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Abstract
In most major cities today, various shared mobility systems such as car or bike 
sharing exist. Maintaining these systems is challenging, and, thus, public and 
private providers strive to improve operational performance. An important metric 
which is regularly recorded and monitored in practice for this purpose is idle time, 
i.e., the time a vehicle stands unused between two rentals. Usually, it is available 
for different temporal and spatial granularities. At the same time, dynamic pricing 
has been shown to be an efficient means for increasing operational performance 
in shared mobility systems, but data necessary for traditional dynamic pricing 
approaches, like unconstrained demand, is much less available in practice. Thus, 
dynamic pricing based on idle time data appears promising and first ideas have been 
proposed. However, the existing approaches are based either on simple business 
rules or on myopic optimization. In this work, we develop a novel dynamic pricing 
approach that determines prices by online optimization and thereby anticipates 
future profits through the integration of idle time data. The core idea is quantifying 
the remaining profitable time by using idle times. With regard to application 
in practice, the developed approach is generic in the sense that different types of 
readily available historical idle time data can be seamlessly integrated, meaning 
data of different spatio-temporal granularities. In an extensive numerical study, we 
demonstrate that the operational performance increases with higher granularity and 
that the approach with the highest one outperforms current pricing practice by up to 
11% in terms of profit.
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1  Introduction

In recent years, the popularity and usage of shared mobility systems (SMSs) has 
grown rapidly. This is reflected, for example, in the evolution of car sharing users 
in Germany, which has increased steadily from only two hundred thousand users 
in 2011 to almost three million users in 2021 (Statista 2021).

Independent of private or public ownership, SMS providers strive for 
maximizing the system’s operational performance. In doing so, different metrics 
are analyzed. A popular one is the idle time, which is defined as “the amount of 
time between two consecutive rentals of one vehicle that is available for rent” 
(Neijmeijer et  al. 2020). In other words, it is “the time between the rental and 
the prior return [...]” (Reiss and Bogenberger 2015). According to Xie and Wang 
(2018), total operating time consists of idle time, maintenance time, and use time. 
Importantly, idle time “is not a characteristic of a specific [...] vehicle, but rather 
of the location where a rental ends. It reflects how supply and demand [...] match 
in the vicinity” (Wagner et al. 2015).

Using the idle time as a performance metric has various advantages. First, it 
is easy to measure, which is why historical idle time data is often available in 
practice. Since idle time is location- and time-specific and since spatial as well 
as temporal information can be measured on different levels of granularities, the 
specific idle time data available in practice varies. The second advantage of idle 
time data is that it includes latent demand (i.e., the demand that does not lead 
to rentals because, e.g., of supply shortages) as Neijmeijer et  al. (2020) point 
out. Thus, it is an “honest” indicator which, unlike simply considering rentals, 
does not have to be adjusted to become meaningful. More specifically, observing 
a short idle time reveals the interplay between supply and a comparably high 
demand while observing a certain amount of rentals does not allow to conclude 
weather supply or demand was the limiting factor.

Due to these advantages, idle time is used for several purposes to analyze and 
control SMSs. Most frequently, it is used as a metric for the analysis of the spatial 
differences in utilization (e.g., Reiss and Bogenberger 2015) and the attractiveness 
of different zones (Lippoldt et al. 2018). Moreover, idle time is also used as part 
of an unconstraining technique to estimate unconstrained demand. As indicated 
above, while unconstrained demand is typically difficult to measure, idle times 
are not. For example, Mooney et  al. (2019) uses the inverse of the idle time as 
a proxy for the demand. Furthermore, high idle times provide an indication for 
an accumulation of vehicles in a part of the business area with low demand. 
Thus, idle time is a reliable metric for operator-based relocation and used as 
the basis for rules of thumb in practice. For example, Göppel and Blumenstock 
(2012) report that at car2go, a vehicle was relocated if its idle time had exceeded 
a certain threshold (e.g., three days). Finally, another application is to use idle 
time (usually in combination with other metrics) to determine the attractiveness 
of a zone and then either combine a differentiated pricing approach with operator-
based relocation (e.g., Reiss and Bogenberger 2016b) or apply operator-based 
relocation only (e.g., Weikl and Bogenberger 2015).
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Another very important application for idle times in SMSs is in the context of 
dynamic pricing, which we focus on in this work. A few first business rules relying 
on exogenously given idle time thresholds have been proposed in the literature and 
practice: A straightforward idea is that locations with a very low idle time indicate 
a very high demand in comparison to the supply of available vehicles. For a profit-
maximizing provider, high prices would be reasonable in this case of high scarcity, 
and vice versa. The dynamic pricing of DriveNow, for example, was based on this 
idea (Wu et al. 2021). Here, vehicles that exceeded a certain idle time were priced 
at a discount. Another very practical pricing approach is based on the comparison 
between the idle time of the customer’s indented destination and possible other 
destinations in the vicinity (Wagner et al. 2015; Brandt and Dlugosch 2021). Here, 
if the idle time at an alternative destination falls short of the idle time at the intended 
destination by at least a threshold, then the business rule offers an incentive for the 
alternative destination. It should be noted, however, that, for this pricing approach, 
the customer must specify the destination, which is not current practice. Yet another 
idea is to strive for a homogeneous idle time (target idle time) across the entire 
business area (Neijmeijer et al. 2020). Here, the idle times are compared with this 
target idle time and prices are set accordingly. All these approaches are easy to 
implement, practical business rules but they are not based on optimization.

To close this literature gap regarding optimization-based approaches, in this work, 
we develop a novel idle-time-based dynamic pricing (ITDP) approach for SMSs. As 
typical in dynamic pricing in complex systems, the approach builds on approximating 
state values which quantify the future expected profit to handle the curse(s) of 
dimensionality. More specifically, the ITDP’s central idea is that these state values are 
formulated based on (expected) idle times. To this end, the (expected) remaining time 
a vehicle will be in use and generate profit is quantified. This remaining time depends 
on the overall considered time and the expected idle time. For example, a shorter idle 
time is equivalent to a longer profitable remaining time, and vice versa. In comparison 
to the few existing idle-time-based approaches named above, our ITDP is anticipative, 
meaning that it seeks to optimize the immediate expected profit of a pricing decision 
as well as the expected profit to come. The price optimization is performed under 
consideration of a disaggregated customer choice model and the general formulation 
of the state value approximation allows to integrate historic idle time data for different 
spatio-temporal granularities, as they occur in practice.

Regarding the specifics of the SMSs that we consider, there are two main 
characteristics to mention. First, two types of SMSs exist: free-floating and station-
based SMSs (Laporte et  al. 2018). The decisive difference between free-floating 
SMSs and station-based SMSs is that pick-up and drop-off locations for vehicles 
are not limited to certain predefined locations. Instead, in a free-floating SMS, 
vehicles can be dropped off (and picked up) at any publicly accessible location. 
Second, from a provider’s perspective, regardless of free-floating or station-based, 
SMSs differ in the spatio-temporal demand information. More specifically, it refers 
to whether the provider has knowledge of origin, destination, and time of demand. 
In the context of pricing, this difference results in different pricing mechanism, as 
described in Soppert et  al. (2022). For example, in “origin-based pricing”, prices 
charged for a rental only depend on a rental’s spatio-temporal origin, meaning its 
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start location and start time. In “trip-based pricing”, in contrast, prices may depend 
on both origin and destination. In this work, we consider a free-floating SMS and 
formulate the ITDP in a general way that allows to apply it to all variants of spatio-
temporal demand information. In the computational studies, we focus exemplarily 
on an origin-based dynamic pricing, as typical in modern free-floating SMSs.

The contributions of our work are the following:

•	 We develop the first optimization-based and anticipative dynamic pricing 
approach for SMSs which is built on idle times.

•	 With regard to methodology, we propose a general state value formulation that 
exclusively relies on expected idle times to quantify a SMS’s future expected 
profit.

•	 Due to the generality of this formulation, the pricing approach allows wide 
applicability in practice, especially in the sense that readily available historical 
idle time data—independent of the data’s temporal and spatial granularity—can 
be seamlessly integrated.

