Formal Methods

LNCS 14934

André Platzer

Kristin Yvonne Rozier
Matteo Pradella
Matteo Rossi (Eds.)

Formal Methods

26th International Symposium, FM 2024
Milan, Italy, September 9-13, 2024
Proceedings, Part Il

Zart Il
&

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA Bernhard Steffen®, Germany
Wen Gao, China Moti Yung@®, USA

Formal Methods

Subline of Lecture Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK
Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle Mclver, Macquarie University, Sydney, NSW, Australia
Peter Miiller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands
Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

14934

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Andre Platzer - Kristin Yvonne Rozier -
Matteo Pradella - Matteo Rossi
Editors

Formal Methods

26th International Symposium, FM 2024

Milan, Italy, September 9—13, 2024
Proceedings, Part II

@ Springer

Editors

Andre Platzer Kristin Yvonne Rozier
Karlsruhe Institute of Technology Iowa State University
Karlsruhe, Germany Ames, TA, USA
Matteo Pradella Matteo Rossi
Politecnico di Milano Politecnico di Milano
Milan, Italy Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-71176-3 ISBN 978-3-031-71177-0 (eBook)

https://doi.org/10.1007/978-3-031-71177-0
© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-7238-5710
https://orcid.org/0000-0002-6718-2828
https://orcid.org/0000-0003-3039-1084
https://orcid.org/0000-0002-9193-9560
https://doi.org/10.1007/978-3-031-71177-0
http://creativecommons.org/licenses/by/4.0/

Preface

These volumes contain the papers presented for publication at the 26th International
Symposium on Formal Methods (FM 2024), held in Milano, Italy, during September
9-13, 2024.

FM 2024 is the 26th event in the series of symposia organized by Formal Methods
Europe (FME), an independent association whose aim is to stimulate the use of, and
research on, formal methods for software development. The FM symposia have been
successful in bringing together participants from academia, industry, and governments
around a program of original papers on research and industrial experience, workshops,
tutorials, reports on tools, projects, and ongoing doctoral research. FM 2024 is both an
occasion to celebrate and a platform for enthusiastic researchers and practitioners from
a diversity of backgrounds to exchange their ideas and share their experiences.

In addition to the main research track, FM 2024 included an Embedded Systems
track, an Industry Day (I-Day) track, a Tutorial Paper track, a Journal First track, and a
Doctoral Symposium. Also, 5 conferences and 6 workshops were co-located with FM
2024.

FM 2024 featured keynotes by David Basin (ETH Ziirich), Hadas Kress-Gazit
(Cornell University) and Marta Kwiatkowska (University of Oxford) with Byron Cook
(University College London and AWS) as joint speaker for I-Day and the co-located
conference on Formal Methods for Industrial Critical Systems (FMICS).

One main innovation of FM 2024 is the addition of a tutorial paper category.
Tutorial papers present ideas with a focus on pedagogy over technical advances. By
being written in a broadly-accessible way, tutorials clarify important ideas, bring new
researchers into the community, and serve as a bridge to practitioners.

With 219 submissions, FM 2024 received a record-breaking number of paper
submissions, which made it possible to select a particularly strong program. The main
FM 2024 track received 178 submissions (143 regular research submissions, 8 case
study submissions, 21 long tool paper submissions, 6 short tool demonstration sub-
missions). The special embedded systems track of FM 2024 received 17 embedded
submissions, the new tutorial paper track received 14 tutorial submissions, and the I-
Day track received 10 industry report submissions. All paper submissions complying
with the submission guidelines were reviewed by at least 3 reviewers, with a short
author feedback period for a subset of the submissions selected for clarification and
feedback by the 48 PC members. The main FM track accepted 44 papers (31 regular
research papers, 1 case study paper, 8 long tool papers, 4 short tool demonstration
papers) giving a 25% acceptance rate. The embedded systems track accepted 6 papers,
the tutorial paper track accepted 10 papers, and the I-day track accepted 6 papers (3
regular papers, 2 case study papers, 1 extended abstract). Finally, 5 papers were
selected for the Journal First track, and the Doctoral Symposium received 15 sub-
missions (neither the journal first track papers nor the doctoral symposium ones appear
in these proceedings).

vi Preface

FM 2024 invited the authors of all accepted papers to optionally submit an artifact
—i.e., any additional material such as software, data sets, log files, machine-checkable
proofs, etc., that substantiates the claims made in the paper—to the FM 2024 Artifact
Evaluation Committee (AEC). After a short quick-check phase three AEC members
reviewed each artifact in terms of consistency with and reproducibility of results
presented in the paper, completeness, documentation and ease of (re-)use, and avail-
ability in an online repository with a DOIL Based on these reviews, and strictly fol-
lowing the EAPLS guidelines for artifact badging,' every artifact was awarded up to
two badges:

Available. Artifacts that are publicly archived in a permanent way with a DOI that
are in some way “relevant to” and “add value beyond the text in the article” are
awarded the available badge.

Functional. Artifacts that are documented (containing at least an inventory and
“sufficient description to enable the artifacts to be exercised”), consistent (i.e.,
“relevant to the associated paper, and significantly contribute to the generation of its
main results”), complete (“as far as possible”), and exercisable, receive the func-
tional badge.

Reusable. Functional and available artifacts that are “very carefully documented
and well-structured to the extent that reuse and repurposing is facilitated” receive
the reusable badge instead of the functional one.

Of the 45 submitted artifacts, 42 received the available badge, 18 were functional,
and 14 were awarded the (functional and) reusable badge.

We are exceedingly grateful to everyone involved in making FM 2024 a success.
We appreciate, in particular, the support by the FME board in all difficult decisions and
are grateful to all PC members, Artifact Evaluation Commitee members, and subre-
viewers for volunteering their time in reviewing the submissions to FM, which was
particularly challenging in light of the record high number of submissions, and for
discussing papers thoroughly toward reaching consensus decisions. We also thank the
other committees responsible for the Tutorial Paper track, Embedded Systems track, I-
Day track, Journal First track, Doctoral Symposium, and workshops.

Finally we thank Springer for publishing these proceedings in the FM subline of
LNCS and appreciate EasyChair in managing the paper submissions, reviewing, and
proceedings compilation process.

July 2024 André Platzer
Kristin Yvonne Rozier

Matteo Pradella

Matteo Rossi

' https://eapls.org/pages/artifact_badges/eapls.org/pages/artifact_badges.

https://eapls.org/pages/artifact_badges/eapls.org/pages/artifact_badges

Program Committees

Research Track

André Platzer (Co-chair)

Kristin Yvonne Rozier
(Co-chair)

Erika Abraham

Wolfgang Ahrendt

Dalal Alrajeh

Luis Soares Barbosa

Gilles Barthe

Dirk Beyer

Pablo Castro

Ana Cavalcanti

Milan Ceska

Marsha Chechik

Alessandro Cimatti

Alexandre Duret-Lutz

Marie Farrell

Orna Grumberg

Arie Gurfinkel

Anne E. Haxthausen

Marieke Huisman

Reiner Hihnle

Peter Hofner

Einar Broch Johnsen

Joost-Pieter Katoen

Nikolai Kosmatov

Orna Kupferman

Peter Lammich

Martin Leucker

Jianwen Li

Ravi Mangal

Mieke Massink

Anastasia Mavridou

Annabelle Mclver

Claudio Menghi

Stefan Mitsch

Cesar Munoz

Aniello Murano

Organization

Karlsruhe Institute of Technology, Germany
Towa State University, USA

RWTH Aachen University, Germany
Chalmers University of Technology, Sweden
Imperial College London, UK

University of Minho, Portugal
MPI-SP/IMDEA Software Institute, Spain
LMU Munich, Germany

Universidad Nacional de Rio Cuarto, Argentina
University of York, UK

Brno University of Technology, Czech Republic
University of Toronto, Canada

Fondazione Bruno Kessler, Italy

EPITA Research Laboratory (LRE), France
University of Manchester, UK

Technion - Israel Institute of Technology, Israel
University of Waterloo, Canada

Technical University of Denmark, Denmark
University of Twente, The Netherlands

TU Darmstadt, Germany

Australian National University, Australia
University of Oslo, Norway

RWTH Aachen University, Germany

Thales Research & Technology, France
Hebrew University, Israel

University of Twente, The Netherlands
University of Liibeck, Germany

East China Normal University, China
Colorado State University, USA

CNR, Italy

KBR/NASA, USA

Macquarie University, Australia

University of Bergamo, Italy

DePaul University, USA

NASA, USA

University of Naples Federico II, Italy

viii Organization
Violet Ka I Pun

Zvonimir Rakamaric
Philipp Riimmer
Cristina Seceleanu
Natasha Sharygina
Jun Sun

Lucas Martinelli Tabajara
Yong Kiam Tan
Stefano Tonetta
Georg Weissenbacher
Virginie Wiels

Huan Xu

Naijun Zhan

Shufang Zhu

Embedded Systems Track

Alessandro Cimatti (Chair)
Frédéric Boulanger
Lei Bu

Qinxiang Cao
Ligian Chen
Martin Frinzle
Paula Herber

Inigo Incer

Ahmed Irfan
Eunsuk Kang
Sergio Mover
Dejan Nickovic
Pierluigi Nuzzo
Roberto Passerone
Heyuan Shi

Fu Song

Cong Tian

Stavros Tripakis

Tutorial Papers Track

Shriram Krishnamurthi
(Co-chair)

Luigia Petre (Co-chair)

Anindya Banerjee

Nikolaj Bjerner

Marcello Bonsangue

David Thrane Christiansen

Brijesh Dongol

Western Norway University of Applied Sciences,
Norway

Amazon Web Services, USA

University of Regensburg, Germany

Milardalen University, Sweden

Universita della Svizzera italiana, Switzerland

Singapore Management University, Singapore

Rice University, USA

A*STAR, Singapore

Fondazione Bruno Kessler, Italy

TU Wien, Austria

ONERA/DTIS, France

University of Maryland, USA

Chinese Academy of Sciences, China

University of Oxford, UK

Fondazione Bruno Kessler, Italy
CentraleSupélec, France

Nanjing University, China

Shanghai Jiao Tong University, China
National University of Defense Technology, China

Carl von Ossietzky Universitdt Oldenburg, Germany

University of Miinster, Germany
California Institute of Technology, USA
SRI International, USA

Carnegie Mellon University, USA
Ecole Polytechnique, France

AIT Austrian Institute of Technology, Austria
University of Southern California, USA
University of Trento, Italy

Central South University, China
Chinese Academy of Sciences, China
Xidian University, China

Northeastern University, USA

Brown University, USA

Abo Akademi University, Finland
IMDEA Software Institute, Spain
Microsoft, USA

Leiden University, The Netherlands
Lean FRO, LLC, Denmark
University of Surrey, UK

Jan Friso Groote

Stefan Hallerstede

Daniel Jackson

Jeroen Keiren

Markus Alexander Kuppe
Thierry Lecomte

Jannis Limperg
Rosemary Monahan

Tim Nelson

Maurice ter Beek

Industry Day Track

Oksana Tkachuk (Co-chair)
Tim Willemse (Co-chair)
Nikolaj Bjerner

Jennifer Davis

Leo Freitas

Dimitra Giannakopoulou
Mario Gleirscher

Claudio Gomes

Klaus Havelund

Nikolai Kosmatov

Artifact Evaluation

Carlos E. Budde (Co-chair)
Arnd Hartmanns (Co-chair)
Jie An

Alberto Bombardelli
Konstantin Britikov

Laura Bussi

Julie Cailler

Emily Clement

César Cornejo

Yanni Dong

Daniel Drodt

Federico Formica

Fabrizio Fornari

Laura P. Gamboa Guzman
Rong Gu

Long H. Pham

Tobias John

Aditi Kabra

Mehrdad Karrabi

Paul Kobialka

Marian Lingsch-Rosenfeld

Organization

TU Eindhoven, The Netherlands

Aarhus University, Denmark

Massachusetts Institute of Technology, USA
TU Eindhoven, The Netherlands

Microsoft, USA

CLEARSY, France

LMU Munich, Germany

Maynooth University, Ireland

Brown University, USA

CNR, Italy

Amazon Web Services, USA

TU Eindhoven, The Netherlands
Microsoft, USA

Collins Aerospace, USA

Newcastle University, UK

Amazon Web Services, USA
University of Bremen, Germany

Aarhus University, Denmark

California Institute of Technology, USA
Thales Research & Technology, France

Universita di Trento, Italy

University of Twente, The Netherlands
Chinese Academy of Sciences (ISCAS), China
Fondazione Bruno Kessler, Italy

Universita della Svizzera italiana, Switzerland
CNR, Italy

LIRMM, France

Université Paris Cité, CNRS, IRIF, France
Universidad Nacional de Rio Cuarto, Argentina
University of Twente, The Netherlands

TU Darmstadt, Germany

McMaster University, Canada

University of Camerino, Italy

Towa State University, USA

Malardalen University, Sweden

Singapore Management University, Singapore
University of Oslo, Norway

Carnegie Mellon University, USA

Institute of Science and Technology Austria, Austria
University of Oslo, Norway

LMU Munich, Germany

ix

X Organization

Alexander Mackay Australian National University, Australia
Andrea Manini Politecnico di Milano, Italy

Antoine Martin EPITA Research Laboratory (LRE), France
Lucas Martinelli Tabajara Rice University, USA

Tobias Nieflen TU Wien, Austria

Tommaso Oss University of Trento, Italy

Quentin Peyras ONERA, France

Andrea Pferscher University of Oslo, Norway

Roberto Pizziol IMT School for Advanced Studies Lucca, Italy
Francesco Pontiggia TU Wien, Austria

Edoardo Putti University of Twente, The Netherlands
Florian Renkin Université Paris Cité, IRIF, France
Guillermo Roman-Diez Universidad Politécnica de Madrid, Spain
Alec Rosentrater Towa State University, USA

Lorenzo Rossi University of Camerino, Italy

Omer Sayilir University of Twente, The Netherlands
Philipp Schlehuber-Caissier =~ EPITA Research Laboratory (LRE), France
Riccardo Sieve University of Oslo, Norway

Reza Soltani University of Twente, The Netherlands
Alexander Stekelenburg University of Twente, The Netherlands
Jack Stodart Australian National University, Australia
Emily Yu Institute of Science and Technology Austria, Austria

Journal First Track

Michael Butler (Chair) University of Southampton, UK

Dines Bjorner Technical University of Denmark, Denmark
Eerke Boiten De Montfort University, UK

Maurice ter Beek CNR, Italy

Doctoral Symposium

Carlo A. Furia (Co-chair) Universita della Svizzera italiana, Switzerland
Laura Kovacs (Co-chair) TU Wien, Austria

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Marcello M. Bersani Politecnico di Milano, Italy

Nikolaj Bjerner Microsoft, USA

Paula Herber University of Miinster, Germany

Marieke Huisman University of Twente, The Netherlands
Alexandra Mendes University of Porto, Portugal

Rosemary Monahan Maynooth University, Ireland

Raul Pardo IT University of Copenhagen, Denmark
Simon Robillard Université de Montpellier, France

Silvia Lizeth Tapia Tarifa University of Oslo, Norway

Stefano Tonetta Fondazione Bruno Kessler, Italy

Mattias Ulbrich Karlsruhe Institute of Technology, Germany

Organization

FME Board

Ana Cavalcanti University of York, UK
Maurice ter Beek CNR, Italy

Nico Plat Thanos, The Netherlands

Lars-Henrik Eriksson
Einar Broch Johnsen

Organization Committee

General Chairs

Matteo Pradella
Matteo Rossi

Sponsorship and Exhibition Chairs

Marcello M. Bersani
Michele Chiari

Social Media Chair

Livia Lestingi

Workshop Chairs

Stefania Gnesi
Marieke Huisman

Additional Reviewers

Yehia Abd Alrahman
Emma Ahrens

Aliyu Tanko Ali

Shaull Almagor

José Bacelar Almeida
Roman Andriushchenko
Santiago Arranz-Olmos
Anagha Athavale

Ziggy Attala

Giorgio Audrito

Peter Backeman

Daniel Baier

Jialu Bao

Chinmayi Prabhu Baramashetru
Davide Basile
Ludovico Battista
Kevin Batz

Anna Becchi

CNR, Italy
University of Twente, The Netherlands

Uppsala University, Sweden
University of Oslo, Norway

Politecnico di Milano, Italy
Politecnico di Milano, Italy

Politecnico di Milano, Italy
TU Wien, Austria

Politecnico di Milano, Italy

Valeria Bengolea
Raphaél Berthon
Lionel Blatter
Martin Blicha
Alberto Bombardelli
Frédéric Boniol
Alexander Bork
Konstantin Britikov
Christopher Brix
Julien Brunel
Richard Bubel

Julie Cailler
Georgiana Caltais
Mishel Carelli
Valentin Cassano
Valentina Castiglioni
Davide Catta
Claudia Cauli

xi

xii Organization

David Chemouil
Mingshuai Chen

Xin Chen

Felix Cherubini
Po-Chun Chien
Vincenzo Ciancia
Davide Davoli

André De Matos Pedro
Erik De Vink
Ramiro Demasi
Daniel Drodt
Manuel Eberl

Zafer Esen

Grigory Fedyukovich
Marco A. Feliu

Nick Feng

Shenghua Feng
Anthony Fernandes Pires
Angelo Ferrando
Carla Ferreira

Joao F. Ferreira

Ira Fesefeldt

Paul Fiterau-Brostean
Simon Foster

Luis Garcia
Christina Gehnen
Tiberiu A. Georgescu
Marcus Gerhold
Roland Gliick
Michat Tomasz Godziszewski
R. Govind

Srajan Goyal

Lukas Graussam
Alberto Griggio
Lukas Gritz

Rong Gu

Vojtéch Havlena
Holly Hendry

Paula Herber

Roland Herrmann
Hans-Dieter Hiep
Raik Hipler
Sebastian Holler
Lukas Holik

Jacob Howe

Aditi Kabra

Hannes Kallwies
Eduard Kamburjan
Emin Karayel
Jeroen J. A. Keiren
Ata Keskin
Matthias Kettl
Karam Kharraz
Bram Kohlen
Tomas Kolarik
Katherine Kosaian
Jozsef Kovacs
Gereon Kremer
Harald Konig
Faezeh Labbaf
Martin Lange
Jonathan Laurent
Tristan Le Gall
Nham Le

Thomas Lemberger
Ondrej Lengal
Yong Li
Chencheng Liang
Marian Lingsch-Rosenfeld
Debasmita Lohar
Delphine Longuet
Michele Loreti
Andreas Loow
Filip Macék
Alexandre Madeira
Vadim Malvone
Lina Marsso
Manuel A. Martins
Alexandra Mendes
Robert Mensing
Hannah Mertens
Munyque Mittelmann
Alvaro Miyazawa
Mariano Moscato
Mohammadreza Mousavi
Sergio Mover
Logan Murphy
Muhammad Naeem
Jasper Nalbach
Renato Neves

Kim Nguyen
Thomas Noll

Jose Oliveira
Rodrigo Otoni
Gianmarco Parretti
Mario Pereira
Quentin Peyras
Adrien Pommellet
Siddharth Priya
José Proenca
Valentin Promies
Edoardo Putti

Tim Quatmann
Willard Rafnsson
Itsaka Rakotonirina
Omer Rappoport
Antonio Ravara
Gianluca Redondi
German Regis
Andrew Reynolds
Pedro Ribeiro
Martin Sachenbacher
Augusto Sampaio
Abhiroop Sarkar
Jonas Schiffl
Philipp Schlehuber-Caissier
Philipp Schroer
Roberto Sebastiani
Filipo Sharevski
Xujie Si

Teofil Sidoruk
Julien Signoles
Joseph Slagel
Jorge Sousa Pinto
Francesco Spegni
Daniel Stan

Martin Steffen
Alexander Stekelenburg
Volker Stolz

Organization xiii

Han Su

Roger Su

Yusen Su

Silvia Lizeth Tapia Tarifa
Philip Tasche
Samuel Teuber
Daniel Thoma
Chun Tian

Gan Ting

Laura Titolo
Noriko Tomuro
Dmitriy Traytel
Mattias Ulbrich
Tom van Dijk
Andrea Vandin
Mahsa Varshosaz
Hari Govind Vediramana Krishnan
Franck Vedrine
Adele Veschetti
Henrik Wachowitz
Philipp Wendler
Hao Wu

Yechuan Xia
Shengping Xiao
Norihiro Yamada
Fang Yan
Tengshun Yang
Kangfeng Ye
Lina Ye

Bohua Zhan

Zhi Zhang
Hengjun Zhao
Xingyu Zhao
Ghiles Ziat

Martin Zimmermann
Paolo Zuliani

Contents — Part 11

Tools and Case Studies

Extending Isabelle/HOL’s Code Generator with Support for the Go
Programming Language 3
Terru Stiibinger and Lars Hupel

Rigorous Floating-Point Round-Off Error Analysis in PRECiSA 4.0 20
Laura Titolo, Mariano Moscato, Marco A. Feliu, Paolo Masci,
and César A. Murioz

FM-Weck: Containerized Execution of Formal-Methods Tools 39
Dirk Beyer and Henrik Wachowitz

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 48
Daniele Dell’Erba, Yong Li, and Sven Schewe

Visualizing Game-Based Certificates for Hyperproperty Verification 67
Raven Beutner, Bernd Finkbeiner, and Angelina Gébl

Chamelon : A Delta-Debugger for OCaml 76
Milla Valnet, Nathanaélle Courant, Guillaume Bury, Pierre Chambart,
and Vincent Laviron

Automated Static Analysis of Quality of Service Properties
of Communicating SysStems 84
Carlos G. Lopez Pombo, Agustin Eloy Martinez Suiié, and Emilio Tuosto

Alloy Repair Hint Generation Based on Historical Data. 104
Ana Barros, Henrique Neto, Alcino Cunha, Nuno Macedo,
and Ana C. R. Paiva

B2SAT: A Bare-Metal Reduction of Bto SAT. 122
Michael Leuschel

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 140
Jiangiang Ding, Taoran Wu, Zhen Liang, and Bai Xue

Discourje: Run-Time Verification of Communication Protocols in Clojure
— Liveat Last. 158
Sung-Shik Jongmans

Xvi Contents — Part II

Stochastic Games for User Journeys 167
Paul Kobialka, Andrea Pferscher, Gunnar R. Bergersen,
Einar Broch Johnsen, and Silvia Lizeth Tapia Tarifa

Embedded Systems Track

Compositional Verification of Cryptographic Circuits Against Fault
Injection Attacks. oot 189
Huiyu Tan, Xi Yang, Fu Song, Taolue Chen, and Zhilin Wu

Reusable Specification Patterns for Verification of Resilience
in Autonomous Hybrid Systems 208
Julius Adelt, Robert Mensing, and Paula Herber

Switching Controller Synthesis for Hybrid Systems Against STL Formulas . .. 229
Han Su, Shenghua Feng, Sinong Zhan, and Naijun Zhan

On Completeness of SDP-Based Barrier Certificate Synthesis

over Unbounded Domains 248
Hao Wu, Shenghua Feng, Ting Gan, Jie Wang, Bican Xia,
and Naijun Zhan

Tolerance of Reinforcement Learning Controllers Against Deviations

in Cyber Physical Systems. 267
Changjian Zhang, Parv Kapoor, Romulo Meira-Gdes, David Garlan,
Eunsuk Kang, Akila Ganlath, Shatadal Mishra, and Nejib Ammar

CauMon: An Informative Online Monitor for Signal Temporal Logic. 286
Zhenya Zhang, Jie An, Paolo Arcaini, and Ichiro Hasuo

Industry Day Track

UnsafeCop: Towards Memory Safety for Real-World Unsafe Rust Code
with Practical Bounded Model Checking 307
Minghua Wang, Jingling Xue, Lin Huang, Yuan Zi, and Tao Wei

Beyond the Bottleneck: Enhancing High-Concurrency Systems with Lock
Juntao Ji, Yinyou Gu, Yubao Fu, and Qingshan Lin
AGVTS: Automated Generation and Verification of Temporal
Specifications for Aeronautics SCADE Models. 338

Hanfeng Wang, Zhibin Yang, Yong Zhou, Xilong Wang, Weilin Deng,
and Wei Li

Contents — Part II

Code-Level Safety Verification for Automated Driving: A Case Study.

Vladislav Nenchev, Calum Imrie, Simos Gerasimou, and Radu Calinescu

A Case Study on Formal Equivalence Verification Between a C/C++

Model and Its RTL Design.

Gaetano Raia, Gianluca Rigano, David Vincenzoni,
and Maurizio Martina

Tutorial Papers

A Pyramid Of (Formal) Software Verification.

Martin Brain and Elizabeth Polgreen

Advancing Quantum Computing with Formal Methods

Arend-Jan Quist, Jingyi Mei, Tim Coopmans, and Alfons Laarman

No Risk, No Fun: A Tutorial on Risk Management.

Mariélle Stoelinga

Runtime Verification in Real-Time with the Copilot Language: A Tutorial. . . .

Ivan Perez, Alwyn E. Goodloe, and Frank Dedden

ASMETA Tool Set for Rigorous System Design.

Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini,
Elvinia Riccobene, and Patrizia Scandurra

Practical Deductive Verification of OCaml Programs.

Mario Pereira

Software Verification with CPAcHECKER 3.0: Tutorial and User Guide.

Daniel Baier, Dirk Beyer, Po-Chun Chien, Marie-Christine Jakobs,
Marek Jankola, Matthias Kettl, Nian-Ze Lee, Thomas Lemberger,
Marian Lingsch-Rosenfeld, Henrik Wachowitz, and Philipp Wendler

Satisfiability Modulo Theories: A Beginner’s Tutorial

Clark Barrett, Cesare Tinelli, Haniel Barbosa, Aina Niemetz,
Mathias Preiner, Andrew Reynolds, and Yoni Zohar

The Java Verification Tool KeY:A Tutorial

Bernhard Beckert, Richard Bubel, Daniel Drodt, Reiner Hdhnle,
Florian Lanzinger, Wolfram Pfeifer, Mattias Ulbrich,
and Alexander Weigl

469

Xviil Contents — Part 11

A Tutorial on Stream-Based Monitoring

Jan Baumeister, Bernd Finkbeiner, Florian Kohn, and Frederik

Scheerer

Author Index

http://dx.doi.org/10.1007/978-3-031-71162-6_34

Contents — Part 1

Invited Papers

Adversarial Robustness Certification for Bayesian Neural Networks

Matthew Wicker, Andrea Patane, Luca Laurenti,
and Marta Kwiatkowska

Getting Chip Card Payments Right

David Basin, Xenia Hofmeier, Ralf Sasse, and Jorge Toro-Pozo

Fundamentals of Formal Verification

A Local Search Algorithm for MaxSMT(LIA)

Xiang He, Bohan Li, Mengyu Zhao, and Shaowei Cai

Integrating Loop Acceleration Into Bounded Model Checking

Florian Frohn and Jiirgen Giesl

Nonlinear Craig Interpolant Generation Over Unbounded Domains

by Separating Semialgebraic Sets L L L.

Hao Wu, Jie Wang, Bican Xia, Xiakun Li, Naijun Zhan, and Ting Gan

Practical Approximate Quantifier Elimination for Non-linear Real

Arithmetic e

S. Akshay, Supratik Chakraborty, Amir Kafshdar Goharshady, R.
Govind, Harshit Jitendra Motwani, and Sai Teja Varanasi

A Divide-and-Conquer Approach to Variable Elimination in Linear Real

Arithmetic e

Valentin Promies and Erika Abrahdm

Foundations

Free Facts: An Alternative to Inefficient Axioms in Dafny

Tabea Bordis and K. Rustan M. Leino

Understanding Synthesized Reactive Systems Through Invariants

Riidiger Ehlers

XX Contents — Part 1

Combining Classical and Probabilistic Independence Reasoning to Verify

the Security of Oblivious Algorithms. 188
Pengbo Yan, Toby Murray, Olga Ohrimenko, Van-Thuan Pham,
and Robert Sison

Efficient Formally Verified Maximal End Component Decomposition
Arnd Hartmanns, Bram Kohlen, and Peter Lammich

Introducing SWIRL: An Intermediate Representation Language

for Scientific Workflows 226
lacopo Colonnelli, Doriana Medic¢, Alberto Mulone, Viviana Bono,
Luca Padovani, and Marco Aldinucci

Fast Attack Graph Defense Localization via Bisimulation. 245
Nimrod Busany, Rafi Shalom, Dan Klein, and Shahar Maoz

Learn and Repair

State Matching and Multiple References in Adaptive Active Automata
Learning oot 267
Loes Kruger, Sebastian Junges, and Jurriaan Rot

Automated Repair of Information Flow Security in Android Implicit
Inter-App Communicationt 285
Abhishek Tiwari, Jyoti Prakash, Zhen Dong, and Carlo A. Furia

Learning Branching-Time Properties in CTL and ATL via Constraint
SOIVING . . o 304
Benjamin Bordais, Daniel Neider, and Rajarshi Roy

A Zonotopic Dempster-Shafer Approach to the Quantitative Verification
of Neural Networks. 324
Eric Goubault and Sylvie Putot

Certified Quantization Strategy Synthesis for Neural Networks 343
Yedi Zhang, Guangke Chen, Fu Song, Jun Sun, and Jin Song Dong

Partially Observable Stochastic Games with Neural Perception Mechanisms . . . 363
Rui Yan, Gabriel Santos, Gethin Norman, David Parker,
and Marta Kwiatkowska

Contents — Part 1 XXi

Bridging Dimensions: Confident Reachability for High-Dimensional

Controllers oo 381
Yuang Geng, Jake Brandon Baldauf, Souradeep Dutta, Chao Huang,
and Ivan Ruchkin

VeriQR: A Robustness Verification Tool for Quantum Machine Learning
Models . ..o 403
Yanling Lin, Ji Guan, Wang Fang, Mingsheng Ying, and Zhaofeng Su

Programming Languages

Formal Semantics and Analysis of Multitask PLC ST Programs
with Preemption 425
Jaeseo Lee and Kyungmin Bae

Accurate Static Data Race Detection for C. 443
Emerson Sales, Omar Inverso, and Emilio Tuosto

cFAULTS: Model-Based Diagnosis for Fault Localization in C with Multiple
TSt CaSES .« . v v ot e et e 463
Pedro Orvalho, Mikolas Janota, and Vasco Manquinho

Detecting Speculative Execution Vulnerabilities on Weak Memory Models . .. 482
Nicholas Coughlin, Kait Lam, Graeme Smith, and Kirsten Winter

Staged Specification Logic for Verifying Higher-Order Imperative
Programs 501
Darius Foo, Yahui Song, and Wei-Ngan Chin

Unifying Weak Memory Verification Using Potentials. 519
Lara Bargmann, Brijesh Dongol, and Heike Wehrheim

Proving Functional Program Equivalence via Directed Lemma Synthesis 538
Yican Sun, Ruyi Ji, Jian Fang, Xuanlin Jiang, Mingshuai Chen,
and Yingfei Xiong

Reachability Analysis for Multiloop Programs Using Transition Power

ADStraction. 558
Konstantin Britikov, Martin Blicha, Natasha Sharygina,
and Grigory Fedyukovich

XXil Contents — Part 1

Logic and Automata

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic

Ben Greenman, Siddhartha Prasad, Antonio Di Stasio, Shufang Zhu,
Giuseppe De Giacomo, Shriram Krishnamurthi, Marco Montali,
Tim Nelson, and Milda Zizyte

Sound and Complete Witnesses for Template-Based Verification of LTL

Properties on Polynomial Programs.

Krishnendu Chatterjee, Amir Goharshady, Ehsan Goharshady,
Mehrdad Karrabi, and Porde Zikelié

The Opacity of Timed Automata. i,

Jie An, Qiang Gao, Lingtai Wang, Naijun Zhan, and Ichiro Hasuo

Parameterized Verification of Round-Based Distributed Algorithms

via Extended Threshold Automata.

Tom Baumeister, Paul Eichler, Swen Jacobs, Mouhammad Sakr,
and Marcus Volp

The Nonexistence of Unicorns and Many-Sorted Lowenheim—Skolem

Theorems. e

Benjamin Przybocki, Guilherme Toledo, Yoni Zohar, and Clark Barrett

Author Index e

579

Tools and Case Studies

®

Check for
updates

Extending Isabelle/HOL’s Code Generator
with Support for the Go Programming

Language
FM FM
Arifact Artifact
Evaluation Evaluation
L Terru Stiibinger"2® and Lars Hupel"2(=) 2

Available

! Giesecke+Devrient, Prinzregentenstr. 161, 81677 Miinchen, Germany
2 Technische Universitdt Miinchen, School of Computation, Information
and Technology, Boltzmannstr. 3, 85748 Garching bei Miinchen, Germany
stuebinm@in.tum.de, lars.hupel@tum.de

Abstract. The Isabelle proof assistant includes a small functional lan-
guage, which allows users to write and reason about programs. So far,
these programs could be extracted into a number of functional languages:
Standard ML, OCaml, Scala, and Haskell. This work adds support for
Go as a fifth target language for the Code Generator. Unlike the previous
targets, Go is not a functional language and encourages code in an imper-
ative style, thus many of the features of Isabelle’s language (particularly
data types, pattern matching, and type classes) have to be emulated
using imperative language constructs in Go. The developed Code Gener-
ation is provided as an add-on library that can be simply imported into
existing theories.

Keywords: Theorem provers + Code generation - Go programming
language

1 Introduction

The interactive theorem prover Isabelle of the LCF tradition [13] is based on
a small, well-established and trusted mathematical inference kernel written in
Standard ML. All higher-level tools and proofs, such as those included in the
most commonly-used logic Isabelle/HOL, have to work through this kernel.
Many of the tools available to users in Isabelle/HOL feel immediately familiar
to anyone with experience in functional programming languages: it is possible
to define data types, functions, and Haskell-style type classes and instances.
Isabelle’s nature as a theorem prover further makes it easy to formalise and
prove propositions about such programs. To allow use of such programs outside
of the proof assistant’s environment, Isabelle comes equipped with a Code Gen-
erator, allowing users to extract source code in Haskell, Standard ML, Scala, or
OCaml, which can then be compiled and executed. This translation of code works
by first translating into an intermediate language called Thingol, shared between
all targets; from this language, code is then transformed into the individual tar-
get languages via the principle of shallow embedding, that is, by representing

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 3-19, 2025.
https://doi.org/10.1007/978-3-031-71177-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_1&domain=pdf
http://orcid.org/0009-0006-7411-2533
http://orcid.org/0000-0002-8442-856X
https://doi.org/10.1007/978-3-031-71177-0_1

4 T. Stiibinger and L. Hupel

constructs of the source language using only a well-defined subset of the target
language, thus side-stepping the issue of finding a complete formal description
of a target language’s behaviour [6,7].

Go is a programming language introduced by Google in 2009. It is a general-
purpose, garbage-collected, and statically typed language [4]. In contrast to the
existing targets of Isabelle’s Code Generator, it is not a functional language, and
encourages programming in an imperative style. However, it is a very popular
language, and many large existing code bases have been written in it.

Contributions. This paper extends Isabelle’s Code Generation facility with sup-
port for Go. For that, we demonstrate a translation scheme from programs in
Thingol to programs in Go (§4). We provide this facility as a stand-alone the-
ory file that can easily be imported into existing developments. We provide our
development as an entry in the Archive of Formal Proofs (AFP)—a repository
of Isabelle proof libraries—, making it immediately usable in other contexts [17].

The motivation for this work stems from the internal use of both ecosystems
at Giesecke+Devrient: Isabelle for formalisation purposes, and Go for the real-
world implementation. This naturally lead to a formalisation gap, which this
project sought to close (§5).

Related Work. This paper describes the first attempt at translating Isabelle
formalisations into a non-functional programming language. Prior work in lever-
aging imperative features in the Code Generator [2] has targeted the existing,
functional programming languages, and thereby could reuse much of the existing
infrastructure. There is also unpublished work on adding support for F# to the
Code Generator [1], another functional language.

Shallow embeddings of C in proof assistant are already well known; for exam-
ple in F* [14], Isabelle [16], and Why3 [15]. Those tools are not designed to
export arbitrary code, but require developers to use a restricted subset of the
host language. Instead, they are mainly geared towards low-level programming;
with some providing C-style memory management. Our work focuses instead on
translating the full functional host language into a high-level imperative lan-
guage, therefore avoiding the need to (re)write host language code specifically
for the purpose.

2 The Intermediate Language Thingol

Isabelle’s Code Generation pipeline works in multiple stages. Crucially, all defini-
tions made in Isabelle are first translated into an abstract intermediate language
called Thingol, which is the last step shared between all target languages. The
final stage then uses a shallow embedding to translate the Thingol program into
source code of the target language.

Consequently, Thingol’s design reflects the features common to previous tar-
get languages, and is based on a simply-typed A-calculus with ML-style polymor-
phism. Perhaps surprisingly, Thingol also supports type classes, which can be

Go Support for the Isabelle Code Generator 5

datatype Nat = Zero | Suc Nat
datatype « list = Nil | Cons a (a list)

fun hd2 :: Va.a list = a option where
hd2 zs = case xs of Nil = None
| Cons x Nil = None
| Cons = (Cons y zs) = Some y

class semigroup where
) raza=a

class monoid C semigroup where
zero :: «

instance Nat :: semigroup where
a + Zero = a
Zero + a a
(Suc a) + b = Suc (a + b)

instance Nat :: monoid where
zero = Zero

fun sum :: (o :: monoid) list = « where
sum zs = fold (+) zs zero

Fig. 1. An example program (omitting the definition of fold for brevity)

mapped easily to Haskell and Scala, but less easily to the other targets, which
instead use a dictionary construction (§4.5). The supported fragment of type
classes and instance corresponds to Haskell98, with the exception of constructor
classes (which would require a more expressive type system) [8,10].

Thingol’s terms are simple A-expressions with the addition of case expression
for pattern matching on data types. A Thingol program is a list of declarations,
i.e. top-level items which introduce data types, functions, type classes, and their
instances.

While there is no formal semantics of Thingol, it can be thought of as a
Higher-Order Rewrite System (HRS) [11,12]. It provides a convenient abstrac-
tion over the target languages’ semantics. Because a HRS does not have a spec-
ified evaluation order, the Code Generator cannot guarantee total, but only
partial correctness. (This restriction applies to all supported target languages.)

Reusing Thingol has two immediate benefits: we can leverage the entire entire
existing pipeline as well as its existing code adaptations, and are not forced to
reimplement some tedious translation of Isabelle’s more advanced features. Addi-
tionally, creating a custom intermediate language would not help to meaningfully
address the functional-imperative mismatch between Isabelle/HOL and Go, but
only shift the complexity elsewhere.

6 T. Stiibinger and L. Hupel

3 The Target Fragment of Go

Go, being an imperative language, differs in many aspects from the already-
existing target languages of Isabelle’s Code Generator. Conversely, many of Go’s
unique features are not needed by the generator. Since the translation works as
a shallow embedding into the target language, it suffices to use the fragment
which can be used to represent the various statements of Thingol. Consequently,
we will focus on this fragment only, but discuss—if necessary—why we did not
pursue alternative features or solutions.

This approach leaves many of Go’s most interesting features (e.g. channels
or methods) entirely unused. The fragment we use can be understood as a “func-
tional subset” of the Go language, meaning that it comprises only those features
that closely align with those of the (functional) pre-existing code generation
targets available in Isabelle as well as those of Thingol.

3.1 Syntax

The syntactic fragment used by the Code Generator! is inspired by that of
Featherweight Generic Go [5], but differs in some important aspects:

1. Methods are not included; instead we use “ordinary” top-level functions.

2. Go distinguishes syntactically between expressions and statements, whereas
Featherweight Generic Go does not. We retain this distinction and discuss
conversion between them in §3.4.

3. Type parameters can be declared with an interface constraint. However, in
our fragment the only available constraint is the unconstrained any, as Go’s
other constraints are not useful for our translation (§4.5).

4. We use modern Go’s syntax for generics, which differs from the one used by
Featherweight Generic Go, which pre-dates the introduction of generics in Go
1.18 and was meant as a proposal demonstrating a possible design.

3.2 Declarations

A (top-level) declaration D can define either a new type or function. Within one
package, the order of declarations does not matter; any item may reference any
other. A program as a whole is simply a list D of such declarations (note that
we use overlines such as @ to mean syntactic repetition).

Structure Types. A declaration of the form type tg[a ¢| struct{A 7} intro-
duces a new type constructor with fields A of types 7 to the program. It may be
polymorphic and take type arguments @ which can be freely referenced within
7. Since Go’s syntax demands a constraint ¢ for each type variable «, we always
use any, which allows any type to be substituted for a.

Note that there is no analogous construct to Thingol’s sum types; that is, it
is not possible to a have a structure type which has more than one constructor.

! See the appendix of this paper for the full listing: arxiv.org/abs/2310.02704.

https://arxiv.org/abs/2310.02704

Go Support for the Isabelle Code Generator 7

Therefore, when encountering non-trivial sum types in Thingol, we must encode
them accordingly (see §4.2 for details).

Interface Types. A declaration of the form type t; [W] interface{} intro-
duces a new (empty) interface type to the program. While Go supports non-
empty interfaces containing methods, we do not use this feature (see §4.5).

Unlike interfaces in typical object-oriented languages such as Java, Go’s inter-
faces are structural in nature: any struct value conforms to an interface if (and
only if) the struct implements a superset of the declared methods of the inter-
face. This can also be probed at runtime.

This implies that empty interfaces correspond to a “top” type that can denote
arbitrary values. Go defines the unconstrained interface any as an alias to this
empty interface type, which we use extensively in the translation scheme of data
types, for reasons that will be explained later (§4.2). Additionally, we also use
them for the translation of type classes (§4.5).

Functions. A declaration func f [W] (7) (3 { s }introduces a new func-
tion f to the program. The type parameters @ can be referenced within both
argument types 7 and the return types 7.

Unlike in Thingol, a function cannot have multiple equations nor perform
pattern matching on its arguments. Instead there is only one list of argument
names @, which are in scope for the (unique) function body s.

An unusual feature of Go is that its functions may return more than one
value (note that we have return types 7 instead of just a single return type ~):

func foo() (bool, int, string) {
return false, 42, "bar"

}

func main() {
X, ¥, 2 := foo()
}

At first glance this might seem analogous the tuples present in Standard ML,
with foo () returning a single value of the tuple (bool, int, string).But this
is not the case; Go has no concept of tuples. Instead, the function itself returns
multiple values, which must be immediately assigned names (or discarded) at
the function’s call site. Thus a call like no_tuples := foo() is not allowed.

3.3 Expressions

Expressions e can have several forms: variables, function application, and func-
tion abstraction are familiar from the A-calculus. The others may require a bit
more explanation.

8 T. Stiibinger and L. Hupel

Structure Literal. A literal of the form ts[a]{€} gives a value of the struct type
with name tg applied to type arguments @, i.e., it produces a new value of the
type ts [G} in which the fields are set to the evaluated forms of the expressions
€. Note that the field names present in the declaration of a struct type are
absent: while they could be used, Go does not require them. We omit them in
the interest of shorter code.

Field Selection. An expression e.A selects the field named A of an expression e,
which must have a fitting struct type 75 that was declared with a field name
A, and returns the value of that field. This is the only place outside a structure
type’s declaration that field names are used.

Type Conversion. An expression 77(e) evaluates to a value of the interface type
71 which contains the evaluated form of e as its inner value. The original type o
of e is not erased at runtime; it can be recovered using a type assertion statement
(see the next section). This expression can also be thought of as an “upcast”.

3.4 Statements

Unlike in Isabelle (and in Thingol) where “everything is an expression”, Go has
the same syntactic distinction between expression and statements that is com-
mon across imperative languages: an assignment x := 42; is a statement, not
an expression, and cannot be used in places where an expression is expected.

However, we constrain our fragment to only include sequences of statements
that end in a return. This enables easy embedding of a statement into an
expression: wrapping it into an immediately-called lambda func (O 7 { s }()
suffices. Note that a sequence of statements interspersed with ; is treated syn-
tactically as a single statement.

The remainder of this section introduces the statement forms of our fragment.
All but the type assertion should feel familiar from similar languages.

Return. A statement returne evaluates one or more expressions, then returns
from the current function. The € must match the return types given in the
function’s head.

If Statement. A statement of the form if (e) { s; }; s will evaluate e, which
must have a boolean type. If it evaluates to the built-in value true, then s is
evaluated. Since all statements end in return, it will then return from the cur-
rent function. Otherwise, s, is evaluated. The form if (e) { s } else { so }
would be semantically equivalent within our fragment; we avoid it to reduce
nesting in the generated code.

Type Assertion. A statement of the form xz, y := e. (o) can be thought of as
the inverse operation of type conversions, i.e., a “downcast”. For an expression e
of an interface type 77, the assertion checks whether the inner value contained
within the interface value has type 0. The boolean variable y will indicate if the
check was successful. If so, z will be bound to that inner value; otherwise, it will
be nil, Go’s null pointer. Note that the type of x is o.

Go Support for the Isabelle Code Generator 9

4 Translation Scheme

In this section, we will discuss the concrete translation schemes employed for
Thingol programs. For brevity, we omit purely syntactic mappings, and focus on
the non-trivial steps.

The translation scheme attempts to preserve names as far as possible.
Isabelle’s Code Generator already provides (re)naming infrastructure, such as
generating guaranteed-unused “fresh” names where necessary. In addition to
that, some functions and data types require upper-case names, to match Go’s
rules for exported symbols.

4.1 Types, Terms and Statements

We define three translations TYPE(7), EXPR(t), and STMT(¢). The first is a
straightforward syntactic mapping of types. In the remainder of the chapter,
we will informally equate Thingol types 7 with their Go translation TYPE(T)
and write both simply as 7. For now, we exclude any mapping of common types
(e.g. integers) to built-in Go types; we will revisit this topic later (§4.6).

The other two translations—EXPR and STMT—are used for converting Thin-
gol terms into Go expressions and statements. Which one is used thus depends on
what Go expects in each particular context; for example, terms used as function
arguments use EXPR; a term which is a function body uses STMT. Semantically,
for any term ¢, EXPR and STMT satisfy the following equivalences:

STMT(t) = return EXPR(?);
EXPR(t) = func) 7 {st™MT(¢)} O

Abstractions. The translation of a A-abstraction A(x::7). (t::7) demonstrates the
distinction between expressions and statements:

EXPR(A(z::7). (t::y)) = func (z 7) v {STMT(¢)}

Although curried abstractions are unusual in Go, no effort is made to uncurry
them (unlike top-level functions, which we do uncurry §4.4).

Applications of Top-Level Functions. Applications t are more tedious: Definitions
of top-level functions are uncurried (§4.4), so we first have to check if ¢ is a call
to such a function, i.e., if ¢ has the shape (--- ((f[7;] a1) a2)---) a,, where f
references a top-level function or data type constructor taking m arguments.

If so, we have to consider three cases:

1. Fully-satured application (n = m); all arguments are passed into f
2. Unsatured application (n < m); need to n-expand

10 T. Stiibinger and L. Hupel

3. Over-satured application (n > m). This occurs if f returns another function,
with a; to a,, being the immediate arguments to f and any remaining @, 41
to a, as curried arguments. The latter will be passed individually.

As will be described later (§4.5), the dictionary construction used to encode
Isabelle’s type classes may introduce additional (value-level) parameters to top-
level functions, also adding corresponding additional arguments d; to d, to each
of their applications. These are inserted before the user-defined parameters.
Altogether, we arrive at the following scheme when f references a function:

EXPR(t) = flr1,...,71(d1,...drya1, ... am) mi1) - - Can)

Finally, if f references a data type constructor of a type 7 rather than a function,
the case n > m cannot occur. However, we must wrap the constructor into a type
conversion to type 7, and use slightly different syntax for passing the arguments:

EXPR(t) = Ii(f[Tl,...,’Ti]{dl, .. .dr,al, e ,am})

Lambda Applications. If an application ¢ = t; t5 is not a call to a top-level func-
tion, then the translation is straightforward: EXPR(¢1 t2) = EXPR(t1) (EXPR(t2)).

4.2 Data Types

A data type x defined in Thingol consists of type parameters @&; and constructors
f;- BEach f; gets translated into its own separate struct type.

As was discussed in §3, Go knows no sum types, thus the translation has to
simulate their behaviour by other means. For a data type, we generate a new
unconstrained interface type §, meant to represent any constructor f; of .

If the data type x has exactly one constructor f;, then no additional interface
type d is generated.

Constructors. Defining a struct type for an individual constructor is straight-
forward. A constructor f with fields of types 7 to 7; is translated into Go as a
struct with the same name and fields: type f struct {A 7;}, where the A;
are newly-invented names for each of the fields, as no field names are present in
Thingol. Note that those generated field names are entirely unimportant (access
happens only through destructors, and the names are not required when con-
structing a value); the only requirement imposed on them is that each A; of the
same struct are distinct. Thus the type Nat (Fig. 1) becomes:

type Nat any;
type Zero struct { };
type Suc struct { A Nat; };

With that, we can construct the number 1 as Nat(Suc{Nat(Zero{})) . The
interface type d (here Nat) acts as a faux sum type: the translation promises that

Go Support for the Isabelle Code Generator 11

(as long as its input program was type-correct) it will never contain anything but
values of types Zero and Suc. On the Go side, there is no such guarantee: it sees
Nat as unconstrained, and would happily allow such values as Nat (Suc{nil})
or even Suc{"wrong"}, leading to runtime exceptions elsewhere in the generated
code, especially in translated pattern matches (§4.3).

Destructors. Along with each constructor’s struct type, we generate a synthetic
function f_dest not present in the Thingol program, to be used as a destructor
in the translation of Thingol’s case expressions (§4.3). Their sole purpose is to
unpack and return the individual fields in a struct type, exploiting Go’s multiple
return types.

func f_dest (p f) (71, ..., ™) {
return p. A1, ..., p. A,
}

Destructors are omitted when there are no fields to unpack. For Nat, we need
only one:

func Suc_dest(p Suc) (Nat) { return p.A; }

Ezample. Slightly more involved is the alist data type (Fig.1). It is polymor-
phic, and thus requires use of Go’s generics:

type List[a any] interface {};

type Nil[a any] struct { };

type Cons[a any] struct { A a; Aa List[al; };

func Cons_dest[a any](p Cons[al)(a, List[al) { return p.A, p.Aa; }

4.3 Case Expressions

Thingol’s case expressions implement pattern matching on a value, in a way
which will be immediately familiar from other functional languages such as Stan-
dard ML or Haskell: they inspect a scrutinee t and match it against a series of
clauses p; — b;. Each clause contains a pattern p; and a term ¢; that is to be eval-
uated if the pattern matches the scrutinee. Syntactically, patterns are a subset
of terms; they can only be composed of variables and fully-satisfied applications
of data type constructors to sub-patterns f p, constructed of the same subset.

Since Go has no comparable feature, a data type pattern in a case expression
is translated into a series of (possibly nested) if-conditions and calls to destruc-
tor functions. The bodies of the innermost if-condition then correspond to the
translated terms ¢;, which must be in statement-form, i.e., ending in a return-
statement. Thus, if the pattern could be matched, further patterns will not be
executed. Naturally, using return in this manner implies that a case expression
must always either be in tail position, or else be wrapped into an anonymous
function if it does not (§3).

12 T. Stiibinger and L. Hupel

If the pattern did not match, execution will continue with either the next
block of if-conditions generated from the next clause, or encounter a final catch-
all call to Go’s built-in panic function, which aborts the program in case of an
incomplete pattern where no clause could be matched (incomplete patterns are
admissable in Isabelle’s logic, see Hupel [9] for a detailed description). This panic
can also be encountered if an external caller exploited the lossy conversion of
sum types as described above and supplied, e.g., a nil value as a scrutinee.

Taken together, an entire case expression is translated as a linear sequence
of individual clauses, followed by a panic:

STMT(case t :: T of [p — b]) = STMT(p — b); panic("Match failed");

Let us now consider the concrete translation for variable and constructor pat-
terns.

Variable Pattern. We assign the scrutinee t to the variable x to make it available
in the scope of b: STMT(x — b) = {2 := EXPR(t); STMT(D)}.

Constructor Pattern. The pattern is of the form f[7;][Sk]. If all sub-patterns s,
are variable patterns, the translation is once again straightforward:

STMT(f[Ti][5k] — b) = {g,m:=t.(f[Ti]);
if (m) {Ay,...,Ag := f_dest(t); sTMT(b)}}

Nested constructor patterns are translated in the same way, but pushed inwards
into the body of the if-statement generated above:

STMT(f[Ti][5k] — b) = {g,m:=t.(f[Ti]);
if (m) {A1,...,Ap := f_dest(t); Z1}}
T = stMT(case Ay of 81 — (... — (case A of sp — b)))

In other words, the sub-patterns are treated as if they were further nested case
expressions. This results in a total nesting depth of one level per constructor.

Within the innermost if, the body b of the pattern’s clause is translated as
statement to ensure it returns from the current function.

Optimizing the Nesting Level. The translation described in this section can trans-
late arbitrary patterns, but comes at the price of potentially exponential code
blow-up. Even a single pattern consisting of just a constructor and k fields, none
of which are proper patterns, will still produce k levels of nested if-statements.
But if the fields themselves are again data type constructors with sub-patterns,
the number of nested levels quickly increases further.

In real-world applications, we can reduce the blow-up by optimizing construc-
tor patterns without arguments. Instead of calling a destructor function, we can
emit an equality check, since there are no fields to extract. Multiple equality
checks can be joined together using Go’s conjunction operator &&.

Go Support for the Isabelle Code Generator 13

Ezample. Consider the function hd2 (Fig.1), which takes a list and returns
(optionally) the second element of the list. It is translated into Go as follows:

func Hd2[a any] (x0 List[a]) Option[a] {
if (x0 == (List[a] (Nil[al{}))) {
return (Option[a] (Nonel[al{}));
}
q, m := x0.(Cons[al);
if (m) {
_, ¢ := Cons_dest(q);
if (c == (List[a] (Nil[al{}))) {
return (Option[al] (Nonel[al{}));
}
}
q, m := x0.(Cons[a]);
if (m) {
_, p:
q, m :
if (m) {
ya, _ := Cons_dest(q);
return (Option[a] (Some[al{yal}));
}

Cons_dest(q) ;
p- (Cons[al);

}

panic("match failed");

This piece of generated code benefits from the optimisation described above
(in its first two clauses). Also, observe that since unused variables are a compile
error in Go, unused bound names above have been generated as _ instead.

4.4 Top-Level Functions

Unlike lambdas that occur within terms, top-level functions in Thingol can have
multiple clauses and pattern-match on their arguments, neither of which is sup-
ported in Go. It is thus necessary to translate them differently: all equations of
the same function will have to be merged, with the pattern matching on their
parameters again pushed inwards into the then combined, single function body.

Further, treating them differently from in-term lambda expression also allows
the generator to uncurry them, creating code that is much closer to an idiomatic
style in Go.

Merging Multiple Clauses. Thingol allows Haskell-style function definition com-
prising multiple clauses. But in Go, all parameters of functions must be simple
variables. Thus, if any of the parameters patterns p; is a proper pattern, a fresh
name x; for it is invented. Likewise, if a parameter is a variable binding instead
of a proper pattern, but has multiple different names in two clauses, the name
x; used in the first clause is picked as the name of the parameter in Go.

14 T. Stiibinger and L. Hupel

Pattern Matching. The combined function body then contains a pattern match
translation, as described above.? Each equation is treated as a clause of a syn-
thetic case-expression; for functions matching on multiple parameters, we again
push inwards and translate as if a nested series of case-expressions were present.

Ezxample. Consider this definition for hd2’, which is semantically equivalent to
hd2, but written using multiple equations:

fun hd2’ :: Va.a list = o option where
hd2’ Nil = None
hd2’ (Cons x Nil) = None
hd2’ (Cons z (Cons y zs) ys) = Some y

The generated Go code is identical.

Special Case: Top-Level Constants. Thingol accepts top-level definitions that
are not functions, for example: definition a :: nat where a = 10 . Unfor-
tunately, Go admits top-level variable declarations only for monomophic types,
and further disallows function calls in their definitions.

Therefore, we must treat such Thingol definitions as if they were nullary
functions. While this changes nothing of the semantics of the translated program,
it does incur a (potentially significant) runtime cost: constants will be evaluated
each time they are used, instead of only once when the program is initialized.

4.5 Dictionary Construction

On the surface, Isabelle’s Haskell-style type classes and Go’s interfaces share
many of the same features, and are sometimes considered to be near-
analogous [3]. However, translating type classes into interfaces does not work,
due to an implementation concern: Go directly compiles methods into virtual
tables for dynamic dispatch. A Go interface declares multiple methods, where
each method type must take the generic value as its zeroth (i.e. implicit) param-
eter. Thingol has no such restriction. Consider, for example:

class foo where class bar where
foo :: unit = « bar :: (@ = @) = unit

As Go interfaces, both are invalid: foo declares a function whose parameter
types do not mention « at all, while bar’s function does not take a simple «
parameter (but a parameter whose type contains).

To avoid the additional complexity of treating all these cases separately, we
resort to using a dictionary construction [7,9] in all cases. Since the existing
SML target of the Code Generator has to deal with the same issue, the required
infrastructure is already in place: Thingol’s terms come with enough annotations
to resolve all type class constraints during translation and replace the implicit
instance arguments of functions making use of type classes by explicit dictionary
values, which we represent as one data type per type class.

Thus only relatively few things are left to do in Go:

2 The already-existing Scala target uses a similar transformation.

Go Support for the Isabelle Code Generator 15

1. declare a data type for each type class, called its dictionary type

2. translate type class constraints on functions into explicit function arguments
of dictionary types

3. translate type class instances into either a value of the type class’s dictionary
type, or, if the instance itself takes type class constraints, to a function pro-
ducing such a value when given values of dictionary types representing these
constraints

4. any time a top-level function is used, the already-resolved type class con-
straints must be given as explicit arguments

Ezample. The class declarations (Fig. 1) are translated as follows:

type Semigroupl[a any] struct {
Plus func(a, a) a

}

type Monoid[a any] struct {
Semigroup_monoid Semigroup [al
Zero func () a

}

func Sum[a any] (a_ Monoid[a], xs List[a]) a {
return Fold[a, a](
func (aa a) func(a) a {
return func (b a) a { return a_.Semigroup_monoid.Plus(aa, b); };
},
xs, a_.Zero()
)s
}

4.6 Mapping High-Level Constructs

So far, the shallow embedding we have presented produced code with no depen-
dencies on the Go side, with only the built-in constructs panic and && used.
All higher-level constructs used by programs (such as lists, numbers) must thus
be “brought along” from Isabelle, and are translated wholesale exactly as they
are defined in their formalisations. While this guarantees correctness, it is highly
impractical for real-world applications: for example, natural numbers as defined
in Isabelle/HOL (unary Peano representation, §4.2) require linear memory and
quadratic runtime even for simple operations like addition.

Luckily, the Code Generator already has a solution for this conundrum in
the form of printing rules, which can map Isabelle’s types and constants to user-
supplied names in the target language. We have set up printing rules mapping:

— Isabelle/HOL’s booleans to booleans in Go
— numbers to arbitrary-precision integers (via Go’s math/big package)
— strings of the String.literal type to strings in Go

Unfortunately, linked lists cannot be as easily mapped by default, because Go
does not feature a standard implementation of linked lists.

16 T. Stiibinger and L. Hupel

5 Evaluation

Even though Go greatly differs from the existing targets, we have achieved almost
full feature parity with the translation described in this paper. Isabelle constructs
that are not (cleanly) mapped are:

— infinite data types, which can be defined e.g. via codatatype in Isabelle, but
are rejected by Go’s compiler;
— some low-level string operations that operate on byte values of characters.

Trusted Code Base. All target language generators are part of Isabelle’s trusted
code base, i.e. bugs inside its own code may lead to bugs in the generated pro-
gram, and cannot be checked for by Isabelle’s kernel. Fortunately, our imple-
mentation is “just another module” to the core infrastructure; up until Thingol
everything remains unchanged, in line with the other language targets.

However, future (more ambitious) code printing may require changes in Thin-
gol: If code printing shall assume more constructs of Go, it would be useful for
Thingol itself to have some concept of the syntactic distinction between expres-
sions and statements.

Code Style. The generated Go code is not idiomatic, but neither is the generated
code for the other languages. Even though the semantics of SML, OCaml and
others may more closely resemble the intention of Isabelle users, the generated
code in those languages is also littered with syntactic artifacts. This is evidenced
by the fact that neither SML nor OCaml support type classes, and Scala code
hardly uses type classes in the way that Haskell does (typically prefering object-
orientation). Therefore, we do not envision a future need to align the style of the
generated code more closely with the preferred style of hand-written Go code.

The main challenge arises from interfacing between generated and hand-
written Go code, both of which would be present in a typical application. For
instance, constructing values for the translated datatype definitions or using
curried functions in Go is unfortunately verbose, and can easily introduce errors.

We therefore recommend to write wrapper code that exposes a “cleaner”
interface, ready to be consumed by the real-world application. The wrapper must
be written carefully: many explicit type annotations are needed in the code, and
not all incorrect type annotations will cause compilation to fail. In particular,
if a data type’s constructor is annotated with a wrong interface type, the
assumption underlying the translation of case-expressions will fail, resulting in
a “match failed” error at runtime (§4.3).

Another awkward source of problems when integrating the generated code
with a larger code base is that Go’s standard library lacks common functional
data structures, such as lists or tuples (§4.6). Hand-written code would need
to deal with the necessary conversions (e.g. from a Go array into a linked
list). To some extent, this can be alleviated by leveraging third-party libraries
for functional data structures, which are unfortunately not popular in the Go
community.

Go Support for the Isabelle Code Generator 17

5.1 Case Studies

We conducted two case studies that have confirmed our approach.

Existing Formalisation. At Giesecke+Devrient, we use Isabelle for a substan-
tial formalisation of various graph algorithms powering a financial transaction
system. The purpose of the formalisation is to provide real-world security guar-
antees, such as inability to clone money. We have previously used the Code
Generator to produce Scala code as a reference implementation, combined with
some hand-written wrapper code and basic unit tests.

As a simple evaluation of Go code generated from the same Isabelle theories,
we re-wrote the unit tests and the necessary wrapper code in Go. We obtained
equivalent results and could not find bugs in the Code Generator or unintended
behaviour of the code it produced. Note that no adaptations of the Isabelle
formalisation were necessary, which proves that the Go backend works as a drop-
in replacement for the other targets.

Starting from this, we can narrow the formalisation gap mentioned in the
introduction. It allows us to link the Isabelle/HOL reference implementation
with the real-world production implementation in Go.

HOL-Codegenerator Test. Isabelle’s distribution contains a Code Generator test
session which is used as a self-check for the various target languages of the Code
Generator. For this paper, a single export command is relevant, which is meant
to export a considerable chunk of Isabelle/HOL’s library as a stress-test for the
Code Generator. This has worked as expected, with the entirety of the test suite
successfully compiling in Go.

As a consequence, our approach enables the vast majority of Isabelle users to
generate Go code without having to rewrite their formalisation. In particular—
because we map to a functional fragment of Go—there is no need for users to
reach for a deep embedding of an imperative language.

6 Conclusion

We have presented a translation from Thingol by shallow embedding into a
fragment of Go, and implemented it as a target language for Isabelle’s code gen-
eration framework. The new target language has been used with success to port
an existing Isabelle formalisation that was only targeting Scala to additionally
target Go. The implementation is readily usable with a standard Isabelle2024
installation and requires merely importing an additional theory file. The suite
of existing tests of Isabelle’s Code Generator is also supported.

18 T. Stiibinger and L. Hupel

Future Work. The two most promising areas of future work are: leveraging Go’s
imperative nature by tightly integrating it with Imperative/HOL [2]; and gen-
erating code that utilizes more of Go’s standard libraries through custom code
printing rules. Both can be implemented using similar mechanisms. However,
substantial changes to Isabelle’s code generation infrastructure are required,
because Go demands more type annotations than other target languages.

Acknowledgements. The authors would like to thank Florian Haftmann and Cor-
nelius Diekmann for their contributions to the development. This work has been par-
tially supported by the Federal Ministry of Education and Research (BMBF), Ver-
bundprojekt CONTAIN (13N16582).

Availability. The artifact for this paper is available in the Archive of Formal Proofs
(AFP) [17] and under the DOI 10.5281/zenodo.11608252.

References

1. Brucker, A.D.: New Code Generator Target: F#. https://mailman46.in.tum.de/
pipermail /isabelle-dev/2022- August/017633.html

2. Bulwahn, L., Krauss, A., Haftmann, F., Erkok, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Munoz, C., Tahar, S.
(eds.) TPHOLSs 2008. LNCS, vol. 5170, pp. 134-149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7 14

3. Ellis, S., Zhu, S., Yoshida, N., Song, L.: Generic go to go: dictionary-passing,
monomorphisation, and hybrid. Proc. ACM Program. Lang. 6(OOPSLA2), 1207—
1235 (2022)

4. Go Team: the Go programming language specification. https://go.dev/ref/
specgo.dev/ref/spec

5. Griesemer, R., et al.: Featherweight Go. Proc. ACM Program. Lang. 4, 1-29 (OOP-
SLA) (2020). https://doi.org/10.1145/3428217

6. Haftmann, F.: Code generation from specifications in higher-order logic, Ph.D.
thesis, Technische Universitit Miinchen (2009)

7. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103-117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

8. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T,
McBride, C. (eds.) Types for Proofs and Programs, pp. 160-174. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2007)

9. Hupel, L.: Certifying dictionary construction in Isabelle/HOL. Fund. Inform.
170(1-3), 177205 (2019)

10. Jones, S.P.: Haskell 98 language and libraries: the revised report. Cambridge Uni-
versity Press (2003)

11. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoret.
Comput. Sci. 192(1), 3—29 (1998)

12. Nipkow, T.: Higher-order rewrite systems. In: Hsiang, J. (ed.) Rewriting Tech-
niques and Applications, pp. 256-256. Springer, Berlin Heidelberg, Berlin, Heidel-
berg (1995)

13. Nipkow, T., Klein, G.: Concrete Semantics. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10542-0

https://doi.org/10.5281/zenodo.11608252
https://mailman46.in.tum.de/pipermail/isabelle-dev/2022-August/017633.html
https://mailman46.in.tum.de/pipermail/isabelle-dev/2022-August/017633.html
https://doi.org/10.1007/978-3-540-71067-7_14
https://go.dev/ref/spec
https://go.dev/ref/spec
https://doi.org/10.1145/3428217
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0

14.

15.

16.

17.

Go Support for the Isabelle Code Generator 19

Protzenko, J., et al.: Verified low-level programming embedded in F*. Proc. ACM
Program. Lang. 1, 1-29 (ICFP) (2017)

Rieu, R.: Development and verification of arbitrary-precision integer arithmetic
libraries, Ph.D. thesis, Université Paris-Saclay (2020)

Schirmer, N.: A sequential imperative programming language syntax, seman-
tics, hoare logics and verification environment. Archive of Formal Proofs (2008).
https://isa-afp.org/entries/Simpl.html

Stiibinger, T., Hupel, L.: Go Code generation for Isabelle. Archive of Formal Proofs
(2024). https://isa-afp.org/entries/Go.html

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://isa-afp.org/entries/Simpl.html
https://isa-afp.org/entries/Go.html
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Rigorous Floating-Point Round-Off Error
Analysis in PRECiSA 4.0

1)@, Mariano Moscato!@®, Marco A. Feliu!@®, Paolo Mascil®,

and César A. Mufoz?

Laura Titolo

FM FM
INHEEE 1 Analytical Mechanics Associates Inc., Hampton, USA Artifact

X {laura.titolo,mariano.m.moscato,marco.feliu, X X
paolo.m.masci}@nasa.gov

2 NASA Langley Research Center, Hampton, USA

cesar.a.munoz@nasa. gov

Abstract. Small round-off errors in safety-critical systems can lead to
catastrophic consequences. In this context, determining if the result com-
puted by a floating-point program is accurate enough with respect to
its ideal real-number counterpart is essential. This paper presents PRE-
CiSA 4.0, a tool that rigorously estimates the accumulated round-off
error of a floating-point program. PRECiSA 4.0 combines static analy-
sis, optimization techniques, and theorem proving to provide a modular
approach for computing a provably correct round-off error estimation.
PRECISA 4.0 adds several features to previous versions of the tool that
enhance its applicability and performance. These features include sup-
port for data collections such as lists, records, and tuples; support for
recursion schemas; an updated floating-point formalization that closely
characterizes the IEEE-754 standard; an efficient and modular analysis
of function calls that improves the performances for large programs; and
a new user interface integrated into Visual Studio Code.

1 Introduction

Round-off errors arise from the difference between real numbers and their finite
precision representations. In a floating-point program, round-off errors accumu-
late throughout the computation. This may lead to a large divergence between
the result computed using floating-point arithmetic and the one ideally obtained
using real-number arithmetic. In application domains such as avionics, even
small rounding errors may have catastrophic consequences if they are not care-
fully accounted for. Examples of these errors have been found, for instance, in
geofencing applications [29] and position encoding algorithms [41]. Several tools
have been proposed over the years to reason about floating-point errors (see [8]
for an overview). However, most of the proposed tools either target straight-line
code and scalar values only, or do not provide sufficient formal guarantees. This
limits their applicability to safety-critical real-world applications.

