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A B S T R A C T

A number of viscosity and flow curve models can be used to numerically investigate the non-Newtonian behavior
of fluids. Although particle size, grain size distribution and concentration play a crucial role in determining the
viscosity and flow behavior of suspensions and colloidal systems, they are either ignored or considered indirectly
in almost all models. We present a mathematical extension of the widely used Cross flow curve model to account
for the effect of concentration and particle size in modeling viscosity and flow curves. In particular, this study
takes into account a variable total number of individual particles in unit volume, which is assumed to be constant
in other models. The proposed extension allows the flow curve to model suspensions that are typically shear-
thinning but can also be Newtonian, or shear-thickening for at different shear rates and concentrations. These
considerations provide insight into studying and designing suspensions, colloidal systems, and other complex
fluid–solid interactions.

1. Introduction

Rheology is the scientific study of how matter deforms and flows.
The rheology of suspensions of cohesive sediments, also known as mud
or slurry, is a complex and specialized area of study within the broader
field of rheology. It involves the study of the flow and mechanical
properties of sediment–water mixtures that contain cohesive, fine par-
ticles. These sediments often exhibit unique and challenging rheological
behavior due to the cohesive forces between the particles.

Understanding the rheological behavior of cohesive sediment sus-
pensions, such as clay suspensions, is of great importance in a wide
range of fields and industries. Examples include hydraulic engineering,
where insights into dredging, hyperconcentrated flow, and erosion
resistance are critical (e.g. Engelund and Zhaohui, 1984; Gularte et al.,
1979); civil engineering, where this knowledge is used in the context of
cement and grouts (e.g. Lapasin et al., 1983); and chemical engineering,
where applications extend to understanding the rheology of ceramic
materials (e.g. Moore, 1959). This interdisciplinary understanding of
rheology contributes significantly to progress and efficiency in these
diverse fields.

Rheological behaviour can be divided into Newtonian and non-

Newtonian categories. Non-Newtonian fluids exhibit flow behavior
that deviates from the simple linear relationship between shear stress
and shear rate observed in Newtonian fluids. These fluids can be clas-
sified into several categories based on their rheological properties. Some
common classifications includes Pseudoplastic (shear-thinning),
dilatant (shear-thickening), Bingham plastic, and viscoplastic behav-
iour, which are characterized by unique viscosity responses to changes
in shear stress or shear rate. These classifications provide a framework
for understanding the diverse behaviors exhibited by non-Newtonian
fluids, and they are crucial for designing and optimizing processes in
various fields.

In rheological modeling, there are two distinct model ideas for using
the yield point, which is the minimum stress or force that must be
applied to a material before it begins to deform. The first variant re-
quires a definition of the tensor of internal stresses in such a way that
elastic components can be taken into account. The second variant as-
sumes that the material behaves as a high viscosity fluid below the yield
point. The most well-known example of this type is Cross (1965) or
Carreau (1972) model, which are available in different versions.

According to Cross (1965), the largest and most important class of
non-Newtonian fluids are those which exhibit pseudoplastic flow, i.e.,
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which show a decrease in viscosity with increasing rate of shear. On the
assumption that pseudoplastic flow is associated with the formation and
rupture structural linkages, Cross (1965) derived a new flow equation
which is probably the most widely used model. While this rheological
model has its merits in capturing the complex behavior of non-
Newtonian fluids, it also comes with certain disadvantages and limita-
tions. First, the model ignores the dependence of viscosity on solid
concentration. While some researchers have addressed this by incor-
porating concentration dependent boundary viscosities, this adjustment
is not inherent in the Cross model. On the other hand, the effect of
particle size and its distribution on the rheological behavior of suspen-
sions is not considered and is still lacking in the literature. Therefore,
more work is needed to develop models that accurately account for a
wide range of particle sizes and suspension concentrations
simultaneously.

The effect of suspension concentration on the rheological behavior of
a suspension is a critical aspect of understanding how such systems
behave. As the concentration of solid particles rises, the viscosity of the
suspension generally increases. This is because there are more particles
interacting with each other and the surrounding fluid, leading to higher
resistance to flow. This increase in viscosity can sometimes be non-
linear, particularly at high concentrations. At higher concentrations,
the suspension may transition from a Newtonian behavior to shear-
thinning or shear-thickening, depending on factors like particle size,
shape, and surface properties. At high concentrations, the increased
likelihood of particle–particle interactions can also lead to aggregation,
which impacts the rheological behavior. Additionally, gravitational
sedimentation may become more pronounced, affecting the flow
behavior over time. Normally, The dependence of the viscosity of a so-
lution on the concentration c (expressed as volume fraction or as, weight
by volume) can be represented as a power series of the type

μ = μ0
(
1+ a1c+ a2c2 + a3c3 + …

)
(1)

where μ0 is the viscosity of the pure solvent (Simha, 1949). Considerable
experimental and theoretical effort has been devoted to a determination
of the coefficient a1, the so-called intrinsic viscosity, for suspensions of
particles of various shapes since Einstein’s (Einstein, 1905) original
hydrodynamic treatment of spheres.

