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Abstract: We formulate a data-independent latent space regularization constraint for general unsu-
pervised autoencoders. The regularization relies on sampling the autoencoder Jacobian at Legendre
nodes, which are the centers of the Gauss–Legendre quadrature. Revisiting this classic allows us
to prove that regularized autoencoders ensure a one-to-one re-embedding of the initial data man-
ifold into its latent representation. Demonstrations show that previously proposed regularization
strategies, such as contractive autoencoding, cause topological defects even in simple examples, as
do convolutional-based (variational) autoencoders. In contrast, topological preservation is ensured
by standard multilayer perceptron neural networks when regularized using our approach. This
observation extends from the classic FashionMNIST dataset to (low-resolution) MRI brain scans,
suggesting that reliable low-dimensional representations of complex high-dimensional datasets can
be achieved using this regularization technique.

Keywords: autoencoder; regularization; data manifold learning

MSC: 53A07; 57R40; 53C22

1. Introduction

Systematic analysis and post-processing of high-dimensional and high-throughput
datasets [1,2] is a current computational challenge across disciplines such as neuroscience [3–5],
plasma physics [6–8], and cell biology and medicine [9–12]. In the machine learning (ML)
community, autoencoders (AEs) are commonly considered the central tool for learning a
low-dimensional one-to-one representation of high-dimensional datasets. These representa-
tions serve as a baseline for feature selection and classification tasks, which are prevalent in
bio-medicine [13–17].

AEs can be considered as a non-linear extension of classic principal component analysis
(PCA) [18–20]. Comparisons for linear problems are provided in [21]. While addressing the
non-linear case, AEs face the challenge of preserving the topological data structure under
AE compression.

To state the problem: We mathematically formalize AEs as pairs of continuously differ-
entiable maps (φ, ν), φ : Ωm2 −→ Ωm1 , ν : Ωm1 −→ Ωm2 , 0 < m1 < m2 ∈ N, defined on
bounded domains Ωm1 ⊆ Rm1 and Ωm2 ⊆ Rm2 . Commonly, φ is termed the encoder, and ν
the decoder. We assume that the data D ⊆ D is sampled from a regular or even smooth data
manifold D ⊆ Ωm2 , with dimD = m0 ≤ m1.
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We seek to find proper AEs (φ, ν) yielding homeomorphic latent representations
φ(D) = D′ ∼= D. In other words, the restrictions φ|D : D −→ D′ and ν|D′ : D′ −→ D of
the encoder and decoder result in one-to-one maps, being inverse to each other:

D ∼= D′ = φ(D) ⊆ Ωm1 , ν(φ(x)) = x , for all x ∈ D . (1)

While the second condition in Equation (1) is usually realized by minimization of a recon-
struction loss, this is insufficient for guaranteeing the one-to-one representation D ∼= D′.

To realize AEs matching both requirements in Equation (1), we strengthen the condi-
tion by requiring the decoder to be an embedding of the whole latent domain Ωm1 ⊃ D,
including ν(Ωm1) ⊃ D in its interior. See Figure 1 for an illustration. We mathematically
prove and empirically demonstrate this latent regularization strategy to deliver regularized
AEs (AR-REG), satisfying Equation (1).

Figure 1. Illustration of the latent representation D′ = φ(D) ⊆ Ωm1 of the data manifold D ⊆ Ωm2 ,
dimD = m0 < m1 < m2 ∈ N given by the autoencoder (φ, ν). The decoder is a one-to-one
mapping of the hypercube Ωm1 to its image ν(Ωm1 ) ⊃ D, including D in its interior and consequently
guaranteeing Equation (1).

Our investigations are motivated by recent results of Hansen et al. [22–24], com-
plementing other contributions [25–27] that investigate instabilities of machine learning
methods from a general mathematical perspective.

1.1. The Inherent Instability of Inverse Problems

The instability phenomenon of inverse problems states that, in general, one cannot guar-
antee solutions of inverse problems to be stable. An excellent introduction to the topic is
given in [22] with deeper treatments and discussions in [23,24].

