IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 21, 2024

Burak Ekim

Abstract— Advancements in Earth observation (EO) have
led to an increase in the volume of and easier access to
multimodal geospatial data, making environmental monitoring
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and analysis more accessible. However, understanding the
influence of each input modality on decision-making within deep
learning models remains an open challenge. This letter proposes
a deep occlusion framework to enhance the interpretability of
a multimodal model for land naturalness assessment, using a
supervised pixelwise regression task for naturalness mapping
with the input modalities Sentinel-2 and Sentinel-1 imagery,
land cover maps, and nighttime lights intensity data. The
proposed framework systematically occludes individual input
modalities to create modality-level influence scores. Influence
scores are attributed to input modalities by measuring the
distance between the embedding of the nonoccluded input
and the embedding of the input with a single modality
occluded, revealing how each modality influences predictions
and clarifying their contributions (and, thus, importance) in the
model’s decision-making process. The results provide further
insights into how input modalities influence the model’s decision-
making at both the sample level, enabling regional case
studies, and the dataset level, allowing for data pruning and
improving training and inference times. The code is available at
https://github.com/burakekim/embedding_occlusion.

Index Terms— Earth observation (EQ), environmental con-
servation, feature attribution, interpretable machine learning,
naturalness, occlusion sensitivity maps (OSMs).

I. INTRODUCTION

HROUGHOUT history, humans have continuously mod-
ified the landscape to accommodate their needs. From
cutting down forests to building urban metropolises, these
transformations have been instrumental to human advancement
but have also significantly altered our planet. As ecosystems
face ever-increasing pressures from modern human activities,
Earth observation (EO) has become a valuable tool [1].
Serving as our eyes from above, EO systems provide vital
insights into our interactions with the natural environment,
playing a crucial role in monitoring and mitigating the effects
of modern human-induced environmental changes [2].
The ability of EO to map human influence at multiple
scales offers a consistent, repeatable, and scalable method to
capture various indicators of human activity and its impact,
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Fig. 1.  Sample images (dataset IDs 372358, 19442, and 900000093).
From (Left) to (Right): Sentinel-2 RGB bands, Sentinel-1 VH band, ESA’s
WorldCover landcover map, VIIRS nighttime lights data, and land naturalness
annotation.

making it especially valuable for monitoring remote areas
without further environmental strain. However, this era of data
abundance presents a complex paradox: while the vast volume
of data enables the advancement of data-driven deep learning
methods, it also significantly complicates our analyses. This
complexity underscores the need for developing algorithms
specifically designed to address the challenges of EO data [3].

Despite the benefits, the massive amount of data from EO
can be overwhelming and confusing. EO data come in various
modalities, each acquired or produced through different
methods, offering unique pieces of information. This diversity
means that for different tasks, some modalities might be more
useful than others. However, the complex and often opaque
nature of modern deep learning algorithms adds another layer
of difficulty, making it harder to interpret which modality
the model relies on most when learning to solve a task.
Understanding which data modalities are most informative for
specific tasks helps in retaining the predictive performance
while removing the necessity of additional data modalities,
which simplifies model complexity, optimizes resource use,
and enhances interpretability. It also allows for more targeted
data collection and reduces noise and redundancy, contributing
to more robust and efficient models.

II. INTERPRETABLE MACHINE LEARNING IN EO

Earth observation generates an abundance of data across
various modalities. These diverse data sources can be
incredibly rich in information, capturing different aspects of
the Earth’s surface. Given this complexity and the sheer
volume of data, traditional methods of feature extraction and
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Fig. 2. Framework for assessing land naturalness using multimodal EO data. The iterative occlusion process, shown by dashed lines, repeated “N” times

for the N input modalities. In each iteration, one modality is zeroed out to create an occluded embedding. Comparing these occluded embeddings with the
baseline from the nonoccluded input reveals the impact of each modality on the model’s output.

analysis often fall short. Feature attribution aims to shed light
on the contributions of individual features in the decision-
making process of machine learning models. By assigning
importance scores to each feature, these methods offer a
quantitative measure of how each variable influences a model’s
prediction, thereby enhancing the model’s transparency and
interpretability.

