermal equation
of state is

p = ρRT, (2.15)
where R = R/M is the specific gas constant. The heat capacity is constant for a
perfect gas and the caloric equation of state is

e = cvT, (2.16)

with the specific heat capacity at constant specific volume cv.
The assumption of a calorically perfect gas is only valid at moderate temperatures

up to about T ≈ 500 K [1]. The hypersonic flow conditions investigated in this work,
often lie outside this temperature range. The assumption of a calorically perfect
breaks down due to two processes: the excitation of additional vibrational and elec-
tronic degrees of freedom and chemical reactions. These high-temperature effects are
also sometimes referred to as real-gas effects. Real-gas effects, however, more accu-
rately refer to effects of non-vanishing intermolecular forces, such as Van-der-Waals
forces, which require a different thermal equation of state.

The investigations in this work are limited to air as the fluid, the following ex-
planations are therefore limited to monatomic and diatomic gases. Each atom is
assumed to be a point mass, resulting in vanishing moments of inertia. The atoms
in molecules are connected with atomic bonds that are massless, but due to distance
between the atoms, some moments of inertia are non-zero.

Figure 2.2 shows the degrees of freedom of monatomic and diatomic gases. Due to
the vanishing moments of inertia, monatomic gases only exhibit translational degrees
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a) monatomic gas b) diatomic gas

Figure 2.2: Internal degrees of freedom of atoms and molecules

of freedom, which means all internal energy is stored in linear motion along the three
spacial axes. The ratio of specific heats is connected to the number of degrees of
freedom f as:

γ = f + 2
f

, (2.17)

which results in γmonatomic = 5/3 = 1.6. Diatomic molecules can also store internal
energy in two rotational degrees of freedom. Additionally, there are two vibrational
degrees of freedom, because thermal energy is stored as kinetic and potential energy
of the vibration. At moderate temperatures, translational and rotational degrees of
freedom are fully excited, which gives γdiatomic = 7/5 = 1.4. At temperatures above
500 K, vibrational excitation becomes relevant, increasing the degrees of freedom to
seven and γdiatomic,T→∞ = 9/7 = 1.285714. [2]

When more energy is transferred to a molecule AB by a partner M than its atomic
bond can hold, the molecule dissociates:

AB + M ⇋ A + B + M. (2.18)

For air, this process is relevant for the oxygen O2, nitrogen N2, and nitric oxide NO
molecules. The partner molecule M can be any of the other particles in the gas. It
does not participate in the reaction and is only required for the transfer of energy. The
forward reaction, i.e., the dissociation of a molecule into atoms is endothermic. The
energy required for endothermic reactions is removed from the surrounding medium,
which decreases the temperature.

As the number of particles (atoms + molecules) changes due to dissociation and
recombination, the molar mass of the mixture Mmix and the specific gas constant of
the mixture Rmix change. The relevant conditions for the simulations in this study
do not warrant the inclusion of actual real-gas effects (intermolecular forces), so the
fluid can be treated as a mixture of thermally perfect gases:

p = ρRmixT (2.19)
e =

∑
s

Yses(T ). (2.20)

Ys = ρs/ρ refers to the mass fraction of species s.
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Any thermodynamic system will strive to minimize its Gibbs free energy, which
is defined as

g = e+ p

ρ︸ ︷︷ ︸
h

−Ts. (2.21)

The system is in equilibrium when g is minimal. When the system is subject to
changes in the environmental conditions, it adjusts accordingly to reach equilibrium
again. This process is known as Le Chatelier’s principle [35]. Given enough time,
any system will reach its equilibrium state, during this time, it is in non-equilibrium.
The Damköhler number allows for the distinction between multiple regimes:

Da = Tflow
Treaction

= kreaction
kflow

= kreactionL

uflow


= 0 in frozen conditions
≈ 1 in non-equilibrium
→ ∞ in equilibrium

(2.22)

where kreaction is the reaction rate and kflow is the characteristic temporal rate of the
flow. Treaction and Tflow are the respective timescales.

When Da = 0, the reaction is slow compared to the flow and the composition is
constant. When Da ≈ 1, the timescale of the reaction is similar to the timescale of
the flow, the fluid is in non-equilibrium. The thermodynamic state therefore depends
on the environmental conditions and the time. The evolution of the composition is
described by a set of additional mass conservation equations for the species s:

∂ρYs
∂t

+ ∂

∂xi
(ρYsui) + ∂

∂xi

(
−ρDs,mix

∂Ys
∂xi

)
= Ss, (2.23)

where Ds,mix is the diffusion coefficient of species s in the mixture and Ss the respec-
tive source term. The source term can be written as

Ss = Ms

∑
m

νms

kf,m
∏

s,reactants

(
ρYs
Ms

)−νm
s

− kb,m
∏

s,products

(
ρYs
Ms

)νm
s

 , (2.24)

where νms is the stoichiometric coefficient of species s in reaction m, note that the
coefficients of reactants are negative. kf,m and kb,m are the forward and backward
reaction rate coefficients of reaction m, which can, e.g., be computed with Arrhenius
relations.

Simulations with chemical non-equilibrium are numerically more expensive be-
cause they require the solution of one additional transport equation for each partic-
ipating species. Additionally, some reaction rates in the source terms are typically
large, which makes the species conservation equations numerically stiff and limits the
maximum timestep size [2]. In addition to chemical non-equilibrium, gases can also
be in thermal non-equilibrium when the internal energy is not distributed equally
between the degrees of freedom. Because the timescale to reach thermal equilibrium
is much smaller than for chemical equilibrium, at altitudes below 60 km it is justified
to assume thermal equilibrium [2, 36].
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When Da → ∞ chemical reactions are significantly faster than the flow processes
and the fluid can be assumed to be in equilibrium at every point. In equilibrium
the thermodynamic state of the fluid can be defined using any two independent
thermodynamic state variables, e.g., density and internal energy, or pressure and
temperature [2]. The validity of the equilibrium assumption is limited to regions
without large mean flow gradients where the characteristic length L is large. For
the investigated hypersonic flows at moderate Mach numbers, the assumption is
sufficiently accurate except in the direct vicinity of strong shock waves [36].

Because the equilibrium composition is uniquely defined by two thermodynamic
state variables, it can be computed efficiently. One option is to use tabulated data
that is interpolated during the simulation, e.g., [37]. The computation is fast and
no knowledge of the chemical processes is needed, but it requires extensive datasets
in the two-dimensional space of thermodynamic input variables. The equilibrium
composition can also be computed from tabulated equilibrium constants for the in-
dividual dissociation reactions, which are functions of temperature. For a chemical
reaction m

ν1A1 + ν2A2 + ... = ...+ νNs−1ANs−1 + νNs
ANs

(2.25)
with the participating species s and stoichiometric coefficients νms , the equilibrium
constant based on concentrations Cs = ns/V = ρYs/Ms can be written as

Km,C(T ) =
∏
s

Cν
m
s
s . (2.26)

Note that the stoichiometric coefficients of reactants, again, are negative. The simula-
tions in this work were conducted using the data by Park [38], which uses forth-order
polynomials:

KC(T ) = exp
(
a1 + a2Z + a3Z

2 + a4Z
3 + a5Z

4
)

(2.27)
with Z = 10 000 K/T . This gives one equation for each of the dissociation reactions.
Two conservation equations for the mass fractions of O and N atoms close the system
of equations. Based on the mass fractions, the internal energy can be computed:

e =
∑
s

Yshs(T ) − p

ρ
. (2.28)

With the specific enthalpy of species s

hs = cp,sT + evib
s + h0

f,s, (2.29)

where the vibrational energies evib
s vanish for atoms and the heat of formation is zero

for O2 and N2. Due to the dependence of the equilibrium constant on the temperature,
the equilibrium state must be found iteratively. This method is computationally more
expensive and requires knowledge of the underlying physics. However, the required
datasets are simpler and smaller, since one polynomial expression for the equilibrium
constant for each reaction is sufficient.

The importance of high-temperature effects for hypersonic flows can be appre-
ciated from a small example. The stagnation point temperature in air as a calor-
ically perfect gas for a vehicle flying at Ma = 7 at an altitude of 30 km would be
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Tstag = 2447 K. For the same condition, the equilibrium condition using Parks equi-
librium constants described above is Tstag = 2162 K. In some cases, this reduction
of the surface temperature in equilibrium flows compared to perfect gases is what
makes hypersonic flight possible in the first place, since it relaxes the requirements
regarding the heat-resistance of the vehicle.

2.2.2 Transport Coefficients
For reacting hypersonic flows, viscosity, thermal conductivity and the species diffusion
coefficients are relevant. The simplest approximation for the transport coefficients
is a constant value. Since these viscous processes are temperature dependent, this
assumption breaks down for high-speed flows, where the temperature varies signifi-
cantly in the flow field. For the viscosity µ, Sutherland’s model can be used instead
[11], which gives the viscosity of a gas as a function of temperature.

Since the viscosity function of each gas is different, the viscosity of a mixture is
affected by its composition. For reacting hypersonic flows, Sutherland’s model loses
its validity in regions where the gas composition changes significantly. Equilibrium
gases can therefore be treated by more complex models that take the composition into
account, such as Blottner’s model [39]. The viscosity of each participating species
can be computed as a function of temperature. Based on the species mass fractions,
the mixture viscosity can then be found. Alternatively, the transport properties of
equilibrium gases can be calculated from tabulated values.

The thermal conductivity λ can be calculated assuming a constant Prandtl num-
ber Pr = cpµ/λ and the diffusion coefficient D from a constant Lewis number, which
for this thesis is defined as Le = Dcpρ/λ in accordance with [1, 2, 20], even tough the
reciprocal definition can be found in literature as well [30, 31].

2.2.3 High-Temperature Material Properties
Due to the high heating rates of high-speed flows, surface temperatures of vehicles
in such conditions can increase dramatically from the ambient temperature. While
constant material properties, such as thermal conductivity and thermal diffusivity,
are acceptable for many applications, they can be a significant source of error for
high-speed cases. An extensive overview of the material properties of many alloys
can be found in Touloukian et al. [40] and in [41]. Material properties are typically
determined experimentally and are therefore only available at discrete temperatures.
A polynomial fit can be used to get continuous functions of literature data for the
thermal diffusivity, heat capacity, and thermal conductivity.

For a property ϕ, where discrete values ϕi = ϕ(Ti) can be found in literature, a
polynomial fit of the type

ϕ(T ) =
N∑
k=0

akT
k (2.30)

is sought. The method of least-squares is used to find the coefficients ak for a given
set of input values ϕi. A detailed description is given by Bevington et al. [42]. The
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chosen order of the polynomial should match the input data, because the fit lacks
resolution when the order is too low, and it oscillates when the order is too high.
Fifth-order polynomials with six coefficients were used in the present work.

2.3 Turbulence Modeling
As stated in chapter 1, turbulence must be accounted for in many hypersonic flows.
The transition from laminar flow to turbulence is not part of this thesis, all flows are
treated as fully laminar or fully turbulent.

2.3.1 The Nature of Turbulence
Turbulence has a large impact on the properties of the flow and is therefore important
for aerodynamics. It is characterized by chaotic, unsteady small-scale fluctuations
superimposed on the large-scale motion of the fluid. Since the motion of turbulent
flows in the continuous regime is described exactly by the Navier-Stokes equations,
the small-scale fluctuations are not random, but their motion appears chaotic due to
the nonlinearity of the governing equations. Compared to laminar flow, where stream-
lines are smooth and parallel, streamlines in turbulent flows show three-dimensional
fluctuations. [43]

Whether a flow is in the laminar or turbulent regime, is determined by the
Reynolds number

Re = ρUL

µ
= inertial forces

viscous forces . (2.31)

For any type of flow, a critical Reynolds number Recrit can be found, so that the flow
is turbulent for Re > Recrit. The choice of the characteristic length L depends on the
type of problem.

Turbulent fluctuations increase the transport of momentum and energy. While
momentum in laminar shear layers is only transported laterally via viscous effects,
slower fluid elements are mixed with faster fluid elements due to their fluctuations
when the flow is turbulent. This small scale mixing results in large scale transport of
mean momentum [44]. Similarly, turbulence also affects the transport of energy and
species concentrations, which makes it very important in combustion processes.

The increased momentum transport changes the boundary layer velocity profile,
which become steeper near the wall. This results in higher skin friction compared to
laminar flows [45]. It also makes turbulent boundary layers more resistant against
separation, and if separation occurs, the separation length is shorter [46]. Similarly,
the increased energy transport in the boundary layer results in a steeper tempera-
ture gradient at the wall, which increases the wall heat load [46]. This is especially
important for the investigated hypersonic flows, where wall heat load is often the
major design limitation. Turbulence remains one of the unsolved problems in com-
putational fluid dynamics because so far no universal model has been found that
accurately describes the turbulent motion in all cases.
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One of the major characteristics of turbulence is the existence of a large range of
length scales. Energy is introduced into the largest eddies as macroscopic unsteadi-
ness and is then transferred to successively smaller eddies until it dissipates at the
smallest scales. It is the large scales that contain the majority of the kinetic energy,
however their properties are also very problem-dependent. The motion of the small
scales, on the other hand, is universal, it does not depend on the problem setup. [43]

2.3.2 High-Order Modeling Approaches
As stated above, turbulence is described by the Navier-Stokes equations, and it can
therefore be simulated without the need for any models. This approach is referred
to as Direct Numerical Simulation (DNS). To accurately capture the turbulent flow,
all relevant length scales must be resolved. The characteristic length of the smallest
turbulent scales is

η =
(
ν3

ϵ

) 1
4

(2.32)

which is referred to as Kolmogorov length scale [43]. ϵ is the dissipation rate of
turbulence kinetic energy. An important observation is the scaling of the Kolmogorov
length scale with the Reynolds number [43]:

L

η
∼ Re

3
4 . (2.33)

To resolve all turbulent eddies, a grid with ∆x ≈ η is required. The number of cells
to accurately capture all turbulent scales in one spacial direction is N ∝ L/η ∼ Re3/4

Due to stability limits of the applied numerical algorithm (Courant-Friedrichs-Lewy
condition) the maximum timestep is

∆tmax ∝ ∆x
U

(2.34)

So, the number of timesteps required to simulate the relevant macroscopic time tsim
is

Nt = tsim
∆tmax

∝ tsimU

∆x ∝ LU

U∆x = L

∆x ∼ Re
3
4 . (2.35)

The total computational effort therefore scales with N3Nt ∼ Re3. For problems with
technical relevance, where Re is typically large, this becomes prohibitively expensive.

The computational effort is lower for a Large Eddy Simulation (LES). Based on
the observation that small turbulent scales are universal, i.e., they do not depend on
the external geometry, it seems reasonable that a turbulence model that only treats
the smallest scales could perform well. For that, the field variables are filtered over
the cell volume, which is mathematically expressed as a convolution with the filter
kernel G [43]:

ϕ̂(x) =
∫
V
G(ξ − x)ϕ(x) dξ. (2.36)
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This results in a decomposition of the field variables into the filtered part and a high-
frequency component ϕ = ϕ̂ + ϕ′′′. By first inserting the decomposed field variables
into the Navier-Stokes equations (2.3) to (2.5) and then applying the filtering oper-
ation to the resulting equations, the governing equations for the large scale motion
are derived.

Since the filtering operation cannot be inverted, the filtered LES equations contain
unclosed terms [47]. Closure is achieved by means of a subgrid scale model, which
relates the unknown terms to known filtered quantities. As the smallest scales are
now treated by the subgrid scale model, the grid requirements are relaxed compared
to DNS. This allows LES simulations of more realistic problems. It retains the funda-
mental unsteadiness and three-dimensionality of the large scales and only applies the
model to the small universal scales that can more easily be represented by a model.
However, LES simulations of real-world problems are still very computationally ex-
pensive as they still require a time-accurate three-dimensional solution. Solutions to
engineering problems are often found in an iterative process, which necessitates faster
simulation methods. Furthermore, integrated, time-averaged quantities such as lift
and drag are often more relevant than transient solutions of the entire turbulent field.