Particle size is one of the most important characteristics of particu-
late materials. As shown in Fig. 1, smaller particle size for a given solid
fraction results in an increase in the number of particles in a given
volume. As a result, the smaller particles have a significantly larger
particle surface area. The dynamics of very small particles involves
Brownian motion against an applied shear force, as observed by Perrin
(1910), electrostatic repulsion, or steric hindrance.

At elevated shear rates, the viscosity contrast between small and
large particles diminishes due to favorable rearrangement along the flow
direction, as illustrated in Fig. 2.

Monodisperse materials consist of particles or molecules that are

nearly the same size and shape. In other words, the size distribution is
very narrow, and all particles are uniform. However, in most suspen-
sions, the particle sizes are not uniform. The optimal packing density,
and therefore the maximum solid fraction, is enhanced by having par-
ticles of different sizes (polydispersity). This variability allows for more
efficient space filling. A wider particle size distribution has a more
pronounced positive effect on packing density. Uniform materials tend
to have lower viscosities compared to non-uniform materials with the
same volume fraction. This is because the uniformity in particle size
reduces the friction and collisions between particles, making the mate-
rial flow more smoothly.

Comparing the viscosity of two monodisperse suspensions with a
polydisperse, Fig. 3 shows a bigger viscosity for the polydisperse
mixture. However, it is worth noting that if the material size is greatly
reduced, then smaller particles will tend to increase the viscosity for a
given shear rate and solids content (Ancey and Jorrot, 2001). In
colloidal suspensions with bimodal particle size distributions, smaller
particles can act as lubricants (Ancey, 2001).

2. Theory description

In the following sections, we propose two different hypotheses for
analyzing and understanding the rheological behavior of the suspen-
sions at hand. These hypotheses represent different conceptual frame-
works and assumptions, each offering a unique perspective on the
matter under investigation. The application of these two hypotheses
serves to explore the problem comprehensively, shedding light on its
intricacies from multiple angles. By considering these different

Fig. 1. Constant solid fraction ϕs = 0.3 with different sphere size, P is number
of particles (modified from Anton Paar GmbH Sitemap).

Fig. 2. The variation in shear rate for both small and large spheres for a con-
stant solid fraction (modified from Anton Paar GmbH Sitemap).

Fig. 3. Effect of particle size and polydispersity on viscosity: Comparison of
small and large spheres under constant solid fraction and shear rate.
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viewpoints, we aim to provide a well-rounded and nuanced under-
standing of the issue, allowing for different potential explanations and
interpretations that may enrich our overall understanding.

2.1. The first hypothesis

Under the premise that particles form linear chains resembling rigid
rods, Casson (1959) formulated a theory tailored for nonaqueous
pigment suspensions. However, challenging this assumption, Cross
(1965) embraced a more straightforward approach. This alternative
method considers a random chain formation, yielding a novel form of
the flow equation. In fact, he postulates that flocculation involves the
presence of interconnected particle groups. Under conditions of steady
shear, there is an average group size that depends on the intensity of the
applied shear. These groups are assumed to have the structure of
randomly kinked chains. Finally, the equilibrium of an average chain
having L linkages is considered as

dL
dt

= k2P−

(

k0 + k1 γ̇n
)

L (2)

where γ̇ is applied shear rate in reciprocal seconds; P is total number of
single particles (linked or otherwise) in unit volume; k0 +k1 γ̇n is
assumed to be the effective rate constant for rupture, i.e. breakdown
involves the nth power of the shear rate; and k2 is a constant.

To gain further insight into the non-Newtonian rheology of suspen-
sions, it is useful to consider particle properties for a comprehensive
characterization of suspensions. Here we assume that when a bond is
formed between particles in a suspension and they stick together, they
form a new, single, larger particle. This changes the overall rheological
behavior of the system and is often associated with the idea of floccu-
lation, the process of particles coming together to form larger aggregates
or flocs.

A link between the total number of particles per unit of volume at
time t and the number of primary particles N(t) inside a floc of size df (t

)

is defined by Ali and Chassagne (2022) as

P

(

t

)

=
ϕs

N
(
t
)
d3p

(3)

where ϕs is volume fraction of primary particles in suspension and dp is
particle size.

According to Kranenburg (1994), the relation between number of
primary particles in a floc and floc size is given as

N
(

t
)

=

(
df

(
t
)

dp

)nf
(4)

where nf is usually termed “fractal dimension”, in reference to the study
of the flocculation of monodisperse primary particles.

Substituting Eq. (4) into Eq. (3) gives

P

(

t

)

= ϕs
d−nf
f

d3−nf
p

(5)

We have here made the assumption that only one sediment fraction is
present. From Eq. (5) it follows that when nf < 3 the number of indi-
vidual particles P decreases with increasing sediment size dp. In Win-
terwerp (1998), the fractal dimension of the mud flocs is assumed to be 2
(although nf is known to range between 1.8 and 2.5). A more legitimate
consideration is suggested by Khelifa and Hill (2006), which considers a
continuous decrease in the fractal dimension as the size of the flocs in-
creases. In this context, however, we consider the constant fractal
dimension nf for the sake of simplicity. From Eq. (5) it is also clear that
the total number of single particles increases as the sediment fraction ϕs
increases.

