
André Platzer
Kristin Yvonne Rozier
Matteo Pradella
Matteo Rossi (Eds.)

26th International Symposium, FM 2024
Milan, Italy, September 9–13, 2024
Proceedings, Part II

Formal MethodsLN
CS

 1
49

34
Fo

rm
al

 M
et

ho
ds

Lecture Notes in Computer Science 14934

Formal Methods
Subline of Lecture Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Andre Platzer • Kristin Yvonne Rozier •

Matteo Pradella • Matteo Rossi
Editors

Formal Methods
26th International Symposium, FM 2024
Milan, Italy, September 9–13, 2024
Proceedings, Part II

123

Editors
Andre Platzer
Karlsruhe Institute of Technology
Karlsruhe, Germany

Kristin Yvonne Rozier
Iowa State University
Ames, IA, USA

Matteo Pradella
Politecnico di Milano
Milan, Italy

Matteo Rossi
Politecnico di Milano
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-71176-3 ISBN 978-3-031-71177-0 (eBook)
https://doi.org/10.1007/978-3-031-71177-0

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-7238-5710
https://orcid.org/0000-0002-6718-2828
https://orcid.org/0000-0003-3039-1084
https://orcid.org/0000-0002-9193-9560
https://doi.org/10.1007/978-3-031-71177-0
http://creativecommons.org/licenses/by/4.0/

Preface

These volumes contain the papers presented for publication at the 26th International
Symposium on Formal Methods (FM 2024), held in Milano, Italy, during September
9–13, 2024.

FM 2024 is the 26th event in the series of symposia organized by Formal Methods
Europe (FME), an independent association whose aim is to stimulate the use of, and
research on, formal methods for software development. The FM symposia have been
successful in bringing together participants from academia, industry, and governments
around a program of original papers on research and industrial experience, workshops,
tutorials, reports on tools, projects, and ongoing doctoral research. FM 2024 is both an
occasion to celebrate and a platform for enthusiastic researchers and practitioners from
a diversity of backgrounds to exchange their ideas and share their experiences.

In addition to the main research track, FM 2024 included an Embedded Systems
track, an Industry Day (I-Day) track, a Tutorial Paper track, a Journal First track, and a
Doctoral Symposium. Also, 5 conferences and 6 workshops were co-located with FM
2024.

FM 2024 featured keynotes by David Basin (ETH Zürich), Hadas Kress-Gazit
(Cornell University) and Marta Kwiatkowska (University of Oxford) with Byron Cook
(University College London and AWS) as joint speaker for I-Day and the co-located
conference on Formal Methods for Industrial Critical Systems (FMICS).

One main innovation of FM 2024 is the addition of a tutorial paper category.
Tutorial papers present ideas with a focus on pedagogy over technical advances. By
being written in a broadly-accessible way, tutorials clarify important ideas, bring new
researchers into the community, and serve as a bridge to practitioners.

With 219 submissions, FM 2024 received a record-breaking number of paper
submissions, which made it possible to select a particularly strong program. The main
FM 2024 track received 178 submissions (143 regular research submissions, 8 case
study submissions, 21 long tool paper submissions, 6 short tool demonstration sub-
missions). The special embedded systems track of FM 2024 received 17 embedded
submissions, the new tutorial paper track received 14 tutorial submissions, and the I-
Day track received 10 industry report submissions. All paper submissions complying
with the submission guidelines were reviewed by at least 3 reviewers, with a short
author feedback period for a subset of the submissions selected for clarification and
feedback by the 48 PC members. The main FM track accepted 44 papers (31 regular
research papers, 1 case study paper, 8 long tool papers, 4 short tool demonstration
papers) giving a 25% acceptance rate. The embedded systems track accepted 6 papers,
the tutorial paper track accepted 10 papers, and the I-day track accepted 6 papers (3
regular papers, 2 case study papers, 1 extended abstract). Finally, 5 papers were
selected for the Journal First track, and the Doctoral Symposium received 15 sub-
missions (neither the journal first track papers nor the doctoral symposium ones appear
in these proceedings).

FM 2024 invited the authors of all accepted papers to optionally submit an artifact
—i.e., any additional material such as software, data sets, log files, machine-checkable
proofs, etc., that substantiates the claims made in the paper—to the FM 2024 Artifact
Evaluation Committee (AEC). After a short quick-check phase three AEC members
reviewed each artifact in terms of consistency with and reproducibility of results
presented in the paper, completeness, documentation and ease of (re-)use, and avail-
ability in an online repository with a DOI. Based on these reviews, and strictly fol-
lowing the EAPLS guidelines for artifact badging,1 every artifact was awarded up to
two badges:

Available. Artifacts that are publicly archived in a permanent way with a DOI that
are in some way “relevant to” and “add value beyond the text in the article” are
awarded the available badge.
Functional. Artifacts that are documented (containing at least an inventory and
“sufficient description to enable the artifacts to be exercised”), consistent (i.e.,
“relevant to the associated paper, and significantly contribute to the generation of its
main results”), complete (“as far as possible”), and exercisable, receive the func-
tional badge.
Reusable. Functional and available artifacts that are “very carefully documented
and well-structured to the extent that reuse and repurposing is facilitated” receive
the reusable badge instead of the functional one.

Of the 45 submitted artifacts, 42 received the available badge, 18 were functional,
and 14 were awarded the (functional and) reusable badge.

We are exceedingly grateful to everyone involved in making FM 2024 a success.
We appreciate, in particular, the support by the FME board in all difficult decisions and
are grateful to all PC members, Artifact Evaluation Commitee members, and subre-
viewers for volunteering their time in reviewing the submissions to FM, which was
particularly challenging in light of the record high number of submissions, and for
discussing papers thoroughly toward reaching consensus decisions. We also thank the
other committees responsible for the Tutorial Paper track, Embedded Systems track, I-
Day track, Journal First track, Doctoral Symposium, and workshops.

Finally we thank Springer for publishing these proceedings in the FM subline of
LNCS and appreciate EasyChair in managing the paper submissions, reviewing, and
proceedings compilation process.

July 2024 André Platzer
Kristin Yvonne Rozier

Matteo Pradella
Matteo Rossi

1 https://eapls.org/pages/artifact_badges/eapls.org/pages/artifact_badges.

vi Preface

https://eapls.org/pages/artifact_badges/eapls.org/pages/artifact_badges

Organization

Program Committees

Research Track

André Platzer (Co-chair) Karlsruhe Institute of Technology, Germany
Kristin Yvonne Rozier

(Co-chair)
Iowa State University, USA

Erika Abraham RWTH Aachen University, Germany
Wolfgang Ahrendt Chalmers University of Technology, Sweden
Dalal Alrajeh Imperial College London, UK
Luís Soares Barbosa University of Minho, Portugal
Gilles Barthe MPI-SP/IMDEA Software Institute, Spain
Dirk Beyer LMU Munich, Germany
Pablo Castro Universidad Nacional de Rio Cuarto, Argentina
Ana Cavalcanti University of York, UK
Milan Ceska Brno University of Technology, Czech Republic
Marsha Chechik University of Toronto, Canada
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Alexandre Duret-Lutz EPITA Research Laboratory (LRE), France
Marie Farrell University of Manchester, UK
Orna Grumberg Technion - Israel Institute of Technology, Israel
Arie Gurfinkel University of Waterloo, Canada
Anne E. Haxthausen Technical University of Denmark, Denmark
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle TU Darmstadt, Germany
Peter Höfner Australian National University, Australia
Einar Broch Johnsen University of Oslo, Norway
Joost-Pieter Katoen RWTH Aachen University, Germany
Nikolai Kosmatov Thales Research & Technology, France
Orna Kupferman Hebrew University, Israel
Peter Lammich University of Twente, The Netherlands
Martin Leucker University of Lübeck, Germany
Jianwen Li East China Normal University, China
Ravi Mangal Colorado State University, USA
Mieke Massink CNR, Italy
Anastasia Mavridou KBR/NASA, USA
Annabelle McIver Macquarie University, Australia
Claudio Menghi University of Bergamo, Italy
Stefan Mitsch DePaul University, USA
Cesar Munoz NASA, USA
Aniello Murano University of Naples Federico II, Italy

Violet Ka I Pun Western Norway University of Applied Sciences,
Norway

Zvonimir Rakamaric Amazon Web Services, USA
Philipp Rümmer University of Regensburg, Germany
Cristina Seceleanu Mälardalen University, Sweden
Natasha Sharygina Università della Svizzera italiana, Switzerland
Jun Sun Singapore Management University, Singapore
Lucas Martinelli Tabajara Rice University, USA
Yong Kiam Tan A*STAR, Singapore
Stefano Tonetta Fondazione Bruno Kessler, Italy
Georg Weissenbacher TU Wien, Austria
Virginie Wiels ONERA/DTIS, France
Huan Xu University of Maryland, USA
Naijun Zhan Chinese Academy of Sciences, China
Shufang Zhu University of Oxford, UK

Embedded Systems Track

Alessandro Cimatti (Chair) Fondazione Bruno Kessler, Italy
Frédéric Boulanger CentraleSupélec, France
Lei Bu Nanjing University, China
Qinxiang Cao Shanghai Jiao Tong University, China
Liqian Chen National University of Defense Technology, China
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Paula Herber University of Münster, Germany
Inigo Incer California Institute of Technology, USA
Ahmed Irfan SRI International, USA
Eunsuk Kang Carnegie Mellon University, USA
Sergio Mover École Polytechnique, France
Dejan Nickovic AIT Austrian Institute of Technology, Austria
Pierluigi Nuzzo University of Southern California, USA
Roberto Passerone University of Trento, Italy
Heyuan Shi Central South University, China
Fu Song Chinese Academy of Sciences, China
Cong Tian Xidian University, China
Stavros Tripakis Northeastern University, USA

Tutorial Papers Track

Shriram Krishnamurthi
(Co-chair)

Brown University, USA

Luigia Petre (Co-chair) Åbo Akademi University, Finland
Anindya Banerjee IMDEA Software Institute, Spain
Nikolaj Bjørner Microsoft, USA
Marcello Bonsangue Leiden University, The Netherlands
David Thrane Christiansen Lean FRO, LLC, Denmark
Brijesh Dongol University of Surrey, UK

viii Organization

Jan Friso Groote TU Eindhoven, The Netherlands
Stefan Hallerstede Aarhus University, Denmark
Daniel Jackson Massachusetts Institute of Technology, USA
Jeroen Keiren TU Eindhoven, The Netherlands
Markus Alexander Kuppe Microsoft, USA
Thierry Lecomte CLEARSY, France
Jannis Limperg LMU Munich, Germany
Rosemary Monahan Maynooth University, Ireland
Tim Nelson Brown University, USA
Maurice ter Beek CNR, Italy

Industry Day Track

Oksana Tkachuk (Co-chair) Amazon Web Services, USA
Tim Willemse (Co-chair) TU Eindhoven, The Netherlands
Nikolaj Bjørner Microsoft, USA
Jennifer Davis Collins Aerospace, USA
Leo Freitas Newcastle University, UK
Dimitra Giannakopoulou Amazon Web Services, USA
Mario Gleirscher University of Bremen, Germany
Cláudio Gomes Aarhus University, Denmark
Klaus Havelund California Institute of Technology, USA
Nikolai Kosmatov Thales Research & Technology, France

Artifact Evaluation

Carlos E. Budde (Co-chair) Università di Trento, Italy
Arnd Hartmanns (Co-chair) University of Twente, The Netherlands
Jie An Chinese Academy of Sciences (ISCAS), China
Alberto Bombardelli Fondazione Bruno Kessler, Italy
Konstantin Britikov Università della Svizzera italiana, Switzerland
Laura Bussi CNR, Italy
Julie Cailler LIRMM, France
Emily Clement Université Paris Cité, CNRS, IRIF, France
César Cornejo Universidad Nacional de Rio Cuarto, Argentina
Yanni Dong University of Twente, The Netherlands
Daniel Drodt TU Darmstadt, Germany
Federico Formica McMaster University, Canada
Fabrizio Fornari University of Camerino, Italy
Laura P. Gamboa Guzman Iowa State University, USA
Rong Gu Mälardalen University, Sweden
Long H. Pham Singapore Management University, Singapore
Tobias John University of Oslo, Norway
Aditi Kabra Carnegie Mellon University, USA
Mehrdad Karrabi Institute of Science and Technology Austria, Austria
Paul Kobialka University of Oslo, Norway
Marian Lingsch-Rosenfeld LMU Munich, Germany

Organization ix

Alexander Mackay Australian National University, Australia
Andrea Manini Politecnico di Milano, Italy
Antoine Martin EPITA Research Laboratory (LRE), France
Lucas Martinelli Tabajara Rice University, USA
Tobias Nießen TU Wien, Austria
Tommaso Oss University of Trento, Italy
Quentin Peyras ONERA, France
Andrea Pferscher University of Oslo, Norway
Roberto Pizziol IMT School for Advanced Studies Lucca, Italy
Francesco Pontiggia TU Wien, Austria
Edoardo Putti University of Twente, The Netherlands
Florian Renkin Université Paris Cité, IRIF, France
Guillermo Román-Díez Universidad Politécnica de Madrid, Spain
Alec Rosentrater Iowa State University, USA
Lorenzo Rossi University of Camerino, Italy
Ömer Sayilir University of Twente, The Netherlands
Philipp Schlehuber-Caissier EPITA Research Laboratory (LRE), France
Riccardo Sieve University of Oslo, Norway
Reza Soltani University of Twente, The Netherlands
Alexander Stekelenburg University of Twente, The Netherlands
Jack Stodart Australian National University, Australia
Emily Yu Institute of Science and Technology Austria, Austria

Journal First Track

Michael Butler (Chair) University of Southampton, UK
Dines Bjørner Technical University of Denmark, Denmark
Eerke Boiten De Montfort University, UK
Maurice ter Beek CNR, Italy

Doctoral Symposium

Carlo A. Furia (Co-chair) Università della Svizzera italiana, Switzerland
Laura Kovács (Co-chair) TU Wien, Austria
Wolfgang Ahrendt Chalmers University of Technology, Sweden
Marcello M. Bersani Politecnico di Milano, Italy
Nikolaj Bjørner Microsoft, USA
Paula Herber University of Münster, Germany
Marieke Huisman University of Twente, The Netherlands
Alexandra Mendes University of Porto, Portugal
Rosemary Monahan Maynooth University, Ireland
Raúl Pardo IT University of Copenhagen, Denmark
Simon Robillard Université de Montpellier, France
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Stefano Tonetta Fondazione Bruno Kessler, Italy
Mattias Ulbrich Karlsruhe Institute of Technology, Germany

x Organization

FME Board

Ana Cavalcanti University of York, UK
Maurice ter Beek CNR, Italy
Nico Plat Thanos, The Netherlands
Lars-Henrik Eriksson Uppsala University, Sweden
Einar Broch Johnsen University of Oslo, Norway

Organization Committee

General Chairs

Matteo Pradella Politecnico di Milano, Italy
Matteo Rossi Politecnico di Milano, Italy

Sponsorship and Exhibition Chairs

Marcello M. Bersani Politecnico di Milano, Italy
Michele Chiari TU Wien, Austria

Social Media Chair

Livia Lestingi Politecnico di Milano, Italy

Workshop Chairs

Stefania Gnesi CNR, Italy
Marieke Huisman University of Twente, The Netherlands

Additional Reviewers

Yehia Abd Alrahman
Emma Ahrens
Aliyu Tanko Ali
Shaull Almagor
José Bacelar Almeida
Roman Andriushchenko
Santiago Arranz-Olmos
Anagha Athavale
Ziggy Attala
Giorgio Audrito
Peter Backeman
Daniel Baier
Jialu Bao
Chinmayi Prabhu Baramashetru
Davide Basile
Ludovico Battista
Kevin Batz
Anna Becchi

Valeria Bengolea
Raphaël Berthon
Lionel Blatter
Martin Blicha
Alberto Bombardelli
Frédéric Boniol
Alexander Bork
Konstantin Britikov
Christopher Brix
Julien Brunel
Richard Bubel
Julie Cailler
Georgiana Caltais
Mishel Carelli
Valentin Cassano
Valentina Castiglioni
Davide Catta
Claudia Cauli

Organization xi

David Chemouil
Mingshuai Chen
Xin Chen
Felix Cherubini
Po-Chun Chien
Vincenzo Ciancia
Davide Davoli
André De Matos Pedro
Erik De Vink
Ramiro Demasi
Daniel Drodt
Manuel Eberl
Zafer Esen
Grigory Fedyukovich
Marco A. Feliu
Nick Feng
Shenghua Feng
Anthony Fernandes Pires
Angelo Ferrando
Carla Ferreira
Joao F. Ferreira
Ira Fesefeldt
Paul Fiterau-Brostean
Simon Foster
Luis Garcia
Christina Gehnen
Tiberiu A. Georgescu
Marcus Gerhold
Roland Glück
Michał Tomasz Godziszewski
R. Govind
Srajan Goyal
Lukas Graussam
Alberto Griggio
Lukas Grätz
Rong Gu
Vojtěch Havlena
Holly Hendry
Paula Herber
Roland Herrmann
Hans-Dieter Hiep
Raik Hipler
Sebastian Holler
Lukáš Holík
Jacob Howe
Aditi Kabra

Hannes Kallwies
Eduard Kamburjan
Emin Karayel
Jeroen J. A. Keiren
Ata Keskin
Matthias Kettl
Karam Kharraz
Bram Kohlen
Tomáš Kolárik
Katherine Kosaian
József Kovács
Gereon Kremer
Harald König
Faezeh Labbaf
Martin Lange
Jonathan Laurent
Tristan Le Gall
Nham Le
Thomas Lemberger
Ondrej Lengal
Yong Li
Chencheng Liang
Marian Lingsch-Rosenfeld
Debasmita Lohar
Delphine Longuet
Michele Loreti
Andreas Lööw
Filip Macák
Alexandre Madeira
Vadim Malvone
Lina Marsso
Manuel A. Martins
Alexandra Mendes
Robert Mensing
Hannah Mertens
Munyque Mittelmann
Alvaro Miyazawa
Mariano Moscato
Mohammadreza Mousavi
Sergio Mover
Logan Murphy
Muhammad Naeem
Jasper Nalbach
Renato Neves
Kim Nguyen
Thomas Noll

xii Organization

Jose Oliveira
Rodrigo Otoni
Gianmarco Parretti
Mário Pereira
Quentin Peyras
Adrien Pommellet
Siddharth Priya
José Proença
Valentin Promies
Edoardo Putti
Tim Quatmann
Willard Rafnsson
Itsaka Rakotonirina
Omer Rappoport
António Ravara
Gianluca Redondi
Germán Regis
Andrew Reynolds
Pedro Ribeiro
Martin Sachenbacher
Augusto Sampaio
Abhiroop Sarkar
Jonas Schiffl
Philipp Schlehuber-Caissier
Philipp Schröer
Roberto Sebastiani
Filipo Sharevski
Xujie Si
Teofil Sidoruk
Julien Signoles
Joseph Slagel
Jorge Sousa Pinto
Francesco Spegni
Daniel Stan
Martin Steffen
Alexander Stekelenburg
Volker Stolz

Han Su
Roger Su
Yusen Su
Silvia Lizeth Tapia Tarifa
Philip Tasche
Samuel Teuber
Daniel Thoma
Chun Tian
Gan Ting
Laura Titolo
Noriko Tomuro
Dmitriy Traytel
Mattias Ulbrich
Tom van Dijk
Andrea Vandin
Mahsa Varshosaz
Hari Govind Vediramana Krishnan
Franck Vedrine
Adele Veschetti
Henrik Wachowitz
Philipp Wendler
Hao Wu
Yechuan Xia
Shengping Xiao
Norihiro Yamada
Fang Yan
Tengshun Yang
Kangfeng Ye
Lina Ye
Bohua Zhan
Zhi Zhang
Hengjun Zhao
Xingyu Zhao
Ghiles Ziat
Martin Zimmermann
Paolo Zuliani

Organization xiii

Contents – Part II

Tools and Case Studies

Extending Isabelle/HOL’s Code Generator with Support for the Go
Programming Language . 3

Terru Stübinger and Lars Hupel

Rigorous Floating-Point Round-Off Error Analysis in PRECiSA 4.0 20
Laura Titolo, Mariano Moscato, Marco A. Feliu, Paolo Masci,
and César A. Muñoz

FM-Weck: Containerized Execution of Formal-Methods Tools 39
Dirk Beyer and Henrik Wachowitz

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 48
Daniele Dell’Erba, Yong Li, and Sven Schewe

Visualizing Game-Based Certificates for Hyperproperty Verification 67
Raven Beutner, Bernd Finkbeiner, and Angelina Göbl

Chamelon : A Delta-Debugger for OCaml . 76
Milla Valnet, Nathanaëlle Courant, Guillaume Bury, Pierre Chambart,
and Vincent Laviron

Automated Static Analysis of Quality of Service Properties
of Communicating Systems . 84

Carlos G. Lopez Pombo, Agustín Eloy Martinez Suñé, and Emilio Tuosto

Alloy Repair Hint Generation Based on Historical Data 104
Ana Barros, Henrique Neto, Alcino Cunha, Nuno Macedo,
and Ana C. R. Paiva

B2SAT: A Bare-Metal Reduction of B to SAT . 122
Michael Leuschel

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 140
Jianqiang Ding, Taoran Wu, Zhen Liang, and Bai Xue

Discourje: Run-Time Verification of Communication Protocols in Clojure
— Live at Last . 158

Sung-Shik Jongmans

Stochastic Games for User Journeys . 167
Paul Kobialka, Andrea Pferscher, Gunnar R. Bergersen,
Einar Broch Johnsen, and Silvia Lizeth Tapia Tarifa

Embedded Systems Track

Compositional Verification of Cryptographic Circuits Against Fault
Injection Attacks . 189

Huiyu Tan, Xi Yang, Fu Song, Taolue Chen, and Zhilin Wu

Reusable Specification Patterns for Verification of Resilience
in Autonomous Hybrid Systems . 208

Julius Adelt, Robert Mensing, and Paula Herber

Switching Controller Synthesis for Hybrid Systems Against STL Formulas . . . 229
Han Su, Shenghua Feng, Sinong Zhan, and Naijun Zhan

On Completeness of SDP-Based Barrier Certificate Synthesis
over Unbounded Domains . 248

Hao Wu, Shenghua Feng, Ting Gan, Jie Wang, Bican Xia,
and Naijun Zhan

Tolerance of Reinforcement Learning Controllers Against Deviations
in Cyber Physical Systems . 267

Changjian Zhang, Parv Kapoor, Rômulo Meira-Góes, David Garlan,
Eunsuk Kang, Akila Ganlath, Shatadal Mishra, and Nejib Ammar

CauMon: An Informative Online Monitor for Signal Temporal Logic 286
Zhenya Zhang, Jie An, Paolo Arcaini, and Ichiro Hasuo

Industry Day Track

UnsafeCop: Towards Memory Safety for Real-World Unsafe Rust Code
with Practical Bounded Model Checking . 307

Minghua Wang, Jingling Xue, Lin Huang, Yuan Zi, and Tao Wei

Beyond the Bottleneck: Enhancing High-Concurrency Systems with Lock
Tuning. 325

Juntao Ji, Yinyou Gu, Yubao Fu, and Qingshan Lin

AGVTS: Automated Generation and Verification of Temporal
Specifications for Aeronautics SCADE Models . 338

Hanfeng Wang, Zhibin Yang, Yong Zhou, Xilong Wang, Weilin Deng,
and Wei Li

xvi Contents – Part II

Code-Level Safety Verification for Automated Driving: A Case Study. 356
Vladislav Nenchev, Calum Imrie, Simos Gerasimou, and Radu Calinescu

A Case Study on Formal Equivalence Verification Between a C/C++
Model and Its RTL Design. 373

Gaetano Raia, Gianluca Rigano, David Vincenzoni,
and Maurizio Martina

Tutorial Papers

A Pyramid Of (Formal) Software Verification. 393
Martin Brain and Elizabeth Polgreen

Advancing Quantum Computing with Formal Methods 420
Arend-Jan Quist, Jingyi Mei, Tim Coopmans, and Alfons Laarman

No Risk, No Fun: A Tutorial on Risk Management. 447
Mariëlle Stoelinga

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 469
Ivan Perez, Alwyn E. Goodloe, and Frank Dedden

ASMETA Tool Set for Rigorous System Design. 492
Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini,
Elvinia Riccobene, and Patrizia Scandurra

Practical Deductive Verification of OCaml Programs 518
Mário Pereira

Software Verification with CPACHECKER 3.0: Tutorial and User Guide 543
Daniel Baier, Dirk Beyer, Po-Chun Chien, Marie-Christine Jakobs,
Marek Jankola, Matthias Kettl, Nian-Ze Lee, Thomas Lemberger,
Marian Lingsch-Rosenfeld, Henrik Wachowitz, and Philipp Wendler

Satisfiability Modulo Theories: A Beginner’s Tutorial 571
Clark Barrett, Cesare Tinelli, Haniel Barbosa, Aina Niemetz,
Mathias Preiner, Andrew Reynolds, and Yoni Zohar

The Java Verification Tool KeY:A Tutorial . 597
Bernhard Beckert, Richard Bubel, Daniel Drodt, Reiner Hähnle,
Florian Lanzinger, Wolfram Pfeifer, Mattias Ulbrich,
and Alexander Weigl

Contents – Part II xvii

A Tutorial on Stream-Based Monitoring. 624
Jan Baumeister, Bernd Finkbeiner, Florian Kohn, and Frederik
Scheerer

Author Index . 649

xviii Contents – Part II

http://dx.doi.org/10.1007/978-3-031-71162-6_34

Contents – Part I

Invited Papers

Adversarial Robustness Certification for Bayesian Neural Networks 3
Matthew Wicker, Andrea Patane, Luca Laurenti,
and Marta Kwiatkowska

Getting Chip Card Payments Right . 29
David Basin, Xenia Hofmeier, Ralf Sasse, and Jorge Toro-Pozo

Fundamentals of Formal Verification

A Local Search Algorithm for MaxSMT(LIA) . 55
Xiang He, Bohan Li, Mengyu Zhao, and Shaowei Cai

Integrating Loop Acceleration Into Bounded Model Checking 73
Florian Frohn and Jürgen Giesl

Nonlinear Craig Interpolant Generation Over Unbounded Domains
by Separating Semialgebraic Sets . 92

Hao Wu, Jie Wang, Bican Xia, Xiakun Li, Naijun Zhan, and Ting Gan

Practical Approximate Quantifier Elimination for Non-linear Real
Arithmetic . 111

S. Akshay, Supratik Chakraborty, Amir Kafshdar Goharshady, R.
Govind, Harshit Jitendra Motwani, and Sai Teja Varanasi

A Divide-and-Conquer Approach to Variable Elimination in Linear Real
Arithmetic . 131

Valentin Promies and Erika Ábrahám

Foundations

Free Facts: An Alternative to Inefficient Axioms in Dafny 151
Tabea Bordis and K. Rustan M. Leino

Understanding Synthesized Reactive Systems Through Invariants 170
Rüdiger Ehlers

Combining Classical and Probabilistic Independence Reasoning to Verify
the Security of Oblivious Algorithms. 188

Pengbo Yan, Toby Murray, Olga Ohrimenko, Van-Thuan Pham,
and Robert Sison

Efficient Formally Verified Maximal End Component Decomposition
for MDPs. 206

Arnd Hartmanns, Bram Kohlen, and Peter Lammich

Introducing SWIRL: An Intermediate Representation Language
for Scientific Workflows . 226

Iacopo Colonnelli, Doriana Medić, Alberto Mulone, Viviana Bono,
Luca Padovani, and Marco Aldinucci

Fast Attack Graph Defense Localization via Bisimulation. 245
Nimrod Busany, Rafi Shalom, Dan Klein, and Shahar Maoz

Learn and Repair

State Matching and Multiple References in Adaptive Active Automata
Learning . 267

Loes Kruger, Sebastian Junges, and Jurriaan Rot

Automated Repair of Information Flow Security in Android Implicit
Inter-App Communication . 285

Abhishek Tiwari, Jyoti Prakash, Zhen Dong, and Carlo A. Furia

Learning Branching-Time Properties in CTL and ATL via Constraint
Solving . 304

Benjamin Bordais, Daniel Neider, and Rajarshi Roy

A Zonotopic Dempster-Shafer Approach to the Quantitative Verification
of Neural Networks . 324

Eric Goubault and Sylvie Putot

Certified Quantization Strategy Synthesis for Neural Networks 343
Yedi Zhang, Guangke Chen, Fu Song, Jun Sun, and Jin Song Dong

Partially Observable Stochastic Games with Neural Perception Mechanisms . . . 363
Rui Yan, Gabriel Santos, Gethin Norman, David Parker,
and Marta Kwiatkowska

xx Contents – Part I

Bridging Dimensions: Confident Reachability for High-Dimensional
Controllers . 381

Yuang Geng, Jake Brandon Baldauf, Souradeep Dutta, Chao Huang,
and Ivan Ruchkin

VeriQR: A Robustness Verification Tool for Quantum Machine Learning
Models . 403

Yanling Lin, Ji Guan, Wang Fang, Mingsheng Ying, and Zhaofeng Su

Programming Languages

Formal Semantics and Analysis of Multitask PLC ST Programs
with Preemption . 425

Jaeseo Lee and Kyungmin Bae

Accurate Static Data Race Detection for C . 443
Emerson Sales, Omar Inverso, and Emilio Tuosto

CFAULTS: Model-Based Diagnosis for Fault Localization in C with Multiple
Test Cases . 463

Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho

Detecting Speculative Execution Vulnerabilities on Weak Memory Models . . . 482
Nicholas Coughlin, Kait Lam, Graeme Smith, and Kirsten Winter

Staged Specification Logic for Verifying Higher-Order Imperative
Programs . 501

Darius Foo, Yahui Song, and Wei-Ngan Chin

Unifying Weak Memory Verification Using Potentials 519
Lara Bargmann, Brijesh Dongol, and Heike Wehrheim

Proving Functional Program Equivalence via Directed Lemma Synthesis 538
Yican Sun, Ruyi Ji, Jian Fang, Xuanlin Jiang, Mingshuai Chen,
and Yingfei Xiong

Reachability Analysis for Multiloop Programs Using Transition Power
Abstraction. 558

Konstantin Britikov, Martin Blicha, Natasha Sharygina,
and Grigory Fedyukovich

Contents – Part I xxi

Logic and Automata

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 579
Ben Greenman, Siddhartha Prasad, Antonio Di Stasio, Shufang Zhu,
Giuseppe De Giacomo, Shriram Krishnamurthi, Marco Montali,
Tim Nelson, and Milda Zizyte

Sound and Complete Witnesses for Template-Based Verification of LTL
Properties on Polynomial Programs . 600

Krishnendu Chatterjee, Amir Goharshady, Ehsan Goharshady,
Mehrdad Karrabi, and Đorđe Žikelić

The Opacity of Timed Automata. 620
Jie An, Qiang Gao, Lingtai Wang, Naijun Zhan, and Ichiro Hasuo

Parameterized Verification of Round-Based Distributed Algorithms
via Extended Threshold Automata . 638

Tom Baumeister, Paul Eichler, Swen Jacobs, Mouhammad Sakr,
and Marcus Völp

The Nonexistence of Unicorns and Many-Sorted Löwenheim–Skolem
Theorems . 658

Benjamin Przybocki, Guilherme Toledo, Yoni Zohar, and Clark Barrett

Author Index . 677

xxii Contents – Part I

Tools and Case Studies

Extending Isabelle/HOL’s Code Generator
with Support for the Go Programming

Language

Terru Stübinger1,2 and Lars Hupel1,2(B)

1 Giesecke+Devrient, Prinzregentenstr. 161, 81677 München, Germany
2 Technische Universität München, School of Computation, Information
and Technology, Boltzmannstr. 3, 85748 Garching bei München, Germany

stuebinm@in.tum.de, lars.hupel@tum.de

Abstract. The Isabelle proof assistant includes a small functional lan-
guage, which allows users to write and reason about programs. So far,
these programs could be extracted into a number of functional languages:
Standard ML, OCaml, Scala, and Haskell. This work adds support for
Go as a fifth target language for the Code Generator. Unlike the previous
targets, Go is not a functional language and encourages code in an imper-
ative style, thus many of the features of Isabelle’s language (particularly
data types, pattern matching, and type classes) have to be emulated
using imperative language constructs in Go. The developed Code Gener-
ation is provided as an add-on library that can be simply imported into
existing theories.

Keywords: Theorem provers · Code generation · Go programming
language

1 Introduction

The interactive theorem prover Isabelle of the LCF tradition [13] is based on
a small, well-established and trusted mathematical inference kernel written in
Standard ML. All higher-level tools and proofs, such as those included in the
most commonly-used logic Isabelle/HOL, have to work through this kernel.

Many of the tools available to users in Isabelle/HOL feel immediately familiar
to anyone with experience in functional programming languages: it is possible
to define data types, functions, and Haskell-style type classes and instances.

Isabelle’s nature as a theorem prover further makes it easy to formalise and
prove propositions about such programs. To allow use of such programs outside
of the proof assistant’s environment, Isabelle comes equipped with a Code Gen-
erator, allowing users to extract source code in Haskell, Standard ML, Scala, or
OCaml, which can then be compiled and executed. This translation of code works
by first translating into an intermediate language called Thingol, shared between
all targets; from this language, code is then transformed into the individual tar-
get languages via the principle of shallow embedding, that is, by representing
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 3–19, 2025.
https://doi.org/10.1007/978-3-031-71177-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_1&domain=pdf
http://orcid.org/0009-0006-7411-2533
http://orcid.org/0000-0002-8442-856X
https://doi.org/10.1007/978-3-031-71177-0_1

4 T. Stübinger and L. Hupel

constructs of the source language using only a well-defined subset of the target
language, thus side-stepping the issue of finding a complete formal description
of a target language’s behaviour [6,7].

Go is a programming language introduced by Google in 2009. It is a general-
purpose, garbage-collected, and statically typed language [4]. In contrast to the
existing targets of Isabelle’s Code Generator, it is not a functional language, and
encourages programming in an imperative style. However, it is a very popular
language, and many large existing code bases have been written in it.

Contributions. This paper extends Isabelle’s Code Generation facility with sup-
port for Go. For that, we demonstrate a translation scheme from programs in
Thingol to programs in Go (§4). We provide this facility as a stand-alone the-
ory file that can easily be imported into existing developments. We provide our
development as an entry in the Archive of Formal Proofs (AFP)—a repository
of Isabelle proof libraries—, making it immediately usable in other contexts [17].

The motivation for this work stems from the internal use of both ecosystems
at Giesecke+Devrient: Isabelle for formalisation purposes, and Go for the real-
world implementation. This naturally lead to a formalisation gap, which this
project sought to close (§5).

Related Work. This paper describes the first attempt at translating Isabelle
formalisations into a non-functional programming language. Prior work in lever-
aging imperative features in the Code Generator [2] has targeted the existing,
functional programming languages, and thereby could reuse much of the existing
infrastructure. There is also unpublished work on adding support for F# to the
Code Generator [1], another functional language.

Shallow embeddings of C in proof assistant are already well known; for exam-
ple in F* [14], Isabelle [16], and Why3 [15]. Those tools are not designed to
export arbitrary code, but require developers to use a restricted subset of the
host language. Instead, they are mainly geared towards low-level programming;
with some providing C-style memory management. Our work focuses instead on
translating the full functional host language into a high-level imperative lan-
guage, therefore avoiding the need to (re)write host language code specifically
for the purpose.

2 The Intermediate Language Thingol

Isabelle’s Code Generation pipeline works in multiple stages. Crucially, all defini-
tions made in Isabelle are first translated into an abstract intermediate language
called Thingol, which is the last step shared between all target languages. The
final stage then uses a shallow embedding to translate the Thingol program into
source code of the target language.

Consequently, Thingol’s design reflects the features common to previous tar-
get languages, and is based on a simply-typed λ-calculus with ML-style polymor-
phism. Perhaps surprisingly, Thingol also supports type classes, which can be

Go Support for the Isabelle Code Generator 5

Fig. 1. An example program (omitting the definition of fold for brevity)

mapped easily to Haskell and Scala, but less easily to the other targets, which
instead use a dictionary construction (§4.5). The supported fragment of type
classes and instance corresponds to Haskell98, with the exception of constructor
classes (which would require a more expressive type system) [8,10].

Thingol’s terms are simple λ-expressions with the addition of case expression
for pattern matching on data types. A Thingol program is a list of declarations,
i.e. top-level items which introduce data types, functions, type classes, and their
instances.

While there is no formal semantics of Thingol, it can be thought of as a
Higher-Order Rewrite System (HRS) [11,12]. It provides a convenient abstrac-
tion over the target languages’ semantics. Because a HRS does not have a spec-
ified evaluation order, the Code Generator cannot guarantee total, but only
partial correctness. (This restriction applies to all supported target languages.)

Reusing Thingol has two immediate benefits: we can leverage the entire entire
existing pipeline as well as its existing code adaptations, and are not forced to
reimplement some tedious translation of Isabelle’s more advanced features. Addi-
tionally, creating a custom intermediate language would not help to meaningfully
address the functional–imperative mismatch between Isabelle/HOL and Go, but
only shift the complexity elsewhere.

6 T. Stübinger and L. Hupel

3 The Target Fragment of Go

Go, being an imperative language, differs in many aspects from the already-
existing target languages of Isabelle’s Code Generator. Conversely, many of Go’s
unique features are not needed by the generator. Since the translation works as
a shallow embedding into the target language, it suffices to use the fragment
which can be used to represent the various statements of Thingol. Consequently,
we will focus on this fragment only, but discuss—if necessary—why we did not
pursue alternative features or solutions.

This approach leaves many of Go’s most interesting features (e.g. channels
or methods) entirely unused. The fragment we use can be understood as a “func-
tional subset” of the Go language, meaning that it comprises only those features
that closely align with those of the (functional) pre-existing code generation
targets available in Isabelle as well as those of Thingol.

3.1 Syntax

The syntactic fragment used by the Code Generator1 is inspired by that of
Featherweight Generic Go [5], but differs in some important aspects:

1. Methods are not included; instead we use “ordinary” top-level functions.
2. Go distinguishes syntactically between expressions and statements, whereas

Featherweight Generic Go does not. We retain this distinction and discuss
conversion between them in §3.4.

3. Type parameters can be declared with an interface constraint. However, in
our fragment the only available constraint is the unconstrained any, as Go’s
other constraints are not useful for our translation (§4.5).

4. We use modern Go’s syntax for generics, which differs from the one used by
Featherweight Generic Go, which pre-dates the introduction of generics in Go
1.18 and was meant as a proposal demonstrating a possible design.

3.2 Declarations

A (top-level) declaration D can define either a new type or function. Within one
package, the order of declarations does not matter; any item may reference any
other. A program as a whole is simply a list D of such declarations (note that
we use overlines such as α to mean syntactic repetition).

Structure Types. A declaration of the form type tS
[
α c

]
struct{A τ} intro-

duces a new type constructor with fields A of types τ to the program. It may be
polymorphic and take type arguments α which can be freely referenced within
τ . Since Go’s syntax demands a constraint c for each type variable α, we always
use any, which allows any type to be substituted for α.

Note that there is no analogous construct to Thingol’s sum types; that is, it
is not possible to a have a structure type which has more than one constructor.
1 See the appendix of this paper for the full listing: arxiv.org/abs/2310.02704.

https://arxiv.org/abs/2310.02704

Go Support for the Isabelle Code Generator 7

Therefore, when encountering non-trivial sum types in Thingol, we must encode
them accordingly (see §4.2 for details).

Interface Types. A declaration of the form type tI
[
α c

]
interface{} intro-

duces a new (empty) interface type to the program. While Go supports non-
empty interfaces containing methods, we do not use this feature (see §4.5).

Unlike interfaces in typical object-oriented languages such as Java, Go’s inter-
faces are structural in nature: any struct value conforms to an interface if (and
only if) the struct implements a superset of the declared methods of the inter-
face. This can also be probed at runtime.

This implies that empty interfaces correspond to a “top” type that can denote
arbitrary values. Go defines the unconstrained interface any as an alias to this
empty interface type, which we use extensively in the translation scheme of data
types, for reasons that will be explained later (§4.2). Additionally, we also use
them for the translation of type classes (§4.5).

Functions. A declaration func f
[
α c

]
(x τ) (γ) { s } introduces a new func-

tion f to the program. The type parameters α can be referenced within both
argument types τ and the return types γ.

Unlike in Thingol, a function cannot have multiple equations nor perform
pattern matching on its arguments. Instead there is only one list of argument
names α, which are in scope for the (unique) function body s.

An unusual feature of Go is that its functions may return more than one
value (note that we have return types γ instead of just a single return type γ):

func foo() (bool, int, string) {
return false, 42, "bar"

}

func main() {
x, y, z := foo()

}

At first glance this might seem analogous the tuples present in Standard ML,
with foo() returning a single value of the tuple (bool, int, string). But this
is not the case; Go has no concept of tuples. Instead, the function itself returns
multiple values, which must be immediately assigned names (or discarded) at
the function’s call site. Thus a call like no_tuples := foo() is not allowed.

3.3 Expressions

Expressions e can have several forms: variables, function application, and func-
tion abstraction are familiar from the λ-calculus. The others may require a bit
more explanation.

8 T. Stübinger and L. Hupel

Structure Literal. A literal of the form ts[α]{e} gives a value of the struct type
with name tS applied to type arguments α, i.e., it produces a new value of the
type ts

[
α
]

in which the fields are set to the evaluated forms of the expressions
e. Note that the field names present in the declaration of a struct type are
absent: while they could be used, Go does not require them. We omit them in
the interest of shorter code.

Field Selection. An expression e.A selects the field named A of an expression e,
which must have a fitting struct type τS that was declared with a field name
A, and returns the value of that field. This is the only place outside a structure
type’s declaration that field names are used.

Type Conversion. An expression τI(e) evaluates to a value of the interface type
τI which contains the evaluated form of e as its inner value. The original type σ
of e is not erased at runtime; it can be recovered using a type assertion statement
(see the next section). This expression can also be thought of as an “upcast”.

3.4 Statements

Unlike in Isabelle (and in Thingol) where “everything is an expression”, Go has
the same syntactic distinction between expression and statements that is com-
mon across imperative languages: an assignment x := 42; is a statement, not
an expression, and cannot be used in places where an expression is expected.

However, we constrain our fragment to only include sequences of statements
that end in a return. This enables easy embedding of a statement into an
expression: wrapping it into an immediately-called lambda func () τ { s }()
suffices. Note that a sequence of statements interspersed with ; is treated syn-
tactically as a single statement.

The remainder of this section introduces the statement forms of our fragment.
All but the type assertion should feel familiar from similar languages.

Return. A statement returne evaluates one or more expressions, then returns
from the current function. The e must match the return types given in the
function’s head.

If Statement. A statement of the form if (e) { s1 }; s2 will evaluate e, which
must have a boolean type. If it evaluates to the built-in value true, then s1 is
evaluated. Since all statements end in return, it will then return from the cur-
rent function. Otherwise, s2 is evaluated. The form if (e) { s } else { s2 }
would be semantically equivalent within our fragment; we avoid it to reduce
nesting in the generated code.

Type Assertion. A statement of the form x, y := e.(σ) can be thought of as
the inverse operation of type conversions, i.e., a “downcast”. For an expression e
of an interface type τI , the assertion checks whether the inner value contained
within the interface value has type σ. The boolean variable y will indicate if the
check was successful. If so, x will be bound to that inner value; otherwise, it will
be nil, Go’s null pointer. Note that the type of x is σ.

Go Support for the Isabelle Code Generator 9

4 Translation Scheme

In this section, we will discuss the concrete translation schemes employed for
Thingol programs. For brevity, we omit purely syntactic mappings, and focus on
the non-trivial steps.

The translation scheme attempts to preserve names as far as possible.
Isabelle’s Code Generator already provides (re)naming infrastructure, such as
generating guaranteed-unused “fresh” names where necessary. In addition to
that, some functions and data types require upper-case names, to match Go’s
rules for exported symbols.

4.1 Types, Terms and Statements

We define three translations type(τ), expr(t), and stmt(t). The first is a
straightforward syntactic mapping of types. In the remainder of the chapter,
we will informally equate Thingol types τ with their Go translation type(τ)
and write both simply as τ . For now, we exclude any mapping of common types
(e.g. integers) to built-in Go types; we will revisit this topic later (§4.6).

The other two translations—expr and stmt—are used for converting Thin-
gol terms into Go expressions and statements. Which one is used thus depends on
what Go expects in each particular context; for example, terms used as function
arguments use expr; a term which is a function body uses stmt. Semantically,
for any term t, expr and stmt satisfy the following equivalences:

stmt(t) ≡ return expr(t);
expr(t) ≡ func() τ {stmt(t)}()

Abstractions. The translation of a λ-abstraction λ(x::τ). (t::γ) demonstrates the
distinction between expressions and statements:

expr(λ(x::τ). (t::γ)) = func (x τ) γ {stmt(t)}

Although curried abstractions are unusual in Go, no effort is made to uncurry
them (unlike top-level functions, which we do uncurry §4.4).

Applications of Top-Level Functions. Applications t are more tedious: Definitions
of top-level functions are uncurried (§4.4), so we first have to check if t is a call
to such a function, i.e., if t has the shape

(· · · ((f [τ i] a1) a2) · · ·) an, where f
references a top-level function or data type constructor taking m arguments.

If so, we have to consider three cases:

1. Fully-satured application (n = m); all arguments are passed into f
2. Unsatured application (n < m); need to η-expand

10 T. Stübinger and L. Hupel

3. Over-satured application (n > m). This occurs if f returns another function,
with a1 to am being the immediate arguments to f and any remaining am+1

to an as curried arguments. The latter will be passed individually.

As will be described later (§4.5), the dictionary construction used to encode
Isabelle’s type classes may introduce additional (value-level) parameters to top-
level functions, also adding corresponding additional arguments d1 to dr to each
of their applications. These are inserted before the user-defined parameters.

Altogether, we arrive at the following scheme when f references a function:

expr(t) = f[τ1,. . .,τi](d1,...dr,a1,...,am)(am+1)...(an)

Finally, if f references a data type constructor of a type τ rather than a function,
the case n > m cannot occur. However, we must wrap the constructor into a type
conversion to type τ , and use slightly different syntax for passing the arguments:

expr(t) = κ(f[τ1,. . .,τi]{d1,...dr,a1,...,am})

Lambda Applications. If an application t = t1 t2 is not a call to a top-level func-
tion, then the translation is straightforward: expr(t1 t2) = expr(t1)(expr(t2)).

4.2 Data Types

A data type κ defined in Thingol consists of type parameters αi and constructors
f i. Each fi gets translated into its own separate struct type.

As was discussed in §3, Go knows no sum types, thus the translation has to
simulate their behaviour by other means. For a data type, we generate a new
unconstrained interface type δ, meant to represent any constructor fi of κ.

If the data type κ has exactly one constructor f1, then no additional interface
type δ is generated.

Constructors. Defining a struct type for an individual constructor is straight-
forward. A constructor f with fields of types τ1 to τi is translated into Go as a
struct with the same name and fields: type f struct {A τ i}, where the Ai

are newly-invented names for each of the fields, as no field names are present in
Thingol. Note that those generated field names are entirely unimportant (access
happens only through destructors, and the names are not required when con-
structing a value); the only requirement imposed on them is that each Ai of the
same struct are distinct. Thus the type Nat (Fig. 1) becomes:

type Nat any;
type Zero struct { };
type Suc struct { A Nat; };

With that, we can construct the number 1 as Nat(Suc{Nat(Zero{})) . The
interface type δ (here Nat) acts as a faux sum type: the translation promises that

Go Support for the Isabelle Code Generator 11

(as long as its input program was type-correct) it will never contain anything but
values of types Zero and Suc. On the Go side, there is no such guarantee: it sees
Nat as unconstrained, and would happily allow such values as Nat(Suc{nil})
or even Suc{"wrong"}, leading to runtime exceptions elsewhere in the generated
code, especially in translated pattern matches (§4.3).

Destructors. Along with each constructor’s struct type, we generate a synthetic
function f_dest not present in the Thingol program, to be used as a destructor
in the translation of Thingol’s case expressions (§4.3). Their sole purpose is to
unpack and return the individual fields in a struct type, exploiting Go’s multiple
return types.

func f_dest (p f) (τ1, . . ., τn) {
return p.A1, . . ., p.An

}

Destructors are omitted when there are no fields to unpack. For Nat, we need
only one:

func Suc_dest(p Suc)(Nat) { return p.A; }

Example. Slightly more involved is the αlist data type (Fig. 1). It is polymor-
phic, and thus requires use of Go’s generics:

type List[a any] interface {};
type Nil[a any] struct { };
type Cons[a any] struct { A a; Aa List[a]; };
func Cons_dest[a any](p Cons[a])(a, List[a]) { return p.A, p.Aa; }

4.3 Case Expressions

Thingol’s case expressions implement pattern matching on a value, in a way
which will be immediately familiar from other functional languages such as Stan-
dard ML or Haskell: they inspect a scrutinee t and match it against a series of
clauses pi → bi. Each clause contains a pattern pi and a term ti that is to be eval-
uated if the pattern matches the scrutinee. Syntactically, patterns are a subset
of terms; they can only be composed of variables and fully-satisfied applications
of data type constructors to sub-patterns f pi constructed of the same subset.

Since Go has no comparable feature, a data type pattern in a case expression
is translated into a series of (possibly nested) if-conditions and calls to destruc-
tor functions. The bodies of the innermost if-condition then correspond to the
translated terms ti, which must be in statement-form, i.e., ending in a return-
statement. Thus, if the pattern could be matched, further patterns will not be
executed. Naturally, using return in this manner implies that a case expression
must always either be in tail position, or else be wrapped into an anonymous
function if it does not (§3).

12 T. Stübinger and L. Hupel

If the pattern did not match, execution will continue with either the next
block of if-conditions generated from the next clause, or encounter a final catch-
all call to Go’s built-in panic function, which aborts the program in case of an
incomplete pattern where no clause could be matched (incomplete patterns are
admissable in Isabelle’s logic, see Hupel [9] for a detailed description). This panic
can also be encountered if an external caller exploited the lossy conversion of
sum types as described above and supplied, e.g., a nil value as a scrutinee.

Taken together, an entire case expression is translated as a linear sequence
of individual clauses, followed by a panic:

stmt(case t :: τ of [p → b]) = stmt(p → b); panic("Match failed");

Let us now consider the concrete translation for variable and constructor pat-
terns.

Variable Pattern. We assign the scrutinee t to the variable x to make it available
in the scope of b: stmt(x → b) = {x := expr(t); stmt(b)}.

Constructor Pattern. The pattern is of the form f [τ i][sk]. If all sub-patterns sk
are variable patterns, the translation is once again straightforward:

stmt(f [τ i][sk] → b) = {q,m:= t.(f [τ i]);
if (m) {A1, . . . , Ak := f_dest(t); stmt(b)}}

Nested constructor patterns are translated in the same way, but pushed inwards
into the body of the if-statement generated above:

stmt(f [τ i][sk] → b) = {q,m:= t.(f [τ i]);
if (m) {A1, . . . , Ak := f_dest(t); I }}

I = stmt(case A1 of s1 → (. . . → (case Ak of sk → b)))

In other words, the sub-patterns are treated as if they were further nested case
expressions. This results in a total nesting depth of one level per constructor.

Within the innermost if, the body b of the pattern’s clause is translated as
statement to ensure it returns from the current function.

Optimizing the Nesting Level. The translation described in this section can trans-
late arbitrary patterns, but comes at the price of potentially exponential code
blow-up. Even a single pattern consisting of just a constructor and k fields, none
of which are proper patterns, will still produce k levels of nested if-statements.
But if the fields themselves are again data type constructors with sub-patterns,
the number of nested levels quickly increases further.

In real-world applications, we can reduce the blow-up by optimizing construc-
tor patterns without arguments. Instead of calling a destructor function, we can
emit an equality check, since there are no fields to extract. Multiple equality
checks can be joined together using Go’s conjunction operator &&.

Go Support for the Isabelle Code Generator 13

Example. Consider the function hd2 (Fig. 1), which takes a list and returns
(optionally) the second element of the list. It is translated into Go as follows:

func Hd2[a any] (x0 List[a]) Option[a] {
if (x0 == (List[a](Nil[a]{}))) {
return (Option[a](None[a]{}));

}
q, m := x0.(Cons[a]);
if (m) {
_, c := Cons_dest(q);
if (c == (List[a](Nil[a]{}))) {
return (Option[a](None[a]{}));

}
}
q, m := x0.(Cons[a]);
if (m) {
_, p := Cons_dest(q);
q, m := p.(Cons[a]);
if (m) {
ya, _ := Cons_dest(q);
return (Option[a](Some[a]{ya}));

}
}
panic("match failed");

}

This piece of generated code benefits from the optimisation described above
(in its first two clauses). Also, observe that since unused variables are a compile
error in Go, unused bound names above have been generated as _ instead.

4.4 Top-Level Functions

Unlike lambdas that occur within terms, top-level functions in Thingol can have
multiple clauses and pattern-match on their arguments, neither of which is sup-
ported in Go. It is thus necessary to translate them differently: all equations of
the same function will have to be merged, with the pattern matching on their
parameters again pushed inwards into the then combined, single function body.

Further, treating them differently from in-term lambda expression also allows
the generator to uncurry them, creating code that is much closer to an idiomatic
style in Go.

Merging Multiple Clauses. Thingol allows Haskell-style function definition com-
prising multiple clauses. But in Go, all parameters of functions must be simple
variables. Thus, if any of the parameters patterns pi is a proper pattern, a fresh
name xi for it is invented. Likewise, if a parameter is a variable binding instead
of a proper pattern, but has multiple different names in two clauses, the name
xi used in the first clause is picked as the name of the parameter in Go.

14 T. Stübinger and L. Hupel

Pattern Matching. The combined function body then contains a pattern match
translation, as described above.2 Each equation is treated as a clause of a syn-
thetic case-expression; for functions matching on multiple parameters, we again
push inwards and translate as if a nested series of case-expressions were present.

Example. Consider this definition for hd2’, which is semantically equivalent to
hd2, but written using multiple equations:
fun hd2’ :: ∀α.α list ⇒ α option where
hd2’ Nil = None
hd2’ (Cons x Nil) = None
hd2’ (Cons x (Cons y xs) ys) = Some y

The generated Go code is identical.

Special Case: Top-Level Constants. Thingol accepts top-level definitions that
are not functions, for example: definition a :: nat where a = 10 . Unfor-
tunately, Go admits top-level variable declarations only for monomophic types,
and further disallows function calls in their definitions.

Therefore, we must treat such Thingol definitions as if they were nullary
functions. While this changes nothing of the semantics of the translated program,
it does incur a (potentially significant) runtime cost: constants will be evaluated
each time they are used, instead of only once when the program is initialized.

4.5 Dictionary Construction

On the surface, Isabelle’s Haskell-style type classes and Go’s interfaces share
many of the same features, and are sometimes considered to be near-
analogous [3]. However, translating type classes into interfaces does not work,
due to an implementation concern: Go directly compiles methods into virtual
tables for dynamic dispatch. A Go interface declares multiple methods, where
each method type must take the generic value as its zeroth (i.e. implicit) param-
eter. Thingol has no such restriction. Consider, for example:

class foo where
foo :: unit ⇒ α

class bar where
bar :: (α ⇒ α) ⇒ unit

As Go interfaces, both are invalid: foo declares a function whose parameter
types do not mention α at all, while bar’s function does not take a simple α
parameter (but a parameter whose type contains α).

To avoid the additional complexity of treating all these cases separately, we
resort to using a dictionary construction [7,9] in all cases. Since the existing
SML target of the Code Generator has to deal with the same issue, the required
infrastructure is already in place: Thingol’s terms come with enough annotations
to resolve all type class constraints during translation and replace the implicit
instance arguments of functions making use of type classes by explicit dictionary
values, which we represent as one data type per type class.

Thus only relatively few things are left to do in Go:
2 The already-existing Scala target uses a similar transformation.

Go Support for the Isabelle Code Generator 15

1. declare a data type for each type class, called its dictionary type
2. translate type class constraints on functions into explicit function arguments

of dictionary types
3. translate type class instances into either a value of the type class’s dictionary

type, or, if the instance itself takes type class constraints, to a function pro-
ducing such a value when given values of dictionary types representing these
constraints

4. any time a top-level function is used, the already-resolved type class con-
straints must be given as explicit arguments

Example. The class declarations (Fig. 1) are translated as follows:
type Semigroup[a any] struct {
Plus func(a, a) a

}

type Monoid[a any] struct {
Semigroup_monoid Semigroup[a]
Zero func () a

}

func Sum[a any] (a_ Monoid[a], xs List[a]) a {
return Fold[a, a](
func (aa a) func(a) a {
return func (b a) a { return a_.Semigroup_monoid.Plus(aa, b); };

},
xs, a_.Zero()

);
}

4.6 Mapping High-Level Constructs

So far, the shallow embedding we have presented produced code with no depen-
dencies on the Go side, with only the built-in constructs panic and && used.
All higher-level constructs used by programs (such as lists, numbers) must thus
be “brought along” from Isabelle, and are translated wholesale exactly as they
are defined in their formalisations. While this guarantees correctness, it is highly
impractical for real-world applications: for example, natural numbers as defined
in Isabelle/HOL (unary Peano representation, §4.2) require linear memory and
quadratic runtime even for simple operations like addition.

Luckily, the Code Generator already has a solution for this conundrum in
the form of printing rules, which can map Isabelle’s types and constants to user-
supplied names in the target language. We have set up printing rules mapping:
– Isabelle/HOL’s booleans to booleans in Go
– numbers to arbitrary-precision integers (via Go’s math/big package)
– strings of the String.literal type to strings in Go

Unfortunately, linked lists cannot be as easily mapped by default, because Go
does not feature a standard implementation of linked lists.

16 T. Stübinger and L. Hupel

5 Evaluation

Even though Go greatly differs from the existing targets, we have achieved almost
full feature parity with the translation described in this paper. Isabelle constructs
that are not (cleanly) mapped are:

– infinite data types, which can be defined e.g. via codatatype in Isabelle, but
are rejected by Go’s compiler;

– some low-level string operations that operate on byte values of characters.

Trusted Code Base. All target language generators are part of Isabelle’s trusted
code base, i.e. bugs inside its own code may lead to bugs in the generated pro-
gram, and cannot be checked for by Isabelle’s kernel. Fortunately, our imple-
mentation is “just another module” to the core infrastructure; up until Thingol
everything remains unchanged, in line with the other language targets.

However, future (more ambitious) code printing may require changes in Thin-
gol: If code printing shall assume more constructs of Go, it would be useful for
Thingol itself to have some concept of the syntactic distinction between expres-
sions and statements.

Code Style. The generated Go code is not idiomatic, but neither is the generated
code for the other languages. Even though the semantics of SML, OCaml and
others may more closely resemble the intention of Isabelle users, the generated
code in those languages is also littered with syntactic artifacts. This is evidenced
by the fact that neither SML nor OCaml support type classes, and Scala code
hardly uses type classes in the way that Haskell does (typically prefering object-
orientation). Therefore, we do not envision a future need to align the style of the
generated code more closely with the preferred style of hand-written Go code.

The main challenge arises from interfacing between generated and hand-
written Go code, both of which would be present in a typical application. For
instance, constructing values for the translated datatype definitions or using
curried functions in Go is unfortunately verbose, and can easily introduce errors.

We therefore recommend to write wrapper code that exposes a “cleaner”
interface, ready to be consumed by the real-world application. The wrapper must
be written carefully: many explicit type annotations are needed in the code, and
not all incorrect type annotations will cause compilation to fail. In particular,
if a data type’s constructor is annotated with a wrong interface type, the
assumption underlying the translation of case-expressions will fail, resulting in
a “match failed” error at runtime (§4.3).

Another awkward source of problems when integrating the generated code
with a larger code base is that Go’s standard library lacks common functional
data structures, such as lists or tuples (§4.6). Hand-written code would need
to deal with the necessary conversions (e.g. from a Go array into a linked
list). To some extent, this can be alleviated by leveraging third-party libraries
for functional data structures, which are unfortunately not popular in the Go
community.

Go Support for the Isabelle Code Generator 17

5.1 Case Studies

We conducted two case studies that have confirmed our approach.

Existing Formalisation. At Giesecke+Devrient, we use Isabelle for a substan-
tial formalisation of various graph algorithms powering a financial transaction
system. The purpose of the formalisation is to provide real-world security guar-
antees, such as inability to clone money. We have previously used the Code
Generator to produce Scala code as a reference implementation, combined with
some hand-written wrapper code and basic unit tests.

As a simple evaluation of Go code generated from the same Isabelle theories,
we re-wrote the unit tests and the necessary wrapper code in Go. We obtained
equivalent results and could not find bugs in the Code Generator or unintended
behaviour of the code it produced. Note that no adaptations of the Isabelle
formalisation were necessary, which proves that the Go backend works as a drop-
in replacement for the other targets.

Starting from this, we can narrow the formalisation gap mentioned in the
introduction. It allows us to link the Isabelle/HOL reference implementation
with the real-world production implementation in Go.

HOL-Codegenerator_Test. Isabelle’s distribution contains a Code Generator test
session which is used as a self-check for the various target languages of the Code
Generator. For this paper, a single export command is relevant, which is meant
to export a considerable chunk of Isabelle/HOL’s library as a stress-test for the
Code Generator. This has worked as expected, with the entirety of the test suite
successfully compiling in Go.

As a consequence, our approach enables the vast majority of Isabelle users to
generate Go code without having to rewrite their formalisation. In particular—
because we map to a functional fragment of Go—there is no need for users to
reach for a deep embedding of an imperative language.

6 Conclusion

We have presented a translation from Thingol by shallow embedding into a
fragment of Go, and implemented it as a target language for Isabelle’s code gen-
eration framework. The new target language has been used with success to port
an existing Isabelle formalisation that was only targeting Scala to additionally
target Go. The implementation is readily usable with a standard Isabelle2024
installation and requires merely importing an additional theory file. The suite
of existing tests of Isabelle’s Code Generator is also supported.

18 T. Stübinger and L. Hupel

Future Work. The two most promising areas of future work are: leveraging Go’s
imperative nature by tightly integrating it with Imperative/HOL [2]; and gen-
erating code that utilizes more of Go’s standard libraries through custom code
printing rules. Both can be implemented using similar mechanisms. However,
substantial changes to Isabelle’s code generation infrastructure are required,
because Go demands more type annotations than other target languages.

Acknowledgements. The authors would like to thank Florian Haftmann and Cor-
nelius Diekmann for their contributions to the development. This work has been par-
tially supported by the Federal Ministry of Education and Research (BMBF), Ver-
bundprojekt CONTAIN (13N16582).

Availability. The artifact for this paper is available in the Archive of Formal Proofs
(AFP) [17] and under the DOI 10.5281/zenodo.11608252.

References

1. Brucker, A.D.: New Code Generator Target: F#. https://mailman46.in.tum.de/
pipermail/isabelle-dev/2022-August/017633.html

2. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7_14

3. Ellis, S., Zhu, S., Yoshida, N., Song, L.: Generic go to go: dictionary-passing,
monomorphisation, and hybrid. Proc. ACM Program. Lang. 6(OOPSLA2), 1207–
1235 (2022)

4. Go Team: the Go programming language specification. https://go.dev/ref/
specgo.dev/ref/spec

5. Griesemer, R., et al.: Featherweight Go. Proc. ACM Program. Lang. 4, 1–29 (OOP-
SLA) (2020). https://doi.org/10.1145/3428217

6. Haftmann, F.: Code generation from specifications in higher-order logic, Ph.D.
thesis, Technische Universität München (2009)

7. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4_9

8. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T.,
McBride, C. (eds.) Types for Proofs and Programs, pp. 160–174. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2007)

9. Hupel, L.: Certifying dictionary construction in Isabelle/HOL. Fund. Inform.
170(1–3), 177–205 (2019)

10. Jones, S.P.: Haskell 98 language and libraries: the revised report. Cambridge Uni-
versity Press (2003)

11. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoret.
Comput. Sci. 192(1), 3–29 (1998)

12. Nipkow, T.: Higher-order rewrite systems. In: Hsiang, J. (ed.) Rewriting Tech-
niques and Applications, pp. 256–256. Springer, Berlin Heidelberg, Berlin, Heidel-
berg (1995)

13. Nipkow, T., Klein, G.: Concrete Semantics. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10542-0

https://doi.org/10.5281/zenodo.11608252
https://mailman46.in.tum.de/pipermail/isabelle-dev/2022-August/017633.html
https://mailman46.in.tum.de/pipermail/isabelle-dev/2022-August/017633.html
https://doi.org/10.1007/978-3-540-71067-7_14
https://go.dev/ref/spec
https://go.dev/ref/spec
https://doi.org/10.1145/3428217
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0

Go Support for the Isabelle Code Generator 19

14. Protzenko, J., et al.: Verified low-level programming embedded in F*. Proc. ACM
Program. Lang. 1, 1–29 (ICFP) (2017)

15. Rieu, R.: Development and verification of arbitrary-precision integer arithmetic
libraries, Ph.D. thesis, Université Paris-Saclay (2020)

16. Schirmer, N.: A sequential imperative programming language syntax, seman-
tics, hoare logics and verification environment. Archive of Formal Proofs (2008).
https://isa-afp.org/entries/Simpl.html

17. Stübinger, T., Hupel, L.: Go Code generation for Isabelle. Archive of Formal Proofs
(2024). https://isa-afp.org/entries/Go.html

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://isa-afp.org/entries/Simpl.html
https://isa-afp.org/entries/Go.html
http://creativecommons.org/licenses/by/4.0/

Rigorous Floating-Point Round-Off Error
Analysis in PRECiSA 4.0

Laura Titolo1(B) , Mariano Moscato1 , Marco A. Feliu1 , Paolo Masci1 ,
and César A. Muñoz2

1 Analytical Mechanics Associates Inc., Hampton, USA
{laura.titolo,mariano.m.moscato,marco.feliu,

paolo.m.masci}@nasa.gov
2 NASA Langley Research Center, Hampton, USA

cesar.a.munoz@nasa.gov

Abstract. Small round-off errors in safety-critical systems can lead to
catastrophic consequences. In this context, determining if the result com-
puted by a floating-point program is accurate enough with respect to
its ideal real-number counterpart is essential. This paper presents PRE-
CiSA 4.0, a tool that rigorously estimates the accumulated round-off
error of a floating-point program. PRECiSA 4.0 combines static analy-
sis, optimization techniques, and theorem proving to provide a modular
approach for computing a provably correct round-off error estimation.
PRECiSA 4.0 adds several features to previous versions of the tool that
enhance its applicability and performance. These features include sup-
port for data collections such as lists, records, and tuples; support for
recursion schemas; an updated floating-point formalization that closely
characterizes the IEEE-754 standard; an efficient and modular analysis
of function calls that improves the performances for large programs; and
a new user interface integrated into Visual Studio Code.

1 Introduction

Round-off errors arise from the difference between real numbers and their finite
precision representations. In a floating-point program, round-off errors accumu-
late throughout the computation. This may lead to a large divergence between
the result computed using floating-point arithmetic and the one ideally obtained
using real-number arithmetic. In application domains such as avionics, even
small rounding errors may have catastrophic consequences if they are not care-
fully accounted for. Examples of these errors have been found, for instance, in
geofencing applications [29] and position encoding algorithms [41]. Several tools
have been proposed over the years to reason about floating-point errors (see [8]
for an overview). However, most of the proposed tools either target straight-line
code and scalar values only, or do not provide sufficient formal guarantees. This
limits their applicability to safety-critical real-world applications.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 20–38, 2025.
https://doi.org/10.1007/978-3-031-71177-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_2&domain=pdf
http://orcid.org/0000-0001-7820-7640
http://orcid.org/0000-0002-6468-9498
http://orcid.org/0009-0002-6943-9479
http://orcid.org/0000-0002-0667-7763
http://orcid.org/0000-0002-8503-5514
https://doi.org/10.1007/978-3-031-71177-0_2

PRECiSA 4.0 21

This paper presents PRECiSA 4.0, an open-source1 tool for automatic
floating-point round-off error analysis. PRECiSA computes a sound and accurate
estimation of the round-off error that may occur in a floating-point program.
It supports a large variety of mathematical operators and programming lan-
guage constructs, including conditionals, let-in expressions, and bounded loops.
In addition, PRECiSA automatically generates formal certificates that can be
externally checked in the Prototype Verification System (PVS) [33]. These cer-
tificates provide formal guarantees on the soundness of the computed round-off
error bounds.

An overview of PRECiSA is presented in Sect. 2. PRECiSA 4.0 adds the
following features with respect to previous versions of the tool [28,39]:

– A novel modular analysis for function calls has been implemented (Sect. 3).
The user can choose to apply an abstraction on the computed round-off error
expressions for function calls to speed up the analysis execution time. This
abstraction has been shown to be effective in the analysis of large programs
with multiple function calls.

– Support for data collections such as lists, records, and tuples has been imple-
mented. In addition, to operate on these collections, native support for the
map and fold recursion schemas has been added (Sect. 4). This new feature
avoids the task of manually unfolding the program, resulting in a less error-
prone and more efficient analysis of data collections.

– Support for a new floating-point formalization has been added. This formal-
ization faithfully characterizes the IEEE-754 standard [24], including special
values such as NaN, signed zeros, and infinities (Sect. 5).

– VSCode-PRECiSA, a new user interface integrated into Visual Studio Code,
has been added to the PRECiSA distribution (Sect. 6). Besides providing an
intuitive way of presenting the analysis results, VSCode-PRECiSA automa-
tizes and simplifies different kinds of tasks such as comparative, sensitivity,
and interval analysis. In addition, VSCode-PRECiSA features a new graphical
visualization of the values that may cause conditional instability. This phe-
nomenon occurs when floating-point round-off errors impact the evaluation
of Boolean expressions in conditional guards, thus affecting the control-flow
of a program.

In addition to presenting these new features, an experimental evaluation
comparing PRECiSA with other state-of-the-art tools is presented in Sect. 7
together with a discussion on related work.

2 PRECiSA

The round-off error of the floating-point expression õp(ṽi)ni=1 with respect to the
real-valued expression op(ri)ni=1, where õp is a floating-point operator represent-
ing a real-valued operator op and ṽi is a floating-point value representing a real

1 https://github.com/nasa/PRECiSA.

https://github.com/nasa/PRECiSA

22 L. Titolo et al.

value ri, for 1 ≤ i ≤ n, is given by a combination of (i) the propagation of
the errors carried out by the arguments ṽi, and (ii) the error introduced by
the application of õp versus op. Throughout this paper, floating-point variables,
operands, and expressions are denoted with a tilde on top. The IEEE-754 stan-
dard [24] states that every basic operation should be performed as if it were
calculated with infinite precision and then rounded to the nearest floating-point
value. Thus, the following inequality is assumed to hold for an n-ary floating-
point operator õp.

|R (õp(ṽi)ni=1) − op(R (ṽi))ni=1| ≤ 1
2ulp (op(R (ṽi))ni=1) , (2.1)

where R is the projection from floats to reals, and the function ulp (r) (unit in
the last place), for a given real number r, measures the distance between the two
consecutive floating-point numbers f1 and f2 such that f1 < r ≤f2. The round-off
error of a real-valued expression can be bounded as

|R (õp(ṽi)ni=1) − op(ri)
n
i=1| ≤ εop(ri, ei)ni=1 +

1
2ulp (op(R (ṽi))ni=1) , (2.2)

where εop(ri, ei)ni=1 represents an overestimation of the difference between the
application of the real operator on real values and the application of the
same operator on the floating-point arguments, and each ei is a positive real-
valued expression modeling an upper bound of the round-off error carried by
the floating-point arguments ṽi representing the real-valued expression ri, i.e.,
|R (ṽi) − ri| ≤ ei.

PRECiSA assumes compliance with the IEEE-754 standard and uses the
round-off error model of Formula (2.2) for correctly rounded operators. Dedi-
cated error approximations are defined for a wide variety of mathematical opera-
tors, including arithmetic operators, square root, trigonometric functions, expo-
nential and logarithmic functions, floor, and ceiling. For each of these opera-
tors, an error expression εop(ri, ei)ni=1 is defined as a function of the real-valued
operands and corresponding errors such that

εop(ri, ei)ni=1 ≥ εop(ri, ei)ni=1 +
1
2ulp (op(Rfpvi)ni=1) . (2.3)

PRECiSA accepts as input a floating-point program P , which consists of a
set of function declarations in the language of PVS, and initial ranges for the
input variables, and it computes a correct overestimation of the round-off error
that may occur for each function in P . An overview of the PRECiSA workflow is
depicted in Fig. 1. PRECiSA first performs a static analysis on the input program
by computing the abstract semantics defined in [39]. For every function decla-
ration f̃(x̃i)ni=1 in the input program, PRECiSA computes a set of conditional
error bounds of the form 〈η, η̃〉 � (r, e), where η is a Boolean expression on reals,
η̃ is a Boolean expression on floats, and r, e are real-valued symbolic arithmetic
expressions. Intuitively, 〈η, η̃〉 � (r, e) indicates that if the conditions η and
η̃ are satisfied, the result of evaluating f̃(x̃i)ni=1 using exact real-number arith-
metic is r and the round-off error of the floating-point implementation is bounded
by e. The error expression e is built compositionally following the structure of
the function body. The Boolean expressions η and η̃ model the information on

PRECiSA 4.0 23

Fig. 1. PRECiSA workflow.

the control flow of the program (i.e., the path conditions from the if-then-else
constructs) and the additional restrictions needed when the operators are not
total. For example, when dealing with the division operation, it is necessary to
guarantee that the divisor is not zero.

The static analysis collects information about real and floating-point exe-
cution paths separately. Thus, it is possible to quantify the error due to the
so-called unstable conditions. This phenomenon occurs when the Boolean guard
of a conditional statement is affected by round-off errors. In this case, the real
and floating-point Boolean evaluation may be different, causing the control-flow
of the floating-point implementation to diverge with respect to its ideal real-
number counterpart. An abstraction technique has been introduced in [39] to
mitigate the state explosion resulting from the sound treatment of conditional
statements. This abstraction collapses the information on the conditional error
bounds by keeping separated stable and unstable cases. This way, the accuracy
of the error analysis is preserved while the size of the state space is reduced.

Example 1. Consider the function ˜tcoa that computes the time to co-altitude of
two aircraft whose relative altitude is s̃ and relative vertical speed is ṽ.

˜tcoa(s̃, ṽ)= if s̃ ∗̃ ṽ < 0 then −(s̃/̃ṽ) else −1, (2.4)

PRECiSA computes a set of four different conditional error bounds:

{〈s ∗ v < 0 ∧ v � =0, s̃ ∗̃ ṽ < 0 ∧ ṽ � =0〉 � (−s/v, ε/(s, v, es, ev)), (2.5)
〈s ∗ v ≥ 0, s̃ ∗̃ ṽ ≥ 0〉 � (−1, 0), (2.6)
〈s ∗ v < 0 ∧ v � =0, s̃ ∗̃ ṽ ≥ 0〉 � (−s/v, | − s/v − 1|), (2.7)
〈s ∗ v ≥ 0 ∧ v � =0, s̃ ∗̃ ṽ < 0 ∧ ṽ � =0〉 � (−1, |s/v − 1 + ε/(s, v, es, ev)|)}. (2.8)

The real-valued variables s and v represent the real values of s̃ and ṽ, respectively,
while es and ev are two positive real variables representing the round-off error of
s̃ and ṽ, respectively. Formula (2.5) and Formula (2.6) correspond to the cases
where real and floating-point computational flows coincide. In Formula (2.5), the
negation operator does not contribute to the rounding error, and the following
symbolic round-off error expression is computed for the division:

ε/(s, v, es, ev) =
|v|es + |s|ev
v2
− |v|ev +

1
2ulp

(|s| + es
|v| − ev

)

. (2.9)

24 L. Titolo et al.

In Formula (2.6), the error is 0 since the output is an integer constant. For-
mula (2.7) and Formula (2.8) model the unstable paths. In these cases, the error
is the difference between the output of the two branches taking into account the
round-off error of the floating-point result.

The described static analysis is purely compositional, i.e., no assumption is
made on the values of the input variables, and the error expressions are com-
posed in a modular fashion. Given initial ranges for the input variables, PRE-
CiSA uses Kodiak2, a rigorous global optimizer, to compute a sound enclosure of
the maximum of the symbolic error expression e. Kodiak implements a formally
verified branch-and-bound algorithm presented in [32]. This branch-and-bound
algorithm relies on enclosure functions for mathematical operators. These enclo-
sure functions compute provably correct over- and under- approximations of the
symbolic error expressions using either interval arithmetic or Bernstein poly-
nomial basis. The algorithm recursively splits the domain of the function into
smaller subdomains and computes an enclosure of the original expression in
these subdomains. The recursion stops when a precise enclosure is found, based
on a given precision, or when a given maximum recursion depth is reached. Both
precision and maximum recursion depth can be specified as parameters in PRE-
CiSA. Increasing the value of these parameters will likely improve the accuracy
of the analysis but may also increase the execution time. The output of Kodiak
is a numerical enclosure for each symbolic error expression. When a function f̃
is associated with more than one conditional error bound, e.g., in the case of
conditionals, the overall round-off error of f̃ is defined as the maximum of all
the error expressions.

To provide formal guarantees on the analysis results, PRECiSA generates
proof certificates ensuring that the round-off error estimations are correct. PRE-
CiSA relies on the higher-order logic interactive theorem prover PVS and a
floating-point round-off error formalization included in the NASA PVS Library.3
More details on this formalization will be given in Sect. 5. For each function, the
information in the conditional error bounds is encoded as a PVS lemma stating
that, provided the conditions are satisfied and the input variables are in the given
numerical ranges, the difference between the floating-point implementation and
the real-number specification is at most the computed error estimation. Auto-
matic strategies have been implemented to check the symbolic error expression
correctness and the enclosure computed by Kodiak by executing the formally
verified PVS implementation of the branch-and-bound algorithm of [32].

3 Optimized Modular Function Call Analysis

PRECiSA supports the compositional analysis of non-recursive function calls.
The analysis works by computing a set of conditional error bounds for each
function declaration and building an interpretation I mapping each function to

2 https://github.com/nasa/Kodiak.
3 https://github.com/nasa/pvslib.

https://github.com/nasa/Kodiak
https://github.com/nasa/pvslib

PRECiSA 4.0 25

its semantics. When the analysis encounters a function call f̃(x̃i)ni=1, it performs
a look-up in the interpretation I. For each conditional error bound associated
to the function 〈φ, φ̃〉t � (r, e) ∈ I(f̃(x̃i)ni=1), PRECiSA performs a substitu-
tion of the formal parameters with the actual ones, computing all the possible
combinations. For each actual parameter and each conditional error bound in its
semantics, 〈φi, φ̃i〉ti � (ri, ei), the following conditional error bound is computed
for the function call

〈φ′
∧

n
∧

i=1

φi, φ̃′
∧

n
∧

i=1

φ̃i〉 � (r′, e′),

where r′
= r[x̃i/ri]ni=1, e′

= e[εx̃i
/ei]ni=1,φ′

= φ[x̃i/ri, εx̃i
/ei]ni=1, and φ̃′

= φ̃[x̃i/ri,
εx̃i

/ei]ni=1. More details on the semantics can be found in [39].
This approach guarantees correctness and accuracy for the optimization pro-

cess since the error expressions of each function call and of its arguments are
unfolded in the global error expression. However, such an error expression may
become extremely large for programs with multiple and nested function calls.

To overcome this problem, PRECiSA 4.0 implements an alternative abstract
semantics for function calls. In this approach, during the symbolic analysis pro-
cess, when a function call f̃(x̃i)ni=1 is encountered, instead of computing all the
combinations and unfolding the semantics of the function, a placeholder is placed
in the call site. Then, during the optimization phase of the analysis, this place-
holder is replaced with the worst-case round-off error for the function f̃ , com-
puted by Kodiak by optimizing the error expression associated to f̃ and obtained
from the interpretation I. It is crucial that the global optimization is executed
at each calling site with the correct input ranges for the function arguments
with respect to the initial range inputs, provided by the user, and the accumu-
lated round-off error of the arguments. To enable this, PRECiSA relies again
on the global optimizer Kodiak. For each argument ãrg , Kodiak computes its
range [l, u] by optimizing the real-valued counterpart of the argument expression.
To improve efficiency without compromising too much precision, plain interval
arithmetic with no branching—setting the maximum depth parameter to 1 in
Kodiak—is used in this phase. The symbolic round-off error expression associated
to ãrg is computed by PRECiSA. The error due to unstable branches is also taken
into account in this phase. This error expression is maximized by Kodiak, and
the result err is used to enlarge the argument ranges, obtaining [l− err , u+ err].
This range is the one used to maximize the function’s error expression for that
specific call site. The symbolic error expression for each function is computed just
once when the interpretation I is built and then its numerical value is computed
by maximizing it with different input ranges. The proposed abstract semantics
may lead to a loss of correlation between the variables and, potentially, to less
accurate estimations. Depending on the desired accuracy/efficiency threshold,
the user can choose to perform this abstract function call analysis (the default
behavior in PRECiSA 4.0) or to use the option that unfolds the semantics of the
function calls and arguments.

26 L. Titolo et al.

The optimization of function calls was key for performing a formal analysis of
the NASA DAIDALUS library [30]. This library provides a reference implemen-
tation of detect-and-avoid capabilities for unmanned aircraft systems intended
to keep aircraft safely separated. In [5], the application of a toolchain to extract
a formally verified floating-point C implementation of a DAIDALUS module is
presented. The extracted code is annotated with program contracts modeling
how the round-off error accumulates through the computation and is instru-
mented to detect conditional instability. PRECiSA is used in this toolchain as a
library to compute round-off errors following the approach presented in [42]. To
successfully apply the previous version of PRECiSA to the DAIDALUS mod-
ule, a pre-processing of the input specification was needed. Without this pre-
processing, which included a program slicing and several semantics-preserving
simplifications, PRECiSA did not terminate after several minutes. This was due
to the complexity of the module which features several conditionals, predicates,
and function calls. Using the analysis optimization described in this section, the
new version of PRECiSA is able to analyze the original DAIDALUS module
without the slicing and simplification used in [5]. Figure 2 and Table 1 show the
comparison between the original and the abstract analysis for the numerical
functions in the DAIDALUS module. In this case study, the function abstrac-
tion improves the performance of the analysis without sacrificing the accuracy. In
some cases, slightly more accurate estimations are obtained. This may be due to
the large size of the unfolded error expressions, for which the branch-and-bound
may not be able to reach enough accuracy within the specified maximum depth.
For instance, for vertical_WCV (see [30]), the unfolding process times out after
5min.

Fig. 2. Times in seconds for the
analysis of the DAIDALUS mod-
ule.

Table 1. Experimental results on the
round-off error of the DAIDALUS mod-
ule.

unfolding abstraction

Delta 4.69–14 4.68E-14

Theta_D_pos 1.29E-07 1.07E-07

Theta_D_neg 1.29E-07 1.07E-07

Theta_H_pos 3.55E-15 3.55E-15

Theta_H_neg 3.55E-15 3.55E-15

coalt_entry 8.88E-15 6.66E-15

coalt_exit 3.77E-15 3.77E-15

vertical_WCV time-out 1.77E-15

4 Data Collections and Bounded Recursion Support

Previous versions of PRECiSA, as well as the majority of floating-point error
analysis tools, focus on scalar values. However, it is often the case that

PRECiSA 4.0 27

safety-critical numerical code makes use of data structures such as lists, tuples,
and records. For instance, in the NASA-developed libraries DAIDALUS [30] (air-
craft detect-and-avoid) and PolyCARP [31] (polygon computations), a point in
space is represented as a tuple (x, y); polygons, used to represent keep-in and
keep-out areas such as geofences and weather cells, are represented as lists of
points; and aircraft position and velocity vectors are represented as records.
These libraries also use bounded loops and typical functional language recursion
structures such as map and fold. To enhance the applicability of PRECiSA to
these libraries of interest to NASA, support for data collections and the bounded
recursion schemas map and fold have been added to PRECiSA.

Data collections are admitted both as arguments and as return types of
functions. Records and tuples are treated in a similar way in PRECiSA. The
variable environment used by PRECiSA to store the semantics of local and input
variables has been enhanced to accommodate record fields and tuple indices.
When a function returns a record or a tuple, PRECiSA performs the static
analysis for each element, thus the result is a record or tuple of round-off errors.
Furthermore, the structure of the function interpretation I has been modified to
support fields and indices. When a function of type record or tuple is called by
another function and a field or index is accessed, a lookup in the interpretation
is performed as expected.

In contrast to records and tuples, the round-off error of a list is defined as the
maximum of the errors of its elements assuming that they are in the same given
input range. PRECiSA 4.0 adds support for the following recursion schemas that
operate on lists.

map f̃ [l1, . . . , ln] = [f̃(l1), . . . , f̃(ln)], (4.1)

fold f̃ a [l1, . . . , ln] = f̃(l1, . . . (f̃(ln−1, f̃(ln, a))) . . .). (4.2)

Instead of unrolling the definitions and computing a large error expression, it is
sufficient to retrieve the error expression associated to function f̃ in the interpre-
tation, and apply the global optimization process with the correct input variable
ranges. For the map schema this process is straightforward since all elements in a
list are assumed to be in the same input range provided by the user. For the fold
schema, similar to the function call analysis presented in Sect. 3, it is possible
to compute an overestimation of the input ranges in Kodiak. In this phase, n
branch-and-bound evaluations of f̃ are performed, where n is the length of the
list. The symbolic error expression for f̃ is computed once and then maximized
for different values.

5 Floating-Point Formalization

In addition to computing error bounds, an important feature of PRECiSA is the
generation of PVS proof certificates that formally ensure that these bounds are
correct. PRECiSA relies on the higher-order logic interactive theorem prover
PVS [33] and a floating-point formalization originally presented in [6] and

28 L. Titolo et al.

extended in [28]. This formalization includes basic definitions related to floating-
point numbers, such as their representation, the notion of ulp, the notion of sub-
normal float, and the definition of correctly rounded operators. In addition, it
includes a collection of formally verified round-off error estimations for a wide
range of mathematical operators. Since PRECiSA’s previous release, the PVS
floating-point formalization has been restructured and updated to model closely
the IEEE-754 standard. To accommodate this change, the certificate generation
and the automated proof strategies have been updated in PRECiSA 4.0.

The previous version of PRECiSA assumed that floating-point values were
unbounded, meaning that they could be outside the ranges defined by the IEEE-
754 standard. Furthermore, special values such as signed zeros, infinities, and
NaN were not represented. The new version explicitly introduces bounds for
different architectures and special values as defined in the standard. Thus, all
floating-point values are required to be either special values or within a valid
range.

As an example, Fig. 3 depicts one of the lemmas generated for the function
˜tcoa from Example 1. Line 2 quantifies over the floating-point variables, s and v,
their real number counterparts, r_s and r_v, and the non-negative error variables
e_s and e_v. Line 3 states that all the expressions are finitely representable,
thus no overflow or NaN can occur. Line 4 states that e_s (resp., e_v) over-
approximates the difference between r_s and s (resp., r_v and v). Lines 5–6
specify the Boolean conditions that model the stable conditional error bounds
in Formula (2.5) and Formula (2.6). The consequent of the lemma states that
the round-off error of ˜tcoa is at most the maximum between the error of the
division −(s̃/̃ṽ) and 0, which is the representation error of the value −1. Figure 4
shows a concrete numerical instantiation of the lemma in Fig. 3, which is also
automatically generated by PRECiSA. The input ranges are declared in Line 6.
The error computed by Kodiak is shown in Line 8 and roughly corresponds to
3.23E−13. The generated valid range conditions can be used as implicit overflow
detectors. In fact, if the value of an expression cannot be proven to be in the
range, the lemma cannot be proven. This indicates that an overflow may have
occurred.

Fig. 3. Symbolic error lemma in PVS for the ˜tcoa function.

PRECiSA 4.0 29

Fig. 4. Numeric error lemma in PVS for the ˜tcoa function.

Fig. 5. Round-off error analysis in VSCode-PRECiSA.

6 VSCode-PRECiSA User Interface

VSCode-PRECiSA4 implements a graphical user interface that integrates PRE-
CiSA into Visual Studio Code, a widely used software development environment
developed by Microsoft. Analysis results from PRECiSA are presented using
both a bar chart plot diagram (see Fig. 5) and a numerical table. The table
presents the numerical results of the analysis along with information on the
instability error measuring the divergence of the conditional branches, if appli-
cable, and specific details about the parameters used for the analysis. A series
of analysis experiments can be performed for different ranges of input values
and combinations of analysis parameters. VSCode-PRECiSA also provides spe-
cialized views that facilitate and automate different tasks typically performed
with PRECiSA: interval analysis, sensitivity analysis, comparative analysis, and
conditional instability analysis.

The interval analysis view divides a range of input values into n equally-
sized sub-ranges, where n is a positive natural number provided by the user.
Floating-point round-off error estimations are computed for each sub-range. The
results obtained in this view can be used to gain insights on how to reimplement
functions to minimize their round-off errors.

The sensitivity analysis view evaluates the floating-point round-off error of
a function when the range of input values is affected by a given uncertainty
coefficient provided by the user. This view automates the task of checking the
4 https://github.com/nasa/PRECiSA/tree/master/vscode-precisa.

https://github.com/nasa/PRECiSA/tree/master/vscode-precisa

30 L. Titolo et al.

robustness of a program to round-off errors, i.e., whether small variations of a
program’s input values lead to unexpectedly large variations in the output.

The comparative analysis view shows the floating-point round-off error of two
functions evaluated on the same input variables. This view facilitates the assess-
ment of the round-off error in two alternative implementations of an algorithm.
The toolkit automatically feeds the two functions with the same input ranges
and the analysis results are displayed side-by-side in a bar chart.

As mentioned in Sect. 2, PRECiSA estimates the error associated with unsta-
ble conditionals and computes the conditions under which the ideal real num-
ber path diverges from the floating-point one. These conditions, called instabil-
ity conditions, are represented by sets of Boolean expressions over both real
and floating-point numbers. The conditional instability analysis in VSCode-
PRECiSA presents visual information on these instability conditions, highlight-
ing which combinations of input variables may alter the control flow of a floating-
point program with respect to its ideal real number counterpart. A 2D-mesh
plot is created for a selected pair of variables where the red areas correspond to
the regions of possible instability. These regions of instability are computed by
the branch-and-bound paving functionality of Kodiak. The paver partitions the
input space into regions (called boxes) and uses interval arithmetic to compute
the value of the instability conditions over each input region. Due to the over-
approximation introduced by interval arithmetic, Kodiak classifies every box as
“certainly satisfy,” “possibly satisfy,” and “certainly do not satisfy.” The “possibly
satisfy” boxes are progressively refined until a maximum refinement depth or a
minimum precision (box size) is reached. The set of boxes that “certainly” and
“possibly” satisfy the instability conditions form a sound over-approximation of
the inputs that may cause unstable behaviors and, as a consequence, may lead
to large computation errors. To the best of the authors’ knowledge, PRECiSA
is the only tool that supports this kind of analysis. Figure 6 shows the results of
the instability analysis for the following function that checks if a point is inside
an ellipse-shaped area.

Fig. 6. Conditional instability analysis in VSCode-PRECiSA.

PRECiSA 4.0 31

˜pointInEllipse(x̃, ỹ) = if x̃ ∗̃ x̃/̃4 +̃ ỹ ∗̃ ỹ/̃9 ≤ 10 then 1 else − 1. (6.1)

The figure illustrates that unstable tests may occur for values close to the border
of the ellipse, though regions of instability are not always as obvious (see [29]
for an example).

7 Related Work

Diverse analysis techniques and tools that estimate the round-off error of
floating-point computations have been proposed in the literature.

Gappa [16] computes enclosures for floating-point expressions via interval
arithmetic that can be checked in the Coq proof assistant. This method enables
a quick computation, but may result in pessimistic error estimations. In Gappa,
the bound computation, the certification construction, and their verification may
require hints from the user. Thus, some level of expertise is required, unlike
PRECiSA, which is fully automatic.

Fluctuat [19] is a commercial analyzer that accepts as input a C program
with annotations about input bounds and uncertainties, and it produces bounds
for the round-off error of the program expressions. Fluctuat uses a zonotopic
abstract domain [21] that extends affine arithmetic [17]. It can soundly identify
whether unstable conditional may occur [22] and it provides support for iterative
programs by using the widening operators introduced in [18,20]. Unlike PRE-
CiSA, Fluctuat does not produce formal certificates. PRECiSA also implements
a widening operator [39], which takes advantage of the information contained
in the path conditions of the conditional error bounds to determine when the
round-off error of a program may converge. This widening has been applied to
simple programs where the error is known to stabilize in a few iterations. More
work is needed in this direction to define an effective widening operator for
estimating round-off errors for recursive programs.

FPTaylor [37] uses symbolic Taylor expansions to approximate floating-point
straight-line expressions and, similar to PRECiSA, applies a global optimization
technique to obtain numerical enclosures for round-off errors. It provides support
for different rounding modalities such as to-the-nearest, toward infinity, and
toward zero. Previous versions of FPTaylor emitted certificates for HOL Light
[23], however this functionality appears as deprecated in the last release.

Satire [15] is a tool for estimating round-off errors for straight-line floating-
point code with a focus on efficiency. It combines a variant of the technique
presented in [37] with an abstraction heuristic that replaces parts of the sym-
bolic error expression with pre-computed constants. Similar to the abstraction
presented in Sect. 3, this approach can lead to a loss of correlation between vari-
ables and possibly less accurate results, however, it improves the performance
of the tool, and it provides a good compromise to scale up to expressions with
thousands of operators. In contrast to [37], Satire only computes the first term
of the Taylor error expansion. Thus, the computed error bound may not be a
sound overestimation. In [1], a sound variation of the abstraction presented in
[15], which takes into account also the second-order Taylor term, is presented.

32 L. Titolo et al.

VCFloat [3,35] is a tool that computes rigorous round-off error terms for
straight-line Coq expressions. VCFloat does not generate a Coq certificate,
instead the computation of the bound is done entirely within Coq. The input
program contains a proof template that needs to be instantiated by the user in
order to prove the correctness of the computed bounds.

Daisy [13] is a framework for the analysis and optimization of finite-precision
computations. It supports both floating-point and fixed-point arithmetic, and
it computes estimations for both absolute and relative errors. Daisy does not
generate proof certificates, but the external checker FloVer [4] can be used to
validate the bounds computed by Daisy. In [25], Daisy has been enhanced with
support for arrays and matrices.

Unlike PRECiSA, which targets programs with common constructs such as
let-in constructs, conditional, and function calls, FPTaylor, VCFloat, and Daisy
are designed to analyze straight-line program expressions. Table 2 summarizes
the features of the above-mentioned tools.

Table 2. Comparison of the features of worse-case round-off error analysis tools.

ïż£

PRECiSA FPTaylor Daisy VCFloat Fluctuat Gappa
proof certificates ✓ ✓ ✗ ✓ ✗ ✓

conditionals ✓ ✗ ✗ ✗ ✓ ✗

instability detection ✓ ✗ ✗ ✗ ✓ ✗

instability analysis ✓ ✗ ✗ ✗ ✗ ✗

function calls ✓ ✗ ✗ ✗ ✓ ✗

bounded loops ✓ ✗ ✗ ✗ ✓ ✗

widening ✓ ✗ ✗ ✗ ✓ ✗

data collections ✓ ✗ ✓ ✗ ✓ ✗

rounding modes ✗ ✓ ✗ ✗ ✗ ✗

fixed-point arith. ✗ ✗ ✓ ✗ ✗ ✓

Below, PRECiSA 4.0 is compared in terms of accuracy and performance
with the following currently maintained open-source tools: Daisy [13] (com-
mit b1705d9), FPTaylor [37] (ver. 0.9.4+dev), and VCFloat2 [3] (commit
10caf1c). This comparison was performed using the standard benchmark suite
FPBench [12]. The selected benchmarks involve nonlinear expressions, transcen-
dental functions, and polynomial approximations of functions, taken from equa-
tions used in physics, control theory, and biological modeling. These benchmarks
and the generated PVS certificates can be found in the PRECiSA distribution.
The experimental environment consisted of a 2.6GHz 6-Core Intel Core i7 with
16 GB of RAM running under MacOS Ventura 13.6.6.

Figure 7 shows numerical round-off error bounds computed by the aforemen-
tioned tools. The default configuration is used for each tool. For PRECiSA,

PRECiSA 4.0 33

Daisy, and FPTaylor, input variables and constants are assumed to be real num-
bers. This means that they carry an initial round-off error that has to be taken
into consideration in the analysis. VCFloat2 does not support the modeling of
the initial rounding, thus the input values are assumed to be perfectly repre-
sentable as a floating-point. This means that the initial rounding error is not
taken into account and it is not propagated. Daisy and FPTaylor use the same
round-off error model. However, Daisy relies on data-flow analysis and SMT
solvers to compute error bounds, while FPTaylor and PRECiSA use global opti-
mization methods. The methods used by FPTaylor and PRECiSA are different,
but they coincide on certain operations like sum and multiplication. VCFloat
uses interval arithmetic with subdivisions, which may be less accurate than the
methods used by FPTaylor and PRECiSA. The times for the computation of
the bounds are shown in Fig. 8. The performance of PRECiSA is in line with
the other similar tools for most of the examples, and for some of the considered
benchmarks PRECiSA is the fastest approach. PRECiSA’s times also include
the generation of the PVS certificates, while Daisy’s include the computation of
the relative error bound. In summary, for the considered examples, PRECiSA
provides a good trade-off between accuracy and performance together with a
wide support for arithmetic operations and programming constructs.

Besides worst-case round-off error analysis tools, other tools have been
proposed to improve the quality of floating-point software. The static ana-
lyzer Astrée [10] automatically detects the presence of potential floating-
point run-time exceptions such as overflows and division-by-zero by means
of sound floating-point abstract domains [7,27]. Precision allocation (or tun-
ing) tools [2,9,14,36] select the lowest floating-point precision for the program
variables that is enough to achieve the desired accuracy. Program optimiza-
tion tools [11,34,38,43] improve the accuracy of floating-point programs by
rewriting arithmetic expressions in equivalent ones with a lower round-off error.
ReFlow [40], initially distributed as part of PRECiSA, automatically extracts

Fig. 7. Experimental results for absolute round-off error bounds.

34 L. Titolo et al.

Fig. 8. Times in seconds for the generation of round-off error bounds.

floating-point C code from a PVS real number specification. ReFlow implements
a code instrumentation that detects unstable conditionals and annotates the code
with contracts that relate the floating-point implementation with the real-valued
program specification. The annotated code can be used as input to the static
analyzer Frama-C [26]. ReFlow relies on PRECiSA to compute the round-off
error estimations and the corresponding PVS proof certificates that guarantee
their correctness.

8 Conclusion

This paper presents PRECiSA 4.0, the latest release of a NASA open-source
static analyzer for floating-point round-off errors. This version of the tool adds
several new features and provides support for a wide range of program constructs
and mathematical operators. While the majority of other state-of-the-art round-
off error analysis tools are limited to straight-line program expressions, PRE-
CiSA targets programs with function calls, predicates, conditionals, and data
structures. Conditional instability analysis is particularly challenging to detect
and correct by visual code inspection. Issues related to unstable guards have
been discovered in NASA libraries implementing geofencing applications [29]
and aircraft detect-and-avoid logics [40]. To the best of the authors’ knowledge,
the conditional instability analysis presented in this work is the first approach
that specifically targets the problem of identifying the source of instability in
floating-point programs. PRECiSA 4.0 has been used in several applications at
NASA, demonstrating its effectiveness and applicability in real-world problems.
PRECiSA is at the core of the floating-point C code generator ReFlow , which
has been used to generate formally verified floating-point C code for the NASA
libraries DAIDALUS [5] and PolyCARP [29].

In the future, the authors plan to add more features to expand even more
the applicability of PRECiSA to real-world programs. For instance, support for
fixed-point numbers will be added to enable the analysis of quantized neural

PRECiSA 4.0 35

networks. The symbolic Taylor error expansion introduced in [37] can be inte-
grated into the analysis performed by PRECiSA. These error approximations
can be used as an alternative to, or in combination with, the error expressions
implemented in PRECiSA. Additionally, the authors plan to enhance the Kodiak
tool to support conditional expressions. This feature will improve the accuracy
of the round-off error of conditional if-then-else expressions.

Data Availability Statement. PRECiSA 4.0 is released under NASA Open Source
Agreement and it is available at https://github.com/nasa/PRECiSA. Additionally, the
companion artifact of this submission can be accessed via the following link: https://
doi.org/10.5281/zenodo.12525527.

References

1. Abbasi, R., Darulova, E.: Modular optimization-based roundoff error analysis of
floating-point programs. In: 30th International Symposium on Static Analysis, SAS
2023. LNCS, vol. 14284, pp. 41–64. Springer (2023). https://doi.org/10.1007/978-
3-031-44245-2_4

2. Adjé, A., Ben Khalifa, D., Martel, M.: Fast and efficient bit-level precision tuning.
In: Proceedings of the 28th International Symposium on Static Analysis, SAS 2021.
LNCS, vol. 12913, pp. 1–24. Springer (2021). https://doi.org/10.1007/978-3-030-
88806-0_1

3. Appel, A.W., Kellison, A.: VCFloat2: floating-point error analysis in Coq. In: Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2024, pp. 14–29. ACM (2024). https://doi.org/10.1145/
3636501.3636953

4. Becker, H., Zyuzin, N., Monat, R., Darulova, E., Myreen, M.O., Fox, A.C.J.: A
verified certificate checker for finite-precision error bounds in Coq and HOL4. In:
2018 Formal Methods in Computer Aided Design, FMCAD 2018, pp. 1–10. IEEE
(2018). https://doi.org/10.23919/FMCAD.2018.8603019

5. Bernardes Fernandes Ferreira, N., Moscato, M.M., Titolo, L., Ayala-Rincón, M.: A
provably correct floating-point implementation of well clear avionics concepts. In:
Formal Methods in Computer-Aided Design (FMCAD 2023), pp. 237–246. IEEE
(2023). https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_32

6. Boldo, S., Muñoz, C.: A high-level formalization of floating-point numbers in PVS,
CR-2006-214298, NASA. Technical report (2006)

7. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract
domain. In: Ramalingam, G. (ed.) Programming Languages and Systems, pp. 3–
18. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-
1_2

8. Cherubin, S., Agosta, G.: Tools for reduced precision computation: a survey. ACM
Comput. Surv. 53(2), 33:1–33:35 (2020). https://doi.org/10.1145/3381039

9. Chiang, W., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
marić, Z.: Rigorous floating-point mixed-precision tuning. In: Proceedings of the

https://github.com/nasa/PRECiSA
https://doi.org/10.5281/zenodo.12525527
https://doi.org/10.5281/zenodo.12525527
https://doi.org/10.1007/978-3-031-44245-2_4
https://doi.org/10.1007/978-3-031-44245-2_4
https://doi.org/10.1007/978-3-030-88806-0_1
https://doi.org/10.1007/978-3-030-88806-0_1
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_32
https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1145/3381039

36 L. Titolo et al.

44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pp. 300–315. ACM (2017). https://doi.org/10.1145/3009837.3009846

10. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0_3

11. Damouche, N., Martel, M.: Salsa: an automatic tool to improve the numerical
accuracy of programs. In: 6th Workshop on Automated Formal Methods, AFM
2017, vol. 5, pp. 63–76 (2017). https://doi.org/10.29007/j2fd

12. Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock, Z.:
Toward a standard benchmark format and suite for floating-point analysis. In: 9th
International Workshop Numerical Software Verification, NSV 2016. LNCS, vol.
10152, pp. 63–77 (2016). https://doi.org/10.1007/978-3-319-54292-8_6

13. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy
- framework for analysis and optimization of numerical programs (tool paper).
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 270–287.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_15

14. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Proceedings of the
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 235–248. ACM (2014). https://doi.org/10.1145/2535838.
2535874

15. Das, A., Briggs, I., Gopalakrishnan, G., Krishnamoorthy, S.: An abstraction-guided
approach to scalable and rigorous floating-point error analysis. arXiv preprint
arXiv:2004.11960 (2020)

16. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point imple-
mentation of an elementary function using Gappa. IEEE Trans. Comput. 60(2),
242–253 (2011). https://doi.org/10.1109/TC.2010.128

17. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications.
Numer. Algorithms 37(1–4), 147–158 (2004). https://doi.org/10.1023/B:NUMA.
0000049462.70970.b6

18. Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope inter-
section. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
212–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6_22

19. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006). https://doi.
org/10.1007/11823230_3

20. Goubault, E., Putot, S.: Perturbed affine arithmetic for invariant computation in
numerical program analysis. arXiv preprint arxiv:0807.2961 (2008)

21. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_17

22. Goubault, E., Putot, S.: Robustness analysis of finite precision implementations. In:
Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 50–57. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03542-0_4

23. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9_4

24. IEEE: IEEE standard for binary floating-point arithmetic, Technical report, Insti-
tute of Electrical and Electronics Engineers (2008)

https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.29007/j2fd
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1145/2535838.2535874
http://arxiv.org/abs/2004.11960
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1007/978-3-642-14295-6_22
https://doi.org/10.1007/978-3-642-14295-6_22
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/11823230_3
http://arxiv.org/abs/0807.2961
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-319-03542-0_4
https://doi.org/10.1007/978-3-642-03359-9_4

PRECiSA 4.0 37

25. Isychev, A., Darulova, E.: Scaling up roundoff analysis of functional data structure
programs. In: Proceedings of the 30th International Symposium on Static Analysis,
SAS 2023. LNCS, vol. 14284, pp. 371–402. Springer (2023). https://doi.org/10.
1007/978-3-031-44245-2_17

26. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/S00165-014-0326-7

27. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Proceedings of the 13th European Symposium on Programming Lan-
guages and Systems, ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer (2004).
https://doi.org/10.1007/978-3-540-24725-8_2

28. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.: Automatic estimation of verified
floating-point round-off errors via static analysis. In: Proceedings of the 36th Inter-
national Conference on Computer Safety, Reliablilty, and Security, SAFECOMP
2017. Springer (2017). https://doi.org/10.1007/978-3-319-66266-4_14

29. Moscato, M., Titolo, L., Feliú, M., Muñoz, C.: Provably correct floating-point
implementation of a point-in-polygon algorithm. In: Proceedings of the 23nd Inter-
national Symposium on Formal Methods, FM 2019. LNCS, vol. 11800, pp. 21–37.
Springer (2019). https://doi.org/10.1007/978-3-030-30942-8_3

30. Muñoz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle, A., Consiglio, M.:
DAIDALUS: detect and avoid alerting logic for unmanned systems. In: Proceedings
of the 34th Digital Avionics Systems Conference (DASC 2015), Prague, Czech
Republic (2015)

31. Narkawicz, A., Hagen, G.: Algorithms for collision detection between a point and a
moving polygon, with applications to aircraft weather avoidance. In: Proceedings
of the AIAA Aviation Conference (2016)

32. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Proceedings of the 5th International Conference on Verified
Software: Theories, Tools, Experiments, VSTTE 2013. LNCS, vol. 8164, pp. 326–
343. Springer (2013). https://doi.org/10.1007/978-3-642-54108-7_17

33. Owre, S., Rushby, J., Shankar, N.: PVS: a prototype verification system. In: Pro-
ceedings of the 11th International Conference on Automated Deduction, CADE
1992. LNCS, vol. 607, pp. 748–752. Springer (1992). https://doi.org/10.1007/3-
540-55602-8_217

34. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2015, pp. 1–11. ACM (2015). https://doi.org/10.1145/2737924.2737959

35. Ramananandro, T., Mountcastle, P., Meister, B., Lethin, R.: A unified Coq frame-
work for verifying C programs with floating-point computations. In: Proceedings
of CPP 2016, pp. 15–26. ACM (2016). https://doi.org/10.1145/2854065.2854066

36. Rubio-González, C., et al.: Precimonious: tuning assistant for floating-point pre-
cision. In: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC’13, pp. 27:1–27:12. ACM (2013). https://doi.org/
10.1145/2503210.2503296

37. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic Taylor expansions. In: Proceed-
ings of the 20th International Symposium on Formal Methods, FM 2015. LNCS,
vol. 9109, pp. 532–550. Springer (2015). https://doi.org/10.1007/978-3-319-19249-
9_33

https://doi.org/10.1007/978-3-031-44245-2_17
https://doi.org/10.1007/978-3-031-44245-2_17
https://doi.org/10.1007/S00165-014-0326-7
https://doi.org/10.1007/978-3-540-24725-8_2
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-030-30942-8_3
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2854065.2854066
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1007/978-3-319-19249-9_33
https://doi.org/10.1007/978-3-319-19249-9_33

38 L. Titolo et al.

38. Thévenoux, L., Langlois, P., Martel, M.: Automatic source-to-source error com-
pensation of floating-point programs. In: 18th IEEE International Conference on
Computational Science and Engineering, CSE 2015, pp. 9–16. IEEE Computer
Society (2015). https://doi.org/10.1109/CSE.2015.11

39. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. In: VMCAI
2018. LNCS, vol. 10747, pp. 516–537. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73721-8_24

40. Titolo, L., Moscato, M., Feliu, M.A., Muñoz, C.A.: Automatic generation of guard-
stable floating-point code. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS,
vol. 12546, pp. 141–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-63461-2_8

41. Titolo, L., Moscato, M., Muñoz, C., Dutle, A., Bobot, F.: A formally verified
floating-point implementation of the compact position reporting algorithm. In:
Proceedings of the 22nd International Symposium on Formal Methods, FM 2018.
LNCS, vol. 10951, pp. 364–381. Springer (2018). https://doi.org/10.1007/978-3-
319-95582-7_22

42. Titolo, L., Muñoz, C.A., Feliú, M.A., Moscato, M.M.: Eliminating unstable tests
in floating-point programs. In: Mesnard, F., Stuckey, P.J. (eds.) LOPSTR 2018.
LNCS, vol. 11408, pp. 169–183. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13838-7_10

43. Yi, X., Chen, L., Mao, X., Ji, T.: Efficient automated repair of high floating-point
errors in numerical libraries. Proc. ACM Program. Lang. 3(POPL), 56:1–56:29
(2019). https://doi.org/10.1145/3290369

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/CSE.2015.11
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-030-63461-2_8
https://doi.org/10.1007/978-3-030-63461-2_8
https://doi.org/10.1007/978-3-319-95582-7_22
https://doi.org/10.1007/978-3-319-95582-7_22
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1145/3290369
http://creativecommons.org/licenses/by/4.0/

FM
Artifact
Evaluation

Reusable

FM
Artifact
Evaluation

Available

FM-Weck: Containerized Execution of
Formal-Methods Tools

Dirk Beyer and Henrik Wachowitz

LMU Munich, Munich, Germany

https://gitlab.com/sosy-lab/software/fm-weck

Abstract. Software is ubiquitous in the digital world, and the correct
function of software systems is critical for our society, industry, and infras-
tructure. While testing and static analysis are long-established techniques
in software-development processes, it became widely acknowledged only
in the past two decades that formal methods are required for giving
guarantees of functional correctness. Both academia and industry worked
hard to develop tools for formal verification of software during the past
two decades, with the result that many software verifiers are available
now (for example, 59 freely available verifiers for C and Java programs).
However, most software verifiers are challenging to find, install, and use
for both external researchers and potential users. FM-Weck changes this:
It provides a fully automatic, zero-configuration container-based setup
and execution for more than 50 software verifiers for C and Java. Both the
setup requirements and execution parameters of every supported verifier
are provided by the tool developers themselves as part of the FM-Tools
metadata format that was established recently and was already used by the
international competitions SV-COMP and Test-Comp. With our solution
FM-Weck, anyone gets fast and easy access to state-of-the-art formal
verifiers, no expertise required, fully reproducible.

Keywords: Formal Methods · Verification · Model Checking · Testing · FM-Tools
· Tool Conservation · Reproducibility · Satisfiability Modulo Theories · Provers

1 Introduction

Reliable, correctly functioning IT systems are fundamental in a digital world.
One way to achieve correct systems is to apply formal methods. Tools for formal
methods are intricate software systems, which often compute abstract models
to prove system implementations correct or find errors. There is already a large
pool of mature and well-established verification tools (for example, in the area
of software verification [1, 2, 3, 4, 5]), and automatic tools are heavily used in
industrial software-engineering applications [4, 6, 7, 8]. Sometimes such tools are
even used as components in meta verifiers [9, 10, 11, 12, 13, 14]. However, the
integration of verification tools provides multiple obstacles: (1) There exists a
plentitude of research verification tools that are no longer maintained despite

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 39–47, 2025.
https://doi.org/10.1007/978-3-031-71177-0_3

https://doi.org/10.5281/zenodo.12666378
https://doi.org/10.5281/zenodo.12666378
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-4768-4054
https://gitlab.com/sosy-lab/software/fm-weck
https://doi.org/10.1007/978-3-031-71177-0_3
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-71177-0_3&domain=pdf

40 Dirk Beyer and Henrik Wachowitz

verifier.yml fm-weck expert

shell

run

Enter interactive environment
for verifier.yml

Run verifier of verifier.yml
with verbatim arguments

Install and run verifier of verifier.yml
with predefined configuration

Fig. 1: Overview of FM-Weck

delivering interesting results, making them incapable of running in modern software
environments, (2) the tools often provide poor documentation of their requirements
on the environment (e.g., whether LLVM 9 or LLVM 12 is required), and which
operating system they expect (e.g., Ubuntu 20.04), and (3) these tools often
have a huge configuration space resulting in a complicated set of command-line
interface (CLI) arguments that users have to understand and set correctly. These
obstacles deter developers and researchers from experimenting or even integrating
verification tools in their own processes and tools [15, 16].

FM-Weck is a command-line tool that mitigates these issues by using the
developer-provided metadata from the FM-Tools repository [17, 18]. The FM-
Tools repository is a community-maintained source of metadata for formal-
methods tools. The repository and the metadata format has been adopted by the
international competitions on software verification (SV-COMP) [19] and testing
(Test-Comp) [20], and tool developers maintain the information about their
tools, including the expected runtime environments and execution parameters.
FM-Weck uses these data provided by experts to give researchers and users easy
access to controlled runtime environments and execution of more than currently 50
verification tools for C and Java. Figure 1 gives an overview of FM-Weck’s three
modes of operation, shell, expert, and run, which assist users working with tools
for formal methods. In the following section, we briefly introduce the FM-Tools
metadata format that is used by the FM-Tools repository (for more details we
refer to the format description [17]), then we present how to use FM-Weck’s
modes of operation before concluding with current applications of the tool.

Related Work. CoVeriTeam [21] is a tool and language for constructing tool com-
positions. It uses a YAML-based format for the atomic-actor definitions (informa-
tion where to download, how to assemble command-lines). This format has inspired
the format used in FM-Tools. Unfortunately, CoVeriTeam does not configure
the execution environment for the tools and simply assumes that the host machine
has all required packages readily installed, which FM-Weck solves. Conserving
tools for formal methods is an old desire [22], also addressed by CoVeriTeam Ser-
vice [9]. FM-Weck adds the use of Docker containers to make the environment
reproducible and easy to run, also independently from web services.

2 FM-Tools: Tool Metadata

The FM-Tools repository aggregates relevant information about tools for formal
methods: It specifies the download location, maintainers, command-line options,

FM-Weck: Containerized Execution of Formal-Methods Tools 41

as well as other related information. In addition, FM-Tools stores information
about container images on which the tool is guaranteed to run according to the
maintainers. An FM-Tools file for a specific tool is a YAML document with
a precisely defined set of keys (a schema for the metadata of formal-methods
tools is available in the repository). FM-Tools was adopted by SV-COMP and
Test-Comp in their 2024 edition [19, 20]. As part of FM-Weck, we also provide
a Python library [23] that helps users to parse, use, and modify FM-Tools.

1 versions:
2 - version: "svcomp24"
3 doi: 10.5281/ zenodo .10203297
4 benchexec_toolinfo_options:
5 ["-svcomp24", "-heap", "10000M",
6 "-benchmark", "-timelimit", "900 s"]
7 required_ubuntu_packages:
8 - openjdk -17-jdk -headless
9 base_container_images:

10 - docker.io/ubuntu :22.04
11 full_container_images:
12 - registry.gitlab.com/sosy -lab/\
13 benchmarking/competition -scripts/user :2024

Listing 1: Example of a tool entry in FM-Tools

Listing 1 shows an example of a tool-version entry in FM-Tools. The field
required_ubuntu_packages specifies the Ubuntu packages that are required to run
the tool. The field base_container_images specifies the Ubuntu container images
on which the required Ubuntu packages can be installed, and with which the tool
is guaranteed to run after package installation. The field full_container_images
specifies self-contained container images that are guaranteed to run the tool
out-of-the-box. For a tool t it shall hold that

∀i ∈ base_container_images : (i⊕ required_ubuntu_packages) |= t (1)
∀i ∈ full_container_images : i |= t (2)

where ⊕ denotes the operation of installing the packages on the image i and i |= t
denotes that the image i is sufficient to run the tool t.

FM-Tools currently refers to Ubuntu packages, because most tools run on
Linux, and Ubuntu as a widespread distribution, whose long-term support keeps
specifying and installing the packages straightforward across verifiers.

3 FM-Weck

FM-Weck is a command-line tool written in Python, which consumes FM-
Tools [18] tool metadata to execute formal-methods tools inside of a container.
(The tool’s name is inspired by a German brand of jars for conserving food.) The
utility can be used to run, develop, and experiment with formal-methods tools. The
software architecture of FM-Weck also allows and encourages usage as a library.

FM-Weck simplifies the execution of formal-methods tools by setting up
and starting containers tailored for each tool. FM-Weck can also configure a

42 Dirk Beyer and Henrik Wachowitz

container runtime such that benchmarks with BenchExec are possible inside
of them. To launch the actual container, FM-Weck uses podman [24] internally
with the crun runtime [25]. The FM-Weck CLI comes with three modes of
operation: run, expert, and shell.

3.1 FM-Weck Modes

Every command in FM-Weck takes an FM-Tools file as input. This file can
be specified either as a path, or as the identifier of the tool. In the latter case,
FM-Weck uses the bundled file from the FM-Tools repository with the corre-
sponding name. In any case, users can also specify a specific version of a verifier by
appending it with a colon after the file path or name, e.g., <verifier>:<version>.

Automatic (run) Mode.
fm-weck run verifier.yml -p property file.c

The run mode enables plug-and-play execution of formal-methods tools: it down-
loads and unpacks a tool from the archive specified in the FM-Tools metadata
file (’verifier.yml’ above) into a user-specified cache directory on the host system.
This cache is mounted into the container, where the verifier is then executed with
the given command-line arguments. The run mode takes two additional arguments:
(1) the -p argument specifies a property file, i.e., the goal for the verifier—this can
either be a path to the property file or the name of one of the properties used in
SV-COMP or Test-Comp, and (2) the files that shall be passed to the tool. In the
case of software verifiers, these program files are the input programs to be verified.

Manual (expert) Mode.
fm-weck expert verifier.yml <args>

The expert mode is for manual interaction with a verifier: it executes a given
verifier, specified through the corresponding FM-Tools YAML file, in its con-
tainerized environment passing any additional arguments verbatim to the verifier.
Just like in the run mode, FM-Weck takes care of downloading and unpacking
the verifier as well as setting up the container before the execution. All arguments
following the tool verifier.yml are passed to the verifier in the container, which
makes the expert mode essentially act like the verifier if it was executed directly
on the host system. The following is an example execution that displays the
version of the CPAchecker verifier: fm-weck expert cpachecker -version

Interactive (shell) Mode.
fm-weck shell verifier.yml

The shell mode enters an interactive shell inside of the container specified by
the given verifier. The shell mode launches a Bash shell with the current working
directory mounted inside. Users may mount additional directories through a
configuration file described in Sect. 3.2. Like with the expert mode, the container
information is extracted from the FM-Tools metadata file provided by the user.
The shell mode takes no additional parameters. The following example starts an
interactive shell in the container of Ultimate Automizer: fm-weck shell uautomizer

FM-Weck: Containerized Execution of Formal-Methods Tools 43

3.2 Project-Specific Configuration

FM-Weck works without any additional configuration, but expert users can still
modify aspects of FM-Weck to their needs. Users may set default values and
additional files or directories which shall be available inside the container. The
configuration is specified in TomL format, as seen in Listing 2. If users define a
default image file in this configuration, they can omit the verifier.yml in the
shell mode, and the *container_image keys in the expert and run modes.

1 [defaults]
2 image = "some_image:latest"
3 [mount]
4 "local/path" = "/container/path"

Listing 2: Example of a run configuration

Relative paths in the configuration file are relative to the directory that contains
the configuration file. If no configuration path is explicitly set via the command
line, FM-Weck first looks for a configuration file .weck in the current working
directory. If this does not exist, it looks for a configuration file .config/weck
in the user’s home directory.

4 Applications

FM-Weck is designed with three core applications in mind: (1) to execute a
single tool based on its FM-Tools metadata, (2) to facilitate the execution of
unmaintained tools in future competition instances, and (3) as a utility that
enables OS-independent execution in CoVeriTeam [21].

4.1 Execution of a Single Tool

FM-Weck provides a bother-free user experience that encourages curious re-
searchers and developers to try and experiment with different verification tools—
from well established behemoths to cutting-edge research tools. Users do not have
to worry about the tool’s dependencies, installation, or complicated command-
line configurations. The run mode of FM-Weck achieves this goal. Running
CPAchecker to find overflows in a C program is as simple as:
fm-weck run cpachecker -p no-overflow program.c

4.2 Containerized Execution in CoVeriTeam

CoVeriTeam [21] is a framework for cooperative verification. Similar to fm-weck,
CoVeriTeam takes tool metadata in a YAML format as input, to download and
run the tools specified in a cooperative-verification workflow. Each tool is executed
inside a containerized environment provided by BenchExec [26]. However, these
BenchExec containers do not support OCI container images. This means that all
tools running in a CoVeriTeam workflow must be able to run on the host system.
We extend CoVeriTeam with an FM-Weck-based run mode. This enables the
cooperation of actors regardless of their system requirements.

44 Dirk Beyer and Henrik Wachowitz

fm-weck

CoVeriTeam

run tool

FM-Tools

Fig. 2: FM-Weck as executor
in CoVeriTeam

fm-weck run

SV-COMP Exec

runexec -- verifier

unmaintained regular

Fig. 3: FM-Weck as drop-in com-
mand for SV-COMP infrastructure

Figure 2 illustrates the integration of FM-Weck in CoVeriTeam. Instead
of calling BenchExec, CoVeriTeam calls FM-Weck to instantiate a container
for the given tool and execute the assembled command inside of it. CoVeriTeam
is also written in Python and uses FM-Weck directly as a library.

4.3 Reliable Execution in SV-COMP 2025

SV-COMP comparatively evaluates more than 70 verification tools on an extensive
benchmark set [19, 27]. The server infrastructure that executes these millions of
verification and validation runs during the competition is hosted on the always-
latest Ubuntu LTS Version. This is a formal requirement of the SV-COMP rules.
However, there is a growing number of tools that are no longer actively maintained
and serve as a retrospective baseline—the so-called hors-concours participants.
These tools are benchmarked in the same way as the regular participants, but they
do not compete in the ranking. Until SV-COMP 2024, these tools were manually
migrated by volunteers to still work on the latest Ubuntu LTS Version, but with
26 hors-concurs participants, the amount of migration-labor becomes infeasible.

With FM-Weck we extend the functionality of the current SV-COMP in-
frastructure to execute these tools in the SV-COMP 2024 environment. Figure 3
illustrates how FM-Weck is used as a drop-in solution. We wrap the exist-
ing invocation of the benchmark command inside of a pre-built image. This
image replicates the OS and installed packages of SV-COMP 2024. By default,
BenchExec cannot run inside of another container: FM-Weck also sets up the
container runtime such that BenchExec works inside of it.

5 Conclusion

We developed FM-Weck, a utility to run formal-methods tools in containerized
environments. The goals are to (a) conserve the tools, such that they stay ex-
ecutable in the future, and (b) make it easy for researchers, practitioners, and
educators to use and explore the existing tools for formal methods. The appli-
cation scenarios in CoVeriTeam and SV-COMP infrastructure demonstrate the
capabilities of FM-Weck as a library as well as a command-line tool. The tool is
open source, licensed under Apache 2.0, and available on GitLab [28].

Data-Availability Statement. The metadata are available in the FM-Tools
repository [18] and the source code in the FM-Weck repository [28]. A refined
version [29] of the artifact submitted for evaluation [30] is available on Zenodo.

https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/software/fm-weck

FM-Weck: Containerized Execution of Formal-Methods Tools 45

Funding Statement. FM-Weck was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) — 378803395 (ConVeY).

References

1. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

2. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele, F., Podel-
ski, A.: Ultimate automizer and the abstraction of bitwise operations (competition
contribution). In: Proc. TACAS (3). pp. 418–423. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_31

3. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Trtík, M., Zaoral, L., Ayaziová, P.,
Strejček, J.: Symbiotic 10: Lazy memory initialization and compact symbolic exe-
cution (competition contribution). In: Proc. TACAS (3). pp. 406–411. LNCS 14572,
Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_29

4. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software
verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015). https://doi.
org/10.1007/978-3-319-17524-9_1

5. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race
detection for device drivers: The Goblint approach. In: Proc. ASE. pp. 391–402.
ACM (2016). https://doi.org/10.1145/2970276.2970337

6. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Proc. IFM. pp. 1–20.
LNCS 2999, Springer (2004). https://doi.org/10.1007/978-3-540-24756-2_1

7. Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2). pp. 38–47. LNCS 10981, Springer (2018). https://doi.org/10.1007/
978-3-319-96145-3_3

8. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proc. PLDI. pp.
196–207. ACM (2003). https://doi.org/10.1145/781131.781153

9. Beyer, D., Kanav, S., Wachowitz, H.: CoVeriTeam Service: Verification as a
service. In: Proc. ICSE, companion. pp. 21–25. IEEE (2023). https://doi.org/10.
1109/ICSE-Companion58688.2023.00017

10. Beyer, D., Lemberger, T., Wachowitz, H.: Reproduction package for TACAS2024
submission ‘Continuous verification: Mitigations of tool restarts for java verifiers’.
Zenodo (2023). https://doi.org/10.5281/zenodo.8383787

11. Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier (competition con-
tribution). In: Proc. TACAS (3). pp. 365–370. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_22

12. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/
978-3-030-53291-8_10

13. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

14. He, F., Sun, Z., Fan, H.: Deagle: An SMT-based verifier for multi-threaded programs
(competition contribution). In: Proc. TACAS (2). pp. 424–428. LNCS 13244, Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0_25

http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-031-57256-2_31
https://doi.org/10.1007/978-3-031-57256-2_29
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1145/781131.781153
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.1109/ICSE-Companion58688.2023.00017
https://doi.org/10.5281/zenodo.8383787
https://doi.org/10.1007/978-3-031-57256-2_22
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/978-3-030-99527-0_25

46 Dirk Beyer and Henrik Wachowitz

15. Alglave, J., Donaldson, A.F., Kröning, D., Tautschnig, M.: Making software verifi-
cation tools really work. In: Proc. ATVA. pp. 28–42. LNCS 6996, Springer (2011).
https://doi.org/10.1007/978-3-642-24372-1_3

16. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: Proc. FMICS. pp. 3–69. LNCS 12327, Springer (2020). https://doi.
org/10.1007/978-3-030-58298-2_1

17. Beyer, D.: Conservation and accessibility of tools for formal meth-
ods. In: Proc. Festschrift Podelski 65th Birthday. Springer (2024),
https://www.sosy-lab.org/research/pub/2024-Podelski65.Conservation_and_
Accessibility_of_Tools_for_Formal_Methods.pdf

18. Beyer, D.: Formal-methods tools repository. https://gitlab.com/sosy-lab/
benchmarking/fm-tools (2023), accessed: 2024-04-10

19. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

20. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. In: TBA. Springer
(2024)

21. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

22. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration plat-
form: Concepts and design. STTT 1(1-2), 9–30 (1997). https://doi.org/10.1007/
s100090050003

23. Beyer, D., Wachowitz, H.: lib-fm-tools repository. https://gitlab.com/sosy-lab/
software/lib-fm-tools (2024), accessed: 2024-07-01

24. Podman. https://github.com/containers/podman, accessed: 2023-02-09
25. crun runtime. https://github.com/containers/crun (2024), accessed: 2024-04-26
26. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions.

Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https://doi.org/10.1007/
s10009-017-0469-y

27. Collection of verification tasks. https://gitlab.com/sosy-lab/benchmarking/
sv-benchmarks, accessed: 2023-04-01

28. Beyer, D., Wachowitz, H.: FM-Weck repository. https://gitlab.com/sosy-lab/
software/fm-weck (2024), accessed: 2024-07-01

29. Beyer, D., Wachowitz, H.: Reproduction package for the FM2024 article ‘FM-
Weck: Containerized execution of formal-methods tools’. Zenodo (2024). https:
//doi.org/10.5281/zenodo.12606323

30. Beyer, D., Wachowitz, H.: Reproduction package for the FM 2024 submission
‘FM-Weck: Containerized execution of formal-methods tools’. Zenodo (2024).
https://doi.org/10.5281/zenodo.12205513

https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://www.sosy-lab.org/research/pub/2024-Podelski65.Conservation_and_Accessibility_of_Tools_for_Formal_Methods.pdf
https://www.sosy-lab.org/research/pub/2024-Podelski65.Conservation_and_Accessibility_of_Tools_for_Formal_Methods.pdf
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://gitlab.com/sosy-lab/benchmarking/fm-tools
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/s100090050003
https://doi.org/10.1007/s100090050003
https://gitlab.com/sosy-lab/software/lib-fm-tools
https://gitlab.com/sosy-lab/software/lib-fm-tools
https://github.com/containers/podman
https://github.com/containers/crun
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/software/fm-weck
https://gitlab.com/sosy-lab/software/fm-weck
https://doi.org/10.5281/zenodo.12606323
https://doi.org/10.5281/zenodo.12606323
https://doi.org/10.5281/zenodo.12205513

FM-Weck: Containerized Execution of Formal-Methods Tools 47

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

DFAMiner: Mining Minimal Separating
DFAs from Labelled Samples

Daniele Dell’Erba1 , Yong Li1,2(B) , and Sven Schewe1

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{Daniele.Dell-Erba,Yong.Li3,Sven.Schewe}@liverpool.ac.uk

2 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing, China

Abstract. We propose DFAMiner, a passive learning tool for learn-
ing minimal separating deterministic finite automata (DFA) from a set
of labelled samples. Separating automata are an interesting class of
automata that occurs generally in regular model checking and has raised
interest in foundational questions of parity game solving. We first pro-
pose a simple and linear-time algorithm that incrementally constructs
a three-valued DFA (3DFA) from a set of labelled samples given in the
usual lexicographical order. This 3DFA has accepting and rejecting states
as well as don’t-care states, so that it can exactly recognise the labelled
examples. We then apply our tool to mining a minimal separating DFA
for the labelled samples by minimising the constructed automata via a
reduction to SAT solving. Empirical evaluation shows that our tool out-
performs current state-of-the-art tools significantly on standard bench-
marks for learning minimal separating DFAs from samples. Progress in
the efficient construction of separating DFAs can also lead to finding
the lower bound of parity game solving, where we show that DFAMiner
can create optimal separating automata for simple languages with up
to 7 colours. Future improvements might offer inroads to better data
structures.

Keywords: Passive learning · Separating Automata · Three-valued
DFA · Parity Game Solving

1 Introduction

The task of inferring a minimum-size separating automaton from two disjoint
sets of samples has gained much attention from various fields, including compu-
tational biology [21], inference of network invariants [19], regular model check-
ing [26], and reinforcement learning [24]. More recently, this problem has also
arisen in the context of parity game solving [6], where separating automata can
be used to decide the winner. The breakthrough quasi-polynomial algorithm
[8], for example, can be viewed as producing such a separating automaton, and
under additional constraints, quasi-polynomial lower bounds can be established,
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 48–66, 2025.
https://doi.org/10.1007/978-3-031-71177-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_4&domain=pdf
http://orcid.org/0000-0003-1196-6110
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0002-9093-9518
https://doi.org/10.1007/978-3-031-71177-0_4

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 49

too [8,13]. These applications can be formalised as seeking the minimum-size
of DFAs, known as the Min-DFA inference problem, from positive and negative
samples.

The Min-DFA inference problem was first explored in [5,18]. Due to its high
(NP-complete) complexity, researchers initially focused on either finding local
optima through state merging techniques [7,23,29], or investigating theoretical
aspects such as reduction to graph colouring problems [11]. Notably, it has been
shown that there is no efficient algorithm to find approximate solutions [31].

With the increase in computational power and efficiency of Boolean Satisfi-
ability (SAT) solvers, research has shifted towards practical and exact solutions
to the Min-DFA inference problem. Several tools have emerged in the literature,
including ed-beam/exbar [20], FlexFringe [35], DFA-Inductor [34,36], and DFA-
Identify [24].

The current practical and exact solutions to the Min-DFA inference problem
typically involve two steps: First, construct the augmented prefix tree acceptor
(APTA [12]) that recognises the given samples, and then minimise the APTA to
a Min-DFA by a reduction to SAT [20]. Recent enhancements of this approach
focus on the second step, including techniques like symmetry breaking [20,34]
and compact SAT encoding [20,36]. Additionally, there is an approach on the
incremental SAT solving technique specialised for the Min-DFA inference prob-
lem, where heuristics for assigning free variables have also been proposed [3].
However, their implementation relies heavily on MiniSAT [17]. We believe that,
in order to take advantage of future improvements of SAT solvers, it is better
to use a SAT solver as a black-box tool. We note that the second step can be
encoded as a Satisfiability Modulo Theories problem [32], which also benefits
from our contribution to the first step.

The second step is typically the bottleneck in the workflow. It is known that
the number of Boolean variables used in the SAT problem is polynomial in the
number of states of the APTA. Smaller APTAs naturally lead to easier SAT
problems. This motivates our effort to improve the first step of the inference
problem to obtain simpler SAT instances. While previous attempts have aimed
at reducing the size of APTAs [7,23,29], we introduce a new and incremental
construction of the APTAs that comes with a minimality guarantee for the
acceptor of the given samples.

Contributions. We propose employing the (polynomial-time) incremental min-
imal acyclic DFA learning algorithm [14] to extract minimal DFAs from a given
set of positive samples. More precisely, we extend their algorithm to support the
APTA construction from a set of positive samples and a set of negative samples.
Notably, the obtained APTA is guaranteed to be the minimum-size deterministic
acceptor for the labelled sample set S.

We have implemented these techniques in our new tool DFAMiner and
compared it with the state-of-the-art tools DFA-Inductor [34,36] and DFA-
Identify [24], on the benchmarks generated as described in [34,36]. Our experi-
mental results demonstrate that DFAMiner builds smaller APTAs and is there-
fore significantly faster at finding the Min-DFAs than both DFA-Inductor and
DFA-Identify.

50 D. Dell’Erba et al.

To test our technique, we have employed it to extract deterministic safety
or reachability automata as witness automata for parity game solving. With
DFAMiner, we have established the lower bounds on the size of deterministic
safety automata for parity games with up to 7 colours. To the best of our knowl-
edge, this is the first time that Min-DFA inference tools have been applied to
parity game solving. If they eventually scale, this may lead to new insights into
the actual size of the minimal safety automata for solving parity games.

Related work. The learned Min-DFA can be seen as a witness proof that sep-
arates the set of good behaviours and the set of bad behaviours for a given
system. Therefore, our work can be directly applied to the problems that look
for those proofs, such as regular model checking [26] and reinforcement learn-
ing [24]. Another standard application is in the active learning of minimal DFAs
by equivalence queries [2]. We remark that in [1], non-incremental and incre-
mental constructions were proposed to find small and even minimal APTAs that
separate the positive and negative samples. These two constructions are based
on state merging techniques of RPNI [29]. Their algorithms are approximate
constructions. As a consequence, their constructed APTAs can be smaller (or
even larger) than our APTAs, and can no longer be used to extract the minimal
separating DFA for S in the second step.

2 Preliminaries

In the whole paper, we fix a finite alphabet Σ of letters. A word is a finite
sequence of letters in Σ. We denote with ε the empty word and with Σ∗ the set
of all finite words. As usual, we let Σ+ = Σ∗ \ {ε}. A subset of Σ∗ is a finitary
language. Given a word u, we denote by u[i] the i-th letter of u. We denote by
u[i, k] the subword starting at the i-th element and ending at the (k − 1)-th
element when 0 ≤ i < k, and the empty sequence ε when i ≥ k or k = 0. We
denote by u[i · · ·] the word of u starting at the i-th element when i < |u|, and
the empty sequence ε when i ≥ |u|. For two given words u and v, we denote by
u · v (uv, for short) the concatenation of u and v. We say that u is a prefix of
w if w = u · v for some word v ∈ Σ∗. We denote by prefixes(u) the set of the
prefixes of u. We also extend function prefixes to a set of words S, i.e. we have
prefixes(S) =

⋃
u∈S prefixes(u).

Transition system. A deterministic transition system (TS) is a tuple T =
(Q, ι, δ), where Q is a finite set of states, ι ∈ Q is initial state, and δ : Q×Σ → Q
is a transition function. We also extend δ from letters to words in a usual way,
by letting δ(q, ε) = q and δ(q, a · u) = δ(δ(q, a), u), where u ∈ Σ∗ and a ∈ Σ.

Automata. An automaton on finite words is called a deterministic finite
automaton (DFA). A DFA A is formally defined as a tuple (T , F), where T
is a TS, and F ⊆ Q is the set of accepting states. DFAs map all words in Σ∗ to
two values, accepting (+) and rejecting (−).

A run of an DFA A on a finite word u of length n ≥ 0 is a sequence of states
ρ = q0q1 · · · qn ∈ Q+ such that, for every 0 ≤ i < n, qi+1 = δ(qi, u[i + 1]). We

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 51

write q0
u−→qn if there is a run from q0 to qn over u. DFAs have at most one run

for each word. A run is accepting if it ends in an accepting state qn ∈ F . A
finite word u ∈ Σ∗ is accepted by A if it has an accepting run. The set of words
accepted by an automaton is called its language. The class of words accepted
by DFAs is known to be regular languages. For a given regular language, the
Myhill-Nerode theorem [25,28] helps to obtain the minimal DFA.

DFAs are easy to extend to languages with “don’t-care" words.

Definition 1. A 3-valued DFA (3DFA)1 is defined as a triple (T , A,R), where
T is a deterministic TS, and A, R, and D = Q\(A∪R) partition the set of states
Q, where A ⊆ Q is the set of accepting states; R ⊆ Q is the set of rejecting
states; and the remaining states D are called don’t-care states.

3DFAs map all words in Σ∗ to three values: accepting (+), rejecting (−), and
don’t-care (?), where they are accepting if they have an accepting run, rejecting
if they have a rejecting run (which is a run ending in a rejecting state), and
don’t-care otherwise.

It is possible to identify equivalent words that reach the same state in the
minimal 3DFA of a given function L : Σ∗ → {+,−, ?} [9]. Let x, y be two words
in Σ∗ and L ∈ (Σ∗ → {+,−, ?}) be a function. We define an equivalence relation
∼L⊆ Σ∗ × Σ∗ as: x ∼L y if, and only if, ∀v ∈ Σ∗.L(xv) = L(yv).

We denote by | ∼L | the index of ∼L, i.e. the number of equivalence classes
defined by L. Let S = (S+, S−) be a given finite set of labelled samples in Σ∗.
We can also see S as a classification function that induces an equivalence relation
∼S . That is, if we set S? = Σ∗ \S, then S(u) = $ if u ∈ S$, where $ ∈ {+,−, ?}.
Finally, we conclude with a straightforward proposition that follows from the
fact that | ∼S | is bounded by |prefixes(S)|.

Fact 1. Let S be a finite set of labelled samples. Then the index of ∼S is finite.

3 DFAMiner

3.1 Main Problem

Let S = (S+, S−) be the given set of labelled samples in the whole paper. Our
goal in this paper is to find a minimal DFA (Min-DFA) D for S such that, for
all u ∈ Σ∗, if S(u) = $, then D(u) = $, where $ ∈ {+,−}. We call the target
DFA a minimal separating DFA2 for S, abbreviated as separating Min-DFA.

Recall that the passive learners for separating Min-DFAs [20,36] usually first
construct the APTA P (and thus a 3DFA) recognising S and then minimise the
APTA P to a Min-DFA using a SAT solver. Our tool DFAMiner follows a similar
workflow. The main advantage of DFAMiner compared to prior work is that it
has access to an incremental construction that produces the minimal 3DFA M

1 3DFAs are a standard model for representing positive and negative samples in the
literature. In [1], 3DFAs are called deterministic unbiased finite state automata.

2 The 3DFA that recognises S is called separating DFA for S in [9].

52 D. Dell’Erba et al.

Fig. 1. Workflow of DFAMiner with 3DFAs

of S with respect to ∼S . Furthermore, DFAMiner also supports the use of a DFA
pair (D+,D−) to obtain possibly further reduction on the state space. We call
such pair double DFAs.

Definition 2. A double DFA (dDFA) is a tuple (T = {T +, T −}, A,R), where
T is the union of two disjoint TSs, and A, R and D = Q \ (A ∪ R) partition the
states Q of T , such that the languages of L+ = (T +, A) and L− = (T −, R) are
disjoint. We call the words accepted by L+ accepting, the words accepted by L−

rejecting, and all other words don’t-care words.

Note that since L+ and L− are disjoint, every word on T can have only one
accepting run and one rejecting run, although T has two initial states.

3.2 Workflow Description

Assume that we have an incremental construction of 3DFAs from the given set
of samples S = (S+, S−). A natural workflow of DFAMiner is to first construct
the minimal 3DFA M (which is also a directed acyclic graph) from S and then
minimise it using a SAT solver. This approach is depicted in Fig. 1. The compo-
nents labelled in green or blue in Figs. 1–2 are novel contributions made in our
tool. We use the standard SAT-based minimisation approaches of 3DFAs as a
black-box [34].

We observe that the minimisation algorithm [34] does not necessarily work
only on 3DFAs, but also on dDFAs and even on a pair of nondeterministic finite
automata (the encoding will be discussed in Sect. 5). This motivates us to ask
the following question: can we construct a dDFA for the pair of samples S? We
give a positive answer to this question.

Our construction of dDFAs N from S is formalised as follows. We construct
the minimal 3DFAs D+ and D− that recognise the languages (S+, ∅) and (S−, ∅),
respectively, making sure that D+ and D− do not share the same state names.
We then combine the two DFAs into a dDFA N , where the initial states of
N are the initial states of both D+ and D−, while the transitions between
states remain unchanged and we make the accepting states of D+ and D− the
accepting and rejecting states of N , respectively. All other states are don’t-care
states. Note that, although such a dDFA corresponds to two TSs, we can see
them as one, since their languages are disjoint. Therefore, even if there are now
two initial states, every word will be accepted or rejected by only one of them.
The workflow of this construction is depicted in Fig. 2. In this way, we obtain a
dDFA N that recognises exactly the given set S. The empirical evaluation shows

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 53

Fig. 2. Workflow of DFAMiner with dDFAs

that the two types of workflows are incomparable (none of them dominates the
other in terms of size or speed), hence, both have their place in the learning
procedure.

We note that the algorithm for producing dDFAs can be adjusted to produce
proper double nondeterministic finite automata (NFAs) when we first translate
D+ and D− to NFAs N+ and N−, respectively, using standard tools (e.g. [10])
to reduce their size (similar to Fig. 2). The way N+ and N− are merged into N
is the same as for D+ and D−, and adjusting the SAT encoding to have NFAs
(and thus potentially many successors) is straight forward.

For details of the components of DFAMiner, our incremental construction for
3DFAs is reported in Sect. 4, while the SAT-based minimisation algorithm is
described in Sect. 5. In Sect. 6 we propose a possible application of DFAMiner in
learning minimal separating DFAs by equivalence queries and to parity game
solving. We close with an experimental evaluation on standard benchmarks in
Sect. 7. A full version of the paper with supplementary materials can be found
in [16].

4 Incremental Construction of 3DFAs

4.1 Prior Construction of 3DFAs

Table 1. Size of Min-3DFA and APTA on
parity game solving.

|Σ| Length Min-3DFA APTA
5 7 438 53,277
5 8 541 209,721
5 9 644 835,954
5 10 747 3,369,694
6 7 1279 199,397
6 8 1807 930,870
6 9 2170 4,369,362
6 10 2533 20,689,546

Let S be the given labelled sample
set and P the APTA3 that recognises
S constructed with standard proce-
dures [20,24,34,36]. The APTA P =
(Q, ε, δ, F,R) is formally defined as a
3DFA where Q = prefixes(S) is the
set of states, ε is the initial state,
F = S+ is the set of accepting states,
R = S− is the set of rejecting states,
and δ(u, a) = ua for all u, ua ∈ Q and
a ∈ Σ.

3 APTAs are called prefix tree unbiased finite state automata in [1] and they are also
similar to the prefix-tree Moore Machines in [33].

54 D. Dell’Erba et al.

The main issue is that the size of P increases dramatically with the growth
of the number of samples in S and their length. This is not surprising given that
P maps every word in prefixes(S) to a unique state.

To show this growth, we have considered samples from parity game solving.
Table 1 shows the size comparison between the APTA and its minimal 3DFA
(Min-3DFA) representation. With 5 and 6 letters (in this case colours), we
can observe that the Min-3DFAs can be much smaller than their correspond-
ing APTA counterparts.

In other words, there are a lot of equivalent states in APTAs that can be
merged. To identify equivalent states in P, we can use the equivalence relation
∼S . In fact, since APTAs are acyclic, we can minimise them via a linear-time
backward traversal [14]. Further, we show next that we do not have to construct
the full APTA P in order to obtain the Min-3DFA for the given samples.

We will subsequently refer to APTAs constructed by the existing approaches
and use 3DFAs for the acceptors constructed by our new technique.

4.2 Incremental Construction of 3DFAs

In [14], an incremental construction of a minimal DFA that accepts a given set of
positive samples has been proposed. We extend their algorithm to 3DFAs from
a pair S = (S+, S−) of sets of labelled samples.

Our algorithm can be seen as the on-the-fly version of the combination of
the construction of the APTA and its minimisation to the Min-3DFA based on
the backward traversal of the APTA. We first describe the minimisation of the
APTA tree and then the on-the-fly construction of the Min-3DFAs in the sequel.

For simplicity, let us assume that the full APTA tree P is already given. The
crucial step in the minimisation component is to decide whether two states p
and q are equivalent. Based on the definition of ∼S , we define that two states
p, q ∈ Q are equivalent, denoted p ≡ q if, and only if:

1. they have the same acceptance status, i.e. they are both accepting, rejecting
or don’t-care states; and

2. for each letter a ∈ Σ, they either both have no successors or their successors
are equivalent.

In the implementation, since we only store one representative state for each
equivalence class, the second requirement can be simplified as follows:

2’. for each letter a ∈ Σ, they either both have no successors or the same suc-
cessor.

Therefore, it is easy to outline an algorithm to minimise the given APTA
tree P by applying these steps:

1. We first collapse all accepting (respectively, rejecting) states without outgoing
transitions to one accepting (respectively, rejecting) state without outgoing
transitions, and put the two states in a map Register, which allows fast access
to their representative states for all states.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 55

2. Then we perform backward traversal of states and check if there is a state
whose successors are all in Register. For such states, we identify equivalent
states by Rule 2’, replace all equivalent states with their representative, and
put their representative in Register.

3. We repeat Step 2 until all states, including the initial one, are in Register.

In this way, we are guaranteed to obtain the Min-3DFA M that correctly recog-
nises the given set S. Moreover, if we use a hash map for storing all representative
states in Register, the minimisation algorithm outlined above runs in linear time
with respect to the number of states in P. However, as we can see in Table 1, the
APTAs can be significantly larger than the corresponding Min-3DFAs. Hence,
it is vital to avoid the full construction of the APTA tree P of S. The key of the
on-the-fly construction is to identify when a state has been completely traversed
during construction.

To this end, we need to assume that the samples are already ordered in the
usual lexicographical order that we will also use to compare the words. That is,
the input samples will be first ordered as follows. For two words u and u′, we
first compare their prefixes of length min(|u|, |u′|). Then, three cases may arise:
one of the two words has a smaller letter than the other at the same position,
then that word is smaller; otherwise the two prefixes coincide, and then if the
two words have the same same length, u and u′ are equal; otherwise one word
is longer than the other, then it is greater.

Assume that S = {u1, u2, · · · , u�} is ordered. In the process of the creation
of the states, we need to detect when a state cannot have further successors
and then it is ready to be merged with its representative state. Assume that
the current 3DFA is Pi = (Qi, {ι}, δi, Fi, Ri) and we now input the next sample
ui+1. When i = 0, P0 is trivially minimal since P0 has only a state ι without any
outgoing transition. For technical reasons, we let u0 = ε, which may not appear
in the sample set S (note that if there is an empty word ε in S, ι will be set to
accepting or rejecting accordingly).

Assume now that i ≥ 0. We read ui+1 and run it on Pi. The sample can
be seen as ui+1 = x · yi+1 with the assumption that x ∈ prefixes(ui+1) is the
longest word such that δi(ι, x) �= ∅. Let p = δi(ι, x). Then, all states along the
run of Pi over x cannot be merged with their representatives, as Pi requires
new states to run the suffix yi+1. Note that x must be a prefix of ui too, i.e.
x ∈ prefixes(ui). This follows from the fact that there must be a run of Pi over
ui, which is the greatest sample in lexicographic order so far, and every word
that has a complete run in Pi must not be greater than ui. In fact, if we assume
that x is not a prefix of ui, then x must be smaller than ui[0, |x|]. This leads to
the contradiction that ui is greater than ui+1. Hence, in this case x must be the
empty string. Let ui = x · yi and ρ = p0 · · · p|ui| where p0 = ι and p|x| = p. We
can show that all states pk with k > |x| in the run of Pi over ui can be merged
with their representative, as they cannot have more (future) reachable states.

If we instead assume that there is a state pj with j > |x| reached over a
future sample uh with h > i, then uh is smaller than ui+1, which leads to the
contradiction that the samples are ordered from the smaller to the bigger. Thus,

56 D. Dell’Erba et al.

Algorithm 1. Incremental construction of the minimal 3DFA from S
procedure Main procedure(Sample Set U)

Register := ∅
while U has next sample u do

x := common_prefix(u)
p := δ(ι, x) � the last state over the common prefix x
y := u[|x| · · ·] � the remaining suffix of u
if has_children(p) then

replace_or_register(p) � merge/register all states after p
end if
add_suffix(p, y) � create run to accept suffix y from p

end while
replace_or_register(ι) � merge the run over the last sample

end procedure
procedure replace_or_register(p)

r := max_child(p) � obtain the successor over the maximal letter
if has_children(r) then � r has a successor

replace_or_register(r) � recursively obtain the run over last sample
end if
if ∃q ∈ Q.(q ∈ Register ∧ q ≡ r) then

max_child(p) := q � merge with its representative
else

Register := Register ∪ {r} � set the 1st state of each class as representative
end if

end procedure

we can identify the representatives for states pk and merge them in the usual
backward manner. It follows that all states except the ones in the run of ui+1 in
the 3DFA Pi+1 are already consistent with respect to ∼S ; thus, there is no need
to modify them afterwards. After we have input all samples, we only need to
merge all states in the run over the last sample u� with their equivalent states.
This way, we are guaranteed to obtain the Min-3DFA M for S in the end.

The formal procedure of the above incremental construction of the Min-3DFA
from S is given in Algorithm 1. Note that, when looking for the run from p over
the last input sample, we only need to find the successors over the maximal letter
by the max_child function. In this way, when we reach the last state r of the
run over the last sample (i.e., has_children(r) is false), we can begin to identify
equivalent states and replace the successor of p with their representative state q
in a backward manner or set the state r as the representative of its equivalent
class, as described in the subprocedure replace_or_register. Moreover, in the
function add_suffix(p, y), we just create the run from p over y and set the last
state to be accepting or rejecting depending on the label of u. In fact, we only
extend the the equivalence relation ≡ in replace_or_register [14] to support the
accepting, rejecting, and don’t-care states, as described before.

Figure 3 depicts all intermediate 3DFAs when running Algorithm 1 on the
ordered set S = {(000,+), (001,+), (10,−)}. Initially, the 3DFA only has the
initial state ι without outgoing transitions and Register is empty. The algorithm
first creates states to accept 000. After receiving sample 001, the algorithm runs
the common prefix 00 and merges r with its equivalent states. So, r is added
to Register. When the sample 10 is read, the common prefix with 001 is ε,
then all states after ι in the run over 001 can be merged with their equivalent

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 57

Fig. 3. An example run over S = {(000,+), (001,+), (10, −)}. Accepting, rejecting and
don’t-care states are denoted, respectively, by double circles, circles and squares. The
dashed rectangle depicts an equivalence class.

states in replace_or_register function. The merge will perform in a backward
manner, starting from the last state s until the state p. So, now that we know
that also s will not have more successors (because the samples are ordered) we
can consider it as complete and therefore merge with r. As a consequence, as
shown in Fig. 3, all incoming transitions of s are redirected to its representative
r and s is deleted. So, Register = {r, p, q}. After this step, add_suffix will create
the new states t and v. Following Algorithm 1, we will eventually obtain the
last 3DFA in Fig. 3 as the final result. Note that the biggest intemediate 3DFA
constructed by Algorithm 1 is usually much smaller than the full APTA.

Theorem 1. Let S be a finite labelled set of ordered samples. Algorithm 1
returns the correct Min-3DFA recognising S.

The proof is basically an induction on the number of input samples and
merely extends the intuition described above; we thus omit it here.

DFA construction. The proposed construction of Min-3DFAs is more general
than the state-of-the-art incremental one [14] in which it is only checked whether
p and q are both accepting or rejecting states when defining the equivalence
relation ≡. The other parts of the construction can be modified accordingly.

5 Finding Separating Min-DFAs Using SAT Solvers

This section explains how to extract the separating Min-DFAs from dDFAs4
built from the 3DFAs through our incremental construction in Sect. 4.2. The
encoding approach is used in the Minimiser for both workflows in Figs. 1 and 2
and is agnostic to the SAT solver used. Since minimising DFAs with don’t-care
words is known to be NP-complete [30], it is unlikely to have polynomial-time
exact algorithm for the second step unless P = NP.

We assume that we are given a dDFA N = (T , A,R), where T = (Q, I, δ) is
the TS obtained from two DFAs D+ and D−. Recall that T is the TS for the
union of D+ and D−. In particular, I contains the two initial states from D+

and D−. We look for a separating DFA D of n states for N such that, for each
4 3DFAs can be seen as a special type of dDFAs.

58 D. Dell’Erba et al.

u ∈ Σ∗, if N (u) = $, then D(u) = $, where $ ∈ {+,−}. Clearly the size of D
is bounded by the size of the TS, i.e. 0 < n ≤ |Q|, since we can obtain a DFA
from the dDFA by simply using D+ (or the complement of D−). Nevertheless,
we aim at finding the minimal such integer n.

To do this, we encode our problem as a SAT problem such that there is
a separating complete DFA D with n states if, and only if, the SAT problem
is satisfiable. We apply the standard propositional encoding [26,27,34,36]. For
simplicity, we let {0, · · · , n−1} be the set of states of D, such that 0 is the initial
one. To encode the target DFA D, we use the following variables:
– the transition variable ei,a,j denotes that i

a−→j holds, i.e. ei,a,j is true if, and
only if, there is a transition from state i to state j over a ∈ Σ, and

– the acceptance variable fi denotes that i ∈ F , i.e. fi is true if, and only if,
the state i is an accepting one.

Once the problem is satisfiable, from the values of the above variables, it
is easy to construct the DFA D. To that end, we need to tell the SAT solver
how the DFA should look like by giving the constraints encoded as clauses. For
instance, to make sure the resulting DFA is indeed deterministic and complete,
we need following constraints:
D1 Determinism:

For every state i and letter a ∈ Σ in D, we have that ¬ei,a,j ∨ ¬ei,a,k for all
0 ≤ j < k < n.

D2 Completeness: For every state i and letter a ∈ Σ in D,
∨

0≤j<n ei,a,j holds.

Moreover, to make sure the obtained DFA D is separating for N , we also
need to perform the product of the target DFA D and N . In order to encode the
product, we use extra variables dp,i, which indicates that the state p of N and
the state i of D can both be reached on some word u. The constraints we need
to enforce that D is separating for N are formalised as below:
D3 Initial condition: dι,0 is true for all ι ∈ I. (0 is the initial state of D.)
D4 Acceptance condition: for each state i of D,
D4.1 Accepting states: dp,i ⇒ fi holds for all p ∈ A;
D4.2 Rejecting states: dp,i ⇒ ¬fi holds for all p ∈ R;

D5 Transition relation: for a pair of states i, j in D,
dp,i ∧ ei,a,j ⇒ dp′,j where p′ = δ(p, a) for all p ∈ Q and a ∈ Σ.

Let φN
n be the conjunction of all these constraints. Then, Theorem 2 follows.

Theorem 2. Let N be a dDFA of S and n ∈ N. Then φN
n is satisfiable if, and

only if, there exists a complete DFA Dn with n states that is separating for N .
Let n be the minimal integer such that φN

n is satisfiable. Then Dn is a sepa-
rating Min-DFA for the sample set S.

The formula φN
n contains (n3 · |Σ| + n2 · |Q| · |Σ|) constraints.

When looking for separating DFAs, the SAT solver may need to inspect
multiple isomorphic DFAs that only differ in their state names for satisfiability.
If those isomorphic DFAs are not separating for N , then the SAT solver still
has to prove this for each DFA. To reduce the search space, DFAMiner uses the
technique in [34] to check only a representative DFA for all isomorphic DFAs.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 59

6 Applications

Apart from those mentioned in the introduction, in this section we describe two
new applications.

6.1 Active Learning of Separating Min-DFAs

Our tool can be applied to the active learning of minimal DFAs using only
equivalence queries (EQs). In fact, minimal DFAs cannot be exactly learned
using polynomial number of EQs in the size of the target Min-DFA [2].

While learning, we maintain a growing set of pairs Si = (S+
i , S−

i) to store the
positive and negative words. That is, for all the indexes i, S+

i+1 ⊇ S+
i , S−

i+1 ⊇ S−
i ,

and Si+1 �= Si. For each i > 0, DFAMiner finds a Min-DFA Di for Si and ask
an EQ that the teacher returns a yes if Di accepts all positive and rejects all
negative words in the target language L, or provides one (positive or negative)
counterexample (CEX) u otherwise. We can start with S0 = (∅, ∅) and propose a
DFA D0 accepting nothing, and then obtain Si+1 from Si by adding the CEX u
to either S+

i or S−
i . If Di(u) = +, then u is a negative word since u is misclassified

by Di and should be added into S−
i+1; otherwise, we add u into S+

i+1. (The other
set will remain the same.) Since Di is consistent with Si but not with all Sj

with j > i > 0, all Di are smaller or equal in size to the target DFA D. For
some k > 0, Sk will uniquely characterise L, Dk will accept L, where k can be
exponential in the number of states in Dk in the worst case.

6.2 Learning Separating Automata for Parity Games

A few years ago an algorithm to solve parity games in quasi-polynomial time [8]
has been proposed. It has then been shown that the underlying approach essen-
tially builds a separating automaton of quasi-polynomial size to distinguish runs
with only winning cycles (according to the parity condition) from the losing
ones [13]. Such a separating automaton distinguishes the two disjointed lan-
guages composed of the set of infinite words that correspond to paths on the
graph where the highest colour occurring is even (hence, winning), or odd (los-
ing). Where each colour occurs only once, a cycle occurs when a colour has
repeated at least twice. For instance, the word (001212)ω contains only even
cycles including 00,121 and 212, while the word (1312331)ω contains only odd
cycles such as 131, 3123, and 33. Given a parity game G, and a separating
automaton S that accepts only even cycles and rejects odd cycles, solving the
parity game G can be reduced to solving the safety game G ⊗S [6]. Although the
product game is much bigger than G, safety games are easier to solve than parity
games. Moreover, the constructed separating automaton S is quasi-polynomial
in the number of colours, which gives an upper bound for solving parity games.

These separating safety automata work on infinite words, but we will employ
our tool to learn them by using finite-length samples. This is because as long
as the length of the finite sample words is long enough, the learned DFAs will
converge to the correct safety automata. The hardest case for the separation

60 D. Dell’Erba et al.

approach [6] occurs when the colours are unique (occur only once, hence, the
colour itself can be used as a node identifier, making detection of cycles easier).
We have implemented this case as follows: we fix an alphabet with c different
colours, a length � > c, (to ensure that each word contains at least one cycle),
and c as highest colour. In the learned DFA, we must accept a word if all cycles
are winning (e.g. 001212) and reject it if all cycles are losing (e.g. 13123312).
Words with winning and losing cycles (e.g. 21232) are don’t-care words.

The resulting automata are always safety automata that reject all words that
have not seen a winning cycle after (at most) � steps, as well as some words that
have seen both, winning and losing cycles (don’t-care word), or, alternatively,
reachability automata that accept all words that have not seen a losing cycle
after at most � steps (again, except don’t-care ones). Thus, the size of the Min-
DFA falls when increasing the sample length �, and eventually stabilises. Using
such a separating automaton reduces solving the parity game to solving a safety
game [6].

Separating automata built with the current state-of-the-art construction [8]
grow quasi-polynomially, and since it is not known whether these construc-
tions are optimal, we applied DFAMiner to learn the most succinct separating
automata for the parity condition.

Table 2. Samples required to learn the minimal sep-
arating automata for solving parity games.
Colours 2 3 4 5 6

DFA Size 3 3 5 5 9
Length 3 5 7 11 15
#Pos 3 130 1,645 9,375,269 4,399,883,736
#Neg 5 31 5,235 1,009,941 38,871,920,470

Table 2 shows the applica-
tion of DFAMiner to the par-
ity condition up to 7 colours
(from 0 to 6). For each max-
imal colour we report the
length required to build the
minimal separating automa-
ton, the size of the obtained
DFA, and the number of all
positive and negative samples generated. Although most words have both win-
ing and losing cycles (don’t-care words), the positive and negative samples grow
exponentially, too, which is why we stopped at 7 colours.

While the APTA size constructed by DFA-Inductor grows exponentially, the
sizes of dDFAs and 3DFAs seem to grow only constantly when increasing the
length of the samples for a fixed colour number. Consequently, all versions
of DFA-Inductor were only able to solve cases with at most 4 colours, while
DFAMiner can manage to solve cases up to 6 colours and length 16. To further
push the limit of DFAMiner for parity game solving, we have also provided an effi-
cient SAT encoding for parity games. These supplementary data are provided
in [16]. With the constructions for both 3DFAs and dDFAs and the efficient
encoding, the bottleneck of the whole procedure is no longer solving the Min-
DFA inference problem, but the generation of samples. With a better sample
generation approach, we believe that this application can give insights on the
structure of minimal safety automata for an arbitrary number of colours.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 61

7 Evaluation

To further demonstrate the improvements of DFAMiner5 over the state of the
art, we conducted comprehensive experiments on standard benchmarks [34,36].
We compared with DFA-Inductor [36] and DFA-Identify6 [24], the state of the art
tools publicly available for passive learning tasks. Unlike DFAMiner and DFA-
Inductor, DFA-Identify uses a SAT encoding of graph coloring problems [20] and
the representative DFAs in the second step [34]. Like DFA-Inductor, DFAMiner is
also implemented in Python with PySAT [22]. We delegate all SAT queries to
the SAT solver CaDiCal 1.5.3 [4] in all tools.

DFAMiner accepts samples formalised in the Abbadingo7 format.
Table 3. Comparison for the minimisation of DFAs from
random samples of DFAMiner with DFA inductor.

DFA-Inductor DFA-Identify dDFA-MIN 3DFA-MIN
N avg % avg % avg % avg %
4 0.12 100 0.09 100 0.03 100 0.02 100
5 0.29 100 1.38 100 0.06 100 0.05 100
6 0.67 100 2.33 100 0.30 100 0.18 100
7 1.81 100 4.12 100 0.80 100 0.73 100
8 3.57 100 9.70 100 1.29 100 1.25 100
9 10.84 100 20.76 100 3.83 100 3.78 100
10 50.91 100 44.57 100 17.88 100 16.80 100
11 154.73 100 128.69 100 55.12 100 59.46 100
12 399.52 96 373.65 99 144.27 100 162.39 100
13 850.04 74 785.93 82 390.10 99 418.62 97
14 1125.59 19 1099.92 23 809.88 76 861.10 69
15 1182.98 6 1197.61 1 1060.18 37 1062.02 34
16 1188.17 1 1184.82 3 1167.58 4 1164.02 5

The experiments
were carried on an
Intel i7-4790 3.60GHz
processor. In Table 3,
each index N reports
the results of 100
benchmark instances
of random samples.
Each benchmark has
50 × N samples. For
every index, we show
the average time and
the percentage of instances
solved within 1,200 s.
The alphabet for the
samples has two sym-
bols while the size
of the generated DFA
is N . We compare
four approaches to inferring Min-DFAs: DFA-Inductor, DFA-Identify, and
DFAMiner with both 3DFA (3DFA-MIN) and dDFA (dDFA-MIN). Both dDFA-
MIN and 3DFA-MIN perform better than DFA-Inductor and DFA-Identify, on
average they are three times faster. DFA-Inductor can minimise within 20min
instances up to level 13, while the two variants of DFAMiner can scale one more
level and minimise one third of the instances of level 15. On these random sam-
ples the dDFA approach is slightly faster than the 3DFA one.

5 https://github.com/liyong31/DFAMiner.
6 https://github.com/mvcisback/dfa-identify.
7 https://abbadingo.cs.nuim.ie/.

https://github.com/liyong31/DFAMiner
https://github.com/mvcisback/dfa-identify
https://abbadingo.cs.nuim.ie/

62 D. Dell’Erba et al.

Fig. 4. Scatter plot on automata size Fig. 5. Scatter plot on runtime (secs)

Figures 4 and 5 report the comparison on the size of the APTA/dDFA (on
the left) and minimisation time (on the right) for the previous benchmark. In
these two figures, instead of the mean values, we show the individual data for
each sample. Both DFA-Inductor and DFA-Identify build the same APTA (they
differ for the encoding step), and as shown in Fig. 4, its size is three times larger
than the dDFA built by DFAMiner, no matter how big the final DFA is. Figure 5,
instead, shows that, when using a dDFA, DFAMiner always performs better than
DFA-Inductor, on average three times faster with peaks of more than four times
faster. The comparison between dDFA and DFA-Identify is similar.

The experimental results have confirmed that our construction of sample rep-
resentations significantly advances the state-of-the-art, making it a valuable con-
tribution to the Min-DFA inference problem. We note that DFA-Inductor 2 [36]
is faster than DFA-Inductor due to a better encoding of the representative DFAs.
Nonetheless, DFAMiner still performs significantly better than DFA-Inductor 2
regarding the overall number of solved cases and running time. For a fair com-
parison, we choose DFA-Inductor as the baseline, as DFAMiner only differs from it
in the construction of APTAs. Additional comparisons on runtime and automata
size with DFA-Inductor 2 can be found in [16].

8 Discussion and Future Work

We propose a novel and more efficient way to build APTAs for the Min-DFA
inference problem. Our contribution focuses on a compact representation of the
the positive and negative samples and, therefore, provides the leeway to benefit
from further enhancements in solving the encoded SAT problem.

Natural future extensions of our approach include implementing the tight
encoding of symmetry breaking [36]. Another easy extension of our construction
is to learn a set of decomposed DFAs [24], thus improving the overall performance
as well. A more complex future work is to investigate whether or not one can
similarly construct a deterministic Büchi automaton based on ω-regular sets of
accepting, rejecting, and don’t-care words that provides a minimality guarantee
for a given set of labelled samples.

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 63

Acknowledgments. We thank the anonymous reviewers for their valuable feedback.
This work has been supported in part by the NSFC grant 62102407 and the EPSRC
through grants EP/X021513/1, EP/X017796/1, and EP/X03688X/1.

Data Availability. The source code and data are available in [15].

References

1. Alquezar, R., Sanfeliu, A.: Incremental grammatical inference from positive and
negative data using unbiased finite state automata. In: Shape, Structure and Pat-
tern Recognition, Proc. Int. Workshop on Structural and Syntactic Pattern Recog-
nition, SSPR, vol.94, pp. 291–300 (1995)

2. Angluin, D.: Negative results for equivalence queries. Mach. Learn. 5, 121–150
(1990). https://doi.org/10.1007/BF00116034

3. Avellaneda, F., Petrenko, A.: Learning minimal DFA: taking inspiration from RPNI
to improve SAT approach. In: Ölveczky, P.C., Salaün, G. (eds.) Software Engineer-
ing and Formal Methods - 17th International Conference, SEFM 2019, Oslo, Nor-
way, September 18-20, 2019, Proceedings, LNCS, vol. 11724, pp. 243–256. Springer
(2019). https://doi.org/10.1007/978-3-030-30446-1_13

4. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

5. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972). https://
doi.org/10.1109/TC.1972.5009015

6. Bojańczyk, M., Czerwiński, W.: An Automata Toolbox. unpublished (2018)
7. Bugalho, M.M.F., Oliveira, A.L.: Inference of regular languages using state merging

algorithms with search. Pattern Recognit. 38(9), 1457–1467 (2005). https://doi.
org/10.1016/J.PATCOG.2004.03.027

8. Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: deciding parity games
in quasipolynomial time. In: Symposium on Theory of Computing 17, pp. 252–263.
Association for Computing Machinery (2017)

9. Chen, Y., Farzan, A., Clarke, E.M., Tsay, Y., Wang, B.: Learning minimal sep-
arating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems, 15th
International Conference, TACAS 2009, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, LNCS, vol. 5505, pp. 31–45. Springer (2009). https://doi.org/
10.1007/978-3-642-00768-2_3

10. Clemente, L., Mayr, R.: Efficient reduction of nondeterministic automata with
application to language inclusion testing. Log. Methods Comput. Sci. 15(1) (2019).
https://doi.org/10.23638/LMCS-15(1:12)2019

11. Coste, F., Nicolas, J.: Regular inference as a graph coloring problem. In: IWGI
(1997)

https://doi.org/10.1007/BF00116034
https://doi.org/10.1007/978-3-030-30446-1_13
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1016/J.PATCOG.2004.03.027
https://doi.org/10.1016/J.PATCOG.2004.03.027
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.23638/LMCS-15(1:12)2019

64 D. Dell’Erba et al.

12. Coste, F., Nicolas, J.: How considering incompatible state mergings may reduce
the DFA induction search tree. In: Honavar, V.G., Slutzki, G. (eds.) Grammatical
Inference, 4th International Colloquium, ICGI-98, Ames, Iowa, USA, July 12-14,
1998, Proceedings. Lecture Notes in Computer Science, vol. 1433, pp. 199–210.
Springer (1998). https://doi.org/10.1007/BFB0054076

13. Czerwinski, W., Daviaud, L., Fijalkow, N., Jurdzinski, M., Lazic, R., Parys, P.:
Universal trees grow inside separating automata: quasi-polynomial lower bounds
for parity games. In: Symposium on Discrete Algorithms 19, pp. 2333–2349. SIAM
(2019)

14. Daciuk, J., Mihov, S., Watson, B.W., Watson, R.E.: Incremental construction of
minimal acyclic finite state automata. Comput. Linguistics 26(1), 3–16 (2000).
https://doi.org/10.1162/089120100561601

15. Dell’Erba, D., Li, Y., Schewe, S.: Artifact for DFAMiner: Mining Minimal Sepa-
rating DFAs from Labelled Samples (Jun 2024). https://doi.org/10.5281/zenodo.
12528885

16. Dell’Erba, D., Li, Y., Schewe, S.: DFAminer: mining minimal separating DFAs
from labelled samples (2024). https://arxiv.org/abs/2405.18871

17. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) Theory and Applications of Satisfiability Testing, 6th International Confer-
ence, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer
(2003). https://doi.org/10.1007/978-3-540-24605-3_37

18. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control.
37(3), 302–320 (1978). https://doi.org/10.1016/S0019-9958(78)90562-4

19. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning, Third Interna-
tional Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4130, pp. 483–497. Springer
(2006). https://doi.org/10.1007/11814771_40

20. Heule, M., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere,
J.M., García, P. (eds.) Grammatical Inference: Theoretical Results and Applica-
tions, 10th International Colloquium, ICGI 2010, Valencia, Spain, September 13-
16, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6339, pp. 66–79.
Springer (2010). https://doi.org/10.1007/978-3-642-15488-1_7

21. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nit. 38(9), 1332–1348 (2005). https://doi.org/10.1016/J.PATCOG.2005.01.003

22. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for proto-
typing with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 9-12, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10929,
pp. 428–437. Springer (2018). https://doi.org/10.1007/978-3-319-94144-8_26

23. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V.G., Slutzki, G. (eds.) Grammatical Inference, 4th International Collo-
quium, ICGI-98, Ames, Iowa, USA, July 12-14, 1998, Proceedings. Lecture Notes in
Computer Science, vol. 1433, pp. 1–12. Springer (1998). https://doi.org/10.1007/
BFB0054059

24. Lauffer, N., Yalcinkaya, B., Vazquez-Chanlatte, M., Shah, A., Seshia, S.A.: Learn-
ing deterministic finite automata decompositions from examples and demonstra-
tions. In: Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in Computer-Aided

https://doi.org/10.1007/BFB0054076
https://doi.org/10.1162/089120100561601
https://doi.org/10.5281/zenodo.12528885
https://doi.org/10.5281/zenodo.12528885
https://arxiv.org/abs/2405.18871
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1007/11814771_40
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1016/J.PATCOG.2005.01.003
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/BFB0054059
https://doi.org/10.1007/BFB0054059

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 65

Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, pp. 1–6. IEEE (2022).
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_39

25. Myhill, J.: Finite automata and the representation of events. In: Technical Report
WADD TR-57-624, pp. 112–137 (1957)

26. Neider, D.: Computing minimal separating DFAs and regular invariants using SAT
and SMT solvers. In: Chakraborty, S., Mukund, M. (eds.) Automated Technology
for Verification and Analysis - 10th International Symposium, ATVA 2012, Thiru-
vananthapuram, India, October 3-6, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7561, pp. 354–369. Springer (2012). https://doi.org/10.1007/978-3-
642-33386-6_28

27. Neider, D., Jansen, N.: Regular model checking using solver technologies and
automata learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal Meth-
ods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA, May 14-
16, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7871, pp. 16–31.
Springer (2013). https://doi.org/10.1007/978-3-642-38088-4_2

28. Nerode, A.: Linear automaton transformations. Am. Math. Soc. 4 541–544 (1958)
29. Oncina, J., Garcia, P.: Inferring regular languages in polynomial updated time. In:

Pattern Recognition and Image Analysis: Selected Papers from the IVth Spanish
Symposium, pp. 49–61. World Scientific (1992)

30. Pfleeger, C.P.: State reduction in incompletely specified finite-state machines. IEEE
Trans. Computers 22(12), 1099–1102 (1973). https://doi.org/10.1109/T-C.1973.
223655

31. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM 40(1), 95–142 (1993). https://doi.org/10.
1145/138027.138042

32. Smetsers, R., Fiterau-Brostean, P., Vaandrager, F.W.: Model learning as a satisfia-
bility modulo theories problem. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.)
Language and Automata Theory and Applications - 12th International Conference,
LATA 2018, Ramat Gan, Israel, April 9-11, 2018, Proceedings. Lecture Notes in
Computer Science, vol. 10792, pp. 182–194. Springer (2018). https://doi.org/10.
1007/978-3-319-77313-1_14

33. Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata: Behavior And Synthesis.
Elsevier (1973)

34. Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: BFS-based symmetry breaking predi-
cates for DFA identification. In: Dediu, A., Formenti, E., Martín-Vide, C., Truthe,
B. (eds.) Language and Automata Theory and Applications - 9th International
Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings. Lecture Notes
in Computer Science, vol. 8977, pp. 611–622. Springer (2015). https://doi.org/10.
1007/978-3-319-15579-1_48

35. Verwer, S., Hammerschmidt, C.A.: flexfringe: a passive automaton learning pack-
age. In: 2017 IEEE International Conference on Software Maintenance and Evolu-
tion, ICSME 2017, Shanghai, China, September 17-22, 2017, pp. 638–642. IEEE
Computer Society (2017). https://doi.org/10.1109/ICSME.2017.58

36. Zakirzyanov, I., Morgado, A., Ignatiev, A., Ulyantsev, V., Marques-Silva, J.: Effi-
cient symmetry breaking for sat-based minimum DFA inference. In: Martín-Vide,
C., Okhotin, A., Shapira, D. (eds.) Language and Automata Theory and Applica-
tions - 13th International Conference, LATA 2019, St. Petersburg, Russia, March
26-29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11417, pp. 159–
173. Springer (2019). https://doi.org/10.1007/978-3-030-13435-8_12

https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_39
https://doi.org/10.1007/978-3-642-33386-6_28
https://doi.org/10.1007/978-3-642-33386-6_28
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1145/138027.138042
https://doi.org/10.1145/138027.138042
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-15579-1_48
https://doi.org/10.1007/978-3-319-15579-1_48
https://doi.org/10.1109/ICSME.2017.58
https://doi.org/10.1007/978-3-030-13435-8_12

66 D. Dell’Erba et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Visualizing Game-Based Certificates
for Hyperproperty Verification

Raven Beutner(B) , Bernd Finkbeiner , and Angelina Göbl

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{raven.beutner,finkbeiner,angelina.goebl}@cispa.de

Abstract. Hyperproperties relate multiple executions of a system and
are commonly used to specify security and information-flow policies.
While many verification approaches for hyperproperties exist, provid-
ing a convincing certificate that the system satisfies a given property is
still a major challenge. In this paper, we propose strategies as a suit-
able form of certificate for hyperproperties specified in a fragment of the
temporal logic HyperLTL. Concretely, we interpret the verification of a
HyperLTL property as a game between universal and existential quantifi-
cation, allowing us to leverage strategies for the existential quantifiers as
certificates. We present HyGaViz, a browser-based visualization tool that
lets users interactively explore an (automatically synthesized) witness
strategy by taking control over universally quantified executions.

1 Introduction

Hyperproperties [17] relate multiple execution traces of a system and occur
frequently when reasoning about information flow [35,38], robustness [12,15],
independence [3], knowledge [10,14], and causality [19,25]. A popular logic for
specifying temporal hyperproperties is HyperLTL [16], an extension of LTL with
explicit quantification over execution traces. For example, we can use HyperLTL
to express a simple non-interference property as follows:

∀π1.∃π2. (lπ1 ↔ lπ2) ∧ (oπ1 ↔ oπ2) ∧ (¬hπ2) (ϕNI)

Informally, this property – called non-inference [33] – requires that any possible
observation made via the low-security input (modeled via atomic proposition
l) and output (o) is compatible with a fixed “dummy” sequence of high-security
inputs (h) [33]. Concretely, ϕNI states that for any execution π1, some execution
π2 combines the low-security observations of π1 with fixed dummy values for h;
here, we require that h is constantly set to false, i.e., (¬hπ2) (cf. [23]).

Verification and Certificates. In recent years, many verification techniques for
temporal hyperproperties (expressed, e.g., in HyperLTL) have been developed
[2,8,9,16,24,30,35]. However, while checking if a given system satisfies a Hyper-
LTL property is important, an often equally critical aspect is to convince the user
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 67–75, 2025.
https://doi.org/10.1007/978-3-031-71177-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_5&domain=pdf
http://orcid.org/0000-0001-6234-5651
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0009-0009-2331-4049
https://doi.org/10.1007/978-3-031-71177-0_5

68 R. Beutner et al.

of this satisfaction using explainable certificates. For trace properties – specified,
e.g., in LTL – user-understandable certificates for positive and negative veri-
fication results have been explored extensively [4,5,13,27,28,32]. Likewise, for
alternation-free HyperLTL formulas (i.e., formulas that use a single type of quan-
tifier), known techniques for LTL apply [29]. In contrast, generating explainable
certificates for the satisfaction of alternating properties like ϕNI is more com-
plex. For example, ϕNI states that for any trace π1, there exists some matching
execution π2. A certificate must thus implicitly define a mapping that, given a
concrete choice for π1, produces a witness trace π2. Defining and understanding
such a mapping can be complex, even for simple systems with few states.

Strategies as Certificates. In this paper, we propose strategies as certificates for
the satisfaction of ∀∗∃∗ HyperLTL formulas (i.e., formulas where an arbitrary
number of universal quantifiers is followed by an arbitrary number of existential
quantifiers; e.g., ϕNI). To accomplish this, we take a game-based verification
perspective [6,20]. The key idea is to interpret the verification of a ∀π1.∃π2. ψ
formula (where ψ is the LTL body) as a game between universal and existential
quantification. The ∀-player controls the universally quantified trace by mov-
ing through the system (thereby producing a trace π1), and the ∃-player reacts
with moves in a separate copy of the system (thereby producing a trace π2).
Any strategy for the ∃-player that ensures that π1 and π2, together, satisfy ψ,
implies that the formula is satisfied on the given system. We can think of a win-
ning strategy as a step-wise Skolem function that, for every trace π1, iteratively
constructs a witnessing trace π2.

Visualizing Strategies. In this paper, we introduce HyGaViz, a verification and
visualization tool for strategies in the context of HyperLTL verification. In
HyGaViz, the user can input (possibly identical) finite-state transition systems
and a HyperLTL formula ϕ. HyGaViz then automatically attempts to synthe-
size a strategy that witnesses the satisfaction of ϕ. If a strategy exists, HyGaViz
displays it to the user. Our key insight is that we can let the user explore the
strategy interactively by taking control of universally quantified traces. That is,
instead of displaying the strategy in its entirety (e.g., as a table or decision dia-
gram), we let the user play a game. In each step of the game, the user decides
on a successor state for each universally quantified system (i.e., the user takes
the role of the ∀-player), and HyGaViz automatically updates the states of all
existentially quantified systems (i.e., HyGaViz plays the role of the ∃-player).

Example 1. We consider a simple verification instance in Fig. 1. On HyGaViz’s
initial page (Fig. 1a), we create two (in this case, equal) transition systems
(labeled A,B) over atomic propositions (APs) o and h, depicted in the top
right. In each system, each state is identified by a natural number and lists all
APs that hold in the given state. From initial state 0, the system can branch on
AP h (states 1 and 2), but, in either case, AP o is set in the next step (states
3 and 4). We want to verify ϕNI , which – due to the absence of low-security
input l – simplifies to ∀A.∃B. (oA ↔ oB)∧ (¬hB). Note how, in HyGaViz, the

Visualizing Game-Based Certificates for Hyperproperty Verification 69

Fig. 1. Screenshots of HyGaViz. (Color figure online)

quantifier prefix is determined implicitly by the order and quantifier type of the
systems, and the LTL body is displayed on the bottom left. The user can change
the systems, the quantification type, the name, and the order of the systems
using the buttons above each system. Upon entering the LTL formula, HyGaViz
automatically displays a deterministic automaton for the property (top left).
After clicking the Verify button (top right), the user is directed to the strategy
simulation page (depicted in Fig. 1b). During the simulation, HyGaViz displays
the current state of the automaton and the system state for A and B (in green)
and lets the user control the state of (the universally quantified) system A. By
hovering over the successor state of system A, HyGaViz highlights the next state
for system B (in yellow). In this instance, systems A and B are both in state 0.
When the user moves system A to state 1, HyGaViz reacts by moving system B

70 R. Beutner et al.

to state 2 (as it has to ensure (¬hB)). By clicking on a successor state for A,
the user locks the choice, and the game progresses to the next round. �

Related Work. HyperVis [29] is a tool for the visualization of counterexam-
ple traces for alternation-free ∀k formulas. Notably, a counterexample to a ∀k

property is a concrete list of k traces, so visualization is possible by highlight-
ing the relevant parts of the traces, potentially using causality-based techniques
[18]. Our visualization for properties involving quantifier alternations is rooted
in the game-based verification approach for HyperLTL [6,20], which becomes
complete when adding prophecies [6] (see Sect. 2.2). To the best of our knowl-
edge, we are the first to propose a principled approach to generate and visualize
user-understandable certificates for alternating hyperproperties.

2 HyperLTL, Game-Based Verification, and Prophecies

We fix a finite set of atomic propositions AP . A transition system (TS) is a tuple
T = (S, sinit , κ, L), where S is a finite set of states, sinit ∈ S is an initial state,
κ : S → (2S \ {∅}) is a transition function, and L : S → 2AP is a state labeling.
HyperLTL formulas are generate by the following grammar

ψ := aπ | ψ ∧ ψ | ¬ψ | ψ | ψ U ψ ϕ := ∀π. ϕ | ∃π. ϕ | ψ

where a ∈ AP is an atomic proposition, and π is a trace variable. In a HyperLTL
formula, we can quantify over traces in a system (bound to some trace variable),
and then evaluate an LTL formula on the resulting traces. In the LTL body,
formula aπ expresses that AP a should hold in the current step on the trace
bound to trace variable π. See [23] for details.

2.1 Game-Based Verification

HyGaViz’s verification certificates are rooted in a game-based verification method
[6]. Given a ∀∗∃∗ HyperLTL formula ∀π1 . . . ∀πk.∃πk+1 . . . ∃πk+l. ψ, we view ver-
ification as a game between the ∀-player (controlling traces π1, . . . , πk) and the
∃-player (controlling traces πk+1 . . . , πk+l). Each state of the game has the form
〈s1, . . . , sk+l, q〉, where s1, . . . , sk+l ∈ S are system states (representing the cur-
rent state of π1, . . . , πk+l, respectively), and q is the state of a deterministic
parity automaton (DPA) that tracks the acceptance of the LTL body ψ. When
the game is in state 〈s1, . . . , sk+l, q〉, the ∀-player first fixes successor states
s′
1, . . . , s

′
k for π1, . . . , πk (such that s′

i ∈ κ(si) for all 1 ≤ i ≤ k); the ∃-player
responds by selecting successor states s′

k+1, . . . , s
′
k+l for πk+1, . . . , πk+l; and the

game repeats from state 〈s′
1, . . . , s

′
k+l, q

′〉 (where q′ is the updated DPA state).

Visualizing Game-Based Certificates for Hyperproperty Verification 71

Fig. 2. Screenshots of HyGaViz when using prophecies.

Visualizing Game-Based Verification. In HyGaViz, the user can create a ver-
ification scenario by manually creating finite-state transition systems and a
HyperLTL formula; see Fig. 1a. Note how the quantification prefix is determined
implicitly by the order of the systems. In particular, the traces are resolved on
individual (potentially different) transition systems. During simulation (cf. the
example in Fig. 1b), we visualize a game state 〈s1, . . . , sk+l, q〉 by marking the
current state of each system – separated into user-controlled (universally quan-
tified) systems (top right) and strategy-controlled (existentially quantified) ones
(bottom right) – and display the current state of the DPA (top left). The user
takes the role of the ∀-player and, in each step, determines successor states for all
universally quantified systems. Once successor states for all universally quantified
systems are confirmed, HyGaViz automatically updates existentially quantified
systems (and the DPA state) based on the internally computed strategy, and the
game continues to the next stage. Moreover, HyGaViz highlights the next states
when the user hovers over possible successor states for the universally quantified
systems (once successor states for all but one universally quantified system are
confirmed). Using the information tab in the bottom left, the user can jump to

72 R. Beutner et al.

previous game states and explore the reaction of the strategy to different choices
for the universally quantified systems.

2.2 Prophecies

In our game, the ∃-player only observes a finite prefix of the traces produced by
the ∀-player (or, equivalently, the user of HyGaViz) and is thus missing informa-
tion about the future. We can counteract this by using prophecies [1], which are
LTL formulas over trace variables π1, . . . , πk [6]. Given an LTL prophecy formula
θ, the ∀-player (i.e., the user) has to, in each step, decide if its future behavior
(on π1, . . . , πk) satisfies θ. If the ∀-player decides that θ holds (resp. does not
hold), the ∃-player can play under the assumption that the future behavior of
the ∀-player satisfies (resp. violates) θ. See [6] for details.

Example 2. We illustrate prophecies with the example in Fig. 2. The two systems
A and B in Fig. 2a generate all traces over AP a, and the HyperLTL formula
∀A.∃B. (aB ↔ aA) requires that trace B predicts the future behavior of
A. Without prophecies, the ∃-player loses: No matter what successor state the
∃-player picks, the ∀-player can, in the next step, violate the prediction of the
∃-player. HyGaViz communicates the absence of a winning strategy if the user
pushes the Verify button. Instead, the user can add the LTL prophecy aA

(cf. Fig. 2a). During simulation, the user (who takes the role of the ∀-player) has
to, in each step, fix a successor state for system A and determine if prophecy

aA holds. We depict an excerpt of the simulation page in Fig. 2b. As expected,
the strategy for the ∃-player (computed automatically by HyGaViz) can use the
prophecy to win: For example, if the user states that aA holds (so the ∃-player
can assume that a hold in the next step in A), HyGaViz moves system B to
state 1. If the user violates a previous prophecy decision – e.g., by stating that
prophecy aA holds but, in the next step, moving system A to state 0 where AP
a does not hold – HyGaViz detects this violation and forces the user to restart
from an earlier state of the game (Fig. 2c). �

3 HyGaViz: Tool Overview

HyGaViz consists of a backend verification engine written in F#. The backend
uses spot [22] to translate LTL formulas to DPAs and oink [21] to synthesize
a strategy for the ∃-player. We use a stateless Node.js [37] backend that com-
municates with the verification engine via JSON. HyGaViz’s frontend is written
in JavaScript and uses Cytoscape.js [26] to render transition systems and
automata.

4 Conclusion

We have proposed the first method to generate and visualize certificates for
the satisfaction of ∀∗∃∗ HyperLTL formulas. Our tool, HyGaViz, allows users

Visualizing Game-Based Certificates for Hyperproperty Verification 73

to interactively explore the complex dependencies between multiple traces by
challenging a strategy for existentially quantified traces. Ultimately, HyGaViz is a
first step to foster trust in (and understanding of) verification results for complex
alternating hyperproperties, as is needed to, e.g., certify information-flow policies
like ϕNI . For now, HyGaViz can handle (small) finite state systems, which we
visualize as directed graphs. The underlying strategy-centered approach also
applies to larger (potentially infinite-state) systems represented symbolically [7].
In future work, one could extend HyGaViz to such systems by exploring different
visualization approaches for larger systems [31,34,36].

Acknowledgments. This work was partially supported by the European Research
Council (ERC) Grant HYPER (101055412) and by the German Research Foundation
(DFG) as part of TRR 248 (389792660).

Data Availability Statement. HyGaViz is available at [11].

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991). https://doi.org/10.1016/0304-3975(91)90224-P

2. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. (2011). https://doi.org/10.1017/S0960129511000193

3. Bartocci, E., Henzinger, T.A., Nickovic, D., da Costa, A.O.: Hypernode automata.
In: International Conference on Concurrency Theory, CONCUR 2023 (2023).
https://doi.org/10.4230/LIPICS.CONCUR.2023.21

4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterex-
amples using causality. In: International Conference on Computer Aided Verifica-
tion, CAV 2009 (2009). https://doi.org/10.1007/978-3-642-02658-4_11

5. Beschastnikh, I., Liu, P., Xing, A., Wang, P., Brun, Y., Ernst, M.D.: Visualizing
distributed system executions. ACM Trans. Softw. Eng. Methodol. (2020). https://
doi.org/10.1145/3375633

6. Beutner, R., Finkbeiner, B.: Prophecy variables for hyperproperty verification. In:
Computer Security Foundations Symposium, CSF 2022 (2022). https://doi.org/
10.1109/CSF54842.2022.9919658

7. Beutner, R., Finkbeiner, B.: Software verification of hyperproperties beyond k-
safety. In: International Conference on Computer Aided Verification, CAV 2022
(2022). https://doi.org/10.1007/978-3-031-13185-1_17

8. Beutner, R., Finkbeiner, B.: AutoHyper: explicit-state model checking for Hyper-
LTL. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2023 (2023). https://doi.org/10.1007/978-3-031-
30823-9_8

9. Beutner, R., Finkbeiner, B.: Non-deterministic planning for hyperproperty verifica-
tion. In: International Conference on Automated Planning and Scheduling, ICAPS
2024 (2024). https://doi.org/10.1609/ICAPS.V34I1.31457

10. Beutner, R., Finkbeiner, B., Frenkel, H., Metzger, N.: Second-order hyperprop-
erties. In: International Conference on Computer Aided Verification, CAV 2023
(2023). https://doi.org/10.1007/978-3-031-37703-7_15

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.4230/LIPICS.CONCUR.2023.21
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1109/CSF54842.2022.9919658
https://doi.org/10.1109/CSF54842.2022.9919658
https://doi.org/10.1007/978-3-031-13185-1_17
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.1609/ICAPS.V34I1.31457
https://doi.org/10.1007/978-3-031-37703-7_15

74 R. Beutner et al.

11. Beutner, R., Finkbeiner, B., Göbl, A.: HyGaViz: visualizing game-based certificates
for hyperproperty verification (2024). https://doi.org/10.5281/zenodo.12206584

12. Biewer, S., et al.: Conformance relations and hyperproperties for doping detection
in time and space. Log. Methods Comput. Sci. 18, 14 (2022). https://doi.org/10.
46298/lmcs-18(1:14)2022 https://doi.org/10.46298/lmcs-18(1:14)2022

13. Bolton, M.L., Bass, E.J.: Using task analytic models to visualize model checker
counterexamples. In: International Conference on Systems, Man and Cybernetics,
SMC 2010 (2010). https://doi.org/10.1109/ICSMC.2010.5641711

14. Bozzelli, L., Maubert, B., Pinchinat, S.: Unifying hyper and epistemic temporal log-
ics. In: International Conference on Foundations of Software Science and Computa-
tion Structures, FoSSaCS 2015 (2015). https://doi.org/10.1007/978-3-662-46678-
0_11

15. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM (2012). https://doi.org/10.1145/2240236.2240262

16. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: International Conference om Princi-
ples of Security and Trust, POST 2014 (2014). https://doi.org/10.1007/978-3-642-
54792-8_15

17. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. (2010).
https://doi.org/10.3233/JCS-2009-0393

18. Coenen, N., et al.: Explaining hyperproperty violations. In: International Confer-
ence on Computer Aided Verification, CAV 2022 (2022). https://doi.org/10.1007/
978-3-031-13185-1_20

19. Coenen, N., Finkbeiner, B., Frenkel, H., Hahn, C., Metzger, N., Siber, J.: Tem-
poral causality in reactive systems. In: International Symposium on Automated
Technology for Verification and Analysis, ATVA 2022 (2022). https://doi.org/10.
1007/978-3-031-19992-9_13

20. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness.
In: International Conference on Computer Aided Verification, CAV 2019 (2019).
https://doi.org/10.1007/978-3-030-25540-4_7

21. van Dijk, T.: Oink: an implementation and evaluation of modern parity game
solvers. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2018 (2018). https://doi.org/10.1007/978-3-319-
89960-2_16

22. Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: what’s new? In: International
Conference on Computer Aided Verification, CAV 2022 (2022). https://doi.org/
10.1007/978-3-031-13188-2_9

23. Finkbeiner, B.: Logics and algorithms for hyperproperties. ACM SIGLOG News
(2023). https://doi.org/10.1145/3610392.3610394

24. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL
and HyperCTL∗. In: International Conference on Computer Aided Verification,
CAV 2015 (2015). https://doi.org/10.1007/978-3-319-21690-4_3

25. Finkbeiner, B., Siber, J.: Counterfactuals modulo temporal logics. In: International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR
2023 (2023). https://doi.org/10.29007/QTW7

26. Franz, M., Lopes, C.T., Huck, G., Dong, Y., Sümer, S.O., Bader, G.D.:
Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics
32, 309–311 (2016). https://doi.org/10.1093/BIOINFORMATICS/BTV557

27. Griggio, A., Roveri, M., Tonetta, S.: Certifying proofs for LTL model checking. In:
Formal Methods in Computer Aided Design, FMCAD 2018 (2018). https://doi.
org/10.23919/FMCAD.2018.8603022

https://doi.org/10.5281/zenodo.12206584
https://doi.org/10.46298/lmcs-18(1:14)2022
https://doi.org/10.46298/lmcs-18(1:14)2022
https://doi.org/10.46298/lmcs-18(1:14)2022
https://doi.org/10.1109/ICSMC.2010.5641711
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1145/2240236.2240262
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1145/3610392.3610394
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.29007/QTW7
https://doi.org/10.1093/BIOINFORMATICS/BTV557
https://doi.org/10.23919/FMCAD.2018.8603022
https://doi.org/10.23919/FMCAD.2018.8603022

Visualizing Game-Based Certificates for Hyperproperty Verification 75

28. Groce, A., Kroening, D., Lerda, F.: Understanding counterexamples with explain.
In: International Conference on Computer Aided Verification, CAV 2004 (2004).
https://doi.org/10.1007/978-3-540-27813-9_35

29. Horak, T., et al.: Visual analysis of hyperproperties for understanding model check-
ing results. IEEE Trans. Vis. Comput. Graph. (2022). https://doi.org/10.1109/
TVCG.2021.3114866

30. Hsu, T., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyperprop-
erties. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2021 (2021). https://doi.org/10.1007/978-3-030-
72016-2_6

31. Jerding, D.F., Stasko, J.T., Ball, T.: Visualizing interactions in program executions.
In: International Conference on Software Engineering, ICSE 1997 (1997). https://
doi.org/10.1145/253228.253356

32. Kasenberg, D., Thielstrom, R., Scheutz, M.: Generating explanations for temporal
logic planner decisions. In: International Conference on Automated Planning and
Scheduling, ICAPS 2020 (2020). https://doi.org/10.1609/icaps.v30i1.6740

33. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Symposium on Security and Privacy, SP 1994 (1994).
https://doi.org/10.1109/RISP.1994.296590

34. Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M.: Visualizing programs with Jeliot
3. In: Conference on Advanced Visual Interfaces, AVI 2004 (2004). https://doi.
org/10.1145/989863.989928

35. Rabe, M.N.: A temporal logic approach to information-flow control. Ph. D. thesis,
Saarland University (2016)

36. Rajala, T., Laakso, M., Kaila, E., Salakoski, T.: Effectiveness of program visual-
ization: a case study with the ViLLE tool. J. Inf. Technol. Educ. Innov. Pract. 7,
15 (2008)

37. Tilkov, S., Vinoski, S.: Node.js: using javascript to build high-performance network
programs. IEEE Internet Comput. 14, 80–83 (2010). https://doi.org/10.1109/MIC.
2010.145

38. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Computer Security Foundations Workshop CSFW 2003 (2003).
https://doi.org/10.1109/CSFW.2003.1212703

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1145/253228.253356
https://doi.org/10.1145/253228.253356
https://doi.org/10.1609/icaps.v30i1.6740
https://doi.org/10.1109/RISP.1994.296590
https://doi.org/10.1145/989863.989928
https://doi.org/10.1145/989863.989928
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/CSFW.2003.1212703
http://creativecommons.org/licenses/by/4.0/

Chamelon : A Delta-Debugger for OCaml

Milla Valnet1,2,3(B), Nathanaëlle Courant3, Guillaume Bury3,
Pierre Chambart3, and Vincent Laviron3

1 École Normale Supérieure, Université PSL, 75005 Paris, France
milla.valnet@lip6.fr

2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
3 OCamlPro, 75014 Paris, France

Abstract. Tools that manipulate OCaml code can sometimes fail even
on correct programs. Identifying and understanding the cause of the
error usually involves manually reducing the size of the program, so as
to obtain a shorter program causing the same error—a long, sometimes
complex and rarely interesting task. Our work consists in automating
this task using a minimiser, or delta-debugger. To do so, we propose a
list of unitary heuristics, i.e. small-scale reductions, applied through a
dichotomy-based state-of-the-art algorithm. These proposals are imple-
mented in the free Chamelon tool. Although designed to assist the devel-
opment of an OCaml compiler, Chamelon can be adapted to all kinds of
projects that manipulate OCaml code. It can analyse multifile projects
and efficiently minimise real-world programs, reducing their size by one
to several orders of magnitude. It is currently used to assist the industrial
development of the flambda2 optimising compiler.