•	 We conduct several computational studies that demonstrate the dominance of the 
developed approach compared to existing benchmark approaches in the literature. 
The results show that profit can be increased by up to 11 % compared to current 
pricing practice.

The remainder of the paper is organized as follows. In Sect. 2, we review the rel-
evant literature. Section 3 begins with a problem statement and the introduction of 
notation. Based on this, Sect. 3.2 describes the new dynamic pricing approach based 
on idle times. Section  3.3 then exemplarily describes the integration of idle time 
data for three different temporal and spatial granularities. Section  4 contains the 
computational studies. Section 5 concludes the paper and gives an outlook on future 
research.

2 � Literature review

The literature on SMS optimization is broad, covering various types of systems, 
optimization problems, control approaches, and methodologies. General overviews 
on SMS optimization problems have been presented in survey papers on bike 
sharing (e.g., DeMaio 2009; Fishman et  al. 2013; Ricci 2015), car sharing (e.g., 
Jorge and Correia 2013; Ferrero et al. 2015a, b; Illgen and Höck 2019), and SMSs in 
general (e.g., Laporte et al. 2015, 2018).

In this literature review, we focus on dynamic pricing in SMSs in the sense 
that prices depend on the system’s current state. We exclude differentiated (or 
static) pricing approaches (see, e.g., Agatz et al. 2013; Soppert et al. 2022, and the 
references therein).

In the following, we introduce a classification scheme for dynamic pric-
ing approaches (Sect.  2.1). Based on this, Sect.  2.2 considers dynamic pricing 
approaches using idle time data and Sect. 2.3 reviews papers using other data. At the 
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end of each section, we concisely delineate the existing literature from the paper at 
hand.

2.1 � Dimensions of dynamic pricing

To structure the dynamic pricing approaches for SMSs, we propose the following 
three dimensions which characterize an approach from the provider’s perspective 
(see also Table 1). 

1.	 Methodology (first column) Prices are either determined by business rules or by 
optimization, meaning based on solving some mathematical optimization model.

2.	 Foresight (second column) Myopic approaches determine prices based on the 
immediate (expected) reward (e.g., profit), given the current state of the SMS. 
In contrast, anticipative approaches additionally consider how current decisions 
influence the SMS’s future states and rewards.

3.	 Required historical data for anticipation (third column) Anticipative pricing 
approaches require some component to predict the future. Thus, they usually 
require historical data, either to forecast the system’s evolution or to directly 
predict current decisions’ implications on future rewards.

With regard to these three dimensions, this paper develops an anticipative 
optimization-based dynamic pricing approach relying on idle time data, which we 
call ITDP for short.

2.2 � Dynamic pricing with idle time data

Three papers perform dynamic pricing with idle time data, all using business rules. 
Both Wagner et  al. (2015) and Brandt and Dlugosch (2021) first ask an arriving 
customer for her intended destination. The approaches calculates the expected idle 
time for the customer’s intended destination as well as for locations in its vicinity. 
Their approach offers an incentive to the customer for leaving the vehicle at a nearby 
destination if its idle time undercuts that of the originally entered destination by 
at least a threshold. The provider chooses the threshold such that his benefit from 
the diversion exceeds the cost of the incentive offered to the customer. The authors 
recognize that this threshold is tedious to set and examine different threshold values. 
Both papers apply location–period-specific idle times (see Table 2 and for further 
explanations Sect. 3.3) as they divide the free-floating system’s business area into 
so-called tiles and calculate average idle times for each tile and time period (Wagner 
et  al. (2015): 1  h, Brandt and Dlugosch (2021): 30  min). They are indirectly 
anticipative because when they decide on prices when a customer arrives, they 
consider idle times at the destination when the trip ends and, thus indirectly capture 
the system’s future state and reward.

Neijmeijer et al. (2020) use idle times in a real-world experiment to set prices. 
The core idea of the pricing approach is to achieve a good service level by having 
homogeneous idle times across the entire business area. To price a vehicle when a 
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customer arrives, the average idle time at its current location for the current time 
period is considered (location–period-specific idle time, see Table  2 and for fur-
ther explanations Sect. 3.3). As only current values are considered, we classify the 
approach as myopic.

As mentioned above, the pricing approaches in all three papers are hands-on 
business rules where prices are set based on thresholds or a target idle time for the 
whole system. Moreover, the pricing approach of Neijmeijer et al. (2020) is myopic 
and does not consider future profit. In contrast, our pricing approach calculates 
prices using an optimization procedure and anticipates future rewards.

2.3 � Dynamic pricing without idle time data

In this section, we consider papers that propose dynamic pricing approaches and 
thereby do not use idle time data. We structure them along the first two dimensions 
from Sect.  2.1, i.e., foresight and methodology. In Sect.  2.3.1, we consider the 
approaches that are closest to ITDP in both dimensions, i.e., which are anticipative 
and optimization-based. Then, we examine the dynamic pricing approaches that 
share only one of the two dimensions with ITDP, i.e., that use anticipative business 
rules (Sect. 2.3.2) or myopic optimization (Sect. 2.3.3). Finally, in Sect. 2.3.4, we 
consider myopic business rules.

2.3.1 � Anticipative optimization

Several papers use mathematical optimization with models that anticipate future states 
or rewards. Singla et al. (2015) define empty and full stations based on their current 
occupancy and predicted rentals. The pricing approach iteratively learns users’ reac-
tions to the incentives offered and seeks to align future demand and supply. Pfrommer 
et al. (2014) propose a model predictive control approach that uses quadratic program-
ming and recalculates prices each period in a rolling horizon fashion. This pricing 
approach needs data about the current occupancy of the stations and historical rentals 
for the anticipation. Ruch et al. (2014) build on Pfrommer et al. (2014) and investi-
gate simplified variants that can be used to benchmark more complex approaches. An 
anticipative variant element needs historical data about the occupancy of all stations. 
Febbraro et al. (2012) aim at a supply/demand ratio of 1 at all stations. They suggest 
alternative drop-off locations with a discount to customers. Febbraro et al. (2019) fol-
low up on their earlier paper and formulate and test corresponding optimization mod-
els. These optimization models require future demand, which is calculated based on 
historical demand. Kamatani et al. (2019) optimize thresholds by Q-learning based on 
simulated data, which uses data about the current vehicle distribution and the current 
rentals. Clemente et al. (2017) use a particle swarm optimization based on simulated 
data of vehicle distributions and the demand. Müller et al. (2023) develop a customer-
centric disaggregate and anticipative pricing approach. Their approach focuses on 
the vehicles that are within a customer’s walking distance and evaluate them using a 
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kernel regression based on historical vehicle-specific data, for which the provider must 
have tracked individual vehicles in the past.

Although the above papers propose a similar dynamic pricing approach in terms 
of methodology and foresight, they are not directly applicable to the problem con-
sidered here in which the provider (only) possesses idle time data. The decisive nov-
elty compared to, e.g., Müller et al. (2023) is the type of required historical data: 
ITDP uses readily available idle time data in the anticipative price optimization. 
This allows ITDP to approximate state values with non-parametric value function 
approximations and to incorporate complex customer choice behavior. By contrast, 
the above approaches need data on rentals, vehicle distribution, or vehicle histories.

2.3.2 � Anticipative business rules

Both Brendel et al. (2016) and Dötterl et al. (2017) use business rules and anticipate 
the future. Dötterl et al. (2017) analyze the vehicles’ current state (driving or idle) 
and predict the near-future occupancy of every station. They differ in the required 
data. Brendel et  al. (2016) require historical and current data on rentals and 
occupancy to calculate station thresholds and compare them to current occupancy. 
In contrast, Dötterl et al. (2017) require current station occupancy, current rentals, 
and customer location during the rental time and no historical data to predict near-
future occupancy. Potential incentives are then based on the calculated expected 
future occupancy, such as when users return a vehicle to a station with a predicted 
shortage.

Besides data requirements, these papers share the well-known pros and cons 
of business rules: They are easy to understand, but leave parameter tuning to the 
provider, which often results in inferior performance compared to optimization.