Combining Eq. (2) and Eq. (5) gives

dL
dt

= k2ϕs
d−nf
f

d3−nf
p

−

(

k0 + k1γ̇n
)

L (6)

Two concepts, the equilibrium flow curve and the steady shear flow
curve, are often associated with the study of rheology. Here we use the
concept of the equilibrium flow curve, which describes the behavior of
the material under constant stress and allows the system to reach a
stable, long-term state. Equilibrium is attained when dL/dt = 0, hence

L = k2ϕs
d−nf
f ,eq

d3−nf
p

1
k0 + k1 γ̇n

(7)

where df ,eq is the equilibrium floc size.
Considering L = L0 when γ̇ = 0, we obtain

L0 =
k2ϕs

k0
d−nf
f ,0

d3−nf
p

(8)

where df ,0 is the initial floc size when γ̇ = 0.
Dividing Eq. (7) by Eq. (8), one can obtain L/L0 as

L
L0

=

(
df ,0

df ,eq

)nf 1
1+ βγ̇n

(9)

where β = k1/k0. It is now necessary to relate L/L0 to viscosity of sys-
tem. Similar to Cross (1965), it can be obtained as

L
L0

=
μ − μ∞

μ0 − μ∞
(10)

where μ0 and μ∞ are viscosity when γ̇ = 0 and γ̇→∞, respectively.
Combining Eqs. (9) and (10) gives the new proposed flow equation as

μ = μ∞ +

(
df ,0

df ,eq

)nf μ0 − μ∞

1+ βγ̇n
(11)

where
(
df ,0/df ,eq

)nf is the extension factor that relates the viscosity to the
equilibrium floc size. It should be noted that Eq. (11) refers to equilib-
rium value of viscosity.

In our rheological model, we take into careful consideration the
impact of both concentration and sediment size, recognizing that these
factors play pivotal roles in shaping the model’s outcomes. The equi-
librium floc size, which is a fundamental determinant of a suspension’s
rheological behavior, is intricately tied to these parameters. Concen-
tration affects the extent of particle–particle interactions and the overall
density of the suspension, which, in turn, influences floc formation and
size. Moreover, sediment size directly influences the agglomeration
tendencies and the ease with which particles can form stable flocs. By
incorporating these crucial parameters into our rheological model, we
ensure a more accurate representation of the real-world behavior of
suspensions, allowing us to make informed predictions and optimize
processes across a range of applications where such systems are
encountered.

2.2. The second hypothesis

The second hypothesis assumes that there is a direct relationship
between floc size and the number of linkages between particles. That is,
as the number of links between particles increases, we expect the floc
size to increase proportionally. In other words, we believe that the two
variables are positively correlated and that changes in one will result in
corresponding changes in the other (L∝df ).

The relationship between floc size and the number of linkages be-
tween particles in a colloidal system can be complex and may depend on
various factors such as the nature of the particles, the type and con-
centration of the dispersing medium, and the presence of additives.
However, a simplified equation to represent a hypothetical relationship
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might be expressed as:

df = kLm (12)

where k is a constant representing the strength of each linkage and m is
an exponent that characterizes the nature of the relationship. This
equation suggests that the floc size is related to the number of linkages,
with the strength of the linkages represented by the constant k, and the
exponent m determining how the floc size changes concerning the
number of linkages.

It is important to note that the actual relationship between floc size
and the number of linkages is likely to bemore complex andmay involve
additional factors. Experimental data and amore detailed understanding
of the specific colloidal system would be needed to develop a more ac-
curate and applicable equation.

Using Eq. (12), the rate of change of the number of links can be
expressed as

dL
dt

=
1

mk1/md
1/m−1
f

(
ddf
dt

)

(13)

The equilibrium is reached when dL/dt = 0, which corresponds to
ddf/dt = 0. Consequently, ddf/dt = 0 leads to df ,eq. Essentially, in the
state of equilibrium, L can be linked to the equilibrium flock size, and
this relationship is represented by substituting df ,eq for df in Eq. (12) as

L =

(
df ,eq

k

)1/m

(14)

Similarly, considering L = L0 when γ̇ = 0, we need to substitute df ,0

for df in Eq. (12), which gives

L0 =

(
df ,0

k

)1/m

(15)

Applying Eqs. (14) and (15), one can obtain L/L0 as

L
L0

=

(
df ,eq

df ,0

)1/m

(16)

For the sake of simplicity in our analysis, we make the assumption
that the floc size at zero shear rate is equal to the primary particle size,
that is df ,0 = dp. The assumption that no aggregation or breakup occurs
at zero shear rate can be reasonable in certain contexts, depending on
the specific characteristics of the system being studied. However, it is
important to consider the nature of the material and the conditions
under which it is being modeled.