In our setup, these insights translate to the fact that, in general, the local Lipschitz constant

Lε(ν, y) = sup
0<∥y′−y∥<ε

∥ν(y′)− ν(y)∥
∥y′ − y∥ , ε > 0

of the decoder ν : Ωm1 −→ Ωm2 at some latent code y ∈ Ω1 might be unbounded.
Consequently, small perturbations y′ ≈ y of the latent code can result in large differences of
the reconstruction ∥ν(y′)− ν(y)∥ ≫ 0. This fact generally applies and can only be avoided
if an additional control on the null space of the Jacobian of the encoder ker J(φ(x)) is given.
Providing this control is the essence of our contribution.
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1.2. Contribution

Avoiding the aforementioned instability, requires the null space of the Jacobian of the
encoder ker J(φ) to be perpendicular to the tangent space of D

ker J(φ) ⊥ TD . (2)

In fact, due to the inverse function theorem, see, e.g., [28,29], the conditions Equations (1) and (2)
are equivalent. In Figure 1, ker J(φ) is illustrated to be perpendicular to the image of the
whole latent domain Ωm1

ker J(φ) ⊥ Tν(Ωm1) , ν(Ωm1) ⊇ D ,

being sufficient for guaranteeing Equation (2), and consequently, Equation (1).
While several state-of-the-art AE regularization techniques are commonly estab-

lished, none of them specifically formulates this necessary mathematical requirement in
Equation (2). Consequently, we are not aware of any regularization approach that can
theoretically guarantee the regularized AE to preserve the topological data-structure, as we
do in Theorem 1. Our computational contributions split into:

(C1) For realising a latent space regularized AE (AE-REG) we introduce the L2-
regularization loss

Lreg(φ, ν) = ∥J(φ ◦ ν)− I∥2
L2(Ωm1 )

(3)

and mathematically prove the AE-REG to satisfy condition Equation (1), Theorem 1,
when being trained due to this additional regularization.

(C2) To approximate Lreg(φ, ν) we revisit the classic Gauss–Legendre quadratures (cu-
batures) [30–34], only requiring sub-sampling of J(ν ◦ φ)(pα), pα ∈ Pm,n on a
Legendre grid of sufficient high resolution 1 ≪ |Pm,n| in order to execute the reg-
ularization. While the data-independent latent Legendre nodes Pm,n ⊆ Ωm1 are
contained in the smaller dimensional latent space, regularization of high resolution
can be efficiently realised.

(C3) Based on our prior work [35–37], and [38–41], we complement the regulariza-
tion through a hybridisation approach combining autoencoders with multivariate
Chebyshev-polynomial-regression. The resulting Hybrid AE is acting on the poly-
nomial coefficient space, given by pre-encoding the training data due to high-
quality regression.

We want to emphasize that the proposed regularization is data-independent in the
sense that it does not require any prior knowledge of the data manifold, its embedding,
or any parametrization of D. Moreover, while being integrated into the loss function,
the regularization is independent of the AE architecture and can be applied to any AE
realizations, such as convolutional or variational AEs. Our results show that already
regularized MLP-based AEs perform superior to these alternatives.

As we demonstrate, the regularization yields the desired re-embedding, enhances the
autoencoder’s reconstruction quality, and increases robustness under noise perturbations.

1.3. Related Work—Regularization of Autoencoders

A multitude of supervised learning schemes, addressing representation learning
tasks, are surveyed in [42,43]. Self-supervised autoencoders rest on inductive bias learning
techniques [44,45] in combination with vectorized autoencoders [46,47]. However, the
mathematical requirements, Equations (1) and (2) were not considered in these strategies at
all. Consequently, one-to-one representations might only be realized due to a well-chosen
inductive bias regularization for rich datasets [9].

This article focus on regularization techniques of purely unsupervised AEs. We want
to mention the following prominent approaches:
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(R1) Contractive AEs (ContraAE) [48,49] are based on an ambient Jacobian regulariza-
tion loss

L∗
reg(φ, ν) = ∥J(ν ◦ φ)− I∥2

L2(Ωm2 )
(4)

formulated in the ambient domain. This makes contraAEs arbitrarily contractive in
perpendicular directions (TD)⊥ of TD. However, this is insufficient to guarantee
Equation (1). In addition, the regularization is data dependent, resting on the
training dataset, and is computationally costly due to the large Jacobian J ∈ Rm2×m2 ,
m2 ≫ m1 ≥ 1. Several experiments in Section 5 demonstrate contraAE failing to
deliver topologically preserved representations.

(R2) Variational AEs (VAE), along with extensions like β-VAE, consist of stochastic en-
coders and decoders and are commonly used for density estimation and generative
modelling of complex distributions based on minimisation of the Evidence Lower
Bound (ELBO) [50,51]. The variational latent space distribution induces an implicit
regularization, which is complemented by [52,53] due to a l1-sparsity constraint of
the decoder Jacobian.
However, as the contraAE-constraint, this regularization is computationally costly
and insufficient for guaranteeing a one-to-one encoding, which is reflected in the
degenerated representations appearing in Section 5.