1 Introduction

Program errors sometimes occur oten large inputs, of hundreds or even thousands
of lines. Identifying and isolating the error is often a long and tedious task, which
generally involves manually minimising the size of the input as much as possible.
The aim of a minimiser is to automate this work.

Sometimes called delta-debugging, this idea was developed in 1999 by
Andreas Zeller [11] in order to isolate the cause of a program error by iteratively
applying simplifications. It is defined as a methodology reducing a problem while
preserving a certain property—here, the error. The tool thus does not eliminate
the error, but on the contrary points to it.

This method is already used for languages such as C, with C-reduce [1],
SMT-lib [6], or via implementations of Zeller’s original work [11]. Nonetheless,
the problem remains well studied. Zeller worked with Hildebrandt [10] to identify
the inputs and interactions that cause programs’ failure, using Mozilla browser
user inputs as case study, and then demonstrated with Cleve [3] that delta-
debugging works just as well for identifying errors due to the code itself as
to its parameters. Seeing any debugging tasks as special cases of minimisation
problems, he uses this method with Choi [2] for thread scheduling failures, and
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 76–83, 2025.
https://doi.org/10.1007/978-3-031-71177-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_6

Chamelon : A Delta-Debugger for Ocaml 77

with Cleve [4] to identify which variables and at which execution step the error
occurs. Finally, Leitner et al. combine this approach with slicing to reduce the
size of failure cases in random test generation. Some also improved the state of
the art with machine learning [5], probabilistic algorithms [9], etc.

In OCaml, however, the existing debugging tools are limited to type errors [7].
This project therefore proposes the first general-purpose minimiser for OCaml
code, Chamelon. Although initially designed to assist an OCaml compiler devel-
opment in the industry, such a tool may prove useful for other projects using or
manipulating OCaml code. This work makes the following contributions:

• a list of OCaml-specific minimisation heuristics;
• combined with a state-of-the-art technique to perform dichotomy-based min-

imisations;
• an OCaml implementation supporting multi-file projects and runtime errors

available as open-source software;
• with a modular design to support the development of various kinds of OCaml

projects.

Outline. Sect. 2 presents the tool usage. Section 3 explains the unitary heuristics
proposed to minimise the program, while Sect. 4 explains how they are combined.
Section 5 shows extensions of this work.

2 Tool Usage

2.1 Development Context

The tool Chamelon is a delta-debugger for OCaml programs, available as open-
source software on GitHub1. Earlier results on Chamelon were presented in
French [8]. It was originally designed to support the development of the flambda2
optimising compiler2, developed by OCamlPro and used in particular by Jane
Street. Indeed, when flambda2 failed on programs correct according to the stan-
dard compiler, identifying the error cause in flambda2 was not always easy.
However, Chamelon is built in a modular way, reducing a program size while
ensuring an user-given condition, and can be used in various context.

2.2 Usage

chamelon input -c command -e error

To use chamelon, all we need to do is giving it an input file, a command
to execute and an error, that is, the string we want to find in the command’s
standard output. chamelon then prints a log of applied transformations in the
standard output, and when done, the output is a minimised version of the input,
1 https://github.com/Ekdohibs/chamelon.
2 https://github.com/ocaml-flambda/flambda-backend.

https://github.com/Ekdohibs/chamelon
https://github.com/ocaml-flambda/flambda-backend

78 M. Valnet et al.

such that the command output still contains the error. To minimise a set of files,
we only need to provide the command with several inputs. This way, Chamelon
can be used in different settings.

A simple real-world use case is available online3. By following instructions in
README-CHAMELON.md, we can make Chamelon reduce the size of an input file
trigerring a Fatal error in flambda2, to help understand the origin of the error.

2.3 Experimental Results

The tool is currently used daily at OCamlPro to help flambda2 development for
almost a year. It gave results on real cases of failure, significantly reducing the
output program size. Among the experimental results, it was able to minimise a
650-lines program4 that failed to compile into a program of just 6 lines causing
the same error, identifying a problem in the optimisation of pattern matching5:

1 let offset ~byte_order byte_n =

2 match byte_order with | `Little_endian -> 0 | `Big_endian -> byte_n

3 let pack_unsigned_16 ~byte_order =

4 __ignore__ ((offset) ~byte_order 0);

5 __ignore__ ((__dummy__ ()) ((offset) ~byte_order 1));

6 __dummy__ ()

We also tested the minimiser on larger programs. For example, given a 3842-
lines program on which the compiler was failing, the minimiser reduced it to 22
lines, in around thirty minutes on an average laptop. Often, the output can still
be minimised by hand. However, the tool automates a large part of the work.
Finally, in a multi-file framework, the minimiser is also able to merge or delete
files, resulting in a minimised copy of the project that triggered the error.

Note that reducing the size of the program is not the only interesting action
of the minimiser. Indeed, when a simplification is not done, it means that it
removed the error, which can therefore be exploited. We not only benefit from
the size-reducing, but also from the minimality of the program with regard to
the heuristics.

3 Heuristics

The concept of the approach is to compose and combine different unitary heuris-
tics, applying each of them as much as possible before trying the next. We present
here the different heuristics implemented to minimise an OCaml program. It
should be noted that, having initially targeted compilation problems, our app-
roach aims much more at identifying errors caused by a certain code structure
than by a certain semantics or execution: this therefore guides our choice of
heuristics.
3 https://github.com/Ekdohibs/flambda-backend/tree/chamelon-demo.
4

https://github.com/janestreet/core kernel/blob/master/binary packing/src/binary packing.ml.
5 fixed by https://github.com/ocaml-flambda/flambda-backend/pull/1073.

https://github.com/Ekdohibs/flambda-backend/tree/chamelon-demo
https://github.com/janestreet/core_kernel/blob/master/binary_packing/src/binary_packing.ml
https://github.com/ocaml-flambda/flambda-backend/pull/1073

Chamelon : A Delta-Debugger for Ocaml 79

3.1 Suppress Definitions

Delete definitions starting from the end. The first simple heuristics consists
in deleting all definitions—of variables, types, modules, etc.—starting from
the end. It aims at removing the code located after error’s cause, on which
the error does not depend.

Replace expressions by dummy values. When definitions cannot simply
be removed, we try to replace them with the simplest possible values. The
challenge is then to determine which trivial value we want to replace our
expression with while respecting type constraint. For ground types, we simply
replace expressions of type int by 0, those of type float by 0.0, those of type
char by ’0’, those of type string by "" and those of type unit by (). For
the other types, we used:

external __dummy__ : unit -> 'a = "%opaque"

Here, dummy () is of type ’a, and can therefore replace an expression of
any type. It is based on the external primitive opaque: when compiled, it is
considered as a function returning an arbitrary value—here, a function of type
unit -> ’a because of the annotation. However, at runtime, it behaves like
the identity function: for this reason, the value of dummy () is (), causing
a type error. When targetting compilation failures, this is not a limitation.
However, to generalize the tool’s use cases, this problem will be adressed in
Sect. 5.

3.2 Simplify Abstract Data Types

Suppress constructors from ADTs. A first heuristic consists in deleting a
constructor Cons from an algebraic data type. This involves propagating this
deletion of in the code: expressions Cons(e1, . . . , en) are replaced by dummy
(), and patterns using Cons are simply removed.

Delete fields from record types or constructors. When deleting an entire
constructor is not possible, we instead delete its fields. After deleting its ith
field’s definition, we go through the code to delete the ith field in Cons(e1,..
,en) expressions, and the ith sub-pattern in each Cons(p1,..,pn) pattern—
replacing variables bound by pi with dummy ().

3.3 Simplify Code

Modify attributes. We remove attributes of functions, modules, etc. from
the program to make it less verbose. However, local [never|always] and
inline [never|always] to functions can also provide valuable information
about the origin of the failure, forcing the compiler’s inlining strategies.

Inline functions. Inlining a function, i.e. replacing it with its definition at call
site, can lead to additional simplifications.

80 M. Valnet et al.

Flatten modules. Flattening modules means removing variables defini-
tions from module Name = struct ... end block. To avoid name conflicts
between variables from the module and variables defined in the program, we
chose to precede the name of the variable by the name of the origin module
: this change is then propagated throughout the program.

3.4 Remove Simplification Artifacts

Situations that would not or only rarely appear in real user code may appear
after applying the above heuristics:

Remove dead code. For each variable, module and type, we go, and when not
used, we simply delete their definition.

Simplify pattern matching. When the match contains a unique one-variable
pattern, we replace match e1 with x -> e2 by e2 in which x has been tex-
tually substituted by e1.

Sequentialize function calls. After simplifications, we may obtain a function
application of the form (dummy ()) e1 ... en. We sequentialise its by
evaluating each argument separately, to get non-nested expressions. We use
the primitive external __ignore__ : 'a -> unit = "%ignore" . We then
transform (dummy ()) e1 ... en into:
ignore e1 ; ... ; ignore en ; dummy ()

Simplify rec and unused arguments. After replacing expressions and defi-
nitions by dummmy, arguments of a function may no longer be used. We then
delete them and propagate their deletion to all of the function’s call sites.
When the ith argument of the function f is deleted, all occurrences of f are
replaced by (fun x1 ... xn -> f x1 ... xi-1 xi+1 ... xn). Similarly,
when the function is no longer recursive, we remove the keyword rec.

Simplify sequences. Expressions of the form (); e are replaced by e.

4 The Iteration

A unitary heuristic can possibly be applied at different points in a program: when
trying to delete a constructor from an ADT, many constructors are possible
candidates. We call ”n-th program point” the n-th position, while reading the
program’s AST, where it can be performed. When trying to apply it at a program
point—e.g. deleting one of those constructors, there are three possible cases:

– This simplification does not remove the error: the program has been reduced!
– This simplification removes the error: we do not want to apply it.
– The index of the point is greater than that of the last modifiable point.

We iterate this way: we take as input the program, a heuristic, and a position.
We then attempt to apply the heuristics at this position. If minimisation is
possible, we iterate over the new program without incrementing the position,
since after simplifying the nth point, the next modifiable point is the new nth.
If minimisation is not possible, the next position is examined. Finally, if the
position is too large, the whole program was examined, so we return.

Chamelon : A Delta-Debugger for Ocaml 81

Dichotomic Optimisation. In Chamelon, this loop is otpimized by dichotomy,
as initially suggested by Keller [11], by no longer trying to minimise locations
one by one, but rather a set of locations of length 2n. This method improves
efficiency by a factor of 10 on real programs of a few thousand lines.

Heuristics Order. The application order of the different heuristics was deter-
mined experimentally, on a small sample of tests, mainly by finishing with the
heuristics removing the simplification artefacts. For more robust and efficient
scheduling, further research and testing could prove useful.

5 Extensions

Multifiles. In real use cases, a project is made of multiple interdependant files.
We have therefore adapted Chamelon to work on such projects:

• First, we try deleting as many files as possible, in the order of dependencies;
• Then, we try merging as much files as possible;
• Finally, each remaining file is minimised with previous methods.

Note that every object modification must be propagated to all dependencies.
For example, if an argument of a function f is deleted, it must be deleted at each
f call sites, in each of the program’s dependencies. To use Chamelon in multifile
mode, we need to provide it with the list of files to minimise, in dependencies
order—which can be given by ocamldep tool.

Runtime. The work presented so far focused on compile-time errors. However,
errors may also occur at runtime. To handle this, we replaced the dummy
values, causing runtime errors, using an algorithm which, given an input type,
generates an expression of the same type, as concise as possible.

Compatibility. The implementation uses OCaml compiler libraries to manipulate
abstract syntax trees. A compatibility library is implemented, so that changing
of compiler version only requires some information about the new AST.

Adding Heuristics. Implementing a new heuristics is low-cost: we only need to
write the transformation through existing mappers function for OCaml AST.

6 Conclusion

In the future, an interesting extension would be to make the Chamelon minimiser
compatible with dune—the OCaml build system. Finally, through its use in
real-world examples, we aim at improving existing heuristics and finding new
ones, so as to make it more robust, more efficient and faster. In the end, this
work combines various minimisation heuristics with a state-of-the-art iteration
technique and a modular design, offering the first delta-debugger for and in
OCaml, available for its community!

Artifact. The artifact associated to this paper and demonstrating the use of Chamelon

on different programs is available at https://doi.org/10.5281/zenodo.12520654.

https://doi.org/10.5281/zenodo.12520654

82 M. Valnet et al.

References

1. C-reduce project. https://github.com/csmith-project/creduce
2. Choi, J.D., Zeller, A.: Isolating failure-inducing thread schedules. In: Proceedings

of the 2002 ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 210–220 (2002)

3. Cleve, H., Zeller, A.: Finding failure causes through automated testing. In: Ducassé,
M. (ed.) Proceedings of the Fourth International Workshop on Automated Debug-
ging, AADEBUG 2000, Munich, Germany, 28–30 August 2000 (2000). https://arxiv.
org/abs/cs/0012009

4. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of the
27th International Conference on Software Engineering, pp. 342–351 (2005)

5. Heo, K., Lee, W., Pashakhanloo, P., Naik, M.: Effective program debloating via
reinforcement learning. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, pp. 380–394. Association for
Computing Machinery, New York (2018). https://doi.org/10.1145/3243734.3243838

6. Kremer, G., Niemetz, A., Preiner, M.: ddSMT 2.0: better delta debugging for the
SMT-LIBv2 Language and friends. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12760, pp. 231–242. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81688-9 11

7. Sharrad, J., Chitil, O.: Refining the delta debugging of type errors. In: Proceed-
ings of the 33rd Symposium on Implementation and Application of Functional
Languages, IFL 2021, pp. 10–19. Association for Computing Machinery, New York
(2022). https://doi.org/10.1145/3544885.3544888

8. Valnet, M., Courant, N., Bury, G., Chambart, P., Laviron, V.: Chamelon: un min-
imiseur pour et en ocaml. In: 35es Journées Francophones des Langages Applicatifs
(JFLA 2024) (2024)

9. Wang, G., Shen, R., Chen, J., Xiong, Y., Zhang, L.: Probabilistic delta debug-
ging. In: Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2021, pp. 881–892. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3468264.3468625

10. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002). https://doi.org/10.1109/32.988498

11. Zeller, A.: Yesterday, my program worked. today, it does not. why? SIGSOFT
Softw. Eng. Notes 24(6), 253–267 (1999). https://doi.org/10.1145/318774.318946

https://github.com/csmith-project/creduce
https://arxiv.org/abs/cs/0012009
https://arxiv.org/abs/cs/0012009
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1145/3544885.3544888
https://doi.org/10.1145/3468264.3468625
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/318774.318946

Chamelon : A Delta-Debugger for Ocaml 83

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Automated Static Analysis of Quality
of Service Properties of Communicating

Systems

Carlos G. Lopez Pombo1(B) , Agust́ın Eloy Martinez Suñé2(B) ,
and Emilio Tuosto3

1 Centro Interdisciplinario de Telecomunicaciones, Electrónica,
Computación y Ciencia Aplicada, Universidad Nacional

de Ŕıo Negro - Sede Andina and CONICET, San Carlos de Bariloche, Argentina
cglopezpombo@unrn.edu.ar

2 CONICET–UBA. Instituto de Investigación en Ciencias de la Computación,
Buenos Aires, Argentina
aemartinez@dc.uba.ar

3 Gran Sasso Science Institute, L’Aquila, Italy
emilio.tuosto@gssi.it

Abstract. We present MoCheQoS, a bounded model checker to stat-
ically analyse Quality of Service (QoS) properties of message-passing
systems. We consider QoS properties on measurable application-level
attributes as well as resource consumption metrics, for example, those
relating monetary cost to memory usage. The applicability of MoCheQoS
is evaluated through case studies and experiments. A first case study is
based on the AWS cloud while a second one analyses a communicating
system automatically extracted from code. Additionally, we consider syn-
thetically generated experiments to assess the scalability of MoCheQoS.
These experiments showed that our model can faithfully capture and
effectively analyse QoS properties in industrial-strength scenarios.

1 Introduction

Monolithic applications are steadily giving way to distributed cooperating
components implemented as services. This transition was accelerated by the

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No 778233, the PRIN PNRR project DeLICE
(F53D23009130001), “by the MUR dipartimento di eccellenza”, by PNRR MUR project
VITALITY (ECS00000041), Spoke 2 ASTRA - Advanced Space Technologies and
Research Alliance , and Principles of Intelligent Behavior in Biological and Social Sys-
tems – PIBBSS, https://pibbss.ai/.
The authors thank the anonymous reviewers for their constructive comments and Omar
Inverso for his suggestions.
Carlos G. Lopez Pombo—On leave from Instituto de Ciencias de la computación
CONICET–UBA and Departamento de Computación, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 84–103, 2025.
https://doi.org/10.1007/978-3-031-71177-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_7&domain=pdf
http://orcid.org/0000-0002-0248-5019
http://orcid.org/0000-0003-1806-6932
http://orcid.org/0000-0002-7032-3281
https://pibbss.ai/
https://doi.org/10.1007/978-3-031-71177-0_7

Automated Static Analysis of QoS Properties of Communicating Systems 85

software-as-a-service motto triggered in the 21st century by the service-oriented
computing (SOC) paradigm, later evolved in e.g., cloud, fog, or edge computing.
These paradigms envisage software systems as applications running over globally
available computational and networking infrastructures to procure services that
can be composed on the fly so that, collectively, they can fulfil given goals [1].

Key to this trend are Service Level Agreements (SLAs) that express the terms
and conditions under which services interact. An essential element covered by
SLAs are the quantitative constraints specifying non-functional behaviour of ser-
vices. For example, the current SLA and pricing scheme for the AWS Lambda
service [2,3] declare constraints on quantifiable attributes. To the best of our
knowledge, the standard practice is to informally specify the SLA of each service
provided and then use run-time verification (like monitoring) to check quantita-
tive non-functional properties. This approach makes it difficult to check system-
level properties because SLAs (besides being informal) do not specify conditions
on the composition of services.

Since their introduction in [4], choreographies stood out for a neat separation
of concerns: choreographic models abstract away local computations focusing on
the communications among participants; therefore, they are spot on for services
since they reconcile the ‘atomistic’ view at the services’ interactions level with
the ‘holistic’ view at the system level. Indeed, choreographies require to spec-
ify a high-level description of interactions (the global view) and relate it to a
description of services’ behaviour (the local view). These are distinctive features
of the choreographic framework presented in [5] to provide reasoning capabil-
ities about the QoS of communicating systems, starting from the QoS of the
underlying services. The basic idea in [5] is: (i) to specify constraints on qual-
ity attributes of local states of services and (ii) to verify through a bounded
model-checking algorithm system-level QoS properties expressed in QL, a spe-
cific dynamic logic where temporal modalities are indexed with global choreogra-
phies (g-choreographies [6], a formal model of global views of choreographies).
A simple example can illustrate this. Let A be a service that converts files to
various formats and invokes a storage service B to save the results of requests;
both A and B charge customers depending on the size of stored data (as done
e.g. by Amazon’s DynamoDB service). The request of A to B can be abstracted
away with two finite-state machines whose states are decorated with constraints
on the two quality attributes: monetary cost (c) and data size (s) as follows:

q0
{

c ď 5,
s “ 0

}
q1

{
5 ď c ď 10,

s ă 3

}AB!s and
q0

′
{

c “ 0,
s “ 0

}
q′
1

{
10 ď s ď 50,
c “ 0.01 ¨ s

}AB?s

Intuitively, the formulae associated to states constraint the quality attributes
upon the local computation executed in the states. For instance, both services
store no data in their initial state; computation in A may cost up to five units
before the request to B, which has no cost (c “ 0) in q′

0 since it is just waiting
to execute the input. If, as we assume, communication is asynchronous, then the
composition of A and B yields a run like π : s0

AB!s´́ →́ s1
AB?s´́ →́ s2 where first

A sends the message and then B received it. Then, the system-level QoS of the

86 C. G. L. Pombo et al.

composition of A and B would be the result of aggregating the constraints on c
and s along the run π.

Structure & Contributions A main contribution of this paper is a tool
to support the static analysis technique of QoS properties of message-passing
systems. More precisely, we implement the bounded model-checking algorithm
introduced in [5] (and summarised in Sect. 2) in a tool called MoCheQoS (after
Model-Checker for QoS properties). By combining the SMT solver Z3 [7] and the
choreographic development toolchain ChorGram [8–10] (as discussed in Sect. 3),
MoCheQoS can model-check QoS properties expressed in QL, the dynamic tem-
poral logic of [5]. MoCheQoS is publicly available at [11].

A key feature of our approach is that the analysis of QoS properties of systems
builds on the QoS constraints specified on the components of the system; as seen
in the example above, MoCheQoS features the capability of aggregating QoS
constraints along the computation of systems.

Another contribution is the empirical evaluation of our approach (Sect. 4),
which is done through: (a) a case study borrowed from the AWS Cloud [12], (b)
a case study borrowed from the literature [13] where communication protocols
are automatically extracted from code, and (c) synthetic examples designed to
evaluate the scalability of MoCheQoS.

Section 5 discusses related work; Sect. 6 concludes and sketches future work.

2 Preliminaries

We fix a set P of participants (identifying interacting services) and a set M
of (types of) messages such that P X M “ H. The communication model
of MoCheQoS hinges on QoS-extended communicating finite-state machines [5]
(qCFSMs for short). A CFSM [14] is a finite state automaton whose transi-
tions are labelled by output or input actions. An output action AB!m (resp.
input action AB?m) specifies the output (resp. input) of a message m from A
to B (resp. received by B from A). A qCFSM is a CFSM where QoS specifi-
cations, that is first-order formulae predicating over QoS attributes, decorate
states. (Unlike CFSMs, qCFSMs feature accepting states, represented here as
double circles.)

Example 1. Let ΓA “ {5 ď mem ď 10, cost “ 0.2 ¨ mem} and ΓB “ {mem “
0, cost “ 1} be two QoS specifications. In the system made of the qCFSMs

0MA: 1

ΓA

2 3
AB!x AB!z2

BA?y

AB!z1

0MB: 1 2 3

ΓB

AB?x AB?z2
BA!y

AB?z1

participant A first sends message x to B, then B and A exchange messages y
and z1 an unbounded number of times, and finally A sends message z2 to B. ˛

A QoS-extended communicating system (qCS for short) is a map assigning
a qCFSM to participants in P; for instance, the map S where S(A) “ MA and
S(B) “ MB are the qCFSM of Example 1 is a communicating system. Since QoS

Automated Static Analysis of QoS Properties of Communicating Systems 87

specifications do not affect communications, the semantics of qCSs is as the one
of communicating systems. Let us recall how CFSMs interact.

Communicating systems are asynchronous: the execution of an output action
AB!m allows the sender A to continue even if the receiver B is not ready to
receive; message m is appended in an infinite FIFO buffer, the channel AB, from
where B can consume m. Formally, given a communicating system S on P, we
define a labelled transition system (LTS) whose transitions relate configurations
and communication actions. A configuration is a pair 〈q ; b〉 where q and b
respectively maps each participant A to a state of S(A) and each channel to a
sequence of messages; state q(A) keeps track of the state of machine S(A) and
buffer b(AB) yields the messages sent from A to B and not yet consumed. Let
s0 denote the initial configuration where, for all A P P, q(A) is the initial state
of S(A) and b(AB) is the empty sequence for all channels AB.

A configuration 〈q ; b〉 reaches another configuration 〈q′ ; b′〉 with a transi-
tion � if there is a message m P M such that either (1) or (2) below holds:

1. � “ AB!m with q(A)
�→́A q′ and

a. q′ “ q[A �→ q′]
b. b′ “ b[AB �→ b(AB).m]

2. � “ AB?m with q(B)
�→́B q′ and

a. q′ “ q[B �→ q′] and
b. b “ b′[AB �→ m.b′(AB)]

in (1) m is sent on AB while in (2) it is received. Machines and buffers not
involved in the transition are left unchanged. We write s �“⇒s′ when s reaches s′.

Let S be a communicating system, a sequence π “ (si, �i, si`1)iPI where I
is an initial segment of natural numbers (i.e., i ´ 1 P I for each 0 ă i P I) is
a run of S if si

�i“⇒si`1 is a transition of S for all i P I. The set of runs of S is
denoted as Δ8

S and the set of runs of length k is denoted as Δk
S . Note that Δ8

S

may contain runs of infinite length, the set of finite runs of S is the union of all
Δk

S and will be denoted as ΔS . Given a run π, we define L[π] to be the sequence
of labels (�i)iPI . The language of S is the set L[S] “ {L[π]

∣
∣ π P Δ8

S }. Finally,
prf : Δ8

S Ñ 2ΔS maps each run π P Δ8
S to its set of finite prefixes. As usual, for

all π P Δ8
S , the empty prefix ε belongs to prf (π).

The logic QL is introduced in [5] to express system-level QoS properties.
Akin DLTL [15], QL is basically a linear temporal logic where atomic formulae,
ranged over by ψ, constrain quantitative attributes, and the ‘until’ modality is
restricted to specific runs. The syntax of QL is given by the grammar:

Φ ::“ J ∣
∣ ψ

∣
∣ �Φ

∣
∣ Φ _ Φ

∣
∣ Φ UG Φ

where J is the truth value ‘true’, � and _ are the usual connectives for logical
negation and disjunction, and the index G of the ‘until’ modality is a global
choreography (g-choreographies for short) [6] meant to restrict the set of runs
to be considered for the satisfiability of formulae1. G-choreographies can be
thought of as regular expressions on the alphabet {break} Y {A→́B : m

∣
∣ A,B P

P,m P M}, where break is used to stop iterations and A→́B : m represents

1 Logical connectives ^ and “⇒ are defined as usual while possibility 〈G〉Φ and
necessity [G]Φ are defined as J UG Φ and �〈G〉�Φ respectively.

88 C. G. L. Pombo et al.

an interaction where A and B exchange message m. We let ` , ˚, and ;
respectively denote choice operator, Kleene star, and sequential composition
(with ; taking precedence over `).

Example 2. The g-choreography Gsys “ A→́B : x;B→́A : y;Gexch
˚;A→́B : z2 cor-

responds to the qCS in Example 1 with Gexch “ A→́B : z1;B→́A : y specifying
the exchange of messages z1 and y between A and B. ˛
A g-choreography G induces a causality relation on the underlying communi-
cation whereby the output of an interaction precedes the corresponding input
and, for the sequential composition G;G′ the actions in G precede those in G′

when executed by a same participant. The language L[G] of a g-choreography G
consists of all possible sequences of communication actions compatible with the
causal relation induced by G (note that L[G] is prefix-closed). We write L̂[G] for
the set of sequences in L[G] that are not proper prefixes of any other sequence
in L[G]. The definition of L[G], immaterial here, can be found in [6]. The next
example illustrates how to express a QoS property in QL.

Example 3 (QoS properties). The runs of the system where where A and B
exchange message z1 and y three times can be specified by the g-choreography
G3 “ A→́B : x;B→́A : y;Gexch;Gexch;Gexch where Gexch is defined in Example 2.
Then the QL formula Φ ” [G3](cost ą 0) “⇒ [G3;Gexch

˚]
(

cost ď mem ¨ 10
)

holds either if the first three exchanges do not have positive cost or if the cost
of every subsequent exchange falls within the specified bounds. ˛

The models of QL are defined in terms of runs of a QoS-extended commu-
nicating systems and an aggregation function [5] that formalises the conditions
for a QoS property to hold in a run. The aggregation function, denoted below as
aggS depends on application-dependent binary aggregation operators that define
how QoS attributes accumulate along a run. Hereafter, we assume that each QoS
attribute has an associated aggregation operator.

A configuration is accepting if all participants are in an accepting state; a
completion of a run π of a system S is a sequence π′ ending in an accepting
configuration such that ππ′ P Δ8

S . A QoS property Φ is satisfiable in S if there
exists a run π P Δ8

S with an accepting configuration such that 〈π, ε〉 |“S Φ holds,
where relation 〈 , 〉 |“S is defined as follows:

〈π, π′〉 |“S ψ iff aggS(π′) $RCF ψ if ψ atomic and π′ P prf (π)
〈π, π′〉 |“S �Φ iff 〈π, π′〉 |“S Φ does not hold

〈π, π′〉 |“S Φ1 _ Φ2 iff 〈π, π′〉 |“S Φ1 or 〈π, π′〉 |“S Φ2

〈π, π′〉 |“S Φ1 UG Φ2 iff there is a completion π′′ of π′ such that
L[π′′] P L̂[G], 〈π, π′π′′〉 |“S Φ2 and, for all
π′′′ P prf (π′′), if π′′′ �“ π′′ then 〈π, π′π′′′〉 |“S Φ1.

To handle atomic formulae, the first clause leverages real-closed fields (RCFs), a
decidable formalisation of the first-order theory of real numbers [16, Thm. 37].
The ‘until’ modality requires Φ2 to hold at some point along π, i.e. on a run
π′π′′ where completion π′′ follow run π, with Φ1 satisfied up to that point and

Automated Static Analysis of QoS Properties of Communicating Systems 89

π′′ compatible with G. A run π′′ is compatible with a g-choreography G if it
belongs to its language L̂[G].

A QoS property Φ is valid if, for all runs π P Δ8
S that contain an accepting

configuration, 〈π, ε〉 |“S Φ. Given a QoS property Φ, a qCS S, and a bound
k, the algorithm in [5] returns true when it finds a run π P Δ8

S of length at
most k such that 〈π, ε〉 |“S Φ. Essentially, for each run of length at most k, the
algorithm calls an auxiliary procedure that checks whether the run satisfies the
QoS property by recursively following the definition of |“S presented above.

3 A Bounded Model Checker for QoS

We now present the architecture of MoCheQoS; a detailed presentation of its
command line interface and the relevant file formats is in the accompanying
artefact submission [11]. A graphical representation of the architecture is on the
right, where tilted boxes represent files or data objects, rectangular boxes repre-
sent modules or functions, while arrows represent control and data flows. Thick
shadowed boxes identify the modules developed in this work, while thin boxes
identify ChorGram’s modules and other open-source libraries used by MoCheQoS.

As ChorGram, MoCheQoS is imple-
mented in Haskell. The two main
modules are Parser and Solver
(greyed dashed boxes). The former
transforms the textual representations
of MoCheQoS’s inputs into internal
Haskell representations used by the
latter. More precisely, qCFSM parser
leverages ChorGram’s CFSM parser to
process a textual description of the
system from a .qosfsa file. Likewise,
QL parser leverages G-chor parser
(ChorGram’s g-choreographies parser)
to process a .ql file containing a
simple textual description of the QL
formula to verify. Both modules rely
on the SMT-LIB parser (Haskell’s
smt-lib package).

The format of .qosfsa files is an extension of ChorGram’s .fsa format.
This extension enables the specification of the set of QoS attributes of interest
with (i) aggregation operators, (ii) QoS constraints associated to the states
of machines, and (iii) accepting states of machines. Additionally, MoCheQoS
supports an extension of ChorGram’s g-choreographies (a .qosgc file) to directly
specify the QoS-related information over a g-choreography that can be projected
on qCFSMs. This required to adapt ChorGram’s G-chor projection and G-chor
parser modules to support QoS specifications.

The .ql format borrows the g-choreography syntax of ChorGram for the case
of the ‘until’ modality. The Parser module produces the QoS-extended system

90 C. G. L. Pombo et al.

and the QL formula from the input files and passes them to Solver, our imple-
mentation of the bounded model checking algorithm in [5] (cf. Sect. 2). More
precisely, TS run enumerator invokes Transition system semantics (the TS
module of ChorGram) to enumerate the runs of the system that fall within the
bound given in input parameter k. The enumeration is performed by systemat-
ically traversing the transition system. The process begins with the set of runs
of length 1. Subsequently, the set of runs of length i ` 1 is generated by append-
ing all possible single-step transitions to each run of length i. Future work will
explore heuristic-based approaches to traverse the transition system, aiming to
prioritize the enumeration of potential counterexamples.

Then, TS run enumerator invokes TS run checker on each enumerated run
to check if it is a model of the QL formula. Properties encompassing sub-
formulas of the form Φ UG Φ′ require TS run checker to invoke ChorGram’s
PomsetSemantics module in order to compute the language of G and to check
membership of runs to it. To compute L̂[G], iterative subterms are replaced by
their n-unfoldings, where 0 ď n ď u. The parameter u is configurable via the
CLI of MoCheQoS and defaults to the value of parameter k. An n-unfolding of
a subterm G′˚ is defined as the sequential composition of G′ with itself n times.
The implementation of on-the-fly unfolding computation during transition sys-
tem traversal is left for future work.

As recalled in Sect. 2, we leverage RCFs to express QoS constraints [5];
hence, we interfaced MoCheQoS with the state-of-the-art SMT solver Z3 [7] to
check the validity of these constraints (i.e., $RCF). Properties involving QoS
constraints of an atomic formulae require TS run checker to invoke the SMT
solver interface to produce and check SMT-LIB queries. The SMT solver
interface is composed of a modified version of Haskell’s smt-lib package to
build the SMT-LIB query and of Haskell’s SimpleSMT package to call Z3. The
SMT-LIB query produced for an atomic formula ψ allows to check whether there
exists a counterexample to the entailment aggS(π′) $RCF ψ. More precisely, the
SMT-LIB query is structured as follows: (i) all quality attributes are declared
as new symbols of sort Real using the declare-const command, and (ii) an
assert statement is included with the expression aggS(π′) ^ �ψ. The construc-
tion of aggS within the SMT-LIB query involves iterating through local states
in run π′. For each state, the following steps are performed: (i) the correspond-
ing QoS specification is collected, (ii) new symbols are declared for the local
instantiation of quality attributes, and (iii) quality attribute symbols in the QoS
specification are renamed to match the newly declared symbols. The SMT-LIB
query is then sent to Z3 using Haskell’s SimpleSMT package.

Finally, Solver returns a negative Verdict if the formula cannot be satisfied
within the given bounds or a positive Verdict with a witnessing model (the run
satisfying the QL formula) otherwise. To optimise computations, MoCheQoS
maintains a balanced binary search tree to store the result of computing atomic
entailments $RCF , and a hash table to memorises the results of (a) the
computation of the language of g-choreographies indexing ‘until’ operators, and
(b) the membership check of a run to the language of a g-choreography.

Automated Static Analysis of QoS Properties of Communicating Systems 91

4 Evaluation

Our empirical study aims to evaluate applicability and scalability of our app-
roach. Towards applicability, Sect. 4.1 develops a case study adopting SLAs from
the AWS cloud [12] while Sect. 4.2 borrows a case study from [13] to show how our
approach can leverage automatic extraction of communicating systems. Towards
scalability, Sect. 4.3 analyses MoCheQoS to measure its performance. Size and
complexity of the case studies in Secs. 4.1 and 4.2 match what can be found in
the literature (e.g., see [17–19]). As we will discuss later, the size of the models
in Sect. 4.3 outmatches what can be found in system development.

The results presented in the next sections show that our framework can model
SLAs present in industrial-strength scenarios (Sect. 4.1). Notably, MoCheQoS
can effectively verify relevant system-level QoS in such scenarios and produce
counterexamples useful to refine a property being checked. Moreover, Sect. 4.2
MoCheQoS can be used to effectively analyse system-level QoS properties of
communicating systems automatically extracted from code.

4.1 SLA in the Amazon Cloud

The case study consists of a three-party version of the POP protocol [20] mod-
elled after the OAuth authentication protocol [21]. More precisely, a client C
securely accesses a remote mailbox server S after clearing authentication through
a third party server A. This is specified by the g-choreography Gauth “ C→́A : cred
; (Gtoken ` A→́C : error) where Gtoken models the phase of the OAuth protocol
where C acquires an authentication token granted if the credentials of the client
C are valid; the acquired token allows C to prove its identity to the POP server
S. This can be modelled as follows:

Gtoken “ A→́C : token; C→́S : token; (S→́C : fail ` S→́C : ok; GPOP)
GPOP “ Gquit ` C→́S : helo; S→́C : int; (Gquit ` G˚

read ; Gquit)
Gquit “ C→́S : quit; S→́C : bye
Gread “ C→́S : read; S→́C : size; (break ` C→́S : retr ; S→́C : msg ; C→́S : ack)

We consider a system of qCFSMs, one per participant, realising the g-chore-
ography Gauth (see [22, Appendix A] for the full model). The states of the qCF-
SMs are decorated by QoS specifications derived by publicly available SLAs.
Specifically, we use the SLA of the Ory Network identity infrastructure [23] for
A, the one for C reflects the SLA of clients of Amazon’s Simple Email Service
(SES) [24], and the SLA of S is modelled after the iRedMail service published
in the AWS marketplace [25]. Our approach requires to constrain the quality
attributes for each state of the participant while the constraints specified in
the publicly available SLAs are relative to the whole execution. We overcome
this obstacle by identifying the states in the qCFSMs which are relevant to the
constraint. We then assign a corresponding QoS specification to each of these
identified states. For example, the SLA of Amazon SES specifies that the price
paid for each incoming email is 10´4 USD; this decorates the state in the client’s
qCFSM where mails are received.

92 C. G. L. Pombo et al.

Table 1. SLA attributes and parameters for the AWS case study

QoS attributes pricing / configuration params.

num. of emails (emailsRetrieved) price/hr for server software (hrRateSoftware)

data transferred out (Kb) (dataTransOut) price/hr for infrastructure (hourlyRateCompute)

num. of authenticated users (usersAuth) price/Gb for data transfer (transferGBRate)

price for incoming mails (priceEmails) price/user for A (ratePerUserAuth)

server execution time (s) (execTimeServer) num. of CPUs (CPUs)

total execution time (s) (execTime) amount of memory (memCapacity)

network performance (nwkPerf)

instance type (instType)

We identified the quality attributes in Table 1 (left column) and the pricing
and configuration parameters (right column in Table 1) that fix the elements
of the computational infrastructure required. The value of the parameters are
determined by the value of the instance type attribute, which models the type
of the compute instance2 chosen by the user when configuring the services. This
relation is rendered in our model with logical implications. For example, AWS
stipulates that if the selected instance type is ‘t4g.nano’ (the smallest compute
instance in the family ‘T4g’ represented as instType “ 1 in our model), the hourly
rate for compute is 0.0042USD; this yields the implication

instType “ 1 “⇒ (hrRateCompute “ 0.0042 ^ CPUs “ 2 ^ memCapacity “ 0.5 ^ nwkPerf ď 5)

to be included in the QoS specification of the initial state of the server qCFSM
together with analogous implications for other instance types. The full model of
our case study is an LTS with 34 configurations and 38 transitions obtained by
the composition of three qCFSMs: the client C (15 states and 17 transitions), the
server S (12 states and 14 transitions), and the authentication server A (4 states
and 3 transitions). Note that CFSMs abstract away from local computations
and focus only on the communication actions. Hence, the number of states and
transitions only reflect the size of the communication protocol and not necessarily
the size of the implementation. The QoS specifications we consider predicate over
the 14 quality attributes in Table 1. Due to space limitations, here we only show
the qCFSM for the server S (the other qCFSMs are in [22, Appendix A]):

MS “
Γinit Γcomp Γcomp Γcomp

ΓcompΓdata

C S?token S C!ok C S?helo S C!int C S?read S C!size

C S?retr

S C!msg

C
S?
ac
k

C S?quit
C S?quit

C S?quit

S C!bye

C S!fail (1)

where Γcomp “ {0.5 ă execTime ă 3, execTimeServer “ execTime} and Γdata “
{10 ă dataTransOut ă 500}, respectively modelling states where the server is
performing significant computations and states where the server has sent data to

2 In AWS jargon, compute refers to computational infrastructure, i.e., virtual comput-
ers that are rented through services like Amazon Elastic Compute Cloud (EC2).

Automated Static Analysis of QoS Properties of Communicating Systems 93

the client. The specification Γinit models the configuration of the AWS instance
as stated earlier (see [22, Appendix A] for a full description). Let us focus on
some system-level properties to be checked with MoCheQoS.

By inspecting the SLAs for AWS pricing scheme, we can derive the expression

totalCost “ (execTime{602) ¨ hrRateCompute ` (execTimeServer{602) ¨ hrRateSoftware
` (dataTransOut{10242) ¨ transferGBRate ` usersAuth ¨ ratePerUserAuth ` priceEmails

for the overall cost of an execution of the system in terms of the aggregated values
of the quality attributes, once the appropriate conversions are applied. We can
then consider the QL formulae in Table 2 to check if the cost for receiving one
email falls below a given threshold (Φ1) and some relations between the total
cost of an execution and the number of emails retrieved by the client (Φ2, Φ3,
and Φ4, which require to iterate the g-choreography Gmsg). Both the validity of
Φ1 and a counterexample3 for Φ2 are computed by MoCheQoS in less than a
second. In these cases it is not necessary to check for high values of the bound
k because no iterative g-choreography occurs in Φ1 and the counterexample of
Φ2 is found at k “ 26. The validity of the other formulae for a high value of k is
checked by MoCheQoS in less than 3 min.

Table 2. Overall monetary cost of the coordinated execution of the three services

Let
Ginit “ C→́A : cred;A→́C : token;C→́S : token; S→́C : ok;C→́S : helo; S→́C : int

Gmsg “ C→́S : read; S→́C : size;C→́S : retr; S→́C : msg; S→́C : ack

QL-formula k ValidityMoCheQoS time

Φ1 “ [Ginit;Gmsg] totalCost ď 1 26 � ă 1s

Φ2 “ [Ginit;Gmsg
˚] totalCost ď emailsRetrieved 26 CE ă 1s

Φ3 “ [Ginit;Gmsg
˚] totalCost ď 1 ` emailsRetrieved 100 � 135s

Φ4 “ [Ginit;Gmsg
˚] totalCost ď 0.5 ` 0.5 ¨ emailsRetrieved 100 � 135s

4.2 Model Extraction

We show how to apply MoCheQoS on a model automatically inferred from the
OCaml code of the case study in [13]. The system inferred in [13] is as follows4

User

UM!compute

MU?result UM!compute

UM!stop

MU?wip

Master

UM?compute

MW!task

MW!taskWM?result

MU!wip

WM?result

MU!result

U
M
?
st
op

MW!stop

Worker

M
W
?t
as
k

W
M
!r
es
ul
t

M
W
?stop

The user requests the master to resolve a problem (whose nature is inconse-
quential here). The master splits the problem into two tasks and sends them to

3 A run with 0 email retrievals, hinting at a fixed cost for executing the services.
4 The thick gray arrow is the only addition we made to the original case study.

94 C. G. L. Pombo et al.

the worker, which replies to the master with the solutions of each task; between
these replies, the master sends a ‘work-in-progress’ message to the user. Finally,
the master sends the final result to the user by combining the partial results

The QoS specifications involve price, number of tasks computed, and allo-
cated memory, respectively denoted with p, t, and mem. The contraints over
these attributes have been manually specified and assigned to the states of the
qCFSMs. For instance, we assume each problem instance (requested from the
user) to require at most 5 units of memory and model this by adding a contraint
over mem to the states where memory is allocated for the problem intance. Sim-
ilarly, we assume the result of the problem to require at most 1 unit of memory.
Additionally, we assume that the master charges a flat fee of 10 monetary units
once the computation is completed, while the worker’s cost varies based on the
size of the task. We check the following QL properties:

Φ1 ” [G](t ¨ 6 ď p ă 12.5) Φ3 ” [G˚](1 ď mem ă 10)
Φ2 ” [G˚](t ¨ 6 ď p ă 12.5) Φ4 ” (p ď t ¨ 12.5) UG ([G˚] p ď 25)
where G describes the process of computing one problem instance, starting

with U→́M : compute and ending with M→́U : result ([22, Appendix C] reports
the details about the models of this case study.) Formula Φ1 uses the necessity
modality to express bounds on the price of the computation of one problem
instance. Formulas Φ2 and Φ3 use the necessity modality to express bounds on the
price and the memory used after computing any number of problem instances.
Formula Φ4 states that (i) up to the computation of the first problem instance,
the price falls below a bound depending on the number of tasks computed, and
(ii) afterwards, the price is always bounded by 25 right after any number of
computed problem instances. We applied MoCheQoS on these formulas with
bounds that correspond to unfolding loops once and twice (k “ 18 and k “ 32
are, respectively, the lengths of runs where the master sends the result of one and
two problem instances and the user stops). The results of the experiments are
summarised in Table 3 where times are in seconds. Noticeably, for satisfiability
the results with k “ 18 subsume those with k “ 32; also, for Φ4, a bound of 32
is needed to find a counterexample, which shows that the formula is satisfiable
but not valid.

Table 3. Results on model extraction case study (CE = counter example)

Formula Bound k = 18 Bound k = 32

satisfiability validity satisfiability validity

Time (s) Result Time (s) Result Time (s) Result Time (s) Result

Φ1 .3 sat 1.7 No CE .3 sat 34 No CE

Φ2 .3 sat 1.9 No CE .3 sat 185 No CE

Φ3 .3 sat 1.9 No CE .3 sat 186 No CE

Φ4 .5 sat 6 No CE .6 sat 30 CE

Automated Static Analysis of QoS Properties of Communicating Systems 95

4.3 Performance

The performance of MoCheQoS depends on the cost of checking if a formula Φ
holds on any run of the system S of length at most k; this cost is dominated
by the evaluation of the ‘until’ sub-formulae5 Φ1 UG Φ2 which depends on the
complexity of G and of Φ1 and Φ2. We therefore generate synthetic properties
following the pattern Φ ” Φ1 UG Φ2 and varying the size and complexity of G.
Formulas Φ1 and Φ2 are created to cover (i) the best case (any run that matches
the language of G satisfies Φ), (ii) the worst case (no run matching the language
of G satisfies Φ), and (iii) the ‘average’ case (only a single random run that
matches the language of G satisfies Φ).

The performance analysis of MoCheQoS was driven by experiments6 tailored
to address the following questions:

Loop unfolding. How does performance evolve as we increase the number of
loop unfoldings in g-choreographies indexing ‘until’ sub-formulae?

Nested choices. How does average performance evolve as we increase the num-
ber of nested choices in g-choreographies indexing ‘until’ sub-formulae?

Loop unfolding. The experiments are performed on the set of qCFSMs
described in the AWS cloud case study in Sect. 4.1. To help the reader under-
stand the size of the problem, we show below the number of runs of this system
as a function of the bound k on the size of the runs. Due to interleaving of
the transitions in the asynchronous communication, the number of runs grows
exponentially when the number of loop unfoldings in the POP protocol increases.

We synthetically generate six families
of QL formulas with the shape Φ1 UG Φ2

where G “ Ginit;Gmsg
n, for 1 ď n ď 10,

with Ginit and Gmsg defined as in Sect. 4.1.
The first three families of formulas are
constructed to be satisfiable while the last
three to be unsatisfiable. The unsatisfiable
formulas are constructed by guaranteeing
that no run compatible with G satisfies Φ2.
For each formula we execute MoCheQoS
with a bound k “ 16 ` 10n, which guar-
antees that the runs of the system that

match G are reached. The results are shown in Fig. 1. Figure 1a plots the time it
takes for MoCheQoS to find a model for the three families of satisfiable formulas
as a function of n. The three families differ in how Φ1 and Φ2 are constructed:
(i) both as atomic truth values, (ii) Φ1 as an atomic truth value and Φ2 as a QoS
constraint, or (iii) both as QoS constraints. Figure 1b plots the time MoCheQoS
takes to report that no model was found for the three families of unsatisfiable

5 This requires to query the SMT-LIB to solve QoS constraints; we use Z3 as a black-
box which we cannot control; therfore, its computational costs are factored out.

6 We used Z3 v4.10.2 and an 8-cores MacBook Pro (Apple M1) with 16GB of memory.

96 C. G. L. Pombo et al.

formulas as a function of n. The results show that the main source of compu-
tational burden, as the number of loop unfoldings increases, is the verification
of the QoS constraint in Φ1, the first operand of the ‘until’ operator. In Fig. 1a
and Fig. 1b, this is manifested by the green line growing significantly faster than
the other two lines. The explanation for this is that, due to the semantics of
the ‘until’, the verification of Φ1 has to be performed in every prefix of the run
and, when Φ1 is a QoS constraint, each verification is done by calling Z3 with a
different SMT-LIB query.

Fig. 1. Execution time to analyse (un)satisfiable ‘until’ formulas

Nested choices. To evaluate the performance of MoCheQoS in the presence of
nested choices indexing ‘until’ sub-formulae, we will construct synthetic systems
by varying the number of nested choices in the g-choreography of the system. We
consider systems of two participants taking turns in sending a message to each
other; the sender of each turn chooses between two messages. Due to the branch-
ing nature of this behaviour, the number of runs in a system grows as 2n where
n is the number of nested choices (i.e., the number of turns). We synthetically
generate systems with this behaviour by varying n from 1 to 10. Remarkably,
nested choices correspond to nested conditional statements and accepted metrics
recommend to keep low the nesting level of conditional statements. In particular,
an accepted upper bound of cyclomatic complexity7 is 15, which corresponds to
less than 4 nested conditional statements.

To generate these systems, we craft QoS-extended g-choreography in .qosgc
format and then leverage ChorGram’s G-chor projection to obtain the qCFSMs
of the system. The QoS specifications comprise five QoS attributes and determine
unique values for them in each accepting state, enabling the construction of QL
formulas that are satisfied by only one run of the system. In this way, we can
use these generated cases to evaluate the performance of MoCheQoS in finding
the only run that satisfies a formula in a search space of exponential size in n.
7 Cyclomatic complexity [26] measures the complexity of programs according to the

number of independent paths represented in the source code.

Automated Static Analysis of QoS Properties of Communicating Systems 97

Fig. 2. Performance on the ‘average’ case for formulas with nested choices

The formula is generated by following the pattern J UG ψ, were G matches
every run of the system and ψ is a QoS constraint, determining the value of
the five QoS attributes, that is satisfied by only one run. Figure 2a shows the
generated G for two nested choices. See [22, Appendix B] for a detailed view of
the files used in this case study. The bound k is set high enough to guarantee
that all runs of the system are reached by the analysis. For each value of n,
we generate 100 different random instances of the QL formula, where the only
run that satisfies the formula is chosen randomly, and execute MoCheQoS on
each instance. Figure 2b shows the results as a boxplot per number of nested
choices. Remarkably, both the average execution time and its variance grow as
n increases. This is due to the fact that the difference in time between the best
and worst case scenarios, where the model is found either in the first or the last
enumerated run matching G, increases with n. The apparent bias in dispersion
towards lower execution times is just a visual effect due to the logarithmic scale
of the y-axis.

5 Related Work

We position MoCheQoS in the category of static analysers of system-level QoS
properties. There is a vast literature on QoS, spanning a wide range of contexts
and methods [27,28], QoS for choreographies [29,30], and formal models and
analysis procedures that have been proposed without tool supported analysis.

A tool for the automatic analysis of QoS properties appeared in [31] where
QoS specifications were expressed as theory presentations over quantitative
attributes but only considering convex polytopes; this restriction is not present
in our language. Unlike MoCheQoS, the approach in [31] relies on “monolithic”
specifications of QoS, rendering hard its application to distributed systems with-
out adding some composition mechanisms. We instead assign QoS contracts to
states of communicating services and then aggregate them in order to analyse
properties along executions of the whole system.

98 C. G. L. Pombo et al.

The Envisage project [32] aims to provide a framework for the development
and deployment of virtualized scalable services in the cloud. System design and
analysis is done in ABS [33,34] which enables resource-awareness in design and
deployment decisions [35–37]. In ABS resource awareness revolves around the
concept of elasticity and the capability of simulating the execution of the sys-
tem under deployment constraints. The analysis is performed to evaluate bounds
over fixed attributes (Speed, Bandwidth, Memory, and Cores) in order to inspect
consumption of those resources over simulated executions. On the contrary,
MoCheQoS is agnostic to the attribute’s nature, as far as it is measurable, and
provides a static analysis procedure capable of exploring the whole execution
space (with respect to a predefined bound to the trace length) in the search for
counterexamples of arbitrary dynamic temporal properties, not only bounds.

Metric functions are used in [38] to verify SLAs of client-server systems via
the interactive theorem prover KeY [39]. We can deal with multiparty system and
the analysis of QoS properties of MoCheQoS is fully automatic. Other abstract
models of QoS such as quantales [40] or c-semirings [41–43] have been proposed.
Process calculi capable of expressing SLAs appeared in [41] and in [43] without a
specific analysis technique. A variant of the μ-calculus equipped with the capa-
bility of expressing QoS properties and an analysis algorithm has been presented
in [42] without an implementation.

Automatic extraction of local QoS contracts from global QoS specifications is
defined and implemented in [29]; the paper proposes applications including the
use of the derived contracts for monitoring but no static analysis procedure of the
QoS systems’ behaviour is proposed. On the same basis, monitoring algorithms
were presented in [30] and contracts are used for run-time prediction, adaptive
composition, or compliance checking.

Probabilistic model checking (PMC) [44,45] implemented in PRISM [46] fea-
tures the automated analysis of quantitative properties. The main differences
with respect to our work are the modelling language and the properties that can
be checked. First, PMC models are usually expressed as Markov chains while
MoCheQoS does not feature probabilistic information. Second, RCFs are more
expressive than the reward functions adopted in [44] since they allow to express
first order formulae over QoS attributes. For example, the QoS specifications
shown in Sect. 4.1 cannot be expressed with PRISM’s reward functions. Finally,
while in PMC properties are expressed as temporal formulae over bounds on
the expected cumulative value of a reward, MoCheQoS can verify dynamic tem-
poral formulae where atoms are first order formulae over QoS attributes and
temporal modalities are indexed with g-choreographies. Our setting leads to the
computation of an aggregation function that collects QoS specifications of states
along a run, which is not the case in PMC. Timed automata [47] are used in
UPPAAL [48] to verify real-time systems. Our QoS specifications can predicate
about time but, unlike in UPPAAL, the behaviour of systems is independent of
it. It is therefore not straightforward to compare MoCheQoS with tools like PMC
or UPPAAL as they are designed for different purposes. Extending MoCheQoS
with time and probabilities is indeed an intriguing endeavour.

Automated Static Analysis of QoS Properties of Communicating Systems 99

6 Conclusions and Future Work

We presented MoCheQoS, a tool to verify QoS properties of message-passing
systems. We build a bounded model checker upon the dynamic logic and semi-
decision procedure recently presented in [5] which rely on choreographic models.
To our best knowledge, MoCheQoS is the first tool to support the static analysis
of QoS for choreographic models of message-passing systems. The satisfiabil-
ity of QoS constraints in atomic formulas is delegated to the SMT solver Z3
while ChorGram is used to handle the choreographic models and their semantics.
Notably, MoCheQoS can handle any quality attribute that takes values in the
real numbers (if it is equipped with an appropriate aggregation operator), mak-
ing it highly versatile. Experiments to evaluate the applicability of our approach
were conducted over case studies based on the AWS cloud and on models auto-
matically extracted from code. Experiments to evaluate the scalability of our
approach were conducted over synthetically generated models and properties.

Our experiments demonstrate the effectiveness of MoCheQoS. Nevertheless,
there is room for improvement. We are considering abstract semantics where
runs are partitioned in equivalence classes so that we have to check only repre-
sentative runs of such classes in order to tackle the computational blow up due
to asynchronous communications as discussed in Sect. 4.

In scope of future work is also the definition of a domain-specific language to
ease the modelling phase. For instance, such language could feature data types
to express non-cumulative attributes (as those used in Sect. 4.1).

Data Availability. The source code of the tool, the code for generating the exper-

imental data, and detailed instructions on how to reproduce the results presented in

this paper are available in the Zenodo repository with the identifier https://doi.org/

10.5281/zenodo.10038447. (See citation in [11]).

References

1. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of service discovery and
binding. Formal Aspects Comput. 23(4), 433–463 (2011)

2. Amazon: AWS Lambda Service Level Agreement. https://aws.amazon.com/
lambda/sla/

3. Amazon: AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/
4. World Wide Web Consortium: Web Services Description Language (WSDL) Ver-

sion 2.0 Part 1: Core Language. https://www.w3.org/TR/wsdl20/
5. Lopez Pombo, C.G., Martinez Suñé, A.E., Tuosto, E.: A dynamic temporal logic for

quality of service in choreographic models. In: Ábrahám, E., Dubslaff, C., Tarifa,
S.L.T., eds.: Proceedings of 20th International Colloquium on Theoretical Aspects
of Computing - ICTAC 2023. Volume 14446 of Lecture Notes in Computer Science.,
Lima, Perú, Springer-Verlag (December 2023), pp. 119–138 (2023). https://doi.
org/10.1007/978-3-031-47963-2 9

6. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Logical
Algebraic Methods. Program. 95, 17–40 (2018)

https://doi.org/10.5281/zenodo.10038447
https://doi.org/10.5281/zenodo.10038447
https://aws.amazon.com/lambda/sla/
https://aws.amazon.com/lambda/sla/
https://aws.amazon.com/lambda/pricing/
https://www.w3.org/TR/wsdl20/
https://doi.org/10.1007/978-3-031-47963-2_9
https://doi.org/10.1007/978-3-031-47963-2_9

100 C. G. L. Pombo et al.

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.,
Rehof, J., eds.: Proceedings of 14th International Conference Tools and Algorithms
for the Construction and Analysis of Systems TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008.
Volume 4963 of Lecture Notes in Computer Science., Springer-Verlag (2008), pp.
337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Coto, A., Guanciale, R., Tuosto, E.: Choreographic development of message-
passing applications - A tutorial. In Bliudze, S., Bocchi, L., eds.: Coordination
Models and Languages - 22nd IFIP WG 6.1 International Conference, COORDI-
NATION 2020, Held as Part of the 15th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-19,
2020, Proceedings. Volume 12134 of Lecture Notes in Computer Science., Springer
(2020) 20–36

9. Coto, A., Guanciale, R., Lange, J., Tuosto, E.: ChorGram: tool support for choreo-
graphic development (2015). https://bitbucket.org/eMgssi/chorgram/src/master/

10. Lange, J., Tuosto, E., Yoshida, N.: A tool for choreography-based analysis of
message-passing software. In: Gay, S., Ravara, A., eds.: Behavioural Types: from
Theory to Tools. Automation, Control and Robotics. River (2017), pp. 125–146
(2017)

11. Lopez Pombo, C.G., Martinez-Suñé, A.E., Tuosto, E.: MoCheQoS: Automated
Static Analysis of Quality of Service Properties of Communicating Systems - Arti-
fact. https://zenodo.org/doi/10.5281/zenodo.10038447. Git repository available at
https://bitbucket.org/aemartinez/chorgram/src/mocheqos-fm24/. June 2024

12. Amazon: AWS Global Infrastructure. https://aws.amazon.com/about-aws/global-
infrastructure. Accessed 27 March 2024

13. Imai, K., Lange, J., Neykova, R.: Kmclib: automated inference and verification of
session types from OCaml programs. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems, pp. 379–386. Cham,
Springer International Publishing, Lecture Notes in Computer Science (2022)

14. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

15. Henriksen, J.G., Thiagarajan, P.: Dynamic linear time temporal logic. Ann. Pure
Appl. Logic 96(1–3), 187–207 (1999). Originally published in [49]

16. Tarski, A.: A decision method for elementary algebra and geometry. Memorandum
RM-109, RAND Corporation (1951) Later published in [50] and reprinted in [51]

17. Albert, E., et al.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. Serv. Oriented Com-
put. Appl. 8(4), 323–339 (2014). This article refines and substantially extends [52]

18. Iraci, G., Chuang, C.E., Hu, R., Ziarek, L.: Validating IoT devices with rate-based
session types. Proc. ACM Program. Lang. 7(OOPSLA2), 1589–1617 (2023)

19. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S., eds.: Proceedings of 31st International
Conference Computer Aided Verification (CAV 2019), Part I. Volume 11561 of Lec-
ture Notes in Computer Science., Springer-Verlag (July 2019), pp. 97–117 (2019).
https://doi.org/10.1007/978-3-030-25540-4 6

20. Anonymous: Post office protocol: Version 2 (1985). https://rfc-editor.org/rfc/
rfc937.txt

21. Hardt, D.: The OAuth 2.0 Authorization Framework (2012). https://rfc-editor.
org/rfc/rfc6749.txt

https://doi.org/10.1007/978-3-540-78800-3_24
https://bitbucket.org/eMgssi/chorgram/src/master/
https://zenodo.org/doi/10.5281/zenodo.10038447
https://bitbucket.org/aemartinez/chorgram/src/mocheqos-fm24/
https://aws.amazon.com/about-aws/global-infrastructure
https://aws.amazon.com/about-aws/global-infrastructure
https://doi.org/10.1007/978-3-030-25540-4_6
https://rfc-editor.org/rfc/rfc937.txt
https://rfc-editor.org/rfc/rfc937.txt
https://rfc-editor.org/rfc/rfc6749.txt
https://rfc-editor.org/rfc/rfc6749.txt

Automated Static Analysis of QoS Properties of Communicating Systems 101

22. Lopez Pombo, C.G., Martinez Suñé, A.E., Tuosto, E.: MoCheQoS: automated anal-
ysis of quality of service properties of communicating systems. On-line (November
2023) https://arxiv.org/abs/2311.01415

23. Ory: Ory - API-first Identity Management, Authentication and Authorization. For
Secure, Global, GDPR-compliant Apps. https://www.ory.sh/. Accessed 3 April
2024

24. Amazon Web Services, Inc.: Bulk Cloud Email Service - Amazon Simple Email
Service - AWS. https://aws.amazon.com/ses/. Accessed 3 April 2024

25. Amazon Web Services Inc.: AWS Marketplace: iRedMail (IMAP, SMTP, POP3)
Email Server on Ubuntu 18.04 LTS. https://aws.amazon.com/marketplace/pp/
prodview-xswbskbnidz5e. Accessed 3 April 2024

26. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320
(1976)

27. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architec-
ture optimization methods: a systematic literature review. IEEE Trans. Software
Eng. 39, 658–683 (2013)

28. Hayyolalam, V., Kazem, A.A.P.: A systematic literature review on QoS-aware ser-
vice composition and selection in cloud environment. J. Netw. Comput. Appl. 110,
52–74 (2018)

29. Ivanović, D., Carro, M., Hermenegildo, M.V.: A constraint-based approach to qual-
ity assurance in service choreographies. In: Liu, C., Ludwig, H., Toumani, F., Yu,
Q., eds.: Proceedings of 10th International Conference on Service-Oriented Com-
puting – ICSOC 2012. Volume 7636 of Lecture Notes in Computer Science., pp.
252–267. Springer-Verlag (November 2012). https://doi.org/10.1007/978-3-642-
34321-6 17

30. Kattepur, A., Georgantas, N., Issarny, V.: Qos analysis in heterogeneous choreog-
raphy interactions. In: Basu, S., Pautasso, C., Zhang, L., Fu, X., eds.: Proceedings
of the 11nd International Conference on Service Oriented Computing – ICSOC ’13.
Volume 8274 of Lecture Notes in Computer Science., Springer-Verlag (December
2013), pp.23–38 (2013). https://doi.org/10.1007/978-3-642-45005-1 3

31. Martinez Suñé, A.E., Lopez Pombo, C.G.: Automatic quality-of-service evaluation
in service-oriented computing. In: Nielson, H.R., Tuosto, E., eds.: Proceedings of
Coordination Models and Languages - 21st IFIP WG 6.1 International Confer-
ence, COORDINATION 2019, Held as Part of the 14th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2019. Volume 11533
of Lecture Notes in Computer Science., Springer-Verlag (June 2019), pp. 221–236
(2019). https://doi.org/10.1007/978-3-030-22397-7 13

32. Envisage: Engineering Virtualized Services. http://envisage-project.eu
33. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-

guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M., eds.: Revised papers of the 9th International Symposium For-
mal Methods for Components and Objects (FMCO 2010). Volume 6957 of Lecture
Notes in Computer Science., Springer-Verlag (2012), pp. 142–164 (2012)

34. The ABS Framework. https://abs-models.org, https://github.com/abstools/
abstools

35. de Gouw, S., Mauro, J., Nobakht, B., Zavattaro, G.: Modeling deployment decisions
for elastic services with ABS. On-line (2016). http://www.envisage-project.eu/
modeling-deployment-decisions-for-elastic-services-with-abs/

36. de Gouw, S., Mauro, J., Nobakht, B., Zavattaro, G.: Declarative elasticity in ABS.
In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I., eds.: Proceedings of

https://arxiv.org/abs/2311.01415
https://www.ory.sh/
https://aws.amazon.com/ses/
https://aws.amazon.com/marketplace/pp/prodview-xswbskbnidz5e
https://aws.amazon.com/marketplace/pp/prodview-xswbskbnidz5e
https://doi.org/10.1007/978-3-642-34321-6_17
https://doi.org/10.1007/978-3-642-34321-6_17
https://doi.org/10.1007/978-3-642-45005-1_3
https://doi.org/10.1007/978-3-030-22397-7_13
http://envisage-project.eu
https://abs-models.org
https://github.com/abstools/abstools
https://github.com/abstools/abstools
http://www.envisage-project.eu/modeling-deployment-decisions-for-elastic-services-with-abs/
http://www.envisage-project.eu/modeling-deployment-decisions-for-elastic-services-with-abs/

102 C. G. L. Pombo et al.

Service-Oriented and Cloud Computing (ESOCC 2016) - 5th IFIP WG 2.14 Euro-
pean Conference. Volume 9846 of Lecture Notes in Computer Science., Springer-
Verlag (September 2016), pp. 118–134 (2016). https://doi.org/10.1007/978-3-319-
44482-6 8

37. de Boer, F.S., et al.: Analysis of SLA compliance in the cloud - an automated,
model-based approach. In: Ancona, D., Pace, G., eds.: Proceedings of Second Work-
shop on Verification of Objects at RunTime EXecution (VORTEXECOOP/ISSTA
2018). Volume 302 of EPTCS. (July 2019) pp. 1–15 (2019)

38. Giachino, E., de Gouw, S., Laneve, C., Nobakht, B.: Statically and dynamically
verifiable SLA metrics. In: Ábrahám, E., Bonsangue, M.M., Johnsen, E.B., eds.:
Theory and Practice of Formal Methods - Essays Dedicated to Frank de Boer on
the Occasion of His 60th Birthday. Volume 9660 of Lecture Notes in Computer
Science., Springer (2016), pp. 211–225 (2016). https://doi.org/10.1007/978-3-319-
30734-3 15

39. Din, C.C., Bubel, R., Hähnle, R.: Key-abs: a deductive verification tool for the con-
current modeling language ABS. In Felty, A.P., Middeldorp, A., eds.: Proceedings
of 25th International Conference on Automated Deduction - CADE-25. Volume
9195 of Lecture Notes in Computer Science., Springer-Verlag (August 2015), pp.
517–526 (2015). https://doi.org/10.1007/978-3-319-21401-6 35

40. Rosenthal, K.I.: Quantales and their application. Volume 234 of Pitman research
notes in mathematics series. Longman Scientific & Technical (1990)

41. Buscemi, M.G., Montanari, U.: Cc-pi: a constraint-based language for specifying
service level agreements. In: De Nicola, R., ed.: Proceedings of 16th European
Symposium on Programming, ESOP 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software (ETAPS 2007). Volume 4421 of
Lecture Notes in Computer Science., Springer-Verlag (2007), pp. 18–32 (2007).
https://doi.org/10.1007/978-3-540-71316-6 3

42. Lluch-Lafuente, A., Montanari, U.: Quantitative μ-calculus and CTL based on
constraint semirings. Electron. Notes Theoret. Comput. Sci. 112, 37–59 (2005).
Proceedings of the Second Workshop on Quantitative Aspects of Programming
Languages (QAPL 2004)

43. De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A process calcu-
lus for QoS-aware applications. In: Jacquet, J.M., Picco, G.P., eds.: Proceedings of
7th International Conference Coordination Models and Languages, COORDINA-
TION 2005. Volume 3454 of Lecture Notes in Computer Science., Springer-Verlag
(April 2005), pp. 33–48 (2005). https://doi.org/10.1007/11417019 3

44. Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: The
6th Joint Meeting on European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering: Companion
Papers. ESEC-FSE Companion ’07, New York, NY, USA, Association for Com-
puting Machinery (September 2007), pp. 449–458 (2007)

45. Baier, C., Katoen, J.P., eds.: Principles of Model Checking. The MIT Press (2008)
46. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-

tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification, pp. 585–591. Lecture Notes in Computer Science, Berlin, Heidelberg,
Springer (2011)

47. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

48. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1, 134–152 (1997)

https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-319-30734-3_15
https://doi.org/10.1007/978-3-319-30734-3_15
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-540-71316-6_3
https://doi.org/10.1007/11417019_3

Automated Static Analysis of QoS Properties of Communicating Systems 103

49. Henriksen, J.G., Thiagarajan, P.: Dynamic linear time temporal logic. Report
Series BRICS-RS-97-8, Basic Research in Computer cience (1997). https://
tidsskrift.dk/brics/issue/view/2365

50. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press (1951) Originally published in [16] and reprinted in [51]

51. Tarski, A.: A Decision method for elementary algebra and geometry. In: Caviness,
B.F., Johnson, J.R. (eds) Quantifier Elimination and Cylindrical Algebraic Decom-
position. Texts and Monographs in Symbolic Computation. Springer, Vienna
(1998). Originally published in [16] and reprinted from [50]. https://doi.org/10.
1007/978-3-7091-9459-1 3

52. de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Wong, P.Y.: Formal mod-
eling of resource management for cloud architectures: an industrial case study. In:
Paoli, F.D., Pimentel, E., Zavattaro, G., eds.: Proceedings of First European Con-
ference Service-Oriented and Cloud Computing (ESOCC 2012). Volume 7592 of
Lecture Notes in Computer Science., Springer-Verlag (September 2012), pp. 91–
106 Refined and substantially extended in [17]. https://doi.org/10.1007/978-3-642-
33427-6 7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://tidsskrift.dk/brics/issue/view/2365
https://tidsskrift.dk/brics/issue/view/2365
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/978-3-642-33427-6_7
https://doi.org/10.1007/978-3-642-33427-6_7
http://creativecommons.org/licenses/by/4.0/

Alloy Repair Hint Generation Based
on Historical Data

Ana Barros1,3, Henrique Neto2,3 , Alcino Cunha2,3 , Nuno Macedo1,3(B) ,
and Ana C. R. Paiva1,3

1 Universidade do Porto, Porto, Portugal
{nmacedo,apaiva}@fe.up.pt

2 Universidade do Minho, Braga, Portugal
alcino@di.uminho.pt

3 INESC TEC, Porto, Portugal

Abstract. Platforms to support novices learning to program are often
accompanied by automated next-step hints that guide them towards cor-
rect solutions. Many of those approaches are data-driven, building on
historical data to generate higher quality hints. Formal specifications are
increasingly relevant in software engineering activities, but very little
support exists to help novices while learning. Alloy is a formal specifi-
cation language often used in courses on formal software development
methods, and a platform—Alloy4Fun—has been proposed to support
autonomous learning. While non-data-driven specification repair tech-
niques have been proposed for Alloy that could be leveraged to generate
next-step hints, no data-driven hint generation approach has been pro-
posed so far. This paper presents the first data-driven hint generation
technique for Alloy and its implementation as an extension to Alloy4Fun,
being based on the data collected by that platform. This historical data is
processed into graphs that capture past students’ progress while solving
specification challenges. Hint generation can be customized with policies
that take into consideration diverse factors, such as the popularity of
paths in those graphs successfully traversed by previous students. Our
evaluation shows that the performance of this new technique is competi-
tive with non-data-driven repair techniques. To assess the quality of the
hints, and help select the most appropriate hint generation policy, we
conducted a survey with experienced Alloy instructors.

Keywords: formal specification · intelligent tutoring system ·
automated hints · Alloy

1 Introduction

Formal specification languages are based on mathematical formalisms and are
used to describe the expected behaviour of a software component. Formal spec-
ifications are increasingly embraced by software engineering professionals, in
lightweight formal development techniques such as automated synthesis, test-
ing or monitoring. Moreover, they will possibly become even more relevant as
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 104–121, 2025.
https://doi.org/10.1007/978-3-031-71177-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_8&domain=pdf
http://orcid.org/0009-0001-2701-7318
http://orcid.org/0000-0002-2714-8027
http://orcid.org/0000-0002-4817-948X
http://orcid.org/0000-0003-3431-8060
https://doi.org/10.1007/978-3-031-71177-0_8

Alloy Repair Hint Generation Based on Historical Data 105

advances in large language models push programming activities into higher levels
of abstraction [29].

Alloy [12,13] is a formal specification language that allows the automatic anal-
ysis of software design models with rich structure and behaviour. Due to its high-
level of abstraction, flexibility and simplicity, Alloy is often used in introductory
formal methods courses1. Yet, studies show that novices, and even experienced
professionals, struggle with understanding and writing Alloy specifications [17].
The Alloy4Fun [16] web platform was developed in this educational context to
ease the sharing of specification challenges with auto-grading, supporting instruc-
tors in classes and allowing students to study autonomously. Intelligent tutor-
ing systems (ITS) for programming have long relied on automated feedback to
support students in large classes and outside the classroom. Alloy4Fun, like reg-
ular Alloy, is solver-based and provides feedback for incorrect specifications as
graphical counter-examples. This is a popular feature among Alloy practitioners
and could, in principle, act as hints to help students progress towards solving
a challenge when learning autonomously. However, studies find visual counter-
examples have mixed results with novices [7,8]. In fact, a recent user study [6]
with different kinds of manually encoded hints concluded that only next-step
hints, which highlight faults in incorrect specifications and provide tips on how
to fix them, improved the immediate performance of the participants without
jeopardizing learning retention.

Next-step hints are one of the most common feedback approaches in ITSs
for programming [21]. A possible approach to generate these hints is through
automated repair techniques. After repairing a faulty program to obtain a correct
one, a next-step hint can be obtained by comparing both. One such technique
has been proposed for Alloy [4], but it is only effective when students are already
close to a correct specification, and the quality of the generated hints is not
clear. An alternative approach is to rely on historical student submission data
for the generation of hints, in order to guide the student towards paths that led
to successful submissions. The expectation is that more understandable hints
can be generated by mimicking successful peer behaviour.

This work proposes the first history-based hint-generation technique for Alloy,
and presents its implementation as an extension to Alloy4Fun. Alloy4Fun was also
designed to support research on formal methods education, and thus every inter-
action with the tool is anonymously recorded and made available to the instruc-
tors [16]. Based on this collected data, the proposed extension creates a directed
graph encoding all attempts by previous students. Then, upon a hint request, it
finds a path between the student submission and a solution using a customiz-
able policy, and generates a next-step hint based on this path. The developers
of Alloy4Fun maintain a publicly available dataset [15] of student attempts col-
lected from their classes over the years. We relied on this dataset to evaluate our
technique both for performance (effectiveness and efficiency) and for the quality
of the hints (based on the opinions of experts on teaching Alloy). It achieved bet-
ter results than the state-of-the-art tools. Furthermore, it can generate timely

1 http://alloytools.org/citations/courses.html.

http://alloytools.org/citations/courses.html

106 A. Barros et al.

Fig. 1. Social network model with specification challenges

feedback, which is especially important in the educational context since students
might easily feel frustrated if hints take too long to generate.

The remainder of the paper is structured as follows. Section 2 provides a short
introduction to Alloy education, and Sect. 3 describes techniques for hint gener-
ation and Alloy repair. Section 4 presents our solution and its implementation,
which is evaluated in Sect. 5. Section 6 presents conclusions and future work.

2 Teaching Alloy with Alloy4Fun

The Alloy language is based on temporal relational logic, but for simplicity, we’ll
restrict this presentation to the static subset of the language. Structure in an
Alloy model is introduced through the declaration of signatures and fields. These
can be restricted by multiplicity constraints and be hierarchically organized. The
upper part of Fig. 1 depicts the structure of a social network system, a simplified
version of an exercise in the Alloy4Fun dataset [15]. A signature User models
users, with binary fields follows and posts relating each user with a set of users
being followed, and a set of posted photos, respectively. Signature Influencer

extends users, denoting a subset of User. Signature Photo has a field date that

Alloy Repair Hint Generation Based on Historical Data 107

Fig. 2. Incorrect submission to spec1 in Alloy4Fun

relates each photo to exactly one day when it was posted; advertisements are a
particular kind of photo, introduced by sub-signature Ad.

When validating a system design, one would impose additional restrictions
over this model using temporal relational logic through facts. To promote main-
tainability, reusable formulas and expressions can be introduced through pred-
icates and functions, respectively. Then run and check commands would be
defined to animate the model or verify desirable properties, respectively. Com-
mands are automatically executed by the Alloy Analyzer within a given bound
for the universe. When teaching Alloy, a typical kind of challenge presented to
students is to encode some of these logical constraints.

With this in mind, Alloy4Fun introduced the concept of model secret, allowing
such challenges to be auto-graded [16]. Instructors write an oracle as a secret
predicate and then use the Analyzer to check whether a student submission is
equivalent to it. Two examples are shown in the bottom of Fig. 1. The student
is asked to write in predicate spec1 the constraint “every photo is posted by
one user”. Hidden from the student through annotation //SECRET, predicate
oracle1 specifies a possible solution: for every photo p, there is exactly one
user related with it through posts. Command spec1 simply checks whether the
student specification and the oracle are equivalent (with at most 3 atoms in each
signature). Being a semantic test, the correct submission can be syntactically

108 A. Barros et al.

different from the oracle. A single Alloy4Fun model (which we call an exercise)
can contain multiple challenges ; the one in Fig. 1 has 2.

If a check command is invalid, the Analyzer (and Alloy4Fun) returns a graph-
shaped counter-example where the equivalence does not hold. The user can
navigate through alternative counter-examples and customize the visualization
for better comprehension. As an example, Fig. 2 shows the student view of the
exercise from Fig. 1 (i.e., secrets are hidden), where the student submitted an
incorrect attempt to the spec1 challenge and a counter-example was returned.
In principle, counter-examples are helpful when debugging specifications, but
studies show they are not the most adequate feedback for novice users [6].

Alloy4Fun collects anonymous data from all user interactions. So, whenever
a student runs a command, it stores information such as the full model, the
selected command and its outcome, and the identifier of the model it derived
from. The resulting derivation tree allows the reconstruction of student paths,
by identifying sequential attempts to the same challenge. The already mentioned
dataset [15] collects this data for various editions of formal methods courses in
the Universities of Minho and Porto, Portugal, between the Fall of 2019 and the
Spring of 2023, totalling about 100 000 models.

3 Automatic Hint Generation

Next-step hints Although next-step hints are a popular kind of feedback in ITSs,
there are some concerns that such hints may be counter-productive, namely due
to hint abuse and avoidance [1], or the fact that they indicate students ‘how’ to fix
rather than ‘why’ [18]. Nonetheless, studies [10,14,25,26] suggest that next-step
hints have no impact on long-term learning retention but often improve imme-
diate performance, enabling students to learn more efficiently. A recent study
on Alloy reached similar conclusions [6]. Moreover, there’s an indication that
accompanied by prompts for self-explanation, such hints may improve learning
retention [20], although the results could not be replicated [19].

There are several techniques to automatically generate a next-step hint from
an incorrect submission [21]: searching for steps that take the student closer to
a reference solution, using previous successful submissions by peers, identifying
known patterns in the incorrect submission, or trying to repair a solution to
pass an oracle. Repair-based approaches have been proposed for Alloy, which we
discuss below. However, these are often affected by scalability issues, and it’s
unclear how to select high-quality hints from alternative repair suggestions. In
contrast, data-driven approaches do not suffer from performance issues and may
generate more intuitive hints since they are based on historical submissions. The
tradeoff is that they may be ineffective in large solution spaces or assignments
with small historical logs. We are not aware of such techniques for specification
ITSs, so we discuss them in the context of programming ITSs next.

Data-driven hint generation. The first data-driven hint generation approach was
proposed in the context of a logic-proof tutoring system [2]. It has since been

Alloy Repair Hint Generation Based on Historical Data 109

adapted to platforms for programming [11,23,28], although not for specifications,
as far as we are aware. The main idea behind these approaches is to use historical
student submissions to build a graph of all traversed solution paths. Each node
in the graph is the AST of a submitted attempt in a student path, and the
transitions register the sequence of edit actions that lead from one submission
to the other. To build the hint graph, all student paths are combined into a
single graph by matching identical submissions, keeping the popularity of each
state and/or transition, and marking correct submissions as goal states. When
a student asks for a hint, if the current state is present in the hint graph, it
calculates the optimal path towards a correct solution and generates a hint.
In [2] Markov Decision Processes (MDP) were used to calculate the optimal
path, but various other policies have since been proposed [22,24]. Studies have
used expert input to evaluate the quality of the hints resulting from different
polices [22,24].

The main challenge for this kind of approach is the size of the solution space.
Besides being an obvious issue for assignments with little historical data, the
solution space for expressive programming languages is so large that getting
hits in the graph may be unlikely even with substantial historical data. Sev-
eral approaches have been explored to address this, such as creating interme-
diate states [28], using program outputs rather than the actual AST as graph
states [11], or employing canonicalization techniques to group semantically equiv-
alent ASTs in the same graph state [27].

Automated Alloy Repair. Automated program repair techniques generate fixes
for programs that fail to pass a certain oracle. In education, this oracle can be
written by the instructor, either a reference solution or a suite of tests, and
then used to generate hints to fix student submissions. Some automated repair
techniques have been proposed for Alloy specifications [3,4,30,31].

ARepair [30] was the first repair technique for Alloy, using test cases as ora-
cle. This makes it prone to overfitting, generating fixes that pass the tests but
still break the expected properties. Moreover, Alloy models are typically not
accompanied by test cases. In contrast, BeAFix [3] uses as oracles check com-
mands. This is more natural in Alloy (and Alloy4Fun challenges) since models
are typically accompanied by commands defining expected properties. Unfortu-
nately, the pruning techniques proposed to improve performance rely on multiple
commands and suspicious locations, and are not effective for simple Alloy4Fun
specification challenges. TAR [4] was developed for the educational context and
integrated into Alloy4Fun. It is focused on producing timely feedback to avoid
student frustration (and to support the temporal aspects of Alloy 6). Its pruning
technique evaluates previously seen counter-examples to avoid costly calls to the
solver. It was shown to considerably outperform ARepair and BeAFix within a 1-
minute timeout, but it is unfeasible for specifications far from a correct solution.
ATR [31] is another technique to repair Alloy 4 specifications with commands
as oracles. Although developed independently from TAR, it also uses counter-
examples (and the closest valid instances) to avoid calls to the Analyzer. ATR

110 A. Barros et al.

Fig. 3. Overview of the approach when submissions are present in historical data

was shown to outperform the repair rate of ARepair and BeAFix, and to be more
efficient than BeAFix.

4 Hints from Historical Alloy Data

The proposed technique adapts existing data-driven hint generation techniques
for programming. Using Alloy4Fun historical data, it creates a graph that cap-
tures students’ progress when solving a challenge, which is then used to generate
hints for future students. This section describes the technique and its implemen-
tation, whose overview is presented in Fig. 3.

4.1 Hint Graph Construction

To generate hints, our approach relies on a graph of student submissions for each
specification challenge, created from an Alloy4Fun dataset. These graphs are cre-
ated offline and can be rebuilt from time to time as new data is collected. Each
node in the graph is a normalized formula previously submitted by a student,
labelled as correct or incorrect, and each edge represents a transition between
two submissions. Each formula is unique in the graph, so similar submissions
are merged, and the frequency of nodes and transitions are registered to be used
in the pathfinding step. Formula comparison is performed at the AST level, so
syntactically incorrect entries in the dataset are disregarded. As seen in Sect. 2,
an Alloy4Fun exercise may contain multiple challenges, so the derivation tree
must be split per challenge. The Alloy command called by each entry identifies
the corresponding target challenge. To exactly identify the student submission
and avoid considering the oracle as part of the graph state, we assume that
each challenge command calls an empty predicate to be filled by the student, as
exemplified in Fig. 1; the formula for each node is extracted from the content of

Alloy Repair Hint Generation Based on Historical Data 111

Fig. 4. A sample derivation tree with 3 paths for the exercise in Fig. 1

that predicate2. When extracting submissions to a certain challenge and remov-
ing syntactically invalid formulas, the pointer to the parent submissions must be
updated accordingly to preserve the student paths.

For improved efficacy (i.e., the probability of a submission having a match in
the graph), we apply a few canonicalizations specified in [27] that were sensible
in the Alloy context, such as sorting commutative operations and normalizing
the direction of comparisons. Additionally, since quantified variables in Alloy
cannot be inlined, we apply variable anonymization. The same transformation is
applied to submissions whenever a hint is requested. Note that we do not want to
abuse canonicalization and end up with hints for a formula that differs too much
from the concrete student submission. So, for example, we do not propagate not

operators using De Morgan’s laws.
To illustrate this process, consider the derivation tree in Fig. 4, that could

be collected from the exercise in Fig. 1 (signature and field names abbreviated).
It contains 3 paths, with incorrect and correct interleaved attempts to both
challenges (spec1 and spec2). The target challenge in each state is the one not
greyed-out, green and red nodes represent correct and incorrect submissions,
respectively, and the blue node is the root model shared by the instructor3.
This will result in the two graphs in Fig. 5, with node and transition frequency
identified by line thickness. Notice the normalization before merging, here just
the name of the quantified variables. Notice also that there may be more than
one semantically equivalent valid solution per challenge.

2 This strategy may not hold for other kinds of Alloy4Fun challenges, in which case
additional annotations could be used to identify the submission predicate.

3 Technically, paths can branch if a student backtracks to a previous model. This
phenomenon was negligible in the dataset, and does not affect the general procedure.

112 A. Barros et al.

Fig. 5. Hint graphs resulting from the derivations in Fig. 4

4.2 Finding the Optimal Next State

The hint generation algorithm runs on demand when a student requests a hint.
After locating the student’s submission in the hint graph of the target challenge,
the current state, the algorithm searches for the optimal path—according to the
defined criterion—from it to any correct formula, the goal state. The first edge
of this path indicates the transition the student should make to progress toward
the goal, the next state that will be used to create the hint.

As discussed in Sect. 3, several criteria have been proposed to define the opti-
mal path. Our goal was to keep the path finding process as general as possible,
so we allow the instructor to define the desirable policy. This is done through the
definition of a weight function on the edges of the graph from a set of available
attributes. These attributes may be data-driven—namely the (relative) popular-
ity of the edge in the source state, and the popularity of the source and target
states—but also syntactic—namely the complexity of the edge transformation
and the source and target formulas. The complexity of the states is given by
the size of the respective AST. For the complexity of the edge, recall that a
transition between states may encompass several actions between two successive
submissions from the student. We measure the complexity of the edge as the tree
edit distance (TED) between the two states, calculated using the state-of-the-art
algorithm APTED4.

Given the weight function on edges, the optimal path is calculated through
a simple shortest path algorithm for weighted graphs.

4.3 Hint Message Generation

The next-step hint is generated from the optimal path. We consider two aspects
to create the hint message: how far the student is from the optimal solution,
based on the TED between the current and the goal states; and the sequence
of edit operations between the current and the next states. To calculate this
sequence, we use an implementation5 of GumTree [9], which calculates a mapping
4 https://github.com/DatabaseGroup/apted.
5 https://github.com/GumTreeDiff/gumtree.

https://github.com/DatabaseGroup/apted
https://github.com/GumTreeDiff/gumtree

Alloy Repair Hint Generation Based on Historical Data 113

Fig. 6. Example of AST edit operations.

between AST nodes and uses the Chawathe et al. [5] algorithm for computing the
edit sequence. The result is a sequence of inserting, deleting, or moving nodes,
or updating a node’s label. Since there may be dependencies between these edit
operations, currently we select the first operation of the sequence for the hint.
To translate an edit operation to a hint we use a message template for each
operation type. The messages try to simulate what a teacher would say to a
struggling student, and contain placeholders for operator-specific information
that can be tailored for the Alloy language.

Consider, e.g., transforming all p:Photo-Ad | some posts.p, incorrect for
spec1, into the correct all p:Photo | one posts.p, shown in Fig. 6. This
requires 4 operations: move node Photo up, delete nodes - and Ad, and update
node some to one, resulting in a TED of 4. The resulting hint message looks
like this: “Keep going! It seems like you have unnecessary information in your
expression. Try simplifying your expression by deleting the difference operator
(-).”.

4.4 Handling Missing Hits

A pure data-driven approach fails for formulas absent from the historical data.
To improve efficacy, one can construct paths from a previously unseen state until
one already in the graph. To this purpose, we enhance our data-driven approach
with a mutation-based component. Whenever a request does not exist in the
graph, we generate variants according to a set of mutators. If a variant happens
to already exist in the graph, a temporary edge from the current state to that
variant is added with popularity 0, thus connecting the previously unseen formula
to the graph and enabling the pathfinding procedure. These mutators—which are
comprised by multiple edit actions—represent typical high-level transformations
applied to a formula. In particular, we rely on the mutators proposed by TAR [4],
which were specifically designed for the Alloy language. Currently, this process
is restricted to a single mutation to avoid reaching a path too distinct from the
student submission.

114 A. Barros et al.

Fig. 7. Hint provided for incorrect submission to spec1 in extended Alloy4Fun

4.5 Deployment in Alloy4Fun

The proposed approach was implemented as a REST service, and we imple-
mented an extension to the Alloy4Fun platform that uses the service to auto-
matically provide hints to challenge attempts6. A new button was added to the
interface that allows users to request a hint when an incorrect specification is
submitted to a challenge. If the tool is able to generate a hint, it highlights a
location in the editor and provides an explanatory message. This is shown in
Fig. 7 for the example used in Sect. 4.3.

The service was implemented in Java—to take advantage of the Alloy Analyzer
parser and AST—using the Quarkus framework. The hint graphs are stored in a
new collection for the MongoDB database of Alloy4Fun. The weight function that
determines the policy is provided through a JSON file that defines an arithmetic
expression over the complexity and frequency attributes presented in Sect. 4.2.

Although optimal paths could be calculated live from the graph whenever
a hint is requested, in practice, to make hint generation as fast as possible, we
pre-compute the optimal next state for every state of the graph offline. When a
hint is requested, it is just a matter of fetching the next state from the graph.

6 https://github.com/anaines14/Alloy4Fun.

https://github.com/anaines14/Alloy4Fun

Alloy Repair Hint Generation Based on Historical Data 115

Table 1. Statistics for the considered exercises

Exercise Id Challs. Specs. Syntatic Training Testing

Social Network SN 8 22690 14943 10428 2793
Courses Co 15 22516 14911 10431 2418
Train Station TS 10 8158 6388 4394 1331
Production Line PL 10 8078 6058 4156 1102
Trash LTL TL 19 5279 4352 2788 890
Classroom FOL CF 14 5893 4376 2702 663
Classroom RL CR 14 6341 4248 2474 687
Trash RL TR 9 4361 3059 1530 347
Trash FOL TF 9 4092 2719 1425 194
Graphs Gr 7 3211 2481 1281 370
Labelled Transition System TS 6 3382 2076 995 393
Curriculum Vitae CV 4 1199 854 596 218

Table 2. Quantitative evaluation results, all times in seconds

Id Construction Data-driven Data+Mutations TAR
StatesTG TP Hits TH Hits TH Hits TH Cmn.

SN 3605 165.5 7.9 1265 (45%) 0.01 1740 (62%) 0.7 539 (19%) 44.6 20
Co 4104 215.3 13.2 812 (34%) 0.01 1298 (54%) 0.7 502 (21%) 38.6 30
TS 1874 69.8 9.5 529 (40%) 0.02 751 (56%) 0.8 320 (24%) 38.2 9
PL 1862 113.6 5.4 373 (34%) 0.01 525 (48%) 0.7 297 (27%) 38.5 15
TL 1219 52.2 7.7 357 (40%) 0.01 569 (64%) 0.4 771 (87%) 9.5 23
CF 903 45.2 6.0 331 (50%) 0.01 463 (70%) 0.5 182 (27%) 26.7 13
CR 985 46.7 5.5 239 (35%) 0.02 330 (48%) 0.3 159 (23%) 35.9 7
TR 446 31.5 2.4 195 (56%) 0.02 260 (75%) 0.2 237 (68%) 0.9 3
TF 343 28.6 1.9 100 (52%) 0.02 154 (79%) 0.3 167 (86%) 0.9 5
Gr 599 27.7 3.7 162 (44%) 0.02 251 (68%) 0.2 175 (47%) 21.0 0
TS 489 22.8 3.7 74 (19%) 0.02 141 (36%) 0.2 37 (9%) 8.2 0
CV 324 11.7 1.6 44 (20%) 0.01 48 (22%) 0.7 61 (28%) 48.2 2

116 A. Barros et al.

Table 3. Incorrect specifications selected for the questionnaire

Spec Id Incorrect

spec1 I1a all p:Photo | some u:User | u→p in posts

I1b all p:Photo | p in User.posts

I1c all p:Photo,u:User | p in u.posts

spec2 I2a all i:Influencer,u:User | i in u.follows

I2b all u:User | Influencer in u.follows

I2c all u:User | u.follows in Influencer

5 Evaluation

We evaluate the proposed hint generation technique quantitatively—addressing
its effectiveness and efficiency—and qualitatively—comparing the generated
hints with those suggested by experts. Specifically, we aim to answer the fol-
lowing research questions:

RQ1 How effective is the tool when a hint is requested, i.e., how often can it
generate a hint?

RQ2 How efficient is it in the various steps of the process, i.e., how long does it
take to construct the graph and to generate a hint?

RQ3 How does it compare with repair-based approaches?
RQ4 What is the quality of the generated hints, and what is the impact of the

specified policy?

Table 4. Most popular answers by expert Alloy tutors

Id Most popular location # Most popular hint #

I1a some u:User | ... 8 Update @ some u:User | ... 8
I1b all p:Photo | ... 3 Update @... in ... 2

Update @ all p:Photo | ... 2
I1c all p:Photo,u:User | ... 7 Update @ all p:Photo,u:User | ... 5
I2a all i:Influencer,u:User | ...4 Delete @ u:User 2

Update @ all i:Influencer,u:User | ...2
Insert @ all i:Influencer,u:User | ... 2

I2b Influencer 5 Insert @ Influencer 4
I2c... in ... 6 Update @... in ... 5

Alloy Repair Hint Generation Based on Historical Data 117

5.1 Quantitative Evaluation

For the quantitative evaluation, we applied our technique to the Alloy4Fun
dataset [15], which contains data for multiple exercises (each with multiple chal-
lenges). It contains about 66 000 syntactically correct student submissions to 12
different exercises, collected over 4 years. Table 1 shows the number of challenges
per exercise (Challs.) and the aggregated statistics. The dataset was split into
a training subset to construct the graphs and a testing subset to evaluate the
performance. We split full paths in the dataset randomly 70%/30% (rather than
splitting individual submissions, since our approach is based on previously tra-
versed paths). Each entry in the testing subset was then run for a hint request
in the purely data-driven technique, in the version that employs mutations for
formulas absent in the graph, and also in the existing repair-based approach
TAR with a maximum search depth of 2. All tests were performed on a com-
modity Intel Core i5-13600KF, with 32GB of RAM. Timeout for requests was
set to 1min since timely feedback is critical in the educational context. Table 2
summarizes the results.

Regarding RQ1, Table 2 shows the hit rate (i.e., the number of specifications
for which the tool was able to return a hint) for the purely data-driven and the
mutation-enhanced versions. The hit rate of the former ranges from 19% to 56%,
with a total average of 39%. Interestingly, the exercises with higher hit rate are
not among those with the largest number of specifications in the historical log,
which is possibly connected to the complexity of the challenges. Nonetheless, this
hit rate will only increase as the exercises collect more submissions. Activating
the mutation component for missed requests considerably increases the hit rate
to an average of 57%.

For RQ2, we start with the graph construction step. Table 2 aggregates the
results for each exercise, namely the number of unique formulas resulting in
graph states, and the time to construct the graphs (TG) and to compute the
optimal next state (TP). The selected weight function did not affect the per-
formance significantly (shown values are for minimizing transition complexity).
Results show that the whole process takes a few minutes for the exercises with
more submissions, which is reasonable since this construction is expected to be
performed sporadically offline. Regarding the hint generation step, Table 2 also
shows the average time to generate a hint for both approaches (TH). For the
data-driven approach, this time is negligible for all exercises (recall that we pre-
calculate the optimal next state offline). When enhanced with mutations, there
is an expected increase on time, although still below 1 s in average. This makes
the technique feasible in answering live hint requests.

Regarding RQ3, Table 2 also shows the hit rate and time to retrieve a hint
for TAR. The hit rate seems less predictable, ranging from 9% to 87%, with an
average of 30%, well below our approach. Interestingly, the number of formulas
for which both our data-driven approach and TAR can generate hints (Cmn.) is
very small, suggesting that these approaches are complementary. As expected
TAR takes considerably longer to generate a hint, with an average of 27 s, since
it is search-based and calls the solver to validate potential solutions.

118 A. Barros et al.

5.2 Qualitative Evaluation

To evaluate the quality of the generated hints (RQ4), we asked experienced
Alloy instructors how they would suggest a next-step hint for a set of incorrect
specifications. For each of the two challenges from Fig. 1, we selected 3 frequently
submitted incorrect specifications, shown in Table 3. We created a questionnaire
that asked for hints in the shape of a target location and an edit operation
(insertion, removal and update). We sent the questionnaire to 12 Alloy instructors
unrelated with this work, and received 8 replies. We observed that, except for
one case (I1a), the experts did not select the same next-step hint, highlighting
the difficulty of automatically generating hints. Table 4 shows the most popular
answers by the experts, both by location only by the whole hint (i.e., location
plus edit operation).

Our approach allows policies to be customized through weight functions. To
compare the answers of the experts with the results of our approach, we designed
a few simple weight functions, some considering only the complexity of nodes
(CmpN) and edges (CmpE), and others only the frequency of nodes (FrqN)
and edges (FrqE). We also considered a couple of policies that combined these
syntactic and data-driven attributes. For this evaluation, we do not consider the
mutation-enhanced version of the technique, as we intend to evaluate the quality
of the data-driven approach. For each policy we counted in how many of the 6
incorrect specifications the generated hint: i) was selected by any expert, and
ii) was among the most popular answers by the experts. We consider whether
there was a match only on the identified location or in the whole hint. Table 5
shows the results.

Interestingly, results show that looking uniquely at the complexity of the
edges (TED) results in hints closer to the experts than the purely data-driven
policies. However, the best results are actually when considering both kinds of
attributes simultaneously: with CmpE and FrqE every hint generated was one
also suggested by some experts, and often one of the most popular.

Table 5. Matches between hints generated by policies and expert hints

Policy Location Loc.+Op.
AnyPop. AnyPop.

CmpN 3 3 3 3
FrqN 2 2 2 2
CmpE 5 3 4 2
FrqE 4 3 4 2
CmpN × FrqE 6 4 5 3
CmpE × FrqE 6 5 6 3

Alloy Repair Hint Generation Based on Historical Data 119

6 Conclusion

This paper presented the first data-driven hint generation technique for ITSs for
learning formal specifications, namely for the Alloy language, and its implemen-
tation in the Alloy4Fun platform. The data-driven technique is complemented
with a mutation-based component to handle absences in the historical data.
Our evaluation shows that our approach outperforms an existing repair-based
technique, and that with the right policy the generated hints can emulate those
provided by experts.

Our expert questionnaires included an open question where most experts sug-
gested feedback in shapes other than next-step hints, such as explaining the issue
with the incorrect specification. Some studies suggest next-step hints accompa-
nied by self-explanations can improve learning [20], but studies also find hints
explaining issues are not well-received by novices [6]. Further studies are needed
on how to implement these effectively. On the other hand, the quantitative eval-
uation showed a small overlap between the cases successfully handled by the
data-driven and the repair-based approaches, suggesting that hybrid approaches
may be worth exploring.

Acknowledgments. The work by A. Barros and H. Neto is financed by National
Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia within project EXPL/CCI-COM/1637/2021. The work by N. Macedo is
financed by National Funds through the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, within project UIDB/50014/2020.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Aleven, V., Roll, I., McLaren, B.M., Koedinger, K.R.: Help helps, but only so
much: Research on help seeking with intelligent tutoring systems. Int. J. Artif.
Intell. Educ. 26(1), 205–223 (2016)

2. Barnes, T., Stamper, J.C.: Toward automatic hint generation for logic proof tutor-
ing using historical student data. In: ITS, LNCS, vol. 5091, pp. 373–382. Springer
(2008). https://doi.org/10.1007/978-3-540-69132-7_41

3. Brida, S.G., et al.: Bounded exhaustive search of Alloy specification repairs. In:
ICSE, pp. 1135–1147. IEEE (2021)

4. Cerqueira, J., Cunha, A., Macedo, N.: Timely specification repair for Alloy 6. In:
SEFM, LNCS, vol. 13550, pp. 288–303. Springer (2022). https://doi.org/10.1007/
978-3-031-17108-6_18

5. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection
in hierarchically structured information. In: SIGMOD Conference, pp. 493–504.
ACM Press (1996)

6. Cunha, A., Macedo, N., Campos, J.C., Margolis, I., Sousa, E.: Assessing the impact
of hints in learning formal specification. In: SEET@ICSE, pp. 151–161. ACM (2024)

https://doi.org/10.1007/978-3-540-69132-7_41
https://doi.org/10.1007/978-3-031-17108-6_18
https://doi.org/10.1007/978-3-031-17108-6_18

120 A. Barros et al.

7. Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User stud-
ies of principled model finder output. In: SEFM, LNCS, vol. 10469, pp. 168–184.
Springer (2017). https://doi.org/10.1007/978-3-319-66197-1_11

8. Dyer, T., Nelson, T., Fisler, K., Krishnamurthi, S.: Applying cognitive principles
to model-finding output: the positive value of negative information. Proc. ACM
Program. Lang. 6(OOPSLA1), 1–29 (2022)

9. Falleri, J., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: ASE, pp. 313–324. ACM (2014)

10. Gusukuma, L., Bart, A.C., Kafura, D.G., Ernst, J.: Misconception-driven feedback:
results from an experimental study. In: ICER, pp. 160–168. ACM (2018)

11. Hicks, A., Peddycord III, B.W., Barnes, T.: Building games to learn from their
players: generating hints in a serious game. In: ITS, LNCS, vol. 8474, pp. 312–317.
Springer (2014). https://doi.org/10.1007/978-3-319-07221-0_39

12. Jackson, D.: Software abstractions: Logic, language, and analysis. MIT Press,
revised edn. (2006)

13. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019)

14. Lazar, T., Sadikov, A., Bratko, I.: Rewrite rules for debugging student programs
in programming tutors. IEEE Trans. Learn. Technol. 11(4), 429–440 (2018)

15. Macedo, N., Cunha, A., Paiva, A.C.R.: Alloy4Fun dataset for 2022/23
(2023). https://doi.org/10.5281/zenodo.8123547, https://doi.org/10.5281/zenodo.
8123547

16. Macedo, N., et al.: Experiences on teaching Alloy with an automated assessment
platform. Sci. Comput. Program. 211, 102690 (2021)

17. Mansoor, N., Bagheri, H., Kang, E., Sharif, B.: An empirical study assessing soft-
ware modeling in Alloy. In: FormaliSE. pp. 44–54. IEEE (2023)

18. Marwan, S., Lytle, N., Williams, J.J., Price, T.W.: The impact of adding textual
explanations to next-step hints in a novice programming environment. In: ITiCSE,
pp. 520–526. ACM (2019)

19. Marwan, S., Price, T.W.: iSnap: evolution and evaluation of a data-driven hint
system for block-based programming. IEEE Trans. Learn. Technol. 16(3), 399–413
(2023)

20. Marwan, S., Williams, J.J., Price, T.W.: An evaluation of the impact of automated
programming hints on performance and learning. In: ICER, pp. 61–70. ACM (2019)

21. McBroom, J., Koprinska, I., Yacef, K.: A survey of automated programming hint
generation: the hints framework. ACM Comput. Surv. 54(8), 1–27 (2022)

22. Piech, C., Sahami, M., Huang, J., Guibas, L.J.: Autonomously generating hints by
inferring problem solving policies. In: L@S, pp. 195–204. ACM (2015)

23. Price, T.W., Dong, Y., Barnes, T.: Generating data-driven hints for open-ended
programming. In: EDM, pp. 191–198. Int. Educ. Data Min. Soc. (IEDMS) (2016)

24. Price, T.W., et al.: A comparison of the quality of data-driven programming hint
generation algorithms. Int. J. Artif. Intell. Educ. 29(3), 368–395 (2019)

25. Price, T.W., Marwan, S., Winters, M., Williams, J.J.: An evaluation of data-driven
programming hints in a classroom setting. In: AIED (2), LNCS, vol. 12164, pp.
246–251. Springer (2020)

26. Rivers, K.: Automated Data-Driven Hint Generation for Learning Programming.
Ph.D. thesis, Carnegie Mellon University, USA (2017)

27. Rivers, K., Koedinger, K.R.: A canonicalizing model for building programming
tutors. In: ITS, LNCS, vol. 7315, pp. 591–593. Springer (2012)

https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-319-07221-0_39
https://doi.org/10.5281/zenodo.8123547
https://doi.org/10.5281/zenodo.8123547
https://doi.org/10.5281/zenodo.8123547

Alloy Repair Hint Generation Based on Historical Data 121

28. Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces: a
self-improving python programming tutor. Int. J. Artif. Intell. Educ. 27(1), 37–64
(2017)

29. Sarkar, A., Negreanu, C., Zorn, B., Ragavan, S.S., Pölitz, C., Gordon, A.D.: What
is it like to program with artificial intelligence? In: PPIG, pp. 127–153. Psychology
of Programming Interest Group (2022)

30. Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for Alloy. In: ASE,
pp. 577–588. ACM (2018)

31. Zheng, G., et al.: ATR: template-based repair for Alloy specifications. In: ISSTA,
pp. 666–677. ACM (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

B2SAT: A Bare-Metal Reduction of B
to SAT

Michael Leuschel(B)

Faculty of Mathematics and Natural Science,
Heinrich Heine University Düsseldorf, Düsseldorf, Germany

michael.leuschel@hhu.de

Abstract. We present a new SAT backend for the B-Method to enable
new applications of formal methods. The new backend interleaves low-
level SAT solving with high-level constraint solving. It provides a “bare
metal” access to SAT solving, while pre- and post-calculations can be
done in the full B language, with access to higher-order or even infinite
data values. The backend is integrated into ProB, not as a general pur-
pose backend, but as a dedicated backend for solving hard constraint
satisfaction and optimisation problems on complex data. In the article
we present the approach, its origin in the proof of Cook’s theorem, and
illustrate and evaluate it on a few novel applications of formal methods,
ranging from biology to railway applications.

1 Introduction

The B-method [1,2] is based on predicate logic, arithmetic and set theory. Par-
ticularly when using Unicode symbols, its core syntax is very close to standard
mathematical notation. The ProB validation tool [29] for B can bring this math-
ematics to life [28]. We have been using this fact to develop a variety of interactive
teaching materials for an undergraduate theoretical computer science course, in
particular via Jupyter notebooks [15]. In many cases the mathematical formulas
in the course script [36] are valid B formulas or need only minor adaptations.
These notebooks1 cover topics like finite automata, automata determinatisation
and minimisation, parsing algorithms, Turing machines, various Gödelisations
and conversions of grammars to automata models and back.

In the summer of 2023 we have covered for the first time Cook’s theorem
[8] in more detail and developed an accompanying B model for it. Cook’s the-
orem states that SAT solving (satisfiability of propositional logic formulas) is
NP-complete. The proof shows that a successful run of a non-deterministic Tur-
ing machine (solving a given NP-problem) can be modelled as the solution of
a propositional logic formula. The translation rules to SAT in [8] and [36] are
written as quantified logic formulas (using universal and existential quantifica-
tion over time points, tape contents and states of the Turing machine). These
1 Some of the notebooks are available at:

https://gitlab.cs.uni-duesseldorf.de/general/stups/prob-teaching-notebooks.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 122–139, 2025.
https://doi.org/10.1007/978-3-031-71177-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_9&domain=pdf
http://orcid.org/0000-0002-4595-1518
https://gitlab.cs.uni-duesseldorf.de/general/stups/prob-teaching-notebooks
https://doi.org/10.1007/978-3-031-71177-0_9

B2SAT: A Bare-Metal Reduction of B to SAT 123

formulas can be encoded elegantly in B, and we could take them almost verba-
tim from the script of the lecture [36] to develop a B encoding of the proof.2

As we will see in Sect. 2, one can thus visualise solutions of the translated SAT
problem, giving students a better intuition about Cook’s theorem. In the process
of formalisation, we also found a few subtle mistakes in the script [36].

More importantly, however, is the realisation that this mathematical style of
describing a SAT problem is useful for other, new applications of formal methods
we were working on (from biology, data mining and railways). This led to the
development of the new solving backend B2Sat. B2Sat intertwines the solving
of high-level, higher order B predicates with solving “bare-metal” SAT problems.
When applied to the B encoding of Cook’s theorem it creates and solves exactly
the SAT problem described in [8,36] and translates the SAT solution back to B.

In the rest of the paper we first show more details about Cook’s theorem
and how to describe the underlying SAT problems in predicate logic. We then
describe the technique and implementation of our new solving backend B2Sat.
We show that B2Sat has applications for complex constraint solving and opti-
misation tasks, enabling convenient modelling in B, TLA+ or Z and effective
solving in SAT. For some applications at least, it is considerably more efficient
than existing solvers for B, TLA+ or Z.

2 Cook’s Theorem in B

Cook’s theorem [8] states that SAT solving is NP-complete. The theorem is still
important 50 years after, see, e.g., [34].

Recall that a set A of words is in NP if there is a non-deterministic Turing
machine MA which accepts A in polynomial time. The proof of NP-hardness in
[8] shows that accepting computations of MA for a particular input x correspond
to solutions of a propositional logic formula Fx. The formula Fx is derived from
x and the Turing machine MA. Nowadays we would call this process bounded
model checking of the Turing machine MA. Indeed, the number of computation
steps of the Turing machine is bounded by some polynomial πA over the size
of the input. As such, the reachable cells of the Turing machine’s infinite tape
are also bounded for a given input x, making it possible to encode the whole
computation as a propositional logic formula.

We now present a B encoding of the core of the proof, based on encoding
the translation rules deriving the SAT formula Fx from MA and the input x.
We here assume that MA is a Turing machine with one tape. The translation
rules to SAT are represented as predicate logic formulas; these formulas can be
encoded elegantly in B, and are taken almost verbatim from [36].

A Turing machine consists of a working alphabet Γ , containing the input
alphabet Σ and the blank symbol, a set of states S, an initial state z0, and a set
F ⊆ S of final states. In addition we have the transition relation δ ∈ (S × Γ) ↔
(S × Γ × Dir), where Dir = {L,R,N} is the set of possible head movements
2 The major adaptations were changing

∧
i∈S φ(i) to ∀i.i ∈ S ⇒ φ(i) and

∨
i∈S φ(i) to

∃i.i ∈ S ∧ φ(i) and expressing “exactly-one” constraints as cardinality constraints.

124 M. Leuschel

(left, right, neutral). Here, (z, y) �→ (z′, y′, d) ∈ δ means that if the machine is
in state z ∈ S and the tape contains the symbol y ∈ Γ at the head position,
then the machine can change its state to z′, write y′ at the current tape position
(overwriting y) and move its head according to d. Note that we model δ here as
a relation, and the Turing machine can be non-deterministic.

We now assume that M accepts a set A ∈ NP (i.e., a problem in NP). Hence
the number of steps for accepting an input x ∈ A is bounded by some polynomial
π. Hence, we model the set of time points Time = 0 .. π(n) where n is the size
of the input x. In that time span the Turing machine can move only a bounded
number of steps left or right, hence we have a set of reachable tape positions
Pos = −π(n) .. π(n)

We can specify the set of valid computation paths of the Turing machine
which accept x by the formula Fx. The propositional logic variables of Fx depend
on the size of the input x and are modelled as these three total functions in B:

– state ∈ Time × States → BOOL, encoding the state of the Turing machine
at each time point t ∈ Time,

– head ∈ Time ×Pos → BOOL, encoding the position of the head on the tape
at each time point,

– tape ∈ Time ×Pos × Σ → BOOL, encoding the contents of the tape at each
time point.

The formula Fx is a conjunction S ∧ K ∧ U1 ∧ U2 ∧ E of the following five
subformulas, which we partially describe below:

S The initial condition specifying that head(0, 0) = TRUE , state(0, z0) =
TRUE and the intial tape contents.

K A correctness condition stating that the Turing machine
– can only be in a single state:

∀t.(t ∈ Time ⇒ card({s | state(t, s) = TRUE}) = 1),
– have a single head position and symbol at every tape position.

U1 Updating the state, head position and the tape’s contents at the head.
U2 the Frame axiom, stating that tape contents not at the head remain

unchanged: ∀(t, i, a).(t ∈ Time+ ∧ i ∈ Pos ∧ a ∈ Γ) ⇒ ((head(t, i) =
FALSE∧tape(t, i, a) = TRUE) ⇒ tape(t+1, i, a) = TRUE))) where Time+

is all but the last time point.
E ensuring we reach a final state:

∃s.(s ∈ Final ∧ state(π(n), s) = TRUE).

Parts of the B model can also be found in Fig. 2. U1 is the most complicated
formula, and was not written out in [8]. U1 contained four mistakes in [36], which
were undetected for at least 15 years. E.g., [36] did not ensure that we do not
step outside the set of modelled positions.

We can now bring this formula to life by letting ProB find solutions for
state, head and tape which satisfy Fx for a particular Turing machine and a
particular input. In Fig. 1 we show the graphical rendering3 of one such solution
3 The B model and an HTML export of this visualisation can be inspected at https://

stups.hhu-hosting.de/models/B2SAT.

https://stups.hhu-hosting.de/models/B2SAT
https://stups.hhu-hosting.de/models/B2SAT

B2SAT: A Bare-Metal Reduction of B to SAT 125

for a Turing machine with 4 states4 the input “100” (1 is green, 0 is red and
BLANK is white) and modelling 16 computation steps (from left to right).

The B model can now be used to show the students the importance of the
various subformulas of Fx. For example, Fig. 1 on the right shows what happens
when we drop the frame axiom U2, meaning that untouched tape contents can
change willy-nilly at each step.

Fig. 1. Two solutions of Fx, showing SAT variables for state, head and a condensed
view of tape. Time t progresses from left to right in each case. The SAT problems have
1664 variables. For the right the frame axiom U2 was removed from Fx.

As we have seen, ProB’s default solver can solve and visualise our B model
in Fig. 1, and thus implicitly solve the underlying SAT problem. The underlying
SAT problem in Fig. 1 has 1664 variables and a solution is found in about two
seconds (when increasing solver strength preference to ensure cardinality con-
straints are all reified, cf. [18]). But ProB is not a dedicated SAT solver, and
will certainly struggle for larger underlying SAT problems.

ProB also provides other constraint solving backends. In particular, ProB’s
Kodkod backend [35] translates B models to SAT via the Kodkod library [41]. It
is an ahead-of-time static translation for a first-order subset of B, which unfortu-
nately fails here, in particular because δ is not a binary relation. So this backend
is not applicable to our encoding of Cook’s theorem. Unfortunately, we were
also not able to successfully apply ProB’s Z3 backend [37] here. (We provide a
detailed discussion of these backends in Sect. 6.)

So, given that our B model actually specifies the generation of a SAT formula,
wouldn’t it be nice if we somehow could generate Fx on the fly in B and then
call a dedicated SAT solver on Fx?

This is exactly the contribution of this paper: a technique to process the
above B model by a combination of ProB’s default solver with a dedicated SAT
solver. The approach enables one to use the full power of B, including higher-
order functions and relations, during pre- and post-processing, while still using
a propositional logic SAT solver for the core solving. Figure 2 shows parts of the
B model, highlighting in green the parts that were expanded and translated for
the SAT solver and in red the parts that were fully processed by ProB’s solver.
4 Implementing adding 1 to a binary number; but the output is of no relevance here.

126 M. Leuschel

Fig. 2. B2Sat Translation Coverage Feedback in ProB: green parts were translated
to SAT, red parts were processed by regular constraint solving

3 The B2SAT Approach

The B2Sat approach is not an ahead-of-time translation to SAT like [35] or [21],
but a dynamic translation during solving with ProB’s default solver.

ProB’s default solver is written in Prolog and scales to very large and com-
plex data values. It has good deterministic propagation and is ideal for anima-
tion and data validation [30]. The boolean part of ProB’s solver is inspired
by [19,20], but is not based on CNF and is not using watched literals. More
importantly, it unfortunately has no clause learning and conflict analysis.

The essence of the B2Sat approach is to intertwine a B to CNF conversion
algorithm with ProB’s constraint solver. ProB’s constraint solver thus runs
both before and after a SAT solver is called on the CNF conversion. ProB’s
solver can thus be used to expand quantifiers and pre-compute complex expres-
sions, without which a SAT conversion would be impossible. The solver can also

B2SAT: A Bare-Metal Reduction of B to SAT 127

run after a SAT solution has been found, to check additional constraints, perform
additional computations (e.g., for visualising the result) or drive optimisation.

The approach is depicted in Fig. 3 and consists of the following phases:

– the deterministic propagation phase(s) of ProB’s solver: it performs deter-
ministic propagations and can expand quantifiers and total functions. It actu-
ally consists of two phases: in the first one it tries to generate only fully known
values and tries to represent known sets as AVL trees [22] for efficient lookup.
The second phase is still deterministic, but can also generate partially known
values (like our total functions state, head and tape).

– a compilation phase, whereby static values are inlined. ProB’s compilation is
normally used for symbolic values (like infinite functions), creating a closure
where all referenced values are inlined. This closure can then be evaluated
later, without having access to the original state. Here we perform the com-
pilation explicitly to simplify the formulas, in order to enable the next phase.

– the B to CNF conversion proper, which can translate a subset of B to proposi-
tional logic in conjunctive normal form. This phase currently supports: equal-
ities and inequalities between boolean variables and constants, all logical con-
nectives and some cardinality constraints (see below). Subformulas that can-
not be solved are sent to ProB’s default solver and linked to the CNF via
an auxiliary propositional variable.

– solving phase, where the generated CNF is sent to an external SAT solver.
– propagation of the SAT solution to B, by progressively “grounding” the B

values and predicates linked to the propositional variables.
– complete constraint solving, solving the pending constraints in B by now

performing the regular non-deterministic propagations and enumerations of
ProB. In case of failure, we backtrack and add additional SAT constraints
to prevent the unfruitful solution.

Let us look how this works on this simple formula (cf. Fig. 3)
f ∈ 1 .. n → BOOL ∧ n = 3 ∧ f(1) = TRUE ∧ (∀i.i ∈ 2 .. n ⇒ f(i) �= f(i− 1)) :

– in the deterministic phase the value of n is set to 3 and the value of f is par-
tially computed to the set {1 �→ F1, 2 �→ F2, 3 �→ F3}, where F1, F2, F3 are
Prolog variables. The universal quantifier is also expanded into two conjuncts
f(2) �= f(1) and f(3) �= f(2).

– the remaining formula is compiled, inlining the values for f and n and pre-
compiling the function lookups. This results in the formula F1 = TRUE ∧
F2 �= F1 ∧ F3 �= F2.

– the formula is translated into a CNF over the propositional variables F1, F2,
F3 resulting in five clauses {F1,¬F2 ∨ ¬F1, F1 ∨ F2,¬F3 ∨ ¬F2, F2 ∨ F3}.

– this CNF is sent to a SAT solver, which computes the model F1,¬F2, F3.
– this model is propagated to B, transforming the partial value of f into a full

value {1 �→ TRUE , 2 �→ FALSE , 3 �→ TRUE}.
– in this case no further constraint solving is required. For example, if we had

an additional conjunct m = card(f � {TRUE}) this would be computed in
this phase, resulting in m = 2.

128 M. Leuschel

Fig. 3. Solving Process Illustrated on an Example

Calling the SAT Solver. To send the CNF to the SAT solver we build on
the Prolog interface to MiniSat from [7]. This interface was ported to SICStus
Prolog by Sebastian Krings and adapted for recent versions of the Glucose SAT
solver 4.0.5 We are also working on targeting other SAT solvers, e.g., Kissat. Note
that we call the SAT solvers directly on the generated CNF, without overhead.
We have also extended our Z3 interface [37] to be able to send and solve SAT
formulas in CNF (rather than SMT formulas).

Cardinality Constraints. The new B2Sat backend is of particular interest
for finding solutions to complex constraints. In many of these cases one wants to
minimize an objective function, often in the form of minimizing or maximizing
the cardinality of a set. Also in Sect. 2 we required cardinality constraints for
the subformula K in Cook’s theorem.

To enable these uses of B2Sat the CNF conversion phase supports con-
straints of the form card({x, . . . | P})◦Expr where ◦ ∈ {≤, <,=,≥, >}. For this
conversion to work, we need to be able to extract a finite set of distinct candi-
dates for the set {x, . . . | P}. This works by re-using the quantifier instantiation
technique used above, expanding ∃x.(P) into a disjunction, and checking that
each disjunct corresponds to a unique candidate element of the set.

For example, let us examine the formula f ∈ 1..3 → BOOL ∧ f(1) =
TRUE ∧ card({i|i ∈ 1 .. 3 ∧ f(i) = FALSE}) = 1. As above, we would gen-
erate three propositional logic variables F1, F2, F3 for the contents of f . In
this case quantifier expansion will create three candidate disjuncts for the set
{i|i ∈ 1..3∧f(i) = FALSE}: f(1) = FALSE , f(2) = FALSE and f(3) = FALSE .
This gets translated into three propositional logic literals ¬F1,¬F2,¬F3. We

5 See https://www.labri.fr/perso/lsimon/research/glucose/.

https://www.labri.fr/perso/lsimon/research/glucose/

B2SAT: A Bare-Metal Reduction of B to SAT 129

now have to encode that exactly one of these three literals is true, e.g., as follows
in CNF: {¬F1 ∨ ¬F2 ∨ ¬F3, F1 ∨ F2, F1 ∨ F3, F2 ∨ F3}.

Once we have a list of candidates of a set S as propositional logic literals
L1, . . . , Lk, we need to encode the various cardinality constraints:

– card(S) = 0 or card(S) < 1 or card(S) ≤ 0 (empty set) is {¬L1, . . . ,¬Lk}.
– card(S) = k or card(S) ≥ k (complete set) is simply {L1, . . . , Lk}.
– card(S) < 0 or card(S) > k or similar unsatisfiable constraints: we generate

a contradiction {⊥}.
– card(S) ≥ 1 or similar (at least one): {L1 ∨ . . . ∨ Lk}.
– card(S) < k or similar (not complete set): {¬L1 ∨ . . . ∨ ¬Lk}.
– for the other cases we generate a sequential counter, counting the number of

true literals among L1, . . . , Lk, as described in [23].

There are many works on how to encode cardinality constraints in SAT (e.g.,
[39,44]), but thus far we have fared well with the sequential counter encoding
recommended by Knuth [23].

Tooling Extensions. We have implemented several ways in ProB to interact
with the new solver backend. First, in the ProB console you have the new
commands :sat, :sat-z3, :sat-double-check and :sat-z3-double-check.
The first can be used to solve a predicate with Glucose, the second with Z3 [9]
as SAT solver. The last two commands double-check the solution using ProB’s
default solver. These commands are used in ProB’s integration tests.

Here is one of our examples in the console (started via probcli --repl):

:sat f:1..n --> BOOL & n=3 & f(1)=TRUE & !i.(i:2..n => f(i) /= f(i-1))

PREDICATE is TRUE

Solution:

f = {(1|->TRUE),(2|->FALSE),(3|->TRUE)} &

n = 3

It is possible to use the command +:sat #file=FILE+ to load the predicate
from a file. We have also made our solver available within ProB’s Jupyter kernel
[15], as the following screenshot shows:

The backend can also be used to solve the properties (aka axioms) of B
and Event-B models by setting the SOLVER FOR PROPERTIES preference. This
preference can currently take the values: prob, sat, sat-z3, kodkod, z3, cdclt.6

6 The default value is prob while kodkod will use Kodkod via [35], z3 the Z3 backend
[37] and cdclt a Prolog implementation of SMT solving [37].

130 M. Leuschel

Here sat will use our new B2Sat backend using the default SAT solver (glucose)
and sat-z3 will use B2Sat with Z3 as SAT solver. This feature is also available
for the other state-based formalisms supported by ProB, e.g., TLA+ and Z.7

4 Applications and Experiments

Dominating Sets. Dominating sets have various practical applications. In our
context, they are relevant in biological models of leaves (e.g., [40]) as well as for
data generation in railway topologies. Given a graph g ⊂ V ×V over set of nodes
V , a dominating set is a set of nodes D ⊆ V such that every node is either in D
or has a neighbour in D: ∀n.(n ∈ V \ D ⇒ ∃d.(d ∈ D ∧ n �→ d ∈ g)).

We can encode the above formula for B2Sat. Currently, we still need to
rewrite our set D as a function to BOOL (in future we will remove this restric-
tion). To find a minimal dominating set we can add additional constraints
card({d | d ∈ V ∧ D(d) = TRUE}) < b, trying to find smaller and smaller
solutions until we have found a minimal dominating set:

For minimisation or optimisation one often resorts to cardinality constraints.
Here the minimisation was done by “hand”, but ProB also has a MINIMIZE
predicate which can be used to automate the process.

The above constraints can be solved with the default solver of ProB. How-
ever, for bigger graphs the problem gets exponentially more complex (finding a
minimal dominating set is an NP-complete problem). The left of Fig. 4 shows a
minimal dominating set computed by B2Sat for a larger graph, representing a
leaf, where the default solver’s runtime becomes intractable. In practical appli-
cations one often needs variations or extensions of the dominating sets concept:

1. instead of considering only the direct neighbours, one can go k hops before
reaching a dominating set element. D is then called a k-hop dominating set.

2. one may require additional properties of D, e.g., that it be connected. From
a connected dominating set one can extract a spanning tree.

The first one is very easy to express in B: simply apply the iterate operator
on g before applying the universal quantifier. Connectedness can also be easily
expressed. The right of Fig. 4 shows a minimal 1-hop connected dominating set
for the same graph. This example stems from a biological application, to study
suitable vein structures of leaves.

7 A TLA+ example is available at https://prob.hhu.de/w/index.php?title=B2SAT.

https://prob.hhu.de/w/index.php?title=B2SAT

B2SAT: A Bare-Metal Reduction of B to SAT 131

v0

v1

v2

v3 v5

v6

v4

v7

v8

v9

v11

v10

v12

v14

v13

v15

v16

v18

v19

v20

v22

v23

v17

v24

v25

v26

v27

v28

v29v21

v30

v31

v32

v33

v34

v35

v36

v37

v38

v49

v39

v50

v40

v41

v42

v43

v44

v45

v46

v47

v48

v51

v52

v53

v54

v55

v56

v58

v57

v59

v60

v61

v62

v63

v65

v66

v67

v68

v69

v70

v71

v72

v74

v75

v76

v77

v78

v79v64

v80

v81

v82

v83

v84

v85

v86

v87

v88

v89v73

v90

v91

v92

v93

v94v95

v96

v97

v98

v99

v100

v101

v102

v103

v104

v105

v106

v107

v108

v110

v109

v111

v112v113

v114

v115

v116

v117

v16

v18

v17

v24

v25

v41

v54 v42

v55

v48

v49

v62

v63

v83

v84v101

v102

v86

v87v104

v105

v89

v90 v106

v107v91

v92 v108

v109

v110

v93

v94

v111

v112

v99

v100 v116

v117

v64

v69

v70

v72

v73

v85

v103

v98

v115

v26

v27v37

v38

v67

v68

v74

v97

v114

v75

v96

v113

v77

v78 v95

v60

v61

v76

v58

v59

v44

v45

v53

v39

v40v52

v46

v28v50

v33

v34

v19

v22

v23

v32

v11

v12

v13

v14

v20

v21

v6

v7

v10

v8

v3

v4

v1

v2

v0

v5

v9

v15

v29

v30

v31

v35

v36

v43

v47

v51

v56

v57

v65

v66

v71

v79

v80

v81

v82

v88

Fig. 4. Non-connected and connected 1-hop minimal dominating set. Green nodes are
part of the dominating set. The graph represents a biological leaf. (Color figure online)

Similar issues can also appear in railway applications, e.g., for placing balises
on a track to ensure certain safety criteria. As a proof of concept, we have solved
an artificial problem on real data. We have used ProB to read in RailML data
of the Oslo main station. The import uses the expressivity of B, also performing
subsidiary rule validation [16]. The task was to place balises on the track which
ensures that a train must encounter a balise at least every three blocks. (A very
recent article [31] discusses related data generation problems for railML.)

With B2Sat we could produce a more efficient version of our time-tabling
tool [38]. We hope that our backend is also applicable to other verification tasks,
e.g., for interlockings. This is related to techniques like Prover iLock [3,4] or
HLL [5,13]. Our hope is to make such verification available while using the full
expressive power of B. We also want to address verification of B hardware models
[12,42], in particular the CLEARSY safety platform [27] (LChip).

Crowded Chessboard. The crowded chessboard is a more than 100 year old
problem from [10]. The purpose is to place a maximal number of chess pieces
on a board, so that no piece attacks a piece of the same kind. In [26] we tried
various approaches to solve the problem. In particular we developed a precursor
of the present work, integrating ProB with Kodkod differently than in [35].
While better than the SMT and CLP(FD) encodings in [26], the approach was
not very user-friendly (requiring explicit annotations) and considerably slower
than B2Sat: the solving time for n = 8 is 19 s compared to 0.5 s with B2Sat.
Note that our encoding is fully readable and is similar in performance to the

132 M. Leuschel

direct SAT encoding from [26], while we can easily inspect, double-check and
visualise the solution using ProB.

5 Experiments

Below we conducted an empirical evaluation of B2Sat.8 Table 1 contains the run
times of our new backend. It shows times for pre-processing (quantifier expan-
sion) and conversion to CNF (second column), times for SAT solving proper
(with Glucose, column 5), and total solving times (including post-processing
and times from columns 2 and 5).

All benchmarks were run on a Macbook Air with M2 processor, 24 GB RAM
and version 1.13.1-beta1 of ProB compiled with SICStus Prolog 4.8.0. We used
Z3 in version 4.13.0.0 and Glucose in version 4.0. For the Kodkod backend we
also used Glucose as SAT solver to enable a fair comparison. All times are wall
times in milliseconds (ms) and the timeout was set at 20 s (but B2SAT does not
yet support time-outs during the SAT solver runs).

The benchmarks contain the examples from above: bounded model checking
of the Turing machine from Fig. 1 for 20 steps (TuringMachine Cook 20), the
crowded chessboard puzzle for an 8×8 chessboard (CrowdedChessBoard), domi-
nating sets for leaves (DominatingSet Middle), and balise placement on the Oslo
main station. We also included three pure SAT problems (blocksworld and uuf)
in B, to measure the overhead when writing SAT problems in B rather than
in CNF format. We have also included some benchmarks from the IDP-Z3 [6]
system, which we translated to B: queens, transitive closure, and pigeon hole.
The translation was straightforward. These IDP models use quantifiers instead
of natural B operators (e.g., perm for queens or closure1 for the transitive clo-
sure), which would be considerably faster in B. Still, the models are a good way
to evaluate B2Sat, whose results are very good compared to the results on the
IDP-Z3 Github site.9

Other Backends. The comparison with other backends of ProB are in Table 2.
As one can see, the Kodkod backend [35] was only applicable to 5 of the 14
examples. Some of the examples can be rewritten to make the backend applica-
ble (see below). When applicable, however, it is often considerably slower than
B2Sat, including for the three SAT problems.

The default CLP(FD) backend of ProB can solve 7 out of the 14 examples.
The Z3 SMT backend can only solve 3 of the 14 examples; the treatment of
quantifiers and cardinality constraints is a weak spot of this backend. Z3 can
still be very useful as a SAT solver, as we explain below.

8 The benchmarks and a Makefile to run the benchmarks are available at:https://
zenodo.org/records/12180216.

9 https://gitlab.com/krr/IDP-Z3/-/blob/main/tests/Benchmark/results.md (con-
sulted Feb. 8th, 2024): queens 14 5.8 s, queens 24 45.8 s, pigeon mx 100 2.8 s,
transitive closure 50 66.9 secs.

https://zenodo.org/records/12180216
https://zenodo.org/records/12180216
https://gitlab.com/krr/IDP-Z3/-/blob/main/tests/Benchmark/results.md

B2SAT: A Bare-Metal Reduction of B to SAT 133

Table 1. B2Sat Backend of ProB: (1) B to CNF Pre-Processing, (2) Glucose SAT
Solving and (3) Total Walltime including Post-Processing

(1) B � CNF (2) Glucose (3) Total

FILE Time (ms) Clauses Vars Time (ms) Status Time (ms)

pigeon 30 293 16590 2670 21 sat 327

transitive closure 50 1476 15857 2450 9 sat 1501

queens 14 968 5838 196 5 sat 988

queens 24 4828 30568 576 54 sat 4906

blocksworld1 2 953 116 1 sat 176

blocksworld2 3 954 116 0 unsat 169

uuf-250-016 3 1065 250 1336 unsat 1573

DominatingSet Middle lt13 14 1506 790 2 sat 34

DominatingSet Middle lt12 15 1407 740 6 unsat 39

OSLO no card 50 288 288 1 sat 78

OSLO card lt 135 67 59824 30123 742 sat 838

OSLO dom edge lt 181 36 100555 50504 16064 sat 16130

CrowdedChessBoard 401 25910 11331 63 sat 501

TuringMachine Cook 20 6450 50333 11064 121 sat 6594

Table 2. Total Walltime for Solving with various Backends of ProB. � stands for
unknown, � for the correct result.

B2Sat Kodkod Default Z3 CDCLT

FILE Status ms Stat ms Stat ms Stat ms Stat ms

pigeon 30 sat 327 � 21 � 396 � 2621 � 9036

transitive closure 50 sat 1501 � 31 � 6963 � 20988 � 7178

queens 14 sat 988 � 15 � 9073 � 20164 � 20095

queens 24 sat 4906 � 15 � 20123 � 20361 � 20085

blocksworld1 sat 176 � 1114 � 221 � 2334 � 387

blocksworld2 unsat 169 � 450 � 179 � 2031 � 346

uuf-250-016 unsat 1573 � 6249 � 20257 � 5421 � 20567

DominatingSet Middle lt13 sat 34 � 939 � 92 � 21504 � 139

DominatingSet Middle lt12 unsat 39 � 732 � 20057 � 21419 � 20076

OSLO no card sat 78 � 33 � 20081 � 21294 � 20079

OSLO card lt 135 sat 838 � 30 � 20064 � 21522 � 20103

OSLO dom edge lt 181 sat 16130 � 28 � 20116 � 21245 � 20106

CrowdedChessBoard sat 501 � 25 � 20053 � 20941 � 20098

TuringMachine Cook 20 sat 6594 � 41 � 8699 � 141 � 10928

134 M. Leuschel

Other SAT Solvers. To keep the tables readable, we have not included runtimes
when using Z3 instead of Glucose for B2Sat in Fig 1. For most smaller examples,
Glucose is much faster than Z3 (e.g., 21 ms vs. 231 ms for pigeon 30). This
is probably because the Prolog SAT interface based on [7] is faster than Z3’s
C++ interface. For complex examples, however, Z3 can be a useful alternative
SAT solver. For example, for OSLO dom edge lt 181 it is four times faster than
Glucose. It is good to have a variety of SAT solvers at our disposal; especially
for optimisation, where solving time increases when we approach the optimum.

In summary, the tables show that for the benchmarks above, B2Sat is a
considerable improvement over existing backends, and opens up new application
areas for B. There is still a performance bottleneck in the compilation phase,
as can be seen in the queens, transitive closure and Turing examples in Table 1.
The overhead is due to partially instantiated data values having linear rather
than logarithmic access in ProB. We hope to reduce this overhead considerably
in the future, e.g., by also using AVL trees for partially instantiated values.

Tables 1 and 2 are biased: we only study examples which can be solved by
B2Sat. Also, some benchmarks can be rewritten for Kodkod by replacing strings
with enumerated sets, rewriting functions to predicates, or adding additional
constraints to make the bounds finite or remove higher-order constructs by hand.
For example, by rewriting the pigeon 30 example and removing the higher-order
function it can be solved in 596 ms. The purpose of the experiments is to show
that there are applications where B2Sat is very effective; it is not to study the
performance for a representative set of benchmark programs.

6 Related and Future Work

Other B Backends. We can compare B2Sat with the backends from Table 2:

– ProB’s default solver is based on constraint logic programming. As men-
tioned, it scales to very large and complex data values and has been used
in industry for B specifications with up to 9 million lines of B. It has good
deterministic propagation, can deal symbolically with infinite values and is
well suited for animation and data validation. The boolean solver was inspired
by [19,20], but without watched literals. Also, there is no clause learning nor
conflict analysis.

– The CDCL(T) backend [37] is a Prolog SMT-style solver built on top of
ProB’s default solver. It does have clause learning and conflict analysis, but
its performance as a SAT solver is far from state-of-the-art SAT solvers. It
is useful for symbolic verification tasks, but as Table 2 shows not for the
constraint solving and optimisation tasks here.

– The Z3 SMT backend [37] is based on a translation of B to SMT-LIB. It works
better with unsatisfiable formulas than for model finding of satisfiable ones.
The backend is good for symbolic verification tasks, but has still considerable
restrictions (cardinality, quantifiers, finite B values often get translated to
infinite ones in SMT-LIB, ...). As such it is not suited as an animation engine
and as Table 2 shows not for the benchmarks here.

B2SAT: A Bare-Metal Reduction of B to SAT 135

The Apalache symbolic model checker [25] for TLA+ uses Z3 [9] as backend,
but with an encoding tailored for finite sets. As such it is better suited for
model finding. Indeed, we were able to solve a small dominating set example
in TLA+ but not DominatingSet Middle lt13 from Table 1.10

– The Kodkod backend [35] uses the Kodkod library [41] to perform an indirect
translation of B to SAT (via the relational logic API of [41]). When applicable,
it can be very effective and much more efficient than ProB’s default solver. It
has, however, limited applicability (no sets of sets, no higher-order relations
or functions, restrictions to binary relations).

The Kodkod backend [35] is the closest to our approach, and we want to
clarify the important differences:

– [35] is a static ahead-of-time translation on the AST (abstract syntax tree).
As such there is no expansion prior to translation, meaning we cannot use
many of B’s nice features (higher-order, ...) to set-up the constraints. B2Sat
is dynamic (just-in-time, e.g., after quantifier expansions) and can process a
mixture of AST and partially instantiated values.

– [35] can translate integers and more operators to SAT than B2Sat.
– There is an overhead in the generated SAT problem with [35] (see Table 2

for pure SAT problems).
– there is an issue with integer overflows in Kodkod, which is not easy to solve

(meaning the current backend [35] is not sound for cardinality constraints or
some integer membership constraints).

– [35] cannot deal with higher-order relations, nor with ternary relations (see
pigeon 30 in Table 2).

Other Languages Translating to SAT. The Alloy analyzer [21] uses the
Kodkod library, and is again a static ahead-of-time translation to SAT. Arby
[33] is an embedding of Alloy into Ruby. One could thus write an Arby program
to expand the Turing machine from Sect. 2 into an Alloy model, which in turn
would get translated to SAT. Our approach is to use logic, mathematics and the
B language to set up SAT constraints (rather than a separate scripting language).

Answer Set Programming (ASP) [11] starts off from a logic program, which
usually (see [14]) gets transformed via a grounding phase to a SAT problem. ASP
builds on a non-monotonic semantics, while our approach is rooted in mathemat-
ical logic with classical monotonic negation and with access to theorem provers.

The Picat [45] logic-based language one can use SAT solvers for constraint
solving. A related approach is IDP-Z3 [32], based on inductive definitions rather
than logic programs. IDP-Z3 is a re-implementation of [43]. We have used some
IDP-Z3 benchmarks above. SMT-LIB itself, in particular when using eager solv-
ing, is also related to B2Sat. Apart from expressivity, a major difference is that
in B2Sat a separate constraint-based solver is driving the translation to SAT.
This increases the specifications that can be handled and the pre-processing that
can take place (see also [17]). Indeed, in the crowded chessboard example the
direct SMT-LIB solutions were not effective [26] (in contrast to B2Sat).
10 Apalache version 0.44.10 produced a StackOverflow error after 122 s.

136 M. Leuschel

Future Work. We wish to extend the subset of B which can be translated to
SAT (integer operators, finite-domain variables, sets,...). We also want to keep
track when propagation of a SAT solution fails in ProB, to then compute the
unsat core to add it as a learned clause. We plan to target other SAT solvers, like
Kissat. and would like to target SMT rather than SAT. As we saw in Table 2,
the current Z3 backend does not work well for model finding or optimisation. By
generating SMT-LIB without quantifiers this could be much improved.

In the future we wish to make the optimisation process more efficient. ProB
already has the functions MAXIMIZE and MINIMIZE, but we wish to use incre-
mental SAT solving and other algorithms from the SAT community [24].

In summary, we have presented a new bare metal SAT backend for B. We
have shown how it can be applied almost out of the box to a mathematical
rendering of Cook’s theorem. With our new backend one can use the full power
of B to pre- and post-process higher-order data and properties, solve and optimise
complex problems and use the B tooling infrastructure to visualise solutions and
double check solutions with other backends. We hope that this leads to readable,
maintainable and efficient SAT applications with state-based formal methods
like B, Z or TLA+. While this approach is certainly not a universal technique, it
enables a wide variety of new applications: graph matching for machine learning,
dominating sets for biological applications, hardware modelling and verification,
data generation for industrial railway applications, bounded model checking for
railway interlockings, and many more.

Acknowledgements. Thanks to Sebastian Krings for the initial port of the miniSat-
Prolog interface [7] to SICStus. I also thank Joshua Schmidt for enabling Z3 as SAT
solver and providing useful feedback on the article. Finally, thanks to Jan Roßbach
who is working to make more SAT solvers available for ProB.

Data Availability Statement. The models and instructions on how to run the
benchmarks are available at https://stups.hhu-hosting.de/models/B2SAT/ and in a
Zenodo archive with DOI 10.5281/zenodo.12180216. The latest version is available at
https://zenodo.org/doi/10.5281/zenodo.12166662.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press (2010)
3. Borälv, A.: The industrial success of verification tools based on st̊almarck’s method.

In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 7–10. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63166-6 3

4. Borälv, A.: Case study: formal verification of a computerized railway interlocking.
Formal Aspects Comput. 10(4), 338–360 (1998)

5. Breton, N., Fonteneau, Y.: S3: proving the safety of critical systems. In Proceedings
RSSRail 2016, 231–242 (2016)

https://stups.hhu-hosting.de/models/B2SAT/
https://zenodo.org/doi/10.5281/zenodo.12166662
https://doi.org/10.1007/3-540-63166-6_3

B2SAT: A Bare-Metal Reduction of B to SAT 137

6. Carbonnelle, P., Vandevelde, S., Vennekens, J., Denecker, M.: IDP-Z3: a reasoning
engine for FO(.). CoRR, abs/2202.00343 (2022)

7. Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. The-
ory Pract. Logic Program. 8(1), 121–128 (2008)

8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–
158, New York, NY, USA (1971). Association for Computing Machinery

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. Dudeney, H.E.: Amusements in Mathematics (1917). https://www.gutenberg.org/
ebooks/16713

11. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

12. Evans, N., Ifill, W.: Hardware verification and beyond: using B at AWE. In: Jul-
liand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 260–261. Springer,
Heidelberg (2006). https://doi.org/10.1007/11955757 24

13. Ge, N., Jenn, E., Breton, N., Fonteneau, Y.: Integrated formal verification of safety-
critical software. Int. J. Softw. Tools Technol. Transf. 20(4), 423–440 (2018)

14. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: Lang, J. (ed.)
Proceedings IJCAI 2018, pp. 5450–5456 (2018). https://www.ijcai.org/

15. Geleßus, D., Leuschel, M.: ProB and Jupyter for logic, set theory, theoretical com-
puter science and formal methods. In: Raschke, A., Méry, D., Houdek, F. (eds.)
ABZ 2020. LNCS, vol. 12071, pp. 248–254. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-48077-6 19

16. Gruteser, J., Leuschel, M.: Validation of railML using ProB. In: Proceedings
ICECCS 2024, LNCS (June 2024). https://doi.org/10.1007/978-3-031-66456-4 13

17. Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 680–695. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 45

18. Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level
specifications. Theory Pract. Log. Program. 11(4–5), 767–782 (2011)

19. Howe, J.M., King, A.: A pearl on SAT solving in prolog. In: Blume, M., Kobayashi,
N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 165–174. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12251-4 13

20. Howe, J.M., King, A.: A pearl on SAT and SMT solving in Prolog. Theor. Comput.
Sci. 435, 43–55 (2012)

21. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11, 256–290 (2002)

22. Knuth, D.: The Art of Computer Programming, Volume 3. Addison-Wesley (1983)
23. Knuth, D.: The Art of Computer Programming, Volume 4, Fascicle 6: Satsfiability.

Addison-Wesley (2015)
24. Kochemazov, S., Ignatiev, A., Marques-Silva, J.: Assessing progress in SAT solvers

through the lens of incremental SAT. In: Li, C.-M., Manyà, F. (eds.) SAT 2021.
LNCS, vol. 12831, pp. 280–298. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3 20

25. Konnov, I., Kukovec, J., Tran,T.: TLA+ model checking made symbolic. Proc.
ACM Program. Lang., 3(OOPSLA), 123:1–123:30 (2019)

https://doi.org/10.1007/978-3-540-78800-3_24
https://www.gutenberg.org/ebooks/16713
https://www.gutenberg.org/ebooks/16713
https://doi.org/10.1007/11955757_24
https://www.ijcai.org/
https://doi.org/10.1007/978-3-030-48077-6_19
https://doi.org/10.1007/978-3-030-48077-6_19
https://doi.org/10.1007/978-3-031-66456-4_13
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-642-12251-4_13
https://doi.org/10.1007/978-3-030-80223-3_20
https://doi.org/10.1007/978-3-030-80223-3_20

138 M. Leuschel

26. Krings, S., Leuschel, M., Körner, P., Hallerstede, S., Hasanagić, M.: Three Is
a crowd: SAT, SMT and CLP on a chessboard. In: Calimeri, F., Hamlen, K.,
Leone, N. (eds.) PADL 2018. LNCS, vol. 10702, pp. 63–79. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-73305-0 5

27. Lecomte, T., Déharbe, D., Fournier, P., Oliveira, M.: The CLEARSY safety plat-
form: 5 years of research, development and deployment. Sci. Comput. Program.
199, 102524 (2020)

28. Leuschel, M.: ProB: Harnessing the power of Prolog to bring formal models and
mathematics to life. Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.V., Kowal-
ski, R., Rossi, F. (eds.) Prolog: The Next 50 Years, LNCS 13900, vol. 13900, pp.
239–247. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35254-6 19

29. Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805. Springer,
Heidelberg (2003). https://doi.org/10.1007/b13229

30. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models with ProB. Formal Asp. Comput. 23(6), 683–709 (2011).
https://doi.org/10.1007/s00165-010-0172-1

31. Menéndez, M.N., Germino, S., Dı́az-Charris, L.D., Lutenberg, A.: Automatic rail-
way signaling generation for railways systems described on railway markup lan-
guage (railML). IEEE Trans. Intell. Transp. Syst. 25(3), 2331–2341 (2024)

32. Mikhailov, L., Butler, M.: An approach to combining B and alloy. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp.
140–161. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1 8

33. Milicevic, A., Efrati, I., Jackson, D.: αrby - an embedding of alloy in ruby. In:
Ait Ameur, Y., Schewe, KD. (eds.) Proceedings ABZ, vol. 8477, pp. 56–71 (2014).
https://doi.org/10.1007/978-3-662-43652-3 5

34. Papadimitriou, C.H.: Cook’s NP-completeness paper and the dawn of the new
theory. In: Kapron, B.M. (ed.) Logic, Automata, and Computational Complexity:
The Works of Stephen A. Cook, ACM Books, vol. 43, pp. 73–82. ACM (2023)

35. Plagge, D., Leuschel, M.: Validating B,Z and TLA+ using ProB and kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 31

36. Rothe, J.: Theoretische informatik. Technical report, University of Düsseldorf
(2000–2024)

37. Schmidt, J., Leuschel, M.: SMT solving for the validation of B and event-b models.
Int. J. Softw. Tools Technol. Transf. 24(6), 1043–1077 (2022)

38. Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for university
timetable validation and improvement. Formal Aspects Comput. 30(5), 545–569
(2018)

39. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

40. Surlemont, M.: Solving connected dominating set variants using integer linear pro-
gramming. Bachelor’s thesis, Institut für Informatik, Universität Düsseldorf (2020)

41. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

42. Voros, N.S., Snook, C.F., Hallerstede, S., Masselos, K.: Embedded system design
using formal model refinement: an approach based on the combined use of UML
and the B language. Design Autom. for Emb. Sys. 9(2), 67–99 (2004)

43. Wittocx, J., Mariën, M., Denecker, M.: Grounding FO and FO(ID) with bounds.
J. Artif. Intell. Res. (JAIR) 38, 223–269 (2010)

https://doi.org/10.1007/978-3-319-73305-0_5
https://doi.org/10.1007/978-3-031-35254-6_19
https://doi.org/10.1007/b13229
https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.1007/3-540-45648-1_8
https://doi.org/10.1007/978-3-662-43652-3_5
https://doi.org/10.1007/978-3-642-32759-9_31
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/978-3-540-71209-1_49

B2SAT: A Bare-Metal Reduction of B to SAT 139

44. Wynn, E.: A comparison of encodings for cardinality constraints in a SAT solver.
CoRR, abs/1810.12975 (2018)

45. Zhou, N.: Modeling and solving graph synthesis problems using sat-encoded reach-
ability constraints in picat. In: Formisano, A., et al. (eds.) Proceedings ICLP 2021,
EPTCS, vol. 345, pp. 165–178 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

PyBDR: Set-Boundary Based
Reachability Analysis Toolkit in Python

Jianqiang Ding1,2(B) , Taoran Wu2,3 , Zhen Liang4 , and Bai Xue2,3

1 Aalto University, Espoo, Finland
jianqiang.ding@aalto.fi

2 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing, China
dingjianqiang0x@gmail.com, {wutr,xuebai}@ios.ac.cn

3 University of Chinese Academy of Sciences, Beijing, China
4 National University of Defense Technology, Hunan, China

liangzhen@nudt.edu.cn

Abstract. We present PyBDR, a Python reachability analysis toolkit
based on set-boundary analysis, which centralizes on widely-adopted set
propagation techniques for formal verification, controller synthesis, state
estimation, etc. It employs boundary analysis of initial sets to mitigate
the wrapping effect during computations, thus improving the perfor-
mance of reachability analysis algorithms without significantly increasing
computational costs. Beyond offering various set representations such
as polytopes and zonotopes, our toolkit particularly excels in interval
arithmetic by extending operations to the tensor level, enabling effi-
cient parallel interval arithmetic computation and unifying vector and
matrix intervals into a single framework. Furthermore, it features sym-
bolic computation of derivatives of arbitrary order and evaluates them
as real or interval-valued functions, which is essential for approximat-
ing behaviours of nonlinear systems at specific time instants. Its modu-
lar architecture design offers a series of building blocks that facilitate
the prototype development of reachability analysis algorithms. Com-
parative studies showcase its strengths in handling verification tasks
with large initial sets or long time horizons. The toolkit is available at
https://github.com/ASAG-ISCAS/PyBDR.

1 Introduction

Reachability analysis, which mainly involves the computation of reachable sets,
is an essential tool for rigorously determining the behavior of dynamical systems
across different scenarios. It serves as the foundation for applications such as for-
mal verification [6,23,36], controller synthesis [29,34], and state estimation [1].
While the precise reachable set can be characterized using sublevel sets of solu-
tions to Hamilton-Jacobi (HJ) equations [13,27], the necessity of discretizing state

J. Ding and T. Wu—These authors contribute equally to this work.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 140–157, 2025.
https://doi.org/10.1007/978-3-031-71177-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_10&domain=pdf
http://orcid.org/0000-0003-0705-0345
http://orcid.org/0000-0003-3398-0466
http://orcid.org/0000-0002-1171-7061
http://orcid.org/0000-0001-9717-846X
https://github.com/ASAG-ISCAS/PyBDR
https://doi.org/10.1007/978-3-031-71177-0_10

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 141

Initial Set
Final Set

Target Set

Unsafe Set

Unsafe Set
Approximated Reachable Set

Trajectory

Fig. 1. Reachability analysis based on set propagation techniques.

space for numerical solving, limit their applicability to high-dimensional dynamic
systems due to the escalating computational expenses linked to dimensionality.
These limitations have led the control community to prefer using approximate
strategies for reachability analysis, such as set propagation techniques [4].

The set propagation method, depicted in Fig. 1, extends the numerical
solution of ordinary differential equations (ODEs) by using sets to represent
solutions rather than precise numerical values. This method commences from
an initial state set and iteratively computes sets to encompass all possible
system states, thus supports the verification of specific properties like safety
[3,9,12,16,17,22,30]. To expedite set operations, the method employs represen-
tations such as intervals, polytopes, and zonotopes to over-approximate the exact
reachable set. However, the cumulative error from successive iterations, known
as the wrapping effect [28], can lead to overly conservative state estimations,
particularly for large initial sets or large time periods, potentially causing ver-
ification failures. While partitioning the initial set or adjusting the step size
can mitigate wrapping effect errors, this simple strategy often incurs substantial
computational expenses, rendering it impractical for refining the conservative
estimates of existing reachability analysis algorithms. On the other hand, the
shared algorithmic structure of set-propagation methods often allows further
advancements to be built upon improving specific steps rather than overhaul-
ing the entire design. However, implementing such customized algorithms often
deviate from the primary objective of existing reachability analysis tools, which
prioritize user-friendly interfaces over the creation of developer-centric platforms
conducive to innovative algorithmic research and development.

In this work, we introduce PyBDR, our prototype toolkit for set-boundary-
based reachability analysis, developed in Python. PyBDR includes advanced
set-boundary propagation methods designed to enhance reachability analysis
capabilities, particularly for large initial sets and long time horizons. Based on
the homeomorphism property of the solution mapping for ODEs satisfying Lip-
schitz conditions, the set-boundary propagation method propagates only the
boundary of the initial set rather than the entire initial set itself to conduct
reachability analysis [37,38]. Because the measure (or, volume) of the bound-
ary is much smaller than the one of the entire initial set, the set-boundary

142 J. Ding et al.

propagation method will induce a smaller wrapping effect efficiently. Further-
more, to support algorithm development, we envision a paradigm where devel-
opers are empowered with a suite of accessible, modular, and versatile building
blocks, such as the design of Interval Tensors. These crafted blocks aim to facil-
itate and streamline the iterative refinement of innovative reachability analysis
algorithms. As illustrated in Fig. 2, the architecture of PyBDR features the fol-
lowing three core modules:

– geometric module: The geometric module enriches the toolkit by incor-
porating established conventional set representations such as intervals, poly-
topes, and zonotopes. It innovatively advances interval arithmetic to the ten-
sor level with the aid of a broadcasting mechanism. This advancement enables
the parallelization of operations and provides a unified framework for manip-
ulating vector intervals, matrix intervals, and interval matrices.

– dynamic module: In addition to supporting linear systems, the dynamic
module is specifically designed to manage nonlinear systems. It facilitates
arbitrary-order derivative evaluation through symbolic computation, thereby
enabling the approximation of nonlinear systems using Taylor series expan-
sions to arbitrary degrees.

– utility module: To assist in the implementation of reachability analysis
algorithms, we have encapsulated interfaces for commonly used optimiza-
tion methods and included a visualizer module for displaying computational
results.

In addition to a modular architectural design, we also conducted a compre-
hensive evaluation of potential programming languages aligned with our objec-
tives. Matlab, despite its prowess in matrix and symbolic computations, was
dismissed due to its reliance on commercial licensing conflicting with our commit-
ment to open-source principles. Similarly, while C/C++ offer high performance
exemplified by tools like HyPro [33] and Flow* [16], their limited flexibility in
supporting academic research prototypes made them less suitable for our needs.
Although Julia shows promise in scientific computation, its relatively nascent
community and ecosystem compared to Python persuaded us to explore other
options. Ultimately, Python emerged as our choice not only for its user-friendly
syntax and support for rapid prototyping but also for its extensive community
and interoperability, crucial for integrating third-party resources in the develop-
ment of reachability analysis algorithms.

Related Work. Recent developments in reachability analysis have led to a
range of tools emphasizing different strengths. C/C++-based tools such as
SpaceEx [17] and Flow* [16] excel in efficient algorithms for both linear and/or
nonlinear hybrid systems. SpaceEx integrates diverse algorithms for linear sys-
tems, while HyPro [33] focuses on convex set representation similar to LazySets.
Flow* distinguishes itself with Taylor model approximation for nonlinear dynam-
ics. However, these tools often require compilation, which can slow down rapid
prototyping cycles.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 143

In contrast, tools like CORA [3] do not require pre-run compilation, offering
a wide range of algorithms for linear and nonlinear systems, including methods
based on zonotopes and interval arithmetic. Attempts to port CORA’s capa-
bilities to C++ have resulted in tools like CORA/SX and SymReach, which
demonstrate significant speed improvements in specific scenarios.

Python has also gained popularity in reachability analysis tools. HyLAA [8]
provides discrete-time reachability algorithms for linear hybrid systems, while
CommonRoad-Reach [24] combines a Python interface with a C++ core to com-
pute reachable sets and driving corridors for autonomous vehicles in dynamic
traffic, suitable for real-time applications.

Julia, known for its prowess in scientific computing, is exemplified by tools
like JuliaReach [11], which provides efficient algorithms for sophisticated, high-
dimensional problems. Despite Julia’s performance comparable to compiled lan-
guages, its ecosystem is still developing and not as extensive as Python’s.

The shift towards JIT-compiled or interpreted languages such as CORA,
JuliaReach, and HyLAA reflects their flexibility in prototyping, crucial for the
iterative development of algorithms. This trend underscores the community’s
preference for platforms that balance ease of use with computational efficiency.

The remainder of this paper is structured as follows. We in Sect. 2 detail the
architecture and features of PyBDR. In Sect. 3, we illustrate the performance of
our tool PyBDR. Finally, we conclude this work in Sect. 4.

2 Architecture and Features

2.1 Architecture

In this section, we present an integrated framework of our prototype tool
designed to enhance the computational processes involved in reachability anal-
ysis. The framework revolves around three core modules: the geometric module,
the dynamic module, and the utility module, as illustrated in Fig. 2. By leverag-
ing the functionality of these three modules, we have integrated the implemen-
tation of several reachability analysis algorithms [2,7,37,38]. These implemen-
tations not only facilitate code reuse for the development of advanced methods
but also showcase the tool’s potential in supporting the creation of innovative
algorithms.

Geometric Module. The geometric module of PyBDR offers various set rep-
resentations, including intervals, polytopes, and zonotopes, aiming to strike a
balance between computational efficiency and the precision of reachable set com-
putations. This module provides essential operations for arithmetic operations
among sets, such as Minkowski addition [21] and linear transformations. More-
over, the module supports geometric operations for converting between different
set representations and computing their enclosures. A significant feature high-
lighted in Fig. 3 is the boundary extraction interface. This interface enables the
over-approximation of the boundary of an entire set using a collection of smaller

144 J. Ding et al.

Reachability Analysis

Geometric

Dynamic

Interval Arithmetic

Visualizer Optimizer

Symbolic
Derivation

Linerar

Nonlinear

System

Neural ODE

Utility

Interval Tensor

Polytope

Zonotope

Representation Operation

Arithmetic

Conversion

Enclosure

Boundary
Analysis

Fig. 2. Hierarchical module design in PyBDR. Solid arrows indicate functional depen-
dencies and essential modules are highlighted with a light blue fill. (Color figure online)

geometric entities, thereby facilitating set-boundary propagation based reacha-
bility analysis. To our knowledge, PyBDR is the first reachability analysis toolkit
to offer interfaces for boundary over-approximation of convex sets like zonotopes,
intervals, and polytopes.

Dynamic Module. The dynamic module of PyBDR supports the definition of
various types of systems, including continuous time-invariant linear systems, con-
tinuous nonlinear systems, and network-structured nonlinear systems. A notable
capability of this module is its ability to analyze the behavior of Neural Ordi-
nary Differential Equations (Neural ODEs) [14]. These systems adhere to home-
omorphic mappings and can incorporate control inputs, expanding the scope of
traditional reachability analysis methods.

Utility Module. The design of the utility module in PyBDR aims to offer inter-
faces for convex optimization problems tailored to diverse algorithmic require-
ments. Additionally, this module provides visualization functionalities that allow
for graphical display of computed reachable sets. These visualizations enable
users to intuitively analyze and evaluate the performance of the algorithm.

To provide a comprehensive overview of the advancements introduced by
our tool PyBDR in reachability analysis, we present a comparative summary in
Table 1. This table outlines the key characteristics of state-of-the-art reachability
analysis tools alongside those of PyBDR, emphasizing the unique features and
capabilities of our toolkit.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 145

Table 1. Comparison of reachability analysis tools

Tool Supported
Systems

Principal
Set Repre-
sentation

Language Additional
Features

License Latest Release

PyBDR Linear
ODEs
Nonlinear
ODEs
Neural
ODEs

Interval,
Polytopes,
Zonotopes

Python Boundary
Analysis,
Interval
Tensor,
Symbolic
differentia-
tion

GPLv3 2024/04/14

CORA Linear
ODEs
Nonlinear
ODEs
Hybrid
Systems
Neural
Netoworks

Intervals,
Polytopes,
Zonotopes,
Taylor
Models,
Polynomial
Zonotopes

MATLAB Conversion
Interfaces
with Other
Tools

GPLv3 2024/07/01

JuliaReach Linear
ODEs
Nonliear
ODEs
Hybrid
Systems

Zonotopes,
Polyhedra,
Taylor
Models

Julia Lazy Sets MIT 2023/08/30

HyLAA Hybrid
Systems
with Linear
ODEs

Generalized
Star Repre-
sentation

Python Simulation
Equivalent

GPLv3 2019/08/01

HyPro Nonlinear
Hybrid
Systems

Box,
Polytope,
Zonotope

C++ Inexact and
Exact Com-
putation

MIT 2023/09/06

Flow* Nonlinear
Hybrid
Systems

Taylor
Model

C++ Adaptive
Technique

GPLv3 2017/03/09

2.2 Features

Boundary Analysis. ODEs satisfying Lipschitz conditions ensure the unique-
ness of evolutionary trajectories from initial states. This property, illustrated
in Fig. 3, guarantees a boundary correspondence between the initial set and its
reachable set throughout the system’s evolution [37–39]. That is, the set reach-
able from the initial set’s boundary is equal to the boundary of the initial set’s
reachable set. Therefore, the boundary of the reachable set is determined by
the boundary of the initial set. A significant feature of our tool is its capability
to enhance existing reachability analysis methods by focusing on the boundary

https://github.com/ASAG-ISCAS/PyBDR
https://tumcps.github.io/CORA/
https://juliareach.github.io
https://github.com/stanleybak/hylaa
https://hypro.github.io/hypro/
https://flowstar.org

146 J. Ding et al.

analysis of the initial set. To support this capability, we have developed boundary
extraction features for various common set representations.

Initial Set Reachable Set

Boundary-inclusive Boxes

Trajectory

Fig. 3. Illustration of reachability analysis utilizing boundary analysis.

We offer two methods for boundary extraction, one of which utilizes the
intrinsic boundary solving algorithms internally to handle the extraction of
intrinsic boundaries for intervals and zonotopes [31], such as extracting 4 edges
of a rectangle characterizing a two-dimensional interval.

Additionally, we incorporate the method in Realpaver [18] for boundary
extraction. This method can construct a series of smaller boxes to closely enclose
the exact boundary of the initial set, as depicted in Fig. 3. By strategically reduc-
ing the size of these boxes, we aim to minimize errors introduced by the wrapping
effect. This meticulous selection of smaller boxes allows for a higher precision
characterization of the reachable set’s boundary, thereby reducing discrepancies
between the computed reachable set and the actual evolution of the system.
Figure 4c demonstrates that computing the reachable set using these smaller
entities provides a more precise boundary approximation compared to results
obtained from analyzing the entire initial set directly. This approach offers a
more accurate solution for verification problems.

Listing 1. Third order Lagrange remainder calculation in PyBDR

1 # calculate the Lagrange remainder term of the thrid order in PyBDR

2 xx = Interval.sum((ihx @ tx @ ihx) * ihx, axis=1)

3 uu = Interval.sum((ihu @ tu @ ihu) * ihu, axis=1)

4 err_lagr = (xx + uu) / 6

Listing 2. Third order Lagrange remainder calculation in CORA

1 % calculate the Lagrange remainder term of third order in ←↩
CORA

2 error_thirdOrder_dyn = interval(zeros(obj.dim,1),zeros(obj.←↩
dim,1));

3 for i=1:length(ind)

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 147

4 error_sum = interval(0,0);
5 for j=1:length(ind{i})
6 error_sum = error_sum + (dz.'*T{i,ind{i}(j)}*dz) * dz←↩

(ind{i}(j));
7 end
8 error_thirdOrder_dyn(i,1) = 1/6*error_sum;
9 end

Interval Tensors. Interval arithmetic is an important tool in many reachability
analysis algorithms to incorporate considerations for errors during calculations.
Traditionally applied to intervals, it has been extended to handle more com-
plex data structures such as interval matrices, which represent linear systems
with parametric uncertainties. This extension requires the ability to perform
interval arithmetic operations in a broader context when computing reachable
sets. To address this need, we have developed the Interval Tensor data structure
in PyBDR. Built upon NumPy’s broadcasting mechanism [19], Interval Tensor
provides a versatile representation that seamlessly integrates various interval
computations within a unified framework. This includes operations on interval
vectors, vector intervals, interval matrices, and matrix intervals.

The Interval Tensor in PyBDR is designed to optimize computational effi-
ciency by leveraging vectorized operations that are executed at a lower level in
C, thereby minimizing the use of Python’s for loops. This approach significantly
enhances computational efficiency. Moreover, Interval Tensor relaxes strict shape
requirements on data during computations, allowing for operations like simul-
taneous interval matrix multiplication with scalar matrices, as demonstrated
in Listing 3. By harnessing NumPy’s broadcasting mechanism, Interval Ten-
sor improves ease of programming and enhances code readability. Compared to
traditional approaches that rely heavily on explicit loops, PyBDR’s implemen-
tation, as illustrated in Listings 1 and 2, demonstrates efficient computation
of complex tasks such as computing the Lagrange remainder term of the third
order [2]. This showcases the practical advantages of Interval Tensor in managing
intricate calculations while bolstering code readability and maintainability.

In summary, Interval Tensor not only optimizes computational efficiency
through vectorization but also enhances the clarity and maintainability of algo-
rithms in PyBDR.

Listing 3. Interval tensor matrix multiplication in PyBDR

1 # interval matrix multiplication simultaneously in PyBDR

2 a = Interval.rand(100, 2, 5, 4)

3 b = np.random.rand(4, 9)

4 c = a @ b

5 print(c.shape) # (100, 2, 5, 9)

In addition to enhancing code writing and readability, we compare the per-
formance of PyBDR and CORA in different computational tasks to examine the
average time consumption and accuracy of Interval Tensor in performing interval

148 J. Ding et al.

Table 2. Comparative evaluation of PyBDR and CORA for interval arithmetic oper-
ations.

Operator Functionality ε Avg. Time [s] Input Intervals

CORA PyBDR I I Iδ Iδ

+ addition 0 1.01e−8 4.68e−9 −100 100 0 100

− subtraction 0 4.02e−8 7.28e−9 −100 100 0 100

∗ multiplication 0 1.96e−5 1.54e−8 −100 100 0 100

/ division 0 3.22e−5 4.60e−8 −100 100 0 100

∗∗ power 1.08e−15 1.74e−5 2.93e−8 −100 100 0 100

| | absolute 0 1.30e−8 2.30e−8 −100 100 0 100

@ left matrix multiplication 0 5.74e−5 1.15e−6 −100 100 0 100

right matrix multiplication 0 6.05e−5 1.16e−6 −100 100 0 100

exp exponential 2.15e−16 2.08e−8 1.07e−8 −100 100 0 100

log logarithm 1.99e−14 4.36e−8 8.41e−9 0 100 0 100

sqrt square root 0 2.87e−8 4.17e−9 0 100 0 100

sin sine 1.66e−14 3.69e−7 4.47e−8 −100 100 0 100

cos cosine 6.21e−15 4.26e−8 3.85e−8 −100 100 0 100

tan tangent 1.25e−14 4.03e−8 1.90e−8 −π
2

+ 0.01 0 0 π
2

− 0.01

cot cotangent N/A N/A 4.02e−8 0.01 π
2

0 π
2

− 0.01

arcsin inverse sine 9.78e−16 3.70e−8 2.07e−8 −1 0 0 1

arccos inverse cosine 8.13e−15 3.89e−8 1.73e−8 −1 0 0 1

arctan inverse tangent 3.19e−14 1.61e−8 1.04e−8 −100 100 0 100

sinh hyperbolic sine 2.19e−16 3.72e−9 1.73e−8 −100 100 0 100

cosh hyperbolic cosine 2.20e−16 5.43e−8 5.18e−8 −100 100 0 100

tanh hyperbolic tangent 9.58e−15 1.09e−8 9.19e−9 −1 1 0 1

arcsinh inverse hyperbolic sine 9.29e−15 1.87e−8 2.51e−8 −100 100 0 100

arccosh inverse hyperbolic cosine 1.60e−14 2.72e−8 2.32e−8 1 10 0 10

arctanh inverse hyperbolic tangent 2.82e−15 4.02e−8 2.39e−8 −1 0 0 1
Note: N/A – not available due to the absence of cot implementation in CORA; ε – see (1);

arithmetic operations. CORA was specifically chosen as a baseline due to its use
of MATLAB, an interpretive language, and its focus on supporting reachabil-
ity analysis. It’s important to note that INTLAB [32], a closed-source interval
arithmetic library, was not included in our comparison. Benchmarking CORA
against INTLAB can be found in [5]. All tests were conducted within the identi-
cal physical environment as described in Sect. 3. The time consumption for each
operation was measured by averaging the processing time for N = 104 sets of
data randomly sampled from uniform distributions. The interval data used in the
tests were defined as [I, I + Iδ], where I and Iδ are sampled from intervals [I, I]
and [Iδ, Iδ], respectively. Both PyBDR and CORA utilized the double-precision
data type compliant with the IEEE 754 standard [41]. The experimental set-
tings and test results for all supported interval arithmetic operations by Interval

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 149

Tensor in PyBDR are summarized in Table 2, with the maximum relative error
ε for each test defined as:

ε = max(μ1, . . . , μN), μj =
max |IP,j − IC,j |, |IP,j − IC,j |

IP,j − IP,j

(1)

where [IP,j , IP,j] and [IC,j , IC,j] refer to the bounds for the jth test in PyBDR
and CORA, respectively.

Symbolic Derivatives. Many continuous dynamical systems are typically
described by Ordinary Differential Equations (ODEs), which depict their evo-
lution within a state space [20,40]. Higher-order derivatives are frequently
employed to provide more accurate approximations of system behaviors within
local state neighborhoods. These derivatives often manifest as high-dimensional
data structures. For instance, for a vector-valued function f : Rn → R

m, the
second-order derivatives of f involve tensors of size m×n×n. As many set-based
reachability analysis algorithms strive to approximate system behaviors, com-
puting derivatives at specific time points becomes crucial for accurate approxi-
mations. Higher-order derivatives play a significant role in this process, allowing
for more accurate approximations within local state neighborhoods. However,
the computational overhead associated with calculating derivatives increases
exponentially with their order, necessitating careful consideration in practical
implementations. Unlike real-valued derivative evaluations, reachability analysis
algorithms often rely on interval arithmetic. This approach is essential for esti-
mating bounds that encompass exact values, accommodating potential errors
inherent in real-world systems, and ensuring rigorous formal guarantees in anal-
ysis. Existing reachability analysis tools typically provide limited data structures
for managing these complex operations efficiently. This limitation can lead to
challenges in implementing theoretically straightforward operations, introduc-
ing unnecessary complexity and potentially compromising code readability and
maintainability.

In response to the computational challenges posed by reachability analysis
and the limitations of existing tools, our toolkit PyBDR integrates SymPy [26],
providing a streamlined interface for evaluating and differentiating vector-valued
functions effortlessly. This integration allows for precise handling of higher-order
derivatives essential for accurate system behavior approximation. Moreover, our
methodology leverages the interval tensor discussed earlier, enabling evaluations
and derivatives within the framework of interval arithmetic, thereby enhancing
operational convenience and adaptability. To assess the effectiveness of our app-
roach, we provide detailed performance evaluations in Table 3 when handling
data of varying scales across different systems.

150 J. Ding et al.

Table 3. Performance evaluation of derivative computations in PyBDR.

System Dimension Mode Run Order Avg. Time [s]

Input X Input U Output w.r.t. X w.r.t. U

ltv [16] 3 4 3 REL 1 0 5.58e−3 1.83e−3

2+ 0 7.56e−6 5.33e−6

1 1 1.02e−2 2.61e−3

2+ 1 5.42e−6 4.63e−6

1 3 3.03e−2 6.21e−2

2+ 3 1.17e−5 1.83e−5

INT 1 0 2.26e−3 2.05e−3

2+ 0 2.01e−4 2.30e−4

1 1 2.47e−3 9.17e−4

2+ 1 1.56e−4 2.75e−5

1 3 1.48e−2 2.38e−2

2+ 3 1.64e−4 2.07e−4

Tank6eq [7] 6 1 6 REL 1 0 8.87e−3 3.49e−3

2+ 0 1.06e−5 1.04e−5

1 1 2.81e−2 1.82e−3

2+ 1 1.10e−5 4.84e−6

1 3 3.56e−1 4.44e−3

2+ 3 9.55e−5 6.22e−6

INT 1 0 4.94e−3 4.97e−3

2+ 0 3.98e−4 4.35e−4

1 1 6.70e−3 6.80e−4

2+ 1 5.31e−4 2.19e−5

1 3 1.68e−1 2.40e−3

2+ 3 2.03e−3 3.37e−5

Quadrocopter [10] 12 3 12 REL 1 0 1.49e−2 9.01e−3

2+ 0 2.57e−5 2.66e−5

1 1 9.49e−2 6.49e−3

2+ 1 6.72e−5 7.16e−6

1 3 5.28 1.05e−1

2+ 3 4.01e−3 3.36e−5

INT 1 0 1.76e−2 1.48e−2

2+ 0 2.51e−3 2.51e−3

1 1 2.40e−2 3.10e−3

2+ 1 5.69e−3 6.03e−5

1 3 2.67 4.98e−2

2+ 3 7.29e−2 3.95e−4

Lac Operon [15] 2 0 2 REL 1 0 9.66e−3 −
2+ 0 7.61e−6 −
1 1 4.71e−2 −
2+ 1 1.44e−5 −
1 3 2.82 −
2+ 3 1.09e−4 −

INT 1 0 5.80e−3 −
2+ 0 4.32e−4 −
1 1 1.88e−2 −
2+ 1 1.81e−3 −
1 3 1.02e−1 −
2+ 3 1.63e−2 −

Note: X – states of the systems; U – control inputs of the systems; INT
– interval arithmetic; REL – real number arithmetic; 2+ – second run
and all subsequent runs.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 151

3 Evaluation

To illustrate the advancements facilitated by the set-boundary propagation tech-
nique implemented in PyBDR for reachability analysis, we conducted two sets
of case studies. In the first category of case studies, we compared the perfor-
mance of PyBDR when computing reachable sets using the set-boundary prop-
agation technique against a baseline method employing a simple partitioning
on the entire initial set. This comparison aimed to demonstrate the efficiency
gains and accuracy improvements achieved through the set-boundary propaga-
tion technique. In the second category of case studies, we benchmarked PyBDR
against CORA, a tool developed in MATLAB that also utilizes set propagation
techniques for reachability analysis. This benchmarking focused on scenarios
involving large initial sets and long time horizons, specifically in the context of
safety verification for nonlinear systems. We ensured experimental fairness and
parameter consistency by employing conservative linearization method [7] across
all computations.

All experiments were performed on a Windows system equipped with an i7-
13700H 2.1 GHz CPU with 32 GB RAM. Parallel operations were performed
using 4 cores.

3.1 Comparative Studies on the Use of Boundary Analysis

Consider a Lotka-Volterra model of 2 variables [15] as follows,

ẋ0 = 1.5x0 − x0x1 (2)
ẋ1 = −3x1 + x0x1 (3)

Fig. 4. Reachable sets via simple partition (blue), boundary analysis (green), and base-
line method without partition or boundary analysis (orange); N–number of cells, T–
runtime in seconds. (Color figure online)

When starting with an initial set [2.5, 3.5] × [2.5, 3.5] and step size 0.005,
the reachable set over time horizon [0, 2.2] using different levels of partitioning

152 J. Ding et al.

over the initial set and based on boundary analysis is illustrated in Fig. 4. It
is evident that as the simple partitioning method is applied to the initial set
with increasing precision, smaller subsets are used for reachability analysis. This
reduction in volume effectively reduces the error introduced by the wrapping
effect, thereby mitigating the divergence of the reachable set over the speci-
fied time horizon. In contrast, the set-boundary propagation technique achieves
a comparable improvement in the conservatism of reachability analysis using
a limited number of cells that specifically enclose the boundary of the initial
set. This approach provides a computationally efficient alternative to simple
partitioning, demonstrating its effectiveness in advancing reachability analysis
methods.

3.2 Comparative Studies on Reachability Analysis

Fig. 5. Reachable sets obtained with CORA (orange) and PyBDR (blue). (Color figure
online)

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 153

We benchmarked our performance against CORA on various continuous non-
linear dynamic systems, including Neural ODEs (NODEs), as listed in Table 4.
Similarly, we applied the simple partition technique as in Subsect. 3.1 to improve
the performance of CORA in reachability analysis. In our setup, PyBDR runs
on 4 cores in parallel for specific operations, while CORA is single-threaded by
its design. The runtimes in Table 4 refer to wall time, including I/O and other
overheads, to compare overall performance in reachable set computation. For

Table 4. Reachability analysis comparison on continuous benchmarks

System δ X0 T ε Fig. PyBDR CORA

Cells Time [s] Cells Time [s]

Vanderpol 0.01 [0.9, 1.9] × [1.9, 2.9] 5.00 0.50 — 2 × 4 N/A 2 × 2 N/A

0.33 — 3 × 4 44.80 3 × 3 N/A

0.25 5a 4 × 4 47.98 4 × 4 44.30

[0.9, 1.9] × [1.9, 2.9] 9.00 0.20 — 5 × 4 N/A 5 × 5 N/A

0.17 — 6 × 4 193.24 6 × 6 N/A

0.14 — 7 × 4 237.23 7 × 7 N/A

0.12 — 8 × 4 239.25 8 × 8 N/A

0.11 5b 9 × 4 243.09 9 × 9 614.03

[1.0, 1.8] × [2.0, 2.8] 7.00 0.27 — 3 × 4 N/A 3 × 3 N/A

0.20 — 4 × 4 108.98 4 × 4 N/A

0.16 5c 5 × 4 114.80 5 × 5 174.66

[0.8, 2.0] × [1.8, 3.0] 7.00 0.24 — 5 × 4 N/A 5 × 5 N/A

0.20 — 6 × 4 155.25 6 × 6 N/A

0.17 — 7 × 4 164.23 7 × 7 N/A

0.15 — 8 × 4 180.60 8 × 8 N/A

0.13 5d 9 × 4 183.96 9 × 9 470.03

Brusselator [15] 0.01 [−0.1, 0.1] × [3.9, 4.1] 5.00 0.07 — 3 × 4 N/A 3 × 3 N/A

0.05 — 4 × 4 81.70 4 × 4 N/A

0.04 5e 5 × 4 91.96 5 × 5 166.42

Synchronous Machine [35] 0.01 [−0.7, 0.7] × [2.3, 3.7] 7.00 0.33 — 3 × 4 N/A 3 × 3 N/A

0.25 — 4 × 4 99.73 4 × 4 N/A

0.20 — 5 × 4 153.37 5 × 5 N/A

0.17 5f 6 × 4 159.76 6 × 6 262.63

Lorenz [15] 0.02 [−11, 3] × [−3, 11] × [−3, 11] 1.00 2.33 — 6 × 6 × 6 N/A 6 × 6 × 6 N/A

2.00 — 7 × 7 × 6 356.75 7 × 7 × 7 N/A

1.75 5g 8 × 8 × 6 439.95 8 × 8 × 8 416.92

(NODE) Spiral 1 [25] 0.1 [0, 4] × [−2, 2] 7.00 1.00 — 4 × 4 N/A 4 × 4 N/A

0.80 — 5 × 4 857.26 5 × 5 N/A

0.67 — 6 × 4 914.38 6 × 6 N/A

0.57 — 7 × 4 1009.73 7 × 7 N/A

0.50 5h 8 × 4 1094.89 8 × 8 1080.92

(NODE) Spiral 2 [25] 0.1 [−4, −2] × [−4, −2] 7.00 0.50 — 4 × 4 N/A 4 × 4 N/A

0.40 — 5 × 4 723.42 5 × 5 N/A

0.33 — 6 × 4 885.98 6 × 6 N/A

0.29 — 7 × 4 1121.64 7 × 7 N/A

0.25 5i 8 × 4 1258.13 8 × 8 1549.61

Note: N/A – set explosion; δ – step; X0 – initial set; T – time horizon [0, T]; ε – max width of cell;
Fig. – subfigure index in Fig 4.

154 J. Ding et al.

each system, we present an initial setup that can lead to a set explosion due to
the wrapping effect during computation. On this basis, we reduce the conserva-
tiveness of the reachable set by using a more refined boundary characterization
in PyBDR, and by partitioning the initial set into smaller cells in CORA. It is
noteworthy that since the boundary of sets is dimensionally degenerate relative
to the sets themselves, we constrained cell’s maximum width in both methods
to keep the error introduced by the wrapping effect for each cell within the same
scale.

In Table 4, we observe that for systems with relatively large initial sets and
long time horizons, both PyBDR and CORA suffer from significant errors from
the wrapping effect, which leads to an overestimation of reachable sets. By reduc-
ing cell size, both tools yield more accurate over-approximations of reachable
sets within specified time horizons. Moreover, as shown in Fig. 4, we can always
obtain a more accurate estimation. Notably, despite Python’s inherent limita-
tions in iterative computations when compared to MATLAB, by processing each
cell in parallel, our toolkit still significantly outperforms CORA in terms of
overall computation time, as particularly evidenced by the results presented in
Fig. 5d. In particular, the analysis of the VanderPol system with an initial set
[0.9, 1.9]×[1.9, 2.9] indicates a requirement for finer cell granularity to accurately
approximate the reachable set as the time horizon extends. This refinement leads
to a pronounced increase in computational time for CORA compared to PyBDR.
And this trend persists across different initial set within [0, 7], where the need
for precision intensifies to maintain valid reachable set estimations.

4 Conclusion

In this paper, we presented PyBDR, a Python-based toolkit that enhances the
reachability analysis through set-boundary propagation analysis. Its key features
include advanced set-boundary analysis to mitigate the wrapping effect and the
integration of tensor-level interval arithmetic for efficient computations. Besides,
PyBDR offers a diverse range of set representations and supports symbolic com-
putation of derivatives, crucial for precise system behavior analysis. Built with
Python’s user-friendly environment in mind, PyBDR facilitates rapid prototyp-
ing and accommodates complex computational tasks effectively. Its capabilities
are demonstrated through benchmarking across various nonlinear dynamics sce-
narios.

For future development, our focus will expand to include support for addi-
tional dynamical systems, particularly hybrid systems. We also plan to incorpo-
rate a broader array of set representations, including nonconvex forms such as
polynomial zonotopes. Enhancing user interaction through a user-friendly and
interactive visualization module is another pivotal aspect of our roadmap.

Acknowledgement. This work is funded by the CAS Pioneer Hundred Talents Pro-
gram and Basic Research Program of Institute of Software, CAS (Grant No. ISCAS-
JCMS-202302).

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 155

Data Availability Statement. The artifact for this work is available at https://doi.
org/10.5281/zenodo.12206996, and PyBDR is available at https://github.com/ASAG-
ISCAS/PyBDR.

References

1. Alanwar, A., Said, H., Althoff, M.: Distributed secure state estimation using dif-
fusion Kalman filters and reachability analysis. In: 2019 IEEE 58th Conference on
Decision and Control (CDC), pp. 4133–4139. IEEE (2019)

2. Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: Proceedings of the 16th International Confer-
ence on Hybrid Systems: Computation and Control, pp. 173–182 (2013)

3. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the 1st and
2nd Workshop on Applied Verification for Continuous and Hybrid Systems, pp.
120–151. EasyChair (2015). https://doi.org/10.29007/zbkv, https://easychair.org/
publications/paper/xMm

4. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability
analysis. Ann. Rev. Control Robot. Auton. Syst. 4, 369–395 (2021)

5. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016.
In: Proceedings of the 3rd International Workshop on Applied Verification for
Continuous and Hybrid Systems, pp. 91–105 (2016)

6. Althoff, M., Rajhans, A., Krogh, B.H., Yaldiz, S., Li, X., Pileggi, L.: Formal verifica-
tion of phase-locked loops using reachability analysis and continuization. Commun.
ACM 56(10), 97–104 (2013)

7. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In: 2008 47th IEEE
Conference on Decision and Control, pp. 4042–4048. IEEE (2008)

8. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reach-
ability for linear systems. In: Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control, pp. 173–178 (2017)

9. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 20

10. Beard, R.W.: Quadrotor dynamics and control. Brigham Young Univ. 19(3), 46–56
(2008)

11. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

12. Bogomolov, S., et al.: Assume-guarantee abstraction refinement meets hybrid sys-
tems. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13338-6 10

13. Chen, M., Tomlin, C.J.: Hamilton-Jacobi reachability: some recent theoretical
advances and applications in unmanned airspace management. Ann. Rev. Con-
trol Robot. Auton. Syst. 1, 333–358 (2018)

14. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary dif-
ferential equations. In: Advances in Neural Information Processing Systems, vol.
31 (2018)

15. Chen, X.: Reachability analysis of non-linear hybrid systems using taylor models.
Ph.D. thesis, Fachgruppe Informatik, RWTH Aachen University (2015)

https://doi.org/10.5281/zenodo.12206996
https://doi.org/10.5281/zenodo.12206996
https://github.com/ASAG-ISCAS/PyBDR
https://github.com/ASAG-ISCAS/PyBDR
https://doi.org/10.29007/zbkv
https://easychair.org/publications/paper/xMm
https://easychair.org/publications/paper/xMm
https://doi.org/10.1007/978-3-319-63387-9_20
https://doi.org/10.1007/978-3-319-13338-6_10

156 J. Ding et al.

16. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

17. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

18. Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using
constraint satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(1), 138–
156 (2006)

19. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362
(2020). https://doi.org/10.1038/s41586-020-2649-2

20. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (NJ), 3. ed.,
international ed. edn. (2000)

21. Kühn, W.: Zonotope dynamics in numerical quality control. In: Hege, HC., Polth-
ier, K. (eds.) Mathematical Visualization: Algorithms, Applications and Numer-
ics, pp. 125–134. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-
03567-2 10

22. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 40

23. Liang, Z., Ren, D., Liu, W., Wang, J., Yang, W., Xue, B.: Safety verification for
neural networks based on set-boundary analysis. In: David, C., Sun, M. (eds.) Theo-
retical Aspects of Software Engineering, pp. 248–267. Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-35257-7 15

24. Liu, E.I., Würsching, G., Klischat, M., Althoff, M.: CommonRoad-Reach: a toolbox
for reachability analysis of automated vehicles. In: 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), pp. 2313–2320. IEEE
(2022)

25. Manzanas Lopez, D., Musau, P., Hamilton, N.P., Johnson, T.T.: Reachability anal-
ysis of a general class of neural ordinary differential equations. In: Bogomolov, S.,
Parker, D. (eds.) Formal Modeling and Analysis of Timed Systems. FORMATS
2022. LNCS, vol. 13465. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-15839-1 15

26. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
e103 (2017). https://doi.org/10.7717/peerj-cs.103

27. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi for-
mulation of reachable sets for continuous dynamic games. IEEE Trans. Autom.
Control 50(7), 947–957 (2005)

28. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall Englewood Cliffs (1966)
29. Park, J., Özgüner, Ü.: Model based controller synthesis using reachability analysis

that guarantees the safety of autonomous vehicles in a convoy. In: 2012 IEEE
International Conference on Vehicular Electronics and Safety (ICVES 2012), pp.
134–139. IEEE (2012)

30. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed:
accelerating reachability analysis on multi-core processors. In: Piterman, N. (ed.)
HVC 2015. LNCS, vol. 9434, pp. 3–18. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-26287-1 1

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-662-03567-2_10
https://doi.org/10.1007/978-3-662-03567-2_10
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-031-35257-7_15
https://doi.org/10.1007/978-3-031-15839-1_15
https://doi.org/10.1007/978-3-031-15839-1_15
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-319-26287-1_1

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 157

31. Ren, D., Liang, Z., Wu, C., Ding, J., Wu, T., Xue, B.: Inner-approximate reach-
ability computation via zonotopic boundary analysis. In: To appear in Computer
Aided Verification: 36th International Conference, CAV 2024 (2024)

32. Rump, S.M. (1999). INTLAB — INTerval LABoratory. In: Csendes, T. (eds) Devel-
opments in Reliable Computing. Springer, Dordrecht (1999). https://doi.org/10.
1007/978-94-017-1247-7 7

33. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

34. Schürmann, B.: Using reachability analysis in controller synthesis for safety-critical
systems. Ph.D. thesis, Technische Universität München (2022)

35. Susuki, Y., et al.: A hybrid system approach to the analysis and design of power
grid dynamic performance. Proc. IEEE 100(1), 225–239 (2011)

36. Tang, C., Althoff, M.: Formal verification of robotic contact tasks via reachability
analysis. IFAC-PapersOnLine 56(2), 7912–7919 (2023)

37. Xue, B., Easwaran, A., Cho, N.J., Fränzle, M.: Reach-avoid verification for non-
linear systems based on boundary analysis. IEEE Trans. Autom. Control 62(7),
3518–3523 (2016)

38. Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by
polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
457–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 25

39. Xue, B., Wang, Q., Feng, S., Zhan, N.: Over-and underapproximating reach sets
for perturbed delay differential equations. IEEE Trans. Autom. Control 66(1),
283–290 (2020)

40. Yang, B., Stipanovic, D.: Nonlinear Systems: Recent Developments and Advances
(2023)

41. Zuras, D., et al.: IEEE standard for floating-point arithmetic. IEEE Std.
754(2008), 1–70 (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-41528-4_25
http://creativecommons.org/licenses/by/4.0/

Discourje: Run-Time Verification
of Communication Protocols in Clojure

— Live at Last

Sung-Shik Jongmans(B)

Open University of the Netherlands, Heerlen, The Netherlands
ssj@ou.nl

Abstract. Multiparty session typing (MPST) is a formal method to
make concurrent programming simpler. The idea is to use type checking
to automatically prove safety (protocol compliance) and liveness (com-
munication deadlock freedom) of implementations relative to specifica-
tions. Discourje is an existing run-time verification library for commu-
nication protocols in Clojure, based on dynamic MPST. The original
version of Discourje can detect only safety violations. In this paper, we
present an extension of Discourje to detect also liveness violations.

1 Introduction

Background. With the advent of multicore processors, multithreaded
programming—a notoriously error-prone enterprise—has become increasingly
important.

Because of this, mainstream languages have started to offer core support for
higher-level communication primitives besides lower-level synchronisation prim-
itives (e.g., Clojure, Go, Kotlin, Rust). The idea has been to add message passing
as an abstraction on top of shared memory, for—supposedly—channels are eas-
ier to use than locks. However, empirical research shows that, actually, “message
passing does not necessarily make multithreaded programs less error-prone than
shared memory” [36]. One of the core challenges is as follows: given a specifica-
tion S of the communication protocols that an implementation I should fulfil,
how to prove that I is safe and live relative to S? Safety means that “bad” chan-
nel actions never happen: if a channel action happens in I, then it is allowed to
happen by S (protocol compliance). Liveness means that “good” channel actions
eventually happen (communication deadlock freedom).

Multiparty Session Typing (MPST). MPST [17] is a formal method to
automatically prove safety and liveness of implementations relative to specifica-
tions. The idea is to implement communication protocols as sessions (of com-
municating threads), specify them as behavioural types [1,21], and verify the
former against the latter using behavioural type checking. Formally, the central
theorem is that well-typedness implies safety and liveness. Over the past fifteen
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 158–166, 2025.
https://doi.org/10.1007/978-3-031-71177-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_11&domain=pdf
http://orcid.org/0000-0002-4394-8745
https://doi.org/10.1007/978-3-031-71177-0_11

Discourje: Live at Last 159

years, much progress has been made, including the development of many tools
to combine MPST with mainstream languages (e.g., F# [31], F� [37], Go [9],
Java [19,20], OCaml [22], Rust [26,27], Scala [3,10,11,34], and TypeScript [29]).

Behavioural type checking can be done statically at compile-time or dynam-
ically at run-time. The disadvantage of static MPST is, it is conservative: stati-
cally checking each possible run of a session is often prohibitively complicated—if
computable at all—so sessions are often unnecessarily rejected. In contrast, the
advantage of dynamic MPST is, it is liberal: dynamically checking one actual
run of a session is much simpler, so sessions are never unnecessarily rejected.

This Work. Discourje (pronounced “discourse”) [13,14,18] is a library that adds
dynamic MPST to Clojure1. It has a specification language to write behavioural
types (embedded as an internal DSL in Clojure) and a verification engine to
dynamically type-check sessions against them. The key design goals have been
to achieve high expressiveness (cf. static MPST) and to be particularly mindful
of ergonomics (i.e., make Discourje’s usage as frictionless as possible).

In a nutshell, at run-time, Discourje’s dynamic type checker simulates
behavioural type S—as if it were a state machine—alongside session I. Each
time when a channel action is about to happen in I, the dynamic type checker
intervenes and first verifies if a corresponding transition can happen in S. If
so, both the channel action and the transition happen. If not, an exception is
thrown.

However, while safety violations are detected in this way (protocol incompli-
ance), liveness violations are not (communication deadlocks: threads cyclically
depend on each others’ channel actions, and so, they collectively get stuck).
This is a serious limitation relative to static MPST. In this paper, we present an
extension of Discourje to detect also liveness violations. Achieving this, without
compromising the key design goals, has been an elusive problem that for years we
did not know how to solve (e.g., we could not reuse variants of existing techniques
for static MPST at run-time, as this would negatively affect expressiveness).

Section 2 of this paper demonstrates that it can be done, while Sect. 3 outlines
how. The key idea is to use “mock” channels, which mimic “real” channels, to
track ongoing communications: before any channel action happens on a real
channel, it is first tried on a corresponding mock channel, allowing us to check
if all threads would get stuck in a total communication deadlock as a result.

2 Demonstration

We demonstrate the extension to detect liveness violations with two examples.
For reference, Fig. 1 summarises the main elements of Discourje and Clojure.

Example 1. The Two-Buyer protocol consists of Buyer1, Buyer2, and Seller [17]:
“Buyer1 and Buyer2 wish to buy an expensive book from Seller by combining

1 A Lisp that runs on the JVM, with core support for channel-based message passing.

160 S.-S. Jongmans

their money. Buyer1 sends the title of the book to Seller, Seller sends to both
Buyer1 and Buyer2 its quote, Buyer1 tells Buyer2 how much she can pay, and
Buyer2 either accepts the quote or rejects the quote by notifying Seller.”

Figure 2 shows a behavioural type and a session. It is safe and live. In contrast,
if we had accidentally written (<!! c3) on line 11 (i.e., Buyer1 tries to receive
from Buyer2 instead of Seller), then it deadlocks. The original Discourje does not
detect this liveness violation, but with the extension, an exception is thrown. ��

Fig. 1. Discourje and Clojure in a nutshell

Fig. 2. Two-Buyer (Example 1)

Discourje: Live at Last 161

Fig. 3. Load Balancing (Example 2)

Example 2. The Load Balancing protocol consists of Client, Server1, Server2,
and LoadBalancer. First, a request is communicated synchronously from Client
to LoadBalancer, and asynchronously from LoadBalancer to Server1 or Server2.
Next, the response is communicated synchronously from that server to Client.

Figure 3 shows a behavioural type and a session. It is safe but not live. There
are two deadlocks. The first one occurs because Server1 and Server2 try to receive
from c2 and c3 on lines 19 and 23; this should be c4 and c5. The second deadlock
occurs because one of the servers will never receive a value and, as a result, block
the entire program from terminating. The original Discourje does not detect
these liveness violations, but with the extension, exceptions are thrown. ��

3 Technical Details

Requirements. In this section, we outline how the extension to detect liveness
violations works, focussing on the core deadlock detection algorithm. We begin
by stating the rather complicated requirements for this algorithm, as entailed by
Discourje’s key design goals regarding expressiveness and ergonomics (Sect. 1):

– Expressiveness: The algorithm must be applicable to any combination
of buffered and unbuffered channels, and to all functions >!! (send), <!!
(receive), and alts!! (select). Thus, the programmer can continue to freely
mix synchronous and asynchronous sends/receives, possibly selected dynam-
ically.

– Ergonomics: The algorithm must call only into the public API of Clojure’s
standard libraries, without modifying the internals, and without relying on
JVM interoperability. Thus, the programmer can write portable code that
runs on different versions of Clojure and on different architectures.

The combination of these requirements has made the design of the algorithm elu-
sive. For instance, the expressiveness requirement means that we cannot simply

162 S.-S. Jongmans

reuse existing distributed algorithms for deadlock detection (e.g., [6,16,25,35]),
as they typically do not support mixing of synchrony and asynchrony. The
ergonomics requirement means that we cannot instrument Clojure’s internal
code to manage threads, nor can we use Java’s thread monitoring facilities.

Terminology. A channel action is either a send of v through ch, represented
as [ch v], or a receive through channel ch, represented as just ch (cf. alts!! in
Fig. 1). A channel action is pending if it has been initiated but not yet completed.
A pending channel action is either enabled or disabled, depending on ch:

– when ch is a buffered channel, a pending send is enabled iff ch is non-full,
while a pending receive is enabled iff ch is non-empty;

– when ch is an unbuffered channel, a pending send is enabled iff a correspond-
ing receive is pending, and vice versa.

When a thread initiates channel actions, but they are disabled, it is suspended.
When a disabled channel action becomes enabled, the suspended thread is
resumed. A communication deadlock is a situation where each thread is sus-
pended.

Setting the Stage. Normally, channel actions are initiated via func-
tions >!!, <!!, and alts!!. When these functions are called using
the extension, the dynamic type checker intervenes and first calls
(detect-deadlocks [act1...actn]) to initiate corresponding “mock” channel
actions on “mock” channels. Each mock channel mimics a “real” channel and
is used only by the dynamic type checker.

The mock channels have the same un/buffered properties and contents
as the real channels, except that values are replaced with tokens. So, if
detect-deadlocks detects a deadlock on the mock channels, then a deadlock
will occur on the real channels, too. (Mock channels are also essential to detect
safety violations.)

To initiate the mock channel actions, a separate function in the public API
of Clojure’s standard libraries is used: (do-altsf actsconfig). It resembles alts!!,
except that it never suspends the calling thread. Instead, a call of do-alts imme-
diately returns and, asynchronously, initiates the channel actions in acts and calls
f when one is completed. In this way, initiation of mock channel actions can be
decoupled from suspension of threads (demonstrated below).

Algorithm. Let n be the number of threads. The idea to detect deadlocks is
to identify the situation when n-1 threads are already suspended, while the last
thread is about to be suspended. In that situation, instead of suspending
the last thread, an exception is thrown to flag the liveness violation. In code:

1 (defn detect-deadlocks [mock-acts] ;; act1 ... actn
2 (let [ret (about-to-be-suspended? mock-acts)]
3 (if (true? ret)
4 (let [ret (last-thread? mock-acts)]
5 (if (true? ret) (throw (ex-info "deadlock!" {})) ret)) ret)))

Discourje: Live at Last 163

Function about-to-be-suspended? checks if any of the mock-acts is enabled. If
so, it immediately initiates and completes it, and returns the result (of the form
[v ch]). If not, the function returns true to indicate that the current thread
would indeed be suspended if mock-acts were to be initiated. In code:

6 (defn about-to-be-suspended? [mock-acts]
7 (let [ret @(do-alts (fn [_] nil) mock-acts {: default nil})]
8 (if (not= ret [nil :default]) ret true)))

On line 7, optional parameter {:default nil} configures alts!! such that it
immediately returns [nil :default] when all mock-acts are disabled.