This assumption allows us to establish a baseline reference point
where there is minimal or no shear-induced deformation of the particles
within the colloidal system. While real-world conditions may lead to
some variations, this assumption simplifies our calculations and pro-
vides a useful starting point for understanding the impact of shear rate
on floc size. It is important to acknowledge that this assumption serves
as a simplification and may not hold under all circumstances, but it aids
in making our analysis more manageable and serves as a valuable initial
approximation. With this assumption Eq. (17) can be expressed as

L
L0

=

(
df ,eq

dp

)1/m

=
(
d̂f ,eq

)1/m (17)

where d̂f ,eq is the dimensionless equilibrium floc size.
In order to obtain the right values at boundaries when γ̇→0 and ∞, it

is now necessary to relate L/L0 to μ/μm which results in

μ =

(
df ,eq

dp

)1/m

μm =
(
d̂f ,eq

)1/mμm (18)

where
(
df ,eq/dp

)1/m
=

(
d̂f ,eq

)1/m is the extension factor for the second
model.

2.3. Derivation of the extension factors and final models

In order to define the extension factors in detail, examining the
equilibrium solution of floc size is required. For this purpose, we
describe the governing equations for floc size through an equilibrium
assumption to yield an equation for the equilibrium floc size based on
aggregation and breakup rates. The extension factor is then again
calculated using the obtained equations. With this approach, there is a
built in assumption that flocs are in equilibrium with the local condi-
tions since time dependence is removed.

Using the relationship between the sediment mass concentration c,
the aggregate structure of a floc (assumed to be a 3-D fractal entity), the
shear-driven collision kinetics, and a proposed floc erosion or break-up
rate model based on turbulent shear, Winterwerp (1998) showed that
the conservation equation can be written as a rate equation for the
average floc size as follows

ddf

dt
=

kʹ
A
nf

c
ρs
dnf −3
p d4−nf

f γ̇
⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟Aggregation

−
kʹ
B
nf
df γ̇

(
df − dp

dp

)p(τt
τy

)q

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟Breakup

(19)

where τt = μγ̇ is the turbulence-induced stress on the floc, and τy = Fy/d2f
represents the strength of the floc, where Fy is the floc yield strength in
dimension of force. Two dimensionless primary model coefficients, kʹ

A

and kʹ
B, are the aggregation and breakup coefficients, respectively which

play a key role in this context. The aggregation coefficient is influenced
by the efficiency of statistical collisions leading to aggregation and a floc
shape factor. Both kʹ

A and kʹ
B are calibration parameters and are deter-

mined by factors such as sediment adhesion properties, which are
influenced by primary particle size, sediment mineralogy, water chem-
istry, organic matter, and particle shape (Kuprenas et al., 2018). In
addition, the nondimensional power coefficients in the floc erosion rate
kernel must be determined. These are denoted as p and q.

The equilibrium value of the floc size df ,eq can be calculated if ddf/dt
in Eq. (19) is set to zero, i.e., the aggregation and breakup rates are
balanced. Letting ddf/dt = 0 and assuming that df ,eq≫dp, the equilib-
rium floc size can be obtained as

df ,eq = [αʹcγ̇−q]
1/(2q+p+nf −3) (20)

where

αʹ =
1
ρs

kʹ
A

kʹ
B
dnf +p−3
p

(
μ
Fy

)−q

(21)

Numerous studies have established a proportional relationship be-
tween the equilibrium floc size and the Kolmogorov microscale. In
particular, it has been found that df ,eq∝γ̇−1/2, as shown in studies by
Eisma (1986), Scully and Friedrichs (2007), Verney et al. (2009). To
maintain this proportionality, Winterwerp (1998) emphasized that the
exponent p should satisfy the condition that it is equal to 3−nf , or
equivalently, that p+nf −3 = 0 (Kuprenas et al., 2018). Thus, Eqs. (20)
and (21) reduce to

df ,eq = (αʹc)1/2q γ̇−1/2 (22)

and

αʹ =
1
ρs

kʹ
A

kʹ
B

(
μ
Fy

)−q

(23)

To ensure that Eq. (22) is valid when γ̇ = 0 and df ,eq ∕= 0 when γ̇→∞
or ϕs→0, it is modified here as

df ,eq = (αʹc)
1
2q 1

(
kʹ
0 + kʹ

1γ̇1/2
) + dp (24)
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where kʹ
0 and kʹ

1 are constants. Setting γ̇ = 0 in Eq. (24), we obtain df ,0 as

df ,0 =
1
kʹ
0
(αʹc)

1
2q + dp (25)

Finally, the proposed extension factor can be obtained by dividing
Eq. (25) by Eq. (24) and exponentiating to the power of nf as

F

(

c, γ̇

)

=

(
df ,0

df ,eq

)nf
=

[
1+ A(αʹc)1/2q

1+ B(αʹc)1/2q

]nf

(26)

where A = 1/
(
dpkʹ

0
)
,B = 1/

(
dpḱ0

(
1+βʹγ̇1/2

))
and βʹ = kʹ

1/ḱ0. To

determine the behavior of the function F, i.e. Eq. (26), as shear rate
approaches zero and infinity, one can look at the limits of the function as

lim
γ̇→∞

F
(

c, γ̇
)

=
(
1 + A(αʹc)1/2q

)nf
(27)

lim
γ̇→0

F
(

c, γ̇
)

= 1 (28)

So there is a transition function that helps to achieve smooth and
continuous changes between these two states or conditions. Under-
standing this transition function is fundamental to mathematical
modeling. This allows us to describe and analyze the proposed model,
providing a mathematical representation of how one variable changes
with respect to another.