2.3.3 RANS Turbulence Modeling
Due to the inherent unsteadiness, steady state solutions of turbulent flows do not
exist. It is therefore useful to apply a statistical description of turbulent flows, since
the time average of many problems reaches a steady state. The Reynolds-Averaged
Navier-Stokes (RANS) approach is therefore often a natural fit and was used for
the turbulent simulations in this thesis. Similarly to the LES decomposition, the
Reynolds averaging is defined as

ϕ = lim
τ→∞

1
τ

∫ t0+τ

t0
ϕ dt. (2.37)

This allows the decomposition of a field variable into a mean and a fluctuating part:
ϕ = ϕ + ϕ′. While LES and RANS equations are structurally similar, they are
conceptually different: LES represents a filter in space, while RANS represents an
average in time. Based on that, the density-weighted Favre-average ϕ̃ is defined:

ϕ̃ = ρϕ

ρ
, (2.38)

with the decomposition ϕ = ϕ̃+ ϕ′′. By inserting the decomposition into the Navier-
Stokes equations (2.3) to (2.5) and averaging the resulting equations, the RANS equa-
tions can be derived. In practice, for compressible flows a combination of Reynolds
averaging for the density and pressure, and Favre averaging for the velocity and en-
ergy is used, which results in the smallest number of unclosed terms. The following
set of conservation equations for mean mass, mean momentum, and mean energy are
obtained [48]:
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∂

∂t
ρ+ ∂

∂xi
ρũi = 0 (2.39)

∂

∂t
ρũj + ∂

∂xi

(
ρũiũj + δijp

)
= ∂

∂xi

(
τ ji − ρu′′

ju
′′
i

)
(2.40)

∂

∂t
ρẼ + ∂

∂xi
ũi(ρẼ + p) = ∂

∂xi

ũkτ ki − qi − ρu′′
i h

′′︸ ︷︷ ︸
A

− ũkρu
′′
i u

′′
k︸ ︷︷ ︸

B

− τiku
′′
k︸ ︷︷ ︸

C

− ρu′′
i

1/2u′′
ku

′′
k︸ ︷︷ ︸

D


(2.41)

Note that the mean total energy contains the turbulence kinetic energy (TKE)
k = 1/2u′′

i u
′′
i :

Ẽ = ẽ+ ũiũi
2 + u′′

i u
′′
i

2 . (2.42)

While the Favre-averaged continuity equation (2.39) is structurally identical to the
continuity equation of the Navier-Stokes equations (2.3), the momentum and energy
equations contain unclosed terms. These arise because information is lost in the
averaging procedure, similar to how filtering in the LES framework is non-reversible.
The term ρu′′

i u
′′
j is the Reynolds Stress Tensor (RST) based on the observation that its

structure is similar to the laminar shear stress tensor. With similar phenomenological
argumentation, the four terms in the viscous energy flux on the RHS of eq. (2.41)
are referred to as turbulent heat flux (A), turbulent work (B), molecular diffusion
of turbulence (C), and turbulent transport of TKE (D) [48]. Note that the mean
molecular shear stress tensor τ ij also contains unclosed terms, which are usually
approximated as:

τ ij = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
+ δijζ

∂uk
∂xk

, (2.43)

≈ 2µ
(
S̃ij − 1

3
∂ũi
∂xj

δij

)
, (2.44)

where S̃ij is the Favre-averaged mean strain rate tensor.

Closure for the Reynolds Stress Tensor

The RANS equations (2.39) to (2.41) are exact extensions of the Navier-Stokes equa-
tions for all cases where a decomposition of the field variables into a mean (constant)
and a fluctuating part is allowed, i.e., all cases without mean flow unsteadiness. This
constraint can be relaxed under the condition that the timescale of turbulence τ is
much smaller than the timescale of the mean flow, which allows for slow mean flow
unsteadiness. This approach is referred to as Unsteady RANS (URANS) and is often
used in practical applications, even though it lacks a rigorous separation of turbulent
and mean flow timescales [48]. Since the equations cannot be closed purely with
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mathematical operations, additional assumptions must be made. The most common
assumption is the Boussinesq hypothesis which linearly relates the turbulent stresses
to the mean strain rate [44, 48]:

−ρu′′
i u

′′
j = 2µT

(
S̃ij − 1

3
∂ũk
∂xk

δij

)
− 2

3ρkδij. (2.45)

Models that use this assumption are referred to as (linear) Eddy Viscosity Models
(EVM).

The assumption stems from a phenomenological observation rather than a math-
ematical derivation. Molecular transport of momentum, i.e., viscous shear stress is
a result of the microscopic random molecular motion in fluids that mixes fluid ele-
ments with different momentum in shear layers [48]. If turbulence is understood as a
macroscopic random motion of fluid elements, an analogy to viscous stresses can be
made, and the Reynolds stress tensor is therefore modeled closely after its laminar
counterpart, see eq. (2.9).

Algebraic Models:
In the simplest form of RANS models, the eddy viscosity is directly related to the
mean flow. The relation can more intuitively be defined by the mixing length pro-
posed by Prandtl, which can be understood as the characteristic size of the eddies.
Well known examples of algebraic models include the Cebeci-Smith model [49] and
the Baldwin-Lomax model [50]. Universally accurate relations for the mixing length,
however, most likely will not be found.

One-Equation Models:
For one-equation models, as the name suggests, one additional transport equation for
a turbulent variable is introduced. The most popular of these models is the Spalart-
Allmaras model [51], which solves a transport equation for the parameter ν̃, from
which the eddy viscosity follows as µT = ρν̃fv1, with the damping function fv1. The
variable ν̃ does not have physical relevance, so the transport equation is constructed
from empiricism. Since the eddy viscosity is not a locally defined quantity, the model
includes history effects that describe the evolution of turbulence along streamlines.

Two-Equation Models:
Defining a turbulent eddy with one parameter is inevitably incomplete, even in
isotropic turbulence. For two-equation models, two additional transport equations
are therefore added, which allows to fully characterize isotropic eddies, e.g., with a
length and time-scale. Typically, equations for the turbulence kinetic energy k and
the dissipation rate ϵ, specific dissipation rate ω, or timescale τ are solved. The eddy
viscosity can then be found from µT ∼ ρk

2
/ϵ ∼ ρk/ω ∼ ρkτ . The exact transport

equation for the turbulence kinetic energy can be derived from the RANS equations:
[48]

∂
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∂xi
(ρũik) = − ρu′′
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′′
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′′
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j

)

− u′′
i

∂p

∂xi
+ p′∂u

′′
i

∂xi

(2.46)
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The terms on the right-hand side are production, dissipation, molecular diffusion,
turbulent transport, pressure diffusion, pressure work, and pressure dilatation [48].
Given a relation for the RST, the production term can be computed directly. The
dissipation term is usually closed using the second transported turbulent property,
in case of the k − ω model, ϵ = 9/100ρkω with the transport equation [48]:

∂

∂t
(ρω) + ∂

∂xi
(ρũiω) = − α

ω

k
ρu′′

i u
′′
j

∂ũi
xj

− βρω2 + σd
ρ

ω

∂k

∂xi

∂ω

∂xi

+ ∂

∂xi

[(
µ+ σ

ρk

ω

)
∂ω

∂xi

]
.

(2.47)

This equation contains multiple closure coefficients, see [48] for details. Similar trans-
port equations are the foundation for the k − ϵ [52] and k − τ [53] frameworks.

The remaining terms of eq. (2.46) all describe some type of viscous or turbulent
transport and are thus typically closed using a gradient diffusion type term propor-
tional to the Laplace operator of the TKE: ∝ ∂

2
k/∂x2

i [48].
One of the main problems with the Boussinesq hypothesis is that it characterizes

turbulence with the scalar quantity µT, while in reality the Reynolds stress tensor
has six independent components (since it is symmetric) without any a-priori relation
between them. In some cases, the magnitude of the turbulent fluctuations (TKE)
may be correct, but the alignment of the Reynolds stresses is not. In the Boussinesq
assumption, for example, the mean anisotropy of the Reynolds stresses

aij = ρu′′
i u

′′
j

2ρk − 1
3δij (2.48)

is directly proportional to the mean strain rate. Experiments show that this results in
fundamentally incorrect behavior in cases where geometrically induced mean strain is
instantaneously removed [44, 54]. While molecular viscosity is a local fluid property,
which only depends on the current state of the fluid, e.g., its temperature, the tur-
bulent viscosity depends also on the flow history [48]. Despite its deficiencies, many
RANS turbulence models use the Boussinesq assumption and produce acceptable
results for a large range of flow types.

The simplest extension of the Boussinesq assumption is to replace the linear re-
lation between the Reynolds stresses and the strain rate with a non-linear relation.
Abe et al. compute the Reynolds stresses from a non-linear function of the mean
strain rate and mean vorticity

Ωij = 1
2

(
∂ũi
∂xj

− ∂ũj
∂xi

)
, (2.49)

which includes terms up to the second order [55]. These higher-order correlations
give more degrees of freedom but require more closure coefficients. Since the non-
linear relations are not necessarily based on physical reasoning, careful calibration is
required. Explicit Algebraic Reynolds Stress Models (EARSM), such as the model
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by Wallin and Johansson [56] find similar non-linear relations for the RSM based on
simplifications of the Reynolds Stress transport equations.

Reynolds Stress Models:
A natural extension of the problem is the addition of stress transport equations,
which are derived from the Navier-Stokes equations and describe the evolution of the
Reynolds stresses exactly. The exact form of the equations is for example given in
[48]. The stress transport equations are six independent equations for the six unique
components of the Reynolds stress tensor. Due to the way they are derived, Reynolds
stress models are often referred to as second-moment closure models. Examples
of Reynolds stress models include the Speziale-Sarkar-Gatski model [57] and the
Launder-Reece-Rodi model [58].

By using the exact transport equation for the RST, all turbulent effects are nat-
urally included in the simulation. Unfortunately, the equations also contain more
unclosed terms including more complex triple correlations, see Wilcox [48] for more
details. Obtaining closure approximations for these higher-order terms is non-trivial
because phenomenological analogies are difficult to find. Reynolds stress models also
require the solution of six additional transport equations for the RST, which must
be accompanied by a scale-determining equation, such as ϵ or ω, so the additional
computational effort is significant. Furthermore, the coupling between the Reynolds
stress equations and the mean flow equations can impact the numerical stability [44].

Closure for the Turbulent Heat Flux

The closure for the turbulent heat flux ρu′′
i h

′′ is, similar to the closure for the RST,
based on phenomenological observations. Analogous to how the turbulent eddies
increase momentum transfer, they also increase energy transfer. The Reynolds anal-
ogy [59] then forms the basis of the most widely used closure method. It states
that momentum and energy transport are alike. Similar to the turbulent momentum
transport, which is proportional to the mean velocity gradient, the turbulent heat
flux is proportional to the mean energy, or temperature, gradient. This is correct in
laminar flows and the proportionality is assumed to hold in turbulent flows as well.
From this assumption follows the gradient diffusion hypothesis which states that the
scalar flux vector is proportional to the mean scalar gradient [44].

The models that apply this assumption are referred to as Eddy Diffusivity Models
(EDMs) and use the following relation for the turbulent heat flux:

ρu′′
i h

′′ = −λT
∂T̃

∂xi
. (2.50)

The proportionality parameter λT is the eddy diffusivity and is usually related to the
eddy viscosity with the turbulent Prandtl number

PrT = µTcp
λT

. (2.51)

The turbulent Prandtl number is in the order of unity in many flows [60], but can also
differ significantly [61]. Nevertheless, most CFD codes frequently apply a constant
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turbulent Prandtl number: PrT = const. = 0.9. Species diffusion processes are
described by a similar term that can be closed using a constant turbulent Schmidt
number ScT = µT/ρDT.

The eddy diffusivity approach can easily be implemented in existing CFD codes
by replacing the molecular conductivity by the total conductivity λ = λviscous + λT.
However, due to the simplicity of the EDM approach, some problems arise. Firstly,
the assumption that mean scalar gradient and flux vector are aligned is often not
correct. See for example the measurements by Tavoularis and Corrosin [62], where
the measured turbulent heat flux was strongly misaligned with the mean tempera-
ture gradient. Similarly, observations of turbulent heat flux in the direction of the
mean temperature gradient, referred to as countergradient heat flux, can be found in
Schumann [63] and Paranthoën et al. [64].

In addition to these issues with the alignment of the turbulent heat flux, inves-
tigations have shown that the magnitude of the heat flux vector is often incorrectly
represented by EDMs. The validity of these models is based on Morkovin’s hypothe-
sis, which states that compressibility affects turbulence only through variations of the
mean density, not the density and temperature fluctuations [65]. This assumption
loses its validity in high-speed flows where temperature fluctuations must be taken
into account [66].

The simplest extension of EDMs is the use of a variable turbulent Prandtl number.
Empirical algebraic equations for the turbulent Prandtl number in turbulent pipe and
channel flows were for example published by Kays [61] and Abe and Antonia [67].
A more sophisticated approach was proposed by Roy et al. [68]. Based on the
observation that the turbulent Prandtl number is not constant in shock/boundary
layer interactions, which leads to an overprediction of the turbulent heat flux by
EDMs. They propose a model that includes an additional transport equation for the
shock function ψ ∈ [0, 1], which is unity everywhere except in the proximity of shock
waves:

∂

∂t
ρψ + ∂

∂xi
(ρũiψ) = ρψS̃ii − ρ(ψ − ψ0)

√
ũiũi
Lϵ

, (2.52)

with Lϵ =
√
k/ω. This transport equation is constructed so that ψ decreases quickly

across a shock but returns to its undisturbed value slowly downstream, which appears
to capture the physics of shock/turbulence interaction well. The turbulent Prandtl
number is computed from ψ:

PrT = 3
4

ζ

1 + b1
((

1
ψ

− 1
)) , (2.53)

with
ζ = 1 +

(0.89
0.75 − 1

)
exp

(
χ

(
1 − 1

ψ

))
(2.54)

and

b1 = 0.4 + 0.6
(

6ψ − 1
5ψ

)5.2

(2.55)
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χ is a tunable model parameter. The model was implemented in NSMB and im-
proves the wall heat flux prediction for Shock/Turbulent Boundary Layer Interaction
(STBLI) cases, with a minor impact on computational efficiency and stability.

These approaches still rely on the eddy diffusivity assumption and the underlying
assumption that turbulent energy transport is parallel to the mean temperature gra-
dient. As an alternative, authors have proposed formulations for the turbulent heat
flux based on the exact transport equation for the turbulent energy flux, similar to
the derivation of EARSMs. Examples include the models by Rogers et al. [69] and
Müller et al. [70].



CHAPTER 3
Methods

All simulations in this thesis were done with the NSMB CFD (Computational Fluid
Dynamics) solver, which was extended with the CHT functionality. The code was
originally developed by EPFL Lausanne [71, 72] and is now utilized and advanced by
a consortium of multiple European research facilities [73].

The development of the solver focused on hypersonic and reentry vehicles early on
[74] and is still used for these applications [75–77]. Other physical domains can also
be handled, recent extensions to NSMB include, e.g., subsonic icing simulations on
aircraft structures [78], basic turbulence research [79], and investigations of rotating
detonation engines [80]. Details of the code and more of its methods can be found in
the NSMB documentation [81]. In the following chapter, the methods relevant for the
investigated hypersonic flows and conjugate heat transfer simulations are presented.

3.1 Finite-Volume Method
Except for some canonical problems, exact algebraic solutions of the Navier-Stokes
equations and heat equation are unknown. Approximate solutions are therefore re-
quired, which can be found even for complex geometries. The three main approxima-
tive approaches are the Finite-Difference Method (FDM), the Finite-Element Method
(FEM), and the Finite-Volume Method (FVM). While their formulation appears dif-
ferent, they all represent special cases of the Method of weighted residuals [82, 83].

All these methods can be applied to solve fluid mechanics and heat transfer prob-
lems. Which method is best suited depends on the particular problem. The FDM is
numerically efficient and can be extended easily to higher-order in space, but requires
a coordinate transformation for arbitrary meshes and care must be taken to ensure
global conservation [84]. The FEM allows high spacial accuracy without the need
for large stencils, but it can become unstable for solutions with discontinuities, and
it is inherently implicit which makes it computationally expensive [83]. The FVM
is inherently conservative, and it can handle complex geometries with unstructured
meshes. Since it uses the integral form of the governing equations, the solution may
also be discontinuous [34]. The extension beyond second-order accuracy in space,
however, is not as straightforward as for the FDM [85].

