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A B S T R A C T

We propose a novel variationally consistent membrane wrinkling model for analyzing the
mechanical responses of wrinkled thin membranes. The elastic strain energy density is split
into tensile and compressive terms via a spectral decomposition of the strain tensor. Tensile
and compressive parts of the stress and constitutive tensors are then obtained via consistent
variation from the respective strain energies. Considering only the positive part of the strain
energy in the variational formulation, we obtain a membrane with zero compressive stiffness.
By adding the negative strain energy multiplied with a very small factor, we further obtain
a residual compressive stiffness, which improves stability and allows handling also states of
slackening. Comparison with results from analytical, numerical and experimental examples
from the literature on membrane wrinkling problems demonstrate the great performance and
capability of the proposed approach, which is also compatible with commercial finite element
software.

1. Introduction

Wrinkling is a common phenomenon in elastic membrane structures, which can significantly affect their mechanical properties
nd performance. Related applications include flexible floating structures, parachutes, solar sails, airbags, as well as human skin and
issues, among others. The investigation of wrinkling in thin membranes with diverse methods has been ongoing for several decades
o enhance the understanding of their underlying characteristics. Despite extensive research, modeling and predicting the behavior
f wrinkled membranes remains challenging. This is primarily because membranes exhibit minimal resistance to compression and
ending. As a result, most compressive stresses within membranes are released through localized instability. It leads to out-of-plane
isplacements, which are typically referred to as wrinkles [1]. In this context, three possible states of a membrane are typically
considered, see Fig. 1. A membrane is taut, when it is subjected to tension in two orthogonal directions, wrinkled, when it is subjected
to tension in one direction and compression in the other one, and slack, when it is subjected to compression in both directions. There
exist different approaches to determine the state of a membrane, namely the principal stress criterion, the principal strain criterion,
and the mixed criterion. In the first one, principal stresses are used to distinguish between tension and compression, in the second
one this is done based on the principal strains. The mixed criterion is a combination of these two, combining the advantages of both.
It has been discussed by several authors that both the stress-based and strain-based criteria can lead to incorrect judgment of the
membrane state in specific cases, and that the mixed criterion can be considered as the physically most correct one, see, e.g., [2–4].
Nevertheless, also the stress- and strain-based criteria can be considered as reasonable criteria and are used in as basis for different
wrinkling models in the literature, e.g., [5–8].
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Fig. 1. Possible states of a membrane: taut, wrinkled, slack.

Several analytical solutions have been developed to address membrane wrinkling issues, as evidenced by the works in [9–12].
hese solutions are derived within the tension field theory (TFT) framework, a theoretical approach that describes the highly
uckled or wrinkled state of membranes whose boundaries undergo certain in-plane displacements that exceed the critical thresholds
ecessary for initiating buckling phenomena. Notably, Stein and Hedgepeth [5] derived a theory at small strains to predict the
tresses and average deformations of partly wrinkled membranes by introducing an unknown function termed variable Poisson’s ratio
and vanishing one of the principal stresses in wrinkled regions. Additionally, they provided analytical solutions for various partly
rinkled membrane problems, commonly employed as benchmarks to validate the stresses predicted by newly developed methods.
ther analytical approaches are mentioned for completeness, and those are based on a geometrically nonlinear Föppl-von Kármán
heory [13–15] and can depict the wrinkled configuration. However, these analytical solutions are often limited to specific problems
nd may lack applicability for cases that cannot be solved analytically. Therefore, numerical methods are preferred for analyzing
rinkled membrane problems, owing to their flexibility and ability to handle complex geometries and boundary conditions.
Previous numerical methods treating wrinkling in the finite element analysis framework can be broadly classified into two

rimary categories. This classification is determined by the requirement to obtain wrinkle details, including the number of wrinkles,
avelength, amplitude, wrinkle pattern, etc. The first relies on the buckling theory, which involves utilizing a highly dense mesh of
hell elements with bending stiffness to resolve wrinkle details explicitly [16,17]. However, this method can be computationally
xpensive due to the need for a sufficiently refined mesh, and as pointed out in [18], the wrinkle length scale is frequently
nconsistent with that of a finite element, leading to a mesh-dependent solution. In addition, a geometric imperfection must often be
mposed on the membrane to induce wrinkles, which may also affect the results [19]. Consequently, the costs of this approach can
apidly become prohibitive, thereby limiting its practicality. Other relevant studies refer to Verhelst et al. [20], Flores and Oñate
21] and Fu et al. [22], to name a few.
The second one is to use a coarse mesh of membrane elements embedded with appropriate wrinkling models, mainly founded

pon the assumptions of tension field theory [23]. It assumes that the wrinkled membrane exhibits zero compressive stiffness.
ollowing the wrinkling process, the stress field within the wrinkled regions is presumed to be in a uniaxial tension stress state,
hereby only one of the principal stress components is non-zero. Although the detailed wrinkles cannot be captured with these
ssumptions, it enables the identification of wrinkled regions and the directions of wrinkles, providing valuable insights into the
verall behavior of the wrinkled membrane. Our work presented in this paper is carried out by following the second strategy. Thus,
literature review of wrinkling models is given below.
Most tension field theory-based wrinkling models can be broadly classified into two groups: kinematic modification methods

nd material modification methods. In general, the concept of the kinematic method is to modify the deformation gradient tensor
y introducing additional parameters. Remarkably, the Roddeman model [24,25] has garnered significant attention, which extends
he earliest Wu model [26] to anisotropic materials by incorporating a virtual elongation in the deformation tensor to satisfy the
niaxial tension condition. Among the subsequent developments of this model [27–31], Nakashino and Natori [29] circumvented the
umbersome linearization of the modified strain tensor to adjust the stress–strain tensor at the element level and recently Nakshino’s
odel has been applied in isogeometric analysis [32]. Other models, such as Myazaki’s model [1], which incorporates virtual
longation and shear deformation simultaneously into the deformation tensor, and direct modification of Green–Lagrange strain
ensor [33–35], can also be classified as kinematic modification methods.
Material modification methods, which modify the stress–strain relation, can be divided into four subcategories. The first class