Here we define the dimensionless equilibrium floc size as

d̂f ,eq =
df ,eq

dp
= 1+B(αʹc)1/2q (29)

Therefore, Eq. (26) can also be rewritten as

F

(

c, γ̇

)

=

[
1 + A(αʹc)1/2q

d̂f ,eq

]nf

(30)

As can be seen from Eq. (30), the transition from the lower bound to
the upper bound is made by the dimensionless floc size.

Finally, substituting Eq. (30) into Eq. (11) gives

μ = μ∞ +

[
1+ A(αʹc)1/2q

d̂f ,eq

]nf μ0 − μ∞

1+ βγ̇n
(31)

Note that if βʹ is chosen to be large, then B→0 and therefore Eq. (31)
is reduced to

μ = μ∞ +
[
1+ A(αʹc)1/2q

]nf μ0 − μ∞

1 + βγ̇n
(32)

Eq. (31) is the final form of the model proposed based on the first
hypothesis. A notable feature of Eq. (31) is its ability to yield different
initial viscosities at zero shear rate for the same sample at different
concentrations. This is in contrast to the original Cross model, which
requires the specification of a single μ0 value for each flow curve,
regardless of whether they are from the same sample but at different
concentrations. Eq. (31) shows that viscosity remains dependent on both
concentration and grain size even as the shear rate approaches zero.

Similarly, substituting Eq. (29) into Eq. (18) gives the final form of
the proposed model based on the second hypothesis as

μ =
[
1 + B(αʹc)1/2q

]1/m
μm (33)

It is imperative to recognize that Eq. (33) eliminates the need to
specify upper and lower viscosity limits, which is a notable advantage,
especially in terms of computational simplicity and straightforward
applicability. Moreover, the formulation obviates the need to define the
parameters n and β, which are required in the context of the first hy-
pothesis. This feature makes the second hypothesis much more
straightforward, offering improved simplicity while taking into account

the influence of particle size and concentration.

3. Experimental data

Two samples were collected from the Ems estuary at Gandersum and
Jemgum for characterization purposes. The assessment involved the
determination of the loss on ignition, serving as an indicator of the
organic content of the samples, and the grain size distribution, which
was measured through triple analyses. The Gandersum (G) sample
exhibited a loss on ignition of 8.9 %, while the Jemgum (J) sample
recorded 5.6 %. The particle size distribution is illustrated in Fig. 4,
showcasing similar grading curves, and the median grain diameters are
denoted as dG = 15.2 μm and dJ = 17.4 μm. The solid content of the
samples was ascertained by subjecting them to a 24-h drying process in a
drying oven at 105 ◦C. The sediment density was determined to be 2650
kg/m3 and the water density was established as 1000 kg/m3. The
samples in their original state had a solids content of ϕs = 0.2. The solid
fractions ϕs = 0.16, 0.13, 0.10 and 0.07 were then produced.

Depending on the site and the sampling point, the samples are given
the corresponding designation G0.16, G0.13, and so on. Fig. 5 clearly
shows that the samples with a solids content of ϕs = 0.16 tend to have a
solid character, and those with ϕs = 0.07 tend to have a liquid character.

Rotation tests were performed with a rheometer (Physica MCR301
from Anton Paar GmbH), a plate measuring system with a diameter of
60 mm (PP60/Ti-SN1493) and a gap distance of 1 mm. Rotation tests
were performed in controlled shear stress (CSS) mode for 20 s at a shear
rate of γ̇ = 5 s−1 shear rate. This was followed by a rest period of 30 s.
The measurements were then performed in the shear stress range given
in Table 1, starting with 5 s measurement point duration and decreasing
logarithmically to 1 s measurement point duration. In total, a maximum
of 140 test points were excluded or the test was terminated when a
maximum shear rate of 100 s−1 was reached. This corresponds to the
measurement protocol presented by Chmiel et al. (2020).

The third sample (M) was also collected from the Ems estuary. The
measurement technique used for this sample differs from that used for
the other two samples. As a result, it shows a distinct behavior that
distinguishes it from the other two and is therefore selected for model
evaluation here. The solid content of the sample was ascertained by
subjecting it to a 24-h drying process in a drying oven at 105 ◦C and
exhibited a loss on ignition of 10.5 % The samples in their original state
had a solids content of ϕs = 0.1. The solid fractions ϕs = 0.085, 0.07 and
0.055 were then produced. Then, the dynamic viscosity and shear rate of
the sample was determined over 50 measuring points with for each solid
fraction. For this sample, rotation tests were performed with a rheom-
eter (Physica MCR301 from Anton Paar GmbH), a plate measuring
system with a diameter of 60 mm (PP60/Ti-SN1493) and a gap distance
of 0.5 mm. Rotation tests were performed in controlled rating (CR)
mode. Here a certain speed of the plate is set and the shear stress
required for this is measured.