27
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The FVM is a natural fit for fluid mechanics problems and is therefore used in
many commercial and scientific CFD codes, such as NSMB. The computation of a
solution in cell-centered FVM codes usually involves the following steps:

1. Divide the entire domain into non-overlapping cells. In general, the cells can
have any shape, polygons (2D) and polyhedrons (3D) are typically used. When
quadrilaterals or hexahedra are used, the cells can be stored in a structured
manner, which allows direct access of cell neighbors. Note that there are also
methods that allow cell overlap, such as the chimera method [86], but special
attention must be paid to the interpolation in overlapping regions to maintain
the conservative properties of the FVM.

2. Express the governing equations in integral form for each cell.

3. Extrapolate the state vector, or flux vector to the cell faces: The state vector
is stored in the cell centers, so the values at the cell faces must be computed
first. On domain boundaries, the values must be chosen such that the physical
boundary conditions are satisfied.

4. Numerically integrate the fluxes over the cell faces. This reduces the integral
over the cell surface to a sum over its faces. Different methods for numerical
quadrature may be used. The midpoint rule, which is second-order accurate in
space, is often applied.

5. Compute the temporal derivative of the state vector.

6. Advance the solution in time, both implicit and explicit methods can be applied.

The starting point for the method is the symbolic form of any governing equations,
such as the RANS equations. This equation is now integrated over an arbitrary
control volume V with surface S and then Gauss’ theorem is applied [87], which
gives the following integral form:∫

V

∂W

∂t
dV +

∮
S

F ini dS −
∮
S

F v,ini dS =
∫
V

SdV, (3.1)

where W is the state vector, F i are the xi-components of the inviscid flux vector
and F v,i are their viscous counterparts. S is the vector of volumetric source terms
and ni are the components of the cell face unit normal vectors.

By interpreting the state vector W as the average state vector in the control
volume V , the volume integral can be replaced. Similarly, the surface integrals are
replaced by the aforementioned quadrature. Figure 3.1 shows a section of a structured
2D cell-centered finite-volume mesh, the third dimension was omitted for the sake of
simplicity. The state vector W is stored for the center of each cell, while coordinates
are stored for the intersections of grid lines.

Boundary conditions can either be enforced by specifying W or F i along the
domain boundaries, or by introducing ghost cells around the domain and filling them
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Figure 3.1: Mesh for a 2D cell-centered finite-volume method

appropriately. With the first method, the boundaries of the domain must be treated
separately. By appropriately specifying W in the ghost cells, the desired boundary
condition can be achieved without altering the numerical method. Ghost cells are
used for the boundary conditions in NSMB.

Based on their type, different boundary conditions can be distinguished. A Dirich-
let boundary condition specifies the value of the solution at the boundary. In the
CHT domain this is for example used for isothermal parts, where a constant tem-
perature is specified. A Neumann boundary condition on the other hand specifies
the gradient of the solution at the boundary. In the CHT simulation, this is used
for constant heat flux boundaries, where q = −λ∇T is specified. Finally, at Robin
boundary conditions, some functional relation between the value of the solution and
its gradient are specified. In the CHT simulations, this occurs at the solid/fluid
interface when convex radiation is included.

NSMB uses a block-structured solver. The grid may consist of multiple blocks,
for which the data is organized in multidimensional arrays and cells can uniquely
be accessed by their i, j, k indices along grid lines. Cell neighbor values are directly
available without the need for a connectivity matrix, resulting in simpler code and
faster performance. On the other hand, it also reduces the flexibility, since only
quadrilateral (2D) and hexahedral (3D) cells can be used. Between blocks, values are
exchanged between timesteps. Adjacent blocks may be oriented arbitrarily, which
gives the required flexibility to simulate complex geometries.

As stated above, the finite-volume method is a natural fit for fluid mechanics ap-
plications due to its conservative form. The integral form of the governing equations
is particularly useful for flows with discontinuities like shock waves and therefore
lends itself to the application for hypersonic flows.

The FEM is often the preferred method for thermal solvers, due to its high spa-
cial accuracy and the lack of discontinuities in solutions of the heat equation. As
shown by Reinert [28], the FVM for heat conduction problems shows a higher mesh
dependency. He used tetrahedral grids in the solid domain, which resulted in notice-
able mesh effects in the finite-volume solution, which were not visible with FEM. By
using hexahedral grids, mesh effects are typically reduced, so the FVM can produce
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adequate solutions. Furthermore, using the FVM for the thermal solver simplifies
the implementation of the algorithm, since existing data structures and routines can
be used.

3.1.1 Spacial Discretization of Inviscid Fluxes
For the cell-centered FVM, the inter-cell fluxes must first be determined from adjacent
cell values. The simplest method for calculating the cell face flux is a central scheme,
where the flux can either be averaged directly or computed from the averaged state
vector. For the face between cells i, j, k and i+ 1, j, k this gives

F i+1/2,j,k = 1
2
(
F i+1,j,k + F i,j,k

)
, (3.2)

or
F i+1/2,j,k = F

(
W i+1/2,j,k

)
= F

(1
2
[
W i+1,j,k + W i,j,k

])
. (3.3)

Due to the nonlinearity of the convective flux, these forms are not equivalent.
In non-smooth flows, i.e., flows with discontinuities, central schemes produce spu-

rious oscillations that require the addition of artificial dissipation. The explicit ad-
dition of numerical dissipation was initially introduced by von Neumann [88], the
implementation in NSMB follows the method by Swanson and Turkel [89].

Instead of averaging between adjacent cells, flux-vector splitting and flux-
difference splitting represent approaches that leverage the physical propagation direc-
tion of information to better approximate the inter-cell flux. For flux-vector splitting,
the flux is considered a superposition of forward- and backward-propagating particle
streams [90]. For flux-difference splitting, the flux is found as the solution of the local
Riemann problem [91].

The governing equations in a 1D reference frame normal to the cell face may be
written in the form

∂W

∂t
+ ∂F (W )

∂x
= 0. (3.4)

General solutions of the local Riemann problem contain left- or right-running com-
pression waves, expansion waves, and contact waves. For the integration of the
governing equation in time, we are interested in F (x = 0, t > 0), when the interface
is placed at x = 0 at time t = 0. Figure 3.2 shows the wave pattern of a Riemann
problem with one left- and one right-running wave. By integrating eq. (3.4) over
the closed domain ABCD, the state vector W (x = 0, t = ∆t) can be found, and by
integrating over AEFD or BCFE, the inter-cell flux can be determined.

Cases with three waves, two pressure waves and one contact discontinuity, can
be treated analogously. Since the left and right wave speeds SL and SR depend on
the state vector between the waves, the solution must be found iteratively [92]. For
approximate Riemann solvers such as the HLLE (Harten, Lax, van Leer, Einfeldt)
[93, 94] and HLLC (Harten, Lax, van Leer, Contact) [95], a priori assumptions for
the wave speeds are made, and the solution can be found explicitly.
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Figure 3.2: Wave patterns for a Riemann problem with one left- and one right-running
wave

For the inviscid part of the flux vector in turbulent RANS simulations, the same
schemes that were developed for the Euler equations are used. An extension of the
HLLE Riemann solver, which is designed to overcome issues with RANS models in
Shock/Turbulence Interaction (STI) cases numerically, has been published and de-
scribed in more detail [96, 97], so only a brief overview is given here. The scheme is
referred to as HLLESU (HLLE Shock Unsteadiness). RANS models typically over-
predict the production of turbulence across shocks due to the large velocity gradients
near strong waves [96]. This seems partly related to the excessively steep mean flow
gradients across shocks that RANS models produce [98]. A more appropriate nu-
merical treatment of the inter-cell flux could limit the mean velocity gradient and
therefore reduce the turbulence amplification.

The discrete waves in figure 3.2 transform to continuous fans in Reynolds-averaged
turbulent solutions, see figure 3.3. Schemes developed for inviscid flows neglect this
and may therefore be partly to blame for the poor performance of RANS models in
STI cases. In the original paper [96], the derivation of the inter-cell flux and state
vector is described in detail, so the concept is only briefly outlined here. The variance
of the left and right wave speeds ∆SL = SL,max − SL,min and ∆SR = SR,max − SR,min

is related to the left and right turbulence kinetic energy. In [96], ∆S ∝
√

2/3k is
proposed, so the wave speed variance is proportional to the magnitude of the velocity
fluctuations.

Similar to the inviscid case, the integration over the closed domains in space-time
can be performed. Inside the fans (lines DD’ and CC’), linear distributions of the
state vector are assumed. The resulting expression of the inter-cell flux depends only
on the limiting wave speeds and the left and right state and flux vectors. The scheme
has shown to add numerical dissipation to the inter-cell flux by increasing the wave
speeds artificially [97]. The shock/boundary layer interaction case in [97], however,
shows that excessive numerical dissipation leads to an overprediction of the surface
heat flux compared to experiments.
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Figure 3.3: Wave patterns of a Reynolds-averaged turbulent Riemann problem

The flux-difference and flux-vector splitting methods use W on the left and right
of the cell face to find the inter-cell flux. When the values in the adjacent cell
centers are used, the schemes are first-order accurate in space. To increase the spacial
accuracy, extrapolation to the cell sides with MUSCL (Monotonic Upstream-centered
Scheme for Conservation Laws) [99], or ENO (Essentially Non-Oscillatory) [100] type
schemes is used before applying the flux-splitting.

The MUSCL scheme with second-order accuracy in space is used for the simula-
tions in this thesis, which can be used with a range of limiter functions. A compari-
son of the popular limiters by van Albada [101], van Leer [102], and Venkatakrishnan
[103], and the minmod function is presented in section 5.1.1. Since they are used
as the local switch between first- and second-order discretization, the limiter func-
tions have a large impact on the stability, convergence, and accuracy of the spacial
scheme. They remove spurious oscillations by locally switching to first-order dis-
cretization where the gradient of the state vector is zero, i.e., in local extrema. The
inherent reduction to first-order accuracy at real extrema is a defect of this method.
Due to their specific form, some limiters hinder convergence in regions where the
flow is nearly constant [103]. Limiter functions such as the modified version by van
Albada and the one by Venkatakrishnan aim to solve this.

3.1.2 Spacial Discretization of Viscous Fluxes

The viscous fluxes in the RANS equations require the computation of gradients for
the shear stresses and the heat flux. Two options are available for calculating the
gradient of a scalar field variable ϕ: the Peyret-Taylor method [104] (which is often
referred to as Green-Gauss method), and the path integral method by Wesseling et
al. [105].

The Peyret-Taylor method makes use of the divergence theorem. For any control
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Figure 3.4: Gradient calculation for cell i at face i + 1/2 with the Peyret-Taylor
method; The shifted control volume is shown in gray.

volume V the volume-averaged gradient of field variable ϕ is

∇ϕ = 1
V

∫
V

∇ϕ dV. (3.5)

Using Gauss’ theorem, we can write:

∇ϕ = 1
V

∮
S

nϕ dS. (3.6)

The surface integral can then be approximated by the sum over the cell faces:

∇ϕ ≈ 1
V

∑
s

nsϕsAs. (3.7)

In the finite-volume framework, the gradients on the cell faces are required. To
compute these, a shifted control volume, centered on the cell face, is constructed.
See figure 3.4 for the approach in two dimensions. Applying eq. (3.7) on this shifted
volume gives an approximation of the gradient on the cell face. The required values
on the faces of the shifted volume are either known directly as cell-center values
(circles) or must be interpolated from adjacent cells (diamonds).

Figure 3.5 shows a schematic for the gradient calculation with Wesseling’s path
integral method. The variation between the cell values can be written by integrating
the gradient along the dashed lines:

ϕD − ϕC =
∫ xD

xC

∇ϕ dx ≈ ∇ϕ · (xD − xC) , (3.8)

ϕE − ϕA + ϕF − ϕB =
∫ xE

xA

∇ϕ dx +
∫ xF

xB

∇ϕ dx

≈ ∇ϕ · ((xE − xA) + (xF − xB)) . (3.9)

These two equations (three in three dimensions) can be solved for the components
of gradient ∇ϕ. The solution of the system of equations is done once before the
simulation, which allows an efficient computation of the gradient with a simple matrix
multiplication.
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Figure 3.5: Gradient calculation with Wesseling’s path integral method for cell i at
face i+ 1/2

Note that these gradient calculation methods can be used to compute gradients
at cell faces, but also in cell centers by choosing the integration domains accordingly.
Cell center gradients of the velocity components are required for the turbulent source
terms and cell face gradients are needed for the heat flux and the shear stress tensor
in the viscous flux. The velocity gradient tensor can be calculated by applying the
methods above to the velocity components ui.

The Peyret-Taylor method requires the mesh to be orthogonal and uniform to be
second-order accurate in space. Where the mesh does not meet these criteria, the
accuracy reduces to first-order. The Wesseling method, on the other hand, only uses
the position of cell center values and is therefore largely independent of the mesh
quality. Due to that, it retains its second-order accuracy everywhere at the cost of
reduced stability.

3.2 Temporal Discretization
Since the blocks in NSMB can either contain only fluid, or only solid cells, different
temporal discretization methods can be used for the fluid and solid domain. Explicit
and implicit time integration methods can be distinguished. In explicit methods the
state vector at the next time increment is only a function of previous time increments

W n+1 = f
(
W n,W n−1,W n−2, ...

)
, (3.10)

in implicit methods the state vector at the next time increment is also function of
itself

W n+1 = f
(
W n+1,W n,W n−1,W n−2, ...

)
. (3.11)

Implicit methods require more computational effort to solve for the next time in-
crement but allow for a larger timestep to be taken since they are unconditionally
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stable. This can reduce the overall computational cost to find a solution. Explicit
schemes on the other hand are much simpler to implement, and it can be easier to
find a numerical setup that converges reliably.

For steady state fluid blocks, an implicit time scheme is used. The governing
equations (3.1) discretized in space can be written in the following symbolic form:

V
∂W

∂t
+ R(W ) = 0 (3.12)

with the state vector W and the residual function R, which contains the fluxes and
source terms. An implicit scheme can be constructed by linearizing eq. (3.12) about
timestep n: [

V

∆tI +
(
∂R

∂W

)n] (
W n+1 − W n

)
= −R(W n), (3.13)

where I is the identity matrix. Note that the Jacobian matrix ∂R/∂W only affects the
stability, not the accuracy of steady state solution. A reasonable approximation is
therefore sufficient.

Equation (3.13) is a linear system of equations of the type Ax = b and can be
solved for the state vector at the next time increment W n+1. Since A is a large, sparse
matrix, the computational effort and storage requirements for its inversion prohibit
an exact solution and an iterative method must be used. The LU-SGS method
implemented in NSMB [106] has shown stable convergence towards steady state even
for large timesteps. The implicit iteration is performed for each block separately
with exchange of block connectivity boundary conditions between iterations, which
allows the utilization of parallel computing architectures. Because of that, however,
the convergence compared to a fully implicit method is reduced, especially when the
computational domain is partitioned into a large number of small blocks.

When running time-accurate simulations with an implicit method, an exact so-
lution of eq. (3.13) is necessary, which is computationally expensive. Hence, dual
time-stepping methods can be used, where a derivative of the state vector in pseudo
time is added to the governing equations [107]. The solution at the next time in-
crement in physical time is equivalent to a steady state solution in pseudo time,
convergence acceleration techniques, such as local time-stepping and multigrid can
therefore be used. Flow problems with strong shocks often fail to converge reliably,
which requires a reduction of the size of the physical timestep or an increase in the
number of pseudo timesteps. Because of that, an explicit time scheme is used for
unsteady simulations, which avoids the need for the costly inner time-stepping loop.
Three-stage or five-stage Runge-Kutta schemes are available for fluids in NSMB.