(R3) Convolutional AEs (CNN-AE) are known to deliver one-to-one representations for
a generic setup theoretically [54]. However, the implicit convolutions seems to
prevent clear separation of tangent TD and perpendicular direction (TD)⊥ of the
data manifold D, resulting in topological defects already for simple examples, see
Section 5.

2. Mathematical Concepts

We provide the mathematical notions on which our approach rests, starting by fixing
the notation.

2.1. Notation

We consider neural networks (NNs) ν(·, w) of fixed architecture Ξm1,m2 , specifying
number and depth of the hidden layers, the choice of piece-wise smooth activation functions
σ(x), e.g., ReLU or sin, with input dimension m1 and output dimension m2. Further, ΥΞm1,m2

denotes the parameter space of the weights and bias w = (v, b) ∈ W = V × B ⊆ RK, K ∈ N,
see, e.g., [55,56].

We denote with Ωm = (−1, 1)m the m-dimensional open standard hypercube, with ∥ · ∥
the standard Euclidean norm on Rm and with ∥ · ∥p, 1 ≤ p ≤ ∞ the lp-norm. Πm,n =
span{xα}∥α∥∞≤n denotes the R-vector space of all real polynomials in m variables spanned
by all monomials xα = ∏m

i=1 xαi
i of maximum degree n ∈ N and Am,n = {α ∈ Nm : ∥α∥∞ =

maxi=1,...,m{|αi|} ≤ n} the corresponding multi-index set. For an excellent overview on
functional analysis we recommend [57–59]. Here, we consider the Hilbert space L2(Ωm,R)
of all Lebesgue measurable functions f : Ωm −→ R with finite L2-norm ∥ f ∥2

L2(Ωm)
< ∞

induced by the inner product

< f , g >L2(Ωm)=
∫

Ωm

f · g dΩm , f , g ∈ L2(Ω,R) . (5)

Moreover, Ck(Ωm,R), k ∈ N∪ {∞} denotes the Banach spaces of continuous functions being
k-times continuously differentiable, equipped with the norm

∥ f ∥Ck(Ωm) =
k

∑
i=0

sup
x∈Ωm

|Dα f (x)| , ∥α∥1 ≤ k .
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2.2. Orthogonal Polynomials and Gauss–Legendre Cubatures

We follow [30–33,60] for recapturing: Let m, n ∈ N and Pm,n = ⊕m
i=1Legn ⊆ Ωm

be the m-dimensional Legendre grids, where Legn = {p0, . . . , pn} are the n + 1 Leg-
endre nodes given by the roots of the Legendre polynomials of degree n + 2. We denote
pα = (pα1 , . . . , pαm) ∈ PAm,n , α ∈ Am,n. The Lagrange polynomials Lα ∈ ΠAm,n , defined by
Lα(pβ) = δα,β, ∀ α, β ∈ Am,n, where δ·,· denotes the Kronecker delta, are given by

Lα =
m

∏
i=1

lαi ,i , lj,i =
m

∏
j ̸=i,j=0

xi − pj

pi − pj
. (6)

Indeed, the Lα are an orthogonal L2-basis of Πm,n,

〈
Lα, Lβ

〉
L2(Ωm)

=
∫

Ωm

Lα(x)Lβ(x)dΩm = wαδα,β , (7)

where the Gauss–Legendre cubature weight wα = ∥Lα∥2
L2(Ωm)

can be computed numerically.
Consequently, for any polynomial Q ∈ Πm,2n+1 of degree 2n + 1 the following cubature
rule applies: ∫

Ωm

Q(x)dΩm = ∑
α∈Am,n

wαQ(pα) . (8)

Thanks to |Pm,n| = (n + 1)m ≪ (2n + 1)m this makes Gauss–Legendre integration a very
powerful scheme, yielding

⟨Q1, Q2⟩L2(Ωm) = ∑
α∈Am,n

Q1(pα)Q2(pα)wα , (9)

for all Q1, Q2 ∈ Πm,n.
In light of this fact, we propose the following AE regularization method.