Function last-thread? increments the number of suspended threads and
checks if the number is less than n. If so, it initiates mock-acts, and actually
suspends the current thread. If not, the function returns true to indicate that
the current thread is indeed the last one, so a deadlock is detected. In code:

9 (def i (atom 0)) ;; number of suspended threads (private to the algorithm)
10

11 (defn last-thread? [mock-acts]
12 (if (< (swap! i inc) n) ;; increment `i` (`swap! ` returns the new value)
13 (let [p (promise)] ;; create promise to store result of `mock-acts `
14 (do-alts (fn [x] (deliver p x)) mock-acts {}) ;; initiate `mock-acts `,
15 ;; and store result `x` of one of them in `p`
16 ;; upon completion, all asynchronously
17 (let [ret (deref p)] ;; suspend thread (`deref ` blocks until `deliver `)
18 (swap! i dec) ;; decrement `i`
19 ret)
20 true))

The code shown so far explains the general idea behind the algorithm. How-
ever, the details are more involved: our presentation does not yet account for
data races, several of which are possible. For instance, suppose that there are
two threads (Alice and Bob), that they initiate corresponding channel actions
(no deadlock), and that calls of detect-deadlocks are scheduled as follows:

(1) Alice executes about-to-be-suspended?. It returns true. (2) Bob exe-
cutes about-to-be-suspended?. It, again, returns true, as Alice has not yet
executed last-thread?. (3) Bob executes last-thread?. It increments n to
1 and suspends Bob. (4) Alice executes last-thread?. It increments n to
2, detects that Alice is last, and immediately returns nil.

At this point, mistakenly, an exception is thrown. There are more subtle data
races, too. The core issue is that about-to-be-suspended? and last-thread?
should be run atomically to avoid problematic schedules (e.g., the one above).
Details appear in the technical report [23, Sect. A]. The actual source code was
validated using both unit tests and whole-program tests.

4 Conclusion

Closest to the work in this paper is existing work on dynamic MPST [4,15,30–32]
and alternate forms of dynamic behavioural typing [7,8,12,28]. However, none of
these tools can check for liveness at run-time. Also closely related is existing work

164 S.-S. Jongmans

on dynamic deadlock detection in distributed systems (e.g., [6,16,25,35]). How-
ever, as stated in Sect. 3, these algorithms do not fit our requirements. Finally,
we are aware of two other works that use formal techniques to reason about
Clojure programs: the formalisation of an optional type system for Clojure [5],
and a translation from Clojure to Boogie [2,33]. In future work, we aim to study
and optimise the performance overhead of our deadlock detection algorithm.

Data Availability Statement. The artifact is available on Zenodo [24]. It contains
the new version of Discourje, including the examples of this paper.

Disclosure of Interests. The author has no competing interests to declare that are
relevant to the content of this article.

References

1. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016)

2. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a mod-
ular reusable verifier for object-oriented programs. In: FMCO. LNCS, vol. 4111
(2005)

3. Barwell, A.D., Hou, P., Yoshida, N., Zhou, F.: Designing asynchronous multi-
party protocols with crash-stop failures. In: ECOOP. LIPIcs, vol. 263, pp. 1:1–1:30.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

4. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

5. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for Clojure. In: ESOP. LNCS, vol. 9632 (2016)

6. Bracha, G., Toueg, S.: Distributed deadlock detection. Distributed Comput. 2(3),
127–138 (1987)

7. Burlò, C.B., Francalanza, A., Scalas, A.: On the monitorability of session types, in
theory and practice. In: ECOOP. LIPIcs, vol. 194, pp. 20:1–20:30. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021)

8. Burlò, C.B., Francalanza, A., Scalas, A., Trubiani, C., Tuosto, E.: PSTMonitor:
monitor synthesis from probabilistic session types. Sci. Comput. Program. 222,
102847 (2022)

9. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 1–30
(2019)

10. Cledou, G., Edixhoven, L., Jongmans, S., Proença, J.: API generation for mul-
tiparty session types, revisited and revised using Scala 3. In: ECOOP. LIPIcs,
vol. 222 (2022)

11. Ferreira, F., Jongmans, S.: Oven: Safe and live communication protocols in Scala,
using synthetic behavioural type analysis. In: ISSTA, pp. 1511–1514. ACM (2023)

12. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. J. Log.
Algebraic Methods Program. 124, 100731 (2022)

13. Hamers, R., Jongmans, S.: Discourje: runtime verification of communication pro-
tocols in Clojure. In: TACAS (1). LNCS, vol. 12078 (2020)

Discourje: Live at Last 165

14. Hamers, R., Jongmans, S.-S.: Safe sessions of channel actions in clojure: a tour of
the discourje project. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12476, pp. 489–508. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61362-4_28

15. van den Heuvel, B., Pérez, J.A., Dobre, R.A.: Monitoring blackbox implementa-
tions of multiparty session protocols. In: RV. Lecture Notes in Computer Science,
vol. 14245, pp. 66–85. Springer (2023). https://doi.org/10.1007/978-3-031-44267-
4_4

16. Hilbrich, T., de Supinski, B.R., Nagel, W.E., Protze, J., Baier, C., Müller, M.S.:
Distributed wait state tracking for runtime MPI deadlock detection. In: SC, pp.
16:1–16:12. ACM (2013)

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL (2008)

18. Horlings, E., Jongmans, S.: Analysis of specifications of multiparty sessions with
dcj-lint. In: ESEC/SIGSOFT FSE, pp. 1590–1594. ACM (2021)

19. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: FASE. LNCS, vol. 9633 (2016)

20. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
FASE. LNCS, vol. 10202 (2017)

21. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 1–36 (2016)

22. Imai, K., Neykova, R., Yoshida, N., Yuen, S.: Multiparty session programming with
global protocol combinators. In: ECOOP. LIPIcs, vol. 166 (2020)

23. Jongmans, S.S.: Discourje: run-time verification of communication protocols in
clojure – Live at last. Technical report (2023). https://arxiv.org/abs/2407.00540

24. Jongmans, S.: Discourje: run-time verification of communication protocols in Clo-
jure – live at last (artifact) (2024). https://doi.org/10.5281/zenodo.12519843

25. Krivokapic, N., Kemper, A., Gudes, E.: Deadlock detection in distributed database
systems: a new algorithm and a comparative performance analysis. VLDB J. 8(2),
79–100 (1999)

26. Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty session types
in rust. In: COORDINATION. LNCS, vol. 12134 (2020)

27. Lagaillardie, N., Neykova, R., Yoshida, N.: Stay safe under panic: affine Rust pro-
gramming with multiparty session types. In: ECOOP. LIPIcs, vol. 222 (2022)

28. Melgratti, H.C., Padovani, L.: Chaperone contracts for higher-order sessions. Proc.
ACM Program. Lang. 1(ICFP), 1–29 (2017)

29. Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-safe web programming
in TypeScript with routed multiparty session types. In: CC (2021)

30. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Asp. Comput. 29(5), 877–910 (2017)

31. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: CC (2018)

32. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC (2017)

33. Pinzaru, G., Rivera, V.: Towards static verification of Clojure contract-based pro-
grams. In: TOOLS. LNCS, vol. 11771 (2019)

34. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74 (2017)

35. Srinivasan, S., Rajaram, R.: A decentralized deadlock detection and resolution
algorithm for generalized model in distributed systems. Distrib. Parallel Databases
29(4), 261–276 (2011)

https://doi.org/10.1007/978-3-030-61362-4_28
https://doi.org/10.1007/978-3-030-61362-4_28
https://doi.org/10.1007/978-3-031-44267-4_4
https://doi.org/10.1007/978-3-031-44267-4_4
https://arxiv.org/abs/2407.00540
https://doi.org/10.5281/zenodo.12519843

166 S.-S. Jongmans

36. Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concurrency bugs
in Go. In: ASPLOS (2019)

37. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4(OOPSLA), 1–30
(2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Stochastic Games for User Journeys

Paul Kobialka1(B) , Andrea Pferscher1 , Gunnar R. Bergersen1,2 ,
Einar Broch Johnsen1 , and Silvia Lizeth Tapia Tarifa1

1 University of Oslo, Oslo, Norway
{paulkob,andreapf,gunnab,einarj,sltarifa}@ifi.uio.no

2 GrepS B.V., Utrecht, The Netherlands
gunnar.bergersen@greps.com

Abstract. Industry is shifting towards service-based business models,
for which user satisfaction is crucial. User satisfaction can be analyzed
with user journeys, which model services from the user’s perspective.
Today, these models are created manually and lack both formalization
and tool-supported analysis. This limits their applicability to complex
services with many users. Our goal is to overcome these limitations by
automated model generation and formal analyses, enabling the analysis
of user journeys for complex services and thousands of users. In this
paper, we use stochastic games to model and analyze user journeys.
Stochastic games can be automatically constructed from event logs and
model checked to, e.g., identify interactions that most effectively help
users reach their goal. Since the learned models may get large, we use
property-preserving model reduction to visualize users’ pain points to
convey information to business stakeholders. The applicability of the pro-
posed method is here demonstrated on two complementary case studies.

Keywords: User journeys · Data-driven model construction ·
Automata learning · Model checking · Stochastic games · PRISM

1 Introduction

The servitization of business describes a shift towards offering products as ser-
vices [44]. This shift makes companies more dependent on user satisfaction; e.g.,
it has become much easier to change service providers. Investment in user sat-
isfaction pays off [17], which raises the following question: How can we formally
model and analyze the way users experience their interaction with a service?

User journeys model services from the users’ perspective [41]. They describe
how users employ a service to achieve a goal. User journeys may include many
paths, capturing different sequences of actions between a service and its users.
These models enable the analysis of user experience along different (intended
or unintended) paths through a service. Although most user journeys today are

This work is part of the Smart Journey Mining project, funded by the Research Council
of Norway (grant no. 312198).
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 167–186, 2025.
https://doi.org/10.1007/978-3-031-71177-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_12&domain=pdf
http://orcid.org/0000-0002-0635-1915
http://orcid.org/0000-0002-9446-9541
http://orcid.org/0000-0002-8135-9052
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0001-9948-2748
https://doi.org/10.1007/978-3-031-71177-0_12

168 P. Kobialka et al.

Fig. 1. Steps to create Sankey diagrams from the event logs of the case studies.

created manually by domain experts and the associated user experience is cap-
tured through interviews [22,41], the method has been successful at providing
feedback to improve services. However, tool support for the modeling and anal-
ysis of user journeys is sparse [23], which makes the method difficult to apply in
complex domains and to services with numerous and diverse users.

A recent line of work aims to automatically mine user journeys and analyze
them using formal methods [26,28,30,31]. This significantly reduces the manual
effort needed to create models and enables a different scale of complexity in the
analyzed services and number of users. Starting from event logs, which are widely
available for software services, process mining [1] and automata learning [18] can
automatically generate behavioral models of user journeys from these logs, such
as finite state automata. These can then be analyzed by model checking [4].

This paper goes beyond previous work by modeling user journeys as stochas-
tic games [11]. We exploit the underlying distribution of events in the event log,
which was ignored in previous work. Stochastic games allow complex user behav-
ior to be captured, yet the resulting games can still be model checked. Figure 1
summarizes the steps applied to event logs to analyze user experience. These
steps elegantly combine and extend several known techniques. Step 1 generates
stochastic automata from event logs by means of automata learning. Step 2 con-
verts the learned automata into stochastic weighted games. The resulting games
are analyzed using probabilistic model checking to derive optimal strategies. Step
3 ranks critical actions after which users tend to abandon their journey and visu-
alizes the outcome of these novel analyses via a property-preserving visualization
technique, to improve the interpretability of the stochastic game results.

We apply these steps to two case studies: an industrial case study [30,31]
and a benchmark [15] from the literature. The case studies are complementary
in complexity and differ in the number of users. In both cases, we identified
potential service improvements and automatically uncovered caveats. The case
studies suggest that our method is able to address two pressing industrial chal-
lenges: (1) the automated construction of stochastic user journey models for
complex services from event logs, and (2) identification of service bottlenecks by
automated analysis of models that reflect user experience. In short, the contribu-
tions of this paper are: (1) a formalization of user journeys as stochastic weighted
games exploiting the underlying distribution of events in the logs; (2) a tool chain
combining automata learning and model-checking techniques to automatically
analyze stochastic user journey games; (3) a method for property-preserving

Stochastic Games for User Journeys 169

model reduction to visualize the stochastic games results; and (4) the automated
stochastic modeling and analysis of two case studies to showcase the usefulness
and applicability of the proposed combination of techniques and their extensions.

2 Preliminaries

In the following, we write D(X) for the set of probability distributions over a
set X, where a distribution μ : X → [0, 1] is such that

∑
x∈X μ(x) = 1.

Event Logs. An event log records so-called touchpoints (or events) between
users and a service provider. A trace τ = (a0, . . . , an) ∈ A ∗ is a finite, ordered
sequence over an alphabet A of events. An event log L is a multi-set of such
traces [1]. A multi-actor event log L = 〈L,Π,α〉 assigns an initiating actor to
each event in an event log L [26]; the set Π contains a set of actors, and the
actor-mapping function α : A → Π assigns events a ∈ A to an actor π ∈ Π.

Automata Learning. To learn stochastic automata from event logs, we use the
passive automata learning algorithm IOAlergia [36]. IOAlergia learns stochastic
automata for reactive systems defined by MDPs [36], based on Alergia [10]. State
merging exploits the underlying probabilities of events in the log. An MDP is
a tuple 〈Γ,Ain, Aout, δ, s0, λ〉 with finite sets of states Γ , input actions Ain and
output actions Aout, a stochastic transition function δ : Γ ×Ain → D(Γ), an ini-
tial state s0 ∈ Γ , and a labeling function λ : Γ → Aout. We let Eδ ⊆ Γ ×Ain ×Γ
denote the finite set of transitions such that δ(s, a)(s′) > 0 for all triples
(s, a, s′) ∈ Eδ. We assume MDPs to be deterministic; i.e., s′ = s′′ holds for
all transitions δ(s, a)(s′), δ(s, a)(s′′) such that δ(s, a)(s′) > 0, δ(s, a)(s′′) > 0
and λ(s′) = λ(s′′).

Let an input/output log Lio consist of traces τio = (λ(s0), (i0, o0),
. . . , (in, on)) in which input and output actions alternate, starting with an initial
output λ(s0), which is only observed in the initial state. Given Lio, IOAlergia
creates an input/output frequency prefix tree acceptor (IOFPTA), where states
are labeled with output actions and transitions with input actions and frequen-
cies. In the IOFPTA, every path in the tree represents a prefix of a trace in
τio ∈ Lio, and the frequency denotes the number of traces sharing this path.
After creating the IOFPTA, IOAlergia merges states. Two states are merged if
they (1) have the same output label, (2) are locally compatible, and (3) all their
successor states with the same output labels are compatible. Local compatibility
is based on the Hoeffding bound [25]: two states s, s′ are compatible if, for all
inputs i ∈ Ain,

∣
∣
∣
∣
f(s, i, o)
n(s, i)

− f(s′, i, o)
n(s′, i)

∣
∣
∣
∣ ≤

√
1
2

log
2
ε
(

1
√

n(s, i)
+

1
√

n(s′, i)
),

where f(s, i, o) is the frequency of the transition to state o and n(s, i) the sum of
frequencies, for input i in state s. The parameter ε ∈ (0, 2] steers the algorithm’s
eagerness for state merging; e.g., ε = 2 leads to no state merges. Therefore, the

170 P. Kobialka et al.

MDP might contain several states representing the same event. When no states
can be merged, the transition frequencies are normalized to create an MDP.

User Journey Games. A user journey game [30,31] is a weighted two-player
game 〈Γ,AC , AU , E, s0, T, Ts, w〉, where Γ is a finite set of states, AC and AU

are disjoint sets of actions, E ⊆ Γ × Ac ∪ AU × Γ is a transition relation,
s0 ∈ Γ an initial state, T ⊆ Γ a set of final states, Ts ⊆ T successful final
states, and w : E → R a weight function. Actions are separated into two disjoint
sets: controllable actions AC are taken by the service provider and uncontrol-
lable actions AU by the user. User journey games are deterministic if s′ = s′′

for (s, a, s′), (s, a, s′′) ∈ E. Uncontrollable actions have higher precedence than
controllable actions: hence, the user chooses actions first but might do nothing.

A stochastic multi-player game (SMG) [11] is a tuple 〈Π,Γ,A, (Γi)i∈Π , s0, δ〉,
where Π is a set of players, Γ a set of states, A a finite set of actions, (Γi)i∈Π a
partition of states among players, s0 ∈ Γ an initial state, and δ : Γ ×A → D(Γ)
a stochastic transition function. SMGs partition the states among the players;
players can take enabled actions if the current state is in their partition. An
action a ∈ A is enabled in a state s if there is a transition to another state with
non-zero probability, i.e., ∃s′ ∈ Γ : δ(s, a)(s′) > 0. The set of transitions Eδ

defined by δ includes all triples (s, a, s′) ∈ Γ ×A×Γ with δ(s, a)(s′) > 0. Games
can include a reward structure r : Eδ → Q≥0 mapping transitions to positive
rewards (modeling weighted transitions). Rewards accumulate during the game.

Analyzing Stochastic Multiplayer Games. We are interested in analyzing a
player’s strategy, which determines the player’s actions in each state. For simplic-
ity, we focus on memory-less strategies, where the choice of action is determined
by the current state. A strategy [11] for player i ∈ Π in an SMG is a partial
function Γi → D(A) that maps states to distributions over actions.

PRISM-games [11,32] extends the probabilistic model checker PRISM [34]
to games. While PRISM can resolve non-determinism to establish strategies for
a single player, PRISM-games can resolve nondeterminism for multiple, possi-
bly competing players. The logic Probabilistic Alternating-time Temporal Logic
with Rewards (rPATL) allows reasoning about SMGs by expressing temporal
properties [11]. The syntax of rPATL is given by:

φ :=� | p | ¬φ | φ ∧ φ | 〈〈Ξ〉〉P��q[ψ] | 〈〈Ξ〉〉Rr
��χ[F

∗ φ] | 〈〈Ξ〉〉P��[ψ] | 〈〈Ξ〉〉Rr
��[F

∗ φ]

ψ :=Xφ | φU≤kφ | φUφ

rPATL is a CTL-style branching-time temporal logic that extends state prop-
erties φ to path formula ψ with probabilistic and reward constraints. Here,
p is an atomic proposition. The coalition operator 〈〈Ξ〉〉 denotes the subset
Ξ ⊆ Π of players that collaborate in a query; these players share a common
goal against the remaining adversarial players. The probabilistic operator P��q,
where
�∈ {<,≤,≥, >} is a comparison operator and q ∈ Q∩[0, 1] is a probability
bound, indicates a probabilistic query under bound
� q. The expected cumulative
reward operator Rr

��χ evaluates the reward structure r for eventually reaching φ
under bound
� χ, where χ ∈ Q≥0 is a reward bound and r is a reward structure.

Stochastic Games for User Journeys 171

The quantitative operators P�� and Rr
��, with ��∈ {min=?,max=?}, return

the smallest, respectively largest, value that the given coalition of players Ξ can
enforce. The superscript ∗ of the eventually operator F expresses the cost for
paths when φ is not reached, it may be infinity (∞), zero (0), or accumulated
along the path (c). Further temporal logic operators can be constructed from
the next operator X, the until operator U, and the bounded until operator U≤k;
for example, the globally operator Gφ is defined via U: ¬(�U¬φ) [11].

3 Case Study Overview

We conduct two complementary case studies: an industrial application (GrepS)
and a research benchmark (BPIC’17). We explain the steps of our method on
GrepS. BPIC’17 includes thousands of journeys and demonstrates scalability.

GrepS. The company GrepS offers programming skill evaluations for Java [6].
The customers of GrepS are organizations that use the service in the hiring pro-
cess to identify proficient applicants. Users of the service, the assessed trainees,
usually complete the assessment within 1–2weeks. The service comprises three
phases: (1) sign up, (2) solve all programming tasks, and (3) review and share
the skill report with the customer. In a successful journey, the user completes
all tasks and shares the results with the organization. Otherwise, the journey is
unsuccessful. The event log contains anonymized user logs as tabular data [29].
To construct multi-actor event logs, the actor-mapping function α was detailed
by combining domain knowledge and interaction with a GrepS developer.

BPIC’17. The BPI Challenge 2017 captures a loan application process from a
bank. Users can cancel, submit or complete applications, and accept phone calls
from the bank. The process can have three different outcomes: (1) an offer can be
accepted by the user, (2) the application can be declined by the bank, or (3) the
application can be canceled by the user. We exclude declined applications as
they occur due to external factors, e.g., indebtedness. Thus, user journeys are
successful if the user accepts one of the provided loan offers; cancellations are
unsuccessful. The event log contains anonymized user logs as tabular data [15].
To construct multi-actor event logs, the actor-mapping function α was detailed
by combining domain knowledge with information given in the BPIC’17 forum.1

Interestingly, BPIC’17 contains a substantial change in the service provider’s
underlying process, a concept drift [2]. To investigate the impact of the concept
drift on the user journey, we split the log: The first part (BPIC’17-1) contains
traces until the change occurred in July 2016, and the second part (BPIC’17-2)
contains the traces after the change.

The BPIC’17 event log is preprocessed to clear inconsistencies [26,40]. Specif-
ically, we discretized call durations: A trace might contain several events associ-
ated with one call, and calls ranging from seconds to hours. Thus, we aggregate
repeated calls and classify them by their duration into “short”, “long”, or “super
long”. We exclude calls with an aggregated speaking time of less than 60 seconds.
1 https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017.

https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017

172 P. Kobialka et al.

We also distinguish different offers within the same trace. The service provider
cancels offers if there is no response after 20 days. We distinguish actively can-
celed offers and cancellations by the service provider due to timeout. We also
found some redundant events; e.g., the event W_Call after offers was always
followed by A_Complete, so we merged these events. To remove outliers we kept
only traces that appear more than once in the log; in the end, both logs still
contain more than 5000 journeys.

4 From Logs to Stochastic Games

We explain how stochastic user journey games are constructed from multi-actor
event logs L = 〈L,Π,α〉, i.e., the first two steps in Fig. 1. Step 1 generates an
MDP M from the multi-actor event log L. Step 2 constructs a weighted stochastic
game, extending M with weights and actor information. These stochastic user
journey games combine user journey games and SMGs (see Sect. 2).

In a multi-actor event log L, the set of actors Π is assumed to include the
service provider C, who initiates all actions controlled by the offering company,
and the user U , who initiates all remaining actions. We assume that users engage
in only one action at a time; hence, our focus here will be on turn-based games
as models for user journeys, and not on models with parallelism.

Step 1. We first learn an MDP M = 〈Γ,Ain, Aout, δ, s0, λ〉 with
IOAlergia. For the construction of M , we make sure that the traces
τ ∈ L are in the required format of input/output pairs by extend-
ing each trace τ = (a0, . . . , an) to an input/output trace τIO = (λ(s0),
(env, λ(s0)α(a0)), (act(a0), a0), . . . , (env, a

α(an)
n−1), (act(an), an), (env, aα(res)

n),
(act(res), res)). Each ai ∈ τ is encoded by a pair (env, aα(ai)

i−1) where env is a
generic input action indicating the next player, followed by an output action
a

α(ai)
i−1 that indicates the player who initiates event ai from ai−1 according to

the actor-mapping function α. This pair is followed by a pair (act(ai), ai), which
uses a function act : A → Ain to map events to input actions, where the output
action corresponds to the event itself. A naive mapping could be act(ai) = ai,
relating each event to a deterministic action. However, it is often useful to intro-
duce a mapping that abstracts slightly from the events to better reflect the
problem domain in the actions. Each τIO starts with an initial output λ(s0) and
ends with a final output res, which is successful if τ records a successful user
journey and unsuccessful otherwise. This resulting set of input/output traces is
given to IOAlergia (see Sect. 2). By including input/output pairs (env, aα(ai)

i−1) in
the traces, the learned MDP provides the probability distribution for the actions
of the next player.

Step 2. The MDP M obtained in Step 1 is extended to a stochastic user journey
game by means of a weight function w : Eδ → R, labeling transitions with
weights, and partitioning the states Γ into service provider states ΓC and user
states ΓU . For the automatic construction of the weight function w, we exploit
the distinction between successful and unsuccessful user journeys in the event

Stochastic Games for User Journeys 173

log to compute a numerical value that represents the impact of an action on the
outcome of the user journey. The calculation of w is based on previous work [30,
31]. For every transition e ∈ Eδ, we let w(e) = (1−H(e, L))·majority(e, L), where
H is the entropy of successful and unsuccessful journeys. The weight is positive
if the majority of traversals are successful journeys, otherwise negative. The
weight is maximal, respectively minimal, for transitions occurring exclusively in
successful, respectively unsuccessful, journeys. The accumulated weight along a
path in a user journey game, called gas, then represents the user’s “motivation”
to continue the journey [30,31].

Table 1. Model checking queries for SUJGs.

NameQuery Description

Q1 〈〈C〉〉Pmax=?[F successful] Probability of a successful journey
Q2 〈〈C, U〉〉Rneg

min=?[F successful | unsuccessful]
Q3 〈〈C〉〉Rneg

min=?[F successful | unsuccessful]
Q4 〈〈C〉〉Rpos

max=?[F successful | unsuccessful]
Boundaries for accumulated
positive and negative rewards

Q5 〈〈C〉〉Rneg
min=?[C≤S] Step bounded reward

Q6 〈〈C〉〉Rpos
max=?[C≤S]

Q7 〈〈C〉〉Rr
max=?[Fc successful] r ∈ {neg, pos, steps}Expectation of reward structures

Q8
〈〈C〉〉Pmax=?[(F successful & gas ≥ G0 &

Constrained success probability
steps ≤ S) & (G gas ≥ G1)]

The controllable and uncontrollable states are identified using the actor-
mapping function α to map states to the actors C (service provider) and U
(user); e.g., the set of states in ΓC corresponds to the copies of output actions
where C controls the next action: a

α(ai)
i−1 , where α(ai) = C. Then ΓC = {s ∈ Γ |

∃a ∈ Aout : λ(s) = aC}, and ΓU = {s ∈ Γ | ∃a ∈ Aout : λ(s) = aU ∨ λ(s) = a}.
The weight function w and the state partitioning allows the MDP to be trans-

formed into a weighted, two-player SMG, hereafter called a stochastic user jour-
ney game (SUJG), i.e., a tuple G = 〈{C,U}, Γ,Ain, (Γi)i∈{C,U}, s0, δ, T, Ts, w〉,
where final states T = {s ∈ Γ | λ(s) = successful∨ λ(s) = unsuccessful}, success-
ful final states Ts = {s ∈ Γ | λ(s) = successful}, and w the weight function. Note
that every user journey game can be transformed into an equivalent SUJG.

5 Queries for Stochastic User Journey Games

We here assume that users do not interact infinitely with a service provider but
eventually stop. Therefore, we consider SUJGs to be stopping games, in which
we reach almost surely terminal states with reward zero [33].

Step 3. We now consider the probabilistic model checking of properties that are
crucial for the success of user journeys. The violation of these properties allows

174 P. Kobialka et al.

us to locate problematic states where the user journey may be improved. The
constructed SUJG may contain loops with a positive or negative sum of weights.
For this reason, we distinguish queries applicable to games with reward structures
and with bounded integer encodings. Table 1 lists properties that we analyzed for
the case studies, and that we discuss below. The queries are specified in rPATL,
where C denotes the service provider and U denotes the user.

Let us first analyze the probability of completing a user journey successfully;
i.e., to what extent can service provider C guarantee the successful outcome
of the game? Query Q1 quantifies the service provider’s ability to guide an
independent user. Searching for states that return a small probability of reaching
any s ∈ Ts uncovers states from which the service provider has little or no
probability of successfully guiding the user. Thus, the journey is likely to fail.
Here, successful is a predicate that only holds in the successful final state Ts, and
unsuccessful is a predicate that holds in the final states T \ Ts.

Reward Structures decouple accumulated rewards from the state space in
PRISM-games and allow efficient computation of accumulated rewards. In turn-
based SMGs, PRISM-games only supports positive rewards. Thus, we use two
reward structures: pos for positive and neg for negative gas (see Sect. 4). The
weight of a transition in the SUJG contributes to the corresponding structure,
i.e., positive weights add to pos, and negative weights add to neg. Many ser-
vices contain transitions with negative weights, e.g., reflecting actions that may
be unintuitive for the user. To analyze the effect of these transitions, we con-
sider queries concerning the user experience. Query Q2 determines the lower
bound for the negative reward that the user must accumulate to achieve any
outcome, by assuming that both actors cooperate. Queries Q3 and Q4 deter-
mine the minimum neg and maximum pos reward that the service provider can
guarantee, independent of the user, over successful and unsuccessful journeys,
respectively. Rewards can also be used to relate gas to the number of steps taken
so far: Queries Q5 and Q6 return the minimum negative or maximum positive
accumulated reward (denoted C) within the first S steps that C can guarantee.

Bounded Integer Encodings combine positive and negative weights in one
variable, enabling queries on their difference. Every transition changes the value
of this variable by the corresponding positive or negative weight, reflecting the
gas along the paths in the game (see Sect. 4). We also consider a step counter that
is updated for each transition. To restrict the size of the search space, we give
this variable a bound (i.e., steps := min(steps +1,X) for some X). We then use
concentration inequalities such as Markov’s inequality and cumulative reward
structures to calculate the expected values of pos, neg, and steps in Q7, and
derive upper and lower bounds that include at least a minimum part of the dis-
tribution. Note that this construction is only needed in the presence of loops and
that the expected total rewards, used to bound the model, are finite as we assume
stopping games. Query Q8 determines the service provider’s probability for a
successful journey with a minimum amount of gas along the path, a maximum
amount of steps, and an overall lower bound for the gas. This multi-objective

Stochastic Games for User Journeys 175

query searches for a successful final state where gas ≥ G0 and steps ≤ S, while
ensuring that gas never decreases below G1, for constants G0, S,G1.

Experiments. PRISM-games supports experiments on queries that instantiate
a variable, e.g., the maximum number of steps, with all values in a given integer
interval. We use experiments to compare different values of player activity by
modifying the probabilities for the service provider or user to take their actions
first. Additionally, we vary the allowed number of steps to investigate how the
probabilities of a successful outcome change with a limited number of steps.

6 Model Reduction for Visualization

Model checking may reveal weaknesses in the service design and unsatisfiable
queries may suggest a need for changes. However, an unsatisfiable query does
not by itself identify the actions that negatively affect the largest number of
users. To help prioritize options during service redesign, we rank actions based
on their expected influence on the user journey outcome, to identify the most
critical actions for the largest number of users (cf. Step 3, Fig. 1). We synthesize
strategies maximizing the probability of a successful outcome by returning a
maximizing strategy for the service provider and a minimizing strategy for the
user, based on the queries in Sect. 5. These strategies resolve the players’ choice
of action in the SUJG via an induced Markov chain M ′ = 〈Γ ′, δ′, s0〉; the states
Γ ′ of M ′ form a, possibly smaller, subset of the states Γ of the original SUJG,
i.e., Γ ′ ⊆ Γ . (The construction of the induced Markov chain M ′ from an SMG
is detailed in [12].)

We say that users are guidable if the probability that they can successfully
complete the journey is greater than zero. Let the function R : Γ ′ → [0, 1] map
states s ∈ Γ ′ to the (intermediate) results of the probabilistic query Q1, express-
ing the probability of reaching the successful outcome from s. The difference in
guidable users between two neighboring states s and s′ is the absolute difference
between R(s) and R(s′), multiplied by the users traversing between these states.
Formally, the difference diff : Γ ′ → R in state s ∈ Γ ′ is the absolute difference
in guidable users between s and all neighboring states s′:

diff(s) =
∑

s′∈Γ ′
|R(s) − R(s′)| · #Γ ′

L (s, s′) . (1)

Here, #Γ ′
L (s, s′) denotes the number of users traversing from s to s′ as recorded

in the log L, where s′ ∈ Γ ′ and δ′(s, s′) > 0. For non-neighboring states, let
#Γ ′

L (s, s′) = 0. States can then be ranked in descending order by their difference.

Visualizations of Results. Real-world processes with complex structures and
many users result in models that might be hard for humans to interpret correctly.
We discuss a model visualization method based on the model-checking results
that allows model reduction while preserving the ranking order.

The state space of M ′ can be abstracted into clusters of states with an equal
probability of success as defined by R. Neighboring states with the same results
can be merged. States {s′ ∈ Γ ′ | (s, s′) ∈ Eδ′ ∧R(s) = R(s′)} can be merged into

176 P. Kobialka et al.

(a) SUJG annotated with model
checking results.

(b) Reduced
Markov chain.

(c) Sankey diagram generated
from the reduced Markov chain.

Fig. 2. We visualize the model checking results in a Sankey diagram that is generated
from the learned (SUJGs).

a state s. We also merge successful final states Ts∩Γ ′ and unsuccessful final states
(T \Ts)∩Γ ′. Note that the reduced model preserves all transitions to states that
negatively impact the user journey, and that the merge operation is commutative.

To visualize fluctuations in guidable users along the user journey, we trans-
form the reduced model into a Sankey diagram [39]. We opted for Sankey dia-
grams since they seem accessible to a wide range of stakeholders with some
previous insights into the user behavior [19]. Each bar in the diagram illustrates
changes in guidable users, divided into flows of lost and gained guidable users.
The largest bars indicate states that are promising candidates for improvement.
Note that the bars are not monotonic as they do not visualize the absolute
number of users in a state, but the weighted difference in guidable users.

A heat map visualizes the result mapping R in the reduced Markov chain.
By clustering similar states, we can keep diagrams fairly small without compro-
mising the analysis. Figure 2a shows a SUJG with three necessary user actions to
reach a successful outcome. States are annotated with the probability of reach-
ing the successful final state, dotted lines represent uncontrollable user actions,
annotated with their probabilities. Figure 2b shows the reduced Markov chain,
where two actions divide the states into four clusters with 35%, 70%, 100%, and
0% probability of success, respectively. The insights gained from the induced
Markov chain are then visualized as a Sankey diagram in Fig. 2c. The example
illustrates flow capacities through the distribution of 100 users.

7 Case Study Results
Table 2. Model checking results for
GrepS and BPIC’17.
Name GrepS BPIC’17-1 BPIC’17-2

Q2 16.49 33.11 33.87

Q3 50.55 37.35 36.07

Q4 44.98 67.79 68.07

We present results for the GrepS and
BPIC’17 case studies from Sect. 3. The steps
described in Sects. 4–6 are assembled in a
tool chain, implemented in Python 3.10.12,
and available online [27]. For automata
learning, we use the IOAlergia implemen-
tation of AALpy [37] (v. 1.4) and, for model checking, PRISM-games [11,32]
(v. 3.2.1). All experiments ran on a laptop with 32GB memory and an i7-1165G7
@ 2.8GHz Intel processor within few hours.

Stochastic Games for User Journeys 177

Fig. 3. Simplified model
of GrepS’ user journey.

GrepS. Figure 3 shows the generated cyclic game,
where touchpoints are represented as states, identi-
fied by T and a number. It encodes a heat map, rang-
ing from yellow states to green states; the darker a
state’s green, the greater its probability for success
(orange is the unsuccessful state). Transitions with
negative weights are orange, and those with positive
weights green. The figure highlights the three phases
of GrepS’ user journey. Phase 1 consists of touchpoints
T0–T4, Phase 2 of T5–T20 and Phase 3 of T21–T26.
Users receive a new task in T9, T11, T13, T15, and
T17. Feedback to users is given after every task. Users
share their results with the client company in T26. For
readability, we merged the service-provider controlled
and user controlled states, which we introduced due
to the input/output format of the traces, see Step 1 in
Sect. 4, with their preceding touchpoint-labeled states
(the full model is available at [27]). For GrepS, we
assume that users, when it is their turn, can transi-
tion according to the recorded events, or do nothing,
i.e., transition to a service-provider state, if available.

We investigate the limits for the positive and
negative weights that the service provider can guar-
antee during the journey, with the user and on its
own. Table 2

presents results for model checking the queries Q2–
Q4 (see Table 1) for both case studies. For GrepS,
the user must endure a significant number of nega-
tively weighted transitions, since the maximum accu-
mulated pos (Q4) is smaller than the minimum accu-
mulated neg (Q3). Cooperation (Q2) results in a
67.37% reduction in accumulated neg.

We analyze the impact of the users’ and service
provider’s activity on the user journey by varying the
probability in the game’s transitions, to change how
eager a player is in taking action. Figure 4a shows the
results for these changes: on the horizontal axis, q = 0
means that the player takes action according to the
frequencies of the original game, −1 ≤ q < 0 means
that the service provider gradually increases the prob-
ability of taking action (the service provider always
takes an action, if available, with q = −1). Similarly,
for 1 ≥ q > 0, the user gradually increases the proba-
bility of taking action (until always taking an action,
if available, with q = 1). The vertical axis shows the

178 P. Kobialka et al.

(a) Parametric eagerness
of the players (Query Q1)

(b) Gas by steps
(Queries Q5 & Q6)

(c) Bounded experiment
(Query Q8) over (G0, G1)

Fig. 4. Experiment results for the GrepS case study.

probability of a successful journey (Q1); interestingly,
GrepS has a linear gain from being more active and a non-linear loss from being
more passive. Figure 4b shows the results for queries Q5 and Q6 by compar-
ing the maximal accumulated positive and the minimum accumulated negative
weights for the first S steps of the journey, revealing that negative weights sur-
pass positive weights, especially at the beginning of a journey.

To evaluate whether the service provider can guide users to a successful out-
come with limited steps and lower bounds for the gas, we consider the model
with bounds derived from query Q7 (see Sect. 5). We bound the integer encod-
ings by 10 times their expected value, which includes at least 90% of the traces.
Figure 4c shows the development in guiding the user under Q8. The plot’s labels
are pairs (G0, G1), where G0 is the minimum gas in the final state and G1 the
lower bound for gas along the journey. For pairs with the same results, we only
plot pairs with the maximum final gas and the maximum gas along the journey.
The plot shows that experiencing a journey with high minimal gas and reach-
ing a successful outcome are conflicting goals; maximizing minimal gas clearly
affects the probability of success for the user journey. For the best probability of
success (51%), GrepS needs to guide the users through the negatively weighted
transitions, which reach a minimum gas of −64. Actually, the user never fully
recovers positive gas in this journey, which ends with a negative gas of −4.

The analysis has shown that users face negative experiences and that the
service provider can offer guidance. We now consider where the journey can be
improved to help users reach a successful outcome. Figure 5 shows the derived
Sankey diagram with observed users as flow capacities, as described in Sect. 6.
The reduced model contains only 6 states, while the mined one has 65 states.
Based on the state ranking function (Eq. 1), state T25, where users accept or
reject their test results, appears as the most critical state for a successful journey;
it determines whether the user will (or not) reach a successful final state; in fact,
25% percent of the users recorded in the log fail their journey immediately after
this state. The second most critical state is the first task T9 (where 37.5%
of all users are lost), followed by the other tasks. However, at these points in
the journey, several user-controlled actions are required for a successful journey,
which makes GrepS dependent on the user’s cooperation in these states.

Stochastic Games for User Journeys 179

Fig. 5. Sankey diagram of Greps’ user
journey for guidable users.

Thus, the SUJGs allow us to identify
specific states for enhancing the jour-
ney: T9 and T25. Our analysis clearly
shows that GrepS needs to be active
to achieve a successful user journey
(Fig. 4). We note that most negatively
weighted transitions are user-controlled,
suggesting that GrepS can prevent users
from “derailing” from a successful journey by being more active within the user
journey. If GrepS provides less guidance, users tend to abandon their journeys
more easily.

Stakeholder validation of GrepSResults. We presented the results obtained
for GrepS to a company stakeholder2 to obtain feedback on our results and their
presentation format. The stakeholder was not involved in performing the case
study; the other authors only had access to the event log from GrepS, provided
in 2021. This validation was done after the analysis results were available.

He was familiar with Sankey diagrams and immediately observed that our
analysis makes non-trivial insights accessible to key-stakeholders, varying from
concrete recommendations to non-trivial prescriptions on company behavior.
From the company’s perspective, prioritizing limited resources to improve the
users’ success rate and experience is challenging. Our case study substantiates
that automated analyses based on event logs are a viable alternative to current
best-practices based on heuristics, and promise to reduce assessment efforts.

The identification of T25 as a candidate for improvement (Fig. 5) had actually
been discovered independently by GrepS, confirming our analysis. This step is
currently supplemented by a manual follow-up step, since completing the user
journey successfully is crucial to provide a good user experience. The second
suggested task, T9, is not obvious to GrepS and introduces options they have
not yet considered, namely to spend resources on guiding the user rather than
further optimizing the negative weighted sign-up phase (see Fig. 4b).

The analysis of actor eagerness related to the probability of success (Fig. 4a)
is novel and implies that revenue from resources invested in guiding users can
be computed. This allows GrepS to evaluate whether to spend more resources
on guiding users, given the linear scaling of success probability, or to cut costs
through less guidance, reducing manual work while increasing service adversity.

Figures 4b and 4c can be used to relate user profiles and user journeys. A
user’s motivation to complete tests and share results despite negatively weighted
actions, is initially unknown. If the company had some prior knowledge about
the initial motivation of a user or a group of users, it would be possible to
model different journeys through the service. In particular, Fig. 4c can support
such endeavors, because different bounds can be identified for different planned
journeys with corresponding probabilities for success.

2 The third author of this paper is a long-term stakeholder of GrepS.

180 P. Kobialka et al.

Fig. 6. Parametric eagerness
for Q1 in BPIC’17.

BPIC’17. Applying Steps 1 and 2 to BPIC’17
yields models with 95 states for BPIC’17-1 and
131 for BPIC’17-2. Step 3 reduces the models to
32 and 47 states, respectively (i.e., +60% reduc-
tion). When filtering on reachable states, using the
generated strategy, the models shrink to 15 and
19 states, respectively. Figure 7 shows the Sankey
diagrams for the two event logs. For readability, we
omit the names of states with the least difference
in guidable users and use a heat map as in Fig. 3.

The comparison of model checking results between the two models with
queries Q2–Q4 (see Table 2) shows some small improvements from BPIC’17-1
to BPIC’17-2. Figure 6 compares different levels of player eagerness for
both SUJGs, model checking Q1. It reveals improvements in the service.
BPIC’17-2 outperforms BPIC’17-1 starting from q = 0.06 when increasing the
service provider’s probability to take an action. (Plots showing results for the
remaining queries, similar to the queries for the GrepS case study, are available
online [27].)

Figure 7 shows the positive impact for BPIC’17-2 after the concept drift. In
BPIC’17-1, the number of guidable users remains constant through the user jour-
ney, with the most critical state causing only 27% of the total user difference. In
BPIC’17-2, the main critical state causes a total of 50% difference of guidable
users. We also observe a change in loan offers: the 2nd and 3rd offers are promi-
nent in the reduced BPIC’17-2 model (while they were merged with other states
or omitted in BPIC’17-1), each with decreasing flow capacity. Furthermore, the
probability of guiding users from “customer Create Offer 0 ” reduced; this state
is marked yellow in BPIC’17-1 and orange in BPIC’17-2, indicating a decrease
in user experience. In both journeys, the second most critical state, a short call
due to incomplete files, is user-controlled, but its fraction of the total guidable
user’s difference decreased from 26.6% to 12.5%. This can be interpreted as evi-
dence that the service provider improved this call state after the concept drift.
However, we observe that BPIC’17-2 still lacks proper guidance for the effect of
the call, based on the direct transition to the unsuccessful final state.

Threats to Validity. For model learning with IOAlergia, we set the parameter
ε (which regulates state merging) according to the size of the underlying event
log and the assumed complexity of the service. For GrepS, we set ε = 0.1 due
to a small number of possible journeys, while for BPIC’17, we set ε = 0.8 to
capture different decisions and possible executions. Insights from GrepS highly
depend on ε, where a larger ε restricts state merging. For BPIC’17, we observe
that the eagerness experiment (Fig. 6) replicates for various ε values, though with
variations for either small or large ε values. Further investigations are needed
to draw rigorous conclusions about this relation. The model-checking analysis
in Step 3, which generate Sankey diagrams, do not require a minimal flow of
users. Strategies might exploit rarely observed behavior, they do not consider a
minimum bound for the coverage of users. Table 1 presented queries that target

Stochastic Games for User Journeys 181

(a) BPIC’17-1

(b) BPIC’17-2

Fig. 7. Sankey diagrams generated from the reduced BPIC’17 models.

Pareto optimization problems to optimize multiple conflicting objectives, e.g.,
limited steps and minimal gas in positive states. We explored solutions to these
problems with PRISM-games experiments, but one could also search for all solu-
tions. The efficiency of our technique depends on automata learning and model
checking; all presented results are reproducible within ∼ 9h.

8 Related Work

Related work primarily focuses on designing domain-specific modeling lan-
guages that allow modeling from the user’s perspective. The methods devel-
oped [5,9,14,20,22,23,35,38,41] concentrate on manually constructing user jour-
neys based on expert knowledge [9], user questionnaires [21,41], or given event
logs [5]. The analysis of the resulting models is typically also performed man-
ually. However, Lammel et al. [35] propose an ontology-based technique that
allows the automatic generation of visualizations to provide further insights.

Process discovery [1] is a technique to automatically generate models from
event logs and has been applied to generate different types of user journey
models such as customer journey maps (CJM) [7,8,24] or transition systems
[26,28,30,31,42]. CJMs represent grouped traces in the event logging, unlike our
work where we mine a general model. Existing approaches [26,28,31,43] that
use process discovery techniques to mine transition systems ignore the underly-
ing distribution of events. By capturing the probabilities in the model, we can
perform a finer analysis and visualization, and provide guidelines to the service
provider in case of changing behavior. In our previous work [31], we also gener-
ated weighted deterministic user journey games and applied model checking to
find bottlenecks in the service. By applying automata learning instead of process
discovery techniques, we enhance this approach to generate probabilistic games.

Automata learning techniques [3,13,16,45] have been used to mine process
models, e.g., transition systems or Petri nets, from given event logs. However,
our proposed approach incorporates the users’ perspective. While existing tech-
niques may also consider the underlying probability distribution of the event

182 P. Kobialka et al.

log constructing the model, they neglect it for later analysis. Wieman et al. [45]
derive improvements for industrial case studies manually from the learned model.

9 Conclusion

This paper presents two complementary case studies for the automated modeling
and analysis of user journeys from event logs. Our analysis tool chain combines
automata learning and model-checking techniques, based on a formalization of
user journeys as stochastic weighted games that exploits the underlying distribu-
tion of events in the log. Model-checking results are used in property-preserving
model reduction, which allows us to automatically identify and rank actions
that are critical to the outcome of the user journey and visualize their effect.
To the best of our knowledge, this is the first work using stochastic games in an
automated method to analyze and improve user journeys.

The investigated case studies demonstrate the applicability of our approach
to real-world services, varying in size and complexity. The results of the case
studies lead us to three main observations: (1) model visualization creates com-
pact Sankey diagrams for complex services that facilitate the interpretation of
formal analyses; (2) the model reduction preserves changes in the underlying
journeys, e.g., the concept drift for BPIC’17; and (3) the state ranking method
effectively identifies candidate states for service redesign, based on user experi-
ence. Compared to previous work, our exploitation of the underlying probabilis-
tic distribution of events enabled a more targeted analysis of the user journeys.
For future work, automatically capturing the actor information in the event logs
would make our approach less dependent on domain knowledge.

Data Availability Statement. The artifact to replicate the presented results is pub-
licly available on Zenodo at https://doi.org/10.5281/zenodo.12529995.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, 2 edn.
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Adams, J.N., Zelst, S.J.v., Quack, L., Hausmann, K., van der Aalst, W.M., Rose,
T.: A framework for explainable concept drift detection in process mining. In:
International Conference on Business Process Management, vol. 12875, pp. 400–
416. Springer (2021). https://doi.org/10.1007/978-3-030-85469-0_25

3. Agostinelli, S., Chiariello, F., Maggi, F.M., Marrella, A., Patrizi, F.: Process mining
meets model learning: discovering deterministic finite state automata from event
logs for business process analysis. Inf. Syst. 114, 102180 (2023). https://doi.org/
10.1016/J.IS.2023.102180

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

https://doi.org/10.5281/zenodo.12529995
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-85469-0_25
https://doi.org/10.1016/J.IS.2023.102180
https://doi.org/10.1016/J.IS.2023.102180

Stochastic Games for User Journeys 183

5. Berendes, C.I., Bartelheimer, C., Betzing, J.H., Beverungen, D.: Data-driven cus-
tomer journey mapping in local high streets: a domain-specific modeling language.
In: Pries-Heje, J., Ram, S., Rosemann, M. (eds.) Proc. International Conference
on Information Systems (ICIS 2018). Association for Information Systems (2018).
https://aisel.aisnet.org/icis2018/modeling/Presentations/4

6. Bergersen, G.R., Sjøberg, D.I.K., Dybå, T.: Construction and validation of an
instrument for measuring programming skill. IEEE Trans. Softw. Eng. 40(12),
1163–1184 (2014). https://doi.org/10.1109/TSE.2014.2348997

7. Bernard, G., Andritsos, P.: CJM-ab: abstracting customer journey maps using
process mining. In: Mendling, J., Mouratidis, H. (eds.) Information Systems in
the Big Data Era - Proceedings CAiSE Forum 2018. Lecture Notes in Business
Information Processing, vol. 317, pp. 49–56. Springer (2018), https://doi.org/10.
1007/978-3-319-92901-9_5

8. Bernard, G., Andritsos, P.: Contextual and behavioral customer journey discov-
ery using a genetic approach. In: Welzer, T., Eder, J., Podgorelec, V., Latific, A.K.
(eds.) Proceedings 23rd European Conference on Advances in Databases and Infor-
mation Systems (ADBIS 2019). Lecture Notes in Computer Science, vol. 11695,
pp. 251–266. Springer (2019), https://doi.org/10.1007/978-3-030-28730-6_16

9. Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: a practical tech-
nique for service innovation. Calif. Manage. Rev. 50(3), 66–94 (2008). https://doi.
org/10.2307/41166446

10. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) Proceedings Second
International Colloquium on Grammatical Inference and Applications (ICGI-94),
Lecture Notes in Computer Science, vol. 862, pp. 139–152. Springer (1994). https://
doi.org/10.1007/3-540-58473-0_144

11. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Methods Syst. Des.43(1), 61–92
(2013). https://doi.org/10.1007/S10703-013-0183-7

12. Chen, T., Forejt, V., Kwiatkowska, M.Z., Simaitis, A., Trivedi, A., Ummels, M.:
Playing stochastic games precisely. In: Koutny, M., Ulidowski, I. (eds.) Proceedings
23rd International Conference on Concurrency Theory (CONCUR 2012), Lecture
Notes in Computer Science, vol. 7454, pp. 348–363. Springer (2012). https://doi.
org/10.1007/978-3-642-32940-1_25

13. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. (TOSEM) 7(3), 215–249 (1998). https://
doi.org/10.1145/287000.287001

14. Crosier, A., Handford, A.: Customer journey mapping as an advocacy tool for
disabled people: a case study. Soc. Mark. Quart. 18(1), 67–76 (2012). https://doi.
org/10.1177/1524500411435483

15. van Dongen, B.: BPI Challenge 2017 (2017). https://doi.org/10.4121/uuid:
5f3067df-f10b-45da-b98b-86ae4c7a310b

16. Esparza, J., Leucker, M., Schlund, M.: Learning workflow Petri nets. Fundam.
Informaticae 113(3-4), 205–228 (2011). https://doi.org/10.3233/FI-2011-607

17. Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer satisfaction and
stock prices: high returns, low risk. J. Mark. 70(1), 3–14 (2006). https://doi.org/
10.1509/jmkg.70.1.003.qxd

18. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474
(1967). https://doi.org/10.1016/S0019-9958(67)91165-5

https://aisel.aisnet.org/icis2018/modeling/Presentations/4
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.2307/41166446
https://doi.org/10.2307/41166446
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/S10703-013-0183-7
https://doi.org/10.1007/978-3-642-32940-1_25
https://doi.org/10.1007/978-3-642-32940-1_25
https://doi.org/10.1145/287000.287001
https://doi.org/10.1145/287000.287001
https://doi.org/10.1177/1524500411435483
https://doi.org/10.1177/1524500411435483
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.3233/FI-2011-607
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1016/S0019-9958(67)91165-5

184 P. Kobialka et al.

19. Gutwin, C., Mairena, A., Bandi, V.: Showing flow: comparing usability of Chord
and Sankey diagrams. In: Schmidt, A., Väänänen, K., Goyal, T., Kristensson,
P.O., Peters, A., Mueller, S., Williamson, J.R., Wilson, M.L. (eds.) Proceedings
2023 Conference on Human Factors in Computing Systems (CHI 2023), pp. 825:1–
825:10. ACM (2023). https://doi.org/10.1145/3544548.3581119

20. Halvorsrud, R., Boletsis, C., Garcia-Ceja, E.: Designing a modeling language
for customer journeys: lessons learned from user involvement. In: Proceedings
24th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2021), pp. 239–249. IEEE (2021). https://doi.org/10.1109/
MODELS50736.2021.00032

21. Halvorsrud, R., Haugstveit, I.M., Pultier, A.: Evaluation of a modelling language
for customer journeys. In: Blackwell, A.F., Plimmer, B., Stapleton, G. (eds.)
Proceedings Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 2016), pp. 40–48. IEEE Computer Society (2016). https://doi.org/10.
1109/VLHCC.2016.7739662

22. Halvorsrud, R., Kvale, K., Følstad, A.: Improving service quality through customer
journey analysis. J. Ser. Theor. Pract. 26(6), 840–867 (2016). https://doi.org/10.
1108/JSTP-05-2015-0111

23. Halvorsrud, R., Mannhardt, F., Johnsen, E.B., Tapia Tarifa, S.L.: Smart journey
mining for improved service quality. In: Carminati, B., et al. (eds.) Proceedings
International Conference on Services Computing (SCC 2021), pp. 367–369. IEEE
(2021). https://doi.org/10.1109/SCC53864.2021.00051

24. Harbich, M., Bernard, G., Berkes, P., Garbinato, B., Andritsos, P.: Discovering
customer journey maps using a mixture of Markov models. In: Ceravolo, P., van
Keulen, M., Stoffel, K. (eds.) Proceedings 7th International Symposium on Data-
driven Process Discovery and Analysis (SIMPDA 2017). CEUR Workshop Pro-
ceedings, vol. 2016, pp. 3–7. CEUR-WS.org (2017). http://ceur-ws.org/Vol-2016/
paper1.pdf

25. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In:
Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding, pp. 409–
426. Springer (1994). https://doi.org/10.1007/978-1-4612-0865-5_26

26. Kobialka, P., Mannhardt, F., Tapia Tarifa, S.L., Johnsen, E.B.: Building user jour-
ney games from multi-party event logs. In: Proceedings 3rd International Workshop
on Event Data and Behavioral Analytics (EdbA 2022), Lecture Notes in Business
Information Processing, vol. 468. Springer (2022). https://doi.org/10.1007/978-3-
031-27815-0_6

27. Kobialka, P., Pferscher, A., Johnsen, E.B., Tapia Tarifa, S.L.: Supplementary mate-
rial: stochastic games for user journeys. https://github.com/smartjourneymining/
probabilistic_games/releases/tag/FM2024 (2024)

28. Kobialka, P., Schlatte, R., Bergersen, G.R., Johnsen, E.B., Tapia Tarifa, S.L.: Simu-
lating user journeys with active objects. In: de Boer, F.S., Damiani, F., Hähnle, R.,
Johnsen, E.B., Kamburjan, E. (eds.) Active Object Languages: Current Research
Trends, LNCS, vol. 14360, pp. 199–225. Springer (2024). https://doi.org/10.1007/
978-3-031-51060-1_8

29. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games
for user journeys (data set). https://doi.org/10.5281/zenodo.6962413 (2022).
Accessed 01 April 2024

30. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games
for user journeys. In: Schlingloff, B., Chai, M. (eds.) Proc. 20th International Con-
ference on Software Engineering and Formal Methods (SEFM 2022), LNCS, vol.

https://doi.org/10.1145/3544548.3581119
https://doi.org/10.1109/MODELS50736.2021.00032
https://doi.org/10.1109/MODELS50736.2021.00032
https://doi.org/10.1109/VLHCC.2016.7739662
https://doi.org/10.1109/VLHCC.2016.7739662
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1109/SCC53864.2021.00051
http://ceur-ws.org/Vol-2016/paper1.pdf
http://ceur-ws.org/Vol-2016/paper1.pdf
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-27815-0_6
https://github.com/smartjourneymining/probabilistic_games/releases/tag/FM2024
https://github.com/smartjourneymining/probabilistic_games/releases/tag/FM2024
https://doi.org/10.1007/978-3-031-51060-1_8
https://doi.org/10.1007/978-3-031-51060-1_8
https://doi.org/10.5281/zenodo.6962413

Stochastic Games for User Journeys 185

13550, pp. 253–270. Springer (2022). https://doi.org/10.1007/978-3-031-17108-
6_16

31. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: User journey
games: Automating user-centric analysis. Softw. Syst. Model. 23(3), 605–624
(2024). https://doi.org/10.1007/s10270-024-01148-2

32. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: Stochas-
tic game verification with concurrency, equilibria and time. In: Lahiri, S.K., Wang,
C. (eds.) Proceedings 32nd International Conference on Computer Aided Verifi-
cation (CAV 2020), LNCS, vol. 12225, pp. 475–487. Springer (2020). https://doi.
org/10.1007/978-3-030-53291-8_25

33. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. Int. J.
Softw. Tools Technol. Transf. 20(2), 195–210 (2018). https://doi.org/10.1007/
S10009-017-0476-Z

34. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Procedings
23rd International Conference on Computer Aided Verification (CAV 2011), LNCS,
vol. 6806, pp. 585–591. Springer (2011). https://doi.org/10.1007/978-3-642-22110-
1_47

35. Lammel, B., Korkut, S., Hinkelmann, K.: Customer experience modelling and anal-
ysis framework - a semantic lifting approach for analyzing customer experience. In:
Proceedings 6th International Conference on Innovation and Entrepreneurship (IE
2016). GSTF (Dec 2016). http://hdl.handle.net/11654/24293

36. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn.105(2), 255–299 (2016). https://doi.org/10.1007/S10994-016-5565-9

37. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. Innovations Syst. Softw. Eng. 18(3), 417–426
(2022). https://doi.org/10.1007/S11334-022-00449-3

38. Razo-Zapata, I.S., Chew, E.K., Proper, E.: VIVA: a visual language to design value
co-creation. In: Proceedings 20th Conference on Business Informatics (CBI 2018),
vol. 01, pp. 20–29. IEEE (2018). https://doi.org/10.1109/CBI.2018.00012

39. Riehmann, P., Hanfler, M., Froehlich, B.: Interactive Sankey diagrams. In: Stasko,
J.T., Ward, M.O. (eds.) IEEE Symposium on Information Visualization (Info-
Vis 2005), pp. 233–240. IEEE Computer Society (2005). https://doi.org/10.1109/
INFVIS.2005.1532152

40. Rodrigues, A.M.B., et al.: Stairway to value: mining a loan application process
(2017). https://www.win.tue.nl/bpi/2017/bpi2017_winner_academic.pdf

41. Rosenbaum, M.S., Otalora, M.L., Ramírez, G.C.: How to create a realistic customer
journey map. Bus. Horiz. 60(1), 143–150 (2017). https://doi.org/10.1016/j.bushor.
2016.09.010

42. Terragni, A., Hassani, M.: Analyzing customer journey with process mining: from
discovery to recommendations. In: Proceedings 6th International Conference on
Future Internet of Things and Cloud (FiCloud 2018), pp. 224–229. IEEE (Aug
2018). https://doi.org/10.1109/FiCloud.2018.00040

43. Terragni, A., Hassani, M.: Optimizing customer journey using process mining and
sequence-aware recommendation. In: Proceedings 34th Symposium on Applied
Computing (SAC 2019), pp. 57–65. ACM Press (Apr 2019). https://doi.org/10.
1145/3297280.3297288

https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/s10270-024-01148-2
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/S10009-017-0476-Z
https://doi.org/10.1007/S10009-017-0476-Z
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://hdl.handle.net/11654/24293
https://doi.org/10.1007/S10994-016-5565-9
https://doi.org/10.1007/S11334-022-00449-3
https://doi.org/10.1109/CBI.2018.00012
https://doi.org/10.1109/INFVIS.2005.1532152
https://doi.org/10.1109/INFVIS.2005.1532152
https://www.win.tue.nl/bpi/2017/bpi2017_winner_academic.pdf
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1109/FiCloud.2018.00040
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1145/3297280.3297288

186 P. Kobialka et al.

44. Vandermerwe, S., Rada, J.: Servitization of business: Adding value by adding
services. Eur. Manage. J. 6(4), 314–324 (1988). https://doi.org/10.1016/0263-
2373(88)90033-3

45. Wieman, R., Aniche, M.F., Lobbezoo, W., Verwer, S., van Deursen, A.: An expe-
rience report on applying passive learning in a large-scale payment company. In:
Proceeedings International Conference on Software Maintenance and Evolution
(ICSME 2017), pp. 564–573. IEEE Computer Society (2017).https://doi.org/10.
1109/ICSME.2017.71

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1109/ICSME.2017.71
https://doi.org/10.1109/ICSME.2017.71
http://creativecommons.org/licenses/by/4.0/

Embedded Systems Track

Compositional Verification
of Cryptographic Circuits Against Fault

Injection Attacks

Huiyu Tan1,2, Xi Yang1, Fu Song3,4(B), Taolue Chen5, and Zhilin Wu3

1 ShanghaiTech University, Shanghai 201210, China
2 Wingsemi Technology Co., Ltd., Shanghai 201203, China

3 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China
{wuzl,songfu}@ios.ac.cn

4 Nanjing Institute of Software Technology, Nanjing 211135, China
5 Birkbeck, University of London, London WC1E 7HX, UK

t.chen@bbk.ac.uk

Abstract. Fault injection attack is a class of active, physical attacks
against cryptographic circuits. The design and implementation of coun-
termeasures against such attacks are intricate, error-prone and labo-
rious, necessitating formal verification to guarantee their correctness.
In this paper, we propose the first compositional verification approach
for round-based hardware implementations of cryptographic algorithms.
Our approach decomposes a circuit into a set of single-round sub-circuits
which are verified individually by either SAT/SMT- or BDD-based tools.
Our approach is implemented as an open-source tool CLEAVE, which is
evaluated extensively on realistic cryptographic circuit benchmarks. The
experimental results show that our approach is significantly more effec-
tive and efficient than the state-of-the-art.

1 Introduction

Cryptographic circuits are widely applied in various embedded and cyber-
physical systems [5,39]. However, they are vulnerable to fault injection attacks,
which disrupt the execution of cryptographic primitives via clock glitch [2],
underpowering [34], voltage glitch [41], electromagnetic pulse [16], or laser
beam [36]. With circuit’s faulty outputs, attackers can employ statistical anal-
ysis methods to infer sensitive information, thereby threatening the security of,

This work was funded by the Strategic Priority Research Program of CAS
(XDA0320101), National Natural Science Foundation of China (62072309), CAS
Project for Young Scientists in Basic Research (YSBR-040), ISCAS New Cultivation
Project (ISCAS-PYFX-202201), ISCAS Fundamental Research Project (ISCAS-JCZD-
202302), oversea grant from the State Key Laboratory of Novel Software Technology,
Nanjing University (KFKT2023A04).

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 189–207, 2025.
https://doi.org/10.1007/978-3-031-71177-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_13&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_13

190 H. Tan et al.

e.g., authentication. As a result, fault injection attacks pose a significant threat
to the security of embedded and cyber-physical systems.

While countermeasures have been proposed to mitigate these attacks [1,26,
35], their implementation does not necessarily guarantee security. Crucially, the
fault-resistance of these countermeasures needs to be formally verified. While a
plethora of fault-resistance analysis approaches have been proposed (cf. Sect. 6),
the state-of-the-art formal verification approaches are non-compositional and
limited in efficiency and scalability for realistic cryptographic circuits.
Contributions. In this work, we propose the first compositional verification
approach for sequential circuits of cryptographic primitives with countermea-
sures against fault injection attacks, aiming to combat the efficiency and scal-
ability challenges. Different from existing approaches for compositional safety
and equivalence checking (e.g., [15,24,25]) which are not applicable for fault-
resistance verification, our approach leverages the structural feature of round-
based cryptographic circuits and decomposes the circuit into a set of single-round
sub-circuits extended with, importantly, primary inputs/outputs, registers and
their connections to guarantee soundness. We then verify those sub-circuits by
leveraging SAT/SMT- and BDD-based approaches [31,37]. Our decomposition
approach guarantees that the composition of fault-resistant single-round sub-
circuits is always fault-resistant. Furthermore, we investigate various acceleration
techniques that can significantly enhance verification efficiency.

We implement our approach as an open-source tool CLEAVE (Compositional
fauLt injEction Attacks VErifier), based on Verilog gate-level netlist. We thor-
oughly evaluate CLEAVE on 9 real-world cryptographic circuits (i.e., AES and
LED64) equipped by both detection- and correction-based countermeasures,
where the number of gates ranges from 1,020 to 34,351. The experimental results
show that our approach is effective and efficient. For instance, the SAT-based
compositional approach can verify most of the benchmarks (17/18) within 200 s
and the remaining one can be done in 53 min; in contrast, the monolithic coun-
terpart can only deal with 12 benchmarks within 6 h and requires significantly
more verification time. The same improvements can be observed for SMT- and
BDD-based compositional approaches.

To summarize, we make the following contributions.

– We propose a novel compositional fault-resistance verification framework for
cryptographic circuits and various techniques to enhance efficiency;

– We implement an open-source tool CLEAVE for Verilog gate-level netlists;
– We extensively evaluate our tool on realistic cryptographic circuits, demon-

strating its effectiveness and efficiency.

Outline. Section 2 introduces preliminaries. Section 3 defines the fault-resistance
verification problem. Section 4 presents our compositional verification approach.
Section 5 reports experimental results; We discuss related work in Sect. 6 and
conclude the work in Sect. 7. Benchmarks, the source code of CLEAVE, more
experiential results and missing proofs are provided [38].

Compositional Verification of Cryptographic Circuits Against FIA 191

2 Preliminaries

Let B := {0, 1} and [n] := {1, · · · , n} for a natural number n ≥ 1. We consider
two types of logic gates: one-input gate g : B → B (e.g., not) and two-input gate
g : B×B → B (e.g., and, or, xor). To model faulty gates, we define three faulty
counterparts (g, gs, gr) of each gate g with g = ¬g, gs = 1 and gr = 0.

Definition 1. A combinational circuit C is a tuple (V, I,O,E, g), where

– V is a finite set of vertices in the circuit such that each vertex v ∈ V \ (I ∪O)
is associated with a logic gate g(v) whose fan-in is the in-degree of v;

– I ⊆ V and O ⊆ V are the primary inputs and outputs, respectively;
– E ⊆ (V \ O) × (V \ I) is a set of edges, each of which (v1, v2) ∈ E transmits

the signal over B from v1 to v2, namely, one of the inputs of the logic gate
g(v2) is driven by the output of the logic gate g(v1);

– and (V,E) forms a Directed Acyclic Graph (DAG).

A combinational circuit C represents a Boolean function �C� : B|I| → B
|O|

such that for any input signals x ∈ B
|I|, �C�(x) is the output of the circuit C

when fed with x.
A (synchronous) sequential circuit is a combinational circuit with feedback

via registers and synchronized by a global clock. It is memoryful as the reg-
isters store the internal state. In this paper, we focus on round-based circuit
implementations of cryptographic algorithms. Conceptually, the circuit consists
of several rounds, and physically each round may comprise some clock cycles.
For our purpose, the sequential circuit is defined as follows.

Definition 2. A k-clock cycle sequential circuit S[k] (we may simply write S to
simplify the notation) is a tuple (I,O, C,R, s0), where

– I and O comprise the primary inputs and primary outputs, respectively.
– R = Rin ∪ Rs is a finite set of registers (aka memory gates), with initial

signals s0 ∈ B
|Rs| for state registers in Rs. Intuitively, registers in Rin (resp.

Rs) store primary input signals (resp. results) of combinational circuits.
– C = {C1, · · · , Ck}, where for each i ∈ [k], Ci = (Vi, Ii, Oi, Ei, gi) is a combi-

national circuit for the i-th clock cycle. Moreover, it is required that all the
primary inputs I are connected to registers in Rin which in turn are con-
nected to the inputs Ii to avoid glitches, and the outputs Oi are connected to
the primary outputs O and registers in Rs. We also extend function gi such
that gi(r) is an identity function for every register r ∈ R

A state s : Rs → B of S[k] is a valuation of the registers Rs. In each clock
cycle i ∈ [k−1], given a state si−1 and primary input signals xi, the next state si

is �Ci�(si−1,xi) projected onto Rs, while �Ci�(si−1,xi) projected onto O gives

the primary output signals yi, written as si−1
xi|y i−→ si.

Given a sequence of primary input signals (x1, · · · ,xk), a run ρ of the circuit
S[k] is a sequence

s0
x1|y1−→ s1

x2|y2−→ s2
x3|y3−→ s3−→ · · · −→sk−1

xk|yk−→ sk,

192 H. Tan et al.

where (y1, · · · ,yk) is the sequence of primary output signals. The circuit S[k]
can also be seen as a Boolean function �S[k]� : (B|I|)k → (B|O|)k such that
�S[k]�(x1, · · · ,xk) is the sequence of primary output signals for a sequence of
primary input signals (x1, . . . ,xk).

We remark that our definition of sequential circuits is slightly different from
the one given in [37], in which primary inputs can be connected to logic gates.
We only allow primary inputs to connect to registers to avoid glitches which
often introduce faults as well. Hence, our definition is sufficient for cryptographic
circuits according to our experience while it facilitates the decomposition.

3 The Fault-Resistance Verification Problem

A fault injection attack actively injects faults into the execution of a crypto-
graphic circuit and then infers sensitive data (such as the cryptographic key)
via statistical analysis [3,8,9]. A general introduction refers to [21]. In partic-
ular, both non-invasive fault injections (i.e., clock glitches, underpowering and
voltage glitches) and semi-invasive fault injections (i.e., electromagnetic pulses
and laser beams) have been widely studied to compromise the security of cryp-
tographic circuits, varying with attack cost and attack effectiveness [30]. There
are detection- and correction-based countermeasures to mitigate fault injection
attacks [1,35]: the former aims to detect fault injection attacks and raise an error
flag once the attack is detected, so sensitive data can be destroyed in time; the
latter aims to correct faults induced by attacks and produce the desired outputs.

3.1 Security Notions

We consider the following three fault types that suffice to capture both non-
invasive fault injections and semi-invasive fault injections (cf. [30,37]):

– bit-set fault τs: when injected on a gate g, its output becomes 1, namely, the
gate g becomes the faulty gate gs, denoted by τs(g);

– bit-reset fault τr: when injected on a gate, its output becomes 0, namely, the
gate g becomes the faulty gate gr, denoted by τr(g);

– bit-flip fault τbf : when injected on a gate, its output is flipped, namely, the
gate g becomes the faulty gate g, denoted by τbf (g);

Fix a circuit S[k] = (I,O,R, s0, C) protected using either a detection-based
or correction-based countermeasure, where C = {C1, · · · , Ck} and for each
i ∈ [k], Ci = (Vi, Ii, Oi, Ei, gi). We assume oflag ∈ O, where oflag is an error
flag indicating whether a fault was detected when S adopts a detection-based
countermeasure. If S adopts a correction-based countermeasure (i.e., no error
flag is involved), we simply assume that oflag is always 0. We denote by B the
blacklist of invulnerable gates that are protected against fault injection attacks.
B usually contains the gates used in implementing a countermeasure.

Compositional Verification of Cryptographic Circuits Against FIA 193

Definition 3. A fault vector on the circuit S with the blacklist B and a set of
fault types T , denoted by V(S,B, T), is a set of fault events

V(S,B, T) :=
{
e(α1, β1, τ1), · · · , e(αm, βm, τm) | i �= j =⇒ (σi �= σj∨βi �= βj)

}
,

where each fault event e(σ, β, τ) consists of

– σ ∈ [k] specifying the clock cycle of the fault injection, namely, the fault
injection occurs at the σ-th clock cycle;

– β ∈ R ∪ Vσ \ (Iσ ∪ Oσ) specifying the vulnerable gate on which the fault is
injected (note that β �∈ B);

– τ ∈ T specifying the fault type.

A fault vector V(S,B, T) yields a faulty circuit F(S,B, T) :=
(I,O,R, s0, C′), where C′ = {C ′

1, · · · , C ′
k}, for each i ∈ [k]: C ′

i :=
(Vi, Ii, Oi, Ei, g′

i) and g′
i(β) := τ(gi(β)) if e(i, β, τ) ∈ V(S,B, T), otherwise

C ′
i := Ci and g′

i(β) := gi(β).
Intuitively, the faulty circuit F(S,B, T) is the same as the circuit S except

that for each fault event e(i, β, τ) ∈ V(S,B, T), the gate gi(β) is transiently
replaced by its faulty counterpart τ(gi(β)) in the i-th clock cycle, whereas all
the other gates remain the same.

Definition 4. A fault vector V(S,B, T) is effective if there exists a sequence of
primary input signals (x1, · · · ,xk) such that two sequences of primary output
signals

�S�(x1, · · · ,xk) and �F(S,B, T)�(x1, · · · ,xk)

differ at some clock cycle before the error flag oflag is set.
Otherwise, the fault vector V(S,B, T) is ineffective and the circuit S is resis-

tant against the fault vector V(S,B, T).

An effective fault vector results in faulty primary output signals where the fault
is not successfully detected (i.e., the error flag oflag is not set in time). Note that
there are two possible cases for an ineffective fault vector: either �S�(x1, · · · ,xk)
and �F(S,B, T)�(x1, · · · ,xk) are the same or the fault is successfully detected.

Inspired by the consolidated fault model [30], we define the security model for
fault-resistance verification which characterizes the capabilities of the adversary.

Definition 5. A fault-resistance model for the circuit S with the blacklist B is
given by m(ne, nc, T, �), where

– ne is the maximum number of fault events per clock cycle;
– nc is the maximum number of clock cycles in which fault events can occur;
– T ⊆ {τs, τr, τbf} specifies the set of allowed fault types; and
– � ∈ {c, r, cr} defines vulnerable gates: c for logic gates in combinational cir-

cuits, r for registers and cr for both logic gates and registers.

194 H. Tan et al.

For example, m(ne, k, {τs, τr, τbf}, cr) models the strongest adversary, who can
inject faults to all the gates simultaneously at any clock cycle (except for those
protected in the blacklist B) while m(1, 1, {τs}, c) only allows the adversary to
choose one logic gate to inject a set fault in one chosen clock cycle.

Formally, the fault-resistance model m(ne, nc, T, �) defines the following set
�m(ne, nc, T, �)� of possible fault vectors that can be applied by the adversary:

�m(ne, nc, T, �)� :=

⎧
⎨

⎩
V(S,B�, T)

�MaxE(V(S,B�, T)) ≤ ne

and
�Clk(V(S,B�, T)) ≤ nc

⎫
⎬

⎭

where

– B� :=

⎧
⎨

⎩

B, if � = cr;
B ∪ R, if � = c;
B ∪

⋃
i∈[k] Vi \ (Ii ∪ Oi), if � = r;

– �MaxE(V(S,B�, T)) := maxα∈[k] |{e(α, β, τ) ∈ V(S,B�, T)}|, i.e., the maxi-
mum number of fault events per clock cycle in the fault vector V(S,B�, T);

– �Clk(V(S,B�, T)) := |{α | e(α, β, τ) ∈ V(S,B�, T)}|, i.e., the number of clock
cycles when fault events can occur.

Definition 6. The circuit S is fault-resistant against m(ne, nc, T, �), denoted by
〈S,B〉 |= m(ne, nc, T, �), if all the fault vectors V(S,B, T) ∈ �m(ne, nc, T, �)� are
ineffective.

The fault-resistance verification problem is to determine whether or not
〈S,B〉 |= m(ne, nc, T, �).

By Definition 6, it is straightforward to show that:

Proposition 1. If 〈S,B〉 |= m(ne, nc, T1, cr), then 〈S,B′〉 |= m(n′
e, n

′
c, T2, �) for

any B ⊆ B′, n′
e ≤ ne, n′

c ≤ nc, T2 ⊆ T1, � ∈ {c, r, cr}.

By adapting the proof of NP-completeness [37] which reduces from the SAT
problem, we can show

Theorem 1. The problem of determining whether a k-clock cycle circuit S[k]
for any fixed k ≥ 3 is not fault-resistant is NP-complete.

3.2 Motivating Example

A motivating example is given in Fig. 1, which is a simplified implementation
of AES with a detection-based countermeasure [1]. The circuit has three cryp-
tographic blocks (B1, B2, B3), three redundancy blocks (RB1, RB2, RB3), two
selective blocks (MUX1, MUX2) and a check block CHECK, where all the gates in the
check block CHECK are added to the blacklist B. The cryptographic blocks and
the two selective blocks together implement the functionality of AES, while the
others implement a detection-based countermeasure.

Compositional Verification of Cryptographic Circuits Against FIA 195

Fig. 1. The AES circuit.

The first round starts with a reset signal
rst (i.e., rst =1) after which the primary input
signals INPUT are selected by MUX1 and stored
in the registers REG. Moreover, rst is set to 0.
Next, the values stored in the registers REG are
processed by the cryptographic and redundancy
blocks. The cryptographic block B1 produces
primary output signals of the current round;
the results of the cryptographic block B3 and
redundancy block RB3 are stored in the registers
REG as inputs of the next round (called feed-
back). Furthermore, the values of registers and
the results of all the cryptographic and redun-
dancy blocks are fed to the check block CHECK
which checks whether a fault injection attack occurs. The primary output FLAG
is the error flag.

The internal rounds are the same as the first round except that the feedback
from the previous round is stored in the registers, instead of the primary input
signals, because the reset signal rst has been set to 0 in the first round. The last
round is the same as the internal rounds except that the results of the crypto-
graphic block B1 (resp. the redundancy block RB1) are fed to the cryptographic
block B3 (resp. the redundancy block RB3) by setting the input signal sel=1 of
the selective block MUX2, respectively.

To verify its fault-resistance, one can unroll it according to the clock cycle (cf.
[38]), then enumerate and check the effectiveness of each possible fault vector by
analyzing the unrolled and faulty counterparts via BDD [31] or SAT/SMT [37].
However, there are two shortcomings which hurdle their efficiency and scalability.
(1) One shall verify the equivalence of the primary outputs of the circuit and
its faulty counterpart, which must be done for each round (unless the error
flag is set). Since the subsequent round depends upon preceding rounds, the
size of the SAT/SMT formulas or BDDs usually increases dramatically, which
incurs a blowup in rounds of circuits. (2) To achieve completeness (or at least
a high coverage), a large number of possible fault vectors have to be checked,
which incurs a blowup in the number of fault vectors. Our work proposes a
novel compositional approach to combat these two types of blowups in fault-
resistance verification by decomposing the verification of an entire circuit into
the verification of (typically much smaller) single-round sub-circuits.

4 Compositional Verification

In this section, we first describe the overview of our approach and our decomposi-
tion, next briefly recap two symbolic approaches (SAT/SMT- and BDD-based)
for verifying sub-circuits, and finally present three acceleration techniques to
improve the verification efficiency.

196 H. Tan et al.

4.1 Overview of the Approach

Our approach relies on the structural feature of (round-based) cryptographic
primitives, e.g., block ciphers, for which countermeasures are developed round-
by-round accordingly, aiming to isolate the effects of fault injection in each round.
Furthermore, the rounds are often similar, many of which are even the same, For
instance, the first (k−1) rounds in Fig. 1 are the same except that the first round
uses the primary input signals while the other (internal) rounds use the feedback
from the previous round (i.e., the values stored in the registers).

Based on the above key observation, as shown in Fig. 2, given a circuit S,
a blacklist B of gates on which faults cannot be injected and a fault-resistance
model m(ne, nc, T, �), our approach first decomposes the circuit S into single-
round sub-circuits (S1, · · · , Sr) where each Si for i ∈ [r] implements one round.
As many sub-circuits are indeed identical, we only need to verify a small number
of single-round sub-circuits in isolation whereby the fault-resistance of the entire
circuit S is guaranteed. For instance, in the motivating example, we only need
to verify the first and the k-th (i.e., last) round, because the first (k − 1) rounds
are virtually the same. It reduces the verification of a k-round circuit to the
verification of two single-round sub-circuits.

(, , , ℓ)

Fig. 2. Overview of our approach.

To verify each sub-circuit, we leverage two symbolic verification approaches,
based on SAT/SMT and BDD. To further improve efficiency, we also study
various acceleration techniques exploiting fault effects and propagation.

4.2 The Decomposition

For a k-clock cycle circuit S[k] = (I,O,R, s0, C) where R = Rin ∪ Rs, C =
{C1, · · · , Ck} and Ci = (Vi, Ii, Oi, Ei, gi) for each i ∈ [k], let r be the number of
rounds of S[k]. An r-decomposition of S[k] is (S1[k1], · · · , Sr[kr]), where for every
i ∈ [r], Si[ki] is a single-round, ki-clock cycle sub-circuit (I(i),O(i),R(i), s(i), C(i))
defined as (note that

∑
i∈[r] ki = k)

Compositional Verification of Cryptographic Circuits Against FIA 197

– I(i) = I ∪ Ifb, where Ifb comprises additional primary inputs used for rep-
resenting the signals passed from the previous round, i.e., the values stored
in the state registers Rs at the end of the (i − 1)-th round;

– O(i) = O ∪ Ofb, where Ofb comprises additional primary outputs used for
representing the signals passed to the next round, i.e., the values stored to
the state registers Rs at the end of the (i − 1)-th round;

– R(i) = R′
in ∪ R′

s where R′
in = Rin ∪ Rin

s , Rin
s ⊆ Rs comprises registers used

for storing signals passed from one round to the next round, and R′
s ⊆ Rs

comprises the registers used for connecting combinational circuits of C(i) (note
that R′

s can be ∅ if ki = 1, i.e., the round has one clock cycle);
– s(1) = s0 and s(i) for i ≥ 2 is not defined;
– C(i) = {Ci,1, · · · , Ci,ki

} with C1,1, · · · , C1,k1 , · · · , Cr,1, · · · , Cr,kr
= C1 · · · Ck,

and the connection between any two adjacent single-rounds sub-circuits via
the registers R′

s is the same as that in S;
– the registers in Rin

s that were connected by the outputs Oi−1,ki−1 of Ci−1,ki−1

are now connected by the additional primary inputs Ifb if i ≥ 2;
– the outputs Oi−1,ki−1 of Ci,ki

that were connected to the registers in Rs are
now connected to the additional primary outputs Ofb.

Fig. 3. Single-round sub-circuits of the motivating example.

Two single-round sub-circuits Si[ki] and Sj [kj] are isomorphic w.r.t. the
blacklist B if they are identical up to the renaming of the primary inputs/out-
puts, registers and vertices in the combinational circuits, and the matched gate
pairs are either both protected or not protected in B. Note that this condi-
tion is much stricter than the semantic equivalence of two circuits, namely, the
same input-output relation, which is insufficient for our decomposition theo-
rem. For instance, consider one single-round sub-circuit correctly implements
a correction-based countermeasure but the other one does not implement any
countermeasure. They are semantically equivalent, but both have to be verified.

Proposition 2. For any pair of isomorphic circuits (Si, Sj) and fault-resistance
model m(ne, nc, T, �), 〈Si,B〉 |= m(ne, nc, T, �) iff 〈Sj ,B〉 |= m(ne, nc, T, �). ��

Consider the example in Fig. 1. In this case, r = k (ki = 1 for each i ∈ [k]). As
illustrated in Fig. 3, our r-decomposition removes all the connections labeled with

198 H. Tan et al.

FeedBack, re-connects the outputs of the blocks B3 and RB3 to the additional
primary outputs that were connected to the registers REG, and connects the
additional primary inputs to the registers REG that were connected by the outputs
from the previous round. Then, all the single-sound sub-circuits except for the
last one are isomorphic.

Theorem 2. Given a k-clock cycle circuit S[k] = (I,O,R, s0, C) and a blacklist
B, let (S1[k1], S2[k2], · · · , Sr[kr]) be the r-decomposition of S[k]. For any fault-
resistance model m(ne, nc, T, �), if 〈Si,B〉 |= m(ne, nc, T, �) for all single-round
sub-circuits Si ∈ {S1, S2 · · · , Sr}, then 〈S,B〉 |= m(ne, nc, T, �).

Furthermore, if nc ≥ ki for all i ∈ [r],then 〈S,B〉 |= m(ne, k, T, �).

We should emphasize that the additional primary inputs Ifb, primary
outputs Ofb, registers Rin

s and their connections are crucial to guaran-
tee that the composition S[k] of the fault-resistant sing-round sub-circuits
(S1[k1], · · · , Sr[kr]) is also fault-resistant. The fault-resistance of all the single-
round sub-circuits, i.e., 〈Si,B〉 |= m(ne, nc, T, �) for i ∈ [r], ensures that the
primary outputs O′ = O ∪ Obf remain the same (unless the error flag is set)
for any fault vector V(S,B, T) ∈ m(ne, nc, T, �). It guarantees that not only the
primary outputs O but also the values stored to the registers Rin

s at the end
of each round remain the same (unless the error flag is set) for any fault vec-
tor V(S,B, T) ∈ m(ne, nc, T, �). In other words, the single-round sub-circuits are
able to detect any fault injections which change the primary outputs O or the
values used by the next round (i.e., isolating fault effects in each round). Thus,
our decomposition approach for compositional fault-resistance verification is dif-
ferent from previous ones used for compositional safety and equivalence checking
(e.g., [15,24,25]).

4.3 SAT/SMT-Based Verification

We adopt the SAT/SMT-based approach used in FIRMER [37] which reduces
the problem to SAT/SMT solving. Given a fault-resistance model m(ne, nc, T, �)
and a (single-round) k-clock cycle circuit S[k] = (I,O,R, s0, C), FIRMER first
encodes all the possible fault vectors into S[k] by introducing additional inputs
to control if a fault is injected on a gate and which fault type is injected.
This will result in a controllable faulty circuit, denoted by Sm(ne, nc, T, �). The
fault-resistance verification of S[k] is reduced to equivalence checking of S and
Sm(ne, nc, T, �) with constraints on the additional inputs and error flag, which
in turn is reduced to the SAT/SMT solving. (Cf. [37] for details.)

4.4 BDD-Based Verification

We adopt the BDD-based approach used in FIVER [31]. To avoid re-construction
of the BDD from scratch for each fault vector, FIVER first attaches each gate
g in the circuit S with a BDD Dg representing the output of the gate in S.
Then, for each fault vector V(S,B, T) ∈ �m(ne, nc, T, �)�, on a copy S ′ of the

Compositional Verification of Cryptographic Circuits Against FIA 199

BDD-attached circuit S, the BDD Dg of the gate g is revised according to each
fault event e(i, g, τ) ∈ V(S,B, T), where the BDDs of the gates depending upon
g are also revised accordingly. Finally, for each clock cycle, FIVER checks each
primary output o by comparing the attached BDDs of the primary output o in
the circuit S and its faulty counterpart S ′. Furthermore, some optimizations to
reduce the number of considered fault vectors and improve the construction of
the desired S ′ are implemented. (Cf. [31] for details.)

4.5 Acceleration Techniques

For both SAT/SMT-based and BDD-based verification, we apply the following
acceleration techniques.
Fixed Number of Fault Events. Recall that to prove fault-resistance, we
considered all possible fault vectors V(S,B�, T) such that �MaxE(V(S,B�, T)) ≤
ne and �Clk(V(S,B�, T)) ≤ nc. It turns out that these two conditions can be
safely improved to “ne fault events for each clock cycle if some fault events occur
in this clock cycle” when τs, τr ∈ T and the number of vulnerable gates is more
than ne in each clock cycle, reducing the number of fault vectors to be checked.
Indeed, if there is an effective fault vector V(S,B, T) ∈ �m(ne, nc, T, �)� such that
the number of fault events is n in some clock cycle with 1 ≤ n < ne, there exists
a sequence of primary input signals (x1, · · · ,xk) such that �S�(x1, · · · ,xk) and
�F(S,B, T)�(x1, · · · ,xk) differ at some clock cycle before the error flag is set.
We can add (ne − n) fault events e(i, g, τ) to V(S,B�, T), where the output of
the gate g under the primary input signals (x1, · · · ,xk) remains the same by
choosing τ ∈ {τs, τr}. The resulting fault vector is still effective.
Fault Type Reduction. Let T = {τs, τr, τbf}. We find that 〈S,B〉 |=
m(ne, nc, T , �) iff 〈S,B〉 |= m(ne, nc, τbf , �) iff 〈S,B〉 |= m(ne, nc, {τs, τr}, �),
allowing us to consider only {τs, τr} if {τs, τr} ⊆ T and only τbf if τbf ∈ T
for any set T of fault types. Consider an effective fault vector V(S,B, T) ∈
�m(ne, nc, T , �)� and a sequence of primary input signals (x1, · · · ,xk) such that
�S�(x1, · · · ,xk) and �F(S,B, T)�(x1, · · · ,xk) differ at some clock cycle before
the error flag is set.

– For every fault event e(i, g, τbf) ∈ V(S,B, T), if the output of the gate g at
the i-th clock cycle in �F(S,B, T)�(x1, · · · ,xk) is flipped from 1 to 0 (resp.
from 0 to 1), e(i, g, τbf) can be safely replaced by e(i, g, τr) (resp. e(i, g, τs)).
Thus, 〈S,B〉 |= m(ne, nc, {τs, τr}, �) entails 〈S,B〉 |= m(ne, nc, T , �).

– For every fault event e(i, g, τ) ∈ V(S,B, T) such that τ ∈ {τs, τr}, if the out-
put of the gate g at the i-th clock cycle in �F(S,B, T)�(x1, · · · ,xk) is flipped
by applying e(i, g, τ), e(i, g, τ) can be safely replaced by e(i, g, τbf); otherwise
the output of the gate g at the i-th clock cycle in �F(S,B, T)�(x1, · · · ,xk)
remains the same by applying e(i, g, τ), e(i, g, τ) can be safely removed from
V(S,B, T). Thus, 〈S,B〉 |= m(ne, nc, τbf , �) entails 〈S,B〉 |= m(ne, nc, T , �).

Vulnerable Gate Reduction. If the output of a gate g is only connected to
one vulnerable logic gate g′ �∈ B�, then the gate g can be safely added into the
blacklist B while no protection is required for the gate g. It is because:

200 H. Tan et al.

– if the output of the gate g does not change at the i-th clock cycle after
applying the fault event e(i, g, τ), then the effect of the fault event e(i, g, τ)
terminates at the gate g′, thus e(i, g, τ) can be removed from any fault vector;

– if the output of the gate g does change at the i-th clock cycle after applying
the fault event e(i, g, τ), it is flipped either from 1 to 0 or from 0 to 1, the
same effect can be achieved by applying the fault event e(i, g′, τbf), or the
fault event e(i, g′, τs) if it is flipped from 0 to 1 or the fault event e(i, g′, τr)
if it is flipped from 1 to 0.

As a result, it suffices to consider fault injections on the gate g′ instead of both
g and g′ when τbf ∈ T or {τs, τr} ⊆ T , which reduces the number of vulnerable
gates [37]. By a graph traversal of the circuit S, all the gates g whose output is
only connected to one vulnerable logic gate g′ �∈ B� can be identified and then
added into the blacklist B.

We finally remark that the above three acceleration techniques can be applied
simultaneously except that we cannot fix the number of fault events if the set
and reset fault types (i.e., τs and τr) are unavailable.

5 Implementation and Evaluation

We have implemented our approach as an open-source tool CLEAVE based on the
parallel SAT solver Glucose 4.2.1 [6] and SMT solver bitwuzla 1.0-prerelease [28],
where the BDD-based compositional verification is implemented based on FIVER
which uses the CUDD package. Given a circuit S in Verilog gate-level netlist,
a blacklist B and a fault-resistance model m(ne, nc, T, �), CLEAVE determines
whether (S,B) |= m(ne, nc, T, �). Currently, CLEAVE directly extracts single-
round sub-circuits from S by enumerating all the feasible combinations of input
signals of selective blocks. One feasible combination gives one single-round sub-
circuit on which fault resistance is verified. Though more than one isomor-
phic single-round sub-circuits may be verified, the computational-expensive (GI-
complete) isomorphism checking of pairs of single-round sub-circuits is avoided.
For instance, the two distinct single-round sub-circuits of the circuit in Fig. 1) are
extracted by fixing the signals of rst and sel to (1, 0), (0, 0) and (0, 1), respec-
tively, where the first two pairs of signals give the same single-round sub-circuits
after adding/re-connecting primary inputs/outputs and registers according to
our decomposition.
Benchmarks. We use 9 VHDL implementations [1,35] of 3 cryptographic algo-
rithms (i.e., CRAFT, LED and AES [31]). The VHDL implementations are trans-
formed into Verilog gate-level netlists using the Synopsys design compiler (ver-
sion O-2018.06-SP2). The blacklists are generated according to [1,35]. The statis-
tics of the benchmarks are given in Table 1. The first column shows the name of
the cryptographic algorithm, the maximal number of protected faulty bits per
clock cycle (bi), the type of the adopted countermeasure (D for detection-based
and C for correction-based). The second column shows the single-round sub-
circuit and its number of times used in the implementation, e.g., the 10-round

Compositional Verification of Cryptographic Circuits Against FIA 201

AES-b1-D has two single-round sub-circuits (S1, S2) and S1 is used in 9 rounds.
The other columns respectively give the size of the blacklist B, the numbers of
primary inputs, primary outputs, gates and each specific gate.

We can observe that CRAFT benchmarks use both detection-based (D) and
correction-based (C) countermeasures, many single-round sub-circuits are iso-
morphic in each implementation, the number of distinct single-round sub-circuits
ranges from 1 to 3, and the number of gates in one single-round sub-circuit ranges
from 1,020 to 34,351 so that the scalability of CLEAVE can be evaluated.
Setup. The experiments were conducted on a machine with Intel Xeon Gold
6342 2.80 GHz CPU, 1T RAM, and Ubuntu 20.04.1. Each verification task is
run with 6-hour timeout. All the SAT-based and BDD-based (compositional)
verification approaches are run with eight threads while the SMT-based (com-
positional) verification approaches are run with a single thread, with their default
parameters (There are no promising parallel SMT solvers for QF BV). The ver-
ification time is given in seconds with the best one highlighted in boldface,
column R reports the verification result, and column DR shows the desired veri-
fication result. Mark ✓ (resp. ✗) indicates that the circuit is fault-resistant (resp.
not fault-resistant) w.r.t. the fault-resistance model.

5.1 Effectiveness of Acceleration Techniques

Recall that we present three acceleration techniques: fixed number of fault events
(denoted by fe), fault type reduction (denoted by tr), and vulnerable gate
reduction (denoted by gr). We denote by “no-opt” the verification without
any of these acceleration techniques, by trsr and trbf the fault type reduc-
tion that reduces to the fault types (τs, τr) and the fault type τbf , respectively.

Table 1. Benchmark statistics.

Name Rnd #Clk |B| #in #out #gate #and #nand #or #nor #xor #xnor #not #reg

AES-b1-D S1×9 1 432 256 129 25,008 576 9,446 560 9,705 828 852 2,897 144

S2×1 1 432 256 129 24,192 544 9,018 624 9,381 816 992 2,673 144

AES-b2-D S1×9 1 1,055 256 129 34,351 704 12,698 833 13,012 1,440 1,584 3,888 192

S2×1 1 1,055 256 129 33,423 752 12426 849 12,308 1,392 1,808 3,696 192

CRAFT-b1-D S1×32 2 240 128 65 1,020 48 202 48 149 212 232 49 80

CRAFT-b2-D S1×32 2 575 128 65 1,715 65 255 48 271 188 680 96 112

CRAFT-b3-D S1×32 2 767 128 65 2,111 64 346 65 292 224 896 96 128

CRAFT-b1-C S1×32 2 2,304 128 64 3,172 0 864 48 656 428 760 304 112

CRAFT-b2-C S1×32 2 19,568 128 64 20,884 320 7,904 352 6,592 1,484 2,056 2,000 176

LED64-b1-D S1×1 1 239 128 65 1,632 16 346 32 53 416 608 81 80

S2×8 1 240 128 65 1,636 16 346 32 53 420 604 85 80

S3×23 1 240 128 65 1,480 16 346 32 53 352 544 57 80

LED64-b2-D S1×1 1 575 128 65 2,575 17 479 64 111 512 1168 112 112

S2×8 1 575 128 65 2,585 17 479 64 111 516 1164 122 112

S3×23 1 575 128 65 2,333 17 479 64 111 448 1024 78 112

202 H. Tan et al.

Table 2. SAT-based verification of single-round sub-circuits.

Name Model no-opt gr gr·fe gr·trsr gr·fe·trsr gr·trbf R DR

AES-b1-D m(1, 1, T , cr) 2,486.33 255.06 219.26 197.15 214.07 178.58 ✓ ✓

AES-b1-D m(2, 1, T , cr) 2.62 0.81 0.72 0.60 0.63 0.65 ✗ ✗

AES-b2-D m(2, 1, T , cr) timeout 2,409.43 2,272.56 2,224.11 2,412.66 1,595.51✓ ✓

AES-b2-D m(3, 1, T , cr) 4.68 1.34 0.94 0.99 1.07 1.43 ✗ ✗

CRAFT-b2-C m(2, 1, T , cr) 31.80 10.08 10.78 10.95 11.09 9.40 ✓ ✓

CRAFT-b2-C m(3, 1, T , cr) 0.32 0.26 0.35 0.33 0.32 0.30 ✗ ✗

CRAFT-b3-Dm(3, 1, T , cr) 7.56 0.33 0.32 0.32 0.31 0.42 ✓ ✓

CRAFT-b3-Dm(4, 1, T , cr) 0.08 0.04 0.04 0.04 0.05 0.05 ✗ ✗

The acceleration techniques can be combined, e.g., gr·fe applies “vulnerable
gate reduction” with “fixed number of fault events”. Note that trbf cannot be
combined with a fixed number of fault events (i.e., no fe·trbf or gr·fe·trbf).
We evaluate all the acceleration techniques and their feasible combinations on
the first single-round sub-circuits of AES-b1-D, AES-b2-D, CRAFT-b2-C, and
CRAFT-b3-D.

The results of SAT-based verification are reported in Table 2. Overall, all
three acceleration techniques and their combinations can improve the SAT-
based verification approach (no-opt) for almost all the verification tasks, solv-
ing one timeout case and significantly reducing the verification time for the
other cases. The combination gr·trbf outperforms the others because encod-

Table 3. Results of fault-resistance verification: compositional vs. monolithic.

Name Model Compositional Monolithic R DR

BDD SAT SMT BDD SAT SMT

AES-b1-D m(1, 1, T , cr) 173.06 193.49 15,944.55 timeout timeout timeout ✓ ✓

AES-b1-D m(2, 1, T , cr) 409.31 1.65 5,735.58 timeout timeout timeout ✗ ✗

AES-b2-D m(2, 1, T , cr) timeout 3,175.90 timeout timeout timeout timeout ✓ ✓

AES-b2-D m(3, 1, T , cr) timeout 2.25 timeout timeout timeout timeout ✗ ✗

CRAFT-b1-C m(1, 1, T , cr) 0.13 0.31 2.07 timeout 10,587.20 timeout ✓ ✓

CRAFT-b1-C m(2, 1, T , cr) 0.24 0.05 0.04 timeout 510.55 timeout ✗ ✗

CRAFT-b2-C m(2, 1, T , cr) 3.02 10.04 99.47 timeout timeout timeout ✓ ✓

CRAFT-b2-C m(3, 1, T , cr) 4.26 0.38 1.73 timeout timeout timeout ✗ ✗

CRAFT-b1-Dm(1, 2, T , cr) 0.86 0.13 0.56 timeout 144.46 1,000.45 ✓ ✓

CRAFT-b1-Dm(2, 2, T , cr) 37.32 0.03 0.02 timeout 12.69 1.26 ✗ ✗

CRAFT-b2-Dm(2, 2, T , cr) 3,188.87 0.30 1.91 timeout 137.70 9,943.49 ✓ ✓

CRAFT-b2-Dm(3, 2, T , cr) 3,295.12 0.04 0.04 timeout 40.53 1.87 ✗ ✗

CRAFT-b3-Dm(3, 2, T , cr) timeout 0.44 11.33 timeout 203.83 9,551.44 ✓ ✓

CRAFT-b3-Dm(4, 2, T , cr) timeout 0.05 0.05 timeout 52.42 2.28 ✗ ✗

LED64-b1-D m(1, 1, T , cr) 0.93 1.60 31.90 timeout 5,082.29 timeout ✓ ✓

LED64-b1-D m(2, 1, T , cr) 0.96 0.16 0.93 timeout 1.04 timeout ✗ ✗

LED64-b2-D m(2, 1, T , cr) 6.41 2.34 81.85 timeout 4,293.95 timeout ✓ ✓

LED64-b2-D m(3, 1, T , cr) 44.55 0.17 1.88 timeout 1.60 timeout ✗ ✗

Compositional Verification of Cryptographic Circuits Against FIA 203

ing the bit-flip fault type needs fewer fault type selection inputs than that of
set and reset fault types. Note that adding more acceleration techniques does
not necessarily make an improvement, e.g., gr·trsr vs. gr·fe·trsr on AES-bi-
D, because �MaxE(V(S,B�, T)) = ne and �Clk(V(S,B�, T)) = nc are encoded
as ne ≤ �MaxE(V(S,B�, T)) ≤ ne and nc ≤ �Clk(V(S,B�, T)) ≤ nc before bit-
blasting. Remark that FIRMER [37] indeed is CLEAVE when only gr is enabled.
Due to space limitations, the results of SMT- and BDD-based verification are
reported elsewhere [38], from which the same conclusion can be drawn. Thus,
hereafter, we adopt the combination of acceleration techniques gr·trbf .

5.2 Evaluation of Compositional Verification

To evaluate our compositional approach, we compare it with the monolithic one,
both of which adopt the combination of acceleration techniques gr·trbf .

The results are reported in Table 3. Overall, our compositional reasoning is
very effective, allowing CLEAVE to verify fault-resistance of almost all the bench-
marks while their monolithic counterparts often run out of time. For instance,
the monolithic BDD-based approach fails to verify all the benchmarks due to
the huge number of BDD variables. Indeed, the maximal number of rounds that
can be handled is 2 (cf. [38] for details).

In contrast, the compositional reasoning can verify all the benchmarks, except
for AES-b2-D and CRAFT-b3-D where even the single-round sub-circuit cannot
be verified by the BDD-based approach. For SAT/SMT-based verification, the
compositional reasoning takes significantly less time than its monolithic coun-
terpart. Note that the diverse performance between SAT/SMT- and BDD-based
approaches is mainly because we use the parallel SAT solver Glucose (8 threads)
versus sequential SMT solver bitwuzla, and there is a cost for building (several)
BDDs.

6 Related Work

Equivalence and safety checking play an essential role in the design of cir-
cuits. Various SAT/SMT-based approaches (e.g., [7,10–12,22]) and BDD-based
approaches (e.g., [13,14,17,29]) have been studied. They are orthogonal to our
work and cannot be directly applied to check fault-resistance.

Due to the prevalence of fault injection attacks, there are studies for finding
the effective fault vectors or checking the effectiveness of the fault vectors pro-
vided by users, e.g., [4,23,33]. However, it is virtually impossible to enumerate
all the possible fault vectors and valid inputs in practice, thus these approaches
are limited in efficiency and scalability. To mitigate these issues, the BDD-based
approach, FIVER [31], was proposed which does not need to explicitly enumerate
all the possible valid inputs [31], but still has to explicitly enumerate all the pos-
sible fault vectors. Very recently, the SAT/SMT-based approach, FIRMER [37],
was proposed to implicitly encode all the possible fault vectors into SAT/SMT

204 H. Tan et al.

formulas, and thus no explicit enumeration is required for both possible fault vec-
tors and valid inputs. However, they often fail to verify the entire circuit under
all the possible fault vectors and valid inputs. Our compositional approach cir-
cumvents the verification of the entire circuit of a large size, and can significantly
boost both SAT/SMT-based and BDD-based verification approaches with novel
acceleration techniques.

Compositional reasoning is a powerful divide-and-conquer approach for
addressing the state-explosion problem. Hence, various compositional reasoning
techniques and methods have been investigated, e.g., [19,20,25,27], for safety,
equivalence and side-channel security verification. Our compositional reasoning
relies on the structural feature of (round-based) cryptographic circuits and the
fault-resistance verification problem, thus is different from the prior ones.

Synthesis techniques have been proposed to repair flaws (e.g., [18,32,40]).
However, they do not provide security guarantees (e.g., [32,40]) or are limited
to one specific type of fault injection attacks (e.g., clock glitch in [18]) and thus
may be still vulnerable to other fault injection attacks.

7 Conclusion

We have proposed the first compositional reasoning which decomposes the fault-
resistance verification of a whole round-based cryptographic circuit into that of
single-round sub-circuits. To efficiently verify single-round sub-circuits, we have
proposed various acceleration techniques and studied both SAT/SMT-based and
BDD-based approaches. We have implemented our approach in an open-source
tool CLEAVE and extensively evaluated it on a set of realistic cryptographic
circuits. The experimental results show that our compositional approach and
acceleration techniques can significantly improve all the SAT/SMT-based and
BDD-based verification approaches, outperforming the state-of-the-art baselines.
Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable circuits. IEEE Trans. Comput. 69, 361–376 (2020)

2. Agoyan, M., Dutertre, J., Naccache, D., Robisson, B., Tria, A.: When clocks fail:
on critical paths and clock faults. In: Proceedings of the 9th IFIP WG 8.8/11.2
International Conference (CARDIS), pp. 182–193 (2010)

3. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Christianson, B., Crispo, B., Lomas, T.M.A., Roe, M. (eds.) Proceedings of the
5th International Workshop on Security Protocols, vol. 1361, pp. 125–136 (1997).
https://doi.org/10.1007/BFB0028165

https://doi.org/10.1007/BFB0028165

Compositional Verification of Cryptographic Circuits Against FIA 205

4. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis
using VerFI. In: Proceedings of the IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 229–240 (2020)

5. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

6. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
27(1), 1840001:1–1840001:25 (2018)

7. Azarbad, M.R., Alizadeh, B.: Scalable SMT-based equivalence checking of nested
loop pipelining in behavioral synthesis. ACM Trans. Design Autom. Electr. Syst.
22(2), 22:1–22:22 (2017)

8. Baksi, A.: Classical and Physical Security of Symmetric Key Cryptographic Algo-
rithms. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6522-6

9. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006). https://doi.
org/10.1109/JPROC.2005.862424

10. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Proceedings of the 36th Conference on
Design Automation (DAC), pp. 317–320 (1999)

11. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proceedings of the 5th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS), pp. 193–207 (1999)

12. Bruttomesso, R., et al.: A lazy and layered SMT(BV) solver for hard industrial ver-
ification problems. In: Proceedings of the 19th International Conference on Com-
puter Aided Verification (CAV), pp. 547–560 (2007)

13. Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit verification. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 13(4), 401–424 (1994)

14. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10̂ 20 states and beyond. In: Proceedings of the Fifth Annual Symposium
on Logic in Computer Science (LICS), pp. 428–439 (1990)

15. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

16. Dehbaoui, A., Dutertre, J., Robisson, B., Tria, A.: Electromagnetic transient faults
injection on a hardware and a software implementations of AES. In: Proceedings
of the Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
7–15 (2012)

17. van Eijk, C.A.J.: Sequential equivalence checking without state space traversal.
In: Proceedings of Design, Automation and Test in Europe (DATE), pp. 618–623
(1998)

18. Eldib, H., Wu, M., Wang, C.: Synthesis of fault-attack countermeasures for crypto-
graphic circuits. In: Proceedings of the 28th International Conference on Computer
Aided Verification (CAV), pp. 343–363 (2016)

19. Gao, P., Song, F., Chen, T.: Compositional verification of first-order masking
countermeasures against power side-channel attacks. ACM Trans. Softw. Eng.
Methodol. 33(3), 79:1–79:38 (2024)

20. Gao, P., Zhang, Y., Song, F., Chen, T., Standaert, F.: Compositional verification
of efficient masking countermeasures against side-channel attacks. Proc. ACM Pro-
gram. Lang. 7(OOPSLA2), 1817–1847 (2023). https://doi.org/10.1145/3622862

21. Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptography. Information Secu-
rity and Cryptography. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29656-7

https://doi.org/10.1007/978-981-16-6522-6
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/3622862
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7

206 H. Tan et al.

22. Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based
alignability algorithm for hardware equivalence verification. In: Proceedings of the
7th International Conference on Formal Methods in Computer-Aided Design, pp.
20–26 (2007)

23. Khanna, P., Rebeiro, C., Hazra, A.: XfC: a framework for exploitable fault charac-
terization in block ciphers. In: Proceedings of the 54th Annual Design Automation
Conference (DAC), pp. 1–6 (2017)

24. Khasidashvili, Z., Skaba, M., Kaiss, D., Hanna, Z.: Theoretical framework for
compositional sequential hardware equivalence verification in presence of design
constraints. In: Proceedings of the International Conference on Computer-Aided
Design, pp. 58–65 (2004)

25. Khasidashvili, Z., Skaba, M., Kaiss, D., Hanna, Z.: Post-reboot equivalence and
compositional verification of hardware. In: Proceedings of the 6th International
Conference on Formal Methods in Computer-Aided Design, pp. 11–18 (2006)

26. Malkin, T., Standaert, F., Yung, M.: A comparative cost/security analysis of fault
attack countermeasures. In: Proceedings of the 3rd International Workshop on
Fault Diagnosis and Tolerance in Cryptography, pp. 159–172 (2006)

27. McMillan, K.L.: A methodology for hardware verification using compositional
model checking. Sci. Comput. Program. 37(1–3), 279–309 (2000). https://doi.org/
10.1016/S0167-6423(99)00030-1

28. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020). https://arxiv.org/abs/2006.01621

29. Pixley, C.: A theory and implementation of sequential hardware equivalence. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 11(12), 1469–1478 (1992)

30. Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: Revisiting fault adversary mod-
els - hardware faults in theory and practice. IEEE Trans. Comput. 72, 572–585
(2023)

31. Richter-Brockmann, J., Shahmirzadi, A.R., Sasdrich, P., Moradi, A., Güneysu, T.:
Fiver - robust verification of countermeasures against fault injections. IACR Trans.
Cryptographic Hardware Embed. Syst. 2021, 447–473 (2021)

32. Roy, I., Rebeiro, C., Hazra, A., Bhunia, S.: SAFARI: automatic synthesis of fault-
attack resistant block cipher implementations. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 39(4), 752–765 (2020)

33. Saha, S., Mukhopadhyay, D., Dasgupta, P.: ExpFault: an automated framework
for exploitable fault characterization in block ciphers. IACR Trans. Cryptographic
Hardware Embed. Syst. 2018(2), 242–276 (2018)

34. Selmane, N., Guilley, S., Danger, J.: Practical setup time violation attacks on AES.
In: Proceedings of the 7th European Dependable Computing Conference (EDCC),
pp. 91–96 (2008)

35. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits II. Proceed-
ings of the 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2020)

36. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Proceed-
ings of the 4th International Workshop Redwood Shores on Cryptographic Hard-
ware and Embedded Systems (CHES), pp. 2–12 (2003)

37. Tan, H., Gao, P., Chen, T., Song, F., Wu, Z.: SAT-based formal fault-resistance
verification of cryptographic circuits. CoRR abs/2307.00561 (2023)

38. Tan, H., Gao, P., Chen, T., Song, F., Wu, Z.: CLEAVE (2024). https://github.
com/S3L-official/CLEAVE

39. Tyagi, A.K., Sreenath, N.: Cyber physical systems: analyses, challenges and pos-
sible solutions. Internet Things Cyber-Phys. Syst. 1, 22–33 (2021)

https://doi.org/10.1016/S0167-6423(99)00030-1
https://doi.org/10.1016/S0167-6423(99)00030-1
https://arxiv.org/abs/2006.01621
https://github.com/S3L-official/CLEAVE
https://github.com/S3L-official/CLEAVE

Compositional Verification of Cryptographic Circuits Against FIA 207

40. Wang, H., Li, H., Rahman, F., Tehranipoor, M.M., Farahmandi, F.: SoFI: security
property-driven vulnerability assessments of ICs against fault-injection attacks.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(3), 452–465 (2021)

41. Zussa, L., Dutertre, J.M., Clediere, J., Tria, A.: Power supply glitch induced faults
on fpga: An in-depth analysis of the injection mechanism. In: Proceedings of the
IEEE 19th International On-Line Testing Symposium (IOLTS), pp. 110–115 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Reusable Specification Patterns
for Verification of Resilience

in Autonomous Hybrid Systems

Julius Adelt1(B), Robert Mensing2, and Paula Herber1,2

1 University of Münster, Münster, Germany
{julius.adelt,paula.herber}@uni-muenster.de
2 University of Twente, Enschede, The Netherlands

{r.a.mensing,pherber}@utwente.nl

Abstract. Autonomous hybrid systems are systems that combine dis-
crete and continuous behavior with autonomous decision-making, e.g.,
using reinforcement learning. Such systems are increasingly used in
safety-critical applications such as self-driving cars, autonomous robots
or water supply systems. Thus, it is crucial to ensure their safety and
resilience, i.e., that they function correctly even in the presence of
dynamic changes and disruptions. In this paper, we present an approach
to obtain formal resilience guarantees for autonomous hybrid systems
using the interactive theorem prover KeYmaera X. Our key ideas are
threefold: First, we derive a formalization of resilience that is tailored
to autonomous hybrid systems. Second, we present reusable patterns
for modeling stressors, detecting disruptions, and specifying resilience as
a service level response in the differential dynamic logic (dL). Third,
we combine these concepts with an existing approach for the safe inte-
gration of learning components using hybrid contracts, and extend it
towards dynamic adaptations to stressors. By combining reusable pat-
terns for stressors, observers, and adaptation contracts for learning com-
ponents, we provide a systematic approach for the deductive verification
of resilience of autonomous hybrid systems with reduced specification
effort. We demonstrate the applicability of our approach with two case
studies, an autonomous robot and an intelligent water distribution sys-
tem.

Keywords: Hybrid Systems · Reinforcement Learning · Formal
Methods · Deductive Verification · Resilience · Reusability

1 Introduction

Autonomous hybrid systems (AHS), such as self-driving vehicles, robots, and
intelligent water supply systems, combine autonomous decision-making with
both discrete and continuous behavior. They often act autonomously in dynamic,
safety-critical environments, where failures can cause damage or even endanger
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 208–228, 2025.
https://doi.org/10.1007/978-3-031-71177-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_14

Reusable Patterns for Resilience in Autonomous Hybrid Systems 209

human lives. As a consequence it is essential to ensure their resilience, i.e., the
system’s capability to adapt and maintain its correct functioning amidst changes
and disruptions. However, the formal verification of AHS poses distinct chal-
lenges because of their hybrid nature and the inclusion of learning components
like reinforcement learning (RL), which are hard to capture formally. Approaches
to overcome this problem using model checking or statistical model checking are
impeded by the state-space explosion problem and often only consider resilience
up to a certain time bound. Deductive verification, on the other hand, is a pow-
erful approach for scalable mathematical reasoning even for complex unbounded
systems, but demands high expertise and manual effort to provide the necessary
specifications and invariants. In particular, there is a lack of reusable formal
definitions of resilience in the context of AHS and the few existing definitions
are not directly applicable for the deductive verification of qualitative resilience
guarantees. This is because they are either not formally specified (e.g., [34]),
defined for time-bounded quantitative analysis (e.g., [16,17,40]) or tailored to
specific classes of systems (e.g., [8]). In this paper, we present a systematic app-
roach for defining, modeling, and verifying resilience of AHS within dL [55–57]
using the interactive theorem prover KeYmaera X [22].

Our approach is based on three key ideas. First, to address the lack of for-
mal qualitative resilience definitions for AHS, we formalize resilience for the
deductive verification of AHS based on the informal definition by Laprie [34]
by introducing the concept of service levels for AHS which are provided under
varying stress conditions. We identify stressors as the key factors causing fail-
ures and disruptions, and define service levels to capture dynamic adaptations
to stress, such as graceful degradation. Second, to enable systematic deduc-
tive verification of resilience properties for AHS, we introduce stressor patterns
for modeling stressors and observer patterns for observing the induced stress.
Our stressor patterns facilitate integrating various kinds of stressors in formal
AHS models, for example noise, component failures, or unexpected delays. Our
observer patterns enable formally capturing the stress induced on a system, and
thus to verify the system response as service levels, such as a maximum supply
or minimum speed, under varying stress levels. Third, we combine our reusable
specification patterns with our own previous approach for deductive verification
of Simulink models using dL [36,37], and for the safe integration of learning
into AHS [1,4]. In [1,4], we have specified reusable contract patterns for verify-
ing AHS with RL components with reduced specification and verification effort.
In this paper, we extend this approach to reusable resilience contract patterns,
which link service levels to the stress intensity experienced by the system and
ensure that an RL agent dynamically adapts to stressors. By combining reusable
patterns for stressors, observers, and dynamic adaptations using service levels,
we provide a systematic approach for the deductive verification of resilience of
AHS with reduced specification effort.

We demonstrate the applicability of our approach with two case studies:
an intelligent water distribution system and an autonomous robot. The for-

210 J. Adelt et al.

Fig. 1. Simulink (top) and dL (bottom) models of the Case Studies

mer is based on a model used by MathWorks [42] to demonstrate the RL
Toolbox [43], the latter to demonstrate the Robotics System Toolbox [44].

The rest of this paper is structured as follows: we introduce preliminaries
in Sect. 2 and our approach in Sect. 3. We present verification results in Sect. 4,
discuss related work in Sect. 5, and conclude in Sect. 6.

2 Preliminaries and Case Studies

In this section, we use our two case studies to introduce Simulink and the RL
Toolbox, dL, Simulink2dL, and our approach for safe RL using contracts.

2.1 Case Studies in Simulink

Simulink [45] is an industrially well established graphical modeling language for
AHS. Simulink is block based and provides a large selection of predefined blocks
with discrete or continuous behavior, which can be connected via signals. The
semantics of Simulink is informally defined in [45]. The RL Toolbox enables
directly integrating and simulating RL agents in Simulink models via an RL
agent block, which executes an RL algorithm at discrete time steps.

The upper part of Fig. 1a shows a Simulink model of a reservoir of an intelli-
gent water distribution system (IWDS) based on [47]. In [3], we have presented
an approach to safely optimize a similar system using a combination of deduc-
tive verification and a statistical model checking based learning approach. Using
this approach, an RL agent successfully optimizes the supply provided by the
system with a given energy budget by decreasing the inflow (e.g., by switching
off pumps) whenever the demand is low and by reducing the maximum available
supply if necessary due to pump failures. The Simulink model has a constant
maximum inflow rate imax. The RL agent (RLw) can choose a reduced inflow ir l and
a maximum supply supr l , which sets a limit on the actual demand d. The reser-
voir water level h evolves by integrating the difference of the inflow min(imax, ir l)
and demand min(d, supr l), which are computed in the Flww subsystem.

Reusable Patterns for Resilience in Autonomous Hybrid Systems 211

The upper part of Fig. 1b shows a Simulink model of an autonomous robot in
a factory inspired by [41]. The autonomous robot is dynamically assigned goals
within a factory, and its RL controller tries to get the robot there as fast as
possible without colliding with moving opponents. We have demonstrated that
the robot reaches goals safely for a similar system in [4]. The Simulink model
consists of an RL controller (RLr), which receives distance data from a sensor
(Snsr), and a second controller for the opponent (Oppr). The RL agent can choose
the velocity and direction of the RL robot (�vr). The positions of �pr and �pa evolve
continuously with axial velocities (�vr and �va) respectively.

2.2 Differential Dynamic Logic dL and Simulink2dL
Differential dynamic logic (dL) [55–57] is a logic for formally specifying and
reasoning about properties of hybrid systems, which are modeled as hybrid pro-
grams (HP). Hybrid Programs are build from the following syntax: α ; β is a
sequential composition of two HP α and β . α∗ is a non-deterministic repetition.
x := e is a discrete assignment of term e to variable x . x := ∗ assigns a non-
deterministically chosen value to x . α ++β is a non-deterministic choice. ?Q is a
test formula. i f (Q){α }else{β} is syntactic sugar for {?Q;α + +?¬Q; β}. {x ′

1 = η1,
... , x ′

n
= ηn & Q} is a continuous evolution, where variables xi evolve with differ-

ential equations x ′
i
= ηi while an evolution domain Q is satisfied. Furthermore,

in this paper we use x ∈ [l ,u] as syntactic sugar for l ≤ x ∧ x ≤ u. dL provides
modalities [α]ϕ and 〈α〉ϕ for reasoning about reachable states. Safety specifica-
tions are expressed as pre → [α]post and can be verified using KeYmaera X [22].
Proofs in KeYmaera X are based on the dL sequent calculus.

In [36], we have presented an automated transformation from Simulink into
dL, called Simulink2dL. This provides us with a formal representation of a given
Simulink model, and thus enables formal verification of Simulink models using
KeYmaera X. Furthermore, we have defined the concept of hybrid contracts (HC)
for compositional verification of Simulink models in [37]. HC can be defined for
components of Simulink models as dL formulas with hc = (ϕin ,ϕout), where ϕin
are input assumptions and ϕout are output and trajectory guarantees. HC can
be verified for components individually and replace these components during
transformation. To integrate RL agents safely into the transformation, the safe
behavior of RL agents can also be defined using HC [4]. HC can be used as
shields [23] during simulation to enforce safe behavior of RL agents.

The lower part of Fig. 1a shows a dL model of the IWDS. The RL agent (RLw)
is captured by a conditional hybrid program. If the sample time elapses c ≥ TS the
agent selects safe actions ir l and supr l non-deterministically but in compliance
to HCw. Flww computes the current inflow i and demand d. Continuous behavior
is captured in the continuous evolution (Plntw). The water level h evolves with
h′ = i − d, the clock c and simulation time t evolve with constant rate 1. The
evolution domain c ≤ TS ensures that no sample times of the RL agent are
missed. The global simulation loop is modeled by a nondeterministic repetition.

The lower part of Fig. 1b shows a dL model of the autonomous robot.
The sensor (Snsr) assigns the distance d(�pr, �pa,) to a variable dsens . The RL

212 J. Adelt et al.

controller (RLr) chooses new velocities �vr according to its hybrid contract HCr.
The opponent Oppr chooses velocities �va limited by ?| �va | ≤ vmax,a;. In the con-
tinuous evolution, the positions �pa, �pr, the sampling time clock c and simulation
time t evolve within the domain constraint c ≤ TS . We use �v as an abbreviation
for axial velocities (�vx , �vy) and �p for coordinates (�x , �y).

Table 1. Threshold Pattern [1] and derived Contracts for IWDS and Robot

Property Hybrid Contract
Threshold Patternpre → [α] varsc ∼θ varsc +wcr (state,action,TS) ∼θ

IWDS HCw pre → [α] h ≥hmin h + (i
r l

− sup
r l
) ·TS ≥hmin

Robot HCr pre → [α]d(�pr, �pa) >θevd dsens − (| �vr | +vmax,a) ·TS >θevd

2.3 Reusable Contracts for Safe Integration of Learning

In [1], we have introduced reusable HC patterns for addressing common verifi-
cation challenges in AHS. These patterns are derived from recurring elements
in AHS verification problems and provide templates for the specification of con-
tracts and invariants for learning components. As an example, Table 1 shows the
threshold pattern and its application to our two case studies. The pattern speci-
fies the contract that is needed to ensure that the variable varsc stays within a
given threshold θ (pre → [α]varsc ∼ θ with ∼ ∈ {<, ≤,=, ≥, >}). To ensure this
property on system level, the RL agent has to maintain the threshold within the
next sample time while accounting for the systems worst case reaction (wcr) to
the current state, action and the sample time (TS) of the RL agent.

In the IWDS, the RL agent has to keep the water level above a minimum
h ≥ hmin . As an action, the agent may choose an inflow ir l and limit the outflow to
a maximum supply supr l . The worst case reaction of the environment is a demand
that fully exploits the supply limit (d = supr l). For the robot, a crucial safety
requirement is to maintain a minimum distance d(�pr, �pa) > θevd to the opponent
or to stop if the opponent further decreases the distance. The RL agents threshold
contract ensures that the chosen velocity �vr maintains the distance θevd from the
opponents current position. To stop if θevd can no longer be maintained, we add
a disjunction to the contract (HCr ∨ | �vr | = 0) (not shown in the table).

3 Reusable Patterns for Deductive Verification
of Resilience in Autonomous Hybrid Systems

Autonomous hybrid systems (AHS) may face various stressors, for example,
sensor noise, component failures, or unexpected delays. It is highly desirable

Reusable Patterns for Resilience in Autonomous Hybrid Systems 213

to ensure that AHS are resilient, i.e., that they still function correctly in the
presence of such stressors. There exist various definitions of resilience [8,16,17,
34,40]. However, there is a lack of reusable formal definitions of resilience for
AHS specifically, especially for the deductive verification of qualitative resilience
guarantees.

In this paper, we follow the informal definition provided by Laprie in [34]:
“The persistence of service delivery that can justifiably be trusted, when facing
changes”. From this definition, we derive a formalization of resilience for the
deductive verification of AHS via reusable specification patterns using stressors
to describe (safety-critical) changes, and service levels to describe service deliv-
ery.

Fig. 2. Our Approach for Deductive Verification of Resilience in AHS

Our overall approach is shown in Fig. 2. Our process starts with an
Autonomous Hybrid System (AHS) modeled in Simulink, which includes a rein-
forcement learning (RL) agent for autonomous decision-making, and Informal
Requirements, including resilience. The AHS is transformed into a dL Model
using the Simulink2dL transformation [4,36]. To establish a structured app-
roach for formalizing and verifying resilience properties, we introduce Service
Levels to formalize the system’s adaptive response to stressors. This means, for
example, that we describe graceful degradation using a degraded service level
together with safety thresholds that are still maintained under stress.

For verifying resilience in AHS, we need to formally model stressors. How-
ever, this typically requires high expertise. In particular, it is often unclear how
to specify changes in behavior and the intensity of stress induced by given stres-
sors in a formally modeled system. To tackle this, we introduce reusable Stressor
Patterns. They are designed to capture various disturbances and changes, rang-
ing from discrete or continuous noise over timed delays to complete failures.
In our definition, stressors strictly extend the possible behavior of components
with non-determinism. This facilitates easy integration of stressors into existing
dL models. Furthermore we avoid the need to provide probability distributions,
which are often not available or hard to obtain.

214 J. Adelt et al.

To deductively verify and safely integrate learning in AHS modeled in
Simulink, we have proposed an approach to replace RL components by hybrid
contracts that describe safe actions in [4]. These contracts can be used as shields
via automatically generated runtime monitors [23,49]. In [1] we have proposed
reusable contract patterns for common verification problems in AHS. In this
paper, to ensure Resilient RL for AHS, we extend this approach with reusable
Resilience Contract Patterns, which link appropriate service levels to the stress
intensity experienced by the system. With such Resilience Contracts, we can
enforce that the RL agent dynamically adapts to stressors and disruptions using
service levels.

To be able to verify an overall AHS under different stress levels, capturing
the stress intensity induced by stressors formally is desirable. To address this,
we propose reusable Observer Patterns. In our definition, observers may never
change the system’s behavior but are used to passively capture the dynamic
effects of stressors and stress intensity on the system.

Table 2. Service Levels and corresponding Safety Thresholds

Case Study Service
Level

enabled Threshold under Threshold under
Actions Ai low stress (θls) high stress (θhs)

IWDS
IWDSFull i

r l
∈ [0, imax], supr l = supmax h ≥ hmax h ≥ hdgr

IWDSDeg i
r l

∈ [0, imax], supr l = supdgr h ≥ hdgr h ≥ hmin

IWDSNo i
r l

∈ [0, imax], supr l = 0 h ≥ hmin h ≥ hmin

Rob
RobEvd �vr ∈ [vmin,r,vmax,r] d(�pr, �pa) > θevd d(�pr, �pa) > θstp

RobStop �vr = 0

With our reusable stressor, resilience contracts, and observer patterns, we
enable formal specifications of resilient systems in dL, and their deductive veri-
fication using KeYmaera X [22].

In the following subsections, we introduce the concept of service levels as
means for dynamic adaptation, our reusable patterns for stressors and observers,
as well as resilience contracts, in more detail.

3.1 Formalization of Resilience Using Service Levels

In AHS, learning components dynamically adapt to changes in the environment.
To ensure safety and resilience, we have to make sure that the system remains
operational in the presence of stressors. To achieve this, we want to verify that
the system satisfies requirements under varying stress levels for all possible adap-
tations. However, the number of possible adaptations is potentially infinite.

To overcome this problem, we introduce the idea of (a finite number of)
service levels (e.g., full, degraded, and no service) to define resilience properties.
For each service level, we define ranges of actions (e.g., inflow and supply or speed

Reusable Patterns for Resilience in Autonomous Hybrid Systems 215

in our case studies) together with safety thresholds, which can be guaranteed at
each service level under varying stress conditions. We can use this to describe
high service levels in the absence of stress, and graceful degradation under stress
by defining thresholds where we degrade to lower service. Note that within each
service level, the system may still choose arbitrary actions from the given range,
which enables, for example, learning components or RL agents to safely optimize
w.r.t performance properties while resilience guarantees are maintained.

Table 2 shows service levels together with the enabled actions Ai and corre-
sponding safety thresholds under high or low stress for the IWDS and the robot.
For the IWDS, at full service IWDSFull, the highest possible supply supmax is
enabled. In the absence of high stress, a water level h ≥ hmax can be maintained.
If high stress occurs, h ≥ hdgr with hdgr < hmax must still be maintained to ensure
that we can gracefully degrade to the lower service level IWDSDeg. If stressors
persist, the system degrades to IWDSDeg, where only a degraded water level
h ≥ hdgr is maintained even in the absence of high stress. Under high stress, the
minimum water level hmin < hdgr has to be maintained. If these thresholds can
be no longer maintained, the system degrades even further to IWDSNo, where no
supply is provided and only hmin is guaranteed at all stress levels.

Table 3. Stressor Patterns

Discrete Noise (with ◦ ∈ {±, ·})
α x := ξ ; S(α) η := ∗; ?η ∈ [ηmin,ηmax];x := ξ◦η;

Snsr dsens := d(�pr, �pa); Snsrη η := ∗; ?η ≤ ηhigh;dsens := d(�pr, �pa)+η;

Continuous Noise (with ◦ ∈ {±, ·})
α {...,x ′ = ξ } S(α) η := ∗; ?η ∈ [ηmin,ηmax];{...,x

′ = ξ◦η}

Plntw {...h′ = i − d & c ≤ TS } Plntwl
l := ∗; ?l ∈ [0, lhigh];
{...h′ = i − d−l& c ≤ TS }

Plntr {... �p′r = �vr, �p
′
a = �vr & c ≤ TS } Plntrδ

δ := ∗;?δ ∈ [−δhigh,δhigh];
{... �p′r = �vr·δ , �p

′
a = �vr & c ≤ TS }

Failure
α α S(α) {α+ + αf}

Flww i :=min(imax, ir l); Flwwf {i :=min(imax, ir l);+ + i := 0;}

Delay

α
if(c ≥ TS){c := 0; ...}...
{c ′ = 1, ...& (c ≤ ts)}

S(α)
tΔ := ∗; ?tΔ ∈ [tΔmin, tΔmax];
if(c ≥ TS+tΔ){c := 0; ...}
{c ′ = 1, ...& (c ≤ ts+tΔ)}

RLw
if(c ≥ TS)
{c := 0; sup

r l
:= ∗; i

r l
:= ∗; ?HCw; }...

RLwtΔ
tΔ := ∗; ?tΔ ∈ [0, tΔ,high]; if(c ≥ TS + tΔ)
{c := 0; sup

r l
:= ∗; i

r l
:= ∗; ?HCw; }...

RLr if(c ≥ TS){c := 0; �vr := ∗; ?HCr ; }... RLrtΔ
tΔ := ∗; ?tΔ ∈ [0, tΔ,high];
if(c ≥ TS + tΔ){c := 0; �vr := ∗; ?HCr ; }...

For the robot, at full service level RobEvd, the robot is moving and any speed
within [vmin,r,vmax,r] may be chosen. In the absence of high stress, the robot

216 J. Adelt et al.

maintains an evasion distance θevd, where opponents have room to safely evade.
If stress occurs, the robot at least maintains a stopping distance θstp, where it
can still safely stop before a potential collision. If these thresholds can not be
maintained, the robot stops, i.e., degrades to RobStop.

3.2 Reusable Stressor Patterns

The inherent uncertainties and dynamic nature of stressors present a significant
challenge and their formal specification requires high expertise and manual effort.
To address this problem, we introduce reusable stressor patterns. These patterns
can be used to formally define the effect of changes and disturbances such as
noisy sensors, component failures, or unexpected delays. In our reusable stressor
patterns, we over-approximate possible changes with non-determinism. With
that, we deliberately avoid the need to provide probability distributions, which
are often not available or hard to obtain due to the unpredictable nature of stress
factors. Our stressor patterns strictly extend the possible behavior of HPs, thus
all behavior of the original HS without stressors is still part of the reachable
states. We propose four types of stressor patterns for modeling typical stressors in
AHS: discrete and continuous noise, execution delays, and failures. The patterns
and their application to our case studies are illustrated in Table 3.

The Discrete Noise pattern models random or unwanted signals. It broad-
ens the range of possible assignments to the variable of a discrete signal x by
adding a non-deterministically chosen noise value η. η can be limited using a Test
?η ∈ [ηmin,ηmax];. Snsrη illustrates the application of this pattern with the robot
sensor. To ensure that an added stressor variable does not exclude runs of the
original HP, the range of possible values must contain the identity element for
the operator ◦, i.e., 0 for additive (◦ = ±) and 1 for multiplicative noise (◦ = ·).

Continuous Noise can influence the continuous behavior of components. For
example, we can have a motion drift, where a robot’s actual trajectory deviates
from its intended path over time, caused by factors such as wheel slippage or
actuator inaccuracies. To model continuous noise, our pattern adds a disturbance
value η to the derivative of x . We illustrate this pattern with a continuous leakage
of the plant of the IWDS (Plntwl) and a motion drift of the robot (Plntrδ).

The Failure pattern models failures using a non-deterministic choice between
an original HP α and a failure HP αf, which models the behavior of α under
failure. By retaining the original HP α as one of the choices, the original runs of
the model are preserved and we can reason over arbitrary alternations α and αfail.
We illustrate this pattern with the IWDS (Flwwf). The failure model introduces
pump failures by setting the inflow rate to zero (i := 0;).

The Delay pattern introduces variability to the execution time of discrete
components, such as an RL agent, by adding a non-deterministic delay (tΔ) into
their periodicity. The sampling clock (c) is then permitted to exceed its normal
cycle (TS) by tΔ in all tests and evolution domains. We illustrate this pattern
with the RL agent of the IWDS (RLwtΔ) and robot (RLrtΔ). Note that we omit
the evolution domain in the delay examples for brevity.

Reusable Patterns for Resilience in Autonomous Hybrid Systems 217

3.3 Safe Integration of Learning Using Resilience Contract Patterns

To ensure that a learning component adapts correctly and safely switches
between service levels as defined above, we adopt our approach for the safe
integration of learning presented in [1,4]. There, we have defined safe actions
for learning components using reusable contract patterns to address recurring
verification problems in AHS. To exploit this concept for the formal verification
of resilience and dynamic adaptations using service levels, we introduce reusable
hybrid contract patterns for resilience via dynamic adaptation to stressors.

Table 4. Resilience Contract Pattern and Service Recovery

Resilience a ∈ A ∧ varsc +wcr (s,a, t) ≥θls

HCIWDSFull i
r l

∈ [0, imax] ∧ sup
r l

= supmax∧h −wcrls(s, (ir l , supr l),TS) ≥hmax

∧h −wcrhs(s, (ir l , supr l),TS) ≥hdgr

HCIWDSDeg i
r l

∈ [0, imax] ∧ sup
r l

= supdgr∧h −wcrls(s, (ir l , supr l),TS) ≥hdgr

∧h −wcrhs(s, (ir l , supr l),TS) ≥hmin

HCIWDSDeg i
r l

∈ [0, imax] ∧ sup
r l

= 0 ∧h −wcrls(s, (ir l , supr l),TS) ≥hmin

∧h −wcrhs(s, (ir l , supr l),TS) ≥hmin

HCRobEvd �vr ∈ [vmin,r,vmax,r] ∧ dsens −wcrls(s, �vr,TS) >θevd

∧ dsens −wcrhs(s, �vr,TS) >θstp

HCRobStop �vr = 0

Service Recovery varsc +wcrls(s,a, t) ≥ varsc + rr · t

HCIWDSRec h +wcrls(s, (ir l , supr l),TS) ≥ h + rr ·TS

Table 5. Worst Case Reactions under Low and High Stress for the two Case Studies

Case Study Stressor Low Stress (wcrls) High Stress (wcrhs)

IWDS
fail +(i

r l
− sup

r l
) ·TS +(0 − sup

r l
) ·TS

delay +(i
r l

− sup
r l
) · (TS + tΔ,low) +(i

r l
− sup

r l
) · (TS + tΔ,high)

leak +(i
r l

− sup
r l

− llow) ·TS +(i
r l

− sup
r l

− lhigh) ·TS

Robot
noise −(| �vr | +vmax,a) ·TS −ηlow −(| �vr | +vmax,a) ·TS −ηhigh

delay −(| �vr | +vmax,a) · (TS+tΔ,low) −(| �vr | +vmax,a) · (TS+tΔ,high)

drift −(| �vr·δlow | +vmax,a) ·TS −(| �vr·δhigh | +vmax,a) · (TS)

Resilience Contract Patterns. The top row of Table 4 presents the pattern we
use to define resilience contracts for learning components within a given AHS.
A primary challenge in defining contracts for learning components in AHS is

218 J. Adelt et al.

that these components typically select actions at discrete sample times, while
thresholds must be maintained throughout all continuous evolutions. As detailed
in Sect. 2.3, an RL agent, for example, must maintain safety thresholds within
the next sample time while accounting for the system’s worst-case reaction (wcr)
relative to the current state (s), action (a), and the sample time (TS) of the RL
agent. To ensure resilience, we utilize a conjunction of two threshold patterns: one
for maintaining the threshold under low stress θls with a worst-case reaction in
the absence of high stress wcrls, and another for maintaining the threshold under
high stress θls with a worst-case reaction in the presence of high stress wcrhs.
This ensures that while providing a service level, the system can respond to both
low stress scenarios and high stress conditions by maintaining the correspond-
ing thresholds. The contracts for the IWDS (HCIWDSFull,HCIWDSDeg,HCIWDSNo) and
autonomous robot (HCRobEvd,HCRobStop) in Table 4 utilize this pattern with the
action ranges and corresponding thresholds from Table 2. In all of these defini-
tions, the worst case reaction of the environment depends on the stress level.

Worst Case Reactions Under Stress. Table 5 shows the definitions of the worst
case reactions wcrls and wcrhs for our case studies for various stressors under low
(ls) and high stress (hs). For pump failures in the IWDS case study (stressor fail),
low stress means that no pump fails. The worst case reaction of the environment
is then that the current water level is increased by the inflow chosen by the RL
agent ir l , while it is decreased by the full maximum supply supr l as the demand
fully exploits the available supply within the next sample time TS . In case of
high stress, i.e., if the pump fails, the inflow becomes 0, and the current water
level is decreased by supr l only within the next sample time. If the execution
of the learning agent is delayed (stressor delay), the time for which the worst
case reaction is considered is increased by tΔ,low under low stress resp. tΔ,high
under high stress. If the water tank is leaking (stressor leak), the IWDS looses
water at rate llow under low stress and at rate lhigh under high stress. For
the robot case study with added sensor noise (stressor noise), the worst case
reaction of the environment is that the distance to the opponents is reduced by
the chosen speed of the robot �vr, the maximum speed of the opponent vmax,a, and
the real distance is additionally reduced by the measurement error ηlow under
low stress resp. ηhigh under high stress. If the execution of the learning agent is
delayed (stressor delay) in the robot case study, the time for which the worst
case reaction is considered is again increased by tΔ,low resp. tΔ,high. If the robot is

Table 6. Embedding for Adaptation via Service Level Contracts

Compositional Embedding IWDS Robot
if (c ≥ TS) { c := 0; a := ∗; i

r l
:= ∗; sup

r l
:= ∗; �vr := ∗

if (∃action : HCmax (s, action)){ ?HCmax (s,a); }HCIWDSFull HCRobEvd

elseif (∃action : HCmax−1(s, action)) { ?HCmax−1(s,a); }HCIWDSDeg ∧ HCIWDSRec HCRobStop

elseif (∃action : HCmax−2(s, action)) . . . } HCIWDSNo ∧ HCIWDSRec

Reusable Patterns for Resilience in Autonomous Hybrid Systems 219

drifting (stressor drift), the axial velocity chosen by the RL agent is in the worst
case increased by a factor δlow under low stress resp. δhigh under high stress.

Safe Recovery to higher Service Levels. Our resilience contracts ensure grace-
ful degradation, i.e., that appropriate service levels are chosen and associated
thresholds are maintained. However, these contracts do not guarantee that the
system will automatically recover to a higher service level during periods of
reduced stress. Our service recovery pattern in the last two rows of Table 4 cap-
tures this by ensuring that, under low stress (wcrls), the safety critical variable
increases by at least the recovery rate rr at each sampling step. With rr > 0, the
system reaches a higher service level eventually. HCIWDSRec applies this pattern
to the IWDS. Note that we can’t ensure recovery for the robot, as even under
low stress, the robot might be forced to stop infinitely by the opponent.

Dynamic Adaptation Using Resilience Contracts. Our resilience contracts shown
in Table 4 and 5 ensure that RL agents may only choose actions that are resilient
in the sense that stress-dependent safety thresholds are maintained on each ser-
vice level. To integrate these contracts into a dL model of the overall AHS, we
use a compositional embedding as shown in Table 6, which can be used for an
arbitrary but fixed number of service levels. As described in Sect. 2.2, we embed
RL agents into a given dL model via a conditional discrete HP [4], where a
new action that satisfies the HC is non-deterministically chosen at each sam-
ple time (c ≥ TS). To facilitate dynamic adaptation using resilience contracts,
we additionally propose a hierarchical if-else contract composition that enforces
the highest possible service level. This structure sequentially evaluates the appli-
cability of service levels from higher to lower, starting at service level i. If an
action exists that fulfills the service level, the non-deterministically chosen action
of the RL agent is constrained to the respective service level contract by a test.
Otherwise, we check the next lower service level for applicability. The second
and third columns of Table 6 show the actions and the hierarchy of service levels
for both the IWDS and for the autonomous robot. The highest service level for
the IWDS is IWDSFull and RobEvd for the robot. In case of the IWDS, HCIWDSRec
additionally ensures service recovery in case of degraded or no service.

3.4 Reusable Observer Patterns

So far, we have introduced stressors patterns that introduce stress into a given
AHS and resilience contracts with a compositional embedding to dynamically
adapt to stress by switching between service levels. We now introduce observer
patterns to systematically track the current stress and the system state when
disruptions occur. This enables us to observe the stress imposed on a given AHS
and to relate it to appropriate service levels as a system response. With this, we
define resilience specifications which can then be verified using KeYmaera X.

Table 7 shows our observer patterns and applications to the IWDS and robot
case studies. The upper part of Table 7 shows our observer pattern for failures.
We introduce two observer variables, f and fold. If a failure occurs, i.e., αf is

220 J. Adelt et al.

Table 7. Observer Patterns

Observer Pattern fold := f; {f := 0;α + + f := 1;αfail}; if(cond(f, fold)){store(v1, ...vn)}

IWDS
(fail) Flwwfo

fold := f; {f := 0;i :=min(imax, ir l);+ + f := 1;i := 0;}

if(f > fold){tfail := t ;hfail := h; sup
r l fail := sup

r l
; }

if(f < fold){trepair := t ; }

Observer Pattern s
old

:= s; S(α
discr

); if(cond(s, s
old

)){store(v1, ...vn)}; ... S(αcont);

Robot
(delay) RLrtΔo

tΔ,old := tΔ;tΔ := ∗;?tΔ ≤ tΔ,high; if(c ≥ TS + tΔ){c := 0; �vr := ∗; ?HCr ; }

if(tΔ > tΔ,low ∧ tΔ,old ≤ tΔ,low){ths := t ;dhs := d(�pa, �pr); }

if(tΔ ≤ tΔ,low ∧ tΔ,old > tΔ,low){tls := t ;dls := d(�pa, �pr); }

Robot
(noise) Snsrηo

ηold := η;η := ∗; ?η ≤ ηhigh;dsens := d(�pr, �pa)+η;

if(η > ηlow ∧ ηold ≤ ηlow){ths := t ;dhs := d(�pa, �pr); }

Robot
(drift) Plntrδ o

δold := δ ;δ := ∗;?δ ∈ [−δhigh,δhigh];

if(δ > δlow ∧ δold ≤ δlow){ths := t ;dhs := d(�pa, �pr); }

{... �p′r = �vr·δ , �p
′
a = �vr & c ≤ TS }

executed, f is set to 1 (otherwise f := 0;). fold stores the previous failure state. If
changes in the failure state occur (cond (f, fold)) relevant system state variables,
e.g., the time of failure and the current service level, are stored. Flwwfo in Table 7
demonstrates this observer pattern for the IWDS flow component with possible
pump failures. f is set to 1 in the event of pump failures. Upon a failure (f > fold),
we record the time (tfail), water level (hfail), and current supply (supr l fail). We
also observe recovery by checking if f < fold, and store the repair time (trepair).

The observer pattern for discrete noise, delay, and continuous noise shown
in the lower part of Table 7 is similar to the observer pattern for failures. For
these stressors we observe the variable s that introduces stress (η in case of
noise and tΔ in case of delay). We introduce an observer variable sold to store
the previous stress level. Then, we execute the discrete part of the HP of the
stressed component (S(αdiscr)). We check for possible disruptions via checking
cond(s, sold), e.g., whether one of the thresholds defined for high stress or low
stress was just exceeded. In this case, we store relevant state variables and then
execute continuous evolutions under stress (S(αcont)).

RLrtΔo in Table 7 shows the application to the RL agent of the robot in the
presence of delay. First, the previous delay tΔ is stored in tΔ,old. Then, the RL
agent is executed with a newly chosen delay. We check whether the delay level
has switched from low to high stress (tΔ > tΔ,low ∧ tΔ,old ≤ tΔ,low). If so, we store
the current time in ths and the distance in dhs. We also check whether the delay
has switched back from high to low and store the time in tls and the distance
in dls. Snsrηo and Plntrδ o in Table 7 show the application for sensor noise and
drift respectively. There we observe switching from low to high stress only.

Reusable Patterns for Resilience in Autonomous Hybrid Systems 221

Table 8. System Specification using Observer Patterns

pre → [{RLw; Flwwfo; Plntw}∗] (IWDS fail) Steps

(a)
i = 0 ∧ t − tfail ≤ tmax,fail ∧ sup

r l fail ≥ supmax ∧ hfail > hmax 95
→sup

r l
≥ supdgr ∧ h ≥ hmin

(b) i = imax ∧ t − trepair ≥ trepair,dgr→sup
r l

≥ supdgr ∧ h ≥ hdgr 169
(c) i = imax ∧ t − trepair ≥ trepair,max→sup

r l
≥ supmax ∧ h ≥ hmax 259

(d)sup
r l

≥ 0 ∧ h ≥ hmin 90
pre → [{Snsr; RLrtΔo; Oppr; Plntr}

∗] (Robot delay) Steps
(e) ths = −1 →(�vr ≥ vmin,r ∧ d(�pa, �pr) > θevd ∨ �vr = 0) 86
(f) ths ≥ 0 →(�vr ≥ vmin,r ∧ d(�pa, �pr) > θstp ∨ �vr = 0) 46
(g) ths ≥ 0 ∧ tΔ ≤ tΔ,low ∧ dls > θevd →(�vr ≥ vmin,r ∧ d(�pa, �pr) > θevd ∨ �vr = 0) 77
pre → [{Snsrηo; RLr; Oppr; Plntr}

∗] (Robot noise) Steps
(h) ths = −1 →(�vr ≥ vmin,r ∧ d(�pa, �pr) > θevd ∨ �vr = 0) 70
(i) ths ≥ 0 →(�vr ≥ vmin,r ∧ d(�pa, �pr) > θstp ∨ �vr = 0) 62
pre → [{Snsr; RLr; Oppr; Plntrδ o}

∗] (Robot drift) Steps
(j) ths ≥ 0 →(�vr ≥ vmin,r ∧ d(�pa, �pr) > θstp ∨ �vr = 0) 90

4 Evaluation

To evaluate our approach, we have defined resilience properties for our two case
studies, which ensure that the system reacts to different stress conditions with
an appropriate service level. Table 8 shows the specifications for both the IWDS
and the robot. The RL components use the embeddings defined in Table 6.

For the IWDS, we have specified the following resilience properties in the
presence of pump failures (IWDS fail):

(a) If the pump has failed for less than tmax,fail time and the system was at full
service level when the pump failed, degraded service is still provided.

(b) If the pump is functioning for trepair,dgr, at least degraded service is provided.
(c) If the pump is functioning for trepair,max time, full service is provided.
(d) A minimum water level hmin is always maintained, even with no supply.

For the autonomous robot, we have specified the following resilience properties
in the presence of delay (e-g), discrete noise (h-i), and drift (j).

(e) If high delay has never occurred (ths = −1) the robot either maintains θevd
while moving or stops (if the opponent gets too close).

(f) If high delay occurred at some point (ths ≥ 0) the robot stops before θstp.
(g) If high delay occurred (ths ≥ 0) and the delay returned to low delay (tΔ ≤

tΔ,low) at a distance greater than the evasion distance (dhs > θevd), the robot
either maintains θevd while moving or stops (if the opponent gets too close).

(h) If high sensor noise has never occurred (ths = −1), the robot either maintains
θevd while moving or stops (if the opponent gets too close).

222 J. Adelt et al.

(i) If high sensor noise was experienced (ths ≥ 0), the robot stops before θstp.
(j) If severe drift was experienced (ths ≥ 0), the robot stops before reaching θstp.

We have verified all of the resilience properties defined above for the IWDS
and the autonomous robot using KeYmaera X. The models and proof files
are available at https://www.uni-muenster.de/EmbSys/research/Simulink
2dL.html. The last column of Table 8 shows the number of manual proof steps
used for each system specification, providing a rough comparison of verification
effort. More proof steps generally indicate higher effort, but shorter proofs may
also result from better rule application or clever invariant choices. The proofs for
properties (b) with 169 steps and (c) with 259 steps were the most challenging
and took roughly two and three person-days respectively. All other proofs were
completed in less than one person-day each.

5 Related Work

Many approaches for formal verification of hybrid systems are based on model
checking and leverage symbolic reachability, e.g., with polyhedra [13], zonotopes
[25], or support functions [35] to over-approximate continuous state spaces. How-
ever, these approaches are usually limited to linear dynamics or only consider
time-bounded properties. Probabilistic methods [20,26,27,39] face similar limi-
tations. Approaches for deductive verification of hybrid systems, such as differ-
ential dynamic logic [55,56], differential Hoare logic [21], and hybrid Hoare logic
for HCSP [38] exploit inductive reasoning to overcome the state space explosion
problem. However, they typically require high manual effort and expertise.

Many approaches for formal verification of systems modeled in Simulink,
e.g., [7,30,58], including the Simulink Design Verifier [46], only support discrete
models. Methods that support models of hybrid systems are, e.g., proposed in
[12,14,48,66]. However, none of these methods supports learning or resilience.

There also exists a broad variety of approaches to formally ensure safety of
learning components using shielding or runtime monitoring [5,19,33,54]. KeY-
maera X also enables synthesis of verified runtime monitors for learning compo-
nents [23,49–51]. However, these methods do not cover the integration of stres-
sors through reusable patterns or dynamic adaptations via service levels.

A wide range of research exists on proof reusability, e.g., within KeY [9] and
KeYmaera X [22]. There exist various approaches for automated invariant gen-
eration [31,59,63]. However, these approaches focus on proof construction rather
than domain-specific patterns [28]. [24,61] provide application-specific patterns
to address complex verification issues, like structured arrays [24] and parallel
prefix sums [61]. A contract-based approach for system analysis across applica-
tion domains is introduced in [15], and techniques for structured proof reuse in
software variations are proposed in [64], while [6,32,65] focus on easing verifica-
tion through reusable patterns. [53] introduces a contract-based verification in
dL and provides specifications for output and communication reliability.

There exists work on definitions and formal verification of resilience for CPS,
e.g., using temporal logics [11,60,62] but these often only consider time discrete

https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html
https://www.uni-muenster.de/EmbSys/research/Simulink2dL.html

Reusable Patterns for Resilience in Autonomous Hybrid Systems 223

systems. [29,52] consider resilience and robustness for timed (I/O) systems. [10,
18,40] use Markov decision processes or discrete time Markov chains. However,
none of these approaches support deductive verification of hybrid systems.

To the best of our knowledge, none of the existing works specifically address
resilience in AHS. In our own previous work [1–3], we have presented some
initial concepts for reusable resilience contracts. However, we only provided a
rudimentary service level concept and we have not considered reusable resilience
specifications using stressor and observer patterns.

6 Conclusion and Outlook

In this paper, we have presented an approach for the formal specification and
verification of resilience in AHS using dL and the interactive theorem prover
KeYmaera X. We have presented a structured approach and reusable patterns for
modeling stressors and observers, and for specifying resilience as a service level
response. Our specifications are more dynamic than traditional safety properties,
and thus better capture the adaptive aspects of resilience, as we define service
levels relative to the intensity of stress an autonomous hybrid system experiences.
By providing resilience contract patterns for learning components, we enable
safe and resilient learning with a shielding-based approach, where the shields
can automatically be generated from our resilience contracts.

We have demonstrated the applicability of our approach with designs
inspired by MathWorks, namely an intelligent water distribution system and
an autonomous robot. Our patterns can help reduce the specification effort for
deductive verification of resilience properties. By defining coarse- or fine-granular
service levels, the designer can choose a trade-off between the specification and
verification effort and the strengths of the resulting resilience guarantees.

In future work, we plan to fully integrate our reusable patterns and speci-
fications for resilience with our existing Simulink2dL transformation to enable
the automatic transformation of Simulink models into resilient AHS models in
dL. We plan to use our approach on larger case studies and to investigate the
trade-off between fine- and coarse-granular service levels, and their effect on the
precision and permissiveness of contracts. We plan to derive guidelines for the
specification of service levels together with safety thresholds for various system
classes. Furthermore, we plan to exploit symbolic AI and explainability tech-
niques to generate such specifications automatically.

224 J. Adelt et al.

References

1. Adelt, J., Brettschneider, D., Herber, P.: Reusable contracts for safe integration
of reinforcement learning in hybrid systems. In: Bouajjani, A., Holík, L., Wu, Z.
(eds.) Automated Technology for Verification and Analysis. ATVA 2022. LNCS,
vol. 13505. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19992-9_4

2. Adelt, J., Bruch, S., Herber, P., Niehage, M., Remke, A.: Shielded Learning for
Resilience and Performance Based on Statistical Model Checking in Simulink. In:
Steffen, B. (eds.) Bridging the Gap Between AI and Reality, vol. 14380, pp. 94–
118. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-
031-46002-9_6

3. Adelt, J., Herber, P., Niehage, M., Remke, A.: Towards safe and resilient hybrid sys-
tems in the presence of learning and uncertainty. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Validation. Verifi-
cation Principles. ISoLA 2022. LNCS, vol. 13701, pp. 299–319. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19849-6_18

4. Adelt, J., Liebrenz, T., Herber, P.: Formal verification of intelligent hybrid systems
that are modeled with Simulink and the reinforcement learning toolbox. In: Huis-
man, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 349–366.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_19

5. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI Conference on Artificial Intelligence
32 (2018). https://doi.org/10.1609/aaai.v32i1.11797

6. André, É.: Observer patterns for real-time systems. In: 2013 18th International
Conference on Engineering of Complex Computer Systems, pp. 125–134. IEEE
Computer Society (2013). https://doi.org/10.1109/ICECCS.2013.26

7. Araiza-Illan, D., Eder, K., Richards, A.: Formal verification of control systems
properties with theorem proving. In: International Conference on Control (CON-
TROL), pp. 244–249. IEEE (2014). https://doi.org/10.1109/CONTROL.2014.
6915147

8. Arghandeh, R., Von Meier, A., Mehrmanesh, L., Mili, L.: On the definition of cyber-
physical resilience in power systems. Renew. Sustain. Energy Rev. 58, 1060–1069
(2016). https://doi.org/10.1016/j.rser.2015.12.193

9. Beckert, B., Klebanov, V.: Proof reuse for deductive program verification. In: Inter-
national Conference on Software Engineering and Formal Methods (SEFM), pp.
77–86. IEEE (2004). https://doi.org/10.1109/SEFM.2004.1347505

10. Camilli, M., Mirandola, R., Scandurra, P.: Runtime equilibrium verification for
resilient cyber-physical systems. In: 2021 IEEE International Conference on Auto-
nomic Computing and Self-Organizing Systems (ACSOS), pp. 71–80. IEEE (2021).
https://doi.org/10.1109/ACSOS52086.2021.00025

11. Chen, H., Lin, S., Smolka, S.A., Paoletti, N.: An STL-based formulation of
resilience in cyber-physical systems. In: Formal Modeling and Analysis of Timed
Systems: 20th International Conference, FORMATS 2022, Warsaw, Poland, 13–
15 September 2022, Proceedings, pp. 117–135. Springer-Verlag, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-15839-1_7

12. Chen, M., et al.: MARS: a toolchain for modelling, analysis and verification of
hybrid systems. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably
Correct Systems. NMSSE, pp. 39–58. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48628-4_3

https://doi.org/10.1007/978-3-031-19992-9_4
https://doi.org/10.1007/978-3-031-46002-9_6
https://doi.org/10.1007/978-3-031-46002-9_6
https://doi.org/10.1007/978-3-031-19849-6_18
https://doi.org/10.1007/978-3-030-90870-6_19
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1109/CONTROL.2014.6915147
https://doi.org/10.1109/CONTROL.2014.6915147
https://doi.org/10.1016/j.rser.2015.12.193
https://doi.org/10.1109/SEFM.2004.1347505
https://doi.org/10.1109/ACSOS52086.2021.00025
https://doi.org/10.1007/978-3-031-15839-1_7
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-319-48628-4_3

Reusable Patterns for Resilience in Autonomous Hybrid Systems 225

13. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes
for dynamic systems. In: Proceedings of the 37th IEEE Conference on Decision
and Control (Cat. No. 98CH36171), vol. 2, pp. 2089–2094. IEEE (1998). https://
doi.org/10.1109/CDC.1998.758642

14. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verifica-
tion. IEEE Trans. Autom. Control 48(1), 64–75 (2003). https://doi.org/10.1109/
TAC.2002.806655

15. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement
of temporal contracts. In: International Conference on Automated Software Engi-
neering, pp. 702–705. IEEE (2013). https://doi.org/10.1109/ASE.2013.6693137

16. Clark, A., Zonouz, S.: Cyber-physical resilience: definition and assessment metric.
IEEE Trans. Smart Grid 10(2), 1671–1684 (2017). https://doi.org/10.1109/TSG.
2017.2776279

17. Cloth, L., Haverkort, B.R.: Model checking for survivability! In: International Con-
ference on the Quantitative Evaluation of Systems (QEST), pp. 145–154. IEEE
(2005). https://doi.org/10.1109/QEST.2005.21

18. Cámara, J., de Lemos, R.: Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In: 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 53–62 (2012).
https://doi.org/10.1109/SEAMS.2012.6224391

19. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0_16

20. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1_27

21. Foster, S., Huerta y Munive, J.J., Struth, G.: Differential Hoare logics and refine-
ment calculi for hybrid systems with Isabelle/HOL. In: Fahrenberg, U., Jipsen, P.,
Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 169–186. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-43520-2_11

22. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_36

23. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. AAAI Conf. on Artif. Intellig. 32 (2018).
https://doi.org/10.1609/aaai.v32i1.12107

24. Genestier, R., Giorgetti, A., Petiot, G.: Sequential generation of structured arrays
and its deductive verification. In: Blanchette, J.C., Kosmatov, N. (eds.) TAP 2015.
LNCS, vol. 9154, pp. 109–128. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21215-9_7

25. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2_19

26. Gribaudo, M., Remke, A.: Hybrid petri nets with general one-shot transitions.
Perform. Eval. 105, 22–50 (2016). https://doi.org/10.1016/J.PEVA.2016.09.002

27. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/S10703-012-0167-Z

https://doi.org/10.1109/CDC.1998.758642
https://doi.org/10.1109/CDC.1998.758642
https://doi.org/10.1109/TAC.2002.806655
https://doi.org/10.1109/TAC.2002.806655
https://doi.org/10.1109/ASE.2013.6693137
https://doi.org/10.1109/TSG.2017.2776279
https://doi.org/10.1109/TSG.2017.2776279
https://doi.org/10.1109/QEST.2005.21
https://doi.org/10.1109/SEAMS.2012.6224391
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1609/aaai.v32i1.12107
https://doi.org/10.1007/978-3-319-21215-9_7
https://doi.org/10.1007/978-3-319-21215-9_7
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1016/J.PEVA.2016.09.002
https://doi.org/10.1007/S10703-012-0167-Z

226 J. Adelt et al.

28. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9_18

29. Henzinger, T.A., Otop, J., Samanta, R.: Lipschitz robustness of timed I/O systems.
In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 250–
267. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_12

30. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-
time MATLAB/Simulink models using SMT solving. In 2013 Proceedings of the
International Conference on Embedded Software, pp. 1–10. IEEE (2013). https://
doi.org/10.1109/EMSOFT.2013.6658586

31. Hoder, K., Kovács, L., Voronkov, A.: Invariant generation in vampire. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_7

32. Jonker, C.M., Treur, J., de Vries, W.: Reuse and abstraction in verification: agents
acting in dynamic environments. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE
2000. LNCS, vol. 1957, pp. 253–267. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44564-1_17

33. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 290–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4_16

34. Laprie, J.C.: From dependability to resilience. In: 38th IEEE/IFIP International
Conference On dependable systems and networks, pp. G8–G9 (2008)

35. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–
554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_40

36. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control sys-
tems modeled in simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM
2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02450-5_6

37. Liebrenz, T., Herber, P., Glesner, S.: A service-oriented approach for decomposing
and verifying hybrid system models. In: Arbab, F., Jongmans, S.-S. (eds.) FACS
2019. LNCS, vol. 12018, pp. 127–146. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-40914-2_7

38. Liu, J., et al.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS,
vol. 6461, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17164-2_1

39. Lygeros, J., Prandini, M.: Stochastic hybrid systems: a powerful framework for
complex, large scale applications. Eur. J. Control. 16(6), 583–594 (2010). https://
doi.org/10.3166/EJC.16.583-594

40. Madni, A.M., Erwin, D., Sievers, M.: Constructing models for systems resilience:
challenges, concepts, and formal methods. MDPI Syst. 8(1), 3 (2020). https://doi.
org/10.3390/systems8010003

41. MathWorks: control and simulate multiple warehouse robots. https://www.
mathworks.com/help/robotics/ug/control-and-simulate-multiple-warehouse-
robots.html

42. MathWorks: MATLAB simulink. www.mathworks.com/products/simulink.html
43. MathWorks: reinforcement learning toolbox. https://www.mathworks.com/

products/reinforcement-learning.html

https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-662-49122-5_12
https://doi.org/10.1109/EMSOFT.2013.6658586
https://doi.org/10.1109/EMSOFT.2013.6658586
https://doi.org/10.1007/978-3-642-19835-9_7
https://doi.org/10.1007/3-540-44564-1_17
https://doi.org/10.1007/3-540-44564-1_17
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-40914-2_7
https://doi.org/10.1007/978-3-030-40914-2_7
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.3166/EJC.16.583-594
https://doi.org/10.3166/EJC.16.583-594
https://doi.org/10.3390/systems8010003
https://doi.org/10.3390/systems8010003
https://www.mathworks.com/help/robotics/ug/control-and-simulate-multiple-warehouse-robots.html
https://www.mathworks.com/help/robotics/ug/control-and-simulate-multiple-warehouse-robots.html
https://www.mathworks.com/help/robotics/ug/control-and-simulate-multiple-warehouse-robots.html
www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/reinforcement-learning.html
https://www.mathworks.com/products/reinforcement-learning.html

Reusable Patterns for Resilience in Autonomous Hybrid Systems 227

44. MathWorks: robotics systems toolbox. https://www.mathworks.com/products/
robotics.html

45. MathWorks: simulink. https://www.mathworks.com/products/simulink.html
46. MathWorks: simulink design verifier. https://www.mathworks.com/products/

simulink-design-verifier.html
47. MathWorks: Water distribution system scheduling using reinforcement learn-

ing. https://www.mathworks.com/help/reinforcement-learning/ug/water-tank-
simulink-reinforcement-learning-environment.html

48. Minopoli, S., Frehse, G.: SL2SX Translator: from Simulink to SpaceEx models.
In: International Conference on Hybrid Systems: Computation and Control, pp.
93–98. ACM (2016). https://doi.org/10.1145/2883817.2883826

49. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1), 33–74 (2016). https://
doi.org/10.1007/s10703-016-0241-z

50. Mitsch, S., Platzer, A.: Verified runtime validation for partially observable hybrid
systems. CoRR (2018). https://doi.org/10.48550/arXiv.1811.06502

51. Mitsch, S., Platzer, A.: The KeYmaera X Proof IDE - concepts on usability
in hybrid systems theorem proving. Electron. Proc. Theoret. Comput. Sci. 240
(2017). https://doi.org/10.4204/EPTCS.240.5

52. Mouelhi, S., Laarouchi, M.E., Cancila, D., Chaouchi, H.: Predictive formal anal-
ysis of resilience in cyber-physical systems. IEEE Access 7, 33741–33758 (2019).
https://doi.org/10.1109/ACCESS.2019.2903153

53. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Tacti-
cal contract composition for hybrid system component verification. Int. J. Softw.
Tools Technol. Transfer 20(6), 615–643 (2018). https://doi.org/10.1007/s10009-
018-0502-9

54. Phan, D., et al.: A component-based simplex architecture for high-assurance cyber-
physical systems. In: International Conference on Application of Concurrency to
System Design, pp. 49–58. IEEE (2017). https://doi.org/10.1109/ACSD.2017.23

55. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

56. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reason. 59(2), 219–265 (2017). https://doi.org/10.1007/s10817-016-
9385-1

57. Platzer, A.: The complete proof theory of hybrid systems. In: 2012 27th Annual
IEEE Symposium on Logic in Computer Science, pp. 541–550 (2012). https://doi.
org/10.1109/LICS.2012.64

58. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink
models using boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10431-7_14

59. Rodríguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. Sci. of Comp. Progr. 64(1),
54–75 (2007). https://doi.org/10.1016/j.scico.2006.03.003

60. Rungger, M., Tabuada, P.: A notion of robustness for cyber-physical systems. IEEE
Trans. Autom. Control 61(8), 2108–2123 (2015). https://doi.org/10.1109/TAC.
2015.2492438

61. Safari, M., Oortwijn, W., Joosten, S., Huisman, M.: Formal verification of parallel
prefix sum. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM
2020. LNCS, vol. 12229, pp. 170–186. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-55754-6_10

https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/help/reinforcement-learning/ug/water-tank-simulink-reinforcement-learning-environment.html
https://www.mathworks.com/help/reinforcement-learning/ug/water-tank-simulink-reinforcement-learning-environment.html
https://doi.org/10.1145/2883817.2883826
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.48550/arXiv.1811.06502
https://doi.org/10.4204/EPTCS.240.5
https://doi.org/10.1109/ACCESS.2019.2903153
https://doi.org/10.1007/s10009-018-0502-9
https://doi.org/10.1007/s10009-018-0502-9
https://doi.org/10.1109/ACSD.2017.23
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/978-3-319-10431-7_14
https://doi.org/10.1007/978-3-319-10431-7_14
https://doi.org/10.1016/j.scico.2006.03.003
https://doi.org/10.1109/TAC.2015.2492438
https://doi.org/10.1109/TAC.2015.2492438
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-55754-6_10

228 J. Adelt et al.

62. Saoud, A., Jagtap, P., Soudjani, S.: Temporal logic resilience for cyber-physical
systems. In: 2023 62nd IEEE Conference on Decision and Control (CDC), pp.
2066–2071 (2023). https://doi.org/10.1109/CDC49753.2023.10384033, https://
api.semanticscholar.org/CorpusID:267046171

63. Sogokon, A., Mitsch, S., Tan, Y.K., Cordwell, K., Platzer, A.: Pegasus: a frame-
work for sound continuous invariant generation. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 138–157. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8_10

64. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: International Conference on Generative Programming
and Component Engineering, pp. 11–20. ACM (2012). https://doi.org/10.1145/
2371401.2371404

65. Vogel, T., Carwehl, M., Rodrigues, G.N., Grunske, L.: A property specification pat-
tern catalog for real-time system verification with UPPAAL. Inf. Softw. Technol.
154, 107100 (2023). https://doi.org/10.1016/j.infsof.2022.107100

66. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal verification of Simulink/State-
flow diagrams. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS,
vol. 9364, pp. 464–481. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24953-7_33

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/CDC49753.2023.10384033
https://api.semanticscholar.org/CorpusID:267046171
https://api.semanticscholar.org/CorpusID:267046171
https://doi.org/10.1007/978-3-030-30942-8_10
https://doi.org/10.1145/2371401.2371404
https://doi.org/10.1145/2371401.2371404
https://doi.org/10.1016/j.infsof.2022.107100
https://doi.org/10.1007/978-3-319-24953-7_33
https://doi.org/10.1007/978-3-319-24953-7_33
http://creativecommons.org/licenses/by/4.0/

Switching Controller Synthesis for Hybrid
Systems Against STL Formulas

Han Su1,2 , Shenghua Feng3(B) , Sinong Zhan4 , and Naijun Zhan1,5

1 State Key Lab. of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{suhan,znj}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Zhongguancun Laboratory, Beijing, China
fengsh@zgclab.edu.cn

4 Department of Electrical and Computer Engineering, Northwestern University,
Evanston, USA

SinongZhan2028@u.northwestern.edu
5 School of Computer Science, Peking University, Beijing, China

znj@ios.ac.cn

Abstract. Switching controllers play a pivotal role in directing hybrid
systems (HSs) towards the desired objective, embodying a “correct-by-
construction” approach to HS design. Identifying these objectives is thus
crucial for the synthesis of effective switching controllers. While most of
existing works focus on safety and liveness, few of them consider tim-
ing constraints. In this paper, we delves into the synthesis of switching
controllers for HSs that meet system objectives given by a fragment of
STL, which essentially corresponds to a reach-avoid problem with timing
constraints. Our approach involves iteratively computing the state sets
that can be driven to satisfy the reach-avoid specification with timing
constraints. This technique supports to create switching controllers for
both constant and non-constant HSs. We validate our method’s sound-
ness, and confirm its relative completeness for a certain subclass of HSs.
Experiment results affirms the efficacy of our approach.

Keywords: Hybrid Systems · Switching Controller Synthesis · Signal
Temporal Logic · Reach-Avoid

1 Introduction

Hybrid systems (HSs) provide a robust mathematical specification in modeling
cyber-physical systems (CPS) with their unique fusion of continuous physical

This work has been partially funded by the NSFC under grant No. 62192732
and 62032024, by the National Key R&D Program of China under grant No.
2022YFA1005101, by the CAS Project for Young Scientists in Basic Research under
grant No. YSBR-040.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 229–247, 2025.
https://doi.org/10.1007/978-3-031-71177-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_15&domain=pdf
http://orcid.org/0000-0003-4260-8340
http://orcid.org/0000-0002-5352-4954
http://orcid.org/0000-0002-5750-3296
http://orcid.org/0000-0003-3298-3817
https://doi.org/10.1007/978-3-031-71177-0_15

230 H. Su et al.

dynamics and discrete switching behaviors. Many CPSs are often complex and
safety-critical which necessitates intricate control specifications. Switching con-
troller synthesis offers a formal guarantee of the given specification of HS. Its
applications include attitude control in aerospace [3], aircraft collision-avoidance
protocols in avionics [43], and pacemakers for treating bradycardia [53], etc.

With the escalating complexity of CPSs [44,45,54], the specifications required
to ensure their proper functionality grow increasingly intricate. Among these,
the importance of timing constraints becomes paramount [48,49]. This is evi-
dent in various scenarios, from orchestrating synchronized reactions in chemical
processing [12] to ensuring seamless operations in multi-robot systems [24]. In
this context, Signal Temporal Logic (STL), a rigorous formalism for defining
linear-time properties of continuous signals [27], is exceptionally well-suited for
specifying intricate timing constraints and qualitative properties of CPSs.

However, switching controller synthesis for HSs against STL specifications
is not well addressed in the literature. The primary challenge arises from the
complex interactions between continuous behaviors and discrete transitions. A
common technique to synthesize switching controllers for HSs with complex
specifications is the abstraction-based method [26,28]. This technique involves
abstracting the continuous state space of each mode into a finite set of states,
which often results in the loss of precise timing information for each mode.
Consequently, the abstraction-based technique struggles with timing constraint
analysis in the abstracted state space. In contrast, Mixed Integer Linear Pro-
gramming (MILP) based technique [34] for switching controller synthesis against
STL specification can provide precise timing information, but this method faces
challenges in handling the intricate interactions of diverse discrete transitions
between modes.

In this paper, we considered the switching controller synthesis problem for
HSs against a fragment of STL specification, which essentially corresponds to
a reach-avoid problem with timing constraints. To the best of our knowledge,
this is the first work that uses STL to specify HSs with both discrete transitions
and continuous dynamics. Similar work in [39] focused only on HSs with discrete
time dynamics in each mode, significantly simplifying the problem. The key idea
behind our approach involves iteratively computing a sequence of state-time sets
(x, t), state x and time t. These sets ensure that an HS, starting from state x
at time t, adheres to the STL specification within a certain number (i.e., the
number of iterations) of switches. The state-time sets are computed explicitly
when the dynamics of the HSs are constant, and are inner-approximated when
the dynamics are non-constant. Based on the state-time sets, we propose a sound
and relatively complete method to synthesize a switching controller that satisfies
the STL specification. Our experimental results demonstrate the efficacy of this
approach.

Switching Controller Synthesis for HSs Against STL Formulas 231

1
2
3
4
5

X0
q1

φ2
φ1

h

X1
q1

φ2
φ1

h

X2
q1

φ2
φ1

t

h

1 2 3 4

1
2
3
4
5

X0
q2

φ2
φ1

1 2 3 4

X1
q2

φ2
φ1

1 2 3 4

X2
q2

φ2
φ1

t

State-Time Set Xi
q1 , Xi

q2 Calculation

q1

q2

Iteration 0

Start in q1/q2,
initiate from X0

q1
/X0

q2
,

ϕ can be satisfied
without switch.

Iteration 1

Start in mode q1/q2,
initiate from X1

q1
/X1

q2
,

ϕ can be satisfied
within one switch.

Iteration 2

Start in mode q1/q2,
initiate from X2

q1
/X2

q2
,

ϕ can be satisfied
within two switches.

A Fixpoint Achieved!

Extract Controller by Alg. 1

Switching Controller π(·)
π(·) : initial state → switch time sequence.

π(x0) =

{
(q1, 0), if 0 ≤ x0 ≤ 1

(q2, 0)(q1,
x0−1

2), if 1 < x0 ≤ 4.

Fig. 1. An overview of our method

The main contributions can be summarized as follows: (i) We conceptualize
state-time set for HSs. (ii) We propose a methodology to synthesize switching
controllers for HSs against a fragment of STL specification. (iii) We develop
a prototype to demonstrate the efficiency and practical applicability of our
methodology.

Organization. Section 2 gives an overview of our approach, Sect. 3 provides a
recap of important preliminaries and formally defines the problem. We illustrate
the calculation of the state-time sets in Sect. 4. Based on the state-time sets,
Sect. 5 shows how to derive switching systems against a STL specification. In
Sect. 6, we demonstrate the efficacy of our method through several examples.
We discuss related work in Sect. 7 and draw conclusion in Sect. 8.

Due to space restrictions, proofs and benchmark details have been omitted,
which can be found in an extended version of this paper [40]. Source code and
examples of this paper can be found at Figshare: https://doi.org/10.6084/m9.
figshare.26057410.v1.

https://doi.org/10.6084/m9.figshare.26057410.v1
https://doi.org/10.6084/m9.figshare.26057410.v1

232 H. Su et al.

2 An Illustrative Prelude

Example 1. In the reactor system depicted in Fig. 2, liquid is continuously con-
sumed by the reaction and is replenished through pipe P . The system alternates
between modes of adding liquid (q1) and

Fig. 2. Reactor System

exclusively consuming it (q2). The objectives
are to keep the liquid level, h, between 0
and 4 meters, and to ensure that h remains
between 3 and 5 meters at a certain point
during a critical reaction phase - time inter-
val 3 to 4, for proper interaction with the
reactor rod R. These objectives can be
given as an STL formula ϕ = (0 ≤ h ≤
4)U[3,4](3 ≤ h ≤ 5). �

We present the core idea behind our app-
roach in Fig. 1. Initially, we compute the
state-time set Xi

q iteratively. As shown in the
upper block of Fig. 1, the set Xi

q encompasses
states in mode q from which ϕ can be satisfied within i switches (as detailed
in Sect. 5). Once these state-time sets are determined, the switching controllers
can be synthesized using the methods outlined in Alg. 1 and Alg. 2.

3 Notations and Problem Formulation

Notations. Let N,R, and R≥0 denote the set of natural, real, and non-negative
real numbers, respectively. Given vector x ∈ R

n, xi refers to its i-th component,
and p [x = u] denotes the replacement of x by u for any predicate p where x
serves as a variable.

Differential Dynamics. We consider a class of dynamical systems featuring dif-
ferential dynamics governed by ordinary differential equations (ODEs) of the
form ẋ = f(x), where f is a continuous differentiable function. Given an initial
state x0 ∈ R

n, there exist a unique solution x : R≥0 → R
n in the sense that

ẋ(t) = f(x(t)) for t ≥ 0 and x(0) = x0.

Switched Systems. A switched system is defined as a tuple Φ = (Q,F, Init, π),
where

– Q � { q1, q2, . . . , qm } is a finite set of discrete modes.
– F � { fq | q ∈ Q } is a set of vector fields, and each mode q ∈ Q endows with

a unique vector field fq which specifies how system evolves in mode q.
– Init ⊆ R

n is a set of initial states.
– π : Init → (R≥0 → Q) is a switching controller. The controller maps each

initial state x0 ∈ Init to a piecewise constant function π(x0), which in turn
maps a time t to the corresponding control mode π(x0)(t).

Given any initial state x0, the dynamics of the switched system Φ is governed
by equation ẋ(t) = fπ(x0)(t)(x(t)) with initial condition x(0) = x0.

Switching Controller Synthesis for HSs Against STL Formulas 233

Signal Temporal Reach-Avoid. We consider a fragment of signal temporal logic,
namely signal temporal reach-avoid formula (ST-RA for short). The syntax of
ST-RA is defined by

φ ::= μ(x, t) ≥ 0 | ¬φ | φ ∧ φ

ϕ ::= φ1 UI φ2

where φ is a Boolean combination of predicates over x and time t, I � [l, u]
is a closed time interval for some 0 ≤ l ≤ u. Intuitively, an ST-RA formula ϕ
expresses the requirement that the system should reach φ2 while avoid leaving
φ1 within time frame I. The semantics of ST-RA formula, in alignment with
STL, is defined as the satisfaction of a formula ϕ with respect to a signal x and
a time instant t.

Remark 1. Compared with the standard signal temporal logic (STL) [27], ST-
RA formula does not allow nested “until” operator, this makes ST-RA formula
a fragment of STL.

Formally, given function x : R≥0 → R
n (termed signal) and time τ , the sat-

isfaction of ϕ at (x, τ), denoted by (x, τ) |= ϕ, is inductively defined as follows:

(x, τ) |= μ(x, t) ≥ 0 iff μ(x(τ), τ) ≥ 0 ;
(x, τ) |= ¬φ iff (x, τ) �|= φ ;
(x, τ) |= φ1 ∧ φ2 iff (x, τ) |= φ1 and (x, τ) |= φ2 ;
(x, τ) |= φ1 UI φ2 iff ∃τ ′ ≥ τ, such that τ ′ − τ ∈ I, (x, τ ′) |= φ2 ,

and ∀τ ′′ ∈ [τ, τ ′], (x, τ ′′) |= φ1 .

Intuitively, the subscript I in the until operator UI defines the timing constraints
under which a signal must reach φ2 while avoid leaving φ1.

Given a ST-RA formula φ, we say a switched system Φ = (Q,F, Init, π)
models ϕ, denoted by Φ |= ϕ, if (x, 0) |= ϕ for any trajectory x starting from
initial set Init. We now formulate the problem addressed in this paper.

Problem Formulation. Suppose there exists a finite set of control modes Q =
{ q1, q2, . . . , qm } and associated vector fields F = { fq1 , fq2 , . . . , fqm }. Each mode
q ∈ Q is associated with a vector field fq that governs the system’s behavior in
mode q. Let ϕ = φ1 UI φ2 be an ST-RA formula, a natural question is how to
design a system that incorporates mode q ∈ Q as subsystems, while ensuring any
trajectory of the system satisfies ϕ. To address this, we formulate the problem
as follows.

Synthesis of Switched System. Given a finite set of discrete modes
Q = { q1, q2, . . . , qm }, a set of vector fields F = { fq1 , fq2 , . . . , fqm }, and a
ST-RA formula ϕ = φ1 UI φ2, the switched system synthesis problem aims
to synthesize a switched system Φ = (Q,F, Init, π), such that Φ |= ϕ.

234 H. Su et al.

Remark 2. The solutions to the above synthesis problem is inherently non-
unique and may encompass trivialities, such as the one only with an empty
initial set. Therefore, our goal is to identify a system with a nontrivial initial set
Init.

4 State-Time Set and Its Calculation

This section dedicates to synthesize a switched system Φ that satisfies the given
ST-RA formula ϕ = φ1 UI φ2. The key idea behind our approach is to compute
a sequence of state-time sets {Xi

q}q∈Q for i ∈ N, where Xi
q denotes the set of all

(x, τ) such that starting from x at time τ in mode q, the system can be driven
to reach φ2 while satisfying φ1 within i times of switches. In what follows, we
first formally propose the concept of state-time sets and show how to calculate
it explicitly. Subsequently, leveraging these state-time sets, we demonstrate the
synthesis of a switched system that satisfies ϕ in Sect. 5.

4.1 State-Time Sets

The concept of state-time set is formally summarised by the following definition.

Definition 1 (State-time Sets). For any i ∈ N and any q ∈ Q, let Xi
q

denote the set of all state-time pairs (x, τ) such that there exists a controller
π(x) : [τ,∞) → Q, satisfying

(i) π(x)(τ) = q, and the piecewise constant function π(x) contains at most i
discontinuous points;

(ii) (x, τ) |= φ1 UI .−τφ2, where x is the solution of ODE ẋ(t) = fπ(x)(t)(x(t), t)
over [τ,∞) with x(τ) = x, and I .− τ � [l − τ, u − τ] ∩ R≥0 for any interval
I = [l, u].

Intuitively, condition (ii) suggests that the system can be driven to reach φ2

while satisfying φ1 from x at time τ , and condition (i) indicates that the system
initially remains in mode q, and the switching controller undergoes no more than
i switches. From the above definition of state-time sets, the following results can
be derived:

Corollary 1. The following properties hold for the state-time sets {Xi
q}q∈Q:

1. For any q ∈ Q, {Xi
q} is monotonically increasing, i.e. X0

q ⊆ X1
q ⊆ X2

q ⊆ · · · .
2. For any i ∈ N and any x ∈ Xi

q[t=0], x can be driven to satisfy φ1 UIφ2, i.e.
there exists a switching controller π, such that (x, 0) |= φ1 UIφ2, where x is
the trajectory starting from x at time 0 under controller π, and Xq

i [t = 0] �
{x | (x, 0) ∈ Xq

i } is the projection of Xq
i into t = 0.

3. ∪i∈N∪q∈QXi
q[t=0] is the set of all states that can be driven to satisfy φ1 UIφ2.

Switching Controller Synthesis for HSs Against STL Formulas 235

According to Cor. 1, the state-time sets encompass the initial set of the
switched system that we intend to synthesize. However, the state-time set and
controller defined in Def. 1 are not given explicitly. To address this, we first
elucidate the process of calculating the state-time sets.

The subsequent result establishes a relationship between the sets {Xi
q}q∈Q

and {Xi−1
q }q∈Q, forming the foundation for the inductive computation of state-

time sets.

Theorem 1. Follow the notations as before, we have1

1. Given any q ∈ Q, (x, τ) ∈ X0
q if and only if

(x, τ) |= φ1 U (φ2 ∧ (t ∈ I)) (1)

where x is the solution of ODE ẋ(t) = fq(x(t), t) over [τ,∞) with x(τ) = x.
2. Given any q ∈ Q, for any i ≥ 1, (x, τ) ∈ Xi

q if and only if

∃q′ �= q ∈ Q, (x, τ) |= φ1 U Xi−1
q′ (2)

where x is the solution of ODE ẋ(t) = fq(x(t), t) over [τ,∞) with x(τ) = x.

For any formula ψ(u, v), let QE (∃u, ψ(u, v)) � {v | ∃u, s.t. ψ(u, v) holds}
denote the set of all v for which ∃u, ψ(u, v) is true. Utilizing this notation, the
state-time sets can be represented inductively.

Theorem 2. For any q ∈ Q, suppose the solution of ODE ẋ(t) = fq(x(t)) with
initial x at time τ is denoted by Ψ(· ;x, τ, q), then the state-time sets can be
inductively represented by

X0
q = QE

(
∃δ ≥ 0,

(
φ2[(x, t)=(Ψ(t + δ;x, t, q), t + δ)] ∧ (t + δ ∈ I)

)
(3)

∧
(
∀0 ≤ h ≤ δ, φ1[(x, t)=(Ψ(t + h;x, t, q), t + h)]

))

Xi
q =

∨
q′ �=q

QE
(
∃δ ≥ 0,

(
Xi−1

q′ [(x, t)=(Ψ(t + δ;x, t, q), t + δ)]
)

(4)

∧
(
∀0 ≤ h ≤ δ, φ1[(x, t)=(Ψ(t + h;x, t, q), t + h)]

))

for any q ∈ Q and any i ∈ N.

Remark 3. When ψ(u, v) consists of a Boolean combination of polynomial
inequalities, a decidable procedure, such as cylindrical algebraic decomposi-
tion [2], exists for computing QE (∃u, ψ(u, v)). This procedure exhibits a complex-
ity that is double exponential with respect to the number of variables involved.

1 For any a, b ∈ R>0 such that a ≤ b, the constraint a ≤ t ≤ b is concisely denoted as
t ∈ [a, b].

236 H. Su et al.

Remark 4. Our methodology essentially shares the idea of backward induction
in controller synthesis for timed games [9]. However, our approach diverges in
two key aspects: (1) the safety/target sets and timing constraints are intricately
interwoven in ST-RA formula, necessitating their concurrent consideration at
each step of the induction process; (2) our method operates within an infinite-
dimensional space due to the continuous nature of the state space, in contrast
to the backward induction for timed games, which is confined to a finite set of
k-polyhedra.

4.2 Computing/Approximating State-Time Sets

Although Thm. 2 offers an inductive representation of Xi
q, the explicit compu-

tation of Eqs. (3) and (4) are challenging. This difficulty arises from two main
factors: (i) the necessity to explicitly solve the ordinary differential equation in
each mode, and (ii) the high complexity of QE, and the potential inclusion of
non-elementary functions (such as exponential functions) in Eqs. (3) and (4), for
which a generally decidable procedure to solve QE may not exist.

To address the difficulties outlined above, we categorize the dynamics into
constant and non-constant systems. For the constant dynamics, its solution can
be directly computed, and there exists a decidable procedure to solve QE with a
complexity polynomially dependent on the formula length. For the non-constant
dynamics, due to their high complexity, we forego an explicit solution for the
state-time set and instead demonstrate a method to approximate this set.

Constant Dynamics. Suppose the dynamics within each mode q ∈ Q is constant,
and both φ1 and φ2 are Boolean combinations of linear inequalities, Eqs. (3) and
(4) can be effectively solved using readily available solvers, such as Z3 [10]. Thm.
2 directly implies the following result.

Corollary 2. Following the notations as before, suppose the dynamics within
each mode is constant, i.e. fq = aq for any q ∈ Q, and both φ1 and φ2 are
Boolean combinations of linear inequalities, then {Xi

q}q∈Q can be inductively
solved by Eqs. (3) and (4) with Ψ(t;x, τ, q) = x + (t − τ) · aq.

Remark 5. Although QE on polynomial constraints is double-exponential in gen-
eral [2], constant dynamics facilitate a relatively efficient (polynomial in formula
length) solving procedure. This comes from the following observation: (1) the QE
procedure in Eqs. (3) and (4) operates in polynomial time when the constraints
are linear and involve only a single existential and a single universal variable [46,
Thm 6.2]. (2) if Xi−1

q is linear for all q ∈ Q, then Xi
q is also linear.

We now illustrate the computation process of Xi
q via the following example.

Example 2. Let’s reconsider the reactor system in Exmp. 1. The reactor system
consists of two modes q1 and q2 with fq1 = 1, fq2 = −1, and the liquid level
requirement is ϕ = (0 ≤ h ≤ 4)U[3,4](3 ≤ h ≤ 5).

Switching Controller Synthesis for HSs Against STL Formulas 237

Fig. 3. The state-time sets calculation of the reactor system in Exmp. 1. The state-time
sets reach a fixpoint after 2 iteration.

Based on Eqs. (3) and (4), the state-time sets we calculate are illustrated in
Fig. 3. The procedure reaches a fixpoint within 2 iterations for any q ∈ Q. �

Non-constant Dynamics. Assuming that the dynamics are non-constant, the
exact computation of Eqs. (3) and (4) may prove to be overly complex or
potentially undecidable. We thus seek to inner-approximate the state-time sets.
According to Thm. 1,

– X0
q is the set from which the system in mode q will satisfy φ1 U (φ2 ∧ (t ∈ I));

– Xi
q is the set from which the system in mode q will satisfy φ1 U Xi−1

q′ for some
q′ ∈ Q.

We identify that the crucial element for inner-approximating the state-time sets
lies in employing a method that finds sets from which the system will satisfy a
classical ‘until’ or ‘reach-avoid’ formula2. Numerous studies have explored this
issue; in this paper, we employ the approach proposed in [52].

Theorem 3 (Inner-approximation of Reach-avoid Set [52]). Given
dynamic system ẋ(t) = f(x(t)), safety set ψ1 ⊆ R

n and target set ψ2 ⊆ R
n.

If there exists continuously differentiable function v(x) : ψ1 → R and w(x) :
ψ1 → R, satisfying3

⎧
⎪⎨
⎪⎩

∇xv(x) · f(x) ≥ 0, ∀x ∈ ψ1 \ ψ2,

v(x) − ∇xw(x) · f(x) ≤ 0, ∀x ∈ ψ1 \ ψ2,

v(x) ≤ 0, ∀x ∈ ∂ψ1,

then any trajectory starting from {x | v(x) ≥ 0} satisfies formula ψ1 U ψ2.

Remark 6. The synthesis of function v(x) and w(x) can be reduce to a SDP
problem. For a detailed formulation, we refer the reader to [52].

Since the state-time sets Xi
q depend on both the state x and time t, we first

lift the dynamics of each mode to a higher dimension that incorporates time
2 This problem is also referred to as the inner approximation of the reach-avoid prob-

lem.
3 ∇xv(x) represents the gradient of v(x) with respect to x, ψ1 denotes the closure of

set ψ1 and ∂ψ1 refers to the boundary of ψ1.

238 H. Su et al.

t. Specifically, the dynamics in mode q are transformed into
(
ẋ, ṫ

)
= (fq, 1).

Subsequently, employing Thms. 3 and 1, we can inductively inner-approximate
the state-time set Xi

q. The resulting approximation is denoted by X̃i
q.

Example 3. Consider a temperature control system featuring two modes, q1 and
q2, with dynamics given by fq1 = 20−0.2x−0.001x2 and fq2 = −0.2x−0.001x2,
where x represents the temperature. The

Fig. 4. The state-time sets approx-
imation of temperature controller
system

control objective is defined by the ST-RA
formula ϕ = (20 ≤ x ≤ 80)U[4,5](60 ≤ x ≤
80).

Figure 4 presents the result obtained by
inner-approximating4 X0

q1 , X0
q2 , X1

q1 , and
X0

q2 . Based on the results, we observe that
when x is within the range of [20, 80] in mode
q1, the system can satisfy ϕ without any
switching. However, for x ∈ [20, 80] in mode
q2, at least one switch is necessary for ϕ to
be satisfied. �

Algorithm 1. Synthesis of Switched system
Require: Q, F , ϕ = φ1 UIφ2, and k � k is the upper bound of switching time
Ensure: A switched system Φ = (Q, F, Init, π), such that Φ |= ϕ
1: for all q ∈ Q do
2: X0

q ← inner-approximate/explicitly calculate X0
q

3: Init(q)0 ← X0
q [t=0]

4: end for
5: for i = 1, 2, · · · , k do
6: for all q ∈ Q do
7: Xi

q ← inner-approximate/explicitly calculate Xi
q

8: Init(q)i ← (Xi
q \ Xi−1

q)[t=0] � Init(q)i is recorded for controller synthesis
9: end for

10: end for
11: Init ← ∪q∈Q ∪k

i=0 Init(q)
i � Initial set

12: Call Alg. 2 to obtain controller π � Given any x0 ∈ Init, Alg. 2 computes
the controller that drives x0 to satisfy ϕ

5 Synthesizing Switched Systems

In this section, we demonstrate the synthesis of a switched system Φ that con-
forms to the formula ϕ = φ1,UI , φ2. This synthesis builds on the state-time
sets introduced in Sect. 4. We initially outline the synthesis procedure for the
switched system in Alg. 1 and subsequently describe the extraction of a switch-
ing controller in Alg. 2.

4 The approximation of X0
q2 and X1

q1 is an empty set, hence it is not depicted.

Switching Controller Synthesis for HSs Against STL Formulas 239

Switched System Synthesis. We now summary the synthesis algorithm in Alg.
1. Given any k ∈ N that serves as a prescribed upper bound of switching time,
Alg. 1 inductively calculates/inner-approximates5 state-time sets {Xi

q}q∈Q (line
2, 7), and partition Xk

q [t = 0] into Init(q)i � (Xi
q \ Xi−1

q)[t = 0] (line 3, 8) for
i = 0, 1, . . . , k. Init(q)i denote the set of states (in mode q) that can be driven to
satisfy ϕ with at least i times of switching (cf. Cor. 1). The initial set is defined
by

Init = ∪q∈Q ∪k
i=0 Init(q)

i,

which contains states that can be driven to satisfy ϕ within k times of switching,
and the switching controller π is synthesized by Alg. 2 (line 12).

Switching Controller Synthesis. For any x0 ∈ Init, Alg. 2 computes the con-
troller that drives x0 to satisfy ϕ. Alg. 2 first finds Init(q0)l that contains x0

with l be the smallest index (line 1). l is the smallest switching time that can
drive x0 to satisfy ϕ, and the subscript q0 indicates x0 first lies in mode q0.

Algorithm 2. Switching controller synthesis
Require: x0, {Xi

q}k
i=0, and {Init(q)i}k

i=0 � x0 is the initial state
Ensure: π(x0) � The switching controller
1: Find the initial set Init(q0)

l that includes x0 and has the smallest index l
2: Select q0 as initial mode, t0 ← 0
3: for j = 1, · · · , l do
4: for q ∈ Q do
5: if Reach(˜t; xj−1, tj−1, qi−1) ⊆ Xl−j

q̃ [t = ˜t] for some ˜t > tj−1, q̃ ∈ Q then

6: Select tj ← ˜t, qj ← q̃
7: xj ← Reach(tj ; xj−1, tj−1, qj−1)
8: Break
9: end if

10: end for
11: end for
12: π(x0) = (q0, t0)(q1, t1) · · · (ql, tl) � Representing a piecewise constant function

such that π(x0)(t) = qi if ti ≤ t < ti+1

Line 4–10 find the next switching time and switching mode. Let
Reach(t;x0, t0, q) denote the over-approximation of the reachable set starting
from (x0, t0) in mode q at time t. Next switching time t̃ and switching mode q̃

are chosen to ensure that the system enters X l−j
q̃ at time t̃ in mode qj−1, this is

formally encoded by

Reach(t̃;xj−1, tj−1, qi−1) ⊆ X l−j
q̃ [t = t̃].

5 To clarify, we continue to use Xi
q to represent the inner approximation of the state-

time sets, rather than using ˜Xi
q.

240 H. Su et al.

In line 12, the controller π maps x0 to a piecewise constant function π(x0) =
(q0, t0)(q1, t1) · · · (ql, tl), which represents a function that maps t to qi if ti ≤ t <
ti+1.

Remark 7. Numerous methods are available to estimate the reachable set of a
dynamic system [6,50,51]. In this paper, we employ Flow* [7], a method based
on Taylor model, to over-approximate the reachable set.

Remark 8. Assuming that the dynamics (i.e. fq) within each mode remain con-
stant, the reachable set can be explicitly calculated. This, in conjunction with
the explicit calculation of state-time sets, is crucial for demonstrating relative
completeness in the context of constant dynamics (c.f. Thm. 4).

Remark 9. For non-constant dynamics, since the state-time sets and reachable
sets are inner- and over-approximated, there may exist an initial state x0 that
can be driven to satisfy the ST-RA formula, while our method fails to identify
a controller.

We now illustrate our approach through two examples.

Example 4. In Exmp. 2, we have obtained the state-time sets {Xi
q1 ,X

i
q2} for

i ≤ 2, thus, according to Alg. 1 (with k = 2), we have

Init(q1)0 = [0, 1], Init(q1)1 = (1, 2], Init(q1)2 = (2, 4]

Init(q2)0 = ∅, Init(q2)1 = [0, 4], Init(q2)2 = ∅.

Based on these sets, we can synthesize a switched system Φ with Init = {h |
0 ≤ h ≤ 4}. The corresponding switching controller π is defined by

π(x0) =

{
(q1, 0), if 0 ≤ x0 ≤ 1
(q2, 0)(q1, x0−1

2), if 1 < x0 ≤ 4. �

Fig. 5. Switching controller
synthesis of Exmp. 3

Example 5. Let’s reconsider Exmp. 3, we demon-
strate our approach by synthesizing the switching
controller for initial state x0 = 80 in mode q2. The
reachable set Reach(t;x0, t0, q2) is represented by
green boxes in Fig. 5. We observe the reachable set
will enter X0

q1 for any t ∈ [0, 2], this implies initial
state x0 = 80 in mode q2 can be driven to sat-
isfy ϕ if the system switches into mode q1 within
time interval [0, 2], i.e. π(80) = (q2, 0)(q1, t̃) for any
t̃ ∈ [0, 2]. �

Switching Controller Synthesis for HSs Against STL Formulas 241

The following result states the advantages of our approach.

Theorem 4 (Soundness, Relative Completeness, Minimal Switching
Property). Given modes Q, vector fields F , and formula ϕ = φ1 UI φ2, the
following results hold:

1. Alg. 1 is sound, that is Φ |= ϕ;
2. Alg. 1 is relatively complete for constant dynamics: for any x ∈ R

n, if x can
be driven to satisfy ϕ with some controller π, then there exists k ∈ N

6, such
that the initial set of the synthesized switched system contains x.