Since solid materials respond slowly compared to fluids, explicit time schemes
are adequate for conjugate heat transfer simulations. The solid blocks are therefore
integrated in time using an explicit four-stage Runge-Kutta scheme [108], which is
fourth-order accurate in time. We define the residual function f as

f(T ) := ∂(ρE)
∂t

= 1
V

∑
s

ns · qsAs = − 1
V

∑
s

ns · ∇TsλsAs, (3.14)
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from which the intermediate solutions ki

ki = f(T n + αi∆tki−1) for i = 1...4, (3.15)

can be computed. The solution at the next time increment can then be found:

(ρE)n+1 = (ρE)n + ∆t16(k1 + 2k2 + 2k3 + k4). (3.16)

The parameters αi are α1 = 0, α2 = 1/2, α3 = 1/2, α4 = 1. In addition to the Runge-
Kutta scheme, an explicit first-order Euler method was also implemented, but is not
used in the simulations in this thesis due to more stringent stability constraints.

3.3 Parallel Implementation
As stated above, NSMB uses block-structured meshes and boundary conditions are
applied with ghost cells. The approach is very flexible and allows for the generation
of structured meshes even for complex geometries. Prior to the simulation, the grid in
each block can be split up further to better utilize parallel computing architectures.
These blocks can be distributed between processors, and allow for parallel, non-
synchronous updates of the state vector and application of local boundary conditions.
After each iteration, cell values are sent to adjacent blocks where necessary, and
block-connectivity boundary conditions are filled.

The implemented conjugate heat transfer algorithm is fully integrated into the
parallel multi block approach of NSMB. Solid parts of the domain are treated as sep-
arate blocks, that can also be split further. The solid/fluid interface is implemented
as a special version of a regular block-connectivity boundary condition.

3.4 Bow Shock Adaptation
The numerical treatment of solutions with shock waves requires special attention. Un-
like earlier shock-fitting approaches [109], modern solvers mostly use shock-capturing
methods. Near discontinuities, additional dissipative terms are added to the govern-
ing equations, which smear them over a distance in the order of the cell size. The
additional terms can be explicit through artificial viscosity [88], or implicit through
total-variation diminishing (TVD) schemes [110].

While shock-capturing methods can produce solutions on all meshes, it is still
useful to adapt the mesh to strong shock waves. The first argument for shock adap-
tation is the fact that shock waves inherently introduce a first-order error to the
solution. This stems from the uncertainty of the exact shock location, which scales
with the local mesh size [111]. Reducing the grid size around shocks can therefore
improve the accuracy of the solution. The second argument is one of numerical sta-
bility. Misalignment of the shock and the grid lines gives rise to spurious oscillations
[112]. These can be reduced by improving the shock alignment and refining the shock
region.
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Mesh adaptation techniques generally employ a combination of two strategies:
refinement and redistribution. For refinement, nodes are added to the grid where
required; for redistribution, the topology of the mesh stays the same but mesh nodes
are moved inside the domain. Unstructured grids can be refined with relative ease
by dividing cells where necessary and updating the connectivity matrix. Because
NSMB uses block structured meshes, these same methods cannot be applied without
complex remeshing. Alternative approaches must be taken. One possibility is the
algorithm by Berger and Colella [113], where topologically rectangular blocks of cells
are grouped into new grids that can be refined by integer factors. Each of the grids is
functionally equivalent to the blocks in NSMB, so the same procedure for transferring
information and integrating in time could be applied. However, the implementation
of this algorithm still requires significant changes to the code.

The applied mesh adaptation algorithm only moves grid points inside the domain.
It is an improved version of the method that was already implemented in NSMB,
which redistributes the grid points on lines normal to the inlet and can therefore only
adapt the mesh to the outer bow shock layer. While more general approaches, such
as the one by Ameur and Lani [114], can adapt the grid to complex shock geometries
without topological constraints, the algorithm is expensive for large meshes and the
mesh quality can deteriorate locally near strong gradients.

The mesh adaptation is performed in the following steps:

1. Find the location along grid lines normal to the inlet where the local Mach
number falls below a specified threshold and store the minimum index for each
block

2. Find the minimum index of all blocks on all processors.

3. Find the position of the shock with the criterion from the first step and compute
the distance to the inlet.

4. Optionally smooth the shock distance per block using Bézier curves.

5. Redistribute cells.

The redistribution of the cells is done by splitting the distance to the inlet into four
sections. At the side opposite to the inlet a given number of cells are not changed
to ensure consistent wall spacing. On either side of the shock, a small constant
spacing is used for a number of cells. Between the wall layer and the shock layer,
cells are distributed using a choice of second-, fifth-, or seventh-order polynomial,
which enforces a continuous transition of the grid spacing between the sections. The
higher-order methods also enforce a vanishing growth rate of the spacing at the ends.
The remaining spacing between the freestream and the shock layer is filled with an
exponential function.
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3.5 Conjugate Heat Transfer Approach

3.5.1 Coupling Procedure With Fluid Solver
As mentioned in the introduction, conjugate heat transfer simulation methods can
be distinguished based on how tightly the fluid- and thermal-solver are coupled. For
the loosely coupled approach, different solvers are often used for the fluid and solid
domains and the coupling is achieved through exchange of boundary values. Due
to the slow thermal response of solid materials compared to fluids, fluid simulations
with a constant wall temperature are often carried out. The resulting wall heat flux is
then used as a Neumann boundary condition for an unsteady heat transfer simulation
in the solid. When the coupling interval is reached, the solid surface temperature is
transferred and used as a Dirichlet boundary condition in the fluid. The simulation
of the fluid domain can be unsteady [25], or steady state when the fluid timescale is
significantly smaller than the solid timescale [28].

When fluid and solid domains are loosely coupled, the heat equation in solid
domains is often discretized with the FEM, while the FVM is used for the fluid
domain. The mesh in either domain can be optimized for the respective physical
process. The main drawback of the method is a loss of accuracy when fluid and
solid domains are not coupled after each timestep. When the coupling is performed
frequently, the exchange of boundary values can result in a significant time penalty,
especially when external files are used for the transfer of boundary conditions.

For the tightly coupled approach, both solid and fluid domains are solved with
the same software and boundary conditions can be transferred directly between the
domains. Time-accurate simulations are straightforward to conduct by using the
same global timestep for all domains and applying the coupling boundary condition
after each step. While the finite-volume method is not the classical choice for heat
conduction problems, its major advantage, the global and local conservation of energy,
is very beneficial for fluid and solid problems alike.

In this thesis, the tightly coupled approach was chosen. Figure 3.6 shows the
implemented procedure of the CHT coupling in NSMB. In the multi block framework
of NSMB, individual blocks can be treated as solid, so the heat equation is solved.
A single mesh is generated using ICEM CFD, which includes the fluid and solid
domains. Grid lines normal to the interface are continuous, which allows a direct
one-to-one mapping. After the fluid and solid blocks are initialized, local boundary
conditions and block-connectivity boundary conditions are filled, and both domains
are advanced in time. For steady state solutions, local time-stepping is used to
accelerate the convergence, for unsteady simulations, a global timestep is used.

At solid/fluid interfaces, the coupling boundary condition (CHT BC) is filled. A
new boundary condition with the internal number (BC537) was introduced in NSMB
for that. It ensures continuous interface temperature and interface heat flux in the
solid and fluid. From the energy balance of the interface surface (see figure 3.7), we
find

qtot = qfluid + qsolid + qrad + qdiff = 0, (3.17)
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Figure 3.6: Conjugate heat transfer coupling procedure in the multi block solver:
The processes involving communication between blocks are highlighted in gray.
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Figure 3.7: Heat fluxes for the conjugate heat transfer problem

when all heat fluxes are defined so that they are orthogonal to and point away from
the interface.

qfluid and qsolid refer to the respective conduction heat fluxes, qrad is the divergent
radiative heat flux and qdiff is the heat flux due to mass diffusion. Although it is
relevant for high-speed flows with chemical reactions [21], the mass diffusion heat
flux is often neglected [22, 24–26, 28]. Using Fourier’s law for the conduction heat
fluxes, the Stefan-Boltzmann law for the radiative term, and Fick’s law for the mass
diffusion, we find

qtot = − λF,W

(
∂T

∂xn

)
F,W

− λS,W

(
∂T

∂xn

)
S,W

+ σϵT 4
W − ρW

∑
s

hs,WDs,W

(
∂Ys
∂xn

)
F,W

= 0, (3.18)

where hs,W and Ds,W are the enthalpy and the diffusion coefficient of species s at
the wall and xn is the wall normal coordinate. In addition to the energy balance,
the temperature must be continuous across the interface, so TW,F = TW,S = TW.
Note that only an outgoing radiative heat flux is included in eq. (3.18), which is
only valid for convex geometries and when the gas is transparent. For the chosen
cases, this assumption is acceptable. Non-convex radiative effects can be included
in NSMB with the GETHRA module (GEneral THermal RAdiation) [115], but due
to computational limitations was not considered in the CHT method. Note that no
turbulent eddy diffusivity must be added to the fluid heat conductivity λF,W and the
diffusion coefficients DsW since all turbulent fluctuations vanish at solid walls.

For a numerical implementation of eq. (3.18), the derivatives are replaced by
finite-difference approximations. Using a first-order approximation, this gives

qtot = − λW,F
TF − TW
∆xn,1,F

− λW,S
TS − TW
∆xn,1,S

+ σϵT 4
W − ρW

∑
s

hs,WDs,W
Ys,F − Ys,W

∆xn,1,F
= 0. (3.19)

TF and TS are the temperature of the first cell in the fluid and solid domains, re-
spectively, and TW refers to the interface temperature and Ys,W are the species mass
fractions at the wall. ∆xn,1 is the wall normal distance of the first cell center.
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Equation (3.19) can be solved for the interface temperature. Due to the nonlin-
ear radiative term, the temperature dependency of the transport properties and the
composition Ys at the wall, an iterative solution is necessary. The Newton-Raphson
method was chosen in the implementation, which typically converges in a couple of
iterations:

T n+1
W = T nW + qtot(T nW)

q′
tot(T nW) , (3.20)

with
q′

tot(T nW) = dqtot
dTW

. (3.21)

This derivative can be approximated as

q′
tot(TW) ≈ λW,F

∆xn,1,F
+ λW,S

∆xn,1,S
+ 4σϵT 3

W (3.22)

for the first-order method. Since q′
tot does not affect the accuracy of the solution, the

simplified approximation above is sufficient, which neglects the temperature depen-
dency of the heat conductivities and mass fractions. These are only updated between
Newton-Raphson iterations.

For the diffusion heat flux, the gas composition at the interface Ys,W is required.
The current implementation is limited to equilibrium flows, for which the wall com-
position can be computed from two thermodynamic variables. Since the thermal
state of the interface is unknown prior to solving (3.18), it must be found iteratively.
Assuming a vanishing wall-normal pressure gradient, the interface pressure is pre-
scribed. From the pressure and an initial guess for the interface temperature, the
density and internal energy at the interface are computed. This step must be per-
formed iteratively due to the way the equilibrium composition is computed in NSMB.
The composition at the interface can then be calculated from the equilibrium state.
Now, a new interface temperature can be computed with eq. (3.20). Once the in-
terface temperature is determined, the ghost cell temperatures in the solid and fluid
domain are filled by linear extrapolation:

Tghostcell = 2TW − TF/S (3.23)

The internal energy of the fluid is computed, and the state vector is filled accordingly.
In an effort to improve the accuracy near the solid/fluid interface for large tem-

perature gradients, it is also possible to use a second-order approximation for the
gradients in the interface boundary condition. Since non-unity growth rates are typi-
cally used near the interface, a finite-difference approximation for non-uniform meshes
is required. In this work a simplification of the more general compact finite-difference
stencils described by Gamet et al. [116] is used. The scheme uses the wall normal
coordinate of the wall point and the two points next to it xW = xn,0, xn,1, xn,2, with
the respective spacings h1 and h2 (hi = xn,i − xn,i−1). Based on the spacings, the
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following parameters are defined:

A1 = h1 + h2
h1h2

, (3.24)

A2 = − h1
h2(h1 + h2)

, (3.25)

A3 = − 2h1 + h2
h1(h1 + h2)

. (3.26)

The gradient of any scalar at the interface can then be expressed as:

∂ϕ

∂xn
(xn,0) = A1ϕ(xn,1) + A2ϕ(xn,2) + A3ϕ(xn,0). (3.27)

This single-sided finite-difference expression is second-order accurate in space and
reduces to the standard first-order finite-difference for uniform spacing (h1 = h2) and
a linear distribution of ϕ. It provides a more accurate approximation for cases with
strong curvature, i.e.,

∣∣∣∂2
ϕ/∂x2

n

∣∣∣ ≫ 1. The derivatives in (3.18) can then be replaced
by these finite-difference terms:

qtot = − λF,W
(
A1,FTF + A2,FTF,2 + A3,FTW

)
− λS,W

(
A1,STS + A2,STS,2 + A3,STW

)
+ σϵT 4

W

− ρW
∑
s

hs,WDs,W
(
A1,FYs,F + A2,FYs,F,2 + A3,FYs,W

)
= 0. (3.28)

TF,2 and TS,2 are the cell temperatures in the second cell away from the solid/fluid
interface in the fluid and solid domain, respectively. Ys,F and Ys,F,2 are the mass
fractions of species s in the first and second cell.

The equation is also solved with the Newton-Raphson method, where the func-
tional derivative is

q′
tot ≈ −λW,FA3,F − λW,SA3,S + 4σϵT 3

W. (3.29)

Due to the single-sided first- and second-order finite-differences in the coupling
conditions above, a continuous mesh spacing is not required across the interface.
Since the thermal conductivity is typically much larger in the solid, the temperature
gradient is much smaller than in the fluid boundary layer. Significantly larger cells
may therefore be used in the solid domain.

The implemented method also includes the option to simulate a composite ma-
terial. The coupling between two different solids follows the same idea given in eq.
(3.18). By neglecting diffusion and radiative heat fluxes, the interface temperature
between two solids with different heat conductivity can be found analogously.
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3.5.2 Other Boundary Conditions for the Solid Solver
In addition to the solid/fluid interface boundary condition, solid blocks can also have
adiabatic and isothermal sides, and they may be in contact to other solid domains.
For the adiabatic solid wall (internal identifier BC580) the wall normal temperature
gradient must vanish:

Tghost cell = TS. (3.30)

At isothermal walls, the temperature is directly found from extrapolating the specified
temperature:

Tghost cell = 2Tisothermal − TS. (3.31)

At constant heat flux boundary conditions, a positive heat flux is defined towards
the solid. The ghost cells can then be filled:

q = λW
|xghost cell − xS|(Tghost cell − TS) (3.32)

→ Tghost cell = q(|xghost cell − xS|)
λW

+ TS, (3.33)

with λW = 1/2(λS + λghost cell). When a temperature-dependent heat conductivity
is used, eq. (3.33) must be solved iteratively, the Newton-Raphson method is used
again. The boundary condition type for the isothermal and constant heat flux con-
ditions is BC581. At block connectivity boundaries between two solid blocks of the
same material, the temperature can directly be transferred. The gradient calculation
methods described in section 3.1.2 require appropriate treatment of block edges and
corners. Linear extrapolation from the inside of the block is applied for both.

3.5.3 Timescale Problem in High-Speed Flows
It is a well-known issue of coupled conjugate heat transfer simulations that there
is a significant disparity between the solid and fluid timescales [21, 117, 118], which
results in excessive simulation times. The maximum timestep size in fluid simulations
with explicit time schemes is limited by the CFL (Courant-Friedrichs-Lewy) condition
CFL ≤ 1, where

CFLfluid = (|u| + c)∆t
∆x . (3.34)

∆x is the local cell size and c is the speed of sound. The maximum possible timestep
size is small, since |u| + c is large and ∆x is small near boundary layers. Since the
fluid reacts quickly to external constraints, however, the required simulated time to
steady state is short. Solid materials, on the other hand, react orders of magnitude
more slowly, which requires a much longer timespan to be simulated. Since they react
so slowly, however, the maximum possible timestep, determined by the CFL number
for diffusion processes

CFLsolid = 2a∆t
∆x2 , (3.35)
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is also much larger.
Solutions to both fluid-only and solid-only problems can be found relatively

quickly, since the ratio of simulated time to timestep size, i.e., the required number of
iterations, is similar. When running time-accurate CHT simulations, the entire do-
main must use the same timestep. In most cases the small cells in the boundary layer
of the fluid domain limit the maximum possible timestep, while the slow response of
the solid material requires a long simulated time. This results in an excessive number
of timesteps and large computational effort. The timescale problem is not limited
to high-speed flows, but it is especially relevant here, since the high fluid velocity
requires very small timesteps.