s to modify the material parameters. For instance, Miller and Hedgepeth [7] and Miller et al. [8] extended the variable Poisson’s
atio concept [5] into finite element static analysis and proposed the iterative material properties (IMP) model, where the local
lasticity matrix is iteratively revised according to the state of strain in a previous load increment. The second and third ones
re to use penalization techniques [2,3,6,18,36], and projection matrices [37–39] to eliminate compressive stresses by softening
he constitutive tensor. However, the methods mentioned earlier require an explicit wrinkling criterion to evaluate the membrane
tates such as taut, wrinkled, and slack, as shown in Fig. 1. This reliance may lead to convergence problems due to the sudden
hanges in the tangent stiffness matrix. Thus, these shortcomings have motivated the fourth approach based on Pipkin’s method,
s documented in [40–44]. In this method, the strain energy density is replaced by a relaxed energy density acquired through an
ptimization procedure. Consequently, the stresses derived from the relaxed energy density are comparable to those obtained via
he tension field theory. However, the inherent mathematical complexity and associated implementation challenges have resulted
n a relative lack of attention to this concept in the literature.
In this paper, we propose a novel variationally consistent membrane wrinkling model based on the spectral decomposition of the

train tensor. We split the strain tensor into positive and negative components based on their eigenvalues. It allows us to decompose
he strain energy density additively into positive and negative contributions. Considering only the positive part of the strain energy in
2 
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Fig. 2. Schematic description of a membrane: 𝐗 and 𝐱 are the position vectors on the midsurface in the reference configuration and the deformed configuration
with displacement vector 𝐮, respectively.

the variational formulation, we obtain a membrane with zero compressive stiffness. By adding the negative strain energy multiplied
with a very small factor, we further obtain a residual compressive stiffness, which improves stability and allows handling also
states of slackening. Thereby, the strain-based wrinkling criterion can be self-adaptively satisfied without the reliance on if-else
logical judgment in the implementation. It ensures the consistency of the wrinkling model and avoids many iterations triggered by
a membrane state transition. The spectral decomposition also provides information on the wrinkling direction. We consistently derive
the modified strain energy density with respect to the strain variable to determine the new stress and material tensor formulations.
Finally, we incorporate our proposed wrinkling model into an isogeometric membrane element and verify its effectiveness with
benchmark problems.

The paper is organized as follows. In Section 2, we provide an overview of the geometrical basics of the membrane description,
the membrane kinematics, and its variational formulation. This section serves as the foundation for the subsequent sections. Section 3
presents the newly developed wrinkling model, which includes the spectral decomposition of the strain tensor and the consistent
derivation of new stress and constitutive tensors. In addition, we briefly discuss the linearization of its variational formulation and
isogeometric discretization in Section 4. In order to demonstrate the applicability of the presented methods, four tests are presented
in Section 5, including benchmark examples from the literature with analytical, experimental, or numerical reference solutions.
Finally, in Section 6, we summarize the key features of our proposed wrinkling model and suggest potential future directions for
research in this area.

2. Membrane formulation

In this section, we present a concise overview of the fundamental aspects of the geometry, kinematics, and material law of a
membrane. As shown in Fig. 2, a membrane can be generally represented as a curved surface with a certain thickness 𝑡, described
by the position vector 𝐱 (𝜃𝛼). The surface coordinates are denoted as 𝜃𝛼 . Greek indices take on values of {1, 2}, and the summation
onvention for repeated indices is employed. Then, the covariant base vectors 𝐠𝛼 on the midsurface in the current configuration are
efined as:

𝐠𝛼 = 𝜕𝐱
𝜕𝜃𝛼

= 𝐱,𝛼 . (1)

Similarly, in the context of the reference configuration, the covariant basis vectors are denoted as 𝐆𝛼 . Then, the contravariant basis
vectors 𝐆𝛼 and 𝐠𝛼 can be determined by the rule:

𝐆𝛼 ⋅𝐆𝛽 = 𝛿𝛼𝛽 , 𝐠𝛼 ⋅ 𝐠𝛽 = 𝛿𝛼𝛽 , (2)

where 𝛿𝛼𝛽 is the Kronecker delta. If 𝛼 = 𝛽, 𝛿𝛼𝛽 = 1; otherwise, 𝛿𝛼𝛽 = 0. The metric coefficients of the midsurface in the reference
configuration 𝐺𝛼𝛽 and current configuration 𝑔𝛼𝛽 are represented as:

𝐺𝛼𝛽 = 𝐆𝛼 ⋅𝐆𝛽 , 𝑔𝛼𝛽 = 𝐠𝛼 ⋅ 𝐠𝛽 . (3)

ubsequently, the deformation gradient tensor 𝐅 can be introduced and defined as:

𝐅 = 𝐠𝛼 ⊗𝐆𝛼 , 𝐅𝑇 = 𝐆𝛼 ⊗ 𝐠𝛼 . (4)

In order to characterize the nonlinear relationship between deformations and strains, the Green–Lagrange strain tensor is employed
and given by:

𝐄 = 1
2
(

𝐅𝑇𝐅 − 𝐈
)

, (5)

where 𝐈 denotes the identity tensor. The in-plane coefficients of 𝐄 are obtained by the metric coefficients in the deformed and
undeformed configurations as:

𝐸 = 1 (

𝑔 − 𝐺
)

. (6)
𝛼𝛽 2 𝛼𝛽 𝛼𝛽

3 
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The second Piola–Kirchhoff (PK2) stress tensor 𝐒 is introduced as the energetically conjugate quantity to the Green–Lagrange strain
tensor 𝐄. It is derived from the strain energy density 𝜓 with respect to the strain 𝐄. Here, the strain energy density of the St.
Venant-Kirchhoff constitutive model with plane stress is given by:

𝜓 (𝐄) = 𝜆
2
(tr (𝐄))2 + 𝜇tr

(

𝐄2) − 𝜆2

2 (𝜆 + 2𝜇)
(tr (𝐄))2 , (7)

where 𝜆 is the first Lamé parameter and 𝜇 the second Lamé parameter, respectively. The stress tensor 𝐒 can be determined via the
tangent material tensor C and its coefficients 𝑆𝛼𝛽 are then expressed in terms of the material tensor coefficients C𝛼𝛽𝛾𝛿 as:

𝑆𝛼𝛽 = C𝛼𝛽𝛾𝛿𝐸𝛾𝛿 . (8)

y approximating the differential volume 𝑑𝑉 as the product of the thickness 𝑡 of membrane and its midsurface differential area 𝑑𝐴,
.e., 𝑑𝑉 ≈ 𝑡𝑑𝐴, the virtual work 𝛿𝑊 (𝐮, 𝛿𝐮) can be formulated as follows:

𝛿𝑊 (𝐮, 𝛿𝐮) = 𝛿𝑊 int − 𝛿𝑊 ext = ∫𝐴
𝐒 ∶ 𝛿𝐄 𝑡 d𝐴 − ∫𝐴

𝐟 ⋅ 𝛿𝐮 d𝐴, (9)

hich involves the internal virtual work 𝛿𝑊 int and external virtual work 𝛿𝑊 ext. Within the Eq. (9), 𝛿𝐄 represents the virtual strain,
denotes the external force, and 𝛿𝐮 represents the virtual displacement.