3. The controller synthesized in Alg. 2 features minimal switching property for
constant dynamics: for any x0 ∈ Init, there does not exists any controller
π′, that can drive x0 to satisfy ϕ with switching time (equivalently, number
of discontinuous points of π′(x0)) less than π(x0).

Remark 10. Suppose the dynamic in each mode can be explicitly solved and
there exists a decidable procedure for solving QE(·) in Eqs. (3) and (4), then
Alg. 1 is also relatively complete and the corresponding controller also features
minimal switching property.

6 Experimental Evaluation

We develop a prototype of our synthesis method in Python, employing the Z3
solver [10] to explicitly compute the state-time sets for HSs with constant dynam-
ics7. For HSs with linear or polynomial dynamics, we use the semidefinite pro-
gramming solver MOSEK [30] to approximate the state-time set. The prototype
is evaluated on various benchmark examples using a laptop with a 3.49 GHz
Apple M2 processor, 8 GB RAM, and macOS 14.3.

As shown in Table 1, our experiments involve five distinct models, with three
exhibiting constant dynamics and two exhibiting non-constant dynamics. We
adjust the model scale or the ST-RA formula for each model to assess the effi-
cacy of our method under varying conditions. And there are 15 different bench-
marks in total included in our study. Table 2 details the empirical results of the
benchmarks. In each case, the synthesis process continues iterating until either
a fixpoint is achieved or the maximum calculation time of 5 min is met.

Our empirical results illustrate that our method is capable of effectively syn-
thesizing controllers for models with both constant and non-constant dynamics.
Notably, for models with constant dynamics, the iterative process tends to con-
verge to a fixpoint, meaning that a complete controller is achieved. Moreover, the
synthesis time for these controllers is significantly influenced by both the scale
of the model and the complexity of ST-RA formulas. Specially, our analysis
reveals: (i) an increased number of modes (Reactor) or a higher state dimension
(CarSeq) both lead to prolonged synthesis times, (ii) more intricate predicates
6 In fact, k can be chosen to the number of discontinuous points of π(x).
7 The results and the scripts to reproduce them are available at Figshare [17] or Github

https://github.com/Han-SU/BenchMark STLControlSyn4HS.

https://github.com/Han-SU/BenchMark_STLControlSyn4HS

242 H. Su et al.

Table 1. ST-RA Specifications

Model ST-RA Formulas

Reactor [55] ϕ : (10≤ tempe≤90) ∧ (0≤cooling ≤1)U[15,20](40≤ tempe≤50)

ϕ1 : (10 ≤ lev0 ≤95)∧(10≤ lev1 ≤ 95)∧(|lev0−lev1|≤10)U[50,60](50≤ lev0 ≤80)
∧(50≤ lev1 ≤80)

WaterTank [33] ϕ2 : (10 ≤ lev0 ≤95)∧(10≤ lev1 ≤ 95)∧(|lev0−lev1|≤10)U[30,40](50≤ lev0 ≤80)
∧(50≤ lev1 ≤80)

ϕ3 : (10 ≤ lev0 ≤95)∧(10≤ lev1 ≤ 95)U[30,40](50≤ lev0 ≤ 80) ∧ (50≤ lev1 ≤80)

ϕ1 : (1≤pos0−pos1 ≤3)U[2,3](20≤pos0 ≤25)
CarSeq [5]

ϕ2 : (1≤pos0−pos1 ≤3)∧(1≤pos1−pos2)U[2,3] (20≤pos0 ≤25)

ϕ3 : (1≤pos0−pos1 ≤3)∧(1≤pos1−pos2 ≤3)∧(1≤pos2−pos3)U[2,3]
(20≤pos0 ≤25)

Oscillator [52] ϕ : (x2+y2 ≤1)U[3,4](x
2+y2 ≤0.01)

ϕ1 : ∧i=1,2,3(23≤ tempi≤29)U[8,10]∧i=1,2,3 (26≤ tempi ≤28)
Temperature [5]

ϕ2 : ∧i=1,2,3(23≤ tempi≤29)U[8,10]∧i=1,2,3 (26≤ tempi ≤28)∧(temp2 ≤ temp1)

ϕ3 : ∧i=1,2,3(23≤ tempi≤29)U[8,10]∧i=1,2,3 (26≤ tempi ≤28)∧(temp2 ≤ temp1)
∧(temp3 ≤ temp2)

More detail explanation of the ST-RA formula can be found in the full version of this paper [40].

Table 2. Empirical results on benchmark examples

Model DynamicsST-RA
Model ScaleSynthesis Time

ndim nmode #Iter. Time (s)

Reactor [55] Const ϕ 2 4 6 (fp) 0.31

ϕ 2 8 6 (fp) 4.14

ϕ 2 10 6 (fp) 8.01

WaterTank [33] Const ϕ1 2 7 9 (fp) 18.04

ϕ2 2 7 6 (fp) 10.63

ϕ3 2 7 6 (fp) 5.24

CarSeq [5] Const ϕ1 2 4 5 (fp) 1.12

ϕ2 3 8 7 (fp) 47.41

ϕ3 4 16 4 134.79

Oscillator [52] Poly ϕ 2 3 6 77.20

ϕ 2 4 6 106.09

ϕ 2 5 6 155.77

Temperature [5] Linear ϕ1 3 8 5 236.99

ϕ2 3 8 5 293.66

ϕ3 3 8 5 252.32

Dynamics: the type of continuous dynamics; ST-RA: formulas
to be satisfied (cf. Table 1);
ndim: dimension of state; nmode: number of modes; #Iter.:
number of iterations, (fp) means the synthesized set Xi

q (cf.
Sect. 5) reach a fixpoint at current iteration.

Switching Controller Synthesis for HSs Against STL Formulas 243

or larger future-reach time8 (WaterTank) results in increased synthesis times.
For the third benchmark within CarSeq, the model does not reach a fixpoint,
primarily because the large model scale rapidly increase the formula size, posing
substantial challenges for the Z3 solver.

When dealing with non-constant dynamics, an approximation method is
applied, thereby a fixpoint might not be achievable. The influence of model
scale on synthesis time remains consistent with that observed in constant ODE
models, as evidenced in Oscillator. Interestingly, the synthesis time for controllers
using approximation methods is less affected by the complexity of the ST-RA
formula. For example, in Temperature, despite ϕ3 being more complex than ϕ2,
it requires less synthesis time, primarily because the complexity of SDP is influ-
enced more by state space dimensions than by constraints.

Overall, our method exhibits a high capability in synthesizing switching con-
troller for HSs with various dynamics. It can achieve sound and complete results
for constant dynamics within a reasonable time. For more general dynamics, our
method can still synthesize a sound result in a reasonable time.

7 Related Work

HSs have been a key research focus in the academic community [47]. The
autonomous verification and synthesis of HSs began from timed automata [1].
Subsequently, various mathematical models, including hybrid automata [18,19],
delay differential systems [14,56], stochastic systems [13,31], have been employed
to reason about HSs. For a survey of these methods, we refer to [11].

In the realm of formal synthesis of HSs, different methods [21,42] can be
classified along several dimensions. (i) Along the designable part of the system,
the synthesis problem can be categorized into feedback controller synthesis [38],
switching controller synthesis [20,22], and reset controller synthesis [8,25,41].
(ii) Along the properties of interest, the problem can be classified into safety
controller synthesis, liveness controller synthesis, etc.

Switching controller synthesis [22], shaping HSs by strategically constraining
their discrete behavior, can be categorized into two fundamentally approaches.
The first is based on constraint solving [42,55]. This approach highly dependents
on finding suitable certificate templates, which is challenging to generate man-
ually. The other approach is abstraction-based method. Given its capability to
easily handle complex temporal specifications, this method has been increasingly
adopted in recent research [4,16,26].

The synthesis of HSs against reach-avoid type specifications, similar to those
discussed in this paper, predominantly focuses on feedback controllers. Notable
methods include Counterexample-Guided Inductive Synthesis (CEGIS) [36,37],
optimization-based methods [52], and others [15,32].

8 Future-reach time represents the maximum time horizon required to verify the cor-
rectness of an STL formula [5], in WaterTank, the future-reach times of ϕ1, ϕ2, and
ϕ3 are 60, 40, and 40 respectively.

244 H. Su et al.

When considering STL as the specification, most works focus solely on the
continuous dynamics of HSs. Raman et al. proposed a method to encode the
STL specification of a hybrid system into MILP [34]. This method was further
employed to synthesize robust controllers [35]. The Control Barrier Function-
based method can also extends to synthesize feedback controllers with respect
to STL specification [23]. Recently, [29] utilizes reinforcement learning technique
to synthesize robust controllers for essential discrete-time systems. To the best of
our knowledge, [39] is the only work that considers controller synthesis problem
of switched systems against STL specification. However, [39] focuses on synthe-
sizing switch input for the hybrid automata with discrete dynamics, while our
work aims at synthesizing switching controllers that determine the switch time
for the system.

8 Conclusion

We proposed a novel method to synthesize switching controllers for HSs against
a fragment of the STL. Our method iteratively calculates the state-time set for
each mode, which services as foundation of the synthesize algorithm. The distinc-
tive feature of our approach lies in its soundness and relative completeness. Our
preliminary experiments, leveraging a range of notable examples from existing
literature, have effectively demonstrated the method’s efficiency and efficacy.

For future work, we plan to continue to explore in two directions. (i) Enlarge
the range of specifications under consideration to encompass general STL formu-
las featuring nested temporal operators. The primary challenge here is devising
a unified, recursive formula reasoning approach for general STL specifications.
(ii) Broaden the types of controllers that can be synthesized from the calculated
state-time sets.

Data Availability Statement. The experimental results of this paper may be repro-
duced using the artifact on Figshare [17].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition i:
the basic algorithm. SIAM J. Comput. 13(4), 865–877 (1984)

3. Atkins, E.M., Bradley, J.M.: Aerospace cyber-physical systems education. In:
AIAA Infotech@ Aerospace (I@ A) Conference, p. 4809 (2013)

4. Aydin Gol, E., Lazar, M., Belta, C.: Language-guided controller synthesis for
discrete-time linear systems. In: Proceedings of the 15th ACM international con-
ference on Hybrid Systems: Computation and Control, pp. 95–104 (2012)

5. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using
syntactic separation. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)

6. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: 2012 IEEE 33rd Real-Time Systems Symposium,
pp. 183–192. IEEE (2012)

Switching Controller Synthesis for HSs Against STL Formulas 245

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

8. Clegg, J.C.: A nonlinear integrator for servomechanisms. Trans. Am. Inst. Electr.
Eng. Part II Appl. Ind. 77(1), 41–42 (1958)

9. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The ele-
ment of surprise in timed games. In: Amadio, R., Lugiez, D. (eds.) CONCUR
2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45187-7 9

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. Deshmukh, J.V., Sankaranarayanan, S.: Formal techniques for verification and test-
ing of cyber-physical systems. In: Al Faruque, M.A., Canedo, A. (eds.) Design
Automation of Cyber-Physical Systems, pp. 69–105. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-13050-3 4

12. Engell, S., Kowalewski, S., Schulz, C., Stursberg, O.: Continuous-discrete interac-
tions in chemical processing plants. Proc. IEEE 88(7), 1050–1068 (2000)

13. Feng, S., Chen, M., Xue, B., Sankaranarayanan, S., Zhan, N.: Unbounded-time
safety verification of stochastic differential dynamics. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 327–348. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8 18

14. Feng, S., Chen, M., Zhan, N., Fränzle, M., Xue, B.: Taming delays in dynamical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 650–669.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 37

15. Fränzle, M., Chen, M., Kröger, P.: In memory of oded maler: automatic reachability
analysis of hybrid-state automata. ACM SIGLOG News 6(1), 19–39 (2019)

16. Girard, A.: Controller synthesis for safety and reachability via approximate bisim-
ulation. Automatica 48(5), 947–953 (2012)

17. Han, S., Shenghua, F., Sinong, Z., Naijun, Z.: Benckmark examples of paper
“switching controller synthesis for hybrid systems against STL formulas.” Figshare.
Software (2024). https://doi.org/10.6084/m9.figshare.26057410.v1

18. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings 11th Annual
IEEE Symposium on Logic in Computer Science, pp. 278–292. IEEE (1996)

19. Henzinger, T.A., Majumdar, R.: Symbolic model checking for rectangular hybrid
systems. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
142–156. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0 11

20. Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid
systems. In: Proceedings of the Ninth ACM International Conference on Embedded
Software, pp. 107–116 (2011)

21. Jin, X., An, J., Zhan, B., Zhan, N., Zhang, M.: Inferring switched nonlinear dynam-
ical systems. Formal Aspects Comput. 33(3), 385–406 (2021)

22. Liberzon, D.: Switching in Systems and Control, vol. 190. Springer (2003). https://
doi.org/10.1007/978-1-4612-0017-8

23. Lindemann, L., Dimarogonas, D.V.: Control barrier functions for signal temporal
logic tasks. IEEE Control Syst. Lett. 3(1), 96–101 (2018)

24. Lindemann, L., Nowak, J., Schönbächler, L., Guo, M., Tumova, J., Dimarogonas,
D.V.: Coupled multi-robot systems under linear temporal logic and signal temporal
logic tasks. IEEE Trans. Control Syst. Technol. 29(2), 858–865 (2019)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-13050-3_4
https://doi.org/10.1007/978-3-030-53291-8_18
https://doi.org/10.1007/978-3-030-53291-8_18
https://doi.org/10.1007/978-3-030-25540-4_37
https://doi.org/10.6084/m9.figshare.26057410.v1
https://doi.org/10.1007/3-540-46419-0_11
https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1007/978-1-4612-0017-8

246 H. Su et al.

25. Liu, J., et al.: Correct-by-construction for hybrid systems by synthesizing reset
controller. arXiv preprint arXiv:2309.05906 (2023)

26. Liu, J., Ozay, N., Topcu, U., Murray, R.M.: Synthesis of reactive switching proto-
cols from temporal logic specifications. IEEE Trans. Autom. Control 58(7), 1771–
1785 (2013)

27. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

28. Mazo, M., Davitian, A., Tabuada, P.: PESSOA: a tool for embedded controller syn-
thesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
566–569. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 49

29. Meng, Y., Fan, C.: Signal temporal logic neural predictive control. IEEE
Robot. Autom. Lett. 8(11), 7719–7726 (2023). https://doi.org/10.1109/LRA.2023.
3315536

30. Mosek, A.: The MOSEK optimization toolbox for MATLAB manual. Version 7.1
(revision 28) (2015). http://mosek.com. Accessed 20 Mar 2015

31. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1428 (2007)

32. Prajna, S., Rantzer, A.: Convex programs for temporal verification of nonlinear
dynamical systems. SIAM J. Control. Optim. 46(3), 999–1021 (2007)

33. Raisch, J., Klein, E., Meder, C., Itigin, A., O’Young, S.: Approximating automata
and discrete control for continuous systems — two examples from process control.
In: Antsaklis, P., Lemmon, M., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1997.
LNCS, vol. 1567, pp. 279–303. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-49163-5 16

34. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Model predictive control with signal temporal logic specifications. In:
53rd IEEE Conference on Decision and Control, pp. 81–87. IEEE (2014)

35. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis
from signal temporal logic specifications. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, pp. 239–248 (2015)

36. Ravanbakhsh, H., Sankaranarayanan, S.: Counterexample-guided stabilization of
switched systems using control lyapunov functions. In: Proceedings of the 18th
International Conference on Hybrid Systems: Computation and Control, pp. 297–
298 (2015)

37. Ravanbakhsh, H., Sankaranarayanan, S.: Robust controller synthesis of switched
systems using counterexample guided framework. In: Proceedings of the 13th Inter-
national Conference on Embedded Software, pp. 1–10 (2016)

38. Sanfelice, R.G.: Hybrid Feedback Control. Princeton University Press (2021)
39. da Silva, R.R., Kurtz, V., Lin, H.: Symbolic control of hybrid systems from signal

temporal logic specifications. Guidance Navig. Control 1(02), 2150008 (2021)
40. Su, H., Feng, S., Zhan, S., Zhan, N.: Switching controller synthesis for hybrid

systems against STL formulas. arXiv preprint arXiv:2406.16588 (2024)
41. Su, H., et al.: Reset controller synthesis by reach-avoid analysis for delay hybrid

systems. arXiv preprint arXiv:2309.05908 (2023)
42. Taly, A., Gulwani, S., Tiwari, A.: Synthesizing switching logic using constraint

solving. Int. J. Softw. Tools Technol. Transfer 13(6), 519–535 (2011)

http://arxiv.org/abs/2309.05906
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1109/LRA.2023.3315536
https://doi.org/10.1109/LRA.2023.3315536
http://mosek.com
https://doi.org/10.1007/3-540-49163-5_16
https://doi.org/10.1007/3-540-49163-5_16
http://arxiv.org/abs/2406.16588
http://arxiv.org/abs/2309.05908

Switching Controller Synthesis for HSs Against STL Formulas 247

43. Tomlin, C.J., Lygeros, J., Sastry, S.S.: A game theoretic approach to controller
design for hybrid systems. Proc. IEEE 88(7), 949–970 (2000)

44. Wang, Y., et al.: Joint differentiable optimization and verification for certified rein-
forcement learning. In: Proceedings of the ACM/IEEE 14th International Confer-
ence on Cyber-Physical Systems (with CPS-IoT Week 2023), pp. 132–141 (2023)

45. Wang, Y., et al.: Enforcing hard constraints with soft barriers: safe reinforce-
ment learning in unknown stochastic environments. In: International Conference
on Machine Learning, pp. 36593–36604. PMLR (2023)

46. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.
5(1–2), 3–27 (1988)

47. Witsenhausen, H.: A class of hybrid-state continuous-time dynamic systems. IEEE
Trans. Autom. Control 11(2), 161–167 (1966)

48. Wu, Q., et al.: Boosting long-delayed reinforcement learning with auxiliary short-
delayed task. arXiv preprint arXiv:2402.03141 (2024)

49. Wu, Q., et al.: Variational delayed policy optimization. arXiv preprint
arXiv:2405.14226 (2024)

50. Xue, B., Fränzle, M., Zhan, N.: Inner-approximating reachable sets for polynomial
systems with time-varying uncertainties. IEEE Trans. Autom. Control 65(4), 1468–
1483 (2019)

51. Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by
polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
457–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 25

52. Xue, B., Zhan, N., Fränzle, M., Wang, J., Liu, W.: Reach-avoid verification based
on convex optimization. IEEE Trans. Autom. Control 69, 598–605 (2023)

53. Ye, P., Entcheva, E., Smolka, S.A., Grosu, R.: Modelling excitable cells using cycle-
linear hybrid automata. IET Syst. Biol. 2(1), 24–32 (2008)

54. Zhan, S.S., Wang, Y., Wu, Q., Jiao, R., Huang, C., Zhu, Q.: State-wise safe rein-
forcement learning with pixel observations. arXiv preprint arXiv:2311.02227 (2023)

55. Zhao, H., Zhan, N., Kapur, D.: Synthesizing switching controllers for hybrid sys-
tems by generating invariants. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories
of Programming and Formal Methods. LNCS, vol. 8051, pp. 354–373. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4 22

56. Zou, L., Fränzle, M., Zhan, N., Mosaad, P.N.: Automatic verification of stability
and safety for delay differential equations. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 338–355. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21668-3 20

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2402.03141
http://arxiv.org/abs/2405.14226
https://doi.org/10.1007/978-3-319-41528-4_25
http://arxiv.org/abs/2311.02227
https://doi.org/10.1007/978-3-642-39698-4_22
https://doi.org/10.1007/978-3-319-21668-3_20
https://doi.org/10.1007/978-3-319-21668-3_20
http://creativecommons.org/licenses/by/4.0/

On Completeness of SDP-Based Barrier
Certificate Synthesis over Unbounded

Domains

Hao Wu1 , Shenghua Feng2 , Ting Gan3 , Jie Wang4 ,
Bican Xia5 , and Naijun Zhan1,6(B)

1 State Key Laboratory of Computer Science, Institute of Software,
University of Chinese Academy of Sciences, Beijing, China

{wuhao,znj}@ios.ac.cn
2 Zhongguancun Laboratory, Beijing, China

fengsh@zgclab.edu.cn
3 School of Computer Science, Wuhan University, Wuhan, China

ganting@whu.edu.cn
4 Academy of Mathematics and Systems Science, CAS, Beijing, China

wangjie212@amss.ac.cn
5 School of Mathematical Sciences, Peking University, Beijing, China

xbc@math.pku.edu.cn
6 School of Computer Science, Peking University, Beijing, China

Abstract. Barrier certificates, serving as differential invariants that
witness system safety, play a crucial role in the verification of cyber-
physical systems (CPS). Prevailing computational methods for synthe-
sizing barrier certificates are based on semidefinite programming (SDP)
by exploiting Putinar Positivstellensatz. Consequently, these approaches
are limited by the Archimedean condition, which requires all variables
to be bounded, i.e., systems are defined over bounded domains. For sys-
tems over unbounded domains, unfortunately, existing methods become
incomplete and may fail to identify potential barrier certificates.

In this paper, we address this limitation for the unbounded cases.
We first give a complete characterization of polynomial barrier certifi-
cates by using homogenization, a recent technique in the optimization
community to reduce an unbounded optimization problem to a bounded
one. Furthermore, motivated by this formulation, we introduce the defi-
nition of homogenized systems and propose a complete characterization
of a family of non-polynomial barrier certificates with more expressive
power. Experimental results demonstrate that our two approaches are
more effective while maintaining a comparable level of efficiency.

Keywords: Safety · Barrier certificates · Semidefinite programming ·
Homogenization

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 248–266, 2025.
https://doi.org/10.1007/978-3-031-71177-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_16&domain=pdf
http://orcid.org/0000-0001-9368-4744
http://orcid.org/0000-0002-5352-4954
http://orcid.org/0000-0002-4880-5129
http://orcid.org/0000-0002-9681-1451
http://orcid.org/0000-0002-2570-2338
http://orcid.org/0000-0003-3298-3817
https://doi.org/10.1007/978-3-031-71177-0_16

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 249

1 Introduction

With recent advancements in optimization theory and computational techniques,
Cyber-Physical Systems (CPS), which involve the seamless integration of phys-
ical components and software systems, have proliferated across various appli-
cation domains. A significant subset of CPS, known as safety-critical systems,
presents a heightened level of concern. Failures or malfunctions in such systems
can lead to severe safety risks for individuals and the environment. Examples
of safety-critical CPS include aircraft, automobiles, integrated medical devices,
nuclear power plants, and biological systems. As a result, ensuring the safety of
these systems has become a primary focus of extensive academic research.

One of the key challenges in CPS verification is the safety problem (or dually,
the reachability problem), i.e., to demonstrate that a system, starting from its
initial states, never enters an unsafe region. In general, the safety problem of CPS
is undecidable [16]. The most challenging aspect of such problem lies in reason-
ing about the continuous dynamics, which are typically described by ordinary
differential equations (ODEs).

Deductive verification, derived from Hoare-style program verification [17],
offers a method to verify safety without directly computing the reachable set.
At the core of deductive verification lies the synthesis of differential invariants
[24,28], which extend the concept of inductive invariants to the continuous-time
domain. Specifically, a differential invariant is a set of states from which any
trajectories starting from it can never escape. With a priori specified template,
the invariant generation problem boils down to solving the constraints encod-
ing the invariant condition. When all involved constraints are polynomial, the
problem is decidable but has time complexity doubly exponential in the number
of variables [24], according to Tarski’s theorem [39] and the complexity for the
quantifier elimination procedure [9]. Consequently, considerable efforts have been
dedicated to identifying differential invariants that allow for efficient synthesis.

In their seminal work [29], Prajna and Jadbabaie introduced the concept of
barrier certificates as witnesses to safety. Namely, a barrier certificate is a real-
valued function whose zero sub-level set serves as a differential invariant, sepa-
rating the set of initial states and the unsafe region. It is important to note that,
for the purpose of efficient synthesis, the barrier certificate condition strengthens
the general condition of differential invariants. Since then, various definitions of
barrier certificates have been proposed, aiming to relax the original barrier cer-
tificate conditions while still allowing for efficient synthesis. Examples of such
definitions include exponential-type barrier certificates [21], Darboux-type bar-
rier certificates [45], general convex barrier certificates [8] and vector barrier
certificates [37], and invariant barrier certificates [41]. Moreover, similar notions
of barrier certificates have been developed for verification problems that involve
control inputs [2,44], disturbances [42], stochastic dynamics [11,18,20,30], and
temporal logic specifications [25,43]. These extensions broaden the applicability
of barrier certificates in various domains. Recently, there are also works aim at
generalizing the notion of k-inductiveness for safety verification, leading to the
definitions of t-barrier certificates [6] and k-inductive barrier certificates [3,4].

250 H. Wu et al.

Sum-of-squares optimization is a well-established computational technique
for synthesizing barrier certificates and has been employed in most of the works
mentioned above. Typically, the barrier certificate conditions are first encoded
into constraints involving sum-of-squares polynomials. These constraints are
then translated into SDP and solved by numerical solvers. In scenarios where the
domains are bounded, one can choose to rely on either a sound characterization
or a complete characterization to encode the conditions. The differences between
these two characterizations are often overlooked, as their formulations are quite
similar. However, when dealing with systems defined over unbounded domains,
the sound characterization tends to be conservative while the complete charac-
terization can not be utilized due to the violation of the Archimedean condition
in Putinar’s Positivstellensatz. In such unbounded cases, existing methods solely
rely on the sound characterization, potentially leading to conservative results.

Besides sum-of-squares optimization, much effort have been devoted to
incorporate other numerical methods for solving the obtained constraints, for
instance, interval arithmetic [10,12,13], linear programming [35], and data-
driven approaches [1,27,33,46,47].

Contributions. Our main contributions are threefold:

1. We explicitly clarify the connection between the soundness and the com-
pleteness of the sum-of-squares characterization of barrier certificates, which
is mostly overlooked in existing works. This can be considered as a minor
contribution. (See Sect. 3)

2. We utilize the homogenization technique from [19] to derive the first com-
plete sum-of-squares characterization of polynomial barrier certificates over
unbounded domains. (See Sect. 4)

3. We introduce the definition of homogenized systems and consider a specific
class of non-polynomial barrier certificates with more expressive power. We
also propose a complete sum-of-squares characterization for this class of non-
polynomial barrier certificates. (See Sect. 5)

Finally, we implement algorithms for synthesizing barrier certificates based
on the existing incomplete characterization and our two novel complete char-
acterizations. These algorithms are tested over a set of benchmarks with
unbounded domains adapted from the literature. Experimental results demon-
strate that the two complete characterizations are more expressive while main-
taining a comparable level of efficiency. (See Sect. 6)

Organization. The rest of this paper is organized as follows: Sect. 2 introduces
algebraic tools that will be used. Section 3 formulates the barrier certificate syn-
thesis problems and explains the connection between the sound and the complete
characterization in the bounded case. Section 4 proposes the first complete char-
acterization of polynomial barrier certificates over unbounded domains. Section 5
introduces the definition of homogenized systems and extends the results to a
class of non-polynomial barrier certificates. Finally, Sect. 6 reports the experi-
mental results and Sect. 7 concludes the paper.

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 251

2 Preliminaries

In this section, we fix basic notations and introduce necessary concepts concern-
ing sum-of-squares optimization. For interested readers, we recommend [7,23]
for a detailed treatment of this topic.

Basic Notations. Let N, R, R≥0, and R>0 denote the set of all natural num-
bers, the set of reals, non-negative real numbers and the set of positive real
numbers, respectively. The set of continuously differentiable functions over Rn is
denoted by C1(Rn). By convention, we use boldface letters to denote vectors and
vector-valued functions, e.g., x = (x1, . . . , xn) denotes a state variable and f =
(f1, . . . , fn) denotes a vector field. For vectors x,y ∈ R

n, 〈x,y〉 =̂
∑n

i=1 xiyi

represents the inner product of x and y, and ‖x‖ =̂
√〈x,x〉 denotes the stan-

dard Euclidean norm.
Let R[x] denote the set of polynomials in variables x with real

coefficients. A basic semialgebraic set K ⊆ R
n is of the form

{x ∈ R
n | p1(x) � 0, . . . , pm(x) � 0}, where pi(x) ∈ R[x] and � ∈ {≥, >}. An

equality p(x) = 0 can be represented by two inequalities p(x) ≥ 0 and
−p(x) ≥ 0. A basic semialgebraic set is considered closed when its defining
polynomials contain only non-strict inequalities. Semialgebraic sets are formed
as unions of basic semialgebraic sets. i.e.,

⋃n
i=1 Ki, where each Ki is a basic

semialgebraic set.

Sum-of-Squares Polynomials. Given S ⊆ R
n, we say p(x) ∈ R[x] is nonnegative

(resp. strictly positive) over S if p(x) ≥ 0 (resp. p(x) > 0) for any x ∈ S. Sum-
of-squares (SOS) polynomials are an important subset of globally nonnegative
polynomials over R

n. A polynomial p(x) ∈ R[x] is said to be a sum-of-squares
polynomial if it can be expressed as p(x) =

∑m
i=1 pi(x)2, where pi(x) ∈ R[x] for

each i. We use Σ[x] to denote the set of SOS polynomials in variables x.

Putinar’s Theorem. Given polynomials p1, . . . , pm ∈ R[x]. Let K be a closed
basic semialgebraic set described by

K =̂ {x ∈ R
n | p1(x) ≥ 0, . . . , pm(x) ≥ 0} . (1)

The set of polynomials

QM(p1, p2, . . . , pm) =̂
{
σ0 +

m∑

i=1

σipi | σi ∈ Σ[x] for i = 0, 1, . . . ,m
}

is called the quadratic module generated by p1, . . . , pm. A quadratic module
QM is Archimedean, or satisfies the Archimedean condition, if N − ‖x‖2 ∈ QM
for some constant N ∈ N. Since a sum-of-squares polynomial σ(x) ∈ Σ[x] is
nonnegative over R

n, the following result trivially holds.

Proposition 1. Given K as defined in Eq. (1), then

f(x) ∈ QM(p1, . . . , pm) =⇒ f(x) ≥ 0 over K.

252 H. Wu et al.

An important result in real algebraic geometry is Putinar’s Positivstellen-
satz, which states that, under the Archimedean condition, the quadratic module
QM(p1, . . . , pm) contains all polynomials strictly positive over K.

Theorem 1 (Putinar’s Positivstellensatz [23,31]). Given K as defined in
Eq. (1) and a polynomial f ∈ R[x], if QM(p1, . . . , pm) is Archimedean, then

f(x) > 0 over K =⇒ f(x) ∈ QM(p1, . . . , pm).

Here, the condition “QM(p1, . . . , pm) is Archimedean” can be intuitively
understood as K in Eq. (1) is bounded. In one direction, if QM(p1, . . . , pm)
is Archimedean, by Proposition 1, we have N − ‖x‖2 ≥ 0 over K, hence K is
bounded. In the other direction, when K is bounded within a ball {x ∈ R

n |
N − ‖x‖2 ≥ 0}, then we can assume a redundant constraint pm+1 = N − ‖x‖2
and the new quadratic module QM(p1, . . . , pm, pm+1) is Archimedean. In gen-
eral, note that Proposition 1 does not necessarily imply that K is bounded.

3 Problem Formulation

In this section, we formally define the barrier certificate synthesis problem of
interest, and discuss the relation between the sound and the complete sum-of-
squares characterization of polynomial barrier certificates over bounded domains.
The majority of the existing literature, such as [8,21,29,37], primarily focus on
the sound characterization. As far as we are aware, the complete characterization
is only mentioned in [41]. Subsequently, we clarify the connection between these
two characterizations, which can be considered as a minor contribution.

Differential Dynamical Systems. We consider a class of dynamical systems fea-
turing differential dynamics governed by ordinary differential equations (ODEs)
of autonomous type:

ẋ = f(x) (2)

where x ∈ R
n is the state vector, ẋ denotes its temporal derivative dx/dt,

and f : Rn → R
n is a polynomial vector field, i.e., each component fi of f

is a polynomial. Since a polynomial vector field is locally Lipschitz continuous,
ODE (2) admits an unique solution (or trajectory), denoted as ξx0 : R≥0 → R

n,
from any initial state x0 ∈ R

n, such that (1) ξx0(0) = x0 (2) for any t′ ∈ R≥0,
dξx 0
dt

∣
∣
t=t′ = f(ξx0(t

′)).

Safety Verification Problems. Given dynamical system Eq. (2) with domain X ⊆
R

n, initial set I ⊂ X , and unsafe set U ⊂ X , the safety verification problem asks
whether U is reachable from any state in I within X . Formally, let R denote the
reachable set,

R =̂ {x ∈ X | ∃t ∈ R≥0,∃x0 ∈ I. x = ξx0(t)} ,

where we assume that a trajectory will never leave the domain. The system is
said to be safe if U ∩ R = ∅, and unsafe otherwise.

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 253

In this paper, we restrict our focus to the case when X , I, and U are closed
basic semialgebraic sets described by

X =̂
{
x ∈ R

n | gX
i (x) ≥ 0, for i = 1, . . . , mx

}
,

I =̂
{
x ∈ X | gI

i (x) ≥ 0, for i = 1, . . . , mi

}
,

U =̂
{
x ∈ X | gU

i (x) ≥ 0, for i = 1, . . . , mu

}
.

Invariants. A differential invariant is a subset Φ ⊆ X such that any trajectory
starting from Φ stays within Φ forever, i.e.,

∀x0 ∈ Φ,∀t ∈ R≥0. ξx0(t) ∈ Φ.

Utilizing this concept, we can verify the safety of a system without explicitly
computing the reachable set, which is typically intractable for the majority of
nonlinear systems. The idea therein is to find a differential invariant Φ ⊆ X such
that I ⊆ Φ and U ⊆ X\Φ. According to the definition, the differential invariant
Φ serves as an over-approximation of the reachable set R, thereby substantiating
safety of the system.

Barrier Certificates. Barrier certificates encapsulate the conditions requisite
for a zero sub-level set of the form {x ∈ R

n | B(x) ≤ 0} to become a differ-
ential invariant, where B ∈ C1(Rn). For the ease of explanation, we focus on
exponential-type barrier certificates and refer to them as barrier certificates for
simplicity. The technique presented in this paper can be readily extended to
other types of barrier certificates [8,37,41] and hybrid systems (systems con-
taining discrete transitions and continuous evolution) [29].

Theorem 2 (Exponential-type Barrier Certificates, Modified from
[21]). Given the system (2) with sets X , I, and U . For any λ ∈ R, the system
is safe if there exists an exponential-type barrier certificate, namely a real-valued
function B(x) ∈ C1(Rn) satisfying the following conditions

∀x ∈ I. B(x) ≤ 0, (3)
∀x ∈ U . B(x) ≥ εe, (4)
∀x ∈ X . Lf B(x) − λB(x) ≤ 0, (5)

for some real constant εe ∈ R>0, where Lf p(x) =̂ 〈 ∂
∂x p(x),f(x)〉 is the Lie

derivative of p(x) over the vector filed f .

The difference between our Theorem 2 and its original formulation in [21]
lies in Eq. (4), which was written as

∀x ∈ U . B(x) > 0. (4’)

When the unsafe region U is bounded (compact), the two condition Eq. (4) and
Eq. (4’) coincide, as a continuous function over a compact set always attains

254 H. Wu et al.

a minimum. However, when U is unbounded, our formulation is stricter in the
sense that I and U can not be arbitrarily close, otherwise we would be unable
to distinguish between them, as shown in the following Exmp. 1. In theory, εe

can be any real constant in R>0, and the corresponding B(x) will be equivalent
up to a constant factor.

Example 1. Consider a system f(x1, x2) = (x1, 0) with X = R
2, I = {(x1, x2) |

x1x2 + 1 ≤ 0, x1 ≤ 0}, and U = {(x1, x2) | x1x2 − 1 ≥ 0, x1 ≥ 0}. The function
B(x1, x2) = x1 is not a valid barrier certificate according to our definition, as the
condition Eq. (4) is not satisfiable for any εe > 0 (though when εe = 0 Eq. (4’)
is satisfied). In other words, the sets I and U are indistinguishable in practice
when x2 goes to infinity, and our Theorem 2 rules out such cases.

To ensure computational tractability, the barrier certificate B(x) is com-
monly constrained to polynomial forms. One of the prevailing computational
methods for synthesizing B(x) ∈ R[x] is based on the sum-of-squares optimiza-
tion. Now we present the sound and complete sum-of-squares characterizations
of polynomial barrier certificate over bounded domains.

Theorem 3 (Bounded Case). Let X , I, and U be bounded, i.e., the corre-
sponding quadratic module is Archimedean. Given λ ∈ R and εe ∈ R>0, consider
the following constraints with parameter ε,

− B(x) + ε = σI
0 +

mi∑

i=1

gI
i (x)σ

I
i

B(x) − εe + ε = σU
0 +

mu∑

i=1

gU
i (x)σ

U
i

λB(x) − Lf B(x) + ε = σX
0 +

mx∑

i=1

gX
i (x)σX

i

σI
0 , . . . , σI

mi
, σU

0 , . . . , σU
mu

, σX
0 , . . . , σX

mx
∈ Σ[x].

(6)

When ε = 0, Eq. (6) gives a sound characterization of polynomial barrier cer-
tificates, i.e., any solution B(x) ∈ R[x] to the above constraints is a barrier
certificate. When ε > 0, Eq. (6) gives a complete characterization of polynomial
barrier certificates, i.e., any barrier certificate B(x) ∈ R[x] satisfies Eq. (6).

Proof. Proposition 1 and Theorem 1 entail soundness and completeness, respec-
tively. ��

In fact, in most practical cases, Eq. (6) with ε = 0 can be viewed as a
sound and complete characterization. In this situation, completeness follows from
the so-called “finite convergence property” of Theorem 1, which requires the
underlying basic semialgebraic sets X , I, and U to satisfy some side conditions
that are generally true [26]. For now, we do not go deep into these details and just
consider that soundness and completeness are dependent on the parameter ε.

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 255

Unfortunately, when the domain X becomes unbounded, Eq. (6) with ε > 0
is no longer a complete characterization due to the violation of the Archimedean
condition, while the ε = 0 case is still sound. Consequently, we can solely rely on
the sound characterization to synthesize barrier certificates, which may fail to
identify potential solutions as in the following example. So the problem consid-
ered in this paper is, can we derive a complete characterization similar
to Eq. (6) for the unbounded cases?

Example 2. Consider an 1-dimensional system f(x1) = x1 with X = R, I =
{x1 | x3

1 ≥ 0}, and U = {x1 | x1 + 1 ≤ 0}, then B(x1) = −x1 is a barrier
certificate but is not a solution to Eq. (6) with ε = 0. To see this, we only
need to show that there exists no sum-of-squares polynomials σI

0 (x1), σI
1 (x1) ∈

Σ[x1] such that x1 = σI
0 (x1) + x3

1σ
I
1 (x1). Suppose we have such an expression,

by setting x1 = 0, we have σI
0 (0) = 0. Assume that σI

0 can be expressed as
σI
0 (x1) =

∑
i p2i (x1), then σI

0 (0) = 0 implies that pi(0) = 0 for each i, so each pi

factors as pi(x1) = x1p
′
i(x1). Therefore, both σI

0 (x1) and x3
1σ

I
1 (x1) contain no

terms of degree less than 2, which is impossible.

4 A Complete Characterization of Polynomial Barrier
Certificates

In this section, we give an affirmative answer to the question raised above. The
tool we use is a newly introduced technique in the optimization community,
called homogenization [19], to transform an unbounded optimization problem
into a bounded one. In the following, we utilize the homogenization technique to
derive a complete characterization for polynomial barrier certificates purely from
a constraint-solving perspective. In the next section, we will take a different view
of this technique and consider a family of non-polynomial barrier certificates that
arise naturally.

We first fix some notations. Given x ∈ R
n, let x0 be a fresh variable. For a

polynomial p(x) ∈ R[x] of degree d, its homogenization w.r.t. variable x0 is a
new polynomial p̃ ∈ R[x0,x] defined by p̃(x0,x) =̂ xd

0p(x1/x0, . . . , xn/x0). For
example, let f(x1, x2) = x2

1+x2+1, then f̃(x0, x1, x2) = x2
1+x2x0+x2

0. Suppose
K ⊆ R

n is a semialgebraic set as described in Eq. (1), we introduce two related
sets in R

n+1 as follows:

K̃>0 =̂
{
(x0,x) | p̃1(x0,x) ≥ 0, . . . , p̃m(x0,x) ≥ 0, ‖x‖2 + x2

0 = 1, x0 > 0
}

,

K̃ =̂
{
(x0,x) | p̃1(x0,x) ≥ 0, . . . , p̃m(x0,x) ≥ 0, ‖x‖2 + x2

0 = 1, x0 ≥ 0
}

.

One can see that there exists an one-to-one mapping between K̃>0 and K:

Lemma 1. Let K be as in Eq. (1). Then x ∈ K if and only if
(

1
√

1 + ‖x‖2 ,
x1√

1 + ‖x‖2 , . . . ,
xn√

1 + ‖x‖2

)

∈ K̃>0.

Moreover, (x0,x) ∈ K̃>0 if and only if (x1√
1−‖x‖2

, . . . , xn√
1−‖x‖2

) ∈ K.

256 H. Wu et al.

Utilizing the above lemma, we can transform a potentially unbounded set into
a bounded set located on the unit sphere within R

n+1. Moreover, note that points
with x0 = 0 in R

n+1 correspond to points at infinity in R
n. This encourages us

to take the points at infinity into consideration. The related concept is captured
by the following definition.

Definition 1 (Closed at Infinity [26]). A basic semialgebraic set K is closed
at infinity if cl(K̃>0) = K̃, where cl(K̃>0) denotes the closure of K̃>0.

We would like to emphasize that being closed at infinity is a generic
property for semialgebraic sets [15], and its manifestation may be contin-
gent upon the selection of descriptive polynomials. For example, let S1 ={
(x1, x2) | x1 − x2

2 ≥ 0
}
, then S1 is not closed at infinity because

(0,−1, 0) �∈ cl(S̃1>0) and (0,−1, 0) ∈ S̃1.

However, by adding a redundant polynomial inequality x1 ≥ 0 in S1, we can
check S2 =

{
(x1, x2) ∈ R

2 | x1 − x2
2 ≥ 0, x1 ≥ 0

}
(= S1) is closed at infinity. In

this paper, we assume that I, U , and X are all closed at infinity, which is purely
a technical assumption. To check whether a semialgebraic set is closed at ∞, one
can use [15, Thm. 2.11].

The following theorem lies at the core of the homogenization technique.

Theorem 4 ([19, Lem 3.2]). When a basic semialgebraic set K is closed at
infinity, for any polynomial f ∈ R[x]

f(x) ≥ 0 over K ⇐⇒ f̃(x0,x) ≥ 0 over K̃.

Now we present the homogenized version of Theorem 3, which solves the
problem raised at the end of the last section.

Theorem 5. Assume that I, U , and X are all closed at infinity. Given λ ∈ R

and εe ∈ R>0, consider the following constraints with parameter ε,

− B̃(x0,x) + ε = σI
0 +

mi+2∑

i=1

σI
i g̃I

i

B̃(x0,x) − εex
d
0 + ε = σU

0 +
mu+2∑

i=1

σU
i g̃U

i

H̃(x0,x) + ε = σX
0 +

mx+2∑

i=1

σX
i g̃X

i

σI
0 , . . . , σI

mi+1, σ
U
0 , . . . , σU

mu+1, σ
X
0 , . . . , σX

mx+1 ∈ Σ[x0,x],

σI
mi+2, σ

U
mu+2, σ

X
mx+2 ∈ R[x0,x],

(7)

where H(x) =̂ λB(x)−Lf B(x), d is the degree of degB(x), g̃I
mi+1 = g̃U

mu+1 =
g̃X

mx+1 = x0, and g̃I
mi+2 = g̃U

mu+2 = g̃X
mx+2 = x2

0+‖x‖2 −1. When ε = 0, Eq. (7)

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 257

gives a sound characterization of polynomial barrier certificates, i.e., any solution
B(x) ∈ R[x] of degree d to the above constraints is a barrier certificate. When
ε > 0, Eq. (7) gives a complete characterization of polynomial barrier certificates,
i.e., any barrier certificate B(x) ∈ R[x] of degree d satisfies the above constraints.

Proof. We prove the first constraint corresponding to the initial set I, the other
two constraints are similar. By employing homogenization and Theorem 4, the
original condition Eq. (3) can be transformed into −B̃(x0,x) ≥ 0 over Ĩ. Since
the descriptive polynomials in Ĩ contain ‖x‖2+x2

0 = 1, Ĩ is a closed basic semi-
algebraic set and its corresponding quadratic module is Archimedean. Thus,
we can apply Proposition 1 and Theorem 1 to obtain the soundness and com-
pleteness results, respectively. Note for the other two constraints, we need to
homogenize the polynomial B(x) − εe and B(x) − Lf B(x) as a whole. ��

5 Homogenized Systems and Semialgebraic Barrier
Certificates

In this section, we take a different perspective of the technique in the last section.
The motivation comes from the observation that the homogenization procedure
can be viewed as mapping the original system in R

n into a new system in R
n+1.

Consequently, the constraints in Eq. (7) can be conceived as barrier certificate
conditions for the new system. Employing this idea, we introduce the definition
of homogenized systems as follows. To avoid confusion, we will use (y0,y) ∈ R

n+1

to denote the state variables of the homogenized systems.

Definition 2 (Homogenized System). Given a system Eq. (2), the homog-
enized system is an associated system in R

n+1. For each state x ∈ R
n of the

original system, the corresponding state (y0,y) ∈ R
n+1 of the homogenized sys-

tem is given by

(y0, y1, . . . , yn) = (
1

√
1 + ‖x‖2 ,

x1√
1 + ‖x‖2 , . . . ,

xn√
1 + ‖x‖2). (8)

The dynamics of the homogenized systems can be obtained by taking deriva-
tive in the right-hand-side of Eq. (8). Hence, the safety verification problem of
the original system Eq. (2) with sets X , I, and U can be translated into an
equivalent problem for the homogenized system Eq. (8) with sets X̃ , Ĩ, and Ũ .
Furthermore, we show that a barrier certificate of the original system can be
computed from a barrier certificate of the homogenized system.

Theorem 6. B(y0,y) ∈ C1(Rn+1) is a barrier certificate of the homogenized
system if and only if B(1√

‖x‖2+1
, x√

‖x‖2+1
) is a barrier certificate of the original

system.

Proof. Let B(y0,y) be a barrier certificate of the homogenized system. Denote
g(x) =̂ B(1√

‖x‖2+1
, x√

‖x‖2+1
), we show that g(x) satisfies the conditions in

258 H. Wu et al.

Theorem 2. For x ∈ I, since (y0,y) ∈ Ĩb by Lem. 1 and Eq. (8), we have
g(x) = B(y0,y) ≤ 0. Similarly, for x ∈ U , we have g(x) = B(y0,y) ≥ εe.
Finally, since

Lf g(x) =
n∑

i=1

∂g(x)
∂xi

fi(x) =
n∑

i=1

⎛

⎝
n∑

j=0

∂B(y0,y)
∂yj

∂yj

∂xi

⎞

⎠ fi(x)

=
n∑

j=0

∂B(y0,y)
∂yj

(
n∑

i=1

∂yj

∂xi
fi(x)

)

= Lf ′B(y0,y),

where f ′ is the dynamic of the homogenized system. For any x ∈ X we have
Lf g(x) − λg(x) = Lf ′B(y0,y) − λB(y0,y) ≤ 0. The other direction is similar.
��

According to Stone-Weierstrass theorem [38], a continuous function in a com-
pact space in R

n+1 can be approximated by polynomials. This means that, if
there exists B(y0,y) ∈ C1(Rn+1) as a barrier certificate, one should be able to
find a polynomial barrier certificate (of sufficient large degree) close to it. In fact,
this is one of the reasons why we are primarily concerned with polynomial bar-
rier certificates in the bounded case. By Theorem 6, if B(y0,y) is a polynomial
of degree d, then we have

(
√

‖x‖2 + 1)dB(
1

√‖x‖2 + 1
,

x
√‖x‖2 + 1

) = B1(x) +
√

‖x‖2 + 1 · B2(x)

for some polynomials B1(x), B2(x) ∈ R[x]. From this expression, we can see that
Theorem 5 is a special case when B(y0,y) itself is a homogeneous polynomial
(i.e., all monomials are of the same degree) and B2(x) = 0.

Definition 3. We say a barrier certificate B(x) is semialgebraic 1 if it can be
expressed as B(x) = B1(x) +

√‖x‖2 + 1 · B2(x) for some B1(x), B2(x) ∈ R[x].

The synthesis of semialgebraic barrier certificates is not straightforward, due
to the existence of non-polynomial component

√‖x‖2 + 1. To address this prob-
lem, we employ the technique in [22] to encode these non-polynomial expressions
into polynomials with extra variables. To be concrete, we introduce two variables
u and v, which stand for

√‖x‖2 + 1 and 1√
‖x‖2+1

, respectively. Then, by The-

orem 2, the conditions for a semialgebraic barrier certificate can be written as

B1(x) + uB2(x) ≤ 0, for x ∈ I, u2 = ‖x‖2 + 1, u ≥ 0,

B1(x) + uB2(x) ≥ εe, for x ∈ U , u2 = ‖x‖2 + 1, u ≥ 0,

G(x, u, v) ≥ 0, for x ∈ X , u2 = ‖x‖2 + 1, u ≥ 0, uv = 1,

(9)

1 A function f(x) is called semialgebraic if its graph {(x, f(x)) | x ∈ R
n} is a semialge-

braic set. Here, semialgebraic barrier certificates can only express a certain subclass
of semialgebraic functions.

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 259

where G(x, u, v) ∈ R[x, u, v] is defined by

λ
(
B1(x) +

√
‖x‖2 + 1 · B2(x)

)
− Lf

(
B1(x) +

√
‖x‖2 + 1 · B2(x)

)

= λ (B1(x) + u · B2(x)) − Lf B1(x) − u · Lf B2(x) − vB2(x)
n∑

i=1

xifi(x)

=̂ G(x, u, v).
(10)

Similar to Theorems 3 and 5, we have the following characterization for
semialgebraic barrier certificates. Without loss of generality, we assume that
B1(x) and B2(x) are both of degree d.

Theorem 7. Assume that I, U , and X are all closed at infinity. Given λ ∈ R

and εe ∈ R>0, consider the following constraints with parameter ε,

B(x, u) = B1(x) + u · B2(x)

− B̃(x0,x, u) + ε = σI
0 +

mi+4∑

i=1

σI
i g̃I

i

B̃(x0,x, u) − εex
d+1
0 + ε = σU

0 +
mu+4∑

i=1

σU
i g̃U

i

G̃(x0,x, u, v) + ε = σX
0 +

mx+5∑

i=1

σX
i g̃X

i

σI
0 , . . . , σI

mi+2, σ
U
0 , . . . , σU

mu+2 ∈ Σ[x0,x, u],

σX
0 , . . . , σX

mx+2 ∈ Σ[x0,x, u, v],

σI
mi+3, σ

I
mi+4, σ

U
mu+3, σ

U
mu+4 ∈ R[x0,x, u]

σX
mx+3, σ

X
mx+4, σ

X
mx+5 ∈ R[x0,x, u, v],

(11)

where G(x, u, v) is as defined in Eq. (10), g̃I
mi+1 = g̃U

mu+1 = g̃X
mx+1 = x0,

g̃I
mi+2 = g̃U

mu+2 = g̃X
mx+2 = u, g̃I

mi+3 = g̃U
mu+3 = g̃X

mx+3 = u2 − x2
0 − ‖x‖2,

g̃I
mi+4 = g̃U

mu+4 = x2
0 + ‖x‖2 + u2 − 1, g̃X

mx+4 = uv − x2
0, and g̃X

mx+5 = x2
0 +

‖x‖2 + u2 + v2 − 1. When ε = 0, Eq. (11) gives a sound characterization for
semialgebraic barrier certificates, i.e., any pair of solutions B1(x), B2(x) ∈ R[x]
to the above constraints makes B(x) a barrier certificate. When ε > 0, Eq. (11)
gives a complete characterization for semialgebraic barrier certificates, i.e., any
semialgebraic barrier certificate with B1(x), B2(x) ∈ R[x] of degree d satisfies
the above constraints.

Proof. By applying Theorem 4 to Eq. (9). Similar to the proof of Theorem 5. ��

6 Experiments

Implementation. We implemented the barrier certificate synthesis procedures in
Julia programming language, interfaced with TSSOS [40] for formulating SOS

260 H. Wu et al.

relaxations and Mosek solver [5] for solving the underlying SDP. All experiments
were performed on a Mac lap-top with Apple M2 chip and 8GB memory. The
code and benchmarks are publicly available online . In the following, we use the
corresponding theorems to refer to different approaches/characterizations.

Experiment Settings. The goal of our experiments was to compare the differ-
ences between employing characterizations Theorems 3, 5, and 7 to synthesize
exponential-type barrier certificates over unbounded domains. To this end, we
collected a set of dynamical systems of dimension 2 and 3 from the literature.
For each benchmark system, we designed two problem instances. In the first
instance, we only let the domain X = R

n be unbounded, while in the second
instance, we further let the initial set I and/or the unsafe region U be unbounded
(not necessarily containing the original bounded counterparts).

In practical computation, we set λ = −1, εe = 10−5 in the definition of barrier
certificates and ε = 0 in the sum-of-squares characterizations. As discussed after
Theorem 3, the ε = 0 case can be viewed as both sound and complete in most
practical situations. We manually verified that the sets I, U , and X are closed
at infinity.

For Theorems 3 and 5, we searched for polynomial barrier certificates B(x)
up to degree 6. For Theorem 7, due to the

√‖x‖2 + 1 term, we searched for semi-
algebraic barrier certificates with B1(x) and B2(x) up to degree 4. When the
target degree d is fixed, by restricting the highest degree of involved polynomials
to be the smallest even number larger than d, the sum-of-squares characteriza-
tions can be solved as SDPs [7]. For each solution returned by SDP solver, we
utilized Mathematica to symbolically verify that the numerical solution B(x)
satisfies the barrier certificate conditions. The timeout for verifying each barrier
certificate candidate was set to be 10min. We report the total time for solving
SDP constraints and verifying the results.

Empirical Observations. Table 1 reports the experimental results, and Fig. 1 por-
traits selected examples. We mainly compare the results from two aspects.

Fig. 1. Portraits of four selected examples.

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 261

Table 1. Experimental results for synthesizing exponential type barrier certificates.

Thm. 3 [21] Our Thm. 5 Our Thm. 7
system dim unbounded deg succ time(s) deg succ time(s) deg succ time(s)

vector[37] 2 X 4 � 0.58 3 � 0.03 2 � 0.83
I, U , X > 6� 0.39 4 � 0.16 2 � 0.72

barrier[29] 2 X > 6� 2.40 > 6� 2.73 >4 � 22.98
I, U , X > 6� 0.78 3 � 0.04 2 � 3.12

lie-der[24] 2 X 3 � 0.19 3 � 0.14 1 � 0.75
I, U , X 3 � 0.14 3 � 0.19 3 � 5.04

arch1[36] 2 X 4 � 0.40 4 � 0.54 > 4� 117.61
I, U , X 1 � 0.09 1 � 0.04 2 � 20.92

arch2[36] 2 X 3 � 0.20 3 � 0.21 3 � 5.53
I, U , X 3 � 0.18 3 � 0.18 2 � 1.59

arch3[36] 2 X 2 � 0.12 2 � 0.13 2 � 3.45
I, U , X > 6� 0.84 > 6� 1.30 1 � 0.34

arch4[36] 2 X > 6� 0.11 5 � 0.74 3 � 5.69
U , X > 6� 1.02 6 � 1.21 > 4� 7.74

nagumo[34] 2 X 2 � 0.13 2 � 0.14 2 � 3.50
U , X > 6� 1.02 3 � 0.17 > 4� 23.73

lorenz[10] 3 X 6 ? TO 4 � 72.13 2 ? TO
U , X 5 � 248.88 6 ? TO 2 ? TO

lotka[14] 3 X > 6� 88.97 > 6� 27.8 3 ? TO
U , X > 6� 0.27 > 6� 438.54 3 ? TO

dim: system dimension; unbounded: the unbounded region(s); deg: degree
of polynomial barrier certificates or polynomial components in semialgebraic
barrier certificates; succ: whether our algorithm succeeds in finding a valid
barrier certificate. � means valid solution, � means no solution or invalid
solution (within the search range), and ? means unverified; TO: verification
takes more than 10 min in Mathematica; time: total time for SDP solving
and verification.

Expressiveness : For problems with unbounded domains, both our complete
characterizations Theorems 5 and 7 are more expressive than the incomplete
characterization Theorem 3, as they succeeds in synthesizing barrier certificates
in more problem instances. The two complete characterizations offer distinct
advantages: Thm. 5 exhibits broader applicability, demonstrably successful for
problem instances like arch4-2 and nagumo-2. In contrast, Theorem 7 excels at
synthesizing lower-degree barrier certificates, as exemplified by vector-1,2 and
barrier-1,2 problem instances. The experimental results also demonstrate that,
while Theorem 7 theoretically subsumes Theorem 5, its characterization presents
significantly greater complexity and hinders its ability to identify solutions, due
to inherent numerical issues in SDP solvers.

262 H. Wu et al.

Efficiency : For most benchmarks, the time overhead for employing Theorem
5 is comparable to Theorem 3, while Theorem 7 is evidently slower than the
other two. This should be attributed to the introduction of fresh variables in
SOS characterizations in the complete characterizations (one for Theorem 5 and
two for Theorem 7). Hence, the computation cost of both SDP solving and pos-
terior verification increases, mildly for Theorem 5 (e.g., lie-der-2 and arch1-1) but
severely for Theorem 7 (e.g., barrier-1 and arch1-1). We also want to emphasize
that, for 3-dimensional systems with higher-degree templates, posterior verifica-
tion time increases significantly, meaning that we can not verify the validity of
the barrier certificate candidates within a reasonable amount of time.

Summary. For practical applications, we recommend employing Theorem 5 to
synthesize polynomial barrier certificates for unbounded problems. This app-
roach achieves a high level of expressiveness while maintaining efficiency compa-
rable to Theorem 3. Moreover, we believe that the performance of Theorem 7 can
be improved by exploiting algebraic structures of the constraints. For example,
the variables u, v only occur linearly or quadratically in constraints, which can
be utilized in restrict the templates of unknown sum-of-squares polynomials.

Remark 1. In our experiments, we did not consider different parameter settings
(such as the selection of λ discussed in [21]) and constraint formulations (such
as techniques for taming numerical errors discussed in [32]), which may impact
the synthesized barrier certificates but are not the focus of the current paper.

7 Conclusion

This paper addresses the problem of synthesizing barrier certificates over
unbounded domains. Previous SDP-based approaches to this problem are incom-
plete, because Putinar’s Positivstellensatz is only applicable in bounded cases.
We fill this gap by proposing the first complete sum-of-squares characterization
for polynomial barrier certificates, achieved through the utilization of the homog-
enization approach derived from optimization theory. Furthermore, we introduce
the notions of homogenized systems and semialgebraic barrier certificates, which
are induced from polynomial barrier certificates of the homogenized systems. For
such non-polynomial barrier certificates, we also provide a complete characteri-
zation. Experimental results substantiate the efficacy of both of our approaches,
demonstrating their enhanced expressiveness and ability to synthesize more bar-
rier certificates in comparison to existing methods.

While our paper primarily focuses on synthesizing barrier certificates for dif-
ferential dynamical systems, it is crucial to note that our method can be readily
extended to other types of systems, including hybrid systems and systems with
control, disturbance, or stochastic dynamics. Furthermore, our method can also
be utilized in related verification problems such as Lyapunov function synthesis,
program invariant generation, and so on.

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 263

Acknowledgments. This work has been partially funded by the National Key R&D
Program of China under grant No. 2022YFA1005101 and 2022YFA1005102, by the
NSFC under grant No. 62192732 and 62032024, by the CAS Project for Young Scien-
tists in Basic Research under grant No. YSBR-040, by the Strategic Priority Research
Program of the Chinese Academy of Sciences XDB0640000 & XDB0640200, by the Key
R&D Program of Hubei Province (2023BAB170), and by the Fundamental Research
Funds for the Central Universities.

Data Availability Statement. The experimental results of this paper may be repro-
duced using the artifact on Figshare https://doi.org/10.6084/m9.figshare.26085853, or
via GitHub link https://github.com/EcstasyH/BCunbounded.

References

1. Abate, A., Ahmed, D., Edwards, A., Giacobbe, M., Peruffo, A.: FOSSIL: a soft-
ware tool for the formal synthesis of Lyapunov functions and barrier certificates
using neural networks. In: 24th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2021, pp. 1–11. ACM (2021)

2. Ames, A.D., Xu, X., Grizzle, J.W., Tabuada, P.: Control barrier function based
quadratic programs for safety critical systems. IEEE Trans. Autom. Control 62(8),
3861–3876 (2017)

3. Anand, M., Murali, V., Trivedi, A., Zamani, M.: Safety verification of dynamical
systems via k-inductive barrier certificates. In: 2021 60th IEEE Conference on
Decision and Control CDC 2021, pp. 1314–1320. IEEE (2021)

4. Anand, M., Murali, V., Trivedi, A., Zamani, M.: k-inductive barrier certificates
for stochastic systems. In: Hybrid Systems: Computation and Control, 25th ACM
International Conference, pp. 1–11. ACM (2022)

5. ApS, M.: MOSEK Optimizer API for Julia. Version 10.1.13. (2019). https://docs.
mosek.com/latest/juliaapi/index.html

6. Bak, S.: t-barrier certificates: a continuous analogy to k -induction. In: 6th IFAC
Conference on Analysis and Design of Hybrid Systems, ADHS 2018. IFAC-
PapersOnLine, vol. 51, pp. 145–150. Elsevier (2018)

7. Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Con-
vex Algebraic Geometry. SIAM (2012)

8. Dai, L., Gan, T., Xia, B., Zhan, N.: Barrier certificates revisited. J. Symb. Comput.
80, 62–86 (2017)

9. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1–2), 29–35 (1988)

10. Djaballah, A., Chapoutot, A., Kieffer, M., Bouissou, O.: Construction of parametric
barrier functions for dynamical systems using interval analysis. Automatica 78,
287–296 (2017)

11. Feng, S., Chen, M., Xue, B., Sankaranarayanan, S., Zhan, N.: Unbounded-time
safety verification of stochastic differential dynamics. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 327–348. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8_18

12. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiabil-
ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3_23

https://doi.org/10.6084/m9.figshare.26085853
https://github.com/EcstasyH/BCunbounded
https://docs.mosek.com/latest/juliaapi/index.html
https://docs.mosek.com/latest/juliaapi/index.html
https://doi.org/10.1007/978-3-030-53291-8_18
https://doi.org/10.1007/978-3-030-53291-8_18
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23

264 H. Wu et al.

13. Gao, S., Kong, S., Clarke, E.M.: dReal: an smt solver for nonlinear theories over the
reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

14. Goubault, E., Jourdan, J., Putot, S., Sankaranarayanan, S.: Finding non-
polynomial positive invariants and lyapunov functions for polynomial systems
through darboux polynomials. In: American Control Conference, ACC 2014, pp.
3571–3578. IEEE (2014)

15. Guo, F., Wang, L., Zhou, G.: Minimizing rational functions by exact jacobian SDP
relaxation applicable to finite singularities. J. Global Optim. 58(2), 261–284 (2014)

16. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: Proceedings of the Twenty-Seventh Annual ACM Symposium on
Theory of Computing, STOC 1995, pp. 373–382. ACM (1995)

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

18. Huang, C., Chen, X., Lin, W., Yang, Z., Li, X.: Probabilistic safety verification of
stochastic hybrid systems using barrier certificates. ACM Trans. Embed. Comput.
Syst. 16(5s), 1–19 (2017)

19. Huang, L., Nie, J., Yuan, Y.: Homogenization for polynomial optimization with
unbounded sets. Math. Program. 200(1), 105–145 (2023)

20. Jagtap, P., Soudjani, S., Zamani, M.: Formal synthesis of stochastic systems via
control barrier certificates. IEEE Trans. Autom. Control 66(7), 3097–3110 (2021)

21. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based
barrier certificate generation for safety verification of hybrid systems. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_17

22. Lasserre, J.B., Putinar, M.: Positivity and optimization: beyond polynomials. In:
Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial
Optimization. International Series in Operations Research & Management Science,
vol. 166, pp. 407–434. Springer, New York, NY (2012). https://doi.org/10.1007/
978-1-4614-0769-0_14

23. Lasserre, J.B.: Moments, Positive Polynomials and their Applications, vol. 1. World
Scientific (2009)

24. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polyno-
mial dynamical systems. In: Proceedings of the 11th International Conference on
Embedded Software, EMSOFT 2011, pp. 97–106. ACM (2011)

25. Murali, V., Trivedi, A., Zamani, M.: Closure certificates. In: HSCC 2024: Proceed-
ings of the 27th ACM International Conference on Hybrid Systems: Computation
and Control, pp. 1–11 (2024)

26. Nie, J.: Discriminants and nonnegative polynomials. J. Symb. Comput. 47(2), 167–
191 (2012)

27. Peruffo, A., Ahmed, D., Abate, A.: Automated and formal synthesis of neural
barrier certificates for dynamical models. In: TACAS 2021. LNCS, vol. 12651, pp.
370–388. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_20

28. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–
189. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_17

29. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_32

https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1007/978-1-4614-0769-0_14
https://doi.org/10.1007/978-1-4614-0769-0_14
https://doi.org/10.1007/978-3-030-72016-2_20
https://doi.org/10.1007/978-3-540-70545-1_17
https://doi.org/10.1007/978-3-540-24743-2_32

On Completeness of SDP-Based BC-Synthesis over Unbounded Domains 265

30. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1428 (2007)

31. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ.
Math. J. 42(3), 969–984 (1993)

32. Roux, P., Voronin, Y., Sankaranarayanan, S.: Validating numerical semidefinite
programming solvers for polynomial invariants. Formal Methods Syst. Des. 53(2),
286–312 (2018)

33. Salamati, A., Zamani, M.: Data-driven safety verification of stochastic systems via
barrier certificates: a wait-and-judge approach. In: Learning for Dynamics and Con-
trol Conference, L4DC 2022. Proceedings of Machine Learning Research, vol. 168,
pp. 441–452. PMLR (2022)

34. Sassi, M.A.B., Girard, A., Sankaranarayanan, S.: Iterative computation of polyhe-
dral invariants sets for polynomial dynamical systems. In: 53rd IEEE Conference
on Decision and Control, CDC 2014, pp. 6348–6353. IEEE (2014)

35. Sassi, M.A.B., Sankaranarayanan, S., Chen, X., Ábrahám, E.: Linear relaxations of
polynomial positivity for polynomial Lyapunov function synthesis. IMA J. Math.
Control. Inf. 33(3), 723–756 (2016)

36. Sogokon, A., Ghorbal, K., Johnson, T.T.: Non-linear continuous systems for safety
verification. In: ARCH@CPSWeek 2016, 3rd International Workshop on Applied
Verification for Continuous and Hybrid Systems. EPiC Series in Computing,
vol. 43, pp. 42–51. EasyChair (2016)

37. Sogokon, A., Ghorbal, K., Tan, Y.K., Platzer, A.: Vector barrier certificates and
comparison systems. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 418–437. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7_25

38. Stone, M.H.: The generalized weierstrass approximation theorem. Math. Mag.
21(5), 237–254 (1948). http://www.jstor.org/stable/3029337

39. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley (May (1951)

40. Wang, J., Magron, V., Lasserre, J.: TSSOS: a moment-SOS hierarchy that exploits
term sparsity. SIAM J. Optim. 31(1), 30–58 (2021)

41. Wang, Q., Chen, M., Xue, B., Zhan, N., Katoen, J.: Encoding inductive invari-
ants as barrier certificates: synthesis via difference-of-convex programming. Inf.
Comput. 289(Part), 104965 (2022)

42. Wang, Q., Li, Y., Xia, B., Zhan, N.: Generating semi-algebraic invariants for non-
autonomous polynomial hybrid systems. J. Syst. Sci. Complexity 30(1), 234–252
(2017)

43. Wongpiromsarn, T., Topcu, U., Lamperski, A.: Automata theory meets barrier
certificates: temporal logic verification of nonlinear systems. IEEE Trans. Autom.
Control 61(11), 3344–3355 (2016)

44. Xu, X., Tabuada, P., Grizzle, J.W., Ames, A.D.: Robustness of control barrier func-
tions for safety critical control. In: 5th IFAC Conference on Analysis and Design
of Hybrid Systems, ADHS 2015. IFAC-PapersOnLine, vol. 48, pp. 54–61. Elsevier
(2015)

45. Zeng, X., Lin, W., Yang, Z., Chen, X., Wang, L.: Darboux-type barrier certificates
for safety verification of nonlinear hybrid systems. In: International Conference on
Embedded Software, 2016, pp. 1–10. ACM (2016)

46. Zhao, H., Qi, N., Dehbi, L., Zeng, X., Yang, Z.: Formal synthesis of neural bar-
rier certificates for continuous systems via counterexample guided learning. ACM
Trans. Embed. Comput. Syst. 22(5s), 1–21 (2023)

https://doi.org/10.1007/978-3-319-95582-7_25
https://doi.org/10.1007/978-3-319-95582-7_25
http://www.jstor.org/stable/3029337

266 H. Wu et al.

47. Zhao, H., Zeng, X., Chen, T., Liu, Z.: Synthesizing barrier certificates using neural
networks. In: HSCC 2020: 23rd ACM International Conference on Hybrid Systems:
Computation and Control, Sydney, New South Wales, Australia, April 21–24, 2020,
pp. 1–11. ACM (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Tolerance of Reinforcement Learning
Controllers Against Deviations in Cyber

Physical Systems

Changjian Zhang1, Parv Kapoor1, Rômulo Meira-Góes2, David Garlan1,
Eunsuk Kang1(B), Akila Ganlath3, Shatadal Mishra3, and Nejib Ammar3

1 Carnegie Mellon University, Pittsburgh, PA, USA
{changjiz,parvk,dg4d,eunsukk}@andrew.cmu.edu

2 the Pennsylvania State University, State College, PA, USA
romulo@psu.edu

3 Toyota InfoTech Labs, Mountain View, CA, USA
{akila.ganlath,shatadal.mishra,nejib.ammar}@toyota.com

Abstract. Cyber-physical systems (CPS) with reinforcement learning
(RL)-based controllers are increasingly being deployed in complex phys-
ical environments such as autonomous vehicles, the Internet-of-Things
(IoT), and smart cities. An important property of a CPS is tolerance;
i.e., its ability to function safely under possible disturbances and uncer-
tainties in the actual operation. In this paper, we introduce a new, expres-
sive notion of tolerance that describes how well a controller is capable
of satisfying a desired system requirement, specified using Signal Tem-
poral Logic (STL), under possible deviations in the system. Based on
this definition, we propose a novel analysis problem, called the toler-
ance falsification problem, which involves finding small deviations that
result in a violation of the given requirement. We present a novel, two-
layer simulation-based analysis framework and a novel search heuristic
for finding small tolerance violations. To evaluate our approach, we con-
struct a set of benchmark problems where system parameters can be
configured to represent different types of uncertainties and disturbances
in the system. Our evaluation shows that our falsification approach and
heuristic can effectively find small tolerance violations.

1 Introduction

The tolerance of a CPS characterizes the ability of an engineered system to
function correctly in the presence of uncertainties. Modern cyber-physical systems
(CPS) operate in dynamic and uncertain environments, such as autonomous
vehicles, medical devices, the Internet of Things (IoT), and smart cities. The
mission-critical and safety-critical nature of CPS accentuate the need to provide
a high level of tolerance against uncertainties, as a failure to do so could result
in severe consequences, from safety hazards to economic losses.

C. Zhang, P. Kapoor—Both authors contributed equally to this research.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 267–285, 2025.
https://doi.org/10.1007/978-3-031-71177-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_17

268 C. Zhang et al.

As CPS grow in complexity and scale, reinforcement learning (RL) techniques
are gaining popularity for learning CPS controllers. In general, these controllers
perceive the state of the CPS and take an action that maximizes the long-term
utility. The utility is captured through reward functions designed by engineers.
An RL controller is trained via a trial-and-error process where an agent takes
actions in a simulator of the CPS and uses the simulated results of the actions to
discover an optimal control strategy. Hence, the fidelity of the simulator plays a
big role in the effectiveness of a trained controller. Often, there are reality gaps
between the actual deployed environment and the simulator due to approxima-
tion and under-modeling of physical phenomena, which makes controllers trained
in simulations perform poorly in the real world [1]. This performance degradation
can also manifest as unsafe system behaviors in the actual environment.

To make an RL controller tolerant of possible errors due to these reality
gaps, existing works often focus on the training stage, such as robust RL [2,3]
and domain randomization [4–6]. They investigate the problem of training a
controller that is capable of maintaining desired system behavior in the pres-
ence of possible system deviations—environmental uncertainties, observation or
actuation errors, disturbances, and modeling errors. However, these methods
are limited in how desired system behaviors are expressed. In RL, the desired
behavior is often expressed using a reward function [2,3]; it is well-known that
encoding a high-level system requirement using a reward function is a challeng-
ing task that requires a significant amount of domain expertise and manual effort
via reward shaping [7,8]. Additionally, certain requirements cannot be directly
encoded as rewards, especially those that capture time-varying behavior (e.g.,
“the vehicle must come to a stop in the next 3 s”).

Due to the limitation in reward functions and the data-driven nature of RL,
these training-oriented methods in general do not provide formal guarantees
about tolerance. Also, there is a lack of focus on post-training analysis for the
tolerance of RL controllers, especially in the sense of maintaining a desired,
complex system specification. Moreover, a formal definition of tolerance for RL
controllers with respect to system behavior (beyond rewards) is also missing.

To fill the missing gap in post-training tolerance analysis of RL controllers,
we propose a new notion of tolerance based on specifications in Signal Temporal
Logic (STL) [9]. Our definition assumes a parametric representation of a system,
where system parameters capture the dynamics of the system (e.g., acceleration
of a nearby vehicle) that are affected by system deviations (e.g., sensor errors). A
system is initially assigned a set of nominal parameters that describe its expected
dynamics. Then, a change in parameters, denoted by δ, corresponds to a devia-
tion that may occur. Finally, a controller is said to be tolerable against certain
deviations with respect to a STL specification if and only if the controller is
capable of satisfying the specification even under those deviations.

Based on this tolerance definition, we propose a new type of analysis problem
called the tolerance falsification. The goal is to find deviations in system param-
eters that result in a violation of the desired system specification. Specifically,
we argue that identifying a violation closer to the nominal system parameters

Tolerance of RL Controllers in CPS 269

would be more valuable, since such a violation is more likely to occur in practice.
Intuitively, our system needs to tolerate these deviations before addressing the
ones that are further away from the nominal set. These identified violations could
be used to retrain the controller for improved tolerance, or to build a run-time
monitor to detect when the system deviates into an unsafe region.

In addition, we propose a novel simulation-based framework where the toler-
ance falsification problem is formulated as a two-layer optimization problem. In
the lower layer, for a given system deviation δ (representing a particular system
dynamics), an optimization-based method is used to find a falsifying signal; i.e.,
a sequence of system states that results in a violation of the given STL speci-
fication. In the upper layer, the space of possible deviations is explored to find
small deviations that result in a specification violation, repeatedly invoking the
lower-layer falsification. The results generated from the lower layer guide the
upper-layer search towards small violating deviations. Furthermore, we present
a novel heuristic that leverages the differences between the trajectories from the
normative and deviated environments, captured via cosine distances, to improve
the effectiveness of the upper layer search algorithm.

To evaluate the effectiveness of our falsification approach, we have con-
structed a set of benchmark case studies. In particular, these benchmark systems
are configurable with system parameters to generate a range of systems with dif-
ferent behaviors due to the parameters’ impact on how the system evolves. Our
evaluation shows that our approach can be used to effectively find small devia-
tions that cause a specification violation in these systems.

This paper makes the following contributions:

– We present a novel, formal definition of tolerance for RL controllers (Sect. 4),
and a new analysis problem named tolerance falsification problem (Sect. 5).

– We propose a two-layer optimization-based algorithm and a novel search
heuristic for finding small violating deviations (Sect. 6).

– We present an RL tolerance analysis benchmark and evaluate the effectiveness
of our approach through experimental results on it (Sect. 7).

2 Preliminaries

Markov Decision Process. We model the systems under study as discrete-
time stochastic systems in Markov Decision Processes (MDPs) [10]. An MDP
is a tuple M = 〈S,A, T, I,R〉, where S ⊆ R

n is the set of states, A ⊆ R
m is

the set of actions (e.g., control inputs), T : S × A × S → [0, 1] is the transition
function where T (s, a, s′) represents the probability from state s to s′ by action
a and ∀s ∈ S, a ∈ A :

∑
s′∈S T (s, a, s′) = 1, I : S → [0, 1] is the initial state

distribution, and R : S → R is the reward function. As is often the case for
real-world systems, we assume that the transition function is unknown.

We consider black-box deterministic control policies for a system. Formally,
a policy π : S → A for an MDP maps states to actions. Reinforcement learning
(RL) [11] is the process of learning an optimal policy π∗ that maximizes the
cumulative discounted reward for this MDP. Additionally, a trajectory σ of an

270 C. Zhang et al.

MDP given an initial state s0 ∼ I and a policy π is defined accordingly as
σ = (s0

a0−→ s1 . . . si
ai−→ si+1 . . .) where ai = π(si) and si+1 ∼ T (si, ai). Finally,

we use L(M||π) to represent the behavior of the controlled system, i.e., it is the
set of all trajectories of a system M under the control of π.

Signal Temporal Logic. A signal s is a function s : T → D that maps a
time domain T ⊆ R≥0 to a k real-value space D ⊆ R

k, where s(t) = (v1, . . . , vk)
represents the value of the signal at time t. Then, an STL formula is defined as:

φ := μ | ¬φ | φ ∧ ψ | φ ∨ ψ | φ U[a,b] ψ

where μ is a predicate of the signal s at time t in the form of μ ≡ μ(s(t)) > 0
and [a, b] is the time interval (or simply I). The until operator U defines that
φ must be true until ψ becomes true within a time interval [a, b]. Two other
operators can be derived from until : eventually (♦[a,b] φ := � U[a,b] φ) and
always (�[a,b] φ := ¬♦[a,b] ¬φ).

The satisfaction of an STL formula can be measured in a quantitative way as
a real-valued function ρ(φ, s, t) (also known as the STL robustness value), which
represents the difference between the actual signal value and the expected one
[9]. For example, given a formula φ ≡ s(t) − 3 > 0, if s = 5 at time t, then the
satisfaction of φ can be evaluated by ρ(φ, s, t) = s(t) − 3 = 2. The definition of
ρ is as follows (ρ for the other operators can be formulated from these):

ρ(μ, s, t) = μ(s(t)) ρ(¬φ, s, t) = −ρ(φ, s, t)
ρ(φ ∧ ψ, s, t) = min{ρ(φ, s, t), ρ(ψ, s, t)}
ρ(φ UI ψ, s, t) = sup

t1∈I+t
min{ρ(ψ, s, t1), inf

t2∈[t,t1]
ρ(φ, s, t2)}

3 Motivating Example

We use an RL system which is required to satisfy a safety specification to illus-
trate our tolerance definition and analysis. Consider the CarRun safe RL sys-
tem implemented in bullet-safety-gym1, depicted in Fig. 1. The CarRun system
has a four-wheeled agent based on MIT Racecar2 placed between two safety
boundaries. The safety boundaries are non-physical bodies that can be breached
without causing a collision. The objective is to go through the avenue between
the boundaries without penetrating them. The agent velocity also needs to be
maintained below a user-defined threshold. Formally, it can be specified by an
STL invariant: �(|ypos| < C1 ∧ |v| < C2), where C1 and C2 are the constant
thresholds for the y coordinate and the velocity, respectively.

Given the CarRun system, we can train an RL controller such that the car
agent satisfies the safety specification above using methods from safe RL [12] [13].
However, to transfer this “safe” controller to the real world, we need to account
1 https://github.com/SvenGronauer/Bullet-Safety-Gym.
2 https://github.com/mit-racecar.

https://github.com/SvenGronauer/Bullet-Safety-Gym
https://github.com/mit-racecar

Tolerance of RL Controllers in CPS 271

Fig. 1. Behavior of the CarRun system under different system parameters. In the
norminal condition (left), ypos in all trajectories is below the threshold (green line)
and thus the system is safe. However, in the deviated condition (right), there exists
a trajectory where ypos exceeds the threshold and hence the safety requirement is
violated.

for the reality gap between the simulator and the deployed environment. This
reality gap might arise due to inaccurate modeling of contact surfaces, actuator
errors, and incorrect physical parameter configuration (e.g., friction and mass).
These reality gaps can lead to the agent violating the safety specification in
the real world, despite satisfying them in simulation. Additionally, since the RL
controllers are black-box neural networks, it is extremely hard to capture their
concrete behaviors. The difficulty in reasoning about the controller’s behaviors
coupled with the stochasticity of the system leads to a challenging analysis prob-
lem of understanding their tolerance ability. This has long been one of the key
drawbacks that limit the application of these controllers in the real world [6,14].

Since it can be challenging to quantitatively measure these reality gaps, we
take a parametric approach. We approximate the reality gap between the simula-
tor and the deployed environment quantitatively using deviations as parameters.
For example, we model the CarRun system as being parametric with two control-
lable system parameters, tm (turn multiplier, a factor for the steering control)
and sm (speed multiplier, a factor for the speed control). These parameters gov-
ern the impact of the action provided by the controller, e.g., a larger sm will
result in more aggressive accelerations. The intuition behind these deviations
is to account for actuation issues that arise while deploying agents in the real
world. Figure 1 shows the behavior of CarRun under different system parame-
ters. In Fig. 1(a), the agent is deployed in the nominal condition with default
system parameters. In this scenario, the controller successfully manages to drive
the Car agent through the avenue and also maintains a safe velocity, i.e., the
safety specification is satisfied. In Fig. 1(b), we show the same controller deployed
under a deviated CarRun environment with different turn and speed multipliers.
In this scenario, the controller makes the car behave erratically, which eventually
makes the car cross the safety boundary, i.e., the safety specification is violated.

This example highlights the brittleness of these controllers concerning safety
specifications and the need for stakeholders to address pre-deployment questions

272 C. Zhang et al.

like: What are the possible deviations that these RL controllers can tolerate?
More specifically, how much change in the system parameters can the controller
tolerate before it begins to violate the given safety specification? We formulate
this question as a type of analysis problem called tolerance falsification, where
the goal is to find deviations in system parameters (e.g., the changes in the
turn and speed multiplier of CarRun) where the deviated system violates the
given specification. This analysis problem is challenging due to the stochastic,
black-box nature of the system as well as the opacity of NN-based RL controllers.

Additionally, a notion of “quality of solution” while searching for system
parameters is necessary to factor in the practical assumptions about the oper-
ating context of this system. For example, deviations that are closer to the
nominal parameters are more likely to occur in practice and hence need to be
prioritized when analyzing. This helps avoid impractically large deviation values
that might cause a violation but offers little insight to system designers. Thus,
our falsification process attempts to find violations with small deviations; i.e.,
minimal parameter changes that introduce a risk of specification violation into
the system. The output of this analysis (i.e., violations) can help the engineer
identify RL-based controller brittleness and can be used to redesign or retrain
the controller to improve its tolerance.

4 Tolerance Definition

4.1 Definition of Specification-Based Tolerance

In this work, we use STL to specify the desired properties of a system, and sys-
tem parameters to capture the deviations in system dynamics. Parameters can
represent a variety of deviations such as environmental disturbances (e.g., wind
or turbulence), internal deviations (e.g., mass variation of a vehicle), observation
errors (e.g., sensor errors), or actuation errors (e.g., errors in steering control).
Then, to capture systems with such diverse dynamics using parameters, we lever-
age the notion of parametric control systems [15,16].

A parametric discrete-time stochastic system MΔ defines a set of systems
such that Δ ⊆ R

k represents the parameter domain, and for any δ ∈ Δ, an
instance of a parametric system Mδ is an MDP Mδ = 〈S,A, T δ, Iδ, R〉, where
the initial state distribution Iδ and the state transition distributions T δ are
both defined by the parameter δ. Parameter δ represents a deviation to a system
and Δ represents the domain of all deviations of interest. In addition, we use
δ0 ∈ Δ to represent the zero-deviation point, i.e., the parameter under which
the system Mδ0 exhibits the expected, normative behavior. Then, we define a
system as being tolerable against a certain deviation as follows:

Definition 1. For a system M, a policy π, a deviation parameter δ, and an STL
property φ, we say the system can tolerate the deviation when the parametric
form of M with δ under the control of π satisfies the property, i.e., Mδ||π |= φ.

Then, the tolerance of a controller can be defined as all the possible deviations
that the system can tolerate. Formally:

Tolerance of RL Controllers in CPS 273

Definition 2. For a system M, a policy π, and an STL property φ, the tolerance
of the controller is defined as the maximal Δ ⊆ R

k s.t. ∀δ ∈ Δ : Mδ||π |= φ.

In other words, the tolerance of a control policy π is measured by the maximal
parameter domain Δ of a system where each deviated system Mδ of it still
satisfies the property under the control of π.

4.2 Strict Evaluation of Tolerance

In this work, we focus on a specific evaluation of tolerance. Specifically, Def. 1
and 2 depend on the interpretation of Mδ||π |= φ, i.e., a system satisfying a STL
property; however, STL satisfaction is computed over a single trajectory. From
the literature [17], one common evaluation criteria is that a system must not
contain a trajectory that violates the STL property. In other words, even in the
worst-case scenario that is less likely to occur in a stochastic system, it should still
guarantee the property. This interpretation enforces a strong guarantee of the
system, and thus we call it the strict satisfaction of STL in this work. Formally:

Definition 3. A discrete-time stochastic system M strictly satisfies an STL
property φ under the control of a policy π iff every controlled trajectory pro-
duces a non-negative STL robustness value, i.e., M||π |= φ ⇔ ∀σ ∈ L(M||π) :
ρ(φ, sσ, 0) ≥ 0, where sσ is the signal of state values of trajectory σ.

With this interpretation, we can then restate Def. 2 as:

Definition 4. The tolerance of a policy π that strictly satisfies an STL property
φ is the maximal Δ s.t. ∀δ ∈ Δ, σ ∈ L(Mδ||π) : ρ(φ, sσ, 0) ≥ 0

Although this definition delineates a strong tolerance guarantee, it can also be
extended to more relaxed notions with probabilistic guarantees. In that case,
other evaluation techniques for STL specification satisfaction such as [18–20]
can be leveraged. We leave this as an extension of our work in the future.

5 Tolerance Analysis

5.1 Tolerance Falsification

According to Def. 4, to compute the tolerance of a controller, we need to: (1)
(formally) show that a stochastic system does not contain a trajectory that
violates the STL property, and (2) compute the maximal parameter set Δ, which
could be in any non-convex or even non-continuous shape, where all system
instances Mδ should satisfy step (1). This exhaustive computation is intractable
due to the black-box RL controllers coupled with the stochasticity in system.

Therefore, in this work, instead of computing or approximating the tolerance
Δ, we consider the problem of falsifying a given estimation of tolerance Δ̂, i.e.,
finding a deviation δ ∈ Δ̂ that the system cannot tolerate for a given controller.

274 C. Zhang et al.

Problem 1 (Tolerance Falsification). For a system M, a policy π, and an
STL property φ, given a tolerance estimation Δ̂ ⊆ R

k, the goal of a tol-
erance falsification problem F(M, π, φ, Δ̂) is to find a deviation δ ∈ Δ̂ s.t.
∃σ ∈ L(Mδ||π) : ρ(φ, sσ, 0) < 0.

5.2 Minimum Tolerance Falsification

Intuitively, a larger deviation (i.e., a deviation that is far away from the expected
system parameter) would likely cause a larger deviation in the system behav-
ior leading to a specification violation. However, controllers are generally not
designed to handle arbitrarily large deviations in the first place, and analyzing
their performance in these situations offers limited insight to the designer. More-
over, if the designer decides to improve the tolerance of a controller (which is a
costly endeavor), deviations closer to the nominal system are given high priority
due to their higher likelihood of occurrence. In light of these practical design
and deployment assumptions, we focus on the minimum deviation problem.

Problem 2. Given a minimum tolerance falsification problem Fmin(M, π, φ, Δ̂),
let δ0 ∈ Δ̂ be the zero-deviation point, the goal is to find a deviation δ ∈ Δ̂ s.t.
Mδ||π �|= φ and δ minimizes a distance measure ‖δ − δ0‖p.

5.3 Falsification by Optimization

Since the satisfaction of STL can be measured quantitatively, the tolerance fal-
sification problem can be formulated as an optimization problem. Consider a
real-valued system evaluation function Γ (M, π, φ) ∈ R. We assume that if this
function’s value is negative, the controlled system violates the property, i.e.,
Γ (M, π, φ) < 0 ⇔ S||π �|= φ, and the smaller the value, the larger the degree of
property violation. Then, a tolerance falsification problem F(M, π, φ, Δ̂) can be
formulated as the following optimization problem:

argmin
δ∈ ̂Δ

Γ (Mδ, π, φ) (1)

i.e., by finding a parameter δ ∈ Δ̂ that minimizes the evaluation function Γ
and observing this value can give information about system’s property satisfac-
tion. Concretely, if the minimum function value is negative, then the associated
parameter δ indicates a deviation where the system violates the property φ.
Specifically, in the case of strict evaluation of tolerance, the system evaluation
function Γ is defined as:

Γ (M, π, φ) = min{ρ(φ, sσ, 0) | σ ∈ L(M||π)} (2)

Note that Eq. 2 is a typical formulation for solving a CPS falsification problem
that intends to find a trajectory that violates an STL specification [17].

Tolerance of RL Controllers in CPS 275

Finally, we can formulate a minimum tolerance falsification problem Fmin(M,

π, φ, Δ̂) as a constrained optimization problem:

argmin
δ∈ ̂Δ

‖δ − δ0‖p s.t. Γ (Mδ, π, φ) < 0 (3)

Equation 1 and 3 can both be seen as a bi-level optimization problem [21];
the upper-layer task searches for deviation parameters (δ) and the lower-layer
searches for system trajectories. The problem of finding any tolerance violation
(Eq. 1) can also be formulated as a min-min optimization problem, which can
be solved by existing CPS falsifiers such as Breach [22] and PsyTaLiRo [23,24].

However, the minimum falsification problem (Eq. 3) features multi-objective
optimization or min-max optimization characteristics—minimizing the devia-
tion distance (‖δ−δ0‖p) would likely cause a larger system evaluation value (Γ).
Since these objectives are inherently conflicting, nuanced techniques are required
to find solutions. Although, existing CPS falsifiers can be configured to repre-
sent this additional cost/objective function (either via specification modification
or through explicit cost function definition), the underlying optimization tech-
niques do not have a multi-layer setup to handle this off the shelf. Therefore, we
present a novel two-layer search for solving the tolerance falsification problems,
particularly effective in finding minimum violating deviations.

Fig. 2. Overview of the two-layer falsification algorithm.

6 Simulation-Based Tolerance Analysis Framework

In this section, we outline our analysis framework to solve the tolerance falsi-
fication problems for black-box CPS and RL controllers (as shown in Fig. 2).
We first explain our novel two layer falsification algorithm and then present a
heuristic for more effective solving of the minimum falsification problem.

6.1 A Two-Layer Falsification Algorithm

Algorithm 1 describes our two-layer framework. Lines 3–13 indicate the upper-
layer search. In each iteration, the upper-layer searches a set of deviation samples.
For a deviation δ, it instantiates a deviated system Mδ (line 6), computes the
system evaluation value γ (line 7), and then computes the objective function

276 C. Zhang et al.

Algorithm 1: A Two-Layer Tolerance Falsification Algorithm
Input : M, π, φ, ̂Δ, and objective function f
Output: violation δbest ∈ ̂Δ

1 δbest ← nil;
2 X ← initial candidates from ̂Δ ;
3 while termination criteria = false do
4 V ← 〈〉 ;
5 for δ ∈ X do
6 Mδ ← Instantiate(M̂Δ, δ) ;
7 γ ← CPSFalsification(Mδ, π, φ) ;
8 v ← f(δ, γ) ; // heuristic computation.
9 V ← V � 〈v〉 ;

10 end
11 δbest ← UpdateBest(X, V) ;
12 X ← NextCandidates(f, X, V, ̂Δ) ;
13 end

value v (line 8). The objective value indicates the quality of a deviation sample,
e.g., whether it causes a violation and has a small distance to the zero-deviation
point. Finally, the objective values are used to update the best result so far (line
11) and generates the next candidate solutions (line 12). In particular, line 7
indicates the lower-layer task. It corresponds to the system evaluation function
Γ (which is the minimal STL robustness value according to Eq. 2).

Given the characteristics of our falsification problem, we propose this two-
layer structure for multiple reasons: First, the separation of deviations and the
lower-layer CPS falsification allows us to define richer evaluation metrics and
heuristics that are solely relevant for deviation searching. These heuristics, if
used in a single layer objective, would lead to an ill-posed optimization problem
exacerbated by the highly non-convex landscapes of traditional CPS falsification.
Second, this separation of concerns allow us to find deviations closer to nominal
points even for systems with high-dimensional state spaces, complex dynamics,
and rugged robustness landscapes with multiple local minimas. In these set-
tings, an one-layer search would converge to local solutions without exploring
the search space extensively. Finally, this two-layer structure provides us enough
extensibility to:

– Integrate many off-the-shelf optimization methods for the upper-layer like we
have for Uniform Random, CMA-ES [25], NSGA-II [26], and Ant Colony [27].

– Integrate state-of-the-art CPS falsifiers (we integrated CMA-ES, Breach [22],
and PsyTaLiRo [24]) and simulation platforms (we used OpenAI-Gym [28],
PyBullet [29], and Matlab Simulink).

– Extend to other STL evaluation methods (function Γ), e.g., evaluation with
probabilistic guarantees [18–20], cumulative STL [30], or mean STL [31].

Tolerance of RL Controllers in CPS 277

6.2 Heuristic for Efficient Minimum Tolerance Falsification

We present a novel heuristic for more effective discovery of minimum violating
deviations. Our heuristic is based on the known issues of RL policy overfitting. It
has been highlighted in related literature that RL policies can overfit to the spe-
cific paramterized system used for training and this dependence can reduce their
applicability to real-world scenarios [4–6]. We exploit this over-fitting tendency
to guide the search for δ that leads to a violation. Our heuristic is the cosine sim-
ilarity between a deviated system’s worst-case trajectory and a nominal system’s
worst-case trajectory. Formally:

dist(δ) =
Trδ · Trδ0

‖Trδ‖ · ‖Trδ0‖
Specifically, when computing the objective function value v (line 8), we add

the similarity value dist(δ) to the system evaluation value γ. Our intuition is that
once a controller has been trained in a system parameterized by δ0, it overfits to
that specific system. Then, when the controller is deployed in a deviated system,
its worst-case trajectory will be similar to the nominal worst-case trajectory
if the distance between the two MDPs, measured by the Euclidean distance
between the parameters, is small. We measure the similarity between trajectories
using cosine similarity. Thus, as the distance from the nominal MDP increases,
the similarity score between the worst-case trajectories decreases. This heuristic
provides more information about the search space: i.e. in the case there are two
deviations where the robustness values are similar (which is possible due to the
worst case semantics of STL robustness), cosine similarity can help in directing
the search toward more violating directions.

A more in-depth discussion of this heuristic, along with an example, can be
found in the extended version of this paper [32].

7 Evaluation

We implemented our proposed framework in a Python package3 and evaluate
our technique through comprehensive experimentation. Our evaluation focuses
on the minimum tolerance falsification problem. Specifically, we measure our
technique’s effectiveness through three key metrics: (1) the number of violations
found, (2) the minimum distance of violations, and (3) the average distance of
violations. Based on these metrics, we formulate the following research questions:

– RQ1: Is our two-layer falsification framework more effective than leveraging
an existing CPS falsifier?

– RQ2: Does our heuristic improve the effectiveness for finding minimum vio-
lating deviations, compared to off-the-self optimization algorithms?

3 https://github.com/SteveZhangBit/STL-Robustness.

https://github.com/SteveZhangBit/STL-Robustness

278 C. Zhang et al.

Although existing CPS falsifiers [22–24] cannot directly solve our minimum
tolerance falsification problem (Problem 2), they allow customizing the objec-
tive function to optimize for both the deviation distance and STL robustness
value to find minimum deviations. We call this technique one-layer search. For
RQ1, we benchmark against the one-layer search baseline for the minimum toler-
ance falsification problem. For RQ2, we evaluate whether our proposed heuristic
described in Sect. 6.2 further improves the effectiveness of our two-layer search,
specifically the minimum distance.

7.1 Experimental Setup and Implementational Details

To answer these research questions, we first present a benchmark with systems
and controllers trained to satisfy complex safety specifications. The benchmark
contains six systems with non-linear dynamics adopted from OpenAI-Gym,
PyBullet, and Matlab Simulink. We extend the interfaces of these systems so
that users can configure their behavior for tolerance analysis by changing the
system parameters. Details about the benchmark problems can be found in the
extended version of this paper [32].

Then, we solve the corresponding minimum tolerance falsification problems
for them. For each problem, we conduct the following experiments:

– One-layer search leveraging an existing CPS falsifier by modifying the objec-
tive function to factor in the deviation distance and STL robustness value,

– Two-layer search with CMA-ES for both the upper and lower layers,
– Two-layer search with CMA-ES+Heuristic for the upper layer and CMA-ES

for the lower layer.

Specifically, for the one-layer search, we employ the state-of-the-art CPS falsi-
fiers, Breach [22] (with CMA-ES) and PsyTaLiRo [24] (with dual annealing).
We replace their default objective functions with the sum of the normalized
deviation distance and STL robustness value.

For the two-layer search, due to the complexity of the CPS and the non-
convex nature of STL robustness, the upper-layer optimization is also non-convex
and has multiple local minima. Additionally, we assume black-box systems and
controllers. Thus, due to these two considerations, we made the decision to adopt
derivative-free evolutionary algorithms. Specifically, we primarily utilized CMA-
ES as the upper-layer algorithm because it is widely used for black-box opti-
mization and in our preliminary experiments outperformed other evolutionary
methods. However, other algorithms can also be integrated. Furthermore, we also
use CMA-ES for the lower-layer search as it is a widely used in CPS falsification
tools [17,22] and works competitively for both Python and Matlab environments.
Finally, we implement our heuristic and use it alongside the evaluation function
for the upper-layer search.

Each problem was run three times on a Linux machine with a 3.6 GHz CPU
and 24 GB memory. For fair evaluation, we set the budget in terms of the
number of interactions with the simulator for all our techniques. Specifically, for

Tolerance of RL Controllers in CPS 279

one run, the budget for the one-layer search is 10,000 simulations; and the budget
for the two-layer search is 100 for the upper-layer and 100 for the lower-layer
falsification.

7.2 Results

Table 1 summarizes the results for solving the minimum tolerance falsification
problems. The Viol. column shows the number of violations found in total from
the three runs. The Min Dst. and Avg. Dst. columns show the minimum and
average normalized l-2 distance to the zero-deviation point (i.e., ‖δ−δ0‖2) of the
found violations, respectively. The performance of our approach heavily depends

Table 1. Minimum tolerance falsification results.

One-layer search CMA-ES CMA-ES w/ Heuristic
Viol. Min Dst. Avg. Dst. Viol. Min Dst. Avg. Dst. Viol. Min Dst. Avg. Dst.

Cartpole 90 0.300 0.399 69 0.285 0.449 79 0.256 0.417
LunarLander – – – 74 0.026 0.222 84 0.020 0.293
CarCircle 11 0.143 0.255 22 0.102 0.219 57 0.068 0.454
CarRun 25 0.191 0.249 68 0.161 0.449 109 0.156 0.399
ACC N/A N/A N/A 43 0.110 0.323 110 0.138 0.415
WTK 300 0.299 0.443 54 0.296 0.454 45 0.319 0.533

Fig. 3. Search spaces, deviation samples and violations processed by each algorithm. In
each graph, the axes are the parameter domains. A red cell is a positive STL robustness
value and a blue cell is a negative value. A grey cross is a deviation sample that is not
falsified in the given budget; a yellow cross is a violation. (Color figure online)

280 C. Zhang et al.

on the underlying simulation time of a system that vastly outweighs the over-
head added by our evolutionary search algorithms. Thus, we share comparable
performance, measured by total run time, as tools like Breach and PsyTaLiRo
given the same budget of simulation calls.

In addition, to qualitatively exhibit our approach’s effectiveness in finding
deviations, we visualize the search space landscape for different problems in
heat maps. Each heat map is generated by slicing the space (i.e., the estimated
domain of system parameters) into a 20×20 grid and using a CPS falsifier to find
the minimum STL robustness value for each grid cell. However, this processing is
only done for visualization purposes and is not used in any of the algorithms. This
brute force sampling requires far more resources than our falsification approach.
Finally, we draw the deviation samples and violations from our analysis on the
heat maps. The final results are illustrated visually in Fig. 3.

Answer to RQ1. From the table, the one-layer search fails to find violations
in LunarLander, and it cannot represent the type of system parameters we need
in ACC (due to falsification tool implementation). On the other hand, our two-
layer search with CMA-ES solves all the problems and finds smaller deviations
than the one-layer search in all problems. Moreover, from the heat maps, since
the distance value is directly added to the STL robustness value in the one-layer
search, it fails to find small deviations that barely violate the property because
it would result in a larger objective value. Thus, it is hard for it to converge
to the minimum violating deviations. On the other hand, our two-layer search
can better converge to the boundary of safe and unsafe regions. However, it also
causes it to find fewer violations because it searches for more samples in the safe
region close to the boundary where violations can be rare.

Answer to RQ2. Our two-layer search with CMA-ES+Heuristic finds smaller
violating deviations than the original CMA-ES in 4/6 problems. It also finds
more violations in 5/6 problems. However, the average distances also increase in
4/6 problems due to more exploration of violations encouraged by our heuristic.
Despite that, from the heat maps, our CMA-ES+Heuristic approach can still
converge to small violating deviations on the safe and unsafe boundary while also
finding more violations. Our heuristic helps in guiding the search and provides
additional information to the algorithm when STL robustness is not enough to
provide directionality. Concretely, a small similarity value would likely lead to
a violation (even when the robustness value is similar) and thus results in more
violations found and faster convergence to a small violation.

8 Related Work

There exists similar CPS tolerance notions from a control theory perspective
such as [33,34]. For example, Saoud et al. [33] present a resilience notion of CPS
based on LTL w.r.t. a real-valued disturbance space, which forms a ball around a
particular trajectory. Then, they present a method to approximate the maximum
set of disturbances that maintain a desired LTL property for linear control sys-
tems. These notions target traditional controllers with a white-box assumption

Tolerance of RL Controllers in CPS 281

of systems and controllers, whereas we employ a black-box assumption which is
more practical regarding complex CPS and NN-based RL controllers.

Falsification of CPS [17] is a well-studied problem in the literature. It finds
trajectories that violate a STL property by mutating the initial states or sys-
tem inputs. A related application is parameter synthesis [35] that finds system
parameters where the system satisfies the property. It can be seen as a dual prob-
lem to the falsification problem. Tools like Breach [22] and PSY-TaLiRo [23,24]
support both types of analysis. However, our tolerance falsification problem can
be seen as solving these two problems at the same time. Our upper-layer search
finds system parameters that lead to a violation of the system specification, and
the lower-layer search finds initial states or system inputs that lead to a violating
trajectory. Although our problem can be reduced to a CPS falsification problem
with system parameters, it is not effective in solving our minimum tolerance
falsification problem compared to our two-layer structure.

A two-layer optimization structure has also been applied in CPS falsification
such as in [36–38]. However, these approaches still target traditional falsification
of a CPS (the lower-layer in our case), whereas our approach aims to separate
the problems of finding small deviation parameters from system falsification.

VerifAI [39,40] applies a similar idea to us where they consider abstract fea-
tures for a ML model that can lead to a property violation of a CPS. Differ-
ent from us, they assume a CPS with a ML perception model (such as object
detection) connecting to a traditional controller, and the abstract features are
environmental parameters that would affect the performance of the ML model
(e.g., brightness). In other words, they focus on deviations that affect the ML
model whereas our deviation notion is more general that includes any external
or internal deviation or sensor error which changes the system dynamics.

Robust RL studies the problem to improve the performance of controllers
in the presence of uncertainties [2,3]. Also, domain randomization [4–6] studies
how to train a controller that works across various systems with randomized
parameters. However, our work is different in that: (1) we focus on tolerance
evaluation whereas they focus more on training; and (2) we focus on system
specifications in STL properties, while they rely on rewards where maximizing
the reward does not necessarily guarantee certain system specification.

9 Conclusion

In this paper, we have introduced a specification-based tolerance definition for
CPS. This definition yields a new type of analysis problem, called tolerance
falsification, where the goal is to find small changes to the system dynamics
that result in a violation of a given STL specification. We have also presented
a novel optimization-based approach to solve the problem and evaluated the
effectiveness of it over our proposed CPS tolerance analysis benchmark.

Since our analysis framework is extensible, as part of future work, we plan
to explore and integrate other types of evaluation functions Γ (e.g., evaluation
with probabilistic guarantees [18–20]), different semantics of STL robustness

282 C. Zhang et al.

(e.g., cumulative robustness [30]), or leveraging decomposition of STL for more
effective falsification of complex specifications [41]. Moreover, we currently use l-2
norm to compute the deviation distances. In the future, we also plan to explore
other distance notions such as Wasserstein Distance [42–44], which computes
distribution distance between system dynamics.

Acknowledgements. We are grateful to our anonymous reviewers for their com-
ments and Georgios Fainekos for a discussion on an earlier version of this paper. This
research was sponsored by InfoTech Labs, Toyota Motor North America. This work was
also supported in part by the NSF awards 2144860 and 2319317, and the NSA grant
H98230-23-C-0274. Any views, opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the organizations.

Data Availability Statement. The source code of our tool and all the experimental
results are available at the following URL: https://doi.org/10.5281/zenodo.12144853.

References

1. Collins, J.J., Howard, D., Leitner, J.: Quantifying the reality gap in robotic manip-
ulation tasks. 2019 International Conference on Robotics and Automation (ICRA),
pp. 6706–6712, (2018). https://api.semanticscholar.org/CorpusID:53208962

2. Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever, D., Peters, J.: Robust rein-
forcement learning: a review of foundations and recent advances. Machine Learning
and Knowledge Extraction, vol. 4, no. 1, pp. 276–315 (2022). https://www.mdpi.
com/2504-4990/4/1/13

3. Xu, M., et al.: Trustworthy reinforcement learning against intrinsic vulnerabilities:
robustness, safety, and generalizability (2022)

4. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of
robotic control with dynamics randomization. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 3803–3810 (2018)

5. Sadeghi, F., Levine, S.: CAD2RL: real single-image flight without a single real
image (2017)

6. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 23–30 (2017)

7. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transforma-
tions: theory and application to reward shaping. In: Proceedings of the Sixteenth
International Conference on Machine Learning, ser. ICML 1999, pp. 278–287. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc. (1999)

8. Booth, S., Knox, W.B., Shah, J., Niekum, S., Stone, P., Allievi, A.: The perils
of trial-and-error reward design: Misdesign through overfitting and invalid task
specifications. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, no. 5, pp. 5920–5929 (2023). https://ojs.aaai.org/index.php/AAAI/article/
view/25733

https://doi.org/10.5281/zenodo.12144853
https://api.semanticscholar.org/CorpusID:53208962
https://www.mdpi.com/2504-4990/4/1/13
https://www.mdpi.com/2504-4990/4/1/13
https://ojs.aaai.org/index.php/AAAI/article/view/25733
https://ojs.aaai.org/index.php/AAAI/article/view/25733

Tolerance of RL Controllers in CPS 283

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol.
6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15297-9_9

10. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model Checking Probabilistic
Systems, pp. 963–999. Springer International Publishing, Cham (2018). https://
doi.org/10.1007/978-3-319-10575-8_28

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press
(2018)

12. García, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

13. Gu, S.:et al.: A review of safe reinforcement learning: methods, theory and
applications. arXiv, vol. abs/2205.10330, (2022). https://api.semanticscholar.org/
CorpusID:248965265

14. Yu, W., Liu, C.K., Turk, G.: Policy transfer with strategy optimization. In: Inter-
national Conference on Learning Representations (2019). https://openreview.net/
forum?id=H1g6osRcFQ

15. Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust Control: The Parametric
Approach, 1st edn. Prentice Hall PTR, USA (1995)

16. Weinmann, A.: Uncertain Models and Robust Control. Springer, Vienna(2012)
17. Corso, A., Moss, R., Koren, M., Lee, R., Kochenderfer, M.: A survey of algorithms

for black-box safety validation of cyber-physical systems. J. Artif. Intell. Res. 72,
377–428 (2021)

18. Fan, C., Qin, X., Xia, Y., Zutshi, A., Deshmukh, J.: Statistical verification of
autonomous systems using surrogate models and conformal inference (2021)

19. Pedrielli, G., et al.: Part-X: a family of stochastic algorithms for search-based test
generation with probabilistic guarantees. IEEE Trans. Autom. Sci. Eng. 21(3),
4504–4525 (2024). https://doi.org/10.1109/TASE.2023.3297984

20. Lindemann, L., Matni, N., Pappas, G.J.: STL robustness risk over discrete-time
stochastic processes. In: 2021 60th IEEE Conference on Decision and Control
(CDC), pp. 1329–1335 (2021)

21. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann.
Oper. Res. 153, 235–256 (2007)

22. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6_17

23. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9_21

24. Thibeault, Q., Anderson, J., Chandratre, A., Pedrielli, G., Fainekos, G.: PSY-
TaLiRo: a python toolbox for search-based test generation for cyber-physical sys-
tems. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021. LNCS, vol. 12863,
pp. 223–231. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85248-
1_15

25. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE
International Conference on Evolutionary Computation, pp. 312–317 (1996)

26. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://api.semanticscholar.org/CorpusID:248965265
https://api.semanticscholar.org/CorpusID:248965265
https://openreview.net/forum?id=H1g6osRcFQ
https://openreview.net/forum?id=H1g6osRcFQ
https://doi.org/10.1109/TASE.2023.3297984
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-030-85248-1_15
https://doi.org/10.1007/978-3-030-85248-1_15

284 C. Zhang et al.

27. Schlüter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimiza-
tion for non-convex mixed integer nonlinear programming. Comput. Oper.
Res. 36(7), 2217–2229 (2009). https://www.sciencedirect.com/science/article/pii/
S0305054808001524

28. Brockman, G., et al.: OpenAI gym (2016)
29. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,

robotics and machine learning (2016). http://pybullet.org
30. Haghighi, I., Mehdipour, N., Bartocci, E., Belta, C.: Control from signal temporal

logic specifications with smooth cumulative quantitative semantics. In: 2019 IEEE
58th Conference on Decision and Control (CDC), pp. 4361–4366 (2019)

31. Mehdipour, N., Vasile, C.-I., Belta, C.: Arithmetic-geometric mean robustness for
control from signal temporal logic specifications. In: 2019 American Control Con-
ference (ACC), pp. 1690–1695 (2019)

32. Zhang, C., et al.: Tolerance of reinforcement learning controllers against deviations
in cyber physical systems (2024). https://arxiv.org/abs/2406.17066

33. Saoud, A., Jagtap, P., Soudjani, S.: Temporal logic resilience for cyber-physical
systems. In: 2023 62nd IEEE Conference on Decision and Control (CDC), pp.
2066–2071 (2023)

34. Fainekos, G.E., Pappas, G.J.: MTL robust testing and verification for LPV systems.
In: 2009 American Control Conference, pp. 3748–3753 (2009)

35. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5_5

36. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte Carlo tree search. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)

37. Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shoot-
ing, CEGAR-based falsification for hybrid systems. In: Proceedings of the 14th
International Conference on Embedded Software, ser. EMSOFT 2014. New York,
NY, USA: Association for Computing Machinery, (2014). https://doi.org/10.1145/
2656045.2656061

38. Wang, J., Bu, L., Xing, S., Li, X.: PDF: path-oriented, derivative-free approach for
safety falsification of nonlinear and nondeterministic CPS. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 41(2), 238–251 (2022)

39. Dreossi, T., et al.: VerifAI: A Toolkit for the Formal Design and Analysis of
Artificial Intelligence-Based Systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4_25

40. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. J. Autom. Reason. 63, 1031–1053
(2019)

41. Kapoor, P., Kang, E., Meira-Góes, R.: Safe planning through incremental decom-
position of signal temporal logic specifications. arXiv preprint arXiv:2403.10554
(2024)

42. Lecarpentier, E., Rachelson, E.: Non-stationary Markov decision processes, a
worst-case approach using model-based reinforcement learning. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32. Curran Associates,
Inc. (2019)

https://www.sciencedirect.com/science/article/pii/S0305054808001524
https://www.sciencedirect.com/science/article/pii/S0305054808001524
http://pybullet.org
https://arxiv.org/abs/2406.17066
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1145/2656045.2656061
https://doi.org/10.1145/2656045.2656061
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
http://arxiv.org/abs/2403.10554

Tolerance of RL Controllers in CPS 285

43. Abdullah, M.A., et al.: Wasserstein robust reinforcement learning (2019)
44. Yang, I.: A convex optimization approach to distributionally robust Markov deci-

sion processes with Wasserstein distance. IEEE Control Syst. Lett. 1(1), 164–169
(2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

CauMon: An Informative Online Monitor
for Signal Temporal Logic

Zhenya Zhang1(B) , Jie An2,3(B) , Paolo Arcaini3(B) ,
and Ichiro Hasuo3(B)

1 Kyushu University, Fukuoka, Japan
zhang@ait.kyushu-u.ac.jp

2 Institute of Software, Chinese Academy of Sciences,
Beijing, China

anjie@iscas.ac.cn
3 National Institute of Informatics, Tokyo, Japan

{arcaini,hasuo}@nii.ac.jp

Abstract. In this paper, we present a tool for monitoring the traces of
cyber-physical systems (CPS) at runtime, with respect to Signal Tempo-
ral Logic (STL) specifications. Our tool is based on the recent advances of
causation monitoring, which reports not only whether an executing trace
violates the specification, but also how relevant the increment of the trace
at each instant is to the specification violation. In this way, it can deliver
more information about system evolution than classic online robust mon-
itors. Moreover, by adapting two dynamic programming strategies, our
implementation significantly improves the efficiency of causation moni-
toring, allowing its deployment in practice. The tool is implemented as
a C++ executable and can be easily adapted to monitor CPS in different
formalisms. We evaluate the efficiency of the proposed monitoring tool,
and demonstrate its superiority over existing robust monitors in terms
of the information it can deliver about system evolution.

Keywords: online monitoring · Signal Temporal Logic · dynamic
programming

1 Introduction

Cyber-physical systems (CPS), that embed cyber technologies into physical sys-
tems, have been widely deployed in safety-critical domains, such as transporta-
tion, healthcare, power and energy. Due to their safety-critical nature, the behav-
iors of CPS require formal verification to guarantee their satisfaction to formal
specifications that are usually expressed in temporal logics, e.g., Signal Tem-
poral Logic (STL) [20]. Given an STL specification, monitoring (a.k.a. runtime
verification) [2] is an effective approach for checking whether a trace of system
execution satisfies the specification.

Monitoring can be achieved either offline or online. In STL monitoring, an
offline monitor can report a real value (called robustness) that indicates how
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 286–304, 2025.
https://doi.org/10.1007/978-3-031-71177-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_18&domain=pdf
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-71177-0_18

CauMon: An Informative Online Monitor for Signal Temporal Logic 287

robustly an STL formula ϕ is satisfied or violated by a complete execution trace,
based on the STL robust semantics [9,13]. By contrast, an online monitor tar-
gets partial execution traces at runtime, reporting the satisfaction of an STL
formula ϕ by the partial trace so far at each time instant. Due to the lack of a
complete trace, a typical online monitor, e.g., the robust monitor in [6], reports a
robustness interval [[R]L, [R]U] telling the possibly reachable values of the robust-
ness under any suffix trace, where [R]L and [R]U are the lower and upper bounds
respectively. In this way, the satisfaction of ϕ can be inferred from the computed
robustness interval, e.g., ϕ is violated if [R]U is negative.

Fig. 1. An illustrative exam-
ple of online robust moni-
toring and causation moni-
toring of STL formula ϕ :
�[0,45](�[0,5]v < 10).

Online robust monitoring [6] suffers from the
information masking problem [24,26,27], as visu-
alized by the example in Fig. 1. The specification
in this example requires that, during [0, 45], the
speed v of a car should never be over 10 for 5
time units. The top plot reports a trace v that
violates the system specification. When using the
classic online monitor [6] reported in the middle
plot, the value of [R]U keeps on decreasing and
becomes negative at b = 10. It then reaches the
minimum value around b = 14 and stagnates at
that value in the remaining of the monitoring.
As a result, the system evolution is not faithfully
reflected by the monitor. For instance, the monitor
does not deliver that the system actually recovers
(i.e., v < 10) at b = 20 and that the status v > 10
persisting for more than 5 time units happens once
again from b = 25.

Causation monitoring [26] emerges to tackle the information masking issue
of robust monitoring. As shown in the bottom plot of Fig. 1, at each instant b, an
online causation monitor returns [R]� (called a violation causation distance) and
[R]⊕ (called a satisfaction causation distance), that respectively reflect how far
the trace value at b is from being a causation to the violation and the satisfaction
of the specification. For instance, [R]� at b = 12 is negative, which implies that
the trace value at b = 12 is considered as a causation to the violation of the
partial trace, because the status v > 10 that has been persisting for more than 5
time units continues at b = 12. At b = 20, [R]� becomes positive, which implies
that the trace value at b = 20 is no more a causation to the violation, because v
becomes less than 10 at b = 20. From Fig. 1, we can see that compared to robust
monitoring, causation monitoring can reflect more information about system
evolution, such as the recovery of the system at b = 20 and the recurrence of the
status v > 10 persisting for more than 5 time units from b = 25.

Contributions. In this paper, we present a tool CauMon, that implements an
efficient online causation monitoring algorithm of STL. Compared to the plain
monitoring algorithm [26] derived directly from the definition of causation mon-
itoring, our algorithm features the use of two dynamic programming strategies,

288 Z. Zhang et al.

by which we can significantly reduce redundant computation of the causation
distances during monitoring of system executions. We adopt dynamic program-
ming for two purposes: first, we record and reuse the intermediate monitoring
results of the sub-formulas using several worklists for each of the sub-formulas,
such that computational cost is only spent for incremental results, not for exist-
ing ones; moreover, we adapt a sliding window algorithm [18] to accelerate the
computation of monitoring results in the presence of nested temporal operators.

We implement CauMon in C++, and it can be compiled to an executable
that can be easily interfaced with CPS in different formalisms. We demonstrate
the advantages of CauMon in informativeness, by comparing it with the existing
online robust monitor in [6]. Moreover, we also evaluate the efficiency of CauMon,
by comparing it with the plain causation monitor derived from the definition of
causation monitoring directly, and also the online robust monitor [6]. The exper-
imental results show that CauMon can indeed deliver more information about
system evolution compared to the robust monitor; moreover, while the plain
implementation of causation monitoring is not applicable to handling nested
temporal operators in practice, CauMon can significantly reduce the monitoring
time costs and achieve comparable efficiency with the robust monitor.

Related Work. Online monitoring is an approach that monitors system exe-
cutions at runtime, and different approaches have been proposed for different
temporal logics, such as LTL [4,5], MTL [14,19,25], and STL [6,7,15,16,23].
For online monitoring of STL, most of existing approaches [6,7,15,16] and
tools [1,8,22,23] are based on its robust semantics and provide a quantitative
value or interval to characterize the system runtime status. Consequently, these
approaches suffer more or less from the issue of information masking. In [27],
we proposed a reset mechanism that resets a monitor whenever it detects the
recovery of specification violation. However, [27] does not propose new semantics
and so it does not improve informativeness of monitors between two resets.

2 Preliminaries

2.1 Signal Temporal Logic

Let T ∈ R+ be a positive real. A signal (i.e., a trace of system execution) is a
function v : [0, T] → R

d , where T is the time horizon, d ∈ N+ is the dimension.
In practice, each signal dimension concerns with a signal variable that has a
certain physical meaning, e.g., speed, RPM of a car. We fix a set Var of variables
and assume that a signal v is spatially bounded by a hyper-rectangle Ω, i.e., for
any t ∈ [0, T], v(t) ∈ Ω.

Signal temporal logic (STL) [20] can express desired properties of hybrid
systems. We review the syntax and robust semantics [9,13] of STL.

Definition 1 (STL Syntax). In STL, the atomic propositions α and the for-
mulas ϕ are respectively defined as follows:

α ::≡ f(w1, . . . , wK) > 0 ϕ ::≡ α | ⊥ | ¬ϕ | ϕ ∧ ϕ | �Iϕ | �Iϕ | ϕ UI ϕ

CauMon: An Informative Online Monitor for Signal Temporal Logic 289

Here f is a K-ary function f : RK → R, w1, . . . , wK ∈ Var, and I is a closed
non-singular interval in R≥0, i.e., I = [l, u], where l, u ∈ R and l < u. �,�
and U are temporal operators, which are known as always, eventually and until,
respectively. The always operator � and eventually operator � are two special
cases of the until operator U , where �Iϕ ≡ � UI ϕ and �Iϕ ≡ ¬�I¬ϕ. Other
common connectives such as ∨,→ are introduced as syntactic sugar: ϕ1 ∨ ϕ2 ≡
¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

Definition 2 (STL Robust Semantics). Let v be a signal, ϕ be an STL
formula and τ ∈ R+ be an instant. The robustness R(v, ϕ, τ) ∈ R ∪ {+∞,−∞}
of v w.r.t. ϕ at τ is defined by induction on the construction of formulas, as
follows,

R(v, α, τ) := f(v(τ)) R(v,¬ϕ, τ) := −R(v, ϕ, τ)
R(v, ϕ1 ∧ ϕ2, τ) := min (R(v, ϕ1, τ),R(v, ϕ2, τ))
R(v,�Iϕ, τ) := inft∈τ+I R(v, ϕ, t) R(v,�Iϕ, τ) := supt∈τ+I R(v, ϕ, t)

R(v, ϕ1 UI ϕ2, τ) := supt∈τ+I min
(
R(v, ϕ2, t), inft′∈[τ,t) R(v, ϕ1, t

′)
)

where τ + [l, u] denotes the shifted interval [l + τ, u + τ].

The Boolean semantics of STL, i.e., whether (v, τ) |= ϕ or not, can be inferred
from the quantitative robust semantics in Definition 2, namely, if R(v, ϕ, τ) > 0,
it implies (v, τ) |= ϕ; and if R(v, ϕ, τ) < 0, it implies (v, τ) �|= ϕ.

2.2 Online Robust Monitoring of STL

Online monitoring concerns the satisfaction of a partial signal v0:b : [0, b] → R
d

w.r.t. an STL formula ϕ. We define a completion of v0:b as a signal v : [0, T] → R
d

(b ≤ T) such that ∀t ∈ [0, b],v(t) = v0:b(t). A completion v can be written as
the concatenation of v0:b with a suffix signal vb:T , i.e., v = v0:b · vb:T .

Definition 3 (Online Robust Monitor [6]). Let v0:b be a partial signal, and
let ϕ be an STL formula. We denote by Rα

max and Rα
min the possible maximum and

minimum bounds of the robustness R(v, α, τ)1. Then, an online robust monitor
returns a sub-interval [R](v0:b, ϕ, τ) ⊆ [Rα

min, R
α
max] at instant b, which is defined

as follows, by induction on the construction of formulas.

[R](v0:b, α, τ) :=

{[
f (v0:b(τ)) , f (v0:b(τ))

]
if τ ∈ [0, b]

[
Rα
min, R

α
max

]
otherwise

[R](v0:b,¬ϕ, τ) := −[R](v0:b, ϕ, τ)

[R](v0:b, ϕ1 ∧ ϕ2, τ) := min
(
[R](v0:b, ϕ1, τ), [R](v0:b, ϕ2, τ)

)

[R](v0:b,�Iϕ, τ) := inft∈τ+I

(
[R](v0:b, ϕ, t)

)

[R](v0:b, ϕ1 UI ϕ2, τ) := supt∈τ+I min
(
[R](v0:b, ϕ2, t), inft′∈[τ,t) [R](v0:b, ϕ1, t

′)
)

1 R(v, α, τ) is bounded because of the bound Ω of v. In practice, if Ω is unknown, we
just need to set Rα

max and Rα
min to be ∞ and −∞ respectively.

290 Z. Zhang et al.

Here, f is defined as in Definition 1, and the arithmetic rules over inter-
vals I = [l, u] are defined as follows: −I := [−u,−l] and min(I1, I2) :=
[min(l1, l2),min(u1, u2)].

We denote by [R]U(v0:b, ϕ, τ) and [R]L(v0:b, ϕ, τ) the upper and lower bounds
of [R](v0:b, ϕ, τ) respectively. Intuitively, this interval [R](v0:b, ϕ, τ) indicates the
set of robustness values possibly reached by the completion of v0:b, under any
suffix signal vb:T . This interval can be used to derive a 3-valued verdict for
a given v0:b, that signifies the satisfaction of v0:b w.r.t. the specification ϕ: if
[R]L(v0:b, ϕ, τ) > 0, it implies true, i.e., v0:b satisfies ϕ; if [R]U(v0:b, ϕ, τ) < 0, it
implies false, i.e., v0:b violates ϕ; otherwise, it returns unknown.

3 Overview of Causation Monitoring

As mentioned in §1, the information masking issue of online robust monitors
has been identified as a problem in [24,26,27]. The problem arises from the
monotonicity of online robust monitors, i.e., during evolution of the signal
v0:b, [R]U(v0:b, ϕ, τ) monotonically decreases and [R]L(v0:b, ϕ, τ) monotonically
increases. The formal statement of this problem can be found in [26].

Online Causation Monitoring. Causation monitoring is proposed in [26] as
a solution to the problem. Specifically, instead of monitoring robustness that
indicates whether a partial trace violates the specification, it monitors whether
the increment of the trace at each instant is the causation to the violation
of the specification. Here, the definition of causation follows the online trace
diagnostics [3,27] that returns a (violation or satisfaction) epoch, which is a set
of signal segments that sufficiently triggers the violation or satisfaction of the
partial signal. Intuitively, an epoch can be considered as an explanation of a
violation or satisfaction; the formal definition of epoch can be found in [3,27].
Having the trace diagnostic result at each instant, causation monitoring aims to
report such a verdict: if the current instant b of v0:b is included in the violation
epoch, it is considered as a violation causation; if b is included in the satisfaction
epoch, it is considered as a satisfaction causation; otherwise, it is irrelevant.

The causation monitor proposed in [26] achieves this goal as follows: at each
instant, it computes two quantities [R]� (v0:b, ϕ, τ) and [R]⊕ (v0:b, ϕ, τ), that
respectively indicate the distances of the current instant b from being a viola-
tion causation and a satisfaction causation. The formal definition of causation
distances [R]� (v0:b, ϕ, τ) and [R]⊕ (v0:b, ϕ, τ) are presented in Definition 4.

Definition 4 (Online Causation Monitor [26]). Let v0:b be a partial signal
and ϕ be an STL formula. At an instant b, an online causation monitor returns
a violation causation distance [R]� (v0:b, ϕ, τ) and a satisfaction causation dis-
tance [R]⊕ (v0:b, ϕ, τ), as defined in Table 1.

The causation verdict, regarding whether b is a causation or not, can be
inferred by the results of the online causation monitor in Definition 4, as follows:

CauMon: An Informative Online Monitor for Signal Temporal Logic 291

Table 1. The definitions of violation and satisfaction causation distances

[R]� (v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rα
max otherwise

[R]� (v0:b, ¬ϕ, τ) := −[R]⊕ (v0:b, ϕ, τ)

[R]� (v0:b, ϕ1 ∧ ϕ2, τ) := min
(
[R]� (v0:b, ϕ1, τ) , [R]� (v0:b, ϕ2, τ)

)
[R]� (v0:b, �Iϕ, τ) := inft∈τ+I

(
[R]� (v0:b, ϕ, t)

)

[R]� (v0:b, ϕ1 UI ϕ2, τ) := inft∈τ+I

⎛
⎜⎝max

⎛
⎜⎝min

(
inft′∈[τ,t) [R]� (v0:b, ϕ1, t

′)

[R]� (v0:b, ϕ2, t)

)

[R]U(v0:b, ϕ1 UI ϕ2, τ)

⎞
⎟⎠

⎞
⎟⎠

[R]⊕ (v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rα
min otherwise

[R]⊕ (v0:b, ¬ϕ, τ) := −[R]� (v0:b, ϕ, τ)

[R]⊕ (v0:b, ϕ1 ∧ ϕ2, τ) := max

⎛
⎝min

(
[R]⊕ (v0:b, ϕ1, τ) , [R]L(v0:b, ϕ2, τ)

)
min

(
[R]L(v0:b, ϕ1, τ), [R]⊕ (v0:b, ϕ2, τ)

)
⎞
⎠

[R]⊕ (v0:b, �Iϕ, τ) := supt∈τ+I

(
min

(
[R]⊕ (v0:b, ϕ, t) , [R]L(v0:b, �Iϕ, τ)

))

[R]⊕ (v0:b, ϕ1 UI ϕ2, τ) := supt∈τ+I

⎛
⎜⎜⎜⎜⎜⎜⎝

max

⎛
⎜⎜⎜⎜⎜⎜⎝

min

⎛
⎜⎝

supt′∈[τ,t) [R]⊕ (v0:b, ϕ1, t
′)

inft′∈[τ,t) [R]L(v0:b, ϕ1, t
′)

[R]L(v0:b, ϕ2, t)

⎞
⎟⎠

min

(
inft′∈[τ,t) [R]L(v0:b, ϕ1, t

′)

[R]⊕ (v0:b, ϕ2, t)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

• if [R]� (v0:b, ϕ, τ) < 0, then b is a violation causation;
• if [R]⊕ (v0:b, ϕ, τ) > 0, then b is a satisfaction causation;
• otherwise, i.e., [R]� (v0:b, ϕ, τ) > 0 and [R]⊕ (v0:b, ϕ, τ) < 0, b is irrelevant.

Below, we use an example to illustrate how online causation monitor works.

Example 1. Consider the example in Fig. 1. As indicated by the robust mon-
itor, the specification is violated by the signal after b = 10. By online trace
diagnostics (see [27]), at b = 19, we can obtain a violation epoch {〈v < 10, t〉 |
t ∈ [5, 19]}, which implies that the violation so far is caused by the signal values
v during [5, 19]. Since b = 19 is included in this epoch, b is then considered as a
violation causation. On the other hand, we can also compute the violation cau-
sation distance [R]� (v0:b, ϕ, 0) = −1 < 0 by Definition 4, which also indicates
that b is a violation causation.

Similarly, at b = 23, we obtain an epoch {〈v < 10, t〉 | t ∈ [5, 20]}, in which
b = 23 is not included, so b = 23 is irrelevant. This is also shown by computing the
causation distances [R]� (v0:b, ϕ, 0) = 2 > 0 and [R]⊕ (v0:b, ϕ, 0) = Rα

min < 0.
Note that the result of causation monitoring is not monotonic, e.g., while

b = 19 is considered as a violation causation, b = 23 is not. This feature is
clearly shown by the visualized result of causation monitoring in Fig. 1.

Relationship with Robust Monitors. As indicated by Fig. 1 and Example 1,
the causation monitor is not monotonic, and thus it delivers more information

292 Z. Zhang et al.

about system evolution. We refer to [26] for a more detailed explanation. Below,
Lemma 1 states that the online causation monitor in Definition 4 refines the
online robust monitor in Definition 3, in the sense that the monitoring results
of robust monitors can be inferred from that of causation monitors. In other
words, the information delivered by causation monitors is a superset of that can
be delivered by classic robust monitors.

Lemma 1. The causation monitor in Definition 4 refines the classic online
robust monitor in Definition 3, in the sense that the monitoring results of the
robust monitor can be reconstructed from the results of the causation monitor,
as follows:

[R]U(v0:b, ϕ, τ) = inf
t∈[0,b]

[R]� (v0:t, ϕ, τ) , [R]L(v0:b, ϕ, τ) = sup
t∈[0,b]

[R]⊕ (v0:t, ϕ, τ)

4 Efficient Causation Monitoring

In [26], a straightforward way of synthesizing an online causation monitor has
been provided that follows Definition 4. However, the synthesized monitor may
not be sufficiently efficient to be deployed in practice, due to the high computa-
tional complexity when handling nested temporal operators.

Example 2. Consider the specification ϕ ≡ �[0,45](�[0,5]v < 10) in Fig. 1. For
convenience, we name the sub-formulas of ϕ as follows: ϕ′ ≡ �[0,5](v < 10), α ≡
(v < 10). Consider the computation of [R]� (v0:b, ϕ, 0) that contains nested
temporal operators. According to Definition 4, we need to compute as follows:

[R]� (v0:b, ϕ, 0) = inft∈[0,45] [R]� (v0:b, ϕ
′, t)

= inft∈[0,45]

(
inft′∈[t,t+5]

(
max

(
[R]� (v0:b, α, t′) , [R]U(v0:b, α, t′)

)))

During this computation, for a fixed t′, [R]� (v0:b, α, t′) and [R]U(v0:b, α, t′) are
repeatedly computed as long as it holds that t′ ∈ [t, t+5] for any t ∈ [0, 45]. This
results in numerous redundant computations, which can significantly diminish
the efficiency of causation monitoring.

We introduce two dynamic programming strategies, i.e., intermediate result
recording and sliding window, for accelerating causation monitoring.

4.1 Intermediate Result Recording

Our efficient causation monitoring algorithm is presented in Algorithm 1. The
basic idea of the algorithm is to record the intermediate monitoring results, by
maintaining several worklists for each of the sub-formulas of an STL formula ϕ,
so as to avoid redundant computations.

CauMon: An Informative Online Monitor for Signal Temporal Logic 293

Algorithm 1 Efficient online causation monitoring
Require: a partial signal v0:b, an STL formula ϕ
1: for ψ ∈ SF(ϕ) do
2: for t ∈ Eva(ϕ, 0)[ψ] do
3: Cau�[ψ](t) ← Rα

max, Cau
⊕[ψ](t) ← Rα

min

4: RobU[ψ](t) ← Rα
max, RobL[ψ](t) ← Rα

min

5: for b ∈ [0, T] do
6: UpdateCau(v0:b, ϕ, 0) � monitoring at runtime

7: function UpdateCau(v0:b, ψ, τ)
8: switch ψ do
9: case α � atomic propositions

10: if b ∈ Eva(α) then

11: Cau�[ψ](t) ←
{

f(v0:b(b)) if t = b

+∞ otherwise

12: Cau⊕[ψ](t) ←
{

f(v0:b(b)) if t = b

−∞ otherwise

13: case ¬ϕ � negations
14: UpdateCau(v0:b, ϕ, τ) � recursive call
15: Cau�[ψ] ← −Cau⊕[ϕ]
16: Cau⊕[ψ] ← −Cau�[ϕ]

17: case ϕ1 ∧ ϕ2 � conjunctions
18: UpdateCau(v0:b, ϕ1, τ); UpdateCau(v0:b, ϕ2, τ) � recursive call
19: UpdateRob(v0:b, ϕ1, τ); UpdateRob(v0:b, ϕ2, τ) � see [6]
20: Cau�[ψ] ← min(Cau�[ϕ1],Cau

�[ϕ2])
21: Cau⊕[ψ] ← max

(
min(Cau⊕[ϕ1],Rob

L[ϕ2]), min(RobL[ϕ1],Cau
⊕[ϕ2])

)
22: case �Iϕ � always operators
23: UpdateCau(v0:b, ϕ, τ) � recursive call
24: UpdateRob(v0:b, �Iϕ, τ) � see [6]
25: Cau�[ψ] ← SlideMin(Cau�[ϕ],Trans(I)) � call Algorithm 2
26: Cau⊕[ψ] ← min

(
RobL[ϕ], −SlideMin(−Cau⊕[ϕ],Trans(I))

)

Sub-formulas and Evaluation periods. Given an STL formula ϕ, the sub-
formula set SF(ϕ) of ϕ is defined as follows (see an example in Example 2):

SF(α) := {α} SF(¬ϕ) := {¬ϕ} ∪ SF(ϕ)
SF(ϕ1 ∧ ϕ2) := {ϕ1 ∧ ϕ2} ∪ SF(ϕ1) ∪ SF(ϕ2) SF(�Iϕ) := {�Iϕ} ∪ SF(ϕ)

At the beginning of Algorithm 1, for each sub-formula ψ ∈ SF(ϕ), we initialize
four worklists, including Cau�[ψ] and Cau⊕[ψ] that record the violation and
satisfaction causation distances, RobU[ψ] and RobL[ψ] that record the upper and
lower robustness bounds.

Each of these four lists is defined over the evaluation period Eva(ψ) of each
ψ, that is, intuitively, the time interval that includes all the instants t such that
[R]� (v0:b, ψ, t) is needed for the computation of [R]� (v0:b, ϕ, 0) (see Defini-
tion 4, and it also holds for satisfaction distances). Formally, given ψ ∈ SF(ϕ),

294 Z. Zhang et al.

the evaluation period is computed as follows. First, Eva[ϕ, 0], a set that includes
the evaluation periods of all the sub-formulas ψ′ ∈ SF(ϕ), is computed recur-
sively as follows:

Eva[α, t] := {〈α, t〉} Eva[¬ϕ, t] := {〈¬ϕ, t〉} ∪ Eva[ϕ, t]
Eva[ϕ1 ∧ ϕ2, t] := {〈ϕ1 ∧ ϕ2, t〉} ∪ Eva[ϕ1, t] ∪ Eva[ϕ2, t]
Eva[�Iϕ, t] := {〈�Iϕ, t〉} ∪ ⋃

t′∈t+I Eva[ϕ, t′]

Then, the evaluation period Eva[ϕ, 0](ψ) (we denote as Eva(ψ) for simplicity)
of ψ is defined as Eva(ψ) = {t | 〈ψ, t〉 ∈ Eva[ϕ, 0]}.

Example 3. Consider the sub-formulas ϕ, ϕ′ and α of the formula ϕ in Exam-
ple 2. The evaluation periods of these sub-formulas can be computed as follows.

• First, Eva[ϕ, 0] = {〈ϕ, 0〉} ∪ ⋃
t′∈[0,45]{〈ϕ′, t′〉} ∪ ⋃

t′′∈[0,50]{〈ϕ′, t′′〉};
• Then, we can obtain the evaluation periods for ϕ, ϕ′ and α, respectively as

follows: Eva(ϕ) = 0,Eva(ϕ′) = [0, 45],Eva(α) = [0, 50].

Monitoring Algorithm. During the growth of partial signal v0:b, Algorithm 1
monitors v0:b by calling the function UpdateCau at each instant, which
updates the worklists Cau�[ψ] and Cau⊕[ψ], such that Cau�[ψ](t) equals to
[R]� (v0:b, ψ, t) and Cau⊕[ψ](t) equals to [R]⊕ (v0:b, ψ, t), as defined in Defi-
nition 4. Unlike the plain monitoring algorithm in Example 2, when updating
Cau�[ψ] and Cau⊕[ψ], Algorithm 1 relies on the worklists of the sub-formulas of
ψ that are already available rather than computing the causation distances of
the sub-formulas from scratch, thereby saving monitoring time significantly. We
illustrate this process in Example 4.

As shown in Algorithm 1, UpdateCau is defined recursively based on the
structure of an STL formula. In Algorithm 1, we only show a part of the oper-
ators; other operators can be derived by the STL syntax (Definition 1) and the
presented operators.

• The updates for α and ¬ϕ exactly follow Definition 4;
• The update for ϕ1 ∧ ϕ2 requires not only the worklists of causation distances

of sub-formulas, but also the worklists of robustness bounds of sub-formulas
(according to Definition 4), so it calls the auxiliary function UpdateRob
(see Algorithm 2 in [6]) to update the worklists RobL[ϕ1] and RobL[ϕ2] of
robustness bounds of sub-formulas. The function UpdateRob was originally
introduced in [6]. It updates the worklists of robustness bounds in a similar
way to what UpdateCau does for causation distances, i.e., when updating
the worklists of robustness bounds for a formula ψ, it also relies on the work-
lists of robustness bounds for its sub-formulas, rather than computing from
scratch.

• The update for �Iϕ requires to compute the minimum of Cau�[ϕ] over the
time window t + I, for each t ∈ Eva(�Iϕ). To efficiently update the list, we
adapt a sliding window algorithm [18] (elaborated on in §4.2) that, given a list

CauMon: An Informative Online Monitor for Signal Temporal Logic 295

Algorithm 2 Sliding window algorithm
Require: a list A = {a1, . . . , aN}, a window ω = [l, u] (l, u ∈ N)
Ensure: a list result = {minj∈[i+l,i+u] aj | i ∈ {1, . . . , N − u}}

1: function SlideMin(A, ω)
2: Q ← empty double-ended queue
3: result ← ∅ � initialize the list of results
4: PushBack(Q, l + 1)
5: for i ∈ {l + 2, . . . , N} do
6: if i ≥ u + 1 then � should give outputs
7: result ← result ∪ {aFront(Q)} � record result

8: if ai < ai−1 then � the back is not possible in result
9: PopBack(Q) � remove back

10: while ai < aBack(Q) do � recursive check
11: PopBack(Q) � remove back

12: PushBack(Q, i) � ai possibly in result
13: if i > Front(Q) + u − l then � front is no more in window
14: PopFront(Q) � remove front

15: return result

{a1, . . . , aN} and an index window [l, u] (l, u ∈ N), computes the minimum
minj∈[i+l,i+u] aj over the window [i + l, i + u] for each i ∈ {1, . . . , N − u}. In
Algorithm 1, Trans(I) transforms a time interval I to the index representation
of a window, simply by considering the sampling frequency2.

4.2 Sliding Window Algorithm

The sliding window algorithm [18] is given in Algorithm 2, which computes the
local minimum minj∈[i+l,i+u] aj over the span [i+l, i+u], for each i ∈ {1, . . . , N−
u}. This is yet another dynamic programming strategy, by using a double-ended
queue Q (Line 2) to record the comparisons that have been performed between
the elements in Q, and thus eliminate redundant comparisons.

Algorithm 2 takes as input a list {a1, . . . , aN} and a window [l, u]. Initially,
the window is placed to contain the elements a1+l, . . . , a1+u, and the index l +1
is pushed to the back of Q (Line 4). Then it enters a loop to traverse the list
(Line 5). Inside the loop, first, it checks the condition whether a result should be
reported, i.e., the elements in the initial window have been traversed (Line 6).
From which that on, it reports the list element with the index at the front of Q
at each loop (Line 7). Then, it recursively removes the indexes aBack(Q) at the
back of Q, if the element ai of the current index i is greater than the aBack(Q)

(Line 8-11), and pushes the current index i to the back of Q (Line 12). If the

2 In practice, the continuous time domain of signals (see §2.1) needs to be discretized,
by sampling the signal with a certain frequency. In this way, a signal can be repre-
sented as a list, which is the format required in Algorithm 2.

296 Z. Zhang et al.

index at the front of Q is already out of the scope of the window, then it is also
removed (Line 14).

Note that, the index of local minimum over the window is always stored at the
front of Q, and that is why it is returned at each loop in Line 7 of Algorithm 2.
In this way, the comparisons that have been performed between list elements are
reflected by the state of Q, thus reducing redundancies significantly.

Example 4. Consider the specification in Example 2. According to Algo-
rithm 1, our computation of [R]� (v0:b, ϕ, 0) at b = 19 relies on updating the
worklists for the sub-formulas SF(ϕ) of ϕ. As shown in Table 2, we need to main-
tain five worklists for the sub-formulas of ϕ. Each worklist is defined over the
evaluation period of the sub-formula, as computed in Example 3.

Due to recursive call of UpdateCau and UpdateRob, our algorithm first
updates the worklist Cau�[α] and RobU[α] for α, as shown by the correspond-
ing rows in Table 2. Then, RobU[ϕ′] is updated by taking the local maximum
over each window [0, 5] (by UpdateRob), and Cau�[ϕ′] is updated based on
Cau�[α] and RobU[ϕ′] (by Algorithm 1). Finally, Cau�[ϕ] can be updated based
on Cau�[ϕ′].

Table 2. The worklists for computing [R]� (v0:b, ϕ, 0) at b = 19

b (time) 0 · · · 5 · · · 10 · · · 14 15 · · · 19 20 · · · 45 · · · 50

Cau�[α] Rα
max · · · Rα

max · · · Rα
max · · · Rα

max R
α
max · · · -1 Rα

max · · · Rα
max · · · Rα

max

RobU[α] 10 · · · 0 · · · -4 · · · -3.5 -3 · · · -1 Rα
max · · · Rα

max · · · Rα
max

RobU[ϕ′] 10 · · · 0 · · · -3 · · · -1 Rα
max · · · Rα

max R
α
max · · · Rα

max

Cau�[ϕ′]Rα
max · · · Rα

max Rα
max -1 Rα

max Rα
max R

α
max · · · Rα

max

Cau�[ϕ] -1

Compare our algorithm with the naive one in Example 2. In our algorithm,
the computations of [R]� (v0:b, α, t) and [R]U(v0:b, α, t) for any specific t both
happen only once; then, they are recorded in the worklists and when they are
used to update the worklists of other formulas, they can be directly read from the
worklist, which does not take new computation costs. Therefore, our algorithm
avoids the repeated computation of [R]� (v0:b, α, t) and [R]U(v0:b, α, t), as shown
in the monitoring process in Example 2.

5 Demonstration of CauMon

We implemented CauMon in C++, which can be easily compiled to interface with
CPS implemented in any formalism. In this section, we showcase the usage of
CauMon, by compiling it to be a MATLAB API, based on the MEX functions
of MATLAB. A code snippet for monitoring ϕ in Fig. 1 is shown as follows.

CauMon: An Informative Online Monitor for Signal Temporal Logic 297

1 signal = ’speed ’;

2 spec = ’alw_ [0 ,45](ev_ [0,5](speed[t]<10))’;

3 tau = 0;

4 while ∼end()

5 trace = get_trace ();

6 [vio_d , sat_d] = cau_mon(signal , trace , spec , tau);

7 end

The function cau mon serves as the interface to call our causation monitor,
which requires four arguments, namely, a trace, a list of signal names, an STL
specification and a non-negative τ . Their formats are required as follows:

• trace is a high-dimensional array. Its first row is an array of time stamps;
from second row on, each row denotes a signal concerned with the STL;

• signal is a string that denotes a list of signals that correspond to each row
of trace. Multiple signals can be separated by commas.

• spec is a string that denotes an STL formula. The syntax of spec follows the
standard in Breach [8].

• tau is a non-negative real, as τ defined in Definition 4.

During the monitoring of system execution, the program iteratively calls cau mon
with an updated trace, which is obtained by a function get trace. The function
get trace requires an interface with the system being monitored. Typically, such
an interface is provided by a CPS simulator; for example, in the case of Simulink
models, one can use the function sim to obtain the output of Simlink models.
At each instant, cau mon can return a violation causation distance vio d and a
satisfaction causation distance sat d, exactly as defined in Definition 4.

6 Experimental Evaluation

We introduce the experimental evaluation of our tool CauMon. For the purpose
of comparison, we also integrated two baseline monitors, namely, RobM (the
online robust monitor from [6]) and PCauM (the plain implementation of online
causation monitor from Definition 4) into our tool, as an option that can be
specified by users. Our tool is publicly available in our Github repository3.

6.1 Experiment Setting

Benchmarks. To evaluate the efficiency of our proposed monitoring algorithm,
we collect traces from four MATLAB Simulink models that are commonly-used
in the CPS community [10–12,21].
Automatic Transmission (AT) implements a transmission controller of an auto-
motive system. It has been widely-used recently [10–12] as a benchmark of CPS
testing and monitoring. It contains 64 blocks in total, including a stateflow chart

3 https://github.com/choshina/EfficientCausationMonitor.

https://github.com/choshina/EfficientCausationMonitor

298 Z. Zhang et al.

that represents the transmission control logic. The outputs of AT, including
speed and RPM, reflect the state of the automotive system. The specifications
that AT are expected to hold are listed as follows:

• ϕAT
1 ≡ �[0,30](speed < 110): speed should be always low;

• ϕAT
2 ≡ �[0,29](speed > 70 → �[0,1](speed > 80)): there should be a drastic

speed change from 70 to 80;
• ϕAT

3 ≡ �[0,27](speed > 50 → �[1,3](RPM < 3000)): whenever speed is higher
than 50, RPM should be below 3000 in 3 s;

• ϕAT
4 ≡ �[0,29](speed < 100) ∨ �[29,30](speed > 65): there should not be a

drastic speed change at the end of the simulation;

Abstract Fuel Control (AFC) is a powertrain control system released by Toy-
ota [17] and has been widely used as a benchmark in CPS community [10–12,21].
The system takes external inputs including engine speed and pedal angle, and
adjusts the air-to-fuel ratio to ensure the performance of the powertrain system.
The output of AFC includes the air-to-fuel ratio AF and a reference value AFref.
The specifications of AFC are listed as follows:

• ϕAFC
1 ≡ �[10,50](|AF − AFref| < 0.1): the deviation of AF from AFref should

always be small;
• ϕAFC

2 ≡ �[10,48.5]�[0,1.5] (|AF − AFref| < 0.08): a large deviation should not
last for too long;

Fig. 2. Comparison between CauMon and RobM, in terms of the information provided
by different monitors. In each of the sub-figures, the top plot is the signals, the middle
plot is the result of online robust monitors [6], and the bottom plot is the result of
online causation monitors.

Neural Network Controller (NN). This is a magnetic levitation system that has
been used as a benchmark in [10,12,21,29]. It takes one input signal, Ref ∈ [1, 3],
which is the reference for the position Pos of a magnet suspended above an
electromagnet. The specification of NN is a complicated one:

CauMon: An Informative Online Monitor for Signal Temporal Logic 299

• ϕNN
1 ≡ �[0,18](¬close → reach), where close ≡ |Pos−Ref | ≤ ρ+ a · |Ref |,

and reach ≡ �[0,2](�[0,1](close)): the position should approach the reference
position in some seconds when they are far. Here, a = 0.04 and ρ = 0.004.

Free Floating Robot (FFR) models a robot moving in a 2D space [28,30]. It takes
as input the four boosters of the robot, and outputs four signals that are the
position in terms of coordinate values x, y. The specification of FFR is as follows:

• ϕFFR
1 ≡ ¬(�[0,5](�[0,2](x ∈ [1.5, 1.7] ∧ y ∈ [1.5, 1.7]))): it requires the robot

not to stay in an area for at least 2 s.

Experiment Design. For each specification, we first generate 10 signals by
running the Simulink models with random inputs, and then for each signal, we
apply the three monitors and compare the total time they spent in monitoring
the signal. To handle the fluctuation of monitoring time due to the environmental
noises, we repeat each monitoring process for five times and report the average
monitoring time as the result. While some monitors may be not efficient and not
terminated within a reasonable time budget, we set 5000 s as a timeout.

Our experiments are conducted on Amazon EC2 c4.2xlarge instances
(2.9 GHz Intel Xeon E5-2666 v3, 15 GB RAM).

6.2 Evaluation

Efficacy of CauMon. To demonstrate the supriority of CauMon compared to
RobM in terms of informativeness, we show two plots in Fig. 2, which depict the
signals produced by Simulink models and the monitoring results of CauMon and
RobM. Due to the page limit, examples of other specifications are presented in
our Github repository. We can observe that, while the upper robustness curves
in these three plots provided by RobM are always monotonic, the violation cau-
sation distances provided by CauMon are not monotonic, thus they can deliver
more information about system evolution. For instance, in Fig. 2b, the spikes
shown in the monitoring result of CauMon reflect that the deviation between AF
and AFref is greater than the threshold 0.1 in ϕAFC

1 for more than once. How-
ever, this information can not be provided by the monotonic curve of the upper
robustness from the monitoring result given by RobM.

Efficiency of CauMon. The experimental results are presented in Table 3. Each
sub-table reports the results of monitoring 10 signals for the corresponding spec-
ification. The first three columns of each sub-table report the total monitoring
time of the three monitors, and the last two columns report the comparison
between the proposed CauMon and the two baseline monitors RobM and Cau-
Mon, computed by ΔA = (CauMon−A)/A, where A is either PCauM or RobM.

First, by the comparison between PCauM and CauMon, we observe that in
our experiments, CauMon always outperforms PCauM, with an improvement of
at least 17.5% (in ϕAT

4). In particular, in those complex specifications that have
nested temporal operators, such as ϕAT

2 , ϕAT
3 and ϕNN

1 , PCauM can take extremely

300 Z. Zhang et al.

long time to monitor the traces: for ϕAT
2 and ϕAT

3 , it takes around 1900 s; for ϕNN
1

that has nested operators of three levels, it even gets timeout. In the case of ϕAT
2

and ϕAT
3 , each instant of the signals takes about 1900

30×100 = 0.63 seconds, which
is 63 times longer than the sampling period (0.01 s for AT) of the traces. This
performance can lead to severe delays if PCauM is deployed in practice, and the
main reason is, as shown in Example 2, because of the redundant computations
of intermediate results. In contrast, CauMon does not suffer from the problem
and provides a monitoring performance that allows its usage in a real-world
setting, possibly even a synchronous monitoring setting.

The performance of PCauM is severely subject to the complexity of the spec-
ification. In the problems that have simpler formulas (e.g., ϕAT

1 , ϕAFC
1), PCauM is

not very slow. However, for specifications that have nested operators (e.g., ϕAT
2 ,

ϕAT
3 , ϕNN

1), PCauM becomes not feasible in practice. By contrast, CauMon suffers
much less from this issue. Even for complex specifications, CauMon is still very
efficient and its performance is always comparable with RobM.

By the comparison between RobM and CauMon, we observe that, the perfor-
mance of CauMon is at the same magnitude of RobM, and so its performance

Table 3. Experimental results of the three monitors RobM, PCauM and CauMon Time
is reported in seconds.

ϕAT
1 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.34 0.31 0.20 −41.8 −35.5

#2 0.32 0.31 0.19 −40.2 −38.7

#3 0.30 0.3 0.18 −40.4 −40.0

#4 0.33 0.31 0.19 −40.6 −38.7

#5 0.39 0.34 0.23 −41.6 −32.4

#6 0.30 0.30 0.18 −40.1 −40.0

#7 0.32 0.31 0.19 −40.7 −38.7

#8 0.34 0.32 0.20 −41.0 −37.5

#9 0.31 0.31 0.19 −39.9 −38.7

#10 0.33 0.32 0.20 −40.9 −37.5

ϕAT
2 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 1.55 1972.82 1.99 +28.4 −99.9

#2 1.50 1907.76 1.87 +24.9 −99.9

#3 1.47 1932.85 1.87 +27.5 −99.9

#4 1.48 1914.46 1.84 +24.8 −99.9

#5 1.50 1902.60 1.88 +25.8 −99.9

#6 1.48 1887.34 1.86 +25.7 −99.9

#7 1.45 1891.06 1.82 +25.7 −99.9

#8 1.44 1847.76 1.82 +26.2 −99.9

#9 1.58 1865.24 1.91 +21.0 −99.9

#10 1.41 1855.63 1.81 +28.2 −99.9

ϕAT
3 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 1.63 2007.99 2.26 +39.1 −99.9

#2 1.64 2015.69 2.27 +38.2 −99.9

#3 1.63 1990.24 2.13 +30.5 −99.9

#4 1.59 1926.94 2.20 +38.2 −99.9

#5 1.62 1985.16 2.20 +35.8 −99.9

#6 1.64 2023.44 2.27 +38.4 −99.9

#7 1.57 1979.15 1.99 +27.0 −99.9

#8 1.57 1894.74 2.16 +37.9 −99.9

#9 1.63 1991.59 2.11 +29.2 −99.9

#10 1.61 1997.21 2.16 +33.9 −99.9

ϕAT
4 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.46 0.57 0.47 +1.5 −17.5

#2 0.41 0.53 0.42 +2.4 −20.8

#3 0.45 0.57 0.46 +2.2 −19.3

#4 0.41 0.53 0.42 +2.3 −20.8

#5 0.43 0.55 0.44 +2.1 −20.0

#6 0.44 0.56 0.45 +1.4 −19.6

#7 0.42 0.54 0.43 +1.1 −20.4

#8 0.41 0.54 0.42 +1.4 −22.2

#9 0.43 0.55 0.43 +1.0 −21.8

#10 0.46 0.57 0.46 +0.5 −19.3

ϕAFC
1 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.0079 0.0095 0.0056 −29.8 −41.1

#2 0.0066 0.0088 0.0048 −27.1 −45.5

#3 0.0063 0.0086 0.0047 −25.1 −45.3

#4 0.0061 0.0086 0.0047 −23.3 −45.3

#5 0.0061 0.0086 0.0047 −23.1 −45.3

#6 0.0061 0.0086 0.0046 −23.8 −46.5

#7 0.0061 0.0086 0.0047 −23.7 −45.3

#8 0.0061 0.0086 0.0047 −23.6 −45.3

#9 0.0061 0.0086 0.0047 −23.6 −45.3

#10 0.0062 0.0087 0.0047 −24.1 −46.0

ϕAFC
2 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.0084 0.7033 0.0087 +3.1 −98.8

#2 0.0072 0.7041 0.0078 +8.0 −98.9

#3 0.0069 0.7017 0.0077 +12.0 −98.9

#4 0.0066 0.7041 0.0076 +15.0 −98.9

#5 0.0067 0.702 0.0077 +15.1 −98.9

#6 0.0066 0.7058 0.0076 +15.0 −98.9

#7 0.0067 0.7041 0.0077 +14.8 −98.9

#8 0.0067 0.7053 0.0077 +16.1 −98.9

#9 0.0067 0.7052 0.0077 +15.4 −98.9

#10 0.0067 0.7051 0.0078 +15.8 −98.9

ϕNN
1 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 1.25 t/o 1.89 +51.4 −99.9

#2 1.22 t/o 1.86 +52.8 −99.9

#3 1.23 t/o 1.89 +53.4 −99.9

#4 1.22 t/o 1.88 +53.7 −99.9

#5 1.23 t/o 1.88 +52.7 −99.9

#6 1.22 t/o 1.88 +53.8 −99.9

#7 1.23 t/o 1.88 +53.0 −99.9

#8 1.24 t/o 1.89 +52.8 −99.9

#9 1.24 t/o 1.88 +52.3 −99.9

#10 1.23 t/o 1.86 +51.4 −99.9

ϕFFR
1 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.053 850.1 0.085 +60.7 −99.9

#2 0.049 857.6 0.080 +62.3 −99.9

#3 0.049 857.1 0.080 +63.0 −99.9

#4 0.051 822.0 0.082 +61.7 −99.9

#5 0.049 813.5 0.080 +62.8 −99.9

#6 0.050 822.0 0.081 +63.3 −99.9

#7 0.051 867.8 0.083 +61.4 −99.9

#8 0.047 809.0 0.077 +62.3 −99.9

#9 0.047 809.6 0.077 +64.0 −99.9

#10 0.047 809.4 0.077 +63.1 −99.9

CauMon: An Informative Online Monitor for Signal Temporal Logic 301

is comparable with RobM. While in some cases CauMon is not as fast as RobM,
the performance difference is not very large. This is acceptable, regarding that
our CauMon can provide more information about system evolution than RobM.
There also happens that CauMon is faster than RobM, with simple specifications
that have no nested temporal operators, such as ϕAT

1 and ϕAFC
1 . This is because

monitoring simple specifications, like �Iα, mainly needs the causation distance
lists Cau�[α] and Cau⊕[α] of atomic proposition α, and by Defs. 3 and 4, Cau�[α]
and Cau⊕[α] have simpler shape than RobU[α] and RobL[α].

7 Conclusion and Future Work

We propose an efficient approach for online causation monitoring. Our approach
features two dynamic programming strategies, namely, the use of causation dis-
tance lists that record intermediate results, and the use of sliding window algo-
rithms that accelerate the causation computation of temporal operators. Exper-
iments show that, in terms of efficiency, our approach significantly outperforms
the plain causation monitor in [26], and is comparable with the existing online
robust monitors that deliver less information about system evolution than ours.

As future work, we would like to explore the application of the proposed
monitors for system behavior analysis. For instance, by causation monitoring,
we can obtain the information about when a cause of the specification violation
happens, and this can be used for fault analysis such as localization and repair.

Acknowledgments. Z. Zhang is supported by JSPS KAKENHI Grant No.
JP23K16865 and No. JP23H03372. P. Arcaini is supported by Engineerable AI Tech-
niques for Practical Applications of High-Quality Machine Learning-based Systems
Project (Grant Number JPMJMI20B8), JST-Mirai. J. An and I. Hasuo are sup-
ported by ERATO HASUO Metamathematics for Systems Design Project (No. JPM-
JER1603), JST, Funding Reference number: 10.13039/501100009024 ERATO.

Data Availability Statement. All relevant data that support the findings of this
paper are available in Zenodo with the identifier https://doi.org/10.5281/zenodo.
12518433.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

https://doi.org/10.5281/zenodo.12518433
https://doi.org/10.5281/zenodo.12518433

302 Z. Zhang et al.

References

1. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

2. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

3. Bartocci, E., Ferrère, T., Manjunath, N., Ničković, D.: Localizing faults in
Simulink/Stateflow models with STL. In: Proceedings of the 21st International
Conference on Hybrid Systems: Computation and Control (Part of CPS Week),
pp. 197–206. HSCC 2018, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3178126.3178131

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 25

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011). https://doi.org/10.1145/
2000799.2000800

6. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

7. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

8. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

10. Ernst, G., et al.: ARCH-COMP 2021 category report: falsification with valida-
tion of results. In: Frehse, G., Althoff, M. (eds.) 8th International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH21). EPiC Series
in Computing, vol. 80, pp. 133–152. EasyChair (2021). https://doi.org/10.29007/
xwl1

11. Ernst, G., et al.: ARCH-COMP 2020 category report: falsification. In: Frehse, G.,
Althoff, M. (eds.) 7th International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems (ARCH20). EPiC Series in Computing, vol. 74, pp.
140–152. EasyChair (2020). https://doi.org/10.29007/trr1

12. Ernst, G., et al.: ARCH-COMP 2022 category report: falsification with Ubounded
resources. In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings
of 9th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH22). EPiC Series in Computing, vol. 90, pp. 204–221. EasyChair
(2022). https://doi.org/10.29007/fhnk

13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1145/3178126.3178131
https://doi.org/10.1007/11944836_25
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/trr1
https://doi.org/10.29007/fhnk
https://doi.org/10.1016/j.tcs.2009.06.021

CauMon: An Informative Online Monitor for Signal Temporal Logic 303

14. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 15

15. Jakšić, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Ničkovié, D.: From
signal temporal logic to FPGA monitors. In: Proceedings of the 2015 ACM/IEEE
International Conference on Formal Methods and Models for Codesign, pp. 218–
227. MEMOCODE 2015, IEEE Computer Society, USA (2015). https://doi.org/
10.1109/MEMCOD.2015.7340489

16. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative moni-
toring of STL with edit distance. Formal Methods Syst. Des. 53, 83–112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

17. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, pp. 253–262. HSCC 2014, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2562059.2562140

18. Lemire, D.: Streaming maximum-minimum filter using no more than three com-
parisons per element. Nordic J. Comput. 13(4), 328–339 (2006)

19. Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Explainable online
monitoring of metric temporal logic. In: Sankaranarayanan, S., Sharygina, N. (eds.)
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, vol. 13994, pp. 473–491. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-30820-8 28

20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

21. Menghi, C., et al.: ARCH-COMP23 category report: Falsification. In: Frehse, G.,
Althoff, M. (eds.) Proceedings of 10th International Workshop on Applied Verifi-
cation of Continuous and Hybrid Systems (ARCH23). EPiC Series in Computing,
vol. 96, pp. 151–169. EasyChair (2023). https://doi.org/10.29007/6nqs

22. Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for analog sys-
tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol.
4763, pp. 304–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75454-1 22

23. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

24. Selyunin, K., et al.: Runtime monitoring with recovery of the SENT communication
protocol. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
336–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 17

25. Ulus, D.: Online monitoring of metric temporal logic using sequential networks.
arXiv preprint arXiv:1901.00175 (2019)

26. Zhang, Z., An, J., Arcaini, P., Hasuo, I.: Online causation monitoring of signal
temporal logic. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp. 62–84.
Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-
37706-8 4

27. Zhang, Z., Arcaini, P., Xie, X.: Online reset for signal temporal logic monitoring.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(11), 4421–4432 (2022).
https://doi.org/10.1109/TCAD.2022.3197693

https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1145/2562059.2562140
https://doi.org/10.1007/978-3-031-30820-8_28
https://doi.org/10.1007/978-3-031-30820-8_28
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.29007/6nqs
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1007/978-3-319-63387-9_17
http://arxiv.org/abs/1901.00175
https://doi.org/10.1007/978-3-031-37706-8_4
https://doi.org/10.1007/978-3-031-37706-8_4
https://doi.org/10.1109/TCAD.2022.3197693

304 Z. Zhang et al.

28. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte Carlo tree search. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)

29. Zhang, Z., Hasuo, I., Arcaini, P.: Multi-armed bandits for Boolean connectives in
hybrid system falsification. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 401–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 23

30. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: Effective hybrid system
falsification using monte Carlo tree search guided by QB-robustness. In: Silva, A.,
Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 595–618. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81685-8 29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-81685-8_29
http://creativecommons.org/licenses/by/4.0/

Industry Day Track

UnsafeCop: Towards Memory Safety
for Real-World Unsafe Rust Code

with Practical Bounded Model Checking

Minghua Wang1(B) , Jingling Xue2,3 , Lin Huang1 , Yuan Zi1,4,
and Tao Wei1

1 Ant Group, Beijing, China
{minghua.wmh,linyu.hl,ziyuan.zy,lenx.wei}@antgroup.com,

ziyuan@stu.pku.edu.cn
2 Ant Group, Sydney, Australia

3 UNSW Sydney, Sydney, Australia
j.xue@unsw.edu.au

4 Peking University, Beijing, China

Abstract. Rust has gained popularity as a safer alternative to C/C++
for low-level programming due to its memory-safety features and minimal
runtime overhead. However, the use of the “unsafe” keyword allows devel-
opers to bypass safety guarantees, posing memory-safety risks. Bounded
Model Checking (BMC) is commonly used to detect memory-safety prob-
lems, but it has limitations for large-scale programs, as it can only detect
bugs within a bounded number of executions.

In this paper, we introduce UnsafeCop that utilizes and enhances
BMC for analyzing memory safety in real-world unsafe Rust code. Our
methodology incorporates harness design, loop bound inference, and
both loop and function stubbing for comprehensive analysis. We opti-
mize verification efficiency through a strategic function verification order,
leveraging both types of stubbing. We conducted a case study on TECC
(Trusted-Environment-based Cryptographic Computing), a proprietary
framework consisting of 30,174 lines of Rust code, including 3,019 lines of
unsafe Rust code, developed by Ant Group. Experimental results demon-
strate that UnsafeCop effectively detects and verifies dozens of memory
safety issues, reducing verification time by 73.71% compared to the tra-
ditional non-stubbing approach, highlighting its practical effectiveness.

Keywords: Unsafe Rust · Memory Safety · Bounded Model Checking

1 Introduction

Rust’s emphasis on memory safety is well-recognized, with its rigorous ownership
based type system effectively eliminating numerous memory-safety issues during
compilation. As a result, critical systems [27,32] are increasingly being built
from the ground up in Rust. However, Rust, while making substantial strides in
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 307–324, 2025.
https://doi.org/10.1007/978-3-031-71177-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_19&domain=pdf
http://orcid.org/0000-0002-2270-2076
http://orcid.org/0000-0003-0380-3506
http://orcid.org/0009-0002-5659-1471
https://doi.org/10.1007/978-3-031-71177-0_19

308 M. Wang et al.

enhancing memory safety, still permits developers to write unsafe code, which
undermines its safety guarantees and provides developers with powerful but risky
capabilities [31]. Recent studies [13,24,33] have highlighted that unsafe code
remains the predominant source of memory-safety problems in Rust.

BMC (Bounded Model Checking) [15,16,25] is a widely used technique for
verifying memory-safety properties in unsafe Rust. It encodes program traces as
symbolic SAT/SMT problems and employs solvers to provide bounded proofs.
However, BMC has limitations, including the need for a fixed number of pro-
gram executions, which requires setting bounds on loop iterations. Smaller loop
bounds may result in incomplete unwinding, potentially missing genuine bugs.
On the other hand, overly large bounds can lead to memory exhaustion and ter-
mination of the checker. Additionally, BMC’s effectiveness is constrained when
dealing with complex code, especially paths involving intricate functions, as the
generated formulas can become too complex for practical solver handling. These
challenges collectively impede BMC’s utility in real-world code verification.

In this paper, we present UnsafeCop, which utilizes and enhances Kani [15],
a bounded model checker, to verify memory safety in real-world unsafe Rust
code. Our approach identifies functions that execute unsafe code and generates
proof harnesses with test cases. Abstract interpretation determines loop bounds
for BMC, and we implement stubbing for loops with large bounds to maintain
essential safety checks and ensure soundness. Our BMC model checking uses a
scheduling strategy that prioritizes complex, frequently invoked functions, using
stubs for others to increase verification efficiency. We validated UnsafeCop’s
effectiveness through a case study on the TECC (Trusted-Environment-based
Cryptographic Computing) framework, a proprietary software by Ant Group
that includes 30,174 lines of Rust code, with 3,019 lines of unsafe Rust code.
TECC integrates trusted computing with secure multi-party computation tech-
niques to foster a secure, reliable, and high-performance computing environment
for large-scale data applications. This case study served as a robust test envi-
ronment for assessing UnsafeCop’s memory safety capabilities.

In summary, this paper makes the following three main contributions:

– A practical BMC approach for detecting memory-safety issues in Rust pro-
grams, which includes harness design, loop bound inference, stubbing complex
loops, and optimizing function verification order by utilizing function stub-
bing for improved performance.

– The evaluation of UnsafeCop on a real-world project comprising 30,174 lines
of Rust code, with 3,019 lines being written in unsafe Rust.

– Insights and lessons learned from verifying real-world Rust programs, along
with suggestions for improving current model-checking tools such as Kani
[15], particularly for Rust.

2 Related Work

Program analysis [7,17,18,22,23] can identify memory-safety bugs in Rust code
but do not guarantee soundness. Formal methods, including theorem prov-

UnsafeCop 309

Fig. 1. Architecture of UnsafeCop.

ing [14,20,21,30] and deductive proving [2,8], are used to verify functional prop-
erties in safe Rust. Techniques like abstract interpretation [10,22], symbolic exe-
cution [19,26,28], and bounded model checking (BMC) [15,16,25] are focused
on ensuring memory safety properties. BMC stands out by encoding program
traces into symbolic SAT/SMT problems for solver-based automatic verification.
Addressing challenges like appropriate loop bounds and managing path explo-
sion is essential for BMC to be practically applicable in large-scale codebase
verification.

3 Overview

We introduce UnsafeCop, a method for verifying memory safety in real-world
unsafe Rust code. Our approach, depicted in Fig. 1, starts by locating all unsafe
code in the project and identifying functions exposed to other crates that execute
unsafe code. Test cases for these exposed functions are transformed into proof
harnesses. We infer loop bounds for accurate program modeling and apply loop
stubbing with memory safety checks for loops with large bounds. Using Kani [15],
a bit-precise BMC for Rust, we perform model checking on TECC. Our strategy
optimizes function verification order, prioritizing high-complexity, frequently-
invoked functions, followed by stubbing verified functions to check the rest. Kani
generates counterexamples for any detected memory issues, which are iteratively
fixed. Our focus is on memory safety in user-provided unsafe code, excluding
unsafe code from the Rust standard library and third-party crates.

3.1 Verification Scope and Proof Harness

In the verification model detailed in Def-1 below, the scope of verification, desig-
nated as TF , includes the set of functions necessitating proof harnesses. This set
encompasses public functions that have the capability to access user-provided
unsafe code, identified as USF , which includes unsafe blocks, unsafe functions,
or interfaces using Foreign Function Interfaces (FFI). A function f is classified

310 M. Wang et al.

as public to other crates if it isPublic(f) = true. Furthermore, the function
Reach(f, usf) assesses whether there is a program path that allows function f to
access any unsafe code usf , determined via reachability analysis on the program’s
interprocedural Control Flow Graph (iCFG) as is standard.

TF = {f | isPublic(f) && Reach(f, usf), usf ∈ USF} (Def-1)

To ensure memory safety in unsafe Rust, it is essential to create and verify
harnesses for functions within the set TF . The process of developing a harness
for a target public function is carried out in three stages.

First, the harness must encompass all possible calling scenarios of the target
public function. This is effectively achieved by leveraging existing test cases,
including both integration and unit tests available within the project. These
tests, carefully crafted by developers, not only demonstrate how the target public
function is used but also ensure necessary initializations and data setups are
performed before the function is invoked. If the target public function lacks
sufficient tests, we collaborate closely with developers to design a harness that
accurately reflects real-world invoking scenarios.

Additionally, if the target public function uses generic types, either in its
parameters or within the function itself, which can significantly alter control
flow, we collaborate with developers to identify all appropriate concrete types.
It is crucial for the harness to explore all possible instantiations of these generics
to capture varied control flow paths, ensuring thorough testing and verification.

Finally, it is essential for the harnesses to ensure thorough code coverage. This
coverage might change due to code adjustments when memory safety issues are
identified during verification. After resolving all detected issues, if code coverage
is still found to be insufficient, collaborating with developers to adjust the range
of values for symbolic variables may be necessary to achieve more comprehensive
coverage. A harness is deemed correctly generated when the associated public
function is verified to be free of bugs and achieves sufficient coverage.

3.2 Loop Bound Inference

BMC offers bounded proofs, ensuring that within given loop bounds, the program
satisfies certain properties. However, if the loop bound is too small, it may lead to
semantic deviations from the actual program, risking missed memory safety bugs.
Setting an appropriate loop bound is key for maintaining verification soundness
and detecting memory safety issues.

We utilize abstract interpretation [6] to deduce loop bounds. Observations
indicate that many loops, like those in the first two code snippets of Fig. 2, have
identifiable patterns (i.e., clear signatures). In the first example, the loop’s upper
bound is a literal constant directly. In the second example, the loop counters rely
on variable values derived from constants or intervals. Here, we calculate each
loop counter’s interval using the interval domain [5] in abstract interpretation,
with the interval’s upper bound serving as the loop bound.

For loops lacking clear patterns (i.e., clear signatures), as in the third code
snippet, we infer loop bounds using widening in the interval domain, achieving a

UnsafeCop 311

Fig. 2. Loop bound inference. Snippet 1 (Color figure online) demonstrates a loop with
the constant bound T::WIDTH. In snippet 2, values of nr_rnd and rm_bit are derived
from other constants. In snippet 3, the loop counter is determined through widening
within the interval domain.

Table 1. Intervals of the loop index i for the third code snippet in Fig. 2 at each
iteration, with the fixed-point algorithm set to iterate for four times.

Line Iteration 1 Iteration 2 Iteration 3 Iteration 4

7 [1, 1] [2, 2] [3, 3] [3, 7]
8 [1, 1] [2, 2] [3, 3] [3, 7]

fixed-point in the analysis. This involves setting a predefined number of iterations
for the abstract interpretation’s fixed-point algorithm. As the loop progresses,
we monitor the intervals of accessed variables. Upon completing the final iter-
ation, these variables are widened to a fixed-point state. The upper bound of
the widened interval for a loop index variable becomes the loop bound. Table 1
shows the loop index i’s intervals at each iteration, with the algorithm iterating
four times, resulting in a final loop bound of 7.

3.3 Loop Stubbing

Some loops yield excessively large bounds from widening, making complete
unwinding infeasible for BMC, which might lead to out-of-memory issues when
generating verification conditions. To address this, we apply loop stubbing to
rewrite loops with unfeasible bounds for unwinding.

We present loop stubbing guidelines using the example depicted in Fig. 3:

Iterator-like Variables. For iterator-like variables, such as loop index vari-
ables and references to elements in array-like structures, we substitute their val-
ues with symbolic intervals. As demonstrated in Fig. 3, the iterator i accesses vec-
tors like a.0 and a.1, with their sizes represented by the interval [0, a.size()).

312 M. Wang et al.

Fig. 3. Loop stubbing (top: original code; bottom: loop-stubbed code).

Additionally, new references like rx and rxu are introduced to symbolize the iter-
ators of accessed vectors, such as &a.0[i], &a.1[i].

Memory-Safety Properties. For array-like structures, we use assert
for access validation, as demonstrated in Fig. 3. For example, the assertion
assert!(a.size()==b.size() && b.size()==c.size()) ensures accesses to
vectors remain within their boundaries. Based on the new references, rx, rxu, ry,
ryu, rr, and rru introduced above, statements *r = *x + *y and *ru = *xu +
*yu are replaced with r = x + y and ru = xu + yu, respectively. Dereference
and arithmetic overflow checks are maintained.

Side-Effect Over-Approximation. Side effects arise from write operations
inside a loop affecting variables declared outside it. To address this, we over-
approximate these variables by assigning them appropriate intervals. For exam-
ple, the elements in c.0 and c.1, which are overwritten within the loop in Fig. 3,
can assume any value of type T. With rr and rru being iterator-like symbolic
variables, the last two assignments result in the specified over-approximation.

When a loop contains function calls, we assess the callee functions for com-
plexity and call frequency. Functions that are complex and frequently called are
verified first according to our scheduling strategy and replaced with stubs in

UnsafeCop 313

subsequent analyses. Simpler functions, on the other hand, undergo standard
analysis. We will provide more details on this approach in Sect. 3.4.

In loop stubbing, we preserve memory-safety checks and over-approximate
loops’ external side effects to prevent BMC from stalling, enabling thorough
analysis. Over-approximation is automated, whereas safety check preservation is
manual, ensuring no memory safety issues are missed and maintaining soundness.

3.4 Scheduling Strategy

The time spent on constraint solving is significant. The order in which functions
are verified affects both the quantity and complexity of the generated verification
conditions. This, in turn, influences the duration of constraint solving and the
overall performance of the verification process.

We use Def-2 to denote a specific path analyzed when verifying a harness:

VerifyPathi = t → f1 → ... → fn → usf i, where t ∈ TF and usf i ∈ USF (Def-2)

where t represents a target public function undergoing verification, usf i refers to
reachable unsafe code from t, and f, ..., fn are n additional functions executed
along the analyzed path. For recursion, a bounded depth of 1 is used. To ensure
the absence of memory safety issues, all paths starting from a harness must be
explored. The straightforward but inefficient approach of verifying all the paths
in a function individually is recognized. When a specific function f , particularly
one with complex logic, recurs across multiple paths, it can significantly affect
the time allocated for constraint solving in the program’s overall verification
process, due to the unnecessary multiple analyses of f .

We employ a scheduling strategy to optimize the order of function verifica-
tion. For each path outlined in Def-2, if a function f is frequently invoked and
sufficiently complex, we include it in a set, Fsche, as defined in Def-3 below:

Fsche = {f | Invk(f) × Cmplx (f) > T_invk_cmplx} (Def-3)

The “verification complexity” of f is determined by multiplying its invocation
frequency, denoted as Invk(f), with its computational complexity, referred to as
Cmplx (f). We use a predefined threshold, T_invk_cmplx , for this calculation.

Invk(f) represents the in-degree of f in the program’s iCFG. To determine
Cmplx(f), we take into account both the Halstead effort [11] and cyclomatic
complexity [9]. Halstead effort focuses on understanding difficulty, accounting for
code length, operations, and operators, while cyclomatic complexity addresses
control flow complexity. Both metrics collectively indicate the complexity of a
function. We utilize rust-code-analysis [1] to calculate both metrics and their
product serves as an indicator of a function’s complexity.

To execute this verification order, we first verify the functions in Fsche. Then,
to verify the remaining functions, we substitute the original functions at their
callsites with their respective stubs. Each stub is an over-approximation of its
function, computed in a manner akin to a loop stub, as detailed in Sect. 3.3.

314 M. Wang et al.

Fig. 4. Percentage breakdown of implemented and verified code w.r.t. memory safety.

3.5 Memory-Safety Verification

We use Kani-0.22.0 [15], compiled with the CadiCal solver [4], for model checking,
employing the “--̇memory-safety-checks” option. We have not set a timeout for
the solver. Loop unwinding information is provided using the “--̇cbmc-args -
-̇unwindset L1 : B1,L2 : B2 ...” option, where Bi indicates the inferred loop
bound for loop Li. In alignment with our scheduling strategy, the functions in
Fsche were given verification priority. For the verification of subsequent functions,
kani::stub was utilized to stub the already verified functions in Fsche.

4 Evaluation

TECC, short for Trusted-Environment-based Cryptographic Computing, is a
proprietary framework developed by Ant Group. It integrates trusted computing
with multi-party computation techniques, aiming to provide a secure, reliable,
and high-performance computing environment for large data applications.

TECC consists of 3,060 lines of C and 30,174 lines of Rust, including 3,019
lines of unsafe Rust as shown in Fig. 4(a). Rust handles critical tensor compu-
tations, while C oversees computation algorithms that interface with Rust via
FFI. The unsafe Rust includes 68 unsafe blocks across 27 functions (351 lines),
6 unsafe functions (106 lines), and 96 FFI functions (2,562 lines).

To demonstrate UnsafeCop’s capability in identifying memory-safety issues,
we applied it to verify TECC in a major case study. We dedicated approximately
115 person-hours to verifying 7,118 lines of Rust code, which includes 3,019 lines
of unsafe code and 4,099 lines of safe code. The percentages of these lines relative
to the total Rust code (excluding the C code) are shown in Fig. 4(b).

We employed Kani-0.22.0 [15] for Bounded Model Checking (BMC) on our
TECC project. Kani serves as a backend for the Rust compiler and utilizes the C
Bounded Model Checker (CBMC) [16] as its verification engine. It is specifically
designed to target Rust’s Mid-level Intermediate Representation (MIR), which
we used for our interval analysis on MIR. Before initiating verification of the

UnsafeCop 315

Fig. 5. Public function lt_zero_less_turn<A64, B64> and its FFI wrapper ffi_
lt_zero_less_turn_A64_B64, with both sharing the same inputs.

Rust code, we resolved undefined behaviors and memory safety issues in the C
code using the TrustInSoft Analyzer [29]. Additionally, all C functions callable
from Rust were stubbed to over-approximate their side effects.

The evaluation was conducted using an Intel(R) Core(TM) i9-9900K CPU
@ 3.60GHz with 16 cores and 128GB RAM, running Ubuntu 18.04.6 LTS.

4.1 Harness Design

Below, we outline the process involved in harness design in verifying TECC.
Verification Scope. In TECC, 243 public functions have the capability to
access unsafe code. Of these, developers confirmed that 110 are accessible to
other crates. Among these 110, 96 have corresponding FFI wrappers, as shown
in Fig. 5. Both the FFI functions and the public functions they wrap receive
the same inputs; however, the FFI functions are more prone to memory safety
issues as they directly receive data from C code. Consequently, we focused on
developing specific harnesses for these FFI functions, as depicted in Fig. 6.

Harness Writing. TECC features 57 integration and unit tests, covering 89 of
the 110 public functions that require verification harnesses. We converted these
existing tests into harnesses and developed 21 new ones to achieve full coverage
of all necessary functions. The creation of these 78 harnesses consumed 20% of
the total verification effort, translating to approximately 23 person-hours.

During the harness development process, we collaborated with TECC devel-
opers to remove 14 public functions with access to unsafe code from the codebase.
These functions were deemed unlikely to be called externally, thus reducing the
potential attack surface associated with unsafe code.

Coverage Statistics. For each public function harness in TECC, we considered
all potential calling scenarios, covering all possible values for symbolic variables
to ensure thorough code coverage. On average, two rounds of discussions with

316 M. Wang et al.

Fig. 6. Harness development for the FFI function given in Fig. 5 ffi_lt_zero
_less_turn_A64_B64 instead of its non-FFI version lt_zero_less_turn<A64,B64>, as
FFI functions are more prone to memory safety problems.

developers were conducted for each harness to confirm the calling scenarios and
appropriate ranges for symbolic variables. Ultimately, we achieved approximately
95% statement coverage for all verified functions, resolving 39 identified memory-
safety issues through 19 rounds of discussions with developers. Throughout the
verification process, there were no adjustments to the value ranges of symbolic
variables to expand code coverage.

Vacuity Checks. The correctness of each harness was ensured through con-
sultations with developers and complemented by automatic vacuity checks to
confirm property reachability using Kani. Properties identified as vacuous were
marked as UNREACHABLE in Kani’s output. We specifically focused on these prop-
erties, which represented less than 0.3% of all verified properties. Our review
confirmed that there were no possible traces that could reach these properties
given the determined data setups in our harnesses.

4.2 Improvements on Verification Efficiency

We demonstrate the improvements achieved by applying loop stubbing combined
with our scheduling strategy that also incorporates function stubbing.

Loop Stubbing. We illustrate the performance improvement achieved through
loop stubbing using the TECC function add, as previously shown in Fig. 3.

UnsafeCop 317

Fig. 7. Verification times of Non-Stubbing, Intra-Proc and Inter-Proc for four functions
selected in TECC (with Non-Stubbing and Intra-Proc defined in Sect. 4.2).

According to developers, the practical loop bound a.size() can reach 100 mil-
lion. Without loop stubbing, we set this loop bound and attempted verification,
resulting in Kani spending hours in the pre-processing step before being termi-
nated due to running out of memory. In contrast, after applying loop stubbing,
Kani successfully produced the desired verification result in 6.75 h.

Scheduling Strategy. Fig. 7 illustrates the performance advantages of our
scheduling strategy, introduced in Sect. 3.4, denoted as Inter-Proc. This strat-
egy is compared to two simpler approaches, Non-Stubbing and Intra-Proc, for
four functions within TECC. Non-Stubbing involves the individual analysis of all
functions without the use of stubs to prevent re-analysis of callee functions. Intra-
Proc conducts individual function analysis but utilizes stubs to avoid redundant
analysis of the same callee function called from within the same function.

Compared to Non-Stubbing, Intra-Proc reduces the average verification time
by 51.76% for the four functions: chebyshev, sqrt, log2, and cos. In the case of
chebyshev, Inter-Proc and Intra-Proc yield the same performance. On average,
Inter-Proc improves performance over Non-Stubbing by 70.75%. When consid-
ering only sqrt, log2, and cos, the average performance gain is 78.28%.

When expanding our evaluation to the entire TECC codebase, it took us
around 115 h to verify 110 public functions with Inter-Proc, which accesses unsafe
Rust code. During this process, we addressed and fixed the 39 reported bugs
(detailed in Sect. 4.3). In contrast, we estimate that Non-Stubbing would require
around 437 person-hours to accomplish the same verification task. To assess the
performance improvement of Inter-Proc over Non-Stubbing, we estimate the
verification times spent for both scheduling strategies as follows:

TNon−Stubbing =
∑

f∈Fexam

Invk(f) × Cmplx(f) (Def-4)

TInter−Proc =
∑

f∈Fsche

1 × Cmplx (f) +
∑

f∈Fexam−Fsche

Invk(f) × Cmplx (f) (Def-5)

where Fexam denotes the set of functions examined by BMC. For the functions
in Fsche , their invocation times are assumed to be 1, as each is verified once.

Based on our observations, some frequently called functions have low ver-
ification complexity, while others with complex logic are invoked infrequently.

318 M. Wang et al.

In such cases, it is reasonable to skip stubbing these functions, as it would not
significantly impact the overall verification time.

We computed the product of Invk(f) and Cmplx (f) for all functions in Fexam

and utilized their harmonic mean [12] as the threshold T_invk_cmplx in Def-3
to eliminate functions with extremely low verification complexity. For TECC, we
initially had |Fexam | = 196. By setting T_invk_cmplx = 3360.16, we obtained
|Fsche | = 168 after filtering out 28 functions. The harmonic mean for Fsche is
20014.82. Ultimately, Inter-Proc is estimated to reduce overall verification time
by approximately 73.71% compared to Non-Stubbing.

4.3 Effectiveness

In the verification of TECC, UnsafeCop detected a total of 39 memory-safety
issues, as detailed in Table 2. All of these issues were confirmed and addressed
by the developers. Subsequently, UnsafeCop verified their absence, ensuring that
the identified memory safety problems had been effectively resolved.

Table 2. Memory safety problems detected in TECC by UnsafeCop.

Bug Type Access Out-of-Bound Arith. Overflow Ptr Deref Double Free Mem Leak

Count 14 20 2 1 2

When performing stubbing to summarize loops and functions, we approxi-
mate their side effects using the interval domain. It is worth noting that this
approach did not introduce any false positives, as TECC comprises loops and
functions that operate on unrestricted values within their respective domains.

UnsafeCop comprises four main components: Harness Design (HD), Loop
Bound Inference (LBI), Loop Stubbing (LS), and Inter-Proc Scheduling (IS),
where function stubbing is also performed. These elements collectively con-
tribute to practical verification efforts. Table 3 illustrates their roles in identifying
memory-safety issues in TECC. HD is instrumental in detecting all bugs, with
HD-O representing bugs exclusively identified by HD. Both LS and IS prove
highly effective, detecting the majority of bugs and demonstrating their capa-
bilities for in-depth analysis.

Table 3. Contributions of UnsafeCop’s four main components to its overall effective-
ness in uncovering memory-safety issues in TECC.

UnsafeCop’s Techniques HD+IS+LS HD+LBI HD+LS HD-O HD+LBI+LS

#Mem-Safety Issues Found 11 2 15 10 1

Let us examine two case studies to see how UnsafeCop identifies two bugs.

UnsafeCop 319

Fig. 8. Buggy function truncate and its harness.

Case Study 1. HD+LS. Fig. 8 depicts an arithmetic overflow bug discovered
in the function truncate, callable from the public FFI ffi_truncate. In the
ffi_truncate harness, the function’s arguments are assigned intervals, with the
second representing a slice with a length that can vary from 0 to 100 million. The
bug occurs when the slice has a size of zero, triggering an arithmetic overflow.

This bug was blocked behind truncate’s initial loop, which had an exces-
sively large bound to practically unwind. Nevertheless, by stubbing the initial
loop, Kani managed to perform a more thorough analysis that extended beyond
the loop’s limits, eventually uncovering the arithmetic overflow.

Case Study 2. HD+IS+LS. Fig. 9 shows an out-of-bounds access bug in the
unsafe block of cvt_repr. This function can be called by the public function
bit_extr. We created a harness for bit_extr as depicted in the figure.

The functions and, xor, and xor_assign are both complex and frequently
invoked from within bit_extr. Initially, loop stubbing (LS) was applied to
the loop, but Kani still got stuck before it could analyze the buggy function
cvt_repr. The complexity arose from multiple calls to xor_assign preceding
the invocation of cvt_repr, overwhelming the solver. By applying Inter-Proc
Scheduling (IS) to xor, xor_assign, and and, Kani successfully reached the
analysis of cvt_repr. The upper bounds for nr and rb are 64 and 1, respec-
tively, which places ix in the range [0, 64). Meanwhile, the length of rx is 1.
The out-of-bounds access occurs when ix exceeds the length of rx.

4.4 Insights and Lessons Learned with Suggestions

We share lessons learned and insights gained from verifying TECC, while also
suggesting ways to further improve model-checking tools like Kani for Rust.

320 M. Wang et al.

Fig. 9. Buggy function cvt_repr and its harness.

Verification Scope. In Rust projects, unsafe code constitutes a small portion
of the codebase [3]. To ensure a balance between effort and effectiveness, it is
important to define the appropriate scope for verification. In practice, verifying
public functions that can reach unsafe code is sufficient since unsafe code is often
executed through exposed functions from other crates.

Harness Development. Generating high-quality harnesses is paramount for
the verification process. Utilizing integration instead of unit tests is advisable,
as they offer a more comprehensive understanding of how functions are utilized
in real-world scenarios. Collaboration with developers is crucial to establish the
appropriate input space for the functions under verification. Comprehensive code
coverage serves as a reliable metric for assessing the effectiveness of verification
efforts. Additionally, harness development provides an opportunity to review
the codebase, allowing for the removal of unused public functions to minimize
potential attack surfaces to unsafe code.

Loop Stubbing. Loop stubbing is highly effective for large codebases with
complex loops. It addresses challenges that BMC encounters when analyzing
intricate loops, facilitating in-depth analysis. The key approach is to maintain
memory safety checks within loops while approximating external side effects,
ensuring thorough memory safety analysis without compromising soundness.

Function Verification Order and Function Stubbing. In real-world code-
bases like TECC, managing the verification order of complex and frequently-
invoked functions, such as chebyshev, can significantly boost BMC efficiency.
Our inter-procedural scheduling, which includes function stubbing, cuts TECC’s
verification time by about threefold compared to the non-stubbing alternative.

UnsafeCop 321

False Positives. Although over-approximation in loop and function stubbing
typically leads to false positives, our verification of TECC did not produce any
false positives during the stubbing process. This is because TECC’s loops and
functions operate on unrestricted values within their respective domains.

Stubbing Generation. Stubbing in TECC verification applies to both func-
tions and loops. Function stubbing automatically over-approximates side effects
using unconstrained values, which is effective given TECC functions operate
within specific unconstrained domains. Loop stubbing, which is currently semi-
automatic, over-approximates side effects but requires manual effort to ensure
completeness of memory safety checks. It could potentially be fully automated.
In the context of Rust’s MIR being lowered to LLVM IR during compilation,
implementing automatic safety checks could involve developing LLVM passes
that identify loop side effects, approximate them with unconstrained domain
values, and insert memory safety checks before each loop memory access.

Rust-Specific Memory Safety. Ensuring memory safety in a Rust codebase
with unsafe code requires verifying both the unsafe and the impacted safe Rust
code. For TECC, we verified an additional 4,099 lines of safe Rust, which is
36% more than the unsafe code. Minimizing the use of unsafe code is crucial to
simplify the verification process and reduce memory safety risks.

Feedback from Developers. During the TECC verification process, develop-
ers valued our formal verification practice, especially for identifying 39 memory-
safety issues that were overlooked by their existing static and dynamic analysis
tools. They now plan to incorporate this verification process into their daily
development routines to enhance memory safety.

Limitations. We employed Kani-0.22.0 [15] for model checking the Rust code-
base. Kani provides interfaces for function stubbing, assigns value ranges to sym-
bolic variables, and supports user property assertions. However, it could benefit
from incorporating function contracts and loop invariants. The kani::stub()
function has limitations, especially with trait methods. Additionally, Kani does
not yet support all documented undefined behaviors. Moreover, when Kani stalls
during loop analysis, providing output that specifies the loop and progress would
aid users in identifying where stubbing is necessary.

5 Conclusion

We introduce UnsafeCop, an approach for ensuring memory safety in real-world
Rust projects with unsafe Rust code. UnsafeCop identifies functions exposed
to other crates that execute unsafe code, transforms tests into harnesses, deter-
mines loop bounds using abstract interpretation, and applies loop stubbing for
large-bounded loops with memory-safety checks. For bounded model checking,
we employ Kani, optimizing the verification order of functions and incorporating
function stubbing to enhance performance. We tested our approach on TECC,
a real-world project combining trusted computing with secure multi-party com-
putation, consisting of 30,174 lines of Rust code, of which 3,019 are unsafe.

322 M. Wang et al.

UnsafeCop identified and verified 39 memory safety issues, reducing verifica-
tion time by 73.71% compared to the non-stubbing alternative. These results
demonstrate the effectiveness of UnsafeCop in improving memory safety in Rust
projects.

References

1. Ardito, L., et al.: Rust-code-analysis: a rust library to analyze and extract main-
tainability information from source codes. SoftwareX 12, 100635 (2020). https://
doi.org/10.1016/j.softx.2020.100635

2. Astrauskas, V., et al.: The prusti project: formal verification for rust. In: NASA For-
mal Methods Symposium, pp. 88–108. Springer (2022). https://doi.org/10.1007/
978-3-031-06773-0_5

3. Astrauskas, V., Matheja, C., Poli, F., Müller, P., Summers, A.J.: How do program-
mers use unsafe rust? Proceedings of the ACM on programming languages 4, 1 –
27 (2020). https://api.semanticscholar.org/CorpusID:220859132

4. Biere, A., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba entering the
SAT Competition 2021. In: Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo,
M., Suda, M. (eds.) Proc. of SAT Competition 2021 – Solver and Benchmark
Descriptions. Department of Computer Science Report Series B, vol. B-2021-1, pp.
10–13. University of Helsinki (2021)

5. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
Proceedings of the 2nd International Symposium on Programming, Paris, France,
pp. 106–130. Dunod (1976)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

7. Cui, M., Chen, C., Xu, H., Zhou, Y.: Safedrop: detecting memory deallocation bugs
of rust programs via static data-flow analysis. ACM Trans. Softw. Eng. Methodol.
32(4) (2023). https://doi.org/10.1145/3542948

8. Denis, X., Jourdan, J.H., Marché, C.: Creusot: a foundry for the deductive ver-
ification of rust programs. In: International Conference on Formal Engineering
Methods, pp. 90–105. Springer (2022). https://doi.org/10.1007/978-3-031-17244-
1_6

9. Ebert, C., Cain, J., Antoniol, G., Counsell, S., Laplante, P.: Cyclomatic complexity.
IEEE Softw. 33(6), 27–29 (2016)

10. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: International Conference on Computer Aided Verification, pp. 343–
361. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_20

11. Halstead, M.H.: Elements of Software Science (Operating and programming sys-
tems series), Elsevier Science Inc. (1977)

12. Harmonic mean. https://en.wikipedia.org/wiki/Harmonic_mean
13. Höltervennhoff, S., Klostermeyer, P., Wöhler, N., Acar, Y., Fahl, S.: {“I} wouldn’t

want my unsafe code to run my {pacemaker”}: an interview study on the use, com-
prehension, and perceived risks of unsafe rust. In: 32nd USENIX Security Sympo-
sium (USENIX Security 23), pp. 2509–2525 (2023)

14. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: Rustbelt: securing the founda-
tions of the rust programming language. Proc. ACM Program. Lang. 2(POPL),
1–34 (2017)

https://doi.org/10.1016/j.softx.2020.100635
https://doi.org/10.1016/j.softx.2020.100635
https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/978-3-031-06773-0_5
https://api.semanticscholar.org/CorpusID:220859132
https://doi.org/10.1145/3542948
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-319-21690-4_20
https://en.wikipedia.org/wiki/Harmonic_mean

UnsafeCop 323

15. Kani rust verifier. https://github.com/model-checking/kani
16. Kroening, D., Tautschnig, M.: CBMC–C bounded model checker: (competition

contribution). In: Tools and Algorithms for the Construction and Analysis of Sys-
tems: 20th International Conference, TACAS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings 20, pp. 389–391. Springer (2014). https://
doi.org/10.1007/978-3-642-54862-8_26

17. Li, Z., Wang, J., Sun, M., Lui, J.C.: Mirchecker: detecting bugs in rust programs via
static analysis. In: Proceedings of the 2021 ACM SIGSAC conference on computer
and communications security, pp. 2183–2196 (2021)

18. Li, Z., Wang, J., Sun, M., Lui, J.C.: Detecting cross-language memory management
issues in rust. In: European Symposium on Research in Computer Security. pp.
680–700. Springer (2022). https://doi.org/10.1007/978-3-031-17143-7_33

19. Lindner, M., Aparicius, J., Lindgren, P.: No panic! verification of rust programs
by symbolic execution. In: 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN, pp. 108–114. IEEE (2018)

20. Matsushita, Y., Denis, X., Jourdan, J.H., Dreyer, D.: Rusthornbelt: a semantic
foundation for functional verification of rust programs with unsafe code. In: Pro-
ceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pp. 841–856 (2022)

21. Matsushita, Y., Tsukada, T., Kobayashi, N.: Rusthorn: CHC-based verification for
rust programs. ACM Trans. Program. Lang. Syst. (TOPLAS) 43(4), 1–54 (2021)

22. Mirai: Rust mid-level IR abstract interpreter. https://github.com/
facebookexperimental/MIRA

23. Miri: an interpreter for rust’s mid-level intermediate representation. https://
github.com/rust-lang/miri

24. Qin, B., Chen, Y., Yu, Z., Song, L., Zhang, Y.: Understanding memory and thread
safety practices and issues in real-world rust programs. In: Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 763–779 (2020)

25. Rakamarić, Z., Emmi, M.: Smack: decoupling source language details from verifier
implementations. In: Computer Aided Verification: 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 18-22, 2014. Proceedings 26, pp. 106–113. Springer (2014). https://doi.
org/10.1007/978-3-319-08867-9_7

26. Rust verification tools. https://project-oak.github.io/rust-verification-tools/
about.html

27. Shen, Y., et al.: Occlum: Secure and efficient multitasking inside a single enclave of
intel sgx. In: Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 955–970
(2020)

28. Tomb, A.: Crux: Introducing our new open-source tool for software verification
(2020)

29. Trustinsoft analyzer. https://trust-in-soft.com
30. Ullrich, S.: Simple verification of rust programs via functional purification, Master’s

Thesis, Karlsruher Institut fr Technologie (KIT) (2016)
31. Unsafe superpowers. https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

https://github.com/model-checking/kani
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-031-17143-7_33
https://github.com/facebookexperimental/MIRA
https://github.com/facebookexperimental/MIRA
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://project-oak.github.io/rust-verification-tools/about.html
https://project-oak.github.io/rust-verification-tools/about.html
https://trust-in-soft.com
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

324 M. Wang et al.

32. Wang, H., et al.: Towards memory safe enclave programming with rust-sgx. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 2333–2350 (2019)

33. Xu, H., Chen, Z., Sun, M., Zhou, Y., Lyu, M.: Memory-safety challenge considered
solved. Empirical Study Rust CVEs. CoRR, abs/2003.03296 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Beyond the Bottleneck: Enhancing
High-Concurrency Systems with Lock

Tuning

Juntao Ji1, Yinyou Gu1, Yubao Fu1,2, and Qingshan Lin1,2(B)

1 Alibaba Cloud Computing Co. Ltd., Beijing, China
{juntao.jjt,yinyou.gyy,yubao.fyb,qingshan.lqs}@alibaba-inc.com

2 Apache RocketMQ Community, New York, USA
{fuyou,linhill}@apache.org

Abstract. High-concurrency systems often suffer from performance
bottlenecks [1]. This is often caused by waiting and context switching
caused by fierce competition between threads for locks. As a cloud com-
puting company, we place great emphasis on maximizing performance. In
this regard, we transform the lightweight spin-lock and propose a con-
cise parameter fine-tuning strategy, which can break through the sys-
tem performance bottleneck with minimal risk conditions. This strategy
has been validated in Apache RocketMQ [2], a high-throughput message
queue system. Through this strategy, we achieved performance improve-
ments of up to 37.58% on X86 CPU and up to 32.82% on ARM CPU.
Furthermore, we confirmed the method’s consistent effectiveness across
different code versions and IO flush strategies, demonstrating its broad
applicability in real-world settings. This work offers not only a practi-
cal tool for addressing performance issues in high-concurrency systems
but also highlights the practical value of formal techniques in solving
engineering problems.