Multiple approaches have been proposed in literature to deal with this issue.
Where temperature variations are small, an uncoupled approach might be acceptable.
First, a steady state fluid simulation with isothermal walls is done and the heat
transfer coefficient α = qW/(TW−Tref) is computed. This is used to apply a Neumann
boundary condition for an unsteady solid simulation. While this approach is fast, it
assumes that α ̸= α(TW), which is generally not true [119].
More accuracy can be achieved, with a loosely coupled approach. It is similar to the
uncoupled method, but the fluid solution and the respective heat transfer coefficient
are updated periodically, as the wall temperature changes. Zope et al. [29] use this
approach and compare it to their subcycling method, which uses different timesteps
for fluid and solid to achieve a speedup. Koren et al. apply a similar method [118].
Zhang et al. [24] use a loosely coupled approach in which the coupling frequency is
chosen adaptively based on the rate of change of the interface temperature. These
methods can speed up simulation times significantly, but the coupling frequency must
be chosen carefully to ensure accuracy.

For problems where the type of the solution is known a priori, efficient quasi-
steady methods may be constructed, e.g., for oscillating heat loads. For these types
of conditions, the solution can be written as a harmonic series. The unsteady problem
in real time can then be transformed into a steady state problem in pseudo-time; a
solution is found efficiently [117]. While it is very efficient, the approach only works
for problems with solutions that are sinusoidal in time.

Since the basis of the numerical difficulties is the large disparity of timescales, the
issue can be alleviated by equalizing the timescales. The ET (equalizing timescales)
method was proposed by Diefenthal et al. [119] and was used for analyzing the
heating of turbomachinery components. In this approach, the specific heat of the
solid material is artificially decreased by a factor cET > 1:

c′
S = cS

cET
. (3.36)

This results in a scaling of the thermal diffusivity
a′

S = aScET, (3.37)
which ultimately speeds up the material response, since

∂T

∂t
= a′∂

2T

∂x2
i

. (3.38)
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Assuming that the heat transfer coefficient α does not depend on cET, the Fourier
number

Fo = aSt

L2 (3.39)

and Biot number
Bi = αL

λS
(3.40)

are independent of cET. The heat transfer problem, once scaled back to physical time
by cET is therefore mathematically similar to the original problem. Speeding up the
solid response should be valid, as long as the timescales of fluid and solid are not
equalized completely. Steady state solutions are governed by ∂

2
T/∂x2

i = 0 and are
therefore independent of the material properties and the scaling parameter. [119]

The ET method can achieve a significant speedup since cET in the order of 103

can be used. Since an increase of a decreases the maximum possible timestep, see
eq. (3.35), solid cells may become limiting for the global timestep. The maximum
usable cET is therefore restricted. The method is straightforward to implement in
existing thermal solvers and since it keeps the tight coupling between solid and fluid
it should be more accurate than loosely coupled approaches. Compared to quasi-
steady approaches, however, the computational effort is still significantly higher.





CHAPTER 4
Validation

Since the conjugate heat transfer methodology was newly implemented in NSMB, a
thorough validation is required. As stated in chapter 2, conjugate heat transfer is
a complex phenomenon, that involves multiple physical processes in the fluid and
solid domain, all of which must be modeled accurately. This makes the validation
of the method complicated, because uncertainties in all applied models can have a
large impact on the heat transfer to the solid. In the relevant hypersonic flows this
problem is intensified since the surface heating depends heavily on the thermophysical
gas properties and turbulence, the accurate representation of which is non-trivial.

The validation methodology in the following chapter is therefore limited to three
simple cases of heat transfer in solids with analytical solutions or data from litera-
ture, and two coupled cases, for which there is reasonable confidence in the required
models. Once the method is validated for these simple cases, its performance for
high-speed flows should be equally satisfying. For all validation cases, the gradients
were computed with Wesseling’s path integral method, and the first-order interface
method was used for the coupled cases. The four-stage Runge-Kutta scheme was
used for temporal discretization of the solid domain.

4.1 Steady State Heat Conduction With Analyti-
cal Solution

The steady state heat equation for an axisymmetric problem can be written in polar
coordinates [30]:

∂2T

∂r2 + 1
r

∂T

∂r
= 0. (4.1)

The general solution to that is

T (r) = a ln(r) + b. (4.2)

47
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Figure 4.1: Radial temperature distribution in the steady state cylinder shell

For a cylinder shell with given temperatures T (r1) = T1 and T (r2) = T2, the param-
eters a and b can be found:

a = T1 − T2
ln(r1) − ln(r2)

, (4.3)

b = T1 − a ln(r1). (4.4)

A simulation on a cylinder shell with T1 = 300 K at r1 = 0.1 m and T2 = 400 K
at r2 = 2 m was conducted, the comparison to the analytical solution is shown in
figure 4.1. A 2◦ wedge with 500 uniform cells in radial direction was used. The
agreement between the analytical and numerical solutions is excellent. This shows
that the gradient calculation is sufficiently accurate to capture even small variations
between the size of adjacent cells.

4.2 2D Unsteady Heat Conduction Problem
To validate the accuracy of the implemented algorithm for two-dimensional heating
problems, the composite solid block case proposed by Liu [120] and investigated by
Ferrero et al. [21] is computed. The rectangular block has a width of w = 0.9 m and
a height of h = 0.3 m and consists of a bronze block (0.3 m < x < 0.6 m) sandwiched
between two copper blocks (see figure 4.2). The properties of the two materials are
given in table 4.1. The domain was discretized using a uniform cell distribution
with 150 cells horizontally and 49 cells vertically. The domain is initialized with a
temperature of T0 = 300 K, a constant heat flux of q = 9000 W/m2 is applied to
the lower edge at y = 0 m, all other edges are held at a constant temperature of
T = 400 K.
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material a [m2
/s] c [J/kgK] λ[W/mK]

copper 1.167 × 10−4 384.91 401
bronze 8.820 × 10−6 340.0 26

Table 4.1: Material properties for the two-dimensional unsteady conduction case,
taken from [21]

copper bronze copper
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Figure 4.2: Temperature distribution for the unsteady two-dimensional conduction
validation case by Liu [120] at t = 80 s after initialization

The temperature distribution t = 80 s after initialization in figure 4.2 shows
good qualitative agreement with the results by Liu [120] and Ferrero et al. [21].
Quantitatively, the results also agree well with the literature data by Ferrero et al.
[21], see figure 4.3. Note that the literature data was extracted from a contour plot
that uses a banded colormap. This results in the discontinuities in the extracted
temperature lines.

4.3 Unsteady Heating of Semi-Infinite Slab
To validate the transient heating response of the implementation, the heating of a
semi-infinite 1-dimensional slab is simulated and compared to an analytical solution.
The initial temperature of the slab is T0 = 300 K, then a constant heat flux of
q = 1 × 105 W/m2 is applied to the upper surface. The lower surface is isothermal at
T = 300 K. The slab was created as a block of width w = 100 mm with a height of h.
The mesh in wall normal direction consisted of 80 cells, with a finer resolution at the
heat flux boundary. The material is aluminum: a = 9.88 × 10−5 m2

/s, λ = 237 W/m K,
and c = 888 J/kg K.

For an infinite slab like this, an analytical solution to the temperature distribution
can be found [30]:

T (x, t) = T0 +
2q
√

at
π

λ
exp

(
− x2

4at

)
− qx

λ

(
1 − erf

(
x

2
√
at

))
, (4.5)
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Figure 4.3: Temperature distribution along horizontal lines for the two-dimensional
conduction case. A: y = 0.75h, B: y = 0.5h, C: 0.25h

where erf is the Gauss error function:

erf(y) = 2√
π

∫ y

0
exp(−t2) dt. (4.6)

Figure 4.4 shows the evolution of the surface temperature on the infinite slab over
time. All results are in very good agreement, the numerical results approach the
analytical solution as the height h is increased. This indicates that the implemented
temporal discretization is time-accurate.

4.4 Steady State Flat Plate CHT Problem
To finally test the implementation of the coupled fluid/solid simulation approach,
the laminar flat plate boundary layer case by Montomoli et al. [121] was used.
Figure 4.5 shows the domain, which consists of a 100 mm thick and 400 mm long flat
plate. The flow over the plate is laminar at Ma∞ = 0.13, with a total temperature
of Tt,∞ = 1400 K and a static pressure of p∞ = 101 350 Pa. The plate has a thermal
conductivity of λS = 4 W/m K and its lower surface is isothermal at T = 600 K. The
fluid is air, Sutherland’s law [11] is used for the viscosity and the thermal conductivity
is computed using a constant Prandtl number of Pr = 0.72.

The case was used for validation purposes by Montomoli et al. [121], and it also
has an analytical solution that was derived by Luikov [122]. He assumed a linear
temperature distribution in y-direction of the plate, and used Blasius’ solution for
the velocity distribution in incompressible flat plate boundary layers [123].

Figure 4.6 shows the normalized temperature distribution in the laminar bound-
ary layer for the literature data [121], the theoretical distribution [122] and the cur-
rent numerical results. The agreement between the results is satisfactory. Close to
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Figure 4.4: Evolution of the surface temperature of the infinite slab
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Figure 4.5: Laminar flat plate boundary layer case by Montomoli et al. [121]
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Figure 4.6: Temperature distribution in the boundary layer of the flat plate case by
Montomoli et al. at x = 80 mm normalized with total temperature in the freestream
Tt,∞ = 1400 K

the wall the NSMB results match the data by Montomoli well, at the edge of the
boundary layer, they are more similar to the theory. The fluid viscosity and ther-
mal conductivity are not specified in [121], which might be an explanation for their
slightly thicker boundary layer.

4.5 Timescale Equalization

To test the validity of the ET method, the heating of a cold copper cylinder with
a diameter of 1 m in Ma∞ = 0.3 flow with T∞ = 288.15 K was investigated using a
range of timescale equalization factors cET. The material properties of the copper
cylinder can be found in table 4.1. A steady state simulation of the fluid domain
with a constant wall temperature of TW = 100 K was used to initialize the domain
for the unsteady CHT simulation. The initial temperature of the cylinder was also
set to 100 K and simulations were conducted for a maximum of 60 s in real time.

Figure 4.7 shows the temperature distribution in and around the cylinder at a real
time of 60 s after initialization. The plot only shows a small section of the domain,
which is also cylindrical with a radius of 10 cylinder diameters.

The heat Q that is absorbed by the solid material during the simulation from
state 1 to state 2 is equal to the change of its internal energy:

Qin =
∫
e2 dm−

∫
e1 dm =

∫
V
ρ
∫ T2

Tref
c dT dV −

∫
V
ρ
∫ T1

Tref
c dT dV. (4.7)
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Figure 4.7: Temperature contour around a cylinder in Ma∞ = 0.3 flow, note the
non-linear colormap.

cET [−] Qin [J] Qsurf [J] rel. difference [%] treal [s] tsim [s]
1 26 615.73 26 615.82 0.00034 6 6
10 263 993.82 263 976.74 −0.0065 60 6
100 263 897.13 263 880.28 −0.0064 60 0.6

20 000 257 535.39 258 329.68 0.3 60 0.003

Table 4.2: Global energy conservation of the cylinder CHT case

When the material density and specific heat are constant, this simplifies to

Qin = ρc
∫
V

(T2 − T1) dV. (4.8)

The heat can also be computed from the heat flow across its surface

Qsurf =
∫ t2

t1

∮
S
q dS (4.9)

For a conservative algorithm, these two quantities must be equal. Table 4.2 shows the
agreement of the two values for different timescale equalization factors cET. To reduce
the computational effort, the case with cET = 1 was not simulated for treal = 60 s.
The simulated time that effectively passed for the fluid is tsim. At cET = 20 000, the
minimum timestep in the solid is similar to the minimum timestep in the fluid. The
stability is now limited by the solid domain and a further increase of cET does not
speed up the simulation.

The agreement between internal heat increase and surface heat flow is very good
for cET ≤ 100, the heating also compares well between these cases. The cET = 20 000
case still agrees reasonably well with the other cases given the significant speedup
that can be achieved. When accelerating the solid response with the ET method, the
solution may start do deviate from the real physical behavior once the assumption
that the solid changes much more slowly than the fluid is no longer fulfilled. To judge
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Figure 4.8: Stagnation point temperature for the copper cylinder in Ma = 0.3 flow
for different timescale equalization factors cET

that, the number of flow cycles past the diameter of the cylinder of 1 m during the
simulation time tsim is analyzed. In real time the fluid passes the cylinder 6124 times
in 60 s. This reduces to 0.3 times for cET = 20 000, at which point the validity of the
assumption that the solid and fluid timescales can be separated must be questioned.
Nevertheless, the agreement between internal heating and surface heat transfer does
not degrade significantly for higher cET.

This can also be seen in figure 4.8, which shows the stagnation point temperature
over time after rescaling. For cET ≤ 100, the evolution of the stagnation temperature
is essentially unaffected. Even cET = 20 000, for which the assumption of timescale
separation is no longer valid, gives an acceptable result, especially given the reduction
in computational effort. These results agree well with the findings of Maffulli et al.
who show that large values of cET can be used for cases with asymptotic heating
[124].



CHAPTER 5
Results

In the previous chapters, the fundamental processes involved in hypersonic simula-
tions were presented along with the methods required to perform numerical simula-
tions. Since aerodynamic heating problems are multiphysics problems, any simulation
that hopes to accurately represent a physical process must use suitable methods in
multiple domains. Most importantly, simulations must be run on an adequate mesh,
with accurate and stable numerics, and with accurate models of the underlying phys-
ical and chemical processes.

In the following chapter the importance of these three aspects are outlined for
simpler cases. Advancements in methods and modeling are presented. Finally, the
methods are applied to realistic cases of critical heating in hypersonic flow.

5.1 Aspects of Modeling and Numerics

5.1.1 Numerics

Flux limiters

The choice of flux limiter has shown to have a big impact on the stability and accuracy
of the solution. Two cases were investigated with a range of different limiters to
gauge their performance. First, the sphere-cylinder case by Esfahanian et al. [125] is
presented. It consists of laminar flow at Ma∞ = 2.94 around a blunt sphere-cylinder
body. A nose radius of rn = 10 mm was chosen in the present simulations. The
remaining freestream conditions were T∞ = 293 K and Re∞,rn = 2.2 × 105. The fluid
was treated as a perfect gas with γ = 1.4 and R = 287 J/kg K and the HLLC scheme
[95] was used for the inviscid fluxes. Unless otherwise noted, a second-order in space
MUSCL scheme [99] was used.

Figure 5.1 shows the convergence of the density residual and the adiabatic wall
temperature along the body coordinate s for the sphere cylinder case for different
limiters. The L2-norm of the volume-weighted density residual is used to judge
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Figure 5.1: Convergence and adiabatic wall temperature for the sphere cylinder case
by Esfahanian et al. [125] for different limiters

convergence:

Resρ =

√√√√∑
n

(
∂ρ

∂t

)2

n

Vn. (5.1)

n is used as the cell index and Vn are the cell volumes. The value ∂ρ/∂t is equal to the
sum of all fluxes in the continuity equation.

Except for the first-order solution, simulations with all limiters fail to converge
due to persisting oscillations in the solution. Only the Venkatakrishnan limiter [103]
produces somewhat acceptable convergence. These oscillations are produced where
the shock is not properly aligned with the mesh and the mesh resolution is insufficient.

The oscillations propagate to the wall, which can be seen in the adiabatic wall
temperature distribution. Along the surface coordinate s, the stagnation point is
located at s = 0 m and the end of the spherical nose section is found at s ≈ 0.0157 m.
Especially the minmod limiter and the modified Van Albada limiter [101] perform
poorly and deviate significantly from the literature data. The first-order solution,
even though it converges very well, is excessively dissipative, which results in an
increased wall temperature. The Venkatakrishnan limiter produces a close agree-
ment to the literature results. It is clear that second-order solutions require a better
resolution near the shock to converge properly and produce accurate results.