2.3.3 � Myopic optimization

Three papers use myopic optimization models. Chemla et  al. (2013) overall focus 
on user-based relocation, but also determine period-specific myopic prices. The 
authors aim at a service-maximizing fleet distribution, where customer satisfaction 
is measured by successful and unsuccessful customer actions (pick-up and drop-off 
because of available or non-available bike, empty or full rack). They use a linear 
program to determine the number of customers who change their travel plans 
because of the price incentive offered to reach the given target inventory of vehicles 
for each station.

Two papers do not directly solve a mathematical model, but use it as a basis 
to develop a heuristic. Haider et  al. (2018) model a bi-level program, where the 
upper level determines prices and minimizes vehicle imbalance, while the lower 
level represents the cost-minimizing route choice of customers. The problem is 
transformed into a single-level problem and a heuristic is proposed that iteratively 
adjusts prices (and, in contrast to the bi-level program, contains some anticipation). 
Wang and Ma (2019) consider the objective of keeping inventory within a certain 
range for a period. For this purpose, they define lower and upper thresholds for each 
station. The number of rentals from or to a station can be affected by pick-up and 
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drop-off fees. They formulate a quadratic program to determine optimal dynamic 
pick-up and drop-off fees and solve it with a genetic algorithm.

While the above approaches use optimization, they are restricted by their myopic 
horizon. Moreover, they capture customer behavior in aggregate models and 
therefore cannot exploit the opportunities of existing disaggregated data.

2.3.4 � Myopic business rules

Several works use myopic business rules. Bianchessi et  al. (2013) compare 
the number of vehicles at a station and the mean value of vehicles per station to 
determine prices. Zhang et  al. (2019) capture system and customer behavior in a 
mathematical model. They define prices by comparing the current number of 
vehicles with demand and propose a negative price that is linear in the undersupply 
of a rental’s destination station. If there is no undersupply, the regular positive price 
applies. Barth et al. (2004) propose a system that, once it recognizes an imbalance, 
provides incentives for joint rides of independent customers in one car or splitting a 
party of customers into multiple cars. Mareček et al. (2016) derive drop-off charges 
for vehicles depending on the intended destination location’s distance to the nearest 
vehicle. Angelopoulos et  al. (2016) and Angelopoulos et  al. (2018) propose two 
algorithms for promoting trips based on the priorities of vehicle relocates between 
stations.

3 � Idle‑time‑based dynamic pricing

In this section, we first state the problem considered and introduce the notation 
(Sect. 3.1). Based on this, Sect. 3.2 describes the ITDP, i.e., the new idle-time-based 
dynamic pricing approach. In doing so, we assume that an idle time value for each 
location is known. Section 3.3 then exemplarily describes how to obtain these idle time 
values from idle time data of three different temporal and spatial granularities. We also 
show the granularities’ implications for the pricing approach. To improve readability, 
the following deliberations focus on a free-floating SMS provider. Nevertheless, please 
note that the model covers both station-based and free-floating SMSs.

3.1 � Problem statement

We consider a free-floating SMS provider who operates a homogeneous fleet of 
vehicles that are spatially distributed over a continuous business area. The objective 
is to maximize the expected profit by means of dynamic price optimization. More 
specifically, the business area is rectangular and ranges from west ( x = 0 ) to east 
( x = xmax ) and from south ( y = 0 ) to north ( y = ymax ). The set X  ( Y ) contains all 
possible x-coordinates (y-coordinates) of the area. At each point in time t during the 
considered time horizon (e.g., one day, 0 ≤ t ≤ ttotal, T = {0, ..., ttotal} ), the provider 
knows the state of the vehicle fleet, in particular the exact position (xi,t, yi,t) of a 
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vehicle i and whether it is idle or moving. To keep track of the vehicles’ states, �i,t 
denotes whether a vehicle i is idle ( �i,t = 0 ) or in use ( �i,t = starting time of rental).

Customers arrive randomly over time. More precisely, at time t at most one 
customer arrives with probability �t and opens the provider’s mobile application at 
a location with coordinates ( xO

t
, yO

t
 ), which follow a given time-dependent origin 

probability distribution O(t), and seeks to rent a vehicle. Then, for each vehicle in 
the vicinity of this customer, the provider’s optimization problem is to determine 
prices p⃗t (contains a price pi,t per minute for each vehicle within walking distance), 
where each price has to be selected from a discrete set of price points M . Also, we 
assume that a rental incurs variable costs c per minute.

The customer choice behavior is formalized as follows: Customers have a (fixed) 
maximum willingness to walk d̄ and a vehicle’s distance to the customer is given by 
di . Thus, a customer only considers idle vehicles from the so-called consideration 
set Ct,(xOt ,yOt ) = {i ∈ C | di ≤ d̄ ∧ 𝜏i,t = 0} . The customer either chooses vehicle i with 
probability qi,t(p⃗t) (then, the vehicle is in use) or leaves the system with probability 
q0,t(p⃗t) . Vehicles not chosen remain idle. The choice probabilities qi,t(p⃗t) and the no-
choice probability q0,t(p⃗t) depend on the distance of the vehicle to the customer as 
well as the prices p⃗t for all reachable vehicles of the consideration set. This means 
that the customer is price and distance sensitive. Thus, the provider can, e.g., incen-
tivize her to take a certain vehicle in walking distance by offering a low price (for 
detailed information on the used multinomial logit model and its parameter estima-
tion, see Appendix A). Choosing vehicle i with probability qi,t(p⃗t) , the rental starts at 
time t, since we neglect the comparably short time the customer walks to the vehicle.

The rental time li,t in minutes is a realization of the random variable Li,t , which 
follows the distribution �t . Thus, a rental terminates at time t� = t + li,t (in 
expectation at t� = t + � Li,t ∼ �t

(Li,t) ) at location (xD
i,t�
, yD

i,t�
) . Note in this context 

that, depending on the characteristics of the SMSs, a customer’s intended destination 
might or might not be known to the provider at rental start time t. More specifically, 
spatio-temporal demand information is either origin-, or trip-based, meaning that 
either only the spatio-temporal origin or both (origin and destination) is known to 
the provider before a rental.

Finally, we denote the idle time for vehicle i which is not rented as �i,t,(xi,t ,yi,t)
 (in 

expectation: 𝜑̃i,t,(xi,t ,yi,t)
 ), and the idle time for vehicle i after a rental which starts at t 

as �i,t�,(xD
i,t�
,yD
i,t�
) (in expectation: 𝜑̃i,t�,(xD

i,t�
,yD
i,t�
) ). Note that idle time always refers to the 

time the vehicle is idle until the next rental. Further explanations are given in the 
next subsection.

3.2 � Idle‑time‑based dynamic pricing approach

In this section, we present the new ITDP. As described above, prices p⃗t are 
optimized whenever a customer arrives at time t at location (xO

t
, yO

t
) and p⃗t only 

contains prices pi,t for the vehicles within the customer’s reach i ∈ Ct,(xOt ,y
O
t )

 . The 
maximization of total expected profit until the end of the considered horizon 
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includes both a myopic and an anticipative component. With regard to different 
available spatio-temporal demand information (see previous section), the ITDP 
is general in the sense that it can be specified for origin- and trip-based demand 
information.

The myopic component considers the expected profit from the currently 
arriving customer and her choice. It is given by

The anticipative component is more complex. It considers expected profit from 
future customers and is approximated by the sum of the expected profits of the vehi-
cles. More precisely, we use w̃idle

i,t
 to denote the expected future profit of vehicle i if it 

remains idle now, and w̃dep

i,t
 to denote expected future profit after the current custom-

er’s rental if vehicle i departs when chosen by the current customer. Thus, expected 
future profit for the system is

Thus, to maximize profit, the provider sets the optimal price vector p⃗ ∗
t
 according to

Obviously, to efficiently solve (3), we need an approximation of the expected 
future profit for each vehicle i for each of the two alternatives (vehicle i is chosen: 
w̃
dep

i,t
 , or not chosen: w̃idle

i,t
).

As already mentioned, we approximate these values using historical idle time 
data, which makes use of the fact that idle times are an implicit representation of 
the expected location- and time-specific demand pattern and that they are loca-
tion- and time-specific. The dependencies between customer arrival time t, rental 
time li,t , rental termination time t′ , and idle times are depicted in Figs. 1 and 2.