Keywords: High-Concurrency systems · Performance optimization ·
Spin-lock backoff

1 Introduction

In recent decades, computer processors have undergone significant transforma-
tions. Initially, performance enhancements were driven by increasing the clock
frequency of single-core processors and transistor density. However, this trend
was rendered unsustainable due to energy consumption and heat dissipation.
As a solution, the industry shifted towards multicore processors, aligned with
Moore’s Law [4], which predicts continued transistor density doubling. Today,
multicore processors are equipped in personal computers, smartphones, gaming
consoles, and even servers and supercomputers. This allows parallel processing
of more tasks.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 325–337, 2025.
https://doi.org/10.1007/978-3-031-71177-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_20&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_20

326 J. Ji et al.

Multicore processors, however, do not improve software performance linearly.
On the contrary, unlocking the parallel potential of these cores presents a signif-
icant emerging challenge [1]. Multicore environments require software to effec-
tively distribute tasks across multiple cores, involving complex synchronization
and coordination issues. Without proper task allocation and data access man-
agement, errors such as data races and deadlocks can occur during execution.
These errors are not present in sequentially executed programs [6]. Moreover, due
to the interdependencies among cores in multicore processors, parallel solutions
to single problems must be carefully designed to avoid performance bottlenecks
and resource waste.

Concurrent programming is essential because it could unlock multicore pro-
cessors’ full capabilities, enabling complex tasks and large volumes of data [9].
Concurrent programming also challenges system performance and stability. Over
years of development, a highly concurrent system may evolve into an exceedingly
complex structure. This is often accompanied by complex data flows and per-
formance constraints among system components. While locking mechanisms can
ensure concurrent operations’ safety, if not used properly, they may become
performance bottlenecks themselves. Over time, these issues-if not carefully
managed-can lead to performance degradation, affecting response time and reli-
ability.

Locks serve as a fundamental mechanism for synchronizing multiple execu-
tion threads for safe access to shared resources. Although locks are widely used
in multicore embedded systems to ensure mutual exclusion, their usage also
presents challenges. As concurrent systems become increasingly complex, proper
lock management strategies are crucial for maintaining system performance [7].
Researchers have been studying and developing various lock implementations to
optimize performance, fairness, and predictability for different scenarios. How-
ever, in practice, the choice of the appropriate lock type for a specific scenario
is often based on developers’ assumptions, which may not match actual require-
ments. Incorrect lock types can degrade performance and result in unfair resource
access.

Research has found that no single lock implementation performs best in all
scenarios [13], and some well-performing locks may exhibit severe performance
issues in other contexts. These findings underscore the necessity of lock per-
formance analysis, such as the ability to monitor lock contention intensity in
real-time and adjust lock strategies accordingly [13]. However, real-time mon-
itoring of lock contention in a process can incur a performance overhead, and
such adjustments may be reactive rather than proactive.

Therefore, we do not seek to find a "one-size-fits-all" lock-the cost is simply
too prohibitive. Our goal is to discover a straightforward approach that allows us
to fine-tune locks in a simple manner, enabling them to unlock the performance
potential of specific applications. With this in mind, the lock overhead must be
kept to a minimum, and it’s imperative that we autonomously manage the CPU
utilization strategy of the lock to overcome current performance bottlenecks. To
this end, we propose a method for optimizing spin-lock parameters. This method,

Enhancing High-Concurrency Systems with Lock Tuning 327

based on an M/G/1 queue model [5] analysis of lock overhead, aims to identify
the optimal spin backoff parameter k in high-pressure scenarios to balance the
costs associated with lock acquisition. By following this method, applications in
high-concurrency scenarios can perform better.

With this theory, we adjust the spinning behavior of locks within the system
to flexibly decide on the spin threshold between different scenarios. This allows
us to find the best performance balance while maintaining system stability. This
optimization technique has been validated in the open-source Apache RocketMQ
as well as in commercial RocketMQ instances offered by Alibaba Cloud. This
has resulted in a significant improvement in message sending performance by
37.58% on normal X86 CPU.

Furthermore, to validate the universality of this optimization method, we
deployed RocketMQ on servers equipped with Alibaba Cloud’s newly devel-
oped ARM architecture CPU. We applied the optimization strategy described
in this study. The optimized system performance achieved an additional 32.82%
improvement, proving our method’s effectiveness is not limited by a specific
hardware architecture. We also tested the performance of this strategy when
deploying older code versions on different CPUs or when employing various data
persistence strategies. Ultimately, all scenarios resulted in performance improve-
ments. These performances confirm that our method can improve the overall
performance of high-concurrency systems dealing with chaotic data flows and
inter-component performance constraints.

2 Preliminaries

2.1 Apache RocketMQ

Apache RocketMQ [2] is a cloud-native distributed messaging and streaming
platform designed for real-time data processing that spans collaboration sce-
narios across cloud, edge, and devices. Initially created by Alibaba Group, it
was donated to the Apache Software Foundation in 2016 and has since become a
prominent top-level project within the foundation. RocketMQ excels in handling
diverse message queue models, including publish/subscribe, point-to-point mes-
saging, delayed message delivery, and message sequencing. These capabilities
fulfill the stringent requirements of applications that demand high scalability,
reliability, and throughput.

RocketMQ’s adoption across various industries such as finance, e-commerce,
Internet of Things (IoT), and big data analysis is a testament to its adaptability
and capability to meet complex messaging challenges. The architecture of Rock-
etMQ is centered around clusters of Brokers and NameServers. The Brokers
manage message storage, lifecycle, and distribution, whereas NameServers play
an essential role in service discovery and message routing with their lightweight
design.

Additionally, RocketMQ supports transactional messaging and provides
client libraries for popular programming languages such as Java, C++, and Go,

328 J. Ji et al.

making it easier for developers to build and scale high-performance distributed
applications.

Known for its impressive performance, RocketMQ can process several hun-
dred thousand messages per second without compromising stability or reliability.
The system’s design inherently favors distributed deployment, which allows for
effortless scalability to meet growing business needs. The platform also includes
an extensive set of monitoring metrics and tools, simplifying management and
operational tasks.

Our team, the original developers of Apache RocketMQ, has dedicated con-
siderable effort to advance its performance, focusing on maximizing through-
put per machine. This commitment to performance enhancement is a driving
force behind the research presented in this paper, situating our work within the
broader context of innovation in distributed messaging systems.

2.2 Spin-Lock

For decades, spin-locks have been a key study subject in concurrent program-
ming. They are lauded for their role in regulating access to shared resources
in multicore systems. Recognized for their minimal overhead in low-contention
scenarios, spin-locks shine where locking time is expected to be short, allowing
threads to effectively ’spin’ until a resource becomes available [3].

The simplest and perhaps most rudimentary spin-lock form is the test-and-
set (TAS) lock. This implementation employs a brute-force approach, spinning
aggressively using atomic operations to gain exclusive access to a resource.
Although this simplicity is compelling, it’s also its Achilles’ heel: atomic opera-
tions can aggressively drain CPU execution cycles and negatively impact shared
resources like the system’s bus and memory, thus hampering the performance
of the spinning thread and reducing overall system throughput, more so when
multiple threads contend for the same lock [3].

To address the performance challenges associated with TAS, researchers pro-
posed the test-test-and-set (TTAS) lock, an iteration aiming to reduce the heavy
use of atomic operations [10], TTAS lock attempts to ameliorate the spin-lock
behavior by integrating a preliminary, non-atomic check that the lock is poten-
tially free before invoking atomic operations. This strategy reduces unnecessary
bus traffic and cache coherence invalidations when the lock is known to be held.
Nonetheless, TTAS still struggles with performance under high contention, which
is exacerbated in cache-coherent environments where threads vying for a lock can
cause cacheline invalidation due to coherence traffic-leading to additional delays
and memory access overhead [13].

To tackle the shortcomings of both TAS and TTAS in high-contention scenar-
ios, we propose a spin-backoff strategy. Rather than spinning indiscriminately,
we employ a strategy where contending threads back off after a certain number
of collisions. This mitigates collision risk and, as a result, enhances system per-
formance. This strategy has proven to enhance complex systems’ performance
under high concurrency.

Enhancing High-Concurrency Systems with Lock Tuning 329

3 Modeling Spin-Lock Overheads

3.1 Fundamental Assumptions

To effectively model the problem, we consider an exponential distribution model
of lock contention probability and an M/G/1 queue model [5]. The M/G/1 queue-
ing model is a type of queueing theory model where arrivals follow a Poisson
process (denoted by M), service times have a general distribution (denoted by
G), and there is a single server (denoted by 1). This model is used to analyze
and describe characteristics such as customer waiting times and queue lengths
in single-server systems. This necessitates the redefinition of lock behavior and
system load. We consider several key variables in our model:

– Arrival rate (λ): The average rate of lock requests per unit time.
– Service rate (μ): The average rate at which locks are released and successfully

acquired by another thread per unit time.
– System utilization ratio (ρ = λ/μ): The ratio of the arrival rate to the service

rate.

In the normal M/G/1 queue model, the arrival process is a Poisson process,
and the service time distribution is a general distribution. When simulating
the waiting time for a spin-lock, assuming that the lock holding time follows
an exponential distribution means that each thread attempting to acquire the
lock has an equal chance of success at any moment, unaffected by the previous
waiting time. Therefore, in our case, we assume the lock holding time follows
an exponential distribution, simplifying the model to an M/M/1 queue model
because the service time is also exponentially distributed.

One of the critical properties of the M/M/1 queue model is the average queue
length (Lq), which is given by the formula:

Lq =
ρ2

1 − ρ

This formula shows how the average queue length can be directly determined
by system utilization (ρ), and is independent of service time variance due to the
nature of the exponential distribution. Then the average waiting time in the
queue Wq is given by the formula:

Wq =
ρ

λ(1 − ρ)

3.2 Modeling Process

To tailor our spin-lock model, we introduce additional parameters:

– Spin time (Ts): The average time for each spin attempt, which equates to a
single CAS (Compare-And-Swap) operation, which is typically on the order
of nanoseconds.

330 J. Ji et al.

– Context switch time (Tc): The average time for each context switch, encom-
passing operations such as saving the current process state, loading another
process’s state, and potential cache invalidation, with the time overhead gen-
erally in the order of microseconds.

– Number of spins (k): The number of attempts a thread makes to acquire the
lock before yielding.

Assuming a thread acquires the lock on the ith attempt (1 ≤ i ≤ k), the
expected spin time is i · Ts. With each spin attempt being independent, and the
probability of acquiring the lock on any attempt being 1 − ρ, the probability of
success on the ith attempt is ρi−1 · (1 − ρ).

We consider the total expected time E(Ttotal) as the weighted sum of the spin
attempts, where the weights are the probabilities of success for each attempt.
The expected spin time E(Tspin) is expressed as:

E(Tspin) =
k∑

i=1

(i · Ts) · ρi−1 · (1 − ρ)

Defining H(x) =
∑k

i=1 i · xi−1, we can simplify the E(Tspin) to:

E(Tspin) = Ts · (1 − ρ) · H(ρ)

To facilitate the calculation of E(Tspin), we employ a summation technique
involving geometric series and its derivatives. Let G(x) =

∑k−1
i=0 xi represent our

geometric series, with the sum G(x) = 1−xk

1−x . We note that H(x) is the derivative
of G(x), resulting in:

H(x) = G′(x) =
(1 − xk) − kxk−1(1 − x)

(1 − x)2

By substituting x with ρ, we obtain H(ρ), which is then used to compute
E(Tspin):

E(Tspin) = Ts · (1 − ρ) · H(ρ) = Ts · (1 − ρk) − kρk−1(1 − ρ)
1 − ρ

If a thread fails to obtain the lock after k spins, it performs a context switch
and subsequently waits in the queue. The expected time for this event is:

E(Tyield-total) = ρk · (k · Ts + Tc + Wq)

The total expected waiting time E(Ttotal) is thus the sum of the expected
spin time and the expected yield time:

E(Ttotal) = E(Tspin) + E(Tyield-total)

E(Ttotal) = Ts · (1 − ρk) − kρk−1(1 − ρ)
1 − ρ

+ ρk ·
(

k · Ts + Tc +
ρ

λ(1 − ρ)

)

Enhancing High-Concurrency Systems with Lock Tuning 331

3.3 Validation

To validate our model, we examine the behavior of the expected total time as
system utilization (ρ) approaches different limits. For a system under minimal
load, where ρ approaches 0, the expected spin time simplifies to:

lim
ρ→0

E(Ttotal) = lim
ρ→0

Ts · (1 − ρk) − kρk−1(1 − ρ)
1 − ρ

+ lim
ρ→0

ρk ·
(

k · Ts + Tc +
ρ

λ(1 − ρ)

)

= Ts + 0
= Ts

This implies that the spin cost is equivalent to Ts, meaning that lock acqui-
sition occurs immediately after a single compare-and-swap (CAS) operation.

Conversely, as the system load approaches its maximum capacity and ρ
approaches 1, the expected spin success time becomes indeterminate and requires
the application of l’Hôpital’s rule:

lim
ρ→1

E(Tspin) = lim
ρ→1

Ts · (1 − ρk) − kρk−1(1 − ρ)
1 − ρ

lim
ρ→1

E(Tspin) = lim
ρ→1

−k − k(k − 1) + k2

−1
= 0

This result indicates that the expected spin time to acquire the lock is zero.
Thus, the predominant component of the total expected time at high system
utilization is:

lim
ρ→1

E(Ttotal) = lim
ρ→1

ρk ·
(

k · Ts + Tc +
ρ

λ(1 − ρ)

)

Hence, in scenarios where ρ is near 1, the time cost comprises k spins, a
context switch, and the waiting time in the queue.

In summary, when ρ is low, increasing k rapidly reduces the probability of a
thread spinning k times without acquiring the lock, minimizing context switch
overhead. Conversely, when ρ is high, the main contribution to waiting time
will be E(Tyield-total), which necessitates careful control of k. A low k leads
to more frequent context switching, while a high k results in extended spin
times, reducing lock throughput. This highlights the need for an optimal spinning
strategy that balances k ·Ts against Tc+ ρ

λ(1−ρ) when ρ further increases, leading
to longer queueing times.

4 Spin-Lock Fine-Tuning

Following the mathematical foundation laid down in the preceding section, our
focus shifts toward the practical application of the model we have established.

332 J. Ji et al.

Our primary goal is to strategically determine the optimal value of k, the number
of spin attempts. This minimizes the total expected waiting time for a thread
contending for a lock within a system operating under varying loads, represented
by ρ.

System load, ρ, fundamentally affects spin-lock performance. At peak system
loads, we expect lock contention to be at its highest. This translates into a higher
probability that a thread will have to wait before acquiring the lock. This scenario
is particularly pertinent for optimizing our spin-lock strategy, as lock contention
costs increase.

4.1 Strategy Overview

1. Peak Load Simulation: The first step involves pushing the system to its
maximum load to simulate an environment where lock contention is at its
highest. By doing so, we ensure that ρ reflects a state of maximum contention,
and that any optimizations we perform are directed at the most stressful
operating conditions.

2. Dynamic Tuning of k: In this high contention scenario, we begin with
a minimum k value of 1 and incrementally adjust it while monitoring the
impact on system performance metrics. Considering that ρ remains relatively
constant under peak load, our task consists of determining the optimal value
of k. This balances the trade-off between spinning costs and context switching
costs and potential delays.

3. Performance Optimization and Monitoring: We aim to find the optimal
k value that boosts the lock’s performance. When increasing k further reduces
performance gains, it’s no longer beneficial to keep spinning. This ideal k
ensures our spin-lock operates at peak efficiency under the existing system
load, which means we have identified the best balance between k · Ts and
Tc + ρ

λ(1−ρ) .
4. Mutex Adoption Strategy: If performance degrades as k increases from

its initial value, it suggests that the lock contention is too intense for spinning
to be effective. In such scenarios, a Mutex lock, which involves less spinning,
may be more appropriate. This decision is informed by the understanding
that, under extreme contention, excessive spinning’s overhead outweighs its
benefits.

The strategy we propose provides a systematic approach to identifying an
optimal k value under peak system load. This value aims to balance the proba-
bility of lock acquisition against the costs associated with prolonged spinning and
context switching. Importantly, while the optimal k is derived under high con-
tention conditions, it offers a benchmark that performs efficiently across a range
of loads. When the system load diminishes, the optimal k remains effective at
quickly acquiring locks while minimizing context switching overhead.

In essence, this strategy does not limit its applicability to a single ρ but
instead offers a versatile solution that accommodates the entire spectrum of
system loads. By integrating our theoretical insights with practical, empirical

Enhancing High-Concurrency Systems with Lock Tuning 333

observations, we ensure that our spin-lock strategy is both robust and adaptive.
This is capable of maintaining lock performance in the face of fluctuating system
demands.

5 Experiment

5.1 Variables

To demonstrate the universality of our spin-backoff strategy, we designed mul-
tiple scenarios for testing. The results indicate that our strategy significantly
improves Apache RocketMQ performance in various contexts. The scenario vari-
ables are as follows:

Different CPU Architectures: Throughout its development journey, Apache
RocketMQ, initially designed and built for the x86 architecture, has successfully
been ported and now supports running on ARM architecture CPUs. This adapts
to hardware architecture diversification. Running on various CPU architectures
challenges RocketMQ’s code development. Therefore, we tested our proposed
optimization strategy on more than one type of CPU to prove its effectiveness
across multiple architectures. In addition to the traditional x86 CPU, we tested
Alibaba Cloud’s self-developed ARM CPUs-a novel architectural choice, indicat-
ing that Apache RocketMQ was not previously optimized for this architecture.

Different Code Versions: Over approximately a decade of iterations, Apache
RocketMQ has undergone significant changes-adding many enhanced features
and increasing the complexity of message publishing and receiving processes.
Thus, we validated not only with the latest code but also with a stable version
from two years ago. This was to prove the enduring effectiveness of our strategy
throughout code evolution.

Different Flush Policies: Apache RocketMQ is a message queue with built-in
storage, so bottlenecks may arise from more than CPU performance. We also
set different flush policies to simulate various data persistence approaches. An
aggressive persistence approach (ASYNC) leads to asynchronous flushing, offer-
ing higher throughput at the risk of data loss in a crash. A conservative persis-
tence approach (SYNC) uses synchronous flushing, which doesn’t report success
to producers until messages are successfully written to disk. This ensures data
integrity at the expense of lower throughput.

5.2 Experimental Procedure

Based on the aforementioned variables, we arranged combinations for a total of
23 = 8 scenarios of maximum original throughput. We applied our optimization
strategy to each. Ultimately, our strategy identified an optimal spin parameter
k in every high-pressure scenario, enhancing maximum original performance.

334 J. Ji et al.

With the three scenarios serving as variables, we kept all other related param-
eters constant:

A 16 vCPU, 32 GiB Alibaba Cloud model with CentOS 7.9 64-bit, ESSD
cloud PL1 disk (1024 GiB, 50000 IOPS), an internal network bandwidth of 10
Gbit/s, and a network packet transmission rate of 3 million PPS were selected.

For the experiments in this chapter, we employed multiple stress test
machines to send messages at full capacity to Apache RocketMQ servers. To
mitigate disk pressure caused by high message volume, we set the message pay-
load to just 2 bytes. This makes the total message size approximately 100 bytes.
During this process, we implemented a backpressure strategy that kept the Bro-
ker’s processing load close to but not exceeding its limits. This is consistent with
our theoretical design where ρ approaches 1.

Under these conditions, we tested the raw limit of performance (Send
QPS) and applied the spin parameter optimization strategy mentioned in this
paper. We obtained the optimal spin parameter k along with performance post-
optimization. Table 1 records these metrics and calculates the final percentage
of performance optimization.

Table 1. Performance Improvement Overview

Code VersionCPU ArchFlush PolicyOriginal QPSk Optimal QPSImprovement

2 years ago
Code

X86
ASYNC 165516.84 102 208376.04 +25.89%
SYNC 109614.92 102 125551.24 +14.54%

ARM
ASYNC 144412.04 100 191813.80 +32.82%
SYNC 119083.36 102 125677.16 +5.45%

New version
Code

X86
ASYNC 111090.20 103 150968.20 +35.90%
SYNC 112671.60 103 155019.20 +37.58%

ARM
ASYNC 168707.52 103 191520.40 +13.52%
SYNC 175771.76 103 194051.32 +10.40%

Table 1 exemplifies that, under all variable scenarios, our most effective spin
parameter search strategy is effective-by optimizing a single spin-lock during
message sending, we can achieve a performance boost ranging from 5.45% to
37.58%.

The strategy shines especially on ARM CPUs. Taking the aggressive flush
policy under the ARM architecture as an example, after two years of code iter-
ation, Apache RocketMQ has improved message sending throughput by 24,000
QPS, approximately 16.8%. If the proposed strategy had been implemented in
the code version two years ago, it would have directly improved performance by
32.82%. This is twice the improvement achieved after two years of iterations.

Obtaining such a significant performance boost in traditional high-
concurrency systems is typically difficult, as it often implies code refactoring

Enhancing High-Concurrency Systems with Lock Tuning 335

and phased rollout risks. Nevertheless, optimizing the spin-lock backoff strategy
brings risk-free performance gains while maintaining thread safety under high
concurrency. The improvement is akin to infusing water into a cup filled with
sand-better utilizing CPU resources otherwise wasted by spinning behavior.

Fig. 1. CPU usage with different k in the new version code, and SYNC flush policy.

In addition, we also examined the CPU usage across various values of k.
This usage was measured based on the percentage CPU utilization ("CPU%")
reported by the pidstat command. Each experimental set was conducted for a
duration of six minutes and a total of eight sets of k values were tested. The
experiments tested k ranging from 100 to 106, as well as the scenario where k
was set to infinity (indicating continuous spinning). We take the most remarkable
set of results as an example, specifically the latest code version deployed on a
machine with an X86 CPU, utilizing the SYNC flush mode. The results are
presented in the Fig. 1.

The experimental results reveal that at k = 103, not only did our sending
speed reach its peak (155019.20), but the CPU usage was also at its lowest. This
suggests that our spin-backoff strategy successfully conserved CPU resources,
thereby enhancing CPU utilization. At this point, the CPU supported higher
performance levels with lower utilization rates, indicating that the performance
bottleneck had shifted-perhaps to the disk, for example.

In Table 1, we observed a 10.4% improvement in the performance of Rock-
etMQ on an ARM CPU with the same k (103) and configuration parameters
(latest code, SYNC Flush mode). Furthermore, as illustrated in Fig. 1, CPU
usage experienced a substantial decrease when k = 103, falling from an average
of over 1000% to around 750%. This decrease in resource consumption indicates
that alleviating other system bottlenecks could lead to even more significant
gains in performance.

336 J. Ji et al.

6 Conclusion & Future Work

In this paper, we focus on a common and challenging issue in high-concurrency
systems: performance bottlenecks. This paper introduces an innovative approach
utilizing a back-off spin-lock strategy to tackle performance bottlenecks. A cost
analysis of spin-locks was conducted to establish a quantitative relationship link-
ing the expected overhead of lock contention with the number of spin attempts
(k) and system load (ρ). On the foundation of theoretical modeling, we explored
a viable solution: tuning parameters at peak system loads, where ρ is close to
1, to find the optimal balance between spin wait and context switch times. This
approach has significantly improved system performance. Moreover, at lower ρ
values, the determined maximal spin attempts (k) naturally become ineffective,
while also reducing context switching costs, thus ensuring operational efficiency
under light load conditions.

The strategy for searching for the backoff spin-lock parameter, as proposed
in this article, has been empirically validated on Apache RocketMQ as well as in
commercial RocketMQ instances offered by Alibaba Cloud. Our tests confirmed
the strategy’s effectiveness across different CPU architectures, including X86
and ARM, demonstrating its broad applicability. Moreover, we have evaluated
the strategy’s stability by examining its performance across various versions
of Apache RocketMQ, observing consistent and reliable behavior over time. The
study also explored how the strategy performs in conjunction with different data
flush approaches-both asynchronous and synchronous-ensuring that the backoff
spin-lock optimization effectively enhances system performance under diverse
system behaviors. In our experiments, the application of this spin-lock backoff
parameter search strategy led to performance improvements ranging from 5.45%
to 37.58%, showcasing its potential for enhancing system efficiency in multiple
contexts.

The performance enhancements reported in this paper are invigorating within
the industry - minute optimizations are hard-won in complex high-concurrency
systems, let alone improvements as substantial as 30% at their peak. This finely
tuned optimization method avoids extensive code overhauls or phased rollouts.
However, it brings safe and stable improvements to high-concurrency systems.
It is like strategically pouring water into a cup of densely packed sand. This
utilizes CPU resources otherwise wasted on spinning and context switching.

Looking ahead, we aim to continue our exploration in both laboratory set-
tings and industrial arenas to discover methods to quantify system load (ρ)
accurately. This insight will provide us with additional controllable parame-
ters, helping us refine our spin-lock strategy further. Consequently, it will pro-
vide more accurate and efficient performance optimization solutions for various
high-concurrency systems. Through these endeavors, we aspire to contribute
to deeper technological advancements and breakthrough industrial applications
within high-concurrency systems.

Enhancing High-Concurrency Systems with Lock Tuning 337

References

1. Han, S., Dang, Y., Ge, S., Zhang, D.: Performance debugging in the large via
mining millions of stack traces. In: Proceedings of the International Conference on
Software Engineering, pp. 176–186 (2012)

2. Apache RocketMQ. Apache Software Foundation. Available online: http://
rocketmq.apache.org (Accessed on 1 Apr 2024)

3. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint.
1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2012). ISBN
978-0-12-397337-5

4. Moore, G.E.: Progress in digital integrated electronics. In: Proceedings of the IEEE
Electron Devices Meeting, vol 21, pp. 11–13, San Francisco, CA (1975)

5. Nelson, R.: The M/G/1 queue. In: Probability, Stochastic Processes, and Queue-
ing Theory. Springer, New York, NY (1995). https://doi.org/10.1007/978-1-4757-
2426-4_7

6. Breshears, C.: The Art of Concurrency: A ThreadMonkey’s Guide to Writing Par-
allel Applications. O’Reilly Media, Sebastopol, CA, USA (2009)

7. Anderson, T.E.: The performance of spin lock alternatives for shared-money multi-
processors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990). https://doi.org/
10.1109/71.80120

8. Wikipedia contributors. M/G/1 Queue. https://en.wikipedia.org/wiki/M/G/1_
queue. April 2024. [Accessed 10 Apr 2024]

9. Akhter, S., Roberts, J.: Multi-Core Programming: Increasing Performance through
Software Multi-Threading, vol. 33 (2006). Hillsboro, OR, USA: Intel Press

10. Anderson, T., Dahlin, M.: Operating systems: Principles and Practice, 2nd ed.
Recursive Books (2014). ISBN 978-0-9856735-2-9

11. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991).
https://doi.org/10.1145/103727.103729

12. Dice, D., Shavit, N.: What really makes transactions faster? (2006)
13. Li, L., Wagner, P., Mayer, A., Wild, T., Herkersdorf, A.: A non-intrusive, operating

system independent spinlock profiler for embedded multicore systems. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 322–325 (2017).
https://doi.org/10.23919/DATE.2017.7927009

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://rocketmq.apache.org
http://rocketmq.apache.org
https://doi.org/10.1007/978-1-4757-2426-4_7
https://doi.org/10.1007/978-1-4757-2426-4_7
https://doi.org/10.1109/71.80120
https://doi.org/10.1109/71.80120
https://en.wikipedia.org/wiki/M/G/1_queue
https://en.wikipedia.org/wiki/M/G/1_queue
https://doi.org/10.1145/103727.103729
https://doi.org/10.23919/DATE.2017.7927009
http://creativecommons.org/licenses/by/4.0/

AGVTS: Automated Generation
and Verification of Temporal

Specifications for Aeronautics SCADE
Models

Hanfeng Wang1, Zhibin Yang1(B) , Yong Zhou1, Xilong Wang1,
Weilin Deng1, and Wei Li2

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, China
yangzhibin168@163.com

2 Aerospace Life-support Industries Ltd., Xiangyang, China

Abstract. SCADE is both a formal language and a model-based devel-
opment environment, widely used to build and verify the models of
safety-critical system (SCS). The SCADE Design Verifier (DV) provides
SAT-based verification. However, DV cannot adequately express com-
plex temporal specifications, and it may fail due to complexity problems
such as floating numbers which are often used in the aeronautics domain.
In addition, manually writing temporal specifications is not only time-
consuming but also error-prone. To address these challenges, we propose
an AGVTS method that can automate the task of generating tempo-
ral specifications and verifying aeronautics SCADE models. At first, we
define a modular pattern language for precisely expressing Chinese natu-
ral language requirements. Then, we present a rule-based translation aug-
mented with BERT, which translates restricted requirements into LTL
and CTL. In addition, SCADE model verification is achieved by trans-
forming it into nuXmv which supports both SMT-based and SAT-based
verification. Finally, we illustrate a successful application of our method-
ology with an ejection seat control system, and convince our industrial
partners of the usefulness of formal methods for industrial systems.

Keywords: SCADE · Temporal Specification · Pattern-based
Language · BERT · nuXmv

1 Introduction

Safety-critical systems (SCS) [20] are the systems whose failure could result in
loss of life, substantial economic loss, or damage to the environment. There are
many well-known examples in different domains such as avionics, nuclear plants,

Supported by the National Natural Science Foundation of China (62072233, U2241216),
Aviation Science Fund of China (201919052002).

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 338–355, 2025.
https://doi.org/10.1007/978-3-031-71177-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_21&domain=pdf
http://orcid.org/0000-0002-9888-6975
https://doi.org/10.1007/978-3-031-71177-0_21

AGVTS 339

transportation, and automotive. Formal verification is highly recommended by
safety standards, e.g., DO-178C for the avionics domain, in order to ensure the
safety of this kind of systems [17]. SCADE is both a formal language [9] and
a model-based development environment1 widely used to build and verify the
models of safety-critical system. SCADE provides three modeling styles, i.e.,
safety state machines, data flow and their combination.

Design Verifier (DV)2, the formal verification module of SCADE, is a model
checker based on a SAT-solver. However, DV cannot adequately express complex
temporal specifications [24]. Temporal logics are popular methods for describing
complex temporal properties, such as LTL [23], CTL [7] and TCTL [1], etc.
There are several related works [12,24] to enhance the verification capability of
SCADE, which respectively transform SCADE models into UPPAAL and nuSmv
to verify temporal properties. However, these works only consider safety state
machine models. Additionally, DV may fail due to complexity problems such as
floating numbers which are common in the aeronautics domain.

Moreover, it is always a challenge to manually translate natural language
requirements into temporal logic formulae. As natural language is generally
informal and ambiguous, this process is error-prone and time-consuming. Exist-
ing works on translating natural language requirements into temporal logics
can be classified as several categories, such as rule-based [15,29], deep learning
[18], and Large Language Models (LLMs) [11]. However, these methods require
either manual writing of formal specifications for atomic propositions, or utilizing
plenty of patterns, or training with plenty of data. To the best of our knowledge,
these works always consider the translation of English, but few consider Chinese,
and there is little work focusing on the ejection seat control system domain.

To address the challenges above, we propose an AGVTS method,
automatically generating and verifying temporal specifications for aeronautics
SCADE models. The main contributions are summarized as follows:

(1) A modular pattern language (MPL) to precisely express Chinese natural lan-
guage requirements. Benefiting from the modular structure, users can write
requirements in a restricted and composite way with less patterns.

(2) A rule-based method augmented with BERT for automatically translating
requirements expressed by MPL into LTL and CTL formulae.

(3) An automated transformation from SCADE to nuXmv that provides SMT-
based and SAT-based model checking techniques to verify LTL and CTL
properties with floating numbers. Compared with existing works, our transfor-
mation covers more modeling styles, such as data flow, safety state machines
and their combination.

(4) We apply our method to an industrial ejection seat control system. It suc-
cessfully translates 124 requirements and verifies the SCADE models of six
modules of the system. The result convinces our industrial partners of the
usefulness of formal methods to industrial systems.

1 Ansys SCADE Suite https://www.ansys.com/products/embedded-software/ansys-
scade-suite,.

2 DV is based on Prover Technology proof engines (www.prover.com).

https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite

340 H. Wang et al.

2 Global View of the AGVTS Method

Figure 1 gives an overview of the AGVTS method. AGVTS has three modules
shown as follows.

• Modular Pattern Language (MPL): Define a pattern language organized
in a modular structure. The syntax and semantics of each pattern guide users
to write requirements in a restricted and composite manner.

• Rule-based Requirements Translator Augmented with BERT: Parse
requirements written in MPL and build pattern structure trees for them.
Then generate LTL and CTL formulae through traversing the tree.

• SCADE2nuXmv Model Transformation: Transform SCADE models
into nuXmv. Subsequently, verify the nuXmv models, and show the verifica-
tion results and the traceability between requirements and counterexamples.

In the following sections, we will introduce the three modules in detail.

BERT

Em
bedding Layer

FC Layer

Requirements
in MPL

Terms

Terms Map

Transla�on Engine

Model Checker

SCADE2nuXmv

nuXmv Models

Formal Specifica�ons

Textutal SCADE Models

Verify Result

So�max

Natural Language
Requirements

Pa�ern Structure Tree

NLP Parse Tree

HanLP Toolkit

Rule-based Requirements
Translator

SCADE Models

extract

rewrite

translate

parse

Pa�ern Rules

generate

generate

Counterexample Feedback

correspond

Fig. 1. The Global View of the AGVTS Method

3 Modular Pattern-Based Language

The modular pattern-based language (MPL) focuses on ejection seat control sys-
tem which usually contains complex computation in the requirements. MPL has
three segments: Atomic Proposition (AP), Relation, and Scope. Each segment
has several patterns. This feature allows users to write requirements in a com-
posite manner with fewer patterns. Additionally, we define the formal syntax
and semantics of the patterns3 As shown in Fig. 2, we first write three atomic
3 These are shown at https://github.com/yayi-mei/AGVTS.

https://github.com/yayi-mei/AGVTS

AGVTS 341

statements in AP patterns. Then the Relation patterns are utilized to connect
statements for constructing compound statements and Scope patterns are added
to declare the effective extent of different statements. Finally we obtain the
complete requirement. Please note that the Relation and Scope patterns can be
nested in any way.

(AP Pa�ern: NeOpeAdj)
the ra�onal flag of iner�al

naviga�on module 1 is true

(AP Pa�ern: NeOpeFormula)
the indicator velocity equals

abs(0.5*(Vi_GD1) + 0.5*(Vi_GD2))

(Rela�on Pa�ern)
[the ra�onal flag of iner�al naviga�on module 1 is true],

and [the ra�onal flag of iner�al naviga�on module 2 is true]

if the ra�onal flag of iner�al naviga�on module 1 is true, and the ra�onal flag of iner�al naviga�on module 2 is true,
 then globally, the indicator velocity equals abs(0.5*(Vi_GD1) + 0.5*(Vi_GD2))

(AP Pa�ern: NeOpeAdj)
 the ra�onal flag of iner�al
naviga�on module 2 is true

the ra�onal flag of iner�al naviga�on module 1 is true,
and the ra�onal flag of iner�al naviga�on module 2 is true

 globally, the indicator velocity equals abs(0.5*(Vi_GD1) +
0.5*(Vi_GD2))

(Rela�on Pa�ern) if ,then

In the iner�al naviga�on valid state,

(Scope Pa�ern)

(Scope Pa�ern)
globally, [the indicator velocity equals abs(0.5*(Vi_GD1) +

0.5*(Vi_GD2))]

Fig. 2. Writing Requirements in a Composite Manner

AP Patterns. AP patterns form the basis of MPL, serving to specify an atomic
statement on an event or a state of the system. MPL has nine AP patterns. Each
pattern consists of several Ingredient tags we define, such as Ne for variables
and constants, Ope for operators, and Formula for complex computation. We
have defined seven Ingredient tags in total. For Instance, in Fig. 2, “the indi-
cator velocity equals abs(0.5 ∗ (V i GD1) + 0.5 ∗ (V i GD1))” is written in “Ne
Ope Formula” pattern, in which “rational flag of inertial navigation module 1”,
“equals” and “abs(0.5 ∗ (V i GD1) + 0.5 ∗ (V i GD1))” are labeled as Ne, Ope,
and Formula respectively.

Relation Patterns. Relation patterns describe the temporal or logical rela-
tions between atomic or compound statements, which are characterized by dif-
ferent keywords. We have defined six Relation patterns: Simple, Response, Con-
dition, Precedence, Conjunction and Disjunction, as shown in Table 1 where
φi (1 ≤ i ≤ n) denotes a statement. The Simple pattern represents the atomic
statements in the requirement, which are specified by the AP patterns. The
Response and Precedence patterns are introduced from [2]. Conjunction and
Disjunction patterns express the complex nesting relations of a series of state-
ments, as the parentheses are seldom used in Chinese requirements. To support
the nesting of Relation pattern, we define a priority for each of them.

For example, in Fig. 2, we use Conjunction pattern to connect two atomic
statements. The compound statement “the rational flag of inertial navigation
module 1 is true and the rational flag of inertial navigation module 2 is true”
indicates that the rational flags of both inertial navigation modules must be true
simultaneously. Moreover, the statement “φ1 weak and φ2, or φ3 weak and φ4”
can express “(φ1 ∧ φ2) ∨ (φ3 ∧ φ4)”, based on different priorities.

342 H. Wang et al.

Table 1. Relation Patterns

Pattern Name Natural Language Format Meaning Priority

Simple φ1 the atomic statement 6

Response if φ1 holds, then in response φ2 holds if φ1 holds, then φ2 must holds in
the next cycle

1

Condition if φ1, then φ2 if φ1 holds, then φ2 must holds in
the same cycle

0

Precedence φ2 precedes φ1 if φ1 holds in the future, φ2 must
hold at least one time before φ1

holds

1

Conjunction φ1 and φ2 and · · · and φn all of φi (1 ≤ i ≤ n) must hold in
the specified cycle

2

φ1 weak and φ2 weak and · · ·
weak and φn

4

Disjunction φ1 or φ2 or · · · or φn at least one of φi (1 ≤ i ≤ n) holds
in the specified cycle

3

φ1 weak or φ2 weak or · · · weak or
φn

5

Scope Patterns. Scope patterns describe the effective extent of an atomic or
compound statement. We have defined 11 Scope patterns, such as “Globally”,
“In x state”, and “Every n cycles”, where x denotes a state name and n denotes
a positive integer. As shown in Fig. 2, the scope “In the inertial navigation valid
state” expresses that the property stated subsequently must hold when the sys-
tem is in the “inertial navigation valid” state.

4 Rule-Based Translation Augmented with BERT

In this section, we will introduce the rule-based translation augmented with
BERT method which translates requirements into LTL and CTL specifications.
As shown in Fig. 3, to illustrate the workflow of the method, we consider the
following requirement:

Example 1. Globally, if the state of the system is calculating angle by two inertial
navigation modules, then globally the input angle always equals 0.5 times the
sum of the angles in inertial modules 1 and 2.

In the following paragraphs, we will represent the details of each step.

Rewriting & Pre-processing. Natural language are usually ambiguous, so
we rewrite the requirement in MPL first. Additionally, the complex calculations
expressed in natural language should be replaced with corresponding formal
expression to simplify the translation. For example, the statement “0.5 times
the sum of the angles in inertial modules 1 and 2” in Example 1 is replaced by
“(0.5 ∗ (angle GD1 + angle GD2))”. The Example 1 is rewritten as “Globally,

AGVTS 343

Fig. 3. Overview of the Rule-Based Translation Augmented with BERT

if the state equals calculate angle by two inertial navigation modules state, then
globally, the input angle equals (0.5 ∗ (angle GD1 + angle GD2))”.

Extract Scopes & Natural Language Parsing. The accuracy of a NLP
parser decreases as the length of the requirement increases, so the requirement
should be as concise as possible. Since the expressions of Scope patterns in MPL
are fixed, we extract them with regular expression before parsing the rewrit-
ten requirement. For example, we extract “Globally,” from Example 1. Then
HanLP4, a Chinese NLP toolkit, is leveraged to parse the requirement, includ-
ing tokenization, POS tagging, and dependency relations analysis.

Extracting Terms by BERT. Compared with English, Chinese natural lan-
guage lacks separators to distinguish words. Therefore, tokenization is the initial
task when parsing Chinese with NLP techniques. However, incorrect tokenization
may occur. Clearly, an incorrect tokenization will finally lead to a wrong parsing
result. For example, “angle GD1 + angle GD2” in Example 1 is recognized as
one token.

To solve this problem, we implement a Term Extractor to extract terms from
requirements, which assists in improving the accuracy of word segmentation and
correcting its results. Term extraction essentially classifies each token in the
requirement into three categories: the beginning of the term, the body of the
term, and non-term. Therefore, we build a deep learning model, as shown in
Fig. 4, to complete this task. This model first utilizes BERT [13], a pre-trained
language model, to extract text features from the requirements. Then a fully
4 https://github.com/hankcs/HanLP/.

344 H. Wang et al.

Fig. 4. The Structure of the BERT-
Based Model

Fig. 5. Examples of a Terms Map

connected layer (FC Layer) is utilized to calculate the probability of each token
belonging to different categories based on the text features. Finally, each token
is labeled as the category with the highest probability.

The extracted terms serve two purposes. One is to expand the tokenization
lexicon of HanLP, which reduces the probability of incorrect tokenization. The
other is to rectify the potential errors in the parsing result of HanLP. In addition,
we construct a terms map in order to match the extracted terms with their
corresponding variables or constants in the SCADE model, as shown in Fig. 5.

Build Pattern Structure Tree & Rectify NLP Errors. After getting the
NLP parsing result, we recursively construct a pattern structure tree for each
statement in the requirement. The whole pattern structure tree describes the
nesting relations among the Relation patterns present in the requirement. Each
node of the tree corresponds to a statement in the requirement, including the
Relation pattern of the statement, the keywords of the Relation pattern, and
the Scope pattern of the statement. Please note that each leaf node of this tree
corresponds to an atomic statement in the requirement.

Each Relation pattern recorded by the tree node represents the one with
the highest priority in its corresponding statement. To determine the Relation
pattern with the highest priority, we utilize tokenization and lexical matching
to find the keywords of Relation patterns. Then we compare the priorities of the
patterns they belong to, as shown in Table 2.

In cases where no keywords are identified, the pattern of the statement is the
Simple pattern. Then we identify the AP pattern of the statement by determin-
ing the Ingredient tag of each token and combining the tags in order. The task is
performed by tokenization, lexical matching and POS tagging. Additionally, we
utilize domain lexicons which include verbs, adjectives, operators and functions
in the requirement to filter useless tokens. The extracted terms are leveraged

AGVTS 345

to enhance the NLP result in this process. That is, for tokens categorized as
“noun”, we substitute the original token with the term that matches the longest
consecutive characters in the requirement.

As shown in Fig. 3, the Condition pattern recorded by the root node of the
pattern structure tree has the highest priority in Example 1. Both of its children
are atomic statements, so the corresponding nodes of these statements record
their AP and Scope patterns. In this process, the incorrect token “angle GD1+
angle GD2” is rectified to “angle GD1”, “angle DD2” and the operator “+”.

Formula Generation. The last step is generating formal specifications by
composing formal expressions of each node on the pattern structure tree in post
order. The mapping of our Relation patterns to LTL and CTL are shown in
Table 2, and the mapping rules of AP patterns and Scope patterns are illustrated
in the appendix. These rules strictly follow the formal semantics of MPL.

Table 2. Mapping Rules of Relation Patterns (Except for Simple Pattern)

Pattern Name LTL Formula CTL Formula

Response φ1 → X φ2 φ1 → AX φ2

Condition φ1 → φ2 φ1 → φ2

Precedence F φ1 → (! φ1 U (φ2∧! φ1)) AF φ1 → A(! φ1 U (φ2∧! φ1))

Conjunction φ1 ∧ φ2 ∧ · · · ∧ φn φ1 ∧ φ2 ∧ · · · ∧ φn

Disjunction φ1 ∨ φ2 ∨ · · · ∨ φn φ1 ∨ φ2 ∨ · · · ∨ φn

Based on the mapping rules above, as shown in Fig. 3, we first translate the
leaf nodes on the pattern structure tree into AP formulae. For instance, “state
equals calculate angle by two inertial navigation modules state” is translated
to “state = state CalA BothGD State”. Secondly, the generated formulae are
connected by “→” which is translated from the keywords recorded by the root
node. During the translation, the Scope patterns ,“globally”, are translated into
corresponding temporal operators and added to the corresponding formulae. The
LTL and CTL formulae are shown as follows:

LTL : G((state = state CalA BothGD State) →
G(angle = (0.5 ∗ (angle GD1 + angle GD2))))

(1)

CTL : AG((state = state CalA BothGD State) →
AG(angle = (0.5 ∗ (angle GD1 + angle GD2))))

(2)

5 SCADE2nuXmv Model Transformation

In this section, we will introduce the automated transformation from SCADE
to nuXmv. Figure 6 shows the overview of SCADE2nuXmv. We first extract the

346 H. Wang et al.

textual representation of the SCADE model through SCADE IDE. Subsequently,
use ANTLR, a toolkit for lexical analysis and syntax analysis, to build a syntax
tree for it. Then generate target nuXmv models based on the syntax tree. Finally,
we employ the model checker of nuXmv to verify the generated model. The
traceability between the execution trace of counterexamples, and corresponding
formulae and requirements is also generated.

Fig. 6. SCADE Models Verification Achieved by SCADE2nuXmv

The reasons why we choose nuXmv are the ability to express hierarchical
models, support for both SMT-based and SAT-based verification, and the veri-
fication of both infinite-state and finite-state systems. For instance, the middle
and right columns in Fig. 7 construct a nuXmv model that contains hierarchi-
cal state machine. The SM EJ Core is the top state machine of the model. It
declares the sub-state machine SM GDValid SSM module, which selects strategy
according to the different variables (e.g., Vi), in its VAR part.

Fig. 7. The Translation from SCADE to nuXmv

AGVTS 347

The nuXmv models generated by our method contains four module types:
Monitor, State Machine, Function and Main. The Monitor module implements
the monitor mechanism. The State Machine module and Function module
respectively represent safety state machine and data flow in SCADE models.
The Main module is the entry of target models. In the following, we will intro-
duce these modules in detail.

Fig. 8. The SCADE Model Example

Monitor Module. The language supported by nuXmv forbids multiple
assignments to a variable [4], which is common in safety state machine, so we
created Monitor modules inspired by [8] to manipulate the assignment of output
and local variables. Each Monitor module incorporates two “case” expressions
with multiple execution branches, to assign the value of the monitored variable.
One initializes the monitored variable, while the other updates it after the first
cycle.

Each “case” expression branch corresponds to an assignment expression of
the monitored variable in the original SCADE model. To determine the branch
to execute, we create monitor variables similar to the ones in [8]. Each monitored
variable triggers a branch when it becomes true. To distinguish between assign-
ment expressions related to state transitions, we employ two types of monitor
variables, reset x s and set x s, where x denotes the monitored variable and s
denotes the state assigning the value of x. When the state machine transitions to
s, reset x s turns TRUE. If none of the transition conditions of state s are met,
set x s becomes TRUE. We further replace variables prefixed with “ L”, which
represent connection lines in the SCADE model, with their equivalent variables
to reduce the state space. For example, the “Set V i” in Fig. 7 is an example of
such a module. The “case” expression assigns the value of “Vi” according to the
monitor variables of each branch.

State Machine Module. Each State Machine module corresponds to
one state machine in the original SCADE model. It records the state transi-
tion, assigns monitor variables and instantiates submachines. Such modules also
implement the hierarchical structure in safety state machine utilizing active and
default variables, which respectively denote the activation of the state machine

348 H. Wang et al.

and whether the state machine transitions from inactive to active in the cycle.
For example, the “SM GDValid SSM ” module in Fig. 7 is a State Machine mod-
ule, representing the state machine “GDValid SSM ” in Fig. 8. The first “case”
expression depicts the state transition, while subsequent one assigns monitor
variables related to it.

Function Module. A Function module corresponds to a data flow operator
in the original SCADE model. Each output variable of it is defined by two expres-
sions in the corresponding Function module. One, the same as the expression in
the SCADE model, assigns its initial value. The other, similar to the expression
in the SCADE model but with each variable enclosed by a next operator, assigns
the value of the variable after the first cycle. After the translation, we further
replace the temporary variables “ Li” (where i is a positive integer), that rep-
resent connection lines in the SCADE model, with their equivalent variables to
reduce the state space. For example, the “CalV i” module in Fig. 7 is a Function
module. The temporary variable “ Li” is replaced with its equivalent variable,
e.g., “ L2” is replaced with “V HG”.

Main Module. Each nuXmv model has one Main module which instantiates
the interface of the SCADE model, the local variables, all monitor variables
and modules, and the top state machine. It also assigns the initial value of all
monitoring variables. Additionally, a variable equalling the state of the top state
machine is defined in the Main module, allowing users to verify specifications
related to a specific state. This variable only exists when the original SCADE
model contains safety state machines.

As mentioned in Sect. 1, SCADE provides three modeling styles, i.e., safety
state machines, data flow and their combination. When the SCADE model is
data flow style, its nuXmv model contains Main Module and Function Module.
On the contrary, when the SCADE model is safety state machine style, we use
State Machine and Main modules to construct the target nuXmv models. In
addition, we use all the above four types of modules to construct the target
nuXmv model for the SCADE model that combines data flow and safety state
machine.

6 Industrial Case Studies and Evaluation

6.1 Ejection Seat Control System

Ejection seats must eject pilots out of the cockpit when the pilots pull the switch
and open the parachute at an appropriate time to safely send pilots back to the
ground. When the seat is ejected from the cockpit, the control system in the
seat chooses different control strategies as the environment varies. During this
process, it avoids rotation, excessive loads and wrong movement direction. When
the seat is in a non-upright position, the control system adjusts the attitude of
the seat.

As a typical safety-critical software, SCADE is suitable to model this control
system. Moreover, the control system controls all subsystems of the ejection seat
to faithfully implement the chosen strategy. Each step in the strategy has a strict

AGVTS 349

execution order. This feature makes temporal logic suitable for describing the
specifications of its requirements.

6.2 Implementation and Experiments

We have developed a tool chain to implement the AGVTS method in this paper.
To verify the effectiveness of AGVTS, we utilize the tool chain to verify six
modules in the ejection seat control system against a set of 124 requirements.

Requirements in
MPL

BERT

Terms Extractor

Em
bedding Layer

FC Layer

Terms Terms Map

Formal
Spcifica�ons

Specifica�on Genrator

Model Translator
&Verifier

Verify Result

SCADE model
Describe

Feedback

Input

Input

Fig. 9. Implementation of the Approach

As shown in Fig. 9, the tool chain first uses an BERT-based terms extrac-
tor, which is fine-tuned on the requirements of the ejection seat control system,
to extract terms from the requirements written in MPL. Industrial engineers
subsequently confirm and rectify the errors in the extracted terms. Then they
build a terms map based on the terms. Thirdly, the specification generator reads
the terms map and converts the requirements written in MPL into LTL and
CTL formulae. Finally a model transformer & verifier transforms the SCADE
model into nuXmv and verifies the generated formulae against the nuXmv model.
Additionally, it generates the traceability between the execution trace of coun-
terexamples, and corresponding formulae and requirements to help rectify the
original model.

To ensure the effectiveness of the tool chain, we invite several formal experts
to confirm whether the generated LTL and CTL formulas accurately capture
the intent of the requirements. Then the experts check the generated nuXmv
models to determine whether these models faithfully implement the functions of
the original models.

6.3 Evaluation

The major objective of this subsection is to evaluate the effectiveness of our
method. We will explain the evaluation from three perspectives: Terms Extrac-
tion, Requirements Translation and Model Verification.

350 H. Wang et al.

Table 3. The Statistics of Our BERT-Based Model

Data Set Precision/% Recall/% F1/%

Fine-tuned Test Set 93.94 95.88 94.90

Requirements of six modules 86.81 90.80 88.76

Terms Extraction. As shown in Table 3, the BERT-based terms extractor
achieves a precision of 93.94% and a recall of 95.88% on the fine-tuned test
set. The 124 requirements used in our experiment contain 87 terms. The BERT-
based terms extractor extracts 91 terms, 79 of which are correct. Error-extracted
terms can be divided into two categories. One is common nouns (e.g., “cycle”)
that do not belong to ejection seat control system. The other is the segment of
larger terms, for example “Inertial Navigation Module” is a wrong term split
from “Valid Inertial Navigation Module State”. However, these can be easily
identified and rectified by engineers.

Table 4. The Statistics of the Verification Results

Modules Reqs AGVTS (Verify) Wrong Req

Mode Selection 21 21 0

Ejection Judge 18 18 2

High Altitude Mode 26 26 0

Velocity Control Mode 20 16 0

Overload Mode 24 24 0

Stability Control 15 15 0

Requirements Translation. Our method successfully translates all the pre-
processed requirements written in the pattern based language into LTL and
CTL formulae. Table 4 shows the translation statistics data. In the following we
provide two requirements described in MPL to show the translation.

Example 2. “Globally, in the Inertial Navigation Valid State, the mode will be
set to reverse mode, or the mode will be set to low velocity low altitude mode,
or the mode will be set to high velocity mode, or the mode will be set to high
altitude mode”.

This is a property used to limit the output of the system whose corresponding
LTL and CTL formulae are shown as follows.

LTL : G((state = state GDV alid State) →
F (mode = 4 |mode = 6 |mode = 0 |mode = 5))

(3)

CTL : AG((state = state GDV alid State) →
AF (mode = 4 |mode = 6 |mode = 0 |mode = 5))

(4)

AGVTS 351

Please note that, the terms map has matched the reverse mode, low velocity
low altitude mode, high velocity mode, and high altitude mode to the constants
defined in the SCADE model. For instance “the mode will be set to reverse
mode” is translated to “mode = 4”.

Example 3. “If the rational flag of inertial navigation module 1 is true, and the
rational flag of inertial navigation module 2 is true, then in the next cycle, state
will be set to calculate angle Both Inertial Valid state”.

As the statement does not have a Scope, it is only checked in the first cycle.
Formula (5) and (6) represent the LTL and CTL formula of this requirement.

LTL : (V alidity GD1 = 1 &V alidity GD2 = 1) →
X(state = state CalA BothGD State)

(5)

CTL : (V alidity GD1 = 1 &V alidity GD2 = 1) →
AX(state = state CalA BothGD State)

(6)

Model Verification. The SCADE models of the six modules contain three
types of structure: data flow, safety state machine and their combination. Our
method successfully transforms them. Then we verify the nuXmv models with
the generated formulae.

During the verification, two bugs caused by the “case” statement are found.
The first one is that the front case condition covers the latter case condition.
The second one is caused by two identical case condition, but their actions
are different. This result shows that our method for verification is effective.
Additionally, our method verifies the SCADE models of the six modules in a
shorter time than DV.

Four requirements of the Velocity Control mode contain nonlinear calcu-
lations, such as square root, that cannot be verified by SCADE DV and our
method. Note that, when the SCADE models contain unbounded integers and
real numbers, nuXmv just verify the LTL specifications.

7 Related Work

Formal Specification Generation. As writing formal specifications is time-
consuming and error-prone, [14,19] propose a set of patterns corresponding to
different scenarios and their formal semantics to guide users to write formal spec-
ifications. [15] develops a SpeAR tool which translates requirements written in
pattern language into PLTL. [10,16,21] provide a framework to translate require-
ments written in the pattern language FRETISH into formal specifications. [2]
proposes a framework combining existing classical patterns. [22,26,29] utilize
NLP techniques, such as POS tagging and dependency parsing, to pre-process
requirements. Then they define translation rules to generate formal specifications
based on the pre-processed requirements. [18,25] treat the translation from nat-
ural language to formal specifications as a machine translation task and utilize

352 H. Wang et al.

deep learning models to solve it. [5,11] utilize Large Language Models (LLMs)
to complete the translation. [11] decomposes the natural language input into
sub-translations by utilizing LLMs. However, these methods require either man-
ual writing of formal specifications for atomic propositions, or utilizing plenty of
patterns, or training with plenty of data.

Verification of SCADE Models. As SCADE DV cannot adequately express
complex temporal specifications and it may fail due to complexity problems
such as floating numbers, there are several related works to enhance the verifi-
cation capability of SCADE. [12] transforms SCADE models into UPPAAL and
verify the liveness properties in TCTL. However, it may fail when the original
SCADE model contains hierarchical structure. [24] transforms SCADE models
into nuSmv [6] models for verification, but limited to safety state machines and
incapable of verifying infinte-state system. [3] introduces LAMA as an intermedi-
ate language into which SCADE programs can be transformed and which easily
can be transformed into SMT solver instances. However, the method performs
worse than DV.

8 Conclusion and Future Work

We propose an AGVTS method for automatically generating temporal specifi-
cations and verifying aeronautics SCADE models. AGVTS begins by defining
a modular pattern language (MPL) to express Chinese requirements precisely.
Then it uses a rule-based method augmented with BERT to translate require-
ments in MPL into LTL and CTL formulae. Finally it verifies SCADE models
by transforming them into nuXmv which supports SMT-based and SAT-based
verification. The method is applied to an ejection seat control system.

We are currently incorporating LLMs to enhance the capability of terms
extraction and the process of parsing requirements. The patterns will be refined
to cover more domains and enable users to articulate requirements with greater
flexibility. Additionally, we will consider theorem prover Coq to prove the cor-
rectness of formula generation and the transformation from SCADE to nuXmv,
based on our previous researches [27,28]. Improving the verification capability
of nuXmv is also an interesting work.

The details of patterns, translation algorithms of SCADE2nuXmv and
appendix are provided at https://github.com/yayi-mei/AGVTS.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

2. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualita-
tive, real-time, and probabilistic property specification patterns using a structured
English grammar. IEEE Trans. Softw. Eng. 41(7), 620–638 (2015)

https://github.com/yayi-mei/AGVTS.

AGVTS 353

3. Basold, H., Günther, H., Huhn, M., Milius, S.: An open alternative for SMT-based
verification of scade models. In: Formal Methods for Industrial Critical Systems:
19th International Conference, FMICS 2014, Florence, Italy, September 11-12,
2014. Proceedings 19, pp. 124–139. Springer (2014). https://doi.org/10.1007/978-
3-319-10702-8 9

4. Bozzano, M., et al.: nuxmv 2.0. 0 user manual. fondazione bruno kessler. Tech.
rep., Technical report, Trento, Italy (2019)

5. Chen, Y., Gandhi, R., Zhang, Y., Fan, C.: NL2TL: Transforming natural languages
to temporal logics using large language models. In: Bouamor, H., Pino, J., Bali,
K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 15880–15903. Association for Computational Linguistics,
Singapore (2023)

6. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic
model verifier. In: Computer Aided Verification: 11th International Conference,
CAV’99 Trento, Italy, July 6–10, 1999 Proceedings 11, pp. 495–499. Springer
(1999). https://doi.org/10.1007/s100090050046

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

8. Clarke, E.M., Heinle, W.: Modular Translation of Statecharts to SMV. Tech. rep,
Citeseer (2000)

9. Colaço, J.L., Pagano, B., Pouzet, M.: Scade 6: A formal language for embedded
critical software development. In: 2017 International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 1–11. IEEE (2017)

10. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A com-
positional proof framework for fretish requirements. In: Proceedings of the 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.
68–81 (2022)

11. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: interactively
translating unstructured natural language to temporal logics with large language
models. In: International Conference on Computer Aided Verification, pp. 383–396.
Springer (2023). https://doi.org/10.1007/978-3-031-37703-7 18

12. Daskaya, I., Huhn, M., Milius, S.: Formal safety analysis in industrial practice.
In: Formal Methods for Industrial Critical Systems: 16th International Work-
shop, FMICS 2011, Trento, Italy, August 29-30, 2011. Proceedings 16, pp. 68–84.
Springer (2011). https://doi.org/10.1007/978-3-642-24431-5 7

13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: Proceedings of the 21st international conference on
Software engineering, pp. 411–420 (1999)

15. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: Spear v2. 0: formalized past LTL specification and analysis of requirements.
In: NASA Formal Methods: 9th International Symposium, NFM 2017, Moffett
Field, CA, USA, May 16-18, 2017, Proceedings 9, pp. 420–426. Springer (2017).
https://doi.org/10.1007/978-3-319-57288-8 30

16. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated
formalization of structured natural language requirements. Inf. Softw. Technol.
137, 106590 (2021). https://doi.org/10.1016/j.infsof.2021.106590

https://doi.org/10.1007/978-3-319-10702-8_9
https://doi.org/10.1007/978-3-319-10702-8_9
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-642-24431-5_7
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-319-57288-8_30
https://doi.org/10.1016/j.infsof.2021.106590

354 H. Wang et al.

17. Gleirscher, M., van de Pol, J., Woodcock, J.: A manifesto for applicable formal
methods. Softw. Syst. Model. 22(6), 1737–1749 (2023)

18. He, J., Bartocci, E., Ničković, D., Isakovic, H., Grosu, R.: Deepstl: from English
requirements to signal temporal logic. In: Proceedings of the 44th International
Conference on Software Engineering, pp. 610–622 (2022)

19. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering, pp. 372–381 (2005)

20. Leveson, N.G.: Engineering a safer world: systems thinking applied to safety, The
MIT Press (2016)

21. Mavridou, A., Bourbouh, H., Garoche, P.L., Giannakopoulou, D., Pessburger, T.,
Schumann, J.: Bridging the gap between requirements and Simulink model anal-
ysis. In: Joint 26th International Conference on Requirements Engineering: Foun-
dation for Software Quality Workshops, Doctoral Symposium, Live Studies Track,
and Poster Track (2020)

22. Nayak, A., Timmapathini, H.P., Murali, V., Ponnalagu, K., Venkoparao, V.G.,
Post, A.: Req2spec: transforming software requirements into formal specifica-
tions using natural language processing. In: International Working Conference on
Requirements Engineering: Foundation for Software Quality, pp. 87–95. Springer
(2022). https://doi.org/10.1007/978-3-030-98464-9 8

23. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46–57. IEEE (1977)

24. Shi, J., Shi, J., Huang, Y., Xiong, J., She, Q.: Scade2nu: A tool for verifying safety
requirements of scade models with temporal specifications. In: REFSQ Workshops
(2019)

25. Wang, C., Ross, C., Kuo, Y.L., Katz, B., Barbu, A.: Learning a natural-language
to LTL executable semantic parser for grounded robotics. In: Conference on Robot
Learning, pp. 1706–1718. PMLR (2021)

26. Yan, R., Cheng, C.H., Chai, Y.: Formal consistency checking over specifications in
natural languages. In: 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1677–1682. IEEE (2015)

27. Yang, Z., Bodeveix, J., Filali, M.: Towards a simple and safe objective caml com-
piling framework for the synchronous language SIGNAL. Frontiers Comput. Sci.
13(4), 715–734 (2019)

28. Yang, Z., Bodeveix, J., Filali, M., Hu, K., Zhao, Y., Ma, D.: Towards a verified
compiler prototype for the synchronous language SIGNAL. Frontiers Comput. Sci.
10(1), 37–53 (2016)

29. Zhang, S., Zhai, J., Bu, L., Chen, M., Wang, L., Li, X.: Automated generation of
LTL specifications for smart home IoT using natural language. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 622–625.
IEEE (2020)

https://doi.org/10.1007/978-3-030-98464-9_8

AGVTS 355

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Code-Level Safety Verification
for Automated Driving: A Case Study

Vladislav Nenchev1(B) , Calum Imrie2 , Simos Gerasimou2 ,
and Radu Calinescu2

1 BMW Group, Petuelring 130, 80809 Munich, Germany
vladislav.nenchev@bmw.de

2 Department of Computer Science, University of York, York, UK
{calum.imrie,simos.gerasimou,radu.calinescu}@york.ac.uk

Abstract. The formal safety analysis of automated driving vehicles
poses unique challenges due to their dynamic operating conditions and
significant complexity. This paper presents a case study of applying for-
mal safety verification to adaptive cruise controllers. Unlike the majority
of existing verification approaches in the automotive domain, which only
analyze (potentially imperfect) controller models, employ simulation to
find counter-examples or use online monitors for runtime verification,
our method verifies controllers at code level by utilizing bounded model
checking. Verification is performed against an invariant set derived from
formal specifications and an analytical model of the required behavior.
For neural network controllers, we propose a scalable three-step decom-
position, which additionally uses a neural network verifier. We show that
both traditionally implemented as well as neural network controllers are
verified within minutes. The dual focus on formal safety and implementa-
tion verification provides a comprehensive framework applicable to sim-
ilar cyber-physical systems.

Keywords: Model-based verification · Formal safety verification ·
Deep neural network verification · Adaptive cruise control · Automated
driving

1 Introduction

Ensuring the safe operation of self-driving cars requires controlling the vehicle
by software, crafted by numerous developers utilizing complex architectures,
various programming languages, middleware etc. Automating the validation and
verification of this software is crucial for certification and a rapid release cycle.
However, proving safety for all possible driving scenarios in the allowed operation
domain has proven to be very challenging. A safe Adaptive Cruise Controller
(ACC) has to keep a suitable distance to all relevant target objects, such that
the automated driving vehicle maintains a safe distance even in the presence of
uncertainties. Interestingly, some common ACC solutions have been shown to be

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 356–372, 2025.
https://doi.org/10.1007/978-3-031-71177-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_22&domain=pdf
http://orcid.org/0000-0002-9261-2746
http://orcid.org/0009-0004-3198-9226
http://orcid.org/0000-0002-2706-5272
http://orcid.org/0000-0002-2678-9260
https://doi.org/10.1007/978-3-031-71177-0_22

Code-Level Safety Verification for Automated Driving 357

unstable with respect to formal models [43]. To guarantee the safe operation of
a controller, in practice, one often resorts to a tailored redundant architecture,
as well as exhaustive simulation and testing. While the latter methods can be
performed automatically even when the controllers under test utilize Deep Neural
Networks (DNNs) [46], they are neither sound (i.e., some bugs may be missed)
nor complete (i.e., not every bug report corresponds to a real bug).

To address this limitation of current ACC verification approaches, we pro-
pose a formal framework for the development-time safety verification of adaptive
cruise controllers using set-invariance methods. We model the motion of the vehi-
cle and the relevant target object to keep a safe distance from as a discrete-time
linear system subject to bounded control inputs. We specify the safety require-
ments as infinite-time collision avoidance, while restricting the cruise speed of
the vehicles to suitable ranges. This allows us to define an operation set cor-
responding to the safety specification. Then, we compute a safe set within the
operation set based on a Controlled Invariant Set (CIS) for the discrete-time
linear system. The CIS is used to verify (or falsify) the closed-loop operation
of several ACC implementations offline. For traditional controllers, a Bounded
Model Checker (BMC) is utilized to prove safety. For DNN-based controllers,
we propose a new hybrid verification approach based on decomposition: we ver-
ify the deployment code (loading the DNN, DNN-based inference, etc.) using
a BMC, and the actual DNN with a dedicated neural network verification tool
(e.g., Marabou [25]). Our case study shows that the proposed framework can
verify (or falsify) the safety of both traditional and DNN-based ACC implemen-
tations within minutes on a standard workstation. The considered controllers are
commonly employed in contemporary industrial and research approaches [13] for
automated driving, including a model predictive controller [31] with over 5500
lines of code and a DNN-based controller [50].

The remainder of the paper is organized as follows. After summarizing related
work (Sect. 2), the problem formulation for model-based safety verification of
ACC is provided (Sect. 3). In Sect. 4, we present the verification framework based
on set invariance. Then, we provide experimental results with several automated
driving controllers (Sect. 5), followed by a discussion and conclusions (Sect. 6).

2 Related Work

While formal methods have been widely applied in the context of automated
driving [30], the main focus so far has been on the behavior of an autonomous
vehicle, rather than specific software code deployed in the vehicle. Formal verifi-
cation of traditionally implemented controllers has been addressed, e.g., by uti-
lizing model checking [29], counter-example-guided searching [44] or reachability
analysis [2]. To avoid the need for verification, correct-by-design cruise control
policies for longitudinal motion of platoons of autonomous vehicles have been
synthesized using set invariance, which guarantee infinite-time collision avoid-
ance [40]. As determining safe state sets is a computationally demanding task,
online monitoring approaches have also been proposed as more scalable options

358 V. Nenchev et al.

[22,26,36]. None of these methods perform safety verification or monitoring at
code level, but rather use models of the code which might miss verification-
relevant aspects of the implementation.

Many methods for input-output robustness certification of DNNs have also
been proposed in recent years, including feed-forward multi-layer [18], deep feed-
forward [24], and convolutional neural networks [14]. Formal proofs of closed-loop
safety have also been obtained for DNN-based controllers and various system
types, e.g., [8,20,21,28,39,41,45]; however, these methods rely on either approx-
imations or abstraction of the to-be-verified controller or the system, and thus,
tend to scale poorly with a growing complexity of the system. Properties for
DNN-based perception components can also be verified using probabilistic anal-
ysis, e.g., for guiding airplanes on taxiways [35]. Satisfiability Modulo Theory
(SMT) solvers have also been used for the automatic verification of DNNs with
respect to safety properties in cyber-physical systems by using a dedicated inter-
val constraint propagation [16] or by translating the closed-loop system into an
SMT formula [42]. However, also in the context of DNN-based controllers safety
verification has not been addressed for the deployed code.

Safety verification at code level has been addressed for an automated driving
supervisor by automatically obtaining a finite discrete abstraction [32]. However,
finite discrete abstraction approaches are not directly applicable to continuous
controllers. The safety of adaptive cruise controller implementations was assessed
by using temporal logic specifications embedded as monitors along with their
execution, which can be checked using bounded model checking [33]. However,
such methods are not guaranteed to terminate in a reasonable amount of time for
every implementation. Instead of providing arguments for absolute correctness,
the test coverage of automated driving functions, mostly provided by manual
test drives and simulation runs in practice, can be extended by searching for
specification counter-examples for the implementation utilizing reinforcement
learning in simulation [11], by sampling initial conditions from the boundary of a
controlled invariant set [6], or by (mostly) automatically extracting higher-level
logic models from code [27], thus enabling exhaustive analysis for identifying
potential errors prior to deployment. While these methods avoid human bias
inherent to manual testing and can discover corner cases that may be overlooked
otherwise, infinite automatic abstraction-based approaches are not guaranteed to
scale well for all systems and cannot provide safety guarantees for the complete
desired operation domain of the controller.

3 Problem Statement

We consider a common adaptive cruise controller system architecture, as for
example used in [48] and already considered in [33], that is shown in Fig. 1.
The driver activates or deactivates ACC, and provides a desired velocity vd and
a desired time headway thd

. The desired velocity is the target velocity for the
automated driving vehicle (also referred to as the ego vehicle). The time headway
is the amount of time after which the target object and the ego vehicle will collide,

Code-Level Safety Verification for Automated Driving 359

Fig. 1. A common longitudinal vehicle guidance architecture, adopted from [33]. The
ACC provides a desired acceleration a to the lower level controllers, which convert it
to engine, brake and transmission signals for the vehicle actuators.

given the current distance, or headway h, when the target object suddenly stops
and the ego vehicle maintains its original velocity. Formally, the time headway
th is the headway h over the current ego velocity v, i.e., th = h/v. The desired
time headway thd

to the target object corresponds to the relative distance that
eventually needs to be maintained. The information about the target object is
measured by sensors such as radars, cameras or a lidar. This information is
utilized in the adaptive cruise controller to produce the desired acceleration for
reaching desired states for the ego vehicle. The acceleration commands from the
ACC are used by the lower level controller such as the engine control unit and/or
power train, the transmission controller and the brake controller.

Deriving an analytical specification suitable for formal verification is a chal-
lenging task for the complete chain of effects from the sensors all the way to the
actuators of a vehicle. The focus of this work is on verifying the safe closed-loop
behavior of ACC software implementations (Fig. 1). Therefore, perfect sensing
and ideal lower level controllers are assumed. The analytical specification is
based on a model of the vehicle’s relevant longitudinal dynamics [37]. Non-linear
force-balance equations are combined with exact feedback linearization to com-
pensate non-linearities for the low level chain of effects [19]. Inspired by [34]
x = [v, vT , h]T is assumed as an overall state of the system and the linearized
vehicle motion is described by v̇ = a, ˙vT = aT and ḣ = vT − v. These continuous
differential equations are transformed into discrete time difference equations by
exact discretization with an equidistant sampling time ts. The continuous state
variable x is replaced by the corresponding discrete time version xt at a discrete
time instant t. Further, a zero-order hold is used at a time instant t for the
duration of ts for a and aT , which are denoted by at and aT,t in the discrete

360 V. Nenchev et al.

Fig. 2. Verification framework: based on the operation set O and the analytical speci-
fication Σ, the set S is used to check the safe closed-loop operation of ACC.

time domain. Thus, the assumed analytical specification is

Σ : xt+1=Axt + But=

⎡
⎣

1 0 0
0 1 0

−ts ts 1

⎤
⎦xt+

⎡
⎣

ts
0

−0.5t2s

⎤
⎦ at+

⎡
⎣

0
ts

0.5t2s

⎤
⎦ aT,t. (1)

Without loss of generality, both the ego acceleration a and the target object
acceleration aT are bounded at all times, forming the set

Ou = {a ∈ [amin, amax] ∧ aT ∈ [amin, amax]}. (2)

In accordance with the relevant ISO Standard [1], the ACC computes a, so
that either the ego vehicle velocity v reaches the driver desired velocity vd,
or so that the headway h to the target object driving with velocity vT stays
above a specified minimal value hmin and the current time headway stays above
a specified minimal time headway thmin

. If vd < h/thd
, the target object is

irrelevant, and the only safety requirement is given by (2). Since (2) can be
guaranteed by a simple limiter, in this work we focus on the so called time gap
or keep distance operation of ACC with a corresponding operational set

Oc = {vd ≥ h/thd
∧ h ≥ hmin ∧ h/v ≥ thmin

}. (3)

Consider an implementation of the adaptive cruise controller (Fig. 1) in a gen-
eral purpose programming language, e.g., C/C++, possibly containing a neural
network, providing the acceleration at based on the state xt of the analytical
specification (1). The controller is assumed to be time-invariant and determin-
istic. We study how to verify that the controller implementation provides only
control signals at for (1), such that their closed-loop operation always remains
in (2) and (3) for all driver parameters vd and thd

, and states xt.

4 Framework

We propose a verification framework based on set invariance, as shown in Fig. 2.
For a dynamical system, a set is invariant if every trajectory starting in this
set remains in it for all times. For control systems, this means finding a control
signal which is able to render a set invariant, i.e., a controlled invariant set. If
all control signals produced by the controller yield states within the safe set, the

Code-Level Safety Verification for Automated Driving 361

controller can be certified as safe with respect to the analytical specification and
the operation set. Thus, we compute the CIS with the analytical specification
(1) for the operation sets (2) and (3). This allows us to obtain a corresponding
safe set (denoted by the dashed area in Fig. 2) and effectively transform checking
safety over (in)finite simulation traces over time into a set containment problem.
Practically, set containment at code level is then accomplished by utilizing a
state-of-the-art BMC. We first turn to obtaining the safe set.

4.1 Computing the Safe Set

The sets (2) and (3) can be readily encoded by means of the ego vehicle velocity
v, the target object velocity vT and the headway h, all contained in the state
x. The operation set of the ACC is the union of (2) and (3) represented by a
convex polytope over states and inputs, i.e.,

O = Oc ∪ Ou. (4)

Then, for (1) and (4) we compute the CIS (or an under-approximation thereof)
as a polytope SCIS represented by a finite number of inequalities NS with cor-
responding matrices Ac

x and Bc
x, i.e., SCIS = {x|Ac

xx ≤ Bc
x}, Ac

x ∈ R
NS×3, Bc

x ∈
R

NS . Note that SCIS is a subset of the operation set O, i.e., SCIS ⊆ O. For any
state xt ∈ SCIS at time t, there exists at least one admissible control action at

and target object acceleration aT,t with [at, aT,t]′ ∈ Ou, such that the following
state xt+1 according to (1) remains within SCIS . Thus, to verify that a con-
troller is safe, for any state xt ∈ SCIS we check that it produces an action, that
yields a following state according to (1) within SCIS . As (1) is linear and SCIS

is a polytope, the following safe state set St+1 is also described by a polytope
St+1 = {(x, u)|Ac

x(Ax + Bu) ≤ Bc
x}. Thus, the overall safe set comprises the

union of the invariant set, the following safe state set and the admissible action
region, i.e.,

S = SCIS ∪ St+1 ∪ Ou. (5)

We use the method from [3] to compute a sequence of CISs with non-
decreasing volume depending on a specified look-ahead time l. Figure 3 illustrates
how the sets induced by each longer look-ahead time contain the ones induced
by a shorter look-ahead time. This hierarchical relation allows to compute the
CIS in closed-form in the original state space at the price of an increased num-
ber of inequalities. Note that our framework is compatible with any invariant
set computation method which provides an under-approximation of the actual
invariant set of the analytical specification.

4.2 Verification of Controller Implementations

A controller implementation can be deemed safe when it operates only within
the bounded domain of the CIS for the analytical specification. Executions of a

362 V. Nenchev et al.

Fig. 3. CISs in 3D and 2D and volumes for look-ahead times l = 1, V1 = 5, 1.104 (blue),
l = 3, V3 = 8, 8.104 (red), and l = 5, V5 = 1, 2.105 (green). (Color figure online)

to-be-verified controller are checked against the safe set using a bounded model
checker. By using a BMC the code is also implicitly checked for implementation
and security flaws like integer overflows, out of bound array access, illegal pointer
de-references etc., in addition to checking safety. We utilize a BMC to check if
for any possible point in the safe set S, a control output is produced by the
ACC under test that yields a following state, which is also inside of S. Since the
driver parameters vd and thd

may take integer values in their respective ranges,
verification can be performed individually for each of the possible combinations
in parallel. For simplicity, we consider a fixed pair of vd and thd

in the following.
The continuous variables xt and aT,t are chosen freely within S by the BMC
using assume statements. Based on these variables, the controller produces an

Code-Level Safety Verification for Automated Driving 363

output at, and the safety properties S are evaluated as a set containment check
using an assert statement.

Due to the aforementioned hierarchical relation of the CIS computed with [3]
for different lookahead times, a controller deemed safe for a lookahead time l is
safe for all lookahead times l1 with 1 ≤ l1 ≤ l. As higher look-ahead times l
increase the size of the CIS they also increase the probability to discover coun-
terexamples. Our approach also generalizes for maximal CIS, i.e., when there
exists no higher lookahead time l with a larger corresponding CIS. In fact, as
(1) is a discrete-time linear system without disturbances, the maximal controlled
invariant set, which contains all possible safe scenarios, can be approximated well
(e.g. using [17]), at the price of higher complexity of SCIS . Since most CIS com-
putation approaches provide an under-estimation of the actual CIS, the proposed
verification procedure is sound. If the computed CIS is exact, the procedure is
also complete.

4.3 Verification Decomposition for Large Neural Network
Controllers

As BMCs enumerate possible branches during state space exploration, verifica-
tion for large neural networks is not guaranteed to terminate in a reasonable
amount of time. To overcome this problem, we use a three-step decomposition
approach. First, states are selected based on a heuristic criterion which ensures
that a representative set within the operational domain is tested for package
deployment. For this finite set of individual states xt in S, the controller output
is checked to remain in S. This provides assurance that the input-output behav-
ior of the overall controller, including the supporting code, performs as expected
before doing the DNN verification.

Next, we take inspiration from recent research [9,10] that proposes to verify
a large DNN by initially reducing it to a simpler, smaller DNN for verification
(abstraction), and iteratively making it more complex as needed (refinement).
Therefore, we replace the original DNN with a simpler DNN with the same
inputs and outputs, and use BMC to check that all code required for operational
deployment (DNN model loading, DNN inference, etc.) works as expected. For
our purposes, we assume that an abstraction approach was used to obtain the
smaller DNN, and that the supporting code needed for the original DNN is being
fully executed for the deployment of the smaller DNN. This ensures that the
supporting code is checked for implementation flaws like integer overflows, out
of bound access etc. In this case, the operation is not required to always remain
in S, since the smaller DNN model might not fulfil the safety specification.

As a final step, we use an off-the-shelf DNN verifier to check if, for any point
in S, a control at is produced by the original DNN that together with (1) yields
a following state in S. Only if the verification is successful in all three steps, the
safety specification is considered as verified.

364 V. Nenchev et al.

5 Experiments

We applied the proposed verification framework to the following four common
classes of adaptive cruise controllers, which are widely used for automated driv-
ing both in simulation environments and in industrial applications:

1. A switching proportional controller (PC) with the gain kP = 3 and

at = kP (vt − min(vd, ht/thd
)),

where the min-part takes care of the time gap and adapt speed modes.
2. A Nonlinear Controller (NC) known as the Intelligent Driver Model [47]:

at = amax

(
1 −

(
vt

vd

)δ

−
(

d(xt)
dT,t

)2
)

,

d(xt) = ht + vtthd
+

vt(vt − vT,t)
2
√

amaxacom
,

where dT,t = 1.8ṽt is the desired distance between the two vehicles, which is
around half of the current ego vehicle’s velocity ṽt in km/h (the recommended
minimum distance according to German traffic rules) and acom = 1.5m/s2 is
the absolute value of the comfortable acceleration.

3. A Model Predictive Controller (MPC) [31] using the model (1). The target
object keeps aT = 0 throughout the optimization horizon with N = 5 samples.
With the initial state xt̃|t̃=0, the following quadratic program is solved at each
state xt:

minat̃

N∑

t̃=0

(‖vt̃ − min(vd, ht̃/thd
)‖ + ‖at̃‖),

s.t. ∀t̃ ∈ [0, N], (1);

∀t̃ ∈ [1, N], aT,t̃ = 0; at̃ ∈ Ou;xt̃ ∈ O;

xt̃|t̃=0 = xt.

The controller is implemented using the Multi-Parametric Toolbox [17]. An
explicit solution comprising 348 state feedback controllers over the relevant
ODD space is exported to C.

4. A Neural Network Controller (NNC) [50], which combines imitation learn-
ing of recorded demonstrations and optimizing a reward function incorporat-
ing safety, efficiency, and comfort metrics to maximize cumulative rewards
through simulation trials. Deep deterministic policy gradient (DDPG) is uti-
lized to learn an actor network together with a critic network. We focus on
verifying the actor with an input xt and an output at. The actor has one hid-
den layer with 30 neurons. For all layers, the rectified linear unit activation
function was used.

Code-Level Safety Verification for Automated Driving 365

Table 1. Controller falsification/verification times in [min]/[min] for controllers, for
different look-ahead times l and safe sets S with corresponding number of inequalities
NS .

controller code lines Look-ahead l / NS

1/46 2/50 3/54 4/58

PC 10 1.1/– 1.5/– 2.0/– 2.5/–

NC 15 –/1.5 2.1/– 3.7/– 4.9/–

MPC 5521 –/1.7 –/2.2 –/4.0 –/5.4

NNC 1672 timeout timeout timeout timeout

NNC* 1672 –/13.5 16.4/– 20.8/– 30.1/–

‘-’ on the left implies that no counter-example was found
‘-’ on the right implies that verification was unsuccessful (a counter-example was found)
NNC denotes the times using BMC only for verification
NNC* represents the cumulative times for verification based on decomposition and BMC

5.1 Setup

The sampling time ts = 0.2 s is chosen for (1). The parameters amax = 2m/s2,
amin = −4m/s2, vt, vT,t ∈ (0, 130] km/h, hmax = 250 m, hmin = 5 m, thmin

= 1 s
are used. A desired ego velocity vd = 130 km/h and a desired time headway
thd

= 1.8 s are assumed in the case study. CBMC 5.95.1 [7] is utilized as a
bounded model checker with a timeout of 1 h. The analysis was performed on
a standard workstation with an Intel Core i7-11850H CPU with 64 GB DDR4
RAM. Regarding the decomposition approach for neural network controllers, we
first check the actual DNN for the individual states xt ∈ {[0, 0, 0], [15, 5, 5]}.
Then, the supporting code is checked using the BMC with a simplified neural
network with the same inputs and outputs, but only 3 neurons in the hidden
layer. Finally, using the Marabou [25] DNN verifier we check the actual DNN.

5.2 Experimental Results

Computing the CIS for l = 4 took 1 min and computing the CIS for all l <
4 took less than half a minute. As this procedure is required to be executed
only once and the resulting invariant sets are reused for evaluating the safety
of all controller types, we focus on the runtime for verifying the code in the
following. Table 1 shows results from the development-time verification of the
controllers. As the complexity of SCIS increases with higher l, the verification
times increase accordingly. As an increasing l increases the volume of SCIS , the
probability to discover a counter-example also grows with higher l. Therefore, it
is not surprising that NC could be verified for Sc with l = 1, but falsified with
l ≥ 2. The MPC, which was designed to consider the analytical specification and
operation set, was verified in all cases. Note that simply using BMC on the NNC
timed out for all invariant sets. A similar result was reported in [42] for small
DNNs controlling a cart-pole system, presumably caused by the non-linearity

366 V. Nenchev et al.

and non-invertability of the DNN. However, using our proposed decomposition,
we were able to falsify the NNC for all invariant sets. Using BMC, checking the
supporting code was done in 10.5 min for the auxiliary neural network, and in
approx. 1 min for each individual state for the actual DNN. An extra minute was
needed for the Marabou verifier to check the actual DNN.

All falsifying input-output pairs denote an insufficient ego vehicle decelera-
tion, while the target object decelerates with amin and the time headway is not
large enough. While the PC decelerates slightly in this case, the NC and the
NNC decelerate with nearly amin. For all falsified controllers, either algorith-
mic improvements are needed, or a dedicated supervisor component has to be
introduced to guarantee safety at the price of some performance loss.

5.3 Discussion

The experimental results presented in the previous section show that our app-
roach has several benefits. The considered ACCs were used to control traffic
agents in a simulation environment. Using our method we could achieve more
realistic and safe closed-loop behavior. First, we were able to find safety flaws
at code level for all controllers except for the MPC (Table 1), which may have
remained uncovered upon simulation- and field-based testing only. Second, the
acquired falsifying samples correspond to driving scenarios that provide feed-
back for improving the considered ACC controllers – either by deriving addi-
tional automated tests or by revisiting algorithmic solutions. Further, applying
formal verification even only to some software modules greatly supports the
overall system-level analysis and design, e.g., by providing hints where a dedi-
cated supervisor component might be required as a safety assurance measure.
Third, for neural network controllers, our approach allows falsifying examples to
be used to indicate possible gaps in the collected training data or undesirable
biases in the current training stage. Finally, our framework can be integrated
into the verification and validation process within the development of automated
driving functions. As the only manual modeling step is related to deriving the
analytical specification and verifying controller implementations is possible in
an automated manner within minutes, our solution can be included in the con-
tinuous integration (CI) process, where it is connected to consecutive versions
of the to-be-deployed controller software.

As falsification or verification was possible in all considered cases, the pro-
posed framework is expected to be suitable for various controller types. The
method is not limited to the analytical specification (1). While this paper uses a
linear system for which computing a CIS is known to have polynomial complexity
[38], the presented verification approach can be readily used for analytical spec-
ifications and operation sets, which allow computing a CIS. Obtaining the CIS
is possible for many nonlinear systems, e.g., [12]. Even though our work focuses
on ACC, its key ideas can be transferred for other cyber-physical systems.

Code-Level Safety Verification for Automated Driving 367

While the presented scheme has great potential for automated safety ver-
ification of many safety-critical controllers, several limiting factors have to be
mentioned.

First, the obtained verification result does not generalize for all possible real
world driving scenarios and systems. Our framework provides either a proof that
the controller satisfies the analytical specification or a proof of non-compliance
accompanied by a counterexample. These proofs pertain to the correctness of
the controller’s behavior when applied to real-world driving. However, full confi-
dence in these statements necessitates ensuring that the analytical specification
accurately reflects real-world traffic dynamics, physics, and perception/actuation
mechanisms. Over-estimating possible violations of the analytical specification is
preferred to under-estimating them to accurately reflect error-freeness, with the
additional check of counterexamples in the actual automated driving system to
eliminate false positives. While the current approach aims to over-estimate vio-
lations, further investigation is needed to understand the extent of its accuracy
and the implications for proving correctness at system level.

Second, defining the operation set and the parameter set for model check-
ing might become challenging with an increasing complexity of the analytical
specification and the to-be-verified controller. Obtaining a suitable analytical
specification for controller verification requires a trade-off between precision and
complexity. Special hybrid systems formulations amenable for verification might
be a good choice, e.g., [49].

Third, using significantly more complex dynamical system models as ana-
lytical specifications might make the computation of the CIS infeasible or the
bounded model checking intractable. Even when linear models are employed, the
choice of l affects the computational effort of the method [3] and poses a trade-off
with respect to the size of the operational domain for verification. In general,
computing controlled invariant sets for nonlinear systems is challenging. Some
works employ convex approximations to reduce the computational complexity
[12]. Other works exploit structural properties, e.g., for polynomial systems, to
compute exact sets [4]. However, as the maximal controlled invariant set of a
nonlinear system is typically non-convex, in general, the obtained CIS can be
conservative. A closely related question for future exploration is whether other
desired properties of the closed-loop operation of the controllers can be cap-
tured by invariants and consequently verified using our approach. For instance,
in camera-based systems, a closed-loop operation objective would be to minimize
unnecessary fluctuations of the control signals when the images remain stable.

Forth, the particular implementation plays a deciding role for the verifica-
tion complexity. As reported in [33], even using certain C++ Standard Library
functions might not be the best choice for verification. Finally, some bounded
model checkers might be more suitable for verifying a particular piece of code
than others. Similarly, different DNN verifiers might perform better than others
for particular DNNs.

Finally, while the proposed framework provides functional safety robustness
guarantees with respect to the analytical specification, we note that some DNN

368 V. Nenchev et al.

verifiers are not guaranteed to provide guarantees against all possible malicious
network inputs and/or network architectures. For example, floating point errors
have been observed to occasionally cause incorrect results with some DNN ver-
ifiers on large scale benchmarks [23]. Therefore, it is advisable to study the
specific features of the used tools in detail.

6 Conclusions

We proposed an automatic safety verification approach for adaptive cruise con-
trollers for automated driving vehicles at code level, and applied it to both tradi-
tional and neural-network-based controllers. By computing a controlled invariant
set for a given analytical specification, our approach allows obtaining a safe set
for the closed-loop operation, therefore enabling the verification of controller
implementations by utilizing a bounded model checker. Furthermore, by propos-
ing a three-step verification decomposition, we were able to verify a neural-
network-based controller, for which off-the-shelf bounded model checkers timed
out. The experimental results confirm that both traditionally implemented and
neural-network-based adaptive cruise controllers can be verified offline within a
time frame of minutes on a regular computer, thus emphasizing the low compu-
tational overheads of the framework for cyber-physical system controllers.

In future work, we plan to apply our approach to the verification of addi-
tional types of controllers from the automotive domain, e.g. those responsible
for automated lane keeping or lane changing. In addition, we intend to extend
the approach to consider uncertainties in the system model, e.g., by using prob-
abilistic [5,15] and/or statistical model checking.

Acknowledgments. This work was partly supported by the Assuring Autonomy
International Programme, a partnership between Lloyd’s Register Foundation and the
University of York, UK.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Intelligent transport systems - adaptive cruise control systems - performance
requirements and test procedures (2018). ISO Standard 15622:2018

2. Alam, A., Gattami, A., Johansson, K.H., Tomlin, C.J.: Guaranteeing safety for
heavy duty vehicle platooning: safe set computations and experimental evaluations.
Control. Eng. Pract. 24, 33–41 (2014). https://doi.org/10.1016/j.conengprac.2013.
11.003

3. Anevlavis, T., Liu, Z., Ozay, N., Tabuada, P.: Controlled invariant sets: implicit
closed-form representations and applications. IEEE Trans. Autom. Control, pp.
1–16 (2023). https://doi.org/10.1109/TAC.2023.3336819

4. Ben Sassi, M.A., Girard, A.: Computation of polytopic invariants for polyno-
mial dynamical systems using linear programming. Automatica 48(12), 3114–3121
(2012). https://doi.org/10.1016/j.automatica.2012.08.014

https://doi.org/10.1016/j.conengprac.2013.11.003
https://doi.org/10.1016/j.conengprac.2013.11.003
https://doi.org/10.1109/TAC.2023.3336819
https://doi.org/10.1016/j.automatica.2012.08.014

Code-Level Safety Verification for Automated Driving 369

5. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158
(2018)

6. Chou, G., Sahin, Y.E., Yang, L., Rutledge, K.J., Nilsson, P., Ozay, N.: Using
control synthesis to generate corner cases: a case study on autonomous driving.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11), 2906–2917 (2018).
https://doi.org/10.1109/TCAD.2018.2858464

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004). Lecture Notes in Computer Science, vol. 2988,
pp. 168–176. Springer (2004). https://doi.org/10.1007/978-3-540-24730-2 15

8. Dawson, C., Gao, S., Fan, C.: Safe control with learned certificates: a survey of
neural lyapunov, barrier, and contraction methods for robotics and control. IEEE
Trans. Rob. 39(3), 1749–1767 (2023). https://doi.org/10.1109/TRO.2022.3232542

9. Elboher, Y.Y., Cohen, E., Katz, G.: On applying residual reasoning within neural
network verification. Softw. Syst. Model. pp. 1–16 (2023). https://doi.org/10.1007/
s10270-023-01138-w

10. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: Computer Aided Verification: 32nd International Con-
ference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part I
32, pp. 43–65. Springer (2020). https://doi.org/10.1007/978-3-030-53288-8 3

11. Favrin, A., Nenchev, V., Cenedese, A.: Learning to falsify automated driving vehi-
cles with prior knowledge. IFAC-PapersOnLine (2020). https://doi.org/10.1016/j.
ifacol.2020.12.2036, iFAC World Congress 2020 (IFAC’2020), Berlin

12. Fiacchini, M., Alamo, T., Camacho, E.: On the computation of convex robust
control invariant sets for nonlinear systems. Automatica 46(8), 1334–1338 (2010).
https://doi.org/10.1016/j.automatica.2010.05.007

13. Garrido, F., Resende, P.: Review of decision-making and planning approaches in
automated driving. IEEE Access 10, 100348–100366 (2022). https://doi.org/10.
1109/ACCESS.2022.3207759

14. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18
(2018). https://doi.org/10.1109/SP.2018.00058

15. Gerasimou, S., Cámara, J., Calinescu, R., Alasmari, N., Alhwikem, F., Fang, X.:
Evolutionary-guided synthesis of verified pareto-optimal MDP policies. In: 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 842–853. IEEE (2021)

16. Grundt, D., Jurj, S.L., Hagemann, W., Kröger, P., Fränzle, M.: Verification of
sigmoidal artificial neural networks using ISAT. In: International Workshop on
Symbolic-Numeric methods for Reasoning about CPS and IoT (2022). https://
doi.org/10.4204/EPTCS.361.6

17. Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-parametric toolbox 3.0.
In: European Control Conference (ECC), pp. 502–510 (2013). https://doi.org/10.
23919/ECC.2013.6669862

18. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification, pp.
3–29. Springer International Publishing, Cham (2017)

19. Ioannou, P., Chien, C.: Autonomous intelligent cruise control. IEEE Trans. Veh.
Technol. 42(4), 657–672 (1993). https://doi.org/10.1109/25.260745

https://doi.org/10.1109/TCAD.2018.2858464
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/TRO.2022.3232542
https://doi.org/10.1007/s10270-023-01138-w
https://doi.org/10.1007/s10270-023-01138-w
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1016/j.ifacol.2020.12.2036
https://doi.org/10.1016/j.ifacol.2020.12.2036
https://doi.org/10.1016/j.automatica.2010.05.007
https://doi.org/10.1109/ACCESS.2022.3207759
https://doi.org/10.1109/ACCESS.2022.3207759
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.4204/EPTCS.361.6
https://doi.org/10.4204/EPTCS.361.6
https://doi.org/10.23919/ECC.2013.6669862
https://doi.org/10.23919/ECC.2013.6669862
https://doi.org/10.1109/25.260745

370 V. Nenchev et al.

20. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0:
verification of neural network controllers using Taylor model preconditioning. In:
Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification, pp. 249–262. Springer
International Publishing, Cham (2021)

21. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst. 20(1) (2020). https://doi.org/10.1145/3419742

22. Jacumet, R., Rathgeber, C., Nenchev, V.: Analytical safety bounds for trajec-
tory following controllers in autonomous vehicles. In: Proceedings of International
Conference on Control, Decision and Information Technologies (CoDIT) (2023).
https://doi.org/10.1109/CoDIT58514.2023.10284507

23. Jia, K., Rinard, M.: Exploiting verified neural networks via floating point numerical
error. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) Int. Static Analysis Sym-
posium. pp. 191–205. Springer International Publishing, Cham (2021). https://doi.
org/10.1007/978-3-030-88806-0 9

24. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) Proceedings of the 29th International Conference on Computer Aided
Verification (CAV ’17). Lecture Notes in Computer Science, vol. 10426, pp. 97–
117. Springer, heidelberg, Germany (2017)

25. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification, pp.
443–452. Springer International Publishing, Cham (2019)

26. Kojchev, S., Klintberg, E., Fredriksson, J.: A safety monitoring concept for
fully automated driving. In: 2020 IEEE 23rd International Conference on Intel-
ligent Transportation Systems (ITSC), pp. 1–7 (2020). https://doi.org/10.1109/
ITSC45102.2020.9294307

27. König, L., et al.: Towards safe autonomous driving: model checking a behavior
planner during development. In: Finkbeiner, B., Kovács, L. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems, pp. 44–65. Springer Nature
Switzerland, Cham (2024)

28. Lopez, D.M., Choi, S.W., Tran, H.D., Johnson, T.T.: NNV 2.0: the neural network
verification tool. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp. 397–
412. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-
031-37703-7 19

29. Lygeros, J., Godbole, D.N., Sastry, S.: A verified hybrid controller for automated
vehicles. In: Proceedings of 35th IEEE Conference on Decision and Control vol. 2,
pp. 2289–2294 (1996)

30. Mehdipour, N., Althoff, M., Tebbens, R.D., Belta, C.: Formal methods to com-
ply with rules of the road in autonomous driving: state of the art and grand
challenges. Automatica 152, 110692 (2023). https://doi.org/10.1016/j.automatica.
2022.110692

31. Naus, G., Ploeg, J., Van de Molengraft, M., Heemels, W., Steinbuch, M.: Design
and implementation of parameterized adaptive cruise control: an explicit model
predictive control approach. Control. Eng. Pract. 18(8), 882–892 (2010). https://
doi.org/10.1016/j.conengprac.2010.03.012

32. Nenchev, V.: Automated behavior modeling for verifying safety-relevant modules.
In: Proceedings of IEEE International Conference on Robotic Computing (IRC)
(2021). https://doi.org/10.1109/IRC52146.2021.00021

33. Nenchev, V.: Model checking embedded adaptive cruise controllers. Robot. Auton.
Syst. 167, 104488 (2023). https://doi.org/10.1016/j.robot.2023.104488

https://doi.org/10.1145/3419742
https://doi.org/10.1109/CoDIT58514.2023.10284507
https://doi.org/10.1007/978-3-030-88806-0_9
https://doi.org/10.1007/978-3-030-88806-0_9
https://doi.org/10.1109/ITSC45102.2020.9294307
https://doi.org/10.1109/ITSC45102.2020.9294307
https://doi.org/10.1007/978-3-031-37703-7_19
https://doi.org/10.1007/978-3-031-37703-7_19
https://doi.org/10.1016/j.automatica.2022.110692
https://doi.org/10.1016/j.automatica.2022.110692
https://doi.org/10.1016/j.conengprac.2010.03.012
https://doi.org/10.1016/j.conengprac.2010.03.012
https://doi.org/10.1109/IRC52146.2021.00021
https://doi.org/10.1016/j.robot.2023.104488

Code-Level Safety Verification for Automated Driving 371

34. Nilsson, P., et al.: Correct-by-construction adaptive cruise control: two approaches.
IEEE Trans. Control Syst. Technol. 24(4), 1294–1307 (2016). https://doi.org/10.
1109/TCST.2015.2501351

35. Păsăreanu, C.S., et al.: Closed-loop analysis of vision-based autonomous systems: a
case study. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp. 289–303.
Springer Nature Switzerland, Cham (2023)

36. Pek, C., Manzinger, S., Koschi, M., Althoff, M.: Using online verification to pre-
vent autonomous vehicles from causing accidents. Nat. Mach. Intell. 2(9) (2020).
https://doi.org/10.1038/s42256-020-0225-y

37. Rajamani, R.: Vehicle Dynamics and Control. Mechanical Engineering Series,
Springer, US (2011)

38. Raković, S., Kerrigan, E., Mayne, D., Kouramas, K.: Optimized robust control
invariance for linear discrete-time systems: theoretical foundations. Automatica
43(5), 831–841 (2007). https://doi.org/10.1016/j.automatica.2006.11.006

39. Ruoss, A., Baader, M., Balunović, M., Vechev, M.: Efficient certification of spatial
robustness. In: Thirty-Fifth AAAI Conference on Artificial Intelligence (2021)

40. Sadraddini, S., Sivaranjani, S., Gupta, V., Belta, C.: Provably safe cruise control
of vehicular platoons. IEEE Control Syst. Lett. 1(2), 262–267 (2017). https://doi.
org/10.1109/LCSYS.2017.2713772

41. Santa Cruz, U., Shoukry, Y.: Nnlander-verif: a neural network formal verifica-
tion framework for vision-based autonomous aircraft landing. In: Deshmukh, J.V.,
Havelund, K., Perez, I. (eds.) NASA Formal Methods, pp. 213–230. Springer Inter-
national Publishing, Cham (2022)

42. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards verification of arti-
ficial neural networks. In: Heinkel, U., Rößler, M., Kriesten, D. (eds.) Proceedings
of the 18th Workshop “Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen” (MBMV), pp. 30–40. Technische
Universität Chemnitz, Germany, Chemnitz, Germany (2015)

43. Stern, R., Gunter, G., Work, D.B.: Modeling and assessing adaptive cruise control
stability: experimental insights. In: 2019 6th International Conference on Models
and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 1–8 (2019).
https://doi.org/10.1109/MTITS.2019.8883330

44. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control
system using counterexample-guided search. Control. Eng. Pract. 12, 1269–1278
(2004)

45. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 147–156. HSCC ’19, Association
for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/
3302504.3311802

46. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th International Confer-
ence on Software Engineering, pp. 303–314. ICSE ’18, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3180155.3180220

47. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical obser-
vations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)

48. Widmann, G.R., et al.: Comparison of lidar-based and radar-based adaptive cruise
control systems. SAE Trans. 109, 126–139 (2000)

https://doi.org/10.1109/TCST.2015.2501351
https://doi.org/10.1109/TCST.2015.2501351
https://doi.org/10.1038/s42256-020-0225-y
https://doi.org/10.1016/j.automatica.2006.11.006
https://doi.org/10.1109/LCSYS.2017.2713772
https://doi.org/10.1109/LCSYS.2017.2713772
https://doi.org/10.1109/MTITS.2019.8883330
https://doi.org/10.1145/3302504.3311802
https://doi.org/10.1145/3302504.3311802
https://doi.org/10.1145/3180155.3180220

372 V. Nenchev et al.

49. Wongpiromsarn, T., Mitra, S., Lamperski, A., Murray, R.M.: Verification of peri-
odically controlled hybrid systems: application to an autonomous vehicle. ACM
Trans. Embed. Comput. Syst. 11(S2) (2012). https://doi.org/10.1145/2331147.
2331163

50. Zhu, M., Wang, Y., Pu, Z., Hu, J., Wang, X., Ke, R.: Safe, efficient, and comfortable
velocity control based on reinforcement learning for autonomous driving. Trans.
Res. Part C: Emerg. Technol. 117, 102662 (2020). https://doi.org/10.1016/j.trc.
2020.102662

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2331147.2331163
https://doi.org/10.1145/2331147.2331163
https://doi.org/10.1016/j.trc.2020.102662
https://doi.org/10.1016/j.trc.2020.102662
http://creativecommons.org/licenses/by/4.0/

A Case Study on Formal Equivalence
Verification Between a C/C++ Model

and Its RTL Design

Gaetano Raia1, Gianluca Rigano2, David Vincenzoni2(B),
and Maurizio Martina1

1 Politecnico di Torino, Torino (TO), Italy
gaetanomaria.raia@studenti.polito.it, maurizio.martina@polito.it

2 STMicroelectronics, Agrate Brianza (MB), Italy
{gianluca.rigano,david.vincenzoni}@st.com

Abstract. In the field of communication system products, most datap-
ath Digital Signal Processing algorithms are initially developed at a high-
level in MATLABR© or C/C++. Subsequently, design engineers use these
models as a reference for implementing Register Transfer Level designs.
The conventional approach to verify their equivalence involves extensive
Universal Verification Methodology dynamic simulations, which can last
for months and require significant verification efforts. However, some elu-
sive errors might still occur because it is infeasible to explore all input
combinations with this method. On the other hand, Formal Equivalence
Verification aims to verify that a Register Transfer Level design is func-
tionally equivalent to the reference high-level C/C++ model across all
possible legal states. With recent advancements in formal solver tech-
nology, Formal Equivalence Verification provides a distinct benefit by
using mathematical methods to ensure that the Register Transfer Level
(timed) matches the original high-level C/C++ model (untimed). This
drastically reduces the verification time and ensures the exhaustive cov-
erage of the design state space. This paper presents an in-depth explo-
ration of complex Finite State Machine with datapath verification, specif-
ically focusing on Multiplier-Accumulator, Tone Generator, and Auto-
matic Gain Control, by employing the formal equivalence methodology.
Although these signal processing blocks were previously verified through-
out Universal Verification Methodology dynamic simulations, Formal
Equivalence Verification was able to identify hard-to-find bugs in just
a few weeks by utilizing the new workflow, thereby streamlining the ver-
ification process.

Keywords: Formal Equivalence Verification · JasperTM C2RTL App ·
C/C++ model · RTL design · Formal datapath verification

1 Introduction

Integrated circuits have become a cornerstone in both commercial and industrial
domains. As the demand for more sophisticated electronic devices has surged,
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 373–389, 2025.
https://doi.org/10.1007/978-3-031-71177-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_23&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_23

374 G. Raia et al.

the intricacy of these devices has considerably increased. This has necessitated
continuous evolution in design methodologies and verification processes to meet
the advancing technological requirements, as the cost of finding and solving bugs
has grown exponentially throughout the design process [14,16].

Verification is a critical process designed to confirm that a Device Under Ver-
ification (DUV) maintains its intended behavior throughout its implementation.
In the domain of System-on-a-Chip, a variety of verification technologies has
been established. These technologies are essential for ensuring the functional-
ity of these devices, which are complex designs integrating multiple disciplines.
While various categories of design flaws contribute to integrated circuits re-spins,
functional flaws remain the leading cause of bugs [18].

Additionally, the median percentage of total integrated circuit project time
dedicated to functional verification is approximately between 50% and 60% [17].
This figure can vary depending on the design; projects that utilize existing pre-
verified Intellectual Property (IP) may require less verification time, whereas
those with newly developed IP could require more. In general, test planning and
testbench development are the areas in which verification engineers spend the
most of their time, respectively 47% and 21% [17].

Over the last decade, functional verification has been mainly conducted
through the use of Universal Verification Methodology (UVM) testbench envi-
ronments. A testbench serves as a verification framework that administers a
predefined set of input patterns, also referred to as stimuli, to the Register
Transfer Level (RTL) design. The primary function of a testbench is to facil-
itate the observation of whether the DUV yields the correct outputs, compared
to a reference model, in reaction to these stimuli, as shown in Fig. 1.

C/C++
Reference Model

RTL
Implementation

==Input pattern
Output equivalence checks

Fig. 1. Conceptual representation of functional equivalence verification between a
C/C++ reference model and an RTL implementation

However, specifying millions of test vectors for exhaustive verification
becomes impractical in simulation-based approaches due to the exponential
increase in scenarios with the number of input bits: for instance, a 32× 32 bit

C-vs-RTL Formal Equivalence Verification 375

integer multiplier would have 264 total input combinations, at one million com-
binations checked per second, resulting into hundreds of thousands of processor
years. Random simulations are a practical alternative, providing a statistical
overview of compliance with specifications rather than exhaustive verification.
Yet, purely random inputs can miss corner cases or produce unrealistic scenarios.
Constrained-random simulations address this by guiding random input genera-
tion within defined parameters, improving coverage but still not guaranteeing
full design space exploration.

Moreover, this approach is resource-intensive due to the number of compo-
nents involved and is likely prone to subtle errors during the construction of the
verification environment. Ultimately, the UVM requires considerable effort to
verify its correctness prior to initiating the verification process. This results in
prolonged verification cycles, which may prove sub-optimal for projects facing
strict time-to-market constraints or operating with limited resources.

As electronic designs have become more complex and the time allocated
for design cycles has decreased, the industry has developed a suite of verifica-
tion methodologies and Electronic Design Automation (EDA) tools to address
these challenges. This paper introduces an innovative verification flow that lever-
ages Formal Equivalence Verification (FEV) to check that RTL designs match
C/C++ models. This approach, based on mathematical properties, ensures
exhaustive coverage and a significant reduction in verification time when com-
pared to traditional UVM dynamic simulations. The comprehensive version of
this paper, which includes in-depth discussions of the validated designs and the
methodologies employed, is available for reference [15].

2 Formal Equivalence Checking in C-vs-RTL Scenarios

Functional verification is an essential step in the design process, aimed at con-
firming that the implementation reflects the design intent. The reconvergence
model [2] suggests that the purpose of verification consists in ensuring that the
result of some transformation, such as RTL coding, is as expected. This can be
accomplished through a secondary path reconverging with the primary design
path at a shared origin, namely the specification model (see Fig. 2).

RTL Coding

RTL
Implementation

High-level
Specification

Equivalence Checking

Fig. 2. Recovergence model of functional verification through equivalence checking

376 G. Raia et al.

Formal equivalence checking employs mathematical reasoning to confirm that
an implementation adheres to a specification. Formal verification leverages a
language with precisely defined syntax and semantics to encapsulate the sys-
tem’s intended behavior, utilizing the IEEE standard for SystemVerilog Asser-
tion (SVA) [8]. Through mathematical proofs, formal verification ensures the
correctness of the Device Under Verification regardless of the input values, as it
implicitly consider any legal case in the design state space. Two models are con-
sidered equivalent if, upon exhaustive analysis of all possible cases, the formal
verification tool has not identified any discrepancies - commonly referred to as
counterexamples - that would negate the equivalence.

To elucidate the mechanisms employed in today’s equivalence-checking tools,
it is instructive to consider a common computational equivalence model known
as miter. This model effectively acts as a product machine that combines two
Finite State Machine (FSM) designs by aligning each corresponding pair of pri-
mary inputs and connecting each pair of outputs to an XOR gate, as shown in
Fig. 3. Establishing equivalence between two machines, denoted as Mspec(X) for
the specification machine and Mimpl(X) for the implementation machine, neces-
sitates the demonstration that for any given input sequence X = (x1, x2, . . . , xn),
the outputs of the product machine consistently yield a zero value. Equivalence is
thus confirmed by proving the nonsatisfiability of Eq. 1 across all possible inputs
X, where ⊕ denotes the XOR gate operation.

Mspec(X) ⊕ Mimp(X) (1)

While there are various methods to address this challenge, such as Binary
Decision Diagrams (BDDs) and Satisfiability (SAT) algorithms [14,16], they are
beyond the scope of this paper.

Finite State Machine
Specification

Finite State Machine
Implementation

Ispec

Iimp

Ospec

Oimp

= 0 ?

Primary inputs Primary outputs

Fig. 3. Miter model of two FSM designs to verify through formal equivalence

C-vs-RTL Formal Equivalence Verification 377

2.1 JasperTM C2RTL App

The advent of a novel category of formal engines embedded in Cadence R©

JasperTM C2RTL App, specifically optimized for evaluating RTL datapath
implementations against their C/C++ algorithmic specifications, has marked
a significant leap in verification performance. These specialized engines are now
capable of delivering performance that is up to 100 times more efficient than
that of traditional general-purpose formal engines [10]. This innovation repre-
sents a substantial breakthrough for semiconductor companies, which frequently
depend on robust, standardized EDA tools to manage the complexities inherent
to design processes.

The integration of early-design formal verification checks into the design
cycle can dramatically enhance the efficiency and effectiveness of the verification
efforts. Nevertheless, it is essential to demonstrate that C/C++ models accu-
rately capture the design intent, as these models often serve as the starting point
for computational block development due to their abstraction capabilities, sim-
ulation speed, verification efficiency, and standard usage in the semiconductor
industry. High-level C/C++ models can be easily verified at system level com-
pared to RTL, to understand if they fulfill with their specifications: if so, they
become the golden reference for the related RTL implementation. Implement-
ing a redundancy layer enhances verification reliability by pinpointing whether
inconsistencies stem from RTL coding mistakes or inaccuracies in translating
design intent into C/C++, thereby preserving design integrity.

For the sake of clarity and focus, this paper does not delve into the specifics
of formal engines, as their intricate details fall outside the scope of the current
discussion (refer to [3,4] for any insight). The emphasis here is on the broader
implications of these advanced tools and their impact on the semiconductor
industry’s verification practices, rather than on the technical nuances of the
engines themselves.

3 The Verification Flow

In formal verification, intended behaviors are encapsulated as properties, which
represent collections of logical and temporal relationships among subordinate
Boolean and sequential expressions, usually written in SVA language. Over the
past decades, verification engineers have been compelled to develop extensive
sets of properties to capture all conceivable behaviors for verification. This app-
roach has been both time-consuming and prone to risk, as the potential for
overlooking certain properties could lead to incomplete verification and unde-
tected design errors. The pivotal advantage of FEV in C-vs-RTL scenarios lies
in the automatic comparison of the two models facilitated by the automatic
generation of assertions. Concisely, an assertion is a declarative statement that
specifies a property which must always hold. This automation streamlines the
verification process, significantly reducing the manual effort and the associated
risk of human error in property specification. Within this context, the formal

378 G. Raia et al.

tool possesses the capability to generate mathematical properties checking that
both the designs produce identical outputs under the same input conditions.

Although the verification methodology enhances autonomy in property gen-
eration and checking, it is not fully independent and continues to necessitate
human guidance for configuring the verification environment, delineating the
state space of the design, and addressing convergence issues that arise from
state-space explosion in intricate digital circuits.

Despite these challenges, JasperTM C2RTL App is able to handle a large
variety of datapath algorithms, such as unit arithmetic operations, high-level
image processing algorithms, and encryption/decryption models [13]: in addition,
it handles pipelines, feedback loops, floating-point and more [10]. The following
list describes the innovative verification flow to apply FEV in verifying digital
circuits, without the need to develop verification components and test vectors:

1. C/C++ Model Compilation: the tool adheres to the latest ANSI C++
standards and integrates with prevalent math libraries [10].

2. RTL Compilation: the tool supports SystemVerilog RTL implementations
[10]. For non-SystemVerilog Hardware Description Language (HDL), equiva-
lence checking tools ensure consistency with the original design [5,11].

3. I/O Port Mapping: verification engineers map input and output ports
between the specification and implementation.

4. Clock and Reset Definition: the clock signal is identified in the RTL, and
reset signal polarity is specified to detect the reset state.

5. Input Assumptions: engineers define input signal dynamics and protocols,
acting as constraints to exclude illegal behaviors and prevent spurious coun-
terexamples.

6. Formal Engine Configuration: while engineers can select optimizations for
datapath-specific issues, leveraging the tool’s machine learning-based config-
uration may yield optimal results [13], especially at the beginning.

7. Coverage Property Specification: engineers outline coverage properties
to evaluate the DUV in targeted scenarios. These are employed by the user
to prove the existence of at least one legal case fulfilling a specific condition,
thereby facilitating the identification of the most concise path satisfying it.

8. Proof Execution: the tool checks for discrepancies between models using
automatically generated and manually written assertions.

For the sake of clarity, Table 1 outlines all possible outcomes when proving an
assertion. If the verification runs extensively without finding bugs, the verifica-
tion user may decide to conclude the process, especially under tight design cycle
deadlines. Generally, if a proof runs for more than 24 h without a result, it may
be necessary to rewrite or decompose the proof or to try different engine modes
[4]. This paper endeavors to delineate the challenges associated with managing
sophisticated real-world digital circuits developed by STMicroelectronics and to
outline effective strategies for ensuring convergence. To this end, it is advisable
to construct a comprehensive verification strategy that establishes objectives,
stages the complexity, and identifies coverage points.

C-vs-RTL Formal Equivalence Verification 379

Table 1. Possible proof status of formal verification

Proof status Description

Unprocessed The property is excluded from the proof target, even if declared

Undetermined Neither full pass nor counterexample found over the run time

Counterexample Property violated in at least one legal case

Proven Property exhaustively proven in all the legal cases

Cover The intended behavior can occur at least once

Unreachable The intended behavior is never possible

4 Reconstruction of FSM-Like Datapath Behavior

In Digital Signal Processing (DSP) applications, numerous digital circuits exhibit
behavior similar to FSM, where the next state is determined by the current
state. This characteristic is straightforward to replicate in RTL designs due to
the presence of memory elements such as registers that can hold state infor-
mation. However, in C/C++ models, which are inherently untimed, managing
state transitions to drive the next state can be challenging. In this section, the
FEV process on checking the functional equivalence of a Multiplier-Accumulator
(MAC) is described in detail.

The MAC unit finds extensive application across various DSP fields, includ-
ing but not limited to audio and speech processing, image and video compres-
sion, telecommunications, radar and sonar systems, as well as biomedical signal
processing. Specifically, it enables rapid computation for tasks such as filtering,
convolution, and Fourier transforms in embedded systems. The main purpose
of MAC is to repetitively add the product between two input signals to previ-
ously obtained intermediate results of the same nature. More precisely, such a
functionality can be modeled under a mathematical point of view, according to
Eq. 2. Given a(k), b(k) as input signals sampled at k-th cycle, the multiplication
operation produces an intermediate result which is added to the sum of those
computed during the k − 1 previous cycles.

result =
N∑

k=0

a(k) · b(k) (2)

4.1 Specifications

The Device Under Verification is a Floating-Point MAC compliant to the IEEE-
754 Standard for Floating-Point Arithmetic [7], patented by STMicroelectronics
[19], whose interface and computational block diagrams are shown in Fig. 4.
The block accepts three floating-point operands (namely fp a, fp b, fp c) and a
starting condition triggering a new operation to execute, that is indicated by
fp opcode i (refer to List. 1.1 and List. 1.2 in [15] for C and RTL pseudo-codes).

380 G. Raia et al.

Operational stability requires that, once the execution phase begins, the input
signal fp op start remains inactive, while the input operands and the opcode sig-
nal retain their values until the completion of the computational phase. The block
supports both straight and recursive arithmetical operations, involving multipli-
cation, addition, and subtraction. On the output side, two distinct floating-point
results (fp m and fp z) are provided, respectively containing the sampled out-
comes produced by the multiplier and the adder/subtractor blocks.

Multiplier
Accumulator

fp_a
fp_b
fp_c

fp_op_start
fp_opcode_i

RESET
CCLK

fp_m
fp_z

fp_a

fp_b

fp_c

x fp_m

+ fp_z

32

32

32

4

32

32

F
S
M

S0

S2

S3

S1

S0
S1

S3
S2

fp_op_start
fp_opcode_i

Fig. 4. Interface and computational block diagrams of the MAC

4.2 Verification Strategy

The verification aimed to affirm the RTL implementation’s equivalence with its
C model. The circuit comprised a pipelined floating-point multiplier and a com-
binatorial floating-point adder from a third-party IP, complicating direct formal
verification. Focus thus shifted to verifying the control logic and feedback mech-
anism, using fixed-point behavioral models to represent the floating-point units
analytically. Recursive operations in the RTL allow reusing previous outputs as
operands for current computations, challenging to replicate in untimed C/C++
models due to their instantaneous computation on the same formal analysis
cycle. While appropriate latency was easily introduced in model comparisons to
properly handle the gap in pipelined designs, the formal tool lacked features to
enable the C/C++ model to retain past values.

The most promising strategy consisted in extending the interface of the
C/C++ model (see List. 1.1 in [15]), in a way that output values could be
brought back as operands for recursive operations. Within this framework, SVA
assumptions were essential to ensure the feedback continuity, forcing that fp m in
corresponds to the prior cycle’s fp m out, and similarly for fp z in and fp z out,
as delineated in List. 1.3 in [15].

Further strategies to achieve complete convergence in useful time consisted
in scaling down the bit-width of the arithmetical operands, from 32-bit to 8-bit

C-vs-RTL Formal Equivalence Verification 381

and 16-bit. In fact, design scaling simplifies the state space and thus accelerates
convergence in formal verification by diminishing the computational complexity
and the number of potential states to explore. Moreover, a case-splitting strat-
egy, guided by opcode values, was implemented to isolate and address the most
challenging cases for the verification tool, uncovering bottlenecks tied to specific
algorithmic attributes. Consequently, manual assertions were crafted to refine
the scope of auto-generated properties, as reported in List. 1.4 in [15].

To alleviate the verification load and ensure comprehensive equivalence,
assertions were reformulated. This entailed incorporating the triggering condi-
tion and confirming the initial congruence of output signals from the preceding
cycle. Stability of the summation outputs was verified over the calculation span
of six cycles, whereas the multiplication output from the RTL was validated to
not changing within the five-cycle interval post-triggering, concurrently main-
taining equivalence with the C model in the subsequent cycle (see List 1.5 in
[15]).

4.3 Results

Table 2 encapsulates the verification methodology for the MAC block. Despite
some instances of undetermined proof results arose, we ultimately established
complete equivalence across all cases by advancing through the verification
sequence, confirming the functional correctness of the control part of the MAC
block. Table 3 reports the run-times obtained at the last verification stage by bit-
width value, illustrating the substantial influence of design scaling on formal tool
performance. Additionally, Table 4 provides run-times from an earlier verifica-
tion phase, demonstrating how case-splitting helps identify the most challenging
scenarios for proof, namely recursive operations.

Table 2. Staging complexity in the verification of the MAC

Stage Description

1 Verification of the control logic with fixed-point behavioral operators

2 Reconstruction of the feedback mechanism using SVA assumptions

3 Scaling down the bit-width to reduce the complexity of the formal problem

4 Application of case-splitting technique and manually written properties

5 Reformulating the manually written assertions to lighten the verification load

Table 3. Final run-times of the MAC verification considering all the opcodes

Opcode 8-bit 16-bit 32-bit

[0x00, 0x0C] 17.27 s 58.66 s 99.32 s

382 G. Raia et al.

Table 4. Run-times at stage 4 of the MAC verification sequence (* stands for unde-
termined proof result, while apex symbol indicates the value at the previous cycle)

Opcode Equation 8-bit 16-bit 32-bit

0x00 fp z = fp b + fp c 0.32 s 0.50 s 0.59 s

0x01 fp z = fp b − fp c 0.35 s 0.64 s 1.42 s

0x02 fp z = fp z′ + fp c 0.34 s 1.44 s 1.34 s

0x03 fp z = fp z′ − fp c 0.33 s 1.39 s 1.88 s

0x04 fp z = fp m′ + fp c ≈ 12 h * ≈ 12 h * ≈ 12 h *

0x05 fp z = fp m′ − fp c 2.85 s 4.69 s 17.81 s

0x06 fp m = fp a · fp b 7.54 s 39.57 s 131.97 s

0x07 fp m = fp m′ · fp b ≈ 12 h * ≈ 12 h * ≈ 12 h *

0x08 fp m = fp z′ · fp a 2.62 s 21.35 s 0.88 s

0x09 fp z = fp a · fp b + fp c 10.62 s 91.52 s 175.57 s

0x0A fp z = fp a · fp b − fp c 10.04 s 76.93 s 186.11 s

0x0B fp z = fp z′ + fp a · fp b 13.4 s 63.97 s 530.02 s

0x0C fp z = fp z′ · fp a + fp c 11.56 s 65.89 s 211.05 s

5 Decomposition of a Complex Cone of Influence

Utilizing the JasperTM C2RTL App facilitates equivalence checking to ascertain
the functional correctness of an RTL design without necessitating manual prop-
erty specification. Nevertheless, the automatic generation of end-to-end prop-
erties aimed at confirming output signal consistency under equivalent inputs
can engender an intricate Cone Of Influence (COI). The COI, pivotal in formal
verification, circumscribes the relevant RTL logic impacting a given property,
enabling the exclusion of non-influential logic (refer to Fig. 5).

A case study on an STMicroelectronics-designed pipelined, frequency-
tunable, and programmable-gain tone generator was undertaken to investigate
methods for decomposing the COI in the context of challenging automatically
generated properties. The tone generator is crucial for calibrating audio DSP sys-
tems, developing signal processing algorithms, and testing telecommunications
networks.

inputs result

Fig. 5. Conceptual representation of the Cone Of Influence

C-vs-RTL Formal Equivalence Verification 383

5.1 Specifications

The tone generator accepts inputs such as the tone setup choice mode i (either
single or double tone), phase steps ΔΦ single and ΔΦ double, and programmable
gains gain single and gain double, as shown in Fig. 6. It then generates outputs
that consist of either one or two tones in the in-phase (I) and quadrature (Q)
components, Y I and Y Q respectively. The phase step sets the incremental
change in phase between successive samples, thereby setting the frequency of
the tone(s), while gain controls the amplitude scaling applied to the output
signal (see C and RTL pseudo-codes in List. 1.6 and List. 1.7 in [15]).

Tone
generator

Phase
accumulator

Address
computation

Phase
amplitude
converter

D Q TruncationX

Saturation
and

rounding
+

Phase
accumulator

Address
computation

Phase
amplitude
converter

D Q TruncationX

2

6

6

21

21 12

12

Fig. 6. Interface and computational block diagrams of the tone generator

The protocol governing input signals mandates static values within their
defined legal ranges throughout execution:

– mode i signal assumes values within the set {0, 1, 2}, where 0 denotes the
idle state, 1 corresponds to single tone mode, and 2 to double tone mode.

– gain single and gain double signals are constrained to [0, 63] and [0, 31].
– ΔΦ single and ΔΦ double signals are restricted to the range [0, (221 − 1)].

5.2 Verification Strategy

The verification’s primary objective was to establish the complete equivalence of
the RTL implementation of the tone generator with its corresponding C/C++
model. Central to the block’s functionality is a phase accumulator unit designed
to iteratively compute the subsequent phase value, (Φ(t + 1)), from the current
phase, (Φ(t)), and the input phase increment, (ΔΦ), as described by the equation
(Φ(t + 1) = Φ(t) + ΔΦ). To manage the inherent feedback within the phase
accumulator, a verification strategy analogous to that delineated in Sect. 4 was
employed. This strategy proved ineffective, except for large phase step values,
primarily due to the extensive bit-width and the vast array of potential cases
which could not be exhaustively verified.

Given the design’s intrinsic architecture, reducing parallelism was not feasible
without altering the models, a course of action avoided due to the potential for

384 G. Raia et al.

introducing errors. Consequently, an alternative strategy was adopted, which
involved overconstraining the current phase value node in both the RTL and
C/C++ models to accept any value within its legal range, independent of the
phase step. The overconstraint ensured that the subsequent phase value would
correspond to the overconstrained phase node’s value from the previous cycle,
thereby emulating the phase accumulator’s functionality (see List. 1.8 in [15]).
Overconstraining the internal phase node had not compromised the functionality
of the circuit, since it affected both downstream and upstream logic.

Despite promising, overconstraining the internal phase node did not result as
a completely satisfactory strategy because of the long time required to achieve
the full proof. Because this was mainly due to the high complexity of the com-
putational load, a more powerful technique, consisting in inserting extra asser-
tions by leveraging intermediate equivalent points between the C/C++ and RTL
models, was employed. While it may appear that adding more assertions could
increase the workload for the verification tool, proven assertions at the inter-
mediate key points can actually aid the formal tool in verifying more complex
automatically generated end-to-end properties (see List. 1.9 [15]). In this case,
intermediate equivalent points were placed at data processing stages (refer to
Fig. 6), such as:

– Sample values coming out from the phase amplitude converter.
– Sample values scaled by the input gain and then truncated.

A more sophisticated and efficient verification strategy involved explicitly
instructing the formal verification tool to utilize proven assertions at interme-
diate equivalent key points within the design. By doing so, these assertions act
as simple blocks within a more complex chain of end-to-end properties. As the
verification tool progresses through the smaller properties, it utilizes the proven
assertions as helper assumptions for subsequent assertions in the verification
chain. An end-to-end property is considered proven if all its helper assumptions
are also proven. Consequently, the assume-guarantee method was employed as
the terminal verification technique to expedite the attainment of a comprehensive
proof. This approach mitigated the complexity of the global Cone Of Influence
by partitioning challenging monolithic assertions into discrete, tractable formal
verification sub-problems, each with a correspondingly narrowed COI.

5.3 Results

The application of FEV techniques successfully confirmed the functional equiv-
alence between the C/C++ model and the RTL implementations. For the sake
of clarity, proof convergence was achieved by following the verification sequence
reported in Table 5. Table 6 reports the infeasibility of feedback reconstruction
using SVA assumptions, highlighting the formal tool’s difficulty with diminish-
ing phase step values. Table 7 summarizes the run-times by verification stage
and working mode, proving the advantage of determining the equivalence at
intermediate points to aid the formal tool in achieving convergence.

C-vs-RTL Formal Equivalence Verification 385

Table 5. Staging complexity in the verification of the tone generator

Stage Description

1 Reconstructing the feedback of the phase accumulator

2 Overconstraining the current phase node using SVA assumptions

3 Proving the equivalence at intermediate points inserting extra assertions

4 Applying the assume-guarantee to leverage equivalence at intermediate points

Table 6. Run-times at stage 1 of the tone generator verification sequence

Input phase step Proof status Run-time

220 Proven 17.6 s

219 Proven 62.8 s

218 Proven 29min

217 Proven ≈ 12 h

216 Undetermined ≈ 24 h

Table 7. Run-times at different stages of the tone generator verification sequence

Single tone mode Stage 2 Stage 3 Stage 4

Run-times 221min 132min 26 min

Proof status Proven Proven Proven

Time reduction 40% 80%

Double tone mode Stage 2 Stage 3 Stage 4

Run-times 48 h 111min 33 min

Proof status Undetermined Proven Proven

Time reduction N/A 70%

6 Proving the Equivalence with a MATLABR©-derived C
Code

Significant algorithmic differences between high-level C/C++ models and RTL
designs present notable challenges in proving functional equivalence using FEV
techniques. This is especially the case for C code derived from MATLAB R© where
complexity can increase due to several factors, such as the variations in data
types and bit-width choices. Despite casting procedures are supported by the
formal tool, it is highly recommended to minimize type discrepancies between
RTL and C/C++ representations. This approach was employed in the verifica-
tion of an Automatic Gain Control (AGC) design.

386 G. Raia et al.

6.1 Specifications

The main purpose of an AGC circuit, within a receiver in a communication
system, is to maintain a constant output amplitude level of a signal despite
variations in the amplitude of input signal, as represented in Fig. 7. The device
under analysis is an AGC (targeting IEEE 802.15.4g protocol [6]) designed by
STMicroelectronics, governed by an FSM with datapath mechanism. Due to
confidentiality constraints, detailed information about the specific block cannot
be disclosed in this publication. The AGC accepts inputs from a Received Signal
Strength Indicator (RSSI) block through rssi result signal, providing an output
gain value to a Programmable Gain Amplifier (PGA) using gain signal, as shown
in Fig. 7. Configuration of the AGC is achieved by setting the mode signal,
initializing the gain with start gain, and adjusting the gain using gain step.

Automatic
Gain ControlRSSIA/D converter

DSP

Antialias filterPGAReceived
signal

Automatic
Gain Control

gain
mode

start_gain
gain_step

rssi_result

reset_n
clk

Fig. 7. System level representation of the Automatic Gain Control

6.2 Verification Strategy

Significant algorithmic differences between the two models precluded to lever-
age intermediate equivalent key points to aid the formal tool. Consequently,
beyond feedback reconstruction technique described in Sect. 4 to emulate the
FSM behavior, further modifications were implemented. To alleviate verification
overhead, all double data types in the C/C++ model - automatically converted
from MATLAB R© codes using MATLAB Coder [12] - were converted to int data
types to align with the RTL design specifications. This conversion necessitated
the creation of new functions within the C/C++ code, which are listed in Tab. 10
in [15]. Additionally, to prevent state explosion issues commonly associated with
counters, their maximum count values were deliberately constrained to zero to
avoid multiple accumulation of samples. This cap was not overly restrictive,
as the accumulation underwent separate verification from the gain computation
under specific input scenarios, namely the main target of the verification process.

6.3 Results

The verification of this case was particularly challenging due to algorithmic diver-
gences between the high-level and low-level models and the design’s complex con-
trol logic. Table 8 outlines the verification sequence utilized for the AGC block,
which ultimately resulted in the run-times presented in Table 9. Despite the
full equivalence was not proven in all cases, the application of FEV techniques

C-vs-RTL Formal Equivalence Verification 387

resulted valuable by quickly identifying two mismatches between the C/C++
model and the RTL design, corresponding to subtle overflow cases that were not
discovered during previous UVM dynamic simulations.

Table 8. Staging complexity in the verification of the AGC

Stage Description

1 Reconstructing the feedback mechanism to emulate the FSM behavior

2 Converting the data types of the C/C++ model from double to int

3 Disabling counters to avoid multiple accumulation of samples

Table 9. Run-times at the final stage of the AGC verification sequence

Mode Description Proof result Run-time

Mode 1 Fixed-gain configuration Proven 0.34 s

Mode 2 Gain can only decrease Proven 121.74 s

Mode 3 Gain can only decrease until a certain value Proven 754.10 s

Mode 4 Gain can both increase and decrease Undetermined ≈ 48 h

Mode 5 Gain is determined by non-trivial RSSI conditions Undetermined ≈ 48 h

7 Conclusion

This paper presented a case study on applying various FEV techniques within
the context of verifying the functional equivalence between three-real world high-
level C/C++ models and RTL designs using the JasperTM C2RTL App. This
innovative approach enables exhaustive exploration of the design state space,
potentially revealing bugs that traditional verification methods might miss.
Moreover, by utilizing high-performance formal engines, the verification time for
typical DSP components has been significantly reduced - from months to just a
few weeks per case study -compared to UVM dynamic simulations, specifically:

– UVM environment setup traditionally requires six weeks, whereas C2RTL
preparation, including port mapping, adaptation of C/C++ models, and ver-
ification plan formulation, is completed within one week.

– Test development in UVM extends over five weeks, in contrast to the two
weeks needed for incorporating appropriate constraints in C2RTL. This
entails specifying legal input signal values and protocols, methodically explor-
ing the design state space, and applying effective verification techniques to
ensure convergence.

388 G. Raia et al.

– Debugging in UVM, which involves analyzing dynamic simulation waveforms,
typically spans two weeks. Conversely, C2RTL reduces this to a matter of
days, benefiting from the provision of succinct counterexample waveforms
and facilitated root cause analysis.

Customizing the formal tool to accommodate the specific characteristics of
each DUV proved to be a non-trivial task. There is no replacement for the verifi-
cation user’s knowledge of the expected behavior and the selection of appropriate
techniques to assist the tool in handling FSM-like behaviors, large COI and sig-
nificant algorithmic difference between high-level C/C++ models and the RTL
designs. In conclusion, this paper has demonstrated that the strategic applica-
tion of FEV techniques, facilitated by the JasperTM C2RTL App, significantly
enhances the efficiency and effectiveness of DSP component verification.

References

1. Albin, K.: Oracle labs: the cost of SoC bugs. In: Design and Verification Conference
and Exhibition, U.S. (2016)

2. Bergeron, J.: Writing Testbenches using SystemVerilog . 1st edn. Springer, (2006)
3. Cadence Design System: Jasper C to RTL Equivalence Checking App User Guide

(2023)
4. Cadence Design System: Jasper Engine Selection Guide (2023)
5. Formality Equivalence Checking. https://www.synopsys.com/glossary/what-is-

equivalence-checking.html. Accessed 15 June 2024
6. IEEE: IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-

Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical
Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility
Networks, pp. 1–252, IEEE Std 802.15.4g-2012 (2012)

7. IEEE-754: Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pp. 1–58.
IEEE (2008)

8. IEEE Computer Society and IEEE Standards Association Corporate Advisory
Group: IEEE Standard for SystemVerilog- Unified Hardware Design, Specification,
and Verification Language (IEEE Std 1800TM-2017). IEEE, New York (2017)

9. Jasper C Apps. https://www.cadence.com/en US/home/tools/system-design-
and-verification/formal-and-static-verification/jasper-c-formal-verification.html.
Accessed 13 June 2024

10. Jasper C Apps. https://community.cadence.com/cadence blogs 8/b/breakfast-
bytes/posts/jasperc2rtl. Accessed 14 June 2024

11. Jasper SEC App. https://www.cadence.com/zh TW/home/tools/system-design-
and-verification/formal-and-static-verification/jasper-gold-verification-platform/
jaspergold-sequential-equivalence-checking-app.html. Accessed 15 June 2024

12. MATLAB Coder. https://it.mathworks.com/products/matlab-coder.html.
Accessed 19 Jun 2024

13. Mittal, V., Roy, S., Singhal A.: Embracing datapath verification with Jasper
C2RTL App. In: Design and Verification Conference, India (2022)

14. Perry, D.L., Foster, H.: Applied Formal Verification: For Digital Circuit Design.
1st ed. McGraw Hill LLC (2005)

https://www.synopsys.com/glossary/what-is-equivalence-checking.html
https://www.synopsys.com/glossary/what-is-equivalence-checking.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-c-formal-verification.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-c-formal-verification.html
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/jasperc2rtl
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/jasperc2rtl
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/jaspergold-sequential-equivalence-checking-app.html
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/jaspergold-sequential-equivalence-checking-app.html
https://www.cadence.com/zh_TW/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/jaspergold-sequential-equivalence-checking-app.html
https://it.mathworks.com/products/matlab-coder.html

C-vs-RTL Formal Equivalence Verification 389

15. Raia, G., Vincenzoni, D., Rigano, G., Martina, M.: A Case Study on Formal Equiv-
alence Verification between a C/C++ Model and its RTL Design: A Long Com-
panion Version. Zenodo (2024). https://doi.org/10.5281/zenodo.12591803

16. Seligman, E., Schubert, T., Kirankumar, M.: Formal Verification: An Essential
Toolkit for Modern VLSI Design, 1st edn. Morgan Kaufmann Publishers Inc, San
Francisco (2015)

17. The 2022 Wilson Research Group Functional Verification Study (Part 8). https://
blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-
research-group-functional-verification-study/. Accessed 13 June 2024

18. The 2022 Wilson Research Group Functional Verification Study (Part
12). https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-
2020-wilson-research-group-functional-verification-study-2/. Accessed 13 June
2024

19. Vincenzoni, D., Raffaelli, S.: Circuit for performing a multiply-and-accumulate
operation. (10089078, 3299952,10437558) (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.12591803
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-2020-wilson-research-group-functional-verification-study-2/
https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-2020-wilson-research-group-functional-verification-study-2/
http://creativecommons.org/licenses/by/4.0/

Tutorial Papers

A Pyramid Of (Formal) Software
Verification

Martin Brain1(B) and Elizabeth Polgreen2

1 City, University of London, London, England
martin.brain@city.ac.uk

2 University of Edinburgh, Edinburgh, Scotland

elizabeth.polgreen@ed.ac.uk

Abstract. Over the past few years there has been significant progress in
the various fields of software verification resulting in many useful tools
and successful deployments, both academic and commercial. However
much of the work describing these tools and ideas is written by and for
the research community. The scale, diversity and focus of the literature
can act as a barrier, separating industrial users and the wider academic
community from the tools that could make their work more efficient,
more certain and more productive. This tutorial gives a simple classi-
fication of verification techniques in terms of a pyramid and uses it to
describe the six main schools of verification technologies. We have found
this approach valuable for building collaborations with industry as it
allows us to explain the intrinsic strengths and weaknesses of techniques
and pick the right tool for any given industrial application. The model
also highlights some of the cultural differences and unspoken assumptions
of different areas of verification and illuminates future directions.

1 Introduction

Software verification is a large and diverse area of computer science research.
Topics covered range from low-level, practical issues such as understanding the
exact behaviour of various hardware and software constructs through to high-
level, theoretical issues of expressibility and the limits of what is computable. The
diversity of and connections between these areas can make it hard to understand
and appreciate the full power and applicability of the ideas. This is compounded
by the existence of several different academic traditions or schools each of which
have their own terminology and foundations.

The field also has a strong culture of tool development, leading to a range
of powerful academic and commercial tools. However potential users (both aca-
demic and commercial) are often faced with the problem of understanding how
these various tools relate to each other and their various strengths and weak-
nesses. Their problem is not which tool to pick but on what basis to make their
decision. For experienced academics and researchers, the answers are often ‘obvi-
ous’ but, again, this requires a broad and comprehensive knowledge of the dif-
ferent approaches and traditions of verification.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 393–419, 2025.
https://doi.org/10.1007/978-3-031-71177-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_24&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_24

394 M. Brain and E. Polgreen

This paper describes our approach to bridging this gap and communicating
the ‘big-picture’ of software verification without requiring people to read many
papers, attend numerous conferences or develop multiple tools. The approach
has been developed and used in numerous industrial partnerships as well as
in undergraduate and post-graduate teaching. It has provided a simple way of
structuring the explanation of what we do and how this fits with particular
organisations’ needs. We regard this as a successful and efficient way of bridging
the (common) divide between research and practice.

As with all overviews, there are exceptions and caveats to all of the clas-
sifications we give. There are also systems which combine multiple techniques,
whose classification is debatable or ambiguous. If such exceptions and combined
techniques do not already exist, they will likely do so soon as they represent
novel research directions. In this regard, this paper should be thought of as a
guidebook or a phrase book rather than an atlas or dictionary. Our goal is to
describe the common 90% of papers in a field rather than the exceptional 10%.

We assume a base understanding of computing, but this paper is intended to
be readable by commercial developers and does not assume prior knowledge of
verification or theoretical computer science. We hope it will communicate:

• Our pyramid model, which gives a fundamental trade-off for software verifi-
cation tools (Sect. 2).

• The kinds of tools available, their intrinsic strengths and weaknesses, and
enough of the culture and terminology to communicate with and evaluate
tools from the relevant research community (Sect. 3).

• The different ways of giving specifications (Sect. 4).
• How to select the right kind of tool(s) for a particular practical problem

(Sect. 5).

2 A Pyramid of Verification

In the most general sense, verification is the process of checking the properties
of a thing against a set of criteria. In our context, we will refer to the thing
being checked as the program and the criteria as the specification. Figure 1 illus-
trates the verification process. The primary inputs are the specification and the
program plus the verification process uses an amount of compute resource and
human effort. The ideal outcome is that the system is verified but it is also possi-
ble that one or more defects are detected or that the verification is inconclusive
and the final result is unknown. From a practical point of view, unknown is
probably the worst outcome as the effort is expended without producing useful
evidence. However, as we will see, reliably avoiding the unknown outcome turns
out to be challenging.

Representing the program. Our primary focus is when the program (thing we
are verifying) is a piece of software written in an imperative language. However
many of these techniques have been successfully applied to hardware, parallel

A Pyramid Of (Formal) Software Verification 395

Fig. 1. The verification process in principle

and distributed software as well as more abstract models of computation such as
protocols, process calculi, automata, cyber-physical systems, transition systems,
etc. One common view in software verification, and that we will use in the fol-
lowing sections of the paper, is that a program is a description or representation
of a set of traces. A trace is a single execution of the program; a sequence of
states showing the step-by-step execution of the program. Running a program is
computing a single trace. For a program of any size it is infeasible to compute all
of the traces, so the set of all traces is a mathematical idea rather than something
that is ever directly computed. This viewpoint is useful as it allows the program
and the specification to be seen as the same kind of mathematical objects; sets
of traces. It also gives an idea of over-approximation and under-approximation
of a program. These are sets of traces that contain or are contained in the set of
traces of the program.

Representing the specification. The specification is the set of criteria we check
the program against. Software verification tools have traditionally focused on
universal specifications; those of the form “every execution of the program must”
or conversely “there must be no way of” rather than existential ones, “there must
be at least one trace that”. Other, more complicated, properties can be specified
that reason about the interaction of traces (hyperproperties) or the likelihood
of certain traces (probabilistic properties), but we do not discuss those here.
If the program is understood as a representation of a set of traces then the
specification can be understood as a representation of the set of all traces that
have a required property. Formal verification of a universal specification can
then be conceptually reduced to checking that the set of all program traces is
included in the set of specified traces. We give further discussion on the ways of
representing specifications in Sect. 4.

Given a program and a specification to verify it against, the ideal verification
tool would be:

Automatic (run with no human interaction),
Never miss bugs (only say verified if the system meets the specification), and

396 M. Brain and E. Polgreen

Never give false alarms (always say verified if the system meets the specifi-
cation).

Unfortunately, if the specification includes any notion of reachability (“if the
program ever . . . ”, “when the program . . . ”) then Rice’s Theorem [73], a con-
sequence of Turing’s famous result on the Halting Problem [78] means that it is
not possible to create a verification tool that has all the desired properties1 in
all cases. As almost all significant specifications include some notion of reacha-
bility or location, this gives us the fundamental trade-off at the heart of software
verification:

It is not possible to create a verification tool which can take any program
and any specification and automatically give an answer in a finite amount
of time guaranteeing no missed bugs and no false alarms.

As with all applications of theoretical results to the real world, we should
be mindful of the caveats. Turing’s result applies to a theoretical model of com-
puting which has an infinite state-space. We will assume that the state-space of
programs is so large that is effectively infinite2 and that this result applies. The
subtleties of quantification are also important. This result applies to one, or a
finite number of verification tools working on all programs and all specifications.
For a particular program and specification, there is a verification tool that can
automatically give a full answer (although writing it might require performing
the verification by hand and then writing a program that will simply print the
answer). Likewise, there are large sets of programs and specifications for which
this is possible. For example, if the specification is “the program terminates”,
then any acyclic program (no loops or recursion) can easily be automatically
verified in the time it takes to read the program and check it is acyclic.

Although theoretical computer science shows that it is not possible to build
a universal verification tool, it is easy to get surprisingly close:

• ‘Automatic’ and ‘no missed bugs’ can be achieved by over-approximating the
set of invalid traces (traces of the program that do not meet the specification).
A tool that prints verification failed for all inputs would be the simplest
example.

1 We avoid the terms “sound” and “complete” as there is a cultural bias for authors to
claim that their technique is “sound but not complete”. This leads to two, opposite
definitions of these terms. Some authors use “sound/complete (for proof)” while
others use “sound/complete (for refutation)”. No missed bugs is “sound for proof”
and “complete for refutation” while no false alarms is “complete for proof” and
“sound for refutation”.

2 Clearly, any individual computer has physical limits on the number of bits that can
be stored and thus has a limit on the state-space of a program running on it. However,
the state-space of a program running on a processor with 640KB of memory (up to
25242880 states) may be regarded as practically infinite as it contains more states
than particles in the universe.

A Pyramid Of (Formal) Software Verification 397

• ‘Automatic’ and ‘no false alarms’ can be achieved by under-approximating
the set of invalid traces. A tool that prints verification succeeded for all
inputs would be the simplest example.

• Finally ‘no missed bugs’ and ‘no false alarms’ can be achieved by getting a
human to create a formal proof of the verification and checking it.

As it is easy to achieve two of the three criteria, we can view verification
tools as starting with up to two of these and then trading computational effort
to achieve the third for an ever-increasing set of programs and specifications. For
example, over-approximate tools (automatic and no missed bugs) use computa-
tion to reduce the number of false alarms. Under-approximate tools (automatic
and no false alarms) use computation to reduce the number of missed bugs.
Human-assisted tools (no missed bugs and no false alarms) use computation to
reduce the amount of human effort required.

Fig. 2. The software verification pyramid with the six schools.

Figure 2 illustrates this trade-off with a three-sided pyramid (viewed from
above). Each base edge of the pyramid represents one of the three attributes;
automatic, no missed bugs and no false alarms. Corners on the base of the
pyramid represent each of the three approaches; over-approximate, under-
approximate and human-assisted. The top of the pyramid, in the centre of
the diagram, represents the ideal system with all three attributes. Computa-
tion effort is then used to ‘climb’ the pyramid towards the top, with different
techniques giving different routes up their chosen edge (or face).

There are many other dimensions on which software verification techniques
can be classified, and many other trade-offs that are necessarily made by different
tools. For instance, one could also consider how properties are specified, the
categories of systems that are analysed, and the usability of the system and
specification language. Our pyramid model is not intended to be exhaustive, but
it is intended as a useful starting point when making the initial choices about
how to solve a verification problem.

398 M. Brain and E. Polgreen

Table 1. Cultural attributes of the six schools.

Over-Approximate Under-Approximate Human-Assisted

Static
Analysis

Abstract
Interpretation

Testing &
Symbolic
Execution

Model Checking Deductive
Verification

Functional
Verification

Program Procedural or
O.O.

Procedural Procedural or
O.O.

Procedural or
O.O.

Subsets of
procedural

Functional

Commmon
Means of

Specification

Builtin Annotation
linked to the
abstraction

Generally
annotation

Annotation or
external

Annotation Type as
annotation

Common
Type of

Specification

Data flow,
aliasing, type,
shape, taint

Value, shape,
resource, data

flow

Value,
WCET,
resource

Value,
temporal,

modal, liveness

Value, shape,
termination,

resource

Type,
termination

Mathematical
Foundations

Ad-hoc /
operational
semantics

Order theory Ad-hoc /
transition
systems

Transition
systems

Logic Type theory

User Skill
Required

Minimal Low/Medium Low Medium High Very high

Compute
Required

Minimal Low/Medium
upwards

Medium
upwards

Medium/High
upwards

Low/Medium Low

Typical
Output

Algorithm
dependent

Alarms or
abstract
domains

Error traces Error traces Proof or local
counter-
examples

Type-checking
errors

Major
Systems

Lint[55],
Coverity[1],
Fortify[5],

FindBugs[4],
CPPCheck[2]

Astrée[33],
Polyspace[7],

Infer[57],
Code

Contracts[66]

CREST[3],
JPF[50],
Pex[77],

KLEE[18]

CBMC[60],
Blast[51],
*SMV[22],

CPAchecker[13]

SPARK[8],
Dafny[64],

Frama-C[34],
Malpas[6],

Esc/Java[45]

Coq[12],
PVS [70],
Agda[69],

Isabelle/Hol[68]

3 Six Schools of Verification

Our pyramid model allows us to compare and contrast the different academic
traditions in and aligned with software verification. Each of these represents a
separate lineage of thought, approach and community, although there is inter-
action, overlap and cross-fertilisation between them. This section surveys them
and attempts to give a qualitative assessment. Of the six schools, not all would
regard themselves as software verification but all have an important impact on
the field. As with all qualitative assessments, there is an element of subjectivity
and no doubt researchers and practitioners from each of the fields have different
views; the aim of this document is to provide an overview rather than a definitive
assessment. There are also exceptions to most of the distinctions and classifica-
tions and our statements should be taken as normative or cultural observations
rather than hard limits.

Table 1 gives the six schools with various cultural attributes. The kinds of
programs verified, and the kind of specification (see Sect. 4) normally considered
are given along with the mathematical formalisation used to express theoretical
results and algorithms. It also gives quantitative valuation for the level of user
skill required to apply the tools effectively and the computational requirements
of the tools. Finally, it gives a few of the prominent or significant tools from each

A Pyramid Of (Formal) Software Verification 399

of the areas. Many tool suites include tools from several of the different schools.
These are listed under the school for their main tool or general approach.

As well as the traditional approaches of the six schools, there are also a
significant number of combined techniques and tools. The simplest of these are
pipe-lines that run different tools in sequence (or sometimes in parallel), feeding
the results of one into the next. More sophisticated, synergistic combinations
also exist and will likely form a major part of the future of software verification.

Fig. 3. The running example program. The specifi-
cation we wish to check is in the form of 3 assertions.

Figure 3 gives an example
program in a C-like language.
The specification is given as
three assertions (an example
of what Sect. 4 describes as
an annotation specification).
They express:

1. All array accesses are in
bounds, at line 6

2. last is in a at end at
line 13

3. If found is non zero at end
then a[last] == target
at line 14.

Try working out which of
these can be verified. If they
can be verified, what knowl-
edge about the program is
required to show this? If not,

how would you provide a counter-example? Answers can be found here3.

3.1 Static Analysis

One of the oldest fields of program analysis and verification is static analysis.
Unfortunately, this term is used in at least two ways. In the general sense,
it refers to program analysis performed without running the program (hence
static). In this sense, the majority of the techniques of software verification can
be regarded as static analysis. In the narrow sense, it refers to a specific set
of algorithms and techniques that are explicitly referred to as static analysis
(as opposed to any other name), and are often developed with and to serve
the needs of compilers, both in improving their warnings (verification against a
specification) and optimising the code they generate.
3 Assertion 1 always holds (i.e., is always true) as the initial assignment to i is 0,

it is only ever incremented and the assertion appears immediately after the loop
condition checks that i < a.length(). Assertion 2 can fail, as if the array does not
contain the target, last will still have its initial -1 value. Assertion 3 always holds
as the only place last is assigned guarantees this property, although some non-trivial
reasoning about reachability is required.

400 M. Brain and E. Polgreen

The traditional focus of this area has been on over-approximate techniques.
Spurious warnings are fine if not too numerous, likewise missing an optimisation
is much more acceptable than miscompiled code based on a flawed assump-
tion. The need to keep compilation fast and robust has meant the field has
focused on fast and robust techniques for common problems such as finding
uninitialised variables, eliminating possible aliasing between pointers and data
flow for scheduling and optimisation rather than more complex specifications.

The first static analysis tools began to emerge in the 1970 s, beginning with
Lint [55], developed at Bell Labs in 1978, which flagged suspicious constructs
in code that could be suggestive of a bug in the code. There have been many
versions of lint developed for many C and C++ compilers, and “linter” is some-
times used as a generic term for static analysis tools based on this paradigm
of flagging patterns indicative of programming errors, bugs, stylistic errors and
suspicious constructs. For example, Lint would flag this if statement as a suspi-
cious construct since it always evaluates to true, which is probably not what the
programmer intended:

1 unsigned x;

2 if(x < 0) ...

These static analysis tools can be broadly described as lexical scanners that
look for patterns in code that are likely to be defects or vulnerabilities. Static
analysis tools do not treat the process of finding bugs in software as a logical
problem; none of the analyses performed by these static-analysis tools involves
constructing proof objects, and, as a result, these static analysis tools are not
able to discover many of the complex bugs that can be discovered by other
verification tools. That said, there is a broad range of types of bugs that can be
discovered through this kind of code analysis, many of which represent serious
vulnerabilities, for example, potential buffer overflows.

To mitigate the large numbers of false alarms typically produced by most
static analysis algorithms, modern static analysis tools may categorise the bugs
into ranks by seriousness [4] (i.e., the likelihood of the bug being a serious vul-
nerability), or by applying filtering algorithms to the results [24,76].

Industry: Static analysis tools like the commercial Coverity [1] and open-source
CPPCheck [2] are commonly used in industry and have been used to find bugs
in projects like Mozilla [35].

Running Example: Static Analysis cannot check the specifications given in
the running example. It could, however, flag simpler properties. For instance,
in a typed program, it could flag if the comparison i < a.length() compares
an integer with an unsigned integer.

3.2 Abstract Interpretation

The field of abstract interpretation started with a series of papers [30–32] on the
theory underpinning a range of static analyses. These proposed using the tools of

A Pyramid Of (Formal) Software Verification 401

order theory (partially ordered sets, lattices and Galois connections) to separate
the analysis into two components: domains which track the information required
for the specific analysis and abstract algorithms describing how the analysis is
performed.

The domain describes a data-structure that is used to represent an over-
approximate summary of the state of the program at a given point. Traditionally
there will be an instance of the domain for every program location. For example,
the constant domain contains a map from variables to constant values (plus flags
for “not a constant” and “no value assigned”). If the map has found → 0 then
we know that every time that location is reached, found will be 0. The interval
domain stores a map from variables to intervals (plus a “no value assigned” flag).
If i → [0, 10], then we have a bound for the possible values for i. This can rep-
resent all the cases that a constant domain can and also represent things it can’t
so we say it is a more precise representation (i.e. less of an over-approximation).
Domains have been created for a wide range of different analyses; data flow anal-
ysis, constant propagation, pointer analysis, etc. [21,74,81]. Creating a new kind
of analysis can be as simple as specifying an appropriate domain.

The choice of domain depends on several factors. Using a more detailed
domain (i.e. less of an overapproximation) can reduce the number of false alarms
but requires additional computation. Often it is necessary to choose a domain
that can precisely express the specification and the reasons why it is true. For
example, if the specification includes proving bounds on variables then an inter-
val domain is a good choice. However, if the specification includes proving the
equality of variables, then intervals are unlikely to be very useful as they cannot
represent the relationship between variables. The mathematics of abstract inter-
pretation allows domains to be combined in various ways. Selecting the right
combination of domains for a particular program and specification is one of the
more advanced skills that can boost the effectiveness of abstract interpretation.

The second part of abstract interpretation is the analysis algorithms. These
are stated in terms of mathematical operations on the domain, typically:

JoinCombines two instances of the domain to create a new instance that over-
approximates both. For example, if one instance has x → [1, 4] and the other
has x → [6, 8] then in the join x → [1, 8] – the smallest interval that contains
both inputs.

TransformTakes one instance and an instruction and creates a new instance
which over-approximates the effects of the instruction. For example if an
instance contains x → [1, 8] and y → [−4, 4] then the transformer for z = x
+ y would create a new domain containing z → [−3, 12] and all other variables
mapped to the same as in the original instance.

WidenCreates an instance of the domain that over-approximates the fix-point
of a series of instances. For example given a loop for (i = 0; i < n; ++i)
the widen operator might create an instance with i → [0,MAX].

Using abstract operations such as these allows the analysis algorithms to be spec-
ified and implemented independently of the domain, giving another ‘orthogonal’

402 M. Brain and E. Polgreen

space of possibilities. Analysis algorithms are often characterised by sensitivity
to various program constructs:

Flow Sensitive:the order of instructions in the program is followed.
Path Sensitive:the branch conditions are applied to improve precision.
Context Sensitive:the calling context of functions is considered.

By using a more sensitive algorithm, the amount of over-approximation can be
reduced and the set of specifications that can be automatically verified, with
no false alarms, is increased. Of course, this can only be achieved by increasing
the amount of computation required, so the more sensitive the algorithm the
more expensive it will be to use. One of the practical strengths of abstract
interpretation is modularity; assuming that variables or parts of a program are
independent of each other is an over-approximation. This fits naturally within
abstract interpretation. It is also the basis of many techniques for improving
scalability.

Industry: Abstract interpretation has been used in industry to prove the absence
of bugs in flight control software [56], and to analyse worst-case execution time
for microprocessors [42]

Table 2. Table showing the result of abstract interpretation on the running example,
using an interval domain.

Line found last i Assertion result

L4 found = 0

L4 last = -1 [0,0]

L4 i = 0 [0,0] [-1,-1]

L5 i < a.length() [0,x] [-1, x-1] [0,x]

L6 0 ≤ i < a.length() [0,x] [-1, x-1] [0,x] pass

L7 a[i]=target [0,x] [-1, x-1] [0,x]

L8 found=found+1 [0,x] [-1, x-1] [0,x]

L9 last=i [1, x+1] [-1, x-1] [0,x]

L11 i=i+1 [0, x+1] [-1, x] [0,x]

L13 0 ≤ last ≤ a.length() [0,x] [-1, x-1] [0,x] unknown

L14 found �=0 =⇒ a[last]=target [0,x] [-1, x-1] [0,x] unknown

Running Example: Table 2 shows the result of abstract interpretation being
applied to the running example, using the interval domain. Abstract interpre-
tation can prove assertion 1 is always true, but cannot prove that assertion 2
fails or that assertion 3 is always true.

A Pyramid Of (Formal) Software Verification 403

3.3 Testing and Symbolic Execution

Testing compiling and executing code on some concrete input(s), has a dual role
in development. It is both a verification tool (does the test give a result allowed
by the specification) and a validation tool (does the test do what I expected). In
its verification role, testing is most suitable for existential specifications (things of
the form “The software must be able to ...”) because it is an underapproximate
technique, only exploring a subset of possible traces of the program. Dijkstra
famously described this situation [37] by saying: “Program testing can be used
to show the presence of bugs, but never to show their absence!” . Showing the
absence of bugs is the same as saying that every trace of the program does not
trigger any bugs; a “universal” specification (Sect. 2).

One pragmatic option is to try to explore a ‘sufficient’ set of traces so that
if there are bugs there is a high probability they will be found. This is the
motivation behind coverage metrics which have a notion of a set of traces that
is ‘sufficient’ and likely include at least one example of each kind of program
behaviour. Coverage metrics are widely used and give a base level of certainty,
even for universal specifications. Testing and coverage metrics are a large topic
and [49,71] give a summary of the current-state-of-the-art. Test inputs can be
defined manually by developers or automatically generated using fuzz testing to
try to increase these coverage metrics.

Symbolic Execution [58] is a verification technique that was developed in the
context of testing. It aims to build a logical expression that describes all of the
traces that have taken the same path through the control flow graph. Rather
than test a single trace it covers a subset of traces whose behaviour is similar. The
subset of traces is then tested against the specification by testing the satisfiability
of the logical expression representing the subset of traces and the negation of
the specification, using a satisfiability solver.

A symbolic execution tool keeps a set of symbolic states. Each of these con-
tains its current location in the program, a map from variables to expressions
(describing the space of value it could take) and a path condition which is a set
of expressions giving the conditions that must hold for that path to be taken.
The set initially contains a single symbolic state, at the start of the program,
with every program variable mapped to set to a fresh logical variable and an
empty path condition. The analysis proceeds as follows:

Assign: Assign symbolic variables to each variable in the program state. Evaluate
program statements using the symbolic variables until you reach a branching
condition

Branch: On reaching a branching condition, e.g., an if statement, choose a fork
to explore. This places a constraint over the symbolic variables, e.g., in the
case of an if statement, if we explore the path when the if condition evaluates
to true.

Check: When the path reaches an assertion, pass the constraints over the sym-
bolic variables to the solver along with a constraint representing the violation
of the assertion.

404 M. Brain and E. Polgreen

Treating the memory as fully symbolic does not scale in practice, so symbolic
execution engines typically implement a partial memory model in which writes
are concretized, but reads are modelled as reads from symbolic memory, up to
a certain finite size of memory, and beyond that are concretized [29].

A limitation of symbolic execution is the path explosion problem: the number
of paths in a program typically grows exponentially with the program size (and
in the case of unbounded loops may be infinite). This means that the larger the
program, the less likely it is symbolic execution will manage to find a subset of
paths that exercises a particular bug. There are several heuristics the community
has developed to try to mitigate this problem, including merging paths [61],
exploring paths in parallel [79], and use of different heuristics to control the order
in which paths are explored. In addition, combined approaches exist: concolic
testing is a successful combination of symbolic execution combined with testing
(or concrete execution), which treats program variables as symbolic, but inputs
as concrete. It is used in conjunction with constraint solvers to generate new
concrete inputs with the aim of maximising code coverage. A good survey on
symbolic execution techniques is [20]

Industry: Testing is ubiquitous in industry, and needs no specific citation. Sym-
bolic execution is the underlying technique in many popular tools used in indus-
try, for example, KLEE [18] has been used for a variety of applications including
wireless sensor networks and exploit generation [19], JPF has been used at NASA
on the Orion control software [72], and Microsoft’s SAGE, using a combination
of fuzzing and symbolic execution, is used to find bugs in Windows applica-
tions [48].

Table 3. Table showing the result of symbolic execution for one arbitrarily choosen
path on the running example. α and t are symbolic variables, and the path constraints
are constraints inferred from choosing a branch at each branching condition.

path constraints symbolic environment

L0 (assign) true a �→ α, target �→ t

L4 (assign) true . . . , found �→ 0, last �→ −1, i �→ 0

L5 (branch) 0 < α.length() . . . , found �→ 0, last �→ −1, i �→ 0

L7 (branch) 0 < α.length() ∧ α[0] �= t . . . , found �→ 0, last �→ −1, i �→ 0

L11 (assign) 0 < α.length() ∧ α[0] �= t . . . , found �→ 0, last �→ −1, i �→ 1

L13 (check) 0 < α.length() ∧ α[0] �= t ∧ 0 ≤ −1 < α.length() . . . , found �→ 0, last �→ −1, i �→ 1

Running Example: Table 3 shows a single path of symbolic execution being
applied to the running example. We are able to prove that assertion 2 fails if
the target is not in the array. No path in the graph is able to show assertion
1 or assertion 3 always hold.

A Pyramid Of (Formal) Software Verification 405

Algorithm 1: Fixpoint
Result: Reachable states R
R = I;
while 1 do

if R == R ∧ T then
return R;

else
R = R∧T ;

end

end

Algorithm 2: BMC
Result: Reachable states R
R = I;
i=0 ;
while i < k do

R = R∧T ;
i++ ;

end
return R ;

3.4 Software Model Checking

Model checking involves constructing transition systems, and checking that these
systems are models of given logical specifications. Originally, the field focused
on specifications written in temporal logic [9], and systems that were manually
specified using a process calculus giving a labelled transition system (LTS), an
automata-like structure with states corresponding to states of programs and
transitions to the possible developments of the system. Verification could be
reduced to showing that the system’s LTS was a model of the logic, giving rise
to the name of the field.

Explicit State Model Checking explores the states of the LTS one at a time,
using graph algorithms such as depth-first search, until either a counter-example
for the property has been found or all reachable states have been explored.
This is limited by the number of states so tends to be used on protocols, high-
level designs and abstraction of software systems. SPIN [53], FDR [47] and the
TLA [83] tools are example of this style.

Symbolic Model Checking uses boolean formulae to represent sets of states in
the system, the transition relation and the properties we wish to check. For
instance, a formula representing the initial states of the running example is
found = 0∧last = −1∧i = 0. The most basic symbolic model checking algorithm
for systems with finite-states computes a formula that represents the total set
of reachable states (R) by starting with the initial state (I) and “unrolling”
the transition relation (T) repeatedly until a fixed-point is reached, as shown
in Algorithm 1. The formula can then be checked to see whether it satisfies the
specification. Critical to the performance of these systems is the use of compact
and efficient data structure to manipulate Boolean formulae. A form of decision
trees known as Binary Decision Diagrams (BDDs) are a popular choice [17,23].

Algorithms which compute the fix-point are able to find all bugs provided
computing the fix-point is possible (i.e., the system does not contain any
unbounded loops) and the representation of the system as a transition rela-
tion is precise enough to capture any bugs (for instance, memory models are

406 M. Brain and E. Polgreen

often approximate). If the system contains unbounded loops, the algorithm will
never find a fix-point, and so approximations must be introduced in order to
deal with these scenarios.

Bounded Model Checking (BMC) [14] is an under-approximate technique which,
instead of computing the fix-point, unwinds a transition system to a finite bound
k, and then checks for violations of the property within the states reachable in
k steps. BMC thus only guarantees the absence of bugs that can be reached in
k steps. For some systems, a completeness-threshold [25] can be computed such
that it is guaranteed that, if no bugs exist within k steps, no bugs exist at all.

Fig. 4. BMC applied to the example program.
The loop is unwound 2 times. The assertion
at line 23 checks whether the loop is unrolled
sufficiently for the input values

However, computing complete-
ness thresholds for unbounded
loops amounts to solving the Halt-
ing problem and so the technique
remains, in general, on the under-
approximate corner of the pyra-
mid. BMC in its original presen-
tation begins by unwinding the
transition system 1 step and look-
ing for violations of the specifi-
cation within 1 step, and then it
unwinds the transition system 2
steps, and so on until it reaches
k steps. However, many popular
tool implementations will instead
unroll the entire system minus any
loops and recursion to their lim-
its, and then unwind the loops to
k steps, as shown in Fig. 4.

A significant development in
BMC was the use of SAT-
solvers [15] instead of BDDs. Once
the formula representing reach-
able states has been constructed,
a SAT solver can efficiently check
whether a counterexample exists
using this formula. This is similar
to symbolic execution, but instead
of formulae representing subsets of
paths, we have one formula that
represents all of the paths. Mod-
ern software model checking tools

typically take as input either source code, or some intermediate compiled repre-
sentation of the source code such as LLVM [63], and convert this into an LTS, and
then use SAT-based model checking to check this LTS against the specification.

A Pyramid Of (Formal) Software Verification 407

There are many model checking algorithms beyond those mentioned, such as
IC3/PDR [16] and k-induction [39], as well as techniques for reducing the size
of the state space, such as program slicing [82] and predicate abstraction [10],
and many hybrid techniques that use combinations of symbolic and explicit
representations for different elements of the program. We refer the reader to [40,
54] for a comprehensive survey.

Industry: Bounded model checkers for software, such as CBMC [60] have been
applied to automotive software [75], verifying bootcode [28] and other industrial
software at Amazon Web Services [27].
Running Example: BMC will be able to find a counterexample to assertion
2 with a bound of k = 1, which will show that if the array is size 1 and does
not contain the target, last remains set to −1. It cannot prove assertion 1
and assertion 3 are true, although it can say that they hold up to a bound k.

3.5 Deductive Verification

Robert Floyd (working on flow-charts [46]) and Tony Hoare (working on pro-
grams [52]) developed equivalent approaches for manually constructing proofs
of program correctness. Tony Hoare’s presentation of the ideas as a logic was
more widely adopted, leading the approach to be known as Hoare logic. Their
approach contained two key ideas. First logical formulae are used to represent
sets of states at a particular point in the program. The set contains all of the
states that make the formula true. This gives the fundamental building block of
Hoare logic; the triple:

{Pre} Program {Post}
where Pre and Post are formulae and Program is a part of a program. The triple
denotes the statement “If the state of the program meets the precondition (Pre
is true) then after Program has been run the state will meet the postcondition
(Post is true)”. Hoare logic gives a series of proof rules for how these triples can
be constructed. One of these proof rules is the second key idea; that an inductive
argument about an invariant set can be used to prove properties of loops:

{Inv ∧ Cond} Body {Inv}
{Inv} while (Cond) Body {Inv ∧ ¬Cond}

This rule formalises the argument : if the body of a loop takes a state in (the
set described by) Inv to another state in Inv, and Inv is true before the loop,
then it must be true after the loop. Inv is referred to as an inductive invariant.
Inductive invariants are both the main strength of Hoare logic and its main cost.
They allow a finite, small proof to reason about the behaviour of an unbounded
number of traces. However, invariants often have to be created by humans as
there is no way of creating suitable invariants automatically for all programs and
specifications. This is why deductive verification is on the human assisted corner

408 M. Brain and E. Polgreen

of the pyramid. Once the candidate invariants have been provided both they
and the specification can be checked automatically. Tools such as Daikon [41]
and Houdini [44] have had some success in suggesting routine invariants. The
choice of loop invariant is dependent on both the program and the specification.
If the invariant is too weak (describes a set with too many elements), it may not
be sufficient to prove parts of the specification after the loop. If it is too strong
(describes a set with too few elements) then it may not hold before the loop or
may not be inductive. Devising a suitable loop invariant is a skilled task and is
one of the reasons for the higher skill rating in Table 1.

Dijkstra [36] contributed various ideas to the field of deductive verification.
He showed that some of Hoare’s rules for constructing tuples could be replaced
with an algorithm that transformed one formula into the other. The best known
of these predicate transformers are the strongest postcondition which use the
Pre condition and Program to compute the most precise Post and the weakest
precondition which uses the Post condition and Program to compute the least
restrictive Pre condition. Dijkstra also showed that these techniques could be
used to build software from a specification so that it was provable correct and
argued forcefully that these formal methods4 were the only professional approach
to software engineering. In doing so he provided not only the means but also the
motivation for Hoare logic to be used as a verification technology rather than a
purely theoretical construct.

Table 4. Verification conditions generated to check the verification conditions in Fig. 3,
using the inductive invariant given in Sect. 3.5. For readability, we do not include the
formulae that reason about variables which do not change.

found = 0 ∧ last = −1 ∧ i = 0 strongest post condition

(found �= 0 =⇒ a[last] = target) check invariant

(found �= 0 =⇒ a[last] = target) invariant

i < a.length() loop body run

a[i] = target ⇒ found′ = found + 1 ∧ last′ = i execute body

i′ = i + 1 loop counter update

0 ≤ i < a.length() check assertion 1

(found′ �= last′ =⇒ a′[last′] = target′) check invariant

(found �= 0 =⇒ a[last] = target) invariant

¬(i < a.length()) loop exit

0 ≤ last < a.length() check assertion 2

(found �= 0 =⇒ a[last] = target) check assertion 3

4 Software verification is a technique that is used by some formal methods. However
there are formal methods which do not use it and uses of software verification in
development methodologies which are not traditionally considered formal.

A Pyramid Of (Formal) Software Verification 409

Early uses of Hoare logic were proving the correctness of algorithms. How-
ever, there are now many tools in existence that apply deductive verification to
actual software. The early tools, such as SPARK [8], were labour intensive and
required manual annotations to write pre- and post-conditions. Later tools, such
as ESC/Java [45], use weakest precondition/strongest postcondition alongside
Hoare’s inductive rule for loops to generate assertion s, and then deployed inde-
pendent theorem provers [45] or SMT solvers [11,43] to check the conditions.

Industry: SPARK [8] has been used in civil and military avionics, railway sig-
nalling and cryptographic solutions; Why3 has been used for proof of smart
contracts [67]; Boogie [11] is developed and maintained by Microsoft, and has,
amongst other things, been used for smart contract verification [80].

Running Example: The first thing we need to do is provide a loop invariant
for the loop. We will use (found �= 0 =⇒ a[last] = target) (this is the same
as assertion 3, and often invariants may be guessed from the properties we
wish to prove). We then generate the verification conditions in Table 4, which
correspond to the path from the start of the function to the invariant at the
top of the loop, the path from the invariant around the loop once, and the
path from the invariant exiting the loop via the loop condition. Assertions
that cannot be proven mean either the specification is not met or that the
invariant is too weak. However, there is no automatic technique that can tell
the difference between the two in all cases. In this instance, it is possible to
prove assertion 3 always holds but not that assertion 2 fails or assertion 1
always holds. But, if we make the invariant stronger, and use (found �= 0 =⇒
a[last] = target) ∧ i > 0, we can now prove assertion 1 always holds as well.

3.6 Functional Verification

Functional verification comprises techniques that use mathematical reasoning
to show equivalence between functional programs and constructive proofs. The
result that it builds on is the connection between function application (β-
reduction) in typed lambda calculus and modus ponens in intuistic logic:

t : A λx.E : A → B
E[x := t] : B

A A ⇒ B
B

This can be seen as giving a logical character to programs; showing that a
function f : A → B is well-typed is equivalent to proving that if t meets the
precondition (is of type A), then f(t) meets the postcondition (is of type B).
This allows type checking and type inference algorithms to be used as verification
tools.

This school of verification is a branch of functional programming as it is
limited to programming languages and type systems that have an equivalence

410 M. Brain and E. Polgreen

with a suitable logic. These languages tend to be functional as the logical equiv-
alent of mutable state and pointers remain open research questions. As a result,
functional verification is most effectively applied to build code that is correct
by construction rather than to verifying code that already exists. Types play a
similar role to annotations in deductive verification systems, giving the specifi-
cation to be proven and the intermediate steps used to assist the verification tool
/ type checker. From this point of view, inductive invariants in loops are equiva-
lent to type declarations for recursive functions and the repetition between proofs
and programs found in deductive verification is avoided. However, the tight link
between types and logic means that the specification must be expressible in the
type system. It also requires a high level of skill as both the program and proof
must be constructed simultaneously.

Culturally aligned with functional verification but with distinct foundations,
there are a number of approaches to verification that use Interactive Theorem
Provers (ITPs). The user constructs a mathematical proof that the program
meets the specification and the ITP then checks this proof.

Industry: Despite the high skill level required, functional verification has been
used for various projects with complex functional specifications that required
non-trivial proof, e.g., the seL4 project [59] and the CompCert C Compiler [65].

Running Example: As our example program in Figure 3 is written in C
we cannot directly demonstrate this style of verification. However, we can
consider what would be needed to verify a functional implementation of the
same system. To show that all of the array accesses were in bounds we would
need an array type that included the length (i.e. (array 10) could be a valid
type) and we would need an integer type that could express bounds, or a type
inference algorithm that could determine them automatically.

4 Specifications

The specification is the set of criteria we check the program against. If you are
building or maintaining a system then you need a specification – an understand-
ing of what the system should do. Otherwise, you have no way of saying if the
system is working as intended!

In this paper we are interested in specifications that are or can be formalised,
i.e., expressed in a language with formal semantics.

There are many different kinds of specifications (“the program must be able
to”, “the program must always”, “the program must never”, etc.) and the dif-
ficulty of verifying them can vary significantly. Tools and techniques for formal
verification are often only applicable or are most suitable for certain kinds or
parts of specifications. For example, showing that the program has a print fea-
ture is (hopefully!) fairly simple and testing may give sufficient evidence for the
verification case. On the other hand, showing that there are no executions of the
program with buffer over-runs is harder and will likely need software verification
tools to achieve a reasonable degree of certainty.

A Pyramid Of (Formal) Software Verification 411

4.1 Ways of Expressing Specifications

Which specifications can be used and how they are represented depends on the
verification tool.

Builtins. One approach is to have a number of specifications built in to the tool
and to have the user pick which one(s) they wish to verify against, for example,
“no trace executes undefined behaviour”. This approach is the easiest from the
point of view of the user, setting the specification is ticking a few boxes or setting
command-line flags. It is also convenient for tool developers as the verification
tool can be specialised to handle the particular specifications supported. How-
ever, it is limited; if the tool does not support a relevant specification then it
will be of little use, even if the core analysis that it is performing is relevant to
the task.

Annotation. Another approach to specification is annotation. Annotations are
statements in the program that describe a set of traces with reference to the
location of the annotation. These may be written in comments, library calls
(such as assert) or specific language constructs (such as pragmas). One way of
classifying annotations is by how they describe the set of traces. They can refer
to the state of the program when(ever) it reaches the annotation, for example
giving constraints on values (0 <= i && i < n). These describe all of the traces
that have the required state when they reach the annotation. They can refer
to the future behaviour of the traces after they have reached the annotation,
for example, termination. They can refer to the past behaviour of the traces
before reaching the annotation, for example, taint (this parameter must not
be influenced by user input). Implicit in the idea of annotations is a notion of
reachability; annotations only apply when a trace reaches their location. This
means that the verification tool must determine which parts of the program can
be executed and so Rice’s Theorem applies (see Sect. 2).

Annotations are more flexible than fixed specifications, they can be devel-
oped and maintained in parallel with the software and they can be used in a
modular fashion and re-used along with the software. They can also be used
to assist the verification tool by providing predicates that the tool can use for
modular reasoning (see Sect. 3.5). Some tools such as Dafny [64] make a distinc-
tion between annotations that express specifications and those for assisting the
proof. Describing specifications by annotations has some disadvantages. It inter-
leaves the specification and implementation, meaning that they often have to be
developed together or at least by teams who understand both aspects. They are
also harder to review independently of the implementation.

External Objects. A third popular way of providing a specification is an exter-
nal object, written in some formal language. Examples of this include providing
another program as a specification and verifying the equivalence of the two (the
specification should represent the same set of traces as the program) or provid-
ing a more abstract program as a specification and showing that the concrete

412 M. Brain and E. Polgreen

program is a refinement of it (the traces in the program are a subset of the
traces permitted by the specification). These approaches can be very useful if
a reference model, protocol or implementation is available or in a hierarchical
development approach where one language is used to create a series of progres-
sively more detailed implementations by showing that each is a refinement of
the previous one. One recent and promising direction in verification is to use
a previous version of the software as the specification. This is differential ver-
ification [62] and allows us to check specifications about the changes between
versions; “this modification does not introduce new bugs”, “the change only
affects a bounded amount of the program” or even “this patch definitely blocks
a given exploit”. Specifications as a separate object allow the most flexibility
and reuse as well as giving a good separation between the development of the
program and the specification. However, it may require significant extra devel-
opment (differential verification is the notable exception to this requiring almost
no extra effort) potentially as much as developing the program itself.

5 Using the Pyramid

The pyramid model allows us to classify and contrast techniques by which of
the three key properties they guarantee and which they use computation to
work towards. It is also a useful model for designing verification work-flows and
selecting and evaluating appropriate tools.

For a particular project, there will only be a small (finite) number of programs
and specifications of interest, thus Turing’s result is not directly applicable. It
would be possible (in theory) to create a verification tool that could achieve all
three properties for the programs and specifications in that project. Developing
such a project-specific tool is not financially viable for most organisations, so a
process needs to be created using existing (or customised) tools. Given a partic-
ular program and specification, the key question is whether a reasonable amount
of computation will reduce the missing attribute (false alarms, unexplored areas
or human effort) by an acceptable amount. This question can only be answered
by considering the wider context of the project; what role does the verification
of the software play in the correctness, safety, security or performance of the sys-
tem? What happens if the system is wrong? How much software already exists
and how much can it be modified?

For example, if the verification is used to make a claim of code quality then
using an over-approximate technique might be fine if the number of defects
(including false alarms) is below the required threshold. An under-approximate
technique might be suitable for a component with redundancy or fail-safe mecha-
nisms as software defects will cause a loss of service rather than failure. Reducing
the number of these is clearly beneficial but it is not necessary to remove all of
them as low probability defects have a small impact. If defective software would
cause a catastrophic system failure then a human-assisted technique might be
most appropriate as a proof of correctness of the software can strengthen the
system-wide verification case.

A Pyramid Of (Formal) Software Verification 413

By prioritising the three attributes (automatic, no missed bugs, no false
alarms) with respect to the project’s goals and the need for software verification,
the pyramid model can help select the right kind of tool.

5.1 Process

The human side of using software verification tools covers three aspects; develop-
ing the software, developing the specification and dealing with the missing third
attribute. The first two of these are common to all approaches and are covered
by both formal and non-formal development methodologies. The pyramid model
can help inform the third area:

• If an over-approximate technique is used, then human effort will be required
to deal with the output which will be a mix of false alarms and genuine
defects. This was widely regarded as tedious but tractable.
Unfortunately there is evidence [38] that even skilled developers are not able
to reliably distinguish between false and real alarms.

• If an under-approximate analysis is used then any defects that are found are
definitely real. Most tools of this kind will produce a trace or test-case that
demonstrates the issue. These are often of considerable value for develop-
ers in fixing the problem [26]. For these approaches the missing attribute is
‘no missed bugs’ and so effort has to be put into increasing coverage. One
way of achieving this is to create more fine-grained specifications; similar
to unit tests. If checking the whole program leaves areas of the state-space
unexplored, these can be used to increase the coverage. For example, if a
monolithic under-approximate analysis does not check a particular function,
the function can be checked independently. To do this requires a specification
that includes the range of values of input variables over which the function is
to be verified. The developer experience is likely to be similar to writing unit
tests but using constraints to describe a space of possible inputs rather than
fixed values.

• Finally if a human-assisted tool is used then the human effort in the process
will be in producing the parts of the proof the tool is unable to directly
infer. These will typically be pre and post-conditions for functions and loop
invariants (see Sect. 3.5) or types (see Sect. 3.6). This requires developers with
relevant training or experience.

5.2 Understanding Tool Evaluation

The pyramid model also helps understand how tools are evaluated in academia
and industry. If tools are viewed as having two of the three attributes then
evaluation is a question of measuring or approximating how each unit of compu-
tational effort reduces the number of missed bugs, false alarms or the amount of
human-written proof across the set of all programs. As discussed earlier in this
section, most tool users only care about the specific programs and specifications
that they have. Combined with the obvious difficulty of running experiments

414 M. Brain and E. Polgreen

over the (infinite) set of all programs and specifications means that most evalua-
tions are conducted with benchmarks, sets of programs and specifications which
are claimed to be representative.

Experimental evaluations of over-approximate tools tend to focus on the
relative alarm rates or the relative difference between approximations given by
different techniques. Underapproximate techniques tend to compare the speed
at which different tools solve the same problem(s) (i.e., finding known bugs) or
the number solved with given human effort. This is because measuring missed
bugs is hard. Human-assisted tools use proxies to estimate the amount of effort
needed, for example number of lines of proof, or ratio of lines of proof to lines
of code, or the number of human-hours it takes to produce. Note that many of
these tools take very different inputs, so it is very hard to compare directly and
measuring effort/expertise is very subjective.

6 Conclusion

We have found the pyramid of verification to be an invaluable framework for
classifying and choosing verification techniques, for teaching, and for bridging
the gap between academics and potential users of verification tools. We hope
that this paper enables the reader to do the same.

References

1. Coverity Scan: Static analysis. https://scan.coverity.com/. Accessed 10 Apr 2024
2. Cppcheck: A tool for static C/C++ code analysis. https://cppcheck.sourceforge.

io/. Accessed 10 Apr 2024
3. CREST: Concolic test generation tool for C. https://www.burn.im/crest/.

Accessed 20 July 2020
4. FindBugs. http://findbugs.sourceforge.net/. Accessed 22 July 2020
5. Fortify static code analyzer. https://www.opentext.com/products/fortify-static-

code-analyzer. Accessed 10 Apr 2024
6. MALPAS software static analysis toolset. http://malpas-global.com/. Accessed 10

Apr 2024
7. PolySpace Code Prover. https://www.mathworks.com/products/polyspace-code-

prover.html. Accessed 22 July 2020
8. SPARK. https://www.adacore.com/about-spark. Accessed 10 Apr 2024
9. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)

10. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Burke, M., Soffa, M.L. (eds.) Proceedings of the
2001 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Snowbird, Utah, USA, June 20-22, 2001, pp. 203–213. ACM
(2001)

11. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

https://scan.coverity.com/
https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/
https://www.burn.im/crest/
http://findbugs.sourceforge.net/
https://www.opentext.com/products/fortify-static-code-analyzer
https://www.opentext.com/products/fortify-static-code-analyzer
http://malpas-global.com/
https://www.mathworks.com/products/polyspace-code-prover.html
https://www.mathworks.com/products/polyspace-code-prover.html
https://www.adacore.com/about-spark
https://doi.org/10.1007/11804192_17

A Pyramid Of (Formal) Software Verification 415

12. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Berlin, Heidelberg (2013). https://doi.org/
10.1007/978-3-662-07964-5

13. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

14. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009)

15. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Irwin, M.J. (ed.) Proceedings of the
36th Conference on Design Automation, New Orleans, LA, USA, June 21-25, 1999,
pp. 317–320. ACM Press (1999)

16. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

17. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10̂ 20 states and beyond. In: Proceedings of the Fifth Annual Symposium
on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June
4-7, 1990, pp. 428–439. IEEE Computer Society (1990)

18. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224.
USENIX Association (2008)

19. Cadar, C., et al.: Symbolic execution for software testing in practice: preliminary
assessment. In: ICSE, pp. 1066–1071. ACM (2011)

20. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

21. Cassé, H., Féraud, L., Rochange, C., Sainrat, P.: Using the abstract interpretation
technique for static pointer analysis. SIGARCH Comput. Architect. News 27(1),
47–50 (1999)

22. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

23. Cavada, R., et al.: The NUXMV symbolic model checker. In: Biere, A., Bloem, R.
(eds.) Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-
22, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8559, pp. 334–342.
Springer (2014). https://doi.org/10.1007/978-3-319-08867-9 22

24. Chen, D., Huang, R., Qu, B., Jiang, S.: Improving static analysis performance using
rule-filtering technique. In: Reformat, M. (ed.) The 26th International Conference
on Software Engineering and Knowledge Engineering, Hyatt Regency, Vancouver,
BC, Canada, July 1-3, 2013, pp. 19–24. Knowledge Systems Institute Graduate
School (2014)

25. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and com-
plexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24622-0 9

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-540-24622-0_9
https://doi.org/10.1007/978-3-540-24622-0_9

416 M. Brain and E. Polgreen

26. Clarke, E., Veith, H.: Counterexamples revisited: principles, algorithms, appli-
cations. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol.
2772, pp. 208–224. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39910-0 9

27. Cook, B.: Formal reasoning about the security of amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38–47. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 3

28. Cook, B., Khazem, K., Kroening, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.:
Model checking boot code from AWS data centers. Formal Methods Syst. Des.
57(1), 34–52 (2021)

29. Coppa, E., D’Elia, D.C., Demetrescu, C.: Rethinking pointer reasoning in symbolic
execution. In: Rosu, G., Penta, M.D., Nguyen, T.N. (eds.) Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017, pp. 613–618. IEEE
Computer Society (2017)

30. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

31. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Language Design for Reliable Software, pp. 77–94. ACM (1977)

32. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282. ACM Press (1979)

33. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0 3

34. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

35. D’Abruzzo Pereira, J., Vieira, M.: On the use of open-source C/C++ static analysis
tools in large projects. In: 2020 16th European Dependable Computing Conference
(EDCC), pp. 97–102 (2020)

36. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453-457 (1975)

37. Dijkstra, E.W.: EWD 1308: What Led to “Notes on Structured Programming”. In:
Broy, M., Denert, E. (eds.) Software Pioneers, pp. 340–346. Springer, Heidelberg
(2002). https://doi.org/10.1007/978-3-642-59412-0 19

38. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive infer-
ence. In: PLDI, pp. 181–192. ACM (2012)

39. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23702-7 26

40. D’Silva, V.V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

41. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1–3), 35–45 (2007)

42. Ferdinand, C.: Worst case execution time prediction by static program analysis.
In: IPDPS. IEEE Computer Society (2004)

43. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

https://doi.org/10.1007/978-3-540-39910-0_9
https://doi.org/10.1007/978-3-540-39910-0_9
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-642-59412-0_19
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-37036-6_8

A Pyramid Of (Formal) Software Verification 417

44. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45251-6 29

45. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI, pp. 234–245. ACM (2002)

46. Floyd, R.W.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H.,
Rankin, T.L. (eds) Program Verification. Studies in Cognitive Systems, vol. 14.
Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1793-7 4

47. Gibson-Robinson, T.: FDR3: the future of CSP model checking. In: Welch, P.H.,
Barnes, F.R.M., Broenink, J.F., Chalmers, K., Pedersen, J.B., Sampson, A.T.
(eds.) 35th Communicating Process Architectures, CPA 2013, Edinburgh, Scot-
land, UK, August 25, 2013, pp. 321–322. Open Channel Publishing Ltd. (2013)

48. Godefroid, P.: Software model checking improving security of a billion computers.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 1–1. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02652-2 1

49. Gopinath, R., Jensen, C., Groce, A.: Code coverage for suite evaluation by devel-
opers. In: Jalote, P., Briand, L.C., van der Hoek, A. (eds.) 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India, May 31 - June
07, 2014, pp. 72–82. ACM (2014)

50. Havelund, K.: Java PathFinder a translator from Java to Promela. In: Dams, D.,
Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 152–152.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48234-2 11

51. Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST software verification sys-
tem. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 25–26. Springer,
Heidelberg (2005). https://doi.org/10.1007/11537328 4

52. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

53. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

54. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009)

55. Johnson, S.C.: Lint, a C program checker, pp. 78–1273 (1978)
56. Kästner, D., Wilhelm, R., Ferdinand, C.: Abstract interpretation in industry -

experience and lessons learned. In: In: Hermenegildo, M.V., Morales, J.F. (eds)
Static Analysis. SAS 2023. Lecture Notes in Computer Science, vol 14284. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-44245-2 2

57. Kettl, M., Lemberger, T.: The static analyzer infer in SV-COMP (competition
contribution). In: TACAS 2022. LNCS, vol. 13244, pp. 451–456. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99527-0 30

58. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

59. Klein, G., Elphinstone, K., et al.: seL4: formal verification of an OS kernel. In:
SOSP, pp. 207–220. ACM (2009)

60. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

61. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, Beijing, China,
June 11 - 16, 2012, pp. 193–204. ACM (2012)

https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-642-02652-2_1
https://doi.org/10.1007/3-540-48234-2_11
https://doi.org/10.1007/11537328_4
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-030-99527-0_30
https://doi.org/10.1007/978-3-642-54862-8_26

418 M. Brain and E. Polgreen

62. Lahiri, S.K., Vaswani, K., Hoare, C.A.R.: Differential static analysis: opportunities,
applications, and challenges. In: FoSER, pp. 201–204. ACM (2010)

63. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis and transformation. In: CGO, pp. 75–88. IEEE Computer Society (2004)

64. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

65. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

66. Logozzo, F.: Practical specification and verification with code contracts. In: HILT,
pp. 7–8. ACM (2013)

67. Nehäı, Z., Bobot, F.: Deductive proof of industrial smart contracts using Why3.
In: Sekerinski, E., et al. (eds.) FM 2019. LNCS, vol. 12232, pp. 299–311. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-54994-7 22

68. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

69. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04652-0 5

70. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

71. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Chapter six
- mutation testing advances: an analysis and survey. Adv. Comput. 112, 275–378
(2019)

72. Pasareanu, C.S., et al.: Combining unit-level symbolic execution and system-level
concrete execution for testing NASA software. In: ISSTA, pp. 15–26. ACM (2008)

73. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. Am. Math. Soc. 74, 358–366 (1953)

74. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.
In: MacQueen, D.B., Cardelli, L. (eds.) POPL ’98, Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, CA, USA, January 19–21, 1998, pp. 38–48. ACM (1998)

75. Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.:
Successful use of incremental BMC in the automotive industry. In: Núñez, M.,
Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 62–77. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19458-5 5

76. Shen, H., Fang, J., Zhao, J.: EFindBugs: effective error ranking for findBugs. In:
Fourth IEEE International Conference on Software Testing, Verification and Vali-
dation, ICST 2011, Berlin, Germany, March 21-25, 2011, pp. 299–308. IEEE Com-
puter Society (2011)

77. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

78. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc. s2-42(1), 230–265 (1937)

79. Vernier-Mounier, I.: Symbolic executions of symmetrical parallel programs. In: 4th
Euromicro Workshop on Parallel and Distributed Processing (PDP ’96), January
24-26, 1996, Portugal, pp. 327–335. IEEE Computer Society (1996)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-54994-7_22
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-319-19458-5_5
https://doi.org/10.1007/978-3-540-79124-9_10

A Pyramid Of (Formal) Software Verification 419

80. Wang, Y., et al.: Formal verification of workflow policies for smart contracts in
Azure Blockchain. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS,
vol. 12031, pp. 87–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
41600-3 7

81. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
In: Deusen, M.S.V., Galil, Z., Reid, B.K. (eds.) Conference Record of the Twelfth
Annual ACM Symposium on Principles of Programming Languages, New Orleans,
Louisiana, USA, January 1985, pp. 291–299. ACM Press (1985)

82. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

83. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/3-540-48153-2_6
http://creativecommons.org/licenses/by/4.0/

Advancing Quantum Computing
with Formal Methods

Arend-Jan Quist , Jingyi Mei , Tim Coopmans(B) , and Alfons Laarman

Leiden University, Leiden, The Netherlands
{a.quist,j.mei,t.j.coopmans,a.w.laarman}@liacs.leidenuniv.nl

Abstract. This tutorial introduces quantum computing with a focus
on the applicability of formal methods in this relatively new domain. We
describe quantum circuits and convey an understanding of their inherent
combinatorial nature and the exponential blow-up that makes them hard
to analyze. Then, we show how weighted model counting (#SAT) can
be used to solve hard analysis tasks for quantum circuits.

This tutorial is aimed at everyone in the formal methods community
with an interest in quantum computing. Familiarity with quantum com-
puting is not required, but basic linear algebra knowledge (particularly
matrix multiplication and basis vectors) is a prerequisite. The goal of
the tutorial is to inspire the community to advance the development of
quantum computing with formal methods.

1 Introduction

“Nature isn’t classical, (...), and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a won-
derful problem, because it doesn’t look so easy”

Richard Feynman [11]

Renowned physicist and Nobel prize winner Richard Feynman is said to be
the first to coin the idea of a ‘quantum computer’ by inverting the difficulty
he encountered when solving equations in quantum mechanics [11]. He pro-
posed to make nature’s complexity work for us, instead of trying to calculate
nature’s behavior using classical tools —which Feynman noticed requires per-
forming exponentially many calculations. Fast forward to today, and the first
quantum computers have been built arguably showing first signs of ‘quantum
advantage’ [3].

We see that powerful techniques from formal methods are ideally suited to
tackle some of the crucial problems on the road towards a full-scale quantum

A.-J. Quist, J. Mei and T. Coopmans–These authors contributed equally.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 420–446, 2025.
https://doi.org/10.1007/978-3-031-71177-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_25&domain=pdf
http://orcid.org/0000-0002-6501-2112
http://orcid.org/0000-0002-4665-9818
http://orcid.org/0000-0002-9780-0949
http://orcid.org/0000-0002-2433-4174
https://doi.org/10.1007/978-3-031-71177-0_25

Advancing Quantum Computing with Formal Methods 421

advantage. This tutorial, therefore, provides a crash course into quantum com-
puting, specifically geared towards a formal methods audience. Our goal is to
inform the community of the challenges in handling quantum computations and
point them in the right direction to apply their own favorite techniques on open
problems in the field of quantum computing (Sect. 4).