Mesh adaptation

As the data above suggests, spacial discretization of order higher than one requires
additional care for strong shock waves. The automatic mesh adaptation described in
section 3.4 can help optimize the mesh and reduce numerical errors. First, the mesh
adaptation aligns the grid lines with the bow shock, which means that the mesh
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Figure 5.2: Mesh adaptation for the sphere-cylinder case. The van Leer limiter was
used to generate the results. Every second grid line is shown.

direction along the shock wave can be discretized fully second-order. Secondly, it
refines the grid in the vicinity of the shock wave, which reduces the thickness of the
shock wave and the corresponding region of first-order discretization. To show the
improvements, the same sphere-cylinder case was run with mesh adaptations after
20 000, 40 000, and 60 000 iterations.

Figure 5.2 shows the mesh before and after the adaptation. For clarity, every other
grid line was omitted. The temperature field in a) shows non-physical oscillations
downstream of the shock. After the mesh adaptation, the temperature contours are
smooth and the bow shock standoff distance is reduced from 2.5 mm before adaptation
to 2.25 mm after adaptation.

Figure 5.3 shows the convergence and adiabatic wall temperature distribution for
the sphere-cylinder on adapted meshes for the different limiters. The minmod limiter
and the modified van Albada limiter still fail to converge even after multiple mesh
adaptations. The Venkatakrishnan limiter shows the best convergence even after
the first adaptation. The van Leer limiter shows good convergence after the first
and third adaptation but produces a residual stall after the second. Its performance
appears to be very dependent on the mesh. The likely cause is small misalignment
of the shock with the grid after the second adaptation. Along grid lines parallel to
the shock, the solution is nearly constant, which is a known source of convergence
problems of many limiters [103].

On the right of figure 5.3, the adiabatic wall temperature distribution is shown
in comparison to numerical results by Esfahanian et al. [125]. The wall temperature
with the Van Albada and minmod limiter, still show oscillations, but at lower ampli-
tude. The van Leer and the Venkatakrishnan limiter produce a smooth temperature
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Figure 5.3: Convergence and adiabatic wall temperature for the sphere cylinder case
by Esfahanian et al. [125] when mesh adaptation is applied.

contour, the latter matches the literature results best.

5.1.2 Turbulence Modeling
Turbulent Heat Flux Model

As described in section 2.3, simple eddy diffusivity models fall short in reproducing
the heat flux in shock boundary layer interactions. The performance of one particular
turbulent heat flux model, the one by Roy, Pathak, and Sinha [68], was evaluated. In
the following sections, the model is referred to as RPS model. The model still relies
on a scalar turbulent conductivity, but it uses a variable turbulent Prandtl number
that is calculated from a transported shock function.

To validate the implementation of the model and test its suitability for the cases
in this thesis, the Shock/Turbulent Boundary Layer Interaction (STBLI) case by
Schülein [126] was investigated. It consists of an oblique shock wave impinging on
a turbulent flat plate boundary layer. Figure 5.4 shows the geometry of the STBLI
case, the position of the 10◦ shock generator is chosen in a way that the shock
impinges 0.35 m from the leading edge of the plate. The Ma = 5 freestream has a
total temperature of Tt,∞ = 410 K and total pressure of pt,∞ = 2.12 × 106 Pa. The
medium is air (γ = 1.4, R = 287 J/kg K, perfect gas) and the isothermal wall has a
temperature of TW = 300 K.

Figure 5.5 shows the wall heat flux distribution for this case. Compared to the
experimental data, the shortcomings of current turbulence models that use the eddy
diffusivity approach are obvious. While the heating upstream of the interaction region
(x < 0.35 m) is predicted within the margin of error of the experiment, excessive wall
heat flux is observed downstream of the shock. With the RPS model, the turbulent
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Figure 5.4: Domain of the STBLI case by Schülein [126] (from [97])
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Figure 5.5: Wall heat flux for the STBLI case by Schülein [126] for the eddy diffusivity
model and the RPS model

Prandtl number is decreased in the vicinity of the shock wave, which results in an
increased eddy diffusivity. Evidently, the added turbulent heat flux further away from
the wall distributes the heat more evenly, which decreases the temperature close to
the wall and results in a lower surface heat flux. The results compare reasonably well
with the numerical data by Roy et al. [68], who used the RPS model with a k − ω
model that was modified for shock/turbulence interaction.
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Ma∞ [−] grid cell height fluid [m] cell height solid [m] y+ [−]

0.13

1 4 × 10−5 4 × 10−5 0.5
2 1 × 10−4 1 × 10−4 1.3
3 2 × 10−4 2 × 10−4 2.5
4 1 × 10−3 1 × 10−3 15.1

5
1 2 × 10−6 2.6 × 10−3 0.13
2 2 × 10−5 2.6 × 10−3 1.32
3 2 × 10−4 2.6 × 10−3 13.33

Table 5.1: Grid properties for testing the order of the interface scheme in the flat
plate test case

5.2 Conjugate Heat Transfer Methodology

5.2.1 Spacial Order of the Interface

As noted in section 3.5.1 a first- and second-order finite-difference approximation can
be used in the CHT coupling boundary condition. To test the two numerical schemes,
flat plate boundary layer cases were used. The incompressible conditions, that were
used as a validation case in section 4.4, and a Ma∞ = 5 condition with the same
total temperature of Tt = 1400 K were chosen. For the Ma∞ = 5 case, the length of
the plate was increased to 1 m. Since the second-order scheme can reproduce non-
linear distributions more accurately, one would expect a more noticeable difference
between first-order and second-order interface boundary conditions when the grid
near the interface is coarse. Different grid spacings in wall normal direction were
generated, whilst the number of cells and the resolution along the plate remained
unchanged. Table 5.1 shows the relevant details about the different grids, note that
the y+ values were calculated from results using the first-order scheme. For the
incompressible case, the boundary layer is well-resolved with grid 1 and grid 2, grid
3 gives an acceptable resolution, and grid 4 is significantly under-resolved. Grid 1
was also used for the validation in Section 4.4. Grids with a similar range of y+

values were also generated for the hypersonic conditions. Near the nose of the plate,
the axial spacing was reduced to resolve the weak compression wave due to viscous
interaction.

Figure 5.6 shows the temperature profiles near the solid/fluid interface for the
incompressible case x = 80 mm downstream of the leading edge. On all grids, the
second-order method produces a higher interface temperature. As expected, the dif-
ferences between first- and second-order gradients are most noticeable on the coarsest
grid. On grid 1, first- and second-order schemes produce essentially the same interface
temperature with only a 0.05% difference between results. On grid 4, the difference
between interface temperatures is significantly higher at 3.5%. As the grid resolu-
tion is decreased, the interface temperature increases. The boundary layer is visibly
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Figure 5.6: Influence of order of the numerical scheme of the interface for the flat
plate case by Montomoli et al. [121] on different grids; First-order is shown in solid
lines, second-order is shown in dashed lines

under-resolved with grid 4. Grid 1 and grid 2 produce very similar interface tem-
perature which indicates grid convergence and shows that a non-dimensional wall
distance of y+ ≈ 1 is sufficient.

The higher interface temperature with the second-order method is a result of
the non-linear boundary layer temperature profile. Only the second-order method
is sensitive to this non-linearity since it uses a three point stencil. The increasing
difference between first- and second-order methods indicates that the non-linearity
in the temperature distribution near the wall becomes more pronounced as the mesh
resolution decreases. When the first cells are small enough, they are located entirely
in the viscous sublayer [123], so first- and second-order gradient methods converge.

Interestingly, both first- and second-order methods overpredict the gradient on
the coarser grids. Increasing the wall spacing places the first cells further into the
hot external fluid, increasing their temperature and therefore the heat flux towards
the wall. The second-order method amplifies this effect even more, which results in
the higher interface temperature.

The external flow in typical hypersonic heating cases has a low static temperature
but a high total temperature. Unlike the previous case, the temperature therefore
has a maximum in the boundary layer. To test whether the choice of interface
scheme affects these cases differently, the boundary layer simulation is performed at
a hypersonic freestream velocity. Due to the relatively low total temperature, the gas
is assumed to be calorically perfect also for the hypersonic case.

Similar to the incompressible case, the second-order boundary interface method
produces a higher heat flux and therefore a higher interface temperature on all grids,
see figure 5.7. A location 0.5 m downstream of the leading edge was used for extrac-
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Figure 5.7: Influence of order of the numerical scheme of the interface for the flat
plate case at hypersonic conditions; First-order is shown in solid lines, second-order
is shown in dashed lines

tion. With the first-order scheme, interface temperature on grid 1 and grid 2 are
similar, and the grid can be considered converged at y+ ≈ 1. With the second-order
method, the difference between the results on grid 1 and 2 are significantly larger and
only grid 1 seems to produce an accurate result. In general, the second-order meth-
ods is more sensitive to the mesh. While the variation of the interface temperature
is 1.3% between grid 1 and grid 3 with the first-order method, it is 16.3% with the
second-order method.

The initial expectation was that the second-order method would be more accurate
and more robust on coarser grids. The flat plate cases show that it does not deliver
in this respect and the first-order method is preferred. The likely reason is that the
temperature distribution is linear in the viscous sublayer. On any grid with y+ > 1,
the first cell is outside the viscous sublayer and the physics of boundary layers are
not reproduced accurately. Using the second-order method cannot fix this lack of
resolution.

To test the two schemes in a case with non-linear temperature distribution in the
viscous sublayer, a curved body is simulated. Here, the second-order method should
improve the grid convergence. A hollow sphere in hypersonic flow at Ma∞ = 7 was
chosen. Figure 5.8 shows the domain and temperature distribution for a steady state
CHT simulation. Sea-level conditions were used for the freestream: p∞ = 101 325 Pa
and T∞ = 273.15 K. Laminar flow was assumed for simplicity reasons. The sphere
has a 5 mm outer radius and a 2 mm inner radius, its inner wall was isothermal at
TWinner = T∞ = 273.15 K. Park’s equilibrium model [38] was used for thermodynamic
closure. For the material of the sphere, a generic heat-resistant steel was used with
λ = 15 W/m K, c = 469 J/kg K, and a = 4 × 10−6 m2

/s. Sutherland’s model [11] was used
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Figure 5.8: Domain of the CHT case of a hollow sphere in Ma = 7 flow; the edge of
the solid domain is shown as a black line, the radial line used for extracting the data
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for the fluid viscosity.
Four different grids were generated, their properties are given in table 5.2. The

same number of cells was used for all of them with 100 nodes in wall normal direction
in the fluid and 50 nodes in the solid. A uniform distribution with 200 nodes was
used along the body. The boundary layer was intentionally under-resolved with grid
4 to test the robustness of the methods.

Figure 5.9 shows the temperature distribution along the 45◦ radial line shown in
figure 5.8. Note that the flow is supersonic outside the boundary layer along this
line. The temperature was normalized with the total temperature in the freestream
Tt,∞ = 2950.02 K. Similar to the flat plate case, the first-order method is much less
grid-dependent, even on the under-resolved grid 4 acceptable accuracy is achieved.

grid cell height fluid [m] y+ [−]
1 1 × 10−7 0.38
2 2 × 10−7 0.77
3 1 × 10−6 3.84
4 5 × 10−6 19.18

Table 5.2: Grid properties for the hollow sphere CHT case



64 5. Results

solid

0.4 0.5 0.6 0.7 0.8

4.6

4.8

5

5.2

5.4

×10−3

T/Tt,∞ [−]

r
[m

]

grid 1
grid 2
grid 3
grid 4

solid

0.4 0.5 0.6 0.7 0.8

4.6

4.8

5

5.2

5.4

×10−3

T/Tt,∞ [−]

r
[m

]

grid 1
grid 2
grid 3
grid 4

Figure 5.9: Normalized temperature distribution along a 45◦ radial line for the hollow
sphere CHT case; First-order is shown in solid lines, second-order is shown in dashed
lines

Comparing grids 1 and 2 shows that grid convergence is not quite reached for the
given grids. This is likely due to the curvature in the temperature distribution in the
boundary layer, which the first-order method cannot resolve accurately.

The second-order method again shows to be much less stable for coarser grids.
Especially the solution on grid 4 is very inaccurate. Unlike with the first-order
method, grid convergence is reached at grid 2. Refining the wall more does not
change the temperature distribution noticeably. This highlights the advantage of
the second-order method, which is able to predict the heat flux accurately, even for
curved temperature distributions near the wall.

Overall, both the first- and second-order method can produce accurate results
given appropriate grid resolution. Since the second-order method produces more
severe errors when the applied grid is too coarse, the first-order method and its
greater stability are preferred. The gains with respect to accuracy with the second-
order interface method are minor in comparison to the errors on coarse grids.

5.2.2 Diffusive Wall Heat Flux
To test the importance of including heat transfer due to species diffusion, the com-
position of the wall heat flux at steady state for the hollow sphere case is analyzed.
The first-order method for the interface was applied and the finest grid (grid 1) was
used. Figure 5.10 a) shows the distribution of the wall heat flux along the surface
coordinate s. The total heat flux and its components, the conductive part in the
fluid and the part due to species diffusion are also shown separately. In this partic-
ular case, the diffusion heat flux is only relevant near the stagnation point, where
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Figure 5.10: Heat flux and temperature distribution along the hollow sphere

qW,diff/qW,fluid ≈ 3.5%. The ratio then drops rapidly, see figure 5.11. This is partly due
to the moderate temperatures at Ma∞ = 7 and partly due to the applied equilib-
rium model. As noted in section 2.2.1, in an equilibrium model, chemical reactions
are assumed to be significantly faster than the flow processes, which reduces species
concentration gradients.

Interestingly, the heat flux distribution in figure 5.10 a) is qualitatively different
compared to a typical isothermal body [32]. For comparison, the wall heat flux
distributions using CHT walls and isothermal walls with TW = 273.15 K along the
sphere is shown in figure 5.12. Due to the increased surface temperature, the absolute
value of the heat flux is much lower in the CHT case. While both wall models have a
secondary local heat flux maximum due to turbulence onset, the relative magnitude
of the second maximum compared to the stagnation point heat flux is significantly
higher in the CHT case. The maximum is also shifted downstream: in the isothermal
case, it is located 1 mm from the stagnation point, in the CHT case it is around
3.3 mm from the stagnation point.

The temperature distribution in figure 5.10 b) also does not correlate with the
adiabatic wall temperature distribution over a spherical nose [125]. The wall heat
flux distribution in the CHT simulation is not similar to the isothermal case, and
similarly the wall temperature distribution is not similar to the adiabatic case. Both
distributions are distinctly different in the CHT result due to the non-uniform heating
of the solid and solid heat flux in circumferential direction.



66 5. Results

0 2 4 6
×10−3

0

1

2

3

s [m]

q W
,d

iff
/q

W
,fl

ui
d

[%
]

Figure 5.11: Ratio of the heat flux due to species diffusion to the conductive heat
flux for the hollow sphere CHT case
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5.3 STBLI-Induced Heating
Neither of the turbulent heat flux models was able to reproduce the experimental data
by Schülein in section 5.1.2. The experimental heat flux data by Schülein [126] was
measured with their ’thin-skin technique’. A thin, well isolated layer of a material
with high thermal conductivity is placed on the wall. When spacial temperature
variation can be neglected, the energy balance of the layer simplifies to

qW = ρch
dTW
dt , (5.2)

where h is the height of the solid layer. Schülein [126] used a nickel layer with
h = 0.2 mm, ρ = 8900 kg/m3, and c = 458 J/kg K. The thermal conductivity of
λ = 94 W/m K was taken from [41].

Using eq. (5.2) and the duration of the measurement of 130 ms, a maximum
temperature increase of 7.38 K in the interaction region is found for the experimental
heat flux data. Given that the maximum temperature in the flow field is just over
330 K a surface temperature increase of this magnitude could affect the wall heat flux
significantly.

An unsteady coupled simulation of the STBLI case with the thin nickel layer was
conducted. The domain was initialized with a steady state result with a constant wall
temperature of TW = 300 K. The nickel layer was initially at the same temperature.