We consider two types of idle times. First, we consider a vehicle that is idle 
since the previous rental ends. This vehicle is not chosen by a customer at time t 
and remains idle (Fig. 1). The time from 0 to the current time t has already passed 
when the customer arrives at time t. Since the customer does not choose vehicle i 
located at (xi,t, yi,t) , it remains idle for the idle time �i,t,(xi,t ,yi,t)

 during which it does 
not earn any profit. This means that �i,t,(xi,t ,yi,t)

 denotes the (remaining) idle time 
after t and not the idle time after the end of the previous rental. The remaining 

(1)
∑

i∈C
t,(xOt ,yOt )

qi,t(p⃗t) ⋅ �

Li,t ∼ 𝜌t

(Li,t) ⋅ (pi,t − c).

(2)
�

i∈C
t,(xOt ,yOt )

qi,t(p⃗t) ⋅

⎛⎜⎜⎝
w̃
dep

i,t
+

�
j∈C

t,(xOt ,yOt )
⧵{i}

w̃idle
j,t

⎞⎟⎟⎠
+ q0,t(p⃗t) ⋅

�
j∈C

t,(xOt ,yOt )

w̃idle
j,t

.

(3)

p⃗ ∗
t
= argmax

p⃗t

�
i∈C

t,(xOt ,yOt )

qi,t(p⃗t) ⋅

⎛
⎜⎜⎝
(pi,t − c) ⋅ �

Li,t ∼ 𝜌t

(Li,t) + w̃
dep

i,t
+

�
j∈C

t,(xOt ,yOt )
⧵{i}

w̃idle
j,t

⎞
⎟⎟⎠

+ q0,t(p⃗t) ⋅
�

j∈C
t,(xOt ,yOt )

w̃idle
j,t

.
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time after this idle time until the end of the horizon at ttotal is ttotal − t − �i,t,(xi,t ,yi,t)
 

and is valued with R per time unit.
Second, consider a vehicle that is chosen by a customer (Fig. 2). Again, the time 

from 0 to t has already elapsed. After this time, however, the customer rents vehicle 
i. The trip has a duration of li,t time units and yields a profit li,t ⋅ (pi,t − c) , already 
captured in the myopic component. After the vehicle has been dropped off, it stands 
idle again for a certain time �i,t�,(xD

i,t�
,yD
i,t�
) at its new location (xD

i,t�
, yD

i,t�
) until the next 

rental starts. During this time, no profit is earned. However, in the remaining time 
ttotal − t� − �i,t�,(xD

t�
,yD
t�
) after the idle time, the vehicle earns again a profit of R per time 

unit.
The idea is that a shorter idle time is equivalent to a longer profitable remaining 

time, and vice versa. The benefit of using idle times instead of demand patterns is 
that idle time data can be easily measured in reality, while (unconstrained) demand 
is not easy to measure.

The value R is easily determined from historical data by dividing the observed 
total profit over some time window through the product of the fleet size and the 
length of the considered time window. The calculation of the remaining time during 
which a vehicle earns R per time unit is explained in the following.

Fig. 1   Remaining time if vehicle is not chosen and remains idle

Fig. 2   Remaining time if vehicle is chosen and rental departs
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Since the exact idle time is not known, we approximate the values of the idle times 
(vehicle idle: 𝜑̃i,t,(xi,t ,yi,t)

 , vehicle chosen: 𝜑̃i,t�,(xD
i,t�
,yD
i,t�
) ) and consider the stochastic rental 

time ( � Li,t ∼ �t
(Li,t) ) because we do not know the exact idle time of the idle vehicle 

and the exact rental time and subsequent idle time of the departing vehicle. Thus, we 
have

The expected future profit of a vehicle i at time t ( ̃widle
i,t

 , w̃dep

i,t
 ) depends on location 

and time and can be different for each vehicle (depending on the spatial and 
temporal granularity of idle time). Note that for station-based SMSs, the number of 
available vehicles considered at a station can be reduced to one if at least one vehicle 
is available, since these vehicles have the same characteristics in terms of distance 
and expected future profit. Substituting (4) and (5) into (3) allows the following 
simplifications

In (6), the first three equalities are rearrangements of (3). The second to last line 
nicely shows that what matters regarding future profit is the chosen vehicle’s 

(4)w̃idle
i,t

=
(
ttotal − t − 𝜑̃i,t,(xi,t ,yi,t)

)
⋅ R ∀i ∈ Ct,(xOt ,y

O
t )

(5)w̃
dep

i,t
=
(
ttotal − t� − 𝜑̃i,t�,(xD

i,t�
,yD
i,t�
)

)
⋅ R ∀i ∈ Ct,(xOt ,y

O
t )
.

(6)

p⃗ ∗
t
= argmax

p⃗t

�
i∈C

t,(xOt ,yOt )

qi,t(p⃗t) ⋅

�
(pi,t − c) ⋅ �

Li,t ∼ 𝜌t

(Li,t) + w̃
dep

i,t

+
�

j∈C
t,(xOt ,yOt )

⧵{i}

w̃idle
j,t

�
+

�
1 −

�
i∈C

t,(xO, yOt )

qi,t(p⃗t)

�
⋅

�
j∈C

t,(xOt ,yOt )

w̃idle
j,t

= argmax
p⃗t

�
i∈C

t,(xOt ,yOt )

qi,t(p⃗t) ⋅

⎛⎜⎜⎝
(pi,t − c) ⋅ �

Li,t ∼ 𝜌t

(Li,t) − w̃idle
i,t

+ w̃
dep

i,t

⎞⎟⎟⎠
+

�
j∈C

t,(xOt ,yOt )

w̃idle
j,t

= argmax
p⃗t

�
i∈C

t,(xOt ,yOt )

qi,t(p⃗t) ⋅

⎛⎜⎜⎝
(pi,t − c) ⋅ �

Li,t ∼ 𝜌t

(Li,t) −
�
w̃idle
i,t

− w̃
dep

i,t

�⎞⎟⎟⎠

= argmax
p⃗t

�
i∈C

t,(xOt ,yOt )

qi,t(p⃗t) ⋅

⎛⎜⎜⎝
(pi,t − c) ⋅ �

Li,t ∼ 𝜌t

(Li,t)

−

⎛⎜⎜⎝
�

Li,t ∼ 𝜌t

(Li,t) + 𝜑̃i,t�,(xD
i,t�
,yD
i,t�
) − 𝜑̃i,t,(xi,t ,yi,t)

⎞
⎟⎟⎠
⋅ R

⎞⎟⎟⎠
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difference in future profit ( ̃widle
i,t

− w̃
dep

i,t
 ), which mirrors opportunity costs in revenue 

management (Talluri and Van  Ryzin 2004,  Chapter  2.1.2). As shown by the 
substitution and the last rearrangement, in addition to the profit from the rental only 
the difference between the idle time of a departing vehicle and the idle time of a 
remaining idle vehicle is important. For a departing vehicle, this is the current rental 
time and the idle time after drop-off ( �

Li,t ∼ 𝜌t
(Li,t) + 𝜑̃i,t�,(xD

i,t�
,yD
i,t�
) ) and for an idle 

vehicle, the idle time ( ̃𝜑i,t,(xi,t ,yi,t)
 ). This eliminates the need for additional calculations 

to value the vehicles. However, unlike in traditional revenue management 
applications, this term may become negative. This is the case if the vehicle was at 
such a “bad” location that we have 𝜑̃i,t,(xi,t ,yi,t)

> � Li,t ∼ 𝜌t
(Li,t) + 𝜑̃i,t�,(xD

i,t�
,yD
i,t�
).

With regard to the pricing optimization, this results in a lower price (compared 
to a myopic approach) for the vehicle (alternative) i with negative opportunity cost 
(=positive expected profit) to increase its purchase probability qi,t(p⃗t).

3.3 � Using real‑world idle time data

In this section, we discuss how to obtain the values 𝜑̃i,t,(xi,t ,yi,t)
 and 𝜑̃i,t�,(xD

i,t�
,yD
i,t�
) 

necessary to calculate a price for a vehicle at that specific position from historical 
data. Moreover, we discuss the implications of different granularities for the pricing 
approach. Remember that the expected idle time of a vehicle i is a function of the 
time and its location.