3. Legendre-Latent-Space Regularization for Autoencoders

The regularization is formulated from the perspective of classic differential geometry,
see, e.g., [28,61–63]. As introduced in Equation (1), we assume that the training data
Dtrain ⊆ D ⊆ Rm2 is sampled from a regular data manifold. We formalise the notion
of autoencoders:

Definition 1 (autoencoders and data manifolds). Let 1 ≤ m0 ≤ m1 ≤ m2 ∈ N, D ⊆ Ωm2 be
a (data) manifold of dimension dimD = m0. Given continuously differentiable maps φ : Ωm2 −→
Ωm1 , ν : Ωm1 −→ Ωm2 such that:

(i) ν is a right-inverse of φ on D, i.e, ν(φ(x)) = x for all x ∈ D.
(ii) φ is a left-inverse of ν, i.e, φ(ν(y)) = y for all y ∈ Ωm1

Then we call the pair (φ, ν) a proper autoencoder with respect to D.

Given a proper AE (φ, ν), φ yields a low dimensional homeomorphic re-embedding of
D ∼= D′ = φ(D) ⊆ Rm1 as demanded in Equation (1) and illustrated in Figure 1, fulfilling
the stability requirement of Equation (2).

We formulate the following losses for deriving proper AEs:

Definition 2 (regularization loss). Let D ⊆ Ωm2 be a C1-data manifold of dimension dimD =
m0 < m1 < m2 and ∅ ̸= Dtrain ⊆ D be a finite training dataset. For NNs φ(·, u) ∈ Ξm2,m1 ,
ν(·, w) ∈ Ξm1,m2 with weights (u, w) ∈ ΥΞm2,m1

× ΥΞm1,m2
, we define the loss

LDtrain,n : ΥΞm2,m1
× ΥΞm1,m2

−→ R+ , LDtrain,n(u, w) = L0(Dtrain, u, w) + λL1(u, w, n) ,
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where λ > 0 is a hyper-parameter and

L0(Dtrain, u, w) = ∑
x∈Dtrain

∥x − ν(φ(x, u), w)∥2 (10)

L1(u, w, n) = ∑
α∈Am1,n

∥ I − J
(

φ(ν(pα, w), u)
)
∥2 , (11)

with I ∈ Rm1×m1 denoting the identity matrix, pα ∈ Pm1,n be the Legendre nodes, and
J
(

φ(ν(pα, w)
)
∈ Rm1×m1 the Jacobian.

We show that the AEs with vanishing loss result to be proper AEs, Defintion 1.

Theorem 1 (Main Theorem). Let the assumptions of Definition 2 be satisfied, and φ(·, un) ∈
Ξm2,m1 , ν(·, wn) ∈ Ξm1,m2 be sequences of continuously differentiable NNs satisfying:

(i) The loss converges LDtrain,n(un, wn) −−−→n→∞
0.

(ii) The weight sequences converge

lim
n→∞

(un, wn) = (u∞, w∞) ∈ ΥΞm2,m1
× ΥΞm1,m2

.

(iii) The decoder satisfies ν(Ωm1 , wn) ⊇ D, ∀n ≥ n0 ∈ N for some n0 ≥ 1.

Then (φ(·, wn), ν(·, un)) −−−→
n→∞

(φ(·, w∞), ν(·, u∞)) uniformly converges to a proper au-
toencoder with respect to D.

Proof. The proof follows by combining several facts: First, the inverse function theorem [29]
implies that any map ρ ∈ C1(Ωm, Ωm) satisfying

J(ρ(x)) = I , ∀ x ∈ Ωm , and ρ(x0) = x0 , (12)

for some x0 ∈ Ωm is given by the identity, i.e., ρ(x) = x, ∀x ∈ Ωm.
Secondly, the Stone–Weierstrass theorem [64,65] states that any continuous map

ρ ∈ C0(Ωm, Ωm), with coordinate functions ρ(x) = (ρ1(x), . . . , ρm(x)) can be uniformly
approximated by a polynomial map Qn

ρ(x) = (Qn
ρ,1(x), . . . , Qn

ρ,m(x)), Qn
ρ,i(x) ∈ Πm,n,

1 ≤ i ≤ m, i.e, ∥ρ − Qn
ρ∥C0(Ωm) −−−→n→∞

0.