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 20-38, 2025.
https://doi.org/10.1007/978-3-031-71177-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_2&domain=pdf
http://orcid.org/0000-0001-7820-7640
http://orcid.org/0000-0002-6468-9498
http://orcid.org/0009-0002-6943-9479
http://orcid.org/0000-0002-0667-7763
http://orcid.org/0000-0002-8503-5514
https://doi.org/10.1007/978-3-031-71177-0_2

PRECISA 4.0 21

This paper presents PRECiSA 4.0, an open-source! tool for automatic
floating-point round-off error analysis. PRECiSA computes a sound and accurate
estimation of the round-off error that may occur in a floating-point program.
It supports a large variety of mathematical operators and programming lan-
guage constructs, including conditionals, let-in expressions, and bounded loops.
In addition, PRECISA automatically generates formal certificates that can be
externally checked in the Prototype Verification System (PVS) [33]. These cer-
tificates provide formal guarantees on the soundness of the computed round-off
error bounds.

An overview of PRECiISA is presented in Sect.2. PRECiSA 4.0 adds the
following features with respect to previous versions of the tool [28,39]:

— A novel modular analysis for function calls has been implemented (Sect. 3).
The user can choose to apply an abstraction on the computed round-off error
expressions for function calls to speed up the analysis execution time. This
abstraction has been shown to be effective in the analysis of large programs
with multiple function calls.

— Support for data collections such as lists, records, and tuples has been imple-
mented. In addition, to operate on these collections, native support for the
map and fold recursion schemas has been added (Sect.4). This new feature
avoids the task of manually unfolding the program, resulting in a less error-
prone and more efficient analysis of data collections.

— Support for a new floating-point formalization has been added. This formal-
ization faithfully characterizes the IEEE-754 standard [24], including special
values such as NaN, signed zeros, and infinities (Sect. 5).

— VSCode-PRECISA, a new user interface integrated into Visual Studio Code,
has been added to the PRECISA distribution (Sect. 6). Besides providing an
intuitive way of presenting the analysis results, VSCode-PRECiSA automa-
tizes and simplifies different kinds of tasks such as comparative, sensitivity,
and interval analysis. In addition, VSCode-PRECISA features a new graphical
visualization of the values that may cause conditional instability. This phe-
nomenon occurs when floating-point round-off errors impact the evaluation
of Boolean expressions in conditional guards, thus affecting the control-flow
of a program.

In addition to presenting these new features, an experimental evaluation
comparing PRECISA with other state-of-the-art tools is presented in Sect.7
together with a discussion on related work.

2 PRECiISA

The round-off error of the floating-point expression op(%;)%, with respect to the
real-valued expression op(r;)™,, where op is a floating-point operator represent-
ing a real-valued operator op and v; is a floating-point value representing a real

! https://github.com/nasa/PRECiSA.

https://github.com/nasa/PRECiSA

22 L. Titolo et al.

value r;, for 1 < i < n, is given by a combination of (i) the propagation of
the errors carried out by the arguments #;, and (ii) the error introduced by
the application of op versus op. Throughout this paper, floating-point variables,
operands, and expressions are denoted with a tilde on top. The IEEE-754 stan-
dard [24] states that every basic operation should be performed as if it were
calculated with infinite precision and then rounded to the nearest floating-point
value. Thus, the following inequality is assumed to hold for an n-ary floating-
point operator op.

| R (0p(:)iy) = op(R (¥:))i1] < ulp (op(R (9))iL1) (2.1)

where R is the projection from floats to reals, and the function wip (r) (unit in
the last place), for a given real number r, measures the distance between the two
consecutive floating-point numbers f; and f such that f; <r< fy. The round-off
error of a real-valued expression can be bounded as

|R (0p(:)izy) = op(ri)iLa| < €op(ri; i)y + gulp (op(R (3:))iLy) , (2.2)

where €,,(r;, €;)}; represents an overestimation of the difference between the
application of the real operator on real values and the application of the
same operator on the floating-point arguments, and each e; is a positive real-
valued expression modeling an upper bound of the round-off error carried by
the floating-point arguments ¥; representing the real-valued expression r;, i.e.,
|R (f]l) - 7’¢| <e;.

PRECISA assumes compliance with the IEEE-754 standard and uses the
round-off error model of Formula (2.2) for correctly rounded operators. Dedi-
cated error approximations are defined for a wide variety of mathematical opera-
tors, including arithmetic operators, square root, trigonometric functions, expo-
nential and logarithmic functions, floor, and ceiling. For each of these opera-
tors, an error expression €, (7, ;)i is defined as a function of the real-valued
operands and corresponding errors such that

€op (i €)imy > Eop(Ti, €1)iey + g ulp (op(Rfpui)ily). (2.3)

PRECISA accepts as input a floating-point program P, which consists of a
set of function declarations in the language of PVS, and initial ranges for the
input variables, and it computes a correct overestimation of the round-off error
that may occur for each function in P. An overview of the PRECiSA workflow is
depicted in Fig. 1. PRECiSA first performs a static analysis on the input program
by computing the abstract semantics defined in [39]. For every function decla-
ration f(@)?zl in the input program, PRECiSA computes a set of conditional
error bounds of the form (n,77) — (r,e), where 7 is a Boolean expression on reals,
7 is a Boolean expression on floats, and r, e are real-valued symbolic arithmetic
expressions. Intuitively, (n,7) — (r,e) indicates that if the conditions 7 and
77 are satisfied, the result of evaluating f (%), using exact real-number arith-
metic is r and the round-off error of the floating-point implementation is bounded
by e. The error expression e is built compositionally following the structure of
the function body. The Boolean expressions n and 77 model the information on

PRECISA 4.0 23

PVS Static PRECISA

program Ny PYerEEE Analysis

Verified (/4

Symbolic error
expressions

Certificate
generator

Input . Rounq-offlerrors PVS proof
@ odiak CSTE(ERe assistant

Fig. 1. PRECiSA workflow.

PVS
certificates

the control flow of the program (i.e., the path conditions from the if-then-else
constructs) and the additional restrictions needed when the operators are not
total. For example, when dealing with the division operation, it is necessary to
guarantee that the divisor is not zero.

The static analysis collects information about real and floating-point exe-
cution paths separately. Thus, it is possible to quantify the error due to the
so-called unstable conditions. This phenomenon occurs when the Boolean guard
of a conditional statement is affected by round-off errors. In this case, the real
and floating-point Boolean evaluation may be different, causing the control-flow
of the floating-point implementation to diverge with respect to its ideal real-
number counterpart. An abstraction technique has been introduced in [39] to
mitigate the state explosion resulting from the sound treatment of conditional
statements. This abstraction collapses the information on the conditional error
bounds by keeping separated stable and unstable cases. This way, the accuracy
of the error analysis is preserved while the size of the state space is reduced.

Ezample 1. Consider the function tcoa that computes the time to co-altitude of
two aircraft whose relative altitude is § and relative vertical speed is v.

tcoa(5,0)= if § * 0 <0 then —(5/7) else —1, (2.4)
PRECISA computes a set of four different conditional error bounds:

{(s*v<0Av £0,5%D<0AD AO0) = (=5/v,€/(5,0,€5,€y)), (2
(s*v2>0,§ ¥0>0) - (-1,0), (2.
(s*v<0Av £0,5%020) — (=s/v,| - s/v-1|), (2
(sxv20nv £0,53%0<0AD A0) — (-1,[s/v—1+¢/(s,v,e5,e0)]) . (2

The real-valued variables s and v represent the real values of § and v, respectively,
while e, and e, are two positive real variables representing the round-off error of
§ and 9, respectively. Formula (2.5) and Formula (2.6) correspond to the cases
where real and floating-point computational flows coincide. In Formula (2.5), the

negation operator does not contribute to the rounding error, and the following
symbolic round-off error expression is computed for the division:

S+ v + S
€/(s,0,e5,€) = [oles + lsley + Lulp <|3| ¢) . (2.9)

v2 — |vle, [v| — ey

24 L. Titolo et al.

In Formula (2.6), the error is 0 since the output is an integer constant. For-
mula (2.7) and Formula (2.8) model the unstable paths. In these cases, the error
is the difference between the output of the two branches taking into account the
round-off error of the floating-point result.

The described static analysis is purely compositional, i.e., no assumption is
made on the values of the input variables, and the error expressions are com-
posed in a modular fashion. Given initial ranges for the input variables, PRE-
CiSA uses Kodiak?, a rigorous global optimizer, to compute a sound enclosure of
the maximum of the symbolic error expression e. Kodiak implements a formally
verified branch-and-bound algorithm presented in [32]. This branch-and-bound
algorithm relies on enclosure functions for mathematical operators. These enclo-
sure functions compute provably correct over- and under- approximations of the
symbolic error expressions using either interval arithmetic or Bernstein poly-
nomial basis. The algorithm recursively splits the domain of the function into
smaller subdomains and computes an enclosure of the original expression in
these subdomains. The recursion stops when a precise enclosure is found, based
on a given precision, or when a given maximum recursion depth is reached. Both
precision and maximum recursion depth can be specified as parameters in PRE-
CiSA. Increasing the value of these parameters will likely improve the accuracy
of the analysis but may also increase the execution time. The output of Kodiak
is a numerical enclosure for each symbolic error expression. When a function f
is associated with more than one conditional error bound, e.g., in the case of
conditionals, the overall round-off error of f is defined as the maximum of all
the error expressions.

To provide formal guarantees on the analysis results, PRECISA generates
proof certificates ensuring that the round-off error estimations are correct. PRE-
CiSA relies on the higher-order logic interactive theorem prover PVS and a
floating-point round-off error formalization included in the NASA PVS Library.?
More details on this formalization will be given in Sect. 5. For each function, the
information in the conditional error bounds is encoded as a PVS lemma stating
that, provided the conditions are satisfied and the input variables are in the given
numerical ranges, the difference between the floating-point implementation and
the real-number specification is at most the computed error estimation. Auto-
matic strategies have been implemented to check the symbolic error expression
correctness and the enclosure computed by Kodiak by executing the formally
verified PVS implementation of the branch-and-bound algorithm of [32].

3 Optimized Modular Function Call Analysis

PRECISA supports the compositional analysis of non-recursive function calls.
The analysis works by computing a set of conditional error bounds for each
function declaration and building an interpretation I mapping each function to

2 https://github.com/nasa/Kodiak.
3 https://github.com /nasa/pvslib.

https://github.com/nasa/Kodiak
https://github.com/nasa/pvslib

PRECISA 4.0 25

its semantics. When the analysis encounters a function call f (Z;),, it performs
a look-up in the interpretation I. For each conditional error bound associated
to the function (¢,); — (r,e) € I(f(#;)7,), PRECISA performs a substitu-
tion of the formal parameters with the actual ones, computing all the possible
combinations. For each actual parameter and each conditional error bound in its
semantics, (¢;, ¢i)t, — (74, €;), the following conditional error bound is computed
for the function call

(@ AN i d A N\ i) = (7€),
i-1 i=1

where 1/ = r[Z; /1|, € = elez, /ey, = @lTi)ri, €z, /€]y, and ¢ = P& /74,
€z,/¢€i]i-,. More details on the semantics can be found in [39].

This approach guarantees correctness and accuracy for the optimization pro-
cess since the error expressions of each function call and of its arguments are
unfolded in the global error expression. However, such an error expression may
become extremely large for programs with multiple and nested function calls.

To overcome this problem, PRECiSA 4.0 implements an alternative abstract
semantics for function calls. In this approach, during the symbolic analysis pro-
cess, when a function call f(Z;)%, is encountered, instead of computing all the
combinations and unfolding the semantics of the function, a placeholder is placed
in the call site. Then, during the optimization phase of the analysis, this place-
holder is replaced with the worst-case round-off error for the function f , com-
puted by Kodiak by optimizing the error expression associated to f and obtained
from the interpretation I. It is crucial that the global optimization is executed
at each calling site with the correct input ranges for the function arguments
with respect to the initial range inputs, provided by the user, and the accumu-
lated round-off error of the arguments. To enable this, PRECISA relies again
on the global optimizer Kodiak. For each argument arg, Kodiak computes its
range [I, u] by optimizing the real-valued counterpart of the argument expression.
To improve efficiency without compromising too much precision, plain interval
arithmetic with no branching—setting the maximum depth parameter to 1 in
Kodiak—is used in this phase. The symbolic round-off error expression associated
to arg is computed by PRECiISA. The error due to unstable branches is also taken
into account in this phase. This error expression is maximized by Kodiak, and
the result err is used to enlarge the argument ranges, obtaining [l — err, u + err].
This range is the one used to maximize the function’s error expression for that
specific call site. The symbolic error expression for each function is computed just
once when the interpretation I is built and then its numerical value is computed
by maximizing it with different input ranges. The proposed abstract semantics
may lead to a loss of correlation between the variables and, potentially, to less
accurate estimations. Depending on the desired accuracy/efficiency threshold,
the user can choose to perform this abstract function call analysis (the default
behavior in PRECiISA 4.0) or to use the option that unfolds the semantics of the
function calls and arguments.

26 L. Titolo et al.

The optimization of function calls was key for performing a formal analysis of
the NASA DAIDALUS library [30]. This library provides a reference implemen-
tation of detect-and-avoid capabilities for unmanned aircraft systems intended
to keep aircraft safely separated. In [5], the application of a toolchain to extract
a formally verified floating-point C implementation of a DAIDALUS module is
presented. The extracted code is annotated with program contracts modeling
how the round-off error accumulates through the computation and is instru-
mented to detect conditional instability. PRECiSA is used in this toolchain as a
library to compute round-off errors following the approach presented in [42]. To
successfully apply the previous version of PRECiSA to the DAIDALUS mod-
ule, a pre-processing of the input specification was needed. Without this pre-
processing, which included a program slicing and several semantics-preserving
simplifications, PRECiSA did not terminate after several minutes. This was due
to the complexity of the module which features several conditionals, predicates,
and function calls. Using the analysis optimization described in this section, the
new version of PRECIiSA is able to analyze the original DAIDALUS module
without the slicing and simplification used in [5]. Figure 2 and Table 1 show the
comparison between the original and the abstract analysis for the numerical
functions in the DAIDALUS module. In this case study, the function abstrac-
tion improves the performance of the analysis without sacrificing the accuracy. In
some cases, slightly more accurate estimations are obtained. This may be due to
the large size of the unfolded error expressions, for which the branch-and-bound
may not be able to reach enough accuracy within the specified maximum depth.
For instance, for vertical _WCV (see [30]), the unfolding process times out after
5 min.

Table 1. Experimental results on the

10 e unfolding abstraction JE— round-off error of the DAIDALUS mod-
8 ule.
6 e ’
4
2
0 unfolding abstraction
& & & @ E S P Delta 4.69-14 4.68E-14
o0 SR o3 & S Theta_D_pos 1.29E-07 1.07E-07
& & & Q&
S N Theta D _neg 1.29E-07 1.07E-07
Theta H_pos 3.55E-15 3.55E-15
Theta H_neg 3.55E-15 3.55E-15
Fig. 2. Times in seconds for the coalt _entry 8.88E-15 6.66E-15
analysis of the DAIDALUS mod- coalt_exit 3.77E-15 3.77TE-15
ule vertical WCV time-out 1.77E-15

4 Data Collections and Bounded Recursion Support

Previous versions of PRECiISA, as well as the majority of floating-point error
analysis tools, focus on scalar values. However, it is often the case that

PRECISA 4.0 27

safety-critical numerical code makes use of data structures such as lists, tuples,
and records. For instance, in the NASA-developed libraries DAIDALUS [30] (air-
craft detect-and-avoid) and PolyCARP [31] (polygon computations), a point in
space is represented as a tuple (z,y); polygons, used to represent keep-in and
keep-out areas such as geofences and weather cells, are represented as lists of
points; and aircraft position and velocity vectors are represented as records.
These libraries also use bounded loops and typical functional language recursion
structures such as map and fold. To enhance the applicability of PRECiSA to
these libraries of interest to NASA, support for data collections and the bounded
recursion schemas map and fold have been added to PRECiSA.

Data collections are admitted both as arguments and as return types of
functions. Records and tuples are treated in a similar way in PRECiSA. The
variable environment used by PRECiSA to store the semantics of local and input
variables has been enhanced to accommodate record fields and tuple indices.
When a function returns a record or a tuple, PRECiSA performs the static
analysis for each element, thus the result is a record or tuple of round-off errors.
Furthermore, the structure of the function interpretation I has been modified to
support fields and indices. When a function of type record or tuple is called by
another function and a field or index is accessed, a lookup in the interpretation
is performed as expected.

In contrast to records and tuples, the round-off error of a list is defined as the
maximum of the errors of its elements assuming that they are in the same given
input range. PRECiSA 4.0 adds support for the following recursion schemas that
operate on lists.

mapf[llv--wln}:[f(ll)w"’.f(ln)]’ (41)
fold fally,....ln] = f1, ... (f(lno1, f(ln,a)))...). (4.2)

Instead of unrolling the definitions and computing a large error expression, it is
sufficient to retrieve the error expression associated to function f in the interpre-
tation, and apply the global optimization process with the correct input variable
ranges. For the map schema this process is straightforward since all elements in a
list are assumed to be in the same input range provided by the user. For the fold
schema, similar to the function call analysis presented in Sect. 3, it is possible
to compute an overestimation of the input ranges in Kodiak. In this phase, n
branch-and-bound evaluations of f are performed, where n is the length of the
list. The symbolic error expression for f is computed once and then maximized
for different values.

5 Floating-Point Formalization

In addition to computing error bounds, an important feature of PRECiSA is the
generation of PVS proof certificates that formally ensure that these bounds are
correct. PRECISA relies on the higher-order logic interactive theorem prover
PVS [33] and a floating-point formalization originally presented in [6] and

28 L. Titolo et al.

extended in [28]. This formalization includes basic definitions related to floating-
point numbers, such as their representation, the notion of ulp, the notion of sub-
normal float, and the definition of correctly rounded operators. In addition, it
includes a collection of formally verified round-off error estimations for a wide
range of mathematical operators. Since PRECiSA’s previous release, the PVS
floating-point formalization has been restructured and updated to model closely
the IEEE-754 standard. To accommodate this change, the certificate generation
and the automated proof strategies have been updated in PRECiSA 4.0.

The previous version of PRECISA assumed that floating-point values were
unbounded, meaning that they could be outside the ranges defined by the IEEE-
754 standard. Furthermore, special values such as signed zeros, infinities, and
NaN were not represented. The new version explicitly introduces bounds for
different architectures and special values as defined in the standard. Thus, all
floating-point values are required to be either special values or within a valid
range.

As an example, Fig. 3 depicts one of the lemmas generated for the function
tcoa from Example 1. Line 2 quantifies over the floating-point variables, s and v,
their real number counterparts, r_s and r_v, and the non-negative error variables
e_s and e_v. Line 3 states that all the expressions are finitely representable,
thus no overflow or NaN can occur. Line 4 states that e_s (resp., e_v) over-
approximates the difference between r_s and s (resp., r_v and v). Lines 56
specify the Boolean conditions that model the stable conditional error bounds
in Formula (2.5) and Formula (2.6). The consequent of the lemma states that
the round-off error of tcoa is at most the maximum between the error of the
division —(§/9) and 0, which is the representation error of the value —1. Figure 4
shows a concrete numerical instantiation of the lemma in Fig. 3, which is also
automatically generated by PRECiISA. The input ranges are declared in Line 6.
The error computed by Kodiak is shown in Line 8 and roughly corresponds to
3.23E-13. The generated valid range conditions can be used as implicit overflow
detectors. In fact, if the value of an expression cannot be proven to be in the
range, the lemma cannot be proven. This indicates that an overflow may have
occurred.

tcoa_@® : LEMMA>
FORALL(e_s, e_v: nonneg_real, r_s, r_v: real, s: double, v: double):
int_in_range?(-1) AND finite?(s) AND finite?(v) AND finite?(Ddiv(s, v)) AND finite?(Dneg(Ddiv(s, v)))
AND abs(DtoR(s) - r_s)<=e_s AND abs(DtoR(v) - r_v)<=e_v
AND (NOT(r_s * r_v < @)) AND (NOT(Dmul(s, v) < @))
OR ((r_s * r_v < @ AND r_v /= @) AND (Dmul(s, v) < @ AND v /= ItoD(8)))
IMPLIES
v abs(DtoR(tcoa(s, v)) - tcoa_real(r_s, r_v))
<= max(aerr_ulp_dp_neg(div_safe(r_s, r_v), aerr_ulp_dp_div(r_s, e_s, r_v, e_v)), @)

Fig. 3. Symbolic error lemma in PVS for the coa function.

PRECISA 4.0 29

1 tcoa_c_@ : LEMMA

2 FORALL(r_s, r_v: real, s: double, v: double):

3 abs(DtoR(s) - r_s)<=ulp_dp(r_s)/2 AND abs(DtoR(v) - r_v)<=ulp_dp(r_v)/2
AND (NOT(r_s * r_v < @)) AND (NOT(Dmul(s, v) < @))
OR ((r_s * r_v < @ AND r_v /= @) AND (Dmul(s, v) < @) AND v /= ItoD(0))
AND r_s ## [|1,30@|] AND r_v ## [|1,300]]

IMPLIES
abs(DtoR(tcoals, v)) - tcoa_real(r_s, r_v)) <= 6394759627145231 / 19807040628566084398385987584
Fig. 4. Numeric error lemma in PVS for the tcoa function.
nl_comp.pvs
1 nl_comp: THEORY o 5 10
BEGIN
IMPORTING float@double64 nz 59 60
s @fp-function
estimate-error-bounds | compare-error-bounds I
nl_comp(nl,nz: double): double = L
(180/3.14) * acos(sqrt((1-cos(3.14/(2%nz)))
/(1-cos(2%3.14/n1)))) Accumulated Round-Off Error

END nl_comp

7.00000000e-6
4.00000000e-6
53.00000000e-6

= - -_ —
-

5.00000000e-6
2,00000000e-6
1000000006,

nlin [30,59), nz in [59,60] (p)

Experiments

3

Fig. 5. Round-off error analysis in VSCode-PRECiSA.

6 VSCode-PRECiSA User Interface

VSCode-PRECiSA* implements a graphical user interface that integrates PRE-
CiSA into Visual Studio Code, a widely used software development environment
developed by Microsoft. Analysis results from PRECISA are presented using
both a bar chart plot diagram (see Fig.5) and a numerical table. The table
presents the numerical results of the analysis along with information on the
instability error measuring the divergence of the conditional branches, if appli-
cable, and specific details about the parameters used for the analysis. A series
of analysis experiments can be performed for different ranges of input values
and combinations of analysis parameters. VSCode-PRECISA also provides spe-
cialized views that facilitate and automate different tasks typically performed
with PRECiSA: interval analysis, sensitivity analysis, comparative analysis, and
conditional instability analysis.

The interval analysis view divides a range of input values into n equally-
sized sub-ranges, where n is a positive natural number provided by the user.
Floating-point round-off error estimations are computed for each sub-range. The
results obtained in this view can be used to gain insights on how to reimplement
functions to minimize their round-off errors.

The sensitivity analysis view evaluates the floating-point round-off error of
a function when the range of input values is affected by a given uncertainty
coefficient provided by the user. This view automates the task of checking the

4 https://github.com/nasa/PRECiSA /tree/master /vscode-precisa.

https://github.com/nasa/PRECiSA/tree/master/vscode-precisa

30 L. Titolo et al.

robustness of a program to round-off errors, i.e., whether small variations of a
program’s input values lead to unexpectedly large variations in the output.

The comparative analysis view shows the floating-point round-off error of two
functions evaluated on the same input variables. This view facilitates the assess-
ment of the round-off error in two alternative implementations of an algorithm.
The toolkit automatically feeds the two functions with the same input ranges
and the analysis results are displayed side-by-side in a bar chart.

As mentioned in Sect. 2, PRECiISA estimates the error associated with unsta-
ble conditionals and computes the conditions under which the ideal real num-
ber path diverges from the floating-point one. These conditions, called instabil-
ity conditions, are represented by sets of Boolean expressions over both real
and floating-point numbers. The conditional instability analysis in VSCode-
PRECISA presents visual information on these instability conditions, highlight-
ing which combinations of input variables may alter the control flow of a floating-
point program with respect to its ideal real number counterpart. A 2D-mesh
plot is created for a selected pair of variables where the red areas correspond to
the regions of possible instability. These regions of instability are computed by
the branch-and-bound paving functionality of Kodiak. The paver partitions the
input space into regions (called boxes) and uses interval arithmetic to compute
the value of the instability conditions over each input region. Due to the over-
approximation introduced by interval arithmetic, Kodiak classifies every box as
“certainly satisfy,” “possibly satisfy,” and “certainly do not satisfy.” The “possibly
satisfy” boxes are progressively refined until a maximum refinement depth or a
minimum precision (box size) is reached. The set of boxes that “certainly” and
“possibly” satisfy the instability conditions form a sound over-approximation of
the inputs that may cause unstable behaviors and, as a consequence, may lead
to large computation errors. To the best of the authors’ knowledge, PRECiSA
is the only tool that supports this kind of analysis. Figure 6 shows the results of
the instability analysis for the following function that checks if a point is inside
an ellipse-shaped area.

Varibles tobe ploted | x vy > Variatles tobe ploted X vy v Vartalestobe poted x vy v
nUT i A nouT N A [i
x -10 10 x [10 x

v -10 10 vy) 10 y 0 5

Analyze

Fig. 6. Conditional instability analysis in VSCode-PRECiSA.

PRECISA 4.0 31

pointInEllipse(Z,§) = if T * ;%74 TR g79 <10 then 1 else —1. (6.1)

The figure illustrates that unstable tests may occur for values close to the border
of the ellipse, though regions of instability are not always as obvious (see [29]
for an example).

7 Related Work

Diverse analysis techniques and tools that estimate the round-off error of
floating-point computations have been proposed in the literature.

Gappa [16] computes enclosures for floating-point expressions via interval
arithmetic that can be checked in the Coq proof assistant. This method enables
a quick computation, but may result in pessimistic error estimations. In Gappa,
the bound computation, the certification construction, and their verification may
require hints from the user. Thus, some level of expertise is required, unlike
PRECISA, which is fully automatic.

Fluctuat [19] is a commercial analyzer that accepts as input a C program
with annotations about input bounds and uncertainties, and it produces bounds
for the round-off error of the program expressions. Fluctuat uses a zonotopic
abstract domain [21] that extends affine arithmetic [17]. It can soundly identify
whether unstable conditional may occur [22]| and it provides support for iterative
programs by using the widening operators introduced in [18,20]. Unlike PRE-
CiSA, Fluctuat does not produce formal certificates. PRECiSA also implements
a widening operator [39], which takes advantage of the information contained
in the path conditions of the conditional error bounds to determine when the
round-off error of a program may converge. This widening has been applied to
simple programs where the error is known to stabilize in a few iterations. More
work is needed in this direction to define an effective widening operator for
estimating round-off errors for recursive programs.

FPTaylor [37] uses symbolic Taylor expansions to approximate floating-point
straight-line expressions and, similar to PRECiSA, applies a global optimization
technique to obtain numerical enclosures for round-off errors. It provides support
for different rounding modalities such as to-the-nearest, toward infinity, and
toward zero. Previous versions of FPTaylor emitted certificates for HOL Light
[23], however this functionality appears as deprecated in the last release.

Satire [15] is a tool for estimating round-off errors for straight-line floating-
point code with a focus on efficiency. It combines a variant of the technique
presented in [37] with an abstraction heuristic that replaces parts of the sym-
bolic error expression with pre-computed constants. Similar to the abstraction
presented in Sect. 3, this approach can lead to a loss of correlation between vari-
ables and possibly less accurate results, however, it improves the performance
of the tool, and it provides a good compromise to scale up to expressions with
thousands of operators. In contrast to [37], Satire only computes the first term
of the Taylor error expansion. Thus, the computed error bound may not be a
sound overestimation. In [1], a sound variation of the abstraction presented in
[15], which takes into account also the second-order Taylor term, is presented.

32 L. Titolo et al.

VCFloat [3,35] is a tool that computes rigorous round-off error terms for
straight-line Coq expressions. VCFloat does not generate a Coq certificate,
instead the computation of the bound is done entirely within Coq. The input
program contains a proof template that needs to be instantiated by the user in
order to prove the correctness of the computed bounds.

Daisy [13] is a framework for the analysis and optimization of finite-precision
computations. It supports both floating-point and fixed-point arithmetic, and
it computes estimations for both absolute and relative errors. Daisy does not
generate proof certificates, but the external checker FloVer [4] can be used to
validate the bounds computed by Daisy. In [25], Daisy has been enhanced with
support for arrays and matrices.

Unlike PRECISA, which targets programs with common constructs such as
let-in constructs, conditional, and function calls, FPTaylor, VCFloat, and Daisy
are designed to analyze straight-line program expressions. Table 2 summarizes
the features of the above-mentioned tools.

Table 2. Comparison of the features of worse-case round-off error analysis tools.

PRECISA | FPTaylor | Daisy | VCFloat | Fluctuat | Gappa
proof certificates v v X v X v
conditionals 4 X X X v X
instability detection v X X X 4 X
instability analysis v X X X X X
7L function calls v X X X 4 X
bounded loops v X X X v X
widening v X X X v X
data collections v X 4 X v X
rounding modes X v X X X X
fixed-point arith. X X v X X 4

Below, PRECiSA 4.0 is compared in terms of accuracy and performance
with the following currently maintained open-source tools: Daisy [13] (com-
mit b1705d9), FPTaylor [37] (ver. 0.9.4+dev), and VCFloat2 [3] (commit
10caflc). This comparison was performed using the standard benchmark suite
FPBench [12]. The selected benchmarks involve nonlinear expressions, transcen-
dental functions, and polynomial approximations of functions, taken from equa-
tions used in physics, control theory, and biological modeling. These benchmarks
and the generated PVS certificates can be found in the PRECiSA distribution.
The experimental environment consisted of a 2.6 GHz 6-Core Intel Core i7 with
16 GB of RAM running under MacOS Ventura 13.6.6.

Figure 7 shows numerical round-off error bounds computed by the aforemen-
tioned tools. The default configuration is used for each tool. For PRECiSA,

PRECISA 4.0 33

Daisy, and FPTaylor, input variables and constants are assumed to be real num-
bers. This means that they carry an initial round-off error that has to be taken
into consideration in the analysis. VCFloat2 does not support the modeling of
the initial rounding, thus the input values are assumed to be perfectly repre-
sentable as a floating-point. This means that the initial rounding error is not
taken into account and it is not propagated. Daisy and FPTaylor use the same
round-off error model. However, Daisy relies on data-flow analysis and SMT
solvers to compute error bounds, while FPTaylor and PRECiSA use global opti-
mization methods. The methods used by FPTaylor and PRECiISA are different,
but they coincide on certain operations like sum and multiplication. VCFloat
uses interval arithmetic with subdivisions, which may be less accurate than the
methods used by FPTaylor and PRECiSA. The times for the computation of
the bounds are shown in Fig.8. The performance of PRECISA is in line with
the other similar tools for most of the examples, and for some of the considered
benchmarks PRECiISA is the fastest approach. PRECiSA’s times also include
the generation of the PVS certificates, while Daisy’s include the computation of
the relative error bound. In summary, for the considered examples, PRECiSA
provides a good trade-off between accuracy and performance together with a
wide support for arithmetic operations and programming constructs.

Besides worst-case round-off error analysis tools, other tools have been
proposed to improve the quality of floating-point software. The static ana-
lyzer Astrée [10] automatically detects the presence of potential floating-
point run-time exceptions such as overflows and division-by-zero by means
of sound floating-point abstract domains [7,27]. Precision allocation (or tun-
ing) tools [2,9,14,36] select the lowest floating-point precision for the program
variables that is enough to achieve the desired accuracy. Program optimiza-
tion tools [11,34,38,43] improve the accuracy of floating-point programs by
rewriting arithmetic expressions in equivalent ones with a lower round-off error.
ReFlow [40], initially distributed as part of PRECiISA, automatically extracts

Q & : $ & > > ©
Fe oo L SEa Fa S & &
FTFTe & FF T FFTFFTLF S, FFSE &
FEarFFdFFFIFEFFTTETTFETEE & FFLE @
1.00E+04
f\. 1.00E+02
—PRECISA - FPTaylor = =Daisy — -VCFloat2 I\ 1.00E+00

I‘ . 1.00E-02
1.00E-04
1.00E-06
1.00E-08
1.00E-10
1.00E-12
1.00E-14

1.00E-16

Fig. 7. Experimental results for absolute round-off error bounds.

34 L. Titolo et al.

1) N @ N

X Q 5 \Z o ©

3 & S FF o a > I & S
o> & X X NS X N N N
F S S & $ F & TS X & SR

SN SR ETLEELFL TR e K F TS ES

L & &SP ® AN NN N N N R S ARX NS R S SN

—PRECISA - FPTaylor — - Daisy — -VCFloat

Fig. 8. Times in seconds for the generation of round-off error bounds.

floating-point C code from a PVS real number specification. ReFlow implements
a code instrumentation that detects unstable conditionals and annotates the code
with contracts that relate the floating-point implementation with the real-valued
program specification. The annotated code can be used as input to the static
analyzer Frama-C [26]. ReFlow relies on PRECISA to compute the round-off
error estimations and the corresponding PVS proof certificates that guarantee
their correctness.

8 Conclusion

This paper presents PRECiSA 4.0, the latest release of a NASA open-source
static analyzer for floating-point round-off errors. This version of the tool adds
several new features and provides support for a wide range of program constructs
and mathematical operators. While the majority of other state-of-the-art round-
off error analysis tools are limited to straight-line program expressions, PRE-
CiSA targets programs with function calls, predicates, conditionals, and data
structures. Conditional instability analysis is particularly challenging to detect
and correct by visual code inspection. Issues related to unstable guards have
been discovered in NASA libraries implementing geofencing applications [29]
and aircraft detect-and-avoid logics [40]. To the best of the authors’ knowledge,
the conditional instability analysis presented in this work is the first approach
that specifically targets the problem of identifying the source of instability in
floating-point programs. PRECiSA 4.0 has been used in several applications at
NASA, demonstrating its effectiveness and applicability in real-world problems.
PRECISA is at the core of the floating-point C code generator ReFlow , which
has been used to generate formally verified floating-point C code for the NASA
libraries DAIDALUS [5] and PolyCARP [29].

In the future, the authors plan to add more features to expand even more
the applicability of PRECiSA to real-world programs. For instance, support for
fixed-point numbers will be added to enable the analysis of quantized neural

PRECISA 4.0 35

networks. The symbolic Taylor error expansion introduced in [37] can be inte-
grated into the analysis performed by PRECiSA. These error approximations
can be used as an alternative to, or in combination with, the error expressions
implemented in PRECiSA. Additionally, the authors plan to enhance the Kodiak
tool to support conditional expressions. This feature will improve the accuracy
of the round-off error of conditional if-then-else expressions.

Data Availability Statement. PRECiSA 4.0 is released under NASA Open Source
Agreement and it is available at https://github.com/nasa/PRECiSA. Additionally, the
companion artifact of this submission can be accessed via the following link: https://
doi.org/10.5281 /zenodo.12525527.

References

1. Abbasi, R., Darulova, E.: Modular optimization-based roundoff error analysis of
floating-point programs. In: 30th International Symposium on Static Analysis, SAS
2023. LNCS, vol. 14284, pp. 41-64. Springer (2023). https://doi.org/10.1007/978-
3-031-44245-2 4

2. Adjé, A., Ben Khalifa, D., Martel, M.: Fast and efficient bit-level precision tuning.
In: Proceedings of the 28th International Symposium on Static Analysis, SAS 2021.
LNCS, vol. 12913, pp. 1-24. Springer (2021). https://doi.org/10.1007/978-3-030-
88806-0 1

3. Appel, A.W., Kellison, A.: VCFloat2: floating-point error analysis in Coq. In: Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2024, pp. 14-29. ACM (2024). https://doi.org/10.1145/
3636501.3636953

4. Becker, H., Zyuzin, N., Monat, R., Darulova, E.; Myreen, M.O., Fox, A.C.J.: A
verified certificate checker for finite-precision error bounds in Coq and HOL4. In:
2018 Formal Methods in Computer Aided Design, FMCAD 2018, pp. 1-10. IEEE
(2018). https://doi.org/10.23919/FMCAD.2018.8603019

5. Bernardes Fernandes Ferreira, N., Moscato, M.M., Titolo, L., Ayala-Rincén, M.: A
provably correct floating-point implementation of well clear avionics concepts. In:
Formal Methods in Computer-Aided Design (FMCAD 2023), pp. 237-246. IEEE
(2023). https://doi.org/10.34727/2023 /ISBN.978-3-85448-060-0 32

6. Boldo, S., Mutioz, C.: A high-level formalization of floating-point numbers in PVS,
CR-2006-214298, NASA. Technical report (2006)

7. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract
domain. In: Ramalingam, G. (ed.) Programming Languages and Systems, pp. 3—
18. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-
1 2

8. Cherubin, S., Agosta, G.: Tools for reduced precision computation: a survey. ACM
Comput. Surv. 53(2), 33:1-33:35 (2020). https://doi.org/10.1145/3381039

9. Chiang, W., Baranowski, M., Briggs, 1., Solovyev, A., Gopalakrishnan, G., Raka-
mari¢, Z.: Rigorous floating-point mixed-precision tuning. In: Proceedings of the

https://github.com/nasa/PRECiSA
https://doi.org/10.5281/zenodo.12525527
https://doi.org/10.5281/zenodo.12525527
https://doi.org/10.1007/978-3-031-44245-2_4
https://doi.org/10.1007/978-3-031-44245-2_4
https://doi.org/10.1007/978-3-030-88806-0_1
https://doi.org/10.1007/978-3-030-88806-0_1
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_32
https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1145/3381039

36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. Titolo et al.

44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pp. 300-315. ACM (2017). https://doi.org/10.1145/3009837.3009846
Cousot, P., et al.: The ASTREE analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21-30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0_3

Damouche, N., Martel, M.: Salsa: an automatic tool to improve the numerical
accuracy of programs. In: 6th Workshop on Automated Formal Methods, AFM
2017, vol. 5, pp. 63-76 (2017). https://doi.org/10.29007/j2fd

Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock, Z.:
Toward a standard benchmark format and suite for floating-point analysis. In: 9th
International Workshop Numerical Software Verification, NSV 2016. LNCS, vol.
10152, pp. 63-77 (2016). https://doi.org/10.1007/978-3-319-54292-8 6
Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy
- framework for analysis and optimization of numerical programs (tool paper).
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 270-287.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 15
Darulova, E., Kuncak, V.: Sound compilation of reals. In: Proceedings of the
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 235-248. ACM (2014). https://doi.org/10.1145/2535838.
2535874

Das, A., Briggs, I., Gopalakrishnan, G., Krishnamoorthy, S.: An abstraction-guided
approach to scalable and rigorous floating-point error analysis. arXiv preprint
arXiv:2004.11960 (2020)

de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point imple-
mentation of an elementary function using Gappa. IEEE Trans. Comput. 60(2),
242-253 (2011). https://doi.org/10.1109/TC.2010.128

de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications.
Numer. Algorithms 37(1-4), 147-158 (2004). https://doi.org/10.1023/B:NUMA.
0000049462.70970.b6

Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope inter-
section. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
212-226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 22

Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18-34. Springer, Heidelberg (2006). https://doi.
org/10.1007/11823230 3

Goubault, E., Putot, S.: Perturbed affine arithmetic for invariant computation in
numerical program analysis. arXiv preprint arxiv:0807.2961 (2008)

Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232-247. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 17

Goubault, E., Putot, S.: Robustness analysis of finite precision implementations. In:
Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 50-57. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03542-0 4

Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60-66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9 4

IEEE: IEEE standard for binary floating-point arithmetic, Technical report, Insti-
tute of Electrical and Electronics Engineers (2008)

https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.29007/j2fd
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1145/2535838.2535874
http://arxiv.org/abs/2004.11960
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1007/978-3-642-14295-6_22
https://doi.org/10.1007/978-3-642-14295-6_22
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/11823230_3
http://arxiv.org/abs/0807.2961
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-319-03542-0_4
https://doi.org/10.1007/978-3-642-03359-9_4

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

PRECISA 4.0 37

Isychev, A., Darulova, E.: Scaling up roundoff analysis of functional data structure
programs. In: Proceedings of the 30th International Symposium on Static Analysis,
SAS 2023. LNCS, vol. 14284, pp. 371-402. Springer (2023). https://doi.org/10.
1007/978-3-031-44245-2 17

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573-609 (2015).
https://doi.org/10.1007/S00165-014-0326-7

Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Proceedings of the 13th European Symposium on Programming Lan-
guages and Systems, ESOP 2004. LNCS, vol. 2986, pp. 3-17. Springer (2004).
https://doi.org/10.1007/978-3-540-24725-8 2

Moscato, M., Titolo, L., Dutle, A., Muifioz, C.: Automatic estimation of verified
floating-point round-off errors via static analysis. In: Proceedings of the 36th Inter-
national Conference on Computer Safety, Reliablilty, and Security, SAFECOMP
2017. Springer (2017). https://doi.org/10.1007,/978-3-319-66266-4 14

Moscato, M., Titolo, L., Felia, M., Mufioz, C.: Provably correct floating-point
implementation of a point-in-polygon algorithm. In: Proceedings of the 23nd Inter-
national Symposium on Formal Methods, FM 2019. LNCS, vol. 11800, pp. 21-37.
Springer (2019). https://doi.org/10.1007/978-3-030-30942-8 3

Munoz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle, A., Consiglio, M.:
DAIDALUS: detect and avoid alerting logic for unmanned systems. In: Proceedings
of the 34th Digital Avionics Systems Conference (DASC 2015), Prague, Czech
Republic (2015)

Narkawicz, A., Hagen, G.: Algorithms for collision detection between a point and a
moving polygon, with applications to aircraft weather avoidance. In: Proceedings
of the ATAA Aviation Conference (2016)

Narkawicz, A., Mufioz, C.: A formally verified generic branching algorithm for
global optimization. In: Proceedings of the 5th International Conference on Verified
Software: Theories, Tools, Experiments, VSTTE 2013. LNCS, vol. 8164, pp. 326—
343. Springer (2013). https://doi.org/10.1007,/978-3-642-54108-7 17

Owre, S., Rushby, J., Shankar, N.: PVS: a prototype verification system. In: Pro-
ceedings of the 11th International Conference on Automated Deduction, CADE
1992. LNCS, vol. 607, pp. 748-752. Springer (1992). https://doi.org/10.1007/3-
540-55602-8 217

Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2015, pp. 1-11. ACM (2015). https://doi.org/10.1145/2737924.2737959
Ramananandro, T., Mountcastle, P., Meister, B., Lethin, R.: A unified Coq frame-
work for verifying C programs with floating-point computations. In: Proceedings
of CPP 2016, pp. 15-26. ACM (2016). https://doi.org/10.1145/2854065.2854066
Rubio-Gonzalez, C., et al.: Precimonious: tuning assistant for floating-point pre-
cision. In: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC’13, pp. 27:1-27:12. ACM (2013). https://doi.org/
10.1145,/2503210.2503296

Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic Taylor expansions. In: Proceed-
ings of the 20th International Symposium on Formal Methods, FM 2015. LNCS,
vol. 9109, pp. 532-550. Springer (2015). https://doi.org/10.1007/978-3-319-19249-
9 33

https://doi.org/10.1007/978-3-031-44245-2_17
https://doi.org/10.1007/978-3-031-44245-2_17
https://doi.org/10.1007/S00165-014-0326-7
https://doi.org/10.1007/978-3-540-24725-8_2
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-030-30942-8_3
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2854065.2854066
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1007/978-3-319-19249-9_33
https://doi.org/10.1007/978-3-319-19249-9_33

38

38.

39.

40.

41.

42.

43.

L. Titolo et al.

Thévenoux, L., Langlois, P., Martel, M.: Automatic source-to-source error com-
pensation of floating-point programs. In: 18th IEEE International Conference on
Computational Science and Engineering, CSE 2015, pp. 9-16. IEEE Computer
Society (2015). https://doi.org/10.1109/CSE.2015.11

Titolo, L., Felia, M.A., Moscato, M., Mufioz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. In: VMCAI
2018. LNCS, vol. 10747, pp. 516-537. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73721-8 24

Titolo, L., Moscato, M., Feliu, M.A., Munoz, C.A.: Automatic generation of guard-
stable floating-point code. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS,
vol. 12546, pp. 141-159. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-63461-2_8

Titolo, L., Moscato, M., Mufioz, C., Dutle, A., Bobot, F.: A formally verified
floating-point implementation of the compact position reporting algorithm. In:
Proceedings of the 22nd International Symposium on Formal Methods, FM 2018.
LNCS, vol. 10951, pp. 364-381. Springer (2018). https://doi.org/10.1007/978-3-
319-95582-7 22

Titolo, L., Munoz, C.A., Felit, M.A., Moscato, M.M.: Eliminating unstable tests
in floating-point programs. In: Mesnard, F., Stuckey, P.J. (eds.) LOPSTR 2018.
LNCS, vol. 11408, pp. 169-183. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13838-7_10

Yi, X., Chen, L., Mao, X., Ji, T.: Efficient automated repair of high floating-point
errors in numerical libraries. Proc. ACM Program. Lang. 3(POPL), 56:1-56:29
(2019). https://doi.org/10.1145 /3290369

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/CSE.2015.11
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-030-63461-2_8
https://doi.org/10.1007/978-3-030-63461-2_8
https://doi.org/10.1007/978-3-319-95582-7_22
https://doi.org/10.1007/978-3-319-95582-7_22
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1145/3290369
http://creativecommons.org/licenses/by/4.0/

Aric [
EVL |:.|gif):n

*

Check for
updates

Reusable Available

FM-WECK: Containerized Execution of
Formal-Methods Tools

Dirk Beyer™ and Henrik Wachowitz

LMU Munich, Munich, Germany
https://gitlab.com/sosy-1lab/software/fm-weck

Abstract. Software is ubiquitous in the digital world, and the correct
function of software systems is critical for our society, industry, and infras-
tructure. While testing and static analysis are long-established techniques
in software-development processes, it became widely acknowledged only
in the past two decades that formal methods are required for giving
guarantees of functional correctness. Both academia and industry worked
hard to develop tools for formal verification of software during the past
two decades, with the result that many software verifiers are available
now (for example, 59 freely available verifiers for C and Java programs).
However, most software verifiers are challenging to find, install, and use
for both external researchers and potential users. FM-WECK changes this:
It provides a fully automatic, zero-configuration container-based setup
and execution for more than 50 software verifiers for C and Java. Both the
setup requirements and execution parameters of every supported verifier
are provided by the tool developers themselves as part of the FM-TooLs
metadata format that was established recently and was already used by the
international competitions SV-COMP and Test-Comp. With our solution
FM-WECK, anyone gets fast and easy access to state-of-the-art formal
verifiers, no expertise required, fully reproducible.

Keywords: Formal Methods - Verification - Model Checking - Testing - FM-Tools
- Tool Conservation - Reproducibility - Satisfiability Modulo Theories - Provers

1 Introduction

Reliable, correctly functioning IT systems are fundamental in a digital world.
One way to achieve correct systems is to apply formal methods. Tools for formal
methods are intricate software systems, which often compute abstract models
to prove system implementations correct or find errors. There is already a large
pool of mature and well-established verification tools (for example, in the area
of software verification [1,2,3,4,5]), and automatic tools are heavily used in
industrial software-engineering applications [4, 6, 7, 8]. Sometimes such tools are
even used as components in meta verifiers [9,10,11,12,13,14]|. However, the
integration of verification tools provides multiple obstacles: (1) There exists a
plentitude of research verification tools that are no longer maintained despite

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 39-47, 2025.
https://doi.org/10.1007/978-3-031-71177-0 3

https://doi.org/10.5281/zenodo.12666378
https://doi.org/10.5281/zenodo.12666378
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-4768-4054
https://gitlab.com/sosy-lab/software/fm-weck
https://doi.org/10.1007/978-3-031-71177-0_3
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-71177-0_3&domain=pdf

40 Dirk Beyer and Henrik Wachowitz

Enter interactive environment
shell Ao
for verifier.yml
AN
verifier.yml

e

¢ k|-[expert Run verifier of verifier.yml
m-wec o with verbatim arguments

N
Install and run verifier of verifier.yml

with predefined configuration

Fig. 1: Overview of FM-WECK

run

delivering interesting results, making them incapable of running in modern software
environments, (2) the tools often provide poor documentation of their requirements
on the environment (e.g., whether LLVM 9 or LLVM 12 is required), and which
operating system they expect (e.g., Ubuntu 20.04), and (3) these tools often
have a huge configuration space resulting in a complicated set of command-line
interface (CLI) arguments that users have to understand and set correctly. These
obstacles deter developers and researchers from experimenting or even integrating
verification tools in their own processes and tools [15, 16].

FM-WECK is a command-line tool that mitigates these issues by using the
developer-provided metadata from the FM-To0OLS repository [17, 18]. The FM-
TOOLS repository is a community-maintained source of metadata for formal-
methods tools. The repository and the metadata format has been adopted by the
international competitions on software verification (SV-COMP) [19] and testing
(Test-Comp) [20], and tool developers maintain the information about their
tools, including the expected runtime environments and execution parameters.
FM-WECK uses these data provided by experts to give researchers and users easy
access to controlled runtime environments and execution of more than currently 50
verification tools for C and Java. Figure 1 gives an overview of FM-WECK’s three
modes of operation, shell, expert, and run, which assist users working with tools
for formal methods. In the following section, we briefly introduce the FM-TooLs
metadata format that is used by the FM-TOOLS repository (for more details we
refer to the format description [17]), then we present how to use FM-WECK’s
modes of operation before concluding with current applications of the tool.

Related Work. CoVeriTEAM [21] is a tool and language for constructing tool com-
positions. It uses a YAML-based format for the atomic-actor definitions (informa-
tion where to download, how to assemble command-lines). This format has inspired
the format used in FM-TooLs. Unfortunately, CoVErITEAM does not configure
the execution environment for the tools and simply assumes that the host machine
has all required packages readily installed, which FM-WECK solves. Conserving
tools for formal methods is an old desire [22], also addressed by COVERITEAM SER-
vice [9]. FM-WECK adds the use of Docker containers to make the environment
reproducible and easy to run, also independently from web services.

2 FM-TooLs: Tool Metadata

The FM-T0OLS repository aggregates relevant information about tools for formal
methods: It specifies the download location, maintainers, command-line options,

FM-WEcK: Containerized Execution of Formal-Methods Tools 41

as well as other related information. In addition, FM-TOOLS stores information
about container images on which the tool is guaranteed to run according to the
maintainers. An FM-TooLs file for a specific tool is a YAML document with
a precisely defined set of keys (a schema for the metadata of formal-methods
tools is available in the repository). FM-Too0Ls was adopted by SV-COMP and
Test-Comp in their 2024 edition [19,20]. As part of FM-WECK, we also provide
a Python library [23] that helps users to parse, use, and modify FM-ToOOLS.

versions:

1

2 - version: "svcomp24"”

3 doi: 10.5281/zenodo.10203297

4 benchexec_toolinfo_options:

5 ["-svcomp24", "-heap”, "10000M",

6 "-benchmark”, "-timelimit"”, "900 s"]
7 required_ubuntu_packages:

s - openjdk-17-jdk-headless

9 base_container_images:

10 - docker.io/ubuntu:22.04

11 full_container_images:

12 - registry.gitlab.com/sosy-1lab/\

13 benchmarking/competition-scripts/user:2024

Listing 1: Example of a tool entry in FM-TOOLS

Listing 1 shows an example of a tool-version entry in FM-TooLs. The field
required_ubuntu_packages specifies the Ubuntu packages that are required to run
the tool. The field base_container_images specifies the Ubuntu container images
on which the required Ubuntu packages can be installed, and with which the tool
is guaranteed to run after package installation. The field full_container_images
specifies self-contained container images that are guaranteed to run the tool
out-of-the-box. For a tool t it shall hold that

Vi € base_container_images : (¢ ¢ required_ubuntu_packages) =t (1)
Vi € full_container_images: i |=t (2)

where @ denotes the operation of installing the packages on the image ¢ and i =t
denotes that the image ¢ is sufficient to run the tool ¢.

FM-TooLs currently refers to Ubuntu packages, because most tools run on
Linux, and Ubuntu as a widespread distribution, whose long-term support keeps
specifying and installing the packages straightforward across verifiers.

3 FM-WECK

FM-WECK is a command-line tool written in Python, which consumes FM-
TooLs [18] tool metadata to execute formal-methods tools inside of a container.
(The tool’s name is inspired by a German brand of jars for conserving food.) The
utility can be used to run, develop, and experiment with formal-methods tools. The
software architecture of FM-WECK also allows and encourages usage as a library.

FM-WECK simplifies the execution of formal-methods tools by setting up
and starting containers tailored for each tool. FM-WECK can also configure a

42 Dirk Beyer and Henrik Wachowitz

container runtime such that benchmarks with BENcHEXEC are possible inside
of them. To launch the actual container, FM-WECK uses podman [24] internally
with the crun runtime [25]. The FM-WECK CLI comes with three modes of
operation: run, expert, and shell.

3.1 FM-WEcCK Modes

Every command in FM-WECK takes an FM-To0OLS file as input. This file can
be specified either as a path, or as the identifier of the tool. In the latter case,
FM-WECK uses the bundled file from the FM-TO0OOLS repository with the corre-
sponding name. In any case, users can also specify a specific version of a verifier by
appending it with a colon after the file path or name, e.g., <verifier>:<version>.

Automatic (run) Mode.

(fm—weck][run]@erifier.yml}[—p property]{file_%

The run mode enables plug-and-play execution of formal-methods tools: it down-
loads and unpacks a tool from the archive specified in the FM-Too0OLS metadata
file (’verifier.yml’ above) into a user-specified cache directory on the host system.
This cache is mounted into the container, where the verifier is then executed with
the given command-line arguments. The run mode takes two additional arguments:
(1) the -p argument specifies a property file, i.e., the goal for the verifier—this can
either be a path to the property file or the name of one of the properties used in
SV-COMP or Test-Comp, and (2) the files that shall be passed to the tool. In the
case of software verifiers, these program files are the input programs to be verified.

Manual (expert) Mode.

[Fm—weck) [expert] @erifier . ymID [<a rgs>]

The expert mode is for manual interaction with a verifier: it executes a given
verifier, specified through the corresponding FM-TooLs YAML file, in its con-
tainerized environment passing any additional arguments verbatim to the verifier.
Just like in the run mode, FM-WECK takes care of downloading and unpacking
the verifier as well as setting up the container before the execution. All arguments
following the tool verifier.yml are passed to the verifier in the container, which
makes the expert mode essentially act like the verifier if it was executed directly
on the host system. The following is an example execution that displays the
version of the CPACHECKER verifier: fm-weck expert cpachecker -version

Interactive (shell) Mode.
[fm—weck] [shellj @erifier.ymg

The shell mode enters an interactive shell inside of the container specified by
the given verifier. The shell mode launches a Bash shell with the current working
directory mounted inside. Users may mount additional directories through a
configuration file described in Sect. 3.2. Like with the expert mode, the container
information is extracted from the FM-To0OLS metadata file provided by the user.
The shell mode takes no additional parameters. The following example starts an
interactive shell in the container of Ultimate Automizer: fm-weck shell uautomizer

FM-WEcK: Containerized Execution of Formal-Methods Tools 43

3.2 Project-Specific Configuration

FM-WEcCK works without any additional configuration, but expert users can still
modify aspects of FM-WECK to their needs. Users may set default values and
additional files or directories which shall be available inside the container. The
configuration is specified in TomL format, as seen in Listing 2. If users define a
default image file in this configuration, they can omit the verifier.yml in the
shell mode, and the *container_image keys in the expert and run modes.

1 [defaults]

2 image = "some_image:latest”

3 [mount]

4 "local/path” = "/container/path”

Listing 2: Example of a run configuration

Relative paths in the configuration file are relative to the directory that contains
the configuration file. If no configuration path is explicitly set via the command
line, FM-WECK first looks for a configuration file .weck in the current working
directory. If this does not exist, it looks for a configuration file .config/weck
in the user’s home directory.

4 Applications

FM-WECK is designed with three core applications in mind: (1) to execute a
single tool based on its FM-T0OLS metadata, (2) to facilitate the execution of
unmaintained tools in future competition instances, and (3) as a utility that
enables OS-independent execution in CoVERITEAM [21].

4.1 Execution of a Single Tool

FM-WECK provides a bother-free user experience that encourages curious re-
searchers and developers to try and experiment with different verification tools—
from well established behemoths to cutting-edge research tools. Users do not have
to worry about the tool’s dependencies, installation, or complicated command-
line configurations. The run mode of FM-WECK achieves this goal. Running
CPAcHECKER to find overflows in a C program is as simple as:

[fm—weckj[run][cpacheckea [—p no—overflow]programbﬁ

4.2 Containerized Execution in CoVERITEAM

CoVERITEAM [21] is a framework for cooperative verification. Similar to fm-weck,
CoVERITEAM takes tool metadata in a YAML format as input, to download and
run the tools specified in a cooperative-verification workflow. Each tool is executed
inside a containerized environment provided by BencuExec [26]. However, these
BencHExEC containers do not support OCI container images. This means that all
tools running in a CoVerITEAM workflow must be able to run on the host system.
We extend CoVErITEAM with an FM-WECK-based run mode. This enables the
cooperation of actors regardless of their system requirements.

44 Dirk Beyer and Henrik Wachowitz

CoVeriTeam SV-COMP Exec

unmaintained

Fig.2: FM-WECK as executor Fig.3: FM-WECK as drop-in com-
in CoOVERITEAM mand for SV-COMP infrastructure

Figure 2 illustrates the integration of FM-WECK in CoVerITEAM. Instead
of calling BENncHExEC, CoVERITEAM calls FM-WECK to instantiate a container
for the given tool and execute the assembled command inside of it. COVERITEAM
is also written in Python and uses FM-WECK directly as a library.

4.3 Reliable Execution in SV-COMP 2025

SV-COMP comparatively evaluates more than 70 verification tools on an extensive
benchmark set [19,27]. The server infrastructure that executes these millions of
verification and validation runs during the competition is hosted on the always-
latest Ubuntu LTS Version. This is a formal requirement of the SV-COMP rules.
However, there is a growing number of tools that are no longer actively maintained
and serve as a retrospective baseline—the so-called hors-concours participants.
These tools are benchmarked in the same way as the regular participants, but they
do not compete in the ranking. Until SV-COMP 2024, these tools were manually
migrated by volunteers to still work on the latest Ubuntu LTS Version, but with
26 hors-concurs participants, the amount of migration-labor becomes infeasible.

With FM-WECK we extend the functionality of the current SV-COMP in-
frastructure to execute these tools in the SV-COMP 2024 environment. Figure 3
illustrates how FM-WECK is used as a drop-in solution. We wrap the exist-
ing invocation of the benchmark command inside of a pre-built image. This
image replicates the OS and installed packages of SV-COMP 2024. By default,
BencHEXEC cannot run inside of another container: FM-WECK also sets up the
container runtime such that BEncHExEc works inside of it.

5 Conclusion

We developed FM-WECK, a utility to run formal-methods tools in containerized
environments. The goals are to (a) conserve the tools, such that they stay ex-
ecutable in the future, and (b) make it easy for researchers, practitioners, and
educators to use and explore the existing tools for formal methods. The appli-
cation scenarios in CoVeErITEAM and SV-COMP infrastructure demonstrate the
capabilities of FM-WECK as a library as well as a command-line tool. The tool is
open source, licensed under Apache 2.0, and available on GitLab [28].

Data-Availability Statement. The metadata are available in the FM-TooLS
repository [18] and the source code in the FM-WECK repository [28]. A refined
version [29] of the artifact submitted for evaluation [30] is available on Zenodo.

https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/software/fm-weck

FM-WEcK: Containerized Execution of Formal-Methods Tools 45

Funding Statement. FM-WECK was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) — 378803395 (ConVeY).

References

1.

10.

11.

12.

13.

14.

Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable software
verification. In: Proc. CAV. pp. 184-190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schiissele, F., Podel-
ski, A.: Ultimate automizer and the abstraction of bitwise operations (competition
contribution). In: Proc. TACAS (3). pp. 418-423. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_31

Jonas, M., Kumor, K., Novak, J., Sedlacek, J., Trtik, M., Zaoral, L., Ayaziova, P.,
Strejéek, J.: SymBIoTIC 10: Lazy memory initialization and compact symbolic exe-
cution (competition contribution). In: Proc. TACAS (3). pp. 406-411. LNCS 14572,
Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_29

Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software
verification. In: Proc. NFM. pp. 3-11. LNCS 9058, Springer (2015). https://doi.
org/10.1007/978-3-319-17524-9_1

. Vojdani, V., Apinis, K., Rétov, V., Seidl, H., Vene, V., Vogler, R.: Static race

detection for device drivers: The Goblint approach. In: Proc. ASE. pp. 391-402.
ACM (2016). https://doi.org/10.1145/2970276.2970337

. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:

Technology transfer of formal methods inside Microsoft. In: Proc. IFM. pp. 1-20.
LNCS 2999, Springer (2004). https://doi.org/10.1007/978-3-540-24756-2_1

. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.

CAV (2). pp. 38-47. LNCS 10981, Springer (2018). https://doi.org/10.1007/
978-3-319-96145-3_3

. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., Rival, X.: A static analyzer for large safety-critical software. In: Proc. PLDI. pp.
196-207. ACM (2003). https://doi.org/10.1145/781131.781153

. Beyer, D., Kanav, S., Wachowitz, H.: COVERITEAM SERVICE: Verification as a

service. In: Proc. ICSE, companion. pp. 21-25. IEEE (2023). https://doi.org/10.
1109/ICSE-Companion58688.2023.00017

Beyer, D., Lemberger, T., Wachowitz, H.: Reproduction package for TACAS 2024
submission ‘Continuous verification: Mitigations of tool restarts for java verifiers’.
Zenodo (2023). https://doi.org/10.5281/zenodo. 8383787

Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier (competition con-
tribution). In: Proc. TACAS (3). pp. 365-370. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_22

Beyer, D., Spiessl, M.: METAVAL: Witness validation via verification. In: Proc.
CAV. pp. 165-177. LNCS 12225, Springer (2020). https://doi.org/10.1007/
978-3-030-53291-8_10

Richter, C., Hiillermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153-186
(2020). https://doi.org/10.1007/s10515-020-00270-x

He, F., Sun, Z., Fan, H.: DEAGLE: An SMT-based verifier for multi-threaded programs
(competition contribution). In: Proc. TACAS (2). pp. 424-428. LNCS 13244, Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0_25

http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-031-57256-2_31
https://doi.org/10.1007/978-3-031-57256-2_29
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1145/781131.781153
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.5281/zenodo.8383787
https://doi.org/10.1007/978-3-031-57256-2_22
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-99527-0_25

46

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Dirk Beyer and Henrik Wachowitz

Alglave, J., Donaldson, A.F., Kroning, D., Tautschnig, M.: Making software verifi-
cation tools really work. In: Proc. ATVA. pp. 28-42. LNCS 6996, Springer (2011).
https://doi.org/10.1007/978-3-642-24372-1_3

Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: Proc. FMICS. pp. 3-69. LNCS 12327, Springer (2020). https://doi.
org/10.1007/978-3-030-58298-2_1

Beyer, D.: Conservation and accessibility of tools for formal meth-
ods. In: Proc. Festschrift Podelski 65th Birthday. Springer (2024),
https://www.sosy-1lab.org/research/pub/2024-Podelski65.Conservation_and_
Accessibility_of_Tools_for_Formal_Methods.pdf

Beyer, D.: Formal-methods tools repository. https://gitlab.com/sosy-1lab/
benchmarking/fm-tools (2023), accessed: 2024-04-10

Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299-329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

Beyer, D.: Automatic testing of C programs: Test-Comp 2024. In: TBA. Springer
(2024)

Beyer, D., Kanav, S.: COVERITEAM: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561-579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration plat-
form: Concepts and design. STTT 1(1-2), 9-30 (1997). https://doi.org/10.1007/
5100090050003

Beyer, D., Wachowitz, H.: 1ib-fm-tools repository. https://gitlab.com/sosy-1lab/
software/lib-fm-tools (2024), accessed: 2024-07-01

Podman. https://github.com/containers/podman, accessed: 2023-02-09

crun runtime. https://github.com/containers/crun (2024), accessed: 2024-04-26
Beyer, D., Lowe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions.
Int. J. Softw. Tools Technol. Transfer 21(1), 1-29 (2019). https://doi.org/10.1007/
s10009-017-0469-y

Collection of verification tasks. https://gitlab.com/sosy-1lab/benchmarking/
sv-benchmarks, accessed: 2023-04-01

Beyer, D., Wachowitz, H.: FM-WECK repository. https://gitlab.com/sosy-1lab/
software/fm-weck (2024), accessed: 2024-07-01

Beyer, D., Wachowitz, H.: Reproduction package for the FM 2024 article ‘FM-
WEcK: Containerized execution of formal-methods tools’. Zenodo (2024). https:
//doi.org/10.5281/zenodo. 12606323

Beyer, D., Wachowitz, H.: Reproduction package for the FM 2024 submission
‘FM-WEck: Containerized execution of formal-methods tools’. Zenodo (2024).
https://doi.org/10.5281/zenodo. 12205513

https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://www.sosy-lab.org/research/pub/2024-Podelski65.Conservation_and_Accessibility_of_Tools_for_Formal_Methods.pdf
https://www.sosy-lab.org/research/pub/2024-Podelski65.Conservation_and_Accessibility_of_Tools_for_Formal_Methods.pdf
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/s100090050003
https://doi.org/10.1007/s100090050003
https://gitlab.com/sosy-lab/software/lib-fm-tools
https://gitlab.com/sosy-lab/software/lib-fm-tools
https://github.com/containers/podman
https://github.com/containers/crun
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/software/fm-weck
https://gitlab.com/sosy-lab/software/fm-weck
https://doi.org/10.5281/zenodo.12606323
https://doi.org/10.5281/zenodo.12606323
https://doi.org/10.5281/zenodo.12205513

FM-WEcK: Containerized Execution of Formal-Methods Tools 47

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

DFAMiner: Mining Minimal Separating
DFAs from Labelled Samples

FM FM
Arfifact Artifact
Evaluation Evaluation
Daniele Dell’Erba'®, Yong Li'2®)@®, and Sven Schewe! o
Available Reusable

! Department of Computer Science, University of Liverpool, Liverpool, UK
{Daniele.Dell-Erba,Yong.Li3,Sven.Schewe}@liverpool.ac.uk
2 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

Abstract. We propose DFAMiner, a passive learning tool for learn-
ing minimal separating deterministic finite automata (DFA) from a set
of labelled samples. Separating automata are an interesting class of
automata that occurs generally in regular model checking and has raised
interest in foundational questions of parity game solving. We first pro-
pose a simple and linear-time algorithm that incrementally constructs
a three-valued DFA (3DFA) from a set of labelled samples given in the
usual lexicographical order. This 3DFA has accepting and rejecting states
as well as don’t-care states, so that it can exactly recognise the labelled
examples. We then apply our tool to mining a minimal separating DFA
for the labelled samples by minimising the constructed automata via a
reduction to SAT solving. Empirical evaluation shows that our tool out-
performs current state-of-the-art tools significantly on standard bench-
marks for learning minimal separating DFAs from samples. Progress in
the efficient construction of separating DFAs can also lead to finding
the lower bound of parity game solving, where we show that DFAMiner
can create optimal separating automata for simple languages with up
to 7 colours. Future improvements might offer inroads to better data
structures.

Keywords: Passive learning + Separating Automata + Three-valued
DFA - Parity Game Solving

1 Introduction

The task of inferring a minimum-size separating automaton from two disjoint
sets of samples has gained much attention from various fields, including compu-
tational biology [21], inference of network invariants [19], regular model check-
ing [26], and reinforcement learning [24]. More recently, this problem has also
arisen in the context of parity game solving [6], where separating automata can
be used to decide the winner. The breakthrough quasi-polynomial algorithm
[8], for example, can be viewed as producing such a separating automaton, and
under additional constraints, quasi-polynomial lower bounds can be established,

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 48-66, 2025.
https://doi.org/10.1007/978-3-031-71177-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_4&domain=pdf
http://orcid.org/0000-0003-1196-6110
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0002-9093-9518
https://doi.org/10.1007/978-3-031-71177-0_4

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 49

too [8,13]. These applications can be formalised as seeking the minimum-size
of DFAs, known as the Min-DFA inference problem, from positive and negative
samples.

The Min-DFA inference problem was first explored in [5,18]. Due to its high
(NP-complete) complexity, researchers initially focused on either finding local
optima through state merging techniques [7,23,29], or investigating theoretical
aspects such as reduction to graph colouring problems [11]. Notably, it has been
shown that there is no efficient algorithm to find approximate solutions [31].

With the increase in computational power and efficiency of Boolean Satisfi-
ability (SAT) solvers, research has shifted towards practical and ezact solutions
to the Min-DFA inference problem. Several tools have emerged in the literature,
including ed-beam/exbar [20], FlexFringe [35], DFA-Inductor [34,36], and DFA-
Identify [24].

The current practical and exact solutions to the Min-DFA inference problem
typically involve two steps: First, construct the augmented prefix tree acceptor
(APTA [12]) that recognises the given samples, and then minimise the APTA to
a Min-DFA by a reduction to SAT [20]. Recent enhancements of this approach
focus on the second step, including techniques like symmetry breaking [20,34]
and compact SAT encoding [20,36]. Additionally, there is an approach on the
incremental SAT solving technique specialised for the Min-DFA inference prob-
lem, where heuristics for assigning free variables have also been proposed [3].
However, their implementation relies heavily on MiniSAT [17]. We believe that,
in order to take advantage of future improvements of SAT solvers, it is better
to use a SAT solver as a black-box tool. We note that the second step can be
encoded as a Satisfiability Modulo Theories problem [32], which also benefits
from our contribution to the first step.