For inspiration, we show how to formulate the semantics of quantum circuits
using #SAT. At the same time, we keep the quantum background to an absolute
minimum by introducing quantum computing as a minor extension of reversible
and probabilistic computation,1 and gradually introducing the required notation.

Nevertheless, our basic exposition manages to touch upon quantum algorithms,
such as Grover search [15], by briefly discussing how the Boolean satisfiability
problem can be incorporated into a quantum circuit as an oracle. While the satis-
fying assignments can then be found in the so-called probability amplitudes of the
quantum state that is computed by the circuit, it is hard to extract such infor-
mation using measurements, the only method to extract physical information
from a quantum system (which is unfortunately rather crude). Such an example
should inspire listeners to think about how to extract the solution to the satis-
fiability problem using measurements, which is the difficulty of coming up with
so-desired quantum algorithms that outperform their classical alternatives.2

Our exposition here focuses on the task of (classically) simulating quantum cir-
cuits, which is formally defined in the background section. This ensures that
the audience becomes familiar with the semantics of quantum circuits and algo-
rithms (which can be formulated as uniform families of quantum circuits). At
the very end, we show, based on related works, how the discussed encodings in
#SAT can also be used to solve various other tasks, inter alia: (quantum circuit)
equivalence checking, synthesis, optimization and quantum Hoare logic checking.
We also point the audience in the direction of the current obstacles on the road
to quantum supremacy, such as, circuit optimization and quantum error cor-
rection (which will crucially realize the ideal quantum circuit model introduced
here). Here, we even point out connections beyond quantum computing since it
is easy to show that progress in handling quantum circuits translates to progress
in solving important and hard problems in quantum mechanics, like simulation
of many-body physics and finding ground states.

1 Surprisingly, not even complex numbers are needed, as the (classical) reversible Tof-
foli gate, which is universal for reversible computing, requires only an additional
Hadamard (Walsh-Hadamard/Reed-Muller transform) gate to yield a universal gate
set for quantum computation [1,34].

2 While there is, for instance, an efficient quantum algorithm for factoring (Shor’s [35]),
we do not know for sure whether factoring is hard classically. So a true separation
between the classical and quantum complexity classes is still open (formalized as the
BPP = BQP question).

422 A.-J. Quist et al.

2 Quantum Computing for Computer Scientists

“Quantum computing becomes easy once you take the physics out of it”

https://scottaaronson.blog

This section introduces quantum circuits as a generalization of (classical)
reversible and probabilistic computing. Having provided the reader with an
understanding of these classical building blocks, we then explore the semantics
of quantum circuits. We finish by highlighting the crucial aspects of a quantum
circuit that make formal methods amenable to it.

2.1 From Reversible, via Probabilistic, to Quantum Circuits

Each (irreversible) Boolean circuit can be written as a reversible circuit. One
way to do this is using circuits with only the so-called Toffoli gate [37] (see the
yellow box below).

Toffoli gate. The three-bit Toffoli gate, shown below, is both reversible
and classically universal. It takes three bits a, b, c as inputs and outputs
a, b, c ⊕ ab. Informally, it only flips the c bit when both a and b are true
(leaving a and b intact). a • a′ := a

b • b′ := b
c c′ := c ⊕ (a ∧ b)

Applying a Toffoli twice will compute c ⊕ ab ⊕ (a ∧ b) = c, thus reversing
the original computation by ‘uncomputing’ the result. Furthermore, by
setting a = b = 1, the c bit is always flipped so that we can realize a
NOT gate (¬) as syntactic sugar (drawn as in a circuit). Toffoli is
classically universal, which follows from the fact that the gate set {∧,¬}
is universal and that Toffoli implements an AND gate (∧). By setting
a = 1, we obtain a (singly-)controlled-NOT, or CNOT gate (drawn as•

), which flips the value of c only when b is set. As additional syntactic
sugar, we use the negated control , which is a control • surrounded by
negations • . It checks whether the input is false, returning it to
its original state.

As an example of writing each Boolean circuit as a reversible circuit, consider
circuit (i) on input a, b, c ∈ {0, 1} below: We construct a reversible circuit by
storing intermediate value x and the result y separately, adding wires for these
variables. This leads to the reversible circuit (ii) containing NOT gates (drawn
as ⊕ indicating a bit flip without control) and Toffoli gates (a bit flip ⊕ with
two controls • or).

https://scottaaronson.blog

Advancing Quantum Computing with Formal Methods 423

∧

∨

a

b

x

c
y

(i)

a •
b •
0 x
c
0 y

(ii)

a a′
b b′

(iii)

00 10

01

(iv)

11

Next, let us visualize the action of a classical reversible circuit. In (iii) above, we
use a circuit on two bits a, b and give in (iv) an automaton of the four possible
states on two bits. An arrow from state (a, b) to (a′, b′) indicates that the circuit
maps (a, b) to (a′, b′). (We use a circuit on two bits instead of five as in (ii) to
avoid too large automata for easy readability.)

Exercise: Create a reversible circuit for the Boolean formula ((a ∧ b) ∨
c) ∧ d. Then extend the circuit to uncompute all wires but the result.

2.1.1 Probabilistic Classical (reversible) Computing with Linear
Algebra To move closer towards quantum circuits, we will now see how the
automaton changes when the logical gates used are probabilistic. Specifically, in
example (iii) above, we replace the NOT gate (⊕) with a probabilistic gate G,
which does nothing with probability 75% and applies a NOT with 25%, resulting
in (v) below. Then the circuit is modeled by a Markov chain, and the transition
arrows in the automaton (vi) are labeled with the probabilities of mapping the
input state (a, b) to output state (a′, b′) [16].

(v) a G a′

b b′

00

(vi)

10

01 11

0.25

0.75

0.25

0.75

0.25

0.75

0.25

0.75

A Markov chain is typically analyzed by associating each state (a, b) (abbrevi-
ated ‘ab’) in the automaton to a basis vector and writing down the transition
probabilities as an adjacency matrix M of the automaton above:

‘00’ ≡

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦, ‘01’ ≡

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦, ‘10’ ≡

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦, ‘11’ ≡

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦, M =

⎡
⎢⎢⎣
0.75 0 0.25 0
0 0.75 0 0.25

0.25 0 0.75 0
0 0.25 0 0.75

⎤
⎥⎥⎦ (1)

424 A.-J. Quist et al.

Next, the probability distribution over the output states (a′, b′) on input (a, b)
is computed using matrix-vector multiplication. For example, on input ‘00’ (a =
0, b = 0), the output is

M · ‘00’ =

⎡
⎢⎢⎣
0.75 0 0.25 0
0 0.75 0 0.25

0.25 0 0.75 0
0 0.25 0 0.75

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.75
0

0.25
0

⎤
⎥⎥⎦ = 0.75

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ + 0.25

⎡
⎢⎢⎣
0
0
1
0

⎤
⎥⎥⎦ ,

that is, ‘00’ is mapped to itself with probability 75% and to ‘10’ with probability
25%, as was already revealed by the Markov chain.

The advantage of using the transition matrix instead of writing down the Markov
chain is that the input need not be a single bitstring itself but can also be
a probability distribution over bitstrings. In this more general case, matrix-
vector multiplication correctly propagates the probabilities. To see this,
we first directly compute the probabilities of the output bitstrings for the circuit
in (v) using the Markov chain. We use the example of an input state that is
either set to the bitstring ‘00’ with probability 0.4 or to the bitstring ‘10’ with
probability 0.6. In the first case, the output of the circuit in (v) is ‘00’ with a
probability of 0.75 and ‘10’ with a probability of 0.25; in the second case, it is
‘00’ (‘10’) with a probability of 0.25 (0.75). Aggregating these two, the output
is ‘00’ with probability 0.4 · 0.75 + 0.6 · 0.25 = 0.45 and ‘10’ with probability
0.4·0.25+0.6·0.75 = 0.55. Equivalently, we obtain this result using linear algebra.
The input, which represents ‘00’ with probability 0.4 and ‘10’ with probability
0.6, is the vector v =

[
0.4 0 0.6 0

]� (where the transpose (.)� turns a row
vector into a column vector). The output probability distribution is computed
by applying the transition matrix to the input vector v:

M · v =

⎡
⎢⎢⎣
0.4 · 0.75 + 0.6 · 0.25

0
0.4 · 0.25 + 0.6 · 0.75

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.45
0

0.55
0

⎤
⎥⎥⎦ ,

representing 45% in state ‘00’ and 55% in state ‘10’, which is precisely the
same result we obtained before! Indeed, matrix-vector multiplication correctly
propagates the probabilities.

We note that because the input vector represents a probability distribution over
bitstrings, its entries should be probabilities, i.e., nonnegative values between
zero and 1, and the vector should be normalized (all its entries should sum to
1). Also, each column in the transition matrix has the same property, as the
sum of outgoing-edge labels of a node in the automaton constitute a probability
distribution themselves too.

Advancing Quantum Computing with Formal Methods 425

Key message: An n-bit reversible circuit with probabilistic gates is rep-
resented by a transition matrix. If the input to the circuit is a probability
distribution over bitstrings, it can be represented by a 2n-length vec-
tor containing the probabilities. Furthermore, the action of the circuit is
computed by applying the transition matrix to the input vector.

Finally, in order to compute the probability of ending in a certain state, say ‘10’,
after starting in v, we can compute the following: ‘10’� ·M ·v ≡ [

0 0 1 0
]·M ·v =

0.55. Note the use of a row vector (‘10’�) and a column vector (v).

Sequential Composition of Circuits Using Matrix Multiplication. Suppose that
the input probability distribution over bitstrings v is inputted to circuit A,
yielding the output vector w = MAv, where MA is the transition matrix of
A. Suppose furthermore that we pass input w to another circuit B. Then the
probability vector representing B’s output is MBw = MB(MAv), which can
also be written as (MB · MA)v, where · denotes matrix multiplication. Since
this holds for any input vector v, we observe that a circuit C, consisting of first
performing A followed by B, has a transition matrix MB · MA. That is, the
sequential composition of gates, and thus of circuits, corresponds to the matrix
multiplication of their transition matrices. For example, in (v) the transition
matrix is denoted as M and G is applied to the top bit a once, so applying G
twice instead yields M2:

a G G a′

b b′
M2 =

⎡
⎢⎢⎣
0.75 0 0.25 0
0 0.75 0 0.25

0.25 0 0.75 0
0 0.25 0 0.75

⎤
⎥⎥⎦

2

=

⎡
⎢⎢⎣
0.625 0 0.375 0
0 0.625 0 0.625

0.375 0 0.375 0
0 0.375 0 0.625

⎤
⎥⎥⎦

Parallel Composition of Circuits Using the Kronecker Product. Above, we
found that the sequential composition of circuits corresponds to the matrix-
multiplication product of their transition matrices. For parallel composition,
where one stacks two circuits ‘on top’ of each other, we need the Kronecker
product of matrices.

Kronecker product. The Kronecker product of matrices A and B
performs a giant case distinction: for each entry a of A, we create a copy
of all possible entries b of B, and the resulting matrix contains the values
a · b. For example, the transition matrices on a single bit

A =
[
0.1 0.2
0.9 0.8

]
, B =

[
0.3 0.4
0.7 0.6

]

426 A.-J. Quist et al.

is

A ⊗ B =
[
0.1 · B 0.2 · B
0.9 · B 0.8 · B

]
=

⎡
⎢⎢⎣
0.1 · 0.3 0.1 · 0.4 0.2 · 0.3 0.2 · 0.4
0.1 · 0.7 0.1 · 0.6 0.2 · 0.7 0.2 · 0.6
0.9 · 0.3 0.9 · 0.4 0.8 · 0.3 0.8 · 0.4
0.9 · 0.7 0.9 · 0.6 0.8 · 0.7 0.8 · 0.6

⎤
⎥⎥⎦ .

For example, the entry of A ⊗ B at column 2 (01 = 0A1B in binary)
and row 4 (1A1B), which is underlined above, contains the probability
0.9 · 0.6 which is the probability that both A maps bit 0 to 1 (which
happens with probability 0.9) as well as B maps 1 to 1 (which happens
with probability 0.6).

Formally, the Kronecker product on two general matrices (not necessarily
transition matrices) acts as follows: given rA × cA matrix A and rB × cB

matrix B, the rArB × cAcB matrix A ⊗ B is

A ⊗ B =

⎡
⎢⎢⎢⎣

A00B A01B . . . A0cAB
A10B A11B . . . A1cAB

...
...

. . .
ArA0B ArA1B . . . ArAcAB

⎤
⎥⎥⎥⎦ .

The product behavior of the Kronecker product of two matrices A and B can be
interpreted as choosing an entry a from A and an entry b from B and multiplying
them (see the yellow box above). When A and B are probability vectors of the
individual systems, their Kronecker product yields precisely the vector on the
combined system, where the values a · b are the occurrence probabilities of these
automaton states/unit vectors. The same interpretation shows that the parallel
composition of two gates is also given by their Kronecker product. For example,
the transition matrix for G in (iii) (which acts on a single bit) is given by
MG = [0.75 0.25

0.25 0.75], the transition matrix on the second bit (doing nothing) is the
identity matrix I = [1 0

0 1]; hence we may write MG ⊗ I for the transition matrix
on the two bits a, b.

Exercise: Using the definition of the Kronecker product sign ⊗ (see the
yellow box above), verify that MG ⊗ I = M from Eq. 1.

Exercise: For a single bit, the two basis vectors are ‘0’ ≡ [10] and
‘1’≡ [01]. Compute the 4 possible Kronecker products between these states
(‘0’ ⊗ ‘0’, ‘0 ⊗ ‘1’, etc.) and verify that these are precisely the four basis
vectors for two bits from Eq. 1.

Advancing Quantum Computing with Formal Methods 427

Key message: Composing probabilistic circuits sequentially corre-
sponds to multiplying their transition matrices, while their parallel com-
position is represented by the Kronecker product of the transition matri-
ces.

2.1.2 Quantum Computations with Linear Algebra Now let us move
to quantum bits or qubits. Here, we limit the presentation to a simplified model
of quantum computing using solely real numbers. This model is universal for
quantum computing [1] and suffices to explain all aspects of quantum computing.
Nevertheless, a reader should keep in mind that the usual quantum computing
model contains complex numbers and, therefore, comprises the subtle differences
noted below (also see reading material referenced at the end of Sect. 4).

The state of two qubits is a generalization of a probability distribution over
the four bitstrings, whose vectors, e.g., for ‘00’, ‘01’, ‘10’ and ‘11’ in Eq. 1, are
referred to as the computational-basis states as they form a basis of the space of
4-dimensional vectors, and written as |00〉, |01〉, |10〉, |11〉 (so-called Dirac nota-
tion). Just like in the Markov chain case above, the state on n quantum bits is
represented by a vector of length 2n. However, in contrast to the Markov chain
case, the entries of the vector are not probabilities (which sum up to 1) but are
so-called probability amplitudes, or simply amplitudes. So to represent a quan-
tum state, the vector should now be normalized by letting the squares3 of these
amplitudes sum up to 1. Instead of a transition matrix, which contains probabil-
ities such that the entries in each column add up to 1, the gate in the circuit is
given by a unitary matrix : in a unitary matrix, the sum of squares of the entries
(amplitudes) in a column add up to 1.4 Sequential and parallel composition of
gates, identically to the case of probabilistic computing in Sect. 2.1.1, correspond
to matrix multiplication and Kronecker product, respectively.

An example is the circuit below: the input is computational-basis state |a〉⊗|b〉 =
|ab〉 for a, b ∈ {0, 1}, and the single-qubit quantum gate U in the circuit yields
the two-qubit action M ′ (to see why M ′ = U ⊗ I, compare with MG ⊗ I in
Sect. 2.1.1):

|a〉 U

|b〉 U =
[√

0.75
√
0.25√

0.25 −√
0.75

]
M ′ = U ⊗I =

⎡
⎣

√
0.75 0

√
0.25 0

0
√
0.75 0

√
0.25√

0.25 0 −√
0.75 0

0
√
0.25 0 −√

0.75

⎤
⎦

For example, if the input state is |11〉 ≡ [
0, 0, 0, 1

]�, then the output state is

(U ⊗ I) · |11〉 =
[
0,

√
0.25, 0,−√

0.75
]�

=
√
0.25|01〉 − √

0.75|11〉. By squaring
the amplitudes

√
0.25 and

√
0.75, we regain the interpretation as probability

3 Or modulus square in the general case with complex numbers.
4 The rows of a unitary matrix are also orthogonal; see Sect. 2.2 for full definition.

428 A.-J. Quist et al.

distribution over the states |01〉 and |11〉. However, the fact that the amplitudes
can be negative (and complex numbers in general) is crucial: as we will see later,
these give rise to interference, where amplitudes are canceled or amplified, a
feature that is not present in probabilistic computing.

Key message: quantum computing is a generalization of probabilistic
computing.
It will be useful to read a(n exponential-length) state vector as a proba-
bility (amplitude) distribution over classical (computational basis) states:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

α1

...

...
α2n−2

α2n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0...00

α0...01

...

...
α1...10

α1...11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

→ probability amplitude of |0 . . . 00〉
→ probability amplitude of |0 . . . 01〉

→ probability amplitude of |1 . . . 10〉
→ probability amplitude of |1 . . . 11〉

2.2 Building Blocks of Quantum Circuits

In the previous section, we gave an example of a quantum state as a generaliza-
tion of a probability distribution over bitstrings. Here we give the full definition
of a general quantum state (state of a collection of qubits), and give the building
blocks of quantum-computer circuits: the quantum analogs of logical gates, and
measurements as a means to extract information from a quantum state. (For a
full introduction, see [24].)

2.2.1 Quantum Bits As we have seen before, a quantum state on n qubits
is a column vector of length 2n, which constitutes a probability distribution
over the length-n bitstrings b ∈ {0, 1}n as the vector is a linear combination∑

b∈{0,1}n αb|b〉 over the corresponding computational-basis states |b〉 (i.e. the
length-2n vector with entry 1 at position b and 0 everywhere else). (The quantum-
computing jargon is superposition instead of linear combination.) The vector
entries (amplitudes) αb are complex numbers in general. In this paper, we will
always consider real vector entries. The square of the amplitude determines the
probability. For example, the following vectors

[−√
0.75√
0.25

]
,

[−√
0.75

−√
0.25

]
,

[√
0.75√
0.25

]
(2)

all give rise to the probabilities 0.75 and 0.25 over the states |0〉 and |1〉, respec-
tively. If the amplitudes αb of a vector v are real numbers, then

√∑
b∈{0,1}n α2

b

Advancing Quantum Computing with Formal Methods 429

indicates the vector’s length (for complex numbers, we would also have to take
the modulus |αb| instead of αb). Since the values |αb|2 form a probability distri-
bution, we find that:

Key message: an n-qubit state is a vector of 2n complex numbers with
norm 1. (In this paper, we only consider real vectors.)

Example 1. The vectors |φ〉, |ψ〉 and |η〉 are quantum states on 2, 2 and 3 qubits,
respectively:

|φ〉 � 1√
12+22+32+

√
17

2
·

⎡
⎢⎢⎣

1
2

−3√
17

⎤
⎥⎥⎦ = 1√

31

(
1 · |00〉 + 2 · |01〉 − 3 · |10〉 +

√
17|11〉

)

|ψ〉 � 1
2

·

⎡
⎢⎢⎣

1
−1
1

−1

⎤
⎥⎥⎦ , |η〉 � 1√

2
· [
1, 0, 0, 0, 0, 0, 0, 1

]� = 1√
2
|000〉 + 1√

2
|111〉.

�

Consider a set of six qubits and suppose that the first two are jointly in some
arbitrary state |φ〉 (a vector of length 22 = 4) and the remaining four in some
state |ψ〉 (a vector of length 24 = 16). Identically to the case of probabilistic
computing (Sect. 2.1.1), we use the Kronecker product ⊗ to find the joint state
on the six qubits, which is |φ〉 ⊗ |ψ〉 (a vector of length 22 · 24 = 26).

Exercise: Show that the computational-basis states |b〉 for b =
(b1, b2, . . . , bn) ∈ {0, 1}n can be written as |b〉 = |b1〉 ⊗ |b2〉 ⊗ · · · ⊗ |bn〉.

2.2.2 Manipulating Quantum States Using Gates A quantum gate on n
qubits is represented by a 2n by 2n unitary matrix U (unitarity defined below).
A quantum state |φ〉 is updated by a unitary matrix as U · |φ〉 where · denotes
matrix-vector multiplication.

Recall from Sect. 2.1 that the three-(qu)bit CCNOT gate (or doubly control-
NOT, or Toffoli gate) is universal for classical computing, while the NOT and
CNOT gates can be added as syntactic sugar. Below we give their matrices. To
obtain a universal gate set for quantum computing, we merely need to extend
this gate set with the single-qubit Hadamard gate: H � 1√

2

[
1 1
1 −1

]
. Example 2

430 A.-J. Quist et al.

illustrates its function: realizing superpositions.

NOT �
[
0 1
1 0

]
, CNOT �

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
, CCNOT �

⎡
⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥⎦

Example 2. Applying the H gate to the state |0〉 or |1〉, we obtain

H · |0〉 = 1√
2

[
1 1
1 −1

]
·
[
1
0

]
=

[
1√
2
1√
2

]
=

1√
2
(|0〉 + |1〉),

H · |1〉 = 1√
2

[
1 1
1 −1

]
·
[
0
1

]
=

[
1√
2

− 1√
2

]
=

1√
2
(|0〉 − |1〉).

�

A square matrix U is unitary if it is invertible and its inverse is U†, where U† is
found by transposing U for real matrices.5 Unitarity ensures that the matrix is
norm-preserving, thus guaranteeing that the output quantum state has norm 1
if the input state does so too.6 As unitary matrices are reversible, we directly see
that all quantum gates are also reversible. This relates quantum computing to
reversible computing. The Hadamard gate and NOT gate have adjoint operators
H† = 1√

2

[
1 1
1 −1

]
= H and NOT † = [0 1

1 0] = NOT ; it is not hard to check, indeed,
that H† · H = NOT † · NOT = I = [1 0

0 1].

To apply a single-qubit gate to one qubit of a state on n > 1 qubits, one uses the
Kronecker product (see Sect. 2.1) for ‘padding’ the gate with an identity matrix
I for each other qubit, i.e. the matrices which leave any vector unchanged. For
example, applying H to the first qubit of |010〉 is computed as (H ⊗ I ⊗ I)|010〉.

Exercise: Compute the unitary matrix H ⊗ I ⊗ I. Remark that it has
dimensions 23 × 23, as is needed for being able to apply it to a 3-qubit
state.

5 The adjoint U† of a complex matrix U is found by transposing U , followed by
replacing each matrix entry u + wi with its complex conjugate u − wi. As we use
only real matrices in this paper, one can always think of the adjoint as the transpose.
The adjoint notation U† is used in this paper, in favor of the inverse U−1, as this is
common in the quantum community.

6 Quantum states should have norm 1 to be physically meaningful since the proba-
bilites over the computational-basis states should sum up to 1. Further, quantum
gates need to be unitary to obey the energy conservation law, due to quantum
mechanical properties following from the famous Schödinger equation.

Advancing Quantum Computing with Formal Methods 431

Finally, we remark that sequential composition of gates is represented by matrix
multiplication of their unitaries, similar to matrix multiplication in the Markov
chain case in Sect. 2.1: applying first U and then V to |φ〉 yields the state V ·
(U · |φ〉) = (V · U)|φ〉.

2.2.3 Measurement Measurement enables one to extract classical informa-
tion (bits) from a quantum state. The theory of quantum measurement allows
many ways to do this and here we only focus on a common one: measur-
ing all qubits in the computational basis. Given an n-qubit quantum state∑

b∈{0,1}n αb|b〉, a measurement (on all qubits) is a probabilistic operation that
returns one of the values b ∈ {0, 1}n, called the measurement outcome. The value
b is returned with probability (αb)2. (Or |αb|2 in the case of complex amplitudes.)
For example, the probability of measuring 00 . . . 0 is (α00...0)2. Since each quan-
tum state vector has unit norm, these probabilities add up to 1, as desired.

Example 3. Consider the state
[
1
2 , 0, 1

2 , 0, 1
2 , 0, 0, 1

2

]� = 1
2 |000〉+ 1

2 |010〉+ 1
2 |100〉+

1
2 |111〉. Upon measurement, the probability to obtain measurement outcome 000
is (α000)2 =

(
1
2

)2 = 1
4 and the probability to obtain measurement outcome 001

is (α001)2 = 02 = 0. �

2.2.4 Quantum Circuit A quantum circuit is composed of qubits repre-
sented by horizontal lines (wires) and quantum gates represented by boxes, with
each gate acting on one or more qubits. The circuit is finished with a measure-
ment. We will always let the input state be |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 (which is usually
written as |0〉⊗n or |00 . . . 0〉), and the output state is obtained after the sequen-
tial application of the circuit’s gates. All gates can be combined with matrix
multiplication into a single unitary operator describing the entire circuit.

Example 4. In the following circuit, we apply a Hadamard to the first two qubits
of |000〉. Then we apply a Toffoli gate (CCNOT) to the three qubits, followed by
an all-qubit measurement. The intermediate states are as follows; see Example 3
for evaluating measurement.

|0〉 H • ���

|0〉 H • ���

|0〉 ���
|ϕ0〉 |ϕ1〉|ϕ2〉

|ϕ0〉 = |000〉
|ϕ1〉 = (H⊗2 ⊗ I)|ϕ0〉 = 1

2
(|000〉 + |010〉 + |100〉 + |110〉)

|ϕ2〉 = CCNOT |ϕ1〉 = 1
2
(|000〉 + |010〉 + |100〉 + |111〉)

�

We emphasize that quantum circuits are reversible: each gate, and hence each
circuit, has the same number of input and output qubits.

432 A.-J. Quist et al.

Suppose that we have an n-qubit circuit C initialized to the all-zero state
|00 . . . 0〉. Computing the probability of outcome b ∈ {0, 1}n can now be written
as follows: |〈b|C|00 . . . 0〉|2. Here, 〈b| is a row vector of the computational basis
state |b〉, so 〈b|C|00 . . . 0〉 can be seen as a product of a row vector, matrix and
column vector, resulting in a scalar.

Example 5. Let C be the circuit from Example 4. Then C|000〉 equals 1
2 |000〉 +

1
2 |010〉 + 1

2 |100〉 + 1
2 |111〉 =

[
1
2 , 0, 1

2 , 0, 1
2 , 0, 0, 1

2

]�. Hence, the probability of
measuring 000 is |〈000|C|000〉|2 = 1

4 and the probability of measuring 001 is
|〈001|C|000〉|2 = 0.

Note that, as in Sect. 2.1.1, we use a row vector for the measured computational
basis state and a column vector for the initial state of the circuit.

Key message: an n-qubit state is transformed by 2n × 2n matrices
through matrix-vector multiplication. Measurement allows one to extract
information from the state.

We will now take a first step towards using quantum circuits to our advantage.
We focus on Boolean satisfiability (SAT), and will provide a naive approach to
solving SAT using a quantum computer. Although this approach will not work,
it will show how the single evaluation of the Boolean circuit on a quantum state
will evaluate the Boolean function on all exponentially-many bitstrings as input.

Consider the 3-CNF formula f(x, y, z) = x∧ (¬x∨y)∧ (¬x∨¬y∨z). We will use
a reversible circuit to implement this function as a quantum circuit. We usually
call such quantum circuit a function oracle. We want to compute f for every
possible input 000, 001, . . . , 111. Therefore, we create a superposition of these
states. This is done by applying a Hadamard gate to the qubits representing the
input (see exercise below).

Now we will see what happens if we apply the function oracle f to a superposi-
tion of input states. Example 4 contains a simple example of a quantum circuit
calculating f = x ∧ y. A more complicated example is the following one:

Example 6. Consider the 3-CNF formula

f(x, y, z) = x ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y ∨ z). (3)

Advancing Quantum Computing with Formal Methods 433

The following circuit first applies Hadamard gates to get a superposition on the
input qubits. Then it applies the function oracle for f (in the dashed rectangle).

|0〉x H • • • • • |x〉
|0〉y H • • |y〉
|0〉z H |z〉
|0〉 |0〉 (¬x ∨ y)

|0〉 |0〉(¬x ∨ ¬y ∨ z)

|0〉 |f(x, y, z)〉

� � � � � � � � � � � � � � � ��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

� � � � � � � � � � � � � � � �

The resulting state is
∑

x,y,z∈{0,1}3 |x, y, z〉 ⊗ |f(x, y, z)〉, or, written out in full,

1
2
√
2
(|0000〉+ |0010〉+ |0100〉+ |0110〉+ |1000〉+ |1010〉+ |1100〉+ |1111〉). (4)

(Here, we omitted the two auxiliary qubits uncomputed to |0〉). Note that the
single satisfying assignment (111) represents the solution to the satisfiability
problem for f , because in Example 4, the only term which has a ‘1’ at the fourth
qubit, corresponding to f(x, y, z), is |1111〉.

Exercise: Evaluate the circuit above in three steps. (a) Show that apply-
ing H ⊗ H ⊗ H to the input |000〉 (the top three qubits in the circuit)
yields a superposition over all 3-qubit computational-basis states. (b)
Next, find the state when adding the register of the bottom three qubits
(which is in the state |000〉) using the Kronecker product. (c) Lastly,
using the Boolean function f as given in Eq. 3 (the circuit in the dashed
rectangle above), verify that the resulting state indeed is Eq. 4.

We would like to extract the satisfying assignment ‘111’ using measurement.
Unfortunately, we see that measuring gives outcome 1111 with a probability

of only
∣∣∣ 1
2
√
2

∣∣∣
2

= 1
8 . This probability is 1

2n in general, where n is the number
of variables to f . Thus, finding a satisfiable instance this way only succeeds
with exponentially-small probability, much like the classical naive approach of
randomly guessing bitstrings as input and evaluating f on them. �

Boolean satisfiability & quantum computing. In Example 6 above,
we saw a naive approach to solving Boolean satisfiability using quantum
computing, which performed equally well as random guessing. However,
using the famous quantum algorithm by Grover [15], the probability of
measuring a satisfying assignment of f can be increased to arbitrarily high

434 A.-J. Quist et al.

probability. Since every CNF formula f can be efficiently encoded as a
reversible circuit, this solves the satisfiability problem for f . The Grover
algorithm has runtime O∗(

√
2n), where O∗ omits polynomial factors. This

is a quadratic speed-up compared to brute force and the best-known
classical algorithm for k-SAT where k is unbounded.

a

aSchöning’s [32] and the PPSZ [26] algorithm deliver better guarantees
for constant k, e.g., for 3-SAT, and can also be quantized [29].

2.3 Visualizing a Quantum Computation Using an Automaton

Armed with a well-defined notion of a quantum circuit, we can now continue the
comparison with Markov chains in Sect. 2.1 and visualize an n-qubit quantum
gate as an automaton: it has 2n states, one for each computational-basis state,
and we interpret the matrix of each gate U as the weighted adjacency matrix
between these states. For example, consider 2 qubits, acted upon by the CNOT
gate and by the H gate on the first qubit:

H ⊗ I =

⎡
⎣

1/
√

2 0 1/
√

2 0

0 1/
√

2 0 1/
√

2
1/

√
2 0 −1/

√
2 0

0 1/
√

2 0 −1/
√

2

⎤
⎦, CNOT =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
|00〉 |10〉

|01〉 |11〉

1/
√
2

1/
√
2

1

1/
√
2

−1/
√

2

1

1/
√
2

1/
√
2

1

1/
√
2

−1/
√

2

1

We will now use the following known result from graph theory:

The entry in the product of adjacency matrices at row r and column c
equals the sum of products of edge labels (a path sum) over all paths from
node r to node c.

This somewhat complicated statement tells us that matrix multiplication can
be visualized as path sums, a result we already implicitly used in the Markov
chain case in Sect. 2.1.1 when observing that sequential composition of gates
is represented by multiplication of transition matrices. To illustrate how this
statement results in a visualization of quantum gates as paths in the automaton,
we give the following example.

Example 7. Consider the circuit below; we will compute the entries in (H ⊗
I) · CNOT · CNOT · (H ⊗ I) corresponding to the transitions |00〉 → |00〉
and |00〉 → |10〉, first using matrix-vector multiplication, and then using paths

Advancing Quantum Computing with Formal Methods 435

in the automaton. For the former, it is straightforward to derive that |ϕ1〉 =
1√
2
(|00〉+ |10〉), hence |ϕ3〉 = 1√

2
· 1 · 1 · |00〉+ 1√

2
· 1 · 1 · |10〉 (the second CNOT

uncomputes the first). We use this to compute |ϕ4〉 = (H ⊗ I)|ϕ3〉 below.

|0〉 H • • H

|0〉 ⊕ ⊕
|ϕ0〉 |ϕ1〉 |ϕ2〉 |ϕ3〉 |ϕ4〉

|ϕ4〉 = 1√
2

· 1 · 1 · (1√
2
|00〉 + 1√

2
|10〉 + 1√

2
|00〉 − 1√

2
|10〉)

=
(

1√
2

· 1 · 1 · 1√
2
+ 1√

2
· 1 · 1 · 1√

2

)
|00〉

+
(

1√
2

· 1 · 1 · 1√
2

− 1√
2

· 1 · 1 · 1√
2

)
|10〉 (5)

=
(
1
2
+ 1

2

) |00〉 + (
1
2

− 1
2

) |10〉 (6)

Now the gate sequence H − CNOT − CNOT − H means we should consider
‘red-blue-blue-red’ paths in the automaton. The factor 1

2 + 1
2 in front of |00〉

in Eq. 6 is mirrored in the automaton by noting that there are two paths from
|00〉 to itself: |00〉 1/

√
2→ |10〉 1→ |11〉 1→ |10〉 1/

√
2→ |00〉 and |00〉 1/

√
2→ |00〉 1→ |00〉 1→ |00〉 1/

√
2→ |00〉 .

These paths both have amplitude 1/
√
2 · 1 · 1 · 1/√

2 = 1/2, and their sum 1/2 + 1/2
is the amplitude of |00〉 in |ϕ4〉 in Eq. 6 indeed (also note that the two products
1/2 · 1 · 1 · 1/2 are precisely the terms in front of |00〉 in Eq. 5). In contrast, the
factor 1/2 − 1/2 in front of |10〉 in Eq. 5 arises in the automaton as two paths
from |00〉 to |10〉, one with amplitude 1/

√
2 · 1 · 1 · 1/√

2, and one with amplitude
1/

√
2 · 1 · 1 · −1/

√
2, which are precisely the terms in front of |10〉 in Eq. 5. �

Note that in the example above, the path sums have opposite sign, so they pre-
cisely cancel each other, implying that the transition |00〉 → |10〉 has amplitude
zero! This cannot happen in a Markov chain as probabilities are never negative.

We thus see that the transition amplitude from state |x〉 to state |y〉, which
we first found through linear algebra, can be found in the automaton by sum-
ming path contributions from |x〉 to |y〉 , where each path contribution is the
product of the edge labels of the path.

The automaton is useful because it shows a few properties of quantum circuits:

1. an exponentially-sized state space as function of number of qubits
2. the combinatorial nature of the evolution of a quantum state

through a circuit: there can be many paths from one node to another,
sometimes exponentially-many, and we need to track all of them to compute
the output state’s amplitudes

3. the many paths from one node to another will interfere as amplitudes, either
constructively (the amplitudes amplify through addition, as in the example
above for computing the amplitude of |00〉) or destructively (the amplitudes
cancel, as for |10〉 above).

436 A.-J. Quist et al.

Item 1 and 2 also occur for probabilistic computation (see the Markov chain in
Sect. 2.1) but item 3 is where quantum computing differs. Automated reasoning
methods were often developed to solve scenarios where items 1 and 2 are present;
we will see one approach in Sect. 3 that also illustrates item 3.

Key message: during a run of a quantum circuit, there can be expo-
nentially many paths leading from one state to another. The amplitude
contributions of these paths can constructively or destructively interfere.

2.4 Towards a Quantum Advantage

Application of a gate G once to a superposition of many computational-basis
states |b〉 yields a sum of terms of the form G|b〉. This realization is particularly
astounding in case we start out with an exponentially-large superposition, which
can be created already with only linearly many gates in the number of qubits
(recall the exercise above to compute H⊗n|0〉⊗n for n = 3). However, using
measurement, we can only read off a single bitstring from this superposition.

A plethora of quantum algorithms8 [28] has been found whose quantum circuits
provably need polynomially-fewer or exponentially-fewer gates than their clas-
sical counterpart.9 Real-world quantum devices suffer from noise, and counter-
acting that noise might require additional resources that cancel the complexity-
theoretic and real-world advantages of quantum computing. Arguably the main
open problem of quantum technologies is therefore to provide a real-
world demonstration of a quantum advantage. On the road to this goal,
there are several tasks where formal methods could help: performance predic-
tion of real-world devices through classical simulation of quantum circuits (sam-
pling or computing the measurement distribution); optimizing circuits (e.g. fewer
gates, circuit layouts following the topology of real-world chips, etc.); verifica-
tion, specifically checking if two quantum circuits implement the same unitary
matrix; finding a circuit that outputs a desired quantum state; transpilation to
a gate set that real-world devices can natively run; etc.

In the remainder of this tutorial, we will focus on using weighted model counting
or #SAT (Sect. 3) to perform classical simulation of quantum circuits.

8 A quantum algorithm is a uniform family of quantum circuits (like in circuit com-
plexity [2]).

9 The exact statements depend on the used model (for example, whether the input
is promised to be picked from a certain set). Quantum algorithms are typically
complex, so we decided they are out of scope for this tutorial, where we aim to focus
on analyzing quantum circuits using formal methods tools.

Advancing Quantum Computing with Formal Methods 437

2.5 Our Scope: Quantum Circuit Simulation

In this tutorial, we will mainly consider the task of classically simulating a quan-
tum circuit (that is, to design classical algorithms for this task). Formally, the
task of simulating an n-qubit quantum circuit C is to find the probability of out-
come b ∈ {0, 1}n when the output state of C is measured, assuming that |0〉⊗n is
the input quantum state to C. Although simulation is #P-hard in general [23],
so are many problems in formal methods, where solutions have been found that
work well in practice. We should thus not be discouraged from tackling simu-
lation and will see how to do so with #SAT in Sect. 3. In Sect. 4, we refer to
extensions that tackle other important quantum circuit analysis tasks.

We focus here on strong simulation [7]: the problem of returning a probability for
a certain computational basis state. In contrast, weak simulation asks to sample
the probability distribution of measurement outcomes.

3 Reducing Quantum Computing to #SAT

Here we reduce quantum-circuit simulation to weighted model counting
(weighted-#SAT). This section is partly based on [21], while the approach here
effectively realizes the well-known path-sum approach [12].

3.1 SAT and #SAT

We denote SAT (F) := {α | F (α) = 1} for the set of all satisfiable assignments of
a propositional formula F : {0, 1}V → {0, 1} over a finite set of Boolean variables
V . We say that F is satisfiable if SAT (F) is non-empty. We write an assignment
α as a cube (a conjunction of literals, i.e., positive or negative variables), e.g.,
a ∧ b, or shorter ab.

The action of a classical circuit can be encoded by SAT constraints directly by
representing each bit as a Boolean variable. For example, the Boolean constraint
for the classical circuit C on the right is FC(V) = c ⇔ ¬(a ∧ b) over variables
V = {a, b, c}. Given an input a = 0 and b = 1, the satisfying assignment is
α = abc, where α(c) = 1 is the final state.

We denote #SAT (F) � |SAT (F)| for the model count of a formula F . A weight
function W : {v, v | v ∈ V } → R assigns a real-valued weight to positive literals
v (i.e., v = 1) and the negative literals v (i.e., v = 0). We say variable v is

438 A.-J. Quist et al.

unbiased iff W (v) = W (v) = 1. Given an assignment α ∈ B
V , let W (α(v)) =

W (v := α(v)) for v ∈ V . For a propositional formula F over V and a weight
function W , we define weighted model counting (#SAT) as:

#SATW (F) �
∑

α∈SAT (F)

W (α) where W (α) =
∏
v∈V

W (α(v)).

Example 8. The propositional formula F = (v1 ∨ v2) ∧ (v1 ∨ v2) ∧ v3 over V =
{v1, v2, v3} has two satisfying assignments: α1 = v1v2v3 and α2 = v1v2v3. We
define the weight function W as W (v1) = − 1

2 , W (v1) = 1
3 and W (v2) = 1

4 ,
W (v2) = 3

4 , while v3 remains unbiased. The weight of F can be computed as
MCW (F) = − 1

2 × 1
4 × 1 + 1

3 × 1
4 × 1 = − 1

24 .

Why #SAT for tackling simulation? First, analysis tasks on quan-
tum circuits are inherently functional problems, as the outcome often is a
measurement probability (or amplitude). For the same reason, inference
on Bayesian Networks [30,31] was done with weighted model counting.
Here we use a similar approach by reducing the simulation of quantum
circuits to weighted model counting.
In our #SAT encoding, we let each satisfying assignment encode a path
in the automaton as discussed in Sect. 2.3. We then add weighted vari-
ables so that the weight for each assignment (representing a path) equals
a part of the circuit’s final amplitude. We also let the measurements con-
strain the encoding so that only the required paths remain. The weighted
model counter ensures that the weights of all paths contributing to the
measurement outcome are summed up (positive and negative).
Our encoding uses only linearly many variables and clauses in the num-
ber of gates plus the number of qubits. So, to encode a single gate, we
require only a constant amount of clauses (around four), while encoding
measurements require n (unit) clauses, one per qubit.

3.2 Encoding Quantum States Using (Weighted) Boolean Variables

Recall from Sect. 2 that a quantum state |φ〉 is a specific linear combination of
classical states, i.e.,

|φ〉 =
∑

b∈{0,1}n

αb|b〉.

Accordingly, we can simply reserve a single Boolean variable for every qubit and
let the satisfying assignments of our formulae represent the state vector. Exam-
ple 9 illustrates this. In what follows, we will write F|φ〉 for a similar encoding of
|φ〉.

Advancing Quantum Computing with Formal Methods 439

Example 9. Let |B〉 = 1√
2
(|01〉 − |11〉). Let x be the variable for the first qubit

and y be the variable for the second qubit. Written differently, we have: |B〉 =
(1√

2
|0〉x − 1√

2
|1〉x) ⊗ |1〉y. The corresponding Boolean constraint is F|B〉 = (x ∨

x) ∧ y where we assign the W (x) = − 1√
2

and W (x) = 1√
2
, leaving y unbiased.

The (weighted) satisfying assignments are: {xy ≡ 1√
2
|01〉, xy ≡ − 1√

2
|11〉}. �

From now on, we will reserve the variables x, y, z for the first three qubits.

Exercise: Encode the so-called Bell state 1√
2
(|00〉 + |11〉) in weighted

model counting.

3.3 Encoding Quantum Gates and Circuits to #SAT

Since the NOT , CNOT and CCNOT (Toffoli) gates are classical (reversible)
gates, their encoding is easy. For instance, the Toffoli gate on input bits x, y, z
and output bits x′, y′, z′, only flips z, i.e., sets z′ ⇔ ¬z, when both x and y are set
to true, as explained in Sect. 2. Nothing changes in the quantum setting, except
that we reserve the same variables now for the qubits. The Boolean encoding of
these gates is thus as follows.

FNOT (x, x′) � x′ ⇔ x ⊕ 1 = x′ ⇔ ¬x

FCNOT (x, y, x′, y′) � y′ ⇔ y ⊕ x ∧ x′ ⇔ x

FCCNOT (x, y, z, x′, y′, z′) � z′ ⇔ z ⊕ (y ∧ z) ∧ x′ ⇔ x ∧ y′ ⇔ y

(7)

Observe that the above encoding determines the output variables x′, y′, z′ in
terms of the input variables, as illustrated in the following example.

Example 10. Let the input state be |110〉, where the corresponding Boolean con-
straint is F|110〉 = x ∧ y ∧ ¬z. After applying CCNOT gate, the output state is
described by the constraint

F|110〉 ∧ FCCNOT = (x ∧ y ∧ ¬z) ∧ (z′ ⇔ z ⊕ (y ∧ z) ∧ x′ ⇔ x ∧ y′ ⇔ y)

with satisfying assignment x′y′z′, which is interpreted as state |111〉.
In the (non-classical) case where we have superposition 1√

2
(|011〉 + |111〉), each

basis state will be a satisfying assignment, e.g. yz with W (x) = W (x) = 1√
2
,

where the satisfying assignments are {xyz, xyz} ≡ 1√
2
(|011〉 + |111〉). Apply-

ing a CCNOT gate ends up with two computational basis states (satisfying
assignments) {xyz, xyz} ≡ 1√

2
|011〉 + |110〉. �

440 A.-J. Quist et al.

Recall that its gate semantics in Example 2. We will encode the gate again as
a constraint FH(x, x′, h), where x/x′ is the qubit input/output variable and h
is a separate variable representing the ± 1√

2
normalization. Notice in particular

that the encoding should increase the number of satisfying assignments after
introducing the x′ variable. We achieve this by leaving x′ unconstrained. The
following encoding of the Hadamard gate also ensures that the negative weight
only occurs for the case when |1〉 is the input and |1〉 is the output.

FH(x, x′, h) � h ⇐⇒ (x ∧ x′) with W (h) =
1√
2

W (h) = − 1√
2

(8)

Example 11. The following circuit (identical to the one used in Sect. 2.3) com-
putes the famous Bell state |φ2〉 = 1√

2
(|00〉+ |11〉) at time step 2, only to uncom-

pute it again, ending up back in the |00〉 state. As will become apparent, this
circuit nicely illustrates how the encoding handles constructive and destructive
interference. In the circuit, we explicitly label the qubits with Boolean variables
x, y and add a subscript to the Hadamard gates, to indicate that we will reserve
an additional Boolean variable h or h′ per gate.

|0〉x Hh • • Hh′

|0〉y

|φ0〉 |φ1〉 |φ2〉 |φ3〉 |φ4〉
We first show the satisfying assignments of the circuit encoding at each time

step, where for the encoded Hadamard gates FH(x, x′, h), we add an additional
constraint y ⇔ y′ implementing the identity on the second qubit, i.e., H ⊗ I.

|φ0〉 ≡ F|φ0〉 = ¬x0 ∧ ¬y0 {x0y0}
|φ1〉 ≡ F|φ1〉 = F|φ0〉 ∧ FH(x0, x1, h) ∧ (y0 ⇔ y1) {hx1y1, hx1y1}
|φ2〉 ≡ F|φ2〉 = F|φ1〉 ∧ FCNOT (x1, y1, x2, y2) {hx1y1x2y2, hx1y1x2y2}
|φ3〉 ≡ F|φ3〉 = F|φ2〉 ∧ FCNOT (x2, y2, x3, y3) {hx1y1x2y2x3y3, hx1y1x2y2x3y3}
It is worth noting that, in the final time step, the satisfying assignments of
|φ4〉 ≡ F|φ4〉 = F|φ3〉 ∧ FH(x3, x4, h

′) ∧ (y3 ⇔ y4) will be

{h′hx1y1x2y2x3y3x4y4 ≡ − 1
2 |10〉, h

′
hx1y1x2y2x3y3x4y4 ≡ 1

2 |00〉,
h

′
hx1y1x2y2x3y3x4y4 ≡ 1

2 |10〉, h
′
hx1y1x2y2x3y3x4y4 ≡ 1

2 |00〉},
where we have (12− 1

2)|10〉 (destructive interference) and (12+
1
2)|00〉 (constructive

interference). Recall in Sect. 2.3, we give the transition paths of states in the same
circuit. Consider one of the paths from |00〉 to itself corresponding to the sat-
isfying assignment h

′
hx0y0x1y1x2y2x3y3x4y4: |00〉

x0y0

1/
√

2→
h

|10〉
x1y1

1→ |11〉
x2y2

1→ |10〉
x3y3

1/
√

2→
h

′
|00〉
x4y4

.

Here we omit the satisfying assignments for x0 and y0 in SAT (F|ψt〉) with
t ∈ [1, 4] as each of them contains x0y0. We see that the satisfying assignments
have a one-to-one mapping to the paths. �

Advancing Quantum Computing with Formal Methods 441

This encoding effectively realizes the well-known path sum approach [12] to
the classical simulation of quantum circuits. It can be written in linear alge-
bra as follows, where U0, U1 . . . , Um are the (n-qubit) gates in the circuit and
|b1〉, |b2〉, . . . , |bm〉 are computational basis states.

Um · · ·U1U0|00 . . . 0〉 =
∑

b1,b2,...,bm∈{0,1}n

Um · |bm〉〈bm| . . . |b2〉〈b2| · U1 · |b1〉〈b1| · U0 · |00 . . . 0〉

The previous example shows that the #SAT encoding does not “merge” paths
ending in the same computational basis state, as illustrated below (dashed edges
cancel each other out).

|00〉
|01〉
|10〉
|11〉

H1

|00〉
|01〉
|10〉
|11〉

CNOT1,2

|00〉
|01〉
|10〉
|11〉

CNOT1,2

|00〉
|01〉
|10〉
|11〉

H1 Final amplitude:

|00〉 ← 1
2
+ 1

2
= 1

|01〉 ← 0

|10〉 ← 1
2

− 1
2
= 0

|11〉 ← 0

1√
2

1√
2

1√
2

1
2

1
2

− 1
2

1√
2

1√
2

1√
2

1
2

Key message: Given a universal quantum circuit, consisting of Toffoli
and Hadamard gates, we can construct a Boolean formula whose satisfy-
ing assignments represent the circuit’s output quantum state.

3.4 Encoding Measurements

Recall in Sect. 2.2.3, measuring all qubits in computational basis obtains the
probability of an outcome |b〉 for b ∈ {0, 1}n. In a circuit with gates U1, . . . , Um

and an input state |ϕ0〉, the output state |ϕm〉 = Um · · · U1|ϕ0〉 can be decom-
posed into basis states as |ϕm〉 =

∑
b∈{0,1}n αb|b〉, where the amplitudes can

be computed by weighted model counting #SATW (F|ϕm〉 ∧ F|b〉) = αb, where
F|ϕm〉 = FUm

∧· · ·∧FU2 ∧FU1 ∧F|ϕ0〉 follows the encoding in Sect. 3.3 and F|b〉 is
the encoding of basis state |b〉 as shown in Sect. 3.2. The probability then equals
(αb)2.

Example 12. Reconsider Example 11 with measurements on all qubits of the
output state. To get the probability of measuring basis state |b〉 = |00〉, the
constraint F|b〉 = x4 ∧ y4. should be conjoined to the final state: F|ϕ4〉 ∧ F|b〉. We
then have SAT (F|ϕ4〉 ∧ F|b〉) = {h

′
hx1y1x2y2x3y3x4y4, h

′
hx1y1x2y2x3y3x4y4}.

The amplitude of |00〉 is MCW (F|ϕ4〉 ∧ F|b〉) = W (h)W (h′) + W (h)W (h′) = 1,
thus the resulting probability is 12 = 1. �

442 A.-J. Quist et al.

Exercise: In the above example, compute the probability of measuring
with basis state |01〉.

By adding the measurement constraint, only the “paths” to the basis
state we measure would be left. In the sense of satisfying assignments, as
shown in the previous example, we will keep the satisfying assignments
with variables on the final time step encoding the measured basis state
(h

′
hx1y1x2y2x3y3x4y4 ≡ 1

2 |00〉, h′
hx1y1x2y2x3y3x4y4 ≡ 1

2 |00〉) and discard oth-
ers (h′hx1y1x2y2x3y3x4y4 ≡ − 1

2 |10〉, h
′
hx1y1x2y2x3y3x4y4 ≡ 1

2 |10〉).

4 Wrap-Up

This tutorial detailed how the basic task of classical simulation of quantum
computing can be done using #SAT, which illustrates the inherent combinatorial
nature of quantum computing as well as interference, which amplifies or cancels
amplitudes of the output quantum state. We now explain some important open
problems in quantum computing and demonstrate, based on related work, how
similar methods can solve them.

Current quantum computers will have limited numbers of qubits that are
noisy [27]. For this reason, investment in the field only took off after the inven-
tion of quantum error correction [14], which realizes the ideal quantum circuit
model on noisy hardware. However, the added complexity of error correction
requires additional resources since the logical error-corrected qubits consist of
many physical qubits. So to attain a quantum advantage earlier, we need to
optimize quantum algorithms to use few qubits and respect the gate sets and
topology (physical connectivity of qubits) of the many different quantum hard-
ware types.

Therefore, we need to optimize quantum circuits, synthesize them in different
gate sets and verify their correctness. The latter starts with checking whether
an optimized circuit implements the same operations as its original (equivalence
checking), but also involves checking quantum Hoare logic [41]. Finally, error-
corrected quantum computers will work in tandem with classical computers to
monitor the process [13], which requires solving tasks strongly related to the
ones discussed above.

Formal methods can indeed be extended to solve the above tasks. For instance,
decision diagrams have been used to check the equivalence of quantum circuits [6,
38] and model counting [22] as well. For a more detailed overview of the successes
of formal methods in this domain, we refer readers to a historical overview [36]
(in which all authors of this tutorial were involved). As an honorable mention,
we note that there are also approaches based on diagrammatic reasoning using

Advancing Quantum Computing with Formal Methods 443

the ZX calculus [8,40], which has also been used for circuit optimization [18], on
planning [33] and on abstract interpretation [4].

However, the applications of our methods can be viewed in an even broader
context. The features that make quantum compilation difficult are shared with
the computationally-hard aspects of many problems in quantum physics and
quantum chemistry, such as computing the energy of the ground state of a phys-
ical system [17] or simulating a many-body system [25]. Indeed, many of these
problems in physics are in the quantum analogs of the complexity classes NP
and P, i.e., in QMA [5] and BQP [19]; see the figure below for how these quantum
complexity classes relate to classical ones (reproduced from [10]). Therefore, any
progress in tackling hard problems for quantum circuits can be directly used to
solve the very problems that quantum physicists and chemists struggle with on
a daily basis (using the default reductions between BQP- and QMA-complete
problems). This is important since even if the ideal error-corrected quantum
computer never gets built, we are still stuck with the myriad of “quantum-hard”
problems that nature poses—the very reason why Feynman proposed building a
quantum computer by inverting the problem in the first place (see Sect. 1).

PreciseQMA=PSPACE Exact quantum circuit non-equivalence

PreciseBQP=PP Exact quantum circuit simulation

QMA Quantum circuit non-equivalence
(approximately)NP

Circuit non-equivalence BQP

Quantum circuit simulation (sampling)

BPPP

Circuit evaluation (simulation)

We finish by giving some references for further reading: Lipton and Regan’s
accessible introduction to quantum computing for computer scientists [20], a
seminal textbook by Nielsen and Chuang [24], the lecture notes of Ronald de
Wolf [9] and Watrous’ detailed monograph on quantum information [39].

Acknowledgements. This publication is part of the project Divide & Quantum (with
project number 1389.20.241) of the research program NWA-ORC which is (partly)
financed by the Dutch Research Council (NWO). This work was supported by the
Dutch National Growth Fund, as part of the Quantum Delta NL program. The third
author acknowledges the support received through the NWO Quantum Technology
program (project number NGF.1582.22.035).

References

1. Aharonov, D.: A simple proof that Toffoli and Hadamard are quantum universal.
arXiv preprint quant-ph/0301040 (2003)

2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009). https://doi.org/10.1017/cbo9780511804090

https://doi.org/10.1017/cbo9780511804090

444 A.-J. Quist et al.

3. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574, 505–510 (2019). https://www.nature.com/articles/s41586-019-
1666-5

4. Bichsel, B., Paradis, A., Baader, M., Vechev, M.: Abstraqt: analysis of quantum
circuits via abstract stabilizer simulation. Quantum 7, 1185 (2023). https://doi.
org/10.22331/q-2023-11-20-1185, http://dx.doi.org/10.22331/q-2023-11-20-1185

5. Bookatz, A.D.: QMA-complete problems. arXiv:1212.6312 (2012)
6. Burgholzer, L., Wille, R.: Advanced equivalence checking for quantum circuits.

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(9), 1810–1824 (2020).
https://doi.org/10.1109/tcad.2020.3032630

7. Chen, Y., Chen, Y., Kumar, R., Patro, S., Speelman, F.: Qseth strikes again: finer
quantum lower bounds for lattice problem, strong simulation, hitting set problem,
and more. arXiv preprint arXiv:2309.16431 (2023)

8. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New J. Phys. 13(4), 043016 (2011). https://doi.org/10.1088/1367-
2630/13/4/043016

9. De Wolf, R.: Quantum computing: lecture notes. arXiv preprint arXiv:1907.09415
(2019)

10. Deshpande, A., Gorshkov, A.V., Fefferman, B.: Importance of the spectral gap in
estimating ground-state energies. PRX Quant. 3(4), 040327 (2022)

11. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6),
467–488 (1982). https://doi.org/10.1007/BF02650179

12. Feynman, R., Hibbs, A., Styer, D.: Quantum Mechanics and Path Integrals.
Dover Books on Physics, Dover Publications (2010). https://books.google.nl/
books?id=JkMuDAAAQBAJ

13. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324
(2012)

14. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, Cali-
fornia Institute of Technology (1997)

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

16. Kemeny, J.G., Snell, J.L., et al.: Finite Markov Chains, vol. 26. van Nostrand,
Princeton (1969)

17. Kempe, J., Kitaev, A., Regev, O.: The complexity of the local Hamiltonian prob-
lem. SIAM J. Comput. 35(5), 1070–1097 (2006)

18. Kissinger, A., van de Wetering, J.: Reducing the number of non-Clifford gates
in quantum circuits. Phys. Rev. A 102, 022406 (2020). https://doi.org/10.1103/
PhysRevA.102.022406, https://link.aps.org/doi/10.1103/PhysRevA.102.022406

19. Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and quantum computation. Am.
Math. Soc. (2002)

20. Lipton, R.J., Regan, K.W.: Introduction to Quantum Algorithms via Linear Alge-
bra. MIT Press, Cambridge (2021)

21. Mei, J., Bonsangue, M., Laarman, A.: Simulating quantum circuits by model count-
ing. In: CAV 2024, (accepted for publication). Springer (2024). Pre-print available
at arXiv:2403.07197)

22. Mei, J., Coopmans, T., Bonsangue, M., Laarman, A.: Equivalence checking of
quantum circuits by model counting. In: IJCAR (accepted for publication) (2024).
Pre-print available at arXiv:2403.18813)

https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://doi.org/10.22331/q-2023-11-20-1185
https://doi.org/10.22331/q-2023-11-20-1185
http://dx.doi.org/10.22331/q-2023-11-20-1185
http://arxiv.org/abs/1212.6312
https://doi.org/10.1109/tcad.2020.3032630
http://arxiv.org/abs/2309.16431
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
http://arxiv.org/abs/1907.09415
https://doi.org/10.1007/BF02650179
https://books.google.nl/books?id=JkMuDAAAQBAJ
https://books.google.nl/books?id=JkMuDAAAQBAJ
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1103/PhysRevA.102.022406
https://link.aps.org/doi/10.1103/PhysRevA.102.022406
http://arxiv.org/abs/2403.07197
http://arxiv.org/abs/2403.18813

Advancing Quantum Computing with Formal Methods 445

23. den Nest, M.V.: Classical simulation of quantum computation, the Gottesman-
Knill theorem, and slightly beyond. arXiv:0811.0898 (2008)

24. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation,
vol. 2, no. 8, p. 23. Cambridge University Press, Cambridge (2000)

25. Orús, R.: A practical introduction to tensor networks: matrix prod-
uct states and projected entangled pair states. Ann. Phys. 349, 117–
158 (2014). https://doi.org/10.1016/j.aop.2014.06.013, https://www.sciencedirect.
com/science/article/pii/S0003491614001596

26. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algo-
rithm for k-sat. J. ACM (JACM) 52(3), 337–364 (2005)

27. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018)

28. Quantum algorithm zoo. https://quantumalgorithmzoo.org/. Accessed 25 Apr
2024

29. Rennela, M., Brand, S., Laarman, A., Dunjko, V.: Hybrid divide-and-conquer app-
roach for tree search algorithms. Quantum 7, 959 (2023). https://doi.org/10.22331/
q-2023-03-23-959

30. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996)

31. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: AAAI, vol. 5, pp. 475–481 (2005)

32. Schoning, T.: A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In: 40th Annual Symposium on Foundations of Computer Science (Cat. No.
99CB37039), pp. 410–414. IEEE (1999)

33. Shaik, I., van de Pol, J.: Optimal layout synthesis for quantum circuits as classical
planning. arXiv:2304.12014 (2023)

34. Shi, Y.: Both Toffoli and controlled-NOT need little help to do universal quantum
computing. Quant. Inf. Comput. 3(1), 84–92 (2003)

35. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

36. Thanos, D., et al.: Automated reasoning in quantum circuit compilation. In:
Preproceedings of SPIN2024 (2024). https://spin-web.github.io/SPIN2024/assets/
preproceedings/SPIN2024-paper6.pdf

37. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.
1007/3-540-10003-2_104

38. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Checking equivalence of quantum
circuits and states. In: 2007 IEEE/ACM International Conference on Computer-
Aided Design, pp. 69–74 (2007). https://doi.org/10.1109/ICCAD.2007.4397246

39. Watrous, J.: The Theory of Quantum Information. Cambridge University Press,
Cambridge (2018)

40. van de Wetering, J.: Zx-calculus for the working quantum computer scientist.
arXiv:2012.13966 (2020)

41. Ying, M.: Floyd-Hoare logic for quantum programs. ACM Trans. Program. Lang.
Syst. (TOPLAS) 33(6), 1–49 (2012)

http://arxiv.org/abs/0811.0898
https://doi.org/10.1016/j.aop.2014.06.013
https://www.sciencedirect.com/science/article/pii/S0003491614001596
https://www.sciencedirect.com/science/article/pii/S0003491614001596
https://quantumalgorithmzoo.org/
https://doi.org/10.22331/q-2023-03-23-959
https://doi.org/10.22331/q-2023-03-23-959
http://arxiv.org/abs/2304.12014
https://spin-web.github.io/SPIN2024/assets/preproceedings/SPIN2024-paper6.pdf
https://spin-web.github.io/SPIN2024/assets/preproceedings/SPIN2024-paper6.pdf
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1109/ICCAD.2007.4397246
http://arxiv.org/abs/2012.13966

446 A.-J. Quist et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

No Risk, No Fun
A Tutorial on Risk Management

Mariëlle Stoelinga1,2(B)

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
m.i.a.stoelinga@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. The aim of this tutorial is to explain to the formal meth-
ods community the area of risk management and its most prominent
concepts: the definition of risk, strategies for managing risk, the risk
management cycle, and the role of ISO standards.

For each of these concepts, I explain how formal methods relate
and contribute, making risk management more accountable: systematic,
transparent, and quantitative. I will also argue that viewing Formal
Methods through the lens of risk management, and making the rele-
vance of formal methods in risk analysis explicit, helps our community
to better communicate the merits of formal methods to industry.

Keywords: Risk management · formal methods · uncertainty

1 Introduction

1.1 Formal Methods and Risk Management

Risk Management. Risk management [4,26] is something we do every day:
we lock our houses to prevent burglary; our health insurance covers the financial
consequences of hospital visits; cars are checked yearly to prevent failures; we
back up data to not lose valuable information; we wear seat belts when driving;
we double check if we have not forgotten our phones, etc.

In industry, such decisions are made at large: access policies determine which
employees can enter the building; companies insure their employees against work
accidents; regular maintenance keeps production plants up and running; back
ups are performed to not lose valuable data; helmets and safety glasses pro-
tect employees against injuries; the four eyes principle – reviewing critical tasks
by at least two people – enhances accuracy. However, such measures cost time
and money and are also inconvenient —insurance and COVID masks are prime

This work was partially funded by the NWO grants NWA.1160.18.238 (PrimaV-
era), and KICH1.ST02.21.003 (ZORRO), the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No
101008233, and the ERC Consolidator Grant 864075 (CAESAR).

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 447–468, 2025.
https://doi.org/10.1007/978-3-031-71177-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_26&domain=pdf
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-031-71177-0_26

448 M. Stoelinga

examples here. Thus, a key concern is to select effective measures to lower the
most prominent risks [26]: The overall goal of risk management is to support
decision-making on (cost-)effective measures that keep risks below an acceptable
level.

Formal Methods. Formal methods refer to mathematically rigorous techniques
for the specification, development, analysis, and verification of software and hard-
ware systems [15,22]. In this tutorial, I adopt a broader definition, following e.g.
[55]: Rather than focusing on software and hardware, I will consider any kind of
system. These include physical systems, such as biological and financial systems,
but also services, procedures and missions. The broader definition, also taken in
[23,55], enables a better comparison with Risk Management, which also cov-
ers many domains, such as technological, environmental, financial, and social
risks. Moreover, Formal Methods have actually been applied to a wide variety
of systems, including biological systems [39,52], chemical systems [1], business
processes [41], and human behavior.

What sets formal methods apart from other disciplines is not the systems
considered, but rather the methodological approach: modeling languages to con-
veniently specify the system under study, as well as languages to model their
properties; formal syntax and semantics for these languages; rigorous analy-
sis techniques that have been proven correct; compositional approaches to build
large systems from smaller components, where especially the interaction between
components matters. However, even with a more narrow scope of formal meth-
ods, there are strong links with risk management.

1.2 Formal Methods Versus Risk Management

Formal methods and risk management have strong links. They strive for the same
goals, namely high-quality and reliable systems without surprises. Their means
are quite different, though: Formal methods focus on mathematical methods,
while risk management uses informal methods.

Formal Methods for Risk Management. The area of Formal Methods has
made numerous relevant contributions to the area of risk management. These
fall into three categories.

First, the field of Formal Methods has developed and strengthened a wide
variety of risk assessment frameworks. Risk assessment is part of the risk man-
agement cycle (cf. Sect. 5) concerned with the identification, prioritization, and
evaluation of risks. The area of Formal Methods has equipped a broad range of
industrial risk assessment frameworks (such as fault trees [18], reliability block
diagrams [43], the AADL language) with rigorous semantics, more modeling
power and efficient analysis algorithms. These techniques enabled analyses of
systems that were not possible before [12,32].

Second, these techniques were possible due to more fundamental advances
in the underlying stochastic analysis methods, enabling the analysis of systems

A Tutorial on Risk Management 449

with gigantic state spaces for a plethora of properties and metrics. Relevant
approaches include Bayesian analysis [46], scenario optimization [13], Monte
Carlo simulation [53], stochastic and statistical model checking [37], reinforce-
ment learning [56], stochastic optimization and control [11]. Since uncertainty is
a key ingredient of risk, stochastic and statistical analysis is a relevant area for
risk analysis.

Finally, numerous methods have been developed to alleviate risks in software
systems: rigorous specification, design and software verification, model-based
testing, algorithms and architectures for fault-tolerant computing, monitoring
and run-time verification, and debugging are all relevant techniques to reduce
system risk. The risk management terminology classifies these as risk treatment
strategies.

Many of these contributions were published in venues where formal methods
intersect with (technical) subfields of risk analysis, such as dependability anal-
ysis, reliability engineering, and safety analysis, with relevant conferences, such
as DSN, FMICS, FM, NFM, QEST and SAFECOMP.

Risk Management for Formal Methods. Despite these relevant contribu-
tions, risk thinking is not in the standard repertoire of researchers in formal
methods. This is a pity for three reasons: The first argument I like to put for-
ward is that The area of Formal Methods is in a unique position to make risk
management more accountable: more systematic, transparent, and quantitative.
It is very well known, especially through the work of Nobel laureate Daniel Kah-
neman [33,34], that people have bad intuitions for risk. His numerous experi-
ments repeatedly show how poorly people can assess chances and risks. Numer-
ous cognitive biases have been identified that influence people’s perception of
risk. According to Kahneman, there are two systems at work in our brains: Sys-
tem I, which makes decisions quickly and automatically, and System II, which is
slow, systematic, and rational. System I is handy when we need to locate objects
or interpret facial expressions, but it is not suitable for assessing probabilities.
That is better left to System II. Even though there is no scientific evidence, it
is my firm believe that, through their rigorous approach, Formal Methods foster
System II thinking.

My second argument is that viewing Formal Methods through the lens of risk
management provides a better perspective of where Formal Methods matter most.
In particular, by addressing the most prominent risks, What do people and orga-
nizations care about most? What are their concerns? Which formal methods are
appropriate to address these concerns? Where in the system development cycle
can formal methods contribute most, and which methods are appropriate? This
point of view aligns well with the pledge in the recent Manifesto for Applicable
Formal Methods [24] that advocates integrative practices.

Finally, incorporating formal methods into risk management can amplify
their importance and influence. Whereas few people know formal methods,
almost everybody knows risk management. Framing formal methods in terms

450 M. Stoelinga

of risk management can increase the relevance and contributions of our field to
the general public, politicians, and business managers.

To reap the benefits above, a comprehension of risk management is needed
—exactly the goal of this tutorial.

1.3 This Tutorial

Objective. The objective of this tutorial is to provide an overview of the basic
concepts, principles, and terminology of risk management for researchers in For-
mal Methods. Explicating the strong links between the fields of Formal Methods
and Risk Management allows formal methods researchers to better align their
research with concerns and practices in industry and society.

With focus on terminology and concepts, this tutorial is neither very technical
nor very formal.

Didactic Set Up. This tutorial starts by setting the basic concepts then zooms
out on the organizational processes supporting risk management.

Thus, I first discuss the various definitions of risk and related concepts, and
delve into the three main elements of risk: objectives, consequences, and uncer-
tainty. Once the main system risks have been identified, the question of what
actions are to be taken arises: which interventions (if any) are needed to decrease
the system risks? Four common risk intervention strategies will be discussed: tol-
erate, terminate, transfer, and treat. Next, the tutorial will cover the risk man-
agement cycle (PDCA), the starting point for most organizations. It will also
discuss the formal methods recommended by ISO standards.

Organization. Section 2 discusses the definitions of risk and related concepts.
Section 3 reviews the elements of risk: objectives, consequences, and uncertainty,
and Sect. 4 discusses the four risk treatment strategies: tolerate, terminate trans-
fer, and treat. The PDCA cycle and the role standards are discussed in Sects. 5
and 6 respectively. Section 7 concludes the proposal.

2 Risk and Risk Management

2.1 What Is Risk?

A first problem encountered in risk management, perhaps especially for the For-
mal Methods community, is that there is no standard definition of risk. Not
only has the concept of risk evolved over time, just today many different defi-
nitions of risk exist across different disciplines, professional societies, scientists,
and international standardization bodies. Here are some of them:

– The Institute of Risk Management [28] defines risk as the combination of the
probability of an event and its consequences.

– The Threat Analysis Group [59] defines risk as asset, threat, and vulnerability.

A Tutorial on Risk Management 451

– The PRINCE2 method [7] defines risk as: An uncertain event or set of events
that, should it occur, will have an effect on the achievement of objectives.

– Fenton & Neil [21] assume risks to be unfavorable events influenced by factors.
Such factors and their interactions might be random or uncertain.

– Kaplan & Garrick [35] define risk as a set of triplets (si, pi, xi) of a scenario
si, a probability pi and a consequence level xi.

– The ISO 31000:2009 standard [30] on risk management defines risk as: the
effect of uncertainty on objectives.

Sources of debate are (1) whether risk include both negative and positive con-
sequences, or only negative ones and (2) whether the likelihood of events should
be interpreted as a probability, or in the broader terms of uncertainty. Despite
significant efforts, the Society for Risk Analysis has concluded that settling for
a single definition is not realistic.

A summary of various definitions of risk over time can be found in [48]
and in more technical terms in [3]. In his seminal work Against the Gods: The
Remarkable Story of Risk, the economist and financial historian Peter Bernstein
provides an account of the history of risk from ancient Greece until today [10].

In this tutorial, I will use the ISO 31000 definition of risk:

the effect of uncertainty on objectives.

This definition is relatively widely accepted and stresses the emphasis on goals.
For example, the U.S. National Institute of Standards and Technology (NIST)
has also adopted this definition in the context of cybersecurity.

Remarks. Some remarks on the definitions of risk: (1) All definitions are
application-independent. They apply to financial risks for a venture capitalist,
high-tech risks concerning self-driving cars, and everyday risks like choosing
travel insurance. (2) These definitions apply to various artifacts-products, pro-
cesses, services, and missions-collectively termed systems. Whether it is a medical
device, a banking procedure, or a military mission, the same risk management
principles apply. (3) The definition is relevant to all phases of a system’s life cycle:
requirement gathering, design, implementation, operation, and dismantling.

2.2 Risk Categories

Risks are often classified based on the organizational level they address:

– Strategic risks concern the organization’s mission and long-term strategy, con-
cerning e.g., market expansion, technological innovation, and mergers.

– Tactical risks affect the implementation of strategies in operations, projects,
and processes, e.g., supply chain disruptions or regulatory changes.

– Operational risk are specific to the organization’s internal processes and
include human errors, technology failures, or fraud incidents.

– Compliance risks involve adherence to law, regulations, and internal policies.

452 M. Stoelinga

Most research in formal methods focuses on operational and compliance
risks, analyzing risk in airplanes, self-driving cars, and robots. Formal meth-
ods to address tactical risks have also been developed, especially in the context
of enterprise risk modeling frameworks and business process modeling.

2.3 Related Terminology

Risk Versus Risk Level. Some older definitions, define risk as the statistically
expected loss, i.e., the product of probability and impact [49]. This definition
reduces risk to quantitative aspects; it is better to refer to this product as the
risk level of an event e:

RiskLevel(e) = Prob(e)× Impact(e)

While standard, the definition of risk level does have some limitations: It does
not take into account the evolution of failure probabilities over time, and neither
the fact that the probability and impact of an event are uncertain themselves.
Nevertheless, the risk level is popular to get a quick overview of the importance
of several events in terms of risk.

Risk Versus Hazard. A hazard is defined as a source of danger [6]. Risk
includes the likelihood that the hazard will lead to actual loss, injury, or damage.

Risk Versus Resilience. A popular term in the context of risk is resilience,
i.e., the ability to withstand, adapt to, and recover from disruptive events or
crises. Thus, resilience can be seen as a risk treatment strategy (cf. Sect. 4) that
emphasizes impact reduction. While risk focuses on negative outcomes, resilience
emphasizes the ability to recover and thrive despite challenges.

3 The Ingredients of Risk

This section reviews the three main ingredients of risk from the ISO 31000 defi-
nition: objectives, effect (described as impact) and uncertainty. First, I introduce
a common visualization tool: the risk matrix.

3.0 The Risk Matrix

A risk matrix, a.k.a. risk priority heat map, is a popular tool to visualize risks.
As shown in Fig. 1, this diagram plots the likelihood of an event against the
severity (or impact). Such maps yield a quick overview of the risk landscape and
help prioritize risks, as critical risks require the most attention and low risks the
least.

Despite their merits, risk matrices should be handled with care. Several phe-
nomena are not taken into account with sufficient consideration:

A Tutorial on Risk Management 453

Fig. 1. Risk matrix

– The risk matrix presents a snapshot of the probability and likelihood of events
at a certain point in time. Their evolution over time is not reflected in the
matrix.

– Often, the probability and likelihood of an event are uncertain themselves.
This could be accommodated in the risk matrix by plotting the events not as
a dot but rather as an area, but this is not often done.

– Dependencies and causal relations between risks cannot be accommodated.

Moreover, special attention should be paid to so-called HILP events (High
Impact, Low Probability). Examples are nuclear power plant explosions and the
Ever Given cargo ship that blocked the Suez canal in 2021, disrupting supply
chains worldwide. HILP events sit in the very top corner of the risk matrix and
are categorized as medium risk level. However, due to their enormous impact,
HILP events require special attention.

Example. Figure 2 shows a risk matrix from the Global Risks Report 2022
by the World Economic Forum [61]. It visualizes the largest risks perceived by
companies worldwide.

3.1 Ingredient 1: Objectives

Let us turn to the ingredients of risk. Recall the ISO 31000 definition of risk as
the effect of uncertainty on objectives. In fact, one can say that, according to this
definition, there is no risk, if there is no objective. Although such objectives are
usually not specified in a formal way, they should be formulated as accurately
as possible. Three guidelines are important:

– Objectives should be formulated in a SMART (Specific, Measurable, Attain-
able, Realistic and Time-bound) way, where concreteness and realism are the
most important focal points.

– The objectives should be shared and agreed on with all stakeholders.
– Objectives should not stimulate perverse behavior.

454 M. Stoelinga

Fig. 2. Risk matrix from World Economic Forum

3.2 Ingredient 2: Impact

The second ingredient is impact. Evidently, different events can lead to a vari-
ety of outcomes. Typically, these outcomes are classified into five major impact
classes:

– Cost. Accidents are expensive, including covering the costs to recover from
injuries and cyber incidents. Budget overruns in (software) projects are also
common.

– Time. Sometimes, risk causes delays. Natural disasters can stop the supply
chain and delay project delivery. In software projects, delays are a recurring
risk.

– Reputation. Reputation is often underestimated, but is often considered one
of the most severe consequences, having a long-term impact on operations
and relationships with stakeholders.

– Health & safety. These risks encompass harm and loss of life as a result of
motor accidents, fires, explosions, errors in health care and natural disasters.

A Tutorial on Risk Management 455

Technology-related safety risks include exposure to toxic chemicals, defective
airbags, faulty medical devices, and privacy breaches.

– Quality. Compromises in the quality of a product or service are serious, as
they often directly affect the company’s mission. In software systems, bugs
are notorious, pertaining to the pervasive view that software testing should
be risk-based.

Recently, a sixth factor came up, namely sustainability: the impact on envi-
ronmental and social needs for future generations.

Severity Classes. In practice, standard severity classes are often used, rating
the impact on a point scale. The following 4-point scale is used by hospitals for
patient safety, showing how the medical field operationalizes severity. This scale
can be seen as a discretization of severity levels combined with a description
specific to the setting.

Scale Patient safety

1. Minor Discomfort
2. Moderate Light injury
3. Critical Permanent injury
4. Catastrophic Patient death

Quantitative Formal Methods. Many formal methods quantify impacts as
real numbers, in the form of rewards, cost, price, or utility, for example, in rein-
forcement learning techniques, stochastic games, Markov reward models, timed
priced games etc.

3.3 Ingredient 3: Uncertainty

Uncertainty implies a situation in which a person does not have the necessary
information to precisely describe, prescribe, or predict an event or its character-
istics. Uncertainty comes in two flavors [16,42]:

– Aleatoric uncertainty originates from the word alea, Latin for dice, and refers
to uncertainty stemming from natural fluctuations.

– Epistemic uncertainty originates from the Greek word epistéme, which means
knowledge. Epistemic uncertainty comes from our lack of knowledge.

456 M. Stoelinga

Aleatoric Uncertainty. Traditionally, the mathematical analysis of risk has
focused on aleatoric uncertainty, using the laws of probability theory. As Bern-
stein states [10]:

Probability theory is an instrument for organizing, interpreting and applying
information. As one genius idea was piled on top of another, quantitative
techniques of risk management have helped trigger the ideas of modern times.
[..] Without the command of probability theory and other instruments of risk
management, engineers could never have designed the great bridges that span
our rivers, [..] polio would still be maiming children, no airplanes would fly,
and space travel would just be a dream.

Numerous formal methods have been developed to handle aleatoric risks:
These can be divided into two approaches: first, formal methods have made
enormous contributions to the analysis of stochastic models. These include clas-
sic models, such as Markov chains, Markov decision processes, and Bayesian
networks. These achievements have enabled better analysis of existing risk mod-
els, such as fault trees, reliability block diagrams, and AADL. Stochastic risk
models are especially popular in the areas of probabilistic safety analysis (PSA)
and reliability engineering.

Epistemic Undertainty. Epistemic uncertainty refers to uncertainty arising
from a lack of knowledge or understanding about the system risks. It stems from
limitations in available data, models, and parameters.

Epistemic uncertainty can be reduced through further research, data col-
lection, or refinement of models and theories. However, it may never be fully
eliminated because of inherent limitations in human understanding or the com-
plexity of the system being studied. Properly addressing epistemic uncertainty
is crucial to effectively mitigate risks.

The Combination. Several approaches exist that combine aleatoric and epis-
temic uncertainty. These especially include methods in which the probabilistic
parameters are subject to uncertainty.

Prominent models include Bayesian belief methods [21], where practitioners
can update their beliefs about both the parameters of a model and the variabil-
ity in the data as new information becomes available. Other methods include
methods based on fuzzy probability theory [17,62], interval Markov chains [8],
parametric Markov models [9], hidden and partially observable Markov models
[54]. All these models are based on stochastic methods —aleatoric uncertainty—
but allow for uncertainty in the parameters of the model.

Uncertainty is a large concept, with many different angles and interpreta-
tions, see e.g., [5,38] for an interpretation in safety analysis.

3.4 Uncertainty: Black Swans and the Rumsfeld Matrix

When it comes to epistemic uncertainty, two concepts have emerged in the field:
Black swans and the uncertainty matrix by Rumsfeld.

A Tutorial on Risk Management 457

Black Swans. Important in the context of uncertainty is the concept of so-
called Black Swans. Black swans were coined by Taleb [58] and are a metaphor
for high-profile, hard-to-predict, and rare events with significant impacts that
often catch people by surprise. Examples are the 2008 financial crises and the
COVID pandamic.

Black swans have challenged traditional risk assessment methods, including,
perhaps especially formal risk models based on aleatoric/stochastic analysis,
because they were unable to foresee these black swans. Although black swans
are difficult to anticipate, effective risk management strategies should include
means to mitigate these, e.g. via robust contingency plans, resilience-building
measures, and adaptive frameworks to mitigate their potential impacts.

The Rumsfeld Matrix of Uncertainty. The Rumsfeld matrix categorizes
information and knowledge based on their levels of certainty and awareness. It
originates from former U.S. Secretary of Defense Donald Rumsfeld and uses four
categories for comprehending and addressing uncertainties:

1. Known Knowns are the well-understood risks, including known hazards, his-
torical data, and established patterns. They can be effectively managed via
established risk assessment and mitigation strategies.

2. Known Unknowns represent risks that are recognized but not fully under-
stood. The key to managing these risks is to obtain better information via
research, analysis, and exchange of information, as well as thorough risk anal-
yses and scenario planning.

3. Unknown Knowns refers to risks that exist but are not consciously recognized.
These may include hidden vulnerabilities, cultural biases, and blind spots.
Effective risk management requires again better information.

4. Unknown Unknowns. are the risks beyond current awareness, i.e., the black
swans. As the greatest challenge to risk management, these require an agile
approach, using resilience and contingency plans.

Clearly, it is very difficult to mitigate all black swans, e.g., how to prepare for
a next pandemic that can be completely different from the last one? As phrased in
a quote often attributed to Niels Bohr, one of the fathers of quantum mechanics
[60]: Prediction is difficult, especially when it is about the future (Fig. 3).

Fig. 3. The Rumsfeld matrix

458 M. Stoelinga

4 Risk Strategies

After identifying system risks and classifying them according to likelihood and
probability, the question is what to do with these risks. Four ways of dealing
with risk exists, called risk strategies.

Tolerate. This strategy entails accepting risks as they are, taking no additional
action—no risk, no fun. Plenty of examples exist, since we all drive, fly, walk.
Products are released without being fully tested or verified.

Terminate. This is the opposite of tolerate: Stop, or do not start, an activity
that is perceived as too risky. The decision of the aviation authorities in 2019
to not allow the Boeing 737 max to fly passengers is an example of the risk
termination strategy.

Transfer. At times, risk can be transferred to other parties. Insurance serves
as a prime example, in which the monetary hazards associated with theft, fire,
or medical treatments are covered by an insurance plan. Other examples include
outsourcing, where an entire task, including its intrinsic risks, is delegated to a
third-party entity. However, it is impossible to completely transfer risks: insur-
ance policies may handle the financial implications of medical care, but do not
alleviate the other effects. Furthermore, in the case of outsourcing, there is always
the danger that the entity to which the task was delegated fails to perform.

Treat. Risk treatment is an important strategy, as it finds mitigation measures
to reduce potential risks. Mitigation measures are also called controls. There are
two types:

(a) Impact reduction reduces the effect of hazards after they occur by taking
corrective measures. Examples are safety devices (helmets, seat belts, air bags),
monitoring systems (smoke detectors), and fail-safe mechanisms (which return
the system to a safe state after an incident happened, for example, the emergency
lane offering a refuge after a car accident). Impact reduction measures from
software engineering include run-time verification and exception handling.

(b) Likelihood reduction implements preventive measures that reduce the
likelihood that an event will occur. Examples are training of personnel (driv-
ing licenses are a typical example), regular maintenance schedules of machin-
ery, regular software updates, and strict security protocols to prevent unautho-
rized information access. Many practices in software engineering, either formal
or informal, fall into this category: rigorous specification, verification, validation,
testing, etc.

4.1 The Application of Risk Strategies

It is important to re-assess risks after measures have been divised. Have all
prominent risks been addressed? Have new risks been introduced? Risks that
remain after measures have been taken are called residual risks.

A Tutorial on Risk Management 459

It is good practice to implement a combination of preventive and corrective
measures for important risks. Preventive measures have the advantage that the
incident does not occur at all, so no damage is done. However, risk can often
not be completely predicted, and therefore corrective measures are useful. This
is especially the vision of resilience engineering: predicing risks is difficult, and
black swans can always occur, therefore adaptability and flexibility are of utmost
importance.

4.2 Risk Management Versus Dependability Engineering

Risk management is closely related to dependability engineering. Dependabil-
ity [6] is defined as: the ability to deliver service that can justifiably be trusted,
and refined into the ability to avoid service failures that are more frequent and
more severe than is acceptable. Terminology of risk and dependability are closely
related.

In their seminal paper, Avizienis et al. [6] break down the dependability land-
scape into attributes that reflect dependability concerns, threats that endanger
dependability, and means to improve dependability, see Fig. 4.

Definitions. When considering the service as the primary objective of a system,
it becomes clear that the concept of dependability is linked to (absence of) risk.

Attributes as Impact Classes. Six dependability attributes are identified:
availability meaning readiness for correct service; reliability meaning continu-
ity of correct service; safety meaning absence of catastrophic consequences on
the users and environment; integrity meaning the absence of improper system
alterations; maintainability meaning ability to undergo modifications. These can
be considered as refinement of the risk impact classes from Sect. 3.2: With a
focus on technical correctness, availability, reliability, confidentiality, integrity,
and maintainability refine the quality class. The safety attribute immediately
corresponds to the safety impact class.

Means as Strategies. Finally, dependability means can be viewed as risk
strategies discussed in Sect. 4. Fault prevention means to prevent the occurrence
or introduction of faults, and is therefore a preventive risk reduction strategy.
Fault tolerance means to avoid service failures in the presence of faults and
thus is a corrective risk reduction strategy. Fault removal means to reduce the
number and severity of faults: again a preventive risk reduction strategy. Fault
forecasting means to estimate the present number, the future incidence, and the
likely consequences of faults, and is a risk assessment activity.

460 M. Stoelinga

Fig. 4. Taxonomy for dependability attributes, threats and means

Actually, many formal methods can be viewed as risk strategies/
dependability means: Formal requirements specification, verification, validation
can all be seen as fault prevention means, and thus as preventive measures.
Debugging is a fault removal technique. Run-time verification is, when com-
bined with e.g. fail-safe mechanisms, a mean for fault tolerance. Code metrics
are fault forecasting means.

5 Risk Management

Risk management refers to coordinated activities to direct and control an orga-
nization with respect to risk [26]. Virtually all organizations manage their risks
through the Plan-Do-Check-Act (PDCA) cycle, and many use its concretization
in the ISO 31000 standard. The latter provides concrete steps to select appropri-
ate risk strategies, deciding how risks should be treated and which interventions
are appropriate.

This section covers both the PDCA cycle and the ISO 31000 standard, as
well as the role of formal methods.

5.1 The Risk Management Cycle: Plan-Do-Check-Act

The Plan-Do-Check-Act (PDCA) cycle, also known as the Demming cycle, is a
systematic process for continuous improvement of processes and products [57].
As illustrated in Fig. 5, this cycle proceeds in four steps. Specialized to risk
management, these are as follows.

1. Plan: Establish goals, identify and assess risks, develop mitigation strategies.
2. Do: Implement risk management strategies and allocate necessary resources.
3. Check : Monitor the effectiveness of the strategies, and report findings.
4. Act : Improve and update plans to ensure continuous risk management.

A Tutorial on Risk Management 461

Little information is available on the relation between the PDCA cycle and
the use of formal methods. However, since the PDCA cycle is designed for any
improvement process, it is also applicable to formal verification activities: Set
the goals of the verification, perform the verification, check if the verification
yields the desired results, and update plans to improve both the system under
verification and the verification process itself.

Fig. 5. PDCA cycle

5.2 The Risk Management Process

Several frameworks exist that refine and concretize the PDCA cycle. The ISO
31000 is a family of generic standards, applicable in many contexts. Other risk
management frameworks, such as COSO [44], are more specialized for enterprise
risks. ISO 31000 [30] provides principles, vocabulary and a process for any orga-
nization to assess and treat risks. Formal methods are especially useful during
the Risk Assessment phase.
As illustrated in Fig. 6, the process consists of several steps:

1. Establish the context, and especially the goals.
2. Identify risks, mapping the risks that threaten the goal.
3. Analyze the risks finding the root causes and factors that contribute to the

risks.
4. Evaluate risks according to their likelihood and impact.
5. Treat risks finding effective measures.

5.3 Formal and Informal Methods for Risk Assessment

Performing a proper risk analysis is not easy and requires domain knowledge.
For example, it is not trivial to identify all relevant risks in a self-driving car or
nuclear plant.

There are several risk frameworks to support the risk assessment process.
These frameworks offer a systematic procedure to identify risks in different
classes, find root causes, and help determine their impact. The level of formality
varies from very informal to very formal.

462 M. Stoelinga

]

Fig. 6. Steps in the ISO31000 standard for risk management

Text-Based Methods. Textual approaches provide systematic methods for
exploring components or behaviors in complex systems and list all findings in
textual form or a table. Common approaches are failure mode effect analysis
(FMEA) [50], and Hazard & operability studies (HAZOP) [36].

Architectural Methods. These methods take an architectural system model
as a starting point, decomposing a system into a number of interacting com-
ponents, annotating these with potential risks. Such architectural methods are
especially common for systems with large software components, but can be used
in any domain with complex system designs. Some prominent examples include
the Architectural Analysis & Design Language AADL [20], the AltaRica frame-
work [2,47], the Safety Analysis Modeling Language (SAML) [25].

Domain Specific Methods. These methods have been specifically developed
for risk analysis. These include fault tree analysis [18,51], reliability block dia-
grams [43], event trees [19], and bowtie diagrams [14]. All of these methods
provide visual means to capture system behavior and offer different analysis
possibilities, for example, (stochastic) model checking, Monte Carlo simulation,
or dedicated computation methods.

Various organizations dealing with safety-critical systems, including NASA,
ESA, the nuclear industry, and the US Federal Aviation Administration, have
recognized that a single analytical approach is usually insufficient for effective
risk management. Consequently, they suggest a combination of approaches.

Finally, is important to realize that risk models, like many other models in com-
puter science, do not formulate an objective truth, like in Newtonian mechanics.
Rather, these models serve decision making and reflect the best information cur-
rently available. Moreover, in my experience, creating risk models at design time
can lead to design improvements that prevent risks from happening all together:
the journey is the destination.

A Tutorial on Risk Management 463

6 ISO Standards, Risk Management and Formal Methods

6.1 The Role of ISO Standards in Risk Management

The International Standardization organization ISO is an independent, non-
governmental organization that develops voluntary international standards for
quality, safety, and efficiency in products, services, and systems.

These standards cover a wide range of industries and technologies, from man-
ufacturing and technology to food safety and healthcare. ISO standards typically
require organizations to establish systematic approaches to quality management,
information security, health and safety, and more, by setting appropriate poli-
cies, procedures, and processes to monitor the outcomes. Several standards rec-
ommend the use of formal methods.

If companies and organizations meet the criteria for a certain standard, they
can obtain certification for that standard. Such an accreditation is advantageous,
as it bolsters an organization’s credibility and trust among customers. In addi-
tion, regulatory bodies or governments may require adherence to specific ISO
standards as part of legal or contractual obligations.

Some standards are developed with other organizations such as IEEE or
IEC, as reflected in their name. Names may also include the year of publication,
reflecting the specific version.

6.2 ISO Standards for Software Systems

Some noteworthy standards related to software systems are the following.

ISO/IEC TR 5469: Artificial Intelligence—Functional Safety and AI
Systems. This standard outlines the role of AI in safety-related systems, classes,
and compliance levels. It provides guidance regarding the specification, design,
and verification of functionally safe AI systems, or how to apply AI technology
for functions that have safety-related effects. ISO/IEC 42001: AI management
systems encompasses the Plan-Do-Check-Act cycle for AI management systems.

ISO/IEC/IEEE 90003:2018 Software Engineering. This standard is part
of the ISO 9000 family on quality management. The 90003 standard provides
guidelines for the acquisition, supply, development, operation, and maintenance
of software and support services.

ISO/IEC/IEEE 12207:2018 Systems and Software Engineering Soft-
ware Life Cycle Processes. Whereas ISO 90003 relates to software purchase,
the 12207 standard relates to software development, setting requirements for
the software life cycle process: agreement, organizational, technical management,
and technical processes. The latter includes business or mission analysis, stake-
holder needs, requirements, architecture, design, implementation, integration,
verification, validation, operation, maintenance, and disposal.

464 M. Stoelinga

6.3 ISO Standards Recommending Formal Methods

Several ISO standards, mostly related to safety-critical systems, recommend for-
mal methods during design and verification. Here are some notable instances:

ISO 26262: Road Vehicles—Functional Safety. [29] concerns the func-
tional safety of electrical and electronic systems in road vehicles for the entire
automotive safety lifecycle: management, development, production, operation,
and decommissioning. Automotive Safety Integrity Levels (ASIL) set risk levels,
based on the probability and consequences of safety hazards.

ISO 22163:2023 Railway Applications, Railway Quality Management
System [31]. It refines ISO 9001:Quality management systems with specific
requirements for application in the railway sector.

IEC 61508: Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related Systems offers guidelines for implementing,
designing, deploying, and maintaining safety-related systems, achieved through
a safety life cycle and a probabilistic failure assessment.

A key concept in dependability analysis in safety-critical system is the notion
of Safety Integrity Level (SIL), referred to as automotive SIL (ASIL) in the auto-
motive industry [27]. (A)SIL levels range from 1 (low) to 4 (highest). For hard-
ware, the device must meet strict limits on failure probability for (a rigorously
defined notion of) dangerous failure.

Based on the (A)SIL level, the use of formal methods is recommended. ISO
50128 recommends formal methods for SIL 1 and 2, and highly recommends
them for SIL 3 and 4. Interestingly, ISO 26262 recommends formal methods,
but highly recommends semi-formal methods, such as UML and SySML.

6.4 Research on Formal Methods for ISO Compliance

Establishing a safety analysis in the context of ISO standards can be challenging.
Various formal validation and verification techniques have applied to several ISO
standards, such as ISO 6262 [40]. One significant hurdle is the requirement that
tools used for developing safety-critical systems must be certified. An overview
of approaches to demonstrate compliance with ISO standards, which can serve
as a foundation for further application of formal methods, is provided in [45].

7 Conclusion

This tutorial provides an overview of risk management concepts, principles and
techniques and their relation to formal methods.

Formal methods are in a good position to stimulate System II thinking. In
this way, they set a good basis for accountable risk making: systematic, so that no
risk are overlooked; transparent, since models explicate the information that risk
decisions are based on; and quantitative, based on facts rather than on feelings.

A Tutorial on Risk Management 465

References

1. Lano, K., Bicarregui, J., Kan, P.: Experiences of using formal methods for chemical
process control specification. Control. Eng. Pract. 8(1), 71–79 (2000)

2. Arnold, A., Griffault, A., Point, G., Rauzy, A.: The AltaRica formalism for describ-
ing concurrent systems. Fundam. Inf. 40, 109–124 (2000)

3. Aven, T.: The risk concept-historical and recent development trends. Reliab. Eng.
Syst. Saf. 99, 33–44 (2012)

4. Aven, T.: The reliability science: Its foundation and link to risk science and other
sciences. Reliab. Eng. Syst. Saf. 215, 107863 (2021)

5. Aven, T., Reniers, G.: How to define and interpret a probability in a risk and safety
setting. Saf. Sci. 51, 223–231 (2013)

6. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1, 11–33 (2004)

7. AXELOS: Prince2 6th edition glossary of terms (2016). https://www.axelos.com/
resource-hub/glossary/prince2-6th-edition-glossaries-of-terms

8. Bacci, G., Delahaye, B., Larsen, K.G., Mariegaard, A.: Quantitative analysis of
interval markov chains. In: Olderog, E.-R., Steffen, B., Yi, W. (eds.) Model Check-
ing, Synthesis, and Learning. LNCS, vol. 13030, pp. 57–77. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91384-7_4

9. Badings, T.S., Jansen, N., Junges, S., Stoelinga, M., Volk, M.: Sampling-based ver-
ification of CTMCs with uncertain rates. In: Shoham, S., Vizel, Y. (eds.) Proceed-
ings of the 34th International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 13372, pp. 26–47. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-13188-2_2

10. Bernstein, P.L.: Against the Gods: The Remarkable Story of Risk. Wiley (1998)
11. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I, 4th Edition.

Athena Scientific (2005)
12. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,

dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011)

13. Campi, M.C., Carè, A., Garatti, S.: The scenario approach: a tool at the service
of data-driven decision making. Annu. Rev. Control. 52, 1–17 (2021)

14. Center for Chemical Process Safety: Bow Ties in Risk Management. Wiley (2018)
15. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.

ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)
16. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct.

Saf. 31(2), 105–112 (2009)
17. Dong, W.M., Shah, H., Wongt, F.: Fuzzy computations in risk and decision anal-

ysis. Civ. Eng. Syst. 2(4), 201–208 (1985)
18. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In:

Annual Reliability and Maintainability Symposium, pp. 286–293 (1990)
19. Ericson, C.A.: Event tree analysis. In: Hazard Analysis Techniques for System

Safety, pp. 223–234. WILEY (2005)
20. Feiler, P.H., Gluch, D.P., Hudak, J.: The architecture analysis & design language

(AADL): an introduction (2006)
21. Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with Bayesian Net-

works. CRC Press (2011)

https://www.axelos.com/resource-hub/glossary/prince2-6th-edition-glossaries-of-terms
https://www.axelos.com/resource-hub/glossary/prince2-6th-edition-glossaries-of-terms
https://doi.org/10.1007/978-3-030-91384-7_4
https://doi.org/10.1007/978-3-031-13188-2_2

466 M. Stoelinga

22. Garavel, H., Beek, M.H., Pol, J.: The 2020 expert survey on formal methods. In: ter
Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 3–69. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_1

23. Gibbins, P.: Chapter 13 - what are formal methods? In: Ince, D., Andrews, D.
(eds.) The Software Life Cycle, pp. 278–290. Butterworth-Heinemann (1990)

24. Gleirscher, M., van de Pol, J., Woodcock, J.: A manifesto for applicable formal
methods. Softw. Syst. Model. 22(6), 1737–1749 (2023)

25. Güdemann, M., Ortmeier, F.: A framework for qualitative and quantitative and
quantitative model-based safety analysis. In: 2010 IEEE 12th International Sym-
posium on High Assurance Systems Engineering (2010)

26. Hopkin, P.: Fundamentals of Risk Management: Understanding, Evaluating and
Implementing Effective Risk Management. Kogan Page, 5th edn. (2018)

27. Houtermans, M.: SIL and Functional Safety in a Nutshell, 2nd edn. Prime Intelli-
gence (2014)

28. Institute of Risk Management: IRM’s risk management standard (2002). https://
www.theirm.org/what-we-do/what-is-enterprise-risk-management/irms-risk-
management-standard/

29. International Organization for Standardization: ISO 26262: Road vehicles - func-
tional safety. ISO Standard (2018). https://www.iso.org/standard/26262.html

30. International Organization for Standardization: ISO 31000: Risk management –
guidelines. ISO Standard (2018). https://www.iso.org/standard/65694.html

31. International Organization for Standardization: ISO22163: Railway applications;
railway quality management system. ISO Standard (2023). https://www.iso.org/
standard/22193.html

32. Junges, S., Guck, D., Katoen, J., Rensink, A., Stoelinga, M.: Fault trees on a diet:
automated reduction by graph rewriting. Formal Aspects Comput. 29(4), 651–703
(2017)

33. Kahneman, D.: A perspective on judgment and choice: mapping bounded rational-
ity. Am. Psychol. 58(9), 697–720 (2003)

34. Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux (2011)
35. Kaplan, S., Garrick, B.J.: On the quantitative definition of risk. Risk Anal. 1(1),

11–27 (1981)
36. Kletz, T.: Hazop and Hazan: Identifying and Assessing Process Industry Hazards,

4th edn. Institution of Chemical Engineers (1999)
37. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.

In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_11

38. Lindley, D.V.: Understanding Uncertainty. Wiley (2006)
39. Lück, A., Wolf, V.: A stochastic automata network description for spatial DNA-

methylation models. In: Hermanns, H. (ed.) MMB 2020. LNCS, vol. 12040, pp.
54–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43024-5_4

40. Makartetskiy, D., et al.: (User-friendly) formal requirements verification in the
context of ISO26262. Eng. Sci. Technol. Int. J. 23(3), 494–506 (2020)

41. Mannel, L.L., van der Aalst, W.M.P.: Discovering process models with long-term
dependencies while providing guarantees and filtering infrequent behavior patterns.
Fundam. Informaticae 190(2–4), 109–158 (2024)

42. Matthies, H.G.: Quantifying uncertainty: modern computational representation
of probability and applications. In: Extreme Man-Made and Natural Hazards in
Dynamics of Structures, pp. 105–135. NATO Security through Science Series (2007)

43. Modarres, M., Kaminskiy, M.P., Krivtsov, V.: System reliability analysis. In: Reli-
ability Engineering and Risk Analysis: A Practical Guide. CRC Press (2016)

https://doi.org/10.1007/978-3-030-58298-2_1
https://www.theirm.org/what-we-do/what-is-enterprise-risk-management/irms-risk-management-standard/
https://www.theirm.org/what-we-do/what-is-enterprise-risk-management/irms-risk-management-standard/
https://www.theirm.org/what-we-do/what-is-enterprise-risk-management/irms-risk-management-standard/
https://www.iso.org/standard/26262.html
https://www.iso.org/standard/65694.html
https://www.iso.org/standard/22193.html
https://www.iso.org/standard/22193.html
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-030-43024-5_4

A Tutorial on Risk Management 467

44. Moeller, R.R.: COSO Enterprise Risk Management: Establishing Effective Gover-
nance, Risk, and Compliance Processes. Wiley (2011)

45. Myklebust, T., Stålhane, T.: Functional Safety and Proof of Compliance. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86152-0

46. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press
(2000)

47. Point, G., Rauzy, A.: AltaRica: constraint automata as a description language. J.
Européendes Systémes Automatisés 33, 1033–1052 (2006)

48. Rasborg, K.: Ulrich Beck. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-89201-2

49. Rasmussen, N.: An assessment of accident risks in U.S. commercial nuclear power
plants. Tech. rep., US Nuclear Regulatory Commission (1975)

50. Rausand, M., Barros, A., Hoylan, A.: Qualitative system reliability analysis. In:
System Reliability Theory. Models, Statistical Methods, and Applications. Wiley
(2020)

51. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

52. Schivo, S., et al.: Modeling biological pathway dynamics with timed automata.
IEEE J. Biomed. Health Inf. 18(3), 832–839 (2014)

53. Shonkwiler, R.W., Mendivil, F.: Explorations in Monte Carlo Methods. Springer,
Cham (2009). https://doi.org/10.1007/978-3-031-55964-8

54. Spaan, M.T.J.: partially observable markov decision processes. In: Wiering, M., van
Otterlo, M. (eds.) Reinforcement Learning, vol. 12, pp. 387–414. Springer Berlin
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_12

55. Staunstrup, J.: Formal design methods. In: A Formal Approach to Hardware
Design, pp. 1–12. Springer US (1994). https://doi.org/10.1007/978-1-4615-2764-0

56. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(1997)

57. Tague, N.R.: Plan–do–study–act cycle. In: The Quality Toolbox, pp. 390–392. ASQ
Quality Press (2005)

58. Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable. Random
House (2007)

59. Threat Analysis Group: Threat, vulnerability, and risk: commonly mixed-up
terms (2010). https://www.threatanalysis.com/2010/05/03/threat-vulnerability-
risk-commonly-mixed-up-terms/

60. Wikiquote contributors: Niels bohr (2024). https://en.wikiquote.org/wiki/Niels_
Bohr. Accessed 09 Jun 2024

61. World Economic Forum: The Global Risks Report, 13th Edition (2022)
62. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

https://doi.org/10.1007/978-3-030-86152-0
https://doi.org/10.1007/978-3-030-89201-2
https://doi.org/10.1007/978-3-030-89201-2
https://doi.org/10.1007/978-3-031-55964-8
https://doi.org/10.1007/978-3-642-27645-3_12
https://doi.org/10.1007/978-1-4615-2764-0
https://www.threatanalysis.com/2010/05/03/threat-vulnerability-risk-commonly-mixed-up-terms/
https://www.threatanalysis.com/2010/05/03/threat-vulnerability-risk-commonly-mixed-up-terms/
https://en.wikiquote.org/wiki/Niels_Bohr
https://en.wikiquote.org/wiki/Niels_Bohr

468 M. Stoelinga

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Runtime Verification in Real-Time
with the Copilot Language: A Tutorial

Ivan Perez1(B), Alwyn E. Goodloe2, and Frank Dedden3

1 KBR @ NASA Ames Research Center, Houston, USA
ivan.perezdominguez@nasa.gov

2 NASA Langley Research Center, Hampton, USA
a.goodloe@nasa.gov

3 System F Computing, Rotterdam, The Netherlands

frank@systemf.dev

Abstract. Ultra-critical systems require high-level assurance, which
cannot always be guaranteed at compile time. The use of runtime ver-
ification (RV) enables monitoring of these systems during runtime, to
detect illegal states early and limit their potential consequences. This
paper is a tutorial on RV using Copilot, an open-source runtime verifi-
cation framework actively used by NASA to carry out experiments with
robots and unmanned aerial vehicles. Copilot monitors are written in a
compositional, stream-based language, which the framework automati-
cally translates into real-time C code that satisfies static memory require-
ments suitable to run on embedded hardware. Copilot includes multiple
libraries that extend the core functionality with higher-level constructs,
Boyer-Moore majority voting, and a variety of Temporal Logics (TL),
resulting in robust, high-level specifications that are easier to understand
than their traditional counterparts.

1 Introduction

Embedded systems are used in a wide range of applications, ranging from tele-
visions and cellphones to automobiles, aircraft and ships. In all of these applica-
tions, we want the system to function correctly, but those systems that are safety
critical, where failure can result in injury or death of a human, warrant special
attention [14]. To achieve the necessary level of reliability, both hardware and
software of safety-critical systems need to be of very high quality. Formal verifi-
cation techniques are one method for achieving the level of reliability required in
safety-critical systems. Generally, formal verification is based on mathematically
proving correctness properties of a model of the system under study. Although
there have been considerable advances in industrial-scale formal methods, they
remain too expensive to apply them on most projects.

Runtime verification (RV) [2,10,11] is a verification technique that has the
potential to enable the safe operation of safety-critical systems that are too
complex to formally verify or fully test. In RV, the system is monitored during
execution, to detect and respond to property violations that take place during
operation. When an unsafe state is detected, the monitor invokes system-specific

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 469–491, 2025.
https://doi.org/10.1007/978-3-031-71177-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_27&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_27

470 I. Perez et al.

routines to report or recover from the violation. RV detects when properties are
violated during during runtime, so it does not constitute a proof of correctness,
but is a significant improvement over testing alone.

RV concerns itself with the detection of faults and off-nominal conditions.
Upon detection of a property violation, the system under observation (SUO)
could switch to a backup system, transfer control to a pilot or operator on the
ground, degrade performance, log the error for posterior analysis, or take some
other corrective action. The specifics of how faults are handled are mission-
specific, and not the subject of RV itself.

Correct implementation of these monitors and the RV subsystem is crucial
for the safe operation of the complete system and the success of the mission
as a whole. The introduction of errors in the RV subsystem could disable or
affect other subsystems, or lead to suboptimal deviations from a mission. In
resource-constrained environments and time-critical systems, runtime monitors
are commonly implemented in C due to performance and memory constraints.
This results in low-level code that is error-prone, hard to understand and difficult
to maintain.

In this paper we present Copilot, a runtime verification framework to write
high-level specifications. Copilot is implemented as a stream-based, deeply
embedded domain-specific language in Haskell. Streams are used to specify mon-
itors, which denote functions that detect when properties are violated. Once a
monitor is triggered, a user-defined function is called to take appropriate action.
Our framework provides a constrained set of operations to define and combine
streams, which guarantees that they are well-formed. The language also relies on
dependent types, to enable safe use of non-primitive data structures, like structs
and arrays. Copilot translates definitions into a MISRA-compliant subset of
C99. MISRA C is a set of guidelines for developing C code targeting real-time
embedded systems, which promotes code safety and security. For instance, the
guidelines constrain the design with predictable memory requirements and real-
time guarantees. To run the monitor on an embedded system, the generated
C99 code can be compiled for a target platform and integrated with the system
under observation. Additional Copilot libraries extend the core language with
higher-level constructs, and temporal logic [15,20].

This paper is structured as follows: Sect. 2 provides a brief history of the
Copilot framework. Section 3 is an introduction to the trace theoretic view of RV,
sampling, and RV instrumentation. Section 4 has a “hello world” style motivating
example. Section 5 introduces the Copilot specification language which simplifies
prior versions of the language [17,19] and extends it with notions of arrays
and structs. Section 6 demonstrates how to specify runtime monitors using basic
stream-level functions as well as different temporal logics. In Sect. 7, we discuss
how to integrate Copilot monitors into the larger system being monitored.

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 471

2 History

The Copilot project began in September 2008 when NASA awarded Galois,
Inc. and the National Institute of Aerospace a contract (“Monitor Synthesis
for Software Health Management”1) to perform research in the area of runtime
verification applied to hard real-time distributed systems with a concentration
on avionics. Focusing on hard real-time embedded systems imposed the follow-
ing constraints: monitors should not affect the system under observation (SUO)
in a way that changes the functionality of the system, requires re-certification,
interferes with timing, or exceeds size, weight, and power (SWAP) constraints.
The four most significant design decisions made in the early days were: that
the RV framework that came to be called Copilot would be implemented as a
Haskell-embedded domain-specific language (EDSL), that Copilot would favor
lightweight instrumentation and thus employ sampling as a means to observe the
executing system, that runtime monitors must run in constant space and con-
stant time, and the fourth significant design decision was that the specification
language would be a stream-based data-flow language inspired by Lustre [4] and
LOLA [6]. Note that Lustre has an existing user base in the aerospace industry,
meaning that stream-based languages have proven acceptable in that domain.

The first Copilot prototypes focused on evolving the specification language
and constructing an interpreter. During this time period, several open-source
tools were used to generate C code from the specification. Copilot was demon-
strated in numerous flight tests, including the first demonstration of Byzantine
fault-tolerant RV [19]. The architecture of the older Copilot 2.0 framework is
described in [18] along with a description of how lightweight formal methods
were applied to the problem of monitor correctness. To address the challenge of
ensuring that a formal specification is correct, research was conducted integrat-
ing model checking and SMT capabilities into the Copilot 2.0 framework [9,13].

Early incarnations of Copilot were very much research efforts and could be
very clumsy to use in practice because, in embedded systems, many variables
are stored as either C structs or C arrays, and Copilot could not handle these
data structures. Given that we found no existing tool that supported generating
code with arrays and structs, it was decided to build a new C code generator
from scratch that could accommodate the needs of Copilot. This necessitated a
considerable rewrite of the whole Copilot framework.

The decision to rewrite the framework corresponded with more stringent
demands from users who wanted Copilot to generate monitors that were
trustworthy enough to be certified by NASA as critical flight code. NASA
began an initiative focusing on high-assurance RV [9]. The project adapted
more structured software engineering processes following the NASA standard
NPR7150.2C [16] that required extensive documentation such as documenting
the architecture and design, software test plans, and coding style guides. In
order to satisfy requisite assurance demands, unit tests were constructed for
every module using Haskell’s QuickCheck tool, and Galois Inc developed the

1 NASA award NNL08AA19B, order NNL08AD13T.

472 I. Perez et al.

Copilot Verifier that generates a mathematical proof that the generated mon-
itor and specification are bisimilar [22]. In addition to the C code generator
described in this tutorial, a prototype backend generating BlueSpec2 has been
developed enabling implementing monitors on FPGAs and exploratory work has
begun on a Copilot backend for creating Rust monitors. Copilot was certified
as a NASA Software Engineering tool (NPR7150.2, Class D) in June 2023 and
Copilot developers continue to work with flight-safety groups at several NASA
centers to improve the utility of Copilot for use in monitoring critical flight
systems.

Today, Copilot continues to be developed as an open-source project,3 with
new releases being published every two months. Our Github repository contains
detailed installation instructions for multiple operating systems. Users who wish
to investigate how we meet some of the requirements of NPR7150.2 can visit our
repository, specifically the issues, the pull requests, and the commit messages,
where we leave evidence that can be used to audit our software development
process. Users from the community are welcome to participate by providing
contributions, asking questions, proposing new features, and by extending and
using Copilot.

3 Background

Runtime verification is a dynamic software analysis technique that detects if a
formally specified property is violated during an execution of a program or sys-
tem. Copilot is not only a specification language, but a framework that trans-
forms the specification into an executable monitor along with supporting code
needed to observe the executing program. In the remainder of this section, we
provide some background material that should aid understanding of RV in gen-
eral and Copilot in particular.

3.1 Trace Theory

In order to check if an executing system satisfies a specification at runtime,
the monitor must be able to observe a trace capturing the evolving state or
events during execution. A trace [21] provides a view of an executing system
that captures the evolving state or events that occur during a single run of a
system. Suppose E is the set of states or events of an executing system and
E∗ is the set of all finite sequences of elements of E, then a trace τ P E∗ is a
finite sequence of observed events or states. In RV, a trace is checked against
a formal specification φ expressed in a formal logic. A specification denotes the
set of traces that satisfy it. An RV monitor then must check that a trace τ is a
member of the language of a specification φ, formally τ P L(φ). This is sometimes
phrased as “τ satisfies the specification φ” and expressed as τ |= φ. The SUO
must be instrumented to extract the trace from the executing program and an
RV framework should support the instrumentation.
2 https://github.com/B-Lang-org.
3 https://github.com/copilot-language/copilot.

https://github.com/B-Lang-org
https://github.com/copilot-language/copilot

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 473

3.2 Sampling

The idea of sampling representative data from a large set of data is well estab-
lished in engineering. For instance, in digital signal processing, a signal such as
music is sampled at a very high rate to obtain enough discrete points to repre-
sent the physical sound wave. The fidelity of the recording is dependent on the
sampling rate.

Monitoring based on sampling state variables has historically been disre-
garded as a runtime monitoring approach, for good reason: without the assump-
tion of synchrony between the monitor and observed system, monitoring via sam-
pling may lead to false positives and false negatives [7]. For example, consider
the property (0, 1, 1)∗, written as a regular expression, denoting the sequence
of values a monitored variable may take (that is, in nominal conditions, we
would expect the monitored variable to take the sequence of values of the
shape 0, 1, 1, 0, 1, 1, 0, 1, 1, ...). Depending on the specific times when the RV sys-
tem samples the variable, both false negatives (the monitor erroneously rejects
the sequence of values) and false positives (the monitor erroneously accepts
the sequence) are possible. For example, if the actual sequence of values is
0, 1, 1, 0, 1, 1, then an observation of 0, 1, 1, 1, 1 will lead to a false negative,
because a value has been skipped (Fig. 1). If the actual sequence is 0, 1, 0, 1,
then an observation of 0, 1, 1, 0, 1, 1 will lead to a false positive, because a value
is sampled twice (Fig. 2).

However, in a hard real-time context, sampling is a suitable strategy. Often,
the purpose of real-time programs is to deliver output signals at a predictable
rate. Under the assumption that the monitor and the observed program share a
global clock and a static periodic schedule, false positives are possible, but false
negatives are not. Moreover, in the context of cyber-physical systems, the data
comes from sensors measuring physical attributes such as GPS coordinates, air
speed, and actuation signals. Such continuous signals do not change abruptly
and hence sampling suffices as long as it is performed at a suitable rate.

Many RV frameworks utilize inline monitors in the observed program to avoid
the aforementioned problems with sampling. However, inlining monitors changes
the real-time behavior of the observed program, perhaps in unpredictable ways.
Introducing such unpredictability is not a viable solution for ultra-critical hard
real-time systems. With Copilot’s sampling-based approach, the monitor can be
integrated as a separate scheduled process during available time slices (this is
made possible by generating efficient constant-time monitors). Indeed, Copilot
monitors may even be scheduled on a separate processor (albeit doing so requires
additional synchronization mechanisms), ensuring time and space partitioning
from the observed programs. Other RV frameworks targeting cyber-physical sys-
tems, such as R2U2 [12], have made the same design decision.

474 I. Perez et al.

Fig. 1. Diagram representing values taken by a variable at regular points in time,
and the observations taking place (at regular, but different, times), with a dotted line
indicating the instants when the observations are taken. In this example, observations
are made at a slower rate than values change, which may happen in a realistic scenario.
In this case, the observation will lead to a false negative result compared to the actual
value (the actual value is 0, 1, 1, 0, 1, 1, which conforms to the regular expression we
are recognizing, whereas the observation is 0, 1, 1, 1, 1, which does not).

Fig. 2. Diagram representing values taken by a variable at regular points in time,
and the observations taking place (at regular, but different, times), with a dotted line
indicating the instants when the observations are taken. Notice that, in this example,
the observation starts late compared to when the actual value is first set, which may
happen in a realistic scenario. In this case, the observation renders false positive results
compared to the actual value (the actual value is 0, 1, 0, 1, which does not conform to
the regular expression we are recognizing, whereas the observation is 0, 1, 1, 0, 1, 1,
which does conform to the regular expression).

4 Hello, Copilot!

The purpose of this section is to help the reader gain some intuition about the
concepts that Copilot is built on, the different parts that make a monitor, and
how the tool generates the code.

A Copilot monitor observes a system, analyzes the data being observed, and,
if there are any property violations to report, executes functions that address
those violations. Copilot does not determine how to fix the violations: its goal is
to detect the problem and produce a notification.

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 475

Let us illustrate the main ideas in Copilot with a specific example of a collision
avoidance system for a plane. When the plane is in cruise mode and governed by
the autopilot, the altitude should not drop below a threshold, since that could
indicate that there is a problem with the autopilot, the positioning system, or
the sensors.

Fig. 3. Illustration of a plane flying over a city, with a dotted line indicating the
minimum altitude at which the plane should be flying (not to scale).

When writing a Copilot specification for a monitor, we must consider:

– What properties must be monitored.
– What data is needed i.e. the trace to be captured.
– What functions handle the monitoring violations, and what data is given to

them.
– When the monitors are running.

In this particular example, the property that must be monitored is that the
altitude of the aircraft is higher than a threshold when the autopilot mode is on.
The data needed is 1) knowing whether the autopilot is on, 2) the altitude at
any given time, and 3) the minimum altitude. In this example, we’ll define input
data streams for (1) and (2), and have a configuration parameter for (3) that
remains constant throughout the flight. When the Copilot monitor detects that
the system has entered an unsafe state, the monitor invokes an error handling
function, which in this case will be called recover, providing as argument the
current altitude and the desired threshold.

A Copilot monitor is an association between a boolean property and a han-
dling function that is executed whenever the property becomes true. Monitors
are to be checked at regular intervals or whenever new data is available.

476 I. Perez et al.

To work with such changing values, Copilot sees data not as static, but as
values that change over discrete time. Copilot properties can refer not just to
the current values of the data, but also to past values. All data, from inputs to
properties to outputs, are seen as streams, or infinite sequences of data samples.
A property being monitored is represented by a time-varying boolean, also known
as a boolean stream, but streams can carry other kinds of data (numeric, arrays,
etc.). The following diagram depicts two streams: a numeric stream counter,
which starts at zero and increases by one unit at every step, and a boolean
stream evenCounter, which becomes true when the counter is even, and false
otherwise.

evenCounter

counter

Sample number

t t t tf f f f

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 ...

...

...

At a glance, our monitor looks like this:

1 import Language.Copilot
2 import Copilot.Language
3

4 autopilot :: Stream Bool
5 autopilot = extern "autopilot" Nothing
6

7 altitude :: Stream Word64
8 altitude = extern "altitude" Nothing
9

10 threshold :: Stream Word64
11 threshold = constant 10000 -- feet

12

13 property :: Stream Bool
14 property = autopilot ==> (altitude > threshold)
15

16 violation :: Stream Bool
17 violation = not property
18

19 monitor :: Spec
20 monitor = do
21 trigger "recover" violation [arg altitude, arg threshold]

There are several distinct parts to this specification. Lines 1–2 list libraries
that must be imported. Lines 4–8 define two input streams: autopilot and

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 477

altitude. The former is a stream carrying boolean values, and it is defined
externally by an input by the same name. The latter is a stream carrying an
unsigned 64-bit integer, and is also defined externally by an input by the same
name. Lines 10–11 define an internal stream, also carrying unsigned 64-bit inte-
gers, which is constantly 10000.

Lines 13–17 define the desired system property: in this case, if the autopilot
is on, the altitude should be greater than the threshold. The property is trivially
true if the autopilot is off, as it is defined by an implication. The property that we
wish to monitor is violated whenever it becomes false, as defined by violation.

Finally, in lines 19–21, the monitor is defined by a trigger that associates
the handler recover to the stream violation, with two additional arguments.
This means that, whenever violation becomes true, the external handler function
recover will be called, passing the current values of altitude and threshold
as arguments to the function.

Notice also the text -- feet in the definition of threshold, which represents
a comment we include to help the reader understand the meaning of the constant.

5 The Copilot Specification Language

Copilot is a framework that comprises an RV specification language, and a tool
that compiles specifications into C code. Copilot specifications are defined by
a series of triggers, that is, properties that need to be monitored paired with
functions that need to be called when those properties become true. Properties
themselves are defined as Boolean-carrying streams, using a rich language of
stream definitions that includes primitives and combinators, and gives access to
external streams defined in C.

5.1 Streams

Streams are infinite successions of values, and constitute the central entity of
Copilot specifications. Streams can be defined using primitives, or be built from
other streams with a series of combinators. We provide a limited Application
Programming Interface (API) to ensure that, by construction, streams are well-
formed and can be compiled to efficient C code.

Constant Streams. The simplest Stream definition in Copilot is a constant
stream of values, for which we provide the primitive constant that takes an
element and returns a stream consisting of that element at every sample.

Example 1. The stream true, which Copilot defines in its Prelude for conve-
nience, represents a constant stream carrying the Boolean value True and is
defined as:

1 true = constant True

478 I. Perez et al.

Because Copilot is a strongly typed domain-specific language, every expres-
sion and stream has a unique type. Following the notation of the host language
Haskell, the type signature of every top-level definition is normally stated right
before, prefaced by ::. For example, true, as defined above, is a stream of
Boolean values, which we denote with the type signature true :: Stream Bool.

The primitives and combinators that form the Copilot language are also
functions that return streams. For example, the primitive constant itself is a
Haskell function with type:

1 constant :: Typed a => a -> Stream a

The type signature of this primitive has two parts, separated by the sym-
bol =>. On the right-hand side, the expression a -> Stream a indicates that
constant is a function that takes an element of any type, which we call a, and
returns a Stream carrying elements of the same type a. On the left-hand side,
the expression Typed a is a type constraint and requires a to be an instance of
the class Typed, denoting types that Copilot knows how to represent in C. We
will not cover how to define custom types or instances in this document. Read-
ers interested can consult standard Haskell textbooks to understand classes and
instances, and the Copilot API to understand the type class Typed.

Including the type signatures explicitly is not always mandatory and it may
be convenient to leave them out, especially when building very large and com-
plex expressions. However, Copilot sometimes requires explicit type signatures
for expressions that are ambiguous, in order to understand how to generate
the corresponding C code. For example, the expression constant 1 is a valid
expression of type Stream Int32, but also one of type Stream Int64 (and sev-
eral other types). Without some type annotation, Copilot cannot know if it needs
to use uint32 t or uint64 t in C to store the data, and so it requires that we
spell out the type of the expression. To minimize the need for type annotations,
Copilot provides a family of constant stream-building functions for each prim-
itive type. For example, we can define the constant stream of 1’s using 64-bit
integer numbers as:

1 ones :: Stream Int64
2 ones = constI64 1

In this case, the type signature is redundant: because we have used the prim-
itive constI64, the compiler knows we mean to build a stream of 64-bit integers.
Conversely, we could have instead defined this stream using the ‘constant‘ prim-
itive; since we explicitly state the type of the stream, the compiler knows which
representation to use. For streams carrying numbers, we can also use the literal
number without ‘constant‘or ‘constI64‘. The compiler knows that literal numbers
just mean constant streams whenever a stream is expected.

Lifting and Point-Wise Function Application. We provide definitions that
extend the standard API of each type supported by Copilot to act pointwise
on streams. Copilot supports Boolean values (i.e., Bool), signed and unsigned

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 479

fixed-length integers (i.e., Word8, Word16, Word32, Word64, Int8, Int16, Int32,
Int64), floating point numbers (i.e., Float, Double), limited structs, and limited
arrays. The operators and combinators provided by Copilot are limited to a
subset that we can compile to C efficiently. Details on structs and arrays are
given in Sects. 5.2 and 5.3 respectively.

Example 2. The standard negation function not, operating on Booleans, would
normally take one Boolean value and return another Boolean. Copilot defines
not to operate on streams of Booleans. For example, the stream false, which
holds the constant value False, could be defined by applying not to negate every
value in the true stream defined earlier:

1 false :: Stream Bool
2 false = not true

Streams can contain other values representable in C, like integers and doubles.
We overload literal numbers and mathematical operators to work on streams: lit-
erals denote constant streams, and operators are applied pointwise. For example,
we can define the constant stream carrying the number 4 based on the definition
of ones from before, as:

1 fours :: Stream Int64
2 fours = ones + 3

In this definition, the symbol 3 denotes the constant stream of 3’s, and the
symbol + denotes addition of streams carrying numbers, defined pointwise (e.g.,
the first element of ones plus the first element of 3, the second element of ones
plus the second element of 3, and so on).

Temporal Translations. Because streams represent values that change over
time, it seems natural to think of how to refer to a past or future value of a
stream. Copilot provides two mechanisms to translate a stream in time: delays,
which allow us to refer in the present to values in the past, and drops, which
allow us to refer in the present to values in the future. Both impose additional
constraints to ensure that the resulting specification is well-defined, and that it
can be executed in real time.

Delaying a stream requires that we hold the stream’s actual value in memory
for future use. Unbounded delays (i.e., those in which the amount of elements to
hold is potentially unbounded) are known to lead to memory leaks [5]. To make
the generated C code efficient and memory usage predictable, we provide very
limited ways of delaying streams: streams can be delayed by pre-pending a fixed
number of samples, with the operator (++), with type:

1 (++) :: Typed a => [a] -> Stream a -> Stream a

Example 3. We can use the append operator (++) to create a stream that is
initially False and later becomes True indefinitely:

480 I. Perez et al.

1 falseThenTrue :: Stream Bool
2 falseThenTrue = [False] ++ true

Note that streams can be defined recursively. For example, we can define the
stream that alternates between the values True and False as:

1 alternatingStream :: Stream Bool
2 alternatingStream = [True] ++ not alternatingStream

Using recursion, like before, we can define a step counter (e.g., [1, 2, 3, . . .])
as follows:

1 counter :: Stream Int32
2 counter = [1] ++ (counter + 1)

Copilot also provides the opposite temporal transformation, dropping ele-
ments from a stream, with the function:

1 drop :: Typed a => Int -> Stream a -> Stream a

Example 4. In the following example, we use drop to eliminate the first 2 ele-
ments from a stream:

1 numbers :: Stream Int64
2 numbers = [1,34,2,9,8,15] ++ numbers
3

4 numbers’ :: Stream Int64
5 numbers’ = drop 2 numbers -- 2, 9, 8, 15, 1, 34, 2, 9,...

Dropping elements introduces a potential issue if the elements are not avail-
able, which may happen if they come from an external source (e.g., a sensor).
This is discussed in the following.

External Streams. To connect Copilot specifications to existing C applica-
tions, we provide the primitive extern to define a stream based on the value of
a global C variable, by indicating its name and its type. Within Copilot, we have
no way of guaranteeing that a given variable exists, or that it has the expected
type. However, from a specification containing an external stream, Copilot gen-
erates a C header file that declares the existence of an extern global variable
with a specific type. The use of a variable name that does not exist, or that has
the wrong type, would give rise to either an error or a warning when trying to
compile and link the generated C code as part of a larger application.

Example 5. Commonly in Copilot specifications, there is a need to access data
provided by an external sensor. For example, given a global variable altitude,
of a type Word64, holding the current altitude of the plane, we can define a
Copilot specifications as follows:

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 481

1 altitude :: Stream Word64
2 altitude = extern "altitude" Nothing

The additional argument Nothing contains an optional list of Word64s that
can be used during simulation, when actual data from the sensor is not available.

External streams are one example of a stream from which we cannot drop
samples, since that would require being able to provide data that has not been
produced by the system yet. If we try to drop samples from a stream, for example,
by using the expression drop 1 altitude anywhere in our specification, Copilot
reports a compile-time error:

1 Copilot error: Drop applied to non-append operation!

The error is not reported if we first append samples to the stream, for exam-
ple, with drop 1 ([a1, a2] ++ altitude) (where a1 and a2 are two valid and
known altitudes). If we drop more samples than we prepend, however, Copilot
still reports an error:

1 Copilot error: Drop index overflow!

Definitions that drop “too much” are disallowed because they present poten-
tial violations of causality: the present of a stream may depend on a future
that has not happened yet. Problems with non-causal definitions are common in
temporal frameworks [1,8]. By introducing the afforementioned checks, Copilot
is able to prevent potential causality errors at compile time.

5.2 Structs

Copilot structs are compiled into C structs and made available to the monitor.
To be able to generate a correct struct definition in C, Copilot structs need
to be defined using specific Copilot types. We normally implement structs in
Copilot as records made of fields, each having a name and a type. We use the
type Field s t to represent each field, with s being the field name (a type-level
literal string), and t being the type of the field.

Example 6. To demonstrate how to work with structs, let us use a different
example inspired by one of the properties we monitor in our systems: the tem-
perature of a battery in one of the aircraft’s components. The following defines
a new Copilot type Battery with a field temperature of type Int16,4 which
corresponds to a struct in C with a field temp of type int16 t:

1 data Battery = Battery
2 { temperature :: Field "temp" Int16 }

4 For the sake of simplicity, we omit other fields in the definition of Battery.

482 I. Perez et al.

We provide a limited API to operate on streams of structs or records. Cur-
rently, Copilot supports projections, that is, accessing a field of a struct, with
the function:56

1 (#) :: (Typed a, Typed t)
2 => Stream a -> (a -> Field s t) -> Stream t

The first argument denotes the stream carrying a struct of type a, and the
second denotes a field of the struct with name s and type t. Because structs are
first class, they are valid types to be used in streams, and so are their fields.

Example 7. If we have a global C variable battery of the struct type generated
from the definition of Battery above, holding the state of the battery at each
step, we can access it from Copilot with the following definition:

1 batt :: Stream Battery
2 batt = extern "battery" Nothing

We can extract a field of a stream of structs, producing another stream in a
type-safe way:

1 tempPlus1 :: Stream Int16
2 tempPlus1 = batt # temperature + 1

5.3 Arrays

Copilot also includes support for arrays, with an advanced type that includes
the length as part of the type of the array. For example, a stream in which
each element is an array with 16 elements of type Int64 would have type Array
16 Int64. The presence of the array’s length as a type-level natural number
serves two purposes: first, it allows the compiler to detect, at compile time,
some incorrect accesses (i.e., access out of bounds), and, second, it allows us to
generate C without dynamic memory allocation, as all arrays have known, fixed
lengths.

Similarly to structs, Copilot provides a limited API to work with Streams of
Arrays. To access specific elements in the array, we provide the operator7:

1 (.!!) :: (KnownNat n, Typed t)
2 => Stream (Array n t)
3 -> Stream Word32
4 -> Stream t

5 The signature of (#) includes additional constraints. We omit details out of brevity,
but this does not change the way that it is used.

6 The parentheses around some operator names are a particularity of the host lan-
guage, but they are not needed when the operators are used in infix position in
expressions, as illustrated later in this section.

7 The signature of (.!!) imposes additional constraints on the array, which we omit,
but the arguments and the way they are used are as described.

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 483

This operation allows us to access an element of an array, where the position
of that element is determined by a number in a stream. The signature of this
operator includes a requirement that n be a KnownNat. That is just a fancy way
of saying that it must be a concrete number known at compile time, that is, a
specific natural number (as opposed to a variable holding a natural number).

Example 8. We can augment Battery with the measurements of the voltages of
individual cells by including a new field:

1 data Battery = Battery
2 { temperature :: Field "temp" Int16
3 , voltages :: Field "volts" (Array 10 Word16)
4 }

The field voltages is an array of length 10, whose elements have type Word16.
Copilot allows us to define streams that access specific elements of these

arrays. For example, we can take the voltages field from batt, extract its first
element, and add one to the result.

1 volt0Plus1 :: Stream Word16
2 volt0Plus1 = (batt # voltages .!! 0) + 1

Copilot is able to detect some incorrect accesses at compile time, if the index
within the stream is out of range and the Copilot expression denoting that index
is a constant stream. For example, if we had passed 11 as second argument of
(.!!), we would have seen a warning during compilation. Nevertheless, it is not
generally possible for all streams to detect incorrect accesses in compile time,
since the value of the stream containing the index may only be determined at
runtime if they depend on some external variable.

5.4 Monitors

The purpose of Copilot is to monitor properties and to raise an alert when
an assertion is violated. The Copilot language defines monitors as sequences of
triggers. A trigger is defined as a stream of Booleans, a C function to be called
when the current sample is true, and the arguments to pass to that function:

1 trigger :: String -> Stream Bool -> [Arg] -> Spec

Spec is a type internal to Copilot and represents a specification.
Properties in triggers denote violations, not assertions. Therefore, triggers

denote functions to call when samples are True, not False.
The function to call is given by the first argument as a String, and needs to

be implemented by the user. Referring to a function that does not exist would
lead to a link-time error. If the header files generated by Copilot are included
in other C files of the application that uses Copilot, referring to a function with
the wrong arguments in a trigger would also lead to a compilation error.

484 I. Perez et al.

Example 9. The following specification declares a monitor that executes the C
function large, passing as argument the current value of the stream counter,
when the voltage of the first cell of the battery, plus one unit, is greater than 8.
Arguments are passed as a comma-separated list, with the keyword arg preced-
ing each argument stream:

1 monitor :: Spec
2 monitor =
3 trigger "large" (volt0Plus1 > 8) [arg counter]

Specs represent computations, so we can declare multiple triggers by listing
them in sequence, preceded by the language keyword do (what is known in the
host language Haskell as do notation).

We can expand the prior definition by adding a second trigger that calls the
function too large with no arguments when the same voltage is greater than
10 (see Sect. 5.3):

1 monitor :: Spec
2 monitor = do
3 trigger "large" (volt0Plus1 > 8) [arg counter]
4 trigger "too_large" (volt0Plus1 > 10) []

Copilot specifications can be simulated on a computer, or compiled into C
code to be used in the same or a different device. In Sect. 7 we demonstrate how
the specification can be compiled into C and integrated in a larger system.

6 Logics and Languages

Monitors and specifications can become overly complex as systems grow. To
aid understanding, Copilot supports extending the language with new opera-
tors without having to modify its internals. Users can leverage such facilities to
simplify their specifications and reuse constructs across projects.

This section introduces the temporal and propositional logic libraries of Copi-
lot, which are defined using the aforementioned extension mechanisms. In this
tutorial we concentrate on the past-time temporal logics. However, Copilot also
includes libraries for future-time linear temporal logics, including bounded LTL
and metric temporal logic.

6.1 Logical Operators

As mentioned in Sect. 5, Copilot extends the standard APIs of the supported
types to apply pointwise on streams. In the case of Booleans, Copilot provides
a number of logical operators based on propositional logic. Apart from the con-
stants true and false, the following operators on Boolean streams are provided:

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 485

1 not :: Stream Bool -> Stream Bool
2 (&&) :: Stream Bool -> Stream Bool -> Stream Bool
3 (||) :: Stream Bool -> Stream Bool -> Stream Bool
4 xor :: Stream Bool -> Stream Bool -> Stream Bool
5 (==>) :: Stream Bool -> Stream Bool -> Stream Bool

In all cases, these operators apply the associated Boolean operation to the
values at each sample. For example, given two Boolean streams s1 and s2, the
stream s1 ==> s2 is true at a time (i.e., sample) if s2 is true at that time, or if
s1 is false.

While these logical operators can help simplify basic expressions, the com-
plexity of real-world applications demands higher-level languages. In the follow-
ing we explore temporal logics supported by Copilot, and introduce operators to
refer to past or future values of a stream.

6.2 Temporal Logics

Generally speaking, temporal logics extend other logics with a temporal dimen-
sion. To describe relations between formulas at different times, temporal logic
languages introduce modal operators that abstract over time. For example, some
languages provide an operator � (called always, also written G, after the word
globally), and a formula � φ is true if and only if φ is true at all times, where
the specific meaning of the expression “at all times” depends on the logic.

Temporal logic languages generally vary in the logic they are based on, the
temporal operators they support and in their model of time (e.g., continuous vs
discrete, linear vs branching, future and/or past). These aspects impact what
formulas can be expressed, which ones are true or false, what information is
needed to evaluate them, and how efficiently we can do so.

Because time is an essential component of stream languages, like Copilot,
temporal logics constitute a suitable mechanism to express many of the re-
occurring patterns in monitor specifications. In the following we discuss some of
the languages supported by Copilot, and demonstrate their use with examples.

Past-Time Linear Temporal Logic. Past-time Linear Temporal Logic
(ptLTL) is an extension of propositional logic in which time is seen as linear,
discrete, and bounded. While, in propositional logic, every variable may take the
value true or false, in ptLTL, every variable may take the value true or false, at
each point in the present or in the past.

Past-time linear temporal logic introduces temporal operators, letting us
express logical formulas based not only on certain propositions being true at
the present, but also on their validity in the past.

Copilot supports the temporal operators alwaysBeen, eventuallyPrev,
previous, and since, all operating on and returning Boolean streams:

1 alwaysBeen :: Stream Bool -> Stream Bool
2 eventuallyPrev :: Stream Bool -> Stream Bool

486 I. Perez et al.

3 previous :: Stream Bool -> Stream Bool
4 since :: Stream Bool -> Stream Bool -> Stream Bool

A stream alwaysBeen x is true at a time if x has been true at all times,
present and past (Fig. 4). The operator eventuallyPrev works the opposite way,
and eventuallyPrev x is true if x has ever been true. The temporal operator
previous refers to the immediately previous sample, with previous x being
true if x was true in the last sample. Finally, since x y is true at a time if the
stream x has been continuously true since the first sample after y became true.

Fig. 4. Example of values of the formulas alwaysBeen x, eventuallyPrev x, and
previous x, for different values of x at different times.

Example 10. Borrowing the example in the prior section, imagine that we want
to detect if the voltage of the first battery cell was ever too high. We can express
that in Copilot with the following specification:

1 voltageWasTooHigh :: Stream Bool
2 voltageWasTooHigh = eventuallyPrev ((batt # voltages .!! 0) >= 10)

We can combine these temporal operators with the pointwise operators pre-
sented earlier in this section, to capture, for example, that a safety system can
only be activated if a condition was violated before:

1 safetyResponseOK :: Stream Bool
2 safetyResponseOK = safetyEngaged ==> voltageWasTooHigh
3 where
4 safetyEngaged :: Stream Bool
5 safetyEngaged = extern "safety_system" Nothing

7 Integration Into Larger Systems

The facilities described until now allow users to specify properties to be moni-
tored. To use such monitors in practice, users need to provide the inputs to the
monitors and define the functions to handle property violations.

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 487

This section describes how to generate the C code for the monitors, and
how to connect the monitors to the rest of the system under observation. The
purpose is to give the reader a full understanding of the interfaces used by
Copilot. However, for larger projects and existing software frameworks, we have
developed a separate tool that simplifies the process. Currently, the tool supports
NASA’s Core Flight System (cFS) [23], FPrime [3], the Robot Operating System
2 (ROS 2), and we welcome contributions to support other platforms.

7.1 Monitor Generation in C

To generate the C code for the monitors, we need to modify the specifications
to indicate that we wish to compile the specification to C. Taking the example
from Sect. 4 about the altitude / autopilot as a starting point, we first need to
add one more import, namely:

1 import Copilot.Language.C99

We can now add a main function that compiles the specification. We first
need to reify it, which in Copilot’s compiler is a process that also checks the
specification’s correctness. The result of the reification process is a post-processes
specification that we can compile to C:

1 main = do
2 reifiedSpec <- reify monitor
3 compile "rv" reifiedSpec

To actually compile the spec and generate the C code, all we need to do is
run the specification. Because Copilot is a DSL embedded in Haskell, we use
the standard tool runhaskell (assuming that the specification is saved in a file
called Spec.hs):

1 $ runhaskell Spec.hs

The result of this execution are three files, namely rv.c, rv.h, and
rv types.h. The first file contains the actual implementation of the monitors.
We do not need to concern ourselves with how the file is implemented; every-
thing we need to interact with the monitors is declared in rv.h. The latter file
rv types.h contains local definitions of any auxiliary types used in the specifi-
cations (e.g., structs). Since in this case there are none, that file is empty.

Inspecting rv.h more closely shows a number of definitions that we need to
provide, or that we can use:

1 extern bool autopilot;
2 extern uint64_t altitude;
3 void step();
4 extern void recover(bool arg1, uint64_t arg2);

The first two declarations are the inputs to the system. It is the Copilot
user’s obligation to define those somewhere and give them appropriate values
at all times and before the monitoring system checks the current state of the

488 I. Perez et al.

monitors. The next line, void step();, declares the main entry point of the
monitoring system. The user of this code must call the step function when they
want to check the status of the monitors. Note that calling step also advances
the implicit clock for the monitoring system. Finally, the function recover must
be defined by the user of this code, and must implement a mechanism to recover
from the property violation.

7.2 Integration

The following is a sample C code that puts data in both inputs, calls step, and
prints messages whenever there are violations:

1 bool autopilot = false;
2 uint64_t altitude = 0;
3 void recover(bool arg1, uint64_t arg2) {
4 printf("Violation: %d\n", arg2);
5 }
6 int main () {
7 int i = 0;
8 for (i = 0; i < 10000; i++) {
9 autopilot = (i % 1000) < 500;

10 altitude = abs (i - 500);
11 step();
12 }
13 }

In this code, the recover function simply reports the violation, but does not
actually recover from the off-nominal situation. However, in a real system, the
recover function could activate a recovery routine that actually brings the plane
to a higher altitude. In general, the details of the recovery routine are mission
specific and quite complex. If, for example, we were working with a quadcopter
instead of a plane, the recovery routine for a loss of altitude might increase
the power on the propellers, provided that the quadcopter is level, rightside
up, and there are no objects in its path moving upwards, and other necessary
safety conditions hold. Other recovery methods for the same situation would be
possible, depending on the vehicle and the situation.

8 Conclusion

In this paper, we described Copilot, a runtime verification framework for safety-
critical, real-time embedded systems. We discussed the evolution of the project,
how it was originally built, and how the components that make the framework
have changed over time based on both project need and resources available.
The current version of the language was introduced, and we saw how the new
constructs of structs and arrays help to deal with more complex data structures
without sacrificing safety. Copilot is a project rich in libraries, and we discussed

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 489

different temporal logics supported by the language. We also illustrated how
to create monitors and integrate them into an existing system with minimal
interference with the SUO.

There are a number of open problems in this domain, and in Copilot as a
whole, that remain to be addressed. We expect future versions of the language to
be simpler and require less boilerplate code, to support generating monitors in
languages other than C, and to expose less of the underlying Haskell ecosystem.

Acknowledgements. Figure 3 is based on image “City skyline” by Rg1024 (public
domain), and image “Large modern passenger airliner jet”, Designed by macrovec-
tor/Freepik.

References

1. Bahr, P., Berthold, J., Elsman, M.: Certified symbolic management of financial
multi-party contracts. In: Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, pp. 315–327. ICFP 2015, ACM, New
York, NY, USA (2015). https://doi.org/10.1145/2784731.2784747

2. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime ver-
ification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification, pp.
1–33. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-75632-5 1

3. Bocchino, R., Canham, T., Watney, G., Reder, L., Levison, J.: F Prime: an open-
source framework for small-scale flight software systems (2018)

4. Caspi, P., Pialiud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language
for programming synchronous systems. In: 14th Symposium on Principles of Pro-
gramming Languages, pp. 178–188 (1987)

5. Courtney, A., Elliott, C.: Genuinely functional user interfaces. In: Haskell Work-
shop, pp. 41–69 (2001)

6. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: 12th
International Symposium on Temporal Representation and Reasoning, pp. 166–
174. IEEE (2005)

7. Dwyer, M., Diep, M., Elbaum, S.: Reducing the cost of path property monitor-
ing through sampling. In: Proceedings of the 23rd International Conference on
Automated Software Engineering, pp. 228–237 (2008)

8. Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of the Second
ACM SIGPLAN International Conference on Functional Programming, pp. 263–
273. ICFP ’97, ACM (1997)

9. Goodloe, A.: Challenges in high-assurance runtime verification. In: Leveraging
Applications of Formal Methods, Verification and Validation: Foundational Tech-
niques - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, Octo-
ber 10–14, 2016, Proceedings, Part I, pp. 446–460 (2016)

10. Goodloe, A., Pike, L.: Monitoring distributed real-time systems: a survey and
future directions. Tech. Rep. NASA/CR-2010-216724, NASA Langley Research
Center (2010)

11. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.)
Verified Software: Theories, Tools, Experiments, pp. 374–383. Springer, Berlin,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69149-5 40

https://doi.org/10.1145/2784731.2784747
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-540-69149-5_40

490 I. Perez et al.

12. Johannsen, C., Jones, P., Kempa, B., Rozier, K.Y., Zhang, P.: R2U2 Version 3.0: re-
imagining a toolchain for specification, resource estimation, and optimized observer
generation for runtime verification in hardware and software. In: Enea, C., Lal,
A. (eds.) Computer Aided Verification, pp. 483–497. Springer Nature Switzerland
(2023)

13. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E., Majum-
dar, R. (eds.) Runtime Verification, pp. 87–101. Springer International Publishing,
Cham (2015). https://doi.org/10.1007/978-3-319-23820-3 6

14. Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of
the 24th International Conference on Software Engineering, pp. 547–550. ICSE ’02,
ACM (2002)

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York, NY (1992). https://doi.org/10.1007/978-1-4612-0931-7

16. NASA: NASA Software Engineering Requirements NPR7150.2C. https://nodis3.
gsfc.nasa.gov/displayAll.cfm?Internal ID=N PR 7150 002C (2019)

17. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., et al. (eds.) Runtime Verification: First International
Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, pp.
345–359. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16612-9 26

18. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Experience report: a do-it-yourself
high-assurance compiler. In: Proceedings of the International Conference on Func-
tional Programming (ICFP). ACM (2012)

19. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: monitoring embedded
systems. Innov. Syst. Software Eng. 9(4) (2013)

20. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57. SFCS ’77, IEEE Com-
puter Society, Washington, DC, USA (1977). https://doi.org/10.1109/SFCS.1977.
32

21. Reger, G., Havelund, K.: What is a trace? A runtime verification perspective.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 339–355.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 25 7th Inter-
national Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2016); Conference date: 05-10-2016 Through 14-10-2016

22. Scott, R.G., Dodds, M., Perez, I., Goodloe, A.E., Dockins, R.: Trustworthy run-
time verification via bisimulation (experience report). Proc. ACM Program. Lang.
7(ICFP) (2023)

23. Wilmot, J.: A core flight software system. In: Proceedings of the 3rd IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System Syn-
thesis, pp. 13–14. CODES+ISSS ’05, ACM, New York, NY, USA (2005). https://
doi.org/10.1145/1084834.1084842

https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1007/978-1-4612-0931-7
https://nodis3.gsfc.nasa.gov/displayAll.cfm?Internal_ID=N_PR_7150_002C_
https://nodis3.gsfc.nasa.gov/displayAll.cfm?Internal_ID=N_PR_7150_002C_
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-319-47169-3_25
https://doi.org/10.1145/1084834.1084842
https://doi.org/10.1145/1084834.1084842

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 491

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

ASMETA Tool Set for Rigorous System
Design

Andrea Bombarda1(B) , Silvia Bonfanti1 , Angelo Gargantini1 ,
Elvinia Riccobene2 , and Patrizia Scandurra1

1 University of Bergamo, Bergamo, Italy
{andrea.bombarda,silvia.bonfanti,

angelo.gargantini,patrizia.scandurra}@unibg.it
2 Università degli Studi di Milano, Milan, Italy

elvinia.riccobene@unimi.it

Abstract. This tutorial paper introduces ASMETA, a comprehensive
suite of integrated tools around the formal method Abstract State
Machines to specify and analyze the executable behavior of discrete event
systems. ASMETA supports the entire system development life-cycle,
from the specification of the functional requirements to the implemen-
tation of the code, in a systematic and incremental way. This tutorial
provides an overview of ASMETA through an illustrative case study, the
Pill-Box, related to the design of a smart pillbox device. It illustrates the
practical use of the range of modeling and V&V techniques available in
ASMETA and C++ code generation from models, to increase the quality
and reliability of behavioral system models and source code.

1 Introduction

It is widely recognized that formal methods need to be supported by auto-
mated tools to be of practical use and promote their adoption, especially when
they are required by critical application areas (such as security and safety) and
standards for software certification and accreditation [6,7,22,23]. This tutorial
presents ASMETA1, an open-source framework defining modeling notations and
tools inspired by the well-known formal method of the Abstract State Machines
(ASMs) [14,15]. ASMETA supports model editing, visualization, simulation, ani-
mation, validation, verification, as well as code generation from formal models.

In the wide range of existing formal methods [17,21], and more specifically
of state-based formal methods2, the ASM-based formal method supported by

1 https://asmeta.github.io/.
2 https://abz-conf.org/methods/.

The work of Andrea Bombarda is supported by PNRR - ANTHEM (AdvaNced Technologies for
Human-centrEd Medicine) - Grant PNC0000003 - CUP: B53C22006700001 - Spoke 1 - Pilot 1.4. The
work of Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra was partially
supported by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan
funded by the European Union - NextGenerationEU.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 492–517, 2025.
https://doi.org/10.1007/978-3-031-71177-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_28&domain=pdf
http://orcid.org/0000-0003-4244-9319
http://orcid.org/0000-0001-9679-4551
http://orcid.org/0000-0002-4035-0131
http://orcid.org/0000-0002-1400-1026
http://orcid.org/0000-0002-9209-3624
https://asmeta.github.io/
https://abz-conf.org/methods/
https://doi.org/10.1007/978-3-031-71177-0_28

ASMETA Tool Set for Rigorous System Design 493

ASMETA offers several advantages: (1) models have a pseudo-code format, so
practitioners can easily understand them as high-level programs; (2) systems can
be specified at any desired level of abstraction, depending on the level of details
one wants to achieve; (3) models are executable, so they are suitable also for
lighter forms of model analysis such as simple simulation to check model con-
sistency w.r.t. system requirements; (4) techniques for mapping models to code
(e.g., to C++ or Java) are supported, so correct-by-construction development
is possible; (5) multi-agents modeling is supported, making possible the specifi-
cation of distributed systems. Moreover, the ASMETA framework allows for the
integrated use of tools for different forms of model analysis, it is maintained and
under continuous features improvement.

Through an illustrative case study from the healthcare domain, the Pill-Box
system, this tutorial shows how to model in ASMETA the executable behavior
of a system with a discrete state space. Then, the tutorial guides the readers
through the use of the ASMETA tools to apply several model validation and
verification (V&V) techniques, such as simulation, scenario-based validation,
and formal verification of user-defined properties and meta-properties. A model
refinement process supported by ASMETA is also presented by means of the
running case study and by explaining how in formalizing the system behavior it
is possible to evolve a partial specification (ground model) into a more complete
model. Finally, the tutorial showcases the automatic generation of executable
C++ code from the Pill-Box model, developed and verified in ASMETA.

This tutorial is intended to be a resource for software engineers and
researchers that want to leverage lightweight formal methods in their projects.
The hands-on approach, adopting the Pill-Box system as running example,
endows the readers with the necessary skills to start adopting ASMETA for a
more rigorous system design that increases the quality and reliability of behav-
ioral system models and source code. ASMETA is distributed as an open-source
solution so that other researchers can contribute to its extension.

The remainder of this tutorial is organized as follows. Section 2 introduces the
ASMs, while Sect. 3 introduces the ASMETA framework together with a model-
ing process, and provides all useful references. Section 4 presents the running case
study. Section 5 describes the user-facing modeling language AsmetaL to define
ASM models. Sections from 6 to 9 explain the ASMETA tooling supporting all
model analysis techniques for a rigorous system design. Section 10 presents model
refinement applied to the running case study. Section 11 explains how to generate
C++ code from the verified Pill-Box model. Finally, Sect. 12 concludes.

2 Abstract State Machines

Before introducing ASMETA, here we provide a basic introduction of the state-
based formal method of ASMs [14,15]. States are mathematical algebras speci-
fying a system configuration by means of arbitrarily complex data, i.e., domains
of elements with functions defined on them. State transitions are expressed by
named and parameterized transition rules describing how the data (function
values saved into locations) change from one state to the next one.

494 A. Bombarda et al.

Fig. 1. An ASM run with a sequence of states and state-transitions (steps)

The functions of the algebra are classified into dynamic and static depending
on whether they are updated or not by transition rules. The dynamic functions
are further distinguished in monitored (read by the machine and modified by the
environment), controlled (read and written by the machine), out (only written
by the machine and read by the environment), and shared (read and written
by the machine and its environment). In addition, functions that are defined in
terms of other (dynamic) functions are called derived.

Dynamic functions are updated by firing transition rules. The basic transition
rule is the update rule for function update; it has form f (t1 , . . . , tn) := v, where
f is an n-ary function, ti with i = 1..n are terms, and v the new value to be
associated with the location f (t1 , . . . , tn) in the next state. As in structured pro-
gramming, constructs for structured control flow can be used to form transition
rules depending on the type of update structure they express. The main rule con-
structors include: guarded updates (if-then, switch-case), simultaneous parallel
updates (par), non-determinism (choose), unrestricted synchronous parallelism
(for-all), abbreviation on terms of rules (let), etc.

ASMs can be read as pseudocode over abstract data with a well-defined
execution semantics. An ASM run (see Fig. 1) is a (finite or infinite) sequence
S0, S1, . . . , Sn, . . . of states. Starting from the initial state S0, in a computation
step (run step) from Sn to Sn+1, all enabled transition rules are executed in
parallel, leading to simultaneous updates of a number of locations. In case of an
inconsistent update (i.e., the same location is updated to two different values)
or invariant violations (i.e., some property that must be true in every state is
violated), the model execution stops with error.

3 Overview of the ASMETA Toolset

The ASMETA project started in 2004 with the aim of addressing the deficiency
in tools that support ASMs. Although the formal approach had demonstrated
widespread application in specifying and verifying various software systems
across diverse domains (as evidenced by the ASM research summary in [15]),
the absence of supportive tools for the ASM method was deemed a limitation,
leading to skepticism regarding its practical utility.

To address this issue, ASMETA has been developed by exploiting the Model-
Driven Engineering (MDE) approach [5] for software development starting from
the definition of a meta-model for an abstract notation able to capture the
working definition (see [15, pag. 32]) of an ASM. From the metamodel, a textual
notation for encoding ASM models has been derived, and has been enriched,
during the years, to support many V&V activities in the rigorous design of soft-
ware systems. These analysis techniques have been proven to be beneficial for

ASMETA Tool Set for Rigorous System Design 495

the safety assurance of safety-critical systems with event-based behavior and dis-
crete state spaces. See [1] for further details on the case studies and application
domains (including medical software, software control systems, and service-based
systems, to name a few) to which ASMETA has been applied.

AsmM

AsmetaVis

AsmRefProver

Asm2C++

ATGT

AsmetaSMV

AsmetaMA AsmetaS

AsmetaA

AsmetaV

AsmetaBDD

Ecore

Java API
AsmetaS@run.time

CoMA

Avalla

AsmetaCAsmetaL AsmetaXt

Fig. 2. ASMETA-based development process

3.1 Getting and Using ASMETA

Most ASMETA tools are integrated with the Eclipse IDE3. An Eclipse package
containing the ASMETA toolset is available and released periodically at https://
github.com/asmeta/asmeta. In the same location, the source code of all the
ASMETA tools, together with examples of ASMETA specifications, is available.

Tooling. ASMETA tools support the main activities of the software develop-
ment process from formal requirement specification to code generation. Figure 2
shows the tools usage in the various stages [1]. At design time, ASMETA pro-
vides tools for model editing and visualization (the modeling language AsmetaL4

and its editor and compiler, plus the model visualizer AsmetaVis for graphical
visualization of ASMETA models), model validation (e.g., interactive or random
simulation by the simulator AsmetaS5, animation by the animator AsmetaA, sce-
nario construction and validation by the validator AsmetaV, and static analysis
3 An Eclipse package including all tools and models useful for this tutorial is available
at https://doi.org/10.5281/zenodo.12770854.

4 It is a concrete notation for the abstract one defined by the metamodel reflecting
the working definition of an ASM.

5 The ASMETA model simulator implements the computational paradigm (concepts
and semantics) of an ASM run as defined in the previous section.

https://github.com/asmeta/asmeta
https://github.com/asmeta/asmeta
https://doi.org/10.5281/zenodo.12770854

496 A. Bombarda et al.

by the model reviewer AsmetaMA), and verification (proof of temporal properties
by the model checker AsmetaSMV, and proof of correct model refinement by Asm-
RefProver). During software development, ASMETA supports automatic code
and test case generation from models (the code generator Asmeta2C++, the unit
test generator ATGT, and the acceptance test generator AsmetaBDD for complex
system scenarios). If the system is available, during its operation, ASMETA can
be used for runtime monitoring (by the tool CoMA) and runtime simulation (by
AsmetaS@run.time).

Remark. Due to lack of space and to keep this tutorial simple and understand-
able to new and unfamiliar users, in the following sections we explain and show
the application of a selected number of tools, those supporting the initial and
fundamental steps of system modeling, analysis (V&V) and encoding. Focusing
more on pedagogical rather than technical aspects of our modeling approach, we
also skip advanced modeling features (e.g., the concepts of multi-agent ASMs or
I/O ASMs, suitable to model distributed and composable systems) which require
understanding the basic and preliminary concepts around ASMETA; this is what
this tutorial intends to cover.

Modeling Process. ASMETA derives its foundation from the ASM theory,
thus, akin to ASMs, its modeling methodology follows an iterative approach
with a focus on model refinement. Concretely, ASMETA employs stuttering
refinement [4], a specialized variant of the broader ASM refinement [13]. This
refinement-based process allows users to tackle the complexity of the require-
ments and to bridge, in a seamless manner, specification to code. Requirements
modeling begins with the creation of a high-level ASMETA model, akin to the
ASM ground model [15]. This model is delineated through the analysis of infor-
mal requirements typically presented in natural language. Model signature and
rule naming are set by using terms of the application domain and derived from
textual requirements, thereby simplifying the process of connecting requirements
to the model. This high-level model (see model ASM0 in Fig. 2) should be correct
and consistent, i.e., it should represent the intended requirements (at the desired
abstraction level) and no ambiguities of initial requirements should be left. It
is not necessary for ASM0 to be complete, i.e., it may not specify some given
requirements that are later captured during the refinement process. Indeed, the
modeling process supported by ASMETA is a refinement-based one: starting
from the model ASM0, through a sequence of refined models ASM1, ASM2,. . . ,
other functional requirements are specified and modeled, till the desired level of
completeness is reached. At the end of this process, ASMfinal captures all intended
requirements at the desired level of abstraction. When performing refinements,
it is important to prove that each refined model is a correct (stuttering) refine-
ment of the previous one. The ASMETA framework includes the AsmRefProver
tool [4] which supports the user in this activity and automatically performs the
correctness check of refinement steps.

Starting from the very first model, the ASM0, during the modeling process
the user should perform validation and verification (V&V) activities to assure
requirements satisfaction and property validity.

ASMETA Tool Set for Rigorous System Design 497

4 The Pill-Box Case Study

In this section, we introduce the Pill-Box case study [8] with its informal require-
ments, which will be used throughout the paper as a running example to describe
the modeling and analysis activities supported by the ASMETA tools.

The Pill-Box device is a medicine/pill dispenser that has a certain number
of drawers (e.g., three drawers). Each drawer contains multiple slots (one for
each pill) that are emptied in sequence. In each drawer, only one specific type
of medicine can be placed. So, each drawer can contain multiple pills (one per
slot) but all pills must be of the same drug type.

Each Pill-Box drawer has a switch and a LED. The former is used to notify
whether the pill in the drawer has been taken, and the latter is used to signal
relevant information to the user. When the LED is OFF, it is not time to take
the corresponding pill, while when the LED is ON, it means that the patient
should assume that pill. When it is time to take a pill, the LED stays ON for
10 minutes after the scheduled time of the pill.

For each pill type, it is possible to set several deadlines throughout the day,
meaning that the same drawer might be opened multiple times. However, if two
or more pills have to be taken at the same time, the Pill-Box turns on only a
single LED per time, by randomly choosing the order in which to assume them.
Here we introduce three models for the ASMETA specification of the Pill-Box,
where each one introduces new elements for refining time and pill management:

– Ground model (pillbox ground): here we abstract the requirement that a
drawer contains multiple slots and consider only a single pill per drawer.
Moreover, time is not explicitly modeled, and information on the time passed
is given by an external event (a monitored Boolean-valued function).

– Model with time (pillbox time): this specification models time passing by a
timer. We still keep the abstraction of having a single pill per drawer.

– Final model (pillbox final): it captures all requirements of the Pill-Box system,
and it thus specifies multiple pills (and multiple deadlines) per drawer.

These ASMETA models and all the other related artifacts are presented in part
in this paper; their complete version can be found in Models.zip file at https://
doi.org/10.5281/zenodo.12770854.

5 AsmetaL: The ASMETA Language

This section introduces the textual language AsmetaL, the user-facing language
to define ASMETA models. The main modeling constructs of AsmetaL are here
illustrated using the ground model pillbox ground introduced in Sect. 4.

An ASMETA specification is described in a text file with extension .asm and
structured as shown in Listing 1. It has five main sections:

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854

498 A. Bombarda et al.

asm pillbox ground

import ../STDL/StandardLibrary
...
signature:
// DOMAINS
abstract domain Drawer
enum domain LedLights = {OFF | ON}
...

// FUNCTIONS
dynamic monitored isPillTaken: Drawer −> Boolean
...
dynamic controlled drawerLed: Drawer −> LedLights
...
derived isOn: Drawer −> Boolean
...
static drawer1: Drawer

definitions:
// FUNCTIONS DEFINITIONS
function isOn($d in Drawer) =

(drawerLed($d) = ON)
...
// RULE DEFINITIONS
rule r reset($drawer in Drawer) = ...
...
// INVARIANTS AND PROPERTIES
invariant inv drawer1 over Drawer = ...
...
// MAIN Rule
main rule r Main = ...

// INITIAL STATE
default init s0:
// Turn−off all the LEDs for the Drawers
function drawerLed($drawer in Drawer) = OFF
...

Listing 1. Structure of an ASMETA specification

– The section import allows us to include all or some of the declarations and
definitions given in another ASMETA model.

– The section signature is where domains and functions are declared.
– The section definitions contains the definition of static concrete domains, static

or derived functions, all transition rules, and possible state invariants, i.e.,
first-order formulas that must be true in all states.

– The section main rule defines the rule that is the starting point of the com-
putation at each state; it may, in turn, call the other transition rules (defined
as macro call rules6). A run step of an ASMETA model is the execution of
all transition rules, which are directly or indirectly called from the main rule
and are enabled to fire.

– The section default init introduces the initial values for dynamic concrete
domains and dynamic functions declared in the signature.

Here we provide a more detailed look at each part of an ASMETA specification.

Specification Name. The first line of the specification contains the keyword
asm followed by the name of the specification, which must be the same as the
file. For instance:

asm pillbox ground

indicates that the specification name is pillbox ground and it must be defined in
the file pillbox ground.asm.

A model without the main rule is called a module7. It consists of declarations
and definitions of domains, functions, invariants, macro call rules, and it can be
imported by other ASMETA models. Note that an ASMETA model (the model
that starts with the keyword asm) can be imported as well, except for the initial
state and the main rule.
6 Note that to define a macro call rule in the definitions section we use the syntax macro
r rule(params), while the macro rule is invoked from another rule as r rule[params].

7 A module name corresponds to the first word used in the .asm file.

ASMETA Tool Set for Rigorous System Design 499

Import. An AsmetaL specification can import modules, by using the file name
with its relative or absolute path. For instance, the following line imports the
StandardLibrary:

import ../STDL/StandardLibrary

The StandardLibrary is a user-ready module that defines names for basic
domains and functions. This library is mandatory to import since it includes
predefined names for primitive domains (like Boolean, Natural, Integer, etc.) and
functions for the main operations over these domains and structured domains
(for tuples, sequences, sets, bags, and maps). Other libraries are available8 as
explained in the following sections.

Signature Domains. The AsmetaL language allows the user to specify domains
of different type:

– Basic domains: represent primitive data values and are denoted by ready-to-
use domain symbols of the standard library (Boolean, Natural, Integer, Com-
plex, Char, and String).

– Enum domains: finite enumeration of elements defined by the user.
– Abstract domains: (non-enumerable) user-defined domain to describe abstract

entities of the real word.
– Concrete domains: user-named domain defined as sub-domain of another

domain.
– Structured domains: representing structured data (like finite sets, tuples,

maps) over other domains; examples are the Cartesian Product of two or
more domains, and the mathematical Powerset of a domain.

Examples of user-defined domains from the ground model of the Pill-Box are:

abstract domain Drawer
enum domain LedLights = {OFF | ON }
enum domain Drugs = {TYLENOL | ASPIRINE | MOMENT}

Drawer is an abstract domain representing the drawer objects; such objects
typically do not have a precise structure and the user further characterizes them
by introducing functions over them (see next paragraph). LedLights is the enu-
meration for the light status of the LEDs; Drugs is the enumeration of three
different types of drugs (Tylenol, Aspirine, and Moment).

Signature Functions. Basic functions form the basic signature of the machine
and are classified into static, which never change during any run of the machine,
and dynamic, that may be changed by the environment or by the machine
updates. Dynamic functions are further divided into monitored, controlled, shared,

8 https://github.com/asmeta/asmeta/blob/master/asm examples/STDL/.

https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/

500 A. Bombarda et al.

and out. AsmetaL adopts appropriate keywords for declaring all these kinds of
functions. Examples of declarations of static functions are the constants9 repre-
senting the three drawers (elements of the abstract domain Drawer):

static drawer1: Drawer
static drawer2: Drawer
static drawer3: Drawer

Examples of dynamic functions declaration in the ground model are10:

dynamic monitored isPillTaken: Drawer −> Boolean
dynamic monitored pillDeadlineHit: Drawer −> Boolean
dynamic controlled drawerLed: Drawer −> LedLights
dynamic controlled drug: Drawer −> Drugs
dynamic controlled isPillTobeTaken: Drawer −> Boolean

The function isPillTaken is a monitored function, and it is true when the user
confirms he/she has taken the pill. Similarly, the monitored function pillDead-
lineHit signals that the deadline for the pill contained in a specific drawer has
come. A drawer contains a drug and has a drawerLed which is ON when it is time
to take the pill. In addition, the Pill-Box uses the characteristic or indicator
function isPillTobeTaken to store the drawers for which the deadline has been
hit. These functions are controlled since their value is set by the machine.

In addition to basic functions, the modeler can introduce derived functions,
i.e., those coming with a specification or computation mechanism defined in
terms of other basic functions. Examples of declarations of derived functions are
as follows:

derived isOn: Drawer −> Boolean
derived isOff: Drawer −> Boolean
derived areOthersOn: Drawer −> Boolean

These functions are used as guards in the transition rules and are defined
(see below) in terms of the drawerLed controlled function.

Definitions Functions. Once declared, static and derived functions must also
be defined explicitly in the definitions section. The notation to define functions
is as in the following examples:

function isOn($d in Drawer) = (drawerLed($d) = ON)
function isOff($d in Drawer) = (drawerLed($d) = OFF)
function areOthersOn($d in Drawer) = switch($d)

case drawer1 : isOn(drawer2) or isOn(drawer3)
case drawer2 : isOn(drawer1) or isOn(drawer3)
case drawer3 : isOn(drawer2) or isOn(drawer1)

endswitch

9 The domain is optional. Functions of arity 0 are common variables of programming;
0-ary static functions are constants.

10 The keyword dynamic is optional.

ASMETA Tool Set for Rigorous System Design 501

The right-hand term specifies the function law. In the case of the derived
function areOthersOn, the right-end term is a logical map that associates domain
elements to codomain elements. The target domains of the formal parameters
are to be the same as those specified in the function declaration, and the domain
type of the right-end term must be compatible with the function codomain. Note
that, as exception to this explanation, static 0-ary functions (constants) over an
abstract domain (such as drawer1) do not need to be defined.

Definitions Rules. An update rule is the basic form of a transition rule. Typ-
ically, an ASM transition system appears as a set of guarded updates or condi-
tional rules of form if cond then updates, where function updates are simultane-
ously executed when the condition cond (also called “guard”) evaluates to true.
An example of a conditional rule is as follows:

if pillDeadlineHit($drawer) then isPillTobeTaken($drawer) := true endif

It sets to true the value of the function isPillTobeTaken for a given drawer
$drawer11 when it is time to take the drug of that drawer (denoted by the mon-
itored function pillDeadlineHit).

In AsmetaL, the transition rules can be defined after the definition of concrete
domains (if any) and functions. A rule definition starts with the keywords macro
(it is optional) and rule, followed by the name of the rule with the fixed prefix r ,
the list of free variables and their typing domains, and the rule body (containing
occurrences of the free variables). As an example of rule definition, consider the
rule r reset that uses a par rule to reset the status of a given drawer (in parallel
it sets the led to OFF and isPillTobeTaken to false):

rule r reset($drawer in Drawer) = par
drawerLed($drawer) := OFF
isPillTobeTaken($drawer):= false endpar

Once defined, a named rule can be invoked (like in structured program-
ming) within the rule body of another rule by using the rule name followed by
the list of actual arguments (if any)12 surrounded within square brackets (e.g.,
r reset[$drawer]). When the rule is invoked, it is expanded by replacing every
variable freely occurring within the rule body with the actual argument of the
invocation (the association is positional).

The par rule and the forall rule are rule constructors realizing synchronous
parallelism since both allow the synchronous parallel execution of multiple tran-
sition rules. The only difference is that the par rule expresses bounded parallelism,
while the forall rule expresses potentially unbounded parallelism. An example of
a forall rule in the Pill-Box ground model is in the rule definition:
11 In AsmetaL the name of a variable freely occurring in a rule starts with the prefix $.
12 The number of actual parameters must be equal to the number of the formal param-

eters of the rule to invoke and be domain-compatible with them. Invocations of rules
of arity 0 is also allowed; in this case the list of parameters is empty.

502 A. Bombarda et al.

rule r setOtherDrawers = forall $drawer in Drawer do par
if pillDeadlineHit($drawer) and isOff($drawer) then isPillTobeTaken($drawer) := true endif
if isOn($drawer) and isPillTaken($drawer) then r reset[$drawer] endif endpar

Such a rule, in parallel for all potential drawers, sets the status of a drawer
if it is time to take the drawer’s pill (pillDeadlineHit is true), or resets it in case
the drawer’s LED is on and the drawer’s pill has already been taken. ASMETA
supports non-deterministic operations, which are implemented by selecting a
domain and picking a random element from it. This concept is realized by means
of the choose rule. An example of rule definition that uses the choose rule is for
the non-deterministic choice of one pill to take when there are more to take at
a certain time.

rule r choosePillToTake = choose $drawer in Drawer with
isPillTobeTaken($drawer) and isOff($drawer) and not areOthersOn($drawer) do drawerLed($drawer) := ON

Since only a single red LED is to be on at a time, at each step the Pill-Box
chooses randomly one still off among those of the drawers containing a pill to be
taken, but only if all the other drawers’ LEDs are off, and turns it (if any) on.

Definitions Invariants. Invariants allow users to specify first-order logic for-
mulas that must be true in each computational state during model execution. In
AsmetaL, invariants are defined after rule definitions but precede the main rule
definition (see Sect. 6 for further details).

Definitions Properties. After the invariants, Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL) properties can be defined in an ASMETA
model (see Sect. 9 for further details).

Main Rule. The main rule designates the initial transition rule to execute (the
entry point of the machine’s program) at each computational step. Its definition
follows those of invariants and properties, and has no formal parameters (its
arity is 0). The main rule for the Pill-Box ground model is:

main rule r Main = par
r choosePillToTake[]
r setOtherDrawers[] endpar

It is in charge of simultaneously (i) choosing one drawer with a pill to take
(if any) and (ii) managing the state of the other drawers.

Initial State. An ASMETA specification may contain the initialization of con-
trolled functions to the value that they must assume when the execution of the
model starts. The syntax and rules to assign an initial value to a controlled

ASMETA Tool Set for Rigorous System Design 503

function is the same for defining static/derived functions. For instance, in the
following model fragment, the drawerLed function, for all drawers, is set to OFF,
as well as the isPillTobeTaken function, which is set to false. Finally, the drug
function associates a different type of drug to each drawer.

function drawerLed($drawer in Drawer) = OFF
function isPillTobeTaken($drawer in Drawer) = false
function drug($drawer in Drawer) = switch($drawer)

case drawer1 : TYLENOL
case drawer2 : ASPIRINE
case drawer3 : MOMENT

endswitch

If a function is not initialized, all its locations take the special value undef13.

6 Model Simulation

Simulation is the first validation activity usually performed to check an ASMETA
model’s behavior during its development, and it is supported by the AsmetaS
tool [5]. Given a model, at every step, the simulator builds the update set accord-
ing to the theoretical definitions given in [15] to construct the model run. The
simulator supports two types of simulation: random and interactive. In random
mode, the simulator automatically assigns values to monitored functions, choos-
ing them from their codomains. In interactive mode, instead, the user inserts
the value of monitored functions and, in case of input errors, a message is shown
inviting the user to insert again the function value. AsmetaS can be executed
from the command line14 and from the Eclipse interface. By using the Eclipse
UI, the AsmetaS toolbar has three buttons (see Fig. 3) with three actions:

Fig. 3. AsmetaS commands and options panel

Parse the model and type check it
Execute the model in interactive mode
Execute the model with random inputs

13 Although the parser does not force you to initialize all the controlled functions, it is
strongly suggested to avoid run-time errors due to a missing initialization.

14 More details are available in the Appendices file at https://doi.org/10.5281/zenodo.
12770854.

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854

504 A. Bombarda et al.

1 Running interactively pillbox ground.asm

2 INITIAL STATE:Drawer={drawer1,drawer2,drawer3}
3 Insert a boolean constant for pillDeadlineHit(drawer1):

4 true

5 Insert a boolean constant for pillDeadlineHit(drawer2):

6 false

7 Insert a boolean constant for pillDeadlineHit(drawer3):

8 false

9 <State 0 (monitored)>

10 pillDeadlineHit(drawer1)=true

11 pillDeadlineHit(drawer2)=false

12 pillDeadlineHit(drawer3)=false

13 </State 0 (monitored)>

14 <UpdateSet − 0>

15 isPillTobeTaken(drawer1)=true

16 </UpdateSet>

17 <State 1 (controlled)>

18 drawerLed(drawer1)=OFF

19 drawerLed(drawer2)=OFF

20 drawerLed(drawer3)=OFF

21 isPillTobeTaken(drawer1)=true

22 isPillTobeTaken(drawer2)=false

23 isPillTobeTaken(drawer3)=false

24 </State 1 (controlled)>

25 Insert a boolean constant for isPillTaken(drawer1): false

26 <State 1 (monitored)>

27 isPillTaken(drawer1)=false

28 </State 1 (monitored)>

29<UpdateSet − 1>

30drawerLed(drawer1)=ON

31</UpdateSet>

32<State 2 (controlled)>

33drawerLed(drawer1)=ON

34drawerLed(drawer2)=OFF

35drawerLed(drawer3)=OFF

36isPillTobeTaken(drawer1)=true

37isPillTobeTaken(drawer2)=false

38isPillTobeTaken(drawer3)=false

39</State 2 (controlled)>

40Insert a boolean constant for isPillTaken(drawer1):

41true

42<State 2 (monitored)>

43isPillTaken(drawer1)=true

44</State 2 (monitored)>

45<UpdateSet − 2>

46drawerLed(drawer1)=OFF

47isPillTobeTaken(drawer1)=false

48</UpdateSet>

49<State 3 (controlled)>

50drawerLed(drawer1)=OFF

51drawerLed(drawer2)=OFF

52drawerLed(drawer3)=OFF

53isPillTobeTaken(drawer1)=false

54isPillTobeTaken(drawer2)=false

55isPillTobeTaken(drawer3)=false

56</State 3 (controlled)>

Fig. 4. Output of the interactive Simulation of the Pill-Box using AsmetaS

In the simulator option panel (see Fig. 3), the user can set the preferences
regarding the choose rule, when to stop the random simulation (until the update
set becomes empty or trivial), and how to handle invariants and axioms.

In Fig. 4, we show the result of the interactive simulation for the Pill-Box
when the pill in drawer 1 hits the deadline (in State 0 - line 10), so the pill
becomes to be taken (State 1 - line 21), the led becomes ON (State 2 - line 33),
the user takes the pill, and the led becomes OFF (State 3 - line 50). Note that
the update set is computed in the current state and is applied only in the next
one. For instance, when the monitored location pillDeadlineHit(drawer1) is set
true by the user in the initial state:

State 0 (monitored): pillDeadlineHit(drawer1)=true

the following rule:

if pillDeadlineHit($d) and isOff($d) then isPillTobeTaken($d) := true endif

checks the current state (State 0) and since the deadline is hit and the LED is off,
the update set will contain the update of the location isPillTobeTaken(drawer1),
which is updated only in the next state (State 1):

ASMETA Tool Set for Rigorous System Design 505

<UpdateSet − 0>
isPillTobeTaken(drawer1)=true
</UpdateSet>
<State 1 (controlled)>
isPillTobeTaken(drawer1)=true
...
</State 1 (controlled)>

Invariant Checking. AsmetaS implements an invariant checker, which (option-
ally) checks in every state reached during the computation if the invariants (if
any) declared in the specification are satisfied or not. If an invariant is not sat-
isfied, AsmetaS throws an InvalidInvariantException, which keeps track of
the violated invariants and of the update set which has caused such violation.
The invariant checker is particularly useful during the first phase of the model
development to validate the specification. The designer adds model invariants,
activates the invariant checker from the simulator options, and runs the model
with some critical inputs. For example, with the following invariant:

invariant inv drawer1 over Drawer: (forall $d in Drawer with isOff($d))

As soon as a led becomes ON, the computation stops:

<State 2 (controlled)>
drawerLed(drawer2)=ON
...
</State 2 (controlled)>
INVARIANT violations
FINAL STATE:
run terminated

Consistent Updates Checking. AsmetaS is able to reveal inconsistent
updates by throwing an UpdateClashException. The UpdateClashException
records the location being inconsistently updated and the two different values
assigned to it. The user, analyzing this error, can detect the fault in the specifi-
cation. As the invariant checker, this feature is useful for model validation. For
example, suppose to modify the r setOtherDrawers rule by removing the strike-
through condition in the first conditional term as shown in the following code:

rule r setOtherDrawers = forall $drawer in Drawer do par
if pillDeadlineHit($drawer) and isOff($drawer) then isPillTobeTaken($drawer) := true endif
if isOn($drawer) and isPillTaken($drawer) then r reset[$drawer] endif endpar

The simulator signals an inconsistent update on the isPillTobeTaken(drawer1)
location with the following message:

INCONSISTENT UPDATE FOUND !!! : location isPillTobeTaken(drawer1) updated to true != false

506 A. Bombarda et al.

Fig. 5. AsmetaA Animation of the Pill-Box

Indeed, if the isOff($drawer) condition is removed and the deadline of the
pill in the first drawer has passed, the first conditional rule sets isPillTobe-
Taken(drawer1) to true for all the following execution steps. However, if the LED
for the drawer is ON and the user signals that the pill has been taken, the rule
r reset is executed and the location isPillTobeTaken(drawer1) is set to false. Thus,
in the same step, the location is updated to two different values, leading to an
inconsistent update.

6.1 Model Animation

The main disadvantage of the simulator is that it is textual, and this some-
times makes it difficult to follow the computation of the model. For this reason,
ASMETA has a model animator, AsmetaA [11], which provides the user with
complete information about all state locations, and uses colors, tables, and fig-
ures over simple text to convey information about states and their evolution. The
animator helps the user follow the model computation and understand how the
model state changes at every step. A screenshot of AsmetaA is shown in Fig. 5.
To execute the animator, the user clicks on the icon in Eclipse.

Similarly to the simulator, the animator supports random and interactive ani-
mation. In the interactive animation, the insertion of input functions is achieved
through different dialog boxes depending on the type of function to be inserted
(e.g., in the case of a Boolean function, the box has two buttons: one if the value
is true and one if the value is false). If the function value is not in its codomain,
the animator keeps asking until an accepted value is inserted. In random anima-
tion, the monitored function values are automatically assigned. With complex
models, running one random step each time is tedious; for this reason, the user
can also specify the number of steps to be performed and the tool performs the
random simulation accordingly. In the case of invariant violation, a message is
shown in a dedicated text box and the animation is interrupted (as it also hap-
pens in case of inconsistent updates). Once the user has animated the model,
the tool allows exporting the model run as a scenario (see Sect. 7), so that it can
be re-executed whenever desired. Figure 5 shows the animation of the Pill-Box

ASMETA Tool Set for Rigorous System Design 507

Fig. 6. AsmetaV commands

model using the same input sequence of the simulator. The result is the same,
but the tabular view makes it easier to follow the state evolution.

7 Scenario-Based Validation

The AsmetaS and AsmetaA tools presented in the previous section require that
the user executes the ASMETA model step by step or, at least, inserts some
value to start the model simulation. In this section, we present the AsmetaV
tool, which allows for performing scenario-based validation. Each scenario is a
description of external actor actions and reactions of the system [18], which can
be used to check the correct behavior of the model. Scenarios can be launched
by using the button V shown in Fig. 6. Additionally, if the button VC is pressed,
AsmetaV keeps track of the rules covered by the scenario.

Scenarios are written in the Avalla language, and saved as .avalla files,
as for the example reported in Listing 2 for the ASMETA ground model of the
Pill-Box reported in Listing 1. The scenario models a simple assumption cycle
for the pill in the first drawer. Initially, the Pill-Box has all the LEDs OFF, so no
pill has to be taken (line 8-10). In the second step, we set the deadline for the pill
in the first drawer as hit (line 17) and, after the execution of a step, the scenario
checks whether the pill has been marked as one of those to be taken (line 20).
Then, after a new execution step, we check that the LED corresponding to the
first drawer is ON (line 25). Finally, after the patient has taken the pill, the
scenario verifies whether all the LEDs have been turned OFF (line 35-37).

1 scenario scenario ground
2 load pillbox ground.asm
3
4 // Initially all deadlines are not hit
5 set pillDeadlineHit(drawer1) := false;
6 set pillDeadlineHit(drawer2) := false;
7 set pillDeadlineHit(drawer3) := false;
8 set isPillTaken(drawer3) := false;
9 set isPillTaken(drawer1) := false;

10 set isPillTaken(drawer2) := false;
11 step
12 // Check that all leds are off
13 check drawerLed(drawer1) = OFF;
14 check drawerLed(drawer2) = OFF;
15 check drawerLed(drawer3) = OFF;
16 // Now, the time for the pill in the drawer 1 comes
17 set pillDeadlineHit(drawer1) := true;
18 step
19 // Check that pill is ready to be taken
20 check isPillTobeTaken(drawer1) = true;

21check isPillTobeTaken(drawer2) = false;
22check isPillTobeTaken(drawer3) = false;
23step
24// Check that the led for the drawer 1 is on
25check drawerLed(drawer1) = ON;
26check drawerLed(drawer2) = OFF;
27check drawerLed(drawer3) = OFF;
28check isPillTobeTaken(drawer1) = true;
29check isPillTobeTaken(drawer2) = false;
30check isPillTobeTaken(drawer3) = false;
31// Now, take the pill
32set isPillTaken(drawer1) := true;
33step
34// Check that the led is reset
35check drawerLed(drawer1) = OFF;
36check drawerLed(drawer2) = OFF;
37check drawerLed(drawer3) = OFF;
38check isPillTobeTaken(drawer1) = false;
39check isPillTobeTaken(drawer2) = false;
40check isPillTobeTaken(drawer3) = false;

Listing 2. Example of Avalla scenario

508 A. Bombarda et al.

Scenario Name. The first line of the scenario defines its name. For instance:

scenario scenario ground

Unlike the ASMETA specification, the scenario name is not required to match
the file name.

Loading AsmetaL Specifications. Each Avalla scenario is executed against
an ASMETA spec. Thus, after having defined the scenario name it is essential to
specify which ASMETA model to load. This is done by using the load command,
followed by the relative or absolute path of the .asm file (including its extension):

load pillbox ground.asm

Setting Monitored Functions. Monitored functions are read by the machine
from the environment. When performing scenario-based validation, the user may
supply the values for monitored or shared functions through the set command.
These functions are then used as input signals to the system. For instance:

set pillDeadlineHit(drawer1) := false;

is used to set the monitored function pillDeadlineHit for the drawer1 to false.

Step Execution. After having set the value for the monitored functions of
interest, an ASMETA computation step (i.e., the reaction of the system) can be
launched by using the step command. Additionally, Avalla supports the exe-
cution of multiple steps using the stepUntil command, until a specified Boolean
condition becomes true.

Checking Controlled Functions. Executing an ASMETA specification step
will lead to the update of the internal state of the ASMETA model. The check
command is used to inspect property values in the current state of the underlying
model. For instance:

check drawerLed(drawer1) = OFF;

checks that the controlled function drawerLed for the drawer1 is OFF. When exe-
cuting an Avalla scenario, the AsmetaV validator captures any check violation,
and, if none occurs, it finishes with a “PASS” verdict (“FAIL” otherwise).

ASMETA Tool Set for Rigorous System Design 509

AsmetaL Code in Avalla Scenarios. Avalla scenarios support basic set com-
mands. However, users may want to set ASMETA functions by using a more
complex set of instructions, e.g., rules previously defined in the ASMETA specifi-
cation or by parallelizing the update. Thus, scenarios allow for including AsmetaL
commands with the exec keyword. For instance, the following Avalla code

set pillDeadlineHit(drawer1) := false;
set pillDeadlineHit(drawer2) := false;
set pillDeadlineHit(drawer3) := false;

can be replaced by

exec forall $drawer in Drawer do pillDeadlineHit($drawer) := false;

Note that this command would have been wrong if written in an AsmetaL
specification, as pillDeadlineHit is a monitored function and it should not be set
by the system. However, when AsmetaV simulates the scenario, a new ASMETA
spec is created, and the monitored functions are converted to controlled ones,
whose value is set to that specified in the Avalla scenario (either with a set
command or with the exec command).

Scenario Modularization. The user can exploit modularization also during
scenario building. Indeed, it is possible to define blocks, i.e., sequences of set,
step, and check, that can be recalled using the execblock command when writing
other scenarios that foresee the same sequence of Avalla commands.

Exporting and Animating Scenarios. Avalla scenarios can be exported
from the AsmetaA tool, so that an animation session can automatically be
repeated multiple times (see the “export to Avalla” button in Fig. 5). Simi-
larly, AsmetaV supports the execution of scenarios through animation, by using
the button VA shown in Fig. 6. This allows users to control execution, enabling
step-by-step scenario execution.

Fig. 7. AsmetaMA command

8 Model Review

ASMETA supports a form of static analysis of a model to automatically capture
typical modeling errors such as inconsistent updates or dead specification parts

510 A. Bombarda et al.

Fig. 8. AsmetaMA usage

Fig. 9. AsmetaSMV command

(transition rules that are never triggered) due to overspecification. We called
such a kind of static analysis about model quality automatic model review and
it is carried out by the AsmetaMA tool [3], which can be executed by clicking on
the button shown in Fig. 7. This tool checks the presence of seven types of errors
by using suitable meta-properties specified in CTL and verified using the model
checker AsmetaSMV (see Sect. 9). Figure 8a shows the selection of the seven meta-
properties in AsmetaMA. An example of meta-property is MP1, which checks the
presence of inconsistent updates. Figure 8b reports an example of inconsistent
update revealed by AsmetaMA on the same example reported in Sect. 6.

9 Formal Verification Through Model Checking

Besides validation, the ASMETA toolset supports the user in the properties’
verification activity by the tool AsmetaSMV [2]. Properties are written in terms
of propositional formulas over the machine’s signature, preceded by the key-
word ctlspec or ltlspec. For this purpose the libraries CTLLibrary.asm and LTL-
Library.asm must be imported, so for each CTL/LTL operator an equivalent
AsmetaL Boolean-valued function is defined. The following example shows a CTL
property (with the temporal operator AG Φ - globally Φ) for the Pill-Box ground
model, i.e. a propositional formula that must hold in all reachable states:

ctlspec ag((forall $d in Drawer with isOn($d) implies (not areOthersOn($d))))

These properties are then automatically translated into a model of the
symbolic model checker NuSMV [20], used to perform the verification. If the
ASMETA model contains infinite or time domains, the NuXmv [19] model
checker is preferred. The choice of the model checker is performed in Eclipse
from the ASMETA → AsmetaSMV preferences. The buttons shown in Fig. 9 are

ASMETA Tool Set for Rigorous System Design 511

used to verify the specification: the first button translates the specification into
a model for the model checker without executing it, and the second translates
and executes the specification using the selected model checker. The output of
the model checker is pretty printed in terms of elements of the ASMETA signa-
ture. If the property is positively verified, the AsmetaSMV tool prints out on the
Eclipse console that the property is true:

−− specification AG (((drawerLed(DRAWER1) = ON −> !areOthersOn(DRAWER1)) &
(drawerLed(DRAWER2) = ON −> !areOthersOn(DRAWER2))) & (drawerLed(DRAWER3) = ON
−> !areOthersOn(DRAWER3))) is true

Otherwise, assuming the property is false, it returns a counterexample. If we
want to verify that a pill in drawer1 is always taken when the pill deadline hits,
we can write the following property:

ctlspec ag(pillDeadlineHit(drawer1) implies af(isOn(drawer1)))

When running the model checker, the property is false because it can happen
that the pill in drawer1 will never be taken (the function isPillTaken(drawer1) is
never set to true), and the counterexample in Listings 3 is printed.

−− specification AG (pillDeadlineHit(DRAWER1) −>
AF drawerLed(DRAWER1) = ON) is false
−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

−> State: 1.1 <−
pillDeadlineHit(DRAWER1) = false
drawerLed(DRAWER1) = OFF
drawerLed(DRAWER2) = OFF
isPillTobeTaken(DRAWER2) = false
drawerLed(DRAWER3) = OFF
isPillTobeTaken(DRAWER3) = false
...

−> State: 1.2 <−
pillDeadlineHit(DRAWER1) = true
pillDeadlineHit(DRAWER2) = true

−> State: 1.3 <−
pillDeadlineHit(DRAWER1) = false
isPillTobeTaken(DRAWER2) = true
isPillTobeTaken(DRAWER1) = true
pillDeadlineHit(DRAWER2) = false

−> State: 1.4 <−
...
pillDeadlineHit(DRAWER2) = true
areOthersOn(DRAWER3) = true
areOthersOn(DRAWER1) = true

−> State: 1.5 <−
drawerLed(DRAWER2) = OFF
isPillTaken(DRAWER2) = false
pillDeadlineHit(DRAWER2) = false
areOthersOn(DRAWER3) = false
areOthersOn(DRAWER1) = false

Listing 3. Counterexample generated by AsmetaSMV

10 Model Refinement

After having performed the activities presented in the previous sections, the
model can be refined and the desired level of detail can be achieved. Here we
report details of the two model refinements introduced in Sect. 4, and we high-
light the differences between the ground model and the refined models.

10.1 Time Handling: pillbox time

Modeling. The first model refinement we propose consists in explicitly mod-
eling time passing, which is left abstract in the pillbox ground model, by intro-
ducing the timer tenMinutes to capture the requirement stating that the LED

512 A. Bombarda et al.

stays on for 10min after the scheduled time to take the pill. Dealing with timers
requires importing the predefined time library and setting a suitable timer as an
element of the abstract domain Timer:

import ../STDL/TimeLibrarySimple
static tenMinutes: Timer

The time library provides the user with several features to check whether a
timer is expired (see the use of the predicate expired(tenMinutes) in rule r take
in the pillbox time model to control the expiration of timer tenMinutes) and to
reset a timer (see the use of the predefined rule r reset timer[tenMinutes] in rule
r pillToBeTaken of pillbox time model). Using a timer always requires initializing
the timer’s duration and its starting time; in the pillbox time model, the duration
of the timer tenMinutes is set to 600 time unit (seconds, in this case) and its
starting time is equal to the current time (e.g., taken as monitored value from
the Java virtual machine).

function duration($t in Timer) = 600 // Timer initialization
function start($t in Timer) = currentTime($t)
// From the Time library
function currentTime($t in Timer) = mCurrTimeSecs

This model is an example of vertical model refinement, where concepts or
behaviors previously left abstract are modeled in detail. Here the monitored func-
tion pillDeadlineHit is refined by the homonymous derived function that relates
the time of a pill consumption with the current time. The value of the function
time consumption is set, for each pill/drawer, in the initialization section of the
pillbox time model, as follows:

function time consumption($drawer in Drawer) = switch($drawer) // Initialization of the time consumption
case drawer1 : 60
case drawer2 : 2400
case drawer3 : 180
endswitch

The behavior of the rule r choosePillToTake is refined by adding the new rule
r pillToBeTaken to turn on the led and reset the timer tenMinutes if the led is
off. The behavior of rule r setOtherDrawers is also refined by marking a pill to
be taken if its time of consumption is reached and by resetting the timer (of
a drawer with red led) if the pill has been taken or the timer of ten minutes
waiting has expired.

Validation and Verification. As explained in the previous sections, V&V
activities can be performed on this refinement level. Since this refinement step
considers also the time during the simulation, the simulator (as well as the anima-
tor) handles the time using three different approaches for setting the monitored
mCurrTimeSecs [10] (see Fig. 10): 1. time is read from the machine using the Java
TimeAPI; 2. the user enters the value for time (like for monitored functions); 3.

ASMETA Tool Set for Rigorous System Design 513

Fig. 10. AsmetaS time simulation preferences

time is automatically increased at each step by a predefined value. Additionally,
ASMETA allows the user to set the preferred time unit.

Regarding property verification, the NuSMV model checker does not support
infinite domains (such as in the case of times), so the NuXmv [19] model checker
must be used. However, its integration with ASMETA is still under development
and not stable, thus, here we do not discuss its use.

10.2 Managing Multiple Pills: pillbox final

Modeling. A further (and the last that we propose) vertical model refinement
specifies the complete Pill-Box functionalities, allowing modeling the require-
ment that Each drawer contains multiple slots (one for each pill) that are emp-
tied in sequence. To model this requirement we introduce the following controlled
functions time consumption and drugIndex:

dynamic controlled time consumption: Drawer −> Seq(Integer)
dynamic controlled drugIndex: Drawer −> Natural

The former maps each drawer into a sequence of integers, containing the
time deadlines expressed in seconds. The latter associates with each drawer an
integer indicating the next slot to be emptied in the corresponding drawer. The
two functions are initialized accordingly:

function time consumption($drawer in Drawer) = switch($drawer) // Initialization of the time consumption
case drawer1 : [60, 1200, 1800]
case drawer2 : [2400, 3000, 3600]
case drawer3 : [180, 1200, 1800]
endswitch
function drugIndex($drawer in Drawer) = 0n // Every drawer has an index starting from 0

The derived function pillDeadlineHit is refined to check the pill’s deadline in
the drawer’s current slot to be emptied15. The newly derived function isThere-
AnyOtherDeadline indicates if there is any other pill in the drawer to be taken.
This information is used to refine the rule r setOtherDrawers, which leads to
suitably updating the drawer state (led status and drug index) by invoking the
(nested and refined) macro call rule r reset.

15 The function at(sequence,i) yield the value of the ith element of the sequence.

514 A. Bombarda et al.

Listing 4. Header file

#define ANY String
#include <string.h>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <list>
#include <chrono>
#include ”../../STDL/TimeLibrarySimple.h”
using namespace std;
/∗ DOMAIN DEFINITIONS ∗/
namespace pillbox finalnamespace{

class Drawer;
enum LedLights {OFF, ON};
enum Drugs {TYLENOL, ASPIRINE, MOMENT};

}
using namespace pillbox finalnamespace;
class pillbox finalnamespace::Drawer{
public:

static set<Drawer∗> elems;
Drawer(){elems.insert(this);}

};
class pillbox final : public virtual TimeLibrarySimple{

/∗ DOMAIN CONTAINERS ∗/
const set<LedLights> LedLights elems;
const set<Drugs> Drugs elems;

public:
/∗ FUNCTIONS ∗/
map<Drawer∗, bool> isPillTaken;
map<Drawer∗, LedLights> drawerLed[2];
map<Drawer∗, vector<int>> time consumption[2];
...
static Timer∗ tenMinutes;
bool isOn (Drawer∗ param0 isOn);
bool isOff (Drawer∗ param0 isOff);
...
static Drawer∗ drawer1;
...
/∗ RULE DEFINITION ∗/
void r reset (Drawer∗ drawer);
void r pillToBeTaken (Drawer∗ drawer);
...
void r Main();
pillbox final();
void initControlledWithMonitored();
void getInputs();
void setOutputs();
void fireUpdateSet();

};

Listing 5. Cpp file

#include ”pillbox final.h”
using namespace pillbox finalnamespace;
/∗ Conversion of ASM rules in C++ methods ∗/
void pillbox final::r reset (Drawer∗ drawer){

drawerLed[1][drawer] = OFF;
drugIndex[1][drawer] = (drugIndex[0][drawer] + 1);
isPillTobeTaken[1][drawer] = false;

}
void pillbox final::r pillToBeTaken (Drawer∗ drawer){ ... }
void pillbox final::r ON (Drawer∗ drawer){ ... }
void pillbox final::r choosePillToTake(){ ... }
void pillbox final::r setOtherDrawers(){ ... }
void pillbox final::r Main(){

r choosePillToTake();
r setOtherDrawers();

}
/∗ Static function definition ∗/
bool pillbox final::isOn(Drawer∗ d){

return (drawerLed[0][d] == ON);
}
bool pillbox final::isOff(Drawer∗ d){ ... }
bool pillbox final::areOthersOn(Drawer∗ d){ ... }
bool pillbox final::pillDeadlineHit(Drawer∗ d){ ... }
bool pillbox final::isThereAnyOtherDeadline(Drawer∗ d){ ... }
/∗ Function and domain initialization ∗/
pillbox final::pillbox final(): LedLights elems({OFF,ON}),

Drugs elems({TYLENOL,ASPIRINE,MOMENT}) {
/∗ Init static functions Abstract domain ∗/
tenMinutes = new Timer;
...
/∗ Function initialization ∗/
for(const auto& drawer : Drawer::elems){

drawerLed[0].insert({ drawer,OFF});
drawerLed[1].insert({ drawer,OFF});

} ...
}
/∗ Apply the update set ∗/
void pillbox final::fireUpdateSet(){

drawerLed[0] = drawerLed[1];
time consumption[0] = time consumption[1];
drug[0] = drug[1];
drugIndex[0] = drugIndex[1];
...