Various methods have been developed to achieve this,
each with its unique advantages and computational consid-
erations [4]. For instance, SHapley Additive exPlanations
(SHAPs) [5] use concepts from cooperative game theory
to fairly distribute the “contribution” of each feature to a
given prediction. On the other hand, local interpretable model-
agnostic explanations (LIMEs) [6] operate by perturbing
the input data and fitting a simpler, interpretable model
to approximate the complex model’s behavior for individ-
val predictions. Gradient-weighted class activation mapping
(Grad-CAM) [7] provides another avenue by generating
heatmaps to highlight regions in the input image that are
most influential for prediction. The paper [8] shows that
interpretable ML methods, such as LIME and SHAP, assist
in clarifying the decision-making mechanisms of multilabel
deep learning models in remote sensing tasks, improving
both interpretability and trustworthiness. Channel attention
networks (CANs) [9] are deep learning models optimized
for multispectral imagery. The authors evaluate them on the
SpaceNet semantic segmentation dataset. The CAN approach
not only outperforms the existing models in segmentation
accuracy but also improves the interpretability of the
network function through its soft attention mechanism, which
effectively allocates attention away from noisy channels.
The paper [10] finds that attention mechanisms improve the
performance of specific CNN backbones, such as SegNet and
U-Net, in building segmentation tasks. Using DeepLIFT, the
study also further shows that these mechanisms improve model
interpretability and detection accuracy without adding much
computational complexity. The study [11] introduces a new
multiscale spectral-spatial attention network for hyperspectral

image classification. The network combines 2-D octave
convolution and 3-D DenseNet to extract complex spatial
and spectral features. As for feature extraction and network
performance, the authors use two attention mechanisms
bottleneck attention module (BAM) and efficient channel
attention (ECA). BAM is used to assign proper weight values
to each spectral band, effectively suppressing insignificant
spectral bands and reducing redundancy. ECA is applied in
both the spatial and spectral feature extraction subnetworks to
the interactions among feature channels, thereby boosting the
network’s feature extraction capability.

Although there has been considerable effort in using
interpretation and feature attribution methods to better
understand models in a post hoc manner, equipping models
intrinsically with such methods has received relatively less
attention. Exploring the potential of models with inherent
feature attribution capabilities could pave the way for better
utilization of vast amounts of EO data by focusing efforts on
the most important modalities for the task at hand. In this
letter, we propose a deep learning framework equipped with
interpretability capabilities. The proposed framework enables
input feature attribution by uncovering the influence of input
features (i.e., formulated as modalities) through systematic
occlusion, shedding light on how each modality contributes
to the deep learning model’s predictions.

III. METHODOLOGY

We use a vanilla U-Net architecture that starts with a
DoubleConv block, expanding the input to 64 channels. This is
followed by four downsampling layers and four upsampling
layers. The downsampling process employs max pooling to
increase the number of channels from 64 to 512 while
reducing the spatial dimensions. Conversely, upsampling uses
bilinear interpolation to restore the original dimensions,
decreasing the number of channels back to 64. The final layer
produces a single-channel output, matching the input size, with
LeakyReLU activation applied. The first convolutional layer is
designed to accept four input modalities, as shown in Fig. 1,
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with a total of fourteen channels across these modalities.
The entire architecture comprises approximately 17 million
trainable parameters.

As for the interpretability component, as illustrated in Fig. 2,
we systematically analyze the impact of different modalities
on the model’s representations by using an occlusion strategy.
This involves generating two sets of embeddings: one from
the original input and another from the input with specific
modalities occluded, effectively reducing those modalities to
a zero state. The purpose is to discern how the absence of
a given input modality affects the model’s embedding space
and, by extension, its predictions.

To quantitatively assess the influence of each modality,
we compute the Euclidean distance between the embeddings
from the original and occluded inputs. A larger distance
indicates a significant alteration in the embedding due to
the occlusion, suggesting that the occluded modality plays
a crucial role in the model’s decision-making process. Con-
versely, smaller distances imply minimal change, indicating
the occluded modality’s lesser importance.

It is crucial to note that the distances provide relative rather
than absolute information about modality importance. The
comparison of distance metrics across different modalities
offers insights into their relative contributions to the model’s
predictions. This approach not only helps in understanding the
model’s sensitivity to specific input features but also assists in
feature selection and model interpretability enhancements. The
choice of Euclidean distance is driven by its straightforward
interpretation and ability to measure the magnitude of
change in the model’s representation, providing a clearer
understanding of each modality’s impact.

IV. IMPLEMENTATION DETAILS AND EXPERIMENTS

A. Dataset and Training

In this study, we build on the MapInWild dataset [12],
a comprehensive dataset originally curated for the task of
wilderness mapping, by expanding it with a newly curated
annotation source called the naturalness index (NI) [13].

MapInWild consists of data from diverse modalities,
including Sentinel-2, Sentinel-1, VIIRS nighttime lights, and
ESA WorldCover. The dataset comprises 8144 images, each
with a size of 1920 x 1920 pixels, amounting to approxi-
mately 350 GB in total. Beyond its diverse set of modalities,
MapInWild serves as an ideal test bed for our framework
due to its representativeness and the diversity of its samples.
To ensure, MapInWild’s AOIs are sampled from the World
Database of Protected Areas using a climate map and a land
cover type-aware semiautomated approach, guided by weights
calculated from the Koppen—Geiger climate classification
map and the ESA WorldCover map. These weights are
inversely normalized to ensure that underrepresented polygons
received adequate sampling, thereby enhancing the dataset’s
spatial coverage and representability. Seasonal variations and
hemispheres are also accounted for, making the dataset
versatile and robust.