The second step is typically the bottleneck in the workflow. It is known that
the number of Boolean variables used in the SAT problem is polynomial in the
number of states of the APTA. Smaller APTAs naturally lead to easier SAT
problems. This motivates our effort to improve the first step of the inference
problem to obtain simpler SAT instances. While previous attempts have aimed
at reducing the size of APTAs [7,23,29], we introduce a new and incremental
construction of the APTAs that comes with a minimality guarantee for the
acceptor of the given samples.

Contributions. We propose employing the (polynomial-time) incremental min-
imal acyclic DFA learning algorithm [14] to extract minimal DFAs from a given
set of positive samples. More precisely, we extend their algorithm to support the
APTA construction from a set of positive samples and a set of negative samples.
Notably, the obtained APTA is guaranteed to be the minimum-size deterministic
acceptor for the labelled sample set S.

We have implemented these techniques in our new tool DFAMiner and
compared it with the state-of-the-art tools DFA-Inductor [34,36] and DFA-
Identify [24], on the benchmarks generated as described in [34,36]. Our experi-
mental results demonstrate that DFAMiner builds smaller APTAs and is there-
fore significantly faster at finding the Min-DFAs than both DFA-Inductor and
DFA-Identify.

50 D. Dell’Erba et al.

To test our technique, we have employed it to extract deterministic safety
or reachability automata as witness automata for parity game solving. With
DFAMiner, we have established the lower bounds on the size of deterministic
safety automata for parity games with up to 7 colours. To the best of our knowl-
edge, this is the first time that Min-DFA inference tools have been applied to
parity game solving. If they eventually scale, this may lead to new insights into
the actual size of the minimal safety automata for solving parity games.

Related work. The learned Min-DFA can be seen as a witness proof that sep-
arates the set of good behaviours and the set of bad behaviours for a given
system. Therefore, our work can be directly applied to the problems that look
for those proofs, such as regular model checking [26] and reinforcement learn-
ing [24]. Another standard application is in the active learning of minimal DFAs
by equivalence queries [2]. We remark that in [1], non-incremental and incre-
mental constructions were proposed to find small and even minimal APTAs that
separate the positive and negative samples. These two constructions are based
on state merging techniques of RPNI [29]. Their algorithms are approximate
constructions. As a consequence, their constructed APTAs can be smaller (or
even larger) than our APTAs, and can no longer be used to extract the minimal
separating DFA for S in the second step.

2 Preliminaries

In the whole paper, we fix a finite alphabet X of letters. A word is a finite
sequence of letters in Y. We denote with € the empty word and with X* the set
of all finite words. As usual, we let 7 = X%\ {e}. A subset of X* is a finitary
language. Given a word u, we denote by wu[i| the i-th letter of u. We denote by
uli, k] the subword starting at the i-th element and ending at the (k — 1)-th
element when 0 < ¢ < k, and the empty sequence € when i > k or kK = 0. We
denote by u[i-- -] the word of u starting at the i-th element when ¢ < |u|, and
the empty sequence & when i > |u|. For two given words u and v, we denote by
w-v (uv, for short) the concatenation of v and v. We say that w is a prefiz of
w if w = wu - v for some word v € X*. We denote by prefixes(u) the set of the
prefixes of u. We also extend function prefixes to a set of words .S, i.e. we have
prefixes(S) = (U, g prefixes(u).

Transition system. A deterministic transition system (TS) is a tuple 7 =
(Q,1,0), where @ is a finite set of states, ¢ € @ is initial state, and § : @ x X — @
is a transition function. We also extend § from letters to words in a usual way,
by letting 6(q,e) = ¢ and 6(q,a - u) = 6(d(q,a),u), where u € X* and a € X.

Automata. An automaton on finite words is called a deterministic finite
automaton (DFA). A DFA A is formally defined as a tuple (7, F'), where T
is a TS, and F' C @ is the set of accepting states. DFAs map all words in X* to
two values, accepting (+) and rejecting (—).

A run of an DFA A on a finite word u of length n > 0 is a sequence of states
P = qoq1- qn € QT such that, for every 0 < i < n, gi+1 = 6(q;, uli +1]). We

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 51

write go—q, if there is a run from g to ¢, over u. DFAs have at most one run
for each word. A run is accepting if it ends in an accepting state ¢, € F. A
finite word u € X* is accepted by A if it has an accepting run. The set of words
accepted by an automaton is called its language. The class of words accepted
by DFAs is known to be regular languages. For a given regular language, the
Myhill-Nerode theorem [25,28] helps to obtain the minimal DFA.

DFAs are easy to extend to languages with “don’t-care" words.

Definition 1. A 3-valued DFA (3DFA)! is defined as a triple (T, A, R), where
T is a deterministic TS, and A, R, and D = Q\ (AUR) partition the set of states
Q, where A C @Q is the set of accepting states; R C @ is the set of rejecting
states; and the remaining states D are called don’t-care states.

3DFAs map all words in X* to three values: accepting (+), rejecting (—), and
don’t-care (7), where they are accepting if they have an accepting run, rejecting
if they have a rejecting run (which is a run ending in a rejecting state), and
don’t-care otherwise.

It is possible to identify equivalent words that reach the same state in the
minimal 3DFA of a given function L : X* — {+,—,7} [9]. Let x, y be two words
in ¥* and L € (X* — {4, —, 7}) be a function. We define an equivalence relation
~pC X* x X* as: @ ~p y if, and only if, Vv € X* . L(zv) = L(yv).

We denote by | ~, | the index of ~, i.e. the number of equivalence classes
defined by L. Let S = (S*,57) be a given finite set of labelled samples in X*.
We can also see S as a classification function that induces an equivalence relation
~g. That is, if we set S* = £*\ S, then S(u) = $ if u € S%, where $ € {+, —, ?}.
Finally, we conclude with a straightforward proposition that follows from the
fact that | ~g | is bounded by |prefixes(S)|.

Fact 1. Let S be a finite set of labelled samples. Then the index of ~g is finite.

3 DFAMiner

3.1 Main Problem

Let S = (ST, S57) be the given set of labelled samples in the whole paper. Our
goal in this paper is to find a minimal DFA (Min-DFA) D for S such that, for
all w e ¥, if S(u) = $, then D(u) = 3§, where § € {4+, —}. We call the target
DFA a minimal separating DFA? for S, abbreviated as separating Min-DFA.
Recall that the passive learners for separating Min-DFAs [20, 36] usually first
construct the APTA P (and thus a 3DFA) recognising S and then minimise the
APTA P to a Min-DFA using a SAT solver. Our tool DFAMiner follows a similar
workflow. The main advantage of DFAMiner compared to prior work is that it
has access to an incremental construction that produces the minimal 3DFA M

! 3DFAs are a standard model for representing positive and negative samples in the
literature. In [1], 3DFAs are called deterministic unbiased finite state automata.
2 The 3DFA that recognises S is called separating DFA for S in [9].

52 D. Dell’Erba et al.

Minimiser

———> Minimal 3DFA M ——p oL Bncoding__f e pea
SAT Solving

Fig. 1. Workflow of DFAMiner with 3DFAs

of S with respect to ~g. Furthermore, DFAMiner also supports the use of a DFA
pair (DT, D7) to obtain possibly further reduction on the state space. We call
such pair double DFAs.

Definition 2. A double DFA (dDFA) is a tuple (T = {7T",7"}, A, R), where
T is the union of two disjoint TSs, and A, R and D = Q\ (AU R) partition the
states Q of T, such that the languages of LT = (T, A) and L~ = (T, R) are
disjoint. We call the words accepted by L™ accepting, the words accepted by L~
rejecting, and all other words don’t-care words.

Note that since L™ and L~ are disjoint, every word on 7 can have only one
accepting run and one rejecting run, although 7 has two initial states.

3.2 Workflow Description

Assume that we have an incremental construction of 3DFAs from the given set
of samples S = (ST, 57). A natural workflow of DFAMiner is to first construct
the minimal 3DFA M (which is also a directed acyclic graph) from S and then
minimise it using a SAT solver. This approach is depicted in Fig. 1. The compo-
nents labelled in green or blue in Figs. 1-2 are novel contributions made in our
tool. We use the standard SAT-based minimisation approaches of 3DFAs as a
black-box [34].

We observe that the minimisation algorithm [34] does not necessarily work
only on 3DFAs, but also on dDFAs and even on a pair of nondeterministic finite
automata (the encoding will be discussed in Sect.5). This motivates us to ask
the following question: can we construct a dDFA for the pair of samples S?7 We
give a positive answer to this question.

Our construction of dDFAs N from S is formalised as follows. We construct
the minimal 3DFAs DF and D~ that recognise the languages (ST, () and (S, 0),
respectively, making sure that DT and D~ do not share the same state names.
We then combine the two DFAs into a dDFA N, where the initial states of
N are the initial states of both D and D, while the transitions between
states remain unchanged and we make the accepting states of DT and D~ the
accepting and rejecting states of A, respectively. All other states are don’t-care
states. Note that, although such a dDFA corresponds to two TSs, we can see
them as one, since their languages are disjoint. Therefore, even if there are now
two initial states, every word will be accepted or rejected by only one of them.
The workflow of this construction is depicted in Fig. 2. In this way, we obtain a
dDFA N that recognises exactly the given set S. The empirical evaluation shows

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 53
Minimiser
== Pos. DFA D"
() SAT Encoding D
| dDFA %; SAT Solving === Min-DFA

Fig. 2. Workflow of DFAMiner with dDFAs

that the two types of workflows are incomparable (none of them dominates the
other in terms of size or speed), hence, both have their place in the learning
procedure.

We note that the algorithm for producing dDFAs can be adjusted to produce
proper double nondeterministic finite automata (NFAs) when we first translate
Dt and D~ to NFAs Nt and N, respectively, using standard tools (e.g. [10])
to reduce their size (similar to Fig.2). The way N™ and N~ are merged into N’
is the same as for D™ and D, and adjusting the SAT encoding to have NFAs
(and thus potentially many successors) is straight forward.

For details of the components of DFAMiner, our incremental construction for
3DFAs is reported in Sect.4, while the SAT-based minimisation algorithm is
described in Sect. 5. In Sect. 6 we propose a possible application of DFAMiner in
learning minimal separating DFAs by equivalence queries and to parity game
solving. We close with an experimental evaluation on standard benchmarks in
Sect. 7. A full version of the paper with supplementary materials can be found
in [16].

4 Incremental Construction of 3DFAs

4.1 Prior Construction of 3DFAs

Let S be the given labelled sample Tal?le 1. Size of.Min—BDFA and APTA on
set and P the APTA3 that recognises Parity game solving.

S constructed with standard proce- |§ | Lcn7gth MinggFA ?31);71;
dures [20,24,3.4,36]. The APTA P = 8 54l 200721
(Q,¢,6, F, R) is formally defined as a 5 9 644 835,954
3DFA where Q = prefixes(S) is the 5 10 74T 3,369,694
set of states, € is the initial state, 2 ; gg? ;ggg%
F=g* i.s the set of acc.ept'ing states, 6 9 2170 4,36‘3,362
R = 57 is the set of rejecting states, 6 10 2533 20,689,546

and §(u,a) = ua for all u,ua € Q and
a€X.

3 APTAs are called prefix tree unbiased finite state automata in [1] and they are also
similar to the prefix-tree Moore Machines in [33].

54 D. Dell’Erba et al.

The main issue is that the size of P increases dramatically with the growth
of the number of samples in S and their length. This is not surprising given that
P maps every word in prefixes(S) to a unique state.

To show this growth, we have considered samples from parity game solving.
Table 1 shows the size comparison between the APTA and its minimal 3DFA
(Min-3DFA) representation. With 5 and 6 letters (in this case colours), we
can observe that the Min-3DFAs can be much smaller than their correspond-
ing APTA counterparts.

In other words, there are a lot of equivalent states in APTAs that can be
merged. To identify equivalent states in P, we can use the equivalence relation
~g. In fact, since APTAs are acyclic, we can minimise them via a linear-time
backward traversal [14]. Further, we show next that we do not have to construct
the full APTA P in order to obtain the Min-3DFA for the given samples.

We will subsequently refer to APTAs constructed by the existing approaches
and use 3DFAs for the acceptors constructed by our new technique.

4.2 Incremental Construction of 3DFAs

In [14], an incremental construction of a minimal DFA that accepts a given set of
positive samples has been proposed. We extend their algorithm to 3DFAs from
a pair S = (S1,57) of sets of labelled samples.

Our algorithm can be seen as the on-the-fly version of the combination of
the construction of the APTA and its minimisation to the Min-3DFA based on
the backward traversal of the APTA. We first describe the minimisation of the
APTA tree and then the on-the-fly construction of the Min-3DFAs in the sequel.

For simplicity, let us assume that the full APTA tree P is already given. The
crucial step in the minimisation component is to decide whether two states p
and ¢ are equivalent. Based on the definition of ~g, we define that two states
p,q € @ are equivalent, denoted p = ¢ if, and only if:

1. they have the same acceptance status, i.e. they are both accepting, rejecting
or don’t-care states; and

2. for each letter a € X, they either both have no successors or their successors
are equivalent.

In the implementation, since we only store one representative state for each
equivalence class, the second requirement can be simplified as follows:

2’. for each letter a € X' they either both have no successors or the same suc-
Cessor.

Therefore, it is easy to outline an algorithm to minimise the given APTA
tree P by applying these steps:

1. We first collapse all accepting (respectively, rejecting) states without outgoing
transitions to one accepting (respectively, rejecting) state without outgoing
transitions, and put the two states in a map Register, which allows fast access
to their representative states for all states.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 55

2. Then we perform backward traversal of states and check if there is a state
whose successors are all in Register. For such states, we identify equivalent
states by Rule 2, replace all equivalent states with their representative, and
put their representative in Register.

3. We repeat Step 2 until all states, including the initial one, are in Register.

In this way, we are guaranteed to obtain the Min-3DFA M that correctly recog-
nises the given set S. Moreover, if we use a hash map for storing all representative
states in Register, the minimisation algorithm outlined above runs in linear time
with respect to the number of states in P. However, as we can see in Table 1, the
APTAs can be significantly larger than the corresponding Min-3DFAs. Hence,
it is vital to avoid the full construction of the APTA tree P of S. The key of the
on-the-fly construction is to identify when a state has been completely traversed
during construction.

To this end, we need to assume that the samples are already ordered in the
usual lexicographical order that we will also use to compare the words. That is,
the input samples will be first ordered as follows. For two words v and v/, we
first compare their prefixes of length min(|ul|, [v'|). Then, three cases may arise:
one of the two words has a smaller letter than the other at the same position,
then that word is smaller; otherwise the two prefixes coincide, and then if the
two words have the same same length, v and u’ are equal; otherwise one word
is longer than the other, then it is greater.

Assume that S = {u1,ug, - ,us} is ordered. In the process of the creation
of the states, we need to detect when a state cannot have further successors
and then it is ready to be merged with its representative state. Assume that
the current 3DFA is P; = (Q;, {¢}, d;, Fi, R;) and we now input the next sample
u;41. When ¢ = 0, Py is trivially minimal since Py has only a state ¢ without any
outgoing transition. For technical reasons, we let uy = ¢, which may not appear
in the sample set S (note that if there is an empty word ¢ in S, ¢ will be set to
accepting or rejecting accordingly).

Assume now that ¢ > 0. We read u;+; and run it on P;. The sample can
be seen as u;11 = x - y;+1 with the assumption that = € prefixes(u;+1) is the
longest word such that §;(¢,z) # 0. Let p = §;(¢, z). Then, all states along the
run of P; over x cannot be merged with their representatives, as P; requires
new states to run the suffix y;11. Note that z must be a prefix of u; too, i.e.
x € prefixes(u;). This follows from the fact that there must be a run of P; over
u;, which is the greatest sample in lexicographic order so far, and every word
that has a complete run in P; must not be greater than u;. In fact, if we assume
that is not a prefix of u;, then z must be smaller than u;[0, |z|]. This leads to
the contradiction that u; is greater than u;y,. Hence, in this case £ must be the
empty string. Let u; = x - y; and p = po - - pjy,;| Where po = ¢ and pj,| = p. We
can show that all states p with k > |z| in the run of P; over u; can be merged
with their representative, as they cannot have more (future) reachable states.

If we instead assume that there is a state p; with j > |z| reached over a
future sample uj with A > ¢, then uy, is smaller than w;;1, which leads to the
contradiction that the samples are ordered from the smaller to the bigger. Thus,

56 D. Dell’Erba et al.

Algorithm 1. Incremental construction of the minimal 3DFA from S

procedure MAIN PROCEDURE(Sample Set U)
Register := ()
while U has next sample u do
x:= common_prefix(u)

p:=106(:,2) > the last state over the common prefix x
y:i=ullz| -] > the remaining suffix of u
if has_children(p) then
replace_or_register(p) > merge/register all states after p
end if
add _suffix(p, y) > create run to accept suffix y from p
end while
replace_or_register() > merge the run over the last sample

end procedure
procedure REPLACE_ OR_ REGISTER(p)

r := max__child(p) > obtain the successor over the maximal letter
if has_children(r) then > 7 has a successor

replace _or_ register(r) > recursively obtain the run over last sample
end if
if 3¢ € Q.(q € Register A ¢ =r) then

max_ child(p) := ¢ > merge with its representative
else

Register := Register U {r} > set the 1st state of each class as representative
end if

end procedure

we can identify the representatives for states pr and merge them in the usual
backward manner. It follows that all states except the ones in the run of w;41 in
the 3DFA P, are already consistent with respect to ~g; thus, there is no need
to modify them afterwards. After we have input all samples, we only need to
merge all states in the run over the last sample u, with their equivalent states.
This way, we are guaranteed to obtain the Min-3DFA M for S in the end.

The formal procedure of the above incremental construction of the Min-3DFA
from S is given in Algorithm 1. Note that, when looking for the run from p over
the last input sample, we only need to find the successors over the maximal letter
by the max_ child function. In this way, when we reach the last state r of the
run over the last sample (i.e., has_children(r) is false), we can begin to identify
equivalent states and replace the successor of p with their representative state ¢
in a backward manner or set the state r as the representative of its equivalent
class, as described in the subprocedure replace or register. Moreover, in the
function add _suffix(p,), we just create the run from p over y and set the last
state to be accepting or rejecting depending on the label of u. In fact, we only
extend the the equivalence relation = in replace or_register [14] to support the
accepting, rejecting, and don’t-care states, as described before.

Figure 3 depicts all intermediate 3DFAs when running Algorithm 1 on the
ordered set S = {(000,+),(001,+), (10, —)}. Initially, the 3DFA only has the
initial state ¢« without outgoing transitions and Register is empty. The algorithm
first creates states to accept 000. After receiving sample 001, the algorithm runs
the common prefix 00 and merges r with its equivalent states. So, r is added
to Register. When the sample 10 is read, the common prefix with 001 is ¢,
then all states after ¢ in the run over 001 can be merged with their equivalent

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 57

0O
®

Input 000 Input 001

[= [P0 = -]
Input 10 Hw addsufflx 2dd-suffix :(1)
0

replace or_ reglster

Fig. 3. An example run over S = {(000, +), (001, +), (10, —)}. Accepting, rejecting and
don’t-care states are denoted, respectively, by double circles, circles and squares. The
dashed rectangle depicts an equivalence class.

states in replace or register function. The merge will perform in a backward
manner, starting from the last state s until the state p. So, now that we know
that also s will not have more successors (because the samples are ordered) we
can consider it as complete and therefore merge with r. As a consequence, as
shown in Fig. 3, all incoming transitions of s are redirected to its representative
r and s is deleted. So, Register = {r,p, q}. After this step, add _suffix will create
the new states ¢t and v. Following Algorithm 1, we will eventually obtain the
last 3DFA in Fig. 3 as the final result. Note that the biggest intemediate 3DFA
constructed by Algorithm 1 is usually much smaller than the full APTA.

Theorem 1. Let S be a finite labelled set of ordered samples. Algorithm 1
returns the correct Min-8DFA recognising S.

The proof is basically an induction on the number of input samples and
merely extends the intuition described above; we thus omit it here.

DFA construction. The proposed construction of Min-3DFAs is more general
than the state-of-the-art incremental one [14] in which it is only checked whether
p and ¢ are both accepting or rejecting states when defining the equivalence
relation =. The other parts of the construction can be modified accordingly.

5 Finding Separating Min-DFAs Using SAT Solvers

This section explains how to extract the separating Min-DFAs from dDFAs*
built from the 3DFAs through our incremental construction in Sect.4.2. The
encoding approach is used in the Minimiser for both workflows in Figs. 1 and 2
and is agnostic to the SAT solver used. Since minimising DFAs with don’t-care
words is known to be NP-complete [30], it is unlikely to have polynomial-time
ezact algorithm for the second step unless P = NP.

We assume that we are given a d(DFA N = (7, A, R), where 7 = (Q, 1,9) is
the TS obtained from two DFAs Dt and D~. Recall that 7 is the TS for the
union of DT and D~. In particular, I contains the two initial states from DT
and D~. We look for a separating DFA D of n states for A/ such that, for each

4 3DFAs can be seen as a special type of dDFAs.

58 D. Dell’Erba et al.

w e X* if N(u) =8, then D(u) = $, where $ € {+,—}. Clearly the size of D
is bounded by the size of the TS, i.e. 0 < n < |Q), since we can obtain a DFA
from the dDFA by simply using DT (or the complement of D~). Nevertheless,
we aim at finding the minimal such integer n.

To do this, we encode our problem as a SAT problem such that there is
a separating complete DFA D with n states if, and only if, the SAT problem
is satisfiable. We apply the standard propositional encoding [26,27,34,36]. For
simplicity, we let {0,--- ,n—1} be the set of states of D, such that 0 is the initial
one. To encode the target DFA D, we use the following variables:

— the transition variable e; , ; denotes that i~ holds, i.e. e; o ; is true if, and
only if, there is a transition from state i to state j over a € X, and

— the acceptance variable f; denotes that i € F, i.e. f; is true if, and only if,
the state 7 is an accepting one.

Once the problem is satisfiable, from the values of the above variables, it
is easy to construct the DFA D. To that end, we need to tell the SAT solver
how the DFA should look like by giving the constraints encoded as clauses. For
instance, to make sure the resulting DFA is indeed deterministic and complete,
we need following constraints:

D1 Determinism:
For every state i and letter a € X' in D, we have that —e; 4 ;j V —e; o1 for all
0<j<k<n.

D2 Completeness: For every state i and letter a € ¥ in D, /-, _,, €i,4,; holds.

Moreover, to make sure the obtained DFA D is separating for A/, we also
need to perform the product of the target DFA D and N. In order to encode the
product, we use extra variables d, ;, which indicates that the state p of ' and
the state ¢ of D can both be reached on some word u. The constraints we need
to enforce that D is separating for N are formalised as below:

D3 Initial condition: d, o is true for all ¢ € I. (0 is the initial state of D.)
D4 Acceptance condition: for each state 7 of D,
D4.1 Accepting states: d, ; = f; holds for all p € A;
D4.2 Rejecting states: d, ; = —f; holds for all p € R;
D5 Transition relation: for a pair of states 4, in D,
dpi N€jq = dy; where p’ =d(p,a) for allp € Q and a € X.

Let (;ﬁﬁ/ be the conjunction of all these constraints. Then, Theorem 2 follows.

Theorem 2. Let N be a dDFA of S and n € N. Then ¢flv is satisfiable if, and
only if, there exists a complete DFA D,, with n states that is separating for N .

Let n be the minimal integer such that gf)ﬁ[1s satisfiable. Then D,, is a sepa-
rating Min-DFA for the sample set S.

The formula ¢ contains (n® - |X] +n? - |Q| - |X|) constraints.

When looking for separating DFAs, the SAT solver may need to inspect
multiple isomorphic DFAs that only differ in their state names for satisfiability.
If those isomorphic DFAs are not separating for N, then the SAT solver still
has to prove this for each DFA. To reduce the search space, DFAMiner uses the
technique in [34] to check only a representative DFA for all isomorphic DFAs.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 59

6 Applications

Apart from those mentioned in the introduction, in this section we describe two
new applications.

6.1 Active Learning of Separating Min-DFAs

Our tool can be applied to the active learning of minimal DFAs using only
equivalence queries (EQs). In fact, minimal DFAs cannot be exactly learned
using polynomial number of EQs in the size of the target Min-DFA [2].

While learning, we maintain a growing set of pairs S; = (S;", S;") to store the
positive and negative words. That is, for all the indexes i, 5" | 2 S}, S, 2 S;,
and S;+1 # S;. For each i > 0, DFAMiner finds a Min-DFA D; for S; and ask
an EQ that the teacher returns a yes if D; accepts all positive and rejects all
negative words in the target language L, or provides one (positive or negative)
counterexample (CEX) u otherwise. We can start with Sy = (), #) and propose a
DFA Dy accepting nothing, and then obtain S;;; from S; by adding the CEX
to either S or S; . If D;(u) = +, then u is a negative word since u is misclassified
by D; and should be added into S;, ;; otherwise, we add w into S;:l. (The other
set will remain the same.) Since D; is consistent with .S; but not with all S;
with j > ¢ > 0, all D; are smaller or equal in size to the target DFA D. For
some k > 0, Sy will uniquely characterise L, Dy, will accept L, where k can be
exponential in the number of states in Dy in the worst case.

6.2 Learning Separating Automata for Parity Games

A few years ago an algorithm to solve parity games in quasi-polynomial time [8]
has been proposed. It has then been shown that the underlying approach essen-
tially builds a separating automaton of quasi-polynomial size to distinguish runs
with only winning cycles (according to the parity condition) from the losing
ones [13]. Such a separating automaton distinguishes the two disjointed lan-
guages composed of the set of infinite words that correspond to paths on the
graph where the highest colour occurring is even (hence, winning), or odd (los-
ing). Where each colour occurs only once, a cycle occurs when a colour has
repeated at least twice. For instance, the word (001212)% contains only even
cycles including 00,121 and 212, while the word (1312331)“ contains only odd
cycles such as 131, 3123, and 33. Given a parity game G, and a separating
automaton S that accepts only even cycles and rejects odd cycles, solving the
parity game G can be reduced to solving the safety game G ® S [6]. Although the
product game is much bigger than G, safety games are easier to solve than parity
games. Moreover, the constructed separating automaton S is quasi-polynomial
in the number of colours, which gives an upper bound for solving parity games.

These separating safety automata work on infinite words, but we will employ
our tool to learn them by using finite-length samples. This is because as long
as the length of the finite sample words is long enough, the learned DFAs will
converge to the correct safety automata. The hardest case for the separation

60 D. Dell’Erba et al.

approach [6] occurs when the colours are unique (occur only once, hence, the
colour itself can be used as a node identifier, making detection of cycles easier).
We have implemented this case as follows: we fix an alphabet with c different
colours, a length ¢ > ¢, (to ensure that each word contains at least one cycle),
and c as highest colour. In the learned DFA, we must accept a word if all cycles
are winning (e.g. 001212) and reject it if all cycles are losing (e.g. 13123312).
Words with winning and losing cycles (e.g. 21232) are don’t-care words.

The resulting automata are always safety automata that reject all words that
have not seen a winning cycle after (at most) ¢ steps, as well as some words that
have seen both, winning and losing cycles (don’t-care word), or, alternatively,
reachability automata that accept all words that have not seen a losing cycle
after at most ¢ steps (again, except don’t-care ones). Thus, the size of the Min-
DFA falls when increasing the sample length ¢, and eventually stabilises. Using
such a separating automaton reduces solving the parity game to solving a safety
game [6].

Separating automata built with the current state-of-the-art construction [8]
grow quasi-polynomially, and since it is not known whether these construc-
tions are optimal, we applied DFAMiner to learn the most succinct separating
automata for the parity condition.

) Table 2 ShO_WS the applica- maple 2. Samples required to learn the minimal sep-
tion of DFAMiner to the par- arating automata for solving parity games.

ity condition up to 7 colours [Colours [[2] 3 4 5 6

(from 0 to 6). For each max- [DFA Size|[3[3 | 5 5 9

imal colour we report the [Tength 51 7 11 15

length required to build the [™pog 130(1,645(9,375,269] 4,399,883,736
minimal separating automa- | Neg 31 (5,235/1,009,941|38,871,920,470

Ol W| W W

ton, the size of the obtained
DFA, and the number of all
positive and negative samples generated. Although most words have both win-
ing and losing cycles (don’t-care words), the positive and negative samples grow
exponentially, too, which is why we stopped at 7 colours.

While the APTA size constructed by DFA-Inductor grows exponentially, the
sizes of dDFAs and 3DFAs seem to grow only constantly when increasing the
length of the samples for a fixed colour number. Consequently, all versions
of DFA-Inductor were only able to solve cases with at most 4 colours, while
DFAMiner can manage to solve cases up to 6 colours and length 16. To further
push the limit of DFAMiner for parity game solving, we have also provided an effi-
cient SAT encoding for parity games. These supplementary data are provided
in [16]. With the constructions for both 3DFAs and dDFAs and the efficient
encoding, the bottleneck of the whole procedure is no longer solving the Min-
DFA inference problem, but the generation of samples. With a better sample
generation approach, we believe that this application can give insights on the
structure of minimal safety automata for an arbitrary number of colours.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 61

7 Evaluation

To further demonstrate the improvements of DFAMiner® over the state of the
art, we conducted comprehensive experiments on standard benchmarks [34,36].
We compared with DFA-Inductor [36] and DFA-Identify® [24], the state of the art
tools publicly available for passive learning tasks. Unlike DFAMiner and DFA-
Inductor, DFA-Identify uses a SAT encoding of graph coloring problems [20] and
the representative DFAs in the second step [34]. Like DFA-Inductor, DFAMiner is
also implemented in Python with PySAT [22]. We delegate all SAT queries to
the SAT solver CaDiCal 1.5.3 [4] in all tools.

DFAMiner accepts samples formalised in the Abbadingo” format.

The experiments
were carried on an

Intel i7-4790 3.60 GHz

Table 3. Comparison for the minimisation of DFAs from
random samples of DFAMiner with DFA inductor.

DFA-Inductor DFA-Identify dDFA-MIN 3DFA-MIN

processor. In Table3, = avg % avg % avg %] avg %
each index N reports 377079 100 | 0.09 100 | 0.03 100 0.02 100
the results of 100 5| g29 100 | 1.38 100| 0.06 100/ 0.05 100
benchmark instances 6| 0.67 100 | 2.33 100| 0.30 100/ 0.18 100
of random samples. 7| 1.81 100 | 4.12 100| 0.80 100/ 0.73 100
Each benchmark has 8| 357 100 | 9.70 100| 1.29 100/ 1.25 100
50 x N samples. For 9| 10.84 100 | 20.76 100 | 3.83 100/ 3.78 100
every index, we show 10| 50.91 100 | 44.57 100 | 17.88 100| 16.80 100
the average time and 11| 154.73 100 | 128.69 100 | 55.12 100| 59.46 100
the percentage of instancé2| 399.52 96 |373.65 99 |144.27 100| 162.39 100
solved within 1,200s. 13/ 850.04 74 |785.93 82 |390.10 99|418.62 97
The alphabet for the 14/1125.59 19 [1099.92 23 |809.88 76 |861.10 69
samples has two sym- 15/1182.98 6 [1197.61 1 [1060.18 37 |1062.02 34
bols while the size 16/1188.17 1 [1184.82 3 |1167.58 4 |1164.02 5

of the generated DFA

is N. We compare

four approaches to inferring Min-DFAs: DFA-Inductor, DFA-Identify, and
DFAMiner with both 3DFA (3DFA-MIN) and dDFA (dDFA-MIN). Both dDFA-
MIN and 3DFA-MIN perform better than DFA-Inductor and DFA-Identify, on
average they are three times faster. DFA-Inductor can minimise within 20 min
instances up to level 13, while the two variants of DFAMiner can scale one more
level and minimise one third of the instances of level 15. On these random sam-
ples the dDFA approach is slightly faster than the 3DFA one.

® https://github.com /liyong31/DFAMiner.
5 https://github.com/mvcisback/dfa-identify.
" https://abbadingo.cs.nuim.ie/.

https://github.com/liyong31/DFAMiner
https://github.com/mvcisback/dfa-identify
https://abbadingo.cs.nuim.ie/

62 D. Dell’Erba et al.

7 1200

e 7’
// //
4 s s
2000 ’// 1000 A ///
/’/ < ,/’
w B
1500 e g 800 e .'a
E /// Ul /’
= - 2 2 6001
1000 A e s /’ oo ‘
i Rd
i BRI ﬁyc-
500 !”
200 A
7 gge! oo
//
0 0 : . : |
0 500 1000 1500 2000 0 200 400 600 800 1000 1200
APTA DFA-Inductor
Fig. 4. Scatter plot on automata size Fig. 5. Scatter plot on runtime (secs)

Figures4 and 5 report the comparison on the size of the APTA/dDFA (on
the left) and minimisation time (on the right) for the previous benchmark. In
these two figures, instead of the mean values, we show the individual data for
each sample. Both DFA-Inductor and DFA-Identify build the same APTA (they
differ for the encoding step), and as shown in Fig. 4, its size is three times larger
than the dDFA built by DFAMiner, no matter how big the final DFA is. Figure 5,
instead, shows that, when using a dDFA, DFAMiner always performs better than
DFA-Inductor, on average three times faster with peaks of more than four times
faster. The comparison between dDFA and DFA-Identify is similar.

The experimental results have confirmed that our construction of sample rep-
resentations significantly advances the state-of-the-art, making it a valuable con-
tribution to the Min-DFA inference problem. We note that DFA-Inductor 2 [36]
is faster than DFA-Inductor due to a better encoding of the representative DFAs.
Nonetheless, DFAMiner still performs significantly better than DFA-Inductor 2
regarding the overall number of solved cases and running time. For a fair com-
parison, we choose DFA-Inductor as the baseline, as DFAMiner only differs from it
in the construction of APTAs. Additional comparisons on runtime and automata
size with DFA-Inductor 2 can be found in [16].

8 Discussion and Future Work

We propose a novel and more efficient way to build APTAs for the Min-DFA
inference problem. Our contribution focuses on a compact representation of the
the positive and negative samples and, therefore, provides the leeway to benefit
from further enhancements in solving the encoded SAT problem.

Natural future extensions of our approach include implementing the tight
encoding of symmetry breaking [36]. Another easy extension of our construction
is to learn a set of decomposed DFAs [24], thus improving the overall performance
as well. A more complex future work is to investigate whether or not one can
similarly construct a deterministic Biichi automaton based on w-regular sets of
accepting, rejecting, and don’t-care words that provides a minimality guarantee
for a given set of labelled samples.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 63

Acknowledgments. We thank the anonymous reviewers for their valuable feedback.
This work has been supported in part by the NSFC grant 62102407 and the EPSRC
through grants EP/X021513/1, EP/X017796/1, and EP/X03688X /1.

Data Availability. The source code and data are available in [15].

References

10.

11.

. Alquezar, R., Sanfeliu, A.: Incremental grammatical inference from positive and

negative data using unbiased finite state automata. In: Shape, Structure and Pat-
tern Recognition, Proc. Int. Workshop on Structural and Syntactic Pattern Recog-
nition, SSPR, vol.94, pp. 291-300 (1995)

Angluin, D.: Negative results for equivalence queries. Mach. Learn. 5, 121-150
(1990). https://doi.org/10.1007/BF00116034

Avellaneda, F., Petrenko, A.: Learning minimal DFA: taking inspiration from RPNI
to improve SAT approach. In: Olveczky, P.C., Salaiin, G. (eds.) Software Engineer-
ing and Formal Methods - 17th International Conference, SEFM 2019, Oslo, Nor-
way, September 18-20, 2019, Proceedings, LNCS, vol. 11724, pp. 243-256. Springer
(2019). https://doi.org/10.1007/978-3-030-30446-1 13

Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCal, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Jarvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 — Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51-53. University of Helsinki (2020)
Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 21(6), 592-597 (1972). https://
doi.org/10.1109/TC.1972.5009015

Bojanczyk, M., Czerwinski, W.: An Automata Toolbox. unpublished (2018)
Bugalho, M.M.F., Oliveira, A.L.: Inference of regular languages using state merging
algorithms with search. Pattern Recognit. 38(9), 1457-1467 (2005). https://doi.
org/10.1016/J.PATCOG.2004.03.027

Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: deciding parity games
in quasipolynomial time. In: Symposium on Theory of Computing 17, pp. 252-263.
Association for Computing Machinery (2017)

Chen, Y., Farzan, A., Clarke, E.M., Tsay, Y., Wang, B.: Learning minimal sep-
arating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems, 15th
International Conference, TACAS 2009, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, LNCS, vol. 5505, pp. 31-45. Springer (2009). https://doi.org/
10.1007/978-3-642-00768-2 3

Clemente, L., Mayr, R.: Efficient reduction of nondeterministic automata with
application to language inclusion testing. Log. Methods Comput. Sci. 15(1) (2019).
https://doi.org/10.23638 /LMCS-15(1:12)2019

Coste, F., Nicolas, J.: Regular inference as a graph coloring problem. In: IWGI
(1997)

https://doi.org/10.1007/BF00116034
https://doi.org/10.1007/978-3-030-30446-1_13
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1016/J.PATCOG.2004.03.027
https://doi.org/10.1016/J.PATCOG.2004.03.027
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.23638/LMCS-15(1:12)2019

64

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D. Dell’Erba et al.

Coste, F., Nicolas, J.: How considering incompatible state mergings may reduce
the DFA induction search tree. In: Honavar, V.G., Slutzki, G. (eds.) Grammatical
Inference, 4th International Colloquium, ICGI-98, Ames, lowa, USA, July 12-14,
1998, Proceedings. Lecture Notes in Computer Science, vol. 1433, pp. 199-210.
Springer (1998). https://doi.org/10.1007/BFB0054076

Czerwinski, W., Daviaud, L., Fijalkow, N., Jurdzinski, M., Lazic, R., Parys, P.:
Universal trees grow inside separating automata: quasi-polynomial lower bounds
for parity games. In: Symposium on Discrete Algorithms 19, pp. 2333-2349. STAM
2019

](Daciu)k, J., Mihov, S., Watson, B.W., Watson, R.E.: Incremental construction of
minimal acyclic finite state automata. Comput. Linguistics 26(1), 3-16 (2000).
https://doi.org/10.1162,/089120100561601

Dell’Erba, D., Li, Y., Schewe, S.: Artifact for DFAMiner: Mining Minimal Sepa-
rating DFAs from Labelled Samples (Jun 2024). https://doi.org/10.5281 /zenodo.
12528885

Dell’Erba, D., Li, Y., Schewe, S.: DFAminer: mining minimal separating DFAs
from labelled samples (2024). https://arxiv.org/abs/2405.18871

Eén, N., Sérensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) Theory and Applications of Satisfiability Testing, 6th International Confer-
ence, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502-518. Springer
(2003). https://doi.org/10.1007/978-3-540-24605-3 37

Gold, E.M.: Complexity of automaton identification from given data. Inf. Control.
37(3), 302-320 (1978). https://doi.org/10.1016/S0019-9958(78)90562-4
Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning, Third Interna-
tional Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4130, pp. 483-497. Springer
(2006). https://doi.org/10.1007/11814771 40

Heule, M., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere,
J.M., Garcia, P. (eds.) Grammatical Inference: Theoretical Results and Applica-
tions, 10th International Colloquium, ICGI 2010, Valencia, Spain, September 13-
16, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6339, pp. 66-79.
Springer (2010). https://doi.org/10.1007/978-3-642-15488-1 7

de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nit. 38(9), 1332-1348 (2005). https://doi.org/10.1016/J. PATCOG.2005.01.003
Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for proto-
typing with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 9-12, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10929,
pp. 428-437. Springer (2018). https://doi.org/10.1007/978-3-319-94144-8 26
Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V.G., Slutzki, G. (eds.) Grammatical Inference, 4th International Collo-
quium, ICGI-98, Ames, Iowa, USA, July 12-14, 1998, Proceedings. Lecture Notes in
Computer Science, vol. 1433, pp. 1-12. Springer (1998). https://doi.org/10.1007/
BFB0054059

Lauffer, N., Yalcinkaya, B., Vazquez-Chanlatte, M., Shah, A., Seshia, S.A.: Learn-
ing deterministic finite automata decompositions from examples and demonstra-
tions. In: Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in Computer-Aided

https://doi.org/10.1007/BFB0054076
https://doi.org/10.1162/089120100561601
https://doi.org/10.5281/zenodo.12528885
https://doi.org/10.5281/zenodo.12528885
https://arxiv.org/abs/2405.18871
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1007/11814771_40
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1016/J.PATCOG.2005.01.003
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/BFB0054059
https://doi.org/10.1007/BFB0054059

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 65

Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, pp. 1-6. IEEE (2022).
https://doi.org/10.34727/2022 /ISBN.978-3-85448-053-2 39

Myhill, J.: Finite automata and the representation of events. In: Technical Report
WADD TR-57-624, pp. 112-137 (1957)

Neider, D.: Computing minimal separating DFAs and regular invariants using SAT
and SMT solvers. In: Chakraborty, S., Mukund, M. (eds.) Automated Technology
for Verification and Analysis - 10th International Symposium, ATVA 2012, Thiru-
vananthapuram, India, October 3-6, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7561, pp. 354-369. Springer (2012). https://doi.org/10.1007/978-3-
642-33386-6_ 28

Neider, D., Jansen, N.: Regular model checking using solver technologies and
automata learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal Meth-
ods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA, May 14-
16, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7871, pp. 16-31.
Springer (2013). https://doi.org/10.1007,/978-3-642-38088-4 2

Nerode, A.: Linear automaton transformations. Am. Math. Soc. 4 541-544 (1958)
Oncina, J., Garcia, P.: Inferring regular languages in polynomial updated time. In:
Pattern Recognition and Image Analysis: Selected Papers from the IVth Spanish
Symposium, pp. 49-61. World Scientific (1992)

Pfleeger, C.P.: State reduction in incompletely specified finite-state machines. IEEE
Trans. Computers 22(12), 1099-1102 (1973). https://doi.org/10.1109/T-C.1973.
223655

Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM 40(1), 95-142 (1993). https://doi.org/10.
1145/138027.138042

Smetsers, R., Fiterau-Brostean, P., Vaandrager, F.W.: Model learning as a satisfia-
bility modulo theories problem. In: Klein, S.T., Martin-Vide, C., Shapira, D. (eds.)
Language and Automata Theory and Applications - 12th International Conference,
LATA 2018, Ramat Gan, Israel, April 9-11, 2018, Proceedings. Lecture Notes in
Computer Science, vol. 10792, pp. 182-194. Springer (2018). https://doi.org/10.
1007/978-3-319-77313-1 14

Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata: Behavior And Synthesis.
Elsevier (1973)

Ulyantsev, V., Zakirzyanov, 1., Shalyto, A.: BFS-based symmetry breaking predi-
cates for DFA identification. In: Dediu, A., Formenti, E., Martin-Vide, C., Truthe,
B. (eds.) Language and Automata Theory and Applications - 9th International
Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings. Lecture Notes
in Computer Science, vol. 8977, pp. 611-622. Springer (2015). https://doi.org/10.
1007/978-3-319-15579-1 48

Verwer, S., Hammerschmidt, C.A.: flexfringe: a passive automaton learning pack-
age. In: 2017 IEEE International Conference on Software Maintenance and Evolu-
tion, ICSME 2017, Shanghai, China, September 17-22, 2017, pp. 638—642. IEEE
Computer Society (2017). https://doi.org/10.1109/ICSME.2017.58

Zakirzyanov, 1., Morgado, A., Ignatiev, A., Ulyantsev, V., Marques-Silva, J.: Effi-
cient symmetry breaking for sat-based minimum DFA inference. In: Martin-Vide,
C., Okhotin, A., Shapira, D. (eds.) Language and Automata Theory and Applica-
tions - 13th International Conference, LATA 2019, St. Petersburg, Russia, March
26-29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11417, pp. 159—
173. Springer (2019). https://doi.org/10.1007/978-3-030-13435-8 12

https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_39
https://doi.org/10.1007/978-3-642-33386-6_28
https://doi.org/10.1007/978-3-642-33386-6_28
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1145/138027.138042
https://doi.org/10.1145/138027.138042
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-15579-1_48
https://doi.org/10.1007/978-3-319-15579-1_48
https://doi.org/10.1109/ICSME.2017.58
https://doi.org/10.1007/978-3-030-13435-8_12

66 D. Dell’Erba et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Visualizing Game-Based Certificates
for Hyperproperty Verification

Raven Beutner®™ ®, Bernd Finkbeiner®, and Angelina Gobl

M CISPA Helmbholtz Center for Information Security, M
Artifact Saarbriicken, Germany Artifact
valuation Evaluation

* {raven.beutner,finkbeiner,angelina.goebl}@cispa.de * *

Available

Abstract. Hyperproperties relate multiple executions of a system and
are commonly used to specify security and information-flow policies.
While many verification approaches for hyperproperties exist, provid-
ing a convincing certificate that the system satisfies a given property is
still a major challenge. In this paper, we propose strategies as a suit-
able form of certificate for hyperproperties specified in a fragment of the
temporal logic HyperLTL. Concretely, we interpret the verification of a
HyperLTL property as a game between universal and existential quantifi-
cation, allowing us to leverage strategies for the existential quantifiers as
certificates. We present HyGaViz, a browser-based visualization tool that
lets users interactively explore an (automatically synthesized) witness
strategy by taking control over universally quantified executions.

1 Introduction

Hyperproperties [17] relate multiple execution traces of a system and occur
frequently when reasoning about information flow [35,38], robustness [12,15],
independence [3], knowledge [10,14], and causality [19,25]. A popular logic for
specifying temporal hyperproperties is HyperLTL [16], an extension of LTL with
explicit quantification over execution traces. For example, we can use HyperLTL
to express a simple non-interference property as follows:

Vﬂ—l‘Hﬂ—Q'D(lﬂ'l A Z7T2) A D(Oﬂ'l A 071'2) /\D(ﬁhﬂz) (QONI)

Informally, this property — called non-inference [33] — requires that any possible
observation made via the low-security input (modeled via atomic proposition
1) and output (o) is compatible with a fixed “dummy” sequence of high-security
inputs (h) [33]. Concretely, ¢y states that for any execution 7, some execution
o combines the low-security observations of 71 with fixed dummy values for h;
here, we require that h is constantly set to false, i.e., O(—hnr,) (cf. [23]).

Verification and Certificates. In recent years, many verification techniques for
temporal hyperproperties (expressed, e.g., in HyperLTL) have been developed
[2,8,9,16,24,30,35]. However, while checking if a given system satisfies a Hyper-
LTL property is important, an often equally critical aspect is to convince the user

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 67-75, 2025.
https://doi.org/10.1007/978-3-031-71177-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_5&domain=pdf
http://orcid.org/0000-0001-6234-5651
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0009-0009-2331-4049
https://doi.org/10.1007/978-3-031-71177-0_5

68 R. Beutner et al.

of this satisfaction using explainable certificates. For trace properties — specified,
e.g., in LTL — user-understandable certificates for positive and negative veri-
fication results have been explored extensively [4,5,13,27,28,32]. Likewise, for
alternation-free HyperLTL formulas (i.e., formulas that use a single type of quan-
tifier), known techniques for LTL apply [29]. In contrast, generating explainable
certificates for the satisfaction of alternating properties like ¢y, is more com-
plex. For example, ¢ states that for any trace 71, there exists some matching
execution mo. A certificate must thus implicitly define a mapping that, given a
concrete choice for 7y, produces a witness trace mo. Defining and understanding
such a mapping can be complex, even for simple systems with few states.

Strategies as Certificates. In this paper, we propose strategies as certificates for
the satisfaction of V*3* HyperLTL formulas (i.e., formulas where an arbitrary
number of universal quantifiers is followed by an arbitrary number of existential
quantifiers; e.g., ¢on7). To accomplish this, we take a game-based verification
perspective [6,20]. The key idea is to interpret the verification of a Vrm;.3my. 4
formula (where % is the LTL body) as a game between universal and existential
quantification. The V-player controls the universally quantified trace by mov-
ing through the system (thereby producing a trace m), and the 3-player reacts
with moves in a separate copy of the system (thereby producing a trace ms).
Any strategy for the 3-player that ensures that 7w and mo, together, satisfy v,
implies that the formula is satisfied on the given system. We can think of a win-
ning strategy as a step-wise Skolem function that, for every trace 7, iteratively
constructs a witnessing trace .

Visualizing Strategies. In this paper, we introduce HyGaViz, a verification and
visualization tool for strategies in the context of HyperLTL verification. In
HyGaViz, the user can input (possibly identical) finite-state transition systems
and a HyperLTL formula ¢. HyGaViz then automatically attempts to synthe-
size a strategy that witnesses the satisfaction of . If a strategy exists, HyGaViz
displays it to the user. Our key insight is that we can let the user explore the
strategy interactively by taking control of universally quantified traces. That is,
instead of displaying the strategy in its entirety (e.g., as a table or decision dia-
gram), we let the user play a game. In each step of the game, the user decides
on a successor state for each universally quantified system (i.e., the user takes
the role of the V-player), and HyGaViz automatically updates the states of all
existentially quantified systems (i.e., HyGaViz plays the role of the 3-player).

Example 1. We consider a simple verification instance in Fig.1. On HyGaViz’s
initial page (Fig.1a), we create two (in this case, equal) transition systems
(labeled A, B) over atomic propositions (APs) o and h, depicted in the top
right. In each system, each state is identified by a natural number and lists all
APs that hold in the given state. From initial state 0, the system can branch on
AP h (states 1 and 2), but, in either case, AP o is set in the next step (states
3 and 4). We want to verify ¢yy, which — due to the absence of low-security
input [— simplifies to VA.3B.0(0o4 < op) AO(—hpg). Note how, in HyGaViz, the

Visualizing Game-Based Certificates for Hyperproperty Verification 69

HyGavi
e c Pa [7][] | svstoms Bl
((ha A =04 A =05) ¥ (n A 04 A 08)) System: A mﬁm ﬂ sysem:z (5 [2][¢] ﬂ

(@0)

@’@ @ ©

g

{Own v ¥o) A (0

Formula: (04 <> 05) A O (hp)
N verticaton Tesi | [woaiy Tas |

Determinstic Parity Automaton Universal lly-Quantified Systems.

(s A =04 A =03) ¥ (g A 04 A 0R))

Vou) A 1)

{@.«m V Yoy (o

Existentially-Quantified Systems.

Formula: 0(04 < 05) A O(=hp) System: B B

Information

I = N @\

I N @
@

Fig. 1. Screenshots of HyGaViz. (Color figure online)

quantifier prefix is determined implicitly by the order and quantifier type of the
systems, and the LTL body is displayed on the bottom left. The user can change
the systems, the quantification type, the name, and the order of the systems
using the buttons above each system. Upon entering the LTL formula, HyGaViz
automatically displays a deterministic automaton for the property (top left).
After clicking the Verify button (top right), the user is directed to the strategy
simulation page (depicted in Fig. 1b). During the simulation, HyGaViz displays
the current state of the automaton and the system state for A and B (in green)
and lets the user control the state of (the universally quantified) system A. By
hovering over the successor state of system A, HyGaViz highlights the next state
for system B (in yellow). In this instance, systems A and B are both in state 0.
When the user moves system A to state 1, HyGaViz reacts by moving system B

70 R. Beutner et al.

to state 2 (as it has to ensure [(J(—hp)). By clicking on a successor state for A,
the user locks the choice, and the game progresses to the next round. A

Related Work. HyperVis [29] is a tool for the visualization of counterexam-
ple traces for alternation-free V* formulas. Notably, a counterexample to a V¥
property is a concrete list of k traces, so visualization is possible by highlight-
ing the relevant parts of the traces, potentially using causality-based techniques
[18]. Our visualization for properties involving quantifier alternations is rooted
in the game-based verification approach for HyperLTL [6,20], which becomes
complete when adding prophecies [6] (see Sect.2.2). To the best of our knowl-
edge, we are the first to propose a principled approach to generate and visualize
user-understandable certificates for alternating hyperproperties.

2 HyperLTL, Game-Based Verification, and Prophecies

We fix a finite set of atomic propositions AP. A transition system (TS) is a tuple
T = (S, Sinit, K, L), where S is a finite set of states, s;n;+ € S is an initial state,
kS — (29\ {0}) is a transition function, and L : S — 24F is a state labeling.
HyperLTL formulas are generate by the following grammar

Yi=ar [VAP | |OY | pUY pi=Vm|Imp|y

where a € AP is an atomic proposition, and 7 is a trace variable. In a HyperLTL
formula, we can quantify over traces in a system (bound to some trace variable),
and then evaluate an LTL formula on the resulting traces. In the LTL body,
formula a, expresses that AP a should hold in the current step on the trace
bound to trace variable 7. See [23] for details.

2.1 Game-Based Verification

HyGaViz’s verification certificates are rooted in a game-based verification method
[6]. Given a V*3* HyperLTL formula Vry ... V. Imgiq - . . ITgyp. ¢, we view ver-
ification as a game between the V-player (controlling traces 7y, ..., 7) and the
I-player (controlling traces mgy1 ..., Tg+i). Each state of the game has the form
(S1y- -+, Sk+1,q), Where s1,..., s, € S are system states (representing the cur-
rent state of my,..., 74, respectively), and ¢ is the state of a deterministic
parity automaton (DPA) that tracks the acceptance of the LTL body . When
the game is in state (s1,...,Sk+1,q), the V-player first fixes successor states
sh,..., s, for m,...,m; (such that s, € k(s;) for all 1 < ¢ < k); the 3-player
responds by selecting successor states séﬁ_l, ceey séﬁl for mg41, ..., Tkys; and the
game repeats from state (sq,...,s,,;,¢") (where ¢’ is the updated DPA state).

Visualizing Game-Based Certificates for Hyperproperty Verification 71

HyGaViz
Deterministic Parity Automaton m Systems, F‘
] System: A B System: B EB
&, 3
i \@b‘ 4, - /S") (@ “j‘
SO G | |
/ *
0
Prophecies]]
Formula: O8I (a5« Oax) P1:Oa,
(a)

Universally-Quantified Systems

System: A

Violation of previously chosen prophecies!

Return to a previous game position:
0 3 0 - 0

1 1 0 X 0
2 0 0 v 1

Prophecies
P1: Oay

26
(b) (©)

Fig. 2. Screenshots of HyGaViz when using prophecies.

Visualizing Game-Based Verification. In HyGaViz, the user can create a ver-
ification scenario by manually creating finite-state transition systems and a
HyperLTL formula; see Fig. 1a. Note how the quantification prefix is determined
implicitly by the order of the systems. In particular, the traces are resolved on
individual (potentially different) transition systems. During simulation (cf. the
example in Fig. 1b), we visualize a game state (si,...,Sg+s,q) by marking the
current state of each system — separated into user-controlled (universally quan-
tified) systems (top right) and strategy-controlled (existentially quantified) ones
(bottom right) — and display the current state of the DPA (top left). The user
takes the role of the V-player and, in each step, determines successor states for all
universally quantified systems. Once successor states for all universally quantified
systems are confirmed, HyGaViz automatically updates existentially quantified
systems (and the DPA state) based on the internally computed strategy, and the
game continues to the next stage. Moreover, HyGaViz highlights the next states
when the user hovers over possible successor states for the universally quantified
systems (once successor states for all but one universally quantified system are
confirmed). Using the information tab in the bottom left, the user can jump to

72 R. Beutner et al.

previous game states and explore the reaction of the strategy to different choices
for the universally quantified systems.

2.2 Prophecies

In our game, the 3-player only observes a finite prefix of the traces produced by
the V-player (or, equivalently, the user of HyGaViz) and is thus missing informa-
tion about the future. We can counteract this by using prophecies [1], which are
LTL formulas over trace variables 71, ..., 7 [6]. Given an LTL prophecy formula
0, the V-player (i.e., the user) has to, in each step, decide if its future behavior
(on my,...,m) satisfies 6. If the V-player decides that 6 holds (resp. does not
hold), the 3-player can play under the assumption that the future behavior of
the V-player satisfies (resp. violates) 6. See [6] for details.

Ezxample 2. We illustrate prophecies with the example in Fig. 2. The two systems
A and B in Fig. 2a generate all traces over AP a, and the HyperLTL formula
VA.3B.OO(ap < Oax) requires that trace B predicts the future behavior of
A. Without prophecies, the 3-player loses: No matter what successor state the
J-player picks, the V-player can, in the next step, violate the prediction of the
J-player. HyGaViz communicates the absence of a winning strategy if the user
pushes the Verify button. Instead, the user can add the LTL prophecy Oaa
(cf. Fig. 2a). During simulation, the user (who takes the role of the V-player) has
to, in each step, fix a successor state for system A and determine if prophecy
Oay holds. We depict an excerpt of the simulation page in Fig. 2b. As expected,
the strategy for the 3-player (computed automatically by HyGaViz) can use the
prophecy to win: For example, if the user states that Oa4 holds (so the 3-player
can assume that a hold in the next step in A), HyGaViz moves system B to
state 1. If the user violates a previous prophecy decision — e.g., by stating that
prophecy O a4 holds but, in the next step, moving system A to state 0 where AP
a does not hold — HyGaViz detects this violation and forces the user to restart
from an earlier state of the game (Fig. 2c). A

3 HyGaViz: Tool Overview

HyGaViz consists of a backend verification engine written in F#. The backend
uses spot [22] to translate LTL formulas to DPAs and oink [21] to synthesize
a strategy for the 3-player. We use a stateless Node. js [37| backend that com-
municates with the verification engine via JSON. HyGaViz’s frontend is written
in JavaScript and uses Cytoscape.js [26] to render transition systems and
automata.

4 Conclusion

We have proposed the first method to generate and visualize certificates for
the satisfaction of V*3* HyperLTL formulas. Our tool, HyGaViz, allows users

Visualizing Game-Based Certificates for Hyperproperty Verification 73

to interactively explore the complex dependencies between multiple traces by
challenging a strategy for existentially quantified traces. Ultimately, HyGaViz is a
first step to foster trust in (and understanding of) verification results for complex
alternating hyperproperties, as is needed to, e.g., certify information-flow policies
like ppnr. For now, HyGaViz can handle (small) finite state systems, which we
visualize as directed graphs. The underlying strategy-centered approach also
applies to larger (potentially infinite-state) systems represented symbolically [7].
In future work, one could extend HyGaViz to such systems by exploring different
visualization approaches for larger systems (31,34, 36].

Acknowledgments. This work was partially supported by the European Research
Council (ERC) Grant HYPER (101055412) and by the German Research Foundation
(DFG) as part of TRR 248 (389792660).

Data Availability Statement. HyGaViz is available at [11].

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253-284 (1991). https://doi.org/10.1016/0304-3975(91)90224-P
2. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. (2011). https://doi.org/10.1017/S0960129511000193
3. Bartocci, E., Henzinger, T.A., Nickovic, D., da Costa, A.O.: Hypernode automata.
In: International Conference on Concurrency Theory, CONCUR 2023 (2023).
https://doi.org/10.4230/LIPICS.CONCUR.2023.21
4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterex-
amples using causality. In: International Conference on Computer Aided Verifica-
tion, CAV 2009 (2009). https://doi.org/10.1007/978-3-642-02658-4 11
5. Beschastnikh, I., Liu, P., Xing, A., Wang, P., Brun, Y., Ernst, M.D.: Visualizing
distributed system executions. ACM Trans. Softw. Eng. Methodol. (2020). https://
doi.org/10.1145/3375633
6. Beutner, R., Finkbeiner, B.: Prophecy variables for hyperproperty verification. In:
Computer Security Foundations Symposium, CSF 2022 (2022). https://doi.org/
10.1109/CSF54842.2022.9919658
7. Beutner, R., Finkbeiner, B.: Software verification of hyperproperties beyond k-
safety. In: International Conference on Computer Aided Verification, CAV 2022
(2022). https://doi.org/10.1007/978-3-031-13185-1 17
8. Beutner, R., Finkbeiner, B.: AutoHyper: explicit-state model checking for Hyper-
LTL. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2023 (2023). https://doi.org/10.1007/978-3-031-
30823-9 8
9. Beutner, R., Finkbeiner, B.: Non-deterministic planning for hyperproperty verifica-
tion. In: International Conference on Automated Planning and Scheduling, ICAPS
2024 (2024). https://doi.org/10.1609/ICAPS.V3411.31457
10. Beutner, R., Finkbeiner, B., Frenkel, H., Metzger, N.: Second-order hyperprop-
erties. In: International Conference on Computer Aided Verification, CAV 2023
(2023). https://doi.org/10.1007/978-3-031-37703-7 15

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.4230/LIPICS.CONCUR.2023.21
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1109/CSF54842.2022.9919658
https://doi.org/10.1109/CSF54842.2022.9919658
https://doi.org/10.1007/978-3-031-13185-1_17
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.1609/ICAPS.V34I1.31457
https://doi.org/10.1007/978-3-031-37703-7_15

74

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

R. Beutner et al.

Beutner, R., Finkbeiner, B., Gobl, A.: HyGaViz: visualizing game-based certificates
for hyperproperty verification (2024). https://doi.org/10.5281/zenodo.12206584
Biewer, S., et al.: Conformance relations and hyperproperties for doping detection
in time and space. Log. Methods Comput. Sci. 18, 14 (2022). https://doi.org/10.
46298 /Imes-18(1:14)2022 https://doi.org/10.46298 /Imcs-18(1:14)2022

Bolton, M.L., Bass, E.J.: Using task analytic models to visualize model checker
counterexamples. In: International Conference on Systems, Man and Cybernetics,
SMC 2010 (2010). https://doi.org/10.1109/ICSMC.2010.5641711

Bozzelli, L., Maubert, B., Pinchinat, S.: Unifying hyper and epistemic temporal log-
ics. In: International Conference on Foundations of Software Science and Computa-
tion Structures, FoSSaCS 2015 (2015). https://doi.org/10.1007/978-3-662-46678-
0 11

Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM (2012). https://doi.org/10.1145/2240236.2240262
Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sanchez,
C.: Temporal logics for hyperproperties. In: International Conference om Princi-
ples of Security and Trust, POST 2014 (2014). https://doi.org/10.1007/978-3-642-
54792-8 15

Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. (2010).
https://doi.org/10.3233/JCS-2009-0393

Coenen, N., et al.: Explaining hyperproperty violations. In: International Confer-
ence on Computer Aided Verification, CAV 2022 (2022). https://doi.org/10.1007/
978-3-031-13185-1 20

Coenen, N., Finkbeiner, B., Frenkel, H., Hahn, C., Metzger, N., Siber, J.: Tem-
poral causality in reactive systems. In: International Symposium on Automated
Technology for Verification and Analysis, ATVA 2022 (2022). https://doi.org/10.
1007/978-3-031-19992-9 13

Coenen, N., Finkbeiner, B., Sanchez, C., Tentrup, L.: Verifying hyperliveness.
In: International Conference on Computer Aided Verification, CAV 2019 (2019).
https://doi.org/10.1007,/978-3-030-25540-4 7

van Dijk, T.: Oink: an implementation and evaluation of modern parity game
solvers. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2018 (2018). https://doi.org,/10.1007/978-3-319-
89960-2 16

Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: what’s new? In: International
Conference on Computer Aided Verification, CAV 2022 (2022). https://doi.org/
10.1007/978-3-031-13188-2 9

Finkbeiner, B.: Logics and algorithms for hyperproperties. ACM SIGLOG News
(2023). https://doi.org/10.1145/3610392.3610394

Finkbeiner, B., Rabe, M.N., Sanchez, C.: Algorithms for model checking HyperLTL
and HyperCTL*. In: International Conference on Computer Aided Verification,
CAV 2015 (2015). https://doi.org/10.1007/978-3-319-21690-4 3

Finkbeiner, B., Siber, J.: Counterfactuals modulo temporal logics. In: International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR
2023 (2023). https://doi.org/10.29007/QTWT7

Franz, M., Lopes, C.T., Huck, G., Dong, Y., Stmer, S.O., Bader, G.D.:
Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics
32, 309-311 (2016). https://doi.org/10.1093/BIOINFORMATICS /BT V557
Griggio, A., Roveri, M., Tonetta, S.: Certifying proofs for LTL model checking. In:
Formal Methods in Computer Aided Design, FMCAD 2018 (2018). https://doi.
org/10.23919/FMCAD.2018.8603022

https://doi.org/10.5281/zenodo.12206584
https://doi.org/10.46298/lmcs-18(1:14)2022
https://doi.org/10.46298/lmcs-18(1:14)2022
https://doi.org/10.46298/lmcs-18(1:14)2022
https://doi.org/10.1109/ICSMC.2010.5641711
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1145/2240236.2240262
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1145/3610392.3610394
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.29007/QTW7
https://doi.org/10.1093/BIOINFORMATICS/BTV557
https://doi.org/10.23919/FMCAD.2018.8603022
https://doi.org/10.23919/FMCAD.2018.8603022

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Visualizing Game-Based Certificates for Hyperproperty Verification 75

Groce, A., Kroening, D., Lerda, F.: Understanding counterexamples with explain.
In: International Conference on Computer Aided Verification, CAV 2004 (2004).
https://doi.org/10.1007 /978-3-540-27813-9 35

Horak, T., et al.: Visual analysis of hyperproperties for understanding model check-
ing results. IEEE Trans. Vis. Comput. Graph. (2022). https://doi.org/10.1109/
TVCG.2021.3114866

Hsu, T., Sanchez, C., Bonakdarpour, B.: Bounded model checking for hyperprop-
erties. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2021 (2021). https://doi.org/10.1007/978-3-030-
72016-2 6

Jerding, D.F., Stasko, J.T., Ball, T.: Visualizing interactions in program executions.
In: International Conference on Software Engineering, ICSE 1997 (1997). https://
doi.org/10.1145/253228.253356

Kasenberg, D., Thielstrom, R., Scheutz, M.: Generating explanations for temporal
logic planner decisions. In: International Conference on Automated Planning and
Scheduling, ICAPS 2020 (2020). https://doi.org/10.1609 /icaps.v30i1.6740
McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Symposium on Security and Privacy, SP 1994 (1994).
https://doi.org/10.1109/RISP.1994.296590

Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M.: Visualizing programs with Jeliot
3. In: Conference on Advanced Visual Interfaces, AVI 2004 (2004). https://doi.
org/10.1145/989863.989928

Rabe, M.N.: A temporal logic approach to information-flow control. Ph. D. thesis,
Saarland University (2016)

Rajala, T., Laakso, M., Kaila, E., Salakoski, T.: Effectiveness of program visual-
ization: a case study with the ViLLE tool. J. Inf. Technol. Educ. Innov. Pract. 7,
15 (2008)

Tilkov, S., Vinoski, S.: Node.js: using javascript to build high-performance network
programs. IEEE Internet Comput. 14, 80-83 (2010). https://doi.org/10.1109/MIC.
2010.145

Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Computer Security Foundations Workshop CSFW 2003 (2003).
https://doi.org/10.1109/CSFW.2003.1212703

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1145/253228.253356
https://doi.org/10.1145/253228.253356
https://doi.org/10.1609/icaps.v30i1.6740
https://doi.org/10.1109/RISP.1994.296590
https://doi.org/10.1145/989863.989928
https://doi.org/10.1145/989863.989928
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/CSFW.2003.1212703
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Chamelon : A Delta-Debugger for OCaml

Milla Valnet’23®) Nathanaélle Courant®, Guillaume Bury?,
Pierre Chambart?, and Vincent Laviron®

! Ecole Normale Supérieure, Université PSL, 75005 Paris, France '
FM . . FM
Artitact 8 . m1€|.l/a.valnet@11p6.fr ‘ Artifact
Evaluation Sorbonne Université, CNRS, LIP6, 75005 Paris, France Evaluation

*

3 OCamlPro, 75014 Paris, France

X KK
Reusable

Abstract. Tools that manipulate OCaml code can sometimes fail even
on correct programs. Identifying and understanding the cause of the
error usually involves manually reducing the size of the program, so as
to obtain a shorter program causing the same error—a long, sometimes
complex and rarely interesting task. Our work consists in automating
this task using a minimiser, or delta-debugger. To do so, we propose a
list of unitary heuristics, i.e. small-scale reductions, applied through a
dichotomy-based state-of-the-art algorithm. These proposals are imple-
mented in the free Chamelon tool. Although designed to assist the devel-
opment of an OCaml compiler, Chamelon can be adapted to all kinds of
projects that manipulate OCaml code. It can analyse multifile projects
and efficiently minimise real-world programs, reducing their size by one
to several orders of magnitude. It is currently used to assist the industrial
development of the flambda2 optimising compiler.

1 Introduction

Program errors sometimes occur oten large inputs, of hundreds or even thousands
of lines. Identifying and isolating the error is often a long and tedious task, which
generally involves manually minimising the size of the input as much as possible.
The aim of a minimiser is to automate this work.

Sometimes called delta-debugging, this idea was developed in 1999 by
Andreas Zeller [11] in order to isolate the cause of a program error by iteratively
applying simplifications. It is defined as a methodology reducing a problem while
preserving a certain property—here, the error. The tool thus does not eliminate
the error, but on the contrary points to it.

This method is already used for languages such as C, with C-reduce [1],
SMT-lib [6], or via implementations of Zeller’s original work [11]. Nonetheless,
the problem remains well studied. Zeller worked with Hildebrandt [10] to identify
the inputs and interactions that cause programs’ failure, using Mozilla browser
user inputs as case study, and then demonstrated with Cleve [3] that delta-
debugging works just as well for identifying errors due to the code itself as
to its parameters. Seeing any debugging tasks as special cases of minimisation
problems, he uses this method with Choi [2] for thread scheduling failures, and

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 76-83, 2025.
https://doi.org/10.1007/978-3-031-71177-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_6

Chamelon : A Delta-Debugger for Ocaml 77

with Cleve [4] to identify which variables and at which execution step the error
occurs. Finally, Leitner et al. combine this approach with slicing to reduce the
size of failure cases in random test generation. Some also improved the state of
the art with machine learning [5], probabilistic algorithms [9], etc.