. New wrinkling model based on spectral decomposition

In this section, we present the new wrinkling model. The fundamental concept is to split the strain tensor 𝐄 into positive and
egative components via a spectral decomposition

𝐄 = 𝐸𝛼𝐧𝛼 ⊗ 𝐧𝛼 , (10)

here 𝐸𝛼 represents the eigenvalues (principal strains) corresponding to the eigenvectors 𝐧𝛼 (principal directions). The positive and
egative strain tensors, denoted as 𝐄+ and 𝐄−, respectively, are then determined in terms of the positive and negative principal
trains ⟨𝐸𝛼⟩±

𝐄± = ⟨𝐸𝛼⟩
± 𝐧𝛼 ⊗ 𝐧𝛼 , (11)

ith ⟨𝑥⟩± = (𝑥 ± |𝑥|)∕2, and the complete strain tensor is simply obtained by the sum of the positive and negative parts

𝐄 = 𝐄+ + 𝐄−. (12)

ith the decomposition of the strain tensor 𝐄, the strain energy density 𝜓(𝐄) can also be decomposed into positive and negative
erms. This concept was presented first in [45] in the context of phase-field fracture and was extended in [46] to the case of plane
tress problems as follows

𝜓± (𝐄) = 𝜆
2
(

⟨tr (𝐄)⟩±
)2 + 𝜇tr

(

(

𝐄±)2
)

− 𝜆2

2 (𝜆 + 2𝜇)
(

⟨tr (𝐄)⟩±
)2 , (13)

𝜓 (𝐄) = 𝜓+ (𝐄) + 𝜓− (𝐄) . (14)

rom Eq. (13) we can derive in a variationally consistent manner the split of the stress tensor into positive and negative terms

𝐒± =
𝜕𝜓± (𝐄)
𝜕𝐄

=
(

𝜆 − 𝜆2

𝜆 + 2𝜇

)

⟨tr (𝐄)⟩±𝐈 + 2𝜇𝐄±, (15)

𝐒 = 𝐒+ + 𝐒−. (16)

In the same way, we split the constitutive tensor in positive and negative terms

C± =
𝜕𝐒± (𝐄)
𝜕𝐄

=
(

𝜆 − 𝜆2

𝜆 + 2𝜇

)

𝐻 (± tr (𝐄)) J + 2𝜇

(

𝐻
(

±𝐸𝛼
)

Q𝛼 +
2
∑

𝛼≠𝛽

⟨𝐸𝛼⟩
±

2
(

𝐸𝛼 − 𝐸𝛽
)

(

G𝛼𝛽 +G𝛽𝛼
)

)

, (17)

C = C+ + C−. (18)

with the fourth-order tensor (Q𝛼)𝛾𝛿𝜀𝜁 ∶= (𝐌𝛼)𝜀𝜁 (𝐌𝛼)𝛾𝛿 . The detailed derivation of Eq. (17) is presented in Appendix A.
In Eqs. (11)–(17), positive terms may be associated to tension and negative terms to compression. A membrane formulation

ccording to the assumption of tension field theory, in which only tensile stresses are possible, can then easily be obtained by only
onsidering the positive parts in Eqs. (14)–(18)

𝜓 = 𝜓+, (19)

𝐒 = 𝐒+, (20)

C = C+, (21)

nd a finite element (or isogeometric) formulation can be derived in a standard way as shown in Section 4. Notably, no explicit

rinkling criterion needs to be evaluated at the material point, and no explicit distinction between taut, wrinkled, or slack, with

4 



D. Zhang and J. Kiendl

v
o

𝐑

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117386 
different formulations for the different cases, is necessary during analysis. Eqs. (19)–(21) include all three cases. Nevertheless, the
model also provides the relevant information about wrinkling, i.e., the membrane state (taut, wrinkled, or slack) and the wrinkling
direction. These are obtained automatically when doing the spectral decomposition of the strain tensor in Eq. (10) as follows

𝐸2 > 0 ∶ taut ,
𝐸1 > 0, 𝐸2 ≤ 0 ∶ wrinkled ,

𝐸1 ≤ 0 ∶ slackened ,
(22)

with 𝐸1 ≥ 𝐸2, and, in the case of wrinkling, the wrinkling direction is obtained as 𝐧1, the eigenvector corresponding to 𝐸1. The
formulation based on Eqs. (19)–(21) describes a membrane with zero compressive stiffness, which is in accordance with tension
field theory, allowing only for taut and wrinkled states, but not for slack. In a corresponding finite element formulation, even slight
compression may lead to self-penetration of elements and slack states, even if they occur only locally, may lead to singular stiffness
matrices. An efficient way to prevent this is to assign some residual compressive stiffness. In the presented approach, this can be
done simply by modifying Eqs. (19)–(21) as follows

𝜓 = 𝜓+ + 𝜂𝜓−, (23)

𝐒 = 𝐒+ + 𝜂𝐒−, (24)

C = C+ + 𝜂C−, (25)

where 𝜂 ≪ 1 is a factor governing the compressive stiffness. Theoretically, this should be a function of the buckling strength of
the membrane. In this work, however, we use it as a prescribed stabilization parameter, which helps to prevent self-penetration
and singular stiffness matrices, and, moreover, can improve significantly the iterative convergence. The idea of assigning a small
compressive stiffness via a prescribed parameter can also be found in other works in the literature, e.g., in [2,18], where the
parameter is considered as a penalty parameter, in [38], where compressive stresses are termed as ‘‘allowable compressive stress’’, or
in [1], where compressive stiffness is termed as ‘‘residual compressive stiffness’’. In this paper, we adopt the terminology of ‘‘residual’’
compressive stiffness and stresses, which are governed by the ‘‘degradation factor’’ 𝜂. In Section 5.3, we show a numerical example
where different values for 𝜂 and its impact on the results are studied. For many problems, where slacking or self-penetration is not
relevant, 𝜂 = 0 can be used.

4. Discretization

In this section, we present the linearization of Eq. (9) and discretization procedures for solving this equation. The presented
discretization is suitable for any basis function, such as the Lagrange polynomial used in standard finite element analysis or Non-
Uniform Rational B-Splines (NURBS) typically applied in isogeometric analysis (IGA), to name a few. IGA is a widely adopted
technique in structural analysis due to its numerous advantages. To ensure conciseness, we refrain from reiterating these details
here; more details can be found in the literature [47,48].