Figure 5.13 shows the evolution of the surface temperature for the coupled sim-
ulation. Over the course of the experimental measuring time of 130 ms, a maximum
temperature increase of just under 8 K is observed in the interaction region, which
matches the theoretically expected value well. The main heating areas are the tip of
the plate (x = 0 m) and the interaction region x > 0.34 m, while the plate upstream
of the impinging shock experiences only minor heating. Due to the increasing wall
temperature, the wall heat flux decreases.

The evolution of the wall temperature and wall heat flux over time is shown in
figure 5.14. The temperature increase in plot a) is approximately linear in time. Due
to the high heat flux, the temperature increases fastest in the interaction region and
at the tip of the plate. The wall heat flux plot b) confirms the expectation that the
surface heating changes quite noticeably during the experimental measuring time. To
evaluate the accuracy of the numerical method, the average relative deviation from
the experimental data [126] was computed:

∆qW = 1
xmax − xmin

∫ xmax

xmin

∣∣∣qW,num − qW,exp

∣∣∣
qW,exp

dx, (5.3)

where xmin is the start of the interaction region at 0.34 m and xmax is the end of the
domain at 0.5 m. To compute the deviation, the experimental data was interpolated
onto the numerical grid, a linear distribution was assumed between the discrete exper-
imental values. At the start of the CHT simulation, the deviation is ∆qW = 19.1%,
which reduces to ∆qW = 10.4% at the end of the CHT simulation (t = 130 ms).
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Figure 5.13: Evolution of the surface temperature in the STBLI case by Schülein
[126]; numerical simulation of their thin-skin technique

Overall the agreement to the experimental data is much better after 130 ms with
especially good agreement in the second half of the interaction region x > 0.41 m.

The overprediction of the wall heat flux in the numerical results seems to be partly
due to the way the experimental data were measured and reported, which neglect
the influence of the increasing wall temperature on the surface heat flux. Schülein
[126] states that the experimental measuring time of 130 ms was chosen because the
surface temperature increase was linear, e.g., dTW/dt = const, which, according to the
author, gives a constant heat flux. The numerical findings in figure 5.14 show that,
as the surface temperature varies in time, the wall heat flux decreases considerably.

These results highlight the necessity of CHT simulations even for the reproduc-
tion short-duration experiments. Numerical models that are able to reproduce the
experimental data exactly would underpredict the occurring heat flux in the more
realistic CHT case. It should be noted, however, that the thin-skin approximation in
eq. (5.2) relies on the assumption of adiabatic walls on all sides of the nickel plate
except for the fluid-facing one. Realistically, heat flux to the sides and especially
towards the bottom would affect the measurements. Since no detailed information
about the mounting of the nickel plate is given in [126], a more accurate numerical
model could not be used The numerical results show the limits of the thin-skin tech-
nique for heat flux prediction, which overpredicts the heat flux due to the changing
wall temperature.

5.4 Aerodynamic Heating of a Generic Flap
As mentioned in the introduction and shown in this chapter, there exists a mutual
influence between the thermal state of the wall and the external flow. This becomes



5.4. Aerodynamic Heating of a Generic Flap 69

0 0.1 0.2 0.3 0.4 0.5
300

305

310

x [m]

T
W

[K
]

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1
×105

x [m]

q W
[W

/m
2 ]

a) wall temperature b) wall heat flux
t = 0 ms t = 33 ms t = 65 ms
t = 98 ms t = 130 ms experiments [126]

Figure 5.14: Wall data of the CHT simulation of the STBLI case by Schülein [126]

especially important in regions with high heat load, where the surface temperature
is expected to change strongly. In addition to the ability to withstand the heat load,
it is also crucial for sustained hypersonic flight that aerodynamic control surfaces
remain effective during flight.

As a final test case, a generic flap-type control surface is analyzed with the CHT
method. It includes all the relevant physical phenomena (shock/boundary layer in-
teraction, high-temperature effects, diffusion heat flux) and poses one of the more
challenging problems of high-speed flight. Figure 5.15 shows the geometry of the 2D
version of the generic flap case. It consists of a blunt nose, followed by a 150 mm
flat plate section. The flap itself has a length of 50 mm and a variable angle of
α = 20, 25, 30◦. Three different nose radii were compared: rn = 1, 2, 5 mm. The
thickness of the forebody was chosen as rn/2 and varied with the nose radius.

This case is similar to the flap investigated by Exposito et al. [8]. Some changes
were made, however, to make it more relevant as a test case for a realistic control
surface. In their setup, the forebody has a relatively short length of 80 mm, with a
100 mm ramp. Firstly, this is not representative of the proportions of a real control
surface, where the flap would generally be much shorter than the forebody. Secondly,
the bow shock impinges on the flap in their geometry. For a real control surface, this
should be avoided in the vehicle design since it generates strong local heating and
increases the sensitivity regarding the freestream. Finally, their geometry uses very
small nose radii (0.02 mm and 0.1 mm) that are not representative of real geometries.
In the chosen configuration, these issues are addressed with a larger nose radius,
longer forebody, and shorter flap, which eliminates shock impingement on the flap.

Based on a review of past and present hypersonic vehicle projects [13, 127, 128]
and the available data of the future projects by Hermeus [129] and Destinus [130], rep-
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Figure 5.15: Geometry of the 2D version of the generic flap case

grid total cells nodes along flap wall normal nodes
1 38 609 80 109
2 49 329 120 109
3 65 969 120 149
4 71 889 120 149
5 85 569 120 179

Table 5.3: Grid properties of the 2D generic flap case

resentative freestream conditions were chosen. The resulting conditions are Ma∞ = 7
at an altitude of 30 km. Using the US 1976 standard atmosphere model [10], the re-
maining parameters are computed: p∞ = 1171.87 Pa and T∞ = 226.65 K, which
results in a unit Reynolds number of Re∞,1 = 2.557 × 106 1/m.

Turbulence is modeled with the Wilcox k − ω model, the turbulence heat flux is
treated with the RPS model. The fluid is treated as equilibrium air with the model
by Park, Sutherland’s model is used for the viscosity. To improve convergence, the
mesh is adapted to the bow shock. Unless otherwise noted, a generic heat-resistant
steel is used with a thermal diffusivity of a = 5.8 × 10−6 m2

/s, a specific heat capacity
of c = 440 J/kg K and a thermal conductivity of λ = 20 W/m K. Where applicable, an
emissivity of ϵ = 0.8 was used.

A grid study was conducted with the largest nose radius (5 mm). Table 5.3 shows
the properties of the four grids. Using grid 1 as a baseline, the number of nodes
along the flap was increased for grid 2. For grid 3, the number of cells in wall
normal direction was increased and for grid 4, the number of cells along the flat plate
upstream of the flap was increased from 100 to 140. For grid 5, the number of wall
normal cells was increased further. Since the previous results in section 5.2.1 already
showed that a wall spacing of y+ < 1 is necessary to obtain accurate results with
the CHT method, a block with 30 nodes was placed along the wall for all grids. The
resulting wall distance is 0.008 mm at the start of the flap which gives y+

max ≈ 0.75
on the flap.

The separation length is used to choose an appropriate grid. Due to the re-
verse flow, the separation region is characterized by the axial wall shear stress
τW,x = µ∂ũx/∂n|W < 0. Figure 5.16 shows τW,x in the separated region, with the
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Figure 5.16: Axial wall shear stress in the separated region at the start of the 2D
flap for the grids given in table 5.3

flap starting at x = 0.15 m. The separation is captured similarly on all grids with
only minor changes in separation length. With grids 1 and 2 and grids 3 and 4 being
very similar, the separation seems to be most sensitive to the number of cells in wall
normal direction. The increase of wall normal cells in grid 5 does not change the
results drastically, however, so grid convergence can be assumed for grid 4.

5.4.1 Influence of Nose Radius
First simulations of the fluid domain without coupling were conducted. Figure 5.17
a) shows the wall heat flux of the isothermal wall with TW = T∞ along the nose of the
body over the normalized surface coordinate s/rn for the three nose radii. All cases
have a similar scaled shock standoff distance of (xshock−xstag)/rn ≈ 0.37, but when the
nose radius is decreased, the absolute distance between the shock and the stagnation
point decreases. The resulting temperature gradients in the shock layer are larger
and the wall heat flux is increased. This increases the temperature gradient in the
shock layer and the wall heat flux.

In figure 5.17 b) the wall heat flux near the flap is shown over the absolute
coordinate x. Even though the heat flux upstream of the separation region is nearly
identical with all nose radii, the heat flux on the flap differs strongly. There is an
increase of the wall heat flux with smaller nose radii. The plot also shows how the
separation location moves upstream as the nose radius is decreased.

For analyzing the reason for the effects shown in figure 5.17 b), it is useful to
investigate the entropy change in the flow. The entropy change from the freestream
to any point x in the field can be computed using the following equation:

∆s = s(x) − s∞ =
∫ x

∞

cp
T

dT −
∫ x

∞

R

p
dp . (5.4)
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Figure 5.17: Wall heat flux on the α = 20◦ flap for different nose radii

For a perfect gas, this can be simplified to

∆s = s(x) − s∞ = cp(x) ln
(
T (x)
T∞

)
−R(x) ln

(
p(x)
p∞

)
. (5.5)

Since the solution of eq. (5.4) requires the integration along streamlines, the simpler
approximation of eq. (5.5) was used even for the non-perfect gas in the current flow.

The entropy variation defines the entropy layer around the body, i.e., the region
in the flow field that is influenced by the curved section of the bow shock. Figure 5.18
shows the entropy change around the α = 20◦ body. As the nose radius is increased,
the shock moves further away from the body. More importantly, however, the region
that is affected by the shock curvature increases with nose radius. Due to this, the
region with large entropy variation increases in size compared to the size of the flap.
While the resulting height of the entropy layer is smaller than the height of the flap
for rn = 1 mm, the entire flap is inside the entropy layer for rn = 5 mm.

Since this variation in entropy distribution is an effect of the temperature and
pressure distribution, the effective inflow conditions upstream of the flap are affected.
This impacts the size of the separation bubble at the flap. Figure 5.18 shows quali-
tatively that the thicker entropy layer at larger nose radii has a stabilizing effect and
reduces separation size. This can be seen as a downstream shift of the separation
location from x ≈ 0.11 m at rn = 1 mm, to x ≈ 0.12 m at rn = 2 mm, and x ≈ 0.13 m
at rn = 5 mm.

The steady state CHT method was also used to investigate the influence of the
nose radius on the material heating. Figure 5.19 shows the wall temperature a) and
wall heat flux b) along the surface of the 20◦ flap for the three nose radii. Firstly,
the stagnation temperature decreases with the nose radius because the thickness of
the material rn/2 also scales with the nose radius and the inside of the solid wall is
isothermal at T∞. Due to the lower wall temperature and the reduced shock standoff
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Figure 5.18: Entropy variation around the α = 20◦ 2D flap at different nose radii,
the black line marks the edge of the separated region with ux = −0.001 m/s and the
white line follows the shape of the bow shock
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Figure 5.19: Temperature and heat flux along the 20◦ steady 2D coupled flap, the
markers emphasize the stagnation point values

distance, the nose heat flux increases as the nose radius is decreased.
In the region of the flap, however, the temperature with rn = 1 mm is significantly

higher than with the two larger radii. It reaches a maximum at the tip of the flap
of T ≈ 454 K for rn = 1 mm and T ≈ 380 K for rn = 2 mm and rn = 5 mm. At
the flap, the variation of the material thickness with the nose radius is of secondary
importance. The high temperature at the smallest nose radius is mainly a result of
the entropy layer shown in figure 5.18. While the entropy layer has a similar thickness
as the flap for the two larger radii, it is significantly thinner than the flap with the
smallest radius. Thus, the flap at rn = 1 mm is more exposed to fluid outside the
entropy layer. The low wall temperature of the rn = 2 mm case can likely be explained
by the thinner flap material compared to the largest radius.

Due to the effect of the entropy layer, the temperature on the flap is higher than
the stagnation temperature for the smallest nose radius. Depending on the geometry
of the body, a variation of the nose radius may therefore move the region with the
highest temperature from the nose to other parts of the body.

The higher wall temperature in the CHT case also affects the shock-induced sepa-
ration. Figure 5.20 shows the x-component of the wall shear stress. When the hotter
CHT wall is used, the separation moves further upstream and the reattachment loca-
tion moves further downstream. The larger the nose radius, the bigger the difference
between the isothermal and CHT wall, since the solid body is thicker in the forebody.

These trends match the findings of Brown et al. [7] and Exposito et al. [8], who
showed that laminar separation length increases with wall temperature. This effect
may be explained by the lower density in the boundary layer at higher wall tem-
peratures which results in a thicker boundary layer. Due to that, velocity gradients
are smaller and the required pressure gradient for critical dilatation is decreased,
resulting in a longer separation bubble.
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Figure 5.20: Wall shear stress along the 2D 20◦ flap with isothermal (solid lines) and
CHT walls (dashed lines)

Analogous to the wall temperature and heat flux data, the walls shear stress near
the tip of the flap is very similar between the two larger radii, while the smallest
radius results in significantly higher shear stress on the flap. Again, this can be
explained by the thinner entropy layer for the smaller radius, that exposes the flap
to faster external flow.

5.4.2 Influence of the Flap Angle
Three different flap angles were simulated: α = 20◦, 25◦, 30◦. In figures 5.21 to 5.23,
the temperature distribution for the coupled steady state simulations with the three
nose radii are shown. As the flap angle increases, the oblique shock becomes stronger
and the size of the separation increases. The effect is visible for all nose radii, but it is
most pronounced for rn = 1 mm, where it moves upstream to x ≈ 0.06 m. Similarly,
the reattachment point moves downstream as the flap angle is increased. Again this
trend is more pronounced the smaller the nose radius is.

This upstream shift of the separation and the separation shock also affects the
thermal state of the incoming fluid in front of the flap. The separation shock deflects
fluid away from the wall and therefore increases the thickness of the entropy layer.
As the separation shock moves forward, the resulting hot layer covers more of the
flap, resulting in a higher temperature inside the flap.

The resulting temperature distribution on the surface of the body is shown in
figure 5.24 For rn = 5 mm, the flap temperature increases with flap angle. For
rn = 2 mm, the flap temperature increases from α = 20◦ to α = 25◦, but no notable
temperature increase is observed, at the largest angle. For the smallest nose radius,
that trend continues, and the maximum temperature is observed at the intermediate
flap angle. The reason for this behavior might be strong increase of the separation
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Figure 5.21: Temperature distribution in the fluid and solid domains for the
rn = 1 mm 2D flap at the three flap angles; The black line marks the edge of the
separation bubble with ux = −0.001 m/s
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Figure 5.22: Temperature distribution in the fluid and solid domains for the
rn = 2 mm 2D flap at the three flap angles; The black line marks the edge of the
separation bubble with ux = −0.001 m/s
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Figure 5.23: Temperature distribution in the fluid and solid domains for the
rn = 5 mm 2D flap at the three flap angles; The black line marks the edge of the
separation bubble with ux = −0.001 m/s
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Figure 5.24: 2D flap surface temperature in the coupled simulation at the different
nose radii and flap angles

size with small nose radii and large flap angles, which result in a larger distance
between the separation shock and the flap.

Due to the strong increase of the separation size for the smaller nose radii, a larger
nose radius is generally favorable in the design of new hypersonic vehicles. The smaller
separation bubble should reduce the sensitivity of the aerodynamic properties and
make the vehicle better to control. The present investigation shows that a thorough
CHT analysis is required to identify problematic vehicle configurations.

5.4.3 Transient Heating Effects
To investigate the effect of the changing solid temperature during a transient heating
process, unsteady coupled simulations of the 2D flap were conducted. An adiabatic
boundary condition was used for the inner wall of the solid body and simulations
were started from a developed flow field with a solid temperature of T∞ = 226.65 K.
The solid timescale was reduced by cET = 10 000. The surface temperature and
axial shear stress distribution are shown in figure 5.25. The temperature increases
drastically along the nose of the body, especially in the first 10 s of the simulation.
Along the flap, a non-uniform temperature increase can be seen. In contrast to
the coupled steady state simulations, that result in a monotonically increasing flap
temperature along x, a local temperature maximum occurs in the middle of the flap.
In the separated region, the heat flux is lower and the material heats up more slowly.