4. Result and discussion

4.1. Analysis of the first model

Fig. 6 illustrates the investigation of the extension factor, as defined
by Eq. (30), in the context of a constant sediment fraction ϕs = 0.1. The
plotted results suggest that there is a visible and expected trend: as the
rate of aggregation to breakup (αʹ) increases, neighboring particles
attract each other more and particles will cluster together to form flocs.
As flocs are porous and behave as rigid particles when slowly sheared by
the suspending fluid, flocculation increases the apparent viscosity of the
suspension (Fusier et al., 2018). As can be seen from Fig. 6, at higher
shear rates the extension factor becomes constant and viscosity de-
creases to its lower boundary value μ∞.

Fig. 7 shows the variation of the extension factor and application of
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the new flow equation, represented by Eq. (31), with a constant sedi-
ment fraction ϕs = 0.1 for different particle sizes. As expected, when
particle size decreases, the total number of particles increases within the
same volume concentration. Due to the increased number of smaller
particles, there is a higher probability of particle collisions within the
fluid, leading to the formation of larger aggregates or flocs. Similarly, at
low shear rates, the disruptive forces are minimal and flocs create more
structurally stable aggregates that resist deformation under shear. This
resistance to flow results in an increase in viscosity for small shear rates.
This is consistent with Fig. 2 and is a logical expectation since larger
particles, with more mass and potentially less surface area, tend to
exhibit less rapid or abrupt changes in viscosity in response to variations
in shear rate.

Fig. 4. Sieve curves and grain size distribution of the Gandersum (G) and Jemgum (J) silt samples.

Fig. 5. Gandersum (G) and Jemgum (J) silt samples with the volumetric solid fractions ϕs = 0.16, 0.13, 0.10 and 0.07.

Table 1
Overview of the measurements carried out with default parameters.

Sample Shear stress range measurement (CSS)

G0.16 τ = 40–600 Pa
G0.13 τ = 20–400 Pa
G0.10 τ = 10–200 Pa
G0.07 τ = 0.1–50 Pa
J0.16 τ = 40–600 Pa
J0.13 τ = 20–400 Pa
J0.10 τ = 10–200 Pa
J0.07 τ = 0.1–50 Pa

Fig. 6. Variation of (left) the extension factor, i.e. Eq. (30right) viscosity μ according to Eq. (31) with constant sediment fraction ϕs = 0.1 for a range of αʹ values.
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The relationship between viscosity and solid volume fraction in a
suspension or colloidal system, which is not considered in the original
Cross model, for different values of q and shear rates is depicted in
Figs. 8 and 9, respectively. According to Fig. 8, as the value of parameter
q increases, the variations in the extension factor F(c, γ̇) with respect to
the volumetric sediment fraction ϕs become less pronounced. Conse-
quently, the variations in viscosity with sediment fraction also decrease.

For certain systems, especially those involving polymers or colloids,
viscosity may continue to increase with concentration due to increased
entanglements or interactions between polymer chains or particles. This
behavior can be clearly seen in Fig. 9. It should also be noted that the
rate of increase in viscosity with increasing solid volume fraction gets
smaller at higher constant values of shear rate.

Fig. 10 shows a parametric plot of viscosity according to Eq. (31) as a
function of two key variables: solid volume fraction ϕs on the x-axis,
shear rate γ̇ on the y-axis, with viscosity μ plotted on a logarithmic scale
on the z-axis. As the solid volume fraction increases along the x-axis, the
corresponding trend in viscosity becomes apparent. Specifically, the
logarithmic scale on the z-axis shows that the viscosity exhibits a sig-
nificant upward trend as the solid volume fraction increases. This
behavior is consistent with the expected outcome in many complex

fluid–solid systems, where an increase in the concentration of solid
particles in a fluid medium typically leads to an increase in the resis-
tance to flow, and hence an increase in viscosity. At the same time, the
effect of shear rate, shown on the y-axis, becomes apparent. The loga-
rithmic scale on the z-axis helps to visualize that as the shear rate in-
creases, there is a noticeable decrease in viscosity.

4.2. Analysis of the second model

Model response to variation of volumetric sediment fraction ϕs and
different values of constant shear rates γ̇ according to Eq. (33) is shown
in Fig. 11. The observed trends in this figure highlight the model’s
sensitivity to changes in sediment fraction, illustrating how alterations
in the volume of sediment within the fluid affect the system’s response.
Furthermore, the diverse behavior under varying shear rates provides a
comprehensive view of the model’s dynamics across different flow
conditions. The significance of shear rates in influencing the overall
response of the system is evident. As expected at low shear rates, volu-
metric sediment concentration makes a noticeable difference in viscos-
ity. As the shear rate is increased, the model viscosities approach the
minimum predefined viscosity, which may be the viscosity of the fluid.

Fig. 7. Variation of (left) the extension factor, i.e. Eq. (30right) functionality of the new flow equation, i.e. Eq. (31), with constant sediment fraction ϕs = 0.1 for a
range of particle sizes dp.