}
/∗ init static functions and elements of abstract domains ∗/
set< Drawer∗> Drawer::elems;
Timer∗ pillbox final::tenMinutes;
Drawer∗ pillbox final::drawer1;
...

Remark. Model refinement must be proved to be correct, i.e., at each refinement
step, a refined model must be proved to be a correct refinement of the abstract
one. Due to lack of space and to keep this presentation easy to follow, here we
skip the proof of correct refinement of models and the application of the Asm-
RefProver supporting automatic proof of a particular form of model refinement.

11 From an ASMETA Model to Code

As requested by the best practices of model-driven engineering [16], the imple-
mentation of a system should be obtained from its model through a systematic
model-to-code transformation. ASMETA features a set of tools allowing the
automatic generation of C++ code [12] and C++ unit tests, and Java code [9].

In the following, we focus on using the Asmeta2C++ tool. It generates C++
code (which is meant to be integrated with other artifacts or directly embedded
in the final device) starting from an ASMETA model and, in particular, it pro-
duces two files: header (.h) and source (.cpp). The former contains the interface

ASMETA Tool Set for Rigorous System Design 515

of the source file and the translation of model domain declarations and defini-
tions, function and rule declarations. The latter includes rules implementation,
the functions and domain initialization, and the definitions of the functions.
Asmeta2C++ is only available as a command line tool and can be executed, in the
case of the last refinement, with the following command:

j a va − j a r Asmeta2Cpp . j a r p i l l b o x f i n a l . asm

Additional options for the previous command are available in the Appendices
file at https://doi.org/10.5281/zenodo.12770854.

An excerpt of the translation of the Pill-Box case study in C++ is shown in
Listings 4 and 5, while the complete version of the source code is available in
the replication package. An ASM run step involves executing the main rule and
updating the locations. In C++, this is realized through two methods: mainRule()
for translating the ASMETA main rule and fireUpdateSet() for updating loca-
tions to their next state values. Asmeta2C++ can generate two additional files
allowing to embedding the generated class into an Arduino program. Further
insights into the translation of ASMETA rules and constructs into correspond-
ing C++ instructions are given in [12].

12 Conclusion

This tutorial provides an overview of ASMETA, an integrated set of tools to
describe the behavior of discrete event systems using the ASM formalism. The
hands-on approach adopted in this tutorial shows how to combine all the model
analysis techniques offered by ASMETA in order to start from a ground or partial
specification of the system behavior, and then refine it incrementally into more
complete models till leading to transformation to other external analysis models
or code. Thanks to the adoption of a set of integrated and easy-to-use tools, like
ASMETA, the effort for modeling and analysis with a formal method, like ASM,
may be reduced and more software engineers may be convinced of applying the
formal method for richer system design and more reliable systems.

Data Availability Statement. The artifacts for the tutorial paper are available
at https://doi.org/10.5281/zenodo.12770854.

References

1. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra,
P.: The ASMETA Approach to Safety Assurance of Software Systems, pp. 215–238.
Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-
030-76020-5 13

2. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level
ASM models to low-level NuSMV specifications. In: Frappier, M., Glässer, U.,
Khurshid, S., Laleau, R., Reeves, S. (eds.) Abstract State Machines, Alloy, B and
Z, pp. 61–74. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11811-1 6

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/978-3-642-11811-1_6

516 A. Bombarda et al.

3. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic review of Abstract State
Machines by meta property verification. In: Muñoz, C. (ed.) Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010), NASA/CP-2010-216215,
pp. 4–13. NASA, Langley Research Center, Hampton VA 23681–2199, USA (2010)

4. Arcaini, P., Gargantini, A., Riccobene, E.: SMT-based automatic proof of ASM
model refinement. In: De Nicola, R., Kühn, E. (eds.) Software Engineering and
Formal Methods, pp. 253–269. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-41591-8 17

5. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exper. 41, 155–166
(2011). https://doi.org/10.1002/spe.1019

6. ter Beek, M.H.: Formal methods and tools applied in the railway domain. In: Bon-
fanti, S., Gargantini, A., Leuschel, M., Riccobene, E., Scandurra, P. (eds.) Rigorous
State-Based Methods - 10th International Conference, ABZ 2024, Bergamo, Italy,
June 25-28, 2024, Proceedings. Lecture Notes in Computer Science, vol. 14759, pp.
3–21. Springer (2024). https://doi.org/10.1007/978-3-031-63790-2 1

7. ter Beek, M.H., et al.: Formal methods in industry. Form. Asp. Comput. (2024)
8. Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from

abstract state machines to embedded systems: a smart pill box case study. In:
Mazzara, M., Bruel, J.M., Meyer, B., Petrenko, A. (eds.) Software Technology:
Methods and Tools, pp. 89–103. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-29852-4 7

9. Bombarda, A., Bonfanti, S., Gargantini, A.: From concept to code: unveiling a
tool for translating abstract state machines into java code. In: Rigorous State-
Based Methods 10th International Conference, ABZ 2024, Bergamo, Italy, June
25-28, 2024, Proceedings, Lecture Notes in Computer Science, vol. 14759. Springer
(2024). https://doi.org/10.1007/978-3-031-63790-2 10

10. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E.: Extending ASMETA
with time features. In: Raschke, A., Méry, D. (eds.) Rigorous State-Based Methods,
pp. 105–111. Springer International Publishing, Cham (2021). https://doi.org/10.
1007/978-3-030-77543-8 8

11. Bonfanti, S., Gargantini, A., Mashkoor, A.: ASMETAA: animator for abstract
state machines. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) Abstract
State Machines, Alloy, B, TLA, VDM, and Z, pp. 369–373. Springer International
Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 25

12. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from abstract state machines specifications. J. Softw.: Evol. Process
32(2), e2205 (2020). https://doi.org/10.1002/smr.2205

13. Börger, E.: The ASM refinement method. Form. Asp. Comput. 15, 237–257 (2003)
14. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,

Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1
15. Börger, E., Stärk, R.: Abstract State Machines. Springer, Berlin, Heidelberg (2003).

https://doi.org/10.1007/978-3-642-18216-7
16. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in

Practice. Springer International Publishing (2017). https://doi.org/10.1007/978-
3-031-02549-5

17. Broy, M., et al.: Does every computer scientist need to know formal methods?
Form. Asp. Comput. (2024). https://doi.org/10.1145/3670795

18. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)

https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1002/spe.1019
https://doi.org/10.1007/978-3-031-63790-2_1
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-031-63790-2_10
https://doi.org/10.1007/978-3-030-77543-8_8
https://doi.org/10.1007/978-3-030-77543-8_8
https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1002/smr.2205
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1145/3670795

ASMETA Tool Set for Rigorous System Design 517

Abstract State Machines, B and Z, pp. 71–84. Springer, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87603-8 7

19. Cavada, R., et al.: The nuxmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) Computer Aided Verification, pp. 334–342. Springer International Publish-
ing, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 22

20. Cimatti, A., et al: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification, pp. 359–364.
Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

21. Garavel, H., Beek, M.H.t., Pol, J.V.D.: The 2020 expert survey on formal methods.
In: Formal Methods for Industrial Critical Systems: 25th International Conference,
FMICS 2020, Vienna, Austria, September 2–3, 2020, Proceedings 25, pp. 3–69.
Springer (2020). https://doi.org/10.1007/978-3-030-58298-2 1

22. Gleirscher, M., Marmsoler, D.: Formal methods in dependable systems engineering:
a survey of professionals from Europe and North America. Empir. Softw. Eng.
25(6), 4473–4546 (2020). https://doi.org/10.1007/s10664-020-09836-5

23. Gleirscher, M., van de Pol, J., Woodcock, J.: A manifesto for applicable formal
methods. Softw. Syst. Model. 22(6), 1737–1749 (2023). https://doi.org/10.1007/
s10270-023-01124-2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1007/s10270-023-01124-2
https://doi.org/10.1007/s10270-023-01124-2
http://creativecommons.org/licenses/by/4.0/

Practical Deductive Verification of OCaml
Programs

Mário Pereira(B)

NOVA LINCS, NOVA School of Science and Technology,
Lisbon, Portugal

mjp.pereira@fct.unl.pt

Abstract. In this paper, we provide a comprehensive, hands-on tutorial
on how to apply deductive verification to programs written in OCaml.
In particular, we show how one can use the GOSPEL specification lan-
guage and the Cameleer tool to conduct mostly-automated verification
on OCaml code. In our presentation, we focus on two main classes of
programs: first, purely functional programs with no mutable state; then
on imperative programs, where one can mix mutable state with subtle
control-flow primitives, such as locally-defined exceptions.

Keywords: Deductive Software Verification · OCaml · Cameleer ·
GOSPEL

1 Introduction

Deductive software verification [11] is a subject within the larger field of for-
mal methods [23]. One can define deductive software verification as the process
of expressing the correctness of a program as a mathematical statement, then
proving it. However, such a definition does not properly highlight the connec-
tion between the three main components in deductive verification: the logical
specification, which mathematically captures what one wishes to compute; the
code, which stands for how one materializes ideas as a piece of software; and,
finally, a formal proof of why the code adheres to the given specification. This
last component can be realized via a so-called Verification Conditions Generator,
a mechanical tool that takes as input the code and the specification, producing
the aforementioned correctness statement.

In this tutorial paper, we focus on the deductive verification of programs
developed in the OCaml language. We use the Cameleer [27] tool to verify, in a
mostly-automated fashion, that an OCaml program adheres to its specification.
One key aspect of our presentation is the use of GOSPEL [8], the Generic OCaml

This work is partly supported by Agence Nationale de la Recherche (ANR) grant
ANR-22-CE48-0013-01 (GOSPEL) and NOVA LINCS ref. UIDB/04516/2020 (https://
doi.org/10.54499/UIDB/04516/2020) and ref. UIDP/04516/2020 (https://doi.org/10.
54499/UIDP/04516/2020) with the financial support of FCT.IP.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 518–542, 2025.
https://doi.org/10.1007/978-3-031-71177-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_29&domain=pdf
http://orcid.org/0000-0003-4234-5376
https://doi.org/10.54499/UIDB/04516/2020
https://doi.org/10.54499/UIDB/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
https://doi.org/10.1007/978-3-031-71177-0_29

Practical Deductive Verification of OCaml Programs 519

SPEcification Language. This is a tool-agnostic language, which serves as a
common ground for the different OCaml verification tools and techniques. One
important feature of GOSPEL is that specifications are written in a subset of the
OCaml language, plus quantifiers, making the adoption of formal methods even
more appealing for the working OCaml programmer.

Throughout this tutorial, we harmoniously combine an algorithmic discovery
journey with the art of deductive software verification. We believe verification
tools and techniques are better presented through the lens of classical data struc-
tures and algorithms. We believe this hands-on, example-oriented approach is
a more efficient and convincing way to justify the interest in using verifica-
tion tools. In order to follow this tutorial, we only assume the reader to possess
basic knowledge of functional programming (not necessarily in OCaml) and some
knowledge of deductive verification, at least to the level of understanding func-
tion contracts, loop invariants, and proofs by induction.

This paper is organized as follows. Section 2 provides an overview of the
GOSPEL language. Section 3 introduces the Cameleer tool, mainly using two
examples of verified OCaml programs, the first being a pure implementation, the
other featuring mutability. In Sect. 4, we take a more in-depth dive into the veri-
fication of functional programs. Section 5 extends our class of verified programs,
incorporating some imperative traits of the OCaml language. We terminate with
some related work (Sect. 6) and closing remarks and future perspectives (Sect. 7).
All the software and proofs used in this paper are publicly available in a com-
panion artifact [28], which also complements this paper with other case studies
verified in Cameleer.

2 A Primer on GOSPEL

GOSPEL is a behavioral specification language for OCaml code. It is a contract-
based, statically typed language, with a formal semantics defined by means of
translation into Separation Logic [6,30]. The term Generic comes from the fact
that GOSPEL is not tied to any particular tool or analysis technique. In fact,
nowadays, one can use GOSPEL to attach specifications to OCaml that are then
analyzed using runtime assertion checking techniques [13], or formally verified
using deductive verification tools [7,27]. GOSPEL is inspired by other behavioral
specification languages [15], such as JML [19] or Eiffel [22]. However, both JML
and Eiffel require the specification to always be executable. This in not the case
in GOSPEL. In this tutorial paper, we focus on the use of GOSPEL for deductive
verification.

When compared to other specification languages based on Separation Logic,
e.g., VeriFast [17], Viper [24], or Gillian [21], GOSPEL takes a different design
choice: permission and separation conditions are implicitly associated with func-
tion arguments, which greatly improves conciseness over Separation Logic. We
argue this is an important argument in favor of GOSPEL adoption by regular
OCaml programmers, who are not necessarily proof experts. We believe it is of
crucial importance to develop the languages and tools that bring practitioners
into formal methods.

520 M. Pereira

Fig. 1. GOSPEL-annotated Stack Interface.

GOSPEL was initially designed as an interface behavioral specification lan-
guage. The interface shown in Fig. 1 exemplifies the use of GOSPEL to specify
an OCaml interface for a polymorphic stack data structure, independent of the
underlying implementation (it could be, e.g., a linked-list, a ring buffer, etc.).
GOSPEL specification is given within comments of the form (*@ ... *). We
start by specifying that type t of stacks is described, at the logical level, via
a model field named view. This field is of type ’a list (here, we use OCaml’s
immutable lists) and describes the sequence of elements contained in the data
structure. There is, however, one important aspect about the use of view: it is
declared as a mutable field, which means one should expect in-place modifica-
tions to the stack. In other words, t represents an imperative data structure.

When it comes to attaching specification to functions, the first line in the
GOSPEL comments names function arguments and its return value. To describe
the behavior of a function, we mainly use three clauses: requires, to introduce a
precondition; ensures, to introduce a postcondition; and modifies, which enu-
merates all the mutable fields changed during the call to a function. For instance,
functions create and is_empty are simply annotated with postconditions stat-
ing, respectively, that a fresh stack is created with no elements and, conversely,
a stack is empty if it does not contain any element. Finally, functions push, pop,
and transfer modify the contents of a stack via side-effects. The former inserts
a new element to the top of the view model; the latter removes the top element,
assuming as a precondition that the stack is not empty. The term old s.view

Practical Deductive Verification of OCaml Programs 521

Fig. 2. Cameleer Architecture and verification pipeline, taken from [27].

represents the pre-state of model view, i.e., the value of this field at the moment
the function is called.

Throughout this tutorial, we will use and discover GOSPEL features via
OCaml examples formally verified using the Cameleer tool. However, we are not
able to cover here all the relevant aspects of the language in full detail. For
a more in-depth presentation of GOSPEL, we refer the reader to the original
paper [8] and the user manual1.

3 The Cameleer Verification Tool

Up until recently, programmers would face a difficult choice if they wished to
produce verified OCaml code: either conduct automated proof, but entirely re-
implement their code-bases in a proof-aware language, and then rely on code
extraction; or verify actual OCaml code, but using an interactive proof assistant,
with the burden of manual proofs. Cameleer offers a compromise between the
two approaches: it is a tool for the deductive verification of OCaml-written pro-
grams, with a clear focus on proof automation. It aims to provide an easy to use
framework for the specification and verification of OCaml code.

Figure 2 presents the verification pipeline of the tool. It takes as input an
OCaml implementation file, annotated using GOSPEL, and translates it into an
equivalent WhyML program, the programming and specification language of the
Why3 framework [14]. Why3 is a tool-set for the deductive verification of software,
oriented towards automated proof. A distinctive feature of Why3 is that it can
interface with different off-the-shelf SMT solvers, which greatly increases proof
automation.

With Cameleer, we put forward the vision of the specifying programmer : those
who write the code, should also be able to specify it. But, we want to push this
vision even further: those who write the code, should be able to specify it and
formally verify it. Leveraging on the proof automation and tool-set offered by
Why3, we believe Cameleer is a good candidate to fill this need in the working
OCaml programmers community.

In this section, we introduce Cameleer via two examples of mechanically ver-
ified algorithms implemented in OCaml and specified in GOSPEL. The first one
is a traditional merge operation over sorted lists. The second one is a linear-
search operation on arrays, hence an imperative implementation, featuring some
interesting constructions from the OCaml language. The two examples have a
1 https://ocaml-gospel.github.io/gospel/.

https://ocaml-gospel.github.io/gospel/

522 M. Pereira

Fig. 3. Type Equipped With a Total Preorder Relation.

common point: both are written using functors, showing how Cameleer proofs
can scale up to the level of modular algorithms and data structures.

3.1 A Simple Functional Program the Merge Routine

Modular Definitions, Using Functors. The OCaml module system, in par-
ticular functors, offers flexible mechanisms to derive implementations that are
agnostic to the actual representation of manipulated data types. Functors stand
for modules that take other modules as parameters, similar to Scala traits. As
an introductory example on the use of functors, consider the following imple-
mentation of a max function within functor Max:

module Max (E : PRE_ORD) = struct
let max x y =

if E.leq x y then y
else x

end

The signature type PRE_ORD is given in Fig. 3. It introduces a type t together
with a function leq, which establishes a total preorder on values of type t. The
GOSPEL specification in this module type introduces a predicate le, which we
assume it respects the three laws of a preorder: reflexivity, totality, and tran-
sitivity. Such laws are encoded as axioms, which stand for logical assumptions
upon which one relies without actually providing them correct. Finally, the post-
condition of program function leq states this is a decidable implementation of
predicate le.

For the above implementation of max, we use the leq function provided in the
functor argument E, to check whether function argument x is less or equal to y.
This comparison is made with respect to the preorder relation induced by E. We

Practical Deductive Verification of OCaml Programs 523

can provide this implementation with suitable GOSPEL specification. This is as
follows2:

let max x y = ...
(*@ r = max x y

ensures E.le x r /\ E.le y r
ensures r = x \/ r = y

The first clause in the postcondition states that both x and y must be smaller
than or equal to the returned value r, with respect to the preorder induced by
predicate E.le. The second clause states that r must be either equal x or y,
where (=) stands for polymorphic, potentially undecidable, logical equality.

OCaml Implementation. The merge sort algorithm gets its name from its
main step: merging the elements of two sorted lists, producing a third sorted
list. Here, our goal is to provide a merge implementation independently of the
type of list elements. To do so, we introduce the following functor Merge:

module Merge (E : PRE_ORD) = struct
type elt = E.t

let rec merge_aux acc l1 l2 =
match (l1, l2) with
| [], l | l, [] -> List.rev_append acc l
| x :\,\!: xs, y :\,\!: ys ->

if E.leq x y then merge_aux (x :\,\!: acc) xs l2
else merge_aux (y :\,\!: acc) l1 ys

let merge l1 l2 = merge_aux [] l1 l2
end

The above merge definition is an efficient implementation of a merge routine,
since it makes use of the tail-recursive, auxiliary function merge_aux. This func-
tion merges lists l1 and l2 into the accumulator acc. Since every new element
is inserted to the head of acc, then in the base cases one must first reverse
it and then concatenate the result with l, the suffix list of elements (either
from l1 or l2) that remains to be enumerated. The OCaml standard library
function rev_append efficiently implements this “reverse then concatenate” pro-
cess. Finally, the main merge function calls merge_aux with the empty list as
the initial value for the accumulator.

GOSPEL Specification.Let us now describe the specification of the merge_aux
and merge functions. In order to specify that merge always returns a sorted list,
we must first introduce what it means for a list to be sorted. We introduce the
following GOSPEL predicate:

(*@ predicate rec sorted_list (l : elt list) =
match l with

2 In Cameleer, function specification is introduced after function definition.

524 M. Pereira

| [] | _ :\,\!: [] -> true
| x :\,\!: y :\,\!: r -> E.le x y && sorted_list (y :\,\!:

r) *)
(*@ variant l *)

The empty or singleton lists of integers are always sorted. If the list has at least
two elements, then the first must less than or equal to the second one and the
suffix list y :\,\!: r must also be a sorted list. Since sorted_list is to be used
within specifications, it must be a total (i.e., terminating) function. We supply
the variant l, which represents a termination measure for every recursive call to
the sorted_list predicate. A variant represents a quantity that always strictly
decreases at every recursive call. In this case, we state that the argument of every
recursive call is structurally smaller than the value of l at the entry point.

Note that the elements of the argument l are of type integer, the GOSPEL
type for mathematical integers. When applying this function to a list of values of
OCaml int type (63-bit machine integers), the GOSPEL and Cameleer tool-chains
will apply a conversion mechanism from machine integers into their equivalent
mathematical representation.

Using sorted_list predicate, we attach the following GOSPEL specification
to the merge_aux function:

let rec merge_aux acc l1 l2 = ...
(*@ r = merge_aux acc l1 l2

requires sorted_list (List.rev acc)
requires sorted_list l1 && sorted_list l2
requires forall x y.

List.mem x acc -> List.mem y l1 -> E.le x y
requires forall x y.

List.mem x acc -> List.mem y l2 -> E.le x y
ensures sorted_list r
variant l1, l2 *)

The precondition reads as follows: the acc list is sorted in reverse order, while l1
and l2 are sorted in natural order; every element from acc must be less or equal
to any element from either l1 or l2. Finally, the postcondition simply asserts the
returned list r is sorted and we prove termination using the lexicographic order
on the pair l1, l2. In other words, if in a recursive call l1 structurally decreases,
then the whole variant decreases; otherwise, when l1 does not decrease, then it
must be the case that l2 decreases. Cameleer ships with a subset of the OCaml
standard library specified using GOSPEL, hence one is able to use and reason
about functions such as List.mem or List.rev.

Finally, the specification of merge is as follows:

let merge l1 l2 = merge_aux [] l1 l2
(*@ r = merge l1 l2

requires sorted_list l1 && sorted_list l2
ensures sorted_list r *)

Practical Deductive Verification of OCaml Programs 525

Fig. 4. Why3 Proof Session for the Merge Sort Routine.

If both l1 and l2 are sorted lists, then the call merge l1 l2 always produces a
sorted list.

Cameleer Proof.Assuming the OCaml implementation and GOSPEL specifica-
tion of the merge routine are contained in file merge.ml, one can start the ver-
ification process by typing the command cameleer merge.ml. This launches
the interactive Why3 graphical user interface [10], as depicted in Fig. 4. On left-
hand side, the Why3 IDE features a node for the generated verification conditions
(VCs) of each top-level definition, together with any proof attempt on such VCs.
Calling a SMT solver to prove a generated VC can be done by right-clicking a
node and selecting the desired solver. A green button on the left of a node
means that a solver was able to discharge the corresponding VC. This is the
case of the sorted_list predicate and the merge function, for which Alt-Ergo is
able to prove that both adhere to their specification, in less than a second. The
proof time is shown on the right of the solver name, together with the number
of conducted proof steps. One can also apply proof transformations on nodes,
for instance to split a larger VC into its conjunctive clauses. This is done for
the merge_aux definition. After split, one can focus on a specific part of the
verification, such as proving a precondition, variant decrease, or postcondition.

526 M. Pereira

Moreover, each of these individual formulae is smaller and less involved than the
original VC, hence more likely to be automatically discharged by an SMT solver.

On the right-hand side of the Why3 IDE, one can inspect the code under
verification. On one hand, the green labels stand for the assumptions (flow of the
execution and parts of the specification) made at some point of the verification
process. On the other hand, the yellow labels mark what one is actually trying
to verify. In this case, we are trying to discharge the first precondition of the
merge_aux function, at the recursive call merge_aux (x :,!: acc) xs l2. We
shall explain the Task tab in Sect. 3.2.

As shown in Fig. 4, we fail to prove that function merge_aux adheres to
its GOSPEL specification. We are not able to verify every individual VC for this
function, after split. The three used solvers, Alt-Ergo, CVC5, and Z3, all time-out
after 1 s for every condition except that the supplied variant measure decreases.
One could attempt to provide more time to each solver, to allow these tools
to conduct more proof steps, hopefully leading to more VCS being discharged.
However, in this case, we are actually missing some auxiliary lemmas about the
sorted_list predicate. A lemma in GOSPEL represents a property that, once
stated, can be explored by SMTs to discharge other VCs. However, contrarily
to axioms, lemmas are not assumed: these must be proved correct at definition
time.

To close the verification of the merge_aux function, we need two auxiliary
lemmas: first, one that states we can insert a new value x as the head of a sorted
list l if and only if x is less than or equal to every element in l. We introduce
such a lemma in GOSPEL as follows:

(*@ lemma sorted_mem: forall x l.
(forall y. List.mem y l -> E.le x y) /\ sorted_list l <->
sorted_list (x :\,\!: l) *)

Second, the concatenation l1 @ l2 of sorted lists l1 and l2 is a sorted list if
and only if all the elements in l1 are less or equal than all the elements of l2.
We provide the following GOSPEL lemma:

(*@ lemma sorted_append: forall l1 l2.
(sorted_list l1 && sorted_list l2 &&
(forall x y. List.mem x l1 -> List.mem y l2 -> E.le x y))

<-> sorted_list (l1 ++ l2) *)

Using the given lemmas, the correctness proof for merge_aux now succeeds.
Alt-Ergo is able to explore these auxiliary definitions to discharge all the remain-
ing VCs. As for the proofs of the lemmas themselves, both require proofs by
induction. We can conduct such proofs inside the Why3 IDE, using a dedicated
transformation for induction over algebraic types (in this case lists). For a more
complete presentation on how to use the Why3 IDE, including on how to apply
different interactive proof transformations, we refer the reader to the framework
user’s manual [2].

Practical Deductive Verification of OCaml Programs 527

Fig. 5. Type Equipped With an Equality Relation.

3.2 Searching an Element Within an Array

OCaml Implementation. We now make a shift from the purely functional

world to present some OCaml imperative features, and showcase how one can
use Cameleer to reason about such features. Consider the following modular
implementation of a function that performs a linear search in an array:

module Find (E : EQUAL) = struct
let find x a =

let exception Found of int in
try

for i = 0 to Array.length a - 1 do
if E.eq a.(i) x then raise (Found i)

done;
raise Not_found

with Found i -> i
end

Fig. 5 presents the definition of the signature type EQUAL. It declares a function
eq that decides whether two values of type t are logically equal. This is exactly
what is stated in the postcondition clause.

The definition of the find function presents some interesting OCaml impera-
tive traits. On one hand, the use of a for loop to scan the array a; on the other
hand, the declaration and use of the local exception Found. The latter is used
to signal that the search succeeded, carrying the index of x within a. The use
of local exceptions in OCaml is a convenient way to simulate the behavior of a
return statement, commonly found in other languages. In fact, the whole loop
is surrounded with a try..with block that ensures exception Found is always
caught. Finally, to signal that x does not occur in a, we use the Not_found
exception from the OCaml standard library. It is worth noting that we purposely
let such an exception escape the scope of find.

Cameleer Proof. In order to prove the correctness of function find, one must
supply a loop invariant. This is done in Cameleer as follows:

for i = 0 to Array.length a - 1 do
(*@ invariant forall j. 0 <= j < i -> a.(j) <> x *)

528 M. Pereira

This invariant simply asserts that while in the loop, we know for sure x does
not occur in the prefix of a that we have already scanned. The infix operator
(<>) stands for logical inequality. As for the equality operator, (=), inequality
is expressed using the same syntax in OCaml and in GOSPEL and both are
built-in symbols of the GOSPEL language. We recall that, except for quantifiers
and logical connectives, GOSPEL terms are a written in a subset of the OCaml
language.

Now, we focus on providing a specification contract for function find. But
first, it is crucial to distinguish the possible outcome behaviors of this function.
On one hand, it returns normally whenever exception Found is raised; on the
other hand, it raises the Not_found exception to abort execution. For the for-
mer, we shall establish a regular postcondition. For the latter, we shall introduce
what is called an exceptional postcondition. We attach the following GOSPEL
annotations to find:

let find x a =
...

(*@ i = find x a
ensures a.(i) = x
raises Not_found -> forall i. 0 <= i < Array.length a ->

a.(i) <> x *)

The ensures clause is checked when find indeed returns an integer i, represent-
ing the (first) index of x in a. The raises clause states the logical property that
holds when Not_found is raised. This stands for the case when we have scanned
all the array a, finding no occurrence of x. We restrict the range of values that
the universally quantified variable i can take, since GOSPEL establishes that
undefined array indices are arbitrary values, not necessarily different from x.

For this program, Cameleer generates 6 VCs, after splitting the formula gen-
erated for the find function. All are immediately discharged by Alt-Ergo.

Providing an Incorrect Loop Invariant. Let us take a step back in the
verification process of the find implementation. Imagine a scenario where one
would have, incorrectly, supplied the following loop invariant:

for i = 0 to Array.length a - 1 do
(*@ invariant forall j. 0 <= j <= i -> a.(j) <> x *)

The only difference, when compared with the previously presented invariant, is
that now the value of the universally quantified variable j can be equal to i, the
loop index. Figure 6 shows that by feeding the new invariant to the Cameleer-
Why3 pipeline, one is still able to prove the postcondition of find holds, but
not the invariant initialization (i.e., the invariant holds before the first itera-
tion), neither invariant preservation (i.e., assuming the invariant holds before
an arbitrary iteration, it still holds after that iterations completes). To debug
a failed proof attempt, the Why3 IDE allows the user to inspect the task [3],
a representation of the formula that is sent to solvers. Under tab Task, such

Practical Deductive Verification of OCaml Programs 529

Fig. 6. Proof Task for an Incorrect Loop Invariant Initialization.

formula is displayed as a goal (i.e., what one is actually trying to prove) and
the proof context (i.e., the hypotheses) above the dashed line.

Figure 6 depicts the task for the loop invariant initialization. After reading
the task, we can conclude that hypotheses H1 and H2 imply that j is equal to 0.
Hence, we are trying to prove a goal that asserts the actual first element in the
array a is not x. There is nothing in our proof context that allows us to prove
such a statement. This is an indication that either our context is not enough
to discharge the goal (e.g., the specification is incomplete), or rather there is
an actual bug in the specification or implementation. In this case, however, we
already know the answer: changing the loop invariant to j < i would generate a
task, for loop invariant initialization, with hypotheses 0 <= j and j < 0, hence
the goal would hold vacuously. It is worth noting that tasks are written in the
logical fragment of the WhyML language. This is the only point in the verification
process that a Cameleer user must read a formula that is not written in GOSPEL.
However, since GOSPEL and WhyML are syntactically very similar, we believe
someone familiar with GOSPEL is able to read and understand a Why3 task.

530 M. Pereira

4 Purely Functional Programming

We define purely functional programming as the approach to write a program
where no mutable state is involved. Such a program is normally a collection
of (recursive) functions that are composed with each other to perform some
computation. The program also only employs data structures that do not require
any memory manipulation, such as lists or trees. This style of programming is
at the very essence of the OCaml language.

In this section, we use the Cameleer tool to conduct formal verification of a
purely functional program that operates on trees. We present the OCaml imple-
mentation of such a program, annotated with suitable GOSPEL specifications.
We interleave the presentation of code listings with explanations of the given
implementation and specification. Hence, to ease readability, the example chunks
that belong together are given running line numbers.

4.1 Same Fringe Comparing Two Binary Trees

Let us consider the following, very classic, programming challenge:

Write a function that, given two binary trees, decides whether the two trees
present the same sequence of elements when traversed inorder.

This is known as the same fringe problem. One possible solution to this problem
is as follows:

1. perform an inorder traversal on both trees, building the list of elements enu-
merated during such traversals;

2. compare, recursively, whether the two lists contain the same elements.

This is, however, a very naive approach, since it always builds the auxiliary lists
for all the elements of both trees. Imagine the following scenario:

x

huge sub-tree

y

huge sub-tree

The two trees differ in the leftmost element, as we have x for the left-hand side
tree, and y for the right-hand side tree. Following the solution proposed above,
we would unnecessarily build two (huge) sequences. Note, however, that this
implementation is easier to check for correctness than more efficient ones. Hence,
this list-based approach can be used as a good specification for the solution we
describe in the remaining of the section.

Practical Deductive Verification of OCaml Programs 531

We propose to explore an approach that allows one to enumerate the elements
of each tree, step-by-step. In such a way, we can stop as soon as two distinct
elements are enumerated. If we complete the iteration process on both trees,
then it must be the case the trees contain the same elements. This algorithm is
implemented in OCaml and specified using GOSPEL as follows. First, we use the
EQUAL signature from Fig. 5 to build a functor that implements same fringe. We
start by defining the type of binary trees with elements of type E.t, as follows:

1 module Make (E : EQUAL) = struct
2 type tree = Empty | Node of tree * E.t * tree

A tree is either Empty or a Node formed of two sub-trees and a root of type E.t.
Now, we define a logical function that implements an inorder traversal on a

binary tree, returning the list of enumerated elements:

3 (*@ function elements (t : tree) : E.t list =
4 match t with
5 | Empty -> []
6 | Node (l, x, r) -> (elements l) @ (x :\,\!:

elements r) *)

The traversal is implemented by: (i) traversing the whole left sub-tree; (ii) con-
catenating the resulting sequence of elements (the (@) operator represents list
concatenation in OCaml) to x (the root) and the sequence of elements issued
from the right sub-tree traversal. This is exactly the naive approach previously
described. We shall only use the function elements for specification purposes.

In order to implement the step-by-step enumeration of elements in a tree,
we use an explicit data representation of the call stack of the program that
would construct the inoder list, so we can interrupt the traversal as soon as
required. Such a representation is inspired by the zipper [16] structure.A zipper
can be used as an efficient cursor into data structures, allowing one to arbitrarily
traverse the structure, as well as to perform efficient local modifications (e.g.,
insertions or deletions) without the overhead of rebuilding the whole structure
for each modification. In the case of the same fringe problem, we always traverse
a tree towards its leftmost element, without performing any modifications to the
structure. Hence, we specialize the zipper data type as follows:

7 type zipper = (E.t * tree) list

A value of type zipper is a list, where each element is a pair composed of a tree
element and the corresponding right sub-tree. We build such a list bottom-up,
which represents the left spine of the tree that is still to be traversed. Together
with the zipper data type, we introduce the following logical function to convert
from a zipper to a list:

8 (*@ function enum_elements (e : zipper) : E.t list =
9 match e with

10 | [] -> []
11 | (x, r) :\,\!: e -> x :\,\!: (elements r @

enum_elements e) *)

532 M. Pereira

From a specification point of view, we have everything we need to tackle our
verified implementation of the same fringe problem. We start by defining how
to create a zipper from a tree. This is done as follows:

12 let rec mk_zipper (t : tree) (e : zipper) =
13 match t with
14 | Empty -> e
15 | Node (l, x, r) -> mk_zipper l ((x, r) :\,\!: e)
16 (*@ r = mk_zipper t e
17 variant t
18 ensures enum_elements r = elements t @ enum_elements

e *)

The specification of mk_zipper states that this is a terminating function,
with argument t structurally decreasing at each recursive call. The functional
behavior of this function is captured in the postcondition, where we state the
sequence of elements of the resulting zipper is the same as the inorder sequence
of elements from tree t, plus the elements of the accumulator e.

We now provide the actual, step-by-step, iteration on two zippers, as follows:

19 let rec eq_zipper (e1 : zipper) (e2 : zipper) =
20 match (e1, e2) with
21 | [], [] -> true
22 | (x1, r1) :\,\!: e1, (x2, r2) :\,\!: e2 -> E.eq x1 x2

&&
23 eq_zipper (mk_zipper r1 e1) (mk_zipper r2 e2)
24 | _ -> false
25 (*@ b = eq_num e1 e2
26 variant List.length (enum_elements e1)
27 ensures b <-> enum_elements e1 = enum_elements e2 *)

This implementation distinguishes three cases:

1. If both zippers are empty, then we are sure to have enumerated the same
sequence of elements.

2. If both zippers still have elements, then the next elements in the enumeration
are the heads of both lists. We compare these and proceed recursively, only
if the E.eq x1 x2 comparison holds.

3. Otherwise, if one of the zipper terminates before the other, then we are sure
the enumerated sequences differ.

Very simply put, the postcondition of eq_zipper states that this function logi-
cally decides whether two zippers enumerate the same sequence of elements.

Finally, we provide the definition of the same_fringe function, which decides
whether two binary trees present the same elements. This is as simple as

28 let same_fringe (t1 : tree) (t2 : tree) =
29 eq_zipper (mk_zipper t1 []) (mk_zipper t2 [])
30 (*@ b = same_fringe t1 t2

Practical Deductive Verification of OCaml Programs 533

31 ensures b <-> elements t1 = elements t2 *)
32

33 end

From the postcondition of eq_zipper one can deduce that same_fringe will
return the Boolean true if and only if the two zippers passed as arguments
represent the same sequence of elements. Since we use the empty list as the
initial accumulator value for the creation of both zippers, then the postcondition
of mk_zipper states the created zippers enumerate the exact same sequence of
elements as those of trees t1 and t2, respectively. Hence, the postcondition of
eq_zipper always holds.

Feeding our same fringe implementation to Cameleer generates 11 VCs, after
splitting each top-level definition. These are discharged in roughly 1 s using a
combination of the Alt-Ergo, Z3, and CVC5 SMT solvers. For reference, the com-
plete OCaml implementation and GOSPEL specification for same fringe is given
in the appendix of the extended version [29].

4.2 Summary

In this section, we used the same fringe example to motivate and showcase the
use of Cameleer for the deductive verification of purely functional algorithms.
Such functional implementations are closer to mathematical definitions, hence
are normally easier to reason about. Other than the example presented in this
section, Cameleer has been successfully used to prove the correctness of real-
world functional OCaml data structures. We highlight the Set module from the
OCaml standard library, and the Leftist Heap implementation issued from the
widely used ocaml-containers library3. Even if not presented in the body of
this document, all such case studies are included in the companion artifact.

5 Imperative Programs

One important aspect of the OCaml language is the fact that it is a multi-
paradigm language, combining functional with imperative and object-oriented
programming. In this section, we use Cameleer to conduct the formal verification
of an OCaml program that implements an historical algorithm using imperative
features, namely loops, mutable references, and exceptions. As in Sect. 4, the
main example code listings are presented using running line numbers.

5.1 Boyer-Moore MJRTY Algorithm

Let us, once again, use an algorithmic problem as the vehicle to showcase how
to specify an OCaml program using GOSPEL, and how to prove it in Cameleer.
Consider the following challenge:

3 https://github.com/c-cube/ocaml-containers.

https://github.com/c-cube/ocaml-containers

534 M. Pereira

Write a function that, given an array of votes, determines the candidate
with the absolute majority, if any.

The more direct solution would take the following steps:

1. For a total of N candidates, we first allocate an array of integer values of
length N that serves as an histogram.

2. We do a first pass over the array of votes, summing up in the histogram the
number of votes for each candidate.

3. Finally, we iterate over the histogram to check if any of the candidates achieves
majority.

This approach could certainly be implemented in OCaml and proved correct in
Cameleer. It runs in O(M + N) time (build the histogram, then iterate over
it), where M is the number of votes . However, this approach allocates an extra
memory space of N cells, i.e., the histogram. Here, we adopt a different solution,
due to R. Boyer and J. Moore [4]. Such a solution uses at most 2M comparisons
and constant extra space (other than the array of votes itself).

First, we build a functor parameterized with module type EQUAL from Fig. 5,
so that we are able to compare candidates:

1 module Mjrty (E : EQUAL) = struct
2 type candidate = E.t
3

4 let mjrty a =
5 let exception Found of candidate in

We begin by declaring local exception Found, which we use to terminate the
search and signal if some candidates reaches majority. We now introduce the
only extra auxiliary references we need:

6 let n = Array.length a in
7 let cand = ref a.(0) in
8 let k = ref 0 in

The use of references cand and k is the actual core of the Boyer-Moore’s
method.

We do a first traversal on the array of votes, updating cand and k accordingly:

9 try
10 for i = 0 to n - 1 do
11 if !k = 0 then begin
12 cand := a.(i);
13 k := 1 end
14 else if E.eq !cand a.(i) then incr k
15 else decr k
16 done;

Very briefly, the loop body does the following:

– If the value stored in k is zero, then we change the candidate stored in cand
to the i-th element of a and update k to one (lines 11 to 13);

Practical Deductive Verification of OCaml Programs 535

– If the i-th candidate in a is equal to the value stored in cand, then we incre-
ment reference k (line 14);

– Otherwise, we decrement k (line 15).

So now, a crucial question arises: what are the invariants for this loop that
allow verification to succeed? One crucial part of the process is to reason about
“the number of votes for a certain candidate in a slice of the array”. To be able
to express such notion in the specification, we declare the following GOSPEL
function:

(*@ function numof_eq (a : ’a array) (v : ’a) (l u: integer) :
integer *)

This function represents the number of elements from a, within range [l; u), that
are equal to value v. For now, we focus on using numof_eq to establish the loop
invariants. Later in this section, we provide a proper definition for this function.

Let us a conduct a step-by-step analysis on how references cand and k are
used together within the loop, as to derive the loop invariants. In fact, the invari-
ants we present here are already given in Boyer and Moore’s original work [4],
and we adapt those into GOSPEL:

1. The number of votes for candidate cand, within the array prefix already
scanned, is at least k. We write this down in GOSPEL as follows:

(*@ invariant 0 <= !k <= numof_eq a !cand 0 i

This invariant is maintained by the case analysis implemented from line 11
to 15 in the code snippet above: we update the value of cand whenever !k
reaches zero, hence !k never stores a negative number; we update the value
stored in k, without changing the candidate, hence k is kept as a lower bound
for the actual number of occurrences of !cand in the scanned part of the array.
In other words, we are sure we only decrement k after a sufficient number of
increments occurred (except if we decrement after reference cand is updated,
but in this case k is update to one, hence an implicit increment has also
occurred).

2. The actual number of votes for cand minus the value of k cannot exceed
(i - !k)/2:

invariant 2 * (numof_eq a !cand 0 i - !k) <= i - !k

Instead of a division, we write such an invariant using an equivalent multipli-
cation. The reason is somehow low-level and tied to the upcoming verification
effort: SMT solvers are known to handle multiplication better than division.

3. For every candidate c other than cand, the number of votes for c, within the
scanned prefix of the array, cannot exceed (i - !k)/2:

invariant forall c. c <> !cand ->
2 * numof_eq a c 0 i <= i - !k *)

This invariant implies that no other candidate, other than the one stored in
cand, can have the majority of votes in the slice of the array already processed

536 M. Pereira

by the algorithm. Once again, we use a multiplication by two to avoid the
division.

The last invariant actually allows one to deduce a crucial property: after scanning
all the array, cand is the only candidate that can effectively reach majority.

After the loop, we immediately check whether we are in position to provide
a final answer:

17 if !k = 0 then raise Not_found;
18 if 2 * !k > n then raise (Found !cand);

If k stores zero, we are sure no candidate has reached majority. We use the
OCaml standard library Not_found exception to signal such behavior. If the
value stored in k is more than half of n, the size of the array, we are sure cand
has reached majority. We use locally-defined exception Found to signal this

behavior. If none of the above conditions is met, then we cannot give yet a
definitive answer; we need an extra traversal over the array to check whether
cand has the majority.

The final step of the implementation is a simple loop that counts the actual
number of votes for cand. If, at some point in the traversal, the accumulated
votes for cand are greater then half of n, we terminate signaling the majority of
this candidate. We can then reuse reference k for the purpose of counting votes:

19 k := 0;
20 for i = 0 to n - 1 do
21 (*@ invariant !k = numof_eq a !cand 0 i && 2 * !k <=

n *)
22 if E.eq a.(i) !cand then begin
23 incr k;
24 if 2 * !k > n then raise (Found !cand) end
25 done;
26 raise Not_found
27 with Found c -> c

This loop invariant states that reference k stores the actual number of occur-
rences of cand and that, if we keep iterating, then it must be the case that the
k does not yet represent the majority of votes. If we reach past the loop, then
cand does not have the majority, neither does any other candidate. Once again,
we use Not_found to signal such an outcome.

The final piece in our verified OCaml implementation of the Boyer-Moore
algorithm is the actual specification for function mjrty. This is as follows:

28 (*@ c = mjrty a
29 requires 1 <= Array.length a
30 ensures 2 * numof_eq a c 0 (Array.length a) >
31 Array.length a
32 raises Not_found -> forall x.
33 2 * numof_eq a x 0 (Array.length a) <=

Practical Deductive Verification of OCaml Programs 537

34 Array.length a *)
35 end

As a precondition, we assume that the input array has at least one element.
For the regular postcondition, i.e., the one reached by catching exception Found,
we prove that the returned candidate indeed has the absolute majority of votes.
Finally, in the exceptional postcondition (i.e., the one reached by raising excep-
tion Not_found), we prove that no candidate has enough votes to reach majority.

Definition of numof_eq Function. To conclude our proof of mjrty implemen-
tation, we must provide an actual definition for function numof_eq. We do so by
means of an auxiliary function numof. This is defined, in GOSPEL, as follows:

(*@ function rec numof (p : integer -> bool) (a b : integer) :
integer

= if b <= a then 0 else
if p (b - 1) then 1 + numof p a (b - 1)

else numof p a (b - 1) *)
(*@ variant b - a *)

The call numof p a b returns the number of integer values, within a certain
range [a; b), that satisfy a given predicate p. We attach the variant b - a to the
above definition, which allows us to prove this is a total function.

To define numof_eq, we specialize numof for arrays and an equality predicate:

(*@ function numof_eq (a : ’a array) (v : ’a) (l u : integer) :
integer

= numof (fun j -> a.(j) = v) l u *)

The use of the higher-order function numof leads to a concise and elegant defi-
nition for numof_eq. This is in an interesting application of functional program-
ming concepts to derive sound, expressive, and yet intuitive specifications even
in the presence of mutable data structures.

The right-to-left definition of numof is useful when it comes to proving the
preservation of loop invariants where one is scanning an array from left to right.
At the beginning of the i-th iteration, one assumes that numof p 0 i represents
the number of elements, in the slice [0; i) of some array, that respect predicate p.
At the end of the iteration, we must re-establish the invariant for the range
[0; i + 1), i.e., numof p 0 (i + 1). If the i-th element respects predicate p,
then we take the then branch in the definition of numof; otherwise, we take
the else branch. In either cases, the invariant is re-established simply following
the definition of numof, since the recursive call numof p 0 i is exactly what we
assumed at the beginning of the iteration. This applies to the proof of invariant
preservation for the loops in the mjrty function, where numof_eq a !cand 0 i
is mapped into a call to numof (fun j -> a.(j) = !cand) 0 i.

538 M. Pereira

Finally, we provide auxiliary lemmas about the behavior of the numof func-
tion that allows us to close the proof of the MJRTY algorithm. First, we establish
the lower and upper bound for the result of numof. A call numof a b p, for any
given integer values a and b and a predicate p, always returns a non-negative
value and cannot exceed b - a. This is captured by the following lemma:

(*@ lemma numof_bounds :
forall p : (integer -> bool), a b : integer.
a < b -> 0 <= numof p a b <= b - a *)

This lemma is proved interactively by induction on b, starting from a.
The next lemma states that a call to numof p a c can be written as the sum

of calling numof in the range [a; b[and calling numof in the range [b; c[, provided
that a ≤ b ≤ c. This is expressed as follows:

(*@ lemma numof_append:
forall p: (integer -> bool), a b c: integer.
a <= b <= c -> numof p a c = numof p a b + numof p b c *)

This lemma is proved by induction on c, starting from a.
The last two lemmas capture what happens in a single computation step of

a call numof p l u, when l < u. On one hand, if value l respects predicate p,
then we add 1 to the result of the recursive call numof p (l + 1) b:

(*@ lemma numof_left_add :
forall p : (integer -> bool), l u : integer.
l < u -> p l -> numof p l u = 1 + numof p (l + 1) u *)

On the other hand, if l does not respect p, then numof p a b is simply the
result of the recursive call:

(*@ lemma numof_left_no_add:
forall p : (integer -> bool), l u : integer.
l < u -> not p l -> numof p l u = numof p (l + 1) u *)

One can also think of these lemmas as establishing the equivalence between
either counting the number of elements that satisfy a given predicate from left-
to-right, or from right-to-left. Both lemmas are proved by instantiating lemma
numof_append, where a is instantiated with l, b with l + 1, and c with u.

The Cameleer-Why3 pipeline generates a total of 25 VCs for function mjrty.
These are discharged using a combination of the Alt-Ergo, Z3, and CVC5 solvers.
The proof of the auxiliary lemmas is also carried in the Why3 IDE, using dedi-
cated transformations for induction over integer numbers and instantiating other
lemmas. For reference, the complete OCaml implementation, GOSPEL specifica-
tion, and auxiliary definitions for the MJRTY algorithm are given in appendix [29].

Practical Deductive Verification of OCaml Programs 539

5.2 Summary

In this section, we showed how to use the imperative traits of OCaml to write
elegant and efficient code. Moreover, with Cameleer, we are still able to prove the
correctness of such implementations. The gallery of Cameleer verified programs
includes several examples of verified imperative implementations. From those,
we highlight the verification of a Union Find data structure, encoded in an
array of integer values. An important feature of this case study is the use of the
decentralized invariants technique [12] to achieve a fully-automated proof.

6 Related Work

Deductive software verification is now a mature discipline that is taught, world-
wide, in the vast majority of Computer Science curricula. However, a large corpus
of pedagogical, practical, hands-on oriented bibliography is still missing. One can
cite the recent book on Dafny [20] as valuable contribution to fill this gap. On
the other end of the spectrum of verification tools, the book by Nipkow et al.
[26] and the Software Foundations volumes 3 [1] and 6 [9] provide comprehensive
collections of data structures and algorithms formally verified in proof assistants.
The first is completely developed in Isabelle, the other two in Coq.

When it comes to deductive verification of programs written in functional
languages, one can cite frameworks like Iris [18] and Hoare Type Theory [25].
These are built on Coq, on top of very rich reasoning logics based on Separation
Logic. These can scale up to the verification of complex imperative and con-
current programs. However, proofs in such frameworks are conducted manually,
requiring a high degree of human interaction and proof expertise. In the partic-
ular case of verification of OCaml programs, the CFML [5] tool takes as input an
OCaml program and translates it into a Coq term that captures the semantics of
the program. The proof is then conducted using Separation Logic. CFML proofs
are laborious and, in particular when compared with Cameleer, require extensive
human interaction.

7 Conclusions and Future Perspectives

In this tutorial paper, we presented the deductive verification of different OCaml
programs, ranging from purely functional implementations to code combining
imperative features, such as mutable state and local exceptions. We use the
Cameleer tool to conduct our practical experiments. This tool takes as input
an actual OCaml implementation and translates it into an equivalent WhyML
program, the language of the Why3 verification framework. Cameleer avoids the
need to re-write entire OCaml code bases, just for sake of verification, as it would
be the case with a direct use of Why3: one would have first to write a WhyML
implementation and specification, then rely on an extraction mechanism to get an
executable equivalent OCaml program. On the other hand, Cameleer is conceived

540 M. Pereira

with a clear focus towards proof automation, improving on the experience of
entirely conducting manual proofs in an interactive proof assistant.

Throughout the paper, we use GOSPEL to attach formal specification to
OCaml programs. Our experience suggests that this language is a good compro-
mise when it comes to conciseness and readability of specifications, without sac-
rificing rigor. This is a major argument to bring even more OCaml programmers
to adopt formal methods techniques in their daily routines. Finally, GOSPEL
can be used not only for deductive verification but also for dynamically analyze
OCaml code. As future work, it would be interesting to collaboratively use static
and dynamic analysis techniques to tackle the verification of different parts of a
big piece of OCaml software, resorting to GOSPEL as the aggregation entity.

Acknowledgments. I sincerely thank the anonymous reviewers from the Formal
Methods 2024 Tutorial Track. Their comments and suggestions have greatly improved
the presentation of this paper.

Data Availability Statement. The artifact supporting the experiments of this paper
is publicly available at Zenodo, https://doi.org/10.5281/zenodo.12588707.

References

1. Appel, A.W.: Verified Functional Algorithms, Version 1.5.4., vol. 3. Software Foun-
dations (2023). http://softwarefoundations.cis.upenn.edu

2. Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: The Why3
Platform, Version 1.7. University Paris-Saclay, CNRS, Inria (2024). https://www.
why3.org/doc/

3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64 (2011)

4. Boyer, R.S., Moore, J.S.: MJRTY: a fast majority vote algorithm. In: Boyer, R.S.
(ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe, pp. 105–118.
Kluwer Academic Publishers, Dordrecht, Netherlands (1991)

5. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP), pp. 418–430 (2011).
https://doi.org/10.1145/2034773.2034828

6. Charguéraud, A.: Separation Logic for Sequential Programs (Functional Pearl).
Proc. ACM Program. Lang. 4(ICFP) (2020).https://doi.org/10.1145/3408998

7. Charguéraud, A.: A modern eye on separation logic for sequential programs. (Un
nouveau regard sur la Logique de Séparation pour les programmes séquentiels)
(2023). https://tel.archives-ouvertes.fr/tel-04076725

8. Charguéraud, A., Filliâtre, J.C., Lourenço, C., Pereira, M.: GOSPEL—providing
OCaml with a formal specification language. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 484–501. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8_29

9. Charguéraud, A.: Separation Logic Foundations, Version 2.0, vol. 6. Software Foun-
dations (2024). http://softwarefoundations.cis.upenn.edu

https://doi.org/10.5281/zenodo.12588707
http://softwarefoundations.cis.upenn.edu
https://www.why3.org/doc/
https://www.why3.org/doc/
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/3408998
https://tel.archives-ouvertes.fr/tel-04076725
https://doi.org/10.1007/978-3-030-30942-8_29
http://softwarefoundations.cis.upenn.edu

Practical Deductive Verification of OCaml Programs 541

10. Dailler, S., Marché, C., Moy, Y.: Lightweight interactive proving inside an auto-
matic program verifier. In: 4th Workshop on Formal Integrated Development Envi-
ronment (F-IDE) (2018)

11. Filliâtre, J.C.: Deductive software verification. Int. J. Softw. Tools Technol. Transf.
13(5), 397–403 (2011). https://doi.org/10.1007/s10009-011-0211-0

12. Filliâtre, J.: Simpler proofs with decentralized invariants. J. Log. Algebraic Meth-
ods Program. 121, 100645 (2021). https://doi.org/10.1016/J.JLAMP.2021.100645

13. Filliâtre, J.-C., Pascutto, C.: Ortac: runtime assertion checking for OCaml (Tool
Paper). In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 244–253.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_13

14. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

15. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.J.: Behav-
ioral interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58
(2012).https://doi.org/10.1145/2187671.2187678

16. Huet, G.P.: The zipper. J. Funct. Program. 7(5), 549–554 (1997). https://doi.org/
10.1017/S0956796897002864

17. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

18. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018). https://doi.org/10.1017/S0956796818000151

19. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for java. ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006). https://doi.org/10.1145/1127878.1127884

20. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

21. Maksimović, P., Ayoun, S.É., Santos, J.F., Gardner, P.: Gillian, Part II: real-world
verification for JavaScript and C. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12760, pp. 827–850. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81688-9_38

22. Meyer, B.: Eiffel: The Language. Prentice-Hall (1991). http://www.eiffel.com/
doc/#etl

23. Monin, J.: Understanding Formal Methods. Springer, Verlag, London (2003).
https://doi.org/10.1007/978-1-4471-0043-0_8

24. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

25. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type theory, polymorphism and
separation. J. Funct. Program. 18(5–6), 865–911 (2008). https://doi.org/10.1017/
S0956796808006953

26. Nipkow, T., et al.: Functional algorithms, verified (2021)
27. Pereira, M., Ravara, A.: Cameleer: a deductive verification tool for OCaml. arXiv

preprint arXiv:2104.11050 (2021)

https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1016/J.JLAMP.2021.100645
https://doi.org/10.1007/978-3-030-88494-9_13
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-81688-9_38
http://www.eiffel.com/doc/#etl
http://www.eiffel.com/doc/#etl
https://doi.org/10.1007/978-1-4471-0043-0_8
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1017/S0956796808006953
http://arxiv.org/abs/2104.11050

542 M. Pereira

28. Pereira, M.: Practical Deductive Verification of OCaml Programs (2024). https://
doi.org/10.5281/zenodo.12588707

29. Pereira, M.: Practical deductive verification of OCaml programs (extended ver-
sion). arXiv preprint arXiv:2404.17901 (2024)

30. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
pp. 55–74. LICS ’02, IEEE Computer Society, USA (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.12588707
https://doi.org/10.5281/zenodo.12588707
http://arxiv.org/abs/2404.17901
http://creativecommons.org/licenses/by/4.0/

FM
Artifact
Evaluation

Reusable

FM
Artifact
Evaluation

Available

Software Verification with CPAchecker 3.0:
Tutorial and User Guide

Daniel Baier , Dirk Beyer B, Po-Chun Chien , Marie-Christine Jakobs ,

Marek Jankola , Matthias Kettl , Nian-Ze Lee , Thomas Lemberger ,

Marian Lingsch-Rosenfeld , Henrik Wachowitz , and Philipp Wendler

LMU Munich, Munich, Germany

https://cpachecker.sosy-lab.org

Abstract. This tutorial provides an introduction to CPAchecker for users.
CPAchecker is a flexible and configurable framework for software veri-
fication and testing. The framework provides many abstract domains,
such as BDDs, explicit values, intervals, memory graphs, and predicates,
and many program-analysis and model-checking algorithms, such as ab-
stract interpretation, bounded model checking, Impact, interpolation-based
model checking, k -induction, PDR, predicate abstraction, and symbolic
execution. This tutorial presents basic use cases for CPAchecker in formal
software verification, focusing on its main verification techniques with
their strengths and weaknesses. An extended version also shows further
use cases of CPAchecker for test-case generation and witness-based result
validation. The envisioned readers are assumed to possess a background in
automatic formal verification and program analysis, but prior knowledge
of CPAchecker is not required. This tutorial and user guide is based on
CPAchecker in version 3.0. This user guide’s latest version and other docu-
mentation are available at https://cpachecker.sosy-lab.org/doc.php.

Keywords: CPAchecker · Configurable Program Analysis · Formal Verification ·
Model Checking · Software Verification · Program Analysis · Testing · Tutorial ·
Correctness Certification · Witnesses · Witness Validation · Fault Visualization

1 Introduction

CPAchecker [35] is a framework for configurable software verification with a focus
on the verification of C programs. It is based on the concept of configurable pro-
gram analysis [26, 28, 29] and provides an extensive collection of verification algo-
rithms and abstract domains. Throughout the past years, CPAchecker has been a
top contender in the International Competition on Software Verification [11, 12, 13]
and has helped identify over 240 bugs in Linux device drivers [45, 64, 84].

An extended version of this user guide is available in a technical report [7].

© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 543–570, 2025.
https://doi.org/10.1007/978-3-031-71177-0_30

https://doi.org/10.5281/zenodo.12666378
https://doi.org/10.5281/zenodo.12666378
https://orcid.org/0000-0001-9116-1974
https://orcid.org/0000-0003-4832-7662
mailto:dirk.beyer@sosy.ifi.lmu.de
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0000-0002-5890-4673
https://orcid.org/0009-0008-7961-190X
https://orcid.org/0000-0001-7365-5030
https://orcid.org/0000-0002-8096-5595
https://orcid.org/0000-0003-0291-815X
https://orcid.org/0000-0002-8172-3184
https://orcid.org/0000-0002-4768-4054
https://orcid.org/0000-0002-5139-341X
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org/doc.php
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/Achievements.md#bugs-found-with-cpachecker
https://doi.org/10.1007/978-3-031-71177-0_30
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-71177-0_30&domain=pdf

544 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

Program

Specification

Configuration

Witness

Verdict

Report

Witness

Tests
Fig. 1: Inputs and outputs of CPAchecker when it is used as a verifier, witness
validator, or test-case generator

CPAchecker is open source and written in Java. Founded in 2007 at Simon
Fraser University, it is now maintained by an active community (project statistics
can be found on OpenHub.net). It puts a high priority on extensibility and flexible
reuse of components for developers. The architecture and features of the framework
are described in other articles [35, 48]. More information about the achievements,
history, and license of CPAchecker are available in the extended version [7].

1.1 Use Cases of CPAchecker

There are three main use cases of CPAchecker, with their inputs and outputs
summarized in Fig. 1: (1) As a verifier, CPAchecker takes as input a program
and a specification, and returns a verdict, a verification report, and a verification
witness. The verdict specifies whether the given program adheres to the specifica-
tion, the verification report allows users to examine the verification result, and the
witness contains a machine-readable justification for the returned verdict. (2) As
a witness validator [5, 19], CPAchecker takes as input a program, a specification,
and a witness, and returns a verdict that indicates whether the witness could be
confirmed by CPAchecker. (3) As a test-case generator [32, 52, 75], CPAchecker
takes as input a program and a test-coverage specification, and returns a set of
test cases that cover the program according to the specification.

CPAchecker is also used for program transformation [31, 33, 34, 41, 42], to
explore decompositions of verification problems [4, 27, 37], and to parallelize
verification approaches [23, 37]. This tutorial focuses on using CPAchecker as
a verifier. Information about CPAchecker as a witness validator and test-case
generator is present in the extended version [7].

1.2 Configurable Program Analysis

CPAchecker uses configurable program analysis (CPA) [26, 28, 29] to compute a
program’s reachable states. A CPA specifies an abstract domain and a precision
used to explore a program’s reachable states. The abstract domain defines the
representation of a program’s state, while the precision defines how precise the
abstraction should be. Various CPAs have been implemented in CPAchecker,
each tailored to handle specific program features and perform a dedicated analysis.
CPAs can also be combined to achieve synergy. Furthermore, precisions can be
adjusted dynamically [29], making an analysis coarse but efficient, or precise

https://openhub.net/p/cpachecker

Software Verification with CPAchecker 3.0: Tutorial and User Guide 545

but resource-consuming. CPAchecker automatically adjusts the precisions via
counterexample-guided abstraction refinement (CEGAR) [24, 43, 44, 53] or some
carefully-designed procedures [15].

1.3 Documentation and Communication

The README and directory doc/ in the CPAchecker project provide useful in-
formation for users and developers. For an overview on the architecture, we
recommend the tool paper [35] on CPAchecker and the publications regard-
ing the CPA concept [26, 28, 29]. CPAchecker supports various verification
algorithms and techniques. The most important techniques in CPAchecker
are explained in separate publications, including data-flow and value analy-
sis [15, 26, 43], SMT-based verification algorithms [22, 38, 39], block-abstraction
memoization [23, 24, 25, 83], program transformations [31, 33, 34, 41, 42], coopera-
tive verification [16, 20], witness certification and validation [5, 19], and test-case
generation [32, 52, 75]. The configurations of CPAchecker that were submit-
ted to competitions are described in the competition contribution papers of
SV-COMP [2, 3, 8, 55, 57, 66, 68, 69, 70, 74, 81, 82], Test-Comp [30, 60, 61, 62], and
RERS [46, 47]. These publications give an indication of the breadth of analyses
available in CPAchecker and its power and flexibility as a verification framework.

Questions, bug reports, and feature requests for CPAchecker are always
welcome on its mailing list (https://groups.google.com/g/cpachecker-users) and
the issue tracker (https://gitlab.com/sosy-lab/software/cpachecker/-/issues).

1.4 CPAchecker in Education

Due to the many algorithms and abstract domains, and the clean and extensi-
ble architecture, CPAchecker is an ideal tool for teaching of program-analysis
techniques. The techniques can be explored in comparison and their effects ob-
served. Visualizations of abstract states and error paths help understand the
reasons for correctness or violation of the specification. We use CPAchecker
in various courses on software engineering, software verification, software test-
ing, and program semantics.

1.5 Outline

This tutorial starts in Sect. 2 with installation instructions and a first example of
running CPAchecker. Section 3 explains the inputs and outputs of CPAchecker.
Finally, Sect. 4 gives an overview on the most important analysis techniques that
CPAchecker provides for software verification.

The extended version [7] includes further information on CPAchecker, pro-
vides an overview of all concrete example command lines together with references
to the respective part of the tutorial, provides more information about the
CPAchecker project, its development history, achievements, and licensing, pro-
vides some more detailed examples for the presented analysis techniques, and
explains how to use CPAchecker for witness validation and test-case generation.

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/README.md
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc
https://groups.google.com/g/cpachecker-users
https://gitlab.com/sosy-lab/software/cpachecker/-/issues

546 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

2 Getting Started with CPAchecker

In the following, we explain the installation and a few alternatives for executing
CPAchecker on individual verification tasks.

For trying out CPAchecker and following this tutorial we provide a few
example programs in a reproduction package [6]. We assume this package was
downloaded and unpacked, and that the current working directory is its root
directory (where directory examples/ is visible). The execution of each example
in this tutorial should take less than 10 seconds.

2.1 Local Installation

Installation Requirements. Most features of CPAchecker require a 64-bit
GNU/Linux machine, unless users build the required libraries themselves. A limited
feature set is usable on other platforms. We recommend a current LTS version of
Ubuntu; recent versions of other distributions can be expected to work as well.

Installation. For users on Debian or Ubuntu we provide a package repository
at https://apt.sosy-lab.org. Please follow the instructions on that webpage
to enable the repository. Afterwards, the latest version of CPAchecker can be
installed with sudo apt install cpachecker.

For users without root access or on other distributions, we also provide
CPAchecker as pre-built binary releases via Zenodo [49] and our download
page. Please ensure that a Java Runtime Environment (JRE) is available (for
CPAchecker 3.0, Java version 17 or newer is required). Unpack the archive for
CPAchecker after the download. We recommend adding CPAchecker’s bin/
directory to the PATH environment variable. This way the examples provided in
this tutorial work as is, without having to specify the full path to the cpachecker
executable every time. If CPAchecker was installed via the package repository,
changing the PATH variable is not necessary.

Execution. To try out CPAchecker, run the following command from the
reproduction package’s [6] root directory:

cpachecker examples/example-safe.c

This will verify that there is no assertion violation in program example-safe.c,
and report that the program satisfies the specification. Further information
is provided in Sect. 2.4.

2.2 Execution via Container

CPAchecker is available as an image in OCI format, for use with container
runtimes like Podman and Docker. The identifiers of the images are sosylab/
cpachecker (always the latest release) and sosylab/cpachecker:3.0 for version 3.0.
The following command line executes CPAchecker 3.0 from a container (may
require sudo, depending on the Docker installation):

https://apt.sosy-lab.org
https://doi.org/10.5281/zenodo.3816620
https://cpachecker.sosy-lab.org/download.php
https://cpachecker.sosy-lab.org/download.php
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-safe.c
https://podman.io/
https://hub.docker.com/r/sosylab/cpachecker/
https://hub.docker.com/r/sosylab/cpachecker/

Software Verification with CPAchecker 3.0: Tutorial and User Guide 547

docker run -v "$(pwd)":/workdir sosylab/cpachecker:3.0 \
examples/example-safe.c

Command-line argument -v "$(pwd)":/workdir makes the current working
directory ($(pwd)) available in the started container at path /workdir. This
is the default entrypoint of the CPAchecker images. Command-line argument
-u $UID:$GID might be added after docker run to set the user and group ID
of the container to the current user and group ID: output files produced by
CPAchecker are then owned by the current user instead of root. Argument
examples/example-safe.c is passed to CPAchecker and will be explained in
Sect. 2.4. The command-line arguments and input files can be adjusted as usual.

2.3 Remote Execution via Website

We provide a web interface for CPAchecker at https://vcloud.sosy-lab.
org/cpachecker/webclient/run/. The examples of this paper are available as
Examples on the left of the page.

2.4 Example Verification Task

For all example command lines in this paper we assume a local installation
of CPAchecker and that the artifact with the examples [6] has been
unpacked in the current directory (such that the directory examples/ is
present). If necessary, e.g., for Docker usage, please adjust the command
lines accordingly.

Program Description. We use the program in Fig. 2a. This program initializes
variables n and x to two nondeterministic but concrete values of type unsigned
int (modeled by calls to __VERIFIER_nondet_uint()) and then initializes y to
the difference between n and x. As long as x is larger than y, the while loop
decrements x and increments y by one. If the sum of x and y does not equal n at
the end of a loop iteration, __assert_fail at line 10 triggers a program error
(arguments omitted for simplicity). The program is correct with respect to the
specification that __assert_fail is unreachable, because the sum of x and y
always equals n at the end of every loop iteration. A variant of this program is
shown in Fig. 2b. The variant follows the same execution except at line 9. Here
an error is triggered if x is smaller than y. This error is reachable by initializing
n to 3 and x to 2 (among many other possibilities).

Verification Run. To verify the example program in Fig. 2a with CPAchecker,
execute the below command in a terminal (cf. example default on the web service):

cpachecker examples/example-safe.c

This command line does not specify an explicit configuration. In this case
CPAchecker uses the default configuration, which is the currently recommended

https://vcloud.sosy-lab.org/cpachecker/webclient/run/
https://vcloud.sosy-lab.org/cpachecker/webclient/run/
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/default

548 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

1 extern unsigned
__VERIFIER_nondet_uint();

2 extern void __assert_fail();
3 int main() {
4 unsigned n =

__VERIFIER_nondet_uint();
5 unsigned x =

__VERIFIER_nondet_uint();
6 unsigned y = n − x;
7 while(x > y) {
8 x−−; y++;
9 if (x + y != n) {

10 __assert_fail();
11 }
12 }
13 return 0;
14 }

(a) example-safe.c (error unreachable)

1 extern unsigned
__VERIFIER_nondet_uint();

2 extern void __assert_fail();
3 int main() {
4 unsigned n =

__VERIFIER_nondet_uint();
5 unsigned x =

__VERIFIER_nondet_uint();
6 unsigned y = n − x;
7 while(x > y) {
8 x−−; y++;
9 if (x < y) {

10 __assert_fail();
11 }
12 }
13 return 0;
14 }

(b) example-unsafe.c (error reachable)

Fig. 2: Example C programs

configuration. Like most configurations shipped with CPAchecker, the default
configuration uses the default specification, which specifies that no C assertion
error __assert_fail and no label named ERROR should be reachable. The speci-
fications, configurations, and the available analyses are described in more detail
in Sect. 3.2, Sect. 3.3, and Sect. 4.

At the end of its execution, CPAchecker produces the following messages:
Verification result: TRUE. No property violation found by chosen configuration.
More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Report.html".

The verification result TRUE indicates that the error (line 10 in Fig. 2a) is
not reachable. We can also change the input program to example-unsafe.c in
the command line. In this case, the verification result is FALSE, meaning that
CPAchecker finds an execution path that triggers the error. The meanings of
verification results and how to navigate through the generated report is the topic
of Sect. 3.4 and Sect. 3.5, respectively.

3 Input and Output Interface of CPAchecker

Figure 1 shows the inputs and outputs of CPAchecker. CPAchecker always
takes a program, a specification, and a configuration as input. It always produces
a verdict and a report. Depending on how the user intends to use it, either as a
verifier, a witness validator, or a test-case generator, CPAchecker may also take
a verification witness as input, or produce witnesses or test cases as output.

3.1 Input Program

CPAchecker supports a large subset of the GNU-C11 features. Normally, the
verifier expects pre-processed input files. CPAchecker supports compiler direc-
tives (e.g., #include or #define) if the command-line argument --preprocess

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-safe.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe.c

Software Verification with CPAchecker 3.0: Tutorial and User Guide 549

Table 1: Provided specifications (files in config/specification/)
Specification Description

ErrorLabel Labels named ERROR (case insensitive) are never reachable.
Assertion All assert statements hold.
default Both ErrorLabel and Assertion hold.
overflow All operations with a signed-integer type never produce values outside

the range representable by the respective type.
datarace Concurrent accesses to the same memory location must be atomic if

at least one of them is a write access.
memorysafety All memory deallocations and pointer dereferences are valid and all

allocated memory is pointed to or deallocated when the program exits.
memorycleanup All allocated memory is deallocated before the program exits.

is given, in which case CPAchecker pre-processes the input C program. To
guarantee a meaningful verification of programs that use external functions, in-
cluding functions in the C standard library, the implementations of the functions
have to be provided in the input programs. Otherwise, CPAchecker overapprox-
imates their behavior, potentially leading to false alarms. Two exceptions are
the function pthread_create for creating a new thread and functions malloc,
memset, etc., for manipulating memory, which are handled out-of-the-box by
CPAchecker’s concurrency and memory analyses, respectively. To verify a soft-
ware project that consists of multiple C files, all relevant files must be listed
on the command-line. By default, CPAchecker starts the analysis from the
function main. Another entry function can be specified with the command-line
argument --entry-function <entry function>.

The semantics of a C program depends on the runtime platform, which consists
of a machine architecture, a data model, and an operating system. CPAchecker
assumes a single platform during verification. The command-line argument --32
(default) sets the platform to 32-bit x86 Linux (ILP32) and --64 sets the platform
to 64-bit x86 Linux (LP64) [78].

3.2 Program Specification

Besides the input program, a specification is needed as input for CPAchecker.
The specification defines what property of the program should be checked.
CPAchecker supports an automaton-based specification language (similar to
Blast [17] and Slam [9]) to define program specifications (documented in
doc/SpecificationAutomata.md). CPAchecker ships with several common spec-
ifications in the directory config/specification/. A selection is listed in Ta-
ble 1. CPAchecker also supports property files written in the specification
language that was standardized by the International Competition on Software
Verification (SV-COMP) [13].

The command-line argument --spec <specification> defines the specifica-
tion to use. It accepts the path to a specification-automaton file, an SV-COMP prop-
erty file, or the name of one of the specifications that ship with CPAchecker. For

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/ErrorLabel.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/Assertion.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/default.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/ErrorLabel.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/Assertion.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/overflow.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/datarace.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorysafety.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorycleanup.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/SpecificationAutomata.md
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/properties

550 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

1 OBSERVER AUTOMATON AssertionErrorAutomaton
2 INITIAL STATE Init;
3 STATE USEFIRST Init :
4 // AST -based matching of function calls to __assert_fail
5 MATCH {__assert_fail($?)}
6 -> ERROR("assertion in $location");
7 END AUTOMATON

Fig. 3: Example of automaton-based specification for checking assert statements

example, to verify a program against the provided specification Assertion with
CPAchecker’s default analysis, we run (cf. example assert on the web service):

cpachecker [--preprocess] --spec Assertion examples/example-safe.c

The square brackets in the above command indicate that argument --preprocess
may be omitted if the program does not contain compiler directives (cf. Sect. 3.1).

Figure 3 shows a simplified version of the Assertion specification. The speci-
fication is violated if a call to function __assert_fail is reachable in the given
input program, which matches how assert statements appear in a C program af-
ter pre-processing. The automaton starts in the initial state Init and observes the
analyzed program operations until an operation matches a call to __assert_fail
(line 5) with an arbitrary number of function-call arguments (denoted by $?).
In this case, the automaton transitions to the special state ERROR (line 6) that
signals a specification violation with the given explanation.

3.3 CPAchecker Configuration

CPAchecker is highly configurable via a set of configuration options, which are
documented in the file doc/ConfigurationOptions.txt. Configuration options
are specified as key-value pairs in a configuration file or on the command line. An
extensive set of bundled configuration files is available in directory config/. Most
of these bundled configurations specify default values for common configuration
options, e.g., the specification config/specification/default.spc and a time
limit of 900 s. Command-line arguments overwrite these defaults.

It is possible to write and provide own configuration files. Their format
is inspired by Windows INI files with some extensions like include directives.
A full description is available in doc/Configuration.md. Configuration files may
use relative paths. CPAchecker interprets these relative paths relative to the
directory of the respective configuration file.

Command-line argument --config CONFIG_FILE selects a configuration file.
The bundled configuration files can also be selected with short-hand arguments
that consist of the base name of the configuration file, e.g., --kInduction for
the configuration file config/kInduction.properties or --svcomp24 for the
configuration file config/svcomp24.properties. When no configuration file is
explicitly specified, CPAchecker runs in its default configuration (defined by
the configuration file config/default.properties).

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/Assertion.spc
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/assert
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/ConfigurationOptions.txt
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/default.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/Configuration.md#configuration-file-format
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/svcomp24.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/default.properties

Software Verification with CPAchecker 3.0: Tutorial and User Guide 551

The command-line argument --option key=value sets a single configuration
option. The order of command-line arguments is irrelevant. If an option is set
both in the configuration file and through --option, the --option value takes
precedence and overwrites any value from the configuration file.

CPAchecker provides shortcuts for the most common configuration op-
tions, for example --64 to specify the platform as 64-bit x86 Linux (LP64),
or --timelimit to set an analysis time limit. A full list of shortcuts is available
via cpachecker -h and in doc/Configuration.md. For technical reasons, a few
command-line arguments exist that can only be specified through command-line
arguments and not via configuration files. These arguments include --benchmark
(which leads to better performance by disabling CPAchecker-internal assertions,
writing no output files, and much more) and --heap (which adjusts the amount
of memory used by the JVM for CPAchecker).

As an example, consider the following command line (cf. example settingOptions
on the web service):

cpachecker --kInduction --timelimit 900s --heap 2000M \
--spec ErrorLabel examples/example-safe.c \
--option solver.solver=MATHSAT5

This invokes CPAchecker with the configuration for k -induction, sets the con-
figuration option limits.time.cpu for the time limit to 900 s, tells the JVM to
use 2 000MiB of heap memory, chooses the specification file ErrorLabel, the pro-
gram program.c as input file, and sets the configuration option solver.solver
to MATHSAT5.

3.4 Verification Verdict

CPAchecker may report three different verification verdicts: (1) TRUE, if it proves
that the program satisfies the specification; (2) FALSE, if it proves that the
program does not satisfy the specification; (3) UNKNOWN, if it cannot decide the
verification task using the given resource limits and configuration.

3.5 Interactive Report in HTML Format

In addition to a verification verdict, CPAchecker produces detailed information
about the performed analysis in directory output/ in the current working directory.
This usually includes an interactive report in HTML format. Note that different
configurations may produce different output files.

The interactive report offers a graphical interface for users to inspect the
results of CPAchecker. It allows to inspect, among others: the control-flow
automata (CFA) of the input program, the abstract reachability graph (ARG)
that was constructed by the chosen configuration, statistics, and an error path
that violates the specification (if the verdict is FALSE).

In the following we explain the most important parts of this report. A screen-
shot of the report is shown in Fig. 4. An example report is provided online. If

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/Configuration.md
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/settingOptions
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/ErrorLabel.spc
https://cpachecker.sosy-lab.org/counterexample-report/ErrorPath.0.html

552 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

Fig. 4: Screenshot of the HTML report for program example-unsafe.c

CPAchecker reports the verdict FALSE and the used analysis provides detailed
counterexample information, the report file is output/Counterexample.0.html
(number 0 may differ). Otherwise, the report file is output/Report.html.

Control-Flow Automata. The tab CFA in the report shows the input program
in the internal representation of CPAchecker, the control-flow automata (CFA).
A CFA consists of program locations (nodes of the graph) and program statements
(edges of the graph). In the report, a double-click on a CFA edge navigates to
the source-code line it represents. The drop-down menu “Displayed CFA” can be
used to display a single CFA for a single program function.

Abstract-Reachability Graph. The tab ARG in the report shows a graphical
representation of the program states that were explored by CPAchecker in the
form of an abstract-reachability graph (ARG). The right-hand side of Fig. 4 shows
an ARG. Each node in the ARG represents an abstract state of the input program.
CPAchecker constructs abstract states according to the selected configuration.
An abstract state usually represents a set of concrete program states in order to
overapproximate the reachable state space. Two abstract states are connected
by a directed edge if one state is the successor to the other. The directed edge
goes from predecessor to successor and is labeled with a program operation that
induced the predecessor-successor relation during analysis.

If CPAchecker reported the verdict TRUE, the ARG represents all reachable
abstract program states. If CPAchecker reported the verdict FALSE, nodes and
edges that are part of the error path are marked in red (as in Fig. 4).

Error Path. If the verification verdict is FALSE and the analysis provides detailed
counterexample information, the report includes a textual error-path section
as separate panel on the left (toggle with button “Show Error-Path Section”).
This allows users to step through the error path that CPAchecker computed.
The textual error path is a list of program statements, accompanied by concrete
assignments to all variables on the error path. A button -V- is displayed next
to each statement, which indicates the concrete variable assignments at the
respective location. To replay the error path step-by-step, users can click on

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe.c

Software Verification with CPAchecker 3.0: Tutorial and User Guide 553

<...>
content:
- invariant:

type: "loop_invariant"
location:

file_name: "example -safe.c"
line: 7
column: 3
function: "main"

value: "(x + y == n)"
format: "c_expression"

(a) Relevant sections of a correctness
witness for the safe program in Fig. 2a

<...>
content:
- segment:

- waypoint:
type: assumption
location:

file_name: "example -unsafe.c"
line: 6

constraint:
value: "x == 0 && n == 1"

- segment:
- waypoint:

type: target
location:

file_name: "example -unsafe.c"
line: 10

(b) Relevant sections of a violation witness
for the unsafe program in Fig. 2b

Fig. 5: Example verification witnesses (format version 2.0, slightly shortened for
readability)

the Start button on the top left. Then, two buttons Next and Prev can be
used to navigate through the error path.

3.6 Statistics

CPAchecker collects a variety of statistics, depending on the chosen analysis.
These are presented in the interactive report under tab Statistics and are also writ-
ten to file output/Statistics.txt. With the command-line argument --stats,
CPAchecker prints the statistics to the console at the end of the verification run.

The statistics help users to evaluate the performance of the analysis. Below is an
example excerpt of a run’s statistics that shows the time spent on SMT solving, the
total number of computed reachable abstract states, and the consumed CPU time.

Total time for SMT solver (w/o itp): 0.017s
[...]
Size of reached set: 10
[...]
CPU time for analysis: 0.860s

A separate tutorial covers how to interpret CPAchecker statistics in more detail.

3.7 Verification Witnesses

Verification witnesses [5, 19] help users and tools to reason about verification
results and allow independent validation of the verification result. Validation is
usually easier than verification, thanks to the additional information the witness
provides. CPAchecker can both export witnesses for verification results and
validate witnesses that other tools produce. The extended version [7] explains
witness validation in detail.

Correctness Witnesses. Correctness witnesses are defined for reachability of
error locations and detection of signed-integer overflows in sequential programs.

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/tutorials/interpret-statistics.md

554 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

1 unsigned __VERIFIER_nondet_uint() {
2 static unsigned call_count = 0;
3 unsigned retval;
4 switch (call_count) {
5 case 0: retval = 2U; break;
6 case 1: retval = 2U; break;
7 }
8 ++call_count;
9 return retval;

10 }

Fig. 6: Test harness generated for the example program in Fig. 2b

CPAchecker produces such a witness not only if the verdict is TRUE, but also if it is
UNKNOWN (in this case with partial information). The witness contains information
about the explored program state space in the form of loop and location invariants.
In case the analysis result is TRUE, the invariants hold whenever the program
execution passes through the respective location.

Figure 5a shows an excerpt of a correctness witness for the safe program in
Fig. 2a. It reports the loop invariant x + y == n for the loop head in line 7.

Violation Witnesses. Violation witnesses represent one or more program paths
that lead to a specification violation. This is achieved by specifying assumptions
about the program inputs and the control flow of the program.

Figure 5b shows an excerpt of a violation witness for the unsafe program in
Fig. 2b. It shows the program path that leads to the assertion failure at line 10
when x is assigned value 0 and n is assigned value 1.

3.8 Test Harnesses

If CPAchecker finds a specification violation (verdict FALSE), it produces a
test harness that triggers this violation through test execution. A test harness
contains a sequence of external inputs (e.g., for inputs modeled by __VERIFIER_-
nondet*) to the program that trigger an execution path to the specification
violation. Figure 6 shows an excerpt of a test harness for the example program
in Fig. 2b. The two return values 2U (lines 5 and 6) initialize, in the program
under analysis (Fig. 2b), both variables n and x with value 2. This triggers the
assertion failure at line 10 of the program.

The test harness can be compiled with the program under analysis:

gcc output/Counterexample.1.harness.c examples/example-unsafe.c

This produces a binary a.out. The execution of ./a.out exhibits that the claimed
specification violation is actually reachable. It reports:

CPAchecker test harness: property violation reached

The extended version [7] gives more details on test generation with CPAchecker.

Software Verification with CPAchecker 3.0: Tutorial and User Guide 555

Table 2: Commonly-used configurations and supported specifications
Configuration Specification (cf. Sect. 3.2) Description

Configurations for reachability specifications:
--valueAnalysis-NoCegar-join

default, Assertion, ErrorLabel,
custom automaton specifications,
and SV-COMP property
unreach-call.prp

Section 4.2
--symbolicExecution-NoCegar Section 4.4
--predicateAnalysis Section 4.5
--bmc-incremental Section 4.6
--kInduction Section 4.7

Special-purpose configurations:
--smg memory safety (memorysafety

and memorycleanup)
Section 4.8

--lassoRankerAnalysis termination Section 4.9
--terminationToSafety
--predicateAnalysis--overflow overflow Section 4.10
--dataRaceAnalysis datarace Section 4

Meta configurations:
--svcomp24 reachability specifications

and all SV-COMP properties
[8]

default (no argument) Section 4.1

4 Verification Analyses and How to Select Them

This section shows how to execute various commonly-used verification analyses
in CPAchecker. These analyses can be divided into three groups depending on
the kind of specifications they can check. First, there are analyses that perform a
reachability analysis. These support common specifications, for example, reacha-
bility of an error location or an assertion violation. Second, there are analyses
that support a particular special-purpose specification. Third, there are meta
analyses that implement strategy selection and delegate to one of the above
depending on the provided specification. Table 2 lists common configurations
and the respective specifications they support. Apart from the configuration
--dataRaceAnalysis, which performs partial order reduction [73] over memory
accesses in combination with value analysis [43], the following sections explain
these configurations in more detail.

4.1 Selecting an Analysis

Selecting an analysis of CPAchecker primarily depends on the kind of specifica-
tion that should be verified. Memory safety, overflows, and data races can each be
verified by exactly one recommended analysis, which is listed in Table 2. For termi-
nation, there are two recommendations, described in Sect. 4.9. If SV-COMP prop-
erty files are used to encode the specification, meta configurations of CPAchecker
automatically select a recommended analysis depending on the specification.

For standard reachability specifications a wide range of different analyses and
techniques is available in CPAchecker. Each of them has their strengths and
weaknesses, and while some of them are more powerful or efficient in general,

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-NoCegar-join.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/default.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/Assertion.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/ErrorLabel.spc
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/properties/unreach-call.prp
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/symbolicExecution-NoCegar.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/predicateAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-incremental.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/smg.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorysafety.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorycleanup.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/lassoRankerAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/terminationToSafety.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/predicateAnalysis-{}-overflow.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/overflow.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/dataRaceAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/datarace.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/svcomp24.properties
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp24/c/properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/dataRaceAnalysis.properties

556 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

Table 3: Main configuration flavors of value analysis
Precision Refinement Path Sensitivity Configuration

✗ ✗ --valueAnalysis-NoCegar-join
✗ ✓ --valueAnalysis-NoCegar
✓ ✓ --valueAnalysis-Cegar

none of them always outperforms all of the others, so it can be worthwhile
experimenting with several analyses.

The general recommendation for most use cases is the default analysis of
CPAchecker (used if no other configuration is selected on the command line).
It is a meta configuration that uses k -induction (--kInduction, most effective
overall in our experience) for reachability specifications.

CPAchecker’s value analysis (--valueAnalysis-NoCegar-join), symbolic
execution (--symbolicExecution-NoCegar), and bounded model checking (BMC,
--bmc-incremental) are mostly suited for finding specification violations. While
they are often quite efficient in finding bugs, they are often inefficient for proving
correctness for large programs. In our experience these configurations usually
either succeed quickly or will not produce a result at all.

To prove the absence of specification violations in larger programs, either
abstraction of the program state space or a proof technique such as induction
needs to be used. Value analysis and symbolic execution support a limited form
of abstraction (ignoring irrelevant program variables and clauses) if their configu-
ration variants with precision refinement are chosen as described in the respective
sections below. Predicate abstraction (--predicateAnalysis) is stronger and
can in principle find arbitrary loop invariants as long as the loop invariants do
not require quantifiers nor floating-point arithmetic. k -Induction (--kInduction)
on the other hand requires that an induction proof can be found for the program.

Another aspect that needs to be considered is that value analysis and symbolic
execution in CPAchecker do not support precise reasoning about dynamically
allocated memory and data structures on the heap, whereas BMC, predicate
abstraction, and k -induction do support this. However, the latter three are based
on solving (sometimes large) formulas with an SMT solver, which may not scale.
Value analysis has the advantage that it does not require SMT solving, but
the disadvantage that it cannot reason about non-deterministic values. Symbolic
execution uses an SMT solver, but only when required for non-deterministic values.

The value analysis can be considered comparatively easy to understand con-
ceptually, which makes it a good starting point for the use of CPAchecker.

4.2 Value Analysis

CPAchecker’s value analysis tracks concrete value assignments. There are two
main configuration choices for the value analysis: (1) whether to use precision
refinement, and (2) whether to be path sensitive. Table 3 lists the available

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-NoCegar-join.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-NoCegar.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-Cegar.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/valueAnalysis-NoCegar-join.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/symbolicExecution-NoCegar.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-incremental.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/predicateAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties

Software Verification with CPAchecker 3.0: Tutorial and User Guide 557

1 extern void __assert_fail();
2 int main() {
3 int x = 0;
4 int y = 0;
5 int z = 0;
6 while (x < 2) {
7 x++;
8 y = z + 1;
9 }

10 if (z != 0) {
11 __assert_fail();
12 }
13 return 0;
14 }

1 extern unsigned __VERIFIER_nondet_uint();
2 extern void __assert_fail();
3 int main() {
4 unsigned int x = __VERIFIER_nondet_uint();
5 unsigned int y = x;
6 unsigned int z = __VERIFIER_nondet_uint();
7 while (x < 2) {
8 x++;
9 y++;

10 z = x + z;
11 }
12 if (x != y) {
13 __assert_fail();
14 }
15 return 0;
16 }

Fig. 7: Program example-const.c Fig. 8: Program example-sym.c

command-line arguments to run CPAchecker with the corresponding config-
uration of value analysis. For example, the following command runs a config-
uration of value analysis that implements constant propagation [1] (no preci-
sion refinement, no path sensitivity) on the program in Fig. 7 (cf. example
valueAnalysis-NoCegar-join on the web service):

cpachecker --valueAnalysis-NoCegar-join examples/example-const.c

This configuration tracks only value assignments that always hold on a given
location, because abstract states are joined when control flow meets. This is
efficient, but in most cases not powerful enough to verify programs. For Fig. 7, it
suffices because only the value of variable z is needed to prove the program safe, and
this is always 0. The extended version [7] shows the state-space exploration of the
value analysis for this example in more detail. If, however, the program safety would
also depend on the values of x or y after the loop, the verification result would be
UNKNOWN because the analysis does not track these non-constant variable values.

The value analysis with path sensitivity tracks value assignments per program
path and location. For the example in Fig. 7, it would keep track of all variable
values and fully unroll the loop. This leads to path explosion when many paths with
distinct value assignments exist, because the analysis tracks all of them separately.

Value analysis with path sensitivity and precision refinement mitigates this
path explosion by tracking only those value assignments that are necessary for
the analysis to prove the program safe. This is more efficient than value analysis
without precision refinement in the common case where not all variables in
the program are relevant for safety, like in Fig. 7. The relevant variables are
detected automatically through counterexample-guided abstraction refinement
(CEGAR) with Craig interpolation [43].

Because the value analysis always tracks concrete value assignments and
overapproximates nondeterministic values, it may find false alarms. To mitigate
this, CPAchecker runs a precise, SMT-based feasibility check on every found
potential error path and only reports confirmed specification violations. This can
be seen in the output of CPAchecker, which is provided in the extended version [7].

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-const.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-sym.c
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/valueAnalysis-NoCegar-join

558 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

4.3 Interval-Based Data-Flow Analysis

The data-flow analysis (DF) of CPAchecker is a lightweight proof-finding tech-
nique that uses arithmetic expressions over intervals as its abstract domain [15, 21].
It tracks, for an automatically-selected set of program variables, the range of values
that each variable can take in the form of interval expressions, e.g., [l1, u1]∪ [l2, u2],
where li (resp. ui) is a numerical value representing the lower (resp. upper) bound
of an interval. DF supports dynamic precision refinement. At the beginning of
the analysis, it performs a coarse but efficient program exploration. If some
abstract state reachable in the exploration violates the safety specification, DF
incrementally increases its precision by tracking more program variables, allowing
more complex expressions of intervals, and disabling widening [54]. To run DF in
CPAchecker, provide the configuration --dataFlowAnalysis on the command
line (cf. example dataFlowAnalysis on the web service):

cpachecker --dataFlowAnalysis examples/example-const.c

For the above example, CPAchecker produces the verdict TRUE. A limitation of
DF is that its abstract program exploration cannot identify concrete error paths
when there are specification violations and may sometimes be too imprecise to
find a safety proof. For example, when CPAchecker analyzes example-safe.c
or example-unsafe.c in Fig. 2 with DF, it produces the verdict UNKNOWN. DF
cannot only run standalone but also serve as an auxiliary invariant generator
that assists other analyses, e.g., k -induction [20] (cf. Sect. 4.7).

4.4 Symbolic Execution

The symbolic execution [40] of CPAchecker tracks concrete value assignments
the same way as the value analysis. But for every value that cannot be tracked
concretely, for example because it is assigned non-deterministically, symbolic
execution introduces a new symbolic value si. Whenever a symbolic value is used
in an expression, symbolic execution stores the expression over this symbolic
value without evaluating it. In addition, symbolic execution tracks the constraints
over these symbolic values for each program path. This produces a symbolic-
execution tree (cf. the extended version [7] for details). From this, concrete variable
assignments can be derived for any program path. The symbolic execution of
CPAchecker also supports precision refinement through CEGAR with Craig
interpolation [39]. This determines which variables and constraints must be
tracked through the program.

The below command runs a configuration of symbolic execution [65] without
precision refinement (cf. example symbolicExecution-NoCegar on the web service):

cpachecker --symbolicExecution-NoCegar examples/example-sym.c

Because symbolic execution tracks the expressions over symbolic values without
further abstraction, it is well suited for collecting constraints on inputs for certain
program paths. But this precision also leads to path explosion: The analysis of

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/dataFlowAnalysis.properties
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/dataFlowAnalysis
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-safe.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe.c
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/symbolicExecution-NoCegar

Software Verification with CPAchecker 3.0: Tutorial and User Guide 559

symbolic execution on program example-safe.c (Fig. 2a) does not terminate. To
prove the program safe, it is important to know that the sum of x and y equals n
at line 9. Symbolic execution tracks this by storing the expressions n = s1, x =
s2, y = s1 − s2, x = s2 − 1, y = s1 − s2 + 1, x = s2 − 1− 1, y = s1 − s2 + 1 + 1,
and so on. This produces ever more complicated expressions and does not scale.

The following command runs a configuration of symbolic execution with
precision refinement (cf. example symbolicExecution-Cegar on the web service):

cpachecker --symbolicExecution-Cegar examples/example-sym.c

On the program of Fig. 8, this only tracks assignments and constraints over
x and y, which are necessary to prove the program safe. Assignments to z
are not tracked.

4.5 Predicate Abstraction

Predicate abstraction [36, 59, 63] abstracts the program’s state space with predi-
cates that it learns using CEGAR [53] and Craig interpolation [59]. Compared to
symbolic execution, predicate abstraction is not limited to tracking (symbolic)
values and constraints in the program, but can derive more powerful abstractions.
The computation of abstractions can be costly, thus predicate abstraction uses
large-block encoding [18, 36] to compute abstractions only at certain program lo-
cations, which by default are the loop-head locations. This reduces the number of
abstractions calculated and, hence, the overall cost. To run predicate abstraction,
use the command (cf. example predicateAnalysis on the web service):

cpachecker --predicateAnalysis examples/example-safe.c

In this example, predicate abstraction derives the loop invariant x + y == n,
which proves that __assert_fail in Fig. 2a is unreachable, and hence returns the
verdict TRUE. Learned predicates at these locations are written down in a format
based on SMT-LIB2 [10] into the file output/predmap.txt of the current working
directory. Take the program in Fig. 2a for example. Predicate abstraction can
derive the invariant x + y == n for the while loop at line 7 in function main that
suffices to prove the safety specification that the assertion error is unreachable.
In predmap.txt, this is represented as follows:

(declare-fun |main::n| () (_ BitVec 32))
(declare-fun |main::y| () (_ BitVec 32))
(declare-fun |main::x| () (_ BitVec 32))

main:
(assert (= |main::n| (bvadd |main::y| |main::x|)))

Predicate abstraction can abstract the program state space concisely in a way
that proves the program safe, if it learns the right predicates. Unfortunately, there
is no mechanism forcing predicate abstraction to find predicates that abstract well.
Especially for concrete value assignments in the program, the learned predicates

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-safe.c
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/symbolicExecution-Cegar
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/predicateAnalysis

560 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

might enumerate all possible states. For instance, predicate abstraction may
unnecessarily learn the predicates x == 0, x == 1, and x == 2 at line 6 of Fig. 7,
instead of z == 0. Alternatively, Impact [72] is another analysis that abstracts a
program’s state space with predicates. It computes and refines abstractions in
a lazier way compared to predicate abstraction, and can be initiated using the
configuration --predicateAnalysis-ImpactRefiner-ABEl. The two analyses
have shown different and complementing strengths in our empirical evaluations [22]:
Predicate abstraction is more effective at deriving proofs, whereas Impact is more
efficient at finding specification violations.

4.6 Bounded Model Checking

Bounded model checking (BMC) [22, 51] is an analysis specialized in finding
specification violations. Given a bound n, BMC symbolically unrolls the loops
in the program n times, encodes all execution paths and specification violations
(within the unrolling bound n) into an SMT formula, and checks the satisfiability
of the formula with an SMT solver. The satisfiability of the formula directly
corresponds to the feasibility of the encoded error paths. If the formula is satisfiable,
then a specification-violating execution path (with n loop unrollings) exists and
can be extracted from the satisfying assignment. A bounded model checker then
reports the verification verdict FALSE. In case the formula is unsatisfiable, the
program is considered safe up to the bound n. A bounded model checker reports
the verification verdict TRUE if the loops in the program have finite bounds and are
fully unrolled by the bound n. Otherwise, the verdict is UNKNOWN, as the behavior
of the program at higher unrolling bounds is still unknown.

CPAchecker automatically determines the required unrolling bound by in-
crementally increasing the bound using configuration --bmc-incremental. In-
cremental BMC starts with an unrolling bound of 0 and increments the bound
by 1 after each iteration. The analysis terminates once an error path is found,
the safety specification is proven (by fully unrolling all loops in the program),
or a resource limit is reached. For instance, the following command runs BMC
with incrementally increasing loop bound on the program in Fig. 2b (cf. example
bmc-unsafe on the web service):

cpachecker --bmc-incremental examples/example-unsafe.c

CPAchecker finds the bug inside the loop body of the program in Fig. 2b on
its first encounter of the assertion, with zero complete unrollings of the loop.
Running incremental BMC on the correct program in Fig. 2a does not succeed (cf.
example bmc-safe on the web service). During the process, CPAchecker produces
log messages that show the current unrolling bound:

Adjusting maxLoopIterations to 2
(LoopBoundCPA:LoopBoundPrecisionAdjustment.nextState, INFO)↪→

CPAchecker eventually reaches the time limit and the verdict is UNKNOWN, since a
really large unrolling bound (roughly 231) is required to fully explore the program.
If the loop condition at line 7 changes to x > 0 && x < 3 in Fig. 2a, incremental
BMC can prove the program safe with 2 complete loop unrollings.

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/predicateAnalysis-ImpactRefiner-ABEl.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-incremental.properties

Software Verification with CPAchecker 3.0: Tutorial and User Guide 561

4.7 Extensions of BMC for Unbounded Verification

BMC can be extended for unbounded verification of programs by employing the
k -induction principle [20, 77] or constructing fixed points, i.e., inductive invariants,
via Craig interpolation [38, 71, 79, 80]. To run k -induction in CPAchecker, use
the configuration --kInduction, which combines k -induction with an auxiliary
invariant generator based on data-flow analysis [15, 20] (described in Sect. 4.3). The
invariants produced by the latter are used to strengthen the induction hypotheses
of the former. This is more effective than plain k -induction [20]. As opposed
to incremental BMC, k -induction could easily prove the safety of the example
programs in Fig. 2a with the command (cf. example kInduction on the web service):

cpachecker --kInduction examples/example-safe.c

CPAchecker has three verification algorithms based on BMC and Craig
interpolation: interpolation-based model checking (IMC) [38, 71], interpolation-
sequence-based model checking (ISMC) [14, 79], and dual approximated reachabil-
ity (DAR) [14, 80]. From unsatisfiable BMC queries, the three algorithms derive
interpolants to construct inductive invariants at loop heads. Such an invariant
overapproximates the reachable states of the program that conforms to the safety
specification, and hence could serve as a proof for the program’s correctness.
IMC, ISMC, and DAR are enabled via the configurations --bmc-interpolation,
--bmc-interpolationSequence, and --bmc-interpolationDualSequence, re-
spectively, and currently support only programs with at most one loop. The tool
CPAchecker verifies the program in Fig. 2a with IMC (--bmc-interpolation)
via the command (cf. example bmc-interpolation on the web service):

cpachecker --bmc-interpolation examples/example-safe.c

It produces the below log message:

The current image reaches a fixed point
(IMCAlgorithm.reachFixedPointByInterpolation, INFO)↪→

The message indicates that IMC has found an inductive invariant for the while
loop at line 7 and proved the safety specification of the program.

4.8 Symbolic Memory Graphs with Symbolic Execution

CPAchecker’s symbolic-memory-graph (SMG) analysis [56] combines symbolic
execution [65] with a graph-based domain that tracks all memory. It is usable in
CPAchecker with the configuration --smg. In addition to common state-space
exploration, the SMG analysis can check for memory safety. The analysis can
detect memory leaks, invalid memory access, and invalid freeing of memory.

SMGs accurately track most memory operations, including pointer arithmetics
and bit-precise reading of memory. They also store memory boundaries and can
thus be used to reason about the validity of pointer dereferences. A distinguishing
feature of SMGs is that linked lists of arbitrary length can be abstracted under

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/kInduction.properties
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/kInduction
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-interpolation.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-interpolationSequence.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-interpolationDualSequence.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/bmc-interpolation.properties
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/bmc-interpolation
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/smg.properties

562 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

1 #include <stdlib.h>
2 #include <assert.h>
3 extern int __VERIFIER_nondet_int();
4 int main() {
5 int size = 100;
6 int num = __VERIFIER_nondet_int();
7 int * arr = malloc(sizeof(int) * size);
8 for (int i = 0; i < size; i++) {
9 arr[i] = num;

10 num++;
11 }
12 for (int i = size; i >= 0; i−−) {
13 assert(*(arr + i) == num);
14 num−−;
15 }
16 return 0;
17 }

Fig. 9: example-unsafe-memsafety.c with two distinct memory-safety violations

certain circumstances. This is currently limited to lists that terminate in indef-
initely repeating equal values. If the analysis fails to abstract lists of arbitrary
length, it enumerates all possible list lengths. This may lead to a path explosion,
but can still find violations to safety specification.

We can see some capabilities of the SMG analysis on the example program
in Fig. 9. The program first allocates some memory at line 7, then uses this
memory to store some distinct but non-deterministic values in a loop at line 9,
filling the entire memory allocated in arr. Then, in a reversed loop, the saved
values are compared to their expected values at line 13. Please note that this
example is not pre-processed and thus the command-line argument --preprocess
is needed. To start the verification of memory safety with the configuration --smg
on this program, run the following command:

cpachecker --preprocess --smg --spec memorysafety \
examples/example-unsafe-memsafety.c

This detects that the first memory access of the second loop at line 12 is unsafe
(i.e., the verdict is FALSE), as the pointer dereference exceeds the bounds of the
allocated memory. Another error can be found before line 16, as the memory
allocated in arr is never freed. This second memory-safety violation can be found
either by fixing the invalid dereference at line 13, or by using the dedicated
specification memorycleanup:

cpachecker --preprocess --smg --spec memorycleanup \
examples/example-unsafe-memsafety.c

4.9 Termination Analysis

The specification termination requires a program to always terminate. A program
that can execute infinitely is called non-terminating.

CPAchecker provides two approaches for termination analysis: the termination-
as-safety analysis [76] --terminationToSafety and the lasso-based analysis [58]
--lassoRankerAnalysis. Analysis --terminationToSafety is based on loop un-
rolling (similar to BMC, cf. Sect. 4.6). It can prove termination only if all loops

https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/doc/examples/example-unsafe-memsafety.c
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/smg.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/specification/memorycleanup.spc
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/terminationToSafety.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/lassoRankerAnalysis.properties
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/terminationToSafety.properties

Software Verification with CPAchecker 3.0: Tutorial and User Guide 563

1 extern unsigned
__VERIFIER_nondet_uint();

2 int main() {
3 unsigned int n = 1;
4 unsigned int z =

__VERIFIER_nondet_uint();
5 while (n <= z) {
6 n = n + 1;
7 z = z - 1;
8 }
9 return 0;

10 }

(a) example-terminating.c

1 extern unsigned
__VERIFIER_nondet_uint();

2 int main() {
3 int n = 1;
4 int z =

__VERIFIER_nondet_uint();
5 while (n <= z) {
6 n = (n - 1) % 3;
7 z = (z + 1) % 3;
8 }
9 return 0;

10 }

(b) example-nonterminating.c
Fig. 10: Example C programs for demonstration of termination analyses

in the program can be fully unrolled, but is often efficient in finding speci-
fication violations, i.e., counterexamples that show non-termination. Analysis
--lassoRankerAnalysis constructs ranking functions and does not need to unroll
all loops in the program for termination proofs.

Termination-as-Safety Analysis. The termination-as-safety analysis trans-
forms a verification task for a termination specification into a verification task for
reachability. It stores the values of variables that were seen at the programs’ loop
heads. For example, the loop head for the two programs in Fig. 10 is the location
that corresponds to line 5. Similar to BMC (cf. Sect. 4.6), when the analysis visits
a loop head for the n + 1-st time, it constructs an SMT formula that symbolically
represents n loop unrollings. Via satisfiability queries, the analysis checks whether
there exists a reachable state that is visited twice within n loop iterations. If
such a state is found, the program is non-terminating.

The following command line runs the analysis on the program in Fig. 10b
(cf. example terminationToSafety on the web service):

cpachecker --terminationToSafety examples/example-nonterminating.c

CPAchecker reports the verdict FALSE and produces a counterexample that
shows the following three unrollings of the loop (visible in the output file output/
Counterexample.1.core.txt):

(n, z): (1, 2) → (0, 0) → (-1, 1) → (-2, 2) → (0, 0)

The unrolling represents an execution with assignment z = 2 at line 4. By inspecting
the values of n and z at the loop-head location of each iteration, we see that the
state (n,z) = (0,0) is visited twice. This represents a non-terminating loop.

Lasso-Based Analysis. The main idea of the lasso-based analysis is to ex-
tract potentially non-terminating structures called lassos and then pass each
of them to the library LassoRanker [67]. This library constructs ranking func-
tions, which are arguments for termination. Simultaneously, it is looking for a
non-termination argument. If it finds a non-termination argument for at least one
lasso, CPAchecker claims that the program is non-terminating.

https://svn.sosy-lab.org/software/cpachecker/trunk/doc/examples/example-terminating.c?p=47297
https://svn.sosy-lab.org/software/cpachecker/trunk/doc/examples/example-nonterminating.c?p=47297
https://svn.sosy-lab.org/software/cpachecker/tags/cpachecker-3.0/config/lassoRankerAnalysis.properties
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/terminationToSafety
https://www.ultimate-pa.org/?ui=tool&tool=lasso_ranker

564 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

The lasso-based analysis complements the termination-as-safety analysis. The
analysis can verify that program example-terminating.c in Fig. 10a terminates,
but not that program example-nonterminating.c in Fig. 10b might not termi-
nate. The following command line runs the lasso-based analysis on the program
in Fig. 10a (cf. example lassoRankerAnalysis on the web service):

cpachecker --lassoRankerAnalysis examples/example-terminating.c

CPAchecker reports the verdict TRUE and produces the output file output/termi-
nationAnalysisResult.txt. This contains a termination argument in the form
of the ranking function 3∗z−3∗n+4. As n is always positive, if the loop condition
n ≤ z is satisfied, 3 ∗ z− 3 ∗n+4 ≥ 0 holds. In addition, after each loop iteration,
the resulting value of the ranking function strictly decreases. After a finite number
of iterations, the value will eventually become smaller than zero,which implies
the negation of the loop condition and thus termination.

4.10 Integer-Overflow Detection

To detect integer overflows, CPAchecker uses a standard reachability analysis,
such as those explained in Sects. 4.2, 4.5, and 4.6, together with an internal en-
coding of overflow conditions as error locations (CPAchecker’s overflow analysis
also checks for underflows). The configurations supporting overflow detection
have the suffix --overflow in their names. By default, CPAchecker only checks
for signed integer overflows, as these are declared undefined behavior by the
C standard. To additionally check for unsigned integer overflows, set the op-
tion overflow.checkUnsigned to true. For instance, to determine whether the
example program in Fig. 2a is free of signed and unsigned integer overflows
while using predicate abstraction (cf. Sect. 4.5), run the command (cf. example
predicateAnalysis-unsigned-overflow on the web service):

cpachecker --predicateAnalysis--overflow \
--option overflow.checkUnsigned=true examples/example-safe.c

The verification verdict is FALSE, because an overflow could happen at line 6 if
n and x are initialized to 0 and 1, respectively.

5 Conclusion

This tutorial gives an introduction to the CPAchecker framework and how to use
it to verify programs. It gives an overview of the main analysis techniques that
CPAchecker offers, together with their strengths and weaknesses, and provides
guidance on how to use CPAchecker in several analysis situations.

We hope that our tutorial is useful for researchers, practitioners, and educators,
and that we stimulate interest and curiosity to dig deeper into the full potential
of software model checking. Interested readers can find more information on the
CPAchecker project web page, in the research publications on CPAchecker, the
CPAchecker GitLab repository, and the CPAchecker mailing list.

https://svn.sosy-lab.org/software/cpachecker/trunk/doc/examples/example-terminating.c?p=47297
https://svn.sosy-lab.org/software/cpachecker/trunk/doc/examples/example-nonterminating.c?p=47297
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/lassoRankerAnalysis
https://vcloud.sosy-lab.org/cpachecker/webclient/run/example/predicateAnalysis-unsigned-overflow
https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org/publications.php
https://gitlab.com/sosy-lab/software/cpachecker
https://groups.google.com/forum/#!forum/cpachecker-users

Software Verification with CPAchecker 3.0: Tutorial and User Guide 565

Data-Availability Statement. CPAchecker is available at its project web-
site https://cpachecker.sosy-lab.org and Zenodo [49]. This tutorial uses ver-
sion 3.0 [50]. We also provide a reproduction package [6] that includes all the
examples from this tutorial.

Funding Statement. CPAchecker was funded in part by the Canadian Nat-
ural Sciences and Engineering Research Council (NSERC) — 482301, by the
Deutsche Forschungsgemeinschaft (DFG) — 378803395 (ConVeY), 418257054
(Coop), 496588242 (IdeFix), 496852682 (ReVeriX), by the Free State of Bavaria,
and by the LMU PostDoc Support Funds.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

2. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin, V.S., Volkov, A.: CPA-
BAM-BnB: Block-abstraction memoization and region-based memory models for
predicate abstractions (competition contribution). In: Proc. TACAS. pp. 355–359.
LNCS 10206, Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_22

3. Andrianov, P., Mutilin, V., Khoroshilov, A.: CPALockator: Thread-modular
approach with projections (competition contribution). In: Proc. TACAS (2).
pp. 423–427. LNCS 12652, Springer (2021). https://doi.org/10.1007/
978-3-030-72013-1_25

4. Apel, S., Beyer, D., Mordan, V.O., Mutilin, V.S., Stahlbauer, A.: On-the-fly decom-
position of specifications in software model checking. In: Proc. FSE. pp. 349–361.
ACM (2016). https://doi.org/10.1145/2950290.2950349

5. Ayaziová, P., Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M., Strejček, J.: Software
verification witnesses 2.0. In: Proc. SPIN. Springer (2024)

6. Baier, D., Beyer, D., Chien, P.C., Jakobs, M.C., Jankola, M., Kettl, M., Lee, N.Z.,
Lemberger, T., Lingsch-Rosenfeld, M., Wachowitz, H., Wendler, P.: Reproduction
package for FM 2024 article ‘Software verification with CPAchecker 3.0: Tutorial
and user guide’. Zenodo (2024). https://doi.org/10.5281/zenodo.13612338

7. Baier, D., Beyer, D., Chien, P.C., Jakobs, M.C., Jankola, M., Kettl, M., Lee,
N.Z., Lemberger, T., Lingsch-Rosenfeld, M., Wachowitz, H., Wendler, P.: Software
verification with CPAchecker 3.0: Tutorial and user guide (extended version).
arXiv/CoRR 2409(02094) (September 2024). https://doi.org/10.48550/arXiv.
2409.02094

8. Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger, T.,
Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.: CPAchecker 2.3
with strategy selection (competition contribution). In: Proc. TACAS (3). pp. 359–364.
LNCS 14572, Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_21

9. Ball, T., Rajamani, S.K.: SLIC: A specification language for inter-
face checking (of C). Tech. Rep. MSR-TR-2001-21, Microsoft Re-
search (2002). https://www.microsoft.com/en-us/research/publication/
slic-a-specification-language-for-interface-checking-of-c/

10. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0.
Tech. rep., University of Iowa (2010). https://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.0-r10.12.21.pdf

https://cpachecker.sosy-lab.org
http://www.nserc-crsng.gc.ca/ase-oro/Details-Detailles_eng.asp?id=482301
http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
http://gepris.dfg.de/gepris/projekt/418257054
https://coop.sosy-lab.org/
http://gepris.dfg.de/gepris/projekt/496588242
https://idefix.sosy-lab.org/
http://gepris.dfg.de/gepris/projekt/496852682
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-030-72013-1_25
https://doi.org/10.1007/978-3-030-72013-1_25
https://doi.org/10.1007/978-3-030-72013-1_25
https://doi.org/10.1007/978-3-030-72013-1_25
https://doi.org/10.1145/2950290.2950349
https://doi.org/10.1145/2950290.2950349
https://doi.org/10.5281/zenodo.13612338
https://doi.org/10.5281/zenodo.13612338
https://doi.org/10.48550/arXiv.2409.02094
https://doi.org/10.48550/arXiv.2409.02094
https://doi.org/10.48550/arXiv.2409.02094
https://doi.org/10.48550/arXiv.2409.02094
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://www.microsoft.com/en-us/research/publication/slic-a-specification-language-for-interface-checking-of-c/
https://www.microsoft.com/en-us/research/publication/slic-a-specification-language-for-interface-checking-of-c/
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf

566 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

11. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc.
TACAS (2). pp. 375–402. LNCS 13244, Springer (2022). https://doi.org/10.1007/
978-3-030-99527-0_20

12. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Proc. TACAS (2). pp. 495–522. LNCS 13994, Springer (2023). https:
//doi.org/10.1007/978-3-031-30820-8_29

13. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS (3). pp. 299–329. LNCS 14572, Springer (2024).
https://doi.org/10.1007/978-3-031-57256-2_15

14. Beyer, D., Chien, P.C., Jankola, M., Lee, N.Z.: A transferability study of
interpolation-based hardware model checking for software verification. Proc. ACM
Softw. Eng. 1(FSE) (2024). https://doi.org/10.1145/3660797

15. Beyer, D., Chien, P.C., Lee, N.Z.: CPA-DF: A tool for configurable interval analysis
to boost program verification. In: Proc. ASE. pp. 2050–2053. IEEE (2023). https:
//doi.org/10.1109/ASE56229.2023.00213

16. Beyer, D., Chien, P.C., Lee, N.Z.: Augmenting interpolation-based model checking
with auxiliary invariants. In: Proc. SPIN. Springer (2024)

17. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: The Blast
query language for software verification. In: Proc. SAS. pp. 2–18. LNCS 3148,
Springer (2004). https://doi.org/10.1007/978-3-540-27864-1_2

18. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE (2009).
https://doi.org/10.1109/FMCAD.2009.5351147

19. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

20. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015). https://doi.
org/10.1007/978-3-319-21690-4_42

21. Beyer, D., Dangl, M., Wendler, P.: Combining k-induction with continuously-refined
invariants. Tech. Rep. MIP-1503, University of Passau (January 2015). https:
//doi.org/10.48550/arXiv.1502.00096

22. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software veri-
fication. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

23. Beyer, D., Friedberger, K.: Domain-independent multi-threaded software model
checking. In: Proc. ASE. pp. 634–644. ACM (2018). https://doi.org/10.1145/
3238147.3238195

24. Beyer, D., Friedberger, K.: In-place vs. copy-on-write CEGAR refinement for block
summarization with caching. In: Proc. ISoLA. pp. 197–215. LNCS 11245, Springer
(2018). https://doi.org/10.1007/978-3-030-03421-4_14

25. Beyer, D., Friedberger, K.: Domain-independent interprocedural program analysis
using block-abstraction memoization. In: Proc. ESEC/FSE. pp. 50–62. ACM (2020).
https://doi.org/10.1145/3368089.3409718

26. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https:
//doi.org/10.1007/978-3-319-10575-8_16

27. Beyer, D., Haltermann, J., Lemberger, T., Wehrheim, H.: Decomposing software
verification into off-the-shelf components: An application to CEGAR. In: Proc. ICSE.
pp. 536–548. ACM (2022). https://doi.org/10.1145/3510003.3510064

https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1145/3660797
https://doi.org/10.1145/3660797
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1007/978-3-540-27864-1_2
https://doi.org/10.1007/978-3-540-27864-1_2
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.48550/arXiv.1502.00096
https://doi.org/10.48550/arXiv.1502.00096
https://doi.org/10.48550/arXiv.1502.00096
https://doi.org/10.48550/arXiv.1502.00096
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1145/3238147.3238195
https://doi.org/10.1007/978-3-030-03421-4_14
https://doi.org/10.1007/978-3-030-03421-4_14
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1145/3368089.3409718
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1145/3510003.3510064
https://doi.org/10.1145/3510003.3510064

Software Verification with CPAchecker 3.0: Tutorial and User Guide 567

28. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007). https://doi.org/10.1007/
978-3-540-73368-3_51

29. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision
adjustment. In: Proc. ASE. pp. 29–38. IEEE (2008). https://doi.org/10.1109/
ASE.2008.13

30. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/
978-3-030-16722-6_23

31. Beyer, D., Jakobs, M.C.: Fred: Conditional model checking via reducers and folders.
In: Proc. SEFM. pp. 113–132. LNCS 12310, Springer (2020). https://doi.org/10.
1007/978-3-030-58768-0_7

32. Beyer, D., Jakobs, M.C.: Cooperative verifier-based testing with CoVeriTest.
Int. J. Softw. Tools Technol. Transfer 23(3), 313–333 (2021). https://doi.org/10.
1007/s10009-020-00587-8

33. Beyer, D., Jakobs, M.C., Lemberger, T.: Difference verification with conditions.
In: Proc. SEFM. pp. 133–154. LNCS 12310, Springer (2020). https://doi.org/10.
1007/978-3-030-58768-0_8

34. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construction
of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018). https://doi.
org/10.1145/3180155.3180259

35. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

36. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010). https://dl.acm.
org/doi/10.5555/1998496.1998532

37. Beyer, D., Kettl, M., Lemberger, T.: Decomposing software verification using
distributed summary synthesis. Proc. ACM Softw. Eng. 1(FSE) (2024). https:
//doi.org/10.1145/3660766

38. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. J. Autom. Reasoning (2024). https:
//doi.org/10.1007/s10817-024-09702-9, preprint: https://doi.org/10.48550/
arXiv.2208.05046

39. Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Proc. ISoLA. pp. 195–
211. LNCS 9952, Springer (2016). https://doi.org/10.1007/978-3-319-47166-2_
14

40. Beyer, D., Lemberger, T.: CPA-SymExec: Efficient symbolic execution in CPAchecker.
In: Proc. ASE. pp. 900–903. ACM (2018). https://doi.org/10.1145/3238147.
3240478

41. Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M.: A unifying approach for control-flow-
based loop abstraction. In: Proc. SEFM. pp. 3–19. LNCS 13550, Springer (2022).
https://doi.org/10.1007/978-3-031-17108-6_1

42. Beyer, D., Lingsch-Rosenfeld, M., Spiessl, M.: CEGAR-PT: A tool for abstraction
by program transformation. In: Proc. ASE. pp. 2078–2081. IEEE (2023). https:
//doi.org/10.1109/ASE56229.2023.00215

43. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/978-3-030-58768-0_8
https://doi.org/10.1007/978-3-030-58768-0_8
https://doi.org/10.1007/978-3-030-58768-0_8
https://doi.org/10.1007/978-3-030-58768-0_8
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://dl.acm.org/doi/10.5555/1998496.1998532
https://dl.acm.org/doi/10.5555/1998496.1998532
https://doi.org/10.1145/3660766
https://doi.org/10.1145/3660766
https://doi.org/10.1145/3660766
https://doi.org/10.1145/3660766
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.1007/s10817-024-09702-9
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1007/978-3-031-17108-6_1
https://doi.org/10.1007/978-3-031-17108-6_1
https://doi.org/10.1109/ASE56229.2023.00215
https://doi.org/10.1109/ASE56229.2023.00215
https://doi.org/10.1109/ASE56229.2023.00215
https://doi.org/10.1109/ASE56229.2023.00215
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11

568 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

44. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Proc. SPIN. pp. 20–38.
LNCS 9232, Springer (2015). https://doi.org/10.1007/978-3-319-23404-5_3

45. Beyer, D., Petrenko, A.K.: Linux driver verification. In: Proc. ISoLA. pp. 1–6.
LNCS 7610, Springer (2012). https://doi.org/10.1007/978-3-642-34032-1_1

46. Beyer, D., Stahlbauer, A.: BDD-based software model checking with CPAchecker.
In: Proc. MEMICS. pp. 1–11. LNCS 7721, Springer (2013). https://doi.org/10.
1007/978-3-642-36046-6_1

47. Beyer, D., Stahlbauer, A.: BDD-based software verification: Applications to event-
condition-action systems. Int. J. Softw. Tools Technol. Transfer 16(5), 507–518
(2014). https://doi.org/10.1007/s10009-014-0334-1

48. Beyer, D., Wendler, P.: CPAchecker with sequential combination and strategy
selection. In: Automatic Software Verification. Springer (2024)

49. Beyer, D., Wendler, P.: CPAchecker releases. Zenodo. https://doi.org/10.5281/
zenodo.3816620

50. Beyer, D., Wendler, P.: CPAchecker release 3.0. Zenodo (2024). https://doi.
org/10.5281/zenodo.12663059

51. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

52. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., Beyer, D.:
Facilitating reuse in multi-goal test-suite generation for software product lines. In:
Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015). https://doi.org/10.1007/
978-3-662-46675-9_6

53. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

54. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for the static
analysis of programs by construction or approximation of fixpoints. In: Proc. POPL.
pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

55. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic (competition contribution). In: Proc. TACAS. pp. 423–
425. LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_
34

56. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list
manipulation. In: Proc. SAS. pp. 215–237. LNCS 7935, Springer (2013). https:
//doi.org/10.1007/978-3-642-38856-9_13

57. Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis
and predicate analysis (competition contribution). In: Proc. TACAS. pp. 912–915.
LNCS 9636, Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_58

58. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Proc. ATVA. pp. 365–380. LNCS 8172, Springer (2013). https:
//doi.org/10.1007/978-3-319-02444-8_26

59. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/
964001.964021

60. Jakobs, M.C.: CoVeriTest with dynamic partitioning of the iteration time limit
(competition contribution). In: Proc. FASE. pp. 540–544. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_30

61. Jakobs, M.C.: CoVeriTest: Interleaving value and predicate analysis for test-case
generation (competition contribution). Int. J. Softw. Tools Technol. Transf. 23(6),
847–851 (December 2021). https://doi.org/10.1007/s10009-020-00572-1

https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-642-34032-1_1
https://doi.org/10.1007/978-3-642-34032-1_1
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.5281/zenodo.3816620
https://doi.org/10.5281/zenodo.3816620
https://doi.org/10.5281/zenodo.3816620
https://doi.org/10.5281/zenodo.3816620
https://doi.org/10.5281/zenodo.12663059
https://doi.org/10.5281/zenodo.12663059
https://doi.org/10.5281/zenodo.12663059
https://doi.org/10.5281/zenodo.12663059
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-030-45234-6_30
https://doi.org/10.1007/978-3-030-45234-6_30
https://doi.org/10.1007/s10009-020-00572-1
https://doi.org/10.1007/s10009-020-00572-1

Software Verification with CPAchecker 3.0: Tutorial and User Guide 569

62. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time scheduling (competition
contribution). In: Proc. FASE. pp. 358–362. LNCS 12649, Springer (2021). https:
//doi.org/10.1007/978-3-030-71500-7_18

63. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program
verification. In: Handbook of Model Checking, pp. 447–491. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_15

64. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

65. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

66. Leeson, W., Dwyer, M.: Graves-CPA: A graph-attention verifier selector (com-
petition contribution). In: Proc. TACAS (2). pp. 440–445. LNCS 13244, Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0_28

67. Leike, J., Heizmann, M.: Ranking templates for linear loops. Logical Methods in
Computer Science 11(1) (2015). https://doi.org/10.2168/LMCS-11(1:16)2015

68. Löwe, S.: CPAchecker with explicit-value analysis based on CEGAR and inter-
polation (competition contribution). In: Proc. TACAS. pp. 610–612. LNCS 7795,
Springer (2013). https://doi.org/10.1007/978-3-642-36742-7_44

69. Löwe, S., Mandrykin, M.U., Wendler, P.: CPAchecker with sequential combination
of explicit-value analyses and predicate analyses (competition contribution). In:
Proc. TACAS. pp. 392–394. LNCS 8413, Springer (2014). https://doi.org/10.
1007/978-3-642-54862-8_27

70. Löwe, S., Wendler, P.: CPAchecker with adjustable predicate analysis (competition
contribution). In: Proc. TACAS. pp. 528–530. LNCS 7214, Springer (2012). https:
//doi.org/10.1007/978-3-642-28756-5_40

71. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1–
13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

72. McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123–136.
LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14

73. Peled, D.: Ten years of partial order reduction. In: Proc. CAV. pp. 17–28. Springer
(1998). https://doi.org/10.1007/BFb0028727

74. Richter, C., Wehrheim, H.: PeSCo: Predicting sequential combinations of verifiers
(competition contribution). In: Proc. TACAS (3). pp. 229–233. LNCS 11429, Springer
(2019). https://doi.org/10.1007/978-3-030-17502-3_19

75. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. pp. 520–524. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_26

76. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. Electr. Notes Theor. Comput. Sci. 149(1), 79–96 (2006). https://doi.org/
10.1016/j.entcs.2005.11.018

77. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Proc. FMCAD, pp. 127–144. LNCS 1954, Springer (2000).
https://doi.org/10.1007/3-540-40922-X_8

78. The Open Group: 64-bit and data size neutrality. https://unix.org/whitepapers/
64bit.html, accessed: 2024-06-29

79. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Proc.
FMCAD. pp. 1–8. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351148

https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1007/978-3-030-71500-7_18
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1007/978-3-642-36742-7_44
https://doi.org/10.1007/978-3-642-36742-7_44
https://doi.org/10.1007/978-3-642-54862-8_27
https://doi.org/10.1007/978-3-642-54862-8_27
https://doi.org/10.1007/978-3-642-54862-8_27
https://doi.org/10.1007/978-3-642-54862-8_27
https://doi.org/10.1007/978-3-642-28756-5_40
https://doi.org/10.1007/978-3-642-28756-5_40
https://doi.org/10.1007/978-3-642-28756-5_40
https://doi.org/10.1007/978-3-642-28756-5_40
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://unix.org/whitepapers/64bit.html
https://unix.org/whitepapers/64bit.html
https://doi.org/10.1109/FMCAD.2009.5351148
https://doi.org/10.1109/FMCAD.2009.5351148

570 Baier, Beyer, Chien, Jakobs, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Wachowitz, Wendler

80. Vizel, Y., Grumberg, O., Shoham, S.: Intertwined forward-backward reachability
analysis using interpolants. In: Proc. TACAS. pp. 308–323. LNCS 7795, Springer
(2013). https://doi.org/10.1007/978-3-642-36742-7_22

81. Wendler, P.: CPAchecker with sequential combination of explicit-state analysis
and predicate analysis (competition contribution). In: Proc. TACAS. pp. 613–615.
LNCS 7795, Springer (2013). https://doi.org/10.1007/978-3-642-36742-7_45

82. Wonisch, D.: Block abstraction memoization for CPAchecker (competition con-
tribution). In: Proc. TACAS. pp. 531–533. LNCS 7214, Springer (2012). https:
//doi.org/10.1007/978-3-642-28756-5_41

83. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoization.
In: Proc. ICFEM. pp. 332–347. LNCS 7635, Springer (2012). https://doi.org/10.
1007/978-3-642-34281-3_24

84. Zakharov, I.S., Mandrykin, M.U., Mutilin, V.S., Novikov, E., Petrenko, A.K.,
Khoroshilov, A.V.: Configurable toolset for static verification of operating sys-
tems kernel modules. Programming and Comp. Softw. 41(1), 49–64 (2015). https:
//doi.org/10.1134/S0361768815010065

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.

https://doi.org/10.1007/978-3-642-36742-7_22
https://doi.org/10.1007/978-3-642-36742-7_22
https://doi.org/10.1007/978-3-642-36742-7_45
https://doi.org/10.1007/978-3-642-36742-7_45
https://doi.org/10.1007/978-3-642-28756-5_41
https://doi.org/10.1007/978-3-642-28756-5_41
https://doi.org/10.1007/978-3-642-28756-5_41
https://doi.org/10.1007/978-3-642-28756-5_41
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1134/S0361768815010065
https://doi.org/10.1134/S0361768815010065
https://doi.org/10.1134/S0361768815010065
https://doi.org/10.1134/S0361768815010065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Satisfiability Modulo Theories:
A Beginner’s Tutorial

Clark Barrett1(B) , Cesare Tinelli2 , Haniel Barbosa3 , Aina Niemetz1 ,
Mathias Preiner1 , Andrew Reynolds2 , and Yoni Zohar4

1 Stanford University, Stanford, USA
barrett@cs.stanford.edu

2 The University of Iowa, Iowa City, USA
3 Universidade Federal de Minas Gerais,

Belo Horizonte, Brazil
4 Bar-Ilan University, Ramat Gan, Israel

Abstract. Great minds have long dreamed of creating machines that
can function as general-purpose problem solvers. Satisfiability modulo
theories (SMT) has emerged as one pragmatic realization of this dream,
providing significant expressive power and automation. This tutorial is a
beginner’s guide to SMT. It includes an overview of SMT and its formal
foundations, a catalog of the main theories used in SMT solvers, and
illustrations of how to obtain models and proofs. Throughout the tuto-
rial, examples and exercises are provided as hands-on activities for the
reader. They can be run using either Python or the SMT-LIB language,
using either the cvc5 or the Z3 SMT solver.

1 Introduction

Great minds have long dreamed of creating machines that can reason deduc-
tively, that is, from a set of assumptions, determine whether a particular con-
clusion logically follows. The question of whether such a machine is possible was
posed formally as a grand challenge by the famous mathematician David Hilbert
in 1928, who called it the “Entscheidungsproblem” (decision problem) [24]. In
1936, both Church and Turing showed that, in general, this is impossible—the
problem is undecidable [13,42]. Undeterred, researchers in automated reasoning
have searched for ways to solve either special cases of the problem that are decid-
able or to find heuristics that work well in practice. Satisfiability modulo theories
(SMT) has emerged as an approach that seems to fill a sweet spot in this search
space. SMT leverages a rich collection of decidable theories to provide consid-
erable expressive power without sacrificing decidability. SMT also permits some
queries over problems that are undecidable or whose decidability is unknown.
For these, it employs powerful heuristics that often work well in practice.

This tutorial is an introduction to SMT for new users. We explain what kinds
of problems are suitable for SMT solvers, describe the capabilities of modern
solvers, and provide guidance on how to encode problems as SMT queries.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 571–596, 2025.
https://doi.org/10.1007/978-3-031-71177-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_31&domain=pdf
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X
http://orcid.org/0000-0003-0188-2300
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0002-2972-6695
https://doi.org/10.1007/978-3-031-71177-0_31

572 C. Barrett et al.

Throughout the tutorial, we provide examples and exercises to illustrate the
concepts being explained. Unless otherwise stated, the exercises can be com-
pleted using either the cvc5 [3] or the Z3 SMT solver [32], through either their
Python interface or their textual interface based on the SMT-LIB 2 format [8].
The cvc5 website at cvc5.github.io contains documentation that can be used as
a reference to supplement the material in this tutorial. An online version of the
tutorial is also available on that site by clicking on Tutorials. To work through
the examples and exercises, we recommend one of the following options.

A) To use a Python API for SMT, first create a virtual environment.

python3 -m venv smt -tutorial
source smt -tutorial/bin/activate

Next, install cvc5’s Python API or Z3’s Python API, or both.

python3 -m pip install cvc5
python3 -m pip install z3-solver

cvc5 is distributed under the BSD 3-clause license. Some features, however,
such as its finite field solver (see Sect. 4.9), are only available in an extended
version of cvc5 distributed under the GNU General Public License (GPL).1
Since GPL is a problem for some users, the GPL version is not built or
distributed by default. To install the GPL version of cvc5, use:

python3 -m pip install cvc5 -gpl

Once a solver API is installed, you can copy example Python code into a
script file, e.g., Example.py, and then type:

python3 Example.py

Note that, for the examples below, if you are using Z3 instead of cvc5, you
must replace the first line of each Python code snippet with:

from z3 import *

B) Executables for cvc5 and Z3 are available for download. For cvc5, go to
the cvc5 website, click on Downloads, and follow the link to the release
page on GitHub. Alternatively, for Z3, go to the Z3 releases page at
github.com/Z3Prover/z3/releases. From either release page, download the
latest release compatible with your machine (for cvc5, choose a GPL down-
load if you want support for finite fields). Once you unzip the downloaded
archive, the executable will be in the bin directory. Thus, if the unzipped
directory is called release-dir, and you have downloaded cvc5, you can
run an SMT-LIB example called Example.smt2 by typing:

release -dir/bin/cvc5 Example.smt2

from your shell’s command line. If you downloaded Z3, type instead:

1 The finite field solver uses the CoCoA library [1], which has a GPL license.

https://cvc5.github.io
https://cvc5.github.io/tutorials.html
https://cvc5.github.io/downloads.html
https://github.com/Z3Prover/z3/releases

Satisfiability Modulo Theories: A Beginner’s Tutorial 573

release -dir/bin/z3 Example.smt2

C) From the cvc5 website, click on Try cvc5 online. This links to a page that
provides a web interface for running cvc5 on scripts in the SMT-LIB format.

This tutorial has been tested with cvc5 1.2.0, Z3 4.13.0, and Python 3.12.3,
but later releases should work as well. Solver outputs shown below are based
on cvc5 version 1.2.0. Other versions or solvers should produce conceptually
similar results, but the outputs may not be exactly the same. The SMT-LIB
examples are based on version 2.6 of the format [5]. cvc5’s Python API was
designed to be a drop-in replacement for Z3’s Python API. The credit for the
design of the Python API thus goes to the Z3 authors.

2 Overview

At an intuitive level, SMT solvers are general-purpose problem solving tools.
They are somewhat similar to calculators, in that the user provides the problem
of interest, and the tool does some calculation to produce an answer. However,
they are much more powerful than a simple calculator.

SMT solvers reason symbolically, as is done in grade school algebra. The user
provides a set of assertions that describe constraints to be satisfied, and the solver
produces a solution satisfying all of the constraints, if there is one. Consider the
following simple example, mimicking a typical algebra word problem.

Example 1. In 10 years, Alice will be twice as old as Bob is now, but in 22 years,
Bob will be twice as old as Alice is now. How old are Alice and Bob?

First, let’s see how to solve this using Python.

from cvc5.pythonic import *
a, b = Ints('a b')
solve(a + 10 == 2 * b, b + 22 == 2 * a)

The Pythonic API is designed to be as simple and intuitive as possible. We
introduce the symbols we are using (SMT solvers always require that symbols
be introduced before they are used), and then we call solve, passing in the two
equations in much the same way we would write them naturally. The output is
a simple representation of the solution as a Python list.

[a = 18, b = 14]

Alternatively, SMT solvers can take as input a script written in the SMT-
LIB language [5], a standard developed by the SMT community whose syntax
is similar to that of LISP. Below is the same example written in SMT-LIB.

(set-logic QF_LIA)
(set-option :produce-models true)

(declare-const a Int)
(declare-const b Int)

https://cvc5.github.io/app/

574 C. Barrett et al.

(assert (= (+ a 10) (* 2 b)))
(assert (= (+ b 22) (* 2 a)))

(check-sat)
(get-model)

The result is:

sat
(
(define-fun a () Int 18)
(define-fun b () Int 14)
)

Notice that the solver replies sat before giving the solution. This is short for
“satisfiable,” a word meaning that there is at least one solution. SMT solvers
can also identify when a set of assertions has no solution. In this case, the solver
replies unsat, which is short for “unsatisfiable.”

Let’s take a closer look at the SMT-LIB input file, which is a sequence of
commands. The command in the first line tells the solver which logic we are
working in. In this case, we are using QF_LIA which stands for quantifier-free lin-
ear integer arithmetic. We explain more about logics in Sect. 4 below. The second
line tells the solver to produce models. A model assigns a concrete meaning to
every user-declared symbol. Without turning this option on, a solver will still
respond with sat or unsat, but it may not be able to provide a model. The next
two lines declare two uninterpreted constants called a and b. Informally, we often
refer to these as variables, because they play the same role that variables do in
math. However, in the automated reasoning literature, a variable typically refers
to a symbol that is bound by a quantifier, whereas an uninterpreted constant is
a symbol whose value is determined by a model. SMT-LIB follows the the latter
terminology. The next two lines create assertions. An assertion is a way of telling
the solver about a formula that we would like to be true in the model that is
produced. Note that the formulas too are specified in a LISP-like prefix syntax.
Finally, the command (check-sat) tells the solver to check whether the set of
assertions made so far is satisfiable, and the command (get-model) (which is
only legal if the solver returns sat) prints values for each uninterpreted constant,
with the guarantee that assigning these values to the constants makes all the
assertions true. The values are printed using legal SMT-LIB syntax in case the
user wants to copy and paste them into a new SMT-LIB script.

Exercise 1. Consider a modification of Example 1. The first assertion will stay
the same, but for the second, let’s assert that Bob will be twice as old as Alice
in only 20 years. Modify the Python program or SMT-LIB script to reflect the
new set of constraints. What output does the SMT solver give?

So far, we have seen the most basic use of an SMT solver. Given a set of
assertions, determine whether there is a solution for them. We now show that
this basic capability can be used to answer several similar questions.

Suppose we have a set X of assumptions about the world, and we want to
know whether some hypothetical Y is possible under those assumptions. If we

Satisfiability Modulo Theories: A Beginner’s Tutorial 575

can express X and Y as SMT formulas, then an SMT solver can answer the
question. In fact, we simply assert each assumption in X as well as the formula
representing Y and check whether this set of assertions is satisfiable.

Example 2. Let x and y be 32-bit integers, with x a multiple of 2. Is it possible
for the machine arithmetic product of x and y to be 1?

For this problem, we’ll use bit-vectors. SMT solvers use bit-vectors to model
machine arithmetic and other operations on fixed-size vectors of bits. The SMT-
LIB encoding is as follows.

(set-logic QF_BV)

(declare-const x (_ BitVec 32))
(declare-const y (_ BitVec 32))
(declare-const z (_ BitVec 32))

(assert (= x (bvmul z (_ bv2 32))))
(assert (= (bvmul x y) (_ bv1 32)))

(check-sat)

This time, we use the logic QF_BV which stands for quantifier-free bit-vectors.
The underscore symbol _ is used in SMT-LIB to indicate that the next symbol
is indexed by the following argument. It is used to specify the bit-vector size
in this example. The bvmul symbol represents bit-vector multiplication, and the
notation bvX is the bit-vector constant whose value, in decimal notation, is X.
Constant z names the value we must multiply by 2 to get x. Here’s how to solve
it using the Pythonic API. This time, we’ll use the API in a way that more
closely resembles the SMT-LIB script.

from cvc5.pythonic import *

x, y, z = BitVecs('x y z', 32)
s = SolverFor('QF_BV ')

s.add(x == z * 2)
s.add(x * y == 1)

result = s.check()
print(" result: ", result)

There is no solution because an even number does not have a multiplicative
inverse in machine arithmetic (i.e., when doing arithmetic modulo a power of 2).

Exercise 2. Find the multiplicative inverse of 5 (mod 28).

Another common situation is when we have a set X of assumptions, and we
want to know whether some Y must hold as a consequence. If so, we say that Y
is implied or entailed by X. Again, assuming we can represent X and Y using
formulas, we can start by asserting the formulas representing X. At this point,
however, we do not assert the formula for Y . Instead, we assert its negation. If
the result is unsat, then Y must follow from X. The reasoning is that if it is not
possible for the negation of Y to be true when X is true, then Y itself must be
true. Let’s look at a version of the well-known syllogism about Socrates.

576 C. Barrett et al.

Example 3. If all humans are mortal, and Socrates is a human, then must
Socrates be mortal?

The Python code is as follows.

from cvc5.pythonic import *
S = DeclareSort ("S")
Bool = BoolSort ()
Human = Function ("Human", S, Bool)
Mortal = Function (" Mortal", S, Bool)
Socrates = Const(" Socrates", S)

s = SolverFor('UF ')

x = Const("x", S)
s.add(ForAll([x], Implies(Human(x), Mortal(x))))
s.add(Human(Socrates))
s.add(Not(Mortal(Socrates)))

print(s.check ())

The SMT-LIB version of the same problem looks like this.

(set -logic UF)

(declare -sort S 0)
(declare -fun Human (S) Bool)
(declare -fun Mortal (S) Bool)
(declare -const Socrates S)

(assert (forall ((x S)) (=> (Human x) (Mortal x))))
(assert (Human Socrates))
(assert (not (Mortal Socrates)))

(check -sat)

This problem illustrates a few new encoding tools. First, we use the logic UF
which stands for “uninterpreted functions.” This logic allows us to declare new
function symbols. Note that it is also missing the QF prefix we’ve used above,
which means that quantifiers are also allowed. We declare a new uninterpreted
sort S. A sort is like a type in programming languages. We use an uninterpreted
sort to represent a class of individual objects that cannot be modeled with the
predefined sorts provided by SMT-LIB, (so far, we’ve seen the predefined sorts
for integers and bit-vectors). Next, we declare two functions, Human and Mortal,
each of which takes a single argument of sort S and returns a Bool, the SMT-LIB
Boolean sort. A function returning a Boolean is also called a predicate. We then
declare an uninterpreted constant called Socrates of sort S. Now, we are ready
to encode the first fact, namely that all humans are mortal. To do so, we use
the universal quantifier, ForAll. The assertion states that for every individual
x of sort S, if the predicate Human holds for that individual, then the predicate
Mortal also holds. The next assertion states that the Human predicate holds
for Socrates. Finally, we want to see whether the fact that Socrates is mortal
necessarily follows from the assumptions. To do this, we assert the negation of
the statement and check for satisfiability. Running the example confirms that
the result is unsatisfiable and thus, indeed, this statement is entailed.

Satisfiability Modulo Theories: A Beginner’s Tutorial 577

What we have presented so far should provide a good high-level idea of what is
possible with SMT solvers.2 We cover these ideas in more detail in the following.
In Sect. 3, we briefly describe the formal foundations for SMT. Next, in Sect. 4,
we catalog the different theories supported by SMT solvers and provide examples
of how to use them. We cover the different outputs produced by SMT solvers,
including models and proofs, in Sect. 5, and conclude in Sect. 6 with pointers to
additional resources.

3 Formal Foundations

The satisfiability modulo theories problem can be formalized in many-sorted
first-order logic with equality. We briefly outline the necessary concepts here.
Due to space constraints, we assume some familiarity with basic concepts and
notation from mathematical logic. More details can be found in [21,25].

3.1 Syntax

In first-order logic, one constructs formulas that are statements about individuals
in some domain of discourse and their relationships. Many-sorted logic adds the
possibility of talking about multiple, separate domains.

Signatures. The language of formulas is determined by a vocabulary of sym-
bols, called a signature, which has three main components: sort symbols (such
as Int, Real, Person, etc.) which name, or denote, domains of interest; function
symbols (such as, +, ∗, log, mother, father) which denote total functions over the
domains; and relation symbols (such as, =, <, even, married) which denote total
relations over the domains. A signature also specifies the arity of each function
symbol f , which is the number of inputs f takes, as well as its rank, which
consists of the sort of f ’s inputs and of f ’s output.3 We say that f has arity
n and rank σ1 · · · σnσ in a signature Σ if f takes n inputs of respective sorts
σ1, . . . , σn and returns an output of sort σ. A function symbol of arity 0 and
rank σ (such as 0, 1, true, . . .) is also called a constant symbol of sort σ. It is
convenient to consider only signatures that have a distinguished sort Bool, for
the Booleans, and treat relation symbols as function symbols whose return type
is Bool. In addition, we assume that every signature contains a distinguished
function symbol ≈σ of rank σσBool, denoting the identity relation, for each sort
σ of Σ.

A signature Σ is a subsignature of a signature Ω, and Ω is a supersignature
of Σ, if all the sort and function symbols of Σ are also in Ω and the function
symbols have the same rank in Ω as they do in Σ.

2 More sophisticated features and use cases are beyond the scope of this tutorial, but
we plan to provide additional tutorials on more advanced topics in the future.

3 For simplicity, we do not consider the more general case where function symbols
can be overloaded by being assigned more than one arity and/or rank.

578 C. Barrett et al.

Variables, Terms and Formulas. To build formulas, in addition to fixing a
signature Σ, we also fix a set X of sorted variables, each associated with a sort
σ and standing for some element from (the set denoted by) σ. We can then build
terms out of variables and function symbols from Σ. Given a signature Σ, a
well-sorted Σ-term, or just term for short, is defined inductively as follows: (i)
a variable or constant symbol of sort σ is a term of sort σ; (ii) if f is a function
symbol of rank σ1 · · · σnσ, with n > 0, and t1, . . . , tn are terms of sort σ1 · · · σn,
respectively, then the expression f(t1, . . . , tn) is a term of sort σ; (iii) if ϕ is
a term of sort Bool and x is a variable of sort σ, then the expressions ∃x:σ. ϕ
and ∀x:σ.ϕ are terms of sort Bool. We then identify formulas with terms of sort
Bool. The distinguished symbols ∀ and ∃ are quantifier symbols. We say that a
variable x occurs free in a formula ϕ if x occurs in ϕ and either ϕ contains no
quantifier symbols or it has the form ∃ y:σ. ϕ′ or ∀ y:σ. ϕ′, for some variable y,
where x occurs free in ϕ′.

3.2 Semantics

For each signature Σ, the meaning of Σ-terms is provided by mathematical
structures called interpretations. A Σ-interpretation I maps:

– each sort σ of Σ to a non-empty set σI , the domain of σ in I, with BoolI

being the binary set {true, false};
– each variable x ∈ X of sort σ to an element xI ∈ σI ;
– each function symbol f of rank σ1 · · · σnσ to a total function fI of type

σI
1 × · · · × σI

n → σI (and, in particular, each constant symbol c of sort σ to
an element cI ∈ σI).

We say that σ (resp. x, f) denotes the set σI (element xI , function fI) in I.
Every Σ-interpretation I extends from variables and function symbols to Σ-
terms t as follows: (i) a term f(t1, . . . , tn) evaluates in I to fI(tI1 , . . . , tIn), the
value returned by function fI when applied to the elements denoted by t1, . . . , tn;
(ii) an existentially quantified formula ∃x:σ. ϕ evaluates to true in I if and only
if ϕ evaluates to true in an interpretation I[x �→ a] that maps x to some suitable
a ∈ σI and is otherwise identical to I; (iii) a universally quantified formula
∀x:σ. ϕ evaluates to true in I if and only if ϕ evaluates to true in I[x �→ a] for
all possible choices of values for x in σI .

An interpretation I satisfies a formula ϕ if ϕI = true and falsifies it if
ϕI = false. In the former case, we also say that I is a model of ϕ.

The reduct of an Ω-interpretation I to a subsignature Σ of Ω is the (unique)
Σ-interpretation that interprets the symbols of Σ exactly as I. Intuitively, the
reduct is obtained by forgetting the symbols of Ω that are not in Σ.

In the definition of interpretation above, we have not provided a meaning for
the usual Boolean connectives such as ¬,∧,∨,⇒ and so on. In SMT, specific
interpretations of function symbols are provided by a theory, as explained next.

Satisfiability Modulo Theories: A Beginner’s Tutorial 579

3.3 Theories

In general, we are not interested in arbitrary interpretations of terms and formu-
las in a signature Σ but in interpretations belonging to a specific theory T that
constrain the meaning of the symbols in Σ; for instance, that interpret ¬ and ∧
as logical negation and conjunction, 0, 1, 2, . . . as the natural numbers, and so on.
Traditionally in logic, a theory is defined by a set of formulas, called axioms: one
considers only Σ-interpretations that satisfy all the axioms. In SMT, a theory is,
more generally, a class of interpretations that can be specified axiomatically or in
other ways. More precisely, a Σ-theory T is a pair (Σ, I) where Σ is a signature
and I is a class of Σ-interpretations, however specified. We describe and discuss
several examples of theories commonly used in SMT in the next section.

Given a theory T = (Σ, I), we consider not just Σ-formulas but Ω-formulas
for some supersignature Ω of Σ. In the context of T , we refer to the symbols
of Σ as theory symbols and to the additional symbols in Ω as uninterpreted
symbols. For instance, in the theory of reals, we may write a formula of the form
a + 1 > b where a and b are uninterpreted, or symbolic, constants of sort Real.
Intuitively, while the meaning of + and 1 is fixed by the theory, the meaning of
a and b is not. Hence, we consider the formula satisfiable if there are real values
for a and b which make the formula evaluate to true. This idea is formalized in
the notion of satisfiability in T .

Satisfiability Modulo a Theory. If T is a Σ-theory, a T -interpretation is
any Ω-interpretation I for some supersignature Ω of Σ whose restriction to Σ
differs from an interpretation of T at most in the way it interprets the variables.

An Ω-formula ϕ is satisfiable in T if it is satisfied by some T -interpretation
I—which may interpret the variables of ϕ and the sort, function, and predicate
symbols not in Σ arbitrarily. The formula is valid in T if it is satisfied by all
T -interpretations. A set Φ of Ω-formulas entails ϕ in T , written Φ |=T ϕ, if
every T -interpretation that satisfies all formulas in Φ satisfies ϕ as well. The set
Φ is satisfiable in T if there is a T -interpretation that satisfies all of its formulas.

4 SMT Theories

A key feature of SMT is that the entire problem is parameterized by the choice
of a theory T . This is important because it means that SMT is an algorithmic
framework, rather than a fixed algorithm. Thus, if a particular problem cannot
easily be encoded in any existing theory supported by SMT solvers, one option
is to add support for a new theory which is better suited to the problem. In fact,
this is exactly the process by which many of the theories supported by modern
SMT solvers were added.

Theories can be used alone or in arbitrary combinations. Besides the the-
ory, other parameters related to the syntax of formulas include whether or not
to enable quantifiers and whether to disallow or limit the use of certain the-
ory operations. In the SMT-LIB standard, and in solvers that support it, these

580 C. Barrett et al.

parameters are configured by specifying a logic. A logic identifies the theory (or
theories) being used and optionally imposes syntactic restrictions on the allowed
formulas. Users can provide the SMT solver with a predefined logic name (like
QF_LIA, QF_BV, and UF seen earlier) to specify which logic is to be used. By
default (i.e., if no logic name is provided), SMT solvers typically enable all the
theories they support and allow all operations. This is equivalent to using the
special logic name ALL. However, solvers are often tuned with specific heuristics
for specific logics. Thus, it is advisable to provide the solver with the most spe-
cific logic name possible. In this section, we discuss the most common theories
and logics supported by SMT solvers, with examples of each.

4.1 Core Theory and Uninterpreted Symbols

The SMT-LIB standard defines a core theory which consists of a core signature
with a fixed interpretation that is always present, regardless of which other theo-
ries are being used. The core theory defines the Boolean sort Bool (BoolSort()
in Python), the Boolean theory constants true and false (BoolVal(True) and
BoolVal(False) in Python), and the operators =, not, and, or, xor, and => (==,
Not, And, Or, Xor, and Implies in Python), all with the usual meanings. The
equality symbol = is polymorphic: it can be applied to two terms of the same
sort, for any predefined or user-declared sort. There are also two more polymor-
phic operators that require a bit more explanation. The distinct (Distinct)
operator takes two or more arguments of the same sort and returns true exactly
when all the arguments have pairwise distinct values. The ite (If) operator
takes three arguments, the first of which must be of Boolean sort. The other two
arguments can have any sort as long as it is the same for both. The meaning of
the ite operator is the second argument when the first argument is true, and
the third argument otherwise.

The simplest logic that builds on the core theory is QF_UF, short for
“quantifier-free uninterpreted functions.” This logic disallows quantifiers and does
not define any new symbols beyond those in the core theory. However, it allows
the user to extend the signature with new sorts and symbols. The SMT solver
is allowed to interpret these symbols in any way it chooses. This is why they
are referred to as uninterpreted: the solver does not impose any restrictions on
the interpretation (besides the declared arity and rank). The following example
illustrates the use of uninterpreted symbols as well as the And and Distinct
operators.

Example 4. Let f be a unary function from U to U , for some set U . Check that,
whatever the meaning of f , if f(f(f(x))) = x and f(f(f(f(f(x))))) = x, then
f(x) = x.

We show a solution in Python followed by one using SMT-LIB.

from cvc5.pythonic import *
U = DeclareSort ("U")
f = Function ("f", U, U)
x = Const("x", U)

Satisfiability Modulo Theories: A Beginner’s Tutorial 581

s = SolverFor('QF_UF ')
s.add(And((f(f(f(x))) == x), (f(f(f(f(f(x))))) == x)))
s.add(Distinct(f(x), x)) # negation of f(x) = x
print(s.check ())

(set -logic QF_UF)
(declare -sort U 0)

(declare -fun f (U) U)
(declare -const x U)

(assert (and (= (f (f (f x))) x) (= (f (f (f (f (f x))))) x)))
(assert (distinct (f x) x))

(check -sat)

We can derive f(x) = x from the first assertion by performing a series of substi-
tutions, and thus the problem is unsatisfiable. Now, we present a simple example
that illustrates the ite operator. It also shows that in Python, we can use !=
instead of Distinct to assert that two terms are distinct.

Example 5. Suppose we know that x is either equal to y or z, depending on the
value of the Boolean b. Suppose we further know that w is equal to one of y or
z. Does it follow that x = w?

The Python solution is shown below.4

from cvc5.pythonic import *
U = DeclareSort ("U")
b = Const("b", BoolSort ())
x, y, z, w = Consts("x y z w", U)

s = SolverFor('QF_UF ')
s.add(x == (If(b, y, z)))
s.add(Or((w == y), (w == z)))
s.add(x != w)

if s.check() == sat:
m = s.model()
print ("\n".join([str(k) + " : " + str(m[k]) for k in m]))

cvc5 outputs the following for this example.

b : True
w : (as @U_0 U)
x : (as @U_1 U)
y : (as @U_1 U)
z : (as @U_0 U)

The result tells us that it does not follow that x = w. The model gives us a
counterexample to that claim. Because the sort U is uninterpreted, the model
returned by cvc5 must choose an interpretation for it. Here, cvc5 tells us that
it is interpreting U as a set with two elements, named @U_0 and @U_1. The model
4 Due to space constraints, the SMT-LIB versions of the remaining examples do not

appear in the text. They are available in the online version of the tutorial available
from the Tutorials link on the cvc5 website.

https://cvc5.github.io/tutorials.html

582 C. Barrett et al.

then specifies that x and y have one value and z and w have the other, so x is
not equal to w.

Exercise 3. Modify Example 4 to make it satisfiable and Example 5 to make it
unsatisfiable.

4.2 Arithmetic

Though there are many tools available for arithmetic reasoning, SMT solvers are
unique in their ability to reason efficiently about arbitrary Boolean combinations
of arithmetic constraints, as well as to combine arithmetic reasoning with rea-
soning about other theories. It is important to note that SMT solvers reason
precisely about both integer and real arithmetic. That is, they use arbitrary-
precision arithmetic as opposed to machine integer or floating-point approxima-
tions. This means that SMT solvers are not susceptible to the numerical errors
that can arise, for instance, when using floating-point arithmetic to approximate
real arithmetic. It also means that for problems whose complexity lies mainly
in the arithmetic reasoning, as opposed to Boolean reasoning, SMT solvers are
typically slower than tools that use floating-point approximations. The under-
lying algorithms for arithmetic reasoning in SMT solvers are based on standard
techniques that have been adapted to the SMT context, such as the Simplex
algorithm [20] and Cylindrical Algebraic Decomposition [2].

There are a large number of logics to choose from within the arithmetic
umbrella, with reasoning over reals generally more efficient than reasoning over
integers, and reasoning over less expressive formulas generally more efficient than
reasoning over more expressive ones. We briefly discuss the various logics here.

Difference Logic. In difference logic, every arithmetic constraint must be of
the form x−y �� c or x �� c, where �� ∈ {=, <,>,≤,≥}, and c is a numeric theory
constant. If x and y range over integers, we call it integer difference logic, and
if they range over reals, we call it real difference logic. Efficient algorithms exist
for both [17,36]. The names of these logics are QF_IDL and QF_RDL, respectively.
One application for difference logic is job shop scheduling [41].

Example 6. Suppose we have 3 jobs to complete on 2 machines. Job 1 requires
machine 1 for 10min and then machine 2 for 5min. Job 2 requires machine 2 for
20min and then machine 1 for 5min. And Job 3 requires machine 1 for 5min
and then machine 2 for 5min. Can all jobs be completed in 30min?

To solve the problem, we create integer variables for the start times of each
task within each job. We assert that the start times are non-negative, each task
within each job doesn’t start until the previous task finishes, and tasks on each
machine don’t overlap. Finally, we check that each task finishes on time.
from cvc5.pythonic import *

j11 ,j12 ,j21 ,j22 ,j31 ,j32 = Ints("j11 j12 j21 j22 j31 j32")

Satisfiability Modulo Theories: A Beginner’s Tutorial 583

s = SolverFor('QF_IDL ')
s.add(And([x >= 0 for x in [j11 , j12 , j21 , j22 , j31 , j32]]))
s.add(And(j12 - j11 >= 10, j22 - j21 >= 20, j32 - j31 >= 5))
s.add(And(Or(j22 - j11 >= 10, j11 - j22 >= 5),

Or(j31 - j11 >= 10, j11 - j31 >= 5),
Or(j31 - j22 >= 5, j22 - j31 >= 5)))

s.add(And(Or(j21 - j12 >= 5, j12 - j21 >= 5),
Or(j32 - j12 >= 5, j12 - j32 >= 5),
Or(j32 - j21 >= 5, j21 - j32 >= 5)))

s.add(And(j12 <= 25, j22 <= 25, j32 <= 25))

print(s.model() if s.check() == sat else "unsat")

Exercise 4. What is the minimum amount of time that it will take to complete
all of the jobs in Example 6?

Linear Arithmetic. The logic of linear arithmetic allows arithmetic constraints
to have any form that is equivalent to

∑
cixi + b �� 0, where b, ci are numeric

theory constants and �� ∈ {=, <,>,≤,≥}. As before, there are both integer and
real variants, QF_LIA and QF_LRA, respectively. One can also mix the two with
QF_LIRA. Note that, according to the SMT-LIB standard, when using QF_LIRA,
integers and reals should not be mixed in the same linear sum, but most solvers
(including cvc5 and Z3) are more permissive and do allow mixed terms. Exam-
ple 1 is a good example of a simple QF_LIA problem.

Exercise 5. Repeat Exercise 1, but change the logic to QF_LRA, change the types
of the variables from Int to Real, and append .0 to each numeric constant.
Now, what output does the solver give?

Nonlinear Arithmetic. Moving up the expressiveness hierarchy, we next have
logics for quantifier-free nonlinear arithmetic. In these logics, arbitrary polyno-
mials are allowed in constraints. The logic QF_NRA is for nonlinear arithmetic
over the reals, which is decidable but with doubly exponential complexity [2].
On the other hand, the same logic over integers, QF_NIA, is undecidable. cvc5
implements a decision procedure for QF_NRA based on a combination of heuristic
pruning and cylindrical algebraic coverings [29]. cvc5 and other tools implement
incomplete heuristic procedures for QF_NIA.

Example 7. Find a solution for x2y + yz + 2xyz + 4xy + 8xz + 16 = 0.

from cvc5.pythonic import *
x, y, z = Reals("x y z")
s = SolverFor('QF_NRA ')
s.add(x*x*y + y*z + 2*x*y*z + 4*x*y + 8*x*z + 16 == 0)
print(s.model() if s.check() == sat else "unsat")

584 C. Barrett et al.

4.3 Arrays

Consider the following Python function which swaps two elements in a dictionary.
def swap(a,i,j):

tmp = a[i]
a[i] = a[j]
a[j] = tmp

If a[i] and a[j] happen to be equal, the dictionary a is unchanged by the
function. To prove this fact, we could try modeling dictionaries as uninterpreted
functions. However, asserting that two functions are equal is not allowed in first-
order logic. Alternatively, we could use a quantifier to assert that two functions
return the same output when given the same input, for any input. However,
we would like to avoid quantifiers when possible, as their use puts us in an
undecidable logic.

Fortunately, the SMT-LIB standard includes a theory of arrays [30], which
can help in this situation. The theory is perhaps more accurately viewed as
a theory of mutable maps and is parameterized by two sorts, one for the index
(corresponding to the key type of the dictionary) and one for the elements (values
in the dictionary). For example, the SMT-LIB sort (Array Int Real) represents
arrays indexed by integers and containing reals. Note that SMT arrays are always
total, in the sense that they have an element for every value in the index sort.
In particular, an array indexed by Int is conceptually infinite.

The theory has two operators: select, which takes an array and an index
and returns the element at that index, and store, which takes an array a, an
index i, and an element e, and returns a new array that is the result of updating
a with the element e at index i.

Typically, the theory of arrays is used in combination with other theories
that make sense for the index and element sorts. For example, the logic QF_ALIA
allows quantifier-free formulas with variables that range over integers and arrays
of integers. The simplest logic with arrays is QF_AX, in which all the sorts must
be uninterpreted.

In the example below, we encode the above problem using the array theory.

Example 8. For the Python program above, show that, for arbitrary index and
element sorts, if a[i] and a[j] are equal, then so are a and swap(a,i,j).

from cvc5.pythonic import *
I = DeclareSort ("I")
E = DeclareSort ("E")
i, j = Consts("i j", I)
tmp = Const("tmp", E)
array = ArraySort(I, E)
a_in , a_out = Consts("a_in , a_out", array)

s = SolverFor('QF_AX ')

s.add(tmp == (Select(a_in , i)))
s.add(a_out == (Store(Store(a_in , i, Select(a_in , j)),

j, tmp)))
s.add((Select(a_in , i)) == (Select(a_in , j)))
s.add(a_in != a_out)

print(s.check ())

Satisfiability Modulo Theories: A Beginner’s Tutorial 585

Exercise 6. Another property of swap that we can prove is that if a[i] and a[j]
are distinct, then swap would change a. Modify the solution for Example 8 to
prove this property.

4.4 Bit-Vectors

Consider a simple implementation (written in a C-like syntax) for computing
the absolute value of a 32-bit integer: abs(x) := x < 0 ? −x : x. Instead of
branching on x < 0, it is possible to compute the absolute value of x with three
or four branch-free operations [28] as follows. Let xrs be an abbreviation for the
arithmetic right shift (>>s) of x by 31 bits. Note that the result of this operation
is either 0 or −1 (all bits set to 1), depending on the most significant bit (MSB) of
x: if the MSB of x is 0, xrs is 0; otherwise, xrs is -1. Three branchless alternatives
for computing the absolute value of x are as follows.

1. abs1(x) := (x ⊕ xrs) − xrs 2. abs2(x) := (x + xrs) ⊕ xrs
3. abs3(x) := x − ((x << 1) & xrs)

These branchless versions of abs(x) make use of the 32-bit versions of the
bit-wise operations exclusive or (⊕), bit-wise and (&), logical shift left (<<),
and arithmetic shift right (>>s).

We can use an SMT solver to prove whether the branchless versions are
equivalent to the original implementation. Note that integers, as discussed in
Sect. 4.2, are not a good fit, as it is difficult to model the bitwise operators
using the arithmetic operators. However, the SMT-LIB standard includes a the-
ory of fixed-size bit-vectors, which defines the bit-precise semantics of fixed-size
machine integers. The name for the quantifier-free logic containing just this the-
ory is QF_BV. Using this logic, we can easily check the equivalence of the absolute
value computations.

Example 9. Show that the first branchless alternative abs1 is equivalent to abs.

from cvc5.pythonic import *
x = Const("x", BitVecSort (32))
xrs = x >> 31
s = SolverFor('QF_BV ')
s.add(If(x < 0, -x, x) != (x ^ xrs) - xrs) # prove abs() == abs1()
print(s.model() if s.check() == sat else "unsat")

Exercise 7. Show that the second and third branchless alternatives abs2 and
abs3 are equivalent to abs.

4.5 Datatypes

Built into the SMT-LIB language is a mechanism for defining (algebraic) data-
types. Datatypes are highly useful in applications for reasoning about data struc-
tures like records, lists, and trees [7]. The quantifier-free logic name is QF_DT.

586 C. Barrett et al.

Example 10. Model a binary tree containing integer data. Find trees x and y
such that (i) the left subtree of x is the same as the right subtree of y and (ii)
the data stored in x is greater than 100.

Note that we need both datatypes and integer arithmetic for this example. cvc5
supports the logic name QF_DTLIA, but Z3 does not. Fortunately, we can always
use ALL for the logic if a more specific logic is not available.

from cvc5.pythonic import *
decl = Datatype ("tree")
decl.declare ("node", ("data", IntSort ()), ("left", decl), ("right", decl))
decl.declare ("nil")
Tree = decl.create()

x, y = Consts("x y", Tree)

s = SolverFor('ALL ')
s.add(Tree.is_node(x))
s.add(Tree.is_node(y))
s.add(Tree.left(x) == Tree.right(y))
s.add(Tree.data(x) > 100)

print(s.model() if s.check() == sat else "unsat")

The output gives the values for x and y.

[x = node(101, nil , node(0, nil , nil)),
y = node(0, node(0, nil , node(0, nil , nil)), nil)]

Exercise 8. Show that a tree cannot be equal to its own left subtree.

4.6 Floating-Point Arithmetic

The most common representation of real numbers in hardware and software is
the binary floating-point number representation system as defined by the IEEE
Standard 754-2019 for Floating-Point Arithmetic [27]. Floating-point numbers
are encoded as a triple of bit-vectors: the fractional part (the significand), the
exponent (a power of 10 by which the significand is multiplied), and a sign bit.
This representation is of limited range and precision, and thus, the domain of
floating-point numbers is finite. It also includes special values for representing
errors as not-a-number and for plus and minus infinity. In SMT-LIB, the IEEE-
754 standard is formalized as the theory of floating-point arithmetic [11]. The
quantifier-free logic name is QF_FP.

Example 11. The SMT-LIB standard supports a fused multiplication and addi-
tion operator fp.fma. Given three single precision floating-point numbers a, b,
and c, show that the floating-point fused multiplication and addition of a, b, and
c is different from first multiplying a and b and then adding c.

from cvc5.pythonic import *

a, b, c = FPs("a b c", Float32 ())
rm = Const("rm", RNE(). sort ())
s = SolverFor('QF_FP ')

Satisfiability Modulo Theories: A Beginner’s Tutorial 587

s.add(Distinct(fpFMA(rm, a, b, c), fpAdd(rm, fpMul(rm, a, b),c)))
result = s.check()
m = s.model()
print(m)
print(f'fpFMA(rm, a, b, c) = {m.eval(fpFMA(rm, a, b, c))}')
print(f'fpAdd(rm , fpMul(rm, a, b),c) = {m.eval(fpAdd(rm, fpMul(rm, a, b),c))}')

The output gives the solution.

[a = -1.3333333730697632*(2** -1) , b = -1.9999998807907104*(2** -1) ,
c = -1.9999998807907104*(2** -1) , rm = RTP()]

fpFMA(rm , a, b, c) = -1.333333134651184*(2** -2)
fpAdd(rm , fpMul(rm, a, b),c) = -1.3333330154418945*(2** -2)

Exercise 9. Modify the solution to Example 11 to show that floating-point addi-
tion is not associative, i.e., a + (b + c) �= (a + b) + c.

4.7 Strings

It is often necessary to reason about string data when reasoning about programs.
Reasoning about bit-vector representations of strings has the disadvantage that
it requires fixing the string length up front. Also, the theory of bit-vectors does
not include many of the utility functions for strings that exist in string libraries
in programming languages. The SMT-LIB theory of strings provides support for
variable-length strings and a large set of string operations. The quantifier-free
logic name is QF_S. Typically, though, we use QF_SLIA since we need arithmetic
to reason about string lengths.

Example 12. Given two strings, x1 and x2, each consisting of no more than
two characters, is it possible to build the string "abbaabb" using only 3 string
concatenations (where each concatenation may use any previous result including
x1 and x2)?

We can solve this problem by building a circuit of string concatenations and
using nondeterministic choice to pick the inputs for each concatenation.

from cvc5.pythonic import *
p, x, i = {}, {}, {}
for k in range(1, 13): p[k] = Bool("p" + str(k))
for k in range(1, 6): x[k] = String("x" + str(k))
for k in range (1,7): i[k] = String("i" + str(k))

result = StringVal (" abbaabb ")

s = SolverFor('QF_SLIA ')
s.add(And(Length(x[1]) <= 2, Length(x[2]) <= 2))

s.add(i[1] == If(p[1], x[1], x[2]))
s.add(i[2] == If(p[2], x[1], x[2]))
s.add(x[3] == Concat(i[1], i[2]))

s.add(i[3] == If(p[3], x[1], If(p[4], x[2], x[3])))
s.add(i[4] == If(p[5], x[1], If(p[6], x[2], x[3])))
s.add(x[4] == Concat(i[3], i[4]))

s.add(i[5] == If(p[7], x[1], If(p[8], x[2], If(p[9], x[3], x[4]))))
s.add(i[6] == If(p[10], x[1], If(p[11], x[2], If(p[12], x[3], x[4]))))

588 C. Barrett et al.

s.add(x[5] == Concat(i[5], i[6]))

s.add(x[5] == result)

print(s.model() if s.check() == sat else "unsat")

Exercise 10. Use SMT to determine how many concatenations are needed to get
"abbaabb" if x1 and x2 are both restricted to have a length of 1.

4.8 Quantifiers

We saw an example of quantified formulas in Example 3. Quantifiers can be
enabled in SMT solvers by dropping QF from the logic name. However, enabling
quantifiers typically increases the complexity of the decision problem signifi-
cantly. In fact, solving UF problems is equivalent to solving the decision problem
for first-order logic, Hilbert’s original Entscheidungsproblem, which is undecid-
able. And although LIA, LRA, and NRA are decidable, the decision procedures are
expensive. For these reasons, SMT solvers mostly handle quantifiers by attempt-
ing to find quantifier instantiations that, together with the other quantifier-free
assertions, are unsatisfiable. For problems that are expected to be unsatisfiable,
this approach can be quite effective. Moreover, by using different instantiation
techniques and effort levels, a wide variety of problems can be solved.

cvc5 supports several techniques for handling quantified formulas, which can
vary based on the logic. By default, cvc5 limits its effort so that it usually returns
quickly with an answer of either unsat or unknown. For logics that include unin-
terpreted functions, it uses a combination of E-matching [31] and conflict-based
instantiation [40]. In case the user wants to invest more effort, these techniques
can be supplemented with techniques such as enumerative instantiation [38]
(option enum-inst). For logics that admit quantifier elimination (e.g., quanti-
fied linear arithmetic or bit-vectors), it uses counterexample-guided quantifier
instantiation [34,39], which is a complete procedure for these logics.

By default, cvc5 will generally not attempt to determine that an input
with quantified formulas is satisfiable. However, more advanced techniques can
be used to answer sat in the presence of quantified formulas, including finite
model finding [37] (option finite-model-find), model-based quantifier instan-
tiation [23] (option mbqi), and syntax-guided quantifier instantiation [35] (option
sygus-inst).

In general, to set options that are not on by default, we can use the setOption
solver method in Python, as shown below.

from cvc5.pythonic import *
s = SolverFor('UF ')
s.setOption('enum -inst ', True)
s.setOption('finite -model -find ', True)
s.setOption('mbqi ', True)
s.setOption('sygus -inst ', True)

Satisfiability Modulo Theories: A Beginner’s Tutorial 589

4.9 Non-standard Theories

cvc5 and Z3 support several theories that are not (yet) part of the SMT-LIB
standard. We discuss a few of them briefly here, focusing on those supported
by cvc5. More documentation about non-standard theories, including reference
tables describing the supported operators can be found on the cvc5 website.

Sequences. The theory of sequences brings together features of the theories
of arrays and strings. Similar to arrays, sequences are parameterized by the
sort of their elements. So we can declare a sequence of integers, a sequence of
bit-vectors, and so on. Like strings, sequences have a variable but finite length
and can be concatenated together. The sequence theory is enabled whenever the
string theory is enabled (e.g., by using the logic name QF_S or QF_SLIA). Note
that Z3 also supports a theory of sequences that is mostly (but not entirely)
compatible with the cvc5 version.

Example 13. Let x be a sequence of integers. Find a value for x such that the first
and last elements sum to 9, and if we concatenate x with itself, then (3,4,5)
appears as a subsequence.

from cvc5.pythonic import *
x, y, z = Consts("x y z", SeqSort(IntSort ()))

s = SolverFor('QF_SLIA ')

s.add(Length(x) > 0)
s.add(x[0] + x[Length(x) - 1] == 9)
s.add(y == Concat(x,x))
s.add(z == Concat(Unit(IntVal (3)), Unit(IntVal (4)), Unit(IntVal (5))))
s.add(Contains(y, z))

print(s.model() if s.check() == sat else "unsat")

Exercise 11. Show that it’s not possible to have sequences x, y, and z such that
x is a proper prefix of y, y is a proper prefix of z, and z is a proper prefix of x.

Finite Fields. cvc5 can reason about constraints over finite fields of order p,
where p is any prime. It relies on the fact that a field of order p is isomorphic to
the integers modulo p. The quantifier-free logic name for finite fields is QF_FF.
At the time of writing, this theory is not supported by other SMT solvers.

Example 14. In a finite field of order 13, find two elements such that their sum
and product are both equal to the multiplicative identity in the field.

Running this example requires a GPL build of cvc5, as explained in Sect. 1.
from cvc5.pythonic import *
F = FiniteFieldSort(13)
x, y = FiniteFieldElems("x y", F)
s = SolverFor("QF_FF")
s.add(x + y == 1)
s.add(x * y == 1)
print(s.model() if s.check() == sat else "unsat")

590 C. Barrett et al.

Exercise 12. In a finite field of order 13, find an element such that if you square
it twice you get the multiplicative identity.

Finite Sets. cvc5 has support for the theory of finite sets. This theory sup-
ports basic set operations like membership, union, and intersection, as well as
constraints on a set’s cardinality. The quantifier-free logic name is QF_FS. At the
time of writing, this theory is not supported by other SMT solvers.

Example 15. Verify that union distributes over intersection.

from cvc5.pythonic import *
S = DeclareSort ("S")
A, B, C = [Set(i, S) for i in ["A","B","C"]]
s = SolverFor('QF_FS ')
s.add(Not((A | (B & C)) == ((A | B) & (A | C))))
print(s.check ())

Exercise 13. Does set difference distribute over intersection? If not, find a coun-
terexample.

4.10 Combinations of Theories

So far, we have mostly seen examples of how to pose queries that involve a single
theory. Part of the appeal of SMT solvers is their ability to mix reasoning about
different theories. This can be done in a natural way. Any well-sorted formula is
allowed, and all sort constructors can take any other sort as an argument.

One slight complication is the question of how to specify the logic name.
It is always safe to use ALL as the logic name, though as mentioned above, it
may be more efficient to give a more precise logic name. When mixing the-
ories, cvc5 allows any logic name that follows the following rules. First, the
logic name must start with the prefix QF_ if the intent is to limit reasoning
to quantifier-free formulas. The rest of the logic name can include any of the
following components, in any order: (i) A for arrays; (ii) UF for uninterpreted
functions; (iii) BV for bit-vectors; (iv) FP for floating-point numbers; (v) DT for
datatypes; (vi) S for strings and sequences; (vii) either IDL, RDL, LIA, LRA, LIRA,
NIA, NRA, or NIRA for arithmetic; (viii) FF for finite fields; and (ix) FS for finite
sets. Thus, for example, QF_AUFDTBVLRA allows formulas that are quantifier-free
and mix arrays, uninterpreted functions, datatypes, bit-vectors, and linear real
arithmetic. Examples 10, 12, and 13 illustrate combinations of theories.

5 SMT Solver Outputs

As we have seen, the main result of an SMT query is either sat or unsat. In
some cases, the solver may also output unknown. This can happen, for example,
if the problem includes quantifiers. In this section, we discuss how to obtain more
information from the solver in each case.

Satisfiability Modulo Theories: A Beginner’s Tutorial 591

Satisfiable Queries. When a solver returns sat, we have already seen that
one possible way to get more information is to call get-model, which returns
values for all of the uninterpreted constants in the formula. A more fine-grained
approach is to call get-value which takes a term as an argument and returns
the value of that specific term.

Unsatisfiable Queries. When a solver returns unsat, it makes a quite strong
statement: there is no interpretation of the user-declared symbols that satisfies
the formula. SMT solvers can provide more information as to why a formula
is unsatisfiable via an unsat(isfiable) core, a subset of the assertions that is
already unsatisfiable. In SMT-LIB scripts, it can be obtained with the command
get-unsat-core. The unsat core is not guaranteed to be minimal, but solvers
generally make an effort to reduce its size as much as possible without having
to solve additional SMT queries.

Some solvers can also produce proofs for the unsatisfiability of a formula,
i.e., a structured argument showing how an inconsistency can be derived from
an unsat core of the formula. A proof can serve as a certificate of the result and be
used to independently validate the solver’s response [4] . A proof (if supported)
can be obtained in an SMT-LIB script with the command get-proof. The result
is dependent on the proof system and format the solver uses to represent its
reasoning. cvc5 has full support for proofs and unsat cores.

Consider again the Socrates example (Example 3). Below, we show how to
retrieve an unsat core and a proof of its unsatisfiability.
from cvc5.pythonic import *

s = SolverFor('UF ')

s.set("produce -proofs", "true")
s.set("proof -granularity", "theory -rewrite ")
s.set("produce -unsat -cores", "true")

S = DeclareSort ("S")
Human = Function ("Human", S, BoolSort ())
Mortal = Function (" Mortal", S, BoolSort ())
Socrates = Const(" Socrates", S)

x = Const("x", S)

s.add(ForAll([x], Implies(Human(x), Mortal(x))))
s.add(Human(Socrates))
s.add(Not(Mortal(Socrates)))

print(s.check ())
print("The core is: ", s.unsat_core ())

p = s.proof()

print("The proof is:\n", p)

The first part of the output is the unsat core.
The core is:

- (forall ((x S)) (=> (Human x) (Mortal x)))
- (Human Socrates)
- (not (Mortal Socrates))

592 C. Barrett et al.

The core contains all three assertions. In this case, the core is minimal, as all
three are needed to derive unsat. The reasoning is shown in the proof. The result
of the proof() method is a proof object which connects the input assertions to
the conclusion (unsat) via a sequence of steps justified by proof rules. The proof
rules used by cvc5 are documented on the cvc5 website.

Figure 1 shows a visualization of the proof as a tree. For readability, we
use simple names to abbreviate long terms. Each node in the tree shows: (i)
the formula proved (the conclusion); (ii) the name of the proof rule used; (iii)
a numeric id; and (iv) the total number of descendants. Immediate children
of each node represent premises required for the node’s proof rule. The root
of the tree is let9, which stands for (not (and let4 let3 let2)), where
let4, let3, and let2 represent the three assertions. This node has a sin-
gle child containing the conclusion false, based on a proof tree whose leaves
are the three assertions. The derivation of false depends on instantiating the
quantified assertion (let4) with x as Socrates. This is done in node 5, only
after (forall ((x S)) (=> (Human x) (Mortal x))) (i.e., let4) is rewrit-
ten (node 8) into (forall ((x S)) (or (not (Human x)) (Mortal x))) (i.e.,
let8). The instantiation (or (not (Human Socrates)) (Mortal Socrates))
is named let6. Node 9 concludes (not let6) from the other assertions.
Finally, node 2 concludes false from the mutually inconsistent clauses derived
by the solver (where let7 is (not let6), let2 is (not let1), and let5 is
(not let3)).

Fig. 1. A proof tree generated by cvc5

Unknown Queries. A solver returns unknown when it is unable to solve the
input problem. There could be several different reasons for this. One is that
the solver’s procedure may be incomplete for the class of problems the input

Satisfiability Modulo Theories: A Beginner’s Tutorial 593

belongs to, which means that it is not always able to determine if the problem
is satisfiable or not. Another possible reason is that some resource limit was
exceeded, causing the solver to stop before it could find an answer. In SMT-
LIB, the command (get-info :reason-unknown) can be used to request more
information about why a solver returned unknown.

6 Conclusion

This tutorial is a basic introduction to using SMT solvers. There are numerous
resources available for those who wish to learn more.

The SMT-LIB website smt-lib.org has details about the SMT-LIB stan-
dard [5], as well as links to software and an extensive collection of benchmarks.
More information on the foundations of SMT and how solvers work under the
hood can be found in several overview papers and book chapters [6,9,18]. There
are also tool papers describing the most prominent SMT solvers, including: Alt-
Ergo [15], Bitwuzla [33], cvc5 [29], MathSAT [14], OpenSMT2 [26], SMTInter-
pol [12], SMT-RAT [16], STP [22], veriT [10], Yices2 [19], and Z3 [32]. More
information about cvc5 is available on its website.

Data Availability Statement. An artifact with all the examples and tools from the
paper is available at: https://doi.org/10.5281/zenodo.12763927.

References

1. Abbott, J., Bigatti, A.M., Palezzato, E.: New in CoCoA-5.2.4 and CoCoALib-
0.99600 for SC-square. In: Satisfiability Checking and Symbolic Computation.
CEUR Workshop Proceedings, vol. 2189, pp. 88–94. CEUR-WS.org (2018). http://
ceur-ws.org/Vol-2189/paper4.pdf

2. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylindri-
cal algebraic coverings. J. Log. Algebraic Methods Program. 119, 100633 (2021).
https://doi.org/10.1016/J.JLAMP.2020.100633

3. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

4. Barbosa, H., et al.: Generating and exploiting automated reasoning proof certifi-
cates. Commun. ACM 66(10), 86–95 (2023). https://doi.org/10.1145/3587692

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

6. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In:
Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiabil-
ity, Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336,
chap. 33, pp. 825–885. IOS Press (2021)

7. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory
of inductive data types. J. Satisfiabil. Boolean Model. Comput. 3, 21–46 (2007)

https://smt-lib.org
https://cvc5.github.io
https://doi.org/10.5281/zenodo.12763927
http://ceur-ws.org/Vol-2189/paper4.pdf
http://ceur-ws.org/Vol-2189/paper4.pdf
https://doi.org/10.1016/J.JLAMP.2020.100633
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/3587692
www.SMT-LIB.org
www.SMT-LIB.org

594 C. Barrett et al.

8. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theorie, Edinburgh, UK (2010)

9. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8_11

10. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2_12

11. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics
for IEEE-754 floating-point arithmetic. In: ARITH, pp. 160–167. IEEE (2015)

12. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0_19

13. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math.
58(2), 345–363 (1936)

14. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

15. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT
Workshop: International Workshop on Satisfiability Modulo Theories, Oxford,
United Kingdom (2018). https://inria.hal.science/hal-01960203

16. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open
source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver,
S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24318-4_26

17. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for
DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–
183. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_19

18. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011). https://doi.org/10.1145/1995376.
1995394

19. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_49

20. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963_11

21. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, Cam-
bridge (1972)

22. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3_52

23. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4_25

24. Hilbert, D., Ackermann, W.: Grundzüge der theoretischen Logik, Berlin 1928.
Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit
besonderer Berücksichtigung der Anwendungsgebiete 27 (1938)

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-36742-7_7
https://inria.hal.science/hal-01960203
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/11814948_19
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25

Satisfiability Modulo Theories: A Beginner’s Tutorial 595

25. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge
(1997)

26. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: an SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547–553. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40970-2_35

27. IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), pp. 1–84 (2019). https://doi.org/10.1109/IEEESTD.2019.
8766229

28. Jr., H.S.W.: Hacker’s Delight, 2nd edn. Pearson Education, Boston (2013). http://
www.hackersdelight.org/

29. Kremer, G., Reynolds, A., Barrett, C.W., Tinelli, C.: Cooperating techniques for
solving nonlinear real arithmetic in the cvc5 SMT solver (system description).
In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated Reasoning - 11th
International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Pro-
ceedings. Lecture Notes in Computer Science, vol. 13385, pp. 95–105. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-10769-6_7

30. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress,
North-Holland, pp. 21–28 (1962)

31. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3_13

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

33. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
arxiv:2006.01621 (2020)

34. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified
bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10982, pp. 236–255. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96142-2_16

35. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Syntax-guided
quantifier instantiation. In: TACAS 2021. LNCS, vol. 12652, pp. 145–163. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_8

36. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and
its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988_33

37. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38574-2_26

38. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 112–131.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_7

39. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by
counterexample-guided instantiation. Formal Methods Syst. Des. 51(3), 500–532
(2017). https://doi.org/10.1007/s10703-017-0290-y

40. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quan-
tified formulas in SMT. In: Formal Methods in Computer-Aided Design, FMCAD

https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
http://www.hackersdelight.org/
http://www.hackersdelight.org/
https://doi.org/10.1007/978-3-031-10769-6_7
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/2006.01621
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-030-72013-1_8
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/s10703-017-0290-y

596 C. Barrett et al.

2014, Lausanne, Switzerland, 21–24 October 2014, pp. 195–202. IEEE (2014).
https://doi.org/10.1109/FMCAD.2014.6987613

41. Roselli, S.F., Bengtsson, K., Åkesson, K.: SMT solvers for job-shop scheduling
problems: models comparison and performance evaluation. In: 14th IEEE Interna-
tional Conference on Automation Science and Engineering, CASE 2018, Munich,
Germany, 20–24 August 2018, pp. 547–552. IEEE (2018). https://doi.org/10.1109/
COASE.2018.8560344

42. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. J. Math. 58(345–363), 5 (1936)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/FMCAD.2014.6987613
https://doi.org/10.1109/COASE.2018.8560344
https://doi.org/10.1109/COASE.2018.8560344
http://creativecommons.org/licenses/by/4.0/

The Java Verification Tool KeY:A Tutorial

Bernhard Beckert1 , Richard Bubel2(B), Daniel Drodt2 , Reiner Hähnle2 ,
Florian Lanzinger1 , Wolfram Pfeifer1 , Mattias Ulbrich1 ,

and Alexander Weigl1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{beckert,lanzinger,wolfram.pfeifer,ulbrich,weigl}@kit.edu

2 Technische Universität Darmstadt, Darmstadt, Germany
{richard.bubel,daniel.drodt,reiner.haehnle}@tu-darmstadt.de

Abstract. The KeY tool is a state-of-the-art deductive program verifier
for the Java language. Its verification engine is based on a sequent calcu-
lus for dynamic logic, realizing forward symbolic execution of the target
program, whereby all symbolic paths through a program are explored.
Method contracts make verification scalable. KeY combines auto-active
and fine-grained proof interaction, which is possible both at the level of
the verification target and its specification, as well as at the level of proof
rules and program logic. This makes KeY well-suited for teaching pro-
gram verification, but also permits proof debugging at the source code
level. The latter made it possible to verify some of the most complex
Java code to date. The article provides a self-contained introduction to
the working principles and the practical usage of KeY for anyone with
basic knowledge in logic and formal methods.

Keywords: Program verification · Deductive verification · Dynamic
Logic · Java Modeling Language

“. . . and the aeroplane shot further away and
again,

in a fresh space of sky, began writing a K,
an E, a Y perhaps?”

—Virginia Woolf, Mrs. Dalloway

1 Introduction

What Is KeY? The KeY tool [3,4,15] is a state-of-the-art program verification
tool for one of the most widely used programming languages: Java. Its capa-
bilities enable the formal specification and verification of unmodified industrial
Java code at source-code level. Notable examples of its application include the
TimSort effort [28] and, more recently, the verification of a Java implementa-
tion of in-place super scalar sample sort [8], one of the fastest general-purpose
sorting algorithms [18]. In addition to its role as a program verifier, KeY serves
as a versatile research platform for implementing various formal methods for
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 597–623, 2025.
https://doi.org/10.1007/978-3-031-71177-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_32&domain=pdf
http://orcid.org/0000-0002-9672-3291
http://orcid.org/0000-0003-3036-8220
http://orcid.org/0000-0001-8000-7613
http://orcid.org/0000-0001-8560-6324
http://orcid.org/0000-0002-9478-9641
http://orcid.org/0000-0002-2350-1831
http://orcid.org/0000-0001-8446-4598
https://doi.org/10.1007/978-3-031-71177-0_32

598 B. Beckert et al.

Java by leveraging KeY’s symbolic execution engine. For instance, KeY has been
used to facilitate the generation of test cases with high code coverage [6] and
to implement a symbolic-state debugger [41]. The maturity of KeY’s verification
approach and of the tool make it suitable for teaching in BSc- and MSc-level
courses. KeY is an academic, noncommercial tool that can be used freely by any-
one (it is published under GNU Public License V2). It is completely written in
Java, so it can run on any platform for which a Java virtual machine is available.

The roots of the KeY project trace back to 1999, when the continuous devel-
opment and refinement of KeY and its verification methodology was started. On
the occasion of KeY’s 25th birthday, this tutorial serves to showcase the mature
program verification and analysis tool that KeY is today.

This Tutorial, Its Accompanying Material, and Further Reading. This
tutorial caters to all who want to learn about the KeY tool methodology: New-
comers to the field as well as experienced researchers in formal methods outside of
deductive verification. It offers an exploration of KeY’s underlying methodology,
its capabilities, and its practical application. The tutorial covers the basics of
KeY while giving a glimpse at its advanced features. Participants of the live con-
ference tutorial gain hands-on experience with KeY. By the end of the tutorial,
you are able to actively use KeY for (simple) verification tasks and to understand
which advanced KeY features permit the verification of complex algorithms.

Videos, slides, and all examples of the conference tutorial, as well as the KeY
tool itself, are available for download at www.key-project.org/tutorial-fm-2024.
For further reading, the book on the KeY system, published in 2016 [4], contains
tutorial chapters on using the KeY tool, based on both simple (chapter “Using
the KeY Prover” [7]) and more advanced (chapter “Formal Verification with KeY:
A Tutorial” [13]) examples.

KeY’s Verification Methodology in a Nutshell. KeY’s deductive verifi-
cation engine is based on a sequent calculus for Java Dynamic Logic [17] (see
Sect. 2). The calculus rules perform symbolic execution whereby all symbolic
paths through a program are explored. Method contracts make verification scal-
able because one can prove one method at a time to be correct relative to its
contract. Contracts do not need to be expressed in Dynamic Logic, but can be
given at the source code level as Java Modeling Language (JML) annotations [48].

KeY features a domain-specific textual language (called taclets) to add
axioms of theories and lemmas, and to define proof rules. This allows one to
extend and tailor the deduction engine without having to know implementation
details.

KeY’s Interaction Patterns and User Interface. In contrast to most other
program verification tools, KeY seamlessly combines auto-active interaction and
fine-grained interaction: Interaction is possible both at the level of the Java
verification target and its JML specification (auto-active interaction pattern),

https://www.key-project.org/tutorial-fm-2024

The Java Verification Tool KeY: A Tutorial 599

as well as at the level of proof rules and the underlying program logic (fine-
grained interaction pattern). In auto-active verification (used in, for example,
Why3 [22], Frama-C [47], AutoProof [63], VeriFast [44], VerCors [21], VCC [27],
and Dafny [50]), interaction at the input level (adding, removing, or rephrasing
specifications, adding hints) is user-friendly as it does not require knowledge
and understanding of intermediate proof states. But the lack of insight into the
intermediate proof steps makes it hard to identify which additional specification
annotations might be needed or which need to be rephrased. On the other hand,
fine-grained interaction (most popular with general purpose theorem provers
such as Isabelle [53] or Coq [20]), where the proof is constructed either manually
or with the help of proof scripts (which may use automatic proof tactics), can
give deep insights into possible issues and provides effective control as the user
can inspect partial proofs, but it requires a considerable amount of expertise.

Upon loading an annotated Java file proof obligations are automatically
translated into Java Dynamic Logic and presented in the GUI. This GUI is
a central component of KeY. Its design is based on a point-and-click interac-
tion style to support proof exploration and proof construction. For instance, the
selection of a calculus rule—out of over 1500(!)—is greatly simplified by allowing
the user to highlight any syntactical subentity of the proof goal simply by posi-
tioning the mouse; a dynamic context menu offers only the few proof rules which
apply to this entity. Drag-and-drop mechanisms greatly simplify the instantia-
tion of quantified variables. Other supported interactions are the inspection of
proof trees, the pruning of branches, and unlimited undoing of proof steps.

KeY’s Verification Process. The user provides Java source code with anno-
tations written in JML. These consist of requirement specifications as well as
auxiliary specifications such as loop invariants and contracts of called methods.
KeY translates these into proof obligations in Java Dynamic Logic. Now, the
user is left with the choice of trying to let the prover verify fully automatically
or of starting interactively by applying calculus rules to the proof obligation.
If the user chooses to start the automated proof search strategy offered by the
prover, the result can be either that (i) the prover succeeds in finding a proof
or (ii) the prover stops after a number of steps with a partial proof. This is the
point in the proof process, where the user gets involved. The user inspects the
proof state and decides whether to continue with fine-grained interaction or to
continue in auto-active style and revise the JML annotation or the source code.
Recently, a lightweight proof scripting language was provided that complements
the GUI’s point-and-click style interaction. It fosters proof reuse and mitigates
the need to redo the initial part of failed proof attempts by hand [18].

2 Verification Approach

Arguably, the most important structuring concept in programming languages is
methods (aka procedures, functions, etc.). Methods abbreviate code that would
else have to be repeated many times over, they structure a program into groups

600 B. Beckert et al.

of related code, they foster abstraction of different behavior into a common
implementation, and finally, they encapsulate the effect of a computation to
local memory.

With methods being such a central structuring concept of programs, it is
natural that verification proofs should reflect and be able to benefit from the
structure inherent to the program under verification. In fact, without structural
similarity between the verification target and the proof object, it is exceedingly
difficult to verify complex software systems. This is why most modern deductive
verification approaches, including KeY, are contract-based [37].

2.1 The Principle of Contract-Based Verification

A contract, in the context of software verification, is a specification artifact that
makes it possible to mimic the method structure of a program in a correctness
proof. The central idea is to describe the effect of a possible execution of a
given method in terms of logical formulas. This has a decisive consequence:
Whenever in a proof over a program, it is necessary to reason about a called
method, then, instead of going into the implementation of that method, it is
sufficient to consider the formulas in the method’s contract. This simple and
natural approach has dramatic consequences for program verification:(i) Since
contracts consist not of code but of formulas, we replace program execution by
substitution and deduction, and (ii) in contrast to code, which, in general, admits
an unbounded number of different execution paths, contracts consist of a finite
number of formulas whose semantics is declarative.

Together, these two observations enable procedure-modular, in some cases
even linear-size [23], verification proofs: the structure of verification proofs fol-
lows the structure of methods, and an unbounded number of possible method
executions is described with a finite number of logical formulas.1 But how,
exactly, are method contracts defined? And how does one ensure that a given
method implementation conforms to its contract?

2.2 Method Contracts

A method contract, similar to a legal contract, has two main aspects:(i) It spec-
ifies the conditions under which it goes into effect and, if so,(ii) it gives guaran-
tees. It may also (iii) specify collateral effects and give (iv) a temporal statute
on delivery. Translated to the domain of programs and methods:

Definition 1 (Method Contract). A method contract for a method m is a
tuple (pre, post [,mod] [, acc] [, trm]), where pre and post are formulas, called pre-
and postcondition, respectively, the optional modifiers mod and acc are set
expressions over memory locations, and the optional termination witness trm
is a first-order term of a type equipped with a well-order ≺.

1 A similar mechanism is loop invariants that describe an unbounded number of iter-
ations. Indeed, procedure contracts can be seen to generalize loop invariants.

The Java Verification Tool KeY: A Tutorial 601

Its semantics is as follows: if m is started in any execution state where pre
holds, then, in any state where m terminates, post must hold as well. If mod
is present, then m may change at most the value of memory locations in mod
(otherwise, it may change anything). If acc is present, then m may read at most
the value of memory locations in acc (otherwise, it may read anything). If trm
is present, then its value must decrease with respect to ≺ before m is called recur-
sively, thus enforcing termination of recursive calls. Otherwise, m may diverge.

Just like legal contracts, method contracts interface with two parties: the
client and the provider. In programs, the client is the code containing a call to
m, while the provider is the implementor of m. It is the latter’s responsibility to
ensure post (and, if present, mod , acc, and trm) provided that pre holds at the
time when m is called which is the caller’s responsibility. The different parts of
a contract lead to different verification tasks that may or may not be proven
separately: partial correctness, i.e. the relation between pre and post established
by the implementor, framing, i.e. the correctness of memory change (mod) and
access (acc), as well as termination.

2.3 Java Modeling Language

So far, the components of contracts are left abstract. In deductive verification of
imperative programs, one typically uses (typed) first-order formulas or expres-
sions to formalize them and a program logic to express the semantics of con-
tracts. However, languages such as Java are very much richer than first-order
logic, which makes it tedious to write contracts. For this reason, it is common
to specify contracts based on behavioral modeling notations having a rich syntax
and thus being closer to the target language. Contracts written in such a mod-
eling language are then automatically desugared into first-order and program
logic [36]. In KeY we use the Java Modeling Language (JML) [48].

We introduce JML contracts by example. Listing 1 shows a contract for
binSearch(), a recursive Java implementation of binary search between indices
low (inclusive) and up (exclusive) on an integer array a:

We observe that JML is placed in Java comments augmented by a leading
@ sign (the remaining @’s are purely cosmetic). JML permits visibility modifiers
(“private”) with the same semantics as Java. Any side effect-free Java expres-
sion may occur in JML, any boolean expression can serve as a formula. Non-
Java keywords in JML expressions are indicated by a leading backslash. Beyond
Java expressions, first-order universal and existential quantifiers are allowed in
JML. These are evaluated over the domain specified in their variable declaration
and have an optional range expression, for example, low <= idx < up, which
restricts the values being quantified over.

This idiom, where a quantifier ranges over integers and is further restricted
by upper and lower bounds, is characteristic of specifications over array types.