In OCaml, however, the existing debugging tools are limited to type errors [7].
This project therefore proposes the first general-purpose minimiser for OCaml
code, Chamelon. Although initially designed to assist an OCaml compiler devel-
opment in the industry, such a tool may prove useful for other projects using or
manipulating OCaml code. This work makes the following contributions:

e a list of OCaml-specific minimisation heuristics;

e combined with a state-of-the-art technique to perform dichotomy-based min-
imisations;

e an OCaml implementation supporting multi-file projects and runtime errors
available as open-source software;

e with a modular design to support the development of various kinds of OCaml
projects.

Outline. Sect. 2 presents the tool usage. Section 3 explains the unitary heuristics
proposed to minimise the program, while Sect. 4 explains how they are combined.
Section 5 shows extensions of this work.

2 Tool Usage

2.1 Development Context

The tool Chamelon is a delta-debugger for OCaml programs, available as open-
source software on GitHub!. Earlier results on Chamelon were presented in
French [8]. It was originally designed to support the development of the flambda2
optimising compiler?, developed by OCamlPro and used in particular by Jane
Street. Indeed, when flambda2 failed on programs correct according to the stan-
dard compiler, identifying the error cause in flambda2 was not always easy.
However, Chamelon is built in a modular way, reducing a program size while
ensuring an user-given condition, and can be used in various context.

2.2 Usage

chamelon input -c command -e error

To use chamelon, all we need to do is giving it an input file, a command
to execute and an error, that is, the string we want to find in the command’s
standard output. chamelon then prints a log of applied transformations in the
standard output, and when done, the output is a minimised version of the input,

! https://github.com/Ekdohibs/chamelon.
2 https://github.com/ocaml-flambda/flambda-backend.

https://github.com/Ekdohibs/chamelon
https://github.com/ocaml-flambda/flambda-backend

78 M. Valnet et al.

such that the command output still contains the error. To minimise a set of files,
we only need to provide the command with several inputs. This way, Chamelon
can be used in different settings.

A simple real-world use case is available online®. By following instructions in
README-CHAMELON.md, we can make Chamelon reduce the size of an input file
trigerring a Fatal_error in flambda2, to help understand the origin of the error.

2.3 Experimental Results

The tool is currently used daily at OCamlPro to help lambda2 development for
almost a year. It gave results on real cases of failure, significantly reducing the
output program size. Among the experimental results, it was able to minimise a
650-lines program? that failed to compile into a program of just 6 lines causing
the same error, identifying a problem in the optimisation of pattern matching®:

let offset “byte_order byte_n =

match byte_order with | “Little_endian -> O | “Big_endian -> byte_n
let pack_unsigned_16 “byte_order =

__ignore__ ((offset) “byte_order 0);

__ignore__ ((__dummy__ ()) ((offset) “byte_order 1));

__dummy__ ()

o o A W N R

We also tested the minimiser on larger programs. For example, given a 3842-
lines program on which the compiler was failing, the minimiser reduced it to 22
lines, in around thirty minutes on an average laptop. Often, the output can still
be minimised by hand. However, the tool automates a large part of the work.
Finally, in a multi-file framework, the minimiser is also able to merge or delete
files, resulting in a minimised copy of the project that triggered the error.

Note that reducing the size of the program is not the only interesting action
of the minimiser. Indeed, when a simplification is not done, it means that it
removed the error, which can therefore be exploited. We not only benefit from
the size-reducing, but also from the minimality of the program with regard to
the heuristics.

3 Heuristics

The concept of the approach is to compose and combine different unitary heuris-
tics, applying each of them as much as possible before trying the next. We present
here the different heuristics implemented to minimise an OCaml program. It
should be noted that, having initially targeted compilation problems, our app-
roach aims much more at identifying errors caused by a certain code structure
than by a certain semantics or execution: this therefore guides our choice of
heuristics.

3 https://github.com/Ekdohibs/flambda-backend /tree/chamelon-demo.
https://github.com/janestreet/core_kernel /blob/master/binary_packing/src/binary_packing.ml.
5 fixed by https://github.com/ocaml-flambda/flambda-backend /pull /1073.

https://github.com/Ekdohibs/flambda-backend/tree/chamelon-demo
https://github.com/janestreet/core_kernel/blob/master/binary_packing/src/binary_packing.ml
https://github.com/ocaml-flambda/flambda-backend/pull/1073

Chamelon : A Delta-Debugger for Ocaml 79

3.1 Suppress Definitions

Delete definitions starting from the end. The first simple heuristics consists
in deleting all definitions—of variables, types, modules, etc.—starting from
the end. It aims at removing the code located after error’s cause, on which
the error does not depend.

Replace expressions by dummy values. When definitions cannot simply
be removed, we try to replace them with the simplest possible values. The
challenge is then to determine which trivial value we want to replace our
expression with while respecting type constraint. For ground types, we simply
replace expressions of type int by 0, those of type float by 0.0, those of type
char by ’0’, those of type string by "" and those of type unit by (). For
the other types, we used:

external __dummy__ : unit -> 'a = "opaque"

Here, __dummy__ () is of type ’a, and can therefore replace an expression of
any type. It is based on the external primitive opaque: when compiled, it is
considered as a function returning an arbitrary value—here, a function of type
unit -> ’a because of the annotation. However, at runtime, it behaves like
the identity function: for this reason, the value of __dummy__() is (), causing
a type error. When targetting compilation failures, this is not a limitation.
However, to generalize the tool’s use cases, this problem will be adressed in
Sect. 5.

3.2 Simplify Abstract Data Types

Suppress constructors from ADTs. A first heuristic consists in deleting a
constructor Cons from an algebraic data type. This involves propagating this
deletion of in the code: expressions Cons(ey, ..., e,) are replaced by __dummy__
(), and patterns using Cons are simply removed.

Delete fields from record types or constructors. When deleting an entire
constructor is not possible, we instead delete its fields. After deleting its ith
field’s definition, we go through the code to delete the ith field in Cons(el, ..
,en) expressions, and the ith sub-pattern in each Cons(p1, ..,pn) pattern—
replacing variables bound by pi with __dummy__ ().

3.3 Simplify Code

Modify attributes. We remove attributes of functions, modules, etc. from
the program to make it less verbose. However, local [never|always] and
inline [never|always] to functions can also provide valuable information
about the origin of the failure, forcing the compiler’s inlining strategies.

Inline functions. Inlining a function, i.e. replacing it with its definition at call
site, can lead to additional simplifications.

80 M. Valnet et al.

Flatten modules. Flattening modules means removing variables defini-
tions from module Name = struct ... end block. To avoid name conflicts
between variables from the module and variables defined in the program, we
chose to precede the name of the variable by the name of the origin module
: this change is then propagated throughout the program.

3.4 Remove Simplification Artifacts

Situations that would not or only rarely appear in real user code may appear
after applying the above heuristics:

Remove dead code. For each variable, module and type, we go, and when not
used, we simply delete their definition.

Simplify pattern matching. When the match contains a unique one-variable
pattern, we replace match el with x -> e2 by e2 in which x has been tex-
tually substituted by el.

Sequentialize function calls. After simplifications, we may obtain a function
application of the form (__dummy__ ()) el ... en. We sequentialise its by
evaluating each argument separately, to get non-nested expressions. We use
the primitive external __ignore__ : 'a -> unit = "Yignore" . We then
transform (__dummy__ ()) el ... en into:

__ignore__ el ; ... ; __ignore__ en ; _dummy__ ()

Simplify rec and unused arguments. After replacing expressions and defi-
nitions by dummmy, arguments of a function may no longer be used. We then
delete them and propagate their deletion to all of the function’s call sites.
When the ith argument of the function f is deleted, all occurrences of f are
replaced by (fun x1 ... xn -> f x1 ... xi-1 xi+1 ... xn). Similarly,
when the function is no longer recursive, we remove the keyword rec.

Simplify sequences. Expressions of the form (); e are replaced by e.

4 The Iteration

A unitary heuristic can possibly be applied at different points in a program: when
trying to delete a constructor from an ADT, many constructors are possible
candidates. We call "n-th program point” the n-th position, while reading the
program’s AST, where it can be performed. When trying to apply it at a program
point—e.g. deleting one of those constructors, there are three possible cases:

— This simplification does not remove the error: the program has been reduced!
— This simplification removes the error: we do not want to apply it.
— The index of the point is greater than that of the last modifiable point.

We iterate this way: we take as input the program, a heuristic, and a position.
We then attempt to apply the heuristics at this position. If minimisation is
possible, we iterate over the new program without incrementing the position,
since after simplifying the nth point, the next modifiable point is the new nth.
If minimisation is not possible, the next position is examined. Finally, if the
position is too large, the whole program was examined, so we return.

Chamelon : A Delta-Debugger for Ocaml 81

Dichotomic Optimisation. In Chamelon, this loop is otpimized by dichotomy,
as initially suggested by Keller [11], by no longer trying to minimise locations
one by one, but rather a set of locations of length 2™. This method improves
efficiency by a factor of 10 on real programs of a few thousand lines.

Heuristics Order. The application order of the different heuristics was deter-
mined experimentally, on a small sample of tests, mainly by finishing with the
heuristics removing the simplification artefacts. For more robust and efficient
scheduling, further research and testing could prove useful.

5 Extensions

Multifiles. In real use cases, a project is made of multiple interdependant files.
We have therefore adapted Chamelon to work on such projects:

e First, we try deleting as many files as possible, in the order of dependencies;
e Then, we try merging as much files as possible;
e Finally, each remaining file is minimised with previous methods.

Note that every object modification must be propagated to all dependencies.
For example, if an argument of a function £ is deleted, it must be deleted at each
f call sites, in each of the program’s dependencies. To use Chamelon in multifile
mode, we need to provide it with the list of files to minimise, in dependencies
order—which can be given by ocamldep tool.

Runtime. The work presented so far focused on compile-time errors. However,
errors may also occur at runtime. To handle this, we replaced the __dummy__
values, causing runtime errors, using an algorithm which, given an input type,
generates an expression of the same type, as concise as possible.

Compatibility. The implementation uses OCaml compiler libraries to manipulate
abstract syntax trees. A compatibility library is implemented, so that changing
of compiler version only requires some information about the new AST.

Adding Heuristics. Implementing a new heuristics is low-cost: we only need to
write the transformation through existing mappers function for OCaml AST.

6 Conclusion

In the future, an interesting extension would be to make the Chamelon minimiser
compatible with dune—the OCaml build system. Finally, through its use in
real-world examples, we aim at improving existing heuristics and finding new
ones, so as to make it more robust, more efficient and faster. In the end, this
work combines various minimisation heuristics with a state-of-the-art iteration
technique and a modular design, offering the first delta-debugger for and in
OCaml, available for its community!

Artifact. The artifact associated to this paper and demonstrating the use of Chamelon
on different programs is available at https://doi.org/10.5281/zenodo.12520654.

https://doi.org/10.5281/zenodo.12520654

82 M. Valnet et al.

References

1. C-reduce project. https://github.com/csmith-project/creduce

2. Choi, J.D., Zeller, A.: Isolating failure-inducing thread schedules. In: Proceedings
of the 2002 ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 210-220 (2002)

3. Cleve, H., Zeller, A.: Finding failure causes through automated testing. In: Ducassé,
M. (ed.) Proceedings of the Fourth International Workshop on Automated Debug-
ging, AADEBUG 2000, Munich, Germany, 28—-30 August 2000 (2000). https://arxiv.
org/abs/cs/0012009

4. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of the
27th International Conference on Software Engineering, pp. 342-351 (2005)

5. Heo, K., Lee, W., Pashakhanloo, P., Naik, M.: Effective program debloating via
reinforcement learning. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, pp. 380-394. Association for
Computing Machinery, New York (2018). https://doi.org/10.1145/3243734.3243838

6. Kremer, G., Niemetz, A., Preiner, M.: ddSMT 2.0: better delta debugging for the
SMT-LIBv2 Language and friends. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12760, pp. 231-242. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81688-9_11

7. Sharrad, J., Chitil, O.: Refining the delta debugging of type errors. In: Proceed-
ings of the 33rd Symposium on Implementation and Application of Functional
Languages, IFL 2021, pp. 10-19. Association for Computing Machinery, New York
(2022). https://doi.org/10.1145/3544885.3544888

8. Valnet, M., Courant, N., Bury, G., Chambart, P., Laviron, V.: Chamelon: un min-
imiseur pour et en ocaml. In: 35es Journées Francophones des Langages Applicatifs
(JFLA 2024) (2024)

9. Wang, G., Shen, R., Chen, J., Xiong, Y., Zhang, L.: Probabilistic delta debug-
ging. In: Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2021, pp. 881-892. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3468264.3468625

10. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183-200 (2002). https://doi.org/10.1109/32.988498

11. Zeller, A.: Yesterday, my program worked. today, it does not. why? SIGSOFT
Softw. Eng. Notes 24(6), 253-267 (1999). https://doi.org/10.1145/318774.318946

https://github.com/csmith-project/creduce
https://arxiv.org/abs/cs/0012009
https://arxiv.org/abs/cs/0012009
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1145/3544885.3544888
https://doi.org/10.1145/3468264.3468625
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/318774.318946

Chamelon : A Delta-Debugger for Ocaml 83

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Automated Static Analysis of Quality
of Service Properties of Communicating

Systems
Carlos G. Lopez Pombo!®®, Agustin Eloy Martinez Sunié?®=) @),
EM and Emilio Tuosto? ™
é\rtlifq_ct .é\rilifc:p’t
il ' Centro Interdisciplinario de Telecomunicaciones, Electrénica, v:‘;::

Computacién y Ciencia Aplicada, Universidad Nacional Reusable
de Rio Negro - Sede Andina and CONICET, San Carlos de Bariloche, Argentina
cglopezpombo@unrn.edu.ar
2 CONICET-UBA. Instituto de Investigacién en Ciencias de la Computacién,
Buenos Aires, Argentina
aemartinez@dc.uba.ar
3 Gran Sasso Science Institute, L’ Aquila, Italy
emilio.tuosto@gssi.it

Abstract. We present MoCheQoS, a bounded model checker to stat-
ically analyse Quality of Service (QoS) properties of message-passing
systems. We consider QoS properties on measurable application-level
attributes as well as resource consumption metrics, for example, those
relating monetary cost to memory usage. The applicability of MoCheQoS
is evaluated through case studies and experiments. A first case study is
based on the AWS cloud while a second one analyses a communicating
system automatically extracted from code. Additionally, we consider syn-
thetically generated experiments to assess the scalability of MoCheQoS.
These experiments showed that our model can faithfully capture and
effectively analyse QoS properties in industrial-strength scenarios.

1 Introduction

Monolithic applications are steadily giving way to distributed cooperating
components implemented as services. This transition was accelerated by the

Research partly supported by the EU H2020 RISE programme under the Marie
Sklodowska-Curie grant agreement No 778233, the PRIN PNRR project DeLICE
(F53D23009130001), “by the MUR dipartimento di eccellenza”, by PNRR MUR project
VITALITY (ECS00000041), Spoke 2 ASTRA - Advanced Space Technologies and
Research Alliance , and Principles of Intelligent Behavior in Biological and Social Sys-
tems — PIBBSS, https://pibbss.ai/.

The authors thank the anonymous reviewers for their constructive comments and Omar
Inverso for his suggestions.

Carlos G. Lopez Pombo—On leave from Instituto de Ciencias de la computacién
CONICET-UBA and Departamento de Computacién, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires.

© The Author(s) 2025

A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 84-103, 2025.
https://doi.org/10.1007/978-3-031-71177-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_7&domain=pdf
http://orcid.org/0000-0002-0248-5019
http://orcid.org/0000-0003-1806-6932
http://orcid.org/0000-0002-7032-3281
https://pibbss.ai/
https://doi.org/10.1007/978-3-031-71177-0_7

Automated Static Analysis of QoS Properties of Communicating Systems 85

software-as-a-service motto triggered in the 215% century by the service-oriented
computing (SOC) paradigm, later evolved in e.g., cloud, fog, or edge computing.
These paradigms envisage software systems as applications running over globally
available computational and networking infrastructures to procure services that
can be composed on the fly so that, collectively, they can fulfil given goals [1].

Key to this trend are Service Level Agreements (SLAs) that express the terms
and conditions under which services interact. An essential element covered by
SLAs are the quantitative constraints specifying non-functional behaviour of ser-
vices. For example, the current SLA and pricing scheme for the AWS Lambda
service [2,3] declare constraints on quantifiable attributes. To the best of our
knowledge, the standard practice is to informally specify the SLA of each service
provided and then use run-time verification (like monitoring) to check quantita-
tive non-functional properties. This approach makes it difficult to check system-
level properties because SLAs (besides being informal) do not specify conditions
on the composition of services.

Since their introduction in [4], choreographies stood out for a neat separation
of concerns: choreographic models abstract away local computations focusing on
the communications among participants; therefore, they are spot on for services
since they reconcile the ‘atomistic’ view at the services’ interactions level with
the ‘holistic’ view at the system level. Indeed, choreographies require to spec-
ify a high-level description of interactions (the global view) and relate it to a
description of services’ behaviour (the local view). These are distinctive features
of the choreographic framework presented in [5] to provide reasoning capabil-
ities about the QoS of communicating systems, starting from the QoS of the
underlying services. The basic idea in [5] is: (i) to specify constraints on qual-
ity attributes of local states of services and (ii) to verify through a bounded
model-checking algorithm system-level QoS properties expressed in QL, a spe-
cific dynamic logic where temporal modalities are indexed with global choreogra-
phies (g-choreographies [6], a formal model of global views of choreographies).
A simple example can illustrate this. Let A be a service that converts files to
various formats and invokes a storage service B to save the results of requests;
both A and B charge customers depending on the size of stored data (as done
e.g. by Amazon’s DynamoDB service). The request of A to B can be abstracted
away with two finite-state machines whose states are decorated with constraints
on the two quality attributes: monetary cost (c) and data size (s) as follows:

c3E6 AB! 5<c<10, c=0, ’ AB? ’ < s <50,
{s\:?f} 90— @ { s<31() } and {5:[1))} 90 — a1 {lc(]: 0.1)14(5]'}
Intuitively, the formulae associated to states constraint the quality attributes
upon the local computation executed in the states. For instance, both services
store no data in their initial state; computation in A may cost up to five units
before the request to B, which has no cost (¢ = 0) in ¢{, since it is just waiting
to execute the input. If, as we assume, communication is asynchronous, then the
composition of A and B yields a run like 7 : sq ABL, $1 ABTs, So where first
A sends the message and then B received it. Then, the system-level QoS of the

86 C. G. L. Pombo et al.

composition of A and B would be the result of aggregating the constraints on ¢
and s along the run .

Structure & Contributions A main contribution of this paper is a tool
to support the static analysis technique of QoS properties of message-passing
systems. More precisely, we implement the bounded model-checking algorithm
introduced in [5] (and summarised in Sect.2) in a tool called MoCheQoS (after
Model-Checker for QoS properties). By combining the SMT solver Z3 [7] and the
choreographic development toolchain ChorGram [8-10] (as discussed in Sect. 3),
MoCheQoS can model-check QoS properties expressed in QL, the dynamic tem-
poral logic of [5]. MoCheQoS is publicly available at [11].

A key feature of our approach is that the analysis of QoS properties of systems
builds on the QoS constraints specified on the components of the system; as seen
in the example above, MoCheQoS features the capability of aggregating QoS
constraints along the computation of systems.

Another contribution is the empirical evaluation of our approach (Sect.4),
which is done through: (a) a case study borrowed from the AWS Cloud [12], (b)
a case study borrowed from the literature [13] where communication protocols
are automatically extracted from code, and (c) synthetic examples designed to
evaluate the scalability of MoCheQoS.

Section 5 discusses related work; Sect. 6 concludes and sketches future work.

2 Preliminaries

We fix a set P of participants (identifying interacting services) and a set M
of (types of) messages such that P n M = . The communication model
of MoCheQoS hinges on QoS-extended communicating finite-state machines [5]
(qCFSMs for short). A CFSM [14] is a finite state automaton whose transi-
tions are labelled by output or input actions. An output action AB!m (resp.
input action AB?m) specifies the output (resp. input) of a message m from A
to B (resp. received by B from A). A qCFSM is a CFSM where QoS specifi-
cations, that is first-order formulae predicating over QoS attributes, decorate
states. (Unlike CFSMs, qCFSMs feature accepting states, represented here as
double circles.)

Ezample 1. Let I'n = {5 < mem < 10,cost = 0.2 - mem} and Ip = {mem =
0, cost = 1} be two QoS specifications. In the system made of the qCFSMs

ry ABlZL AB?z1 e
e G T
ABIx O © ABlz2 O AB?x AB?22
BA7y BAly

participant A first sends message x to B, then B and A exchange messages y
and z1 an unbounded number of times, and finally A sends message z2 to B. ©

A QoS-extended communicating system (qCS for short) is a map assigning
a qCFSM to participants in P; for instance, the map S where S(A) = Ma and
S(B) = Mg are the qCFSM of Example 1 is a communicating system. Since QoS

Automated Static Analysis of QoS Properties of Communicating Systems 87

specifications do not affect communications, the semantics of qCSs is as the one
of communicating systems. Let us recall how CFSMs interact.

Communicating systems are asynchronous: the execution of an output action
AB!m allows the sender A to continue even if the receiver B is not ready to
receive; message m is appended in an infinite FIFO buffer, the channel AB, from
where B can consume m. Formally, given a communicating system S on P, we
define a labelled transition system (LTS) whose transitions relate configurations
and communication actions. A configuration is a pair (q; b) where q and b
respectively maps each participant A to a state of S(A) and each channel to a
sequence of messages; state q(A) keeps track of the state of machine S(A) and
buffer b(AB) yields the messages sent from A to B and not yet consumed. Let
so denote the initial configuration where, for all A € P, q(A) is the initial state
of S(A) and b(AB) is the empty sequence for all channels A B.

A configuration (q ; b) reaches another configuration (q' ; b') with a transi-
tion ! if there is a message m € M such that either (1) or (2) below holds:

1. /= AB!m with q(A) —a ¢ and 2./ = AB?m with q(B) —g ¢ and
a. q =q[A—] a. q =q[B~ ¢'] and
b. b = bJAB — b(AB).m] b. b=b/[AB — m.b'(AB)]

in (1) m is sent on AB while in (2) it is received. Machines and buffers not
involved in the transition are left unchanged. We write s=s’ when s reaches s’.

Let S be a communicating system, a sequence ™ = (8;,/;, Si+1)ier Where [
is an initial segment of natural numbers (i.e., i — 1 € I for each 0 < i € I) is

a run of S if s;=>s;,1 is a transition of S for all ¢ € I. The set of runs of S is
denoted as Ag and the set of runs of length k is denoted as A’g. Note that Ag
may contain runs of infinite length, the set of finite runs of S is the union of all
A% and will be denoted as Ag. Given a run 7, we define £[r] to be the sequence
of labels (/;)icr. The language of S is the set L[S] = {L[r] | 7 € A%}. Finally,
prf : A — 245 maps each run 7 € AZ to its set of finite prefixes. As usual, for
all m € A%, the empty prefix € belongs to prf (7).

The logic QL is introduced in [5] to express system-level QoS properties.
Akin DLTL [15], QL is basically a linear temporal logic where atomic formulae,
ranged over by v, constrain quantitative attributes, and the ‘until’ modality is
restricted to specific runs. The syntax of QL is given by the grammar:

Pu=T |y | 0| dve | o U

where T is the truth value ‘true’, — and v are the usual connectives for logical
negation and disjunction, and the index G of the ‘until’ modality is a global
choreography (g-choreographies for short) [6] meant to restrict the set of runs
to be considered for the satisfiability of formulae'. G-choreographies can be
thought of as regular expressions on the alphabet {break} u {A—B: m | A Be
P,m € M}, where break is used to stop iterations and A—B: m represents

! Logical connectives A and = are defined as usual while possibility (G)® and

necessity [G]® are defined as T U® & and —(G)—® respectively.

88 C. G. L. Pombo et al.

5

an interaction where A and B exchange message m. We let _ + _, _*, and _;_
respectively denote choice operator, Kleene star, and sequential composition
(with _; _ taking precedence over _ + _).

Ezample 2. The g-choreography Ggs = A—B: x;B—A: y; Gexen s A—B: 22 cor-
responds to the qCS in Example 1 with Geen = A—B: z1;B—A: y specifying
the exchange of messages z1 and y between A and B. o

A g-choreography G induces a causality relation on the underlying communi-
cation whereby the output of an interaction precedes the corresponding input
and, for the sequential composition G; G’ the actions in G precede those in G’
when executed by a same participant. The language L]G] of a g-choreography G
consists of all possible sequences of communication actions compatible with the
causal relation induced by G (note that £[G] is prefix-closed). We write £[G] for
the set of sequences in L£[G] that are not proper prefixes of any other sequence
in £[G]. The definition of £[G], immaterial here, can be found in [6]. The next

example illustrates how to express a QoS property in QL.

Ezample 8 (QoS properties). The runs of the system where where A and B
exchange message z1 and y three times can be specified by the g-choreography
Gz = A—B: x;B—A: y: Gexeh: Gexeh; Gexen Where Geyen is defined in Example 2.
Then the QL formula @ = [Gg](cost > 0) == [Gg; Gexen] (cost < mem - 10)
holds either if the first three exchanges do not have positive cost or if the cost
of every subsequent exchange falls within the specified bounds. o

The models of QL are defined in terms of runs of a QoS-extended commu-
nicating systems and an aggregation function [5] that formalises the conditions
for a QoS property to hold in a run. The aggregation function, denoted below as
aggs depends on application-dependent binary aggregation operators that define
how QoS attributes accumulate along a run. Hereafter, we assume that each QoS
attribute has an associated aggregation operator.

A configuration is accepting if all participants are in an accepting state; a
completion of a run 7 of a system S is a sequence 7’ ending in an accepting
configuration such that 77’ € A%. A QoS property @ is satisfiable in S if there
exists a run m € A¥ with an accepting configuration such that (7, €) =g @ holds,
where relation (_,_) =g - is defined as follows:

(m,7") s iff aggs(n’) Frer ¢ if ¥ atomic and 7’ € prf(m)
m7') s =@ iff (m,7’') =5 @ does not hold
(m,7") |rs @1 v @ iMff (m,7') =g @1 or (m,7') =5 P
(m,7') s @1 U® @y iff there is a completion 7 of 7’ such that
L") € L[G], (m,7'7") g $5 and, for all
7" € prf(z"),if #"" # 7" then (m,7'7"") =g P1.

~ ~

To handle atomic formulae, the first clause leverages real-closed fields (RCFs), a
decidable formalisation of the first-order theory of real numbers [16, Thm. 37].
The ‘until’ modality requires @2 to hold at some point along 7, i.e. on a run

7w'7" where completion 7’ follow run 7, with & satisfied up to that point and

Automated Static Analysis of QoS Properties of Communicating Systems 89

7" compatible with G. A run 7" is compatible with a g-choreography G if it
belongs to its language £[G].

A QoS property @ is valid if, for all runs m € A that contain an accepting
configuration, (m,€) =g @. Given a QoS property @, a qCS S, and a bound
k, the algorithm in [5] returns true when it finds a run 7 € A of length at
most k such that (7, ¢€) =5 @. Essentially, for each run of length at most k, the
algorithm calls an auxiliary procedure that checks whether the run satisfies the
QoS property by recursively following the definition of |=g presented above.

3 A Bounded Model Checker for QoS

We now present the architecture of MoCheQoS; a detailed presentation of its
command line interface and the relevant file formats is in the accompanying
artefact submission [11]. A graphical representation of the architecture is on the
right, where tilted boxes represent files or data objects, rectangular boxes repre-
sent modules or functions, while arrows represent control and data flows. Thick
shadowed boxes identify the modules developed in this work, while thin boxes
identify ChorGram’s modules and other open-source libraries used by MoCheQoS.
As ChorGram, MoCheQoS is imple-
mented in Haskell. The two main oonor

.qosgc . .
modules are Parser and Solver Pr°Je°t1°n

v

(greyed dashed boxes). The former /sten) o)
transforms the textual representations ~----- #——————————! ——————

I
of MoCheQoS’s inputs into internal i p— e [v oL G_chori
Haskell representations used by the iparser<+ parser [parser] parser “ parser :
latter. More precisely, qCFSM parser ~~~——~~—- | Attt Yoo
leverages ChorGram’s CFSM parser to QoS-extended systen, Gb formuls
process a textual description of the [sotver A el ——
system from a .qosfsa file. Likewise, enﬁeizzor - sysz,:nz;:zics

QL parser leverages G-chor parser

! |
! |
! |
| |
! |
(ChorGram’s g-choreographies parser) i Candidate run i
| |
! |
t |
{ |

to process a .ql file containing a
simple textual description of the QL
formula to verify. Both modules rely 7 """ v
on the SMT-LIB parser (Haskell’s

smt-1ib package).

The format of .qosfsa files is an extension of ChorGram’s .fsa format.
This extension enables the specification of the set of QoS attributes of interest
with (i) aggregation operators, (i) QoS constraints associated to the states
of machines, and (iii) accepting states of machines. Additionally, MoCheQoS
supports an extension of ChorGram’s g-choreographies (a .qosgc file) to directly
specify the QoS-related information over a g-choreography that can be projected
on qCFSMs. This required to adapt ChorGram’s G-chor projection and G-chor
parser modules to support QoS specifications.

The .ql format borrows the g-choreography syntax of ChorGram for the case
of the ‘until’ modality. The Parser module produces the QoS-extended system

Pomset TS run SMT solver
> <«
semantics checker interface

90 C. G. L. Pombo et al.

and the QL formula from the input files and passes them to Solver, our imple-
mentation of the bounded model checking algorithm in [5] (cf. Sect.2). More
precisely, TS run enumerator invokes Transition system semantics (the TS
module of ChorGram) to enumerate the runs of the system that fall within the
bound given in input parameter k. The enumeration is performed by systemat-
ically traversing the transition system. The process begins with the set of runs
of length 1. Subsequently, the set of runs of length 7 + 1 is generated by append-
ing all possible single-step transitions to each run of length 7. Future work will
explore heuristic-based approaches to traverse the transition system, aiming to
prioritize the enumeration of potential counterexamples.

Then, TS run enumerator invokes TS run checker on each enumerated run
to check if it is a model of the QL formula. Properties encompassing sub-
formulas of the form & U® & require TS run checker to invoke ChorGram’s
PomsetSemantics module in order to compute the language of G and to check
membership of runs to it. To compute ﬁ[G}, iterative subterms are replaced by
their n-unfoldings, where 0 < n < u. The parameter u is configurable via the
CLI of MoCheQoS and defaults to the value of parameter k. An n-unfolding of
a subterm G'” is defined as the sequential composition of G’ with itself n times.
The implementation of on-the-fly unfolding computation during transition sys-
tem traversal is left for future work.

As recalled in Sect.2, we leverage RCFs to express QoS constraints [5];
hence, we interfaced MoCheQoS with the state-of-the-art SMT solver Z3 [7] to
check the validity of these constraints (i.e., -grcr). Properties involving QoS
constraints of an atomic formulae require TS run checker to invoke the SMT
solver interface to produce and check SMT-LIB queries. The SMT solver
interface is composed of a modified version of Haskell’s smt-1ib package to
build the SMT-LIB query and of Haskell’s SimpleSMT package to call Z3. The
SMT-LIB query produced for an atomic formula ¢ allows to check whether there
exists a counterexample to the entailment aggs(n’) —reor . More precisely, the
SMT-LIB query is structured as follows: (i) all quality attributes are declared
as new symbols of sort Real using the declare-const command, and (ii) an
assert statement is included with the expression aggg(n’) A —t). The construc-
tion of aggs within the SMT-LIB query involves iterating through local states
in run 7. For each state, the following steps are performed: (i) the correspond-
ing QoS specification is collected, (ii) new symbols are declared for the local
instantiation of quality attributes, and (iii) quality attribute symbols in the QoS
specification are renamed to match the newly declared symbols. The SMT-LIB
query is then sent to Z3 using Haskell’s SimpleSMT package.

Finally, Solver returns a negative Verdict if the formula cannot be satisfied
within the given bounds or a positive Verdict with a witnessing model (the run
satisfying the QL formula) otherwise. To optimise computations, MoCheQoS
maintains a balanced binary search tree to store the result of computing atomic
entailments - +rop -, and a hash table to memorises the results of (a) the
computation of the language of g-choreographies indexing ‘until’ operators, and
(b) the membership check of a run to the language of a g-choreography.

Automated Static Analysis of QoS Properties of Communicating Systems 91

4 FEvaluation

Our empirical study aims to evaluate applicability and scalability of our app-
roach. Towards applicability, Sect. 4.1 develops a case study adopting SLAs from
the AWS cloud [12] while Sect. 4.2 borrows a case study from [13] to show how our
approach can leverage automatic extraction of communicating systems. Towards
scalability, Sect.4.3 analyses MoCheQoS to measure its performance. Size and
complexity of the case studies in Secs. 4.1 and 4.2 match what can be found in
the literature (e.g., see [17-19]). As we will discuss later, the size of the models
in Sect. 4.3 outmatches what can be found in system development.

The results presented in the next sections show that our framework can model
SLAs present in industrial-strength scenarios (Sect.4.1). Notably, MoCheQoS
can effectively verify relevant system-level QoS in such scenarios and produce
counterexamples useful to refine a property being checked. Moreover, Sect. 4.2
MoCheQoS can be used to effectively analyse system-level QoS properties of
communicating systems automatically extracted from code.

4.1 SLA in the Amazon Cloud

The case study consists of a three-party version of the POP protocol [20] mod-
elled after the OAuth authentication protocol [21]. More precisely, a client C
securely accesses a remote mailbox server S after clearing authentication through
a third party server A. This is specified by the g-choreography Gyt = C—A: cred
i (Gioken + A—C: error) where Gioken models the phase of the OAuth protocol
where C acquires an authentication token granted if the credentials of the client
C are valid; the acquired token allows C to prove its identity to the POP server
S. This can be modelled as follows:

Gtoken = A—C: token; C—S: token; (S—C: fail + S—C: ok; Gpop)

Grop = Gquit + C—S: helo; S—C:int; (Gquit + Greag ; Gauit)

Gquit = C—S: quit; S—C: bye

Gread = C—S:read; S—C: size; (break + C—S:retr; S—C: msg; C—S: ack)

We consider a system of qCFSMs, one per participant, realising the g-chore-
ography Gauh (see [22, Appendix A] for the full model). The states of the qCF-
SMs are decorated by QoS specifications derived by publicly available SLAs.
Specifically, we use the SLA of the Ory Network identity infrastructure [23] for
A, the one for C reflects the SLA of clients of Amazon’s Simple Email Service
(SES) [24], and the SLA of S is modelled after the iRedMail service published
in the AWS marketplace [25]. Our approach requires to constrain the quality
attributes for each state of the participant while the constraints specified in
the publicly available SLAs are relative to the whole execution. We overcome
this obstacle by identifying the states in the qCFSMs which are relevant to the
constraint. We then assign a corresponding QoS specification to each of these
identified states. For example, the SLA of Amazon SES specifies that the price
paid for each incoming email is 10~* USD; this decorates the state in the client’s
qCFSM where mails are received.

92 C. G. L. Pombo et al.

Table 1. SLA attributes and parameters for the AWS case study

QoS attributes pricing / configuration params.

num. of emails (emailsRetrieved) price/hr for server software (hrRateSoftware)
data transferred out (Kb) (dataTransOut) |price/hr for infrastructure (hourlyRateCompute)
num. of authenticated users (usersAuth) |price/Gb for data transfer (transferGBRate)
price for incoming mails (priceEmails) price/user for A (ratePerUserAuth)

server execution time (s) (execTimeServer)num. of CPUs (CPUs)

total execution time (s) (execTime) amount of memory (memCapacity)

network performance (nwkPerf)

instance type (instType)

We identified the quality attributes in Table 1 (left column) and the pricing
and configuration parameters (right column in Table1) that fix the elements

of the computational infrastructure required. The value of the parameters are
determined by the value of the instance type attribute, which models the type

of the compute instance? chosen by the user when configuring the services. This
relation is rendered in our model with logical implications. For example, AWS
stipulates that if the selected instance type is ‘t4g.nano’ (the smallest compute
instance in the family ‘T4g’ represented as instType = 1 in our model), the hourly
rate for compute is 0.0042USD; this yields the implication

instType = 1 = (hrRateCompute = 0.0042 A CPUs = 2 A memCapacity = 0.5 A nwkPerf < 5)

to be included in the QoS specification of the initial state of the server qCFSM
together with analogous implications for other instance types. The full model of
our case study is an LTS with 34 configurations and 38 transitions obtained by
the composition of three qCFSMs: the client C (15 states and 17 transitions), the
server S (12 states and 14 transitions), and the authentication server A (4 states
and 3 transitions). Note that CFSMs abstract away from local computations
and focus only on the communication actions. Hence, the number of states and
transitions only reflect the size of the communication protocol and not necessarily
the size of the implementation. The QoS specifications we consider predicate over
the 14 quality attributes in Table 1. Due to space limitations, here we only show
the qCFSM for the server S (the other qCFSMs are in [22, Appendix A]):

S Clbye Taara SCIMsg Teomp
O

Ms = CS!fail | CS?quit 90 CS7retr (1)
init I

C S7token S Clok CS?helo SClint CS7read S Clsize

where I'comp = {0.5 < execTime < 3, execTimeServer = execTime} and I'gata =
{10 < dataTransOut < 500}, respectively modelling states where the server is
performing significant computations and states where the server has sent data to

2 In AWS jargon, compute refers to computational infrastructure, i.e., virtual comput-
ers that are rented through services like Amazon Elastic Compute Cloud (EC2).

Automated Static Analysis of QoS Properties of Communicating Systems 93

the client. The specification [j,;; models the configuration of the AWS instance
as stated earlier (see [22, Appendix A] for a full description). Let us focus on

some system-level 1gro erties to be checked with MoCheQoS.
By nspecting the SLAs for AWS pricing scheme, we can derive the expression

totalCost = (execTime/60%) - hrRateCompute + (execTimeServer/60%) - hrRateSoftware

+ (dataTransOut/10242) - transferGBRate + usersAuth - ratePerUserAuth + priceEmails

for the overall cost of an execution of the system in terms of the aggregated values
of the quality attributes, once the appropriate conversions are applied. We can
then consider the QL formulae in Table2 to check if the cost for receiving one
email falls below a given threshold (#;) and some relations between the total
cost of an execution and the number of emails retrieved by the client (P2, @3,
and @4, which require to iterate the g-choreography Gmeg). Both the validity of
&, and a counterexample? for @, are computed by MoCheQoS in less than a
second. In these cases it is not necessary to check for high values of the bound
k because no iterative g-choreography occurs in ¢; and the counterexample of
®, is found at k = 26. The validity of the other formulae for a high value of k is
checked by MoCheQoS in less than 3 min.

Table 2. Overall monetary cost of the coordinated execution of the three services

Ginit = C—A: cred; A—C: token; C—S: token; S—C: ok; C—S: helo; S—C: int

Let Gmsg = C—S: read; S—C: size; C—S: retr; S—C: msg; S—C: ack

QL-formula ‘ k ‘Validity‘l\/IoCherS time
@1 = [Ginit; Grsg] totalCost < 1 26 v | <ls

@3 = [Ginit; Gmsg '] totalCost < emailsRetrieved ‘ 26‘ CE ‘ <1s

@3 = [Ginit; Gmsg | totalCost < 1 + emailsRetrieved ‘100‘ v ‘ 135s

D4 = [Ginit; Gmsg '] totalCost < 0.5 + 0.5 - emailsRetrieved‘lOO‘ v ‘ 135s

4.2 Model Extraction

We show how to apply MoCheQoS on a model automatically inferred from the
OCaml code of the case study in [13]. The system inferred in [13] is as follows*

User M Ulresult Worker
U M!compute Master
M U7wip IW M?7result U M?compute,
M U?result U M!compute I M Ulwip M W!task
U M!stop W M?result D M W!task M W!stop g

The user requests the master to resolve a problem (whose nature is inconse-
quential here). The master splits the problem into two tasks and sends them to

3 A run with 0 email retrievals, hinting at a fixed cost for executing the services.
4 The thick gray arrow is the only addition we made to the original case study.

94 C. G. L. Pombo et al.

the worker, which replies to the master with the solutions of each task; between
these replies, the master sends a ‘work-in-progress’ message to the user. Finally,
the master sends the final result to the user by combining the partial results

The QoS specifications involve price, number of tasks computed, and allo-
cated memory, respectively denoted with p, t, and mem. The contraints over
these attributes have been manually specified and assigned to the states of the
qCFSMs. For instance, we assume each problem instance (requested from the
user) to require at most 5 units of memory and model this by adding a contraint
over mem to the states where memory is allocated for the problem intance. Sim-
ilarly, we assume the result of the problem to require at most 1 unit of memory.
Additionally, we assume that the master charges a flat fee of 10 monetary units
once the computation is completed, while the worker’s cost varies based on the
size of the task. We check the following QL properties:

& =[G](t-6 < p<12.5) &3 = [G*](1 < mem < 10)

Dy =[G](t-6<p<125) &y, =(p<t-12.5) UC ([G'] p < 25)

where G describes the process of computing one problem instance, starting
with U—M: compute and ending with M—U: result ([22, Appendix C] reports
the details about the models of this case study.) Formula @; uses the necessity
modality to express bounds on the price of the computation of one problem
instance. Formulas @, and @3 use the necessity modality to express bounds on the
price and the memory used after computing any number of problem instances.
Formula @, states that (i) up to the computation of the first problem instance,
the price falls below a bound depending on the number of tasks computed, and
(ii) afterwards, the price is always bounded by 25 right after any number of
computed problem instances. We applied MoCheQoS on these formulas with
bounds that correspond to unfolding loops once and twice (k = 18 and k = 32
are, respectively, the lengths of runs where the master sends the result of one and
two problem instances and the user stops). The results of the experiments are
summarised in Table3 where times are in seconds. Noticeably, for satisfiability
the results with k = 18 subsume those with k = 32; also, for @4, a bound of 32
is needed to find a counterexample, which shows that the formula is satisfiable
but not valid.

Table 3. Results on model extraction case study (CE = counter example)

Formula Bound k = 18 Bound k = 32

satisfiability |validity satisfiability |validity

Time (s) Result/Time (s)Result Time (s) Result/Time (s)Result
Dy .3 sat 1.7 No CEL.3 sat 34 No CE
Dy .3 sat 1.9 No CEL.3 sat 185 No CE
D3 .3 sat 1.9 No CEL.3 sat 186 No CE
by 5 sat |6 No CE|.6 sat |30 CE

Automated Static Analysis of QoS Properties of Communicating Systems 95

4.3 Performance

The performance of MoCheQoS depends on the cost of checking if a formula @
holds on any run of the system S of length at most k; this cost is dominated
by the evaluation of the ‘until’ sub-formulae® &; U® &, which depends on the
complexity of G and of ¢; and @3. We therefore generate synthetic properties
following the pattern @ = &; U® &, and varying the size and complexity of G.
Formulas @, and @ are created to cover (i) the best case (any run that matches
the language of G satisfies @), (i) the worst case (no run matching the language
of G satisfies @), and (ii7) the ‘average’ case (only a single random run that
matches the language of G satisfies ®).

The performance analysis of MoCheQoS was driven by experiments® tailored
to address the following questions:

Loop unfolding. How does performance evolve as we increase the number of
loop unfoldings in g-choreographies indexing ‘until’ sub-formulae?

Nested choices. How does average performance evolve as we increase the num-
ber of nested choices in g-choreographies indexing ‘until’ sub-formulae?

Loop unfolding. The experiments are performed on the set of qCFSMs
described in the AWS cloud case study in Sect.4.1. To help the reader under-
stand the size of the problem, we show below the number of runs of this system
as a function of the bound k on the size of the runs. Due to interleaving of
the transitions in the asynchronous communication, the number of runs grows
exponentially when the number of loop unfoldings in the POP protocol increases.
We synthetically generate six families

of QL formulas with the shape ¢; U® &,

6000 where G = Ginit; Gmsg ', for 1 < n < 10,
with Ginit and Gmsg defined as in Sect. 4.1.
The first three families of formulas are
constructed to be satisfiable while the last
three to be unsatisfiable. The unsatisfiable
formulas are constructed by guaranteeing
that no run compatible with G satisfies @s.
R T For each formula we execute MoCheQoS

Bound on run's length with a bound k = 16 + 10n, which guar-

antees that the runs of the system that

match G are reached. The results are shown in Fig. 1. Figure la plots the time it
takes for MoCheQoS to find a model for the three families of satisfiable formulas
as a function of n. The three families differ in how &, and @5 are constructed:
(i) both as atomic truth values, (i) @; as an atomic truth value and @5 as a QoS
constraint, or (iii) both as QoS constraints. Figure 1b plots the time MoCheQoS
takes to report that no model was found for the three families of unsatisfiable

v
=}
S
S

4000

2000

=
o
S
5]

No. of runs ending in a final conf.
w
<3
3
3

)

5 This requires to query the SMT-LIB to solve QoS constraints; we use Z3 as a black-
box which we cannot control; therfore, its computational costs are factored out.
5 We used Z3 v4.10.2 and an 8-cores MacBook Pro (Apple M1) with 16 GB of memory.

96 C. G. L. Pombo et al.

formulas as a function of n. The results show that the main source of compu-
tational burden, as the number of loop unfoldings increases, is the verification
of the QoS constraint in @1, the first operand of the ‘until’ operator. In Fig. 1a
and Fig. 1b, this is manifested by the green line growing significantly faster than
the other two lines. The explanation for this is that, due to the semantics of
the ‘until’, the verification of @; has to be performed in every prefix of the run
and, when @1 is a QoS constraint, each verification is done by calling Z3 with a
different SMT-LIB query.

3000

1750 1 —e— True U [G] True —e— True U [G] False
True U [G] qos{ ... } True U [G] qos{ ... }
15001 —#— qos{ ... } U[G] qos{ ... } 25001 —#— qos{ ... } U[G]qos{ ... }

1250 2000

< 1000 g
P v 1500
E 750 E
1000
500
250 500
0 0
0 2 2 8 10 0 2 2 6 8 10
n = number of loop unfoldings in G n = number of loop unfoldings in G
(a) Satisfiable instances (b) Unsatisfiable instances

Fig. 1. Execution time to analyse (un)satisfiable ‘until’ formulas

Nested choices. To evaluate the performance of MoCheQoS in the presence of
nested choices indexing ‘until’ sub-formulae, we will construct synthetic systems
by varying the number of nested choices in the g-choreography of the system. We
consider systems of two participants taking turns in sending a message to each
other; the sender of each turn chooses between two messages. Due to the branch-
ing nature of this behaviour, the number of runs in a system grows as 2™ where
n is the number of nested choices (i.e., the number of turns). We synthetically
generate systems with this behaviour by varying n from 1 to 10. Remarkably,
nested choices correspond to nested conditional statements and accepted metrics
recommend to keep low the nesting level of conditional statements. In particular,
an accepted upper bound of cyclomatic complexity” is 15, which corresponds to
less than 4 nested conditional statements.

To generate these systems, we craft QoS-extended g-choreography in .qosgc
format and then leverage ChorGram’s G-chor projection to obtain the qCFSMs
of the system. The QoS specifications comprise five QoS attributes and determine
unique values for them in each accepting state, enabling the construction of QL
formulas that are satisfied by only one run of the system. In this way, we can
use these generated cases to evaluate the performance of MoCheQoS in finding
the only run that satisfies a formula in a search space of exponential size in n.

" Cyclomatic complexity [26] measures the complexity of programs according to the
number of independent paths represented in the source code.

Automated Static Analysis of QoS Properties of Communicating Systems 97

Bob — Alice: m0 ; {
Alice — Bob: m0; Bob — Alice: leafl

2

+
Alice — Bob: ml; Bob — Alice: leaf2
}

2

Time (s) - Logarithmic scale
5

+
Bob — Alice: ml; {

Alice — Bob: m0; Bob — Alice: leaf3 10° F

+ QJ [E

Alice — Bob: m1; Bob — Alice: leaf4 & =5
} 1 2 3 4 5 6 7 8 9 10

n = number of nested choices

(a) Generated g-choreography for n = 2 (b) Average execution time versus n

Fig. 2. Performance on the ‘average’ case for formulas with nested choices

The formula is generated by following the pattern T U® 1, were G matches
every run of the system and v is a QoS constraint, determining the value of
the five QoS attributes, that is satisfied by only one run. Figure 2a shows the
generated G for two nested choices. See [22, Appendix B] for a detailed view of
the files used in this case study. The bound k is set high enough to guarantee
that all runs of the system are reached by the analysis. For each value of n,
we generate 100 different random instances of the QL formula, where the only
run that satisfies the formula is chosen randomly, and execute MoCheQoS on
each instance. Figure2b shows the results as a boxplot per number of nested
choices. Remarkably, both the average execution time and its variance grow as
n increases. This is due to the fact that the difference in time between the best
and worst case scenarios, where the model is found either in the first or the last
enumerated run matching G, increases with n. The apparent bias in dispersion
towards lower execution times is just a visual effect due to the logarithmic scale
of the y-axis.

5 Related Work

We position MoCheQoS in the category of static analysers of system-level QoS
properties. There is a vast literature on QoS, spanning a wide range of contexts
and methods [27,28], QoS for choreographies [29,30], and formal models and
analysis procedures that have been proposed without tool supported analysis.

A tool for the automatic analysis of QoS properties appeared in [31] where
QoS specifications were expressed as theory presentations over quantitative
attributes but only considering convex polytopes; this restriction is not present
in our language. Unlike MoCheQoS, the approach in [31] relies on “monolithic”
specifications of QoS, rendering hard its application to distributed systems with-
out adding some composition mechanisms. We instead assign QoS contracts to
states of communicating services and then aggregate them in order to analyse
properties along executions of the whole system.

98 C. G. L. Pombo et al.

The Envisage project [32] aims to provide a framework for the development
and deployment of virtualized scalable services in the cloud. System design and
analysis is done in ABS [33,34] which enables resource-awareness in design and
deployment decisions [35-37]. In ABS resource awareness revolves around the
concept of elasticity and the capability of simulating the execution of the sys-
tem under deployment constraints. The analysis is performed to evaluate bounds
over fixed attributes (Speed, Bandwidth, Memory, and Cores) in order to inspect
consumption of those resources over simulated executions. On the contrary,
MoCheQoS is agnostic to the attribute’s nature, as far as it is measurable, and
provides a static analysis procedure capable of exploring the whole execution
space (with respect to a predefined bound to the trace length) in the search for
counterexamples of arbitrary dynamic temporal properties, not only bounds.

Metric functions are used in [38] to verify SLAs of client-server systems via
the interactive theorem prover KeY [39]. We can deal with multiparty system and
the analysis of QoS properties of MoCheQoS is fully automatic. Other abstract
models of QoS such as quantales [40] or c-semirings [41-43] have been proposed.
Process calculi capable of expressing SLAs appeared in [41] and in [43] without a
specific analysis technique. A variant of the p-calculus equipped with the capa-
bility of expressing QoS properties and an analysis algorithm has been presented
in [42] without an implementation.

Automatic extraction of local QoS contracts from global QoS specifications is
defined and implemented in [29]; the paper proposes applications including the
use of the derived contracts for monitoring but no static analysis procedure of the
QoS systems’ behaviour is proposed. On the same basis, monitoring algorithms
were presented in [30] and contracts are used for run-time prediction, adaptive
composition, or compliance checking.

Probabilistic model checking (PMC) [44,45] implemented in PRISM [46] fea-
tures the automated analysis of quantitative properties. The main differences
with respect to our work are the modelling language and the properties that can
be checked. First, PMC models are usually expressed as Markov chains while
MoCheQoS does not feature probabilistic information. Second, RCF's are more
expressive than the reward functions adopted in [44] since they allow to express
first order formulae over QoS attributes. For example, the QoS specifications
shown in Sect. 4.1 cannot be expressed with PRISM’s reward functions. Finally,
while in PMC properties are expressed as temporal formulae over bounds on
the expected cumulative value of a reward, MoCheQoS can verify dynamic tem-
poral formulae where atoms are first order formulae over QoS attributes and
temporal modalities are indexed with g-choreographies. Our setting leads to the
computation of an aggregation function that collects QoS specifications of states
along a run, which is not the case in PMC. Timed automata [47] are used in
UPPAAL [48] to verify real-time systems. Our QoS specifications can predicate
about time but, unlike in UPPAAL, the behaviour of systems is independent of
it. It is therefore not straightforward to compare MoCheQoS with tools like PMC
or UPPAAL as they are designed for different purposes. Extending MoCheQoS
with time and probabilities is indeed an intriguing endeavour.

Automated Static Analysis of QoS Properties of Communicating Systems 99

6 Conclusions and Future Work

We presented MoCheQoS, a tool to verify QoS properties of message-passing
systems. We build a bounded model checker upon the dynamic logic and semi-
decision procedure recently presented in [5] which rely on choreographic models.
To our best knowledge, MoCheQoS is the first tool to support the static analysis
of QoS for choreographic models of message-passing systems. The satisfiabil-
ity of QoS constraints in atomic formulas is delegated to the SMT solver Z3
while ChorGram is used to handle the choreographic models and their semantics.
Notably, MoCheQoS can handle any quality attribute that takes values in the
real numbers (if it is equipped with an appropriate aggregation operator), mak-
ing it highly versatile. Experiments to evaluate the applicability of our approach
were conducted over case studies based on the AWS cloud and on models auto-
matically extracted from code. Experiments to evaluate the scalability of our
approach were conducted over synthetically generated models and properties.

Our experiments demonstrate the effectiveness of MoCheQoS. Nevertheless,
there is room for improvement. We are considering abstract semantics where
runs are partitioned in equivalence classes so that we have to check only repre-
sentative runs of such classes in order to tackle the computational blow up due
to asynchronous communications as discussed in Sect. 4.

In scope of future work is also the definition of a domain-specific language to
ease the modelling phase. For instance, such language could feature data types
to express non-cumulative attributes (as those used in Sect.4.1).

Data Availability. The source code of the tool, the code for generating the exper-
imental data, and detailed instructions on how to reproduce the results presented in
this paper are available in the Zenodo repository with the identifier https://doi.org/
10.5281/zenodo.10038447. (See citation in [11]).

References

1. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of service discovery and
binding. Formal Aspects Comput. 23(4), 433463 (2011)

2. Amazon: AWS Lambda Service Level Agreement. https://aws.amazon.com/
lambda/sla/

3. Amazon: AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/

4. World Wide Web Consortium: Web Services Description Language (WSDL) Ver-
sion 2.0 Part 1: Core Language. https://www.w3.org/TR/wsdl20/

5. Lopez Pombo, C.G., Martinez Suné, A.E., Tuosto, E.: A dynamic temporal logic for
quality of service in choreographic models. In: Abrahém, E., Dubslaft, C., Tarifa,
S.L.T., eds.: Proceedings of 20th International Colloquium on Theoretical Aspects
of Computing - ICTAC 2023. Volume 14446 of Lecture Notes in Computer Science.,
Lima, Pert, Springer-Verlag (December 2023), pp. 119-138 (2023). https://doi.
org/10.1007/978-3-031-47963-2_9

6. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Logical
Algebraic Methods. Program. 95, 17-40 (2018)

https://doi.org/10.5281/zenodo.10038447
https://doi.org/10.5281/zenodo.10038447
https://aws.amazon.com/lambda/sla/
https://aws.amazon.com/lambda/sla/
https://aws.amazon.com/lambda/pricing/
https://www.w3.org/TR/wsdl20/
https://doi.org/10.1007/978-3-031-47963-2_9
https://doi.org/10.1007/978-3-031-47963-2_9

100

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. G. L. Pombo et al.

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.,
Rehof, J., eds.: Proceedings of 14th International Conference Tools and Algorithms
for the Construction and Analysis of Systems TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008.
Volume 4963 of Lecture Notes in Computer Science., Springer-Verlag (2008), pp.
337-340 (2008). https://doi.org/10.1007/978-3-540-78800-3_24

Coto, A., Guanciale, R., Tuosto, E.: Choreographic development of message-
passing applications - A tutorial. In Bliudze, S., Bocchi, L., eds.: Coordination
Models and Languages - 22nd IFIP WG 6.1 International Conference, COORDI-
NATION 2020, Held as Part of the 15th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-19,
2020, Proceedings. Volume 12134 of Lecture Notes in Computer Science., Springer
(2020) 20-36

Coto, A., Guanciale, R., Lange, J., Tuosto, E.: ChorGram: tool support for choreo-
graphic development (2015). https://bitbucket.org/eMgssi/chorgram/src/master/
Lange, J., Tuosto, E., Yoshida, N.: A tool for choreography-based analysis of
message-passing software. In: Gay, S., Ravara, A., eds.: Behavioural Types: from
Theory to Tools. Automation, Control and Robotics. River (2017), pp. 125-146
(2017)

Lopez Pombo, C.G., Martinez-Suné, A.E., Tuosto, E.: MoCheQoS: Automated
Static Analysis of Quality of Service Properties of Communicating Systems - Arti-
fact. https://zenodo.org/doi/10.5281/zenodo.10038447. Git repository available at
https://bitbucket.org/aemartinez/chorgram/src/mocheqos-fm24/. June 2024
Amazon: AWS Global Infrastructure. https://aws.amazon.com/about-aws/global-
infrastructure. Accessed 27 March 2024

Imai, K., Lange, J., Neykova, R.: Kmclib: automated inference and verification of
session types from OCaml programs. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems, pp. 379-386. Cham,
Springer International Publishing, Lecture Notes in Computer Science (2022)
Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323-342 (1983)

Henriksen, J.G., Thiagarajan, P.: Dynamic linear time temporal logic. Ann. Pure
Appl. Logic 96(1-3), 187-207 (1999). Originally published in [49]

Tarski, A.: A decision method for elementary algebra and geometry. Memorandum
RM-109, RAND Corporation (1951) Later published in [50] and reprinted in [51]
Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. Serv. Oriented Com-
put. Appl. 8(4), 323-339 (2014). This article refines and substantially extends [52]
Iraci, G., Chuang, C.E., Hu, R., Ziarek, L.: Validating [oT devices with rate-based
session types. Proc. ACM Program. Lang. 7(OOPSLA2), 1589-1617 (2023)
Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S., eds.: Proceedings of 31st International
Conference Computer Aided Verification (CAV 2019), Part I. Volume 11561 of Lec-
ture Notes in Computer Science., Springer-Verlag (July 2019), pp. 97-117 (2019).
https://doi.org/10.1007/978-3-030-25540-4_6

Anonymous: Post office protocol: Version 2 (1985). https://rfc-editor.org/rfc/
rfc937.txt

Hardt, D.: The OAuth 2.0 Authorization Framework (2012). https://rfc-editor.
org/rfc/rfc6749.txt

https://doi.org/10.1007/978-3-540-78800-3_24
https://bitbucket.org/eMgssi/chorgram/src/master/
https://zenodo.org/doi/10.5281/zenodo.10038447
https://bitbucket.org/aemartinez/chorgram/src/mocheqos-fm24/
https://aws.amazon.com/about-aws/global-infrastructure
https://aws.amazon.com/about-aws/global-infrastructure
https://doi.org/10.1007/978-3-030-25540-4_6
https://rfc-editor.org/rfc/rfc937.txt
https://rfc-editor.org/rfc/rfc937.txt
https://rfc-editor.org/rfc/rfc6749.txt
https://rfc-editor.org/rfc/rfc6749.txt

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

Automated Static Analysis of QoS Properties of Communicating Systems 101

Lopez Pombo, C.G., Martinez Suné, A.E., Tuosto, E.: MoCheQoS: automated anal-
ysis of quality of service properties of communicating systems. On-line (November
2023) https://arxiv.org/abs/2311.01415

Ory: Ory - API-first Identity Management, Authentication and Authorization. For
Secure, Global, GDPR-compliant Apps. https://www.ory.sh/. Accessed 3 April
2024

Amazon Web Services, Inc.: Bulk Cloud Email Service - Amazon Simple Email
Service - AWS. https://aws.amazon.com/ses/. Accessed 3 April 2024

Amazon Web Services Inc.: AWS Marketplace: iRedMail (IMAP, SMTP, POP3)
Email Server on Ubuntu 18.04 LTS. https://aws.amazon.com/marketplace/pp/
prodview-xswbskbnidzbe. Accessed 3 April 2024

McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308-320
(1976)

Aleti, A., Buhnova, B.; Grunske, L., Koziolek, A., Meedeniya, I.: Software architec-
ture optimization methods: a systematic literature review. IEEE Trans. Software
Eng. 39, 658-683 (2013)

Hayyolalam, V., Kazem, A.A.P.: A systematic literature review on QoS-aware ser-
vice composition and selection in cloud environment. J. Netw. Comput. Appl. 110,
52-74 (2018)

Ivanovié, D., Carro, M., Hermenegildo, M.V.: A constraint-based approach to qual-
ity assurance in service choreographies. In: Liu, C., Ludwig, H., Toumani, F., Yu,
Q., eds.: Proceedings of 10th International Conference on Service-Oriented Com-
puting — ICSOC 2012. Volume 7636 of Lecture Notes in Computer Science., pp.
252-267. Springer-Verlag (November 2012). https://doi.org/10.1007/978-3-642-
34321-6_17

Kattepur, A., Georgantas, N., Issarny, V.: Qos analysis in heterogeneous choreog-
raphy interactions. In: Basu, S., Pautasso, C., Zhang, L., Fu, X., eds.: Proceedings
of the 11nd International Conference on Service Oriented Computing — ICSOC ’13.
Volume 8274 of Lecture Notes in Computer Science., Springer-Verlag (December
2013), pp.23-38 (2013). https://doi.org/10.1007/978-3-642-45005-1_3

Martinez Suné, A.E., Lopez Pombo, C.G.: Automatic quality-of-service evaluation
in service-oriented computing. In: Nielson, H.R., Tuosto, E., eds.: Proceedings of
Coordination Models and Languages - 21st IFIP WG 6.1 International Confer-
ence, COORDINATION 2019, Held as Part of the 14th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2019. Volume 11533
of Lecture Notes in Computer Science., Springer-Verlag (June 2019), pp. 221-236
(2019). https://doi.org/10.1007/978-3-030-22397-7_13

Envisage: Engineering Virtualized Services. http://envisage-project.eu

Johnsen, E.B., Hahnle, R., Schéfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M., eds.: Revised papers of the 9th International Symposium For-
mal Methods for Components and Objects (FMCO 2010). Volume 6957 of Lecture
Notes in Computer Science., Springer-Verlag (2012), pp. 142-164 (2012)

The ABS Framework. https://abs-models.org, https://github.com/abstools/
abstools

de Gouw, S., Mauro, J., Nobakht, B., Zavattaro, G.: Modeling deployment decisions
for elastic services with ABS. On-line (2016). http://www.envisage-project.eu/
modeling-deployment- decisions-for-elastic-services-with-abs/

de Gouw, S., Mauro, J., Nobakht, B., Zavattaro, G.: Declarative elasticity in ABS.
In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I., eds.: Proceedings of

https://arxiv.org/abs/2311.01415
https://www.ory.sh/
https://aws.amazon.com/ses/
https://aws.amazon.com/marketplace/pp/prodview-xswbskbnidz5e
https://aws.amazon.com/marketplace/pp/prodview-xswbskbnidz5e
https://doi.org/10.1007/978-3-642-34321-6_17
https://doi.org/10.1007/978-3-642-34321-6_17
https://doi.org/10.1007/978-3-642-45005-1_3
https://doi.org/10.1007/978-3-030-22397-7_13
http://envisage-project.eu
https://abs-models.org
https://github.com/abstools/abstools
https://github.com/abstools/abstools
http://www.envisage-project.eu/modeling-deployment-decisions-for-elastic-services-with-abs/
http://www.envisage-project.eu/modeling-deployment-decisions-for-elastic-services-with-abs/

102

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

C. G. L. Pombo et al.

Service-Oriented and Cloud Computing (ESOCC 2016) - 5th IFIP WG 2.14 Euro-
pean Conference. Volume 9846 of Lecture Notes in Computer Science., Springer-
Verlag (September 2016), pp. 118-134 (2016). https://doi.org/10.1007/978-3-319-
44482-6_8

de Boer, F.S., et al.: Analysis of SLA compliance in the cloud - an automated,
model-based approach. In: Ancona, D., Pace, G., eds.: Proceedings of Second Work-
shop on Verification of Objects at RunTime EXecution (VORTEXECOOP /ISSTA
2018). Volume 302 of EPTCS. (July 2019) pp. 1-15 (2019)

Giachino, E., de Gouw, S., Laneve, C., Nobakht, B.: Statically and dynamically
verifiable SLA metrics. In: Abrahém, E., Bonsangue, M.M., Johnsen, E.B., eds.:
Theory and Practice of Formal Methods - Essays Dedicated to Frank de Boer on
the Occasion of His 60th Birthday. Volume 9660 of Lecture Notes in Computer
Science., Springer (2016), pp. 211-225 (2016). https://doi.org/10.1007/978-3-319-
30734-3_15

Din, C.C., Bubel, R., Hahnle, R.: Key-abs: a deductive verification tool for the con-
current modeling language ABS. In Felty, A.P., Middeldorp, A., eds.: Proceedings
of 25th International Conference on Automated Deduction - CADE-25. Volume
9195 of Lecture Notes in Computer Science., Springer-Verlag (August 2015), pp.
517-526 (2015). https://doi.org/10.1007/978-3-319-21401-6_35

Rosenthal, K.I.: Quantales and their application. Volume 234 of Pitman research
notes in mathematics series. Longman Scientific & Technical (1990)

Buscemi, M.G., Montanari, U.: Cc-pi: a constraint-based language for specifying
service level agreements. In: De Nicola, R., ed.: Proceedings of 16th European
Symposium on Programming, ESOP 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software (ETAPS 2007). Volume 4421 of
Lecture Notes in Computer Science., Springer-Verlag (2007), pp. 18-32 (2007).
https://doi.org/10.1007/978-3-540-71316-6_3

Lluch-Lafuente, A., Montanari, U.: Quantitative p-calculus and CTL based on
constraint semirings. Electron. Notes Theoret. Comput. Sci. 112, 37-59 (2005).
Proceedings of the Second Workshop on Quantitative Aspects of Programming
Languages (QAPL 2004)

De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A process calcu-
lus for QoS-aware applications. In: Jacquet, J.M., Picco, G.P., eds.: Proceedings of
7th International Conference Coordination Models and Languages, COORDINA-
TION 2005. Volume 3454 of Lecture Notes in Computer Science., Springer-Verlag
(April 2005), pp. 33-48 (2005). https://doi.org/10.1007/11417019_3
Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: The
6th Joint Meeting on European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering: Companion
Papers. ESEC-FSE Companion 07, New York, NY, USA, Association for Com-
puting Machinery (September 2007), pp. 449-458 (2007)

Baier, C., Katoen, J.P., eds.: Principles of Model Checking. The MIT Press (2008)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification, pp. 585-591. Lecture Notes in Computer Science, Berlin, Heidelberg,
Springer (2011)

Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183-235 (1994)

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1, 134-152 (1997)

https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-319-30734-3_15
https://doi.org/10.1007/978-3-319-30734-3_15
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-540-71316-6_3
https://doi.org/10.1007/11417019_3

49.

50.

51.

52.

Automated Static Analysis of QoS Properties of Communicating Systems 103

Henriksen, J.G., Thiagarajan, P.: Dynamic linear time temporal logic. Report
Series BRICS-RS-97-8, Basic Research in Computer cience (1997). https://
tidsskrift.dk/brics/issue/view /2365

Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press (1951) Originally published in [16] and reprinted in [51]
Tarski, A.: A Decision method for elementary algebra and geometry. In: Caviness,
B.F., Johnson, J.R. (eds) Quantifier Elimination and Cylindrical Algebraic Decom-
position. Texts and Monographs in Symbolic Computation. Springer, Vienna
(1998). Originally published in [16] and reprinted from [50]. https://doi.org/10.
1007/978-3-7091-9459-1_3

de Boer, F.S., Hihnle, R., Johnsen, E.B., Schlatte, R., Wong, P.Y.: Formal mod-
eling of resource management for cloud architectures: an industrial case study. In:
Paoli, F.D., Pimentel, E., Zavattaro, G., eds.: Proceedings of First European Con-
ference Service-Oriented and Cloud Computing (ESOCC 2012). Volume 7592 of
Lecture Notes in Computer Science., Springer-Verlag (September 2012), pp. 91—
106 Refined and substantially extended in [17]. https://doi.org/10.1007/978-3-642-
33427-6_7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://tidsskrift.dk/brics/issue/view/2365
https://tidsskrift.dk/brics/issue/view/2365
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/978-3-642-33427-6_7
https://doi.org/10.1007/978-3-642-33427-6_7
http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Ana Barros'3, Henrique Neto®3®, Alcino Cunha®3®, Nuno Macedo3(&)

1

Formal specification languages are based on mathematical formalisms and are
used to describe the expected behaviour of a software component. Formal spec-
ifications are increasingly embraced by software engineering professionals, in
lightweight formal development techniques such as automated synthesis, test-
ing or monitoring. Moreover, they will possibly become even more relevant as

Alloy Repair Hint Generation Based
on Historical Data

and Ana C. R. Paival??