The discretized displacement field is represented as follows:

𝐮 =
𝑛𝑠ℎ
∑

𝑎
𝑁𝑎𝐮𝑎, (26)

where 𝑁𝑎 denotes the shape functions, 𝑛𝑠ℎ represents the total number of shape functions, and 𝐮𝑎 refers to the nodal displacement
ectors with components 𝑢𝑎𝑖 (𝑖 = 1, 2, 3) representing the global 𝑥-, 𝑦-, 𝑧-components. We establish an expression for the global degree
f freedom number 𝑟 of a nodal displacement, i.e., 𝑟 = 3(𝑎 − 1) + 𝑖, such that 𝑢𝑟 = 𝑢𝑎𝑖 . In order to determine the variation of the
displacement field with respect to 𝑢𝑟, the partial derivative of 𝜕∕𝜕𝑢𝑟 is used:

𝜕𝐮
𝜕𝑢𝑟

= 𝑁𝑎𝐞𝑖, (27)

where 𝐞𝑖 denote the global Cartesian base vectors. For more details, we refer to Kiendl et al. [49]. Subsequently, by deriving the
variations of the internal virtual work 𝛿𝑊 int and external virtual work 𝛿𝑊 ext in Eq. (9) with respect to 𝑢𝑟, the residual force vector
is obtained and defined as:

𝑅𝑟 = 𝐹 int𝑟 − 𝐹 ext𝑟 = ∫𝐴
𝐒 ∶ 𝜕𝐄

𝜕𝑢𝑟
𝑡 d𝐴 − ∫𝐴

𝐟 ⋅ 𝜕𝐮
𝜕𝑢𝑟

d𝐴, (28)

where 𝐅int and 𝐅ext represent the vectors of the internal and external nodal loads, respectively. The linearization of Eq. (28) yields
the tangential stiffness matrix 𝐊, which comprises the internal stiffness matrix 𝐊int and external stiffness matrix 𝐊ext , formulated
as follows:

𝐾𝑟𝑠 = 𝐾 int
𝑟𝑠 −𝐾ext

𝑟𝑠 = ∫𝐴
𝜕𝐒
𝜕𝑢𝑠

∶ 𝜕𝐄
𝜕𝑢𝑟

+ 𝐒 ∶ 𝜕2𝐄
𝜕𝑢𝑟𝜕𝑢𝑠

𝑡 d𝐴 − ∫𝐴
𝜕𝐟
𝜕𝑢𝑠

⋅
𝜕𝐮
𝜕𝑢𝑟

d𝐴. (29)

In order to solve the linearized equation system, the Newton–Raphson method is employed and given by:

𝜕𝑊 + 𝜕2𝑊 𝛥𝑢𝑠 = 0, (30)

𝜕𝑢𝑟 𝜕𝑢𝑟𝜕𝑢𝑠

5 
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where 𝛥𝑢𝑠 denotes the components of the incremental displacements. Through the solution of the equation system, as mentioned
arlier, we derive the incremental displacement vector 𝛥𝐮, which ensures its accuracy subject to the precise computation of the
esidual vector 𝐑, given by:

𝐊𝛥𝐮 = −𝐑. (31)

The Newton–Raphson method converges towards the desired solution by iteratively updating the displacement vector until the
residual is minimized, leading to the accurate determination of the incremental displacement 𝛥𝐮.

5. Numerical examples

In this section, we assess the capability of the proposed formulation in four numerical examples with analytical or reference
solutions from the literature. All tests are conducted using nonlinear static isogeometric analysis, performed with NURBS. In order to
show that our proposed formulation is applicable to standard finite element analysis, we also set the polynomial degree of the NURBS
basis function as 𝑝 = 1 for some cases because it is equivalent to first-order Lagrange polynomial when 𝑝 = 1. The following notations
re used for various stresses presented in the results: 𝝈 indicates the Cauchy stress tensor, which is obtained by 𝝈 = (det𝐅)−1 ⋅𝐅⋅𝐒⋅𝐅𝑇 .
ts first and second principal stresses are denoted as 𝜎1 and 𝜎2, respectively. The residual norm applied in the analysis is defined
ith respect to the external forces magnitude as ‖𝐑‖∕‖𝐅ext‖. Unless stated otherwise, a degradation factor 𝜂 = 0 is used.

.1. In-plane pure bending of a pre-tensioned rectangular membrane

The first numerical example considers a pre-stretched rectangular membrane under in-plane pure bending. Since an analytical
olution was presented in [5], this example is considered a benchmark for studying partly wrinkled membranes. This problem has
lso been extensively investigated in the literature by various researchers as [8,27,38,50–53]. As depicted in Fig. 3, the membrane
ith the height 𝐻 and the thickness 𝑡 is subjected to a uniform stress 𝜎0 in the 𝑦-direction, as well as a pair of the axial loads

Fig. 3. In-plane pure bending of a pre-tensioned rectangular membrane.

= 𝜎0𝑡𝐻 and the bending moments 𝑀 at the lateral sides. By increasing the bending moments 𝑀 , a band of vertical wrinkles of
eight ℎ (highlighted in gray) appears along the bottom edge, and the band height ℎ of the wrinkled zone is defined in [5] as:

ℎ
𝐻

=

{

0 𝑀∕𝑃𝐻 < 1∕6
3𝑀∕𝑃𝐻 − 1∕2 1∕6 ≤𝑀∕𝑃𝐻 < 1∕2.

(32)

In the wrinkled region, the normal stress 𝜎𝑥 in the membrane is eliminated, whereas, in other regions, it is linearly distributed along
the height 𝐻 . The normal stress distribution can be calculated using the following expression:

𝜎𝑥
𝜎0

=

{ 2(𝑦∕𝐻−ℎ∕𝐻)
(1−ℎ∕𝐻)2

ℎ∕𝐻 < 𝑦∕𝐻 ≤ 1

0 0 ≤ 𝑦∕𝐻 ≤ ℎ∕𝐻.
(33)

It must be noted that this analytical solution relies on a stress-based wrinkling criterion. Accordingly, the proposed model is expected
to converge to this solution only for Poisson’s ratio 𝜈 = 0. To verify this, we perform simulations with 𝜈 = 0 and 𝜈 = 0.3 in the
following.