Thirdly, while the NNs φ(·, w), ν(·, u) depend continuously on the weights u, w, the
convergence in (ii) is uniform. Consequently, the convergence LDtrain,n(un, wn) −−−→

n→∞
0

of the loss implies that any sequence of polynomial approximations Qn
ρ(x) of the map

ρ(·) = φ(ν(·, w∞), u∞) satisfies

∑
α∈Am1,n

∥ I − J
(
Qn

ρ(pα)
)
∥2 = 0

in the limit for n → ∞. Hence, Equation (12) holds in the limit for n → ∞ and consequently
φ(ν(y, w∞), u∞) = Q∞

ρ (y) = y for all y ∈ Ωm1 yielding requirement (ii) of Definition 1.
Given that assumption (iii) is satisfied, in completion, requirement (i) of Definition 1

holds, finishing the proof.

Apart from ensuring topological maintenance, one seeks for high-quality reconstruc-
tions. We propose a novel hybridization approach, delivering both.

4. Hybridization of Autoencoders due to Polynomial Regression

The hybridisation approach rests on deriving Chebyshev Polynomial Surrogate Models
QΘ,d fitting the initial training data d ∈ Dtrain ⊆ Ωm2 . For the sake of simplicity, we
motivate the setup in case of images:
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Let d = (dij)1≤i,j≤r ∈ Rr×r be the intensity values of an image on an equidistant pixel
grid Gr×r = (gij)1≤i,j≤r ⊆ Ω2 of resolution r × r, r ∈ N. We seek for a polynomial

QΘ : Ω2 −→ R , QΘ ∈ Π2,n ,

such that evaluating QΘ, Θ = (θα)α∈A2,n ∈ R|A2,n | on Gr×r approximates d, i.e.,
QΘ(gij) ≈ dij for all 1 ≤ i, j ≤ r. We model QΘ in terms of Chebyshev polynomials of
first kind well known to provide excellent approximation properties [33,35]:

QΘ(x1, x2) = ∑
α∈A2,n

θαTα1(x1)Tα2(x2) . (13)

The expansion is computed due to standard least-square fits:

Θd = argmin
C∈R|A2,n |∥RC − d∥2 , (14)

where R = (Tα(gij))1≤i,j,≤n,α∈A2,n ∈ Rr2×|A2,n |, Tα = Tα1 · Tα2 denotes the regression matrix.
Given that each image (training point) d ∈ Dtrain can be approximated with the same

polynomial degree n ∈ N, we posterior train an autoencoder (φ, ν), only acting on the
polynomial coefficient space φ : R|A2,n | −→ Ωm1 , νΩm1 −→ R|A2,n | by exchanging the loss
in Equation (10) due to

L∗
0(Dtrain, u, w) = ∑

d∈Dtrain

∥d − R · ν(φ(Θd, u), w)∥2 (15)

In contrast to the regularization loss in Definition 2, here, pre-encoding the training
data due to polynomial regression decreases the input dimension m2 ∈ N of the (NN)
encoder φ : Ωm2 −→ Ωm1 . In practice, this enables to reach low dimensional latent
dimension by increasing the reconstruction quality, as we demonstrate in the next section.

5. Numerical Experiments

We executed experiments, designed to validate our theoretical results, on HEMERA

a NVIDIA V100 cluster at HZDR. Complete code benchmark sets and supplements are
available at https://github.com/casus/autoencoder-regularisation, accessed on 2 June
2024. The following AEs were applied:

(B1) Multilayer perceptron autoencoder (MLP-AE): Feed forward NNs with activation
functions σ(x) = sin(x).

(B2) Convolutional autoencoder (CNN-AE): Standard convolutional neural networks (CNNs)
with activation functions σ(x) = sin(x), as discussed in (R3).

(B3) Variational autoencoder: MLP based (MLP-VAE) and CNN based (CNN-VAE) as in
[50,51], discussed in (R2).

(B4) Contractive autoencoder (ContraAE): MLP based with with activation functions
σ(x) = sin(x) as in [48,49], discussed in (R1).

(B5) regularized autoencoder (AE-REG): MLP based, as in (B1), trained with respect to the
regularization loss from Definition 2.

(B6) Hybridised AE (Hybrid AE-REG): MLP based, as in (B1), trained with respect to the
modified loss in Definition 2 due to Equation (15).

The choice of activation functions σ(x) = sin(x) yields a natural way for normalizing
the latent encoding to Ωm and performed best compared to trials with ReLU, ELU or
σ(x) = tanh(x). The regularization of AE-REG and Hybrid AE-REG is realized due to
sub-sampling batches from the Legendre grid Pm,n for each iteration and computing the
autoencoder Jacobians due to automatic differentiation [66].

https://github.com/casus/autoencoder-regularisation
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5.1. Topological Data-Structure Preservation

Inspired by Figure 1, we start by validating Theorem 1 for known data manifold
topologies.