! Universidade do Porto, Porto, Portugal
{nmacedo,apaiva}@fe.up.pt
2 Universidade do Minho, Braga, Portugal
alcino@di.uminho.pt
3 INESC TEC, Porto, Portugal

Abstract. Platforms to support novices learning to program are often
accompanied by automated next-step hints that guide them towards cor-
rect solutions. Many of those approaches are data-driven, building on
historical data to generate higher quality hints. Formal specifications are
increasingly relevant in software engineering activities, but very little
support exists to help novices while learning. Alloy is a formal specifi-
cation language often used in courses on formal software development
methods, and a platform—Alloy4Fun—has been proposed to support
autonomous learning. While non-data-driven specification repair tech-
niques have been proposed for Alloy that could be leveraged to generate
next-step hints, no data-driven hint generation approach has been pro-
posed so far. This paper presents the first data-driven hint generation
technique for Alloy and its implementation as an extension to Alloy4Fun,
being based on the data collected by that platform. This historical data is
processed into graphs that capture past students’ progress while solving
specification challenges. Hint generation can be customized with policies
that take into consideration diverse factors, such as the popularity of
paths in those graphs successfully traversed by previous students. Our
evaluation shows that the performance of this new technique is competi-
tive with non-data-driven repair techniques. To assess the quality of the
hints, and help select the most appropriate hint generation policy, we
conducted a survey with experienced Alloy instructors.

Keywords: formal specification - intelligent tutoring system -
automated hints - Alloy

Introduction

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 104-121, 2025.
https://doi.org/10.1007,/978-3-031-71177-0_8

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_8&domain=pdf
http://orcid.org/0009-0001-2701-7318
http://orcid.org/0000-0002-2714-8027
http://orcid.org/0000-0002-4817-948X
http://orcid.org/0000-0003-3431-8060
https://doi.org/10.1007/978-3-031-71177-0_8

Alloy Repair Hint Generation Based on Historical Data 105

advances in large language models push programming activities into higher levels
of abstraction [29].

Alloy [12,13] is a formal specification language that allows the automatic anal-
ysis of software design models with rich structure and behaviour. Due to its high-
level of abstraction, flexibility and simplicity, Alloy is often used in introductory
formal methods courses'. Yet, studies show that novices, and even experienced
professionals, struggle with understanding and writing Alloy specifications [17].
The Alloy4Fun [16] web platform was developed in this educational context to
ease the sharing of specification challenges with auto-grading, supporting instruc-
tors in classes and allowing students to study autonomously. Intelligent tutor-
ing systems (ITS) for programming have long relied on automated feedback to
support students in large classes and outside the classroom. Alloy4Fun, like reg-
ular Alloy, is solver-based and provides feedback for incorrect specifications as
graphical counter-examples. This is a popular feature among Alloy practitioners
and could, in principle, act as hints to help students progress towards solving
a challenge when learning autonomously. However, studies find visual counter-
examples have mixed results with novices [7,8]. In fact, a recent user study [6]
with different kinds of manually encoded hints concluded that only next-step
hints, which highlight faults in incorrect specifications and provide tips on how
to fix them, improved the immediate performance of the participants without
jeopardizing learning retention.

Next-step hints are one of the most common feedback approaches in ITSs
for programming [21]. A possible approach to generate these hints is through
automated repair techniques. After repairing a faulty program to obtain a correct
one, a next-step hint can be obtained by comparing both. One such technique
has been proposed for Alloy [4], but it is only effective when students are already
close to a correct specification, and the quality of the generated hints is not
clear. An alternative approach is to rely on historical student submission data
for the generation of hints, in order to guide the student towards paths that led
to successful submissions. The expectation is that more understandable hints
can be generated by mimicking successful peer behaviour.

This work proposes the first history-based hint-generation technique for Alloy,
and presents its implementation as an extension to Alloy4Fun. Alloy4Fun was also
designed to support research on formal methods education, and thus every inter-
action with the tool is anonymously recorded and made available to the instruc-
tors [16]. Based on this collected data, the proposed extension creates a directed
graph encoding all attempts by previous students. Then, upon a hint request, it
finds a path between the student submission and a solution using a customiz-
able policy, and generates a next-step hint based on this path. The developers
of AlloydFun maintain a publicly available dataset [15] of student attempts col-
lected from their classes over the years. We relied on this dataset to evaluate our
technique both for performance (effectiveness and efficiency) and for the quality
of the hints (based on the opinions of experts on teaching Alloy). It achieved bet-
ter results than the state-of-the-art tools. Furthermore, it can generate timely

! http://alloytools.org/citations /courses.html.

http://alloytools.org/citations/courses.html

106 A. Barros et al.

sig User {
follows : set User,
posts : set Photo
)
sig Influencer extends User {}
sig Photo {
date : one Day
}
sig Ad extends Photo {}
sig Day {}

pred specl {
b

pred oraclel { all p: Photo | one posts.p }

check specl { oraclel iff specl } for 3

pred spec2 {
}

pred oracle2 { all u:User | Influencer - u in u.follows }

check spec2 { oracle2 iff spec2 } for 3

Fig. 1. Social network model with specification challenges

feedback, which is especially important in the educational context since students
might easily feel frustrated if hints take too long to generate.

The remainder of the paper is structured as follows. Section 2 provides a short
introduction to Alloy education, and Sect. 3 describes techniques for hint gener-
ation and Alloy repair. Section4 presents our solution and its implementation,
which is evaluated in Sect.5. Section 6 presents conclusions and future work.

2 Teaching Alloy with Alloy4Fun

The Alloy language is based on temporal relational logic, but for simplicity, we’ll
restrict this presentation to the static subset of the language. Structure in an
Alloy model is introduced through the declaration of signatures and fields. These
can be restricted by multiplicity constraints and be hierarchically organized. The
upper part of Fig. 1 depicts the structure of a social network system, a simplified
version of an exercise in the Alloy4Fun dataset [15]. A signature User models
users, with binary fields follows and posts relating each user with a set of users
being followed, and a set of posted photos, respectively. Signature Influencer
extends users, denoting a subset of User. Signature Photo has a field date that

Alloy Repair Hint Generation Based on Historical Data 107

sig User {
follows : set User,
posts : set Photo
ig Influencer extends User {}
ig Photo {

: one Day

9|sig Ad extends Photo {}
%? sig Day {}

13|pred specl {
) all p:Photo | some u:User | u->p in posts

Command : |check specl v

> & o 3

Execute Share model Statistics Derivations

Counter-example found. check specl is invalid.

Fig. 2. Incorrect submission to specl in Alloy4Fun

relates each photo to exactly one day when it was posted; advertisements are a
particular kind of photo, introduced by sub-signature Ad.

When validating a system design, one would impose additional restrictions
over this model using temporal relational logic through facts. To promote main-
tainability, reusable formulas and expressions can be introduced through pred-
icates and functions, respectively. Then run and check commands would be
defined to animate the model or verify desirable properties, respectively. Com-
mands are automatically executed by the Alloy Analyzer within a given bound
for the universe. When teaching Alloy, a typical kind of challenge presented to
students is to encode some of these logical constraints.

With this in mind, Alloy4Fun introduced the concept of model secret, allowing
such challenges to be auto-graded [16]. Instructors write an oracle as a secret
predicate and then use the Analyzer to check whether a student submission is
equivalent to it. Two examples are shown in the bottom of Fig. 1. The student
is asked to write in predicate specl the constraint “every photo is posted by
one user”. Hidden from the student through annotation //SECRET, predicate
oraclel specifies a possible solution: for every photo p, there is exactly one
user related with it through posts. Command specl simply checks whether the
student specification and the oracle are equivalent (with at most 3 atoms in each
signature). Being a semantic test, the correct submission can be syntactically

108 A. Barros et al.

different from the oracle. A single Alloy4Fun model (which we call an ezercise)
can contain multiple challenges; the one in Fig.1 has 2.

If a check command is invalid, the Analyzer (and Alloy4Fun) returns a graph-
shaped counter-example where the equivalence does not hold. The user can
navigate through alternative counter-examples and customize the visualization
for better comprehension. As an example, Fig. 2 shows the student view of the
exercise from Fig.1 (i.e., secrets are hidden), where the student submitted an
incorrect attempt to the specl challenge and a counter-example was returned.
In principle, counter-examples are helpful when debugging specifications, but
studies show they are not the most adequate feedback for novice users [6].

Alloy4Fun collects anonymous data from all user interactions. So, whenever
a student runs a command, it stores information such as the full model, the
selected command and its outcome, and the identifier of the model it derived
from. The resulting derivation tree allows the reconstruction of student paths,
by identifying sequential attempts to the same challenge. The already mentioned
dataset [15] collects this data for various editions of formal methods courses in
the Universities of Minho and Porto, Portugal, between the Fall of 2019 and the
Spring of 2023, totalling about 100000 models.

3 Automatic Hint Generation

Next-step hints Although next-step hints are a popular kind of feedback in ITSs,
there are some concerns that such hints may be counter-productive, namely due
to hint abuse and avoidance [1], or the fact that they indicate students ‘how’ to fix
rather than ‘why’ [18]. Nonetheless, studies [10, 14,25, 26] suggest that next-step
hints have no impact on long-term learning retention but often improve imme-
diate performance, enabling students to learn more efficiently. A recent study
on Alloy reached similar conclusions [6]. Moreover, there’s an indication that
accompanied by prompts for self-explanation, such hints may improve learning
retention [20], although the results could not be replicated [19].

There are several techniques to automatically generate a next-step hint from
an incorrect submission [21]: searching for steps that take the student closer to
a reference solution, using previous successful submissions by peers, identifying
known patterns in the incorrect submission, or trying to repair a solution to
pass an oracle. Repair-based approaches have been proposed for Alloy, which we
discuss below. However, these are often affected by scalability issues, and it’s
unclear how to select high-quality hints from alternative repair suggestions. In
contrast, data-driven approaches do not suffer from performance issues and may
generate more intuitive hints since they are based on historical submissions. The
tradeoff is that they may be ineffective in large solution spaces or assignments
with small historical logs. We are not aware of such techniques for specification
ITSs, so we discuss them in the context of programming ITSs next.

Data-driven hint generation. The first data-driven hint generation approach was
proposed in the context of a logic-proof tutoring system [2]. It has since been

Alloy Repair Hint Generation Based on Historical Data 109

adapted to platforms for programming [11,23,28], although not for specifications,
as far as we are aware. The main idea behind these approaches is to use historical
student submissions to build a graph of all traversed solution paths. Each node
in the graph is the AST of a submitted attempt in a student path, and the
transitions register the sequence of edit actions that lead from one submission
to the other. To build the hint graph, all student paths are combined into a
single graph by matching identical submissions, keeping the popularity of each
state and/or transition, and marking correct submissions as goal states. When
a student asks for a hint, if the current state is present in the hint graph, it
calculates the optimal path towards a correct solution and generates a hint.
In [2] Markov Decision Processes (MDP) were used to calculate the optimal
path, but various other policies have since been proposed [22,24]. Studies have
used expert input to evaluate the quality of the hints resulting from different
polices [22,24].

The main challenge for this kind of approach is the size of the solution space.
Besides being an obvious issue for assignments with little historical data, the
solution space for expressive programming languages is so large that getting
hits in the graph may be unlikely even with substantial historical data. Sev-
eral approaches have been explored to address this, such as creating interme-
diate states [28], using program outputs rather than the actual AST as graph
states [11], or employing canonicalization techniques to group semantically equiv-
alent ASTs in the same graph state [27].

Automated Alloy Repair. Automated program repair techniques generate fixes
for programs that fail to pass a certain oracle. In education, this oracle can be
written by the instructor, either a reference solution or a suite of tests, and
then used to generate hints to fix student submissions. Some automated repair
techniques have been proposed for Alloy specifications [3,4,30,31].

ARepair [30] was the first repair technique for Alloy, using test cases as ora-
cle. This makes it prone to overfitting, generating fixes that pass the tests but
still break the expected properties. Moreover, Alloy models are typically not
accompanied by test cases. In contrast, BeAFix [3] uses as oracles check com-
mands. This is more natural in Alloy (and Alloy4Fun challenges) since models
are typically accompanied by commands defining expected properties. Unfortu-
nately, the pruning techniques proposed to improve performance rely on multiple
commands and suspicious locations, and are not effective for simple Alloy4Fun
specification challenges. TAR [4] was developed for the educational context and
integrated into Alloy4Fun. It is focused on producing timely feedback to avoid
student frustration (and to support the temporal aspects of Alloy 6). Its pruning
technique evaluates previously seen counter-examples to avoid costly calls to the
solver. It was shown to considerably outperform ARepair and BeAFix within a 1-
minute timeout, but it is unfeasible for specifications far from a correct solution.
ATR [31] is another technique to repair Alloy 4 specifications with commands
as oracles. Although developed independently from TAR, it also uses counter-
examples (and the closest valid instances) to avoid calls to the Analyzer. ATR

110 A. Barros et al.

derivation tree hint graph optimal path next-step hint

ot
)
%‘f

student submission weight function

Fig. 3. Overview of the approach when submissions are present in historical data

was shown to outperform the repair rate of ARepair and BeAFix, and to be more
efficient than BeAFix.

4 Hints from Historical Alloy Data

The proposed technique adapts existing data-driven hint generation techniques
for programming. Using Alloy4Fun historical data, it creates a graph that cap-
tures students’ progress when solving a challenge, which is then used to generate
hints for future students. This section describes the technique and its implemen-
tation, whose overview is presented in Fig. 3.

4.1 Hint Graph Construction

To generate hints, our approach relies on a graph of student submissions for each
specification challenge, created from an Alloy4Fun dataset. These graphs are cre-
ated offline and can be rebuilt from time to time as new data is collected. Each
node in the graph is a normalized formula previously submitted by a student,
labelled as correct or incorrect, and each edge represents a transition between
two submissions. Each formula is unique in the graph, so similar submissions
are merged, and the frequency of nodes and transitions are registered to be used
in the pathfinding step. Formula comparison is performed at the AST level, so
syntactically incorrect entries in the dataset are disregarded. As seen in Sect. 2,
an Alloy4Fun exercise may contain multiple challenges, so the derivation tree
must be split per challenge. The Alloy command called by each entry identifies
the corresponding target challenge. To exactly identify the student submission
and avoid considering the oracle as part of the graph state, we assume that
each challenge command calls an empty predicate to be filled by the student, as
exemplified in Fig. 1; the formula for each node is extracted from the content of

Alloy Repair Hint Generation Based on Historical Data 111

(pred specl { Gred specl { YA)
all p:P | some ps.p } all x:P | x in U.ps }

pred spec2 {
\all x:U,y:I | y in x.fl })

\ * / \ * J *
(pred specl { YA ") (pred speci { A
all p:P | one ps.p } all x:P | some ps.x }
pred spec2 {
\ J\ a1l x:U,y:1 | x in y.fl } PAQ)
(- N (pred specl { N /pr'ed specl { A
all x:P | one ps.x } all x:P | one ps.x }

pred spec2 {

\ a1l x:U,y:I | y in x.fl }J L JAR)
v v v

(o N 4 N /5 A\

pred spec2 { pred spec2 { pred spec2 {

\ 211 x:U | I-x in x.fl } \ 211 x:U,y:I-x | y in x.f1 }) (21l x:U,y:I-x | y in x.f1 Y

J

Fig. 4. A sample derivation tree with 3 paths for the exercise in Fig. 1

that predicate?. When extracting submissions to a certain challenge and remov-
ing syntactically invalid formulas, the pointer to the parent submissions must be
updated accordingly to preserve the student paths.

For improved efficacy (i.e., the probability of a submission having a match in
the graph), we apply a few canonicalizations specified in [27] that were sensible
in the Alloy context, such as sorting commutative operations and normalizing
the direction of comparisons. Additionally, since quantified variables in Alloy
cannot be inlined, we apply variable anonymization. The same transformation is
applied to submissions whenever a hint is requested. Note that we do not want to
abuse canonicalization and end up with hints for a formula that differs too much
from the concrete student submission. So, for example, we do not propagate not
operators using De Morgan’s laws.

To illustrate this process, consider the derivation tree in Fig.4, that could
be collected from the exercise in Fig. 1 (signature and field names abbreviated).
It contains 3 paths, with incorrect and correct interleaved attempts to both
challenges (specl and spec2). The target challenge in each state is the one not
greyed-out, green and red nodes represent correct and incorrect submissions,
respectively, and the blue node is the root model shared by the instructor?.
This will result in the two graphs in Fig. 5, with node and transition frequency
identified by line thickness. Notice the normalization before merging, here just
the name of the quantified variables. Notice also that there may be more than
one semantically equivalent valid solution per challenge.

2 This strategy may not hold for other kinds of Alloy4Fun challenges, in which case
additional annotations could be used to identify the submission predicate.

3 Technically, paths can branch if a student backtracks to a previous model. This
phenomenon was negligible in the dataset, and does not affect the general procedure.

112 A. Barros et al.

pred specl {
all x:P | some ps.x }

pred specl {
all x:P | x in U.ps }

pred spec2 { pred spec2 {

all x:U,y:I | y in x.fl1 } all x:U | I-x in x.fl }
pred spec2 { pred spec2 {

all x:U,y:I | x in y.f1 } all x:U,y:I-x | y in x.f1 }

Fig. 5. Hint graphs resulting from the derivations in Fig. 4

pred specl { pred specl {
}

all x:P | one ps.x }

pred spec2 {
b

4.2 Finding the Optimal Next State

The hint generation algorithm runs on demand when a student requests a hint.
After locating the student’s submission in the hint graph of the target challenge,
the current state, the algorithm searches for the optimal path—according to the
defined criterion—from it to any correct formula, the goal state. The first edge
of this path indicates the transition the student should make to progress toward
the goal, the next state that will be used to create the hint.

As discussed in Sect. 3, several criteria have been proposed to define the opti-
mal path. Our goal was to keep the path finding process as general as possible,
so we allow the instructor to define the desirable policy. This is done through the
definition of a weight function on the edges of the graph from a set of available
attributes. These attributes may be data-driven—mnamely the (relative) popular-
ity of the edge in the source state, and the popularity of the source and target
states—but also syntactic—namely the complexity of the edge transformation
and the source and target formulas. The complexity of the states is given by
the size of the respective AST. For the complexity of the edge, recall that a
transition between states may encompass several actions between two successive
submissions from the student. We measure the complexity of the edge as the tree
edit distance (TED) between the two states, calculated using the state-of-the-art
algorithm APTED*.

Given the weight function on edges, the optimal path is calculated through
a simple shortest path algorithm for weighted graphs.

4.3 Hint Message Generation

The next-step hint is generated from the optimal path. We consider two aspects
to create the hint message: how far the student is from the optimal solution,
based on the TED between the current and the goal states; and the sequence
of edit operations between the current and the next states. To calculate this
sequence, we use an implementation® of GumTree [9], which calculates a mapping

* https://github.com/DatabaseGroup/apted.
5 https://github.com/GumTreeDiff/gumtree.

https://github.com/DatabaseGroup/apted
https://github.com/GumTreeDiff/gumtree

Alloy Repair Hint Generation Based on Historical Data 113

all all

] E | ¢] [os |
O] CJ CEe= [
4 % 4 %
|Photo|| Ad ||posts|| X |

Fig. 6. Example of AST edit operations.

between AST nodes and uses the Chawathe et al. [5] algorithm for computing the
edit sequence. The result is a sequence of inserting, deleting, or moving nodes,
or updating a node’s label. Since there may be dependencies between these edit
operations, currently we select the first operation of the sequence for the hint.
To translate an edit operation to a hint we use a message template for each
operation type. The messages try to simulate what a teacher would say to a
struggling student, and contain placeholders for operator-specific information
that can be tailored for the Alloy language.

Consider, e.g., transforming all p:Photo-Ad | some posts.p, incorrect for
specl, into the correct all p:Photo | one posts.p, shown in Fig.6. This
requires 4 operations: move node Photo up, delete nodes - and Ad, and update
node some to one, resulting in a TED of 4. The resulting hint message looks
like this: “Keep going! It seems like you have unnecessary information in your
expression. Try simplifying your expression by deleting the difference operator

(-).”.

4.4 Handling Missing Hits

A pure data-driven approach fails for formulas absent from the historical data.
To improve efficacy, one can construct paths from a previously unseen state until
one already in the graph. To this purpose, we enhance our data-driven approach
with a mutation-based component. Whenever a request does not exist in the
graph, we generate variants according to a set of mutators. If a variant happens
to already exist in the graph, a temporary edge from the current state to that
variant is added with popularity 0, thus connecting the previously unseen formula
to the graph and enabling the pathfinding procedure. These mutators—which are
comprised by multiple edit actions—represent typical high-level transformations
applied to a formula. In particular, we rely on the mutators proposed by TAR [4],
which were specifically designed for the Alloy language. Currently, this process
is restricted to a single mutation to avoid reaching a path too distinct from the
student submission.

114 A. Barros et al.

sig User {
follows : set User,
posts : set Photo

sig Influencer extends User {}
sig Photo
date : one Day

sig Ad extends Photo {}
sig Day {}

©CONOUIBWN
- -~

pred specl {
N all p:Photo=Ad | some posts.p

pred spec2 {
}

Command : |check specl v

> O & w3

Execute Hint Share Statistics Derivations

model

Counter-example found. check specl is invalid.

Fig. 7. Hint provided for incorrect submission to specl in extended Alloy4Fun

4.5 Deployment in Alloy4Fun

The proposed approach was implemented as a REST service, and we imple-
mented an extension to the Alloy4Fun platform that uses the service to auto-
matically provide hints to challenge attempts®. A new button was added to the
interface that allows users to request a hint when an incorrect specification is
submitted to a challenge. If the tool is able to generate a hint, it highlights a
location in the editor and provides an explanatory message. This is shown in
Fig. 7 for the example used in Sect. 4.3.

The service was implemented in Java—to take advantage of the Alloy Analyzer
parser and AST—using the Quarkus framework. The hint graphs are stored in a
new collection for the MongoDB database of Alloy4Fun. The weight function that
determines the policy is provided through a JSON file that defines an arithmetic
expression over the complexity and frequency attributes presented in Sect. 4.2.

Although optimal paths could be calculated live from the graph whenever
a hint is requested, in practice, to make hint generation as fast as possible, we
pre-compute the optimal next state for every state of the graph offline. When a
hint is requested, it is just a matter of fetching the next state from the graph.

5 https://github.com/anaines14/Alloy4Fun.

https://github.com/anaines14/Alloy4Fun

Alloy Repair Hint Generation Based on Historical Data

Table 1. Statistics for the considered exercises

Exercise Id |Challs.|Specs. Syntatic/ Training|Testing
Social Network SN|8 22690 14943 10428 |2793
Courses Coll5 2251614911 10431 2418
Train Station TS|10 8158 6388 4394 1331
Production Line PL|10 8078 6058 4156 1102
Trash LTL TL/19 5279 (4352 2788 890
Classroom FOL CF14 5893 4376 2702 663
Classroom RL CR[14 6341 (4248 2474 687
Trash RL TR|9 4361 3059 1530 347
Trash FOL TF|9 4092 2719 1425 194
Graphs Gr|7 3211 2481 1281 370
Labelled Transition System TS|6 3382 2076 995 393
Curriculum Vitae Cvi4 1199 (854 596 218

Table 2. Quantitative evaluation results, all times in seconds

Id |Construction Data-driven

Data+Mutations

TAR

StatesT¢ |Tp Hits

T

Hits Ty

Ty |Cmn.

SN|3605 [165.57.9 1265 (45%

0.01

0.7

44.620

Co/4104 [215.3/13.2| 812 (34%

0.01

0.7

38.6/30

TS|1874 69.8 9.5 | 529 (40%

0.02

0.8

38.2/9

PL/1862 [113.65.4 | 373 (34%

0.01

0.7

38.515

TL 1219 |52.2 |7.7 | 357 (40

0.01

0.4

9.5 23

0.01

0.5

26.7/13

CR985 146.7 5.5 | 239 (35

35.9

%o
CF903 |45.2 6.0 | 331 (50%
%
%

TR446 |31.5 2.4 | 195 (56

0.02

0.2

0.9

TF343 [28.6 1.9 | 100 (52%

0.02

0.3

0.9

Gri599 |27.7 3.7 | 162 (44%

0.02

0.2

TS|489 |22.8 3.7 19%

0.02

0.2

8.2

(
(
(
(
(
(
(
(
(
(
74 (
44 (

cvi324 |11.7 1.6 20%

0.01

)
)
)
)
)
)
)0.02
)
)
)
)
)

0.7

)
)
)
)
)
)
)0.3
)
)
)
)
)

7
3
5
21.00
0
2

48.2

115

116 A. Barros et al.

Table 3. Incorrect specifications selected for the questionnaire

Spec [Id |Incorrect

speclIlalall p:Photo | some u:User | u—p in posts
Ilblall p:Photo | p in User.posts
Ilcjall p:Photo,u:User | p in u.posts

spec2|I2aall i:Influencer,u:User | i in u.follows
I2bjall u:User | Influencer in u.follows
I2cjall u:User | u.follows in Influencer

5 Evaluation

We evaluate the proposed hint generation technique quantitatively—addressing
its effectiveness and efficiency—and qualitatively—comparing the generated
hints with those suggested by experts. Specifically, we aim to answer the fol-

lowing research questions:

RQ1 How effective is the tool when a hint is requested, i.e., how often can it

generate a hint?

RQ2 How efficient is it in the various steps of the process, i.e., how long does it
take to construct the graph and to generate a hint?
RQ3 How does it compare with repair-based approaches?
RQ4 What is the quality of the generated hints, and what is the impact of the

specified policy?

Table 4. Most popular answers by expert Alloy tutors

Id Most popular location #|Most popular hint #
Ilasome u:User | .. 8 [Update @ some u:User | .. 8
Ilball p:Photo | .. 3 [Update @ .. in .. 2

Update @ all p:Photo | .. 2
Ilclall p:Photo,u:User | .. 7 [Update @ all p:Photo,u:User | .. 5
I2alall i:Influencer,u:User | ..4 Delete @ u:User 2

Update @ all i:Influencer,u:User | ..2

Insert @ all i:Influencer,u:User | .. |2
I2b|Influencer 5 [Insert @ Influencer 4
I2c|.. in .. 6 [Update @ .. in .. 5

Alloy Repair Hint Generation Based on Historical Data 117

5.1 Quantitative Evaluation

For the quantitative evaluation, we applied our technique to the Alloy4Fun
dataset [15], which contains data for multiple exercises (each with multiple chal-
lenges). It contains about 66 000 syntactically correct student submissions to 12
different exercises, collected over 4 years. Table 1 shows the number of challenges
per exercise (Challs.) and the aggregated statistics. The dataset was split into
a training subset to construct the graphs and a testing subset to evaluate the
performance. We split full paths in the dataset randomly 70%/30% (rather than
splitting individual submissions, since our approach is based on previously tra-
versed paths). Each entry in the testing subset was then run for a hint request
in the purely data-driven technique, in the version that employs mutations for
formulas absent in the graph, and also in the existing repair-based approach
TAR with a maximum search depth of 2. All tests were performed on a com-
modity Intel Core i5-13600KF, with 32 GB of RAM. Timeout for requests was
set to 1 min since timely feedback is critical in the educational context. Table 2
summarizes the results.

Regarding RQ1, Table 2 shows the hit rate (i.e., the number of specifications
for which the tool was able to return a hint) for the purely data-driven and the
mutation-enhanced versions. The hit rate of the former ranges from 19% to 56%,
with a total average of 39%. Interestingly, the exercises with higher hit rate are
not among those with the largest number of specifications in the historical log,
which is possibly connected to the complexity of the challenges. Nonetheless, this
hit rate will only increase as the exercises collect more submissions. Activating
the mutation component for missed requests considerably increases the hit rate
to an average of 57%.

For RQ2, we start with the graph construction step. Table 2 aggregates the
results for each exercise, namely the number of unique formulas resulting in
graph states, and the time to construct the graphs (T¢) and to compute the
optimal next state (7). The selected weight function did not affect the per-
formance significantly (shown values are for minimizing transition complexity).
Results show that the whole process takes a few minutes for the exercises with
more submissions, which is reasonable since this construction is expected to be
performed sporadically offline. Regarding the hint generation step, Table 2 also
shows the average time to generate a hint for both approaches (Ty). For the
data-driven approach, this time is negligible for all exercises (recall that we pre-
calculate the optimal next state offline). When enhanced with mutations, there
is an expected increase on time, although still below 1s in average. This makes
the technique feasible in answering live hint requests.

Regarding RQ3, Table 2 also shows the hit rate and time to retrieve a hint
for TAR. The hit rate seems less predictable, ranging from 9% to 87%, with an
average of 30%, well below our approach. Interestingly, the number of formulas
for which both our data-driven approach and TAR can generate hints (Cmn.) is
very small, suggesting that these approaches are complementary. As expected
TAR takes considerably longer to generate a hint, with an average of 27's, since
it is search-based and calls the solver to validate potential solutions.

118 A. Barros et al.

5.2 Qualitative Evaluation

To evaluate the quality of the generated hints (RQ4), we asked experienced
Alloy instructors how they would suggest a next-step hint for a set of incorrect
specifications. For each of the two challenges from Fig. 1, we selected 3 frequently
submitted incorrect specifications, shown in Table 3. We created a questionnaire
that asked for hints in the shape of a target location and an edit operation
(insertion, removal and update). We sent the questionnaire to 12 Alloy instructors
unrelated with this work, and received 8 replies. We observed that, except for
one case (I1a), the experts did not select the same next-step hint, highlighting
the difficulty of automatically generating hints. Table 4 shows the most popular
answers by the experts, both by location only by the whole hint (i.e., location
plus edit operation).

Our approach allows policies to be customized through weight functions. To
compare the answers of the experts with the results of our approach, we designed
a few simple weight functions, some considering only the complexity of nodes
(Cmpy) and edges (Cmpg), and others only the frequency of nodes (Frqy)
and edges (Frqg). We also considered a couple of policies that combined these
syntactic and data-driven attributes. For this evaluation, we do not consider the
mutation-enhanced version of the technique, as we intend to evaluate the quality
of the data-driven approach. For each policy we counted in how many of the 6
incorrect specifications the generated hint: i) was selected by any expert, and
it) was among the most popular answers by the experts. We consider whether
there was a match only on the identified location or in the whole hint. Table 5
shows the results.

Interestingly, results show that looking uniquely at the complexity of the
edges (TED) results in hints closer to the experts than the purely data-driven
policies. However, the best results are actually when considering both kinds of
attributes simultaneously: with Cmpg and Frqg every hint generated was one
also suggested by some experts, and often one of the most popular.

Table 5. Matches between hints generated by policies and expert hints

Policy Location|Loc.+Op.
Any Pop./Any Pop.
Cmpn 3 3 3 3
Frqn 2 2 2 2
Cmpg 5 3 4 2
Frqg 4 3 |4 2
Cmpn X Frqel6 4 5 3
Cmprg X Frqel6 5 6 3

Alloy Repair Hint Generation Based on Historical Data 119

6 Conclusion

This paper presented the first data-driven hint generation technique for I'TSs for
learning formal specifications, namely for the Alloy language, and its implemen-
tation in the Alloy4Fun platform. The data-driven technique is complemented
with a mutation-based component to handle absences in the historical data.
Our evaluation shows that our approach outperforms an existing repair-based
technique, and that with the right policy the generated hints can emulate those
provided by experts.

Our expert questionnaires included an open question where most experts sug-
gested feedback in shapes other than next-step hints, such as explaining the issue
with the incorrect specification. Some studies suggest next-step hints accompa-
nied by self-explanations can improve learning [20], but studies also find hints
explaining issues are not well-received by novices [6]. Further studies are needed
on how to implement these effectively. On the other hand, the quantitative eval-
uation showed a small overlap between the cases successfully handled by the
data-driven and the repair-based approaches, suggesting that hybrid approaches
may be worth exploring.

Acknowledgments. The work by A. Barros and H. Neto is financed by National
Funds through the Portuguese funding agency, FCT - Fundagdo para a Ciéncia e a
Tecnologia within project EXPL/CCI-COM/1637/2021. The work by N. Macedo is
financed by National Funds through the Portuguese funding agency, FCT - Fundagao
para a Ciéncia e a Tecnologia, within project UIDB/50014/2020.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Aleven, V., Roll, I.;, McLaren, B.M., Koedinger, K.R.: Help helps, but only so
much: Research on help seeking with intelligent tutoring systems. Int. J. Artif.
Intell. Educ. 26(1), 205-223 (2016)

2. Barnes, T., Stamper, J.C.: Toward automatic hint generation for logic proof tutor-
ing using historical student data. In: ITS, LNCS, vol. 5091, pp. 373-382. Springer
(2008). https://doi.org/10.1007/978-3-540-69132-7 41

3. Brida, S.G., et al.: Bounded exhaustive search of Alloy specification repairs. In:
ICSE, pp. 1135-1147. IEEE (2021)

4. Cerqueira, J., Cunha, A., Macedo, N.: Timely specification repair for Alloy 6. In:
SEFM, LNCS, vol. 13550, pp. 288-303. Springer (2022). https://doi.org/10.1007/
978-3-031-17108-6 18

5. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection
in hierarchically structured information. In: SIGMOD Conference, pp. 493-504.
ACM Press (1996)

6. Cunha, A., Macedo, N., Campos, J.C., Margolis, I., Sousa, E.: Assessing the impact
of hints in learning formal specification. In: SEETQICSE, pp. 151-161. ACM (2024)

https://doi.org/10.1007/978-3-540-69132-7_41
https://doi.org/10.1007/978-3-031-17108-6_18
https://doi.org/10.1007/978-3-031-17108-6_18

120

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Barros et al.

Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User stud-
ies of principled model finder output. In: SEFM, LNCS, vol. 10469, pp. 168-184.
Springer (2017). https://doi.org/10.1007/978-3-319-66197-1 11

Dyer, T., Nelson, T., Fisler, K., Krishnamurthi, S.: Applying cognitive principles
to model-finding output: the positive value of negative information. Proc. ACM
Program. Lang. 6(OOPSLA1), 1-29 (2022)

Falleri, J., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: ASE, pp. 313-324. ACM (2014)
Gusukuma, L., Bart, A.C., Kafura, D.G., Ernst, J.: Misconception-driven feedback:
results from an experimental study. In: ICER, pp. 160-168. ACM (2018)

Hicks, A., Peddycord III, B.W., Barnes, T.: Building games to learn from their
players: generating hints in a serious game. In: ITS, LNCS, vol. 8474, pp. 312-317.
Springer (2014). https://doi.org/10.1007/978-3-319-07221-0 39

Jackson, D.: Software abstractions: Logic, language, and analysis. MIT Press,
revised edn. (2006)

Jackson, D.: Alloy: a language and tool for exploring software designs. Commun.
ACM 62(9), 66-76 (2019)

Lazar, T., Sadikov, A., Bratko, I.: Rewrite rules for debugging student programs
in programming tutors. IEEE Trans. Learn. Technol. 11(4), 429-440 (2018)
Macedo, N., Cunha, A., Paiva, A.C.R.. Alloy4Fun dataset for 2022/23
(2023). https://doi.org/10.5281/zenodo.8123547, https://doi.org/10.5281 /zenodo.
8123547

Macedo, N., et al.: Experiences on teaching Alloy with an automated assessment
platform. Sci. Comput. Program. 211, 102690 (2021)

Mansoor, N., Bagheri, H., Kang, E., Sharif, B.: An empirical study assessing soft-
ware modeling in Alloy. In: FormaliSE. pp. 44-54. IEEE (2023)

Marwan, S., Lytle, N., Williams, J.J., Price, T.W.: The impact of adding textual
explanations to next-step hints in a novice programming environment. In: ITiCSE,
pp. 520-526. ACM (2019)

Marwan, S.; Price, T.W.: iSnap: evolution and evaluation of a data-driven hint
system for block-based programming. IEEE Trans. Learn. Technol. 16(3), 399-413
(2023)

Marwan, S., Williams, J.J., Price, T.W.: An evaluation of the impact of automated
programming hints on performance and learning. In: ICER, pp. 61-70. ACM (2019)
McBroom, J., Koprinska, 1., Yacef, K.: A survey of automated programming hint
generation: the hints framework. ACM Comput. Surv. 54(8), 1-27 (2022)

Piech, C., Sahami, M., Huang, J., Guibas, L.J.: Autonomously generating hints by
inferring problem solving policies. In: L@S, pp. 195-204. ACM (2015)

Price, T.W., Dong, Y., Barnes, T.: Generating data-driven hints for open-ended
programming. In: EDM, pp. 191-198. Int. Educ. Data Min. Soc. (IEDMS) (2016)
Price, T.W., et al.: A comparison of the quality of data-driven programming hint
generation algorithms. Int. J. Artif. Intell. Educ. 29(3), 368-395 (2019)

Price, T.W., Marwan, S., Winters, M., Williams, J.J.: An evaluation of data-driven
programming hints in a classroom setting. In: ATED (2), LNCS, vol. 12164, pp.
246-251. Springer (2020)

Rivers, K.: Automated Data-Driven Hint Generation for Learning Programming.
Ph.D. thesis, Carnegie Mellon University, USA (2017)

Rivers, K., Koedinger, K.R.: A canonicalizing model for building programming
tutors. In: ITS, LNCS, vol. 7315, pp. 591-593. Springer (2012)

https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-319-07221-0_39
https://doi.org/10.5281/zenodo.8123547
https://doi.org/10.5281/zenodo.8123547
https://doi.org/10.5281/zenodo.8123547

28.

29.

30.

31.

Alloy Repair Hint Generation Based on Historical Data 121

Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces: a
self-improving python programming tutor. Int. J. Artif. Intell. Educ. 27(1), 37-64
(2017)

Sarkar, A., Negreanu, C., Zorn, B., Ragavan, S.S., Politz, C., Gordon, A.D.: What
is it like to program with artificial intelligence? In: PPIG, pp. 127-153. Psychology
of Programming Interest Group (2022)

Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for Alloy. In: ASE,
pp. 577-588. ACM (2018)

Zheng, G., et al.: ATR: template-based repair for Alloy specifications. In: ISSTA,
pp. 666-677. ACM (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

q'h

Check for
updates

B2SAT: A Bare-Metal Reduction of B
to SAT

Michael Leuschel ®

Evaluation Evaluation
* . . * %
Avaabie| Faculty of Mathematics and Natural Science,
vailable

L Functional

“ Heinrich Heine University Diisseldorf, Diisseldorf, Germany
michael.leuschel@hhu.de

Abstract. We present a new SAT backend for the B-Method to enable
new applications of formal methods. The new backend interleaves low-
level SAT solving with high-level constraint solving. It provides a “bare
metal” access to SAT solving, while pre- and post-calculations can be
done in the full B language, with access to higher-order or even infinite
data values. The backend is integrated into ProB, not as a general pur-
pose backend, but as a dedicated backend for solving hard constraint
satisfaction and optimisation problems on complex data. In the article
we present the approach, its origin in the proof of Cook’s theorem, and
illustrate and evaluate it on a few novel applications of formal methods,
ranging from biology to railway applications.

1 Introduction

The B-method [1,2] is based on predicate logic, arithmetic and set theory. Par-
ticularly when using Unicode symbols, its core syntax is very close to standard
mathematical notation. The PROB validation tool [29] for B can bring this math-
ematics to life [28]. We have been using this fact to develop a variety of interactive
teaching materials for an undergraduate theoretical computer science course, in
particular via Jupyter notebooks [15]. In many cases the mathematical formulas
in the course script [36] are valid B formulas or need only minor adaptations.
These notebooks! cover topics like finite automata, automata determinatisation
and minimisation, parsing algorithms, Turing machines, various Godelisations
and conversions of grammars to automata models and back.

In the summer of 2023 we have covered for the first time Cook’s theorem
[8] in more detail and developed an accompanying B model for it. Cook’s the-
orem states that SAT solving (satisfiability of propositional logic formulas) is
NP-complete. The proof shows that a successful run of a non-deterministic Tur-
ing machine (solving a given NP-problem) can be modelled as the solution of
a propositional logic formula. The translation rules to SAT in [8] and [36] are
written as quantified logic formulas (using universal and existential quantifica-
tion over time points, tape contents and states of the Turing machine). These

! Some of the notebooks are available at:
https://gitlab.cs.uni-duesseldorf.de/general /stups/prob-teaching-notebooks.
© The Author(s) 2025

A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 122-139, 2025.
https://doi.org/10.1007/978-3-031-71177-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_9&domain=pdf
http://orcid.org/0000-0002-4595-1518
https://gitlab.cs.uni-duesseldorf.de/general/stups/prob-teaching-notebooks
https://doi.org/10.1007/978-3-031-71177-0_9

B2SAT: A Bare-Metal Reduction of B to SAT 123

formulas can be encoded elegantly in B, and we could take them almost verba-
tim from the script of the lecture [36] to develop a B encoding of the proof.?
As we will see in Sect. 2, one can thus visualise solutions of the translated SAT
problem, giving students a better intuition about Cook’s theorem. In the process
of formalisation, we also found a few subtle mistakes in the script [36].

More importantly, however, is the realisation that this mathematical style of
describing a SAT problem is useful for other, new applications of formal methods
we were working on (from biology, data mining and railways). This led to the
development of the new solving backend B2SAT. B2SAT intertwines the solving
of high-level, higher order B predicates with solving “bare-metal” SAT problems.
When applied to the B encoding of Cook’s theorem it creates and solves exactly
the SAT problem described in [8,36] and translates the SAT solution back to B.

In the rest of the paper we first show more details about Cook’s theorem
and how to describe the underlying SAT problems in predicate logic. We then
describe the technique and implementation of our new solving backend B2SAT.
We show that B2SAT has applications for complex constraint solving and opti-
misation tasks, enabling convenient modelling in B, TLAT or Z and effective
solving in SAT. For some applications at least, it is considerably more efficient
than existing solvers for B, TLA™T or Z.

2 Cook’s Theorem in B

Cook’s theorem [8] states that SAT solving is NP-complete. The theorem is still
important 50 years after, see, e.g., [34].

Recall that a set A of words is in NP if there is a non-deterministic Turing
machine M4 which accepts A in polynomial time. The proof of NP-hardness in
[8] shows that accepting computations of M4 for a particular input correspond
to solutions of a propositional logic formula F,.. The formula F), is derived from
z and the Turing machine M 4. Nowadays we would call this process bounded
model checking of the Turing machine M 4. Indeed, the number of computation
steps of the Turing machine is bounded by some polynomial 74 over the size
of the input. As such, the reachable cells of the Turing machine’s infinite tape
are also bounded for a given input x, making it possible to encode the whole
computation as a propositional logic formula.

We now present a B encoding of the core of the proof, based on encoding
the translation rules deriving the SAT formula F, from M4 and the input z.
We here assume that M, is a Turing machine with one tape. The translation
rules to SAT are represented as predicate logic formulas; these formulas can be
encoded elegantly in B, and are taken almost verbatim from [36].

A Turing machine consists of a working alphabet I', containing the input
alphabet X' and the blank symbol, a set of states S, an initial state zp, and a set
F C S of final states. In addition we have the transition relation § € (S x I') <
(S x I' x Dir), where Dir = {L, R, N} is the set of possible head movements

? The major adaptations were changing A, g ¢(i) to Vi.i € S = ¢(i) and \/,_g #(i) to
Fi.i € S A ¢(i) and expressing “exactly-one” constraints as cardinality constraints.

124 M. Leuschel

(left, right, neutral). Here, (z,y) — (2,y’,d) € 6 means that if the machine is
in state z € S and the tape contains the symbol y € I' at the head position,
then the machine can change its state to 2/, write 3’ at the current tape position
(overwriting y) and move its head according to d. Note that we model ¢ here as
a relation, and the Turing machine can be non-deterministic.

We now assume that M accepts a set A € NP (i.e., a problem in NP). Hence
the number of steps for accepting an input z € A is bounded by some polynomial
m. Hence, we model the set of time points Time = 0 .. w(n) where n is the size
of the input x. In that time span the Turing machine can move only a bounded
number of steps left or right, hence we have a set of reachable tape positions
Pos = —m(n) .. 7(n)

We can specify the set of valid computation paths of the Turing machine
which accept by the formula F;.. The propositional logic variables of F,, depend
on the size of the input x and are modelled as these three total functions in B:

— state € Time x States — BOOL, encoding the state of the Turing machine
at each time point t € Time,

— head € Time x Pos — BOOL, encoding the position of the head on the tape
at each time point,

— tape € Time x Pos x X — BOOL, encoding the contents of the tape at each
time point.

The formula F, is a conjunction S A K AU1 AU2 A E of the following five
subformulas, which we partially describe below:

S The initial condition specifying that head(0,0) = TRUE, state(0,20) =
TRUFE and the intial tape contents.
K A correctness condition stating that the Turing machine
— can only be in a single state:
Vit.(t € Time = card({s | state(t,s) = TRUE}) = 1),
— have a single head position and symbol at every tape position.

Ul Updating the state, head position and the tape’s contents at the head.

U2 the Frame axiom, stating that tape contents not at the head remain
unchanged: Y(t,i,a).(t € Time™ ANi € Pos Aa € I') = ((head(t,i) =
FALSE Atape(t,i,a) = TRUE) = tape(t+1,i,a) = TRUE))) where Time*
is all but the last time point.

E ensuring we reach a final state:
3s.(s € Final A state(w(n),s) = TRUE).

Parts of the B model can also be found in Fig. 2. Ul is the most complicated
formula, and was not written out in [8]. U1 contained four mistakes in [36], which
were undetected for at least 15years. E.g., [36] did not ensure that we do not
step outside the set of modelled positions.

We can now bring this formula to life by letting PROB find solutions for
state, head and tape which satisfy F, for a particular Turing machine and a
particular input. In Fig. 1 we show the graphical rendering® of one such solution

3 The B model and an HTML export of this visualisation can be inspected at https://
stups.hhu-hosting.de/models/B2SAT.

https://stups.hhu-hosting.de/models/B2SAT
https://stups.hhu-hosting.de/models/B2SAT

B2SAT: A Bare-Metal Reduction of B to SAT 125

for a Turing machine with 4 states® the input “100” (1 is green, 0 is red and
BLANK is white) and modelling 16 computation steps (from left to right).

The B model can now be used to show the students the importance of the
various subformulas of F},. For example, Fig. 1 on the right shows what happens
when we drop the frame axiom U2, meaning that untouched tape contents can
change willy-nilly at each step.

state(t,s) head(t,7) tape(t,i,a) state(t, s) head(t,i) tape(t,i,a)

Fig. 1. Two solutions of F,, showing SAT variables for state, head and a condensed
view of tape. Time ¢ progresses from left to right in each case. The SAT problems have
1664 variables. For the right the frame axiom U2 was removed from Fj.

As we have seen, PROB’s default solver can solve and visualise our B model
in Fig. 1, and thus implicitly solve the underlying SAT problem. The underlying
SAT problem in Fig. 1 has 1664 variables and a solution is found in about two
seconds (when increasing solver strength preference to ensure cardinality con-
straints are all reified, cf. [18]). But PROB is not a dedicated SAT solver, and
will certainly struggle for larger underlying SAT problems.

PRrROB also provides other constraint solving backends. In particular, PROB’s
Kodkod backend [35] translates B models to SAT via the Kodkod library [41]. It
is an ahead-of-time static translation for a first-order subset of B, which unfortu-
nately fails here, in particular because J is not a binary relation. So this backend
is not applicable to our encoding of Cook’s theorem. Unfortunately, we were
also not able to successfully apply PROB’s Z3 backend [37] here. (We provide a
detailed discussion of these backends in Sect. 6.)

So, given that our B model actually specifies the generation of a SAT formula,
wouldn’t it be nice if we somehow could generate F, on the fly in B and then
call a dedicated SAT solver on F,7

This is exactly the contribution of this paper: a technique to process the
above B model by a combination of PROB’s default solver with a dedicated SAT
solver. The approach enables one to use the full power of B, including higher-
order functions and relations, during pre- and post-processing, while still using
a propositional logic SAT solver for the core solving. Figure 2 shows parts of the
B model, highlighting in green the parts that were expanded and translated for
the SAT solver and in red the parts that were fully processed by PROB’s solver.

4 Implementing adding 1 to a binary number; but the output is of no relevance here.

126 M. Leuschel

Final < States A
& € (States x Alphabet) o (States x Alphabet x Direction) A

A
// the total functions which map to propositions of the SAT problem
A
26 A

29| Formula_K A
38| Formula_S A
31| Formula_U1 A

33| Formula_E A

34| btrue

35 |DEFINITIONS

36| Formula_K == // Correctness: for every computation step there is a single state, position and symbol per tap
e position:

37| Vt.(tETIME = card({s|state(t,s)=TRUE})=1) A

38| Vt.(tETIME = card({p|pEPOS A head(t,p)=TRUE})=1) A

39| V(t,p).(tETIME A pE€POS - card({s|tape(t,p,s)=TRUE})=1);

41| Formula_S == // Coding of the start state of the Turing machine

42| state(@,z0) = TRUE A

43| head(@,8) = TRUE A

44| Vi.(i€-pn..-1 = tape(®,i, 0") = TRUE) A

45| tape(®,8,I) = TRUE A tape(®,1,0) = TRUE A // initial word "I0" is on the tape
46| Vi.(i€2..pn - tape(®,i, 0’) = TRUE);

48| Formula_Ul == // Transition Relation 1: delta
49| V(t,s,i,a).(tETIMEL A s€States A iEPOS A aEAlphabet

50 // t:TIME1l: condition is new wrt course notes to ensure WD

51 -

52 ((state(t,s)=TRUE A head(t,i)=TRUE A tape(t,i,a)=TRUE)

53 =

54 3(s2,a2,y).((s,a)~(s2,a2,y)€6 A

55 i+offset(y)EPOS A // new condition 4.1.2024, otherwise head test below is not WD
56 state(t+1,s2)=TRUE A

57 head(t+1,i+offset(y))=TRUE A

58 tape(t+1,i,a2)=TRUE))

591);

60

61| Formula_U2 == // Transition Relation 2: Frame Axiom: untouched tape contents remain unchanged
62| V(t,i,a).(tETIMEL A i€POS A a€Alphabet

63 -

64 ((head(t,i) = FALSE A tape(t,i,a)=TRUE)

65 = tape(t+1,1,a)=TRUE

66)) s

67

68| Formula_E == // we reach a final (End) state

69 3s.(sEFinal A state(pn,s)=TRUE);

78| // We assume that there is a self-loop on end states,

71| // i.e., if we reach an end state at some earlier time point we stay in it until the simulation end

Fig. 2. B2SAT Translation Coverage Feedback in PROB: green parts were translated
to SAT, red parts were processed by regular constraint solving

3 The B2SAT Approach

The B2SAT approach is not an ahead-of-time translation to SAT like [35] or [21],
but a dynamic translation during solving with PROB’s default solver.

PRrROB’s default solver is written in Prolog and scales to very large and com-
plex data values. It has good deterministic propagation and is ideal for anima-
tion and data validation [30]. The boolean part of PROB’s solver is inspired
by [19,20], but is not based on CNF and is not using watched literals. More
importantly, it unfortunately has no clause learning and conflict analysis.

The essence of the B2SAT approach is to intertwine a B to CNF conversion
algorithm with PROB’s constraint solver. PROB’s constraint solver thus runs
both before and after a SAT solver is called on the CNF conversion. PROB’s
solver can thus be used to expand quantifiers and pre-compute complex expres-
sions, without which a SAT conversion would be impossible. The solver can also

B2SAT: A Bare-Metal Reduction of B to SAT 127

run after a SAT solution has been found, to check additional constraints, perform
additional computations (e.g., for visualising the result) or drive optimisation.

The approach is depicted in Fig. 3 and consists of the following phases:

the deterministic propagation phase(s) of PROB’s solver: it performs deter-
ministic propagations and can expand quantifiers and total functions. It actu-
ally consists of two phases: in the first one it tries to generate only fully known
values and tries to represent known sets as AVL trees [22] for efficient lookup.
The second phase is still deterministic, but can also generate partially known
values (like our total functions state, head and tape).

a compilation phase, whereby static values are inlined. PROB’s compilation is
normally used for symbolic values (like infinite functions), creating a closure
where all referenced values are inlined. This closure can then be evaluated
later, without having access to the original state. Here we perform the com-
pilation explicitly to simplify the formulas, in order to enable the next phase.
the B to CNF conversion proper, which can translate a subset of B to proposi-
tional logic in conjunctive normal form. This phase currently supports: equal-
ities and inequalities between boolean variables and constants, all logical con-
nectives and some cardinality constraints (see below). Subformulas that can-
not be solved are sent to PROB’s default solver and linked to the CNF via
an auxiliary propositional variable.

solving phase, where the generated CNF is sent to an external SAT solver.
propagation of the SAT solution to B, by progressively “grounding” the B
values and predicates linked to the propositional variables.

complete constraint solving, solving the pending constraints in B by now
performing the regular non-deterministic propagations and enumerations of
PROB. In case of failure, we backtrack and add additional SAT constraints
to prevent the unfruitful solution.

Let us look how this works on this simple formula (cf. Fig. 3)

fe€l.n—BOOLAn=3Af(1)=TRUE A (Vii€2..n= f(i)# f(i—1)):

in the deterministic phase the value of n is set to 3 and the value of f is par-
tially computed to the set {1 — F1,2+— F2 3 +— F3}, where F'1, F2, F3 are
Prolog variables. The universal quantifier is also expanded into two conjuncts
£(2) # £(1) and £(3) # £(2).

the remaining formula is compiled, inlining the values for f and n and pre-
compiling the function lookups. This results in the formula F1 = TRUE A
F2+# F1AF3+#F2.

the formula is translated into a CNF over the propositional variables F'1, F2,
F'3 resulting in five clauses {F'1,~F2V -F1,F1V F2,-~F3V -F2, F2V F3}.
this CNF is sent to a SAT solver, which computes the model F'1,-F2, F3.
this model is propagated to B, transforming the partial value of f into a full
value {1 — TRUE,2 — FALSE,3 — TRUE}.

in this case no further constraint solving is required. For example, if we had
an additional conjunct m = card(f > { TRUE}) this would be computed in
this phase, resulting in m = 2.

128 M. Leuschel

partially instantiated solution
(F1,F2,F3 are variables)

global solution

n=3 A
=
{1~ TRUE,
2 » FALSE,
3w TRUE}

SAT
Solution

(1) = TRUE F1
f(2)a=f(1)F> F2 = F1 P ~F2v-aF1 L -
v F1vF2

- F2
N - F3v-F2
vi.(ie2..n 2 vE3 4 F3

f(3) # (2 F3#F2 | ro-ooono e
©=@ i Unsatcore/ i, backtracking

|_negated solution !

ProB Deterministic Compilation CNF SAT ProB Non-Deterministic
Propagation /Inlining Conversion Solving Propagation

Fig. 3. Solving Process Illustrated on an Example

Calling the SAT Solver. To send the CNF to the SAT solver we build on
the Prolog interface to MiniSat from [7]. This interface was ported to SICStus
Prolog by Sebastian Krings and adapted for recent versions of the Glucose SAT
solver 4.0.° We are also working on targeting other SAT solvers, e.g., Kissat. Note
that we call the SAT solvers directly on the generated CNF, without overhead.
We have also extended our Z3 interface [37] to be able to send and solve SAT
formulas in CNF (rather than SMT formulas).

Cardinality Constraints. The new B2SAT backend is of particular interest
for finding solutions to complex constraints. In many of these cases one wants to
minimize an objective function, often in the form of minimizing or maximizing
the cardinality of a set. Also in Sect.2 we required cardinality constraints for
the subformula K in Cook’s theorem.

To enable these uses of B2SAT the CNF conversion phase supports con-
straints of the form card({z,...| P})o Expr where o € {<, <,=,>,>}. For this
conversion to work, we need to be able to extract a finite set of distinct candi-
dates for the set {x,...| P}. This works by re-using the quantifier instantiation
technique used above, expanding Jz.(P) into a disjunction, and checking that
each disjunct corresponds to a unique candidate element of the set.

For example, let us examine the formula f € 1.3 — BOOL A f(1) =
TRUE A card({ili € 1..3 A f(i) = FALSE}) = 1. As above, we would gen-
erate three propositional logic variables F'1, F2, F'3 for the contents of f. In
this case quantifier expansion will create three candidate disjuncts for the set
{i|t € 1..3Af(i) = FALSE}: f(1) = FALSE, f(2) = FALSE and f(3) = FALSE.
This gets translated into three propositional logic literals —=F'1,—F2,—~F3. We

5 See https://www.labri.fr/perso/lsimon /research /glucose/.

https://www.labri.fr/perso/lsimon/research/glucose/

B2SAT: A Bare-Metal Reduction of B to SAT 129

now have to encode that exactly one of these three literals is true, e.g., as follows
in CNF: {-F1V -F2V -F3,F1V F2,F1V F3,F2V F3}.

Once we have a list of candidates of a set S as propositional logic literals
Lq,..., L, we need to encode the various cardinality constraints:

— card(S) =0 or card(S) < 1 or card(S) <0 (empty set) is {-Lq,...,2L}.

— card(S) =k or card(S) > k (complete set) is simply {L1,..., Ly}

— card(S) < 0 or card(S) > k or similar unsatisfiable constraints: we generate
a contradiction {L}.

— card(S) > 1 or similar (at least one): {L; V...V Ly}.

— card(S) < k or similar (not complete set): {=L; V...V =Ly}

— for the other cases we generate a sequential counter, counting the number of
true literals among L, ..., Ly, as described in [23].

There are many works on how to encode cardinality constraints in SAT (e.g.,
[39,44]), but thus far we have fared well with the sequential counter encoding
recommended by Knuth [23].

Tooling Extensions. We have implemented several ways in PROB to interact
with the new solver backend. First, in the PROB console you have the new
commands :sat, :sat-z3, :sat-double-check and :sat-z3-double-check.
The first can be used to solve a predicate with Glucose, the second with Z3 [9]
as SAT solver. The last two commands double-check the solution using PROB’s
default solver. These commands are used in PROB’s integration tests.

Here is one of our examples in the console (started via probcli --repl):

:sat f:1..n --> BOOL & n=3 & f(1)=TRUE & !'i.(i:2..n => £(i) /= £(i-1))
PREDICATE is TRUE

Solution:
f = {(1|->TRUE), (2| ->FALSE), (3|->TRUE)} &
n=3

It is possible to use the command +:sat #file=FILE+ to load the predicate
from a file. We have also made our solver available within PROB’s Jupyter kernel
[15], as the following screenshot shows:

In [11]: :solve sat f € 1 ..n - BOOL A n =5

(1) = TRUE A

Vi-(i €2 ..n = f(i) # f(i - 1))
Out[11]: TRUE

Solution:

« f={(1 » TRUE), 2 » FALSE), 3 = TRUE), (4 = FALSE), (5 = TRUE)}
en=35

The backend can also be used to solve the properties (aka axioms) of B
and Event-B models by setting the SOLVER_FOR_PROPERTIES preference. This
preference can currently take the values: prob, sat, sat-z3, kodkod, z3, cdclt."

5 The default value is prob while kodkod will use Kodkod via [35], z3 the Z3 backend
[37] and cdclt a Prolog implementation of SMT solving [37].

130 M. Leuschel

Here sat will use our new B2SAT backend using the default SAT solver (glucose)
and sat-z3 will use B2SAT with Z3 as SAT solver. This feature is also available
for the other state-based formalisms supported by ProB, e.g., TLA" and Z.7

4 Applications and Experiments

Dominating Sets. Dominating sets have various practical applications. In our
context, they are relevant in biological models of leaves (e.g., [40]) as well as for
data generation in railway topologies. Given a graph g C V' x V over set of nodes
V', a dominating set is a set of nodes D C V such that every node is either in D
or has a neighbour in D: Vn.(n € V\ D = 3d.(d € D An— dE€ g)).

We can encode the above formula for B2SAT. Currently, we still need to
rewrite our set D as a function to BOOL (in future we will remove this restric-
tion). To find a minimal dominating set we can add additional constraints
card({d | d € V AN D(d) = TRUE}) < b, trying to find smaller and smaller
solutions until we have found a minimal dominating set:

In [10]: :solve satz3 V={1,2,3} a g={1»2, 2»1, 2w3, 3w2} A DEV-BOOL A
vn.(n€V = (D(n)=TRUE or 3d.(d€V A D(d)=TRUE A n~d€g))) a
card({d|d€V a D(d)=TRUE}) < 2

Out[10]: TRUE
Solution:

« D = {(1 » FALSE), 2 —» TRUE), (3 —» FALSE)}
. V=1{1,2,3}
cg={1»2),2~ 1,2~ 3),3~2)}

For minimisation or optimisation one often resorts to cardinality constraints.
Here the minimisation was done by “hand”, but PROB also has a MINIMIZE
predicate which can be used to automate the process.

The above constraints can be solved with the default solver of PROB. How-
ever, for bigger graphs the problem gets exponentially more complex (finding a
minimal dominating set is an NP-complete problem). The left of Fig. 4 shows a
minimal dominating set computed by B2SAT for a larger graph, representing a
leaf, where the default solver’s runtime becomes intractable. In practical appli-
cations one often needs variations or extensions of the dominating sets concept:

1. instead of considering only the direct neighbours, one can go k hops before
reaching a dominating set element. D is then called a k-hop dominating set.

2. one may require additional properties of D, e.g., that it be connected. From
a connected dominating set one can extract a spanning tree.

The first one is very easy to express in B: simply apply the iterate operator
on g before applying the universal quantifier. Connectedness can also be easily
expressed. The right of Fig. 4 shows a minimal 1-hop connected dominating set
for the same graph. This example stems from a biological application, to study
suitable vein structures of leaves.

" A TLA" example is available at https://prob.hhu.de/w/index.php?title=B2SAT.

https://prob.hhu.de/w/index.php?title=B2SAT

B2SAT: A Bare-Metal Reduction of B to SAT 131

Fig. 4. Non-connected and connected 1-hop minimal dominating set. Green nodes are
part of the dominating set. The graph represents a biological leaf. (Color figure online)

Similar issues can also appear in railway applications, e.g., for placing balises
on a track to ensure certain safety criteria. As a proof of concept, we have solved
an artificial problem on real data. We have used PROB to read in RailML data
of the Oslo main station. The import uses the expressivity of B, also performing
subsidiary rule validation [16]. The task was to place balises on the track which
ensures that a train must encounter a balise at least every three blocks. (A very
recent article [31] discusses related data generation problems for railML.)

With B2SAT we could produce a more efficient version of our time-tabling
tool [38]. We hope that our backend is also applicable to other verification tasks,
e.g., for interlockings. This is related to techniques like Prover iLock [3,4] or
HLL [5,13]. Our hope is to make such verification available while using the full
expressive power of B. We also want to address verification of B hardware models
[12,42], in particular the CLEARSY safety platform [27] (LChip).

Crowded Chessboard. The crowded chessboard is a more than 100 year old
problem from [10]. The purpose is to place a maximal number of chess pieces
on a board, so that no piece attacks a piece of the same kind. In [26] we tried
various approaches to solve the problem. In particular we developed a precursor
of the present work, integrating PROB with Kodkod differently than in [35].
While better than the SMT and CLP(FD) encodings in [26], the approach was
not very user-friendly (requiring explicit annotations) and considerably slower
than B2SAT: the solving time for n = 8 is 19s compared to 0.5s with B2SAT.
Note that our encoding is fully readable and is similar in performance to the

132 M. Leuschel

direct SAT encoding from [26], while we can easily inspect, double-check and
visualise the solution using PrROB.

5 Experiments

Below we conducted an empirical evaluation of B2SAT.® Table 1 contains the run
times of our new backend. It shows times for pre-processing (quantifier expan-
sion) and conversion to CNF (second column), times for SAT solving proper
(with Glucose, column 5), and total solving times (including post-processing
and times from columns 2 and 5).

All benchmarks were run on a Macbook Air with M2 processor, 24 GB RAM
and version 1.13.1-betal of PROB compiled with SICStus Prolog 4.8.0. We used
73 in version 4.13.0.0 and Glucose in version 4.0. For the Kodkod backend we
also used Glucose as SAT solver to enable a fair comparison. All times are wall
times in milliseconds (ms) and the timeout was set at 20s (but B2SAT does not
yet support time-outs during the SAT solver runs).

The benchmarks contain the examples from above: bounded model checking
of the Turing machine from Fig.1 for 20 steps (TuringMachine_Cook_20), the
crowded chessboard puzzle for an 8x8 chessboard (CrowdedChessBoard), domi-
nating sets for leaves (DominatingSet_Middle), and balise placement on the Oslo
main station. We also included three pure SAT problems (blocksworld and uuf)
in B, to measure the overhead when writing SAT problems in B rather than
in CNF format. We have also included some benchmarks from the IDP-Z3 [6]
system, which we translated to B: queens, transitive closure, and pigeon hole.
The translation was straightforward. These IDP models use quantifiers instead
of natural B operators (e.g., perm for queens or closurel for the transitive clo-
sure), which would be considerably faster in B. Still, the models are a good way
to evaluate B2SAT, whose results are very good compared to the results on the
IDP-Z3 Github site.”

Other Backends. The comparison with other backends of PROB are in Table 2.
As one can see, the Kodkod backend [35] was only applicable to 5 of the 14
examples. Some of the examples can be rewritten to make the backend applica-
ble (see below). When applicable, however, it is often considerably slower than
B2SAT, including for the three SAT problems.

The default CLP(FD) backend of PROB can solve 7 out of the 14 examples.
The Z3 SMT backend can only solve 3 of the 14 examples; the treatment of
quantifiers and cardinality constraints is a weak spot of this backend. Z3 can
still be very useful as a SAT solver, as we explain below.

8 The benchmarks and a Makefile to run the benchmarks are available at:https://
zenodo.org/records/12180216.

9 https://gitlab.com/krr/IDP-Z3/- /blob/main/tests/Benchmark/results.md ~ (con-
sulted Feb. 8th, 2024): queens 14 5.8 s, queens 24 45.8 s, pigeon_.mx 100 2.8 s,
transitive_closure 50 66.9 secs.

https://zenodo.org/records/12180216
https://zenodo.org/records/12180216
https://gitlab.com/krr/IDP-Z3/-/blob/main/tests/Benchmark/results.md

B2SAT: A Bare-Metal Reduction of B to SAT

133

Table 1. B2SAT Backend of PROB: (1) B to CNF Pre-Processing, (2) Glucose SAT
Solving and (3) Total Walltime including Post-Processing

(1) B~ CNF (2) Glucose (3) Total
FILE Time (ms) Clauses/Vars |Time (ms)|Status/Time (ms)
pigeon_30 293 16590 (2670 |21 sat 327
transitive_closure_50 1476 15857 2450 9 sat 1501
queens_14 968 5838 196 |5 sat 988
queens_24 4828 30568 |576 |54 sat 4906
blocksworld1 2 953 116 |1 sat 176
blocksworld2 3 954 116 |0 unsat 169
uuf-250-016 3 1065 250 (1336 unsat [1573
DominatingSet_Middle_1t13/14 1506 790 |2 sat (34
DominatingSet_Middle_1t12/15 1407 740 |6 unsat |39
OSLO_no_card 50 288 288 |1 sat |78
OSLO_card_1t_135 67 59824 [30123(742 sat 838
OSLO_dom_edge_1t_181 36 100555 [50504{16064 sat |16130
CrowdedChessBoard 401 25910 1133163 sat [501
TuringMachine_Cook_20 6450 50333 111064/121 sat 6594

Table 2. Total Walltime for Solving with various Backends of PROB. M« stands for
unknown, v" for the correct result.

B2SAT Kodkod [Default |Z3 CDCLT
FILE Statusjms |Statms |[Statms |Statjms |Stat/ms
pigeon_30 sat 327 P& |21 v 396 P [2621 |V |9036
transitive_closure_50 sat 1501 pX |31 |v/ 6963 P |20988|v" |7178
queens_14 sat (988 P |15 v 9073 P |20164pH |20095
queens_24 sat 4906 P |15 P& |20123p% |20361p% 20085
blocksworld1 sat 176 |v 1114}y 221 |v |2334 v 387
blocksworld2 unsat (169 |v° 450 v 179 v 2031 |v' 346
uuf-250-016 unsat 1573 |v/ [6249p% |20257|v" |5421 p& |20567
DominatingSet_Middle_1t13|sat |34 |v" 939 |v* (92 pk 21504)v" [139
DominatingSet_Middle_1t12/unsat (39 v/ [732 P |20057pK 21419pX 20076
OSLO_no_card sat 78 P |33 ¢ 20081pH |21294p {20079
OSLO_card_1t-135 sat 838 X [30 X |20064p% [21522p% {20103
OSLO_dom_edge_1t_181 sat |16130p% |28 X |20116p% [21245p% |20106
CrowdedChessBoard sat |[501 P |25 P |20053pH [20941pH {20098
TuringMachine_Cook 20 |sat |6594 M 41 |V 8699 Pk [141 |V |10928

134 M. Leuschel

Other SAT Solvers. To keep the tables readable, we have not included runtimes
when using Z3 instead of Glucose for B2SAT in Fig 1. For most smaller examples,
Glucose is much faster than Z3 (e.g., 21 ms vs. 231 ms for pigeon-30). This
is probably because the Prolog SAT interface based on [7] is faster than Z3’s
C++ interface. For complex examples, however, Z3 can be a useful alternative
SAT solver. For example, for OSLO_dom_edge_1t_181 it is four times faster than
Glucose. It is good to have a variety of SAT solvers at our disposal; especially
for optimisation, where solving time increases when we approach the optimum.

In summary, the tables show that for the benchmarks above, B2SAT is a
considerable improvement over existing backends, and opens up new application
areas for B. There is still a performance bottleneck in the compilation phase,
as can be seen in the queens, transitive closure and Turing examples in Table 1.
The overhead is due to partially instantiated data values having linear rather
than logarithmic access in PROB. We hope to reduce this overhead considerably
in the future, e.g., by also using AVL trees for partially instantiated values.