Due to the higher temperature, the shear stress distribution is affected. Similar
to the observations for the isothermal and steady CHT walls in figure 5.20, the
separation length increases over time as the surface temperature increases. This
again proves the relevance of CHT simulations, since the aerodynamic properties
depend on flow separation. Note that flap angles 25◦ and 30◦ were also investigated
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Figure 5.25: Transient heating of the rn = 5 mm 20◦ flap: wall temperature and shear
stress at different time increments

Coefficient a λ c

c1 0.24248E-18 0.15642E-11 0.58825E-11
c2 -0.63730E-15 -0.45781E-08 -0.22000E-07
c3 0.61378E-12 0.51987E-05 0.33358E-04
c4 -0.26260E-09 -0.28650E-02 -0.24433E-01
c5 0.45175E-07 0.78100E+00 0.89046E+01
c6 0.43307E-05 -0.62269E+02 -0.77103E+03

Table 5.4: Polynomial coefficients for the variable material properties

and showed an analogous result.

5.4.4 Effect of Variable Material Properties
As described in chapter 2, properties of solid materials may change with temperature.
To assess the impact of this effect, a specific heat-resistant steel (X 11 CrMo 9-1)
was chosen from [41]. At room temperature, it has similar properties to the generic
heat-resistant steel used in the rest of the investigations. Using the least-squares fit
the coefficients of the fifth-order polynomial

ϕ = c1T
5 + c2T

4 + c3T
3 + c4T

2 + c5T + c6 (5.6)

are found. They are given in table 5.4, units are omitted for clarity.
The 20◦ flap with the three different nose radii was simulated with these vari-

able material properties. Figure 5.26 shows the surface temperature distribution for
constant and temperature-dependent material properties. The thermal conductivity
of the chosen material increases with temperature, which results in a reduction of
surface temperature compared to the material with constant properties. On the flap,
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Figure 5.26: Effect of variable material properties: temperature distribution along
the 20◦ 2D flap; temperature-dependent material properties are shown in solid lines,
constant properties are dashed

the largest difference is observed for rn = 1 mm, where using temperature-dependent
material properties results in a 14 K reduction of the peak temperature.

The impact on the temperature distribution is not negligible and the temperature-
dependency of the solid material should be taken into consideration. Since different
materials can show drastically different temperature-dependencies, the exact compo-
sition of the solid material must be known, however. Furthermore, the data in [41]
is only given for the temperature range 20 ◦C to 600 ◦C. Extrapolation outside this
range with the polynomial given in equation (5.6) may result in significant devia-
tion from the real distribution due to the high-order terms. For these reasons, the
remainder of the investigations were conducted using constant material properties.

5.4.5 3D Effects
To investigate the flow around a more realistic geometry, a 3D version of the generic
flap was simulated. The geometry of the body is shown in figure 5.27. The symmetry
axis in the x − z plane matches the 2D case. In y-direction, the flap has a width of
50 mm and the distance to the sides of the computational domain are also 50 mm.
Analogous to the 2D case, the entire volume of the flap was treated as solid material.

The surface temperature of coupled 3D simulations are shown in figures 5.28
to 5.30 for rn = 5 mm and α = 20◦, α = 25◦, and α = 30◦, respectively. The plot
also shows surface streamlines in black, which follow the surface shear stress vector.
Similar to the 2D case, the flap generates a flow separation. While for 2D flows,
the separation and attachment locations are defined by τW,x = 0, in 3D, they are
visible as converging and diverging streamlines, respectively. Figure 5.28 also shows
the location of the separation line and reattachment line.
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Figure 5.28: Temperature distribution on the 3D flap with α = 20◦ and rn = 5 mm;
surface streamlines are shown in black

The separation line for all angles has a horseshoe shape with significant shear
stress in y-direction near the sides of the flap. Reattachment occurs at a line about 1/4

along the length of the flap. Near the sides of the flap, separation moves downstream
and reattachment moves upstream, the separation bubble therefore decreases in size
near the sides of the flap. As the flap angle increases the separation length grows,
which is in agreement with the 2D simulations.

The fluid is deflected from the center of the flap and passes the side edges of the
flap. Due to that, a vortex forms in the corner between the main body and the side
of the flap. This can be seen as two divergent streamlines along the flap.

3D effects are also visible in the temperature distribution. A significant increase
in surface temperature is visible near the edges on the sides of the flap. The highest
temperature for all flap angles can therefore be found at the top corners of the flap.
This shows the necessity for 3D simulations with a 3D CHT approach, since a 1D
solid model would fail to capture the impact of the sides of the flap.

To compare the impact of 3D effects on the flap temperature quantitatively, the
temperature along the center of the flap for coupled 2D and 3D simulations with
rn = 5 mm are shown in figure 5.31. The 3D simulations produce higher temperatures



5.4. Aerodynamic Heating of a Generic Flap 83

540
500
460
420
380
340
300
260
220

T [K]

x

z

y

Figure 5.29: Temperature distribution on the 3D flap with α = 25◦ and rn = 5 mm;
surface streamlines are shown in black
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Figure 5.30: Temperature distribution on the 3D flap with α = 30◦ and rn = 5 mm;
surface streamlines are shown in black
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Figure 5.31: Comparison of the axial temperature distribution along the flap in
coupled 2D and 3D simulations with rn = 5 mm

for all flap angles and a distinctly different shape to the temperature distribution.
The temperature increase at the upstream corner of the flap is significantly stronger
in the 3D cases, all of which also show a local minimum at x ≈ 0.17 m.

Figure 5.32 shows the spanwise temperature distribution on the 3D flap with
rn = 5 mm and α = 20◦ at five equidistant locations between the upstream corner of
the flap (x0 = 0.15 m) and the lip of the flap (x4 = 0.196 98 m). As can be seen in
the previous contour plots, the temperature increases with axial position. The plot
shows a significant spanwise temperature variation in a 10 mm wide region near the
sides of the flap. Overall the spanwise variation is relatively small, but due to the
large difference between 2D and 3D simulations, 3D simulations are still required.

5.4.6 Flap effectiveness
To analyze the aerodynamic properties of the flap, the aerodynamic forces on a
150 mm wide section of the body are analyzed. The coefficient for the vertical force
can be defined as:

Cz = 2|Fz,150|
ρ∞U

2
∞Aref

. (5.7)

Note that the lower half of the body was neglected in the simulations. The change
of the aerodynamic coefficients between configurations is therefore of interest, rather
than their absolute values.

The flap effectiveness can then be determined as the rate of change of the coef-
ficient with flap angle dCz/dα. Table 5.5 shows the coefficient of the vertical force on
the 2D flap geometries. The vertical force increases as the flap is extended. This
effect is similar for all nose radii of the forebody with ∆Cz/∆α = 8 × 10−5 1/◦ on the
smallest nose radius and ∆Cz/∆α = 7 × 10−5 1/◦ on the larger two radii. At the same
flap angle, the force also increases with nose radius.
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Figure 5.32: Spanwise temperature distribution on the 3D flap at five equidistant
locations between the beginning and the end of the flap

α
20◦ 25◦ 30◦

rn

1 mm 0.0025 0.0030 0.0033
2 mm 0.0027 0.0031 0.0034
5 mm 0.0036 0.0039 0.0043

Table 5.5: Coefficient of the vertical force Cz on the 2D flaps
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α
20◦ 25◦ 30◦

rn

1 mm 0.0018 0.0020 0.0023
2 mm 0.0021 0.0022 0.0024
5 mm 0.0030 0.0031 0.0032

Table 5.6: Coefficient of the vertical force Cz on the 3D flaps

The corresponding data for the 3D flaps is shown in table 5.6. Since the 3D flap
only covers 1/3 of the width of the body, the vertical forces are smaller than in the
2D case. Again, the vertical force increases with flap angle, but the effectiveness
decreases as the nose radius is increased. It is ∆Cz/∆α = 5 × 10−5 1/◦ on rn = 1 mm,
∆Cz/∆α = 3 × 10−5 1/◦ on rn = 2 mm, and ∆Cz/∆α = 2 × 10−5 1/◦ on rn = 5 mm. This
shows firstly that the flap effectiveness decreases with nose radius since the entropy
layer is thicker, and secondly that these effects are more relevant in the 3D case.



CHAPTER 6
Conclusion

6.1 Summary
In this thesis, the development and application of a conjugate heat transfer coupling
method in the CFD solver NSMB is described. Using the finite-volume method,
the unsteady time-accurate heat equation was implemented and coupled to the fluid
domain. The development was focused on including all relevant heat fluxes at the
interface between domains, which requires an iterative solution due to the diffusion
and radiation heat fluxes. These implemented methods were then validated against
a range of different cases that test different aspects of the problem. With the newly
developed methods, different problems of hypersonic flight were investigated.

Since the CHT problem involves the physics in multiple domains, accurate results
can only be obtained when all domains are treated appropriately. First, a numerical
study was conducted to find appropriate treatments of the inviscid fluxes, the tur-
bulent heat flux, and the mesh. Adapting the mesh to the detached bow shock has
shown to improve convergence and accuracy significantly. The turbulent heat flux
model by Roy, Pathak, and Sinha has also shown to improve the heat flux prediction
near impinging shock waves.

A thorough investigation of the numerical treatment of the finite-difference opera-
tor at the solid/fluid interface was then conducted. A flat plate case in incompressible
and hypersonic flow and a hollow spherical body in hypersonic flow were used. It
showed that the second-order method significantly increases the mesh dependence
compared to the first-order method. While this means that mesh refinement has
a greater impact on the result, in all the investigated cases it has shown to make
mesh convergence more difficult to achieve. Furthermore, the deficiencies of using an
excessively coarse mesh are amplified with the second-order method. The first-order
method is therefore favored.

In a complete implementation of the CHT method, the heat flux due to species
diffusion must be included in the coupling method between the solid and fluid do-
mains. The relevance of this heat flux component was analyzed with the hollow
sphere case, which shows that it is of secondary importance in an equilibrium flow at
the moderate hypersonic Mach numbers investigated here. Only in the direct vicin-

87
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ity of the stagnation point there is a notable contribution from species diffusion of
about 3 %, which quickly decreases along the nose. Since the diffusion heat flux does
not have a significant impact on the overall computational effort, it should still be
included in simulations with reacting flows. Furthermore, the Mach numbers in the
investigations are in the lower range of hypersonic flows. In higher Mach number
flows the temperature in the shock layer is higher, which increases dissociation and
results in larger mass fraction gradients near the wall. The current implementation
only works for equilibrium flows. In non-equilibrium flows, mass fraction gradients
may be higher in regions with a low Damköhler number, which would increase the
effect of the species diffusion heat flux. Similarly, regions with large temperature
gradients, e.g., shocks also introduce mass fraction gradients and affect the species
diffusion heat flux.

The challenging shock wave/turbulent boundary layer interaction case by Schülein
[126] was investigated with and without the structural heating method. Like other
numerical studies, the heat flux is strongly overpredicted compared to the experiment
when using an isothermal wall. Traditionally, this is treated as a deficiency of the
RANS turbulence model. However, treating the case as a transient CHT problem, the
agreement to the experiment can be improved significantly. This shows the impor-
tance of including structural heating simulations even for cases where traditionally
an isothermal wall would be assumed to sufficiently represent the problem.

The hollow sphere CHT case revealed an interesting effect regarding the distribu-
tion of the heat flux. The heat flux distribution along an isothermal spherical nose
section has a local maximum at the stagnation point and then decreases monotoni-
cally along the body. In a CHT simulation, in contrast, the heat flux has a second
local maximum about halfway along the spherical nose. This is due to the decreasing
surface temperature along the nose, which must be determined with a coupled CHT
simulation.

The generic flap case underlined the importance of an accurate determination of
the thermal state of the surface for aerodynamic predictions. Increasing solid body
temperature results in an increased separation length, which affects heat transfer
and aerodynamic properties. Separation size is also strongly affected by the forebody
nose radius, as the longest separation occurs with the smallest radius. Strong 3D-
effects are also visible on the flap, which results in an increased temperature on
the centerline of the control surface compared to the 2D case. On the 3D flap, the
maximum temperature occurs on the sides of the flaps, which may require special
attention for thermal management.

6.2 Outlook
Multiple opportunities for future expansions of the methods present themselves.
Firstly, a comparison of the implemented finite-volume method to a finite-element ap-
proach could be done. The FEM approach enjoys a more widespread application for
structural mechanics and may offer some advantages. Combining multiple domains
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with different solution approaches may, however, also present challenges.
Furthermore, an investigation into faster solution approaches for transient simu-

lations would be beneficial. In the transient simulations in this thesis, the method
of equalizing the timescales between the solid and fluid domains was used. It offers
a drastic acceleration of the simulations while preserving the accuracy of the simula-
tion, but can become limited by stability constraints. As explained in chapter 3, the
maximum allowed timestep in the solid domain is inversely proportional to the ther-
mal diffusivity of the material. As a timescale factor cET > 1 is used, the maximum
timestep in the solid reduces by a factor of cET. The solid domain may then impose
a stricter limit on the global timestep than the fluid. At that point, the method of
equalizing timescales is no longer effective. For short durations in the order of seconds
or milliseconds, the method produces acceptable computational cost. When longer
timespans should be simulated, e.g., the entire trajectory of a hypersonic plane, the
computational effort is excessive. This is especially true for full 3D simulations. Fu-
ture studies should investigate loose coupling methods that may trade accuracy for
efficiency for these applications.

Lastly, the implemented methods can be used as a base for ablation simulations.
Additional species transport equations in the solid domain would have to be included,
and the coupling condition would have to account for melting, sublimation, and
chemical decomposition of the solid body. If the surface regression due to ablation
should be simulated, automatic remeshing would be required. This could be built
upon the implemented methods for bow shock adaptation.
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APPENDIX A
Implementation Details

The described methods and models were first implemented in NSMB version 6.09.14
and later integrated into NSMB version 6.09.24.
A new flag isolid was added for each block and set to 1 for all solid blocks. All
blocks with blocktype > 1 are automatically treated as solid blocks. Additionally,
blocks can be marked as solid by setting solidflag(blocknumber): 1 in the input
file. Material properties can either be specified for all solid blocks, or assigned for
each of the solid blocks separately using the blockwise input nomenclature.
The following files were added to the NSMB codebase to realize the CHT function-
ality:

routine description
bc537.F fill the solid/fluid interface boundary condition
bc580.F fill isothermal/constant heat flux boundary condition for

solid blocks
calcdiffcoeff.F compute the species diffusion coefficient
calclambda.F compute the thermal conductivity for fluids
chtinterface.F communication between blocks at solid/fluid interfaces
cht_variables.F module containing variables relevant for CHT
dtsolid.F compute the timestep in solid blocks
fillchtedges.F fill edges and corner ghost cells of solid blocks
flipwindow.F ensure correct mapping at solid/fluid interfaces
initsolid.F initialize solid blocks
solid_input.F utility for parsing material input for solid blocks
solid_properties.F utility for computing coefficients for temperature-

dependent material properties
solidprop.F compute solid material properties
solidsym.F symmetry condition for solid blocks
updateconduction.F advance solid blocks in time
updchtbc.F update boundary conditions for CHT
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The settings related to conjugate heat transfer simulations are added to the NSMB
input file and follow the existing conventions. The following parameters are available:

Parameter Description Default
chtsolidproperties 0: constant properties

1: temperature-dependent proper-
ties

0

chtthermaldiffusivity thermal diffusivity a for solids -
chtheatcapacity heat capacity c for solids -
chtthermalconductivity thermal conductivity λ for solids -
chtthermaldiffusivitycoeff coefficients for a -
chtheatcapacitycoeff coefficients for c -
chtthermalconductivitycoeff coefficients for λ -
chtdtscheme time scheme for solid blocks:

rk4: 4-stage Runge-Kutta
eul1: Euler explicit

rk4

chtdtfactor CFL number for solids 0.3
chtETfactor timescale-equalization factor 1.0
chtinterfaceorder spacial order of solid/fluid interface

1: first order
2: second order

1

chtinterfacediffusion 0: neglect species diffusion at inter-
faces
1: include diffusion

1
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