As for the newly introduced annotation source, the NI
maps are calculated at a 10 x 10 m spatial resolution
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and are based on four proxies indirectly measuring human
absence: population density, land transformation, accessibility,
and electrical power. We refer the readers to [13] for a
detailed explanation of proxies. The NI maps accompanying
MapInWild dataset range between 0 and 100 representing
the level of naturalness, with the higher score representing a
higher degree of naturalness. Sample geodata from MapInWild
expanded with newly created naturalness annotations are
shown in Fig. 1.

We concatenate all of the inputs and form a data cube of
14 channels (10 x Sentinel-2, 2 x Sentinel-1, single-band
ESA WorldCover, and single-band VIIRS DNB). Sentinel-2
bands are normalized by dividing with 10000, and the other
sources are normalized with their mean and standard deviation
values calculated on the train set. We use the dataset in its
original shape and apply on-the-fly random cropping with
shape 256 x 256 pixels and apply a series of augmentation
methods to improve the model’s robustness, including random
horizontal and vertical flips, sharpness adjustments, random
erasing, and Gaussian blurring. To mitigate the class imbalance
in the annotations, we feed the inverse mean value of
each patch as sample weights to the model to balance the
representation of the NI values.

We use the mean-squared error as the criterion for the loss
function and the Adam optimizer with an initial learning rate
of 107*. The training uses a batch size of 16 and leverages
early stopping based on validation error, with a patience of
40 epochs to address overfitting. We implement a cosine
annealing learning rate with warm restarts, setting the initial
cycle to three epochs and maintaining the same length for each
subsequent cycle. The scheduler adjusts the learning rate based
on epoch intervals, aiming to fine-tune the model’s training
process for optimal performance. We exclude no-data values
from loss and error calculations, as well as from influencing
the sampling weights. We use an 80:10:10 split ratio for
training, validation, and test sets.

B. Experiments

The experimental setup consists of three main steps. First,
we collect sample-level and test set-level modality influence
values during the test phase to study the deep occlusion
method in a post hoc way. To validate these influence values,
we conduct an ablation study by passing each modality to the
model individually and observing the level of agreement with
the test set-level modality influence values. Finally, to explore
the versatility of the modality occluder, we investigate
alternative methods for transitioning input features from an
information state to a zero state, such as using zeros and
random noise. It is important to note that the proposed
approach performs the embedding-level distance calculation
and subsequent evaluations during test time.

V. RESULTS AND DISCUSSION

A. Post Hoc Investigation: Sample-Level Influence Values

We calculate the influence values for each test set
sample and investigate the individual influence values to
enable sample-level interpretations. These results provide an
understanding of individual input modalities and their assigned



8500905

Sentinel-2 Land Cover Land Naturalness Annotation

%, )
i

e

g

g

g

Land Naturalness Prediction

B

Night Lights

Sentinel-1

8

Distance between the Occluded and Non-Occluded Embeddings

3

>

4“(&«{“ jpc\@“\

Fig. 3. Sample-level influence scores, highlighting the impact of occluding
the nighttime lights modality on the model’s output. The dominant influence
of nighttime lights is reflected in the significantly larger distance on the
embedding level.
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Fig. 4. Sample-level influence scores, highlighting the impact of occluding
the Sentinel-2 modality on the model’s output, with other modalities
influencing the prediction to certain extents. The relatively higher impact of
Sentinel-2 is reflected in the larger distance on the embedding level.

attribution values during test time. Fig. 3 reveals that in
the context of residential areas, the nighttime lights modality
exhibits a strong influence on the model’s predictions, which
is depicted by the significant embedding distances when this
modality is occluded. The sparsity of nighttime lights may
be related to the modality providing easily discernible cues
when present—Ilikely due to its distinctive and sparse signal
that provides clear indications of human activity. Furthermore,
Fig. 4 illustrates a scenario where Sentinel-2 has the greatest
influence on the model’s prediction, followed by Sentinel-1
and land cover. While this focuses on modality attribution
values for a single sample, we extend this analysis to the set
level by averaging the attribution values across all samples.
The results of this aggregated analysis are presented in Fig. 5,
as described in Section V-B.