Tables1 and 2 are biased: we only study examples which can be solved by
B2SAT. Also, some benchmarks can be rewritten for Kodkod by replacing strings
with enumerated sets, rewriting functions to predicates, or adding additional
constraints to make the bounds finite or remove higher-order constructs by hand.
For example, by rewriting the pigeon_30 example and removing the higher-order
function it can be solved in 596 ms. The purpose of the experiments is to show
that there are applications where B2SAT is very effective; it is not to study the
performance for a representative set of benchmark programs.

6 Related and Future Work

Other B Backends. We can compare B2SAT with the backends from Table 2:

— PROB’s default solver is based on constraint logic programming. As men-
tioned, it scales to very large and complex data values and has been used
in industry for B specifications with up to 9 million lines of B. It has good
deterministic propagation, can deal symbolically with infinite values and is
well suited for animation and data validation. The boolean solver was inspired
by [19,20], but without watched literals. Also, there is no clause learning nor
conflict analysis.

— The CDCL(T) backend [37] is a Prolog SMT-style solver built on top of
PRrROB'’s default solver. It does have clause learning and conflict analysis, but
its performance as a SAT solver is far from state-of-the-art SAT solvers. It
is useful for symbolic verification tasks, but as Table2 shows not for the
constraint solving and optimisation tasks here.

— The Z3 SMT backend [37] is based on a translation of B to SMT-LIB. It works
better with unsatisfiable formulas than for model finding of satisfiable ones.
The backend is good for symbolic verification tasks, but has still considerable
restrictions (cardinality, quantifiers, finite B values often get translated to
infinite ones in SMT-LIB, ...). As such it is not suited as an animation engine
and as Table 2 shows not for the benchmarks here.

B2SAT: A Bare-Metal Reduction of B to SAT 135

The Apalache symbolic model checker [25] for TLA™ uses Z3 [9] as backend,
but with an encoding tailored for finite sets. As such it is better suited for
model finding. Indeed, we were able to solve a small dominating set example
in TLA* but not DominatingSet_Middle_1t13 from Table 1.1°

— The Kodkod backend [35] uses the Kodkod library [41] to perform an indirect
translation of B to SAT (via the relational logic API of [41]). When applicable,
it can be very effective and much more efficient than PROB’s default solver. It
has, however, limited applicability (no sets of sets, no higher-order relations
or functions, restrictions to binary relations).

The Kodkod backend [35] is the closest to our approach, and we want to
clarify the important differences:

— [35] is a static ahead-of-time translation on the AST (abstract syntax tree).
As such there is no expansion prior to translation, meaning we cannot use
many of B’s nice features (higher-order, ...) to set-up the constraints. B2SAT
is dynamic (just-in-time, e.g., after quantifier expansions) and can process a
mixture of AST and partially instantiated values.

— [35] can translate integers and more operators to SAT than B2SAT.

— There is an overhead in the generated SAT problem with [35] (see Table 2
for pure SAT problems).

— there is an issue with integer overflows in Kodkod, which is not easy to solve
(meaning the current backend [35] is not sound for cardinality constraints or
some integer membership constraints).

— [35] cannot deal with higher-order relations, nor with ternary relations (see
pigeon_30 in Table2).

Other Languages Translating to SAT. The Alloy analyzer [21] uses the
Kodkod library, and is again a static ahead-of-time translation to SAT. Arby
[33] is an embedding of Alloy into Ruby. One could thus write an Arby program
to expand the Turing machine from Sect. 2 into an Alloy model, which in turn
would get translated to SAT. Our approach is to use logic, mathematics and the
B language to set up SAT constraints (rather than a separate scripting language).

Answer Set Programming (ASP) [11] starts off from a logic program, which
usually (see [14]) gets transformed via a grounding phase to a SAT problem. ASP
builds on a non-monotonic semantics, while our approach is rooted in mathemat-
ical logic with classical monotonic negation and with access to theorem provers.

The Picat [45] logic-based language one can use SAT solvers for constraint
solving. A related approach is IDP-Z3 [32], based on inductive definitions rather
than logic programs. IDP-Z3 is a re-implementation of [43]. We have used some
IDP-Z3 benchmarks above. SMT-LIB itself, in particular when using eager solv-
ing, is also related to B2SAT. Apart from expressivity, a major difference is that
in B2SAT a separate constraint-based solver is driving the translation to SAT.
This increases the specifications that can be handled and the pre-processing that
can take place (see also [17]). Indeed, in the crowded chessboard example the
direct SMT-LIB solutions were not effective [26] (in contrast to B2SAT).

10 Apalache version 0.44.10 produced a StackOverflow error after 122s.

136 M. Leuschel

Future Work. We wish to extend the subset of B which can be translated to
SAT (integer operators, finite-domain variables, sets,...). We also want to keep
track when propagation of a SAT solution fails in PROB, to then compute the
unsat core to add it as a learned clause. We plan to target other SAT solvers, like
Kissat. and would like to target SMT rather than SAT. As we saw in Table 2,
the current Z3 backend does not work well for model finding or optimisation. By
generating SMT-LIB without quantifiers this could be much improved.

In the future we wish to make the optimisation process more efficient. PROB
already has the functions MAXIMIZE and MINIMIZE, but we wish to use incre-
mental SAT solving and other algorithms from the SAT community [24].

In summary, we have presented a new bare metal SAT backend for B. We
have shown how it can be applied almost out of the box to a mathematical
rendering of Cook’s theorem. With our new backend one can use the full power
of B to pre- and post-process higher-order data and properties, solve and optimise
complex problems and use the B tooling infrastructure to visualise solutions and
double check solutions with other backends. We hope that this leads to readable,
maintainable and efficient SAT applications with state-based formal methods
like B, Z or TLA+. While this approach is certainly not a universal technique, it
enables a wide variety of new applications: graph matching for machine learning,
dominating sets for biological applications, hardware modelling and verification,
data generation for industrial railway applications, bounded model checking for
railway interlockings, and many more.

Acknowledgements. Thanks to Sebastian Krings for the initial port of the miniSat-
Prolog interface [7] to SICStus. I also thank Joshua Schmidt for enabling Z3 as SAT
solver and providing useful feedback on the article. Finally, thanks to Jan Roflbach
who is working to make more SAT solvers available for PROB.

Data Availability Statement. The models and instructions on how to run the
benchmarks are available at https://stups.hhu-hosting.de/models/B2SAT/ and in a
Zenodo archive with DOI 10.5281/zenodo.12180216. The latest version is available at
https://zenodo.org/doi/10.5281/zenodo.12166662.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press (1996)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Borilv, A.: The industrial success of verification tools based on stalmarck’s method.
In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 7-10. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63166-6_3

4. Borélv, A.: Case study: formal verification of a computerized railway interlocking.
Formal Aspects Comput. 10(4), 338-360 (1998)

5. Breton, N., Fonteneau, Y.: S3: proving the safety of critical systems. In Proceedings
RSSRail 2016, 231-242 (2016)

https://stups.hhu-hosting.de/models/B2SAT/
https://zenodo.org/doi/10.5281/zenodo.12166662
https://doi.org/10.1007/3-540-63166-6_3

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

B2SAT: A Bare-Metal Reduction of B to SAT 137

Carbonnelle, P., Vandevelde, S., Vennekens, J., Denecker, M.: IDP-Z3: a reasoning
engine for FO(.). CoRR, abs/2202.00343 (2022)

Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. The-
ory Pract. Logic Program. 8(1), 121-128 (2008)

Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151—
158, New York, NY, USA (1971). Association for Computing Machinery

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Dudeney, H.E.: Amusements in Mathematics (1917). https://www.gutenberg.org/
ebooks/16713

Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. Al
Mag. 37(3), 53-68 (2016)

Evans, N., Ifill, W.: Hardware verification and beyond: using B at AWE. In: Jul-
liand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 260-261. Springer,
Heidelberg (2006). https://doi.org/10.1007/11955757_24

Ge, N., Jenn, E., Breton, N., Fonteneau, Y.: Integrated formal verification of safety-
critical software. Int. J. Softw. Tools Technol. Transf. 20(4), 423-440 (2018)
Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: Lang, J. (ed.)
Proceedings IJCAI 2018, pp. 5450-5456 (2018). https://www.ijcai.org/

Geleflus, D., Leuschel, M.: ProB and Jupyter for logic, set theory, theoretical com-
puter science and formal methods. In: Raschke, A., Méry, D., Houdek, F. (eds.)
ABZ 2020. LNCS, vol. 12071, pp. 248-254. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-48077-6-19

Gruteser, J., Leuschel, M.: Validation of railML using ProB. In: Proceedings
ICECCS 2024, LNCS (June 2024). https://doi.org/10.1007/978-3-031-66456-4_13
Hadarean, L., Bansal, K., Jovanovié, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 680-695. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9-45

Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level
specifications. Theory Pract. Log. Program. 11(4-5), 767-782 (2011)

Howe, J.M., King, A.: A pearl on SAT solving in prolog. In: Blume, M., Kobayashi,
N, Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 165-174. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12251-4_13

Howe, J.M., King, A.: A pearl on SAT and SMT solving in Prolog. Theor. Comput.
Sci. 435, 43-55 (2012)

Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11, 256-290 (2002)

Knuth, D.: The Art of Computer Programming, Volume 3. Addison-Wesley (1983)
Knuth, D.: The Art of Computer Programming, Volume 4, Fascicle 6: Satsfiability.
Addison-Wesley (2015)

Kochemazov, S., Ignatiev, A., Marques-Silva, J.: Assessing progress in SAT solvers
through the lens of incremental SAT. In: Li, C.-M., Manya, F. (eds.) SAT 2021.
LNCS, vol. 12831, pp. 280-298. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3_20

Konnov, I., Kukovec, J., Tran,T.: TLA+ model checking made symbolic. Proc.
ACM Program. Lang., 3(OOPSLA), 123:1-123:30 (2019)

https://doi.org/10.1007/978-3-540-78800-3_24
https://www.gutenberg.org/ebooks/16713
https://www.gutenberg.org/ebooks/16713
https://doi.org/10.1007/11955757_24
https://www.ijcai.org/
https://doi.org/10.1007/978-3-030-48077-6_19
https://doi.org/10.1007/978-3-030-48077-6_19
https://doi.org/10.1007/978-3-031-66456-4_13
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-642-12251-4_13
https://doi.org/10.1007/978-3-030-80223-3_20
https://doi.org/10.1007/978-3-030-80223-3_20

138

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

M. Leuschel

Krings, S., Leuschel, M., Koérner, P., Hallerstede, S., Hasanagi¢, M.: Three Is
a crowd: SAT, SMT and CLP on a chessboard. In: Calimeri, F., Hamlen, K.,
Leone, N. (eds.) PADL 2018. LNCS, vol. 10702, pp. 63-79. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-73305-0_5

Lecomte, T., Déharbe, D., Fournier, P., Oliveira, M.: The CLEARSY safety plat-
form: 5 years of research, development and deployment. Sci. Comput. Program.
199, 102524 (2020)

Leuschel, M.: ProB: Harnessing the power of Prolog to bring formal models and
mathematics to life. Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.V., Kowal-
ski, R., Rossi, F. (eds.) Prolog: The Next 50 Years, LNCS 13900, vol. 13900, pp.
239-247. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35254-6_19
Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805. Springer,
Heidelberg (2003). https://doi.org/10.1007/b13229

Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models with ProB. Formal Asp. Comput. 23(6), 683-709 (2011).
https://doi.org/10.1007/s00165-010-0172-1

Menéndez, M.N., Germino, S., Diaz-Charris, L.D., Lutenberg, A.: Automatic rail-
way signaling generation for railways systems described on railway markup lan-
guage (railML). IEEE Trans. Intell. Transp. Syst. 25(3), 2331-2341 (2024)
Mikhailov, L., Butler, M.: An approach to combining B and alloy. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp.
140-161. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1_8
Milicevic, A., Efrati, I., Jackson, D.: arby - an embedding of alloy in ruby. In:
Ait Ameur, Y., Schewe, KD. (eds.) Proceedings ABZ, vol. 8477, pp. 56-71 (2014).
https://doi.org/10.1007/978-3-662-43652-3_5

Papadimitriou, C.H.: Cook’s NP-completeness paper and the dawn of the new
theory. In: Kapron, B.M. (ed.) Logic, Automata, and Computational Complexity:
The Works of Stephen A. Cook, ACM Books, vol. 43, pp. 73-82. ACM (2023)
Plagge, D., Leuschel, M.: Validating B,Z and TLA™" using PrROB and kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372—-386.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_31
Rothe, J.: Theoretische informatik. Technical report, University of Diisseldorf
(2000-2024)

Schmidt, J., Leuschel, M.: SMT solving for the validation of B and event-b models.
Int. J. Softw. Tools Technol. Transf. 24(6), 1043-1077 (2022)

Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for university
timetable validation and improvement. Formal Aspects Comput. 30(5), 545-569
(2018)

Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827-831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751_73

Surlemont, M.: Solving connected dominating set variants using integer linear pro-
gramming. Bachelor’s thesis, Institut fiir Informatik, Universitét Diisseldorf (2020)
Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632—-647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1_49

Voros, N.S.; Snook, C.F., Hallerstede, S., Masselos, K.: Embedded system design
using formal model refinement: an approach based on the combined use of UML
and the B language. Design Autom. for Emb. Sys. 9(2), 67-99 (2004)

Wittocx, J., Marién, M., Denecker, M.: Grounding FO and FO(ID) with bounds.
J. Artif. Intell. Res. (JAIR) 38, 223-269 (2010)

https://doi.org/10.1007/978-3-319-73305-0_5
https://doi.org/10.1007/978-3-031-35254-6_19
https://doi.org/10.1007/b13229
https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.1007/3-540-45648-1_8
https://doi.org/10.1007/978-3-662-43652-3_5
https://doi.org/10.1007/978-3-642-32759-9_31
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/978-3-540-71209-1_49

B2SAT: A Bare-Metal Reduction of B to SAT 139

44. Wynn, E.: A comparison of encodings for cardinality constraints in a SAT solver.
CoRR, abs/1810.12975 (2018)

45. Zhou, N.: Modeling and solving graph synthesis problems using sat-encoded reach-
ability constraints in picat. In: Formisano, A., et al. (eds.) Proceedings ICLP 2021,
EPTCS, vol. 345, pp. 165-178 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

q'h

Check for
updates

PyBDR: Set-Boundary Based
Reachability Analysis Toolkit in Python

Jiangiang Ding" 2@, Taoran Wu?3®, Zhen Liang*®, and Bai Xue??

1 Aalto University, Espoo, Finland
jiangiang.ding@aalto.fi
2 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

EM Beijing, China M
Njifel9d dingjianqiangOx@gmail.com, {wutr,xuebai}@ios.ac.cn Artifact
Evaluation 3 - Evaluation

* University of Chinese Academy of Sciences, Beijing, China * &k
4 National University of Defense Technology, Hunan, China Reusable

liangzhen@nudt.edu.cn

Abstract. We present PyBDR, a Python reachability analysis toolkit
based on set-boundary analysis, which centralizes on widely-adopted set
propagation techniques for formal verification, controller synthesis, state
estimation, etc. It employs boundary analysis of initial sets to mitigate
the wrapping effect during computations, thus improving the perfor-
mance of reachability analysis algorithms without significantly increasing
computational costs. Beyond offering various set representations such
as polytopes and zonotopes, our toolkit particularly excels in interval
arithmetic by extending operations to the tensor level, enabling effi-
cient parallel interval arithmetic computation and unifying vector and
matrix intervals into a single framework. Furthermore, it features sym-
bolic computation of derivatives of arbitrary order and evaluates them
as real or interval-valued functions, which is essential for approximat-
ing behaviours of nonlinear systems at specific time instants. Its modu-
lar architecture design offers a series of building blocks that facilitate
the prototype development of reachability analysis algorithms. Com-
parative studies showcase its strengths in handling verification tasks
with large initial sets or long time horizons. The toolkit is available at
https://github.com/ASAG-ISCAS/PyBDR.

1 Introduction

Reachability analysis, which mainly involves the computation of reachable sets,
is an essential tool for rigorously determining the behavior of dynamical systems
across different scenarios. It serves as the foundation for applications such as for-
mal verification [6,23,36], controller synthesis [29,34], and state estimation [1].
While the precise reachable set can be characterized using sublevel sets of solu-
tions to Hamilton-Jacobi (HJ) equations [13,27], the necessity of discretizing state

J. Ding and T. Wu—These authors contribute equally to this work.

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 140-157, 2025.
https://doi.org/10.1007/978-3-031-71177-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_10&domain=pdf
http://orcid.org/0000-0003-0705-0345
http://orcid.org/0000-0003-3398-0466
http://orcid.org/0000-0002-1171-7061
http://orcid.org/0000-0001-9717-846X
https://github.com/ASAG-ISCAS/PyBDR
https://doi.org/10.1007/978-3-031-71177-0_10

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 141

Target Set

Trajectory

Fig. 1. Reachability analysis based on set propagation techniques.

space for numerical solving, limit their applicability to high-dimensional dynamic
systems due to the escalating computational expenses linked to dimensionality.
These limitations have led the control community to prefer using approximate
strategies for reachability analysis, such as set propagation techniques [4].

The set propagation method, depicted in Fig.1, extends the numerical
solution of ordinary differential equations (ODEs) by using sets to represent
solutions rather than precise numerical values. This method commences from
an initial state set and iteratively computes sets to encompass all possible
system states, thus supports the verification of specific properties like safety
[3,9,12,16,17,22,30]. To expedite set operations, the method employs represen-
tations such as intervals, polytopes, and zonotopes to over-approximate the exact
reachable set. However, the cumulative error from successive iterations, known
as the wrapping effect [28], can lead to overly conservative state estimations,
particularly for large initial sets or large time periods, potentially causing ver-
ification failures. While partitioning the initial set or adjusting the step size
can mitigate wrapping effect errors, this simple strategy often incurs substantial
computational expenses, rendering it impractical for refining the conservative
estimates of existing reachability analysis algorithms. On the other hand, the
shared algorithmic structure of set-propagation methods often allows further
advancements to be built upon improving specific steps rather than overhaul-
ing the entire design. However, implementing such customized algorithms often
deviate from the primary objective of existing reachability analysis tools, which
prioritize user-friendly interfaces over the creation of developer-centric platforms
conducive to innovative algorithmic research and development.

In this work, we introduce PyBDR, our prototype toolkit for set-boundary-
based reachability analysis, developed in Python. PyBDR includes advanced
set-boundary propagation methods designed to enhance reachability analysis
capabilities, particularly for large initial sets and long time horizons. Based on
the homeomorphism property of the solution mapping for ODEs satisfying Lip-
schitz conditions, the set-boundary propagation method propagates only the
boundary of the initial set rather than the entire initial set itself to conduct
reachability analysis [37,38]. Because the measure (or, volume) of the bound-
ary is much smaller than the one of the entire initial set, the set-boundary

142 J. Ding et al.

propagation method will induce a smaller wrapping effect efficiently. Further-
more, to support algorithm development, we envision a paradigm where devel-
opers are empowered with a suite of accessible, modular, and versatile building
blocks, such as the design of Interval Tensors. These crafted blocks aim to facil-
itate and streamline the iterative refinement of innovative reachability analysis
algorithms. As illustrated in Fig. 2, the architecture of PyBDR features the fol-
lowing three core modules:

— geometric module: The geometric module enriches the toolkit by incor-
porating established conventional set representations such as intervals, poly-
topes, and zonotopes. It innovatively advances interval arithmetic to the ten-
sor level with the aid of a broadcasting mechanism. This advancement enables
the parallelization of operations and provides a unified framework for manip-
ulating vector intervals, matrix intervals, and interval matrices.

— dynamic module: In addition to supporting linear systems, the dynamic
module is specifically designed to manage nonlinear systems. It facilitates
arbitrary-order derivative evaluation through symbolic computation, thereby
enabling the approximation of nonlinear systems using Taylor series expan-
sions to arbitrary degrees.

— utility module: To assist in the implementation of reachability analysis
algorithms, we have encapsulated interfaces for commonly used optimiza-
tion methods and included a visualizer module for displaying computational
results.

In addition to a modular architectural design, we also conducted a compre-
hensive evaluation of potential programming languages aligned with our objec-
tives. Matlab, despite its prowess in matrix and symbolic computations, was
dismissed due to its reliance on commercial licensing conflicting with our commit-
ment to open-source principles. Similarly, while C/C++ offer high performance
exemplified by tools like HyPro [33] and Flow™* [16], their limited flexibility in
supporting academic research prototypes made them less suitable for our needs.
Although Julia shows promise in scientific computation, its relatively nascent
community and ecosystem compared to Python persuaded us to explore other
options. Ultimately, Python emerged as our choice not only for its user-friendly
syntax and support for rapid prototyping but also for its extensive community
and interoperability, crucial for integrating third-party resources in the develop-
ment of reachability analysis algorithms.

Related Work. Recent developments in reachability analysis have led to a
range of tools emphasizing different strengths. C/C++-based tools such as
SpaceEx [17] and Flow* [16] excel in efficient algorithms for both linear and/or
nonlinear hybrid systems. SpaceEx integrates diverse algorithms for linear sys-
tems, while HyPro [33] focuses on convex set representation similar to LazySets.
Flow* distinguishes itself with Taylor model approximation for nonlinear dynam-
ics. However, these tools often require compilation, which can slow down rapid
prototyping cycles.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 143

In contrast, tools like CORA [3] do not require pre-run compilation, offering
a wide range of algorithms for linear and nonlinear systems, including methods
based on zonotopes and interval arithmetic. Attempts to port CORA’s capa-
bilities to C++ have resulted in tools like CORA/SX and SymReach, which
demonstrate significant speed improvements in specific scenarios.

Python has also gained popularity in reachability analysis tools. HyLAA [§]
provides discrete-time reachability algorithms for linear hybrid systems, while
CommonRoad-Reach [24] combines a Python interface with a C++ core to com-
pute reachable sets and driving corridors for autonomous vehicles in dynamic
traffic, suitable for real-time applications.

Julia, known for its prowess in scientific computing, is exemplified by tools
like JuliaReach [11], which provides efficient algorithms for sophisticated, high-
dimensional problems. Despite Julia’s performance comparable to compiled lan-
guages, its ecosystem is still developing and not as extensive as Python’s.

The shift towards JIT-compiled or interpreted languages such as CORA,
JuliaReach, and HyLAA reflects their flexibility in prototyping, crucial for the
iterative development of algorithms. This trend underscores the community’s
preference for platforms that balance ease of use with computational efficiency.

The remainder of this paper is structured as follows. We in Sect. 2 detail the
architecture and features of PyBDR. In Sect. 3, we illustrate the performance of
our tool PyBDR. Finally, we conclude this work in Sect. 4.

2 Architecture and Features

2.1 Architecture

In this section, we present an integrated framework of our prototype tool
designed to enhance the computational processes involved in reachability anal-
ysis. The framework revolves around three core modules: the geometric module,
the dynamic module, and the utility module, as illustrated in Fig. 2. By leverag-
ing the functionality of these three modules, we have integrated the implemen-
tation of several reachability analysis algorithms [2,7,37,38]. These implemen-
tations not only facilitate code reuse for the development of advanced methods
but also showcase the tool’s potential in supporting the creation of innovative
algorithms.

Geometric Module. The geometric module of PyBDR offers various set rep-
resentations, including intervals, polytopes, and zonotopes, aiming to strike a
balance between computational efficiency and the precision of reachable set com-
putations. This module provides essential operations for arithmetic operations
among sets, such as Minkowski addition [21] and linear transformations. More-
over, the module supports geometric operations for converting between different
set representations and computing their enclosures. A significant feature high-
lighted in Fig. 3 is the boundary extraction interface. This interface enables the
over-approximation of the boundary of an entire set using a collection of smaller

144 J. Ding et al.

Reachability Analysis
1 Interval Arithmetic 1 A

pu—— RNV E—)
| Lo ' |
[interval Temsor |} | [Avimeic | | v w1
: Polytope : : onversion : Derivation : :
1 1 1 1 1
| -, Enclosure .) : System |
: Zonotope |: : Boundary : Dynamlc [
: 1 : Analysis 1 k j

. 1 1
1 Representation 1 1 Operation 1
1 1 1 1
b= - ! L ! [Visualizer | [Optimizer |
K Geometric / Utility

. J

Fig. 2. Hierarchical module design in PyBDR. Solid arrows indicate functional depen-
dencies and essential modules are highlighted with a light blue fill. (Color figure online)

geometric entities, thereby facilitating set-boundary propagation based reacha-
bility analysis. To our knowledge, PyBDR is the first reachability analysis toolkit
to offer interfaces for boundary over-approximation of convex sets like zonotopes,
intervals, and polytopes.

Dynamic Module. The dynamic module of PyBDR supports the definition of
various types of systems, including continuous time-invariant linear systems, con-
tinuous nonlinear systems, and network-structured nonlinear systems. A notable
capability of this module is its ability to analyze the behavior of Neural Ordi-
nary Differential Equations (Neural ODEs) [14]. These systems adhere to home-
omorphic mappings and can incorporate control inputs, expanding the scope of
traditional reachability analysis methods.

Utility Module. The design of the utility module in PyBDR aims to offer inter-
faces for convex optimization problems tailored to diverse algorithmic require-
ments. Additionally, this module provides visualization functionalities that allow
for graphical display of computed reachable sets. These visualizations enable
users to intuitively analyze and evaluate the performance of the algorithm.

To provide a comprehensive overview of the advancements introduced by
our tool PyBDR in reachability analysis, we present a comparative summary in
Table 1. This table outlines the key characteristics of state-of-the-art reachability
analysis tools alongside those of PyBDR, emphasizing the unique features and
capabilities of our toolkit.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python

Table 1. Comparison of reachability analysis tools

145

Tool Supported |Principal |Language Additional |License Latest Release
Systems Set Repre- Features
sentation
PyBDR |Linear Interval, Python |Boundary |GPLv3/2024/04/14
ODEs Polytopes, Analysis,
Nonlinear |Zonotopes Interval
ODEs Tensor,
Neural Symbolic
ODEs differentia-
tion
CORA Linear Intervals, MATLAB|Conversion [GPLv3/2024/07/01
ODEs Polytopes, Interfaces
Nonlinear |Zonotopes, with Other
ODEs Taylor Tools
Hybrid Models,
Systems Polynomial
Neural Zonotopes
Netoworks
JuliaReach Linear Zonotopes, |Julia Lazy Sets |[MIT [2023/08/30
ODEs Polyhedra,
Nonliear Taylor
ODEs Models
Hybrid
Systems
HyLAA |[Hybrid Generalized [Python |Simulation |GPLv3|2019/08/01
Systems Star Repre- Equivalent
with Linear |sentation
ODEs
HyPro Nonlinear |Box, C++ Inexact and [MIT [2023/09/06
Hybrid Polytope, Exact Com-
Systems Zonotope putation
Flow* Nonlinear |Taylor C++ Adaptive |GPLv3[2017/03/09
Hybrid Model Technique
Systems

2.2 Features

Boundary Analysis. ODEs satisfying Lipschitz conditions ensure the unique-
ness of evolutionary trajectories from initial states. This property, illustrated
in Fig. 3, guarantees a boundary correspondence between the initial set and its
reachable set throughout the system’s evolution [37-39]. That is, the set reach-
able from the initial set’s boundary is equal to the boundary of the initial set’s
reachable set. Therefore, the boundary of the reachable set is determined by
the boundary of the initial set. A significant feature of our tool is its capability
to enhance existing reachability analysis methods by focusing on the boundary

https://github.com/ASAG-ISCAS/PyBDR
https://tumcps.github.io/CORA/
https://juliareach.github.io
https://github.com/stanleybak/hylaa
https://hypro.github.io/hypro/
https://flowstar.org

146 J. Ding et al.

analysis of the initial set. To support this capability, we have developed boundary
extraction features for various common set representations.

Trajectory

| —»

| —1

Reachable Set

Fig. 3. Illustration of reachability analysis utilizing boundary analysis.

We offer two methods for boundary extraction, one of which utilizes the
intrinsic boundary solving algorithms internally to handle the extraction of
intrinsic boundaries for intervals and zonotopes [31], such as extracting 4 edges
of a rectangle characterizing a two-dimensional interval.

Additionally, we incorporate the method in Realpaver [18] for boundary
extraction. This method can construct a series of smaller boxes to closely enclose
the exact boundary of the initial set, as depicted in Fig. 3. By strategically reduc-
ing the size of these boxes, we aim to minimize errors introduced by the wrapping
effect. This meticulous selection of smaller boxes allows for a higher precision
characterization of the reachable set’s boundary, thereby reducing discrepancies
between the computed reachable set and the actual evolution of the system.
Figure4c demonstrates that computing the reachable set using these smaller
entities provides a more precise boundary approximation compared to results
obtained from analyzing the entire initial set directly. This approach offers a
more accurate solution for verification problems.

Listing 1. Third order Lagrange remainder calculation in PyBDR

1 # calculate the Lagrange remainder term of the thrid order in PyBDR
> xx = Interval.sum((ihx @ tx @ ihx) * ihx, axis=1)

uu = Interval.sum((ihu @ tu @ ihu) * ihu, axis=1)
. err_lagr = (xx + uu) / 6

Listing 2. Third order Lagrange remainder calculation in CORA

% calculate the Lagrange remainder term of third order in «
CORA

error_thirdOrder_dyn = interval(zeros(obj.dim,1),zeros(obj.<
dim,1));

for i=1:length(ind)

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 147

error_sum = interval(0,0);
for j=1:length(ind{il})
error_sum = error_sum + (dz.'*T{i,ind{i}(j)}*dz) * dz«
(ind{i}(3));
end
error_thirdOrder_dyn(i,1) = 1/6%error_sum;
end

Interval Tensors. Interval arithmetic is an important tool in many reachability
analysis algorithms to incorporate considerations for errors during calculations.
Traditionally applied to intervals, it has been extended to handle more com-
plex data structures such as interval matrices, which represent linear systems
with parametric uncertainties. This extension requires the ability to perform
interval arithmetic operations in a broader context when computing reachable
sets. To address this need, we have developed the Interval Tensor data structure
in PyBDR. Built upon NumPy’s broadcasting mechanism [19], Interval Tensor
provides a versatile representation that seamlessly integrates various interval
computations within a unified framework. This includes operations on interval
vectors, vector intervals, interval matrices, and matrix intervals.

The Interval Tensor in PyBDR is designed to optimize computational effi-
ciency by leveraging vectorized operations that are executed at a lower level in
C, thereby minimizing the use of Python’s for loops. This approach significantly
enhances computational efficiency. Moreover, Interval Tensor relaxes strict shape
requirements on data during computations, allowing for operations like simul-
taneous interval matrix multiplication with scalar matrices, as demonstrated
in Listing 3. By harnessing NumPy’s broadcasting mechanism, Interval Ten-
sor improves ease of programming and enhances code readability. Compared to
traditional approaches that rely heavily on explicit loops, PyBDR’s implemen-
tation, as illustrated in Listings 1 and 2, demonstrates efficient computation
of complex tasks such as computing the Lagrange remainder term of the third
order [2]. This showcases the practical advantages of Interval Tensor in managing
intricate calculations while bolstering code readability and maintainability.

In summary, Interval Tensor not only optimizes computational efficiency
through vectorization but also enhances the clarity and maintainability of algo-
rithms in PyBDR.

Listing 3. Interval tensor matrix multiplication in PyBDR

interval matrix multiplication simultaneously in PyBDR
= Interval.rand(100, 2, 5, 4)

np.random.rand (4, 9)

=al@b

print(c.shape) # (100, 2, 5, 9)

#
a
b
c

In addition to enhancing code writing and readability, we compare the per-
formance of PyBDR and CORA in different computational tasks to examine the
average time consumption and accuracy of Interval Tensor in performing interval

148 J. Ding et al.

Table 2. Comparative evaluation of PyBDR and CORA for interval arithmetic oper-
ations.

Operator|Functionality € Avg. Time [s] [Input Intervals
CORA |PyBDR|I T |15
+ addition 0 1.01e78/4.68¢7° —100 1000 1100
- subtraction 0 4.02¢78/7.28¢72|—100 1000 1100
multiplication 0 1.96e~°|1.54e~% —100 100/0 {100
division 0 3.22¢794.60e =8 —100 1000 (100
ok power 1.08¢7151.74e7°2.93e 8 |—100 100/0 |100
|| absolute 0 1.30¢782.30e~8|—100 100/0 {100
@) left matrix multiplication |0 5.74e°1.15e%|—100 100(0 {100
right matrix multiplication|0 6.05¢7°/1.16e7%|—100 100(0 100
exp exponential 2.15¢716/2.08¢78/1.07¢ 78| —100 1000 |100
log logarithm 1.99e7144.36e788.41e7°|0 100(0 100
sqrt square root 0 2.87¢784.17¢7°|0 100(0 {100
sin sine 1.66e~14(3.69¢~7|4.47e~8|—-100 100(0 100
cos cosine 6.21e715/4.26e78(3.85¢78|—100 1000 |100
tan tangent 1.25¢7%4.03e7®1.90e ®—Z +0.010 0 Z —0.01
cot cotangent N/A [NJA 4.02¢°0.01 Z 05 —0.01
arcsin inverse sine 9.78¢7163.70e782.07¢78 -1 0 |01
arccos |inverse cosine 8.13¢71%3.89¢781.73¢78 -1 0 |01
arctan |inverse tangent 3.19¢714/1.61e78/1.04e78|—100 1000 |100
sinh hyperbolic sine 2.19¢716/3.72¢72/1.73¢78|—100 1000 |100
cosh hyperbolic cosine 2.20e719/5.43¢78]5.18¢78|—100 1000 |100
tanh hyperbolic tangent 9.58¢715/1.09¢789.19¢7%|—1 1 1011
arcsinh |inverse hyperbolic sine 9.29¢715/1.87¢782.51e78|—100 1000 |100
arccosh |inverse hyperbolic cosine |1.60e™!%/2.72¢782.32¢78 1 10 |0 |10
arctanh |inverse hyperbolic tangent 2.82e715/4.02¢782.39¢78|—1 0 01

Note: N/A — not available due to the absence of cot implementation in CORA; € — see (1);

arithmetic operations. CORA was specifically chosen as a baseline due to its use
of MATLAB, an interpretive language, and its focus on supporting reachabil-
ity analysis. It’s important to note that INTLAB [32], a closed-source interval
arithmetic library, was not included in our comparison. Benchmarking CORA
against INTLAB can be found in [5]. All tests were conducted within the identi-
cal physical environment as described in Sect. 3. The time consumption for each
operation was measured by averaging the processing time for N = 10* sets of
data randomly sampled from uniform distributions. The interval data used in the
tests were defined as [I, I + Is], where I and I are sampled from intervals [I, I]
and [I;, I 5], respectively. Both PyBDR and CORA utilized the double-precision
data type compliant with the IEEE 754 standard [41]. The experimental set-
tings and test results for all supported interval arithmetic operations by Interval

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 149

Tensor in PyBDR are summarized in Table 2, with the maximum relative error
€ for each test defined as:

max [Lp; — Ll [Tp; — Io,l
€= maX(,LL]_, e 7,U/N)a /j/J = 7.77 7'7[: : (1)
Pj —LPj

where [Ip;,Ip;] and [;, Ic, ;] refer to the bounds for the j** test in PyBDR
and CORA, respectively.

Symbolic Derivatives. Many continuous dynamical systems are typically
described by Ordinary Differential Equations (ODEs), which depict their evo-
lution within a state space [20,40]. Higher-order derivatives are frequently
employed to provide more accurate approximations of system behaviors within
local state neighborhoods. These derivatives often manifest as high-dimensional
data structures. For instance, for a vector-valued function f : R™ — R™, the
second-order derivatives of f involve tensors of size m xn xn. As many set-based
reachability analysis algorithms strive to approximate system behaviors, com-
puting derivatives at specific time points becomes crucial for accurate approxi-
mations. Higher-order derivatives play a significant role in this process, allowing
for more accurate approximations within local state neighborhoods. However,
the computational overhead associated with calculating derivatives increases
exponentially with their order, necessitating careful consideration in practical
implementations. Unlike real-valued derivative evaluations, reachability analysis
algorithms often rely on interval arithmetic. This approach is essential for esti-
mating bounds that encompass exact values, accommodating potential errors
inherent in real-world systems, and ensuring rigorous formal guarantees in anal-
ysis. Existing reachability analysis tools typically provide limited data structures
for managing these complex operations efficiently. This limitation can lead to
challenges in implementing theoretically straightforward operations, introduc-
ing unnecessary complexity and potentially compromising code readability and
maintainability.

In response to the computational challenges posed by reachability analysis
and the limitations of existing tools, our toolkit PyBDR integrates SymPy [26],
providing a streamlined interface for evaluating and differentiating vector-valued
functions effortlessly. This integration allows for precise handling of higher-order
derivatives essential for accurate system behavior approximation. Moreover, our
methodology leverages the interval tensor discussed earlier, enabling evaluations
and derivatives within the framework of interval arithmetic, thereby enhancing
operational convenience and adaptability. To assess the effectiveness of our app-
roach, we provide detailed performance evaluations in Table3 when handling
data of varying scales across different systems.

150 J. Ding et al.

Table 3. Performance evaluation of derivative computations in PyBDR.

System Dimension Mode|Run|Order| Avg. Time [s]
Input X|Input U|Output w.r.t. X\w.r.t. U
1tv [16] 3 4 3 REL [1 [0 5.58¢3(1.83¢73
2t o 7.56e%|5.33¢ 6
1|1 1.02e~2|2.61e~3
2t 1 5.42¢%(4.63¢ =6
13 3.03¢72(6.21e¢72
2t |3 1.17¢7°/1.83¢ =5
INT 1 |0 2.26e~2(2.05¢ 3
2t o 2.0le%[2.30e %
1 1 2.47¢73|9.17e 4
2t 1 1.56e~4/2.75¢ =5
13 1.48¢72(2.38¢ 2
2t |3 1.64e~%4/2.07¢ =4
Tank6eq [7] 6 1 6 REL [1 [0 8.87¢3(3.49¢~3
2t o 1.06e7°1.04e ™"
1 1 2.81e2[1.82¢ 73
2t |1 1.10e7°4.84¢ 6
13 3.56e " !|4.44¢73
2t |3 9.55¢°(6.22¢ 76
INT 1 |0 4.94e73(4.97¢73
2t o 3.98¢4[4.35¢ 7%
11 6.70e—3|6.80e %
2t 1 5.31e"4[2.19¢7°
1 |3 1.68e1(2.40e~3
2t |3 2.03e¢3(3.37¢7°
Quadrocopter [10][12 3 12 REL 1 [0 1.49¢=2/9.01e =3
2t o 2.57¢%[2.66e°
11 9.49e~2(6.49¢ 73
2t 1 6.72¢°|7.16e 6
1 |3 5.28 1.05¢~1
2t |3 4.01e73(3.36e7°
INT 1 |0 1.76e~2|1.48¢ 2
2t o 2.51e"3[2.51e73
1 1 2.40e~2(3.10e 3
2t 1 5.69¢3(6.03¢°
1|3 2.67 4.98¢2
2t |3 7.29¢2(3.95¢ 74
Lac Operon [15] |2 0 2 REL [1 [0 9.66e~ 3|~
2t o 7.61e 6|~
1 h 4.71e72|—
2t |1 1.44e7%|—
1 3 2.82 -
2t |3 1.09¢ 4|
INT 1 [0 5.80e 3| —
2t o 4.32¢4|—
1 h 1.88¢ 72|~
2t 1 1.81e™3|—
1 3 1.02¢ =1 —
2t |3 1.63¢ 72—
Note: X — states of the systems; U — control inputs of the systems; INT

— interval arithmetic; REL — real number arithmetic; 27 — second run
and all subsequent runs.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 151

3 Evaluation

To illustrate the advancements facilitated by the set-boundary propagation tech-
nique implemented in PyBDR for reachability analysis, we conducted two sets
of case studies. In the first category of case studies, we compared the perfor-
mance of PyBDR when computing reachable sets using the set-boundary prop-
agation technique against a baseline method employing a simple partitioning
on the entire initial set. This comparison aimed to demonstrate the efficiency
gains and accuracy improvements achieved through the set-boundary propaga-
tion technique. In the second category of case studies, we benchmarked PyBDR
against CORA, a tool developed in MATLAB that also utilizes set propagation
techniques for reachability analysis. This benchmarking focused on scenarios
involving large initial sets and long time horizons, specifically in the context of
safety verification for nonlinear systems. We ensured experimental fairness and
parameter consistency by employing conservative linearization method [7] across
all computations.

All experiments were performed on a Windows system equipped with an i7-
13700H 2.1 GHz CPU with 32 GB RAM. Parallel operations were performed
using 4 cores.

3.1 Comparative Studies on the Use of Boundary Analysis
Consider a Lotka-Volterra model of 2 variables [15] as follows,
fo = 1.51:0 — ToT1 (2)

ZZfl = —3IE1 + o1 (3)

(a) N=4; T=19.12. (b) N=36; T=148.73. (c) N=8; T=25.59.

Fig. 4. Reachable sets via simple partition (blue), boundary analysis (green), and base-
line method without partition or boundary analysis (orange); N-number of cells, T—
runtime in seconds. (Color figure online)

When starting with an initial set [2.5,3.5] x [2.5,3.5] and step size 0.005,
the reachable set over time horizon [0, 2.2] using different levels of partitioning

152 J. Ding et al.

over the initial set and based on boundary analysis is illustrated in Fig.4. It
is evident that as the simple partitioning method is applied to the initial set
with increasing precision, smaller subsets are used for reachability analysis. This
reduction in volume effectively reduces the error introduced by the wrapping
effect, thereby mitigating the divergence of the reachable set over the speci-
fied time horizon. In contrast, the set-boundary propagation technique achieves
a comparable improvement in the conservatism of reachability analysis using
a limited number of cells that specifically enclose the boundary of the initial
set. This approach provides a computationally efficient alternative to simple
partitioning, demonstrating its effectiveness in advancing reachability analysis
methods.

3.2 Comparative Studies on Reachability Analysis

() (h) (i)

Fig. 5. Reachable sets obtained with CORA (orange) and PyBDR (blue). (Color figure
online)

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python

153

We benchmarked our performance against CORA on various continuous non-
linear dynamic systems, including Neural ODEs (NODEs), as listed in Table 4.
Similarly, we applied the simple partition technique as in Subsect. 3.1 to improve
the performance of CORA in reachability analysis. In our setup, PyBDR runs
on 4 cores in parallel for specific operations, while CORA is single-threaded by
its design. The runtimes in Table4 refer to wall time, including I/O and other
overheads, to compare overall performance in reachable set computation. For

Table 4. Reachability analysis comparison on continuous benchmarks

System 5 |Xo T | |Fig. PyBDR CORA
Cells Time [s]|Cells Time [s]
Vanderpol 0.01/[0.9,1.9] x [1.9,2.9] 5.00050— 2x4 |[N/JA [2x2 |[N/A
0.33— 3 x4 44.80 [3x3 N/A
0.255a |4 x 4 4798 |4 x4 44.30
0.9,1.9] x [1.9,2.9] 9.00020— 5x4 |N/JA 5x5 |NJA
017— 6x4 19324 6x6 |N/A
0.14— 7Tx4 237.23 |Tx7 N/A
0.12— 8 x4 239.25 |8 x 8 N/A
0.115b 9 x 4 243.09 9 x9 614.03
[1.0,1.8] x [2.0,2.8] 700027— [3x4 |NJA [3x3 |N/A
0.20 4 x4 108.98 |4 x 4 N/A
0.16/5¢c |5 x 4 114.80 5 x5 174.66
[0.8,2.0] x [1.8,3.0] 7.00024— [5x4 |NJA x5 |N/A
0.20— 6 x4 155.25 |6 x 6 N/A
0.17— 7x4 16423 7x7 |N/A
0.15— 8 x4 180.60 8 x 8 N/A
0.13/5d |9 x 4 183.96 9 x 9 470.03
Brusselator [15] 0.01/[—0.1,0.1] x [3.9,4.1] 5.000.07— [3x4 |[N/JA 3x3 |N/A
0.05— 4 x4 81.70 |4 x4 N/A
0.04/5¢ [5x4 91.96 |5 x5 166.42
Synchronous Machine [35]/0.01/[—0.7,0.7] x [2.3,3.7] 7.000.33— [3x4 |[N/JA 3x3 |N/A
0.25— 4 x4 99.73 |4 x4 N/A
0.20— [5x4 153.37 5 x5 N/A
0.17)5f |6 x 4 159.76 6 x 6 262.63
Lorenz [15] 0.02[—11,3] x [—3,11] x [—3,11]/1.00[2.33— |6 x 6 x 6 N/A |6 x 6 x 6N/A
2.00 7 X Tx6[356.75 [Tx7xTN/A
1.755g |8 x 8 X 6439.95 |8 x 8 x 8416.92
(NODE) Spiral 1 [25] [0.1][0, 4] x [~2,2] 7001.00— [4x4 |NJA |[dx4 |[N/A
0.80 5x4 857.26 |5 x5 N/A
0.67— 16 x4 914.38 |6 X 6 N/A
0.57— Tx4 1009.73 |7 x 7 N/A
0.50/5h |8 x 4 1094.89 8 x 8 1080.92
(NODE) Spiral 2 [25] 0.1 [~4,—2] x [~4,—2] 7.00050— 4x4 |NJA l4x4 |N/A
0.40— 5 x4 723.42 5x5 N/A
0.33— [6x4 885.98 6 x6 N/A
0.29— Tx4 1121.64 7 x 7 N/A
0.2551 8 x4 1258.13 8 x 8 1549.61

Note: N/A — set explosion; § — step; Xy — initial set; T' — time horizon [0, T']; € — max width of cell;
Fig. — subfigure index in Fig 4.

154 J. Ding et al.

each system, we present an initial setup that can lead to a set explosion due to
the wrapping effect during computation. On this basis, we reduce the conserva-
tiveness of the reachable set by using a more refined boundary characterization
in PyBDR, and by partitioning the initial set into smaller cells in CORA. It is
noteworthy that since the boundary of sets is dimensionally degenerate relative
to the sets themselves, we constrained cell’s maximum width in both methods
to keep the error introduced by the wrapping effect for each cell within the same
scale.

In Table4, we observe that for systems with relatively large initial sets and
long time horizons, both PyBDR and CORA suffer from significant errors from
the wrapping effect, which leads to an overestimation of reachable sets. By reduc-
ing cell size, both tools yield more accurate over-approximations of reachable
sets within specified time horizons. Moreover, as shown in Fig. 4, we can always
obtain a more accurate estimation. Notably, despite Python’s inherent limita-
tions in iterative computations when compared to MATLAB, by processing each
cell in parallel, our toolkit still significantly outperforms CORA in terms of
overall computation time, as particularly evidenced by the results presented in
Fig. 5d. In particular, the analysis of the VanderPol system with an initial set
[0.9,1.9] x[1.9,2.9] indicates a requirement for finer cell granularity to accurately
approximate the reachable set as the time horizon extends. This refinement leads
to a pronounced increase in computational time for CORA compared to PyBDR.
And this trend persists across different initial set within [0, 7], where the need
for precision intensifies to maintain valid reachable set estimations.

4 Conclusion

In this paper, we presented PyBDR, a Python-based toolkit that enhances the
reachability analysis through set-boundary propagation analysis. Its key features
include advanced set-boundary analysis to mitigate the wrapping effect and the
integration of tensor-level interval arithmetic for efficient computations. Besides,
PyBDR offers a diverse range of set representations and supports symbolic com-
putation of derivatives, crucial for precise system behavior analysis. Built with
Python’s user-friendly environment in mind, PyBDR facilitates rapid prototyp-
ing and accommodates complex computational tasks effectively. Its capabilities
are demonstrated through benchmarking across various nonlinear dynamics sce-
narios.

For future development, our focus will expand to include support for addi-
tional dynamical systems, particularly hybrid systems. We also plan to incorpo-
rate a broader array of set representations, including nonconvex forms such as
polynomial zonotopes. Enhancing user interaction through a user-friendly and
interactive visualization module is another pivotal aspect of our roadmap.

Acknowledgement. This work is funded by the CAS Pioneer Hundred Talents Pro-
gram and Basic Research Program of Institute of Software, CAS (Grant No. ISCAS-
JCMS-202302).

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 155

Data Availability Statement. The artifact for this work is available at https://doi.
org/10.5281/zenodo.12206996, and PyBDR is available at https://github.com/ASAG-
ISCAS/PyBDR.

References

10.

11.

12.

13.

14.

15.

Alanwar, A., Said, H., Althoff, M.: Distributed secure state estimation using dif-
fusion Kalman filters and reachability analysis. In: 2019 IEEE 58th Conference on
Decision and Control (CDC), pp. 4133-4139. IEEE (2019)

Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: Proceedings of the 16th International Confer-
ence on Hybrid Systems: Computation and Control, pp. 173-182 (2013)

Althoff, M.: An introduction to CORA 2015. In: Proceedings of the 1st and
2nd Workshop on Applied Verification for Continuous and Hybrid Systems, pp.
120-151. EasyChair (2015). https://doi.org/10.29007 /zbkv, https: //easychair.org/
publications/paper/xMm

Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability
analysis. Ann. Rev. Control Robot. Auton. Syst. 4, 369-395 (2021)

Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016.
In: Proceedings of the 3rd International Workshop on Applied Verification for
Continuous and Hybrid Systems, pp. 91-105 (2016)

Althoff, M., Rajhans, A., Krogh, B.H., Yaldiz, S., Li, X., Pileggi, L.: Formal verifica-
tion of phase-locked loops using reachability analysis and continuization. Commun.
ACM 56(10), 97-104 (2013)

Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In: 2008 47th IEEE
Conference on Decision and Control, pp. 4042-4048. IEEE (2008)

Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reach-
ability for linear systems. In: Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control, pp. 173-178 (2017)

Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401-420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_20
Beard, R.W.: Quadrotor dynamics and control. Brigham Young Univ. 19(3), 46-56
(2008)

Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39-44 (2019)
Bogomolov, S., et al.: Assume-guarantee abstraction refinement meets hybrid sys-
tems. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116-131. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13338-6_10

Chen, M., Tomlin, C.J.: Hamilton-Jacobi reachability: some recent theoretical
advances and applications in unmanned airspace management. Ann. Rev. Con-
trol Robot. Auton. Syst. 1, 333-358 (2018)

Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary dif-
ferential equations. In: Advances in Neural Information Processing Systems, vol.
31 (2018)

Chen, X.: Reachability analysis of non-linear hybrid systems using taylor models.
Ph.D. thesis, Fachgruppe Informatik, RWTH Aachen University (2015)

https://doi.org/10.5281/zenodo.12206996
https://doi.org/10.5281/zenodo.12206996
https://github.com/ASAG-ISCAS/PyBDR
https://github.com/ASAG-ISCAS/PyBDR
https://doi.org/10.29007/zbkv
https://easychair.org/publications/paper/xMm
https://easychair.org/publications/paper/xMm
https://doi.org/10.1007/978-3-319-63387-9_20
https://doi.org/10.1007/978-3-319-13338-6_10

156

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

J. Ding et al.

Chen, X., Abrahém, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258-263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
818

Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379-395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using
constraint satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(1), 138—
156 (2006)

Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357-362
(2020). https://doi.org/10.1038 /s41586-020-2649-2

Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (NJ), 3. ed.,
international ed. edn. (2000)

Kithn, W.: Zonotope dynamics in numerical quality control. In: Hege, HC., Polth-
ier, K. (eds.) Mathematical Visualization: Algorithms, Applications and Numer-
ics, pp. 125-134. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-
03567-2_10

Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540-554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
440

Liang, Z., Ren, D., Liu, W., Wang, J., Yang, W., Xue, B.: Safety verification for
neural networks based on set-boundary analysis. In: David, C., Sun, M. (eds.) Theo-
retical Aspects of Software Engineering, pp. 248-267. Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-35257-7_15

Liu, E.I., Wiirsching, G., Klischat, M., Althoff, M.: CommonRoad-Reach: a toolbox
for reachability analysis of automated vehicles. In: 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), pp. 2313-2320. IEEE
(2022)

Manzanas Lopez, D., Musau, P., Hamilton, N.P., Johnson, T.T.: Reachability anal-
ysis of a general class of neural ordinary differential equations. In: Bogomolov, S.,
Parker, D. (eds.) Formal Modeling and Analysis of Timed Systems. FORMATS
2022. LNCS, vol. 13465. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-15839-1_15

Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
€103 (2017). https://doi.org/10.7717 /peerj-cs.103

Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi for-
mulation of reachable sets for continuous dynamic games. IEEE Trans. Autom.
Control 50(7), 947-957 (2005)

Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall Englewood Cliffs (1966)
Park, J., Ozgiiner, U.: Model based controller synthesis using reachability analysis
that guarantees the safety of autonomous vehicles in a convoy. In: 2012 IEEE
International Conference on Vehicular Electronics and Safety (ICVES 2012), pp.
134-139. IEEE (2012)

Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed:
accelerating reachability analysis on multi-core processors. In: Piterman, N. (ed.)
HVC 2015. LNCS, vol. 9434, pp. 3—-18. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-26287-1_1

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-662-03567-2_10
https://doi.org/10.1007/978-3-662-03567-2_10
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-031-35257-7_15
https://doi.org/10.1007/978-3-031-15839-1_15
https://doi.org/10.1007/978-3-031-15839-1_15
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-319-26287-1_1

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 157

Ren, D., Liang, Z., Wu, C., Ding, J., Wu, T., Xue, B.: Inner-approximate reach-
ability computation via zonotopic boundary analysis. In: To appear in Computer
Aided Verification: 36th International Conference, CAV 2024 (2024)

Rump, S.M. (1999). INTLAB — INTerval LABoratory. In: Csendes, T. (eds) Devel-
opments in Reliable Computing. Springer, Dordrecht (1999). https://doi.org/10.
1007/978-94-017-1247-7_7

Schupp, S., A’bmhém7 E., Makhlouf, I.B., Kowalewski, S.: HYPRO: A C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288-294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_20

Schiirmann, B.: Using reachability analysis in controller synthesis for safety-critical
systems. Ph.D. thesis, Technische Universitdt Miinchen (2022)

Susuki, Y., et al.: A hybrid system approach to the analysis and design of power
grid dynamic performance. Proc. IEEE 100(1), 225-239 (2011)

Tang, C., Althoff, M.: Formal verification of robotic contact tasks via reachability
analysis. IFAC-PapersOnLine 56(2), 7912-7919 (2023)

Xue, B., Easwaran, A., Cho, N.J., Franzle, M.: Reach-avoid verification for non-
linear systems based on boundary analysis. IEEE Trans. Autom. Control 62(7),
3518-3523 (2016)

Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by
polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
457-476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_25
Xue, B., Wang, Q., Feng, S., Zhan, N.: Over-and underapproximating reach sets
for perturbed delay differential equations. IEEE Trans. Autom. Control 66(1),
283-290 (2020)

Yang, B., Stipanovic, D.: Nonlinear Systems: Recent Developments and Advances
(2023)

Zuras, D., et al.. IEEE standard for floating-point arithmetic. IEEE Std.
754(2008), 1-70 (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-41528-4_25
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Discourje: Run-Time Verification
of Communication Protocols in Clojure
— Live at Last

Sung-Shik Jongmans®™)
Open University of the Netherlands, Heerlen, The Netherlands Evaluation
* K
ssj@ou.nl

Abstract. Multiparty session typing (MPST) is a formal method to
make concurrent programming simpler. The idea is to use type checking
to automatically prove safety (protocol compliance) and liveness (com-
munication deadlock freedom) of implementations relative to specifica-
tions. Discourje is an existing run-time verification library for commu-
nication protocols in Clojure, based on dynamic MPST. The original
version of Discourje can detect only safety violations. In this paper, we
present an extension of Discourje to detect also liveness violations.

1 Introduction

Background. With the advent of multicore processors, multithreaded
programming—a notoriously error-prone enterprise—has become increasingly
important.

Because of this, mainstream languages have started to offer core support for
higher-level communication primitives besides lower-level synchronisation prim-
itives (e.g., Clojure, Go, Kotlin, Rust). The idea has been to add message passing
as an abstraction on top of shared memory, for—supposedly—channels are eas-
ier to use than locks. However, empirical research shows that, actually, “message
passing does not necessarily make multithreaded programs less error-prone than
shared memory” [36]. One of the core challenges is as follows: given a specifica-
tion S of the communication protocols that an implementation I should fulfil,
how to prove that I is safe and live relative to S7 Safety means that “bad” chan-
nel actions never happen: if a channel action happens in I, then it is allowed to
happen by S (protocol compliance). Liveness means that “good” channel actions
eventually happen (communication deadlock freedom).

Multiparty Session Typing (MPST). MPST [17] is a formal method to
automatically prove safety and liveness of implementations relative to specifica-
tions. The idea is to implement communication protocols as sessions (of com-
municating threads), specify them as behavioural types [1,21], and verify the
former against the latter using behavioural type checking. Formally, the central
theorem is that well-typedness implies safety and liveness. Over the past fifteen

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 158-166, 2025.
https://doi.org/10.1007/978-3-031-71177-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_11&domain=pdf
http://orcid.org/0000-0002-4394-8745
https://doi.org/10.1007/978-3-031-71177-0_11

Discourje: Live at Last 159

years, much progress has been made, including the development of many tools
to combine MPST with mainstream languages (e.g., F# [31], F* [37], Go [9],
Java [19,20], OCaml [22], Rust [26,27], Scala [3,10,11,34], and TypeScript [29]).
Behavioural type checking can be done statically at compile-time or dynam-
ically at run-time. The disadvantage of static MPST is, it is conservative: stati-
cally checking each possible Tun of a session is often prohibitively complicated—if
computable at all—so sessions are often unnecessarily rejected. In contrast, the
advantage of dynamic MPST is, it is liberal: dynamically checking one actual
run of a session is much simpler, so sessions are never unnecessarily rejected.

This Work. Discourje (pronounced “discourse”) [13,14,18] is a library that adds
dynamic MPST to Clojure®. It has a specification language to write behavioural
types (embedded as an internal DSL in Clojure) and a verification engine to
dynamically type-check sessions against them. The key design goals have been
to achieve high expressiveness (cf. static MPST) and to be particularly mindful
of ergonomics (i.e., make Discourje’s usage as frictionless as possible).

In a nutshell, at run-time, Discourje’s dynamic type checker simulates
behavioural type S—as if it were a state machine—alongside session I. Each
time when a channel action is about to happen in I, the dynamic type checker
intervenes and first verifies if a corresponding transition can happen in S. If
so, both the channel action and the transition happen. If not, an exception is
thrown.

However, while safety violations are detected in this way (protocol incompli-
ance), liveness violations are not (communication deadlocks: threads cyclically
depend on each others’ channel actions, and so, they collectively get stuck).
This is a serious limitation relative to static MPST. In this paper, we present an
extension of Discourje to detect also liveness violations. Achieving this, without
compromising the key design goals, has been an elusive problem that for years we
did not know how to solve (e.g., we could not reuse variants of existing techniques
for static MPST at run-time, as this would negatively affect expressiveness).

Section 2 of this paper demonstrates that it can be done, while Sect. 3 outlines
how. The key idea is to use “mock” channels, which mimic “real” channels, to
track ongoing communications: before any channel action happens on a real
channel, it is first tried on a corresponding mock channel, allowing us to check
if all threads would get stuck in a total communication deadlock as a result.

2 Demonstration

We demonstrate the extension to detect liveness violations with two examples.
For reference, Fig. 1 summarises the main elements of Discourje and Clojure.

Ezample 1. The Two-Buyer protocol consists of Buyerl, Buyer2, and Seller [17]:
“Buyerl and Buyer2 wish to buy an expensive book from Seller by combining

1 A Lisp that runs on the JVM, with core support for channel-based message passing.

160 S.-S. Jongmans

their money. Buyerl sends the title of the book to Seller, Seller sends to both
Buyerl and Buyer2 its quote, Buyerl tells Buyer2 how much she can pay, and
Buyer?2 either accepts the quote or rejects the quote by notifying Seller.”
Figure 2 shows a behavioural type and a session. It is safe and live. In contrast,
if we had accidentally written (<!! ¢3) on line 11 (i.e., Buyerl tries to receive
from Buyer2 instead of Seller), then it deadlocks. The original Discourje does not
detect this liveness violation, but with the extension, an exception is thrown. O

Discourje:

— (defthread id)/(defsession id [args] body) specifies a thread name/protocol.
— (-->>/-->t p @) specifies an asynchronous/synchronous communication of a
value of data type t through a buffered /unbuffered channel from p to q.

— (alt ...) and (cat/par

...) specify choice and sequencing/interleaving.

— Names of threads and protocols are prefixed by an otherwise meaningless colon.

Clojure:

— (thread body), (chan), and (chan size) implement the creation of new thread, a
new unbuffered channel, and a new buffered channel.

— (>!'! ch expr) implements the send of the value of expr through ch.

— (<!'! ¢ch) implements the receive of a value through ch.

— (alts!'! [acty

act,]) implements a selection of one of the channel actions,

depending on their dis/enabledness (cf. select of POSIX sockets and Go channels).
If act; is a send, it is a pair [ch v]; if it is a receive, it is just ch. The function
returns a pair [v ch] where v is the value sent/received, and ch is the channel.

Fig. 1. Discourje and Clojure in a nutshell

1 (defthread :buyeri)
2 (defthread :buyer2)
3 (defthread :seller)

4

5 (defsession :two-buyer []

6 (cat

7 (-->> String :buyerl :seller)

8 (par

9 (cat

10 (-->> Double :seller :buyerl)
11 (-->> Double :buyerl :buyer2))
12 (-->> Double :seller :buyer2))
13 (-->> Boolean :buyer2 :seller)))

(a) Specification in Discourje

1
2

(def c1 (chan 1)) 14 (thread ;; Buyer2
(def c2 (chan 1)) 1s (let
(def c¢3 (chan 1)) 16 [x (<!! c6)
(def c4 (chan 1)) 17 y (<!'! ¢2)
(def c¢5 (chan 1)) 18 z (= x y)]
(def c6 (chan 1)) 19 (>1! ¢4 z)))
20
(thread ;; Buyerl 21 (thread ;; Seller
(>!! c1 "book") 22 (<!t c1)
(let 23 (>!! ¢5 20.00)
[x (<!! ¢cb) 24 (>!! c6 20.00)
y (/ x 2)] 25 (println
(>!! c2 y))) 2 (<1t c4)))

(b) Implementation in Clojure

To dynamically type-check the session, the following code creates a monitor for the
session, and links it to each channel along with the intended sender and receiver:

(def m (monitor :two-buyer :m 3))

(link c1 :buyerl :buyer2 m) (link c2
(link c¢3 :buyer2 :buyerl m) (link c4
(link cb5 :seller :buyerl m) (link c6

:buyerl :seller m)
:buyer2 :seller m)
:seller :buyer2 m)

Fig. 2. Two-Buyer (Example 1)

Discourje: Live at Last 161
1 (defthread :c) (defthread :s1) 1 (def c1 (chan)) 14 (thread
2 (defthread :b) (defthread :s2) 2 (def c2 (chan)) 15 (>!! c1 5)
3 3 (def c3 (chan)) 16 (alts!! [c2 ¢31)))
4 (defsession :load-balancer [] 4 (def c4 (chan 512)) 17
5 (cat 5 (def c5 (chan 1024)) 18 (thread
6 (-->> Long :c :b) 6 19 (let [x (<!'! c2)
7 (alt 7 20 y (inc x)]
8 (cat s (thread 21 (> c2 y))))
9 (-->> Long :b :s1) 9 (let [x (<!! c1)] 22
10 (--> Long :s1 :c)) 10 (alts!! 23 (thread
11 (cat 11 [[c4 x] 24 (let [x (<!'! c3)
12 (-->> Long :b :s2) 12 [c5 x11))) 25 y (inc x)]
13 (--> Long :s2 :c¢))))) 13 26 (>11 ¢3 y))))
(a) Specification in Discourje (b) Implementation in Clojure
To dynamically type-check the session:
(def m (monitor :load-balancer :n 4)) (link c4 :b :s1 m) (link c2 :sl :c m)
(link c1 :c¢ :b m) (link c5 :b :s2 m) (link ¢3 :s2 :c m)

Fig. 3. Load Balancing (Example 2)

Example 2. The Load Balancing protocol consists of Client, Serverl, Server2,
and LoadBalancer. First, a request is communicated synchronously from Client
to LoadBalancer, and asynchronously from LoadBalancer to Serverl or Server2.
Next, the response is communicated synchronously from that server to Client.
Figure 3 shows a behavioural type and a session. It is safe but not live. There
are two deadlocks. The first one occurs because Serverl and Server2 try to receive
from c2 and c¢3 on lines 19 and 23; this should be c4 and c¢5. The second deadlock
occurs because one of the servers will never receive a value and, as a result, block
the entire program from terminating. The original Discourje does not detect
these liveness violations, but with the extension, exceptions are thrown. a

3 Technical Details

Requirements. In this section, we outline how the extension to detect liveness
violations works, focussing on the core deadlock detection algorithm. We begin
by stating the rather complicated requirements for this algorithm, as entailed by
Discourje’s key design goals regarding expressiveness and ergonomics (Sect. 1):

— Expressiveness: The algorithm must be applicable to any combination
of buffered and unbuffered channels, and to all functions >!! (send), <!!
(receive), and alts!! (select). Thus, the programmer can continue to freely
mix synchronous and asynchronous sends/receives, possibly selected dynam-
ically.

— Ergonomics: The algorithm must call only into the public API of Clojure’s
standard libraries, without modifying the internals, and without relying on
JVM interoperability. Thus, the programmer can write portable code that
runs on different versions of Clojure and on different architectures.

The combination of these requirements has made the design of the algorithm elu-
sive. For instance, the expressiveness requirement means that we cannot simply

162 S.-S. Jongmans

reuse existing distributed algorithms for deadlock detection (e.g., [6,16,25,35]),
as they typically do not support mixing of synchrony and asynchrony. The
ergonomics requirement means that we cannot instrument Clojure’s internal
code to manage threads, nor can we use Java’s thread monitoring facilities.

Terminology. A channel action is either a send of v through ch, represented
as [ch v], or a receive through channel ch, represented as just ch (cf. alts!! in
Fig.1). A channel action is pending if it has been initiated but not yet completed.
A pending channel action is either enabled or disabled, depending on ch:

— when ch is a buffered channel, a pending send is enabled iff ch is non-full,
while a pending receive is enabled iff ch is non-empty;

— when ch is an unbuffered channel, a pending send is enabled iff a correspond-
ing receive is pending, and vice versa.

When a thread initiates channel actions, but they are disabled, it is suspended.
When a disabled channel action becomes enabled, the suspended thread is
resumed. A communication deadlock is a situation where each thread is sus-
pended.

Setting the Stage. Normally, channel actions are initiated via func-
tions >!!, <tt and alts!!. When these functions are called wusing
the extension, the dynamic type checker intervenes and first calls
(detect-deadlocks [act:...act,]1) to initiate corresponding “mock” channel
actions on “mock” channels. Each mock channel mimics a “real” channel and
is used only by the dynamic type checker.

The mock channels have the same un/buffered properties and contents
as the real channels, except that values are replaced with tokens. So, if
detect-deadlocks detects a deadlock on the mock channels, then a deadlock
will occur on the real channels, too. (Mock channels are also essential to detect
safety violations.)

To initiate the mock channel actions, a separate function in the public API
of Clojure’s standard libraries is used: (do-altsfactsconfig). It resembles alts!!,
except that it never suspends the calling thread. Instead, a call of do-alts imme-
diately returns and, asynchronously, initiates the channel actions in acts and calls
f when one is completed. In this way, initiation of mock channel actions can be
decoupled from suspension of threads (demonstrated below).

Algorithm. Let n be the number of threads. The idea to detect deadlocks is
to identify the situation when n-1 threads are already suspended, while the last
thread is about to be suspended. In that situation, instead of suspending
the last thread, an exception is thrown to flag the liveness violation. In code:

1 (defn detect-deadlocks [mock-acts] ;; act; ... act,

2 (let [ret (about-to-be-suspended? mock-acts)]

3 (if (true? ret)

a (let [ret (last-thread? mock-acts)]

5 (if (true? ret) (throw (ex-info "deadlock!" {})) ret)) ret)))

® N o

Discourje: Live at Last 163

Function about-to-be-suspended? checks if any of the mock-acts is enabled. If
so, it immediately initiates and completes it, and returns the result (of the form
[v ch]). If not, the function returns true to indicate that the current thread
would indeed be suspended if mock-acts were to be initiated. In code:

(defn about-to-be-suspended? [mock-acts]
(let [ret @(do-alts (fn [_] nil) mock-acts {:default nill})]
(if (not= ret [nil :default]) ret true)))

On line 7, optional parameter {:default nil} configures alts!! such that it
immediately returns [nil :default] when all mock-acts are disabled.

Function last-thread? increments the number of suspended threads and
checks if the number is less than n. If so, it initiates mock-acts, and actually
suspends the current thread. If not, the function returns true to indicate that
the current thread is indeed the last one, so a deadlock is detected. In code:

(def i (atom 0)) ;; number of suspended threads (private to the algorithm)

(defn last-thread? [mock-acts]

(if (< (swap! i inc) n) ;3 increment i~ (" swap! returns the new value)
(let [p (promise)] ;; create promise to store result of “mock-acts’
(do-alts (fn [x] (deliver p x)) mock-acts {}) ;; initiate “mock-acts’,

;3 and store result "x° of one of them in “p°
;3 upon completion, all asynchronously

(let [ret (deref p)] ;; suspend thread (" deref” blocks until “deliver)
(swap! i dec) ;; decrement ~i°
ret)
true))

The code shown so far explains the general idea behind the algorithm. How-
ever, the details are more involved: our presentation does not yet account for
data races, several of which are possible. For instance, suppose that there are
two threads (Alice and Bob), that they initiate corresponding channel actions
(no deadlock), and that calls of detect-deadlocks are scheduled as follows:

(1) Alice executes about-to-be-suspended?. It returns true. (2) Bob exe-
cutes about-to-be-suspended?. It, again, returns true, as Alice has not yet
executed last-thread?. (3) Bob executes last-thread?. It increments n to
1 and suspends Bob. (4) Alice executes last-thread?. It increments n to
2, detects that Alice is last, and immediately returns nil.