Regarding data granularity, we distinguish two dimensions: spatial and temporal, 
each with three exemplarily resolutions (see Table 2). Regarding spatial granularity, 
we distinguish between idle time data being available only on the business area 
level, on a zone level (i.e., some partition/discretization of the business area), and 
spatially continuous idle time data (i.e., possibly different values for all coordinates 
within the business area).

These three spatial granularities are illustrated in Fig.  3. At the business area 
level, 𝜑̃ cannot capture spatial differences and indicates the same expected idle time 
for each location within the business area (Fig. 3a). By contrast, there are spatial dif-
ferences for the zone level (Fig. 3b) and spatially continuous idle time (Fig. 3c).

Fig. 3   Different granularities of idle time data. a Entire business area: homogeneous idle time across the 
entire area, b Zones: coarse spatial variation possible, c Spatial continuous: different expected idle time 
for each coordinate possible
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Likewise, we also distinguish three temporal granularities. First, we may have 
only one value for the entire time horizon under consideration (e.g., a day). Second, 
we consider a discretization into time periods, and, finally, we allow for continuous 
time. There are nine possible combinations of the aforementioned temporal and spa-
tial granularities.

In this paper, we focus on the three combinations with the same level in each 
dimension (see Table 2), which we denote as

•	 Business area wide idle time (Sect. 3.3.1),
•	 Location–period-specific idle time (Sect. 3.3.2), and
•	 Continuous idle time (Sect. 3.3.3).

Regarding customer interaction and experience, two paradigms with variants of 
spatio-temporal demand information exist. Most major sharing systems (see Soppert 
et  al. 2022) emphasize the customer’s freedom to go spontaneously wherever she 
wants (origin-based). Thus, they refrain from asking for her intended destination and 
simply wait where the vehicle is dropped off. By contrast, the majority of the literature 
considers SMS where the provider asks for the destination before deciding on prices 
(trip- or destination-based).

In the following sections, we consider both cases (all variants of spatio-temporal 
demand information, see Sect. 3.2). The rental’s origin is always available. However, if 
the provider knows the destination of the rental, idle times can be calculated much more 
accurately (but it remains stochastic) and therefore dynamic pricing is more accurate.

3.3.1 � Business area wide idle time

The business area wide idle time assigns the same expected idle time 𝜑̄const to each 
combination of time t and location (xi,t, yi,t) for idle vehicles, respectively t′ and (xD

i,t�
, yD

i,t�
) 

for departing vehicles. The value 𝜑̄const is an average idle time for the considered time 
horizon (e.g., a day) and the whole business area. As expected idle time is location 
independent, a rental’s destination and knowledge thereof does not matter:

Substituting (7) into (6) yields

as the expected idle time as well as the expected rental length � Li,t ∼ �t
(Li,t) cancel 

out. As idle time is the same with and without rental, it obviously does not influence 
the pricing decision. Thus, the approach is largely myopic (if the homogeneity 
assumptions were true, no anticipation is necessary), but R still considers that the 
vehicle will be unavailable for the duration of the rental. It suffices to compare the 

(7)
𝜑̃i,t,(xi,t ,yi,t)

= 𝜑̃i,t�,(xDt �,y
D
t �)

= 𝜑̄const

∀i, 0 ≤ t ≤ t� ≤ ttotal, 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax

(8)
p⃗ ∗
t
= argmax

p⃗t

∑
i∈C

t,(xOt ,yOt )

qi,t(p⃗t) ⋅ (pi,t − c − R)
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Table 2   Overview of idle time granularities

Temporal granularity

Spatial granularity Entire time horizon Periods Continuous

Entire business area Business area wide idle time
Zones Location–period-

specific idle time
Spatial continuous Continuous 

idle time

Fig. 4   Exemplarily calculation of w̃idle and w̃dep for different spatial and temporal granularities (constant 
rental time: l = 15 min). a Business area wide idle time, b Location-period specific idle time, c Continu-
ous idle time
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expected average profit per minute for a chosen vehicle with the expected profit per 
minute for an idle vehicle. This means that the potential profit of the moving vehicles 
is compared with their opportunity cost. Thus, ceteris paribus prices from Eq. (8) 
are greater or equal myopic prices. This is also reflected by the examples in Fig. 4a, 
where we always obtain an opportunity cost of w̃idle

i,t
− w̃

dep

i,t
= 0.2.

3.3.2 � Location–period‑specific idle time

The premise for location–period-specific idle time is that the provider has 
partitioned his business area into Z zones z ∈ Z = {1, ..., Z} and the time horizon 
into � periods � ∈ Θ = {1, ..., �} . For notational convenience, let us assume 
that the function �(t) ∶ T → Θ maps time to time periods and the function 
z((x, y)) ∶ X × Y → Z maps coordinates to zones. For each combination of period 
� and zone z, the provider disposes of idle time values 𝜑̄𝜗,z , for example, obtained 
from averaging corresponding historical data.

Now, for idle vehicles and departing vehicles if their destination is known we 
have

This is illustrated in Fig. 4b. Now, we see that the blue vehicle moves from a zone 
with high idle time to one with medium idle time, which is reflected by an opportu-

nity cost of w̃idle
blue,t

− w̃
dep

blue,t
= −0.22 . The red one moves to a zone with only slightly 

less idle time, resulting in w̃idle
red,t

− w̃
dep

red,t
= −0.05.

For departing vehicles with unknown destination, we average over all zones, 
determining the expected idle time of the whole business area (all zones) for the 
period of arrival:

Here, no simplification of (6) is possible. If corresponding information is available, 
a weighted average regarding the destination is suggested.

3.3.3 � Continuous idle time

The continuous idle time described in this section follows the idea to approxi-
mate values for departing and idle vehicles directly based on “similar” data points 
without an artificial discretization of time or space. Obviously, this approach is 
only applicable in free-floating SMS, since a station-based SMS always has dis-
crete stations (nevertheless, a version that is continuous with regard to time may 
be considered).

(9)𝜑̃i,t,(xi,t ,yi,t)
= 𝜑̄𝜗(t),z((xi,t ,yi,t))

∀i, t, 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax,

(10)𝜑̃i,t�,(xD
i.t�
,yD
i,t�
) = 𝜑̄𝜗(t�),z((xD

i.t�
,yD
i,t�
)) ∀i, t�, 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax.

(11)𝜑̃i,t�,(⋅) =
1

Z
⋅

∑
z∈Z

𝜑̄𝜗(t),z ∀i, t�
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The basic idea beyond this variant is to average similar data points through kernel 
regression to determine the vehicles’ expected idle times. More precisely, the pro-
vider follows four steps.

In the first step, beforehand, the provider records vehicle-level data. The data set 
K = {

(
𝜑̂k, (xk, yk), tk

)
} contains a data point k for each end of a rental (or when a 

vehicle becomes available after maintenance etc.) with location (xk, yk) , time tk of the 
arrival of a vehicle and the following idle time 𝜑̂k.

During the pricing process, when a customer arrives at time t, idle time values for 
vehicles i ∈ Ct,(xOt ,y

O
t )

 are determined by steps 2 to 4 as follows:
In step 2, the provider determines the sets Kidle

i,t
⊆ K and Kdep,x

i,t�
⊆ K, x ∈ {dk, du} 

(dk: destination known, du: destination unknown) from the set of all data points K . 
Since all events in the free-floating SMS are characterized by a certain location and 
time, it is reasonable to integrate the spatial as well as the temporal dimension in the 
metric that measures “similarity” and we filter for relevant data points regarding idle 
vehicles as follows:

where |(xk, yk) − (xi,t, yi,t)| is some spatial distance for the vehicle i standing at 
(xi,t, yi,t) . For the departed vehicles, this step is almost the same. The difference is 
mainly that the departed vehicle i arrives after the expected rental time at 
t + � Li,t ∼ �t

(Li,t)(= t�) and then idles. Moreover, we distinguish whether the 

provider knows the destination of the rental or not. If the provider knows the 
destination (xD

i,t�
, yD

i,t�
) of the vehicle i, we define the following filter:

If the provider does not know the destination of the vehicle i, we define the filter as 
follows:

In the third step, as the filtered data sets are now available for both idling and 
departing vehicles, the weights � idle

i,t,k
 for each data point k ∈ Kidle

i,t
 can now be 

determined with a kernel function (see Powell 2007, Chapter 8.4.2).
In particular, for idle vehicles, we use

(12)
Kidle

i,t
=

{(
𝜑̂k, (xk, yk), tk

)
∈ K

||||
tk ≤ t < (tk + 𝜑̂k) ∧ |(xk, yk) − (xi,t, yi,t)| ≤ h

}

(13)
K

dep, dk

(xD
t�
,yD
t�
),t�

=

{
(𝜑̂k, (xk, yk), tk) ∈ K

||||
tk ≤ t� < (tk + 𝜑̂k) ∧ |(xk, yk) − (xD

t�
, yD

t�
)| ≤ h

}

(14)K
dep,du

i,t�
=

{
(𝜑̂k, (xk, yk), tk) ∈ K

|||| tk ≤ t� < (tk + 𝜑̂k)

}
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with the Epanechnikov kernel function

with

Regarding departing vehicles with unknown destination, the weights �dep,du

i,t�,k
 simply 

average all filtered data points, whereas the calculation of weights �dep,dk

i,t�,k
 for depart-

ing vehicles with known destination uses again the kernel function and is similar to 
idle vehicles:

The calculation of the Epanechnikov kernel is again (16), and the distance now is 
di,k =

√
(|(xD

i,t�
, yD

i,t�
) − (xk, yk)|)2 ∀k ∈ K

dep,dk

i,t�
 . Finally, in step 4, we use these 

weights and sets to calculate the expected idle time for each departing and idle 
vehicle i:

where expected idle time for all departing vehicles with unknown destination is 
identical.

The approach is illustrated in Fig.  4c. Now, each vehicle has an individual 
expected idle time that depends on its exact position and, hence, the distance to 
historical data points. Thus, at a given point in time, the expected idle time for each 
location can be visualized using a heatmap as shown in Fig. 4c.

(15)� idle
i,t,k

=
Kidle
i,t,k

∑�Kidle
i,t

�
j=1

Kidle
i,t,j

∀k ∈ Kidle
i,t

(16)Kidle
i,t,k

=
3

4
⋅

(
1 −

(
di,k

h

)2
)

∀k ∈ Kidle
i,t

(17)di,k =

√
(|(xi,t, yi,t) − (xk, yk)|)2 ∀k ∈ Kidle

i,t

(18)�
dep, du

i,t�,k
=

1

|Kdep, du

i,t�,k
|

∀k ∈ K
dep, du

i,t�

(19)�
dep,dk

i,t�,k
=

K
dep

i,t�,k

∑�Kdep,dk

i,t� ,j
�

j=1
K

dep

i,t�,j

∀k ∈ K
dep,dk

i,t�
.

(20)
𝜑̃i,t,(xi,t ,yi,t)

=
∑

k∈Kidle
i,t

𝜅 idle
i,k

⋅ 𝜑̄k ∀i ∈ Ct,(xOt ,y
O
t )

(21)
𝜑̃i,t�,(xD

t�
,yD
t�
) =

∑
k∈K

dep,x

i,t

𝜅
dep,x

i,k
⋅ 𝜑̄k ∀i ∈ Ct,(xOt ,y

O
t )
, x ∈ {dk, du}
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3.4 � Comparison

The three aforementioned types of idle times business area wide, location–period-
specific, and continuous differ in three aspects as described in the following and 
summarized in Table 3: 

1.	 By construction, they differ in the level of granularity of the required data, as 
described in Sects. 3.3.1, 3.3.2, and 3.3.3.

2.	 The second aspect considers the computational effort. The effort for calculating 
the expected idle time with the continuous idle time is the greatest, while the 
computational cost for the application of the other two idle time functions is very 
limited.

3.	 The third aspect considers the possibility for pre-calculation. Whereas all values 
for the business area wide idle time and the location–period-specific idle time 
have the advantage to be pre-calculable due to their small number in order to 
speed up the pricing process, the continuous idle time has to be calculated online.

4 � Computational studies

In this section, we evaluate the developed dynamic pricing approach for all three 
variants, meaning based on business area wide, location–period-specific, and 
continuous idle times. These three variants are compared in a computational study 
to four benchmarks. Section 4.1 describes the setup of the study, including settings 
and parameters (Sect. 4.1.1) and considered pricing approaches (Sect. 4.1.2). Based 
on this, Sect. 4.2 presents and discusses the main results.

4.1 � Setup

4.1.1 � Settings and parameters

We consider a SMS with origin-based pricing, which means the provider does not 
know the destination of the rental. For the computational study, we investigate two 
settings that differ mainly in the size of the business area and the number of vehicles 
(SMALL and LARGE). The area of the SMALL setting has a size of 9 km2 and is 

Table 3   Properties of the three 
ITDP variants presented

Idle time Granularity Computa-
tional effort

Pre-
calculation 
possible

Business area wide Low Low Yes
Location–period-specific Middle Low Yes
Continuous High Middle No
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equipped with 18 vehicles (LARGE 16 km2 and 32 vehicles, all areas are square). 
Theses settings are realistic settings in terms of vehicle density and distribution. 
They show that the solution approach is also applicable to larger settings. Remember 
that the customer’s consideration set includes only those vehicles that are within 
walking distance of the customer, and their number depends on the vehicle density. 
As we use a realistic density in our examples, they also capture computational 
complexity of larger systems. Therefore, we can conclude that the solution approach 
is also applicable to large settings.

The planning horizon is one day, and at the beginning, all vehicles are randomly 
uniformly distributed across the business area. The demand patterns we use replicate 
what is observed in practice. Demand intensity varies over the course of the day 
with two peaks (Fig.  5, see, e.g., Reiss and Bogenberger 2016a). Furthermore, in 
line with practice, there is also a spatial variation of demand, i.e., between strong 
demand in the city center and lower demand in peripheral areas. Given a uniform 
price, this results in different mean idle times (illustrated for the so-called BASE 
price in Fig.  6). Demand intensity is modeled by the probability density function 
(pdf) of the origin probability distribution O(t).

Each of the two settings is examined for three different overall demand levels, 
which differ in the demand–supply ratio (DSR). The DSR is the maximum demand 
(second peak) divided by the fleet size, and we consider the values 1

3
,
2

3
, 1 by scaling 

demand appropriately. This is also shown in Fig.  6, where as demand increases 
(increasing DSR), the idle time for all parts of the business area decreases, especially 
in the peripheral areas.

Fig. 5   Normalized total demand 
over the course of the day for all 
settings

Fig. 6   Mean idle time for different DSR for nine zones with BASE price. a DSR=1/3, b DSR=2/3, c 
DSR=1
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The other parameters are constant throughout both settings: M = 3 price points 
(prices for short) pm ∈ M are predefined with regard to typical prices in practice: 
We chose a base price per minute of p(2) = 0.31  €/min and a price difference of 
0.05  €/min to the so-called low and high prices, so that p(1) = 0.26  €/min and 
p(3) = 0.36 €/min. Variable costs are c = 0.07 €/min.

Further, we assume a maximum willingness to walk of d̄ = 500 m for all custom-
ers (see Herrmann et al. 2014).

The choice behavior follows a multinomial logit model, where the choice probabili-
ties depend on the utilities for the customer (see Appendix A). A customer’s utility 
ui,t(p⃗t) for alternative (vehicle) i at time t depends on its price pi,t and the vehicle’s 
distance di to the customer ( ui,t(p⃗t) = 𝛽price ⋅ pi,t + 𝛽distance ⋅ di ). All vehicles are homo-
geneous; hence, their features do not play a role in the choice model. The customer 
can also decide not to rent a vehicle ( i = 0 ) and leave the system. The utility for this 
alternative is a constant ( u0,t(p⃗t) = ASC0 ). We assume for the computational studies 
that all customers have the same price sensitivity and choose according to the same 
choice parameters. The parameters for the one choice model which is fit across all 
locations can be estimated with a maximum likelihood estimation based on observa-
tions of mobile application openings (for more details, see Appendix A). It is possi-
ble to generalize this to multi-segment pricing without major changes. The rental time 
is calculated by drawing the speed from a realistic distribution for urban traffic. We 
then get the rental/driving time li,t as the product of the driving speed and the distance 
between the origin and the destination of the rental.