The simulation setup for this problem is presented in Fig. 4, where we use 55 (11 × 5) bi-quadratic isogeometric membrane
lements to solve the problem, following the recommendation in [29]. Only the right half of the membrane is modeled due to its
ymmetry, and the displacements in the 𝑥-direction on the left are constrained. The middle point of the left edge is also prevented
rom deforming in the 𝑦-direction. As illustrated, the axial load 𝑃 and bending moment 𝑀 are replaced by equivalent stresses
𝑝 = 𝑃∕𝑡𝐻 and 𝜎𝑀 = 6𝑀∕𝑡𝐻2(2𝑦∕𝐻 −1), respectively. In order to withstand compressive stresses and maintain a uniform rotation,
he five elements on the right are assumed to remain taut. Thus, these elements are modeled as the standard membrane elements
ithout embedding the wrinkling model.
Fig. 5 shows the normal stress 𝜎𝑥 distribution with respect to the applied stress 𝜎0 along the height 𝐻 . Here, we use 𝑦∕𝐻-ratio,
.e., the stress-measured position 𝑦 related to the height 𝐻 , as 𝑥-axis to unify the results. Different curves exhibit the results for
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Fig. 4. Numerical simulation setting for the right half of the rectangular membrane under in-plane bending.

different values of the bending moment-force ratio (2M/PH). For the case of Poisson’s ratio 𝜈 = 0, the results of the proposed model
oincide with the analytical solution, as shown in Fig. 5(a), while a slight difference is observed for the case of 𝜈 = 0.3, as shown
n Fig. 5(b). This deviation is caused by the fact, as mentioned above, that the proposed model relies on a strain-based wrinkling
riterion, the analytical solution on a stress-based criterion. Thus, the second principal stress 𝜎2 evaluated by our model is not
lways equal to zero. In contrast, the analytically computed stresses are enforced to satisfy the uniaxial tension condition. Although
he Poisson effect could influence the stress response predicted by the proposed model compared to the analytical solutions, the
ifference observed in our model can be neglected in practical applications, as demonstrated by the following numerical examples.

Fig. 5. Normal stress 𝜎𝑥 distribution along the height 𝐻 with the newly proposed wrinkling model.

Fig. 6. Convergence behavior of rectangular membrane under in-plane bending during the second load step.

In addition, in order to show the convergence behavior of the proposed model, we plot in Fig. 6 the number of iterations during
the second load step, where we can find the most iterations of all load steps. From Figs. 6(a) and 6(b), it can be seen that the new
odel can achieve a good convergence and increasing bending moment requires more iterations to reach the preset tolerance. To
7 
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prove the robustness of the proposed wrinkling model during mesh refinement, we conduct a mesh convergence study by plotting
the normal stresses 𝜎𝑥 along with the height 𝐻 under various mesh sizes with a Poisson’s ratio 𝜈 = 0 in Fig. 7. The results of
the mesh convergence studies confirm that the accuracy and robustness of the proposed model are not affected by changes in the
element size. In Appendix B, the results for 𝑝 = 1 are attached in Fig. B.25 to evidence that the newly proposed model can be
equally applied to standard finite element analysis.

Fig. 7. Normal stress 𝜎𝑥 distribution along the height 𝐻 computed by the proposed model with Poisson’s ratio 𝜈 = 0, polynomial degree 𝑝 = 2, and 𝛼 = 2𝑀∕𝑃𝐻 .
In the left, middle, and right columns, mesh refinement is carried out as 11 × 5, 23 × 11, and 43 × 21, respectively.

5.2. Flat square membrane under corner loads

As a second example, we present a verification of the proposed wrinkling model using the case of a square membrane subjected
to corner loads of 𝑇1 and 𝑇2 with nonzero Poisson’s ratio, which is discussed in [4,16,38,54]. The membrane possesses a length
of 0.5m and a thickness of 25 μm. It undergoes the diagonal pairs of equal and opposite forces 𝑇1 and 𝑇2 at the four corners, as
shown in Fig. 8. As suggested in [38], the central point of the membrane is fixed to prevent rigid body motions. In addition, the
ovement in 𝑥-direction of the middle point at the top edge is also constrained to avoid rotation. We perform numerical analyses
or the various values of the 𝑇1∕𝑇2-ratio, where 𝑇1 is increased from 5N to 20N, while 𝑇2 is kept constant at 5N for all cases. The
aterial parameters used in this study are Young’s modulus 𝐸 = 3500MPa and Poisson’s ratio 𝜈 = 0.31. The square membrane is

iscretized using 40 × 40 cubic elements.

8 



D. Zhang and J. Kiendl

t
a
t
s
s
t
t
r
t
p
t
f
b
t

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117386 
Fig. 8. Flat square membrane under corner loads 𝑇1 and 𝑇2.

We plot the first principal stress distributions 𝜎1 under various load ratios 𝑇1∕𝑇2 in Fig. 9(a)–(d). The new model appears to attain
he comparable first principal stress distribution patterns under various load ratios 𝑇1∕𝑇2 compared to the thin shell solutions [16]
nd those predicted by other wrinkling models [4,38]. Additionally, we plot the wrinkling intensity under the different values of
he 𝑇1∕𝑇2 ratio in Fig. 10. The wrinkling intensity is obtained as the absolute values of the negative second eigenvalues of the
train tensor multiplied with the norm of the first eigenvector if the wrinkling state is wrinkled. Otherwise, in the case of taut or
lackened states, the value would be zero. In Fig. 11, the wrinkling trajectories are presented. The regions marked by lines indicate
he wrinkled zones, the lines show the direction of the first eigenvector of the strains, and the line length is scaled according to
he corresponding second eigenvalues. The areas without lines are the taut or slackened regions. As shown in Fig. 11, it can be
ecognized that the wrinkles are mainly concentrated in the diagonal by increasing the load ratio, similar to the fact observed in
he experiments [54] and the numerical results [4,16,38]. Fig. 12 presents a graphical representation illustrating the convergence
erformance of the square membrane subjected to various corner load ratios. The convergence performance is measured by tracking
he number of iterations required in the first and last load steps. As depicted in Fig. 12(a), in the case of ratio 𝑇1∕𝑇2 = 1, it requires
ewer iterations to reach the tolerance compared to other cases because the diagonal wrinkles that can deteriorate the convergence
ehavior have not formed yet in the case of 𝑇1∕𝑇2 = 1. The convergence behavior from the second load step follows a similar pattern
o the last load step. Hence, we show the iterations in the last load step as illustrated in Fig. 12(b).

Fig. 9. Contours of the first principal stresses 𝜎1 (Pa) under the different values of the 𝑇1∕𝑇2-ratio.
9 
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Fig. 10. Wrinkling intensity under the different values of the 𝑇1∕𝑇2-ratio.

Fig. 11. Wrinkling trajectories under the different values of the 𝑇1∕𝑇2-ratio.