At this point, mistakenly, an exception is thrown. There are more subtle data
races, too. The core issue is that about-to-be-suspended? and last-thread?
should be run atomically to avoid problematic schedules (e.g., the one above).
Details appear in the technical report [23, Sect. A]. The actual source code was
validated using both unit tests and whole-program tests.

4 Conclusion

Closest to the work in this paper is existing work on dynamic MPST [4,15,30-32]
and alternate forms of dynamic behavioural typing [7,8,12,28]. However, none of
these tools can check for liveness at run-time. Also closely related is existing work

164 S.-S. Jongmans

on dynamic deadlock detection in distributed systems (e.g., [6,16,25,35]). How-
ever, as stated in Sect. 3, these algorithms do not fit our requirements. Finally,
we are aware of two other works that use formal techniques to reason about
Clojure programs: the formalisation of an optional type system for Clojure [5],
and a translation from Clojure to Boogie [2,33]. In future work, we aim to study
and optimise the performance overhead of our deadlock detection algorithm.

Data Availability Statement. The artifact is available on Zenodo [24]. It contains
the new version of Discourje, including the examples of this paper.

Disclosure of Interests. The author has no competing interests to declare that are
relevant to the content of this article.

References

1. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2-3), 95-230 (2016)

2. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a mod-
ular reusable verifier for object-oriented programs. In: FMCO. LNCS, vol. 4111
(2005)

3. Barwell, A.D., Hou, P., Yoshida, N., Zhou, F.: Designing asynchronous multi-
party protocols with crash-stop failures. In: ECOOP. LIPIcs, vol. 263, pp. 1:1-1:30.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2023)

4. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33-58 (2017)

5. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for Clojure. In: ESOP. LNCS, vol. 9632 (2016)

6. Bracha, G., Toueg, S.: Distributed deadlock detection. Distributed Comput. 2(3),
127-138 (1987)

7. Burlo, C.B., Francalanza, A., Scalas, A.: On the monitorability of session types, in
theory and practice. In: ECOOP. LIPIcs, vol. 194, pp. 20:1-20:30. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik (2021)

8. Burlo, C.B., Francalanza, A., Scalas, A., Trubiani, C., Tuosto, E.: PSTMonitor:
monitor synthesis from probabilistic session types. Sci. Comput. Program. 222,
102847 (2022)

9. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 1-30
(2019)

10. Cledou, G., Edixhoven, L., Jongmans, S., Proenga, J.: API generation for mul-
tiparty session types, revisited and revised using Scala 3. In: ECOOP. LIPIcs,
vol. 222 (2022)

11. Ferreira, F., Jongmans, S.: Oven: Safe and live communication protocols in Scala,
using synthetic behavioural type analysis. In: ISSTA, pp. 1511-1514. ACM (2023)

12. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. J. Log.
Algebraic Methods Program. 124, 100731 (2022)

13. Hamers, R., Jongmans, S.: Discourje: runtime verification of communication pro-
tocols in Clojure. In: TACAS (1). LNCS, vol. 12078 (2020)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Discourje: Live at Last 165

Hamers, R., Jongmans, S.-S.: Safe sessions of channel actions in clojure: a tour of
the discourje project. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12476, pp. 489-508. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61362-4 28

van den Heuvel, B., Pérez, J.A., Dobre, R.A.: Monitoring blackbox implementa-
tions of multiparty session protocols. In: RV. Lecture Notes in Computer Science,
vol. 14245, pp. 66-85. Springer (2023). https://doi.org/10.1007/978-3-031-44267-
4 4

Hilbrich, T., de Supinski, B.R., Nagel, W.E., Protze, J., Baier, C., Miiller, M.S.:
Distributed wait state tracking for runtime MPI deadlock detection. In: SC, pp.
16:1-16:12. ACM (2013)

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL (2008)

Horlings, E., Jongmans, S.: Analysis of specifications of multiparty sessions with
dcj-lint. In: ESEC/SIGSOFT FSE, pp. 1590-1594. ACM (2021)

Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: FASE. LNCS, vol. 9633 (2016)

Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
FASE. LNCS, vol. 10202 (2017)

Hiittel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 1-36 (2016)

Imai, K., Neykova, R., Yoshida, N., Yuen, S.: Multiparty session programming with
global protocol combinators. In: ECOOP. LIPIcs, vol. 166 (2020)

Jongmans, S.S.: Discourje: run-time verification of communication protocols in
clojure — Live at last. Technical report (2023). https://arxiv.org/abs/2407.00540
Jongmans, S.: Discourje: run-time verification of communication protocols in Clo-
jure — live at last (artifact) (2024). https://doi.org/10.5281/zenodo.12519843
Krivokapic, N., Kemper, A., Gudes, E.: Deadlock detection in distributed database
systems: a new algorithm and a comparative performance analysis. VLDB J. 8(2),
79-100 (1999)

Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty session types
in rust. In: COORDINATION. LNCS, vol. 12134 (2020)

Lagaillardie, N., Neykova, R., Yoshida, N.: Stay safe under panic: affine Rust pro-
gramming with multiparty session types. In: ECOOP. LIPIcs, vol. 222 (2022)
Melgratti, H.C., Padovani, L.: Chaperone contracts for higher-order sessions. Proc.
ACM Program. Lang. 1(ICFP), 1-29 (2017)

Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-safe web programming
in TypeScript with routed multiparty session types. In: CC (2021)

Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877-910 (2017)

Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: CC (2018)
Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC (2017)

Pinzaru, G., Rivera, V.: Towards static verification of Clojure contract-based pro-
grams. In: TOOLS. LNCS, vol. 11771 (2019)

Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74 (2017)
Srinivasan, S., Rajaram, R.: A decentralized deadlock detection and resolution
algorithm for generalized model in distributed systems. Distrib. Parallel Databases
29(4), 261-276 (2011)

https://doi.org/10.1007/978-3-030-61362-4_28
https://doi.org/10.1007/978-3-030-61362-4_28
https://doi.org/10.1007/978-3-031-44267-4_4
https://doi.org/10.1007/978-3-031-44267-4_4
https://arxiv.org/abs/2407.00540
https://doi.org/10.5281/zenodo.12519843

166 S.-S. Jongmans

36. Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concurrency bugs
in Go. In: ASPLOS (2019)

37. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4(OOPSLA), 1-30
(2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Stochastic Games for User Journeys

Paul Kobialka!®) @, Andrea Pferscher'®, Gunnar R. Bergersen'-2
Einar Broch Johnsen'®), and Silvia Lizeth Tapia Tarifa'

! University of Oslo, Oslo, Norway
{paulkob,andreapf,gunnab,einarj,sltarifa}@ifi.uio.no

FM
Artifact

FM
Artifact

EVOITNOH 2 QGrepS B.V., Utrecht, The Netherlands Evufiﬁon
o gunnar .bergersen@greps.com Funcionai |

Abstract. Industry is shifting towards service-based business models,
for which user satisfaction is crucial. User satisfaction can be analyzed
with user journeys, which model services from the user’s perspective.
Today, these models are created manually and lack both formalization
and tool-supported analysis. This limits their applicability to complex
services with many users. Our goal is to overcome these limitations by
automated model generation and formal analyses, enabling the analysis
of user journeys for complex services and thousands of users. In this
paper, we use stochastic games to model and analyze user journeys.
Stochastic games can be automatically constructed from event logs and
model checked to, e.g., identify interactions that most effectively help
users reach their goal. Since the learned models may get large, we use
property-preserving model reduction to visualize users’ pain points to
convey information to business stakeholders. The applicability of the pro-
posed method is here demonstrated on two complementary case studies.

Keywords: User journeys * Data-driven model construction -
Automata learning - Model checking - Stochastic games -+ PRISM

1 Introduction

The servitization of business describes a shift towards offering products as ser-
vices [44]. This shift makes companies more dependent on user satisfaction; e.g.,
it has become much easier to change service providers. Investment in user sat-
isfaction pays off [17], which raises the following question: How can we formally
model and analyze the way users experience their interaction with a service?
User journeys model services from the users’ perspective [41]. They describe
how users employ a service to achieve a goal. User journeys may include many
paths, capturing different sequences of actions between a service and its users.
These models enable the analysis of user experience along different (intended
or unintended) paths through a service. Although most user journeys today are

This work is part of the Smart Journey Mining project, funded by the Research Council
of Norway (grant no.312198).
© The Author(s) 2025

A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 167-186, 2025.
https://doi.org/10.1007/978-3-031-71177-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_12&domain=pdf
http://orcid.org/0000-0002-0635-1915
http://orcid.org/0000-0002-9446-9541
http://orcid.org/0000-0002-8135-9052
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0001-9948-2748
https://doi.org/10.1007/978-3-031-71177-0_12

168 P. Kobialka et al.

Model Checking

Weights Results
> state Ranking
Event log Markov Decision Stochastic User Sankey Diagram
Actor Process Journey Game y Diagi
Information
»] Model Reduction
Step 1 Step 2 Step 3

Fig. 1. Steps to create Sankey diagrams from the event logs of the case studies.

created manually by domain experts and the associated user experience is cap-
tured through interviews [22,41], the method has been successful at providing
feedback to improve services. However, tool support for the modeling and anal-
ysis of user journeys is sparse [23], which makes the method difficult to apply in
complex domains and to services with numerous and diverse users.

A recent line of work aims to automatically mine user journeys and analyze
them using formal methods [26,28,30,31]. This significantly reduces the manual
effort needed to create models and enables a different scale of complexity in the
analyzed services and number of users. Starting from event logs, which are widely
available for software services, process mining [1] and automata learning [18] can
automatically generate behavioral models of user journeys from these logs, such
as finite state automata. These can then be analyzed by model checking [4].

This paper goes beyond previous work by modeling user journeys as stochas-
tic games [11]. We exploit the underlying distribution of events in the event log,
which was ignored in previous work. Stochastic games allow complex user behav-
ior to be captured, yet the resulting games can still be model checked. Figure 1
summarizes the steps applied to event logs to analyze user experience. These
steps elegantly combine and extend several known techniques. Step 1 generates
stochastic automata from event logs by means of automata learning. Step 2 con-
verts the learned automata into stochastic weighted games. The resulting games
are analyzed using probabilistic model checking to derive optimal strategies. Step
& ranks critical actions after which users tend to abandon their journey and visu-
alizes the outcome of these novel analyses via a property-preserving visualization
technique, to improve the interpretability of the stochastic game results.

We apply these steps to two case studies: an industrial case study [30,31]
and a benchmark [15] from the literature. The case studies are complementary
in complexity and differ in the number of users. In both cases, we identified
potential service improvements and automatically uncovered caveats. The case
studies suggest that our method is able to address two pressing industrial chal-
lenges: (1) the automated construction of stochastic user journey models for
complex services from event logs, and (2) identification of service bottlenecks by
automated analysis of models that reflect user experience. In short, the contribu-
tions of this paper are: (1) a formalization of user journeys as stochastic weighted
games exploiting the underlying distribution of events in the logs; (2) a tool chain
combining automata learning and model-checking techniques to automatically
analyze stochastic user journey games; (3) a method for property-preserving

Stochastic Games for User Journeys 169

model reduction to visualize the stochastic games results; and (4) the automated
stochastic modeling and analysis of two case studies to showcase the usefulness
and applicability of the proposed combination of techniques and their extensions.

2 Preliminaries

In the following, we write D(X) for the set of probability distributions over a
set X, where a distribution p: X — [0,1] is such that) p(z) = 1.

Event Logs. An event log records so-called touchpoints (or events) between
users and a service provider. A trace T = (ag,...,a,) € &/* is a finite, ordered
sequence over an alphabet & of events. An event log L is a multi-set of such
traces [1]. A multi-actor event log L = (L, II,) assigns an initiating actor to
each event in an event log L [26]; the set IT contains a set of actors, and the
actor-mapping function «: &/ — II assigns events a € & to an actor 7w € II.

Automata Learning. To learn stochastic automata from event logs, we use the
passive automata learning algorithm IOAlergia [36]. IOAlergia learns stochastic
automata for reactive systems defined by MDPs [36], based on Alergia [10]. State
merging exploits the underlying probabilities of events in the log. An MDP is
a tuple (I', Ai,, Aout, 9, S0, A) with finite sets of states I, input actions A;, and
output actions Aoyut, & stochastic transition function é: I' x A;, — D(I"), an ini-
tial state sg € I', and a labeling function A\: I' — Agy. Welet E5 C I'x Ajy x I
denote the finite set of transitions such that d6(s,a)(s’) > 0 for all triples
(s,a,s’) € Es. We assume MDPs to be deterministic; i.e., s = s holds for
all transitions §(s,a)(s’),d(s,a)(s”) such that (s,a)(s’) > 0, d(s,a)(s”) > 0
and \(s') = A(s").
Let an input/output log Li, consist of traces 7, = (A(s0), (40,00),
., (in, 0p)) in which input and output actions alternate, starting with an initial
output A(sg), which is only observed in the initial state. Given Li,, [OAlergia
creates an input/output frequency prefix tree acceptor (IOFPTA), where states
are labeled with output actions and transitions with input actions and frequen-
cies. In the IOFPTA, every path in the tree represents a prefix of a trace in
Tio € Ljo, and the frequency denotes the number of traces sharing this path.
After creating the IOFPTA, IOAlergia merges states. Two states are merged if
they (1) have the same output label, (2) are locally compatible, and (3) all their
successor states with the same output labels are compatible. Local compatibility
is based on the Hoeffding bound [25]: two states s, s’ are compatible if, for all

inputs i € Ajy,
/1 1
lo ,
g \/n \/ (5’,2’))

f(s,4,0) f(S’J,O)
n(s,1) n(s’,4)
where f(s,1,0) is the frequency of the transition to state o and n(s,4) the sum of
frequencies, for input ¢ in state s. The parameter € € (0, 2] steers the algorithm’s
eagerness for state merging; e.g., € = 2 leads to no state merges. Therefore, the

170 P. Kobialka et al.

MDP might contain several states representing the same event. When no states
can be merged, the transition frequencies are normalized to create an MDP.

User Journey Games. A user journey game [30,31] is a weighted two-player
game (I, Ac, Ay, E, s0,T, T, w), where I' is a finite set of states, Ac and Ay
are disjoint sets of actions, £ C I' x A, U Ay x I is a transition relation,
sp € I' an initial state, T C I' a set of final states, Ty, C T successful final
states, and w : E — R a weight function. Actions are separated into two disjoint
sets: controllable actions Ac are taken by the service provider and wuncontrol-
lable actions Ay by the user. User journey games are deterministic if s’ = s”
for (s,a,s’),(s,a,s") € E. Uncontrollable actions have higher precedence than
controllable actions: hence, the user chooses actions first but might do nothing.

A stochastic multi-player game (SMG) [11] is a tuple (II, I', A, (I})ic 11, S0, 0),
where I] is a set of players, I" a set of states, A a finite set of actions, (I;);cmr a
partition of states among players, so € I" an initial state, and 6 : I' x A — D(I)
a stochastic transition function. SMGs partition the states among the players;
players can take enabled actions if the current state is in their partition. An
action a € A is enabled in a state s if there is a transition to another state with
non-zero probability, i.e., s’ € I' : §(s,a)(s’) > 0. The set of transitions Ej
defined by ¢ includes all triples (s, a,s’) € I' x Ax I" with §(s,a)(s’) > 0. Games
can include a reward structure r : Es — Q> mapping transitions to positive
rewards (modeling weighted transitions). Rewards accumulate during the game.

Analyzing Stochastic Multiplayer Games. We are interested in analyzing a
player’s strategy, which determines the player’s actions in each state. For simplic-
ity, we focus on memory-less strategies, where the choice of action is determined
by the current state. A strategy [11] for player ¢ € IT in an SMG is a partial
function I; — D(A) that maps states to distributions over actions.

PRISM-games [11,32] extends the probabilistic model checker PRISM [34]
to games. While PRISM can resolve non-determinism to establish strategies for
a single player, PRISM-games can resolve nondeterminism for multiple, possi-
bly competing players. The logic Probabilistic Alternating-time Temporal Logic
with Rewards (rPATL) allows reasoning about SMGs by expressing temporal
properties [11]. The syntax of rPATL is given by:

=T |p| ¢ dNAG|{(Z) P[] | ({(Z))Roax[F™] | ((Z)) PraltV] | ({(5))RyalF™ ¢]
P =X¢| pU ¢ | Us

rPATL is a CTL-style branching-time temporal logic that extends state prop-
erties ¢ to path formula 1 with probabilistic and reward constraints. Here,
p is an atomic proposition. The coalition operator ((£)) denotes the subset
= C II of players that collaborate in a query; these players share a common
goal against the remaining adversarial players. The probabilistic operator Fuq,
where i€ {<, <, >, >} is a comparison operator and ¢ € QN[0, 1] is a probability
bound, indicates a probabilistic query under bound > q. The expected cumulative
reward operator R, evaluates the reward structure r for eventually reaching ¢

under bound < x, where x € Q> is a reward bound and r is a reward structure.

Stochastic Games for User Journeys 171

The quantitative operators Pyq and Ry ¢, with »<4€ {min=7 max=7}, return

the smallest, respectively largest, value that the given coalition of players = can
enforce. The superscript * of the eventually operator F expresses the cost for
paths when ¢ is not reached, it may be infinity (c0), zero (0), or accumulated
along the path (c). Further temporal logic operators can be constructed from
the next operator X, the until operator U, and the bounded until operator USF:
for example, the globally operator G¢ is defined via U: =(TU=¢) [11].

3 Case Study Overview

We conduct two complementary case studies: an industrial application (GrepS)
and a research benchmark (BPIC’17). We explain the steps of our method on
GrepS. BPIC’17 includes thousands of journeys and demonstrates scalability.

GrepS. The company GrepS offers programming skill evaluations for Java [6].
The customers of GrepS are organizations that use the service in the hiring pro-
cess to identify proficient applicants. Users of the service, the assessed trainees,
usually complete the assessment within 1-2 weeks. The service comprises three
phases: (1) sign up, (2) solve all programming tasks, and (3) review and share
the skill report with the customer. In a successful journey, the user completes
all tasks and shares the results with the organization. Otherwise, the journey is
unsuccessful. The event log contains anonymized user logs as tabular data [29].
To construct multi-actor event logs, the actor-mapping function o was detailed
by combining domain knowledge and interaction with a GrepS developer.

BPIC’17. The BPI Challenge 2017 captures a loan application process from a
bank. Users can cancel, submit or complete applications, and accept phone calls
from the bank. The process can have three different outcomes: (1) an offer can be
accepted by the user, (2) the application can be declined by the bank, or (3) the
application can be canceled by the user. We exclude declined applications as
they occur due to external factors, e.g., indebtedness. Thus, user journeys are
successful if the user accepts one of the provided loan offers; cancellations are
unsuccessful. The event log contains anonymized user logs as tabular data [15].
To construct multi-actor event logs, the actor-mapping function o was detailed
by combining domain knowledge with information given in the BPIC’17 forum.!

Interestingly, BPIC’17 contains a substantial change in the service provider’s
underlying process, a concept drift [2]. To investigate the impact of the concept
drift on the user journey, we split the log: The first part (BPIC’17-1) contains
traces until the change occurred in July 2016, and the second part (BPIC’17-2)
contains the traces after the change.

The BPIC’17 event log is preprocessed to clear inconsistencies [26,40]. Specif-
ically, we discretized call durations: A trace might contain several events associ-
ated with one call, and calls ranging from seconds to hours. Thus, we aggregate
repeated calls and classify them by their duration into “short”, “long”, or “super
long”. We exclude calls with an aggregated speaking time of less than 60 seconds.

! https://www.win.tue.nl/promforum /categories /- bpi-challenge-2017.

https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017

172 P. Kobialka et al.

We also distinguish different offers within the same trace. The service provider
cancels offers if there is no response after 20 days. We distinguish actively can-
celed offers and cancellations by the service provider due to timeout. We also
found some redundant events; e.g., the event W_Call after offers was always
followed by A_Complete, so we merged these events. To remove outliers we kept
only traces that appear more than once in the log; in the end, both logs still
contain more than 5000 journeys.

4 From Logs to Stochastic Games

We explain how stochastic user journey games are constructed from multi-actor
event logs £ = (L, II,a), i.e., the first two steps in Fig. 1. Step 1 generates an
MDP M from the multi-actor event log L. Step 2 constructs a weighted stochastic
game, extending M with weights and actor information. These stochastic user
journey games combine user journey games and SMGs (see Sect. 2).

In a multi-actor event log £, the set of actors II is assumed to include the
service provider C, who initiates all actions controlled by the offering company,
and the user U, who initiates all remaining actions. We assume that users engage
in only one action at a time; hence, our focus here will be on turn-based games
as models for user journeys, and not on models with parallelism.

Step 1. We first learn an MDP M = (I, Ay, Aout, 0,80, A) with
IOAlergia. For the construction of M, we make sure that the traces
7 € L are in the required format of input/output pairs by extend-

ing each trace 7 = (ag,...,a,) to an input/output trace 1o = (A(so),
(env, A(s0)*(@)), (act(ao), ag), .. ., (env, azglf)), (act(ay),an), (env, a%(res)),

act(res), res)). Each a; € 7 is encoded by a pair env,a{l(ai) where env is a
1—1

generic input action indicating the next player, followed by an output action

a?_(cl“') that indicates the player who initiates event a; from a;_; according to
the actor-mapping function «. This pair is followed by a pair (act(a;), a;), which
uses a function act: &/ — Aj, to map events to input actions, where the output
action corresponds to the event itself. A naive mapping could be act(a;) = a;,
relating each event to a deterministic action. However, it is often useful to intro-
duce a mapping that abstracts slightly from the events to better reflect the
problem domain in the actions. Each 710 starts with an initial output A(sg) and
ends with a final output res, which is successful if 7 records a successful user
journey and unsuccessful otherwise. This resulting set of input/output traces is
given to IOAlergia (see Sect.2). By including input/output pairs (env, a?f‘{i)) in
the traces, the learned MDP provides the probability distribution for the actions
of the next player.

Step 2. The MDP M obtained in Step 1 is extended to a stochastic user journey
game by means of a weight function w : E5 — R, labeling transitions with
weights, and partitioning the states I" into service provider states I'c and user
states I'y. For the automatic construction of the weight function w, we exploit
the distinction between successful and unsuccessful user journeys in the event

Stochastic Games for User Journeys 173

log to compute a numerical value that represents the impact of an action on the
outcome of the user journey. The calculation of w is based on previous work [30,
31]. For every transition e € Ej, we let w(e) = (1—H (e, L))-magority(e, L), where
H is the entropy of successful and unsuccessful journeys. The weight is positive
if the majority of traversals are successful journeys, otherwise negative. The
weight is maximal, respectively minimal, for transitions occurring exclusively in
successful, respectively unsuccessful, journeys. The accumulated weight along a
path in a user journey game, called gas, then represents the user’s “motivation”
to continue the journey [30,31].

Table 1. Model checking queries for SUJGs.

Name Query Description
Q1 {{C))Pmax=?|F successful] Probability of a successful journey
Q2 U)) Ry —- [F successful | unsuccessful]

Boundaries for accumulated

(¢,
Q3 ((C))Rys_+[F successful | unsuccessful] T e ——
Q4 <<C>)R§?:x_ [F successful | unsuccessful]
5 O))Ry—-[C
Q5 () R [Css] Step bounded reward
Q6 ((C))Rip=2[C<s]
Q7 ((C))Ry,ax—2[F€ successful] r € {NEG, POS, STEPS} Expectation of reward structures
C)) Pmax=2[(F ful & >Go &
Q8 (en ?[(F successfu gas = to Constrained success probability

steps <) & (G gas > G1)]

The controllable and uncontrollable states are identified using the actor-
mapping function o to map states to the actors C (service provider) and U
(user); e.g., the set of states in I'c corresponds to the copies of output actions
where C' controls the next action: a?f‘{i), where a(a;) = C. Then I'c = {s € I' |
Ja € Aous : M(s) = a®}, and I'y = {s € ' | 3a € Agut : A(5) = a¥ V \(s) = a}.

The weight function w and the state partitioning allows the MDP to be trans-
formed into a weighted, two-player SMG, hereafter called a stochastic user jour-
ney game (SUJG), i.e., a tuple G = ({C,U}, I, Ain, (I)icio,uy» 80,6, T, Ts, w),
where final states T = {s € I" | A(s) = successful V A(s) = unsuccessful}, success-
ful final states Ts = {s € I' | A(s) = successful}, and w the weight function. Note
that every user journey game can be transformed into an equivalent SUJG.

5 Queries for Stochastic User Journey Games

We here assume that users do not interact infinitely with a service provider but
eventually stop. Therefore, we consider SUJGs to be stopping games, in which
we reach almost surely terminal states with reward zero [33].

Step 3. We now consider the probabilistic model checking of properties that are
crucial for the success of user journeys. The violation of these properties allows

174 P. Kobialka et al.

us to locate problematic states where the user journey may be improved. The
constructed SUJG may contain loops with a positive or negative sum of weights.
For this reason, we distinguish queries applicable to games with reward structures
and with bounded integer encodings. Table 1 lists properties that we analyzed for
the case studies, and that we discuss below. The queries are specified in rPATL,
where C' denotes the service provider and U denotes the user.

Let us first analyze the probability of completing a user journey successfully;
i.e., to what extent can service provider C' guarantee the successful outcome
of the game? Query Q1 quantifies the service provider’s ability to guide an
independent user. Searching for states that return a small probability of reaching
any s € T, uncovers states from which the service provider has little or no
probability of successfully guiding the user. Thus, the journey is likely to fail.
Here, successful is a predicate that only holds in the successful final state T, and
unsuccessful is a predicate that holds in the final states T\ Ts.

Reward Structures decouple accumulated rewards from the state space in
PRISM-games and allow efficient computation of accumulated rewards. In turn-
based SMGs, PRISM-games only supports positive rewards. Thus, we use two
reward structures: POS for positive and NEG for negative gas (see Sect.4). The
weight of a transition in the SUJG contributes to the corresponding structure,
i.e., positive weights add to POs, and negative weights add to NEG. Many ser-
vices contain transitions with negative weights, e.g., reflecting actions that may
be unintuitive for the user. To analyze the effect of these transitions, we con-
sider queries concerning the user experience. Query Q2 determines the lower
bound for the negative reward that the user must accumulate to achieve any
outcome, by assuming that both actors cooperate. Queries Q3 and Q4 deter-
mine the minimum NEG and maximum POs reward that the service provider can
guarantee, independent of the user, over successful and unsuccessful journeys,
respectively. Rewards can also be used to relate gas to the number of steps taken
so far: Queries Q5 and Q6 return the minimum negative or maximum positive
accumulated reward (denoted C) within the first S steps that C' can guarantee.

Bounded Integer Encodings combine positive and negative weights in one
variable, enabling queries on their difference. Every transition changes the value
of this variable by the corresponding positive or negative weight, reflecting the
gas along the paths in the game (see Sect. 4). We also consider a step counter that
is updated for each transition. To restrict the size of the search space, we give
this variable a bound (i.e., steps := min(steps +1, X) for some X). We then use
concentration inequalities such as Markov’s inequality and cumulative reward
structures to calculate the expected values of POS, NEG, and STEPS in Q7, and
derive upper and lower bounds that include at least a minimum part of the dis-
tribution. Note that this construction is only needed in the presence of loops and
that the expected total rewards, used to bound the model, are finite as we assume
stopping games. Query Q8 determines the service provider’s probability for a
successful journey with a minimum amount of gas along the path, a maximum
amount of steps, and an overall lower bound for the gas. This multi-objective

Stochastic Games for User Journeys 175

query searches for a successful final state where gas > G and steps < S, while
ensuring that gas never decreases below G1, for constants Go, S, G;.

Experiments. PRISM-games supports experiments on queries that instantiate
a variable, e.g., the maximum number of steps, with all values in a given integer
interval. We use experiments to compare different values of player activity by
modifying the probabilities for the service provider or user to take their actions
first. Additionally, we vary the allowed number of steps to investigate how the
probabilities of a successful outcome change with a limited number of steps.

6 Model Reduction for Visualization

Model checking may reveal weaknesses in the service design and unsatisfiable
queries may suggest a need for changes. However, an unsatisfiable query does
not by itself identify the actions that negatively affect the largest number of
users. To help prioritize options during service redesign, we rank actions based
on their expected influence on the user journey outcome, to identify the most
critical actions for the largest number of users (cf. Step 3, Fig. 1). We synthesize
strategies maximizing the probability of a successful outcome by returning a
maximizing strategy for the service provider and a minimizing strategy for the
user, based on the queries in Sect. 5. These strategies resolve the players’ choice
of action in the SUJG via an induced Markov chain M’ = (I",¢’, so); the states
I of M’ form a, possibly smaller, subset of the states I" of the original SUJG,
i.e., I" C I'. (The construction of the induced Markov chain M’ from an SMG
is detailed in [12].)

We say that users are guidable if the probability that they can successfully
complete the journey is greater than zero. Let the function % : I'" — [0, 1] map
states s € I'' to the (intermediate) results of the probabilistic query Q1, express-
ing the probability of reaching the successful outcome from s. The difference in
guidable users between two neighboring states s and s’ is the absolute difference
between Z(s) and Z(s’), multiplied by the users traversing between these states.
Formally, the difference diff: I" — R in state s € I is the absolute difference
in guidable users between s and all neighboring states s’:

difi(s) = 3 |%(s) - B()] - #E (5.) . (1)

s'el”

Here, #g (s,s') denotes the number of users traversing from s to s’ as recorded
in the log £, where s’ € I and §'(s,s’) > 0. For non-neighboring states, let
#1."(s,5") = 0. States can then be ranked in descending order by their difference.

Visualizations of Results. Real-world processes with complex structures and
many users result in models that might be hard for humans to interpret correctly.
We discuss a model visualization method based on the model-checking results
that allows model reduction while preserving the ranking order.

The state space of M’ can be abstracted into clusters of states with an equal
probability of success as defined by Z. Neighboring states with the same results
can be merged. States {s' € IV | (s,s") € Ey NZ(s) = #(s’)} can be merged into

176 P. Kobialka et al.

(0):
™~
B, . O~ 5 0) Woas °|

D 63)>005 035 0.7
O O o O - !

(a) SUJG annotated with model (b) Reduced (¢) Sankey diagram generated
checking results. Markov chain. from the reduced Markov chain.

Fig. 2. We visualize the model checking results in a Sankey diagram that is generated
from the learned (SUJGs).

a state s. We also merge successful final states T;NI" and unsuccessful final states
(T'\T,)NI". Note that the reduced model preserves all transitions to states that
negatively impact the user journey, and that the merge operation is commutative.

To visualize fluctuations in guidable users along the user journey, we trans-
form the reduced model into a Sankey diagram [39]. We opted for Sankey dia-
grams since they seem accessible to a wide range of stakeholders with some
previous insights into the user behavior [19]. Each bar in the diagram illustrates
changes in guidable users, divided into flows of lost and gained guidable users.
The largest bars indicate states that are promising candidates for improvement.
Note that the bars are not monotonic as they do not visualize the absolute
number of users in a state, but the weighted difference in guidable users.

A heat map visualizes the result mapping & in the reduced Markov chain.
By clustering similar states, we can keep diagrams fairly small without compro-
mising the analysis. Figure 2a shows a SUJG with three necessary user actions to
reach a successful outcome. States are annotated with the probability of reach-
ing the successful final state, dotted lines represent uncontrollable user actions,
annotated with their probabilities. Figure 2b shows the reduced Markov chain,
where two actions divide the states into four clusters with 35%, 70%, 100%, and
0% probability of success, respectively. The insights gained from the induced
Markov chain are then visualized as a Sankey diagram in Fig.2c. The example
illustrates flow capacities through the distribution of 100 users.

7 Case Study Results

Table 2. Model checki Its f
We [:resent resu%ts for the GrepS and G?epg and](S)Pic(fl;‘c Hg resuis for
BPIC’17 case studies from Sect. 3. The steps o GrepS BPIC'17-1 BPIC'17-2
described in Sects.4-6 are assembled in a)
tool chain, implemented in Python 3.10.12, 8§ ;g‘:g ii;; ;i‘i;
and available online [27]. For automata o, 408 6770 68.07
learning, we use the IOAlergia implemen-
tation of AALPY [37] (v.1.4) and, for model checking, PRISM-games [11,32]
(v.3.2.1). All experiments ran on a laptop with 32 GB memory and an i7-1165G7
@ 2.8 GHz Intel processor within few hours.

Stochastic Games for User Journeys 177

GrepS. Figure 3 shows the generated cyclic game,
where touchpoints are represented as states, identi-
fied by T and a number. It encodes a heat map, rang-
ing from yellow states to green states; the darker a
state’s green, the greater its probability for success
(orange is the unsuccessful state). Transitions with
negative weights are orange, and those with positive
weights green. The figure highlights the three phases
of GrepS’ user journey. Phase 1 consists of touchpoints
T0-T4, Phase 2 of T5-T20 and Phase 3 of T21-T26.
Users receive a new task in T9, T11, T13, T15, and
T17. Feedback to users is given after every task. Users
share their results with the client company in T26. For
readability, we merged the service-provider controlled
and user controlled states, which we introduced due
to the input/output format of the traces, see Step 1 in
Sect. 4, with their preceding touchpoint-labeled states
(the full model is available at [27]). For GrepS, we
assume that users, when it is their turn, can transi-
tion according to the recorded events, or do nothing,
i.e., transition to a service-provider state, if available.

We investigate the limits for the positive and
negative weights that the service provider can guar-
antee during the journey, with the user and on its
own. Table 2

presents results for model checking the queries Q2—
Q4 (see Tablel) for both case studies. For GrepS,
the user must endure a significant number of nega-
tively weighted transitions, since the maximum accu-
mulated POS (Q4) is smaller than the minimum accu-
mulated NEG (Q3). Cooperation (Q2) results in a
67.37% reduction in accumulated NEG.

We analyze the impact of the users’ and service
provider’s activity on the user journey by varying the
probability in the game’s transitions, to change how
eager a player is in taking action. Figure 4a shows the
results for these changes: on the horizontal axis, ¢ = 0
means that the player takes action according to the
frequencies of the original game, —1 < ¢ < 0 means
that the service provider gradually increases the prob-
ability of taking action (the service provider always
takes an action, if available, with ¢ = —1). Similarly,
for 1 > g > 0, the user gradually increases the proba-
bility of taking action (until always taking an action,
if available, with ¢ = 1). The vertical axis shows the

[Review anyl sfare]

Fig. 3. Simplified model
of GrepS’ user journey.

178 P. Kobialka et al.

%3
1=}

0.5 — (-4,-64)

2 %\ z (-4, -40)
Sos] 240 2041 — 30
© 2 8 — (14, -64)
S 0.61 T30 © 0.3 — (20,-38)
s i & | — (30,39
$ 04| 2 201 | go2
g £ g
g0.2 : S 10 —— Max pos § 0.1
a . " H < — Mi
ol Service Provider ; User 0 - ‘ - i) : M|t1 neg‘ 0.0[, / , ,
~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 0 5 10 15 20 25 30 35 15 20 25 30 35
Scaled activity (q) Steps S Steps S
(a) Parametric eagerness (b) Gas by steps (¢) Bounded experiment
of the players (Query Q1) (Queries Q5 & Q6) (Query Q8) over (Go,G1)

Fig. 4. Experiment results for the GrepS case study.

probability of a successful journey (Q1); interestingly,

GrepS has a linear gain from being more active and a non-linear loss from being
more passive. Figure4b shows the results for queries Q5 and Q6 by compar-
ing the maximal accumulated positive and the minimum accumulated negative
weights for the first S steps of the journey, revealing that negative weights sur-
pass positive weights, especially at the beginning of a journey.

To evaluate whether the service provider can guide users to a successful out-
come with limited steps and lower bounds for the gas, we consider the model
with bounds derived from query Q7 (see Sect.5). We bound the integer encod-
ings by 10 times their expected value, which includes at least 90% of the traces.
Figure 4c shows the development in guiding the user under Q8. The plot’s labels
are pairs (Go, G1), where Gy is the minimum gas in the final state and Gy the
lower bound for gas along the journey. For pairs with the same results, we only
plot pairs with the maximum final gas and the maximum gas along the journey.
The plot shows that experiencing a journey with high minimal gas and reach-
ing a successful outcome are conflicting goals; maximizing minimal gas clearly
affects the probability of success for the user journey. For the best probability of
success (51%), GrepS needs to guide the users through the negatively weighted
transitions, which reach a minimum gas of —64. Actually, the user never fully
recovers positive gas in this journey, which ends with a negative gas of —4.

The analysis has shown that users face negative experiences and that the
service provider can offer guidance. We now consider where the journey can be
improved to help users reach a successful outcome. Figure 5 shows the derived
Sankey diagram with observed users as flow capacities, as described in Sect. 6.
The reduced model contains only 6 states, while the mined one has 65 states.
Based on the state ranking function (Eq. 1), state T25, where users accept or
reject their test results, appears as the most critical state for a successful journey;
it determines whether the user will (or not) reach a successful final state; in fact,
25% percent of the users recorded in the log fail their journey immediately after
this state. The second most critical state is the first task T9 (where 37.5%
of all users are lost), followed by the other tasks. However, at these points in
the journey, several user-controlled actions are required for a successful journey,
which makes GrepS dependent on the user’s cooperation in these states.

Stochastic Games for User Journeys 179

Thus, the SUJGs allow us to identify -

specific states for enhancing the jour- fr fris Sl
ney: T9 and T25. Our analysis clearly ﬂTzs

shows that GrepS needs to be active
to achieve a successful user journey
(Fig.4). We note that most negatively
weighted transitions are user-controlled,
suggesting that GrepS can prevent users
from “derailing” from a successful journey by being more active within the user
journey. If GrepS provides less guidance, users tend to abandon their journeys
more easily.

SLICCI

Fig. 5. Sankey diagram of Greps’ user
journey for guidable users.

Stakeholder validation of GrepS Results. We presented the results obtained
for GrepS to a company stakeholder? to obtain feedback on our results and their
presentation format. The stakeholder was not involved in performing the case
study; the other authors only had access to the event log from GrepS, provided
in 2021. This validation was done after the analysis results were available.

He was familiar with Sankey diagrams and immediately observed that our
analysis makes non-trivial insights accessible to key-stakeholders, varying from
concrete recommendations to non-trivial prescriptions on company behavior.
From the company’s perspective, prioritizing limited resources to improve the
users’ success rate and experience is challenging. Our case study substantiates
that automated analyses based on event logs are a viable alternative to current
best-practices based on heuristics, and promise to reduce assessment efforts.

The identification of T25 as a candidate for improvement (Fig. 5) had actually
been discovered independently by GrepS, confirming our analysis. This step is
currently supplemented by a manual follow-up step, since completing the user
journey successfully is crucial to provide a good user experience. The second
suggested task, T9, is not obvious to GrepS and introduces options they have
not yet considered, namely to spend resources on guiding the user rather than
further optimizing the negative weighted sign-up phase (see Fig. 4b).

The analysis of actor eagerness related to the probability of success (Fig. 4a)
is novel and implies that revenue from resources invested in guiding users can
be computed. This allows GrepS to evaluate whether to spend more resources
on guiding users, given the linear scaling of success probability, or to cut costs
through less guidance, reducing manual work while increasing service adversity.

Figures4b and 4c can be used to relate user profiles and user journeys. A
user’s motivation to complete tests and share results despite negatively weighted
actions, is initially unknown. If the company had some prior knowledge about
the initial motivation of a user or a group of users, it would be possible to
model different journeys through the service. In particular, Fig. 4c can support
such endeavors, because different bounds can be identified for different planned
journeys with corresponding probabilities for success.

2 The third author of this paper is a long-term stakeholder of GrepS.

180 P. Kobialka et al.

=

—— BPIC'17-1

BPIC’17. Applying Steps 1 and 2 to BPIC’17 > ° \\ BPIC17-2
yields models with 95 states for BPIC'17-1 and 2

131 for BPIC’17-2. Step 3 reduces the models to ‘g“

32 and 47 states, respectively (i.e., +60% reduc- §*

tion). When filtering on reachable states, using the 3z °? service provider | \Ueer

generated strategy, the models shrink to 15 and o
19 states, respectively. Figure 7 shows the Sankey Scaled activity
diagrams for the two event logs. For readability, we .. .

€ . . Fig. 6. Parametric eagerness
omit the names of states with the least difference for Q1 in BPIC'17.
in guidable users and use a heat map as in Fig. 3.

The comparison of model checking results between the two models with
queries Q2-Q4 (see Table2) shows some small improvements from BPIC’17-1
to BPIC’17-2. Figure6 compares different levels of player eagerness for
both SUJGs, model checking Q1. It reveals improvements in the service.
BPIC’17-2 outperforms BPIC’17-1 starting from ¢ = 0.06 when increasing the
service provider’s probability to take an action. (Plots showing results for the
remaining queries, similar to the queries for the GrepS case study, are available
online [27].)

Figure 7 shows the positive impact for BPIC’17-2 after the concept drift. In
BPIC’17-1, the number of guidable users remains constant through the user jour-
ney, with the most critical state causing only 27% of the total user difference. In
BPIC’17-2, the main critical state causes a total of 50% difference of guidable
users. We also observe a change in loan offers: the 2nd and 3rd offers are promi-
nent in the reduced BPIC’17-2 model (while they were merged with other states
or omitted in BPIC’17-1), each with decreasing flow capacity. Furthermore, the
probability of guiding users from “customer Create Offer 0” reduced; this state
is marked yellow in BPIC’17-1 and orange in BPIC’17-2, indicating a decrease
in user experience. In both journeys, the second most critical state, a short call
due to incomplete files, is user-controlled, but its fraction of the total guidable
user’s difference decreased from 26.6% to 12.5%. This can be interpreted as evi-
dence that the service provider improved this call state after the concept drift.
However, we observe that BPIC’17-2 still lacks proper guidance for the effect of
the call, based on the direct transition to the unsuccessful final state.

Threats to Validity. For model learning with IOAlergia, we set the parameter
€ (which regulates state merging) according to the size of the underlying event
log and the assumed complexity of the service. For GrepS, we set ¢ = 0.1 due
to a small number of possible journeys, while for BPIC’17, we set ¢ = 0.8 to
capture different decisions and possible executions. Insights from GrepS highly
depend on €, where a larger € restricts state merging. For BPIC’17, we observe
that the eagerness experiment (Fig. 6) replicates for various e values, though with
variations for either small or large ¢ values. Further investigations are needed
to draw rigorous conclusions about this relation. The model-checking analysis
in Step 3, which generate Sankey diagrams, do not require a minimal flow of
users. Strategies might exploit rarely observed behavior, they do not consider a
minimum bound for the coverage of users. Table 1 presented queries that target

Stochastic Games for User Journeys 181

)) WSent (mail and online)
|——Callincomplete files —==customerCall incomplete files
——Callincomplete files MlcustomerCallincomplete files

unsucclll
—start ™=Create Offer-0-—~==customerO_CreateOffer0- — syccmm
==Create Offer0 - —_ —customerO_Cancelled
(a) BPIC'17-1
- unsuccl
mmstart MCreate.Offer.0 McustomerO-CreateOffer0 | Sent(mail and online)
MCreate Offer0. o aate Offer 1 - B — Mcustomercall incomplete files

r==customerCall.incomplete files
~——Call incomplete files“syccmm
—~Callincomplete files

. ==Create Offer2
Callincomplete files
—€all-incomplete files

(b) BPIC'17-2

Fig. 7. Sankey diagrams generated from the reduced BPIC’17 models.

Pareto optimization problems to optimize multiple conflicting objectives, e.g.,
limited steps and minimal gas in positive states. We explored solutions to these
problems with PRISM-games experiments, but one could also search for all solu-
tions. The efficiency of our technique depends on automata learning and model
checking; all presented results are reproducible within ~ 9h.

8 Related Work

Related work primarily focuses on designing domain-specific modeling lan-
guages that allow modeling from the user’s perspective. The methods devel-
oped [5,9,14,20,22,23,35,38,41] concentrate on manually constructing user jour-
neys based on expert knowledge [9], user questionnaires [21,41], or given event
logs [5]. The analysis of the resulting models is typically also performed man-
ually. However, Lammel et al. [35] propose an ontology-based technique that
allows the automatic generation of visualizations to provide further insights.
Process discovery [1] is a technique to automatically generate models from
event logs and has been applied to generate different types of user journey
models such as customer journey maps (CJM) [7,8,24] or transition systems
[26,28,30,31,42]. CJMs represent grouped traces in the event logging, unlike our
work where we mine a general model. Existing approaches [26,28,31,43] that
use process discovery techniques to mine transition systems ignore the underly-
ing distribution of events. By capturing the probabilities in the model, we can
perform a finer analysis and visualization, and provide guidelines to the service
provider in case of changing behavior. In our previous work [31], we also gener-
ated weighted deterministic user journey games and applied model checking to
find bottlenecks in the service. By applying automata learning instead of process
discovery techniques, we enhance this approach to generate probabilistic games.
Automata learning techniques [3,13,16,45] have been used to mine process
models, e.g., transition systems or Petri nets, from given event logs. However,
our proposed approach incorporates the users’ perspective. While existing tech-
niques may also consider the underlying probability distribution of the event

182 P. Kobialka et al.

log constructing the model, they neglect it for later analysis. Wieman et al. [45]
derive improvements for industrial case studies manually from the learned model.

9 Conclusion

This paper presents two complementary case studies for the automated modeling
and analysis of user journeys from event logs. Our analysis tool chain combines
automata learning and model-checking techniques, based on a formalization of
user journeys as stochastic weighted games that exploits the underlying distribu-
tion of events in the log. Model-checking results are used in property-preserving
model reduction, which allows us to automatically identify and rank actions
that are critical to the outcome of the user journey and visualize their effect.
To the best of our knowledge, this is the first work using stochastic games in an
automated method to analyze and improve user journeys.

The investigated case studies demonstrate the applicability of our approach
to real-world services, varying in size and complexity. The results of the case
studies lead us to three main observations: (1) model visualization creates com-
pact Sankey diagrams for complex services that facilitate the interpretation of
formal analyses; (2) the model reduction preserves changes in the underlying
journeys, e.g., the concept drift for BPIC’17; and (3) the state ranking method
effectively identifies candidate states for service redesign, based on user experi-
ence. Compared to previous work, our exploitation of the underlying probabilis-
tic distribution of events enabled a more targeted analysis of the user journeys.
For future work, automatically capturing the actor information in the event logs
would make our approach less dependent on domain knowledge.

Data Availability Statement. The artifact to replicate the presented results is pub-
licly available on Zenodo at https://doi.org/10.5281/zenodo.12529995.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, 2 edn.
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Adams, J.N., Zelst, S.J.v., Quack, L., Hausmann, K., van der Aalst, W.M., Rose,
T.: A framework for explainable concept drift detection in process mining. In:
International Conference on Business Process Management, vol. 12875, pp. 400-
416. Springer (2021). https://doi.org/10.1007/978-3-030-85469-0 25

3. Agostinelli, S., Chiariello, F., Maggi, F.M., Marrella, A., Patrizi, F.: Process mining
meets model learning: discovering deterministic finite state automata from event
logs for business process analysis. Inf. Syst. 114, 102180 (2023). https://doi.org/
10.1016,/J.1S.2023.102180

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

https://doi.org/10.5281/zenodo.12529995
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-85469-0_25
https://doi.org/10.1016/J.IS.2023.102180
https://doi.org/10.1016/J.IS.2023.102180

10.

11.

12.

13.

14.

15.

16.

17.

18.

Stochastic Games for User Journeys 183

Berendes, C.I., Bartelheimer, C., Betzing, J.H., Beverungen, D.: Data-driven cus-
tomer journey mapping in local high streets: a domain-specific modeling language.
In: Pries-Heje, J., Ram, S., Rosemann, M. (eds.) Proc. International Conference
on Information Systems (ICIS 2018). Association for Information Systems (2018).
https://aisel.aisnet.org/icis2018 /modeling /Presentations/4

Bergersen, G.R., Sjoberg, D.I.LK., Dyba, T.: Construction and validation of an
instrument for measuring programming skill. IEEE Trans. Softw. Eng. 40(12),
1163-1184 (2014). https://doi.org/10.1109/TSE.2014.2348997

Bernard, G., Andritsos, P.: CJM-ab: abstracting customer journey maps using
process mining. In: Mendling, J., Mouratidis, H. (eds.) Information Systems in
the Big Data Era - Proceedings CAiSE Forum 2018. Lecture Notes in Business
Information Processing, vol. 317, pp. 49-56. Springer (2018), https://doi.org/10.
1007/978-3-319-92901-9 5

Bernard, G., Andritsos, P.: Contextual and behavioral customer journey discov-
ery using a genetic approach. In: Welzer, T., Eder, J., Podgorelec, V., Latific, A.K.
(eds.) Proceedings 23rd European Conference on Advances in Databases and Infor-
mation Systems (ADBIS 2019). Lecture Notes in Computer Science, vol. 11695,
pp. 251-266. Springer (2019), https://doi.org/10.1007,/978-3-030-28730-6 16
Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: a practical tech-
nique for service innovation. Calif. Manage. Rev. 50(3), 66-94 (2008). https://doi.
org/10.2307 /41166446

Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) Proceedings Second
International Colloquium on Grammatical Inference and Applications (ICGI-94),
Lecture Notes in Computer Science, vol. 862, pp. 139-152. Springer (1994). https://
doi.org/10.1007/3-540-58473-0 144

Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Methods Syst. Des.43(1), 61-92
(2013). https://doi.org/10.1007/S10703-013-0183-7

Chen, T., Forejt, V., Kwiatkowska, M.Z., Simaitis, A., Trivedi, A., Ummels, M.:
Playing stochastic games precisely. In: Koutny, M., Ulidowski, I. (eds.) Proceedings
23rd International Conference on Concurrency Theory (CONCUR 2012), Lecture
Notes in Computer Science, vol. 7454, pp. 348-363. Springer (2012). https://doi.
org/10.1007/978-3-642-32940-1 25

Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. (TOSEM) 7(3), 215249 (1998). https://
doi.org/10.1145/287000.287001

Crosier, A., Handford, A.: Customer journey mapping as an advocacy tool for
disabled people: a case study. Soc. Mark. Quart. 18(1), 67—76 (2012). https://doi.
org/10.1177/1524500411435483

van Dongen, B.: BPI Challenge 2017 (2017). https://doi.org/10.4121/uuid:
5£3067df-f10b-45da-b98b-86aedc7a310b

Esparza, J., Leucker, M., Schlund, M.: Learning workflow Petri nets. Fundam.
Informaticae 113(3-4), 205-228 (2011). https://doi.org/10.3233/FI1-2011-607
Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer satisfaction and
stock prices: high returns, low risk. J. Mark. 70(1), 3-14 (2006). https://doi.org/
10.1509 /jmkg.70.1.003.qxd

Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447-474
(1967). https://doi.org/10.1016/S0019-9958(67)91165-5

https://aisel.aisnet.org/icis2018/modeling/Presentations/4
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.2307/41166446
https://doi.org/10.2307/41166446
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/S10703-013-0183-7
https://doi.org/10.1007/978-3-642-32940-1_25
https://doi.org/10.1007/978-3-642-32940-1_25
https://doi.org/10.1145/287000.287001
https://doi.org/10.1145/287000.287001
https://doi.org/10.1177/1524500411435483
https://doi.org/10.1177/1524500411435483
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.3233/FI-2011-607
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1016/S0019-9958(67)91165-5

184

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

P. Kobialka et al.

Gutwin, C., Mairena, A., Bandi, V.: Showing flow: comparing usability of Chord
and Sankey diagrams. In: Schmidt, A., Vaanédnen, K., Goyal, T., Kristensson,
P.O., Peters, A., Mueller, S., Williamson, J.R., Wilson, M.L. (eds.) Proceedings
2023 Conference on Human Factors in Computing Systems (CHI 2023), pp. 825:1—
825:10. ACM (2023). https://doi.org/10.1145/3544548.3581119

Halvorsrud, R., Boletsis, C., Garcia-Ceja, E.: Designing a modeling language
for customer journeys: lessons learned from user involvement. In: Proceedings
24th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2021), pp. 239-249. IEEE (2021). https://doi.org/10.1109/
MODELS50736.2021.00032

Halvorsrud, R., Haugstveit, I.M.; Pultier, A.: Evaluation of a modelling language
for customer journeys. In: Blackwell, A.F., Plimmer, B., Stapleton, G. (eds.)
Proceedings Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 2016), pp. 40-48. IEEE Computer Society (2016). https://doi.org/10.
1109/VLHCC.2016.7739662

Halvorsrud, R., Kvale, K., Fglstad, A.: Improving service quality through customer
journey analysis. J. Ser. Theor. Pract. 26(6), 840-867 (2016). https://doi.org/10.
1108/JSTP-05-2015-0111

Halvorsrud, R., Mannhardt, F., Johnsen, E.B., Tapia Tarifa, S.L.: Smart journey
mining for improved service quality. In: Carminati, B., et al. (eds.) Proceedings
International Conference on Services Computing (SCC 2021), pp. 367-369. IEEE
(2021). https://doi.org/10.1109/SCC53864.2021.00051

Harbich, M., Bernard, G., Berkes, P., Garbinato, B., Andritsos, P.: Discovering
customer journey maps using a mixture of Markov models. In: Ceravolo, P., van
Keulen, M., Stoffel, K. (eds.) Proceedings 7th International Symposium on Data-
driven Process Discovery and Analysis (SIMPDA 2017). CEUR Workshop Pro-
ceedings, vol. 2016, pp. 3-7. CEUR-WS.org (2017). http://ceur-ws.org/Vol-2016/
paperl.pdf

Hoeffding, W.: Probability inequalities for sums of bounded random variables. In:
Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeflding, pp. 409—
426. Springer (1994). https://doi.org/10.1007/978-1-4612-0865-5 26

Kobialka, P., Mannhardt, F., Tapia Tarifa, S.L., Johnsen, E.B.: Building user jour-
ney games from multi-party event logs. In: Proceedings 3rd International Workshop
on Event Data and Behavioral Analytics (EdbA 2022), Lecture Notes in Business
Information Processing, vol. 468. Springer (2022). https://doi.org/10.1007/978-3-
031-27815-0_6

Kobialka, P., Pferscher, A., Johnsen, E.B., Tapia Tarifa, S.L.: Supplementary mate-
rial: stochastic games for user journeys. https://github.com/smartjourneymining/
probabilistic_games /releases/tag/FM2024 (2024)

Kobialka, P., Schlatte, R., Bergersen, G.R., Johnsen, E.B., Tapia Tarifa, S.L.: Simu-
lating user journeys with active objects. In: de Boer, F.S., Damiani, F., Hahnle, R.,
Johnsen, E.B., Kamburjan, E. (eds.) Active Object Languages: Current Research
Trends, LNCS, vol. 14360, pp. 199-225. Springer (2024). https://doi.org/10.1007/
978-3-031-51060-1 8

Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games
for user journeys (data set). https://doi.org/10.5281/zenodo.6962413 (2022).
Accessed 01 April 2024

Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games
for user journeys. In: Schlingloff, B., Chai, M. (eds.) Proc. 20th International Con-
ference on Software Engineering and Formal Methods (SEFM 2022), LNCS, vol.

https://doi.org/10.1145/3544548.3581119
https://doi.org/10.1109/MODELS50736.2021.00032
https://doi.org/10.1109/MODELS50736.2021.00032
https://doi.org/10.1109/VLHCC.2016.7739662
https://doi.org/10.1109/VLHCC.2016.7739662
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1109/SCC53864.2021.00051
http://ceur-ws.org/Vol-2016/paper1.pdf
http://ceur-ws.org/Vol-2016/paper1.pdf
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-27815-0_6
https://github.com/smartjourneymining/probabilistic_games/releases/tag/FM2024
https://github.com/smartjourneymining/probabilistic_games/releases/tag/FM2024
https://doi.org/10.1007/978-3-031-51060-1_8
https://doi.org/10.1007/978-3-031-51060-1_8
https://doi.org/10.5281/zenodo.6962413

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Stochastic Games for User Journeys 185

13550, pp. 253-270. Springer (2022). https://doi.org/10.1007/978-3-031-17108-
6_16

Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: User journey
games: Automating user-centric analysis. Softw. Syst. Model. 23(3), 605-624
(2024). https://doi.org/10.1007/s10270-024-01148-2

Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: Stochas-
tic game verification with concurrency, equilibria and time. In: Lahiri, S.K., Wang,
C. (eds.) Proceedings 32nd International Conference on Computer Aided Verifi-
cation (CAV 2020), LNCS, vol. 12225, pp. 475-487. Springer (2020). https://doi.
org/10.1007/978-3-030-53291-8 25

Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. Int. J.
Softw. Tools Technol. Transf. 20(2), 195-210 (2018). https://doi.org/10.1007/
S10009-017-0476-7Z

Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Procedings
23rd International Conference on Computer Aided Verification (CAV 2011), LNCS,
vol. 6806, pp. 585-591. Springer (2011). https://doi.org/10.1007,/978-3-642-22110-
147

Lammel, B., Korkut, S., Hinkelmann, K.: Customer experience modelling and anal-
ysis framework - a semantic lifting approach for analyzing customer experience. In:
Proceedings 6th International Conference on Innovation and Entrepreneurship (IE
2016). GSTF (Dec 2016). http://hdl.handle.net/11654/24293

Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn.105(2), 255-299 (2016). https://doi.org/10.1007/S10994-016-5565-9
Muskardin, E., Aichernig, B.K., Pill, 1., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. Innovations Syst. Softw. Eng. 18(3), 417-426
(2022). https://doi.org/10.1007/S11334-022-00449-3

Razo-Zapata, I.S., Chew, E.K., Proper, E.: VIVA: a visual language to design value
co-creation. In: Proceedings 20th Conference on Business Informatics (CBI 2018),
vol. 01, pp. 20-29. IEEE (2018). https://doi.org/10.1109/CBI.2018.00012
Riehmann, P., Hanfler, M., Froehlich, B.: Interactive Sankey diagrams. In: Stasko,
J.T., Ward, M.O. (eds.) IEEE Symposium on Information Visualization (Info-
Vis 2005), pp. 233-240. IEEE Computer Society (2005). https://doi.org/10.1109/
INFVIS.2005.1532152

Rodrigues, A.M.B., et al.: Stairway to value: mining a loan application process
(2017). https://www.win.tue.nl/bpi/2017/bpi2017 winner academic.pdf
Rosenbaum, M.S., Otalora, M.L., Ramirez, G.C.: How to create a realistic customer
journey map. Bus. Horiz. 60(1), 143-150 (2017). https://doi.org/10.1016/j.bushor.
2016.09.010

Terragni, A., Hassani, M.: Analyzing customer journey with process mining: from
discovery to recommendations. In: Proceedings 6th International Conference on
Future Internet of Things and Cloud (FiCloud 2018), pp. 224-229. IEEE (Aug
2018). https://doi.org/10.1109/FiCloud.2018.00040

Terragni, A., Hassani, M.: Optimizing customer journey using process mining and
sequence-aware recommendation. In: Proceedings 34th Symposium on Applied
Computing (SAC 2019), pp. 57-65. ACM Press (Apr 2019). https://doi.org/10.
1145/3297280.3297288

https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/s10270-024-01148-2
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/S10009-017-0476-Z
https://doi.org/10.1007/S10009-017-0476-Z
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://hdl.handle.net/11654/24293
https://doi.org/10.1007/S10994-016-5565-9
https://doi.org/10.1007/S11334-022-00449-3
https://doi.org/10.1109/CBI.2018.00012
https://doi.org/10.1109/INFVIS.2005.1532152
https://doi.org/10.1109/INFVIS.2005.1532152
https://www.win.tue.nl/bpi/2017/bpi2017_winner_academic.pdf
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1109/FiCloud.2018.00040
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1145/3297280.3297288

186 P. Kobialka et al.

44. Vandermerwe, S., Rada, J.: Servitization of business: Adding value by adding
services. Eur. Manage. J. 6(4), 314-324 (1988). https://doi.org/10.1016/0263-
2373(88)90033-3

45. Wieman, R., Aniche, M.F., Lobbezoo, W., Verwer, S., van Deursen, A.: An expe-
rience report on applying passive learning in a large-scale payment company. In:
Proceeedings International Conference on Software Maintenance and Evolution
(ICSME 2017), pp. 564-573. IEEE Computer Society (2017).https://doi.org/10.
1109/ICSME.2017.71

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1109/ICSME.2017.71
https://doi.org/10.1109/ICSME.2017.71
http://creativecommons.org/licenses/by/4.0/

Embedded Systems Track

®

Check for
updates

Compositional Verification
of Cryptographic Circuits Against Fault
Injection Attacks

Huiyu Tan"2, Xi Yang', Fu Song®*®) Taoclue Chen®, and Zhilin Wu?

! ShanghaiTech University, Shanghai 201210, China

2 Wingsemi Technology Co., Ltd., Shanghai 201203, China
3 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China
{wuzl,songfu}@ios.ac.cn
4 Nanjing Institute of Software Technology, Nanjing 211135, China
5 Birkbeck, University of London, London WC1E 7HX, UK
t.chen@bbk.ac.uk

Abstract. Fault injection attack is a class of active, physical attacks
against cryptographic circuits. The design and implementation of coun-
termeasures against such attacks are intricate, error-prone and labo-
rious, necessitating formal verification to guarantee their correctness.
In this paper, we propose the first compositional verification approach
for round-based hardware implementations of cryptographic algorithms.
Our approach decomposes a circuit into a set of single-round sub-circuits
which are verified individually by either SAT/SMT- or BDD-based tools.
Our approach is implemented as an open-source tool CLEAVE, which is
evaluated extensively on realistic cryptographic circuit benchmarks. The
experimental results show that our approach is significantly more effec-
tive and efficient than the state-of-the-art.

1 Introduction

Cryptographic circuits are widely applied in various embedded and cyber-
physical systems [5,39]. However, they are vulnerable to fault injection attacks,
which disrupt the execution of cryptographic primitives via clock glitch [2],
underpowering [34], voltage glitch [41], electromagnetic pulse [16], or laser
beam [36]. With circuit’s faulty outputs, attackers can employ statistical anal-
ysis methods to infer sensitive information, thereby threatening the security of,

This work was funded by the Strategic Priority Research Program of CAS
(XDAO0320101), National Natural Science Foundation of China (62072309), CAS
Project for Young Scientists in Basic Research (YSBR-040), ISCAS New Cultivation
Project (ISCAS-PYFX-202201), ISCAS Fundamental Research Project (ISCAS-JCZD-
202302), oversea grant from the State Key Laboratory of Novel Software Technology,
Nanjing University (KFKT2023A04).

© The Author(s) 2025

A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 189-207, 2025.
https://doi.org/10.1007/978-3-031-71177-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_13&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_13

190 H. Tan et al.

e.g., authentication. As a result, fault injection attacks pose a significant threat
to the security of embedded and cyber-physical systems.

While countermeasures have been proposed to mitigate these attacks [1,26,
35], their implementation does not necessarily guarantee security. Crucially, the
fault-resistance of these countermeasures needs to be formally verified. While a
plethora of fault-resistance analysis approaches have been proposed (cf. Sect. 6),
the state-of-the-art formal verification approaches are non-compositional and
limited in efficiency and scalability for realistic cryptographic circuits.

Contributions. In this work, we propose the first compositional verification
approach for sequential circuits of cryptographic primitives with countermea-
sures against fault injection attacks, aiming to combat the efficiency and scal-
ability challenges. Different from existing approaches for compositional safety
and equivalence checking (e.g., [15,24,25]) which are not applicable for fault-
resistance verification, our approach leverages the structural feature of round-
based cryptographic circuits and decomposes the circuit into a set of single-round
sub-circuits extended with, importantly, primary inputs/outputs, registers and
their connections to guarantee soundness. We then verify those sub-circuits by
leveraging SAT/SMT- and BDD-based approaches [31,37]. Our decomposition
approach guarantees that the composition of fault-resistant single-round sub-
circuits is always fault-resistant. Furthermore, we investigate various acceleration
techniques that can significantly enhance verification efficiency.

We implement our approach as an open-source tool CLEAVE (Compositional
fauLit injEction Attacks VErifier), based on Verilog gate-level netlist. We thor-
oughly evaluate CLEAVE on 9 real-world cryptographic circuits (i.e., AES and
LED64) equipped by both detection- and correction-based countermeasures,
where the number of gates ranges from 1,020 to 34,351. The experimental results
show that our approach is effective and efficient. For instance, the SAT-based
compositional approach can verify most of the benchmarks (17/18) within 200s
and the remaining one can be done in 53 min; in contrast, the monolithic coun-
terpart can only deal with 12 benchmarks within 6 h and requires significantly
more verification time. The same improvements can be observed for SMT- and
BDD-based compositional approaches.

To summarize, we make the following contributions.

— We propose a novel compositional fault-resistance verification framework for
cryptographic circuits and various techniques to enhance efficiency;

— We implement an open-source tool CLEAVE for Verilog gate-level netlists;

— We extensively evaluate our tool on realistic cryptographic circuits, demon-
strating its effectiveness and efficiency.

Outline. Section 2 introduces preliminaries. Section 3 defines the fault-resistance
verification problem. Section 4 presents our compositional verification approach.
Section 5 reports experimental results; We discuss related work in Sect.6 and
conclude the work in Sect.7. Benchmarks, the source code of CLEAVE, more
experiential results and missing proofs are provided [38].

Compositional Verification of Cryptographic Circuits Against FIA 191

2 Preliminaries

Let B :={0,1} and [n] := {1,--- ,n} for a natural number n > 1. We consider
two types of logic gates: one-input gate g : B — B (e.g., not) and two-input gate
g:BxB — B (e.g., and, or, xor). To model faulty gates, we define three faulty
counterparts (g, gs, gr) of each gate g with g = =g, gs = 1 and g, = 0.

Definition 1. A combinational circuit C is a tuple (V,1,0, E,g), where

- V is a finite set of vertices in the circuit such that each vertexv € V\ (IUO)
is associated with a logic gate g(v) whose fan-in is the in-degree of v;

- I CV and O CV are the primary inputs and outputs, respectively;

- EC(V\O)x (V\I) is a set of edges, each of which (v1,v2) € E transmits
the signal over B from vy to ve, namely, one of the inputs of the logic gate
g(ve) is driven by the output of the logic gate g(v1);

— and (V, E) forms a Directed Acyclic Graph (DAG).

A combinational circuit C' represents a Boolean function [C] : B/l — BICI
such that for any input signals = € BlI, [C](z) is the output of the circuit C
when fed with x.

A (synchronous) sequential circuit is a combinational circuit with feedback
via registers and synchronized by a global clock. It is memoryful as the reg-
isters store the internal state. In this paper, we focus on round-based circuit
implementations of cryptographic algorithms. Conceptually, the circuit consists
of several rounds, and physically each round may comprise some clock cycles.
For our purpose, the sequential circuit is defined as follows.

Definition 2. A k-clock cycle sequential circuit S[k] (we may simply write S to
simplify the notation) is a tuple (Z,0,C, R, so), where

— T and O comprise the primary inputs and primary outputs, respectively.

- R = Rin UR; is a finite set of registers (aka memory gates), with initial
signals so € BIR| for state registers in R. Intuitively, registers in R, (resp.
Rs) store primary input signals (resp. results) of combinational circuits.

- C={Cy, - ,Cy}, where for each i € [k], C; = (V;,I;,0;, E;, g;) is a combi-
national circuit for the i-th clock cycle. Moreover, it is required that all the
primary inputs I are connected to registers in R, which in turn are con-
nected to the inputs I; to avoid glitches, and the outputs O; are connected to
the primary outputs O and registers in Rs. We also extend function g; such
that g;(r) is an identity function for every register r € R

A state s: Rs — B of S[k] is a valuation of the registers Rs. In each clock
cycle i € [k—1], given a state s;_1 and primary input signals x;, the next state s;
is [C;](8i—1,x;) projected onto R, while [C;](s;—1,x;) projected onto O gives

the primary output signals y,, written as s;_; mily; S;.

Given a sequence of primary input signals (&1, - ,xg), a run p of the circuit
S[k] is a sequence

z1ly, z2|y, z3lys Ti|yy
S0~ 81— 8y — Syt ——8p_1 — S,

192 H. Tan et al.

where (yq, - ,¥y;) is the sequence of primary output signals. The circuit S[k]
can also be seen as a Boolean function [S[k]] : (BZNH* — (BI®N)* such that
[S[k]](x1,- - , @) is the sequence of primary output signals for a sequence of
primary input signals (@1, ..., xk).

We remark that our definition of sequential circuits is slightly different from
the one given in [37], in which primary inputs can be connected to logic gates.
We only allow primary inputs to connect to registers to avoid glitches which
often introduce faults as well. Hence, our definition is sufficient for cryptographic
circuits according to our experience while it facilitates the decomposition.

3 The Fault-Resistance Verification Problem

A fault injection attack actively injects faults into the execution of a crypto-
graphic circuit and then infers sensitive data (such as the cryptographic key)
via statistical analysis [3,8,9]. A general introduction refers to [21]. In partic-
ular, both non-invasive fault injections (i.e., clock glitches, underpowering and
voltage glitches) and semi-invasive fault injections (i.e., electromagnetic pulses
and laser beams) have been widely studied to compromise the security of cryp-
tographic circuits, varying with attack cost and attack effectiveness [30]. There
are detection- and correction-based countermeasures to mitigate fault injection
attacks [1,35]: the former aims to detect fault injection attacks and raise an error
flag once the attack is detected, so sensitive data can be destroyed in time; the
latter aims to correct faults induced by attacks and produce the desired outputs.