Fig. 8. Variation of (left) the extension factor, i.e. Eq. (30right) viscosity, i.e. Eq. (31), with constant shear rate γ̇ = 0.01 for a range of q.
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This shows the transition from a sediment-influenced regime to a shear-
dominated regime.

However, it should be noted that the absence of an increase in vis-
cosity at low shear rates in the model is a consequence of neglecting the
effect of floc formation. It is due to the assumptions made in this hy-

pothesis and the consideration of df ,0 = dp.
Fig. 12 illustrates a parametric plot of viscosity (Eq. (33)) with solid

volume fraction ϕs on the x-axis and shear rate γ̇ on the y-axis, with
viscosity μ displayed on a logarithmic scale on the z-axis. As expected, an
increase in solid volume fraction results in a substantial upward trend in
viscosity, and an increase in shear rate correlates with a pronounced
decrease in viscosity.

4.3. Model verification

Evaluation of the models with the tested samples G0.16 −G0.07 and
J0.16 −J0.07 are shown in Figs. 13 and 14, where the measured values are
represented by circles and the approximated models according to Eqs.
(31) and (33) are represented by solid lines, respectively. The figures
show the viscosities as a function of the shear rate. All samples show
non-Newtonian, shear-thinning behavior, as the viscosities decrease
with increasing shear stress. As can be seen from Figs. 13 and 14, there is
an acceptable agreement between the measured data and the simulated
results. The visual comparison between the experimental observations
and the simulated results shows a close match, indicating that the
simulation accurately captures the essential features of the system under
study.

To account for the effect of solid volume fraction or concentration on
viscosity, researchers typically consider variable boundary viscosities (i.
e., μ0 and μ∞) for each concentration in the classical Cross model. This is
usually accomplished by treating the boundary viscosities as an expo-
nential function of the solid volume fraction or concentration. However,

Fig. 9. Variation of (left) the extension factor, i.e. Eq. (30right) viscosity, i.e. Eq. (31), with constant q for different values of γ̇.

Fig. 10. Viscosity as a function of shear rate (γ̇) and solid volume fraction (ϕs)
according to Eq. (31).

Fig. 11. Model response to (left) variation of volumetric sediment fraction (ϕs) and (right) different values of constant shear rates (γ̇) according to Eq. (33).
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in the present modeling framework, it is imperative to emphasize that all
parameters, including the boundary viscosities described in Eq. (31),
remain constant for each flow curve, except for the concentration and
grain size, which are of a variable nature in each individual sample. In
other words, while the traditional approach relies solely on a fitting
method, the proposed models autonomously account for the physics of
the problem to achieve this. Furthermore, since sample J has almost the
same particle size distribution as G, the same calibration parameters are
also used for it with different particle size. This is done intentionally to
analyze the efficiency of the extended models in considering the effect of
particle size in viscosity modeling.

In particular, the models have an inherent ability to discriminate
between different measurements on the basis of their concentration and
particle size values. This is a marked departure from the conventional
Cross model, which by design does not incorporate concentration as a
discriminative factor.

Table 2 provides a detailed compilation of the calibration parameters
employed in modeling the viscosity using both proposed models for
samples denoted as G and J. These parameters are crucial in fine-tuning
the viscosity models to align with the observed rheological behavior of
the respective samples. The calibration process involves adjusting these
parameters to optimize the models accuracy. As presented by this table,
the same calibration parameters are used for each sample for each
model. The only distinguishing parameter is the value of the particle
size, which represents an accurate prediction of the viscosity for each
sample. However, it should be noted that the two proposed hypotheses
represent completely different conceptual frameworks and assumptions,
each offering a unique perspective on the matter under investigation.
The first hypothesis suggests that as the floc size df increases, the
number of flocs N also increases, resulting in a decrease in the number of
primary particles P and consequently a decrease in the rate of change of
the linkage dL/dt. On the other hand, the second hypothesis proposes a
direct correlation between floc size and the number of links between
particles. It is important to recognize that these hypotheses come from
different theoretical frameworks, and each offers a unique interpretation
of the underlying mechanisms at play. While the calibration parameters
for each hypothesis may appear similar, they are derived from funda-
mentally different perspectives. Therefore, while the calibration pa-
rameters may appear identical, they are tailored to reflect the specific
nuances and assumptions inherent in each hypothesis. For this reason,
Table 2 shows dramatically different calibration values for the same
parameters when using the two different models.

The flow curves obtained by Eq. (31) and the measured results of the
tested sample M0.100 −M0.055 are shown in Fig. 15. As can be seen from
this figure, an important attribute of sample M is that its viscosity in-
crease at low shear rates. This characteristic is absent in samplesG and J.
The main objective is therefore to demonstrate that the proposed model
can effectively account for this viscosity behavior, unlike the original
Cross model which fails to do so. This phenomenon can be explained by
the fact that at low shear rates, aggregation dominates the breakup
process, resulting in an increase in floc size. This increase in floc size
subsequently causes an increase in viscosity. However, once the shear
rate exceeds a certain threshold to effectively break up the flocs, a

Fig. 12. Viscosity as a function of shear rate (γ̇) and solid volume fraction (ϕs)
according to Eq. (33).