Experiment 1 (Cycle reconstructions in dimension 15). We consider the unit circle S1 ⊆ R2,
a uniform random matrix A ∈ R15,2 with entries in [−2, 2] and the data manifold D = {Ax :
x ∈ S1 ⊆ R2}, being an ellipse embedded along some 2-dimensional hyperplane HA = {Ax : x ∈
R2} ⊆ R15. Due to Bezout’s Theorem [67,68], a 3-points sample uniquely determines a circle in
the 2-dimensional plane. Therefore, we executed the AEs for this minimal case of a set of random
samples |Dtrain| = 3, Dtrain ⊆ D as training set.

MLP-AE, MLP-VAE, and AE-REG consists of 2 hidden linear layers (in the encoder and
decoder), each of length 6. The degree of the Legendre grid Pm,n used for the regularization
of AE-REG was set to n = 21, Definition 2. CNN-AE and CNN-VAE consists of 2 hidden
convolutional layers with kernel size 3, stride of 2 in the first hidden layer and 1 in the
second, and 5 filters per layer. The resulting parameter spaces ΥΞ15,2 are all of similar size:
|ΥΞ15,2 | ∼ 400. All AEs were trained with the Adam optimizer [69].

Representative results out of 6 repetitions are shown in Figure 2. Only AE-REG
delivers a feasible 2D re-embedding, while all other AEs cause overlappings or cycle-
crossings. More examples are given in the supplements; whereas AE-REG delivers similar
reconstructions for all other trials while the other AEs fail in most of the cases.

(a) CNN-AE (b) CNN-VAE (c) ContraAE

(d) MLP-VAE (e) MLP-AE (f) AE-REG

Figure 2. Circle reconstruction using various autoencoder models.

Linking back to our initial discussions of ContraAE (R1): The results show that the
ambient domain regularization formulated for the ContraAE, is insufficient for guarantee-
ing a one-to-one encoding. Similarily, CNN-based AEs cause self-intersecting points. As
initially discussed in (R3), CNNs are invertible for a generic setup [54], but seem to fail
sharply separating tangent TD and perpendicular direction TD⊥ of the data manifold D.

We demonstrate the impact of the regularization to not belonging to an edge case by
considering the following scenario:
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Experiment 2 (Torus reconstruction). Following the experimental design of Experiment 1 we
generate challenging tori embeddings of a squeezed torus with radii 0 < r, R, r = 0.7 R = 2.0
in dimension m = 15 and dimension m = 1024 due to multiplication with random matrices
A ∈ [−1, 1]m×3. We randomly sample 50 training points |Dtrain| = 50, Dtrain ⊆ D and seek for
their 3D re-embedding due to the AEs. We choose a Legendre grid Pm,n of degree n = 21.

A show-case is given in Figure 3, visualized by a dense set of 2000 test points. As in
Experiment 1 only AE-REG is capable for re-embedding the torus in a feasible way.
MLP-VAE, CNN-AE and CNN-VAE flatten the torus, ContraAE and MPL-AE cause self-
intersections. Similar results occur for the high-dimensional case m = 1024, see the supple-
ments. Summarizing the results suggests that without regularization AE-compression does
not preserve the data topology. We continue our evaluation to give further evidence on
this expectation.

(a) CNN-AE (b) CNN-VAE (c) ContraAE

(d) MLP-VAE (e) MLP-AE (f) AE-REG

Figure 3. Torus reconstruction using various autoencoder models, dim = 15.

5.2. Autoencoder Compression for FashionMNIST

We continue by benchmarking on the the classic FashionMNIST dataset [70].

Experiment 3 (FashionMNIST compression). The 70,000 FashionMNIST images separated
into 10 fashion classes (T-shirts, shoes, etc.) being of 32 × 32 = 1024-pixel resolution (ambient
domain dimension). For providing a challenging competition, we reduced the dataset to 24,000
uniformly sub-sampled images and trained the AEs for 40% training data and complementary test
data, respectively. Here, we consider latent dimensions m = 4, 10. Results of further runs for
m = 2, 4, 6, 8, 10 are given in the supplements.

MLP-AE, MLP-VAE, AE-REG and Hybrid AE-REG consists of 3 hidden layers, each of
length 100. The degree of the Legendre grid Pm,n used for the regularization of AE-REG
was set to n = 21, Definition 2. CNN-AE and CNN-VAE consists of 3 convolutional layers
with kernel size 3, stride of 2. The resulting parameter spaces ΥΞ15,2 of all AEs are of similar
size. Further details of the architectures are reported in the supplements.