5.3. Inflation of a square isotropic airbag

In the third example, we model the inflation of a square airbag, which is a commonly used benchmark for validating finite
element-based wrinkling algorithms; related works are referred to Diaby et al. [55], Jarasjarungkiat et al. [38], Jarasjarungkiat
t al. [18], Contri and Schrefler [6], Kang and Im [34], Lee and Youn [56], Le Meitour et al. [57] and Gil and Bonet [58]. The
nitially flat square airbag has a diagonal length of 𝐴𝐶 = 120 cm and a thickness of 𝑡 = 0.06 cm, as Fig. 13 shows. It is loaded by a
isplacement-dependent pressure 𝑃 perpendicular to the surface, increasing to 5000 Pa gradually. We did not consider the external
stiffness matrix produced by pressure in our element formulation for simplification. Due to the symmetry, only a quarter of the
airbag is simulated. Thus, the symmetric boundary conditions are applied to the inner edges, while the movements of outer edges
in the 𝑧−direction are constrained. The material of the airbag is assumed to be linear isotropic, with an elastic modulus 𝐸 = 588MPa
and Poisson’s ratio 𝜈 = 0.4.
10 
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Fig. 12. Convergence behavior of the square membrane under corner loads with various 𝑇1∕𝑇2-ratios.

Fig. 13. Airbag simulation setup.

As indicated in [55], the inflation of a square airbag poses a specific difficulty caused by the singularity of the stiffness matrix at
he initial stage due to the normal pressure applied to the membrane surface. One possibility is to use dynamic relaxation (DR) [32]
o overcome this numerical obstacle. DR approximates a static equilibrium solution through a pseudo-dynamic transient analysis.
owever, a more straightforward alternative is to stretch the membrane along the 𝑥- and 𝑦-directions with dead forces on the two
uter edges, as suggested in [55,56]. These forces are gradually reduced and removed when the pressure 𝑃 reaches a fixed value.
his approach enables us to avoid the initial singularity and obtain an accurate solution for the airbag inflation simulation.
In Table 1, we report the displacements and the first principal stress obtained with the proposed wrinkling model at various

oints, as the vertical displacement 𝑢𝑀𝑧 at point 𝑀 and the displacements of the 𝑦-components at points 𝐴 and 𝐵, denoted as 𝑢𝐴𝑦
and 𝑢𝐵𝑦 , respectively. Moreover, the first principal stress 𝜎

𝑀
1 at point 𝑀 was also measured.

Table 1
Airbag results under various mesh size with 𝜂 = 0.
Number of elements 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32

𝑢𝑀𝑧 (m) 0.2234 0.2175 0.2172 0.2170 0.2174
𝑢𝐴𝑦 (m) 0.0396 0.0378 0.0368 0.0358 0.0352
𝑢𝐵𝑦 (m) 0.1077 0.1168 0.1228 0.1289 0.1346
𝜎𝑀1 (MPa) 13.91 3.95 4.27 3.90 3.80

Particularly noteworthy for discussion and analysis is the case where the mesh is 32 × 32. In this scenario, we observed a
sudden change in the displacement 𝑢𝑀𝑧 at the center of the airbag. Similarly, a sudden contraction was observed at point 𝐵. This is
ttributed to the occurrence of self-penetration, as depicted in Fig. 14. This phenomenon has also been documented in [32]. Other
11 
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Fig. 14. Self-penetration at the point B of airbag with 32 × 32 mesh (𝜂 = 0).

published results did not perform a mesh convergence study and therefore did not refine the mesh to this extent. Consequently, in this
example, penetration has been rarely discussed. Our interpretation of this is based on the studies of Iwasa et al. [19], Miyazaki [1],
Jarasjarungkiat et al. [18,38], who pointed out that membranes under wrinkling conditions still should exhibit a small compressive
tiffness, which is considered via the parameter 𝜂 in Eqs. (23)–(25) in this work. In the following, we perform a parametric study
n 𝜂 and its influence on the results, where 𝜂 = 10−8, 10−6, 10−5, 10−4 are considered. In Fig. 15, we plot 𝑢𝑀𝑧 and 𝑢𝐵𝑦 under different
alues of 𝜂 and increasingly refined meshes. It can be seen that for 𝜂 ranging from 10−8 to 10−5, no convergence for 𝑢𝑀𝑧 and 𝑢𝐵𝑦 is
btained within the meshes considered, while good convergence behavior is obtained with 𝜂 = 10−4. Fig. 16 shows exemplarily the
etailed deformation at point 𝐵 for the mesh with 32 × 32 elements and different values for 𝜂. It can be seen that for 𝜂 ranging from
0−8 to 10−5 (Fig. 16(a)–(c)), there is self-penetration, which disappears for 𝜂 = 10−4, see Fig. 16(d). This example shows that a

Fig. 15. Displacements at points M and B under various 𝜂.

mall amount of compressive stiffness, governed via the parameter 𝜂 can avoid unphysical self-penetration and improve the overall
onvergence behavior. Regarding the choice of the value for 𝜂, the study shows that it may not have the desired effect if 𝜂 is chosen
too low (see Fig. 16). At the same time, 𝜂 must not be chosen too high, as this would lead to a significant compressive stiffness in
the membrane, affecting its global mechanical behavior. From Fig. 15 it becomes also clear that the choice of appropriate values
for 𝜂 can depend on the mesh size. For the very coarse meshes (2 × 2 and 4 × 4 elements), the choice of 𝜂 has no influence on the
results, while for 8 × 8 elements and finer, it does. In conclusion, this study shows that the optimal value for 𝜂 can depend on the
specific problem and the mesh size, and has to be determined empirically. At the same time, it has to be highlighted that even with
𝜂 = 0 (or values of 𝜂 which are not optimal), the global behavior of the membrane is represented very well and also the local values
for displacements and stresses are still in the range of reference results from the literature.

A comprehensive comparison between the results from the existing literature and the present work is presented in Table 2. By
comparing our computed results with the outcomes reported in previous studies, a substantial agreement is observed, particularly
concerning the prediction of the vertical displacements 𝑢𝑀𝑧 and the first principal stresses 𝜎𝑀1 . It indicates that the slight difference
due to the Poisson effect shown in the first benchmark can be neglected in complicated examples. In order to demonstrate the mesh
12 
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Fig. 16. Detail view at point 𝐵 for the 32 × 32 mesh with different values of 𝜂.

independence of the proposed wrinkling formulation, we focus on analyzing the vertical displacements at point 𝑀 and the first
principal stresses at the same location while progressively refining the mesh using linear (𝑝 = 1) and quadratic (𝑝 = 2) membrane
lements. The results are presented in Fig. 17(a) for the vertical displacements and in Fig. 17(b) for the first principal stresses.

Table 2
Comparison of airbag results from literature and present work (𝜂 = 10−4).