3.1 Security Notions

We consider the following three fault types that suffice to capture both non-
invasive fault injections and semi-invasive fault injections (cf. [30,37]):

— bit-set fault 74: when injected on a gate g, its output becomes 1, namely, the
gate g becomes the faulty gate g5, denoted by 74(g);

— bit-reset fault 7.: when injected on a gate, its output becomes 0, namely, the
gate g becomes the faulty gate g,., denoted by 7,.(g);

— bit-flip fault 7,5: when injected on a gate, its output is flipped, namely, the
gate g becomes the faulty gate g, denoted by 7,5(g);

Fix a circuit S[k] = (Z, O, R, so,C) protected using either a detection-based
or correction-based countermeasure, where C = {Cy,---,Ci} and for each
i€ [k], C; = (Vi,1;,0;, E;,g;). We assume 0s1a € O, where 0s1a4 is an error
flag indicating whether a fault was detected when S adopts a detection-based
countermeasure. If S adopts a correction-based countermeasure (i.e., no error
flag is involved), we simply assume that o155 is always 0. We denote by B the
blacklist of invulnerable gates that are protected against fault injection attacks.
B usually contains the gates used in implementing a countermeasure.

Compositional Verification of Cryptographic Circuits Against FIA 193

Definition 3. A fault vector on the circuit S with the blacklist B and a set of
fault types T, denoted by V(S,B,T), is a set of fault events

V(S7B7T) = {e(alaﬁth)a e 7e(am76ma7-m) ‘ 1 #] — (Oi 7é Ujvﬁi 7é ﬁ])}7
where each fault event e(o, B, T) consists of

— o € [k] specifying the clock cycle of the fault injection, namely, the fault
injection occurs at the o-th clock cycle;

- e RUV,\ (I, UO,) specifying the vulnerable gate on which the fault is
injected (note that 8 & B);

- 7 €T specifying the fault type.

A fault vector V(S,B,T) yields a faulty circuit F(S,B,T) :=
(Z,0,R,s0,C"), where C' = {C1i,---,C}}, for each i € [k]: C] :=
(V;vIlaOuEzag;) and g;(ﬁ) = T(gl(ﬁ)) if e(i7677—) € V(SvBaT)v otherwise
C} = C; and gi(B) := gi(B)-

Intuitively, the faulty circuit F(S,B,T) is the same as the circuit S except
that for each fault event e(i,3,7) € V(S,B,T), the gate g;(3) is transiently
replaced by its faulty counterpart 7(g;(3)) in the i-th clock cycle, whereas all
the other gates remain the same.

Definition 4. A fault vector V(S,B,T) is effective if there exists a sequence of
primary input signals (x1,- -+ , @) such that two sequences of primary output
stgnals

[S)(x1,- - ,xx) and [F(S,B, T)| (21, ,xx)

differ at some clock cycle before the error flag os1ag 1s set.
Otherwise, the fault vector V(S,B,T) is ineffective and the circuit S is resis-
tant against the fault vector V(S,B,T).

An effective fault vector results in faulty primary output signals where the fault
is not successfully detected (i.e., the error flag o¢14¢ is not set in time). Note that
there are two possible cases for an ineffective fault vector: either [S](x1, -, xk)
and [F(S,B,T)](x1,- - ,xk) are the same or the fault is successfully detected.

Inspired by the consolidated fault model [30], we define the security model for
fault-resistance verification which characterizes the capabilities of the adversary.

Definition 5. A fault-resistance model for the circuit S with the blacklist B is
given by m(ne,n., T,¢), where

- n. is the maximum number of fault events per clock cycle;

- n. is the mazimum number of clock cycles in which fault events can occur;

- T C{rs,7r, 7oy} specifies the set of allowed fault types; and

— £ € {c,r,cr} defines vulnerable gates: c for logic gates in combinational cir-
cuits, r for registers and cr for both logic gates and registers.

194 H. Tan et al.

For example, m(n, k, {75, 7, o }, cr) models the strongest adversary, who can
inject faults to all the gates simultaneously at any clock cycle (except for those
protected in the blacklist B) while m(1, 1, {75}, c) only allows the adversary to
choose one logic gate to inject a set fault in one chosen clock cycle.

Formally, the fault-resistance model m(n.,n., T, ¢) defines the following set
[m(ne,n, T, £)] of possible fault vectors that can be applied by the adversary:

fMaxE(V(S, By, T)) < n.
[m(ne,n., T, £)] := < V(S,B¢, T) and
£C1x(V(S,B¢,T)) < n.

where

B, if £ = cr;
- B,:={ BUR, if £ =c;
— fMaxE(V(S, B, T)) := maxqcpy [{e(a, B,7) € V(S,B¢, T)}|, ie., the maxi-
mum number of fault events per clock cycle in the fault vector V(S, By, T');
— 1C1k(V(S, By, T)) := {a | e(a, B,7) € V(S,By, T)}|, i.e., the number of clock
cycles when fault events can occur.

Definition 6. The circuit S is fault-resistant against m(ne,n., T,£), denoted by
(§,B) Em(ne,n., T, £), if all the fault vectors V(S,B,T) € [m(ne,n., T,¢)] are
ineffective.

The fault-resistance verification problem is to determine whether or not
(§,B) = m(ne,n,, T, 0).

By Definition 6, it is straightforward to show that:

Proposition 1. If (S,B) = m(n.,n., 11, cr), then (S,B’) = m(n,,n’, 15, ¢) for
any BC B, n, <n.,n.<n., T CT, L€ {c,r,cr}.

By adapting the proof of NP-completeness [37] which reduces from the SAT
problem, we can show

Theorem 1. The problem of determining whether a k-clock cycle circuit S[k]
for any fixed k > 3 is not fault-resistant is NP-complete.

3.2 Motivating Example

A motivating example is given in Fig. 1, which is a simplified implementation
of AES with a detection-based countermeasure [1]. The circuit has three cryp-
tographic blocks (B1, B2, B3), three redundancy blocks (RB1, RB2, RB3), two
selective blocks (MUX1, MUX2) and a check block CHECK, where all the gates in the
check block CHECK are added to the blacklist B. The cryptographic blocks and
the two selective blocks together implement the functionality of AES, while the
others implement a detection-based countermeasure.

Compositional Verification of Cryptographic Circuits Against FIA 195

The first round starts with a reset signal
rst (i.e., rst =1) after which the primary input
signals INPUT are selected by MUX1 and stored
in the registers REG. Moreover, rst is set to 0.
Next, the values stored in the registers REG are
processed by the cryptographic and redundancy
blocks. The cryptographic block B1 produces
primary output signals of the current round;
the results of the cryptographic block B3 and
redundancy block RB3 are stored in the registers
REG as inputs of the next round (called feed-
back). Furthermore, the values of registers and
the results of all the cryptographic and redun-
dancy blocks are fed to the check block CHECK
which checks whether a fault injection attack occurs. The primary output FLAG
is the error flag.

The internal rounds are the same as the first round except that the feedback
from the previous round is stored in the registers, instead of the primary input
signals, because the reset signal rst has been set to 0 in the first round. The last
round is the same as the internal rounds except that the results of the crypto-
graphic block B1 (resp. the redundancy block RB1) are fed to the cryptographic
block B3 (resp. the redundancy block RB3) by setting the input signal sel=1 of
the selective block MUX2, respectively.

To verify its fault-resistance, one can unroll it according to the clock cycle (cf.
[38]), then enumerate and check the effectiveness of each possible fault vector by
analyzing the unrolled and faulty counterparts via BDD [31] or SAT/SMT [37].
However, there are two shortcomings which hurdle their efficiency and scalability.
(1) One shall verify the equivalence of the primary outputs of the circuit and
its faulty counterpart, which must be done for each round (unless the error
flag is set). Since the subsequent round depends upon preceding rounds, the
size of the SAT/SMT formulas or BDDs usually increases dramatically, which
incurs a blowup in rounds of circuits. (2) To achieve completeness (or at least
a high coverage), a large number of possible fault vectors have to be checked,
which incurs a blowup in the number of fault vectors. Our work proposes a
novel compositional approach to combat these two types of blowups in fault-
resistance verification by decomposing the verification of an entire circuit into
the verification of (typically much smaller) single-round sub-circuits.

Fig. 1. The AES circuit.

4 Compositional Verification

In this section, we first describe the overview of our approach and our decomposi-
tion, next briefly recap two symbolic approaches (SAT/SMT- and BDD-based)
for verifying sub-circuits, and finally present three acceleration techniques to
improve the verification efficiency.

196 H. Tan et al.

4.1 Overview of the Approach

Our approach relies on the structural feature of (round-based) cryptographic
primitives, e.g., block ciphers, for which countermeasures are developed round-
by-round accordingly, aiming to isolate the effects of fault injection in each round.
Furthermore, the rounds are often similar, many of which are even the same, For
instance, the first (k—1) rounds in Fig. 1 are the same except that the first round
uses the primary input signals while the other (internal) rounds use the feedback
from the previous round (i.e., the values stored in the registers).

Based on the above key observation, as shown in Fig.2, given a circuit S,
a blacklist B of gates on which faults cannot be injected and a fault-resistance
model m(ne,n.,T,¢), our approach first decomposes the circuit S into single-
round sub-circuits (S, - ,S,) where each S; for ¢ € [r] implements one round.
As many sub-circuits are indeed identical, we only need to verify a small number
of single-round sub-circuits in isolation whereby the fault-resistance of the entire
circuit § is guaranteed. For instance, in the motivating example, we only need
to verify the first and the k-th (i.e., last) round, because the first (k — 1) rounds
are virtually the same. It reduces the verification of a k-round circuit to the
verification of two single-round sub-circuits.

Protected PR P
dreutt s G —) , Subooouit 1 Sub-circuit Verification

SAT/SMT-based
Circuit Sub-circuit 2 erfiation -
Blacklist B v mmm) || Decomposition \ L4 BDD-based
o — Verification
° Result
— Acceleration
Fault-resistance Technigues
model —
mne,ne, T, £) Sub-circuit r
e, T,

Fig. 2. Overview of our approach.

To verify each sub-circuit, we leverage two symbolic verification approaches,
based on SAT/SMT and BDD. To further improve efficiency, we also study
various acceleration techniques exploiting fault effects and propagation.

4.2 The Decomposition

For a k-clock cycle circuit S[k] = (Z,0,R,s0,C) where R = R;, UR;, C =
{Cy1,-+,Cx} and C; = (V;, I;,0;, E;, g;) for each ¢ € [k], let r be the number of
rounds of S[k]. An r-decomposition of S[k] is (S1[k1],- - , Sr[kr]), where for every
i € [r], Si[ks] is a single-round, k;-clock cycle sub-circuit (I, 0W R® @) 1)
defined as (note that 3,4 ki = k)

Compositional Verification of Cryptographic Circuits Against FIA 197

- I =7TUT tb, where Zg, comprises additional primary inputs used for rep-
resenting the signals passed from the previous round, i.e., the values stored
in the state registers R, at the end of the (i — 1)-th round;

-0 =0u Oy, where Oy, comprises additional primary outputs used for
representing the signals passed to the next round, i.e., the values stored to
the state registers R at the end of the (i — 1)-th round;

- RW =R, UR, where R}, = Rin URY, R C R comprises registers used
for storing signals passed from one round to the next round, and R, C R
comprises the registers used for connecting combinational circuits of C(*) (note
that R, can be @ if k; = 1, i.e., the round has one clock cycle);

— s = 55 and s for i > 2 is not defined;

- CY ={Cy1, - ,Cip,} with Cyq,--- ,C1pyy-+- ,Crty-oo ,Crg, = Cp---Ch,
and the connection between any two adjacent single-rounds sub-circuits via
the registers R’ is the same as that in S;

— the registers in R”" that were connected by the outputs O;_1x, , of Ci_1x, ,
are now connected by the additional primary inputs Zg, if ¢ > 2;

— the outputs O;_1 , , of C; 1, that were connected to the registers in R are
now connected to the additional primary outputs Oyy.

INPUT INPUT INPUT

OI.'LP 0UTP| OuTpI

OUTPUT

OUTPUT PUT
OUTPUT

Fig. 3. Single-round sub-circuits of the motivating example.

Two single-round sub-circuits S;[k;] and S;[k;] are isomorphic w.r.t. the
blacklist B if they are identical up to the renaming of the primary inputs/out-
puts, registers and vertices in the combinational circuits, and the matched gate
pairs are either both protected or not protected in B. Note that this condi-
tion is much stricter than the semantic equivalence of two circuits, namely, the
same input-output relation, which is insufficient for our decomposition theo-
rem. For instance, consider one single-round sub-circuit correctly implements
a correction-based countermeasure but the other one does not implement any
countermeasure. They are semantically equivalent, but both have to be verified.

Proposition 2. For any pair of isomorphic circuits (S;, S;) and fault-resistance

model m(ne,n., T,), (S;,B) = m(ne,n., T, ¢) iff (S;,B) = m(ne,n.,T,¢). O

Consider the example in Fig. 1. In this case, r = k (k; = 1 for each i € [k]). As
illustrated in Fig. 3, our r-decomposition removes all the connections labeled with

198 H. Tan et al.

FeedBack, re-connects the outputs of the blocks B3 and RB3 to the additional
primary outputs that were connected to the registers REG, and connects the
additional primary inputs to the registers REG that were connected by the outputs
from the previous round. Then, all the single-sound sub-circuits except for the
last one are isomorphic.

Theorem 2. Given a k-clock cycle circuit S[k] = (Z,0,R, s0,C) and a blacklist
B, let (S1[k1], Salkz], -, Srlkr]) be the r-decomposition of S[k]. For any fault-
resistance model m(ne,n., T, £), if (S;,B) E m(ne,n.,T,£) for all single-round
sub-circuits S; € {S1,S52---, S}, then (S,B) = m(n.,n., T, ¢).

Furthermore, if n. > k; for all i € [r],then (S,B) E m(ne, k, T, ¢).

We should emphasize that the additional primary inputs Iy, primary
outputs Oy, registers R and their connections are crucial to guaran-
tee that the composition S[k] of the fault-resistant sing-round sub-circuits
(S1lk1], - -+, Sylkr]) is also fault-resistant. The fault-resistance of all the single-
round sub-circuits, i.e., (S;,B) = m(ne,n.,T,¢) for i € [r], ensures that the
primary outputs O’ = O U Oy remain the same (unless the error flag is set)
for any fault vector V(S,B,T) € m(n.,n., T, ¢). It guarantees that not only the
primary outputs O but also the values stored to the registers R" at the end
of each round remain the same (unless the error flag is set) for any fault vec-
tor V(S,B,T) € m(ne,n., T, ¢). In other words, the single-round sub-circuits are
able to detect any fault injections which change the primary outputs O or the
values used by the next round (i.e., isolating fault effects in each round). Thus,
our decomposition approach for compositional fault-resistance verification is dif-
ferent from previous ones used for compositional safety and equivalence checking
(e.g., [15,24,25]).

4.3 SAT/SMT-Based Verification

We adopt the SAT/SMT-based approach used in FIRMER [37] which reduces
the problem to SAT/SMT solving. Given a fault-resistance model m(n., n., T’ ¢)
and a (single-round) k-clock cycle circuit S[k] = (Z, 0, R, so,C), FIRMER first
encodes all the possible fault vectors into S[k] by introducing additional inputs
to control if a fault is injected on a gate and which fault type is injected.
This will result in a controllable faulty circuit, denoted by Sy (ne,n., T, ¢). The
fault-resistance verification of S[k] is reduced to equivalence checking of S and
Sm(ne,n., T, ¢) with constraints on the additional inputs and error flag, which
in turn is reduced to the SAT/SMT solving. (Cf. [37] for details.)

4.4 BDD-Based Verification

We adopt the BDD-based approach used in FIVER [31]. To avoid re-construction
of the BDD from scratch for each fault vector, FIVER first attaches each gate
g in the circuit S with a BDD D, representing the output of the gate in S.
Then, for each fault vector V(S,B,T) € [m(n.,n., T,¢)], on a copy S’ of the

Compositional Verification of Cryptographic Circuits Against FIA 199

BDD-attached circuit S, the BDD Dy of the gate g is revised according to each
fault event e(i,g,7) € V(S,B,T), where the BDDs of the gates depending upon
g are also revised accordingly. Finally, for each clock cycle, FIVER checks each
primary output o by comparing the attached BDDs of the primary output o in
the circuit S and its faulty counterpart S’. Furthermore, some optimizations to
reduce the number of considered fault vectors and improve the construction of
the desired S’ are implemented. (Cf. [31] for details.)

4.5 Acceleration Techniques

For both SAT/SMT-based and BDD-based verification, we apply the following
acceleration techniques.

Fixed Number of Fault Events. Recall that to prove fault-resistance, we
considered all possible fault vectors V(S, By, T') such that §MaxE(V(S, B, T)) <
n. and C1k(V(S,B¢,T)) < n.. It turns out that these two conditions can be
safely improved to “n. fault events for each clock cycle if some fault events occur
in this clock cycle” when 74,7, € T and the number of vulnerable gates is more
than n, in each clock cycle, reducing the number of fault vectors to be checked.
Indeed, if there is an effective fault vector V(S,B,T) € [m(ne,n., T, £)] such that
the number of fault events is n in some clock cycle with 1 < n < n., there exists
a sequence of primary input signals (z1,--- ,) such that [S](x1,- - ,z) and
[F(S,B,T)](x1, - ,x) differ at some clock cycle before the error flag is set.
We can add (n. — n) fault events e(i,g,7) to V(S,By,T), where the output of
the gate g under the primary input signals (a1, -, k) remains the same by
choosing 7 € {7, 7,-}. The resulting fault vector is still effective.

Fault Type Reduction. Let 7 = {7, 7.,7s}. We find that (S,B) =
m(ne,n., 7,¢) iff (S,B) E m(ne,n., ny,l) iff (S,B) = m(ne,ne, {75, 7},),
allowing us to consider only {7, 7.} if {75,7.} C T and only 7 if 7y € T
for any set T of fault types. Consider an effective fault vector V(S,B,7T) €
[m(ne,n., 7, ¢)] and a sequence of primary input signals (a1, - , ;) such that
[S)(x1,- - ,xx) and [F(S,B,T)](x1,- - ,xx) differ at some clock cycle before
the error flag is set.

— For every fault event e(i,g,7s) € V(S,B,7), if the output of the gate g at
the i-th clock cycle in [F(S,B,T)](x1, - ,) is flipped from 1 to 0 (resp.
from 0 to 1), e(4,g,7ss) can be safely replaced by e(i, g, 7.) (resp. e(i, g, 7s))-
Thus, (S,B) = m(ne,n, {7s, 7}, £) entails (S,B) &= m(n.,n., 7, ¥¢).

— For every fault event e(i, g, 7) € V(S,B,7T) such that 7 € {7y, 7}, if the out-
put of the gate g at the i-th clock cycle in [F(S,B,T)](x1, - ,x) is flipped
by applying e(i, g, 7), e(4, g, 7) can be safely replaced by e(i, g, 75); otherwise
the output of the gate g at the i-th clock cycle in [F(S,B,T)](x1, -+ ,zx)
remains the same by applying e(i, g,7), e(4,g,7) can be safely removed from
V(S,B, 7). Thus, (S,B) = m(ne,n., 77, ¢) entails (S,B) = m(ne,n.,7,¥¢).

Vulnerable Gate Reduction. If the output of a gate g is only connected to
one vulnerable logic gate ¢’ € By, then the gate g can be safely added into the
blacklist B while no protection is required for the gate g. It is because:

200 H. Tan et al.

— if the output of the gate g does not change at the i-th clock cycle after
applying the fault event e(i, g, 7), then the effect of the fault event e(i, g, 7)
terminates at the gate ¢’, thus e(i, g, 7) can be removed from any fault vector;

— if the output of the gate g does change at the i-th clock cycle after applying
the fault event e(i, g, 7), it is flipped either from 1 to 0 or from 0 to 1, the
same effect can be achieved by applying the fault event e(i,¢’,7,s), or the
fault event e(i, g, 75) if it is flipped from 0 to 1 or the fault event e(i, ¢, 7.
if it is flipped from 1 to 0.

As a result, it suffices to consider fault injections on the gate ¢’ instead of both
g and ¢’ when 7,y € T or {7, 7.} C T, which reduces the number of vulnerable
gates [37]. By a graph traversal of the circuit S, all the gates g whose output is
only connected to one vulnerable logic gate g’ € By can be identified and then
added into the blacklist B.

We finally remark that the above three acceleration techniques can be applied
simultaneously except that we cannot fix the number of fault events if the set
and reset fault types (i.e., 75 and 7,.) are unavailable.

5 Implementation and Evaluation

We have implemented our approach as an open-source tool CLEAVE based on the
parallel SAT solver Glucose 4.2.1 [6] and SMT solver bitwuzla 1.0-prerelease [28],
where the BDD-based compositional verification is implemented based on FIVER
which uses the CUDD package. Given a circuit S in Verilog gate-level netlist,
a blacklist B and a fault-resistance model m(n.,n.,T,¢), CLEAVE determines
whether (S,B) E m(nc,n.,T,¢). Currently, CLEAVE directly extracts single-
round sub-circuits from S by enumerating all the feasible combinations of input
signals of selective blocks. One feasible combination gives one single-round sub-
circuit on which fault resistance is verified. Though more than one isomor-
phic single-round sub-circuits may be verified, the computational-expensive (GI-
complete) isomorphism checking of pairs of single-round sub-circuits is avoided.
For instance, the two distinct single-round sub-circuits of the circuit in Fig. 1) are
extracted by fixing the signals of rst and sel to (1,0), (0,0) and (0, 1), respec-
tively, where the first two pairs of signals give the same single-round sub-circuits
after adding/re-connecting primary inputs/outputs and registers according to
our decomposition.

Benchmarks. We use 9 VHDL implementations [1,35] of 3 cryptographic algo-
rithms (i.e., CRAFT, LED and AES [31]). The VHDL implementations are trans-
formed into Verilog gate-level netlists using the Synopsys design compiler (ver-
sion 0-2018.06-SP2). The blacklists are generated according to [1,35]. The statis-
tics of the benchmarks are given in Table 1. The first column shows the name of
the cryptographic algorithm, the maximal number of protected faulty bits per
clock cycle (bi), the type of the adopted countermeasure (D for detection-based
and C for correction-based). The second column shows the single-round sub-
circuit and its number of times used in the implementation, e.g., the 10-round

Compositional Verification of Cryptographic Circuits Against FIA 201

AES-b1-D has two single-round sub-circuits (S1, S2) and S1 is used in 9 rounds.
The other columns respectively give the size of the blacklist B, the numbers of
primary inputs, primary outputs, gates and each specific gate.

We can observe that CRAFT benchmarks use both detection-based (D) and
correction-based (C) countermeasures, many single-round sub-circuits are iso-
morphic in each implementation, the number of distinct single-round sub-circuits
ranges from 1 to 3, and the number of gates in one single-round sub-circuit ranges
from 1,020 to 34,351 so that the scalability of CLEAVE can be evaluated.

Setup. The experiments were conducted on a machine with Intel Xeon Gold
6342 2.80 GHz CPU, 1T RAM, and Ubuntu 20.04.1. Each verification task is
run with 6-hour timeout. All the SAT-based and BDD-based (compositional)
verification approaches are run with eight threads while the SMT-based (com-
positional) verification approaches are run with a single thread, with their default
parameters (There are no promising parallel SMT solvers for QF _BV). The ver-
ification time is given in seconds with the best one highlighted in boldface,
column R reports the verification result, and column DR shows the desired veri-
fication result. Mark v (resp. X) indicates that the circuit is fault-resistant (resp.
not fault-resistant) w.r.t. the fault-resistance model.

5.1 Effectiveness of Acceleration Techniques

Recall that we present three acceleration techniques: fixed number of fault events
(denoted by FE), fault type reduction (denoted by TR), and vulnerable gate
reduction (denoted by GR). We denote by “no-opt” the verification without
any of these acceleration techniques, by TRs, and TRy the fault type reduc-
tion that reduces to the fault types (75, 7.) and the fault type 73, respectively.

Table 1. Benchmark statistics.

Name Rnd |#Clk||B| |#in#out|/#gate | #and #nand |#or|#nor |#xor|#xnor|#not|#reg

AES-b1-D S1x9 |1 432 256|129 |25,008/576 (9,446 (560 (9,705 |828 |852 2,897/144
S2x1 |1 432|256 1129 |24,192/544 (9,018 [624 (9,381 816 (992 |2,673144
AES-b2-D S1x9 |1 1,055 256|129 34,351|704 |12,698 833 13,012(1,440/1,584 |3,888/192
S2x1 |1 1,055 256|129 33,423|752 |12426 849 12,308(1,392/1,808 |3,696/192
CRAFT-b1-D[S1x32|2 240 128|165 |1,020 |48 202 48 149 212 232 49 |80
CRAFT-b2-D|S1x32|2 575 12865 |1,715 |65 255 |48 271 188 680 |96 112
CRAFT-b3-D|S1x32(2 767 128165 2,111 |64 (346 |65 292 224 1896 |96 |128
CRAFT-b1-C|S1x32[2 2,304 128164 (3,172 |0 864 |48 (656 (428 |760 (304 |[112
CRAFT-b2-C|S1x32(2 19,568/128 |64 |20,884/320 7,904 (352(6,592 |1,484(2,056 (2,000/176
LED64-b1-D [S1x1 |1 239 |128165 [1,632 |16 346 32 |53 416 608 81 |80
S2x8 |1 240 |128165 [1,636 |16 346 32 |53 420 604 85 |80
S3x23/1 240 |128165 1,480 |16 346 |32 |53 352 |544 |57 |80
LED64-b2-D [S1x1 |1 575 128|165 2,575 17 479 |64 111 512 1168 [112 112
S52x8 |1 575 128|165 2,585 (17 479 |64 (111 516 (1164 [122 112
1

S3x23

575 |128165 2,333 |17 479 |64 |111 448 |1024 |78 |112

202 H. Tan et al.

Table 2. SAT-based verification of single-round sub-circuits.

Name Model no-opt |GR GR'FE |GR-TRsr |GR-FE-TRsr|GR-TRpy RDR
AES-b1-D m(1,1,7,cr)2,486.331255.06 |219.26 [197.15 |214.07 178.58 VvV
AES-b1-D m(2,1,7,cr)2.62 0.81 0.72 0.60 |0.63 0.65 XX
AES-b2-D m(2,1,7, cr)timeout 2,409.43/2,272.56/2,224.112,412.66 |1,595.51v v/
AES-b2-D m(3,1,7,cr)4.68 1.34 0.94 0.99 1.07 1.43 XX
CRAFT-b2-Cm(2,1,7,¢cr)31.80 [10.08 [10.78 [10.95 |11.09 9.40 Vv
CRAFT-b2-Cm(3,1,7,cr)0.32 0.26 0.35 0.33 0.32 0.30 XX
CRAFT-b3-Dim(3, 1,7, cr)|7.56 0.33 0.32 0.32 0.31 0.42 44
CRAFT-b3-Dim(4,1,7,cr)0.08 0.04 |0.04 |0.04 [0.05 0.05 XX

The acceleration techniques can be combined, e.g., GR-FE applies “vulnerable
gate reduction” with “fixed number of fault events”. Note that TRy cannot be
combined with a fixed number of fault events (i.e., no FE-TRy; Or GR-FE-TRyy).
We evaluate all the acceleration techniques and their feasible combinations on
the first single-round sub-circuits of AES-b1-D, AES-b2-D, CRAFT-b2-C, and
CRAFT-b3-D.

The results of SAT-based verification are reported in Table2. Overall, all
three acceleration techniques and their combinations can improve the SAT-
based verification approach (no-opt) for almost all the verification tasks, solv-
ing one timeout case and significantly reducing the verification time for the
other cases. The combination GR-TRyy outperforms the others because encod-

Table 3. Results of fault-resistance verification: compositional vs. monolithic.

Name Model Compositional Monolithic RDR
BDD [SAT SMT BDD [SAT SMT
AES-b1-D m(1,1,7,cr)/173.06 [193.49 |15,944.55 timeout timeout |timeout v’
AES-b1-D m(2,1,7,cr)409.31 [1.65 5,735.58 |[timeout|timeout [timeout X
AES-b2-D m(2, 1,7, cr)timeout (3,175.90 timeout |timeout|timeout |timeout v’
AES-b2-D m(3, 1,7, cr)timeout 2.25 timeout |timeout|timeout [timeout X
CRAFT-b1-Cm(1,1,7,cr)0.13 0.31 2.07 timeout|10,587.20/timeout |v/
CRAFT-b1-Cm(2,1,7,cr)0.24 0.05 0.04 timeout510.55 |timeout | X
CRAFT-b2-Cm(2,1,7,cr)3.02 10.04 99.47 timeout timeout |timeout v/
CRAFT-b2-Cm(3,1,7,cr)4.26 0.38 1.73 timeout timeout |timeout X
CRAFT-b1-Dim(1,2,7,cr)0.86 0.13 0.56 timeout|144.46 |1,000.45v
X
4
X
4
X
v
X
4
X

CRAFT-bl-Dim(2,2,7,cr)37.32 0.03 0.02 [timeout12.69 [1.26
CRAFT-b2-Dim(2,2,7,cr)|3,188.87/0.30 1.91 timeout|137.70 19,943.49
CRAFT-b2-Dm(3,2,7,cr)(3,295.120.04 0.04 timeout|40.53 1.87
CRAFT-b3-Dm(3,2, 7, cr)|timeout 0.44 11.33 timeout|203.83 9,551.44
CRAFT-b3-Dim(4, 2, 7, cr)|timeout (0.05 0.05 timeout 52.42 2.28
LED64-b1-D m(1,1,7,cr)0.93 1.60 31.90 timeout|5,082.29 [timeout
LED64-b1-D m(2,1,7,cr)0.96 0.16 0.93 timeout|1.04 timeout
LED64-b2-D m(2,1,7,cr)6.41 2.34 81.85 timeout|4,293.95 |timeout
LED64-b2-D m(3,1,7,cr)[44.55 |0.17 1.88 timeout|1.60 timeout

N N N N S N S S N D N RN

Compositional Verification of Cryptographic Circuits Against FIA 203

ing the bit-flip fault type needs fewer fault type selection inputs than that of
set and reset fault types. Note that adding more acceleration techniques does
not necessarily make an improvement, e.g., GR-TRg, VS. GR-FE-TRg, on AES-bi-
D, because §MaxE(V(S,B;,T)) = n. and #C1k(V(S,B;,T)) = n. are encoded
as n, < fMaxE(V(S,By,T)) < n. and n. < §C1k(V(S,B;,T)) < n. before bit-
blasting. Remark that FIRMER [37] indeed is CLEAVE when only GR is enabled.
Due to space limitations, the results of SMT- and BDD-based verification are
reported elsewhere [38], from which the same conclusion can be drawn. Thus,
hereafter, we adopt the combination of acceleration techniques GR-TRyy.

5.2 Evaluation of Compositional Verification

To evaluate our compositional approach, we compare it with the monolithic one,
both of which adopt the combination of acceleration techniques GR-TRyy.

The results are reported in Table 3. Overall, our compositional reasoning is
very effective, allowing CLEAVE to verify fault-resistance of almost all the bench-
marks while their monolithic counterparts often run out of time. For instance,
the monolithic BDD-based approach fails to verify all the benchmarks due to
the huge number of BDD variables. Indeed, the maximal number of rounds that
can be handled is 2 (cf. [38] for details).

In contrast, the compositional reasoning can verify all the benchmarks, except
for AES-b2-D and CRAFT-b3-D where even the single-round sub-circuit cannot
be verified by the BDD-based approach. For SAT/SMT-based verification, the
compositional reasoning takes significantly less time than its monolithic coun-
terpart. Note that the diverse performance between SAT/SMT- and BDD-based
approaches is mainly because we use the parallel SAT solver Glucose (8 threads)
versus sequential SMT solver bitwuzla, and there is a cost for building (several)
BDDs.

6 Related Work

Equivalence and safety checking play an essential role in the design of cir-
cuits. Various SAT/SMT-based approaches (e.g., [7,10-12,22]) and BDD-based
approaches (e.g., [13,14,17,29]) have been studied. They are orthogonal to our
work and cannot be directly applied to check fault-resistance.

Due to the prevalence of fault injection attacks, there are studies for finding
the effective fault vectors or checking the effectiveness of the fault vectors pro-
vided by users, e.g., [4,23,33]. However, it is virtually impossible to enumerate
all the possible fault vectors and valid inputs in practice, thus these approaches
are limited in efficiency and scalability. To mitigate these issues, the BDD-based
approach, FIVER [31], was proposed which does not need to explicitly enumerate
all the possible valid inputs [31], but still has to explicitly enumerate all the pos-
sible fault vectors. Very recently, the SAT/SMT-based approach, FIRMER [37],
was proposed to implicitly encode all the possible fault vectors into SAT/SMT

204 H. Tan et al.

formulas, and thus no explicit enumeration is required for both possible fault vec-
tors and valid inputs. However, they often fail to verify the entire circuit under
all the possible fault vectors and valid inputs. Our compositional approach cir-
cumvents the verification of the entire circuit of a large size, and can significantly
boost both SAT/SMT-based and BDD-based verification approaches with novel
acceleration techniques.

Compositional reasoning is a powerful divide-and-conquer approach for
addressing the state-explosion problem. Hence, various compositional reasoning
techniques and methods have been investigated, e.g., [19,20,25,27], for safety,
equivalence and side-channel security verification. Our compositional reasoning
relies on the structural feature of (round-based) cryptographic circuits and the
fault-resistance verification problem, thus is different from the prior ones.

Synthesis techniques have been proposed to repair flaws (e.g., [18,32,40]).
However, they do not provide security guarantees (e.g., [32,40]) or are limited
to one specific type of fault injection attacks (e.g., clock glitch in [18]) and thus
may be still vulnerable to other fault injection attacks.

7 Conclusion

We have proposed the first compositional reasoning which decomposes the fault-
resistance verification of a whole round-based cryptographic circuit into that of
single-round sub-circuits. To efficiently verify single-round sub-circuits, we have
proposed various acceleration techniques and studied both SAT /SMT-based and
BDD-based approaches. We have implemented our approach in an open-source
tool CLEAVE and extensively evaluated it on a set of realistic cryptographic
circuits. The experimental results show that our compositional approach and
acceleration techniques can significantly improve all the SAT/SMT-based and
BDD-based verification approaches, outperforming the state-of-the-art baselines.
Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable circuits. IEEE Trans. Comput. 69, 361-376 (2020)

2. Agoyan, M., Dutertre, J., Naccache, D., Robisson, B., Tria, A.: When clocks fail:
on critical paths and clock faults. In: Proceedings of the 9th IFIP WG 8.8/11.2
International Conference (CARDIS), pp. 182-193 (2010)

3. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Christianson, B., Crispo, B., Lomas, T.M.A., Roe, M. (eds.) Proceedings of the
5th International Workshop on Security Protocols, vol. 1361, pp. 125-136 (1997).
https://doi.org/10.1007/BFB0028165

https://doi.org/10.1007/BFB0028165

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Compositional Verification of Cryptographic Circuits Against FIA 205

Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis
using VerFI. In: Proceedings of the IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 229-240 (2020)
Atzori, L., Tera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787-2805 (2010)
Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
27(1), 1840001:1-1840001:25 (2018)
Azarbad, M.R., Alizadeh, B.: Scalable SMT-based equivalence checking of nested
loop pipelining in behavioral synthesis. ACM Trans. Design Autom. Electr. Syst.
22(2), 22:1-22:22 (2017)
Baksi, A.: Classical and Physical Security of Symmetric Key Cryptographic Algo-
rithms. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6522-6
Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370-382 (2006). https://doi.
org/10.1109/JPROC.2005.862424
Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Proceedings of the 36th Conference on
Design Automation (DAC), pp. 317-320 (1999)
Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proceedings of the 5th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS), pp. 193-207 (1999)
Bruttomesso, R., et al.: A lazy and layered SMT(BV) solver for hard industrial ver-
ification problems. In: Proceedings of the 19th International Conference on Com-
puter Aided Verification (CAV), pp. 547-560 (2007)
Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit verification. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 13(4), 401-424 (1994)
Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10720 states and beyond. In: Proceedings of the Fifth Annual Symposium
on Logic in Computer Science (LICS), pp. 428-439 (1990)
Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8
Dehbaoui, A., Dutertre, J., Robisson, B., Tria, A.: Electromagnetic transient faults
injection on a hardware and a software implementations of AES. In: Proceedings
of the Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
7-15 (2012)
van Eijk, C.A.J.: Sequential equivalence checking without state space traversal.
In: Proceedings of Design, Automation and Test in Europe (DATE), pp. 618-623
1998
](Eldib,) H., Wu, M., Wang, C.: Synthesis of fault-attack countermeasures for crypto-
graphic circuits. In: Proceedings of the 28th International Conference on Computer
Aided Verification (CAV), pp. 343-363 (2016)
Gao, P., Song, F., Chen, T.: Compositional verification of first-order masking
countermeasures against power side-channel attacks. ACM Trans. Softw. Eng.
Methodol. 33(3), 79:1-79:38 (2024)
Gao, P., Zhang, Y., Song, F., Chen, T., Standaert, F.: Compositional verification
of efficient masking countermeasures against side-channel attacks. Proc. ACM Pro-
gram. Lang. T(OOPSLA2), 1817-1847 (2023). https://doi.org/10.1145/3622862
Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptography. Information Secu-
rity and Cryptography. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29656-7

https://doi.org/10.1007/978-981-16-6522-6
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/3622862
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7

206

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

H. Tan et al.

Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based
alignability algorithm for hardware equivalence verification. In: Proceedings of the
7th International Conference on Formal Methods in Computer-Aided Design, pp.
20-26 (2007)

Khanna, P., Rebeiro, C., Hazra, A.: XfC: a framework for exploitable fault charac-
terization in block ciphers. In: Proceedings of the 54th Annual Design Automation
Conference (DAC), pp. 1-6 (2017)

Khasidashvili, Z., Skaba, M., Kaiss, D., Hanna, Z.: Theoretical framework for
compositional sequential hardware equivalence verification in presence of design
constraints. In: Proceedings of the International Conference on Computer-Aided
Design, pp. 58-65 (2004)

Khasidashvili, Z., Skaba, M., Kaiss, D., Hanna, Z.: Post-reboot equivalence and
compositional verification of hardware. In: Proceedings of the 6th International
Conference on Formal Methods in Computer-Aided Design, pp. 11-18 (2006)
Malkin, T., Standaert, F., Yung, M.: A comparative cost/security analysis of fault
attack countermeasures. In: Proceedings of the 3rd International Workshop on
Fault Diagnosis and Tolerance in Cryptography, pp. 159-172 (2006)

McMillan, K.L.: A methodology for hardware verification using compositional
model checking. Sci. Comput. Program. 37(1-3), 279-309 (2000). https://doi.org/
10.1016/S0167-6423(99)00030- 1

Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020). https://arxiv.org/abs/2006.01621

Pixley, C.: A theory and implementation of sequential hardware equivalence. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 11(12), 14691478 (1992)
Richter-Brockmann, J., Sasdrich, P., Giineysu, T.: Revisiting fault adversary mod-
els - hardware faults in theory and practice. IEEE Trans. Comput. 72, 572-585
(2023)

Richter-Brockmann, J., Shahmirzadi, A.R., Sasdrich, P., Moradi, A., Giineysu, T.:
Fiver - robust verification of countermeasures against fault injections. IACR Trans.
Cryptographic Hardware Embed. Syst. 2021, 447-473 (2021)

Roy, I., Rebeiro, C., Hazra, A., Bhunia, S.: SAFARI: automatic synthesis of fault-
attack resistant block cipher implementations. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 39(4), 752-765 (2020)

Saha, S., Mukhopadhyay, D., Dasgupta, P.: ExpFault: an automated framework
for exploitable fault characterization in block ciphers. IACR Trans. Cryptographic
Hardware Embed. Syst. 2018(2), 242-276 (2018)

Selmane, N., Guilley, S., Danger, J.: Practical setup time violation attacks on AES.
In: Proceedings of the 7th European Dependable Computing Conference (EDCC),
pp- 91-96 (2008)

Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits II. Proceed-
ings of the 57th ACM/IEEE Design Automation Conference (DAC), pp. 1-6 (2020)
Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Proceed-
ings of the 4th International Workshop Redwood Shores on Cryptographic Hard-
ware and Embedded Systems (CHES), pp. 2-12 (2003)

Tan, H., Gao, P., Chen, T., Song, F., Wu, Z.: SAT-based formal fault-resistance
verification of cryptographic circuits. CoRR abs/2307.00561 (2023)

Tan, H., Gao, P., Chen, T., Song, F., Wu, Z.: CLEAVE (2024). https://github.
com/S3L-official/CLEAVE

Tyagi, A.K., Sreenath, N.: Cyber physical systems: analyses, challenges and pos-
sible solutions. Internet Things Cyber-Phys. Syst. 1, 22-33 (2021)

https://doi.org/10.1016/S0167-6423(99)00030-1
https://doi.org/10.1016/S0167-6423(99)00030-1
https://arxiv.org/abs/2006.01621
https://github.com/S3L-official/CLEAVE
https://github.com/S3L-official/CLEAVE

Compositional Verification of Cryptographic Circuits Against FIA 207

40. Wang, H., Li, H., Rahman, F., Tehranipoor, M.M., Farahmandi, F.: SoFI: security
property-driven vulnerability assessments of ICs against fault-injection attacks.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(3), 452-465 (2021)

41. Zussa, L., Dutertre, J.M., Clediere, J., Tria, A.: Power supply glitch induced faults
on fpga: An in-depth analysis of the injection mechanism. In: Proceedings of the
IEEE 19th International On-Line Testing Symposium (IOLTS), pp. 110-115 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Reusable Specification Patterns
for Verification of Resilience
in Autonomous Hybrid Systems

Julius Adelt'®™) | Robert Mensing?, and Paula Herber!:?

L University of Miinster, Miinster, Germany
{julius.adelt,paula.herber}@uni-muenster.de
2 University of Twente, Enschede, The Netherlands
{r.a.mensing,pherber}@utwente.nl

Abstract. Autonomous hybrid systems are systems that combine dis-
crete and continuous behavior with autonomous decision-making, e.g.,
using reinforcement learning. Such systems are increasingly used in
safety-critical applications such as self-driving cars, autonomous robots
or water supply systems. Thus, it is crucial to ensure their safety and
resilience, i.e., that they function correctly even in the presence of
dynamic changes and disruptions. In this paper, we present an approach
to obtain formal resilience guarantees for autonomous hybrid systems
using the interactive theorem prover KeYmaera X. Our key ideas are
threefold: First, we derive a formalization of resilience that is tailored
to autonomous hybrid systems. Second, we present reusable patterns
for modeling stressors, detecting disruptions, and specifying resilience as
a service level response in the differential dynamic logic (d£). Third,
we combine these concepts with an existing approach for the safe inte-
gration of learning components using hybrid contracts, and extend it
towards dynamic adaptations to stressors. By combining reusable pat-
terns for stressors, observers, and adaptation contracts for learning com-
ponents, we provide a systematic approach for the deductive verification
of resilience of autonomous hybrid systems with reduced specification
effort. We demonstrate the applicability of our approach with two case
studies, an autonomous robot and an intelligent water distribution sys-
tem.

Keywords: Hybrid Systems - Reinforcement Learning - Formal
Methods - Deductive Verification - Resilience + Reusability

1 Introduction

Autonomous hybrid systems (AHS), such as self-driving vehicles, robots, and
intelligent water supply systems, combine autonomous decision-making with
both discrete and continuous behavior. They often act autonomously in dynamic,
safety-critical environments, where failures can cause damage or even endanger
© The Author(s) 2025

A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 208-228, 2025.
https://doi.org/10.1007/978-3-031-71177-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_14

Reusable Patterns for Resilience in Autonomous Hybrid Systems 209

human lives. As a consequence it is essential to ensure their resilience, i.e., the
system’s capability to adapt and maintain its correct functioning amidst changes
and disruptions. However, the formal verification of AHS poses distinct chal-
lenges because of their hybrid nature and the inclusion of learning components
like reinforcement learning (RL), which are hard to capture formally. Approaches
to overcome this problem using model checking or statistical model checking are
impeded by the state-space explosion problem and often only consider resilience
up to a certain time bound. Deductive verification, on the other hand, is a pow-
erful approach for scalable mathematical reasoning even for complex unbounded
systems, but demands high expertise and manual effort to provide the necessary
specifications and invariants. In particular, there is a lack of reusable formal
definitions of resilience in the context of AHS and the few existing definitions
are not directly applicable for the deductive verification of qualitative resilience
guarantees. This is because they are either not formally specified (e.g., [34]),
defined for time-bounded quantitative analysis (e.g., [16,17,40]) or tailored to
specific classes of systems (e.g., [8]). In this paper, we present a systematic app-
roach for defining, modeling, and verifying resilience of AHS within d£ [55-57]
using the interactive theorem prover KeYmaera X [22].

Our approach is based on three key ideas. First, to address the lack of for-
mal qualitative resilience definitions for AHS, we formalize resilience for the
deductive verification of AHS based on the informal definition by Laprie [34]
by introducing the concept of service levels for AHS which are provided under
varying stress conditions. We identify stressors as the key factors causing fail-
ures and disruptions, and define service levels to capture dynamic adaptations
to stress, such as graceful degradation. Second, to enable systematic deduc-
tive verification of resilience properties for AHS, we introduce stressor patterns
for modeling stressors and observer patterns for observing the induced stress.
Our stressor patterns facilitate integrating various kinds of stressors in formal
AHS models, for example noise, component failures, or unexpected delays. Our
observer patterns enable formally capturing the stress induced on a system, and
thus to verify the system response as service levels, such as a maximum supply
or minimum speed, under varying stress levels. Third, we combine our reusable
specification patterns with our own previous approach for deductive verification
of Simulink models using d£ [36,37], and for the safe integration of learning
into AHS [1,4]. In [1,4], we have specified reusable contract patterns for verify-
ing AHS with RL components with reduced specification and verification effort.
In this paper, we extend this approach to reusable resilience contract patterns,
which link service levels to the stress intensity experienced by the system and
ensure that an RL agent dynamically adapts to stressors. By combining reusable
patterns for stressors, observers, and dynamic adaptations using service levels,
we provide a systematic approach for the deductive verification of resilience of
AHS with reduced specification effort.

We demonstrate the applicability of our approach with two case studies:
an intelligent water distribution system and an autonomous robot. The for-

210 J. Adelt et al.

IR e | P |
obs =" jin A Bl L
SUPry 4 || fmax | p’O .
RL, (O iR - PP 4
mn 1’ ’t_ dsensobs U, | ly
1 L— =— 5, 3
nl s il Flw,, Sns, RL 5
RLy {if(c 2 TS){C =0; SUPp] 1= ¥5 Uy =% ?ch:,} Snsy {dsens = d(ﬁbﬁ‘c\)?
Flwy i := min(igax, iy); RLy if(c > Ts){c := 0; 3y := % ?HCy; }
d = 7d € [0, sup]; Opp, Ta = #; ?|Ta| < Unmax,a;
Platy {/ =L = LW =izd&e < Ts})’ Plnty {¢ = 1,¢ = L, =0y, =B e < To}}"

(a) Intelligent Water Distribution System (b) Autonomous Robot with Opponent

Fig. 1. Simulink (top) and d£ (bottom) models of the Case Studies

mer is based on a model used by MathWorks [42] to demonstrate the RL
Toolbox [43], the latter to demonstrate the Robotics System Toolbox [44].

The rest of this paper is structured as follows: we introduce preliminaries
in Sect. 2 and our approach in Sect.3. We present verification results in Sect. 4,
discuss related work in Sect. 5, and conclude in Sect. 6.

2 Preliminaries and Case Studies

In this section, we use our two case studies to introduce Simulink and the RL
Toolbox, d£, Simulink2d £, and our approach for safe RL using contracts.

2.1 Case Studies in Simulink

Simulink [45] is an industrially well established graphical modeling language for
AHS. Simulink is block based and provides a large selection of predefined blocks
with discrete or continuous behavior, which can be connected via signals. The
semantics of Simulink is informally defined in [45]. The RL Toolbox enables
directly integrating and simulating RL agents in Simulink models via an RL
agent block, which executes an RL algorithm at discrete time steps.

The upper part of Fig. 1a shows a Simulink model of a reservoir of an intelli-
gent water distribution system (IWDS) based on [47]. In [3], we have presented
an approach to safely optimize a similar system using a combination of deduc-
tive verification and a statistical model checking based learning approach. Using
this approach, an RL agent successfully optimizes the supply provided by the
system with a given energy budget by decreasing the inflow (e.g., by switching
off pumps) whenever the demand is low and by reducing the maximum available
supply if necessary due to pump failures. The Simulink model has a constant
maximum inflow rate 4uax. The RL agent (RL;) can choose a reduced inflow 4,; and
a maximum supply sup,;, which sets a limit on the actual demand d. The reser-
voir water level h evolves by integrating the difference of the inflow min(igax, ;)
and demand min(d, sup,;), which are computed in the Flw, subsystem.

Reusable Patterns for Resilience in Autonomous Hybrid Systems 211

The upper part of Fig. 1b shows a Simulink model of an autonomous robot in
a factory inspired by [41]. The autonomous robot is dynamically assigned goals
within a factory, and its RL controller tries to get the robot there as fast as
possible without colliding with moving opponents. We have demonstrated that
the robot reaches goals safely for a similar system in [4]. The Simulink model
consists of an RL controller (RL,), which receives distance data from a sensor
(Sns,), and a second controller for the opponent (Opp,). The RL agent can choose
the velocity and direction of the RL robot (). The positions of p, and p, evolve
continuously with axial velocities (¢, and &,) respectively.

2.2 Differential Dynamic Logic d£ and Simulink2d £

Differential dynamic logic (d£) [55-57] is a logic for formally specifying and
reasoning about properties of hybrid systems, which are modeled as hybrid pro-
grams (HP). Hybrid Programs are build from the following syntax: a;f is a
sequential composition of two HP a and . a* is a non-deterministic repetition.
x := e is a discrete assignment of term e to variable x. x := % assigns a non-
deterministically chosen value to x. @ + +f is a non-deterministic choice. 7Q is a
test formula. if(Q){a}else{f} is syntactic sugar for {?Q;a + +7-Q; f}. {x] = n1,
., X5, =1, & Q} is a continuous evolution, where variables x; evolve with differ-
ential equations x; = n; while an evolution domain Q is satisfied. Furthermore,
in this paper we use x € [[,u] as syntactic sugar for [< x A x < u. d£ provides
modalities [a]¢ and {(a)¢ for reasoning about reachable states. Safety specifica-
tions are expressed as pre — [a]post and can be verified using KeYmaera X [22].
Proofs in KeYmaera X are based on the d.£ sequent calculus.

In [36], we have presented an automated transformation from Simulink into
d L, called Simulink2d £. This provides us with a formal representation of a given
Simulink model, and thus enables formal verification of Simulink models using
KeYmaera X. Furthermore, we have defined the concept of hybrid contracts (HC)
for compositional verification of Simulink models in [37]. HC can be defined for
components of Simulink models as d£ formulas with hc = (¢in, Pou:), Wwhere ¢;,
are input assumptions and ¢, are output and trajectory guarantees. HC can
be verified for components individually and replace these components during
transformation. To integrate RL agents safely into the transformation, the safe
behavior of RL agents can also be defined using HC [4]. HC can be used as
shields [23] during simulation to enforce safe behavior of RL agents.

The lower part of Fig. 1a shows a d£ model of the IWDS. The RL agent (RLy)
is captured by a conditional hybrid program. If the sample time elapses ¢ > Ts the
agent selects safe actions 7,; and sup,; non-deterministically but in compliance
to HC,. Flw, computes the current inflow i and demand d. Continuous behavior
is captured in the continuous evolution (P1lnt;). The water level h evolves with
h' = i—d, the clock ¢ and simulation time t evolve with constant rate 1. The
evolution domain ¢ < Ts ensures that no sample times of the RL agent are
missed. The global simulation loop is modeled by a nondeterministic repetition.

The lower part of Fig.1b shows a d£ model of the autonomous robot.
The sensor (Sns;) assigns the distance d(p;,pa,) to a variable dgens. The RL

212 J. Adelt et al.

controller (RL;) chooses new velocities U, according to its hybrid contract HC;.
The opponent Opp, chooses velocities T, limited by ?|0a| < vpaya;. In the con-
tinuous evolution, the positions pa, p., the sampling time clock ¢ and simulation
time t evolve within the domain constraint ¢ < Ts. We use ¢ as an abbreviation
for axial velocities (¢, vy) and p for coordinates (X, 7).

Table 1. Threshold Pattern [1] and derived Contracts for IWDS and Robot

Property Hybrid Contract
Threshold Patternjpre — [a] wvarge ~0 varsc + wer(state, action, Ts) ~ 0
IWDS HC,, pre — [a] h >hmin h+ (ipp —supyp) - Ts 2 hmin
Robot HC, pre = [a]d(pr,pa) >Oeva | dsens — (|| + Unax,a) - Ts > Oeva

2.3 Reusable Contracts for Safe Integration of Learning

In [1], we have introduced reusable HC patterns for addressing common verifi-
cation challenges in AHS. These patterns are derived from recurring elements
in AHS verification problems and provide templates for the specification of con-
tracts and invariants for learning components. As an example, Table 1 shows the
threshold pattern and its application to our two case studies. The pattern speci-
fies the contract that is needed to ensure that the variable var,, stays within a
given threshold 6 (pre — [a]varse ~ 6 with ~€ {<, <,=,>,>}). To ensure this
property on system level, the RL agent has to maintain the threshold within the
next sample time while accounting for the systems worst case reaction (wer) to
the current state, action and the sample time (Ts) of the RL agent.

In the IWDS, the RL agent has to keep the water level above a minimum
h = hpmin. As an action, the agent may choose an inflow 4,; and limit the outflow to
a maximum supply sup,;. The worst case reaction of the environment is a demand
that fully exploits the supply limit (d = sup,;). For the robot, a crucial safety
requirement is to maintain a minimum distance d(p, ﬁa) > Bevq to the opponent
or to stop if the opponent further decreases the distance. The RL agents threshold
contract ensures that the chosen velocity o, maintains the distance 6.yq from the
opponents current position. To stop if Oeygq can no longer be maintained, we add
a disjunction to the contract (HC, V |7;| = 0) (not shown in the table).

3 Reusable Patterns for Deductive Verification
of Resilience in Autonomous Hybrid Systems

Autonomous hybrid systems (AHS) may face various stressors, for example,
sensor noise, component failures, or unexpected delays. It is highly desirable

Reusable Patterns for Resilience in Autonomous Hybrid Systems 213

to ensure that AHS are resilient, i.e., that they still function correctly in the
presence of such stressors. There exist various definitions of resilience [8,16,17,
34,40]. However, there is a lack of reusable formal definitions of resilience for
AHS specifically, especially for the deductive verification of qualitative resilience
guarantees.

In this paper, we follow the informal definition provided by Laprie in [34]:
“The persistence of service delivery that can justifiably be trusted, when facing
changes”. From this definition, we derive a formalization of resilience for the
deductive verification of AHS via reusable specification patterns using stressors
to describe (safety-critical) changes, and service levels to describe service deliv-
ery.

Informal N Formalization with Resieies Comimd
Requirements Service Levels@’ Patterns

Autonomous Hybrid System dL Model of AHS RVe‘r]i'fied
(AHS) in Simulink Deductive [” esilience
e Properties
Verification in
Q KeYmaera X _»COunterexamp]eX
- ‘ = or failed Proof

Observer Patterns

Fig. 2. Our Approach for Deductive Verification of Resilience in AHS

Our overall approach is shown in Fig.2. Our process starts with an
Autonomous Hybrid System (AHS) modeled in Simulink, which includes a rein-
forcement learning (RL) agent for autonomous decision-making, and Informal
Requirements, including resilience. The AHS is transformed into a d£ Model
using the Simulink2d L transformation [4,36]. To establish a structured app-
roach for formalizing and verifying resilience properties, we introduce Service
Levels to formalize the system’s adaptive response to stressors. This means, for
example, that we describe graceful degradation using a degraded service level
together with safety thresholds that are still maintained under stress.

For verifying resilience in AHS, we need to formally model stressors. How-
ever, this typically requires high expertise. In particular, it is often unclear how
to specify changes in behavior and the intensity of stress induced by given stres-
sors in a formally modeled system. To tackle this, we introduce reusable Stressor
Patterns. They are designed to capture various disturbances and changes, rang-
ing from discrete or continuous noise over timed delays to complete failures.
In our definition, stressors strictly extend the possible behavior of components
with non-determinism. This facilitates easy integration of stressors into existing
dL models. Furthermore we avoid the need to provide probability distributions,
which are often not available or hard to obtain.

214 J. Adelt et al.

To deductively verify and safely integrate learning in AHS modeled in
Simulink, we have proposed an approach to replace RL components by hybrid
contracts that describe safe actions in [4]. These contracts can be used as shields
via automatically generated runtime monitors [23,49]. In [1] we have proposed
reusable contract patterns for common verification problems in AHS. In this
paper, to ensure Resilient RL for AHS, we extend this approach with reusable
Resilience Contract Patterns, which link appropriate service levels to the stress
intensity experienced by the system. With such Resilience Contracts, we can
enforce that the RL agent dynamically adapts to stressors and disruptions using
service levels.

To be able to verify an overall AHS under different stress levels, capturing
the stress intensity induced by stressors formally is desirable. To address this,
we propose reusable Observer Patterns. In our definition, observers may never
change the system’s behavior but are used to passively capture the dynamic
effects of stressors and stress intensity on the system.

Table 2. Service Levels and corresponding Safety Thresholds

Service |enabled Threshold under Threshold under
Case Study .)
Level Actions A; low stress (61s) |high stress (Ons)
IWDSFull|i,; € [0, tpax], SUpy; = Supmax/h > hpax h > hagr
IWDS IWDSDeg |iy) € [0, tnax], supy; = supagr|h > hagr h > hmin
IWDSNo iy € [0, tmax], supy; =0 h > hmin h > hmin
Rob RobEvd |0y € [Vmin, z Z)max,r] d(ﬁraﬁa) > Oeva d(ﬁr,ﬁa) > Qstp
RobStop [0r =0

With our reusable stressor, resilience contracts, and observer patterns, we
enable formal specifications of resilient systems in d.£, and their deductive veri-
fication using KeYmaera X [22].

In the following subsections, we introduce the concept of service levels as
means for dynamic adaptation, our reusable patterns for stressors and observers,
as well as resilience contracts, in more detail.

3.1 Formalization of Resilience Using Service Levels

In AHS, learning components dynamically adapt to changes in the environment.
To ensure safety and resilience, we have to make sure that the system remains
operational in the presence of stressors. To achieve this, we want to verify that
the system satisfies requirements under varying stress levels for all possible adap-
tations. However, the number of possible adaptations is potentially infinite.

To overcome this problem, we introduce the idea of (a finite number of)
service levels (e.g., full, degraded, and no service) to define resilience properties.
For each service level, we define ranges of actions (e.g., inflow and supply or speed

Reusable Patterns for Resilience in Autonomous Hybrid Systems 215

in our case studies) together with safety thresholds, which can be guaranteed at
each service level under varying stress conditions. We can use this to describe
high service levels in the absence of stress, and graceful degradation under stress
by defining thresholds where we degrade to lower service. Note that within each
service level, the system may still choose arbitrary actions from the given range,
which enables, for example, learning components or RL agents to safely optimize
w.r.t performance properties while resilience guarantees are maintained.

Table 2 shows service levels together with the enabled actions A; and corre-
sponding safety thresholds under high or low stress for the IWDS and the robot.
For the IWDS, at full service IWDSFull, the highest possible supply supp.y is
enabled. In the absence of high stress, a water level h > hy,; can be maintained.
If high stress occurs, h > hagy With hggr < hnay must still be maintained to ensure
that we can gracefully degrade to the lower service level TWDSDeg. If stressors
persist, the system degrades to IWDSDeg, where only a degraded water level
h > hqgr is maintained even in the absence of high stress. Under high stress, the
minimum water level hpin < hggr has to be maintained. If these thresholds can
be no longer maintained, the system degrades even further to IWDSNo, where no
supply is provided and only h,,;, is guaranteed at all stress levels.

Table 3. Stressor Patterns

Discrete Noise (with o € {<,-})

o x =& S(a) 1 = %; 71 € [Nmin, Mmax]; X 1= &on;
Snsy |dsens := d(ﬁpﬁa)? Snsr,, n: 3 .1)77 < Thigh; dsens = d(ﬁrvﬁa)"”ﬁ
Continuous Noise (with o € {+,-})
[¢4 {x" =&} S(a) 1 = #;71 € [Nuin, Tmax];{-...x" = Eon}
. 1:=x%;71 €[0,lnignl;
[- <) ghl;
Plntyl/{...h = i—-d&c < Ts} Plnty; (W =i-d1&e<Ts)
o o s o 5 := #;70 € [~Ohigh> Onighl;

’ ’ < | o _}hlghq high |
Plnty{...pr = Up,ps = 0r & ¢ < Ts} Plntys (Bl = 50,5, = By & < Ts}
Failure
a o S(a) o+ + o}

Flwy |i:= min(inax, iy]); Fluys |{i:= min(ipax, 4,7); + + 7:= 0;}
Delay

. tp =% THp € [l/\minal/\max]:

> =05...}... .
a 1{fc(,c=_ 1TS){§L ((i’ :)}} S(a) if(c > T5+t/\){c =0;...}
T = {¢!=1,...&(c < ts+ip)}
RL if(c > Ts) AL IA = %)t/\ € [0, tA, h1gh] if(c > Ts + tp)
Y e = 05supyy = *; 4y i= % 2HC; Yol T e = 05 supyp = *; 4y i= % 2HCy;).

. - tp =%, 7tp € [0, tA highl;

> = 0,0 := %; 7 . . i el
RLy [fiflc 2 Ts){c := 0;8; := % PHCr; }... Rlrc, if(c = Ts + tp){c := 0; Oy := %; THCy; }...

For the robot, at full service level RobEvd, the robot is moving and any speed
within [Unin > Unax.r] Mmay be chosen. In the absence of high stress, the robot

216 J. Adelt et al.

maintains an evasion distance 6.4, where opponents have room to safely evade.
If stress occurs, the robot at least maintains a stopping distance 8sp, where it
can still safely stop before a potential collision. If these thresholds can not be
maintained, the robot stops, i.e., degrades to RobStop.

3.2 Reusable Stressor Patterns

The inherent uncertainties and dynamic nature of stressors present a significant
challenge and their formal specification requires high expertise and manual effort.
To address this problem, we introduce reusable stressor patterns. These patterns
can be used to formally define the effect of changes and disturbances such as
noisy sensors, component failures, or unexpected delays. In our reusable stressor
patterns, we over-approximate possible changes with non-determinism. With
that, we deliberately avoid the need to provide probability distributions, which
are often not available or hard to obtain due to the unpredictable nature of stress
factors. Our stressor patterns strictly extend the possible behavior of HPs, thus
all behavior of the original HS without stressors is still part of the reachable
states. We propose four types of stressor patterns for modeling typical stressors in
AHS: discrete and continuous noise, execution delays, and failures. The patterns
and their application to our case studies are illustrated in Table 3.

The Discrete Noise pattern models random or unwanted signals. It broad-
ens the range of possible assignments to the variable of a discrete signal x by
adding a non-deterministically chosen noise value 7. 77 can be limited using a Test
N € [Nnin, Mmax ;- Snsy, illustrates the application of this pattern with the robot
sensor. To ensure that an added stressor variable does not exclude runs of the
original HP, the range of possible values must contain the identity element for
the operator o, i.e., 0 for additive (o = +) and 1 for multiplicative noise (o = -).

Continuous Noise can influence the continuous behavior of components. For
example, we can have a motion drift, where a robot’s actual trajectory deviates
from its intended path over time, caused by factors such as wheel slippage or
actuator inaccuracies. To model continuous noise, our pattern adds a disturbance
value 7 to the derivative of x. We illustrate this pattern with a continuous leakage
of the plant of the IWDS (Plnty;) and a motion drift of the robot (Plnt,s).

The Failure pattern models failures using a non-deterministic choice between
an original HP a and a failure HP «;, which models the behavior of @ under
failure. By retaining the original HP « as one of the choices, the original runs of
the model are preserved and we can reason over arbitrary alternations a and ag,;;.
We illustrate this pattern with the IWDS (Flwy:). The failure model introduces
pump failures by setting the inflow rate to zero (i:= 0;).

The Delay pattern introduces variability to the execution time of discrete
components, such as an RL agent, by adding a non-deterministic delay (¢5) into
their periodicity. The sampling clock (¢) is then permitted to exceed its normal
cycle (Ts) by 5 in all tests and evolution domains. We illustrate this pattern
with the RL agent of the IWDS (RLy:,) and robot (RL,.,). Note that we omit
the evolution domain in the delay examples for brevity.

Reusable Patterns for Resilience in Autonomous Hybrid Systems

3.3 Safe Integration of Learning Using Resilience Contract Patterns

To ensure that a

learning component adapts correctly and safely switches
between service levels as defined above, we adopt our approach for the safe
integration of learning presented in [1,4]|. There, we have defined safe actions
for learning components using reusable contract patterns to address recurring
verification problems in AHS. To exploit this concept for the formal verification
of resilience and dynamic adaptations using service levels, we introduce reusable

hybrid contract patterns for resilience via dynamic adaptation to stressors.

Table 4. Resilience Contract Pattern and Service Recovery
Resilience a€A A varse + wer(s,a, t) > bhg
HCrupsFu11 ir] € [0, imax] A sup,; = supmax Ah — werrs(s, (41, Supry), Ts) 2 hmax

Ah = werns(s, (i1, supyp), Ts) 2 hdgr
HCrypspeg ip € [0, fnax] A supy| = supagr Ah — weris(s, (i1, supyp), Ts) = hagr

Ah = werns(s, (ip 1, supr1), Ts) 2 hmin
HCrypspeg ir1 € [0, tmax] A sup,; =0 Ah —wer1s(s, (i1, supy1), ITs) = hmin

Ah —werns(s, (41, supy1), Ts) = hmin
HCrobEvd Ur € [Unin,r> Vmax,r) A dsens — weris(s, Ur, Ts) > Oeva

A dsens — Wcrhs(39 5rs TS) > Gstp
HCrobstop Uy =0

Service Recovery

varse + weris(s,a, t) > varse + rr - t

HCrypsRec

h+ weris(s, (ipg, supy;), Ts) = h+rr-Ts

Table 5. Worst Case Reactions under Low and High Stress for the two Case Studies

Case Study|Stressor|Low Stress (wcrig) High Stress (wcrps)

fail +(ip; — sup,p) - Ts +(0 = sup,) - Ts

IWDS delay +(irl - SuPrl) “(Ts + t/\.low) +(irl - s“prl) : (TS + t/\.high)

leak +(tpp — supy; — liow) - Ts +(ty = supy; — Inign) - Ts

noise —(|Te| + Umax,a) - Ts — N1ow —(|Te| + Umax,a) -Ts — high
Robot delay _(|5r| + Z)max,a) . (T5+t/\,1ow) _(|5r| + Z)max,a) . (T5+t/\,high)
drift _(|7_jr'5low| + Umax,a) -Ts _(|ar‘5high| + Umax,a) . (TS)

Resilience Contract Patterns. The top row of Table4 presents the pattern we
use to define resilience contracts for learning components within a given AHS.
A primary challenge in defining contracts for learning components in AHS is

218 J. Adelt et al.

that these components typically select actions at discrete sample times, while
thresholds must be maintained throughout all continuous evolutions. As detailed
in Sect.2.3, an RL agent, for example, must maintain safety thresholds within
the next sample time while accounting for the system’s worst-case reaction (wcr)
relative to the current state (s), action (a), and the sample time (Ts) of the RL
agent. To ensure resilience, we utilize a conjunction of two threshold patterns: one
for maintaining the threshold under low stress 615 with a worst-case reaction in
the absence of high stress wcrys, and another for maintaining the threshold under
high stress 6, with a worst-case reaction in the presence of high stress wcrys.
This ensures that while providing a service level, the system can respond to both
low stress scenarios and high stress conditions by maintaining the correspond-
ing thresholds. The contracts for the IWDS (HCrypsru11, HCrupspeg, HCrupsno) and
autonomous robot (HCrebeya, HCrobstop) in Table4 utilize this pattern with the
action ranges and corresponding thresholds from Table 2. In all of these defini-
tions, the worst case reaction of the environment depends on the stress level.

Worst Case Reactions Under Stress. Tableb shows the definitions of the worst
case reactions weryg and werys for our case studies for various stressors under low
(Is) and high stress (hs). For pump failures in the IWDS case study (stressor fail),
low stress means that no pump fails. The worst case reaction of the environment
is then that the current water level is increased by the inflow chosen by the RL
agent 4,7, while it is decreased by the full maximum supply sup,; as the demand
fully exploits the available supply within the next sample time Ts. In case of
high stress, i.e., if the pump fails, the inflow becomes 0, and the current water
level is decreased by sup,; only within the next sample time. If the execution
of the learning agent is delayed (stressor delay), the time for which the worst
case reaction is considered is increased by fj 1., under low stress resp. a nign
under high stress. If the water tank is leaking (stressor leak), the IWDS looses
water at rate 1., under low stress and at rate 1lni,