We evaluated the reconstruction quality with respect to peak signal-to-noise ratios
(PSNR) for perturbed test data due 0%, 10%, 20%, 50% of Gaussian noise encoded to latent
dimension m = 10, and plot them in Figure 4. The choice m = 10, here, reflects the number
of FashionMNIST-classes.
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(a) Without Noise (b) 10% Gaussian Noise

(c) 20% Gaussian Noise (d) 50% Gaussian Noise

Figure 4. FashionMNIST reconstruction with varying levels of Gaussian noise, latent dimension
dim = 10.

While Hybrid AE-REG performs compatible to MLP-AE and worse than the other
AEs in the non-perturbed case, its superiority appears already for perturbations with
10% of Gaussian noise and exceeds the reached reconstruction quality of all other AEs
for 20% Gaussian noise or more. We want to stress that Hybrid AE-REG maintains its
reconstruction quality throughout the noise perturbations (up to 70%, see the supplements).
This outstanding appearance of robustness gives strong evidence on the impact of the
regularization and well-designed pre-encoding technique due to the hybridization with
polynomial regression. Analogue results appear when measuring the reconstruction quality
with respect to the structural similarity index measure (SSIM), given in the supplements.

In Figure 5, show cases of the reconstructions are illustrated, including additional
vertical and horizontal flip perturbations. Apart from AE-REG and Hybrid AE-REG (rows
(7) and (8)), all other AEs flip the FashionMNIST label-class for reconstructions of images
with 20% or 50% of Gaussian noise. Flipping the label-class is the analogue to topological
defects as cycle crossings appeared for the non-regularized AEs in Experiment 1, indicating
again that the latent representation of the FashionMNIST dataset given due to the non-
regularized AEs does not maintain structural information.
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Figure 5. Two show cases of FashionMNIST reconstruction for latent dimension m = 10. First
row shows the input image with vertical, horizontal flips, and 0%, 10%, 20%, 50%, 70% of Gaussian
noise. Rows beneath show the results of (2) MLAP-AE, (3) CNN-AE, (4) MLP-VAE, (5) CNN-VAE,
(6) ContraAE, (7) AE-REG, and (8) Hybrid AE-REG.

While visualization of the FashionMNIST data manifold is not possible, we decided to
investigate its structure by computing geodesics. Figure 6 provides show cases of decoded
latent-geodesics ν(γ) with respect to latent dimension m = 4, connecting two AE-latent
codes of the encoded test data that has been initially perturbed by 50% Gaussian noise
before encoding. The latent-geodesics γ have to connect the endpoints along the curved
encoded data manifold D′ = φ(D) without forbidden short-cuts through D′. That is why
the geodesics are computed as shortest paths for an early Vietoris–Rips filtration [71] that
contains the endpoints in one common connected component. More examples are given in
the supplements.

Apart from CNN-AE and AE-REG, all other geodesics contain latent codes of images
belonging to another FashionMNIST-class, while for Hybrid AE-REG this happens just
once. We interpret these appearances as forbidden short-cuts of ν(γ) through D, caused by
topological artefacts in D′ = φ(D).

AE-REG delivers a smoother transition between the endpoints than CNN-AE, suggest-
ing that though the CNN-AE geodesic is shorter, the regularized AEs preserve the topology
with higher resolution.

5.3. Autoencoder Compression for Low-Resolution MRI Brain Scans

For evaluating the potential impact of the hybridisation and regularization technique
to more realistic high-dimensional problems, we conducted the following experiment.

Experiment 4 (MRI compression). We consider the MRI brain scans dataset from Open Access Se-
ries of Imaging Studies (OASIS) [72]. We extract two-dimensional slices from the three-dimensional
MRI images, resulting in 60, 000 images of resolution 91 × 91-pixels. We follow Experiment 3 by
splitting the dataset into 40% training images and complementary test images and compare the AE
compression for latent dimension m = 40. Results for latent dimension m = 10, 15, 20, 40, 60, 70
and 5%, 20%, 40%, 80% training data are given in the supplements, as well as further details on
the specifications.
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(a) MLP-AE

(b) CNN-AE

(c) MLP-VAE

(d) CNN-VAE

(e) ContraAE

(f) AE-REG

(g) Hybrid AE-REG

Figure 6. FashionMNIST geodesics in latent dimension dim = 4.
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We keep the architecture setup of the AEs, but increase the NN sizes to 5 hidden layers
each consisting of 1000 neurons. Reconstructions measured by PSNR are evaluated in
Figure 7. Analogous results appear for SSIM, see the supplements.