Contri and Schrefler [6] Kang and Im [34] Diaby et al. [55] Jarasjarungkiat et al. [38] Present work 𝑝 = 1 Present work 𝑝 = 2

𝑢𝑀𝑧 (m) 0.217 0.214 0.2245 0.2175 0.2165 0.2164
𝑢𝐴𝑦 (m) 0.045 0.041 0.0307 0.0349 0.0362 0.0351
𝑢𝐵𝑦 (m) 0.110 0.119 0.1158 0.1203 0.1210 0.1212
𝜎𝑀1 (MPa) 3.5 − − 3.9 3.9 3.9

Fig. 17. Convergence study of the vertical displacement (a) and the first principal stress (b) at point 𝑀 during mesh refinement.

Besides, we plot the distributions of the first and second principal stresses 𝜎1∕2 within the inflated airbag shown in Fig. 18. The
maximum values of the first and second principal stresses are approximately 𝜎1 = 49MPa and 𝜎2 = 17MPa, both occurring at
the corners. However, due to the excessive magnitude of these values, the stress distribution diagram lacks clarity. Therefore, in
the stress contour plot, we present a more reasonable and scaled representation. Since the degradation factor is not set to zero,
a small compressive stiffness remains within the model. Consequently, this leads to the generation of negative stresses that are
small compared to the positive stresses and can be considered negligible. Besides, These principal stress distributions align with
13 
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Fig. 18. Contours of the first and second principal stresses 𝜎1∕2 (Pa) distributed in the inflated airbag.

Fig. 19. Illustration of the wrinkled zone in a fully inflated square airbag.

the observed wrinkle trajectories illustrated in Fig. 19. Precisely, the regions in proximity to the midpoint of the edges of the
airbag exhibit pronounced wrinkling phenomena, while the central regions remain taut and devoid of wrinkles. Fig. 20 showcases
the convergence behavior of the airbag during the final load step under different mesh sizes. The plot reveals a noteworthy trend
wherein the mesh refinement leads to increased iterations required to attain the predetermined residual criterion. Furthermore,
when the polynomial order is elevated, more iterations are necessary.

Fig. 20. Convergence behavior of airbag during the last step with different mesh.

5.4. Hanging blanket under self-weight

While all the benchmark examples above represent prestretched membranes, in this final example, we consider a ‘‘loose’’
membrane loaded by self-weight only. It represents a hanging blanket supported at its corners, as shown in Fig. 21. All four corners

are supported rigidly in 𝑧-direction, while elastic supports are applied in the 𝑥-𝑦-plane as shown in Fig. 21 such that the blanket

14 
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Fig. 21. Hanging blanket under self-weight.

can undergo large deformations due to self-weight. The length of the blanket is 𝐿 = 1m and its thickness 𝑡 = 1.177mm. The material
parameters applied in this example are Youngs’s modulus 𝐸 = 30 000 Pa, surface density 𝜌 = 0.144 kgm−2 for self-weight, which are
taken from [59]. Poisson’s ratio varies between 𝜈 = 0 and 𝜈 = 0.3, and the elastic supports are applied via the penalty formulation
presented in [60], with a penalty parameter 𝛼 = 10−2, corresponding to a spring stiffness 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 = 22.95 kNm−1. A mesh of 25 × 25
bi-quadratic elements is used to model the wrinkling behavior of the square hanging blanket.

Fig. 22 depicts the deformation and the first and second principal stresses. In Fig. 23, the wrinkling intensity and trajectories are
plotted. As can be seen, significant wrinkling phenomena are prominently observed in the regions near the four corners and four
edges of the blanket. In contrast, the central regions remain taut without any wrinkles. For validation, we also perform simulations
with the wrinkling model proposed in [29] using the same setup and mesh, and its results are remarked as a reference.

Fig. 22. Distribution of the first and second principal stresses 𝜎1∕2 (Pa) with 𝜈 = 0.3.

Fig. 23. Illustration of the wrinkled zone in a hanging blanket with 𝜈 = 0.3.

Table 3 demonstrates very good agreement between the newly proposed model and the reference in predicting the displacements
t points 𝐴, 𝐵, and 𝑀 , denoted as 𝑢𝐴𝑥 , 𝑢𝐵𝑥 and 𝑢𝑀𝑧 , respectively, as well as the first principal stress 𝜎

𝑀
1 at the middle point 𝑀 when

onsidering a Poisson’s ratio 𝜈 = 0. The results in Table 4 exhibit distinguishable variations between the two models for a nonzero
oisson’s ratio. This discrepancy arises since the new wrinkling model is strain-based, while the wrinkling criterion used in the
15 
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reference is mixed. However, the discrepancies remain within an acceptable range, indicating that the proposed model still provides
reasonable predictions even for cases where the uniaxial tension condition is not strictly met.

Table 3
Comparison of the displacements and first principal stress with 𝜈 = 0.
Mesh (25 × 25) 𝑢𝑀𝑧 (m) 𝑢𝐴𝑥 (m) 𝑢𝐵𝑥 (m) 𝜎𝑀1 (MPa)

Reference −0.28949 −0.03661 −0.01830 637.68
New model −0.28949 −0.03661 −0.01830 611.68

Table 4
Comparison of the displacements and first principal stress with 𝜈 = 0.3.
Mesh (25 × 25) 𝑢𝑀𝑧 (m) 𝑢𝐴𝑥 (m) 𝑢𝐵𝑥 (m) 𝜎𝑀1 (MPa)

Reference −0.28328 −0.03406 −0.01703 642.66
New model −0.29531 −0.03278 −0.01639 586.99

The convergence performances of the two models are compared across various Poisson’s ratios in Fig. 24. The results indicate that
he new model exhibits significantly superior convergence compared to the reference. Specifically, the new wrinkling model achieves
onvergence within approximately twenty iterations, whereas the reference requires over one hundred iterations, particularly when
he Poisson’s ratio is zero. That attributes the advantages of the new model, which is consistently derived from the strain energy
ensity. These findings underscore the improved convergence behavior of the proposed model, and the substantial reduction in the
umber of iterations needed for convergence demonstrates the advantages and practicality of the proposed model in simulating and
nalyzing wrinkling behavior in membrane structures.

Fig. 24. Comparison of the convergence behavior of two models during the last step with various Poisson’s ratios.