4.1.2 � Pricing approaches

In total, we evaluate seven (variants of) pricing approaches. The three variants of the 
developed pricing approach ITDP are:

•	 ITDP-B: A variant of ITDP which uses business area wide idle time data (see 
Sect. 3.3.1).

•	 ITDP-L: A variant of ITDP which uses location–period-specific idle time data 
(see Sect. 3.3.2).

•	 ITDP-C: A variant of ITDP which uses continuous idle time data (see 
Sect. 3.3.3).

The four benchmarks are:

•	 B-BASE: Constant uniform pricing, where pi,t is the base price for all vehicles 
i ∈ C and every time t. Due to its wide adoption over all SMS types, this pricing 
can be considered as the de facto standard in practice.

•	 B-MYOP: Myopic version of ITDP without anticipation: 
𝜑̃i,t,(xi,t),yi,t

= 𝜑̃i,t,(xD
t�
,yD
t�
) = w̃idle

i,t
= w̃

dep

i,t
= 0 for all i ∈ Ct,(xOt ,y

O
t )

 , resulting in 
W̃i,t = W̃0,t = 0 for all i ∈ Ct,(xOt ,y

O
t )

.
•	 B-TAR: Pricing approach that compares a certain target idle time with the 

current idle time in the vicinity of the vehicle with a radius of the walking 
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distance d̄ (similar to the pricing approach of Neijmeijer et  al. (2020)). If the 
current idle time in the vicinity of a vehicle falls below a threshold (i.e., a target 
idle time minus the parameter � ; we use � = 30  min), this vehicle obtains the 
high price and vice versa. Vehicles with idle times in between both thresholds 
obtain the base price. The target idle time for this benchmark is the average idle 
time of period �.

•	 B-REL: This approach adopts ideas from Wagner et al. (2015) and Brandt and 
Dlugosch (2021) who consider SMSs where customers reveal their destinations 
in advance. Their approach then searches for alternative, nearby destinations with 
lower idle time than the intended one and, if the difference exceeds a threshold, 
suggests alternative destinations together with incentives. Since we consider a 
different setting in which the intended destination is unknown, this approach is 
not directly applicable. However, we adopt the central idea of comparing the 
difference of idle times for different locations with a given threshold � . More 
specifically, we compare the idle time at the rental’s origin with the idle time 
of the whole business area. For this purpose, the business area is divided into 
200 m×200 m tiles. The idle time for a vehicle is calculated in two steps. First, the 
tile where a vehicle is located and its vicinity is identified (radius of d̄ around the 
center of the tile). The second step begins with calculating the idle time for the 
current time t, for the time 1 h later as well as 1 h earlier using kernel regression 
where the spatial difference to the center of the tile is not bigger than d̄ . Then, it 
computes the average of these three idle times. Next, we also need the idle time 
of the destination. Since the destination is not known, we substitute it with the 
mean idle time of the whole business area for the three above-mentioned points 
in time and then compute their average. We compare the difference between 
these two values with a predefined threshold � . If this difference is larger than 
the threshold ( � = 30 min in our study), the vehicles in this tile get high prices 
and vice versa. All vehicles standing in tiles with smaller deviations get the base 
price.

Each pricing approach is evaluated in N = 1000 simulation runs with common 
random numbers, and we report average values.

Fig. 7   Profit improvement over B-BASE. a SMALL, b LARGE
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4.2 � Main results

In this section, we focus on the results for the two different settings (SMALL, 
LARGE) for the different DSRs. We compare ITDP for different granularities of idle 
time (ITDP-B, ITDP-L, ITDP-C). In the following subsections, we look at profit, 
prices, and rentals.

4.2.1 � Profit

We first discuss profit, whose maximization is the objective of the optimization 
problem and obviously the most important metric from the provider’s perspective. 
The results for all settings and DSRs are summarized in Fig. 7. First of all, all results 
show that for all settings and all DSRs the approach B-TAR is inappropriate, since it 
consistently generates less profit than B-BASE. At least in this implementation, the 
goal to have an identical idle time everywhere is not profit maximizing.

The benchmark B-REL performs similarly to the benchmark B-MYOP in the 
LARGE setting, whereas it performs worse than B-MYOP in the SMALL setting.

Regarding the new idle-time-based approaches, the following can be observed: 
The more detailed the idle time is taken into account, the more profit is generated.
While considering the business area idle time leads to a comparable profit to the 
benchmark B-MYOP, using the continuous idle time leads to the best result in most 
cases. ITDP-L is in between and better than B-REL and B-MYOP.

Thus, if temporally and spatially differentiated idle time data is available 
(ITDP-C, ITDP-L) and used for dynamic pricing, a corresponding approach can 
perform better than myopic pricing.

Fig. 8   Average prices over the course of the day (SMALL). a DSR=1/3, b DSR=2/3, c DSR=1

Fig. 9   Relative price frequency (SMALL). a DSR=1/3, b DSR=2/3, c DSR=1



436	 C. Müller et al.

1 3

Finally, the fact that ITDP-B performs similarly to the benchmark B-MYOP can 
be explained as follows. ITDP-B uses generic idle time data, and thus, the pricing 
approach is minimally anticipative by incorporating always the same opportunity 
costs (see Sect. 3.3.1).

In the following subsections (Sects.  4.2.2,   4.2.3), we consider the results for 
SMALL. The corresponding results for LARGE are shown in Appendix B.

4.2.2 � Prices

Next, we compare the prices set by the different pricing approaches over the course 
of the day. To that end, we consider results from the SMALL setting with all three 
DSRs. Figure 8 illustrates the average price across all areas during the day (we left 
out B-BASE that sets constant prices). The demand peak at noon is reflected in the 
average price of all pricing approaches. As expected, prices are on average higher 
when demand is high.

A closer look shows that the average price of B-TAR is almost always consider-
ably below all other price curves, which may explain its poor performance. Further-
more, it is remarkable that the average price of B-REL fluctuates more than the other 
curves (except B-TAR). Another interesting observation is that the average price of 
B-MYOP (and in the morning also B-REL) is clearly lower than the average price of 
ITDP-L and ITDP-C. Obviously, anticipation with spatial and temporal granularity 
of the idle time data leads to higher prices. The average price of ITDP-B is clearly 
lower than the average price of ITDP-C and ITDP-L and comparable to the average 
price of B-MYOP.

The aforementioned average prices are also reflected in the relative price fre-
quency (Fig. 9). While the frequency of low prices is highest for B-TAR, and then 
B-MYOP, this price frequency (with increasing spatial and temporal granularity of 
the idle time data used) decreases successively from ITDP-B via ITDP-L to ITDP-C, 
while the frequency of high prices for these dynamic pricing approaches increases 
successively.

4.2.3 � Rentals

Rentals are another important metric for SMS providers, as higher rentals have a 
positive impact on service level metrics. For the analysis of the rentals, we consider 
Fig. 10, which shows the average hourly rentals for the different pricing approaches 

Fig. 10   Rentals over the course of the day (SMALL). a DSR=1/3, b DSR=2/3, c DSR=1
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over the course of the day for different DSRs in the SMALL setting. The respective 
results for LARGE are depicted in Appendix B.

The rental curves resemble the demand curve in that there is a minimum of 
rentals in the morning and a maximum in the afternoon. As expected, the number 
of rentals increases in the DSR and the number of rentals is lowest (highest) for 
only high prices (only low prices). The rental curve for B-MYOP is very similar to 
the rental curve for ITDP-C, although ITDP-C obtains considerably higher profits. 
Furthermore, the curve of rentals of B-TAR is, together with the curve for the 
pricing with only low prices, clearly above all other curves.

Please note that the fact that ITDP-L and ITDP-C obtain a higher revenue than 
B-BASE with a comparable number of rentals proves that their profit increase is 
not associated with a worse availability. Finally, the idea behind B-TAR to ensure a 
good level of service seems to be successful, but at the cost of lower profit. Consid-
erably more trips are made with this pricing approach than with any other pricing 
approach (except the provider sets only low prices).