(a) Without noise (b) 10% Gaussian noise

(c) 20% Gaussian noise (d) 50% Gaussian noise

Figure 7. MRI reconstruction, latent dimension dim = 40.

As in Experiment 3, we observe that AE-REG and Hybrid AE-REG perform com-
patible or slightly worse than the other AEs in the unperturbed scenario, but show their
superiority over the other AEs for 10% Gaussian noise, or 20% for CNN-VAE. Hybrid
AE-REG specifically maintains its reconstruction quality under noise perturbations up to
20% (maintains stable for 50%). The performance increase compared to the un-regularized
MLP-AE becomes evident and validates again that a strong robustness is achieved due to
the regularization.

A show case is given in Figure 8. Apart from Hybrid AE-REG (row (8)), all AEs show
artefacts when reconstructing perturbed images. CNN-VAE (row (4)) and AE-REG (row
(7)) perform compatible and maintain stability up to 20% Gaussian noise perturbation.

In Figure 9, examples of geodesics are visualized, being computed analogously as
in Experiment 3 for the encoded images once without noise and once by adding 10%
Gaussian noise before encoding. The AE-REG geodesic consists of similar slices, including
one differing slice for 10% Gaussian noise perturbation. CNN-VAE delivers a shorter
path; however, it includes a strongly differing slice, which is kept for 10% of Gaussian
noise. CNN-AE provides a feasible geodesic in the unperturbed case; however, it becomes
unstable in the perturbed case.
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Figure 8. MRI show case. First row shows the input image with vertical, horizontal flips, and
0%, 10%, 20%, 50%, 70% of Gaussian noise. Rows beneath show the results of (2) MLAP-AE, (3) CNN-
AE, (4) MLP-VAE, (5) CNN-VAE, (6) ContraAE, (7) AE-REG, and (8) Hybrid AE-REG.

We interpret the difference of the AE-REG to CNN-VAE and CNN-AE as an indicator
for delivering consistent latent representations on a higher resolution. While the CNN-AE
and AE-REG geodesics indicate that one may trust the encoded latent representations, the
CNN-AE encoding may not be suitable for reliable post-processing, such as classification
tasks. More showcases are given in the supplements, showing similar unstable behaviour
of the other AEs.

Summarizing, the results validate once more regularization and hybridization to
deliver reliable AEs that are capable for compressing datasets to low-dimensional latent
spaces by preserving their topology. A feasible approach to extend the hybridization
technique to images or datasets of high resolution is one of the aspects we discuss in our
concluding thoughts.
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(a) CNN-AE without noise (b) CNN-AE with 10% Gaussian noise

(c) CNN-VAE without noise (d) CNN-VAE with 10% Gaussian noise

(e) AE-REG without noise (f) AE-REG with 10% Gaussian noise

Figure 9. MRI geodesics for latent dimension dim = 40 with various levels of Gaussian noise.

6. Conclusions

We delivered a mathematical theory for addressing encoding tasks of datasets being
sampled from smooth data manifolds. Our insights were condensed in an efficiently
realizable regularization constraint, resting on sampling the encoder Jacobian in Legendre
nodes, located in the latent space. We have proven the regularization to guarantee a
re-embedding of the data manifold under mild assumptions on the dataset.

We want to stress that the regularization is not limited to specific NN architectures,
but already strongly impacts the performance of simple MLPs. Combinations with initially
discussed vectorised AEs [44,45] might extend and improve high-dimensional data analysis
as in [9]. When combined with the proposed polynomial regression, the hybridised AEs
increase strongly in reconstruction quality. For addressing images of high resolution or
multi-dimensional datasets, dim ≥ 3, we propose to apply our recent extension of these
regression methods [35].

In summary, the regularized AEs performed far better than the considered alternatives,
especially with regard to maintaining the topological structure of the initial dataset. The
present computations of geodesics provides a tool for analysing the latent space geometry
encoded by the regularized AEs and contributes towards explainability of reliable feature
selections, as initially emphasised [13–17].

While structural preservation is substantial for consistent post-analysis, we believe that
the proposed regularization technique can deliver new reliable insights across disciplines
and may even enable corrections or refinements of prior deduced correlations.
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