B. Agreement Between Individual Modality Performance and
Test Set-Level Influence Values

We benchmark the test performance when each modality
is individually input to the model. The mean absolute
error (MAE) and root-mean-squared error (RMSE) of the
test set are presented in Table I. Sentinel-2 and Sentinel-
1 stand out with the lowest MAE and RMSE, followed by
the nighttime lights and land cover modalities, when each
modality is used as the sole input. In addition, we conduct
experiments where each modality is occluded one at a time,
with the model being trained using the remaining modalities.
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Fig. 5. Comparison of relative performance deviations and embedding
distances for each modality. Red bars represent performance deviations from
an all-modality scenario, while yellow bars show the embedding distances
between occluded and nonoccluded embeddings, measuring their influence.

A noticeable drop in predictive performance is observed in
these cases, which we hypothesize is due to the increased
data volume without any additional useful information.
Furthermore, feeding only the Sentinel-1 modality yields
the highest predictive performance, and occluding only the
Sentinel-2 modality (Sentinel-2 occluded) results in the lowest
predictive performance. We hypothesize that the results in this
table serve as a proxy for the importance of each modality,
which aligns with what the proposed method suggests.

We first compared the test MAE values derived from using
each individual modality as the sole input to the model
against the test MAE from using all modalities combined (all
modalities in Table I). This comparison involved calculating
the absolute difference between the MAE of the all-modalities-
present scenario and the MAE of each individual modality.
These absolute differences, which we refer to as relative
performance deviations, illustrate how the performance of
each single modality deviates from the performance achieved
when all modalities are combined. This analysis highlights
the impact of using individual modalities compared with a
scenario where all modalities are utilized.

Then, we calculate the modality influence values over test
set with the proposed occlusion-based occlusion embedding
distance method. This allows us to assess the relative
performance deviation of individual modalities from a scenario
where all these modalities are present.

Finally, we compare the test set-level influence values
with the relative performance deviations in Fig. 5. The high
degree of agreement in the distributions suggests that inferring
relative influence score information from latent space could
be interpreted as input feature attribution values. Furthermore,
in the test set, land naturalness prediction heavily depends on
the Sentinel-2 bands, followed by Sentinel-1, while the other
modalities have relatively weak influence.

C. Occlusion Strategy Investigation

In the last experiment, we apply four occlusion strategies—
filling with zeros, ones, random noise, and Gaussian noise—to
the input modalities to observe their impact on the model’s
representations. Each occlusion method alters input modality
a unique way, simulating the absence of information or
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Fig. 6. Comparison of embedding distances for different occlusion strategies
across modalities. Each bar represents the embedding space perturbation when
a specific modality is occluded with zeros, ones, random noise, or Gaussian
noise.

TABLE I
PERFORMANCE METRICS PER INDIVIDUAL MODALITY
Modality MAE ([) RMSE ()
All Modalities 0.109 0.136
Sentinel-2 0.125 0.159
Sentinel-1 0.123 0.157
Land Cover 0.128 0.163
Night Lights 0.126 0.157
Sentinel-2 Occluded 0.17 0.194
Sentinel-1 Occluded 0.145 0.166
Land Cover Occluded 0.13 0.161
Night Lights Occluded 0.132 0.173

introducing variability to gauge the model’s dependency on
the given modality.

The resulting pattern, as shown in Fig. 6, suggests a
consistent trend across all occlusion types regarding the
relative influence of each modality. Sentinel-2 and Sentinel-
1 modalities appear to have more significant impact on the
embedding space, as indicated by larger distances, suggesting
that these modalities are highly influential in the model’s
prediction process. Conversely, Sentinel-1 and nighttime lights
modalities resulted in smaller embedding space perturbations,
indicating a lesser degree of influence. The coherence of these
findings across different occlusion strategies reinforces the
reliability of the occlusion sensitivity analysis as a method
for interpreting model behavior through its manipulated
embedding space. The agreement between the occlusion types
supports the conclusion that despite the difference in how
information is withheld or distorted, the model consistently
identifies the same modalities as more or less influential, which
is a promising result for the robustness of feature attribution
in EO data analysis.

VI. CONCLUSION

This letter proposes a deep occlusion framework embedded
within a multimodal learning context, enhancing interpretabil-
ity through feature attribution on the embedding level.
By systematically occluding individual input modalities, our
method allows for a nuanced analysis of how each modality
influences the model’s predictions. Applied to the task of
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land naturalness mapping, the proposed method reveals that
the Sentinel-2 modality has the most significant impact
on the model output, with other modalities contributing to
varying extents. The proposed framework does not make
assumptions about the task or model, enabling it to be
applied across different architectures and applications. The
consistency between changes observed on the embedding level
due to modality occlusion and the corresponding shifts in the
prediction output validates the hypothesis about the importance
of specific modalities. The results provide deeper insights into
how input modalities influence the model decision-making
process, both at the sample level—enabling regional case
studies—and at the dataset level—facilitating data pruning
and improving training and inference times. As future work,
we intend to perform this analysis on a band level and explore
different occlusion and distance strategies to unlock further
insights.
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