5 � Conclusion

Dynamic pricing has been shown to be an efficient means to manage SMSs and first 
approaches in which pricing is designed around idle time data have been proposed. 
In principle, the idea of using idle times within pricing is very promising, because 
this data is often available to providers in practice. However, so far, only hands-on 
business rules using idle times have been suggested. In this work, we close this 
important literature gap by developing an anticipative optimization-based dynamic 
pricing approach which is based on the integration of idle times. This allows to 
exploit the full potential of idle time data in dynamic pricing for SMSs.

The specific pricing problem considered is to determine profit-maximizing prices 
for the vehicles which are located within reach of an arriving customer in an online 
fashion. Thereby, the developed pricing approach captures a myopic as well as an 
anticipative part of the expected future profit. While the first considers the potentially 
upcoming rental, the second approximates the future state values based on idle 
time data. For both parts, customer choice probabilities are considered through a 
multinomial logit model which captures the influence of prices and walking distances. 
The approach is generic with regard to the state value approximation because it allows 
to integrate idle time data independent of the data’s granularity in both the spatial 
and the temporal dimension. More specifically, the approach is capable of integrating 
business area wide idle times on the one extreme over location–period-specific to 
continuous idle time data on the other extreme. Technically speaking, the latter is 
enabled by using a non-parametric value function approximation in which a kernel 
regression calculates the valuation from multiple individual data points.

In an extensive computational study with varying size of business area, fleet 
size, as well as overall demand levels, we demonstrate the advantages of our 
dynamic pricing approach compared to various benchmarks. These benchmarks 
include two idle-time-based pricing rules from the literature as well as a myopic 



438	 C. Müller et al.

1 3

price optimization. The results show that the performance of the developed 
dynamic pricing approach depends on the granularity of the integrated idle time 
data. It consistently outperforms the reference value of constant uniform base 
prices and the rule-based approach with target idle times. For the variants of the 
developed approach with spatio-temporal variation of the idle times, in most cases, 
substantially higher profits are generated than for the myopic optimization as well as 
for the rule-based approach from the literature that determines prices based on the 
comparison of idle times.

The idle-time-based dynamic pricing approach with continuous idle time 
outperforms all benchmarks considerably. It improves profits by up to 11  % 
compared to base pricing, as well as up to 3 percentage points compared to 
myopic price optimization. From the latter, we conclude that the accurate 
approximation of state values based on highly granular idle times in our 
pricing approach is beneficial for its performance. Compared to the rule-based 
benchmarks from the literature, this variant of our approach obtains up to 3.5 
percentage points more profit.

To summarize, our anticipative and optimization-based dynamic pricing 
approach based on idle time data performs considerably better in comparison to 
existing approaches in terms of the relevant performance metrics. This shows that 
the developed approach based on idle times, which are often available for SMSs, 
is a practice-ready and at the same time successful alternative for dynamic pric-
ing in SMSs.

For future work, multiple directions seem promising to generate additional val-
uable insights. First, an empirical real-world evaluation of the suggested dynamic 
pricing approach would be helpful to support the numerical studies. Second, a 
new rule-based approach based on the insights gained could be developed. Third, 
the development of a combined dynamic pricing and relocation optimization 
approach based on idle times would be valuable as this could exploit additional 
potential. Finally, to investigate the value of additional information (destina-
tion known), the use of ITDP could be compared for trip-based and origin-based 
SMSs.

Appendix A Customer Choice Model

A customer at position (xO
t
, yO

t
) chooses among the reachable vehicles i ∈ Ct,(xOt ,y

O
t )

 
and may also decide not to rent (no-choice option). In the computational studies 
(Sect.  4), customer choice behavior follows a multinomial logit model (see, e.g., 
Train 2009, Chapter 3). Accordingly, the choice probabilities qi,t(p⃗t) depend on the 
alternatives’ deterministic utilities ui,t(p⃗t) for the customer:

(A1)qi,t(p⃗t) =
eui,t(p⃗t)∑

n∈C
t,(xOt ,yOt )

∪{0}
eun,t(p⃗t)

.
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Fig. 11   Rentals over the course of the day (LARGE). a DSR=1/3, b DSR=2/3, c DSR=1

Fig. 12   Relative price frequency (LARGE). a DSR=1/3, b DSR=2/3, c DSR=1

The deterministic utility ui,t(p⃗t) of a vehicle i at time t depends on its price pi,t and its 
distance to the customer di:

The no-choice option has utility u0,t(p⃗t) = ASCNoChoice where ASCNoChoice stands 
for the alternative-specific constant for the no-choice option. These assumptions 
imply homogeneous customers and that customers decide solely based on current 
circumstances (myopic behavior). In particular, they do not act strategically (see, 
e.g., Gönsch et  al. 2013; Gallego and Van  Ryzin 1997; Talluri and Van  Ryzin 
2004, Chapter 5.1.4 for discussions of strategic or forward looking customers.)

The choice model is fitted across all locations by using maximum likelihood 
estimation based on 200,000 observations of mobile application openings. 
Technically, we used the Python package PandasBiogeme 3.2.10 (Bierlaire 2020).

Appendix B Results LARGE

See Figs. (11, 12, 13).

(A2)ui,t(p⃗t) = 𝛽price ⋅ pi,t + 𝛽distance ⋅ di.
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Appendix C List of Notation

See Tables (4, 5)

Fig. 13   Average prices over the course of the day (LARGE). a DSR=1/3, b DSR=2/3, c DSR=1

Table 4   List of notation – part 1

Sets

Symbol Description

Ct,(xOt ,y
O
t )

Consideration set of a customer arriving at time t with the coordinates (xO
t
, yO

t
)

K Historical vehicle data contains a data point k for each end of a rental

Kidle
i,t

Relevant data points regarding idle vehicles that are similar to vehicle i at time t

K
dep,x

i,t′
Relevant data points regarding departed vehicles that are similar to vehicle i at 

time t′ , x ∈ {dk, du} (dk: destination known, du: destination unknown)
M Discrete set of price points
T Time horizon
X Set of all possible x-coordinates
Y Set of all possible y-coordinates
Z Set of locations
Θ Set of periods
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Table 5   List of notation – part 2

Parameters, variables and functions

Symbol Description

c Variable costs
d̄ (fixed) maximum willingness to walk
di Distance between customer standing at coordinates (xO

t
, yO

t
) and vehicle i

di,k Distance between vehicle i and data point k
Kx
i,t,k

Epanechnikov kernel function for vehicle i and data point k at time t (or time 
t′ ), x ∈ {idle, dep}

Li,t Random variable of rental time
li,t Driving/rental time in minutes, realization of Li,t
O(t) Time-dependent origin probability for the location of the customer
p⃗t Price vector
pi,t Price for vehicle i at time t
qi,t(p⃗t) Choice probability
q0,t(p⃗t) No-choice probability
R Average profit after idle time per minute
t Time
t′ Point of time after expected idle time t� = t + � Lt ∼ �t

(Li,t)

ttotal Latest time of considered time horizon
ui,t(p⃗t) Utility for choosing vehicle i at time t
u0,t(p⃗t) Utility for no-choice at time t
w̃idle
i,t

Expected future profit of vehicle i at time t if it remains idle

w̃
dep

i,t′
Expected future profit of vehicle i at time t after the current customers’ rental

x Coordinate from west to east
xmax Easternmost coordinate
(xi,t, yi,t) Position of a vehicle i at time t
(xO

t
, yO

t
) Customer locations at time t

(xD
i,t�
, yD

i,t�
) Drop-off location of vehicle i at time t′

y Coordinate from south to north
ymax Northernmost coordinate
z Location
Z Number of locations
�price Parameter for evaluating price

�distance Parameter for evaluating distance
� Period
� Number of periods

� idle
i,t,k

, �
dep,du

i,t�,k
, �

dep,dk

i,t� ,k
Weights of every data point k to value vehicle i at time t (or time t′)

�t Arrival rate of customers at time t
�i,t Starting time of rental i
𝜑̃i,t,(xi,t ,yi,t )

Idle time of vehicle i at time t at the current location (xi,t, yi,t)
𝜑̃i,t� ,(xD

i,t�
,yD
i,t�

) Idle time of vehicle i at time t′ at the destination (xD
i,t�
, yD

i,t�
)

�t Distribution of rental time
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