The JML keyword requires indicates the pre slot of a contract. In the exam-
ple, two requires clauses state the various index bounds and that array a is

602 B. Beckert et al.

/*@ private normal_behavior
@ requires 0 <= low <= up <= a.length;
@ requires (\forall int x, y; 0 <= x < y < a.length; a[x] <= a[y]);
@ ensures \result == -1 || low <= \result < up;
@ ensures (\exists int idx; low <= idx < up; a[idx] == v) ?
@ \result >= low && a[\result] == v : \result == -1;
@ assignable \nothing;
@ measured_by up - low;
@*/

private int binSearch(int[] a, int v, int low, int up) {
if (low < up) {

int mid = low + ((up - low) / 2);
if (v == a[mid]) { return mid; }
else if (v < a[mid]) { return binSearch(a, v, low, mid); }
else { return binSearch(a, v, mid + 1, up); }

}
return -1;

}

Listing 1. Recursive implementation of binary search with JML specification

sorted, respectively. If a keyword occurs multiple times, as here, then the conjunc-
tion of all expressions must hold. The JML keyword ensures indicates the post
slot of a contract. The first ensures clause expresses that the returned value is
either a valid index of a or -1. The keyword \result denotes the returned value
of a method. The second ensures clause is a conditional expression (observe
that quantifiers can be nested), saying that (i) either the searched element v is
present in a between the given bounds, in which case a valid index, where v can
be found, is returned or else (ii) the constant -1 is returned.

The JML keyword assignable indicates the mod slot of a contract. A
search method is expected not to change the heap, so we specify the empty
set of locations, for which the keyword \nothing stands. To prove termina-
tion of the recursive implementation we add a measured_by clause. The top-
level call will be of the form binSearch(a,v,0,a.length), so initially the
measure is equal to the value of a.length. It decreases at each call, because
low < low+((up-low)/2)+1 holds; it is never negative because the relation
low <= up is maintained.

2.4 Dynamic Logic

How does one prove, for example, that the implementation of binSearch in
Listing 1 conforms to its contract? In KeY we use dynamic logic, a program
logic due to Pratt [55] (the name dynamic logic was coined in [39]).

In a nutshell, dynamic logic is obtained from Hoare logic [43] by closing it
syntactically with respect to first-order formulas. In consequence, correctness
assertions may be nested which adds useful expressiveness.

The Java Verification Tool KeY: A Tutorial 603

Definition 2 (Dynamic Logic, DL). Dynamic logic extends first-order logic
with a binary operator [p]φ and is inductively defined as follows: (1) Every first-
order formula is a DL formula. (2) If p is a program and φ a DL formula, then
[p]φ is a DL formula. (3) The set of DL formulas is closed under propositional
and first-order operators.

Formula [p]φ is valid in a first-order model M if the following holds: For any
execution state s, if p is started in s and it terminates in a state s′, then φ is
valid in M and s′.

Obviously, [p]φ expresses partial correctness of p with respect to postcon-
dition φ, whenever φ is a first-order formula. A first-order contract (pre, post)
for p can be expressed as pre → [p]post , which corresponds to the Hoare triple
{pre}p{post} [43]. The remaining contract elements are discussed later.

DL being syntactically closed, we can define the dual operator 〈·〉 by 〈p〉φ ≡
¬[p]¬φ, which expresses total correctness of p, keeping in mind [p]φ trivially
holds for non-terminating programs and assuming programs are deterministic.

It is important to observe that DL is a modal logic: in general, execut-
ing p changes the execution state. However, it is convenient to assume the
value of first-order variables stays invariant. For example, we might want to
write ∀x. (x ≥ 0 → [p](\result ≥ x)) and be sure that x is not changed by p.
To achieve this, it is necessary, unlike in Hoare logic, to sharply differentiate
between memory locations in programs (variables, arrays, fields, . . .) and first-
order variables. The former are modeled as non-rigid constants and functions
whose interpretation may change from state to state; the latter are, as usual, eval-
uated under a rigid first-order model and variable assignment. In consequence,
we do not permit quantification over program variables—this would result in
extremely complex scoping rules. On the other hand, it makes perfect sense to
write a DL formula such as i .= 0 → [p]i 	 .= 0 and expect it to be valid, for
example, when p is ++i.

For the KeY tool, we use a Java-specific extension of dynamic logic called
JavaDL. The main difference to vanilla DL [38] is that JavaDL contains many
predefined rigid and non-rigid first-order functions and predicates, including
suitable first-order theories that model Java features in first-order logic. The
intended first-order models M (Definition 2) must be defined accordingly. For
example, there is a non-rigid function that returns the length of an array a in
the current execution state as length(a). In JavaDL we also permit Java-style
syntax a.length. JavaDL is a typed first-order logic whose type system includes
all Java primitive and reference types that are equipped with Java’s typing rules.
Obviously, all JavaDL terms are assumed to be well-formed according to Java
rules, which is enforced by KeY’s parser.

2.5 State Updates

A common approach to performing logical inference in program logic is to com-
pute the weakest precondition [32] of [p]post , i.e. the logically weakest formula
wp(p, post) such that wp(p, post) → [p]post holds. It is constructed from post by

604 B. Beckert et al.

unraveling p backwards. For example, in Hoare calculus wp(x := e, φ) = φ[x/e]
(assuming x is a scalar variable and e a simple expression). The weakest pre-
condition computation is iterated until the beginning of a program p is reached.
Branching statements split into several weakest preconditions, such that the
overall result of the process is a finite set of first-order formulas vc1, . . . , vcn for
which

∧
i vci → [p]post holds. The vci are called verification conditions and can

be discharged, for example, with automated theorem provers or SMT solvers.
Iterative or recursive constructs require strongest invariants to compute wp;
otherwise, (stronger) necessary conditions are obtained.

This verification condition generation (VCG) is simple and amenable to
automation, but is problematic whenever full automation is not achievable:(i)
Verification conditions tend to become large and complex, and then they are
difficult to understand in case they are not provable; (ii) executing a program
backwards is unnatural for humans and makes it hard to follow a failed verifica-
tion attempt.

In KeY we assume that contracts and loop invariants (Sect. 3) for complex
programs must be at least partially created manually. Getting them right requires
understanding of intermediate proof situations. For this reason, the JavaDL
inference system is not based on a VCG architecture but on forward symbolic
execution. Unfortunately, computing the dual of wp(p, post), i.e. the strongest
postcondition of a program started in a state satisfying pre, is expensive and
unnatural for assignment statements. Therefore, we use a technical trick that
avoids computing explicit strongest postconditions:

Definition 3 (Elementary Update). Let v be a program variable of primitive
type and e a simple (not nested) and side effect-free expression such that the
assignment v = e is well-formed. Let e be the first-order representation of e.2
Then v := e is called an elementary update.

The semantics of an elementary update v := e are all state transitions where
the value of v in the final state is set to the value that e had in the first state.

Updates capture the effect of symbolic state changes and are streamlined to
represent (simple) assignments. As we shall see below, updates can be viewed
as explicit substitutions that represent a symbolic state change. By prefixing
JavaDL formulas with updates, we can express that a formula is evaluated in
the state represented by these updates:

Definition 4 (JavaDL with Updates). If u is an update, φ a DL formula,
and e a DL expression, then {u}φ is a DL formula and {u} e a DL expression.

2.6 A JavaDL Calculus

For a simple assignment v = e, the DL formulas [v = e; p]φ and {v := e} [p]φ
are logically equivalent. This observation is the basis for a forward symbolic

2 From now on, we adopt the convention that the first-order translation of a Java
expression uses the same letter but is typeset in Roman font.

The Java Verification Tool KeY: A Tutorial 605

execution calculus to prove the validity of JavaDL formulas: For each type of Java
statement st in a program formula [st; p]φ, we compute a finite set of formulas
that implies [st; p]φ and, therefore, can replace it. These formulas have the form
{φi → Ui[sti; p]φ}i, where Ui are updates, the sti typically are (possibly empty)
sub-statements of st, and the φi (optional) preconditions (the above replacement
of an assignment is a special case of this general schema). This characterization
permits to further reduce the [sti; p]φ and so on. All that remains to do is to
turn this schema into a calculus and to design the actual rules.

We assume the reader is familiar with the basics of sequent calculi (see,
for example, [33]). As usual, we use naming conventions for schema variables:
φ, ψ, . . . stand for JavaDL formulas, Γ, Δ for sets of JavaDL formulas, and U
denotes an arbitrary sequence of updates. More schema variables are introduced
as needed. A typical (unary) rule may have the general form of the left rule
schema below, where DL formulas φ, ψ are rewritten while the update U and
formulas in Γ, Δ remain unchanged (Γ might contain assumptions or theories).

Γ, Uφ′ =⇒ Uψ′, Δ

Γ, Uφ =⇒ Uψ, Δ

φ′ =⇒ ψ′

φ =⇒ ψ

To make rule notation more succinct, we drop context formulas and leading
updates in the following as in the rule schema above on the right, where contexts
are implicit, but we actually mean the rule above on the left. With this convention
in place, we formalize the observation at the beginning of this subsection as the
sequent rule given below on the left. As usual in sequent calculi, the rules are
applied bottom-up. On the right is the rule that stops symbolic execution once
there is no further statement left to evaluate:

=⇒ {v := e} [p]φ
assignment

=⇒ [v = e; p]φ
=⇒ φ

emptyBox
=⇒ []φ

Example 1. Let us prove correctness of in-place value swap (ignoring possible
arithmetic overflow) of two int variables i, j, as formalized in the sequent:

i .= i0, j
.= j0 =⇒ [i = i+j; j = i-j; i = i-j;](i .= j0 ∧ j .= i0)

After applying the assignment rule three times, then rule (emptyBox), we obtain:

i .= i0, j
.= j0 =⇒ {i := i+j} {j := i-j} {i := i-j} (i .= j0 ∧ j .= i0) (1)

The example shows that we need rules for applying an update to a first-order
formula or term. Updates can be viewed as explicit substitutions [2], thus update
application is obvious: A straightforward homomorphism on formulas and terms,
except the base case: {v := e} w yields e in case v = w and w, otherwise.

We apply the updates (1), starting with the last one, which yields (2) and,
after two more update applications, the provable first-order sequent (3):

i .= i0, j
.= j0 =⇒ {i := i+j} {j := i-j} (i-j .= j0 ∧ j .= i0) (2)

i .= i0, j
.= j0 =⇒ i+j-(i+j-j) .= j0 ∧ (i+j)-j .= i0 (3)

606 B. Beckert et al.

At this point, three important observations can be made: (i) The first-order
formula on the right of sequent (3) is the weakest precondition of the program
and postcondition in Example 1. Updates allow us to compute it in a forward
fashion. (ii) It is unnecessary to define a substitution operator on programs
(which is highly complex for languages such as Java), because updates are applied
only on formulas and terms. Difficulties, such as aliasing or side effects, are
dealt with at the level of symbolic execution rules, as we shall see below. (iii)
There is a potential inefficiency in the so-far lazily applied updates. For example,
when some code is unreachable, that is discovered late. In addition, iterative
substitutions can blow up term size drastically. The last point is mitigated by
performing eager update simplification. To this end, we define parallel updates
v1 := e1 || · · · || vn := en, where each slot is an elementary update and all vi are
different.

The semantics of parallel updates are those state transitions, where all the
elementary updates are performed in parallel, i.e. the old values of the right
hand side are used in each elementary update. For example, the parallel update
j := i || i := j simultaneously sets i to the previous value of j and vice versa.
Since all left-hand sides in a parallel update are different, this is well-defined
(for the moment, we ignore aliasing, which is discussed in Sect. 3). To turn a
sequence of elementary updates into a parallel update, the following rewrite rule
is applied, where u is any, possibly parallel, update:

{u} {v := e} � {u\v || v := {u} e} seqToPar

where update u\v is identical to u, except elementary updates with left-hand
side v are dropped. This is to keep left-hand sides unique and is justified by the
fact that any v occurring in u on the left is overwritten by the later update of v.

If we apply rule (seqToPar) to the formula in sequent (1), we obtain

{i := i+j || j := (i+j)-j} {i := i-j} (i .= j0 ∧ j .= i0) .

Then, before applying rule (seqToPar) again, it is possible to perform arith-
metic simplification on the expression (i+j)-j. Such a strategy of eager update
parallelization and simplification helps to keep symbolic expressions small and
is crucial for performance.

2.7 Forward Symbolic Execution of Straight-Line Programs

To be able to verify straight-line programs with the JavaDL calculus, two more
components are needed: Handling complex expressions and conditional state-
ments. We start with the former. Typically, in a rich language such as Java is
that an array assignment could be of the form e[e′] = e′′, where each of e, e′, e′′

might be a complex expression. Moreover, evaluation of e′′ can incur side effects
that may or may not influence evaluation of e′ (i++ vs. ++i). Symbolic execution
must respect Java’s evaluation rules and record side effects at the correct place.
Not surprisingly, a large number of rules are required. Luckily, all of these rules
follow the same simple principles. We discuss one typical representative. This

The Java Verification Tool KeY: A Tutorial 607

rule handles the case when the array reference nse is not a simple expression
and possibly has side effects.

=⇒ [Tnse v; v = nse; v[e] = e′; p]φ
assignmentUnfoldLeftArrayRef

=⇒ [nse[e] = e′; p]φ

First, a fresh variable v is allocated that holds the reference expression nse.
Subsequently, the original assignment is unfolded and nse replaced with v. The
premise can now be symbolically executed, relying on v being simple. Of course,
further rules must be applied to deal with e, e′.

All rules for complex assignments follow this simple schema:(i) Memorize a
non-simple sub-expression, (ii) unfold a complex expression with the memorized
value, (iii) arrange the sequence of assignments to reflect Java’s evaluation rules.

The same principle is used to ensure that guards of conditionals and loops are
side effect-free, simple expressions (here named se) before they are symbolically
executed. In consequence, the rule for conditionals is straightforward:

se
.= TRUE =⇒ [p; r]φ se

.= FALSE =⇒ [q; r]φ
ifElseSplit

=⇒ [if (se) p else q; r]φ

2.8 Procedure-Modular Verification: Contracts and Method Calls

To verify the example in Listing 1, we need to handle recursive procedure calls
(for loops, see Sect. 3). We focus on a simple case to avoid the main idea getting
buried under technicalities: Assume a method signature static T m(T′ arg);
with a contract (pre, post). We design a JavaDL rule that, instead of inlining
m’s implementation, uses its contract (how to verify contracts is shown next). In
the conclusion of the rule below, we assign the result of a call to m with a simple
argument se compatible to T′ to a simple location expression v compatible to T.
Further, we assume that pre ′ and post ′ are the desugared first-order translations
of pre and post , respectively, where res corresponds to JML’s \result.
=⇒ {arg := se} pre ′ =⇒ {arg := se || res := cr} (post ′ → {v := res} [p]φ)

=⇒ [v = m(se); p]φ
(4)

The left premise validates that m’s contract goes into effect by proving the
precondition with se as the value of arg. The right premise uses the postcondition
in the remaining proof. To this end, first res is initialized with an unknown value
(fresh Skolem constant cr), then post ′ is added as an assumption. Whatever post ′

knows about res is propagated to v and can be used to establish [p]φ.
The general case for method contract application can be more complicated.

Specifically, for non-static method calls (dynamic dispatch), the implementation
of m might be impossible to determine statically. In this case, the verification
branches into different cases, one for each potential implementation. In addition,
the caller expression must be correctly set up and possible side effects of the call,
as described in the assignable clause, must be considered. Finally, m might
terminate with an exception. We refer to [35] for a full treatment.

608 B. Beckert et al.

To formalize verification of a contract’s correctness is easy in JavaDL, because
the modal correctness formulas are closely aligned to the semantics of contracts.
With the terminology from above, to verify a contract, we prove the following
sequent (arg is the name of m’s parameter used in pre ′):

pre ′ =⇒ [res = m(arg);]post ′

To avoid a circular argument, rule (4) is not permitted, but m is inlined. Again,
this does not yet account for the possibility that m may throw an exception. To
exclude this case, one can simply wrap the method call in a try statement and
add a check to the postcondition, ensuring no exception was thrown.

We close the section observing that the expressiveness of dynamic logic per-
mits to formalize method contract correctness and method contract usage as a
single JavaDL formula resp. a JavaDL calculus rule. This is in contrast to VCG
style verification based on Hoare logic, where this must be encoded with numer-
ous assert statements dispersed throughout the program under verification.

2.9 Proving the Contract of Binary Search

We prove the contract shown in Listing 1. Thus, we expect the following JavaDL
formula to be provable:

{v := v0 || low := l || up := u} (pre ′ → 〈res = binSearch(a,v,low,up);〉post ′)

Observe that this is a total correctness formula while the rules so far were for-
mulated with partial correctness operators. Fortunately, the calculus for partial
and total correctness is exactly the same, except for Java constructs with poten-
tially unbounded behavior. These are recursive calls and loops. To deal with the
former, a check for the measure to decrease must be added to rule (4). When
provable, total correctness of all method contracts in a given program implies
total correctness of any program. This follows from a result proved in [51].

Before we can prove the DL formula above with KeY, there is one last loose
end to tie up: It concerns how assignments involving array types are handled.
Due to the considerations in Sect. 2.7 we can assume that all locations are simple
and side effect-free. Yet the assignment rules—below the one for array access on
the right of the sequent—are relatively complex:

a 	 .= null, 0 ≤ e < a.length =⇒ {v := a[e]} [p]φ
a .= null =⇒ [throw new NullPointerException(); p]φ

a 	 .= null, 0 > e ∨ e ≥ a.length =⇒ [throw new AIOoBException(); p]φ

=⇒ [v = a[e]; p]φ

This rule (as other array rules) reflects that in Java an array access can throw
a NullPointerException or an ArrayIndexOutOfBoundsException (abbrevi-
ated with AIOoBException), which in general cannot be statically excluded (for
symbolic execution of exceptions, see Sect. 3.3). The actual update happens in

The Java Verification Tool KeY: A Tutorial 609

/*@ private normal_behavior
@ requires (\exists int idx; 0 <= idx < a.length; a[idx] == v);
@ requires (\forall int x, y; 0 <= x < y < a.length; a[x] <= a[y]);
@ ensures 0 <= \result < a.length;
@ ensures a[\result] == v;
@ assignable \nothing;
@ also private exceptional_behavior
@ requires !(\exists int idx; 0 <= idx < a.length; a[idx] == v);
@ assignable \nothing;
@ signals_only NoSuchElementException;
@*/

private int binSearch(int[] a, int v) {
int low = 0;
int up = a.length;

/*@ loop_invariant 0 <= low <= up <= a.length;
@ loop_invariant (\forall int x; 0 <= x < low; a[x] != v);
@ loop_invariant (\forall int x; up <= x < a.length; a[x] != v);
@ assignable \nothing;
@ decreases up - low;
@*/

while (low < up) {
int mid = low + ((up - low) / 2);
if (v == a[mid]) { return mid; }
else if (v < a[mid]) { up = mid; }
else { low = mid + 1; }

}
throw new NoSuchElementException();

}

Listing 2. Iterative implementation of binary search with JML specification

the first premise. Array updates v := a[e] constitute a new class of elemen-
tary updates with a dedicated set of update application and simplification rules,
reflecting the semantics of Java arrays. In particular, these rules take into account
that in Java array references might be aliased.

3 Towards Real Java

So far, we learned how to specify and verify a simple program, but the preceding
section left some gaps. The symbolic execution rules discussed above only con-
sider updates on local variables without aliasing and, for the most part, without
exceptional behavior. Furthermore, just like in Hoare calculus, KeY’s JavaDL
calculus requires loop invariants. In this section, we introduce the concepts nec-
essary to specify and verify the iterative version of binary search in Listing 2: the
heap model, exceptions and other abnormal termination, and loop invariants.

610 B. Beckert et al.

3.1 Aliasing: State Updates on the Heap

A major difficulty in verifying object-oriented programs is aliasing on the heap.
Consider an assignment to a field o.f. Then, the assignment rule from Sect. 2 no
longer suffices because changing the value of o.f might also change the value of
o2.f if o .= o2. To accommodate aliasing, JavaDL models the heap as an array
with indices (o, f) (called heap locations), where o is a first-order expression
of type Object and f is a first-order expression of type Field , the type of field
references. The axiomatization is based on the theory of arrays [52], but it is
extended by axioms specific to JavaDL. The list of these axioms is found in [59],
here we explain the functions defined through these axioms informally.

Given a program variable h of type Heap, a heap location (o, f), and an
expression e, the expression store(h, o, f, e) evaluates to a heap identical to h
except that the value of location (o, f) is e. For any Java type A, there is a
function selectA such that selectA(h, o, f) evaluates either to the value at the
location (o, f), if that value has type A, or to an underspecified value otherwise.

Now, we can give an update rule for field assignments. If either side of
an assignment is a complex expression, we first apply unfolding rules similar
to the rule (assignmentUnfoldLeftArrayRef) from Sect. 2.7. For a field assign-
ment where both sides are simple expressions, we have the following rule.
Similar to the rule seen in Sect. 2.9, we need a premise to deal with a possi-
ble NullPointerException. The first premise translates the assignment to an
update using the store function on the heap.

v 	 .= null =⇒ {heap := storeA(heap, o, f, v)} [p]φ
v .= null =⇒ [throw new NullPointerException();p]φ

assignmentToField
=⇒ [o.f = v;p]φ

To support modular verification as presented in Sect. 2, we need a way to
model the effects of a method call on the heap. KeY uses a variant of dynamic
frames [45,60], an approach which uses sets of heap locations as first-class logical
variables. To model the heap after a method call, we use a function which takes
a heap h and a location set s and replaces the value of any location in s by an
unknown value. This is accomplished by the anonymization function anon: The
expression anon(h, s, h′) evaluates to a heap equal to h except that all values of
locations in s are taken from h′. If h′ occurs nowhere else in the sequent, then
these values are unknown. Then, exactly the information in the postcondition
is what is known about the new values. Our anonymization is related to the
“havoc” notion in Boogie [11].

3.2 Loop Invariants in JML and JavaDL

To verify unbounded loops, KeY requires a manually specified loop invariant. A
loop invariant is a formula that holds before entering the loop and after every
loop iteration. Additionally, we need a termination witness (called loop variant)
to prove total correctness.

The Java Verification Tool KeY: A Tutorial 611

The loop invariant in Listing 2 consists of three clauses: The first limits the
range of the index variables low and up, like in the precondition of the recursive
version. The other two clauses differ from the recursive contract. The recursive
contract states that the searched value is between the indices low and up. When
using a loop invariant, we must instead state that the searched value is not
between the indices 0 and low nor between up and a.length. (KeY also permits
recursive loop contracts [64], but this is beyond the scope of this tutorial).

The loop variant (decreases) is an expression whose value is always at least
0 but strictly decreases with every loop iteration. Finally, the loop needs an
assignable condition to prove the surrounding method’s assignable condition.

When encountering a loop in JavaDL’s calculus, one must prove three
claims:(i) The loop invariant holds when entering the loop; (ii) the loop invari-
ant is preserved by the loop body; (iii) after the loop terminates, the invariant
ensures that the postcondition holds after executing the rest of the program.
These claims are captured in the three premises of the following rule (a simpli-
fied version that only applies to loops without side effects in the loop guard and
without abnormal termination; it also does not consider the loop variant):

Γ =⇒ U inv
Γ =⇒ UA((inv ∧ cond .= TRUE) → [body]inv ∧ frame)

Γ =⇒ UA((inv ∧ cond .= FALSE) → [πω]φ)
simpleInv

Γ =⇒ U [π while (cond) { body } ω]φ

Here, we drop the notational convention established in Sect. 2.6 and write the
update U and antecedent Γ explicitly. We also write ω for the rest of the program
and π for the inactive prefix, which may include a sequence of opening braces
{ and initial try blocks “try {”. The initial update U captures the state of
symbolic execution before the loop. The first premise ensures that the invariant
inv holds upon entering the loop. The second and third premises contain the
update A = {heap := anon(heap,mod , ah) ||l1 := c1 || · · · || ln := cn} , Here,
mod corresponds to the assignable clause, ah is an unknown heap (i.e., a heap
which occurs nowhere else in the sequent) and li := ci are updates which set
any local variable li written in the loop body to an unknown value ci. The two
updates UA are applied sequentially to transfer that part of the symbolic state
that is unchanged by the loop across the loop boundary. If, in that partially
anonymized state, the invariant and loop guard both hold, executing the loop
body must preserve the invariant and the frame condition, which ensures that
any heap location outside mod is unchanged. If the invariant holds but the
loop guard does not (the loop terminates), the postcondition must hold after
executing the program rest ω.

3.3 Exceptions in JML and JavaDL

In Sect. 2 we considered programs that terminate normally. But the version of
binSearch in Listing 2 throws an exception if the element is not found (instead
of returning -1). To specify this, we add a second contract using the keyword

612 B. Beckert et al.

also. That contract starts with exceptional_behavior, which specifies that
the method terminates with an exception if the precondition holds. The keyword
signals_only followed by a list of exception types states that the method throws
no other exceptions except those listed.

The translation to JavaDL combines both contracts: The JavaDL precondi-
tion is the disjunction pre ∨ pre ′ of both preconditions, and the postcondition is

(pre → exc .= null ∧ post) ∧ (pre ′ → instanceOfNSEE(exc))

where post is the translation of the ensures clause and exc is a reserved program
variable set when a throw statement is symbolically executed.

3.4 Integer Semantics

Recall that in Example 1, we glossed over the issue of arithmetic overflows.
We treated Java’s int type as the mathematical integers Z and all arithmetic
operations on int as their mathematical counterpart (our discussion focuses on
integers, but similar considerations apply to byte/long). Clearly, it is unsound
to disregard overflows. Consider the DL formula

i ≥ 0 → [i = i + 1;](i > 0)

At first glance, it seems to be valid. But in case i’s value is the maximal int
value, there is an overflow resulting in a negative value of i. To render the
formula valid, we can strengthen the precondition by i < Integer.MAX_VALUE.

To permit flexibility in the choice of the arithmetic model, KeY translates
operations +, -, *, etc., to abstract JavaDL functions during symbolic execu-
tion. For example, a + b becomes javaAddInt(a, b) (assuming that a,b are of
type int). The interpretation of these abstract functions can be configured
in the KeY tool (option “intrules”). Three options for integer semantics are
available:

(I) The default integer semantics, arithmeticSemanticsIgnoringOF, translates
to Z, as we did in Example 1. This semantics allows for easy prototyping and
teaching—also specifications tend to be much simpler—but it is unsound. Nor
is this semantics complete, as some valid formulas cannot be proven, such as
i .= Integer.MAX_VALUE → [i = i + 1;](i < 0). (II) To verify a program
that does not rely on overflows, the semantics checkedOverflow is suitable. It
checks that for all abstract functions, the result is in the value range of int,
i.e. it proves the absence of overflows. While checkedOverflow is sound, it is
not complete. If an intentional overflow occurs, the proof cannot be finished.
Both proof and specification efforts tend to be bigger with this option than for
the mathematical semantics. (III) The javaSemantics accurately models most
operations on Java’s int and provides soundness and completeness. All abstract
functions are translated to accurate calculations for int, at the cost of even more
complex proofs.

Integer semantics options let the user trade off the complexity of proofs and
specifications against the accuracy of the modeling: Is an exact model of Java’s

The Java Verification Tool KeY: A Tutorial 613

int required, which will complicate the proof? Is showing the absence of over-
flows sufficient? Is the limited accuracy of mathematical integers acceptable?
The answer will depend on the specific case.

Floating Point Numbers. KeY recently added support for floating point num-
bers, using a combination of theories in taclets and SMT solvers [1].

4 Inside KeY’s Core

4.1 Prover Architecture

As discussed in Sect. 2.5, KeY does not have a VCG architecture. Unlike such
tools as OpenJML [26] or Dafny [49], KeY comes with a built-in theorem prover,
but can also use external SMT solvers. It works directly on Java source code
avoiding an intermediate representation. Instead, it utilizes updates to achieve
forward symbolic execution, relying on its JavaDL calculus and automatic prover
to close goals. The latter is strong enough in many complex situations.

In addition to avoiding the limitations of VCG discussed in Sect. 2.5, this app-
roach has four main advantages:(I) Proofs generated by KeY are self-contained
without a reference to—or trust placed in—external tools. It is always possi-
ble to examine the current proof state in KeY without the need to understand,
for example, the SMTLIB format [12]. (II) The user of the KeY prover and the
tool itself work on the same structure and goals. This simplifies understanding of
proofs, the underlying calculus, and potential errors. (III) The automation capa-
bilities of KeY enable it to simplify any JavaDL formula, not only quantifier-free
first-order expressions, during symbolic execution. Since the automation strate-
gies aggressively simplify updates, first-order formulas, and terms while symbol-
ically executing a program, many branches in a proof tree are closed early or are
not created in the first place. Simplification is crucial to lessen the impact of path
explosion—a well-known issue in symbolic execution [9]. (IV) KeY generates an
explicit, self-contained proof object. A KeY proof can be saved and reloaded, even
when it is incomplete. A proof consists of the claim to be proven plus a series of
rule applications. This permits to share and re-play proofs, increasing trust in
KeY artifacts and enabling reproducible results. Hence, the trusted code base is
only KeY and its 25 years of experience.

The downside of the KeY architecture is that, when verifying exceptionally
complex code, KeY’s automatic capabilities may be insufficient. In this case,
KeY can hand a (first-order) goal over to an SMT solver, such as Z3 [30] or
cvc5 [10]. This is especially useful for floating point numbers (see Sect. 3.4). In
this manner, KeY can still profit from the advances in SMT-solving technology,
albeit at the cost of sacrificing self-contained proof objects.

4.2 Taclets

As a proof assistant, KeY allows significant flexibility regarding its underlying
calculus. Most rules of the JavaDL calculus are not hard-coded but written in

614 B. Beckert et al.

a simple, but expressive, language for such rules called taclets. We provide a
succinct description of taclets. For a more in-depth coverage of taclets, their
features, and correctness, see [57].

Taclets are very versatile and permit axiomatization of data structures, def-
inition of symbolic execution rules, rules for propositional and first-order logic,
etc. They allow users to define their own rules to accommodate a specific verifi-
cation purpose. To ensure soundness of first-order taclets, KeY generates a proof
obligation expressing the soundness of the taclet, which is proven in KeY itself.

We only present one form of taclets: rewrite taclets. Recall the rule in
Sect. 2.6 for symbolically executing assignments. Listing 3 defines the same rule
as taclet. The assignment rule has four parts: (i) A definition of schema vari-
ables matching formulas (post), program variables (#loc), and side effect-free
expressions (#se); (ii) a \find clause, defining the formula “in focus,” i.e., to be
replaced in the premise—in this case a modality of any kind with an assignment;
(iii) \replacewith providing the formulas in the premises; (iv) a \heuristics
clause, instructing the automatic prover when this rule should be applied.
assignment {

\formula post; \program Variable #loc; \program SimpleExpression #se;
\find(\modality{#allmodal}{.. #loc = #se; ...}\endmodality(post))
\replacewith({#loc:=#se}\modality{#allmodal}{.. ...}\endmodality(post))
\heuristics(simplify_prog)

};

Listing 3. A taclet defining the rule for symbolically executing an assignment.

The opening and closing ellipses ’..’ and ’...’ in the modality stand for the
inactive prefix π and the rest of the program ω, respectively (see Sect. 3.2).

5 Advanced Concepts for Object-Orientation

For the verification of non-trivial object-oriented programs, two specification fea-
tures are important: (i) Data abstraction by which the content of data structures
is represented using mathematical values thus hiding implementation details and
(ii) data encapsulation that allows reasoning about data structures locally pro-
vided that any structure operates only on memory locations belonging to itself.

5.1 Ghost and Model Fields, Model Methods

Abstraction is relevant for programs operating on non-trivial data structures,
as dealing with the details and memory layouts of data structure implementa-
tions unnecessarily increases proof complexity. So it is important (and often an
enabling factor) to possess means to abstract from implementation details and
to work with abstract values describing and capturing the state of data struc-
ture objects. For object-oriented programs, the state of an object is often best
captured abstractly in form of one or more values in mathematical data types.

The canonical abstraction of the state of a doubly linked list implementation,
for example, is a sequence of its entries. The expected behavior of list operations

The Java Verification Tool KeY: A Tutorial 615

interface List {
//@ instance ghost \seq content;

//@ requires 0 <= idx < content.length;
//@ ensures \result == (int)content[i];
int get(int idx);

//@ ensures content == \old(content) + \seq(value);
void add(int value);

}

class ArrayList implements List {
int[] array;
//@ invariant content == \array2seq(array);
...

}

Listing 4. Implementation and specification of a list with model entities

can be described in contracts using this abstraction. A client using such lists does
not need to know anything about the data structure’s actual implementation.
KeY supports three means to introduce abstract values as JML annotations into
class files: Ghost fields, model fields, and model methods.

Ghost fields (and variables) are fields (and variables) that only exist for
verification purposes. Since JML annotations are written in comments, they are
ignored during compilation. For verification, however, ghost entities are treated
like normal Java fields and variables. In particular, ghost fields give rise to heap
locations as outlined in Sect. 3.1. Ghost entities in JML may have types which are
only available in JML but not in Java. In assignments, expressions that go beyond
the expressiveness of Java (like quantifiers) can be used with ghost variables.
Ghost fields and variables are often used to store redundant information or
intermediate results, which are not required for computations at run time, but
can considerably simplify deductive verification.

The example in Listing 4 illustrates how a ghost field is used to abstract from
a concrete data structure. The List interface declares the ghost field content
holding the list’s abstraction, which is a sequence of values. The abstraction
suffices to specify the contract of method get, which obtains the integer value
stored at index idx. The method add ensures that a value is appended to the
content. It is specified using the sequence operator “+” in KeY’s JML. The
implementing class ArrayList uses an array that actually holds the list’s values.
The connection between the abstract list and its implementation is established
via a coupling invariant. In this case the function \array2seq can be used to
read the sequence of values from an array.

Modifications of ghost fields must be made explicitly using assignments in
contracts. For example, the contract of method add (not shown here, but avail-
able in the tutorial sources), must set content explicitly to the new value.

616 B. Beckert et al.

Model fields are, like ghost fields, only visible during verification and not at
compile time. However, unlike ghost fields, model fields do not have a state of
their own but are observer symbols whose value is computed from the current
heap state. They are more like side effect-free Java query methods than Java
fields. A model field is declared by adding the JML modifier model.

The benefit of model fields is that they need not (and cannot) be updated
explicitly since they “automatically” change their value. However, verification of
programs with model fields usually needs significantly more interactions than
programs with ghost fields, and proofs tend to be larger and more complex.

Model methods are a generalization of model fields in the sense that they
have arguments. They are side effect-free methods declared in JML annotations.

5.2 Dynamic Frames

Data encapsulation is closely related to data abstraction: If a data structure
is well encapsulated, then its abstract value does not depend on memory areas
outside the data structure. This is known as the framing problem: How to specify
and verify that the abstract state of an object does not interfere with another
unrelated object? Framing is usually addressed by requiring that the memory
locations of data structures do not overlap. Over the last two decades, mainly
three concepts to solve the framing problem have emerged: Separation logic [56],
ownership type systems [31], and dynamic frames [46].

The KeY tool implements dynamic frames [60], where the set of locations
that “belong” to a data structure, i.e. those locations that can be read or written
by its operations are explicitly modeled as a set of memory locations, often called
the footprint of an object. A ghost field is used to model this location set.

Revisiting the List example, in Listing 5 we specify at the interface level
that the get query method may at most read memory locations in the foot-
print (using the keyword accessible). The function add may modify at most
these locations (specified using assignable). When the footprint grows in add,
only fresh locations that were not yet allocated prior to the call may be added
to ensure that footprints remain separate. This is a typical specification pat-
tern used when specifying and verifying object-oriented programs with dynamic
frames. The List example is covered in the tutorial material.
interface List {

//@ instance ghost \locset footprint;

//@ accessible footprint;
//@ assignable \nothing;
int get(int index);

//@ assignable footprint;
//@ ensures \new_elems_fresh(footprint);
void add(int);

}

Listing 5. Specification pattern using dynamic frames for the list interface

The Java Verification Tool KeY: A Tutorial 617

The value of a query invocation can only change if an element in the footprint
is modified. The following axiom is available in KeY:

(∀o, f. (o, f) ∈ list.footprint → select(h1, o, f)
.= select(h2, o, f)

) →
get(h1, list, idx) .= get(h2, list, idx) (5)

It expresses that the get function computes the same result in heaps h1, h2 if all
locations in footprint hold the same values in h1, h2. When lists are known to
have disjoint footprints, then the dynamic frame axiom (5) allows to infer that
adding an element to one list has no influence on a query to the other list.

6 KeY as a Tool for the Community

Due to its maturity and openness, KeY is a valuable tool for the community.
This includes the use of KeY as a tool for verification projects or for teaching,
but also the use of KeY in research projects for building new tools on top of it.

6.1 KeY as a Tool to Verify Real-World Software

Over the years, a plethora of case studies has been conducted, where KeY was
used to verify a plethora of real-world algorithms and data structures. We present
a selection; a more comprehensive list is on the KeY project website.

A verification case study that received much attention is TimSort, an algo-
rithm combining merge and insertion sort. It is prominently used as Java’s
default for sorting collections of objects. However, that implementation had a bug
and crashed for certain large collections. This issue was detected and explained
in [29], a fixed version has been presented and verified with KeY in [28].

While the JDK uses TimSort to sort collections of objects, collections of prim-
itive types are sorted using Dual Pivot Quicksort, which is a standard quicksort
that partitions into three instead of into two parts. The implementation pro-
vided by the JDK has been proven correct in [19], which includes the sortedness
property, the permutation property, and the absence of integer overflows.

In [24], the core of the JDK’s Identity Hash Map was specified and verified.
In that case study, a novelty is the use of several JML tools: KeY, the bounded
model checker JJBMC [16], and OpenJML [25], to exploit the strengths of each
of them and jointly verify a large project.

Researchers at CWI showed that Java’s LinkedList implementation breaks
when lists with more than 231 elements are created [42]. They propose a fixed
version and verified it successfully with KeY. This case study shows the capability
of KeY to reason about bounded integer data types and handle overflows.

The most recent large case study performed with KeY is the verification of
the sorting algorithm in-place super scalar sample sort [18]. This algorithm is
efficient on modern machines, as it avoids branch mispredictions, allows high
instruction parallelism by reducing data dependencies in the innermost loops,
and it is very cache-efficient. This case study shows that with KeY it is possible to
verify state-of-the-art sorting algorithms of considerable size (in this case about
900 lines of Java) and complexity without having to modify the source code.

618 B. Beckert et al.

6.2 KeY for Teaching

KeY is well suited for teaching. It comes with a GUI that provides context-
specific actions, such as the rules that are applicable to the specific selected
term. It provides means to inspect partial proofs and to explore the state of
the prover interactively. The approach and the tool are very mature, and a lot
of material exists that describes them in great detail (e.g., [4,5,14]). For these
reasons, KeY is used in many courses at various universities, a list can be found
at https://www.key-project.org/applications/key-for-teaching/. There is also a
plethora of course notes and slides.

6.3 KeY as Library and Research Platform

In addition to the use of KeY as a standalone GUI-centric tool, it is possible
to use KeY as a platform for research or to include it in a project as a library
employing its symbolic execution and automated reasoning capabilities. One tool
that uses KeY in such a way is CorC [58], which is an Eclipse-based tool that
allows users to construct correct programs by stepwise refinement. To verify that
the Java statements adhere to their “contracts” (pre- and postconditions created
via refinement from the top-level specifications), CorC calls KeY as a backend.

KeYmaera [54] is an offspring of KeY that can be used to prove properties
about cyber-physical systems, which are systems that have continuous behav-
ior as well as discrete state changes (for example cars or planes). However, its
successor KeYmaera X [34] is a green-field implementation and does not share a
common code base with KeY anymore.

The Symbolic Execution Debugger [40] can be used to symbolically execute a
program and obtain a tree of possible program paths. This helps to understand
program and specification and to detect bugs, for example when unexpected
paths are present or expected ones are missing. More recently, the Refinity tool
[61] extends KeY by abstract execution [62] and lets one prove the correctness of
refactorings. Both tools make use of KeY as a library.

6.4 Open Source and Open Development

KeY has been open source since the inception of the project in 1999. In February
2023 the sources were moved to a public repository on GitHub.3 The open devel-
opment model facilitates bug reports and feature requests. GitHub also provides
the possibility to contact the developers.

The annual KeY Symposium takes place since 2002. With an international
field of participants, it has been a breeding ground for new ideas and features
for KeY. Growing over the years, the most recent edition has been the largest
ever with about 40 attendees. To transfer knowledge from experienced to newer
developers, two hackathons have been organized (in 2018 and 2024). Both events
were a great success and led to multiple new features and bug fixes.

3 https://github.com/KeYProject/key.

https://www.key-project.org/applications/key-for-teaching/
https://github.com/KeYProject/key

The Java Verification Tool KeY: A Tutorial 619

Acknowledgments. This work was supported by the DFG projects BE 2334/9-1,
BU 2924/3-1, HA 2617/9-1, and UL 433/3-1 as well as the Helmholtz topic Engineering
Secure Systems (KASTEL) and the Helmholtz pilot program KiKIT.

Data Availability Statement. All tools and demos of this tutorial paper are avail-
able at Zenodo (DOI: 10.5281/zenodo.11669182).

References

1. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive ver-
ification of floating-point java programs in KeY. In: TACAS 2021. LNCS, vol.
12652, pp. 242–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72013-1_13

2. Abrial, J.R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

3. Ahrendt, W., et al.: The KeY tool: integrating object oriented design and formal
verification. Software and System Modeling 4(1), 32–54 (2005). https://doi.org/
10.1007/s10270-004-0058-x

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification – The KeY Book: From Theory to Practice. No.
10001 in LNCS, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-
6

5. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (eds.): Deductive
Software Verification: Future Perspectives. No. 12345 in LNCS, Springer (2020).
https://doi.org/10.1007/978-3-030-64354-6

6. Ahrendt, W., Gladisch, C., Herda, M.: Proof-based test case generation. In: Deduc-
tive Software Verification – The KeY Book. LNCS, vol. 10001, pp. 415–451.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6_12

7. Ahrendt, W., Grebing, S.: Using the KeY prover. In: Deductive Software Verifi-
cation – The KeY Book. LNCS, vol. 10001, pp. 495–539. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49812-6_15

8. Axtmann, M., Witt, S., Ferizovic, D., Sanders, P.: Engineering in-place (shared-
memory) sorting algorithms. Comput. Res. Repository (CoRR) abs/2009.13569
(2020). https://doi.org/10.48550/arXiv.2009.13569

9. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 50 (2018).
https://doi.org/10.1145/3182657

10. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

11. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) FMCO, pp. 364–387. Springer,
Berlin, Heidelberg (2006)

12. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2016). www.SMT-LIB.org

13. Beckert, B., Hähnle, R., Hentschel, M., Schmitt, P.H.: Formal verification with
KeY: a tutorial. In: Deductive Software Verification – The KeY Book. LNCS, vol.
10001, pp. 541–570. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49812-6_16

https://doi.org/10.5281/zenodo.11669182
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-64354-6
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_15
https://doi.org/10.48550/arXiv.2009.13569
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-49812-6_16
https://doi.org/10.1007/978-3-319-49812-6_16

620 B. Beckert et al.

14. Beckert, B., Hähnle, R., Schmitt, P. (eds.): Verification of Object-Oriented Software
The KeY Approach. No. 4334 in LNCS, Springer (2006). https://doi.org/10.1007/
978-3-540-69061-0

15. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69061-0

16. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4_4

17. Beckert, B., Klebanov, V., Weiß, B.: Dynamic logic for Java. In: Deductive Software
Verification – The KeY Book. LNCS, vol. 10001, pp. 49–106. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49812-6_3

18. Beckert, B., Sanders, P., Ulbrich, M.: Formally verifying an efficient sorter. In:
Finkbeiner, B., Kovács, L. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 30th International Conference TACAS, Luxembourg City,
Luxembourg. LNCS, Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
57246-3_15

19. Beckert, B., Schiffl, J., Schmitt, P.H., Ulbrich, M.: Proving JDK’s dual pivot quick-
sort correct. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712,
pp. 35–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2_3

20. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

21. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1_7

22. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64. Wrocław, Poland (2011)

23. de Boer, F.S., Hiep, H.A.: Completeness and complexity of reasoning about call-
by-value in Hoare logic. ACM Trans. Prog. Lang. Syst. 43(4), 17:1–17:35 (2021).
https://doi.org/10.1145/3477143

24. de Boer, M., de Gouw, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: For-
mal specification and verification of JDK’s identity hash map implementation. In:
ter Beek, M.H., Monahan, R. (eds.) Integrated Formal Methods, pp. 45–62. no.
13274 in LNCS, Springer International Publishing, Cham (2022).https://doi.org/
10.1007/978-3-031-07727-2_4

25. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_35

26. Cok, D.R.: OpenJML: Software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) 1st Workshop on
Formal Integrated Development Environment, F-IDE, Grenoble, France, pp. 79–
92. No. 149 in EPTCS (2014)

27. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: Contract-
based modular verification of concurrent C. In: International Conference on Soft-
ware Engineering – Companion Volume, pp. 429–430 (2009)

https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/3477143
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35

The Java Verification Tool KeY: A Tutorial 621

28. De Gouw, S., De Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Automated Reasoning 62(6),
93–126 (2019)

29. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_16

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

31. Dietl, W., Müller, P.: Universes: lightweight ownership for JML. J. Object Technol.
4(8), 5–32 (2005). https://doi.org/10.5381/JOT.2005.4.8.A1

32. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
33. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.

Springer-Verlag, New York (1996). https://doi.org/10.1007/978-1-4612-2360-3
34. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an

axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_36

35. Grahl, D., Bubel, R., Mostowski, W., Schmitt, P.H., Ulbrich, M., Weiß, B.: Modular
specification and verification. In: Deductive Software Verification – The KeY Book.
LNCS, vol. 10001, pp. 289–351. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49812-6_9

36. Grahl, D., Ulbrich, M.: From specification to proof obligations. In: Deductive Soft-
ware Verification – The KeY Book. LNCS, vol. 10001, pp. 243–287. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49812-6_8

37. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9_18

38. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (Oct, Foundations of
Computing (2000)

39. Harel, D., Meyer, A.R., Pratt, V.R.: Computability and completeness in logics of
programs (preliminary report). In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A.
(eds.) Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
Boulder, CO, USA, pp. 261–268. ACM, New York, NY (1977). https://doi.org/10.
1145/800105.803416

40. Hentschel, M., Bubel, R., Hähnle, R.: Symbolic execution debugger (SED). In:
Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification, 14th International
Conference, RV, Toronto, Canada, pp. 255–262. No. 8734 in LNCS, Springer (2014).
https://doi.org/10.1007/978-3-319-11164-3_21

41. Hentschel, M., Bubel, R., Hähnle, R.: The Symbolic Execution Debugger (SED):
a platform for interactive symbolic execution, debugging verification and More.
STTT 21(5), 485–513 (2018)

42. Hiep, H.-D.A., Maathuis, O., Bian, J., de Boer, F.S., van Eekelen, M., de Gouw,
S.: Verifying OpenJDK’s LinkedList using key. In: TACAS 2020. LNCS, vol.
12079, pp. 217–234. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7_13

43. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM
12(10), 576–580, 583 (1969)

https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.5381/JOT.2005.4.8.A1
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_8
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1145/800105.803416
https://doi.org/10.1145/800105.803416
https://doi.org/10.1007/978-3-319-11164-3_21
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-030-45237-7_13

622 B. Beckert et al.

44. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520,
Department of Computer Science, Katholieke Universiteit Leuven (2008). http://
www.cs.kuleuven.be/~bartj/verifast/verifast.pdf

45. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006). https://doi.org/10.
1007/11813040_19

46. Kassios, I.T.: The dynamic frames theory. Formal Aspects Comput. 23(3), 267–288
(2011). https://doi.org/10.1007/S00165-010-0152-5

47. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

48. Leavens, G.T., et al.: JML reference manual (2013). http://www.eecs.ucf.edu/
~leavens/JML//OldReleases/jmlrefman.pdf, draft revision 2344

49. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

50. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In:
F-IDE 2014, pp. 3–15. No. 149 in EPTCS (2014)

51. Lidström, C., Gurov, D.: An abstract contract theory for programs with proce-
dures. In: FASE 2021. LNCS, vol. 12649, pp. 152–171. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-71500-7_8

52. McCarthy, J.: Towards a mathematical science of computation. In: 2nd IFIP
Congress, pp. 21–28. North-Holland (1962)

53. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

54. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7_15

55. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Annual Sym-
posium on Foundations of Computer Science, Houston, TX, USA, pp. 109–121.
IEEE Computer Society, Los Alamitos, CA (1976).https://doi.org/10.1109/SFCS.
1976.27

56. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Symposium on Logic in Computer Science (LICS) 2002, pp. 55–74. IEEE Computer
Society (2002).https://doi.org/10.1109/LICS.2002.1029817

57. Rümmer, P., Ulbrich, M.: Proof search with taclets. In: Deductive Software Veri-
fication – The KeY Book. LNCS, vol. 10001, pp. 107–147. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49812-6_4

58. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6_2

59. Schmitt, P.H.: First-order logic. In: Deductive Software Verification – The KeY
Book. LNCS, vol. 10001, pp. 23–47. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-49812-6_2

60. Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic frames in java dynamic logic. In:
Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18070-5_10

http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf
http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/S00165-010-0152-5
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-319-49812-6_4
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/978-3-642-18070-5_10

The Java Verification Tool KeY: A Tutorial 623

61. Steinhöfel, D.: REFINITY to model and prove program transformation rules. In:
Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 311–319. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64437-6_16

62. Steinhöfel, D., Hähnle, R.: Schematic program proofs with abstract execution:
theory and applications. J. Autom. Reason. 68(7), 7:1–7:57 (2024)

63. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0_53

64. Tuerk, T.: Local reasoning about while-loops. In: VSTTE Theory Workshop (VS-
Theory) (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
http://creativecommons.org/licenses/by/4.0/

A Tutorial on Stream-Based Monitoring

Jan Baumeister , Bernd Finkbeiner , Florian Kohn(B) ,
and Frederik Scheerer

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{jan.baumeister,finkbeiner,florian.kohn,
frederik.scheerer}@cispa.de

Abstract. Stream-based runtime monitoring frameworks are safety
assurance tools that check the runtime behavior of a system against
a formal specification. This tutorial provides a hands-on introduction
to RTLola, a real-time monitoring toolkit for cyber-physical systems
and networks. RTLola processes, evaluates, and aggregates streams of
input data, such as sensor readings, and provides a real-time analy-
sis in the form of comprehensive statistics and logical assessments of
the system’s health. RTLola has been applied successfully in monitoring
autonomous systems such as unmanned aircraft. The tutorial guides the
reader through the development of a stream-based specification for an
autonomous drone observing other flying objects in its flight path. Each
tutorial section provides an intuitive introduction, highlighting useful
language features and specification patterns, and gives a more in-depth
explanation of technical details for the advanced reader. Finally, we dis-
cuss how runtime monitors generated from RTLola specifications can
be integrated into a variety of systems and discuss different monitoring
applications.

Keywords: Monitoring · Specifications · Cyber-Physical Systems

1 Introduction

Runtime monitoring is an applied formal method that assures the safety of a
running system by evaluating its behavior against a formal specification. In the
stream-based approach, this specification is given in terms of equations that
relate input streams, that contain raw data such as sensor readings, to output
streams that transform and aggregate the incoming information. The values on
the output streams are then checked against trigger conditions that indicate
faulty or dangerous situations.

This work was partially supported by the Aviation Research Program LuFo of the
German Federal Ministry for Economic Affairs and Energy as part of “Volocopter
Sicherheitstechnologie zur robusten eVTOL Flugzustandsabsicherung durch formales
Monitoring” (No. 20Q1963C), by the German Research Foundation (DFG) as part
of TRR 248 (No. 389792660), and by the European Research Council (ERC) Grant
HYPER (No. 101055412).
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 624–648, 2025.
https://doi.org/10.1007/978-3-031-71177-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_33&domain=pdf
http://orcid.org/0000-0002-8891-7483
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0001-9672-2398
http://orcid.org/0009-0007-8115-0359
https://doi.org/10.1007/978-3-031-71177-0_33

A Tutorial on Stream-Based Monitoring 625

This tutorial provides a comprehensive introduction to the RTLola mon-
itoring framework. RTLola is the real-time extension [13] of the Lola specifi-
cation language [8], which pioneered the stream-based approach. RTLola has
been successfully applied to cyber-physical systems such as (unmanned) aircraft.
Major case studies include the DLR ARTIS (Autonomous Rotorcraft Testbed for
Intelligent Systems) family of aircraft developed at the German Aerospace Cen-
ter (DLR) [4], and the fully-electric aircraft designed by Volocopter, a leading
aircraft manufacturer of electric multi-rotor helicopters [2].

In the tutorial, we develop an RTLola specification for a real-world detect
and avoid problem from the aerospace domain. We consider an autonomous
drone flying in a shared airspace. The task of the monitor is to detect aircraft in
the vicinity of the drone that might interfere with the drone’s flight path. We will
develop the specification in multiple steps, starting with the simple case of a sin-
gle non-moving object. Our final specification will handle an apriori unbounded
number of independently moving entities. Along the way, we introduce the rele-
vant RTLola concepts and some fundamental background.

There are two possible ways to read this tutorial. If this is the reader’s first
encounter with RTLola, we recommend focussing on the development of the
detect and avoid example. The tutorial starts in Sect. 2 with an overview of
the monitoring framework and the running example. Afterwards, Sect. 3, Sect. 4,
Sect. 5 and Sect. 6 extend the specification step-by-step, each section building
up on the previous one. Finally, Sect. 7 explains how a monitor generated from
a specification can be integrated into an existing system.

For readers interested in understanding the RTLola approach at a deeper
technical level, the tutorial contains subsections with additional background.
These subsections are marked as for experts to indicate that the subsections can
safely be skipped at first reading. In this spirit, the for experts subsection of
Sect. 2 provides a comprehensive overview of the various backends available in
the RTLola framework; in Sect. 3, we discuss the static analysis of RTLola
specifications. In Sect. 4, we introduce the type system, which is further refined
in Sect. 5. In Sect. 6, we discuss finer points of parameterized specifications.

The tutorial is best experienced when following along in a browser window
using the interactive RTLola Playground [16], which is available online [15].
Section 7 briefly explains how this tutorial is integrated into the Playground.

Related Work. There is a rich literature on runtime verification; we refer the
reader to several introductory articles (cf. [1,11,19]). A previous tutorial on
runtime monitoring has focussed on writing monitors using aspect-oriented pro-
gramming [10]. Tutorials on stream-based monitoring have appeared as presen-
tations at conferences (cf. [20,22]), but this is, to the best of our knowledge,
the first tutorial paper that includes a hands-on development of a stream-based
specification for a real-life application scenario. While the paper is based on the
RTLola framework [13], the fundamental concepts apply in similar form to
other stream-based monitoring approaches. Notable other stream-based moni-
toring approaches, in addition to Lola [8] and its successor Lola2.0 [12], are the
Tessla [7] and Striver [18] tools.

https://rtlola.org/playground/tutorial

626 J. Baumeister et al.

Fig. 1. An overview over stream-based runtime monitoring.

2 Overview

Runtime monitoring checks the behavior of a system, such as cyber-physical
system (CPS), at runtime. The monitor receives input data from the system and
analyses the data according to a formal specification. At each step, the monitor
outputs if the specification is violated such that the system or an operator of the
system can initiate countermeasures to return the system to a safe state. The
next subsection introduces the general idea of stream-based monitoring followed
by an introduction of the running example used in this tutorial.

Stream-Based Monitoring

Stream-based runtime monitoring interprets the system’s input data as streams,
i.e. a temporal discrete sequence over rich data values, transforms these input
streams into output streams and expresses violations in the system’s behavior.
Figure 1a illustrates this idea: On the left side of the figure is the monitored
system, which is in our case a drone. This system emits a sequence of timed
values, which are called input streams. Stream equations then transform these
input streams into output streams. Intuitively, stream equations are comparable
to variable assignments in imperative programming languages. Yet, instead of
only being evaluated once, like variable assignments, they are applied at every
stream position to filter incoming data, compare values from different streams,
or express complex temporal properties. Stream-based specification languages
provide different stream access functions to reason about input streams (see
Fig. 1b) and other output streams (see Fig. 1c). Stream equations can also access
past values of a stream (see Fig. 1d) to express temporal properties. Finally,
special boolean-valued output streams, called trigger streams, express violations
in the system’s behavior.

The next section introduces some syntax and semantics of stream equations
in more detail, but first, we outline this tutorial’s running example.

A Tutorial on Stream-Based Monitoring 627

Fig. 2. A drone monitoring surrounding vehicles.

2.1 Running Example

During this tutorial, we build a specification within the aerospace domain
inspired by the Detect and Avoid specification introduced by Baumeister et
al. [2]. More concretely, we consider an autonomous drone flying in a shared
airspace and describe the detection of surrounding vehicles that might interfere
with the drone’s flight path. Figure 2 illustrates this property: The plane in the
figure’s center represents the drone’s current position and the rays around the
plane, the distance to other participants in the airspace. The exclamation mark
indicates that this participant is close to the drone and is still approaching, so
the drone should change the flight path to avoid a crash. From now on, we will
call these participants intruders since they might interfere with the drone’s flight
path.

Algorithmically, the monitor should perform the following operations to mon-
itor this scenario:

1. Distance: The distance to each intruder should be computed whenever the
intruder or the drone moves.

2. Closer : To check if a specific intruder is approaching the drone, the monitor
has to calculate whether the distance of the intruder is decreasing.

3. Trigger : If this approach continues over five seconds and the intruder is close
to the drone, the monitor should notify the drone to initialize a counteraction.

4. Stale: The monitor should check if the intruder positions are regularly
updated. Otherwise, it is declared out-of-range.

In this scenario, we expect the drone to provide the monitor with two sensor
readings representing the input streams in our specification. First, we assume
that the system has a global navigation satellite system (GNSS) to provide
the monitor with the drone’s latitude and longitude. Additionally, we assume
that the system can detect other vehicles by sharing their position with other
participants or by actively searching for intruders, e.g., with a radar, to get the
latitude and longitude of the intruders. As output, the monitor provides the
current distance to each intruder and the trigger if an approaching intruder is
nearby.

The following sections explain different specifications describing these
requirements in RTLola in a step-by-step fashion. We start with an intruder
with a fixed position, e.g., a tree. Then, the specification is adjusted to handle a

628 J. Baumeister et al.

Fig. 3. Overview of the RTLola framework.

moving intruder, e.g., a single moving drone. Finally, we adapt the specification
to detect more than one approaching vehicle.

For Experts: Integration & Compilation
The RTLola specification language is embedded in an extensive framework
to analyze and monitor specifications. Figure 3 provides an overview of this
framework.
It is divided into the frontend and several backends. The frontend takes a
specification file and produces an intermediate representation. This represen-
tation contains an abstract syntax tree of the specification annotated with
additional information relevant to the backends. Additionally, the frontend
optimizes the specification as presented in [3]. To verify the functional cor-
rectness of the specification, the intermediate representation can be inspected
before executing the monitor, as shown in [9].
All backends have online and offline monitoring capabilities, i.e., they can
monitor a system at runtime or monitor a log of its execution. RTLola
specifications can be executed in the software-based interpreter [13] or com-
piled into the hardware description language VHDL [5] or imperative pro-
gramming languages [17]. Providing both an interpretation and compilation
ensures flexibility and efficiency: An interpretation allows for easy debugging
and quick development times of the specification as it can easily be adjusted
and reevaluated. A compilation, particularly a compilation to hardware, can
provide highly optimized monitors that meet strict system requirements such
as a low power consumption. The framework’s versatility was confirmed in
industrial case studies [2] with aerospace partners.
In the RTLola framework, the interpreter takes the specification as its inter-
mediate representation and interprets it based on the incoming data from the
system. It provides an extensive API to integrate it into existing implementa-
tions. Through the API, the interpreter can quickly adapt to different input
data formats and sources.

A Tutorial on Stream-Based Monitoring 629

The compilation takes the intermediate representation and produces exe-
cutable code that implements a monitor for the given specification. For soft-
ware, it produces code in an imperative programming language such as Rust.
The hardware compiler produces VHDL code that can then be synthesized
onto an FPGA. The monitor implementation receives inputs through input
wires, and the current stream values are stored on the corresponding output
wires or variables. After implementing the communication between the sys-
tem and the monitor, it can be deployed with the system. Although this app-
roach is less flexible than the interpretation, the resulting monitor is highly
efficient once built and integrated.

3 Stream-Based Specifications

After Sect. 2 has introduced the general idea of streams and stream equations,
this section presents the concrete syntax of RTLola and gives the first concrete
examples. Output streams are declared using the output keyword followed by
a stream expression describing the computation of a stream value. In compari-
son, input streams are declared using the input keyword and do not require a
stream expression as their value is given by the system under observation. Trig-
ger streams, special output streams with boolean stream expressions to convey
violations to an operator, are defined using the trigger keyword.

Stream expressions consist of common arithmetic and logical operators such
as addition, subtraction, and conjunction. Higher-level mathematical functions
such as sine, cosine, or the square root can be enabled by importing the math
module. To access past stream values at discrete positions RTLola includes the
offset(by: -n) operator to access the n-th last value of a stream. As the n-th
last value of a stream might not exist, as the stream, for example, only has n-1
positions yet, an offset operation must be followed by a default value to choose
in that case.

Consider the following simplified specification of the scenario explained in
Sect. 2. We limit ourselves to a single non-moving intruder instead of multiple
moving intruders and assume a synchronous timing model, i.e., all streams are
evaluated when the input streams receive new values.

Example 1 (A Static Intruder).
1 import math
2 input lat: Float
3 input lon: Float
4 constant intruder_lat: Float := 249.301
5 constant intruder_lon: Float := 23.453
6
7 output distance: Float := sqrt((intruder_lat - lat)**2.0 + (intruder_lon - lon)**2.0)
8 output closer: Bool := distance.offset(by: -1).defaults(to: distance) >= distance
9

10 trigger closer && distance < 0.1 "Too close to the intruder"

https://rtlola.cispa.de/playground/?spec=G2MBAJwHZZzH8sC82VlEXPw4iExZ09eoyytAMBZ4wF1QBUi_hcXltbyF_jO1i_W9s7EJTcg2U21KVKomJLWbQjfFV35NXC0l_BURxccciXLCPY77u4md2hPv2O7y5O9_3b4D4yXizHYj3TEtrOHZOrrrOUQyCrOMqMVvXxbFUr_QcI8lWbZ1Ewri5Kk8k5TZTll_4_rlbqgk_yejmx9rlqRvovxEFgMnCTkrg2jrLjHffg-4SE3dgoBuRJNBAA==&trace_name=c2ltcGxlX3RyYWNl&trace=G98wYJwJdqwVy-tUvAxje9Opej5VFfCk3OiK5cvvW_tP211qgSzFLriEtSVyK2Si_olQYW2r-8JA_ZmAf3-NyfHLPw6D-f4lOUFw7SLi0qX0cfrhHz79fL2--uPn_zvw_2p5_9bo2lV8-nj_am63kx0_8Fv8B6vyOavnL_9SR4F993Df-993o_c6UtTjLd1cDT7SWLyzt_RmPGxMnTF56dBzeHfAnGY4UPjNKY88PkLqQXjIHJcdeLPGo_Hk6VLMYnlP8NO3_wP4Tif29HZJed6coZcS41mgK4ELyvQrptbGoDvXBfNB8d4O6qFFkcabeiRsHw9d5z0_z8B83CdoYR_luFMkTx9P4wE2b4KX7fBQZijwBeOHSqTDOUTgvIt3J45c2t0LeYHTT_-zQfJO7RtQvl5vo6fQHXeffLfwE515ukdYaa3wojk88fMvRPl171ZCiFY71eOZGd6Rg6aqd_K9p9vioT0GV9cOoS-pqc7mja8f5-H1jk9iZg3FuDmI3ZnLi8Au3U73LNDK1_8BL-flxG9FzQQ3UnBQ99VsgoObKd_j3U3d9N29aLXgu-_-9x6mTw-ldih1yB0FG7s36FOK9cvnDL3XC_-HvTeHAaYcfPP-HCYcAO_1Q9Hjwg8V1CRz7vYUIb1eW-yLPIPrvKHiESMvmIX0OCJfX9GzzgXDmsF01lc4FwJbekErmigzO-Y7Xltt-urzwAz5LnN31-PGBHgWWs20AbLGWjvGgK7Lu2Sq4QBzZtJ7b2iyQ4zbdBXZ3Rcth7iU3CPRxcqH5VsEmVFBFxwDcHuoX7dNARJWR293XgOFeaXew8qIlTk3ebwGrpC8zlEPKZcEBI9v6VIb5SQuCfvBvL3DTqUV2KEvnLr1Lnp-a88AfcL1IiCLMnMtwbtZvGgf3u4BMQ_xEDxTVtVdL3xlxVk72AunAIvnQPMw2kfNoWiqZSWk0sBFF8bCN_3JlfL6XjqrFFHf06iHQY-7YVaLRYyMqXZYLiylId6b0U_PEvL6ChMdPDBzqxG-Pb0t8545eI7HY-5uda9w85hX9bbfPjphk7HDxltIzfNFABeztt-OE936xc-9fV2KVct1nc2377_rY0Uc3hNeLYyrjll4fAYdPzwpVk_actGa8p1Cjw8kRl-NGnh-lLCx3Rnl5m6i867Zzr0cPMzc7mPIxOZd49vM_QTXPfCFeGb7kHgOp6c3vSv8xF1PLyDNJ53FLK_UrLy7eyeAZajxmveasYrVnPDYeYEpPYTee3zDbCc8KEDmkDwrr6l5RJ1WlwY1rw-7axNEPHNZ4zzp2dDLm0XvPXf9et083s4OvTsVlp5d9WYGAHeOiXU8wryZ880hSsVTl53Tqajc8I4rUndaDt7DG3hecSX6wHm-3jl4I1D7-Hz69ngqToxHyqDGb66b7rjurqFH9q2eLLk85l0dM7Q2DC-2yEXOGwiv2Rz1cvAUbB3f_7CjIkyNhHTpi8ChsGfM9L2BQVDULlHCeD3RAznW-nykzFOVRYsJ7zDv3sOiRIe5d9otepiZMspAXTwwVp7lBh_ef2biTcSdIYrOnqvEhEPD5bpYTVHeSmlyerkL34OcF8Llh_3f3m5WTniPXK1Ps7fXh-47P-T5qo_xyzHVdltbm2uq3Zc9Q9rqk5vzKEWGDt7zFPYZ8zkYveI905hg7z2SuzIXWpxCOmxQ3XsvfE-D2NvnNxI9QUfztDp0lmV3EA3LN_c0nvNjpjqpmdVldudY3bjq4FWQ6FfeeQZ2bgQafbBdtiZm8pb5oO_9yZPBcs51-jRTiBj0msdYhCG-BTF3u5dD3rdLplvH-R9eSAznkPX9NdvRrRCaYH16uFHo8NS8-mlhvtu3-4DZJwd3xUjZoNYoc17Ox7fYe7PLSxmYt_Bw5cfI3wlmK8gRVct3TBY4VF5CtyM6qlJlJi7Mn7tv9-n4aKVnn1WeltTu8xE6kcjKFJviESdGfCXTW8I07JfGvM5uYYznvVfPx8f5vck-brVqMhG41MakViBbwnMxbq6WNW-WB4IPD7E-7v_eA1aHm3DQgHOLtyC3qTbQ6iSi0uGST6483mMfb6pBg-VT0Tcbcu_dG79dDoZ3yAKLRrHWe2yZlROXzSHxWtCu3upwx2EK2NNz8oLMSerwhG6Ps404LsdruZX7Rros9AJmng_kJMztdI_Eq7ZT7YH0vOROmZFPEu2u5Klm_544O29CedkyXreXorzObA8EwQdmkConK491lZd0RvXIibWa0TnkC6l3YwBgO9kMsOvZGb-Ehvlc3EZujrB6c4pe-wLKMXfHJ5djZZ5Fuki6r-HRvW2qwVGewg9o8RbTjoNrZ952EIqXaG4Jvsj3duLlSvGCrSrDZZUWddJBN_z0fuHmnd7Tg5jCe3k33EVCZwYT5Qvu4ZVtk9m5dugrro9xcncZvV4ul1zrvUOy1-TdHd6aUfkaYfgo-LWb4vQeLROaT_u_9zp5fsxTE9yntxqT4K58e1mQ8M72dtebr_d1Wco5HXIe3C7f05C5izcTvQSBezszrjW4d8GgBY7y2dsdPVoHnfaFswS8BOOBZzYCtsbo0U8XVt-LVroc2nlvb0I861n38jkk7vlbuGLB6WU7sWmn0XQWHFbeOTlSu9m93a6QfPIvRezxhkuZdTPdzKgNjHU8xFYkkze59-5aZThWnAPkT-mvAt_m3aW0AqNEwh47fHyLwFvx3XofRbln3oOu-yi9fmbKHYmyjsyBN8IliOsqevJa4QrZwpcZm7MPG5NH08E57x2eTriOVU3pXmlFJmqw2SX4wozfw94Y1OJgD18-v_-9tWLNvVkqIVXc4E2oymwm70mhizg8RGjLd0iePZ2uPn7Kpxvi2aTWHdGa8FjuImayhqW3l5b20vBV8XO8gFi5xAyZIczyuvTlUmMEZtju6WYz8aZzwPNunZhq-2hXDR7YqXf3xVyVJ8N5F4JuPZkJYAVdKkYeas28Cx9JnafO7g43Lz32onHkbF9dBoHR9OyEV8Xx7qCL3EcXG89Ygu7IW-F1sWpywuxqBlLpQHWhQJdUruwujGVgCa_4piZru_B6wmNxoz64eEWwcvXeFkYkREJe5VfccC-q5TT_A0YBa2yHcp5Gb2cFspxnDhJW7DHJGZRr-V6OA87dSqt_83qdweqF4XqUt90I1O2-eVqs2YV25q1pPvY7ldt9dXJ3ShmdduTjU8NVT6Gltm-t8Iuf29LXVT3weV_ZuX75C1PRqu8eZG5Pz8TtKsRp397j0c4YN8rkxaAV3pu-dYPoxLi-kbHeI5Fdr-eB6J6LR-zR0L5eyIfqzZNR36JvVH3d9Lpt1l3H4821Dwhpyh3kSO4lL2Ac_9hzozetTud8nZwjDuXdFTKbHYiGkZeuVwt_QmDsPN9LG-r5PXfYi-_x6Yw878tG1BPlMCQfNGb5rry7a3S9KfUyY90KsrUJPA11QfWc97B6s-wUwez1DtjOTaysBFIzR8q4LV8co528jqfLOtxNhsJRHgvnGQd76d69U7P4vQsnE2TTTeepnKndxy_535vRRujemcEt3-1kQ-CbbLFwsHJoY99ce7jMqbM6PqqTu4uOkAUfMSqfB57je03Ke1EJzjsh88pAXgAwsV5dh_c_7M2bV9lb9h1eMXtVAW53lWdOEVsMo9c320u-3uy7wIu_Pv_e7DOubx6oPN9gi120V3UznafBu30P3fA1ctksIqGpmAXPTfB4xzGnrM4JINg2N6lwutOutUcYEqO9B-NVXztq6gTucivUvlsv8u4FHsAgQDjdt8rkezqH8zwnHW7hB-KAWfEQzSNHC2Nj45s-RtVCzQGMfHR6d3PJrk76tqrRGByP6wq-cbpHlhyqp4a5y1rutVv-5m5zeSYl5FDKN-47xvuIw_oBLm69ngvz7PF7fLe2su3khlieq3kRDETOvpTjim-uz0Qo3HLmNaTduTDevnkYXMwddLT491Kpt9Mhs1tD0_OyZ42b11H46W7BuQdncr_QL293SFEDZTQPoxUPHGBCgXJfm_rVMFRbifYtnxWacybFW6g4ReHYCz1jW8aaTOkjmKUAM6GZ5HozwOxid-25VE_fvXV3ntkueJTN3TFuAvL0HqPlc3hNidnNqpNODq9t97EY57XMt2oZFg_RywzR7cs9VIvH413Y2aTpw3ZynE6c3N0TnQegZrAvppwFNsMgL2dnfPG1J8zI1fQW89J7gbatt6linycuNfagDp-O4qyLEz4f3IE5fqdpSajq2YHmBn_XHXvvbWHhrc716fzBvcdnTPEyeQJcO9tQJ60B4epQ_8M-T0frKdnc00J5HSDU0zPzAO4o9GlkNSSRICQWuu0L7StyWq7v3s4ijl-tHwent-AF1ALAXc33Ou_prRk6uXMOoY9dWgh2OrchMq9-syKju9DSa0mTD8HBTdapHlfawZtJM24f5QkWvR2-x7HdvFlh54IeW3l36_eaay2ty2aMMbVv3ccC7IYge7eYnZsX74ghb6fKkxddb-rDG-2Wr1t2HM6R6IgA1DwI71VCNLkiPtpSoLW8ofv8rHk38Tdv_ofBkR2rt5g87j42OVcClLsX48m0PF0LGGsXAsLIEPsWxDtd3ogBSiV4AmamrTipsANc_bSsYWQoUg5Tb3d3CNEzS8bXrBUXmeI5FACObIn0lTPe0dseiYcVcHcXjzpcrvOQnY4BrPGKh5VCxs3sPEFQ46fCs4-nG2f635uhMdYWXKqr2o0j8KvoyRjPrEbvQY-x867X08ZgRrd9956eL9hwt2g2ekWADTZXBKaOjCcPh8bhDvQwuTsRI7Sra8P1PT-KL11inpP6FXxx3x2jlbEq4r2jpNVrR9Aki1dw83KAiW6getc3gEBIs2eo3MZcg2emj6OdBy5sdXwStftUaZ6F8QVit0dXTxv0sxfE5Rtxj1tB59Y8_15xzHTyloMwj4yz_ggI7r45vNq7g_AwaWMmUweFKNXHzRy2vJY5no83WwjxnEyq3vmbZDTYbNBGzzuzyYp0fe2jb19iOC3YiF9FA8cbZEgpRi_jTGHCYF_kNTq4_N0FHGNLrKrSSasBKmCFdrsOvmf1LAJpavnh-SZpgY_z3tu1zt27IaNMQjnOssZI8dgljDts2gYv8D5Ee9Gd6n_gHqxRX-cUgOcDXdzMm9F7d8cK3FUIx7p3Mwbd4-7s7W2zf0O08ixbTlcBfYKQnK7QnEH2JDHuyXjOfVvCkvU83hLPO6MV9_o48XJB-MJCr1v0fLKHDLMNHw5Hu6MpyhakeguQ5ltgBGpOiT5eZx97c0a4fVmQtZH2-mZw6OzFuScXeZ0bCzq9zdyMj8RM5gJzwXY2KJ80SJ-ent_s7X1LQ3gB7RN1Xd5kFBAnvL19NMzcAdtG1IzV0qN7u8rEiHlt2RlGh68MHZ1APGRu4OUpfCmZSclnG4Qt-oGyVKzTaPRe3typBk-S5oDN9nIIAZBu20yqa7xdPr43mHcTMGjF66PJhd9MKT9Bu9p3c7FhnZOZboMxHDzf8765btDtQyI-tVTjhZ77imEzuZ33zpy2bofCA9vwpXeU_CxMSAkuPX49EpxhFssHiNhb31ys4AXJ4Pzkmnav83xhrdsu5xbA7pC6AgjnWkrUzawWe5hZzTh9XRk7fdnl3tsVUbn4wS9Tkn7rBxoWZHf97EoVOJFPbljaWDsLTicP0qqhPGFzjUNqt3OdLRfLTf3I14LU5oqe2xnDh3t6F8X6Gb_C182uUNPX9zovvH2r-rarK_Y0L3nad6Mn34lmMQaf3MLTbw9qjeL5qIUG2tftB-XTS8VpZiEVzXjQt8_4ufPw9lJUjDLfMiAvZHbqyRvroKlmXm5i8zl5EZzisaEbw2-q7p6-duDte7oOiUbUMY_LMGy5HAqm5Nu2I7FhzKIL-W0BBc486oUiy3sZvzdRjDA5vLEPv5OsxeL1GntAt9AZLag4c8OuSO6enNehHiZ2LZ62QcrDy2tMY3rXux1HEfrp1vx33K-H

630 J. Baumeister et al.

The two input streams lat and lon represent the measurements of the drone’s
GPS coordinates. The constants below capture the static position of the non-
moving intruder. The output stream distance keeps track of the Euclidian dis-
tance between the drone and the intruder. To achieve this, it retrieves the cur-
rent values of the input streams and uses the formula to compute the distance.
The type of the distance stream is automatically inferred and can be omitted,
denoted transparently in the example. This inferred type follows from the float-
ing point numbers given by the stream accesses and the underlying functions that
operate on this type. The output stream closer captures the temporal property
that the drone gets closer to the intruder. For that, its stream expression com-
pares the last value of the distance stream, expressed by the offset-operator,
with the current one. Given that the stream expression consists of a comparison,
the type of the closer stream is inferred as a boolean automatically. Finally, a
trigger stream defines the condition when the distance is too close. To make the
trigger more precise, we require that the closer stream also evaluates to true.
Therefore, the trigger only activates if the drone moves towards the intruder.

3.1 Semantics

The semantics of an RTLola specification is defined as a relation between input
and output streams. Intuitively, it compares every stream value at every time-
point with the computed value described by the stream expression. The following
definition gives the semantics [8,21] for a subset of RTLola to cover the general
idea without focusing on concrete details.

Definition 1 (Simplified RTLola Semantics). Let ϕ be an RTLola spec-
ification with input stream variables i1, ..., im and output and trigger stream vari-
ables s1, ..., sn. Let τ1, ..., τm be streams of length N of input values. The tuple
〈σ1, ..., σn〉 of streams of length N is called an evaluation model with respect to
τ1, ..., τm iff for each equation in ϕ the following holds:

σi(j) = val(ei)(j) for 0 ≤ j ≤ N

where ei is the corresponding stream expression of si and val(e)(j) is for the
expressions in our example defined as:

val(c)(j) = c

val(it)(j) = τt(j)
val(st)(j) = σt(j)

val(f(e1, ..., ek))(j) = f(val(e1)(j), ..., val(ek)(j))

val(e.offset(by: i).defaults(to: d))(j) =

{
val(e)(j + i) for 0 ≤ j + i

val(d)(j) otherwise

3.2 Evaluation Algorithm

In contrast to imperative programs, the order of the equations in a stream-based
specification does not influence the order of the evaluation. They are gener-

A Tutorial on Stream-Based Monitoring 631

ally evaluated simultaneously, yet accesses between streams imply dependencies
between streams and therefore affect the order. We represent these dependencies
in a graph-based representation called the dependency graph. An analysis of this
graph then computes a correct order of the stream evaluation: Every topological
order of the dependency graph represents a valid order to process the streams
during a single evaluation cycle.

Definition 2 (Dependency Graph). Let φ be an RTLola specification. The
dependency graph of φ is a directed weighted multi-graph G = 〈V,E〉 with V =
{i1, ..., im, s1, ..., sn}. An edge e = 〈si, sk, w〉 is in E iff the expression of si
contains sk.offset(by: w) as a sub-expression. Analogously, edges with weight 0
are added for non-offset accesses.

Example 2 (Dependency Graph). The following graph describes the dependency
graph for the specification in Example 1:

lat

lon
distance

closer
T

0

0
0

-1
0

0

Every node in the graph corresponds to a stream in the specification. For
a better illustration, we mark input streams green, output streams blue, and
trigger streams red. The input streams lat and lon do not have outgoing edges
since input streams represent the input data and do not have a stream expression.
The output stream distance accesses the current value of the lon and lat
stream in the computation resulting in the 0-edge in the dependency graph.
The closer stream accesses the current and last value of the distance-stream,
resulting in a zero and an offset edge. Unlike input streams, trigger streams have
no incoming edges since no stream expression can access these streams. In our
example, the outgoing edges of the trigger are the accesses to the distance and
closer stream.

Using this graph, we can compute different evaluation orders for this spec-
ification ensuring that the monitor accesses the intended stream values: The
specification allows every order in which the distance-stream is evaluated after
the inputs, the closer-stream after the distance-stream, and at the end of the
evaluation the trigger stream.

For Experts: Static Analysis
This expert subsection presents two static analyses based on the dependency
graphs that guarantee a safe evaluation of stream-based specifications. The
first analysis guarantees the existence of a unique evaluation model, whereas
the second analysis computes an upper bound of the required memory. The
latter analysis can determine if the monitor can run in a resource-constrained
environment before execution.

632 J. Baumeister et al.

Well-Formed Specifications. With this analysis, we define a syntactic criterion
to guarantee the existence of a unique evaluation model. In general, we cannot
find a unique evaluation model, if we cannot determine a order of the stream
evaluation. This problem corresponds to a cycle in the dependency graph.
First, consider the following examples of syntactically valid specifications
and their dependency graph illustrating the problem.

Example 3 (Ill-defined Specifications and their Dependency Graph).

1 output s := !t
2 output t := s

1 output s := t
2 output t := s

s t

0

0

According to the semantics, the specification on the left has no evaluation
model, since we cannot find an assignment for s and t that satisfies both
equations. Such specifications are not well-defined and should be rejected by
the RTLola framework. In comparison, the specification on the right has
multiple evaluation models as long as s and t are equal. However, for this
specification, we again cannot compute a valid evaluation order. As a result,
neither specification can be evaluated algorithmically.
Both specifications have the same graph with an edge from stream s to
stream t and an edge in the other direction, resulting in a cycle. Because
of this cycle, we cannot determine a valid evaluation order and should reject
the specification. We can give a syntactic criterion for well-definedness called
well-formedness based on the dependency graph of a specification [8]:

Definition 3 (Well-formedness). A specification is well-formed, iff for
every cycle in its dependency graph, the accumulated edge weight of the cycle
is not zero.

As described in the definition, we do not forbid every cyclic behavior. The
next example shows a valid specification containing a cycle in the dependency
graph. It sums all values of the input stream a:

Example 4 (Valid Cycle).
1 input a : Int
2 output sum := sum.offset(by: -1).defaults(to: 0) + a

Here, the sum uses the offset expression to access the past value of itself. This
access results in a cycle in the dependency graph, but the sum of this cycle is
negative. Intuitively, this is allowed since past values are already computed,
and we can ignore these accesses when building the evaluation order.

Static Memory Bounds. Secondly, we can determine the amount of values
that need to be kept in memory for every stream. Again, this analysis is
based on the dependency graph and allows giving static memory bounds for
specifications.

A Tutorial on Stream-Based Monitoring 633

Definition 4 (Memory Bound). Let G = 〈V,E〉 be the dependency graph
of the specification ϕ. For every stream s in ϕ its memory bound is determined
as max({−w | 〈o′, s, w〉 ∈ E}).
Intuitively, the memory-bound of a stream is defined by the largest offset at
which the stream is accessed. All values before that bound are not required for
further computation and can be discarded. For the specification in Example
1 the memory bound of all streams is zero except for the distance stream.
Given that the stream is accessed with an offset of −1, the memory bound
of this stream is one. The memory bound of the specification as a whole is
then the sum over the memory bounds of all input and output streams.

4 Event-Based and Periodic Streams

This section lifts the simplification of a static intruder to a moving intruder. For
this, consider the following naïve extension of Example 1, where the intruder
position is given as additional input streams intruder_lat and intruder_lon.

Example 5 (A Synchronous Moving Intruder).
1 import math
2 input lat: Float
3 input lon: Float
4 input intruder_lat: Float
5 input intruder_lon: Float
6
7 output distance :=
8 sqrt((intruder_lat - lat)**2.0
9 + (intruder_lon - lon)**2.0)

10 output closer := distance.offset(by: -1)
11 .defaults(to: distance) >= distance
12
13 trigger closer && distance < 0.1
14 "Too close to the intruder"

lat
lon

intruder_lat
intruder_lon

distance
t[s]

1 2 3 4

This specification is correct in a synchronous setting, i.e. a setting where all
input streams receive a new value simultaneously. Yet, in reality, the intruder and
the drone are independent systems. Hence, the measurements of the intruder’s
position might not be synchronous with the drone’s position measurements. In
an asynchronous setting, input streams receive values independent of each other.
For this, every output stream and trigger is only evaluated if the input streams
they (transitively) depend on receive a new value at the same time. Consider the
specification from Example 5 in a synchronous and asynchronous setting as illus-
trated by the trace on the right. First, all values are received synchronously and
the distance stream is computed. It might seem correct, yet all output streams
and trigger streams still transitively or directly depend on all input streams. As
a result, the specification is effectively synchronous again and behaves invalidly
if not all inputs receive a new value at the same time, as depicted later in the
trace. As we can see, if the current position and the intruder position are not
synchronized, the distance stream is not updated as expected.

https://rtlola.cispa.de/playground/?spec=G1ABABwHuUnzBm7jL0EJRJjT16gMUaKcscAH7oOq38Li8lreQv8ZtYvV78xDF4QsyEIXxaR2m0JP_dwiUHSP_GMShWeOUnLinlb0d5M6LZ5PXZ76_a_bd7inUe2ZhCvcK3dVKwC_fdX38SoJ1hSEYZnmgloj8shTeZYA3u0TvuIb8R_JGOdXJEWAmNOV-89XVfYW0JU2ROgFrnHdHxrytBAAkyMRc4oJ&trace_name=c2ltcGxlX3RyYWNl&trace=G5gtEZW6EkBngm2jceuWNYTa2IfhJVvYm9MW5d_Yt5fNUIDSJnOTo9MsX2V1_K9Vzna32kRFclwyclw8QqFxWBQVx3ELR1EehDxu43CuZ957vzfpnUQo1jj8n1ZTLeGp5VN7Nd31BzY5QVQXg9NExKuat379Gvb5x6__aYOPU36nX1-_fT35ob-c5-fJPzD8D43um4adpN6cf7pvjJspdpBH_YbfMa5z2fHLb7-RT6b67vF-_1--f99RfT8xvVfY655u6ew11JPCxYO5UWYRKI_HGWLfForZuyNxBgR69T5UJ52eaLeQgbSnUQHPTvgUPgcpE8PRPTPP5ud7pN75rJ7fLKkusxf6oSKCITs2OJSjvBJVRqgU16FWYOW9ARsolkXzoYHN6VPRFe_lBaBppM_0MDnx8c5rB306QTOcfVi-nUKHaiFTb4kcaktZ4bgG8W4zg81auTO30i2zFTyTUNKd2wdSuV5v1s9Bd5p5zt3Az8ri-Z4Yl8RjvjWOz0rIzHuT17kbm4u1HtRPJ1NhBs6ym1rvnHvPN-Vjylpe02RFJy1FfYkOuXMNj-9mzmZRQ294COQMcPvWVMpTdC6m4hU6Q769jLB5YwpYHuzlQZ3XqLs8uIvqPd0dqvzu3no81DvhLniP6PNj5QHlQhp4OWH3wD5vOT59WShzbcolcw9HkKhA7_C-WMQKJN_rVQpS5rGGuru4dHoqK2UyidW3fAte8SBvIEHeEkP7CSZfX9mLLwVXjZYoJq1kb0VOlaGsMNYLDKJ3ahgd5ZoLGC35bnF319OEmQyGHmMCgGPEkyw_6evobhcVeBFx0W7vPSh_3_zsNxS5FiCH3L1TmBV824wzxq_Va_vejPMey-W-XN7E73NJzL0WdTv-HFEQkXY7LpqZtx5BKLd370nscH41Pqh6w-UC3qTWy9OSmh4rKzDlnhAzh9m3hHl5xJnTTfLHpxv3Na4gu0X7Ng83RfM67ZaUYBd-M3hdulhX-T2Ow7UCl-4-XZep5OZXnPy41SjsM87oKzK38b0mnc5pcLPRpup689bF3B70gyn2vQKbDUmaQW6UUrPeszUSnMfo5o6DctVUodwKiWk7w17eJAAJr8IeckNAPZIPtzzvvawHWNYWgJ7sM5k6IfY9vNu5TSr0mddbkzuoFteKukPwsH18M0euZSs-Ll_kOD3veqtX1cKEpXdFmruUPCgHbgDzFWCBPUt-XnyzWr82cSHwQpxmdTMzt0JJlS8L4RGeJ-NQdutRbe76Qt76VhvToN_jjPfKe9u7-iQ2g8cFezZhwB48MAqrSVf2zopHgCD0tSM21-REUWJzz3APo59mVjsOtgiHqAeKzxzZEN8DxGuHEZ3JlREzhyUW91jkCTECr3DgzWaooW3hPULz3vrohisF2Pee9xoKPmpxYxifnt9U-150MU6n097dWFmzT3srv6nDeS1X3UWy6mEh7Rn3DchT8TBWCu8gKhMuc85U4dww93S_eUv5VrdvZIZuaXdfbk2ImCRvkF08zdu89OZpl3HcatLsrJ53farF43tWFAmcOIegbRn2uqPBBme0jsFp3gte7jD3IkILJ8pajVjqYXj1aQdHLlQ2j8-lfvZUwzb1DUo_PUqEfvM9siFfnmyOku_O97ASNlOVWG_gPq2e--zEaHzRXEcz0sjlVYtyptQM4D3cIexdd4p7e4Ohxc08rbR8eNfNzeKeRV7VWz2k2sdVMdc3z2_BtTy4AUZwX0_zkAx28ysXZ6XaiuTBcnDp2wbf4_n5oXcNftZM0FtKM40thhhd5ax4d_fOpKqVoI7vdRGXY5wZBB9oBmi6897QPYPc2XvzvBtbSvgux4erkyS1e2hG3ZLJvmVkPyLv6UE7xYNZUtrj7tvj6zY6sdlW8ICU8fruN5OYuqKwBy_EYKNeBDiGY797vj2jB1972neTWX_73tEMN2cOFDfA7eRK6uyX0G9f0HsvnbxeH_dmioEyAyEd3wtm3ANAEtnZTthZ6rx9XXc36CFd70yTnbrwDSblvo2dLLgNxuhLDk678ekEAZfDcb34c0fF-VyOL8wgteQ7aZvygcErr1LgIWG7LnhGNhlu8GE3mOHBTN5vPXxbDiit4u1y_fiMPgov17ss3jXleXo5F6MWNnySY7GRh-tsB3redRU4ufEzBeYSlENMVpXAe7A0PCt3Hfpb2KzE3Rf8pt--F3le6W5uKdVp3zVrim3CMMOt7K2zDzRf9_jYjMDn5VS_-x4HLlfbcJfJA2LhvRGGR4L0ewrOHaO33ofID4kdHXtb8_cly22ih-yITJVbU5CxFwJ9DwxIWZ4RK1o2wfpRQjx63tXRud5hy9h3nsnQGPfx3OoYfLqsXzXQyPL15HkveA749HU53LxriJnviHfvcdGuj7h3nq30CKBaL-iUwXAcjGZpw9cx2s3sWgOIMCYzmF4ACR1vGppvgHmiRtj9WoAlxtgf8e3TOw62ul3JYi71bhSqMNWkHF-sG3u7e37L9x6dfSum0nO-Nzez4-zqoihq50pN6Vzfqp5ZHyybbG87dY8p85A7G5_n58vOBVoquqRyPDljbq7UvMvjvlyNvz1tPZ02BrhuPfPAXOiOd073Am-5tXDH3JVTJJcnVJPAfUvyLcudcbNz90IITaSymKVhzkPB94IyuWC5LOFXvsUbUb33JO26VrFQ2sftqu_N3Xtv9Z5BxjtjN-92ie6hO1qC5wraTDKOBeLzB6_vNkrvTNPDcSdHvXl5sBUctsbz-FhAM-AaqnKWBd3g8rRoOt9FO77FDI7xMAFIZBCfQh0QdQfmFW75Hmeb690LDCIJ5n3DmUbmeLQPqQu-OiFWXnUXoNmDqbCP41MbEdg3WsmnP4eqcNb0oOFECnndTITOYDn2ljcZyW-M914aHJKiEBW8M8Mq-gyUFka_7tPGgmm9oYi7mfHRmTcjbaf67vf4ViKE406q1q8766vL0HfHKiN038bPnYSOKlw5YTfK7H4L6lX7YBZ-3Cl8YwZhOTk_HlR8fO6-5nlo2UzfzCMxzzrelbB3lo3H8ol3Lm8Qv7eHDgyf-aaLLDnyB7PtzvVktl8KKJCanKgIby-nN9h7mNFttbBuGGicp-V7Z0at6azUlqN32h3yFCQ9M4CBeVy_va0dgxvPzBh8ke22uZSbkc7SDh9UwqHOiL6BlaGuXC02pemXzpt5Pj1Z0Usurs4jCfekDX2WuOMw-DBiDoe9G_jaLU2LNwPPs1fOzMs4oYu3P73ImXdjEkBGqVs-8awluUrbG8EKk7fd6LrlMkTw3mvgUK9l3sPO09SrsMlMrxLysmZpZGF2uUifid0CKt6-2Yt8IkzgXZKOKAqLNTXylNmtKbWCcRsernFc3z6KenzcWO_53nvk-HjYKjzr9M5DRNStVKL4cMiOsBt1dN7WsxkGSWMNNvukl41Fg8IN34Cabj1Ljyu5rrIa6fF5n-6pT4cKbEdVz2UfZlk47CJ-myCE9XabZAcRzT1MtI1s51nnB-yJ1Ny-7EPyEHLu3UPejIDxHXfIYUM58XtqtcMn3s4edzOR1HT8xsc7QWHr7RPltnyu2kN2Y6N6Wr7dbE-eVnnrVgdRpublMq7lKHLOL7tvEZztQmd0esJ0LWR8fK2mTh8sujn9llq8HBneGdwSXKJiLFS3KHrOO2365DWZ6b3rCyVLPLjwUk0ldrU36JyIV09Rz4EK3u6dF-DD7npm7KBC2r5nYfCwcmLR5WZIOuy5m_f8kPLu7akPe8M7do2qJ4hSvtfL07y7w0abSXtbVFdgehQFPmrBrfdsxVNT79st4BO3KTYeA74shYl2pzeFmvd81OKCBdSJxEE27303e33AWlzJtwCjVXDkW8nvEJJgi50FOZOeg7xdhdFL2ZV7ODHu4bxim72lnI1m4MfXjecuh-BlUyFCmde9l7g9-Uizp2ANSrV2uc6bnXFyhHjxIrbD3c5rMHxvujV44tsyj2z5hhuuLTXJ4k3BJYLW4dYh69tsJQf7WsHbQAYXIYQ3S33-8kWbl8nM25fS7Ro3oh6Ue4PNaKzyllPXYaoqx_LZRx9k49f2Pb_ze360GPTtGyLFXp1QfZPIcl4ChaF9m4P8nrHz8_vSKBi88at1Fd_bd9AMr_BFS6wXnOOr2u5il3mgXHl9Wp3vbuHX29vb_IinOXFeYVw8XfYg2C9biwI8ydedeyctnkXIkqluMPFYbeaOu3M78e6Ob6JVy3VN6MnMa3w8v6c4oqHLfO-9Yl-e9rmxe02oHZxFAO_IOAfzeee46GJzdHyDw2OdprEOyEYvDaF5fmNEhGacm9sBxQymNzOJbzKvo8rZE9kUj2lH7xlU8t57sW99730cg1xp0sd9pGrsbjYttifQdMoDh69H7t1mFuu3geS9AZDGg3u3BFvyxIe5GfgpPopq-lYYkRmRpZ3nHMNBSNxsRwduRndWLpHflzp3erOXKKs-PM6bzhgBA8ya2ITwU55vsfveeuzbY4bvzWHF98eLp-NlJZ74hqlH8cnNW5D38DzNFr6WGd8ilDyYE-6h-9Bo-zQbTWcmuWIo9HaKZWjRNYoBoTqDc9ZWpDtzMx1z9zz5o_z0eHM6aKwevMCdjY723T5k9IgM3rGWX8N5Ilq8DRQi8zxF50o9ZrroLOC2APHpuInKLvZh7727lm-FeLNHOuK2fmvqzb47P7y5ecuGSc51otel4nsHZYUkuy8-DzB70hrpzANrUx5T610beyr09IYLT613k3my-AK8R1_nyWLbAagGthyP1Rs8570BMiJfkAqNgpubSmmWzNsYL8vElqD3iELeEBx1MG8DeR2vnzNRSc2dMrdALFMfZyOdIh0v-97x-czrWqV1OTw57K0mjjMeWN820UORvN5biumem3SKp1JGRaYb2fequATrLmdnCL3VIu8xZcrDYwK99R_mfe9NvDHuYeQYm2Y49WA8DTScgx37OnuNjzp2z3TE6eR8v7xvZym-jmavhF1rlg9B9WIW-55VfGtBxzXb-AaSLkHREdEe1fNBfImcnKjunUjd3ts7Bc8eAd8bWfb27PJZnil-wZdg7DJqikRNCivGqmzv1lrsBLbf3LZKRtyv3rxshpSm6YiAtBDDyvVeJnhE-qSHMRZVLTZ3e0j2HqZwLFYcOfeiV747janrKLe3DSYSUDvnTAGb2eLIZ-iztp7eM-PA9uSgmZm30X7fapLxLNkyFwUHpqdHb99YNkYXMxdjI22-3npwO0nUPofZdyswbbDAklFRKm-4j43vsg5zknxBTd0dD297-otQ

634 J. Baumeister et al.

The next example depicts the corrected specification, where input streams
are accessed asynchronously using hold-accesses:

Example 6 (A Moving Intruder).
1 import math
2 input lat: Float
3 input lon: Float
4 input intruder_lat: Float
5 input intruder_lon: Float
6
7 output distance @((intruder_lat && intruder_lon) || (lat && lon)) :=

sqrt((intruder_lat.hold(or: 0.0) - lat.hold(or: 0.0))**2.0 +
(intruder_lon.hold(or: 0.0) - lon.hold(or: 0.0))**2.0)

8 output closer @((intruder_lat && intruder_lon) || (lat && lon)) :=
9 distance.offset(by: -1).defaults(to: distance) >= distance

10
11 trigger @1Hz closer.aggregate(over_exactly: 5s, using: forall).defaults(to: false) &&

distance.hold(or: 1.0) < 0.1 "Too close to the intruder"

While the distance stream mathematically performs the same computation, a
hold() lookup is used to avoid a direct dependency. This lookup refers to the
most current available value of the accessed stream and does not require that the
accessed value is computed at the same time. However, there might not be such a
value when the accessing stream is evaluated, so a default value must be supplied
similar to the offset operator. As the timing of the distance stream is decoupled
from any input stream, it has to be explicitly specified when it should produce
new values. Syntactically, this is specified through a positive boolean expression
over input streams following the @ after a stream’s name. This expression is called
the activation condition of the stream and symbolically describes the events at
which the stream is evaluated. In the example, the distance stream is evaluated
whenever the intruders or the drone’s position changes. For the closer stream
the activation condition is the same as for the distance, but is automatically
inferred because of the synchronous access.

Moreover, the trigger in the specification has changed. It is now periodic, a
concept which will be introduced in the subsequent section.

4.1 Periodic Streams

In reality, it is often required that a monitor not only reacts to system actions
but can also proactively produce verdicts about the system’s health. Otherwise,
the monitor could not detect a frozen system because it would freeze as well.
In RTLola, proactive monitoring is achieved through streams evaluated at a
fixed frequency called periodic streams. A periodic stream can be specified by
giving a frequency or period annotation like 1Hz or 1s after the @ keyword. These
frequencies are independent of input streams and to access input streams from
periodic output streams we can either use hold-accesses or sliding windows.
In our example, we use a sliding window in the trigger stream to make the
specification more robust against GPS fluctuations.

Sliding window aggregations aggregate over every value in a given time frame
of a stream using an aggregation function. More concretely, the window in our

https://rtlola.cispa.de/playground/?spec=GywCACwG7Ib6RYBpMY4SY1Guc_ofI4T0YM5OSUxU0ko1-Z1JuiTMZQ-VXoOkuCDtt7C4vIM3bQdkU28o_W_hO0APKB9ZgaT-dJtf1D9Z6TIQ-iK1iJK32QHKHb46U83r25-ggM-v9s9J1zRT--q0Eh8XtNLrFa6W5Vl4FEWukvmebJSxF8IU4qOTLD-DxttfStnsGIifp6rubBpyGT5MHz_vFbmOp5ZDoau_NmMxPGU4Tf_5kE-pPrWiBBQIUOuVtfNdMV4AJPreQ0vIPhWsX0FdphbUv17raIdI7FQUd4Fj54mczcFG_QtiFgA=&trace_name=c2ltcGxlX3RyYWNl&trace=G5gtEZW6EkBngm2jceuWNYTa2IfhJVvYm9MW5d_Yt5fNUIDSJnOTo9MsX2V1_K9Vzna32kRFclwyclw8QqFxWBQVx3ELR1EehDxu43CuZ957vzfpnUQo1jj8n1ZTLeGp5VN7Nd31BzY5QVQXg9NExKuat379Gvb5x6__aYOPU36nX1-_fT35ob-c5-fJPzD8D43um4adpN6cf7pvjJspdpBH_YbfMa5z2fHLb7-RT6b67vF-_1--f99RfT8xvVfY655u6ew11JPCxYO5UWYRKI_HGWLfForZuyNxBgR69T5UJ52eaLeQgbSnUQHPTvgUPgcpE8PRPTPP5ud7pN75rJ7fLKkusxf6oSKCITs2OJSjvBJVRqgU16FWYOW9ARsolkXzoYHN6VPRFe_lBaBppM_0MDnx8c5rB306QTOcfVi-nUKHaiFTb4kcaktZ4bgG8W4zg81auTO30i2zFTyTUNKd2wdSuV5v1s9Bd5p5zt3Az8ri-Z4Yl8RjvjWOz0rIzHuT17kbm4u1HtRPJ1NhBs6ym1rvnHvPN-Vjylpe02RFJy1FfYkOuXMNj-9mzmZRQ294COQMcPvWVMpTdC6m4hU6Q769jLB5YwpYHuzlQZ3XqLs8uIvqPd0dqvzu3no81DvhLniP6PNj5QHlQhp4OWH3wD5vOT59WShzbcolcw9HkKhA7_C-WMQKJN_rVQpS5rGGuru4dHoqK2UyidW3fAte8SBvIEHeEkP7CSZfX9mLLwVXjZYoJq1kb0VOlaGsMNYLDKJ3ahgd5ZoLGC35bnF319OEmQyGHmMCgGPEkyw_6evobhcVeBFx0W7vPSh_3_zsNxS5FiCH3L1TmBV824wzxq_Va_vejPMey-W-XN7E73NJzL0WdTv-HFEQkXY7LpqZtx5BKLd370nscH41Pqh6w-UC3qTWy9OSmh4rKzDlnhAzh9m3hHl5xJnTTfLHpxv3Na4gu0X7Ng83RfM67ZaUYBd-M3hdulhX-T2Ow7UCl-4-XZep5OZXnPy41SjsM87oKzK38b0mnc5pcLPRpup689bF3B70gyn2vQKbDUmaQW6UUrPeszUSnMfo5o6DctVUodwKiWk7w17eJAAJr8IeckNAPZIPtzzvvawHWNYWgJ7sM5k6IfY9vNu5TSr0mddbkzuoFteKukPwsH18M0euZSs-Ll_kOD3veqtX1cKEpXdFmruUPCgHbgDzFWCBPUt-XnyzWr82cSHwQpxmdTMzt0JJlS8L4RGeJ-NQdutRbe76Qt76VhvToN_jjPfKe9u7-iQ2g8cFezZhwB48MAqrSVf2zopHgCD0tSM21-REUWJzz3APo59mVjsOtgiHqAeKzxzZEN8DxGuHEZ3JlREzhyUW91jkCTECr3DgzWaooW3hPULz3vrohisF2Pee9xoKPmpxYxifnt9U-150MU6n097dWFmzT3srv6nDeS1X3UWy6mEh7Rn3DchT8TBWCu8gKhMuc85U4dww93S_eUv5VrdvZIZuaXdfbk2ImCRvkF08zdu89OZpl3HcatLsrJ53farF43tWFAmcOIegbRn2uqPBBme0jsFp3gte7jD3IkILJ8pajVjqYXj1aQdHLlQ2j8-lfvZUwzb1DUo_PUqEfvM9siFfnmyOku_O97ASNlOVWG_gPq2e--zEaHzRXEcz0sjlVYtyptQM4D3cIexdd4p7e4Ohxc08rbR8eNfNzeKeRV7VWz2k2sdVMdc3z2_BtTy4AUZwX0_zkAx28ysXZ6XaiuTBcnDp2wbf4_n5oXcNftZM0FtKM40thhhd5ax4d_fOpKqVoI7vdRGXY5wZBB9oBmi6897QPYPc2XvzvBtbSvgux4erkyS1e2hG3ZLJvmVkPyLv6UE7xYNZUtrj7tvj6zY6sdlW8ICU8fruN5OYuqKwBy_EYKNeBDiGY797vj2jB1972neTWX_73tEMN2cOFDfA7eRK6uyX0G9f0HsvnbxeH_dmioEyAyEd3wtm3ANAEtnZTthZ6rx9XXc36CFd70yTnbrwDSblvo2dLLgNxuhLDk678ekEAZfDcb34c0fF-VyOL8wgteQ7aZvygcErr1LgIWG7LnhGNhlu8GE3mOHBTN5vPXxbDiit4u1y_fiMPgov17ss3jXleXo5F6MWNnySY7GRh-tsB3redRU4ufEzBeYSlENMVpXAe7A0PCt3Hfpb2KzE3Rf8pt--F3le6W5uKdVp3zVrim3CMMOt7K2zDzRf9_jYjMDn5VS_-x4HLlfbcJfJA2LhvRGGR4L0ewrOHaO33ofID4kdHXtb8_cly22ih-yITJVbU5CxFwJ9DwxIWZ4RK1o2wfpRQjx63tXRud5hy9h3nsnQGPfx3OoYfLqsXzXQyPL15HkveA749HU53LxriJnviHfvcdGuj7h3nq30CKBaL-iUwXAcjGZpw9cx2s3sWgOIMCYzmF4ACR1vGppvgHmiRtj9WoAlxtgf8e3TOw62ul3JYi71bhSqMNWkHF-sG3u7e37L9x6dfSum0nO-Nzez4-zqoihq50pN6Vzfqp5ZHyybbG87dY8p85A7G5_n58vOBVoquqRyPDljbq7UvMvjvlyNvz1tPZ02BrhuPfPAXOiOd073Am-5tXDH3JVTJJcnVJPAfUvyLcudcbNz90IITaSymKVhzkPB94IyuWC5LOFXvsUbUb33JO26VrFQ2sftqu_N3Xtv9Z5BxjtjN-92ie6hO1qC5wraTDKOBeLzB6_vNkrvTNPDcSdHvXl5sBUctsbz-FhAM-AaqnKWBd3g8rRoOt9FO77FDI7xMAFIZBCfQh0QdQfmFW75Hmeb690LDCIJ5n3DmUbmeLQPqQu-OiFWXnUXoNmDqbCP41MbEdg3WsmnP4eqcNb0oOFECnndTITOYDn2ljcZyW-M914aHJKiEBW8M8Mq-gyUFka_7tPGgmm9oYi7mfHRmTcjbaf67vf4ViKE406q1q8766vL0HfHKiN038bPnYSOKlw5YTfK7H4L6lX7YBZ-3Cl8YwZhOTk_HlR8fO6-5nlo2UzfzCMxzzrelbB3lo3H8ol3Lm8Qv7eHDgyf-aaLLDnyB7PtzvVktl8KKJCanKgIby-nN9h7mNFttbBuGGicp-V7Z0at6azUlqN32h3yFCQ9M4CBeVy_va0dgxvPzBh8ke22uZSbkc7SDh9UwqHOiL6BlaGuXC02pemXzpt5Pj1Z0Usurs4jCfekDX2WuOMw-DBiDoe9G_jaLU2LNwPPs1fOzMs4oYu3P73ImXdjEkBGqVs-8awluUrbG8EKk7fd6LrlMkTw3mvgUK9l3sPO09SrsMlMrxLysmZpZGF2uUifid0CKt6-2Yt8IkzgXZKOKAqLNTXylNmtKbWCcRsernFc3z6KenzcWO_53nvk-HjYKjzr9M5DRNStVKL4cMiOsBt1dN7WsxkGSWMNNvukl41Fg8IN34Cabj1Ljyu5rrIa6fF5n-6pT4cKbEdVz2UfZlk47CJ-myCE9XabZAcRzT1MtI1s51nnB-yJ1Ny-7EPyEHLu3UPejIDxHXfIYUM58XtqtcMn3s4edzOR1HT8xsc7QWHr7RPltnyu2kN2Y6N6Wr7dbE-eVnnrVgdRpublMq7lKHLOL7tvEZztQmd0esJ0LWR8fK2mTh8sujn9llq8HBneGdwSXKJiLFS3KHrOO2365DWZ6b3rCyVLPLjwUk0ldrU36JyIV09Rz4EK3u6dF-DD7npm7KBC2r5nYfCwcmLR5WZIOuy5m_f8kPLu7akPe8M7do2qJ4hSvtfL07y7w0abSXtbVFdgehQFPmrBrfdsxVNT79st4BO3KTYeA74shYl2pzeFmvd81OKCBdSJxEE27303e33AWlzJtwCjVXDkW8nvEJJgi50FOZOeg7xdhdFL2ZV7ODHu4bxim72lnI1m4MfXjecuh-BlUyFCmde9l7g9-Uizp2ANSrV2uc6bnXFyhHjxIrbD3c5rMHxvujV44tsyj2z5hhuuLTXJ4k3BJYLW4dYh69tsJQf7WsHbQAYXIYQ3S33-8kWbl8nM25fS7Ro3oh6Ue4PNaKzyllPXYaoqx_LZRx9k49f2Pb_ze360GPTtGyLFXp1QfZPIcl4ChaF9m4P8nrHz8_vSKBi88at1Fd_bd9AMr_BFS6wXnOOr2u5il3mgXHl9Wp3vbuHX29vb_IinOXFeYVw8XfYg2C9biwI8ydedeyctnkXIkqluMPFYbeaOu3M78e6Ob6JVy3VN6MnMa3w8v6c4oqHLfO-9Yl-e9rmxe02oHZxFAO_IOAfzeee46GJzdHyDw2OdprEOyEYvDaF5fmNEhGacm9sBxQymNzOJbzKvo8rZE9kUj2lH7xlU8t57sW99730cg1xp0sd9pGrsbjYttifQdMoDh69H7t1mFuu3geS9AZDGg3u3BFvyxIe5GfgpPopq-lYYkRmRpZ3nHMNBSNxsRwduRndWLpHflzp3erOXKKs-PM6bzhgBA8ya2ITwU55vsfveeuzbY4bvzWHF98eLp-NlJZ74hqlH8cnNW5D38DzNFr6WGd8ilDyYE-6h-9Bo-zQbTWcmuWIo9HaKZWjRNYoBoTqDc9ZWpDtzMx1z9zz5o_z0eHM6aKwevMCdjY723T5k9IgM3rGWX8N5Ilq8DRQi8zxF50o9ZrroLOC2APHpuInKLvZh7727lm-FeLNHOuK2fmvqzb47P7y5ecuGSc51otel4nsHZYUkuy8-DzB70hrpzANrUx5T610beyr09IYLT613k3my-AK8R1_nyWLbAagGthyP1Rs8570BMiJfkAqNgpubSmmWzNsYL8vElqD3iELeEBx1MG8DeR2vnzNRSc2dMrdALFMfZyOdIh0v-97x-czrWqV1OTw57K0mjjMeWN820UORvN5biumem3SKp1JGRaYb2fequATrLmdnCL3VIu8xZcrDYwK99R_mfe9NvDHuYeQYm2Y49WA8DTScgx37OnuNjzp2z3TE6eR8v7xvZym-jmavhF1rlg9B9WIW-55VfGtBxzXb-AaSLkHREdEe1fNBfImcnKjunUjd3ts7Bc8eAd8bWfb27PJZnil-wZdg7DJqikRNCivGqmzv1lrsBLbf3LZKRtyv3rxshpSm6YiAtBDDyvVeJnhE-qSHMRZVLTZ3e0j2HqZwLFYcOfeiV747janrKLe3DSYSUDvnTAGb2eLIZ-iztp7eM-PA9uSgmZm30X7fapLxLNkyFwUHpqdHb99YNkYXMxdjI22-3npwO0nUPofZdyswbbDAklFRKm-4j43vsg5zknxBTd0dD297-otQ

A Tutorial on Stream-Based Monitoring 635

Fig. 4. The functioning of sliding windows exemplified based on Example 6

example evaluates only to true if every closer value in the last 5 s is true. The
functionality of this sliding window is visualized in Fig. 4. In our specification,
the trigger stream is evaluated with a fixed frequency of one second whereas the
closer stream depends on the inputs. For the first four seconds, the window
does not aggregate any values given that the whole duration is not available at
the start of the monitoring. In this case, the window evaluates to the default
value false instead. Afterwards, the window aggregates over different numbers
of closer values as illustrated by the different colors.

RTLola supports a set of aggregation functions as exists, avg, sum,
count, min or max.

For Experts: RTLola’s Type System
Similar to many programming languages, RTLola has a type system
that ensures only valid specifications can be executed. The type-system of
RTLola is twofold: The value type of a stream describes how the memory
should be interpreted, i.e., as a signed or unsigned integer, a floating point
number, or a string. The underlying value type system ensures that only com-
patible values are used in an operation, such that, for example, no string and
number are added. The pacing type of a stream describes its timing behav-
ior, i.e., it determines the points in time when the stream is evaluated. This
pacing type system ensures that every direct access, also called synchronous
access, is valid. Consider the following example specification with an invalid
synchronous access:

Example 7 (Invalid Synchronous Access).

1 input a: Bool
2 input b: Bool
3 output x @a := a
4 output y @b := x

a
b
x

y

??

t[s]
0.7 1.0 1.2 1.4 1.8

The specification on the left has two output streams: The stream x, evaluated
whenever the input a receives a new value, with that same value of a. The
stream y is evaluated whenever the input b receives a new value and takes
the value of x. The diagram on the right exemplifies the timing behavior of
the streams. At time 1.2 and 1.8, only stream b receives a new value. Conse-
quently, the stream x is not computed, and with that stream y cannot access

https://rtlola.cispa.de/playground/?spec=G0AA-I3EOBbxgTBQUIKaHJfQCUctsn9uXvnWo-MxdmUYd1nMLS1AAjOso9GiGDaRfeSPFjUST-cA&trace_name=c2ltcGxlX3RyYWNl&trace=iwuAYSxiLHRpbWUKZmFsc2UsZmFsc2UsMC4wAw==

636 J. Baumeister et al.

the value of x at these points in time. These timing errors can lead to invalid
memory accesses at runtime, so the type checker rejects the specification.
To fix the specification, one could use a hold access from y to x similar to
Example 6, resulting in the greyed-out arrows in the diagram on the right.

The Pacing Type System. Intuitively, the pacing type system declares a syn-
chronous access valid if the accessed stream is evaluated at least at the same
points in time as the accessing stream. For non-periodic, also called event-
based streams, this property can be checked by asserting logical implication
between the activation condition of the accessing stream and the accessed
stream. In Example 7, it is easy to see that a → b does not always hold, but,
for example, a∧b → a does. A similar condition holds for periodic streams: A
synchronous access between periodic streams is valid if the accessing stream
runs at a slower pace than the accessed stream. Concretely, the period of the
accessed stream has to be a multiple of the period of the accessing stream.
In addition, synchronous accesses between periodic and event-based streams
are never valid.

5 Stream Lifecycle

In this section, we optimize the specification from Example 6 by guarding com-
putationally heavy operations with cheap-to-evaluate predicates. Concretely, we
only compute the distance and closer streams and the trigger when the intruder
is in range. These optimizations are enabled by lifting the assumption that a
stream exists from the start to the end of the monitor. Instead, we allow for
dynamic stream creation, i.e., a stream can be created and removed from the
monitor at runtime. In the following, we refer to the creation of streams as their
spawn behavior and their deletion as their close behavior. In between its spawn
and close action, a stream is evaluated as defined by its stream expression.

Syntactically, the three steps of a stream’s lifecycle are specified by three
sub-clauses in the stream’s definition:
1 output o
2 spawn @ps when cs
3 eval @pe when ce with e
4 close @pc when cc

Each of these clauses can feature a pacing and a boolean stream expression
preceded by the when keyword. The pacing of a clause statically determines
when the clause could be evaluated, i.e., whenever event a&b occurs or at a
frequency of 1Hz. The stream expression preceded by when is evaluated at the
time points described by the pacing. It constrains these time points dynamically
based on runtime values, i.e., the action corresponding to the clause is only taken
when this expression evaluates to true. The evaluation clause features a stream
expression defining how the stream’s value is computed after the with keyword.

As for the previous sections, pacings can be omitted and inferred by the
type checker for brevity. The when expression of a clause can also be omitted,

A Tutorial on Stream-Based Monitoring 637

representing the constant true. If a stream’s spawn or close clause is omitted,
the stream exists from the start or until the end of the monitor, respectively. If
only an eval with clause exists, we can use the short-hand notation := as used
in the previous sections.

Consider the following extension of Example 6 in which every stream in the
specification is now composed of three clauses: a spawn clause, an eval clause,
and a close clause.

Example 8 (An Out-of-Range Intruder).
1 import math
2 input intruder_lat: Float
3 input intruder_lon: Float
4 input lat: Float
5 input lon: Float
6
7 output distance
8 spawn @(intruder_lat && intruder_lon)
9 eval @((intruder_lat && intruder_lon) || (lat && lon))

10 with sqrt((intruder_lat.hold(or: 0.0) - lat.hold(or: 0.0))**2.0 +
(intruder_lon.hold(or: 0.0) - lon.hold(or: 0.0))**2.0)

11 close @true when stale.hold(or: false)
12 output closer
13 spawn @(intruder_lat && intruder_lon)
14 eval with distance.offset(by: -1).defaults(to: distance) >= distance
15 close @true when stale.hold(or: false)
16 output stale
17 spawn @(intruder_lat && intruder_lon)
18 eval @10s with intruder_lat.aggregate(over: 10s, using: count) = 0
19 close @true when stale.hold(or: false)
20
21 trigger
22 spawn @((intruder_lat && intruder_lon) || (lat && lon))
23 when distance.hold(or: 1.0) < 0.1
24 eval @1Hz when closer.aggregate(over_exactly: 5s, using: forall).defaults(to: false)

with "Intruder detected"
25 close @true when stale.hold(or: false)

Another notable change is the added stale stream. It defines when the intruder
is considered out of range by checking for any GPS coordinate updates in the last
10 s. The spawn clause of the stream defines that this condition is only monitored
once a GPS location is received from the intruder. The omitted when expression
in the spawn clause is equivalent to a when true definition. The close clause
of the stream defines that the condition should no longer be monitored as soon
as it becomes true for the first time. However, the stream is spawned again if a
new intruder GPS location reactivates the spawn condition of the stream.

The distance and closer streams inherit the same spawn and close clauses
as the stale stream, further excluding redundant computations. The trigger also
inherits the same close condition as the other two streams. Yet, its spawn con-
dition differs slightly. The distance.hold(or: 1.0)< 0.1 expression is moved
from the main trigger condition to its spawn condition, adapting the spawn
activation condition accordingly. That way, the computationally heavy sliding
window aggregation is only performed once the intruder is close enough.

Besides optimizing specifications, dynamic stream creations increase the
expressiveness of the RTLola specification language as shown in the next sub-
section.

https://rtlola.cispa.de/playground/?spec=G-EDAIzDOIY8uChtivbpaG6ZL-nAJyIJKWnmzCRA_udmAF4h_cYYIFkBrWFxAY5puc57frbZXkH0qI_T1NPZwN-IAJGDMPNI5K-h-E_DHCeDVweT_q7bYBpFaP_57GkuAWFFrVeuIQAYu2D9g_vS2IfHQw-PccMXDbv7wmeL-BoEGiHOnWrlCIz9ML0DdlDj7nbQWZrFgAL6OYbjPM0CAbIo7R-1_RMm4GWWc0MC68BgnII6Ocm0FjGMCInWhxs8pSEm_g6NSLjrFIfRcQ7H19TqjD5mW4Sa7SUYar88l2P71xkheldDIE1VnZMn-2m83pVbDbNYY0U0TVKGNpNHoIhGmH44LgkGJktzHhrfwzAioHm-iV7x6OiSi4dpOwR1HSvKEQIs8_I7fhTEyZREUxJfwNAQ&trace_name=c2ltcGxlX3RyYWNl&trace=G5gtEZW6EkBngm2jceuWNYTa2IfhJVvYm9MW5d_Yt5fNUIDSJnOTo9MsX2V1_K9Vzna32kRFclwyclw8QqFxWBQVx3ELR1EehDxu43CuZ957vzfpnUQo1jj8n1ZTLeGp5VN7Nd31BzY5QVQXg9NExKuat379Gvb5x6__aYOPU36nX1-_fT35ob-c5-fJPzD8D43um4adpN6cf7pvjJspdpBH_YbfMa5z2fHLb7-RT6b67vF-_1--f99RfT8xvVfY655u6ew11JPCxYO5UWYRKI_HGWLfForZuyNxBgR69T5UJ52eaLeQgbSnUQHPTvgUPgcpE8PRPTPP5ud7pN75rJ7fLKkusxf6oSKCITs2OJSjvBJVRqgU16FWYOW9ARsolkXzoYHN6VPRFe_lBaBppM_0MDnx8c5rB306QTOcfVi-nUKHaiFTb4kcaktZ4bgG8W4zg81auTO30i2zFTyTUNKd2wdSuV5v1s9Bd5p5zt3Az8ri-Z4Yl8RjvjWOz0rIzHuT17kbm4u1HtRPJ1NhBs6ym1rvnHvPN-Vjylpe02RFJy1FfYkOuXMNj-9mzmZRQ294COQMcPvWVMpTdC6m4hU6Q769jLB5YwpYHuzlQZ3XqLs8uIvqPd0dqvzu3no81DvhLniP6PNj5QHlQhp4OWH3wD5vOT59WShzbcolcw9HkKhA7_C-WMQKJN_rVQpS5rGGuru4dHoqK2UyidW3fAte8SBvIEHeEkP7CSZfX9mLLwVXjZYoJq1kb0VOlaGsMNYLDKJ3ahgd5ZoLGC35bnF319OEmQyGHmMCgGPEkyw_6evobhcVeBFx0W7vPSh_3_zsNxS5FiCH3L1TmBV824wzxq_Va_vejPMey-W-XN7E73NJzL0WdTv-HFEQkXY7LpqZtx5BKLd370nscH41Pqh6w-UC3qTWy9OSmh4rKzDlnhAzh9m3hHl5xJnTTfLHpxv3Na4gu0X7Ng83RfM67ZaUYBd-M3hdulhX-T2Ow7UCl-4-XZep5OZXnPy41SjsM87oKzK38b0mnc5pcLPRpup689bF3B70gyn2vQKbDUmaQW6UUrPeszUSnMfo5o6DctVUodwKiWk7w17eJAAJr8IeckNAPZIPtzzvvawHWNYWgJ7sM5k6IfY9vNu5TSr0mddbkzuoFteKukPwsH18M0euZSs-Ll_kOD3veqtX1cKEpXdFmruUPCgHbgDzFWCBPUt-XnyzWr82cSHwQpxmdTMzt0JJlS8L4RGeJ-NQdutRbe76Qt76VhvToN_jjPfKe9u7-iQ2g8cFezZhwB48MAqrSVf2zopHgCD0tSM21-REUWJzz3APo59mVjsOtgiHqAeKzxzZEN8DxGuHEZ3JlREzhyUW91jkCTECr3DgzWaooW3hPULz3vrohisF2Pee9xoKPmpxYxifnt9U-150MU6n097dWFmzT3srv6nDeS1X3UWy6mEh7Rn3DchT8TBWCu8gKhMuc85U4dww93S_eUv5VrdvZIZuaXdfbk2ImCRvkF08zdu89OZpl3HcatLsrJ53farF43tWFAmcOIegbRn2uqPBBme0jsFp3gte7jD3IkILJ8pajVjqYXj1aQdHLlQ2j8-lfvZUwzb1DUo_PUqEfvM9siFfnmyOku_O97ASNlOVWG_gPq2e--zEaHzRXEcz0sjlVYtyptQM4D3cIexdd4p7e4Ohxc08rbR8eNfNzeKeRV7VWz2k2sdVMdc3z2_BtTy4AUZwX0_zkAx28ysXZ6XaiuTBcnDp2wbf4_n5oXcNftZM0FtKM40thhhd5ax4d_fOpKqVoI7vdRGXY5wZBB9oBmi6897QPYPc2XvzvBtbSvgux4erkyS1e2hG3ZLJvmVkPyLv6UE7xYNZUtrj7tvj6zY6sdlW8ICU8fruN5OYuqKwBy_EYKNeBDiGY797vj2jB1972neTWX_73tEMN2cOFDfA7eRK6uyX0G9f0HsvnbxeH_dmioEyAyEd3wtm3ANAEtnZTthZ6rx9XXc36CFd70yTnbrwDSblvo2dLLgNxuhLDk678ekEAZfDcb34c0fF-VyOL8wgteQ7aZvygcErr1LgIWG7LnhGNhlu8GE3mOHBTN5vPXxbDiit4u1y_fiMPgov17ss3jXleXo5F6MWNnySY7GRh-tsB3redRU4ufEzBeYSlENMVpXAe7A0PCt3Hfpb2KzE3Rf8pt--F3le6W5uKdVp3zVrim3CMMOt7K2zDzRf9_jYjMDn5VS_-x4HLlfbcJfJA2LhvRGGR4L0ewrOHaO33ofID4kdHXtb8_cly22ih-yITJVbU5CxFwJ9DwxIWZ4RK1o2wfpRQjx63tXRud5hy9h3nsnQGPfx3OoYfLqsXzXQyPL15HkveA749HU53LxriJnviHfvcdGuj7h3nq30CKBaL-iUwXAcjGZpw9cx2s3sWgOIMCYzmF4ACR1vGppvgHmiRtj9WoAlxtgf8e3TOw62ul3JYi71bhSqMNWkHF-sG3u7e37L9x6dfSum0nO-Nzez4-zqoihq50pN6Vzfqp5ZHyybbG87dY8p85A7G5_n58vOBVoquqRyPDljbq7UvMvjvlyNvz1tPZ02BrhuPfPAXOiOd073Am-5tXDH3JVTJJcnVJPAfUvyLcudcbNz90IITaSymKVhzkPB94IyuWC5LOFXvsUbUb33JO26VrFQ2sftqu_N3Xtv9Z5BxjtjN-92ie6hO1qC5wraTDKOBeLzB6_vNkrvTNPDcSdHvXl5sBUctsbz-FhAM-AaqnKWBd3g8rRoOt9FO77FDI7xMAFIZBCfQh0QdQfmFW75Hmeb690LDCIJ5n3DmUbmeLQPqQu-OiFWXnUXoNmDqbCP41MbEdg3WsmnP4eqcNb0oOFECnndTITOYDn2ljcZyW-M914aHJKiEBW8M8Mq-gyUFka_7tPGgmm9oYi7mfHRmTcjbaf67vf4ViKE406q1q8766vL0HfHKiN038bPnYSOKlw5YTfK7H4L6lX7YBZ-3Cl8YwZhOTk_HlR8fO6-5nlo2UzfzCMxzzrelbB3lo3H8ol3Lm8Qv7eHDgyf-aaLLDnyB7PtzvVktl8KKJCanKgIby-nN9h7mNFttbBuGGicp-V7Z0at6azUlqN32h3yFCQ9M4CBeVy_va0dgxvPzBh8ke22uZSbkc7SDh9UwqHOiL6BlaGuXC02pemXzpt5Pj1Z0Usurs4jCfekDX2WuOMw-DBiDoe9G_jaLU2LNwPPs1fOzMs4oYu3P73ImXdjEkBGqVs-8awluUrbG8EKk7fd6LrlMkTw3mvgUK9l3sPO09SrsMlMrxLysmZpZGF2uUifid0CKt6-2Yt8IkzgXZKOKAqLNTXylNmtKbWCcRsernFc3z6KenzcWO_53nvk-HjYKjzr9M5DRNStVKL4cMiOsBt1dN7WsxkGSWMNNvukl41Fg8IN34Cabj1Ljyu5rrIa6fF5n-6pT4cKbEdVz2UfZlk47CJ-myCE9XabZAcRzT1MtI1s51nnB-yJ1Ny-7EPyEHLu3UPejIDxHXfIYUM58XtqtcMn3s4edzOR1HT8xsc7QWHr7RPltnyu2kN2Y6N6Wr7dbE-eVnnrVgdRpublMq7lKHLOL7tvEZztQmd0esJ0LWR8fK2mTh8sujn9llq8HBneGdwSXKJiLFS3KHrOO2365DWZ6b3rCyVLPLjwUk0ldrU36JyIV09Rz4EK3u6dF-DD7npm7KBC2r5nYfCwcmLR5WZIOuy5m_f8kPLu7akPe8M7do2qJ4hSvtfL07y7w0abSXtbVFdgehQFPmrBrfdsxVNT79st4BO3KTYeA74shYl2pzeFmvd81OKCBdSJxEE27303e33AWlzJtwCjVXDkW8nvEJJgi50FOZOeg7xdhdFL2ZV7ODHu4bxim72lnI1m4MfXjecuh-BlUyFCmde9l7g9-Uizp2ANSrV2uc6bnXFyhHjxIrbD3c5rMHxvujV44tsyj2z5hhuuLTXJ4k3BJYLW4dYh69tsJQf7WsHbQAYXIYQ3S33-8kWbl8nM25fS7Ro3oh6Ue4PNaKzyllPXYaoqx_LZRx9k49f2Pb_ze360GPTtGyLFXp1QfZPIcl4ChaF9m4P8nrHz8_vSKBi88at1Fd_bd9AMr_BFS6wXnOOr2u5il3mgXHl9Wp3vbuHX29vb_IinOXFeYVw8XfYg2C9biwI8ydedeyctnkXIkqluMPFYbeaOu3M78e6Ob6JVy3VN6MnMa3w8v6c4oqHLfO-9Yl-e9rmxe02oHZxFAO_IOAfzeee46GJzdHyDw2OdprEOyEYvDaF5fmNEhGacm9sBxQymNzOJbzKvo8rZE9kUj2lH7xlU8t57sW99730cg1xp0sd9pGrsbjYttifQdMoDh69H7t1mFuu3geS9AZDGg3u3BFvyxIe5GfgpPopq-lYYkRmRpZ3nHMNBSNxsRwduRndWLpHflzp3erOXKKs-PM6bzhgBA8ya2ITwU55vsfveeuzbY4bvzWHF98eLp-NlJZ74hqlH8cnNW5D38DzNFr6WGd8ilDyYE-6h-9Bo-zQbTWcmuWIo9HaKZWjRNYoBoTqDc9ZWpDtzMx1z9zz5o_z0eHM6aKwevMCdjY723T5k9IgM3rGWX8N5Ilq8DRQi8zxF50o9ZrroLOC2APHpuInKLvZh7727lm-FeLNHOuK2fmvqzb47P7y5ecuGSc51otel4nsHZYUkuy8-DzB70hrpzANrUx5T610beyr09IYLT613k3my-AK8R1_nyWLbAagGthyP1Rs8570BMiJfkAqNgpubSmmWzNsYL8vElqD3iELeEBx1MG8DeR2vnzNRSc2dMrdALFMfZyOdIh0v-97x-czrWqV1OTw57K0mjjMeWN820UORvN5biumem3SKp1JGRaYb2fequATrLmdnCL3VIu8xZcrDYwK99R_mfe9NvDHuYeQYm2Y49WA8DTScgx37OnuNjzp2z3TE6eR8v7xvZym-jmavhF1rlg9B9WIW-55VfGtBxzXb-AaSLkHREdEe1fNBfImcnKjunUjd3ts7Bc8eAd8bWfb27PJZnil-wZdg7DJqikRNCivGqmzv1lrsBLbf3LZKRtyv3rxshpSm6YiAtBDDyvVeJnhE-qSHMRZVLTZ3e0j2HqZwLFYcOfeiV747janrKLe3DSYSUDvnTAGb2eLIZ-iztp7eM-PA9uSgmZm30X7fapLxLNkyFwUHpqdHb99YNkYXMxdjI22-3npwO0nUPofZdyswbbDAklFRKm-4j43vsg5zknxBTd0dD297-otQ

638 J. Baumeister et al.

5.1 Deadline Watchdogs

Deadline watchdogs are common specification requirements in CPS and can be
expressed in natural language as follows: “t seconds after event e a condition c
must hold.” Such requirements can be represented in RTLola using dynamically
created streams:

Example 9 (A Deadline Watchdog).
1 output timer
2 spawn when e
3 eval @ts with true
4 close when timer
5
6 trigger
7 spawn when e
8 eval @ts when !c with "The deadline was missed"
9 close when timer

For the watchdog, we define a new stream timer that is spawned with the start
of the watchdog, i.e. the event e spawns the watchdog. This is the starting point
of the annotated frequency, so this stream is evaluated for the first time t seconds
after e. Since this value is immediately true, we also close the stream after these
t seconds. The trigger stream has the same spawn and close condition and is
evaluated with the same frequency. Here, we check if the condition c is satisfied
and use the timer stream as a helper function to immediately close the trigger
stream after the first evaluation.

For Experts: Semantic Types
The introduced when-conditions further refine the timing of a stream and add
another point of failure for synchronous accesses. This problem is solved with
another type system.

Semantic Types and Event-Based Streams. The following example illustrates
a possible point of failure using synchronous accesses and when-conditions:

Example 10 (Invalid Semantic Types).

1 input a: Int
2 output x
3 eval @a when a > 4 with a
4 output y
5 eval @a when a > 3 with x

a

x

y

5 1 8 4

5 8

5 8

?

t[s]
1 2 3 4

As specified by the when expression of the eval clause of x, it only produces a
value when the input a is greater than 4. This might not coincide with a > 3
as required for the evaluation of y. Therefore, similar to Example 7, there
are points in time when y is evaluated, but x is not. To detect specifications
with such errors, RTLola uses another type system reasoning about the
when conditions, called semantic types in that context. Like the pacing type
system, the semantic type system ensures the implication relation between
semantic types holds. In the above example, the type system would reason

https://rtlola.cispa.de/playground/?spec=G1kAqAQ-f8c3oQ--0aCXJnggUbCcciABU0Helkh8sMMO2Gkttg_JuLg594WChiGkinSbyWZR12FL7wfJAQ==&trace_name=c2ltcGxlX3RyYWNl&trace=iwWAYSx0aW1lCjEsMC4wAw==

A Tutorial on Stream-Based Monitoring 639

whether the implication a > 3 → a > 4 is a tautology and consequently
reject this specification.

Besides ensuring that the when conditions of the eval clauses of depen-
dent streams imply each other, the semantic type system also reasons about
the lifecycle of dependent streams. Concretely, for a synchronous access to
succeed, the accessed stream must be alive at least as long as the accessing
stream.

Semantic Types and Periodic Streams. While the previous intuition holds for
event-based streams, synchronous accesses between periodic streams imply
stricter requirements. Consider the following example:

Example 11 (Shifted Periodicity).
1 input a: Int
2 output x
3 spawn when a > 3
4 eval @1Hz with a.hold(or: 0)
5 output y
6 spawn when a > 4
7 eval @1Hz with x

a

x

y

1 4 5 2

5 2?

t[s]
1 1.5 2 2.5 3 3.5 4

Here the streams x and y have the same frequency and the spawn condition of
y implies the spawn condition of x. However, the synchronous access might fail
if x spawns before y since the frequencies are now out of sync. For example, the
sequence of events depicted on the right of the example will lead to an invalid
synchronous access. First, a has the value 1 and since no spawn condition is
true both streams are not spawned. Next, a gets the value 4 spawning x but
not y. The later stream is spawned half a second later, which results in the
two periods of x and y not being synchronized. This leads to the failure of the
synchronous access. To circumvent this problem, the semantic type system
requires equality instead of the implication of the spawn and close condition
of two dependent periodic streams.

Type System Decidability. Pacing types are defined as positive boolean for-
mulas over input stream names or as fixed frequencies. Hence, it is effi-
ciently decidable if their implication is a tautology. On the contrary, seman-
tic types are arbitrary stream expressions. As described by Schwenger [21],
whether an implication between stream expressions is a tautology is gen-
erally undecidable. Nevertheless, the RTLola frontend provides a sound
over-approximating implementation of the semantic type checker based on
syntactic equality. Here, semantic types are parsed as a boolean formula,
so implications such as a.hold(or: 0) ∧ b → a.hold(or: 0) can still be
proven.

https://rtlola.cispa.de/playground/?spec=G3gA4MTylu9L-qox0gcTKfFDeYYNPOAiQh9zIo0BNuCImk-WBWBZhZttgtD8JWANPTawi8yRgFZxCfXLB_WBjOpT2LsgeCDxAg==&trace_name=c2ltcGxlX3RyYWNl&trace=iwWAYSx0aW1lCjEsMC4wAw==

640 J. Baumeister et al.

6 Parameterization

The specifications in the previous sections were limited to a single intruder.
However, in reality, the monitor must observe an unbounded amount of intrud-
ers since we can not give an apriori bound on their number. This monitor will
inevitably require unbounded memory, yet keeping the memory footprint of the
monitor predictable is essential for CPS. For this, RTLola features parame-
terized output streams [12] that provide a declarative and predictable way of
handling unbounded memory through stream expressions.

Parameterized streams lift output streams from a single instance to a set of
stream instances. While all stream instances share the stream expressions, each
instance of a stream has a different assignment of parameter values. This assign-
ment is determined by an additional stream expression preceded by the with
keyword in the spawn clause. If an output stream is parameterized over multiple
parameters, this expression returns a tuple of values matched position-wise to the
parameters. Parameters are declared as a comma-separated sequence in braces
after the stream name. The spawn clause of a parameterized stream determines
when an instance is created as introduced in Sect. 5. The evaluation and close
clauses of parameterized streams are evaluated for each instance, determining
their value and lifecycle. As for dynamic streams, a stream instance will not be
spawned again if an instance with the parameter values already exists.

Consider the final iteration of the running example which extends each output
stream with a parameter for the different intruders:

Example 12 (Multiple Intruder).
1 import math
2 input lat: Float
3 input lon: Float
4 input intruder_id: UInt
5 input intruder_lat: Float
6 input intruder_lon: Float
7
8 output intruder_pos(id)
9 spawn with intruder_id

10 eval when id = intruder_id with (intruder_lat, intruder_lon)
11 close @true when stale(id).hold(or: false)
12 output distance(id)
13 spawn with intruder_id
14 eval @((intruder_id && intruder_lat && intruder_lon) || (lat &&lon))
15 with sqrt((intruder_pos(id).hold().0.defaults(to: 0.0) - lat.hold(or: 0.0))**2.0 +

(intruder_pos(id).hold().1.defaults(to: 0.0) - lon.hold(or: 0.0))**2.0)
16 close @true when stale(id).hold(or: false)
17 output closer(id)
18 spawn with intruder_id
19 eval with distance(id).offset(by: -1).defaults(to: distance(id)) >= distance(id)
20 close @true when stale(id).hold(or: false)
21 output stale(id)
22 spawn with intruder_id
23 eval @10s with intruder_pos(id).aggregate(over: 10s, using: count) = 0
24 close @true when stale(id).hold(or: false)
25
26 trigger(id)
27 spawn when distance(intruder_id).hold(or: 1.0) < 0.1 with intruder_id
28 eval @1Hz when closer(id).aggregate(over_exactly: 5s, using: forall).defaults(to:

false) with "Intruder {{}} detected".format(id)
29 close @true when stale(id).hold(or: false)

https://rtlola.cispa.de/playground/?spec=G-oEQIzEOEbxhyhtk9-33z5DSRefRXcxT3Y6-bkN9iVArNrUWKxAgXR39yxVMWhUV5C4uFplJPHVx5eqRfx93sLAw1hX_cp1w03g12Lo4ilPWOQWYoO3lzgzmGaUpX8JUi6ftlNqgb193FMW9PQ5uxRq9VrWvVXzrKLAFqxOAKhy451OeHQZFS6NdFRfG4GNQwsR2QLBmR4iUAa4DrrnmImusmIjdgDQK9aIsvLeiwWA1Qr8qHDunIkAbne7kVIUwOOu7xOLCGJHLFysipKJwgW8iRjLcVZ_VsTZVo6lwAixwQ4x9Xqi35-OJQZQpUOZZunYwsliqyoPYnYnQf6GjcvmdztSAnp304bA8UAaMXAs3GhU-56zktWFkKOgu9RB27dKVsNHCeL5yKMKHCRY6lqqTvQGSqIIBBB1q3FVxg_YQ46VX-HtRyHy2NujQPtcOhsLx1x3nJqOc2UhF4NR876-xe_v_z9shx2LHbs5rnNjyB4=&trace_name=c2ltcGxlX3RyYWNl&trace=G3cjEZW6FkAjITdletctxDHyxTy94e-6d_5LcahFCTcz3LusXT8XFUGAf97lN5sEusKWJosqTXokrjbNQWERCtwiFULmz7tvywS63OIQGjvJViIkn-jXR7N6pt8unoKCmDhcDOQ3x-WHZ_z8BDT94H3hf9rgsx-5rOvOb1j4-snHnW-xcD34NXcP-5tsNm8seCTzFH6bN-zMuG9ahf0GLxBNRTcsffdmmSXWlUK-_8e39ZZSfWtMucmjsynOxcLWrlA9PZnVXKs3d3al0FfnXvl-EqDD7m3w9vfl3_hm_bLx9pwM4KmMtLnou4tr0uHZqjkVRll_oMDyTbaDHX_9nPFs3-QgjJ8PbnaztSA9Eurdy8666bkRaoWiOtPRg9kUoaK-8wrYCsN1WFMkbmgeQFWqk1HlMFTA8cY7Zy6QFRe7UxikNvxmL85m7aA2GQFvNBeBCxetHsBDkoOlVmW0TW9h5Y4HewI6V03D6hWXCy-NXhkBFl6NyJK3BXmFVlCnsVrceUZLdPeHZ2HKd3XsEJdHtdUkxrVLxV2lUjcMt1wEB1JWHRIeqXZthO2IuepD3bg3rGaXSWFacZnpnhJzMQvupplc64QSDYvMfPucux1WvJ0O3Osltg6theSubjs4kl05zfTpaLpncrs56Cyws4TdTWhXAyoL1WUWXtbuuoZ7CAxi7w6t7b3X2dMeoLN1H5_F3vOkyLM4xXHmWKxKdqaoZOji6rqYWsgexSHq2EFxE9SxalSeZEgcvub1uTaL4XPDrrBjLBrgFlcGMlIoRc2w5xM73VXJZdbI5rRZmzUkaJo6-HqhEyr1foxCpu8hlqVbMOmWbDPSppWIPZpXwkjunoNsbOq8vWvIBVnBQ06TuZm1senBrDgjVO6kcI0bolOs-YssT6MTJF37Qkoc39FeEmInFEzw5nD52OHORf0dSmEAbMfXuy7UH9hphSStBZ6QHomZ7lwdsZk-bk9ErHiCOwN10WyfasiO61rGKIuOJTDsQnWtjLRwGuZ_rcvGwoh7_Py6oGBW3l5gV6pixtfevilPVLfGoqS16pi2zlH1bIHWfn6pzvTczJ0xt-s-pMlDKE9Z6zuE9rW3apO0Ta-kjsPBVoR0rkK7WPBymp1i9zDDMqXqEbbAGGmKe-d1OTZSAc64OlfjpM5XN8NLqCKDnEXV3A0EZ0dNsosu71VVTbmuLkN7S2LXyA5etOv6kI7OcXTvTvMwQ6mGi2eMD0vXq4knaY-T6qCB9ja86Xppjb5tAFW-baW7uqmZRThVpQdHuogetL3dIO8sSxSuTwrX-sShzymFYvooprYMwJXTLEdBroftMwrZ6HUvBrnZ-7peCh2vS6W6xK1ahgom5bvryOMo3K5GI3Fdp-4acVcvTy110xx6QNY2eWaVNlBYEJXu3UMpsshdNTbIldPcYdW6beqmN8fekSLjLLYRyZsJ7gxua7ZqgprtTrDyWG-2K3Qdt7_u5ytUR-3YtWy5DEeMTN5ae2j3KAVdboHxarD-gX287mltZSfM5mgVK2poDx3TFZ9ug7qpslfYji5UV-WGuLtnr1KFEY6Zl_7zuvYQiTG7DvpcAaLpZdlVlqISqAShbJjy23KkAcaRBk9GWQhHbOU6SZydEgH1gMNuaEGxxZFOPcB4NrlrC-iMjvbOqeoVy1XVVE_PZWiS2js0rXAhIDC4DSPRvtbM5XjQd26GcoE9PNg3PDlu91LA0dye22bOmjfNsrdsV82QxuFKUY1eO4i42G3aw5_NF_OqsKXtmQ0JVb2HArcO37lQPOzWzeDWVXHm4t1fS-01CddsamLdi5Z9Hg7MTB1nezF5l9qFB6Ou11uDw3UzaTfjkD1gx4GTGKVqYSDdI4-Lu3TtDHdqujTJtxJdLvBg0m7KdRVu0Lu0mG4bMi4LCKXn6kAjKnSI8WnyQW2GLosWdnPstutUnTF3aWm2Tgmk6ClodrO5prhzjZUVQhl31RDXs-RmuoAsVHnsM7BL082a6fKB0RsvqzAUzj905Lva-CBLbB53loXzDlM9k8Gal5pd2jc7UTAx6yFUaJjbaopjyDl_zdelU1zVVvPcXOywXYbJiSlLa1jZ6cxpT1bemjq6J5feryngNsvdpxP3sCYrcOCF5-7sCecZDJbcU5Uvs-zyaFBFX-fzda691MhoFiDUyqzMzfFC7uzSKmgzCaatysS6V7ntHdV2Bo5qpG7AvRZ6PPEGV4z7KhybXeztsqpuabmOr2rIVHedqM10zSx7q47hreC0EmhsAahOWVWl43QfbG66wdEVAZlf6ynVlZuc5A3daNOp3Y70ce681LbC1tQonKnpSZ69NbmaGlCUHc71zOaoYBFxjsAN3OvYi026emAXaibAaXOLwqG0FNM7cW7La26PWKQwBaesLat560XcnMJRN62cCmtzc4MlprQnfX2vbhlpsXs-WWwrblmJBqpXaZyaRrkb7r5w5afEzO2x7MRr2l1CZ-c2m2emDmzO2sHcZIRqZHD3AMwxd5LddsKxxBZP4rADnkD6yuS2DaxROqoLzallB8JnzprEpU5Ajrk9Efr7FWZ45apzD2Ftq3TcBCwwOqdXMV1JFZlCfGbTfe1wroqJ3hxyWTckuePmPk0XrqlINLvJwWq2m2vJJ5twxdnubcFPOI1PsZTFwusJ2gPMPCesq77a7g3CU2yVs8qukpI4BFL42hYJvLVlzLiFlWLTQWDtzO0No7loCm1Ob-qIWbIXVd1i2vYsqFEMLYaWvuJYID3czYjblVWQ2mGv1orNy0JIDpO-fJ3XFex5atxxFlX60NcpGNS22GqeEFFzGuyA5gQp9E7VMeDXeVL3VRUvxpg-wJyUhVvxyGd4N4yq1Z25W3ZJ7M2VDs-k2BxUrlZk2CjsdYZNPA5rvFelvXVns9lLMjR952ovt6yxo1Otb33X0q2Ls97xOSvDPkZZDMGl-7ZqttOESFRfHaaUOajz8aoHullzHygB5AxdQyLrrh6uTN201pBwGatdN5WBUpvpLKFuczVL6KeDVz6Va7qWHSl9cXauKqOFm8r0PI2OcwUA85uiTVXYMFlvg_SVcgSFHkk1raseq04lZ2rbBkN7R9bN6Zm41lwEVdzwGEZLwoVkZbOT6lvTPLgHGPdN8q2cij2ZYmJvijJWk1d1cUB3FpMWtA3B8c1GszGzR7Exk-c1oqQnJbHbbmex3NtZDO7sFO7KPWHczBkOOwxvupNxUbnJUrS8jGOp3SHXQcoHORBiZm9wK8LqVCgOssjxDmxN3bTB2sIuWv95BVhAqZbEsFuXS40wByuZgtEER0-g5u64CpMtcKq1mkbStD5ci8suWopJmOrbRTNeo48n2rW3RRcpmSlGO_HsjDTND_FeGzOG57ma5rkQ3EvFoD0O0qHufBw0Z0GLwM3GcZyNNbpK3Uw3L510qeIbd-pS3XudmdrbPXVd8SlznaKI41u3t7h24YY7qSWPJVihk7mdqDO11Wt5Z9NVOgWntKntm0kftVl3YOFcUJyIY6ZYRx6X05nuWdrl7FRL09f8Ld3hynsW0VZ9mI5cZ2Fi0lNj4cTRV2SlY1o-nrFXtczsaxVA04u9I1i355UKyN58QVisduLRxZ1RO4fdGe5zD3o2XuYfKkmFwHpvhe1c5WvRGHaIqCnuQT2bvXPOzWyJwUXLzc2K8nc77ngOgribku31LnuyexE0qkGooXxTNaBDEjeXmuKdjBvNREF1zG92mu9d2pr1GaY8dgUdwqtezwCDgZdqR9vbnYv2KtzXnh3XcpzdarJQK10dtGQBVG313rgvDQO7F9zVTZ3P2iysswV2BpZdLsyMBJuT7DArL3fqXEUnRleXq1sGI3OqlY8b14j8hq9Wc00NT_eiG7ebnC4x06d1tE2LTZGVYm6eJJfZ2atMV76rCgjhFKJW620WuF7o5lCTWbZgyPVEbSvZOxU4Z6MFfmWHGh33VLdbLk7duVHMbsiSwLoaVVXyqByv6tO4p1czLahjlXqGTncDuG5RJQpYUHJFqSlNC6CXclqQTLPP6wzPnpM6XyS2t6YSPdzq5jyCp0jVlY--E0zLx5ux1FyEmh4Z19560jXO6mEbXRkW6lqXC3A7HHLoZJXpve2YdKWqUSJ8ztd8R26fB5dm7HT2Tsxmqe4oHRwPFz3rDkNj1wmalrnLRLqPUA11-R9O

A Tutorial on Stream-Based Monitoring 641

Notice the additional input stream intruder_id. We assume that every intruder
has a unique ID provided to the monitor with every update of the intruder_lat
and intruder_lon streams. The output stream intruder_pos is added to accumu-
late these positions on a per-intruder basis. It has a single parameter representing
the intruder ID. This is made explicit through its spawn with expression that
synchronously accesses the intruder_id stream. As a result, a new instance of
this stream is created for each fresh intruder when it is received for the first
time. All other output streams share the same parameterization, so each output
stream has an instance for each non-stale intruder ID. The trigger features the
additional spawn when condition as before. Finally, this specification achieves
the goal outlined in Sect. 2 and handles multiple moving intruders efficiently
and predictably.

For Experts: Instance Aggregations
Like sliding window aggregations, RTLola features instance aggregations to
aggregate the most recent values of the instances of a parameterized output
stream. For example, the trigger from Example 12 can be rewritten without
parameters using an instance aggregation as follows:
1 output approaching(id)
2 spawn when distance(intruder_id).hold(or: 1.0) < 0.1 with intruder_id
3 eval @1Hz with closer(id).aggregate(over_exactly: 5s, using:

forall).defaults(to: false)
4 close @true when stale(id).hold(or: false)
5
6 trigger @true approaching.aggregate(over_instances: all, using: exists) "Intruder

detected"

The approaching stream is similar to the trigger from Example 12. The non-
parameterized trigger now aggregates over all instances of this new stream
using a disjunction. Semantically, this means that whenever any instance of
the helper stream evaluates to true, the instance aggregation in the trigger
will also evaluate to true, causing the trigger to activate.
Instead of aggregating all stream instances, it is sometimes desirable to only
aggregate the instances that produced a fresh value in this evaluation cycle.
This is specified by stating over_instances: fresh in the aggregation. This
will couple the pacing of the caller of the aggregation to the evaluation pacing
of the target stream of the aggregation. Other instance aggregation functions
in RTLola are forall, avg, sum, count, min, and max.

7 Development and Integration

During the previous sections, the examples featured links to the RTLola play-
ground, a web-based implementation of the RTLola frontend and interpreter
that can analyse and execute specifications locally in your browser without
requiring installation. A version of this tutorial is also available there1, such

1 https://rtlola.org/playground/tutorial.

https://rtlola.cispa.de/playground/?spec=Gy4FABwHdtPOg_fWGCHlYpv_qdtclunh-dUEvD5xDAuzaWoaSQHyP5cTuKlwdIf2x61Rm6K1OJrbuqzn0_MwhsytffwYFRSbztuWQ_AhRb4yioL3PMFK3yCvpX2QybWk6iXxX75xmVePZ37-PuxTzLQkTTnGRKoDJRnPg2lSsO-DmMMAUKTXJp7yGGsW-TDU5bVKUg94ZajSGRigdR0DN4GR0A2tRtJaRXmVTwjwkTXySf70VQhAa5p-UUhTIWMQz2czWzHNAoid32dMIHFL2MbbIstLxgxmIa6SyU2__ixYmdjc5AQD8lqqhPTPkaouTA4NwjQIwyRemkGx4oHyHdnjbqD_YeP9rbMNQeDHC98QfI-4YOhWwmKL2qqh4MU50ejWK51CF03s0p4-l-jZM5IPJXgc7mjnMoPM1W_8TijHsooFb1ymK9x_h8tNoaRw7Nmp09QLzrHzwl5r-faV5FcpHcdqLNxDZQB3HCGp4pgJJoIaW1ijb1-lzBTBq4SRugN4PMvn_ZJ5jAA=&trace_name=c2ltcGxlX3RyYWNl&trace=G3cjEZW6FkAjITdletctxDHyxTy94e-6d_5LcahFCTcz3LusXT8XFUGAf97lN5sEusKWJosqTXokrjbNQWERCtwiFULmz7tvywS63OIQGjvJViIkn-jXR7N6pt8unoKCmDhcDOQ3x-WHZ_z8BDT94H3hf9rgsx-5rOvOb1j4-snHnW-xcD34NXcP-5tsNm8seCTzFH6bN-zMuG9ahf0GLxBNRTcsffdmmSXWlUK-_8e39ZZSfWtMucmjsynOxcLWrlA9PZnVXKs3d3al0FfnXvl-EqDD7m3w9vfl3_hm_bLx9pwM4KmMtLnou4tr0uHZqjkVRll_oMDyTbaDHX_9nPFs3-QgjJ8PbnaztSA9Eurdy8666bkRaoWiOtPRg9kUoaK-8wrYCsN1WFMkbmgeQFWqk1HlMFTA8cY7Zy6QFRe7UxikNvxmL85m7aA2GQFvNBeBCxetHsBDkoOlVmW0TW9h5Y4HewI6V03D6hWXCy-NXhkBFl6NyJK3BXmFVlCnsVrceUZLdPeHZ2HKd3XsEJdHtdUkxrVLxV2lUjcMt1wEB1JWHRIeqXZthO2IuepD3bg3rGaXSWFacZnpnhJzMQvupplc64QSDYvMfPucux1WvJ0O3Osltg6theSubjs4kl05zfTpaLpncrs56Cyws4TdTWhXAyoL1WUWXtbuuoZ7CAxi7w6t7b3X2dMeoLN1H5_F3vOkyLM4xXHmWKxKdqaoZOji6rqYWsgexSHq2EFxE9SxalSeZEgcvub1uTaL4XPDrrBjLBrgFlcGMlIoRc2w5xM73VXJZdbI5rRZmzUkaJo6-HqhEyr1foxCpu8hlqVbMOmWbDPSppWIPZpXwkjunoNsbOq8vWvIBVnBQ06TuZm1senBrDgjVO6kcI0bolOs-YssT6MTJF37Qkoc39FeEmInFEzw5nD52OHORf0dSmEAbMfXuy7UH9hphSStBZ6QHomZ7lwdsZk-bk9ErHiCOwN10WyfasiO61rGKIuOJTDsQnWtjLRwGuZ_rcvGwoh7_Py6oGBW3l5gV6pixtfevilPVLfGoqS16pi2zlH1bIHWfn6pzvTczJ0xt-s-pMlDKE9Z6zuE9rW3apO0Ta-kjsPBVoR0rkK7WPBymp1i9zDDMqXqEbbAGGmKe-d1OTZSAc64OlfjpM5XN8NLqCKDnEXV3A0EZ0dNsosu71VVTbmuLkN7S2LXyA5etOv6kI7OcXTvTvMwQ6mGi2eMD0vXq4knaY-T6qCB9ja86Xppjb5tAFW-baW7uqmZRThVpQdHuogetL3dIO8sSxSuTwrX-sShzymFYvooprYMwJXTLEdBroftMwrZ6HUvBrnZ-7peCh2vS6W6xK1ahgom5bvryOMo3K5GI3Fdp-4acVcvTy110xx6QNY2eWaVNlBYEJXu3UMpsshdNTbIldPcYdW6beqmN8fekSLjLLYRyZsJ7gxua7ZqgprtTrDyWG-2K3Qdt7_u5ytUR-3YtWy5DEeMTN5ae2j3KAVdboHxarD-gX287mltZSfM5mgVK2poDx3TFZ9ug7qpslfYji5UV-WGuLtnr1KFEY6Zl_7zuvYQiTG7DvpcAaLpZdlVlqISqAShbJjy23KkAcaRBk9GWQhHbOU6SZydEgH1gMNuaEGxxZFOPcB4NrlrC-iMjvbOqeoVy1XVVE_PZWiS2js0rXAhIDC4DSPRvtbM5XjQd26GcoE9PNg3PDlu91LA0dye22bOmjfNsrdsV82QxuFKUY1eO4i42G3aw5_NF_OqsKXtmQ0JVb2HArcO37lQPOzWzeDWVXHm4t1fS-01CddsamLdi5Z9Hg7MTB1nezF5l9qFB6Ou11uDw3UzaTfjkD1gx4GTGKVqYSDdI4-Lu3TtDHdqujTJtxJdLvBg0m7KdRVu0Lu0mG4bMi4LCKXn6kAjKnSI8WnyQW2GLosWdnPstutUnTF3aWm2Tgmk6ClodrO5prhzjZUVQhl31RDXs-RmuoAsVHnsM7BL082a6fKB0RsvqzAUzj905Lva-CBLbB53loXzDlM9k8Gal5pd2jc7UTAx6yFUaJjbaopjyDl_zdelU1zVVvPcXOywXYbJiSlLa1jZ6cxpT1bemjq6J5feryngNsvdpxP3sCYrcOCF5-7sCecZDJbcU5Uvs-zyaFBFX-fzda691MhoFiDUyqzMzfFC7uzSKmgzCaatysS6V7ntHdV2Bo5qpG7AvRZ6PPEGV4z7KhybXeztsqpuabmOr2rIVHedqM10zSx7q47hreC0EmhsAahOWVWl43QfbG66wdEVAZlf6ynVlZuc5A3daNOp3Y70ce681LbC1tQonKnpSZ69NbmaGlCUHc71zOaoYBFxjsAN3OvYi026emAXaibAaXOLwqG0FNM7cW7La26PWKQwBaesLat560XcnMJRN62cCmtzc4MlprQnfX2vbhlpsXs-WWwrblmJBqpXaZyaRrkb7r5w5afEzO2x7MRr2l1CZ-c2m2emDmzO2sHcZIRqZHD3AMwxd5LddsKxxBZP4rADnkD6yuS2DaxROqoLzallB8JnzprEpU5Ajrk9Efr7FWZ45apzD2Ftq3TcBCwwOqdXMV1JFZlCfGbTfe1wroqJ3hxyWTckuePmPk0XrqlINLvJwWq2m2vJJ5twxdnubcFPOI1PsZTFwusJ2gPMPCesq77a7g3CU2yVs8qukpI4BFL42hYJvLVlzLiFlWLTQWDtzO0No7loCm1Ob-qIWbIXVd1i2vYsqFEMLYaWvuJYID3czYjblVWQ2mGv1orNy0JIDpO-fJ3XFex5atxxFlX60NcpGNS22GqeEFFzGuyA5gQp9E7VMeDXeVL3VRUvxpg-wJyUhVvxyGd4N4yq1Z25W3ZJ7M2VDs-k2BxUrlZk2CjsdYZNPA5rvFelvXVns9lLMjR952ovt6yxo1Otb33X0q2Ls97xOSvDPkZZDMGl-7ZqttOESFRfHaaUOajz8aoHullzHygB5AxdQyLrrh6uTN201pBwGatdN5WBUpvpLKFuczVL6KeDVz6Va7qWHSl9cXauKqOFm8r0PI2OcwUA85uiTVXYMFlvg_SVcgSFHkk1raseq04lZ2rbBkN7R9bN6Zm41lwEVdzwGEZLwoVkZbOT6lvTPLgHGPdN8q2cij2ZYmJvijJWk1d1cUB3FpMWtA3B8c1GszGzR7Exk-c1oqQnJbHbbmex3NtZDO7sFO7KPWHczBkOOwxvupNxUbnJUrS8jGOp3SHXQcoHORBiZm9wK8LqVCgOssjxDmxN3bTB2sIuWv95BVhAqZbEsFuXS40wByuZgtEER0-g5u64CpMtcKq1mkbStD5ci8suWopJmOrbRTNeo48n2rW3RRcpmSlGO_HsjDTND_FeGzOG57ma5rkQ3EvFoD0O0qHufBw0Z0GLwM3GcZyNNbpK3Uw3L510qeIbd-pS3XudmdrbPXVd8SlznaKI41u3t7h24YY7qSWPJVihk7mdqDO11Wt5Z9NVOgWntKntm0kftVl3YOFcUJyIY6ZYRx6X05nuWdrl7FRL09f8Ld3hynsW0VZ9mI5cZ2Fi0lNj4cTRV2SlY1o-nrFXtczsaxVA04u9I1i355UKyN58QVisduLRxZ1RO4fdGe5zD3o2XuYfKkmFwHpvhe1c5WvRGHaIqCnuQT2bvXPOzWyJwUXLzc2K8nc77ngOgribku31LnuyexE0qkGooXxTNaBDEjeXmuKdjBvNREF1zG92mu9d2pr1GaY8dgUdwqtezwCDgZdqR9vbnYv2KtzXnh3XcpzdarJQK10dtGQBVG313rgvDQO7F9zVTZ3P2iysswV2BpZdLsyMBJuT7DArL3fqXEUnRleXq1sGI3OqlY8b14j8hq9Wc00NT_eiG7ebnC4x06d1tE2LTZGVYm6eJJfZ2atMV76rCgjhFKJW620WuF7o5lCTWbZgyPVEbSvZOxU4Z6MFfmWHGh33VLdbLk7duVHMbsiSwLoaVVXyqByv6tO4p1czLahjlXqGTncDuG5RJQpYUHJFqSlNC6CXclqQTLPP6wzPnpM6XyS2t6YSPdzq5jyCp0jVlY--E0zLx5ux1FyEmh4Z19560jXO6mEbXRkW6lqXC3A7HHLoZJXpve2YdKWqUSJ8ztd8R26fB5dm7HT2Tsxmqe4oHRwPFz3rDkNj1wmalrnLRLqPUA11-R9O
https://rtlola.org/playground/tutorial

642 J. Baumeister et al.

that the specifications and examples from this tutorial can easily be experi-
mented with by pressing the Copy to Editor button below them and clicking
Run. The specifications are tested against a trace simulated using the Microsoft
Flight Simulator. A video of this trace is included in the overview chapter in the
playground, and its raw data can be inspected by switching to the Trace tab on
the right.

Nonetheless, in real applications, it is necessary to run the monitor either
natively or incorporate them within existing applications. The RTLola inter-
preter provides solutions for both: A library to seamlessly integrate the monitor
into Rust applications, along with a standalone command-line application.

7.1 RTLola CLI

The simplest way to run the RTLola interpreter locally is the command-line
application rtlola-cli. The installation of the application can be achieved
using the cargo package manager:
1 cargo install rtlola-cli

The application offers two modes of execution:

– Analyze In this mode, the RTLola frontend is employed to check the pro-
vided specification for correctness. This involves checking for syntax errors,
ensuring well-definedness and detecting type-related errors.

– Monitor This mode enables the execution of a monitor based on the provided
specification. After checking the specification for correctness, the monitor can
be run in an offline or online setting. In an offline setting, the monitor analyzes
a prerecorded trace, while in an online setting, the data arrives in real-time.

In the offline setting, the interpreter monitors a prerecorded trace in CSV
format such as the following:
1 a,b,time
2 1,2,0
3 #,3,1
4 3,#,2

This example trace defines three events occurring at times 0 s, 1 s, and 2 s, respec-
tively, and assigns new values to two input streams called a and b. Notably, the
hashmark # signifies that the corresponding input stream does not receive a
new value at that particular time. Subsequently, we can run the rtlola-cli to
monitor the specification specification.lola on this trace:
1 rtlola-cli monitor \
2 --offline relative \
3 --csv-in trace.csv \
4 specification.lola

Here, the argument --offline relative specifies the type of time format uti-
lized in the “time” column of the CSV file. In the example, the timestamp is
given as time in seconds relative to the start of the monitor. Upon executing,
each event in the CSV file is forwarded to the monitor, with the resulting output
printed to the standard output.

A Tutorial on Stream-Based Monitoring 643

Fig. 5. Process to integrate the monitor

In the online mode, the interpreter retrieves the inputs from a buffer and
utilizes the real-time timestamps of the events when they arrive. The following
command starts the monitor in an online setting:
1 rtlola-cli monitor --online --stdin specification.lola

Here, the application waits for new events on standard input and forwards them
to the monitor as soon as they arrive.

We illustrated two instances of using the RTLola interpreter command line
application. For a comprehensive list of available command-line arguments and
options, you can consult the documentation by executing the following command:

1 rtlola-cli monitor --help

The RTLola interpreter has successfully been employed to monitor drones
in cooperation with the German Aerospace Center (DLR) and the aircraft man-
ufacturer Volocopter. We identified a set of different monitoring applications, as
reported by Baumeister et al. [2], which we discuss in the expert section.

For Experts: Monitoring Applications
The monitor can provide valuable feedback during the development of new
components in the aerospace domain. In this safety-critical domain, pre-
defined standards ensure that the concept of operation, requirements, design,
and implementation are coherent and include several validation steps. We
identified different applications in which monitoring can be used during the
development of new components following such standards but also during the
operation of these components:

1. Debugging The monitor provides feedback to the developer of the com-
ponent. During the execution, the monitor checks whether the compo-
nent works as intended and collects statistical information. The developer
writes the specification and has access to the internal state of the compo-
nent.

2. Validation The monitor is used to validate the component externally. The
specification is written independently and has only access to the inputs
and outputs of the component and not to the internal state. This applica-
tion is, among others, helpful in validating that components by external
companies follow their requirements and can be trusted.

3. Pre-Post-Flight Analysis This application uses monitoring to check
whether all necessary components are operational. The monitor runs pre-
defined test cases and validates that no irregular behavior is detected.

644 J. Baumeister et al.

After the flight, the monitor computes more sophisticated information for
better evaluation of the flight or runs new specifications on past flights.

4. In-Flight Analysis/Safe Integration The monitor provides feedback about
the safety of the drone during its operation. It validates the correctness of
individual components to ensure a safe flight and reports to the pilot if a
property is violated.

All these applications require the integration of the monitor into the devel-
opment process. Previously, we utilized the command-line application of the
RTLola interpreter to execute the monitor. In the following example, we
demonstrate how to integrate the interpreter using the Rust library.

Integration with the RTLola API. We assume that the monitor is running
on the drone and receives the input data over internal communication. The
output of the monitor is then sent over TCP to a ground station display-
ing the trigger messages of the monitor so a pilot can take over. Figure 5
illustrates two steps for this integration process. As shown in the figure, the
setup consists of three components: The monitor, in the center of the figure,
is automatically generated from the specification and does not require fur-
ther integration. However, two interfaces must be implemented to handle the
communication with the system and the operator. These implementations
are specific to the setup: The Event Conversion receives the incoming sensor
readings and transforms the data into an internal representation the monitor
understands. The Verdict Conversion transforms the internal representation
of the monitor’s output to messages accepted by the ground station.
After providing all the missing implementations, we need to configure the
monitor and start the evaluation. This results in the following code, skipping
the concrete configuration of the event_source and the verdict_sink:
1 let mut monitor = ConfigBuilder::new()
2 .with_spec(spec)
3 .online()
4 .with_event_factory::<ExampleInputs::Factory>()
5 .with_verdict::<TriggerMessages>()
6 .monitor()?;
7 let mut event_source = ...
8 let mut verdict_sink = ...
9 while let Some((ev, ts)) = event_source.next_event()? {

10 let verdicts = monitor.accept_event(ev, ts)?;
11 verdicts_sink.sink_verdicts(&verdicts)?;
12 }

Event Conversion. The Event Conversion receives sensor values and trans-
forms the readings into an internal representation the monitor uses. In our
setup, we receive the sensor values over a UDP connection as a byte-stream
and differentiate between two types of messages: The first type of message
is sent by the GNSS sensor that computes the latitude and longitude of the
drone. The second type of message contains the latitude and longitude of
the intruders. The byte-stream needs to be parsed and converted to map the

A Tutorial on Stream-Based Monitoring 645

incoming data to the corresponding input streams. The implementation in our
setup uses the simplified interfaces shown in Fig. 6. After providing a parser
function, the implementation receives the byte stream and parses this stream
to an event called ExampleInputs. The implementation of the interface is pro-
vided automatically by the macros ValueFactory and CompositeFactory.
These macros generate code for a factory that maps, for example, the lat
field in the Gnss struct to the lat input stream in the monitor.

Verdict Conversion. The Verdict Conversion transforms the internal repre-
sentation of the monitor’s output into messages in a form expected by the
ground station. In our setup, this conversion interprets trigger messages as
bytes and sends these over TCP to the ground station. The interfaces for this
setup are implemented generically, so no further steps are needed.

Fig. 6. Concrete Implementation of the Event Conversion

8 Conclusion

The running example from our tutorial has illustrated the expressiveness of the
RTLola specification language, which makes RTLola well-suited for complex
application domains like aerospace. The development of the specifications is
facilitated by the comprehensive support of the tool framework. Since the same
specification can be used in multiple different settings, a specification can be
validated early in a test environment or on log data, long before the monitor is
integrated into the aircraft; the automatic analysis of the specification further-
more ensures that the monitor operates correctly and reliably.

RTLola has been very successful in the aerospace domain (cf. [2,4]).
RTLola has also been used in other cyber-physical applications, including
cars [6] and medical equipment [14], and in domains beyond CPS, such as net-
works [12]. The combination of the highly expressive RTLola specification lan-
guage with the reliability obtained by static analysis and the resource efficiency
of the monitoring framework is of great use in all these settings.

646 J. Baumeister et al.

Data Availability Statement. The artifacts and resources associated with this paper
are accessible as follows:
1. Primary Artifact: The primary artifact of this paper is available via:
https://doi.org/10.5281/zenodo.12633784.
2. Source Code: The source code of the framework is hosted on GitHub:
RTLola Interpreter: https://github.com/reactive-systems/RTLola-Interpreter
RTLola Frontend: https://github.com/reactive-systems/RTLola-Frontend
3. Software Packages: The relevant software packages are available on crates.io:
RTLola Interpreter: https://crates.io/crates/rtlola-interpreter
RTLola Frontend: https://crates.io/crates/rtlola-frontend

References

1. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

2. Baumeister, J., et al.: Monitoring unmanned aircraft: specification, integration, and
lessons-learned. In: Computer Aided Verification - 36th International Conference,
CAV 2024, Montreal, Canada, 22–27 July 2024. Accepted for publication (2024)

3. Baumeister, J., Finkbeiner, B., Kruse, M., Schwenger, M.: Automatic optimizations
for stream-based monitoring languages. In: Deshmukh, J., Ničković, D. (eds.) RV
2020. LNCS, vol. 12399, pp. 451–461. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-60508-7_25

4. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: RTLola
cleared for take-off: monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 28–39. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8_3

5. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. ACM Trans. Embed. Comput. Syst. 18(5s),
88:1–88:24 (2019). https://doi.org/10.1145/3358220

6. Biewer, S., Finkbeiner, B., Hermanns, H., Köhl, M.A., Schnitzer, Y., Schwenger,
M.: On the road with RTLola. Int. J. Softw. Tools Technol. Transf. 25(2), 205–218
(2023). https://doi.org/10.1007/S10009-022-00689-5

7. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5_10

8. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In:
12th International Symposium on Temporal Representation and Reasoning (TIME
2005), 23–25 June 2005, Burlington, Vermont, USA, pp. 166–174. IEEE Computer
Society (2005). https://doi.org/10.1109/TIME.2005.26

9. Dauer, J.C., Finkbeiner, B., Schirmer, S.: Monitoring with verified guarantees. In:
Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 62–80. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88494-9_4

10. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In:
Broy, M., Peled, D.A., Kalus, G. (eds.) Engineering Dependable Software Systems,
NATO Science for Peace and Security Series, D: Information and Communication
Security, vol. 34, pp. 141–175. IOS Press (2013). https://doi.org/10.3233/978-1-
61499-207-3-141

https://doi.org/10.5281/zenodo.12633784
https://github.com/reactive-systems/RTLola-Interpreter
https://github.com/reactive-systems/RTLola-Frontend
https://crates.io/crates/rtlola-interpreter
https://crates.io/crates/rtlola-frontend
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-030-60508-7_25
https://doi.org/10.1007/978-3-030-60508-7_25
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1145/3358220
https://doi.org/10.1007/S10009-022-00689-5
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-030-88494-9_4
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141

A Tutorial on Stream-Based Monitoring 647

11. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying run-
time verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021).
https://doi.org/10.1007/S10009-021-00609-Z

12. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9_10

13. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_24

14. Finkbeiner, B., Keller, A., Schmidt, J., Schwenger, M.: Robust monitoring for
medical cyber-physical systems. In: Proceedings of the Workshop on Medical
Cyber Physical Systems and Internet of Medical Things, MCPS 2021, pp. 17–
22. Association for Computing Machinery, New York (2021). https://doi.org/10.
1145/3446913.3460318

15. Finkbeiner, B., Kohn, F., Scheerer, F., Schledjewski, M.: The RTLola Playground
(2023). https://rtlola.org/playground

16. Finkbeiner, B., Kohn, F., Schledjewski, M.: Leveraging static analysis: an IDE for
RTLola. In: André, É., Sun, J. (eds.) ATVA 2023. LNCS, vol. 14216, pp. 251–262.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45332-8_13

17. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified rust monitors
for lola specifications. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol.
12399, pp. 431–450. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60508-7_24

18. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_16

19. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Methods Program. 78(5), 293–303 (2009). https://doi.org/10.1016/J.JLAP.
2008.08.004

20. Schwenger, M.: Monitoring cyber-physical systems: from design to integration. In:
Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 87–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_5

21. Schwenger, M.: Statically-analyzed stream monitoring for cyber-physical systems
(2022). https://doi.org/10.22028/D291-37014

22. Torfah, H.: Stream-based monitors for real-time properties. In: Finkbeiner, B.,
Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 91–110. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32079-9_6

https://doi.org/10.1007/S10009-021-00609-Z
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1145/3446913.3460318
https://doi.org/10.1145/3446913.3460318
https://rtlola.org/playground
https://doi.org/10.1007/978-3-031-45332-8_13
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1016/J.JLAP.2008.08.004
https://doi.org/10.1016/J.JLAP.2008.08.004
https://doi.org/10.1007/978-3-030-60508-7_5
https://doi.org/10.22028/D291-37014
https://doi.org/10.1007/978-3-030-32079-9_6

648 J. Baumeister et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Ábrahám, Erika I-131
Adelt, Julius II-208
Akshay, S. I-111
Aldinucci, Marco I-226
Ammar, Nejib II-267
An, Jie I-620, II-286
Arcaini, Paolo II-286

B
Bae, Kyungmin I-425
Baier, Daniel II-543
Baldauf, Jake Brandon I-381
Barbosa, Haniel II-571
Bargmann, Lara I-519
Barrett, Clark I-658, II-571
Barros, Ana II-104
Basin, David I-29
Baumeister, Jan II-624
Baumeister, Tom I-638
Beckert, Bernhard II-597
Bergersen, Gunnar R. II-167
Beutner, Raven II-67
Beyer, Dirk II-39, II-543
Blicha, Martin I-558
Bombarda, Andrea II-492
Bonfanti, Silvia II-492
Bono, Viviana I-226
Bordais, Benjamin I-304
Bordis, Tabea I-151
Brain, Martin II-393
Britikov, Konstantin I-558
Bubel, Richard II-597
Bury, Guillaume II-76
Busany, Nimrod I-245

C
Cai, Shaowei I-55
Calinescu, Radu II-356
Chakraborty, Supratik I-111
Chambart, Pierre II-76
Chatterjee, Krishnendu I-600

Chen, Guangke I-343
Chen, Mingshuai I-538
Chen, Taolue II-189
Chien, Po-Chun II-543
Chin, Wei-Ngan I-501
Colonnelli, Iacopo I-226
Coopmans, Tim II-420
Coughlin, Nicholas I-482
Courant, Nathanaëlle II-76
Cunha, Alcino II-104

D
De Giacomo, Giuseppe I-579
Dedden, Frank II-469
Dell’Erba, Daniele II-48
Deng, Weilin II-338
Di Stasio, Antonio I-579
Ding, Jianqiang II-140
Dong, Jin Song I-343
Dong, Zhen I-285
Dongol, Brijesh I-519
Drodt, Daniel II-597
Dutta, Souradeep I-381

E
Ehlers, Rüdiger I-170
Eichler, Paul I-638

F
Fang, Jian I-538
Fang, Wang I-403
Fedyukovich, Grigory I-558
Feliu, Marco A. II-20
Feng, Shenghua II-229, II-248
Finkbeiner, Bernd II-67, II-624
Foo, Darius I-501
Frohn, Florian I-73
Fu, Yubao II-325
Furia, Carlo A. I-285

G
Gan, Ting I-92, II-248
Ganlath, Akila II-267

© The Editor(s) (if applicable) and The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 649–652, 2025.
https://doi.org/10.1007/978-3-031-71177-0

https://doi.org/10.1007/978-3-031-71177-0

650 Author Index

Gao, Qiang I-620
Gargantini, Angelo II-492
Garlan, David II-267
Geng, Yuang I-381
Gerasimou, Simos II-356
Giesl, Jürgen I-73
Göbl, Angelina II-67
Goharshady, Amir Kafshdar I-111
Goharshady, Amir I-600
Goharshady, Ehsan I-600
Goodloe, Alwyn E. II-469
Goubault, Eric I-324
Govind, R. I-111
Greenman, Ben I-579
Gu, Yinyou II-325
Guan, Ji I-403

H
Hähnle, Reiner II-597
Hartmanns, Arnd I-206
Hasuo, Ichiro I-620, II-286
He, Xiang I-55
Herber, Paula II-208
Hofmeier, Xenia I-29
Huang, Chao I-381
Huang, Lin II-307
Hupel, Lars II-3

I
Imrie, Calum II-356
Inverso, Omar I-443

J
Jacobs, Swen I-638
Jakobs, Marie-Christine II-543
Jankola, Marek II-543
Janota, Mikoláš I-463
Ji, Juntao II-325
Ji, Ruyi I-538
Jiang, Xuanlin I-538
Johnsen, Einar Broch II-167
Jongmans, Sung-Shik II-158
Junges, Sebastian I-267

K
Kang, Eunsuk II-267
Kapoor, Parv II-267
Karrabi, Mehrdad I-600
Kettl, Matthias II-543

Klein, Dan I-245
Kobialka, Paul II-167
Kohlen, Bram I-206
Kohn, Florian II-624
Krishnamurthi, Shriram I-579
Kruger, Loes I-267
Kwiatkowska, Marta I-3, I-363

L
Laarman, Alfons II-420
Lam, Kait I-482
Lammich, Peter I-206
Lanzinger, Florian II-597
Laurenti, Luca I-3
Laviron, Vincent II-76
Lee, Jaeseo I-425
Lee, Nian-Ze II-543
Leino, K. Rustan M. I-151
Lemberger, Thomas II-543
Leuschel, Michael II-122
Li, Bohan I-55
Li, Wei II-338
Li, Xiakun I-92
Li, Yong II-48
Liang, Zhen II-140
Lin, Qingshan II-325
Lin, Yanling I-403
Lingsch-Rosenfeld, Marian II-543

M
Macedo, Nuno II-104
Manquinho, Vasco I-463
Maoz, Shahar I-245
Martina, Maurizio II-373
Masci, Paolo II-20
Medić, Doriana I-226
Mei, Jingyi II-420
Meira-Góes, Rômulo II-267
Mensing, Robert II-208
Mishra, Shatadal II-267
Montali, Marco I-579
Moscato, Mariano II-20
Motwani, Harshit Jitendra I-111
Mulone, Alberto I-226
Muñoz, César A. II-20
Murray, Toby I-188

N
Neider, Daniel I-304
Nelson, Tim I-579

Author Index 651

Nenchev, Vladislav II-356
Neto, Henrique II-104
Niemetz, Aina II-571
Norman, Gethin I-363

O
Ohrimenko, Olga I-188
Orvalho, Pedro I-463

P
Padovani, Luca I-226
Paiva, Ana C. R. II-104
Parker, David I-363
Patane, Andrea I-3
Pereira, Mário II-518
Perez, Ivan II-469
Pfeifer, Wolfram II-597
Pferscher, Andrea II-167
Pham, Van-Thuan I-188
Polgreen, Elizabeth II-393
Pombo, Carlos G. Lopez II-84
Prakash, Jyoti I-285
Prasad, Siddhartha I-579
Preiner, Mathias II-571
Promies, Valentin I-131
Przybocki, Benjamin I-658
Putot, Sylvie I-324

Q
Quist, Arend-Jan II-420

R
Raia, Gaetano II-373
Reynolds, Andrew II-571
Riccobene, Elvinia II-492
Rigano, Gianluca II-373
Rot, Jurriaan I-267
Roy, Rajarshi I-304
Ruchkin, Ivan I-381

S
Sakr, Mouhammad I-638
Sales, Emerson I-443
Santos, Gabriel I-363
Sasse, Ralf I-29
Scandurra, Patrizia II-492
Scheerer, Frederik II-624
Schewe, Sven II-48
Shalom, Rafi I-245

Sharygina, Natasha I-558
Sison, Robert I-188
Smith, Graeme I-482
Song, Fu I-343, II-189
Song, Yahui I-501
Stoelinga, Mariëlle II-447
Stübinger, Terru II-3
Su, Han II-229
Su, Zhaofeng I-403
Sun, Jun I-343
Sun, Yican I-538
Suñé, Agustín Eloy Martinez II-84

T
Tan, Huiyu II-189
Tapia Tarifa, Silvia Lizeth II-167
Tinelli, Cesare II-571
Titolo, Laura II-20
Tiwari, Abhishek I-285
Toledo, Guilherme I-658
Toro-Pozo, Jorge I-29
Tuosto, Emilio I-443, II-84

U
Ulbrich, Mattias II-597

V
Valnet, Milla II-76
Varanasi, Sai Teja I-111
Vincenzoni, David II-373
Völp, Marcus I-638

W
Wachowitz, Henrik II-39, II-543
Wang, Hanfeng II-338
Wang, Jie I-92, II-248
Wang, Lingtai I-620
Wang, Minghua II-307
Wang, Xilong II-338
Wehrheim, Heike I-519
Wei, Tao II-307
Weigl, Alexander II-597
Wendler, Philipp II-543
Wicker, Matthew I-3
Winter, Kirsten I-482
Wu, Hao I-92, II-248
Wu, Taoran II-140
Wu, Zhilin II-189

652 Author Index

X
Xia, Bican I-92, II-248
Xiong, Yingfei I-538
Xue, Bai II-140
Xue, Jingling II-307

Y
Yan, Pengbo I-188
Yan, Rui I-363
Yang, Xi II-189
Yang, Zhibin II-338
Ying, Mingsheng I-403

Z
Zhan, Naijun I-92, I-620, II-229, II-248
Zhan, Sinong II-229
Zhang, Changjian II-267
Zhang, Yedi I-343
Zhang, Zhenya II-286
Zhao, Mengyu I-55
Zhou, Yong II-338
Zhu, Shufang I-579
Zi, Yuan II-307
Žikelić, Ðor -de I-600
Zizyte, Milda I-579
Zohar, Yoni I-658, II-571

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Tools and Case Studies
	Extending Isabelle/HOL's Code Generator with Support for the Go Programming Language
	1 Introduction
	2 The Intermediate Language Thingol
	3 The Target Fragment of Go
	3.1 Syntax
	3.2 Declarations
	3.3 Expressions
	3.4 Statements

	4 Translation Scheme
	4.1 Types, Terms and Statements
	4.2 Data Types
	4.3 Case Expressions
	4.4 Top-Level Functions
	4.5 Dictionary Construction
	4.6 Mapping High-Level Constructs

	5 Evaluation
	5.1 Case Studies

	6 Conclusion
	References

	Rigorous Floating-Point Round-Off Error Analysis in PRECiSA 4.0
	1 Introduction
	2 PRECiSA
	3 Optimized Modular Function Call Analysis
	4 Data Collections and Bounded Recursion Support
	5 Floating-Point Formalization
	6 VSCode-PRECiSA User Interface
	7 Related Work
	8 Conclusion
	References

	FM-Weck: Containerized Execution of Formal-Methods Tools
	DFAMiner: Mining Minimal Separating DFAs from Labelled Samples
	1 Introduction
	2 Preliminaries
	3 DFAMiner
	3.1 Main Problem
	3.2 Workflow Description

	4 Incremental Construction of 3DFAs
	4.1 Prior Construction of 3DFAs
	4.2 Incremental Construction of 3DFAs

	5 Finding Separating Min-DFAs Using SAT Solvers
	6 Applications
	6.1 Active Learning of Separating Min-DFAs
	6.2 Learning Separating Automata for Parity Games

	7 Evaluation
	8 Discussion and Future Work
	References

	Visualizing Game-Based Certificates for Hyperproperty Verification
	1 Introduction
	2 HyperLTL, Game-Based Verification, and Prophecies
	2.1 Game-Based Verification
	2.2 Prophecies

	3 HyGaViz: Tool Overview
	4 Conclusion
	References

	Chamelon : A Delta-Debugger for OCaml
	1 Introduction
	2 Tool Usage
	2.1 Development Context
	2.2 Usage
	2.3 Experimental Results

	3 Heuristics
	3.1 Suppress Definitions
	3.2 Simplify Abstract Data Types
	3.3 Simplify Code
	3.4 Remove Simplification Artifacts

	4 The Iteration
	5 Extensions
	6 Conclusion
	References

	Automated Static Analysis of Quality of Service Properties of Communicating Systems
	1 Introduction
	2 Preliminaries
	3 A Bounded Model Checker for QoS
	4 Evaluation
	4.1 SLA in the Amazon Cloud
	4.2 Model Extraction
	4.3 Performance

	5 Related Work
	6 Conclusions and Future Work
	References

	Alloy Repair Hint Generation Based on Historical Data
	1 Introduction
	2 Teaching Alloy with Alloy4Fun
	3 Automatic Hint Generation
	4 Hints from Historical Alloy Data
	4.1 Hint Graph Construction
	4.2 Finding the Optimal Next State
	4.3 Hint Message Generation
	4.4 Handling Missing Hits
	4.5 Deployment in Alloy4Fun

	5 Evaluation
	5.1 Quantitative Evaluation
	5.2 Qualitative Evaluation

	6 Conclusion
	References

	B2SAT: A Bare-Metal Reduction of B to SAT
	1 Introduction
	2 Cook's Theorem in B
	3 The B2SAT Approach
	4 Applications and Experiments
	5 Experiments
	6 Related and Future Work
	References

	PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python
	1 Introduction
	2 Architecture and Features
	2.1 Architecture
	2.2 Features

	3 Evaluation
	3.1 Comparative Studies on the Use of Boundary Analysis
	3.2 Comparative Studies on Reachability Analysis

	4 Conclusion
	References

	Discourje: Run-Time Verification of Communication Protocols in Clojure — Live at Last
	1 Introduction
	2 Demonstration
	3 Technical Details
	4 Conclusion
	References

	Stochastic Games for User Journeys
	1 Introduction
	2 Preliminaries
	3 Case Study Overview
	4 From Logs to Stochastic Games
	5 Queries for Stochastic User Journey Games
	6 Model Reduction for Visualization
	7 Case Study Results
	8 Related Work
	9 Conclusion
	References

	Embedded Systems Track
	Compositional Verification of Cryptographic Circuits Against Fault Injection Attacks
	1 Introduction
	2 Preliminaries
	3 The Fault-Resistance Verification Problem
	3.1 Security Notions
	3.2 Motivating Example

	4 Compositional Verification
	4.1 Overview of the Approach
	4.2 The Decomposition
	4.3 SAT/SMT-Based Verification
	4.4 BDD-Based Verification
	4.5 Acceleration Techniques

	5 Implementation and Evaluation
	5.1 Effectiveness of Acceleration Techniques
	5.2 Evaluation of Compositional Verification

	6 Related Work
	7 Conclusion
	References

	Reusable Specification Patterns for Verification of Resilience in Autonomous Hybrid Systems
	1 Introduction
	2 Preliminaries and Case Studies
	2.1 Case Studies in Simulink
	2.2 Differential Dynamic Logic dL and Simulink2dL
	2.3 Reusable Contracts for Safe Integration of Learning

	3 Reusable Patterns for Deductive Verification of Resilience in Autonomous Hybrid Systems
	3.1 Formalization of Resilience Using Service Levels
	3.2 Reusable Stressor Patterns
	3.3 Safe Integration of Learning Using Resilience Contract Patterns
	3.4 Reusable Observer Patterns

	4 Evaluation
	5 Related Work
	6 Conclusion and Outlook
	References

	Switching Controller Synthesis for Hybrid Systems Against STL Formulas
	1 Introduction
	2 An Illustrative Prelude
	3 Notations and Problem Formulation
	4 State-Time Set and Its Calculation
	4.1 State-Time Sets
	4.2 Computing/Approximating State-Time Sets

	5 Synthesizing Switched Systems
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	References

	On Completeness of SDP-Based Barrier Certificate Synthesis over Unbounded Domains
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	4 A Complete Characterization of Polynomial Barrier Certificates
	5 Homogenized Systems and Semialgebraic Barrier Certificates
	6 Experiments
	7 Conclusion
	References

	Tolerance of Reinforcement Learning Controllers Against Deviations in Cyber Physical Systems
	1 Introduction
	2 Preliminaries
	3 Motivating Example
	4 Tolerance Definition
	4.1 Definition of Specification-Based Tolerance
	4.2 Strict Evaluation of Tolerance

	5 Tolerance Analysis
	5.1 Tolerance Falsification
	5.2 Minimum Tolerance Falsification
	5.3 Falsification by Optimization

	6 Simulation-Based Tolerance Analysis Framework
	6.1 A Two-Layer Falsification Algorithm
	6.2 Heuristic for Efficient Minimum Tolerance Falsification

	7 Evaluation
	7.1 Experimental Setup and Implementational Details
	7.2 Results

	8 Related Work
	9 Conclusion
	References

	CauMon: An Informative Online Monitor for Signal Temporal Logic
	1 Introduction
	2 Preliminaries
	2.1 Signal Temporal Logic
	2.2 Online Robust Monitoring of STL

	3 Overview of Causation Monitoring
	4 Efficient Causation Monitoring
	4.1 Intermediate Result Recording
	4.2 Sliding Window Algorithm

	5 Demonstration of CauMon
	6 Experimental Evaluation
	6.1 Experiment Setting
	6.2 Evaluation

	7 Conclusion and Future Work
	References

	Industry Day Track
	UnsafeCop: Towards Memory Safety for Real-World Unsafe Rust Code with Practical Bounded Model Checking
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Verification Scope and Proof Harness
	3.2 Loop Bound Inference
	3.3 Loop Stubbing
	3.4 Scheduling Strategy
	3.5 Memory-Safety Verification

	4 Evaluation
	4.1 Harness Design
	4.2 Improvements on Verification Efficiency
	4.3 Effectiveness
	4.4 Insights and Lessons Learned with Suggestions

	5 Conclusion
	References

	Beyond the Bottleneck: Enhancing High-Concurrency Systems with Lock Tuning
	1 Introduction
	2 Preliminaries
	2.1 Apache RocketMQ
	2.2 Spin-Lock

	3 Modeling Spin-Lock Overheads
	3.1 Fundamental Assumptions
	3.2 Modeling Process
	3.3 Validation

	4 Spin-Lock Fine-Tuning
	4.1 Strategy Overview

	5 Experiment
	5.1 Variables
	5.2 Experimental Procedure

	6 Conclusion & Future Work
	References

	AGVTS: Automated Generation and Verification of Temporal Specifications for Aeronautics SCADE Models
	1 Introduction
	2 Global View of the AGVTS Method
	3 Modular Pattern-Based Language
	4 Rule-Based Translation Augmented with BERT
	5 SCADE2nuXmv Model Transformation
	6 Industrial Case Studies and Evaluation
	6.1 Ejection Seat Control System
	6.2 Implementation and Experiments
	6.3 Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References

	Code-Level Safety Verification for Automated Driving: A Case Study
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Framework
	4.1 Computing the Safe Set
	4.2 Verification of Controller Implementations
	4.3 Verification Decomposition for Large Neural Network Controllers

	5 Experiments
	5.1 Setup
	5.2 Experimental Results
	5.3 Discussion

	6 Conclusions
	References

	A Case Study on Formal Equivalence Verification Between a C/C++ Model and Its RTL Design
	1 Introduction
	2 Formal Equivalence Checking in C-vs-RTL Scenarios
	2.1 JasperTM C2RTL App

	3 The Verification Flow
	4 Reconstruction of FSM-Like Datapath Behavior
	4.1 Specifications
	4.2 Verification Strategy
	4.3 Results

	5 Decomposition of a Complex Cone of Influence
	5.1 Specifications
	5.2 Verification Strategy
	5.3 Results

	6 Proving the Equivalence with a MATLAB®-derived C Code
	6.1 Specifications
	6.2 Verification Strategy
	6.3 Results

	7 Conclusion
	References

	Tutorial Papers
	A Pyramid Of (Formal) Software Verification
	1 Introduction
	2 A Pyramid of Verification
	3 Six Schools of Verification
	3.1 Static Analysis
	3.2 Abstract Interpretation
	3.3 Testing and Symbolic Execution
	3.4 Software Model Checking
	3.5 Deductive Verification
	3.6 Functional Verification

	4 Specifications
	4.1 Ways of Expressing Specifications

	5 Using the Pyramid
	5.1 Process
	5.2 Understanding Tool Evaluation

	6 Conclusion
	References

	Advancing Quantum Computing with Formal Methods
	1 Introduction
	2 Quantum Computing for Computer Scientists
	2.1 From Reversible, via Probabilistic, to Quantum Circuits
	2.2 Building Blocks of Quantum Circuits
	2.3 Visualizing a Quantum Computation Using an Automaton
	2.4 Towards a Quantum Advantage
	2.5 Our Scope: Quantum Circuit Simulation

	3 Reducing Quantum Computing to #SAT
	3.1 SAT and #SAT
	3.2 Encoding Quantum States Using (Weighted) Boolean Variables
	3.3 Encoding Quantum Gates and Circuits to #SAT
	3.4 Encoding Measurements

	4 Wrap-Up
	References

	No Risk, No Fun
	1 Introduction
	1.1 Formal Methods and Risk Management
	1.2 Formal Methods Versus Risk Management
	1.3 This Tutorial

	2 Risk and Risk Management
	2.1 What Is Risk?
	2.2 Risk Categories
	2.3 Related Terminology

	3 The Ingredients of Risk
	3.1 Ingredient 1: Objectives
	3.2 Ingredient 2: Impact
	3.3 Ingredient 3: Uncertainty
	3.4 Uncertainty: Black Swans and the Rumsfeld Matrix

	4 Risk Strategies
	4.1 The Application of Risk Strategies
	4.2 Risk Management Versus Dependability Engineering

	5 Risk Management
	5.1 The Risk Management Cycle: Plan-Do-Check-Act
	5.2 The Risk Management Process
	5.3 Formal and Informal Methods for Risk Assessment

	6 ISO Standards, Risk Management and Formal Methods
	6.1 The Role of ISO Standards in Risk Management
	6.2 ISO Standards for Software Systems
	6.3 ISO Standards Recommending Formal Methods
	6.4 Research on Formal Methods for ISO Compliance

	7 Conclusion
	References

	Runtime Verification in Real-Time with the Copilot Language: A Tutorial
	1 Introduction
	2 History
	3 Background
	3.1 Trace Theory
	3.2 Sampling

	4 Hello, Copilot!
	5 The Copilot Specification Language
	5.1 Streams
	5.2 Structs
	5.3 Arrays
	5.4 Monitors

	6 Logics and Languages
	6.1 Logical Operators
	6.2 Temporal Logics

	7 Integration Into Larger Systems
	7.1 Monitor Generation in C
	7.2 Integration

	8 Conclusion
	References

	ASMETA Tool Set for Rigorous System Design
	1 Introduction
	2 Abstract State Machines
	3 Overview of the ASMETA Toolset
	3.1 Getting and Using ASMETA

	4 The Pill-Box Case Study
	5 AsmetaL: The ASMETA Language
	6 Model Simulation
	6.1 Model Animation

	7 Scenario-Based Validation
	8 Model Review
	9 Formal Verification Through Model Checking
	10 Model Refinement
	10.1 Time Handling: pillbox_time
	10.2 Managing Multiple Pills: pillbox_final

	11 From an ASMETA Model to Code
	12 Conclusion
	References

	Practical Deductive Verification of OCaml Programs
	1 Introduction
	2 A Primer on GOSPEL
	3 The Cameleer Verification Tool
	3.1 A Simple Functional Program the Merge Routine
	3.2 Searching an Element Within an Array

	4 Purely Functional Programming
	4.1 Same Fringe Comparing Two Binary Trees
	4.2 Summary

	5 Imperative Programs
	5.1 Boyer-Moore MJRTY Algorithm
	5.2 Summary

	6 Related Work
	7 Conclusions and Future Perspectives
	References

	 Software Verification with CPAchecker 3.0: Tutorial and User Guide
	Satisfiability Modulo Theories: A Beginner's Tutorial
	1 Introduction
	2 Overview
	3 Formal Foundations
	3.1 Syntax
	3.2 Semantics
	3.3 Theories

	4 SMT Theories
	4.1 Core Theory and Uninterpreted Symbols
	4.2 Arithmetic
	4.3 Arrays
	4.4 Bit-Vectors
	4.5 Datatypes
	4.6 Floating-Point Arithmetic
	4.7 Strings
	4.8 Quantifiers
	4.9 Non-standard Theories
	4.10 Combinations of Theories

	5 SMT Solver Outputs
	6 Conclusion
	References

	The Java Verification Tool KeY:A Tutorial
	1 Introduction
	2 Verification Approach
	2.1 The Principle of Contract-Based Verification
	2.2 Method Contracts
	2.3 Java Modeling Language
	2.4 Dynamic Logic
	2.5 State Updates
	2.6 A JavaDL Calculus
	2.7 Forward Symbolic Execution of Straight-Line Programs
	2.8 Procedure-Modular Verification: Contracts and Method Calls
	2.9 Proving the Contract of Binary Search

	3 Towards Real Java
	3.1 Aliasing: State Updates on the Heap
	3.2 Loop Invariants in JML and JavaDL
	3.3 Exceptions in JML and JavaDL
	3.4 Integer Semantics

	4 Inside KeY's Core
	4.1 Prover Architecture
	4.2 Taclets

	5 Advanced Concepts for Object-Orientation
	5.1 Ghost and Model Fields, Model Methods
	5.2 Dynamic Frames

	6 KeY as a Tool for the Community
	6.1 KeY as a Tool to Verify Real-World Software
	6.2 KeY for Teaching
	6.3 KeY as Library and Research Platform
	6.4 Open Source and Open Development

	References

	A Tutorial on Stream-Based Monitoring
	1 Introduction
	2 Overview
	2.1 Running Example

	3 Stream-Based Specifications
	3.1 Semantics
	3.2 Evaluation Algorithm

	4 Event-Based and Periodic Streams
	4.1 Periodic Streams

	5 Stream Lifecycle
	5.1 Deadline Watchdogs

	6 Parameterization
	7 Development and Integration
	7.1 RTLola CLI

	8 Conclusion
	References

	Author Index