. Conclusion

We have presented a variationally consistent membrane wrinkling model based on the spectral decomposition of the strain tensor,
hich can perform well in wrinkled membrane analysis and improve convergence issues caused by the wrinkling phenomenon. In
his wrinkling model, we decompose the strain tensor into positive and negative components based on the eigenvalues. It allows
s to split the strain energy density into positive and negative parts. According to the tension-field theory, we only consider the
ositive strain energy density to obtain zero compressive stiffness. To prevent self-penetration and singular stiffness matrices, a
esidual compressive stiffness can be assigned by multiplying the negative strain energy density by a very small factor, which is
hosen empirically. We consistently derive the modified strain energy density with respect to strain variables to determine new stress
ensor and constitutive tensor formulations. In addition, the eigenvector directions are considered to track the wrinkling directions.
To assess the effectiveness of the proposed method, we conducted a series of tests on analytical, numerical and experimental

enchmarks for membrane wrinkling problems. We have employed this model in standard finite element and isogeometric analysis
ormulations, showing its generality. The results of these tests indicate that the newly proposed wrinkling model performs well in
ccurately predicting the mechanical responses of wrinkled thin membranes and shows a very good convergence behavior.
One possible direction for future research on the proposed approach is its extension to hyperelastic material models since the

urrent model presented in this study is limited to isotropic linear elasticity. Another future research direction is the simultaneous
pectral decomposition of the strain and stress tensors into positive and negative components. Thus, the wrinkling criterion would

ely no longer solely on strain but on a widely used mixed stress–strain criterion.
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Appendix A

In the following, the derivation of the positive and negative parts of the constitutive tensor are presented, following Nilsen [61].
For convenience, Eqs. (15) and (17) are repeated here

𝐒± =
(

𝜆 − 𝜆2

𝜆 + 2𝜇

)

⟨tr (𝐄)⟩±𝐈 + 2𝜇𝐄±, (A.1)

C± =
𝜕𝐒± (𝐄)
𝜕𝐄

. (A.2)

For a better clarity, the two terms in Eq. (A.1) are derived separately with respect to 𝐄 in the following. For the first term, we get
𝜕
𝜕𝐄

(

⟨tr (𝐄)⟩±𝐈
)

= 𝐻 (± tr (𝐄)) 𝜕
𝜕𝐄

(tr (𝐄) 𝐈) , (A.3)

where 𝐻(𝑥) is the Heaviside function. A fourth-order tensor J is introduced to define the derivative of the product of the trace of
he strain tensor tr(𝐄) and the identity tensor 𝐈 as:

( 𝜕
𝜕𝐄

(tr (𝐄) 𝐈)
)

𝛼𝛽𝛾𝛿
∶= J =

𝜕 (tr (𝐄) 𝐈)𝛼𝛽
𝜕𝐸𝛾𝛿

=

{

1 if 𝛼 = 𝛽 and 𝛾 = 𝛿
0 else .

(A.4)

Thereby, the Eq. (A.3) can be simply rewritten as:
𝜕
𝜕𝐄

(

⟨tr (𝐄)⟩±𝐈
)

= 𝐻 (± tr (𝐄)) J . (A.5)

Next, we address the derivative of the second term in Eq. (15), which involves the so-called projection operators P±
𝐸 [62]. These

operators are fourth-order tensors and are defined as:

P±
𝐸 = 𝜕𝐄±

𝜕𝐄
= 𝜕
𝜕𝐄

(

⟨𝐸𝛼⟩
± 𝐧𝛼 ⊗ 𝐧𝛼

)

. (A.6)

The second-order tensors 𝐌𝛼 ∶= 𝐧𝛼 ⊗ 𝐧𝛼 are defined as the eigenvalue bases related to the eigenvalue 𝐸𝛼 . In the case of distinct
eigenvalues 𝐸𝛼 ≠ 𝐸𝛽 , the classical results can be found in [63] and expressed as:

𝜕𝐸𝛼
𝜕𝐄

= 𝐌𝛼 ,
𝜕𝐌𝛼
𝜕𝐄

=
2
∑

𝛼≠𝛽

1
2
(

𝐸𝛼 − 𝐸𝛽
)

(

G𝛼𝛽 +G𝛽𝛼
)

, (A.7)

where the fourth-order tensor operator G𝛼𝛽 = Ĝ(𝐌𝛼 ,𝐌𝛽 ) with the coordinates representation is introduced as:
(

G𝛼𝛽
)

𝛾𝛿𝜀𝜁 ∶= (𝐌𝛼)𝛾𝜀(𝐌𝛽 )𝛿𝜁 + (𝐌𝛼)𝛾𝜁 (𝐌𝛽 )𝛿𝜀. (A.8)

With this notation we can explicitly express the projection tensors P±
𝐸 = 𝜕𝐄±∕𝜕𝐄. The components of the projection tensors are given

by:
(

𝜕𝐄±

𝜕𝐄

)

𝛾𝛿𝜀𝜁
=
𝜕
(

𝐄±)
𝛾𝛿

𝜕𝐸𝜀𝜁

= 𝜕
𝜕𝐸𝜀𝜁

(

⟨𝐸𝛼⟩
± (

𝐌𝛼
)

𝛾𝛿

)

=
𝜕 ⟨𝐸𝛼⟩

±

𝜕𝐸𝜀𝜁

(

𝐌𝛼
)

𝛾𝛿 + ⟨𝐸𝛼⟩
±
𝜕
(

𝐌𝛼
)

𝛾𝛿

𝜕𝐸𝜀𝜁

=𝐻
(

±𝐸𝛼
) (

𝐌𝛼
)

𝜀𝜁
(

𝐌𝛼
)

𝛾𝛿 +
2
∑

𝛼≠𝛽

⟨𝐸𝛼⟩
±

2
(

𝐸𝛼 − 𝐸𝛽
)

(

(

G𝛼𝛽
)

𝛾𝛿𝜀𝜁 +
(

G𝛽𝛼
)

𝛾𝛿𝜀𝜁

)

.

(A.9)

Finally, we can express the positive and negative parts of the constitutive tensor as

C± =
(

𝜆 − 𝜆2

𝜆 + 2𝜇

)

𝐻 (± tr (𝐄)) J + 2𝜇

(

𝐻
(

±𝐸𝛼
)

Q𝛼 +
2
∑

⟨𝐸𝛼⟩
±

( )

(

G𝛼𝛽 +G𝛽𝛼
)

)

. (A.10)

𝛼≠𝛽 2 𝐸𝛼 − 𝐸𝛽
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Appendix B

Fig. B.25. Normal stress 𝜎𝑥 distribution along the height 𝐻 computed by the proposed model with Poisson’s ratio 𝜈 = 0, polynomial degree 𝑝 = 1, and
𝛼 = 2𝑀∕𝑃𝐻 . In the left, middle, and right columns, mesh refinement is carried out as 11 × 5, 23 × 11, and 43 × 21, respectively.
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