Fig. 13. Gandersum (G) and Jemgum (J) silt samples with the volumetric solid fractions ϕs = 0.16, 0.13, 0.10 and 0.07, and the flow curves obtained by Eg. (31).
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decrease in viscosity begins. The results show that the first proposed
model is able to model this fact.

Fig. 16 illustrates the results derived from Eq. (33). It is apparent that
Eq. (33), due to its simplified nature, does not accurately capture the
initial increase in viscosity at low shear rates, unlike the first proposed
model which demonstrated this capability. As expected, the viscosity
decreases continuously with increasing shear rate. The results also
indicate that the second model behaves similarly to the classical Cross
model at low shear rates, while additionally incorporating the effect of
concentration in values of μ0. Comparing the results of the first and
second proposed models for sample M, it is evident that the first model
offers superior advantages over the second. From a mathematical
perspective, the pre-factor in Eq. (31) increases with the shear rate.
However, when the shear rate reaches a critical value, or becomes suf-
ficiently high, the second term (originating from the original Cross
model) dominates, leading to a reduction in viscosity as the shear rate
continues to increase. This factor not only accounts for the effects of
particle diameter and concentration but also demonstrates that very low
shear rates can enhance particle adhesion, thereby increasing viscosity.
Conversely, Eq. (33) represents a simplified model where viscosity
continuously decreases with increasing shear rate, characterized by a
single shear rate parameter in the denominator of the equation.

The observed discrepancy in Figs. 13–16 is partly due to the decision
not to perform a separate calibration process for each individual sample.
Although performing such a calibration could potentially improve the

Fig. 14. Gandersum (G) and Jemgum (J) silt samples with the volumetric solid fractions ϕs = 0.16, 0.13, 0.10 and 0.07, and the flow curves obtained by Eg. (33).

Table 2
Calibration parameters used to model the viscosity for samples G and J.

Model Sample Calibration parameters

dp αʹ β β́ q n nf ḱ0 m μ0 μ∞

Eq. (31) G 15.2e−6 0.07 4e3 1e4 0.11 1.0 1.8 7.6e11 – 6e3 5e−2
J 17.4e−6 0.07 4e3 1e4 0.11 1.0 1.8 7.6e11 – 6e3 5e−2

Eq. (33) G 15.2e−6 0.5 – 7.0 0.2 – – 7.6e−7 0.48 – –
J 17.4e−6 0.5 – 7.0 0.2 – – 7.6e−7 0.48 – –

Fig. 15. Silt sample (M) with the volumetric solid fractions ϕs = 0.100, 0.085,
0.070 and 0.055, and the flow curves obtained by Eq. (31).
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agreement, we deliberately chose not to do so in order to highlight the
robustness of our proposed model. Our goal was to demonstrate how
effectively the new formulations account for variations in particle size
and concentration. It is assumed that the primary differences between
samples are in their concentrations and mean sediment sizes. Conse-
quently, an attempt was made to illustrate how the proposed models can
accurately respond to these variations in particle size and concentration.

5. Conclusion

This study addresses a significant gap in the existing models used for
understanding the non-Newtonian behavior of fluids, particularly in the
context of suspensions and colloidal systems. The commonly overlooked
factors of particle size, grain size distribution, and concentration are
crucial determinants of viscosity and flow behavior in such systems. The
proposed mathematical extensions of the Cross flow curve model take a
noteworthy step by incorporating these factors explicitly. By considering
a variable total number of individual particles in unit volume, these
extensions provide a more accurate representation of real-world sce-
narios where these parameters may vary. The flexibility of the extended
model allows for the simulation of a wide range of flow behaviors,
including shear-thinning, Newtonian, and shear-thickening, under
different shear rates and concentrations.

The model was rigorously tested against measured samples from the
Ems estuary, a real-world environment with its own complexities and
variations. The results of this validation process showed an acceptable
degree of agreement between the model predictions and the empirical
data. The successful agreement between model predictions and
measured data from the Ems estuary suggests that this extended cross-
flow curve model holds promise for accurately capturing the nuances
of fluid behavior in complex environments. As a result, it not only
contributes to the theoretical understanding of fluid–solid interactions,
but also provides a valuable tool for practical applications, particularly
in the study and design of suspensions and colloidal systems in natural
estuarine environments.

This comprehensive approach contributes valuable insights for the
study and design of suspensions, colloidal systems, and complex fluid-
–solid interactions, enhancing the predictive capabilities of viscosity and
flow curve models in practical applications.

The proposed models can be extended by considering a weighted
average or an integration over the grain size distribution to account for
the contribution of all sediment fractions. Given the nearly identical

grain size distributions (GSD) for samples G and J, and the absence of
GSD information for sample M, it is advisable to extend this research
through additional experiments. Conducting further experiments, and
testing the proposed equations for considering the GSD could provide
valuable insights into the influence of varying GSD on the rheological
properties of these materials.
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