
Preserving Digital Objects

A Constraint-Based Approach for the Automated
Application to Transformation Processes

Thomas Triebsees

Dissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

Lothar Schmitz Elektronische Langzeitarchivierung: Probleme und Lösungsansätze 1

Elektronische Langzeitarchivierung:
Probleme und Lösungsansätze
Lothar Schmitz

Digital documents last forever -
or five years, whichever comes first.

Jeff Rothenberg: Avoiding Technological Quicksand,1999

1. Berichterstatter: Prof. Dr. Uwe M. Borghoff
2. Berichterstatter: Prof. Dr. Gunther Schmidt

Fakultät für Informatik
Institut für Softwaretechnologie

Neubiberg, den 24. April 2008

Contents

I Introduction and Informal Survey 1

1 Introduction and Motivation 2
1.1 General Conditions of the Application Domain 3
1.2 The Approach in this Thesis . 9
1.3 Objectives . 12
1.4 Outline and Reading Guide . 13

2 Informal Survey 16
2.1 Running Example — Website Transformation 16
2.2 Concept Identification and Matching . 18
2.3 Preservation — Variants and Specification 19
2.4 Verifying Preservation Requirements . 22
2.5 Summary . 24

II Formalizing Migration and Preservation 26

3 Modeling Objects and Digital Archives 27
3.1 Informal Overview . 27
3.2 Modeling Object Contents and Relationships 30
3.3 Basic Formal Digital Archive . 41
3.4 Summary . 52

4 Contexts and Concepts 54
4.1 Informal Overview . 54
4.2 Specifying Contexts and Concepts . 57
4.3 Evaluating Concepts . 60
4.4 Summary . 69

5 Specifying and Evaluating Preservation Requirements 71
5.1 Informal Overview . 71
5.2 Preservation — a First Account . 75
5.3 Object Traces . 78
5.4 Preservation Formulas – Relating Preservation and Object Traces 80
5.5 Summary . 85

iii

III Improving Usability 86

6 Implementing Migration Processes 87
6.1 Informal Overview . 87
6.2 Basic State Change Operations . 91
6.3 Migration Algorithms . 96
6.4 Summary . 102

7 Incorporating Graph-Based Queries 104
7.1 Informal Overview . 105
7.2 Query Syntax — Integrating Regular Languages 107
7.3 Query Semantics — Specifying Graph Structures 110
7.4 Automated Query Evaluation and Construction 114
7.5 Summary . 120

IV Case Study 121

8 Case Study — Website Transformation 122
8.1 Methodology . 123
8.2 Outline . 125

9 Modeling Datatypes 126
9.1 Modeling Websites, Servers, and Directory Structures 126
9.2 Modeling Html Content . 127
9.3 Formal Signature . 128

10 Implementing the Migration 130
10.1 Structural Transformation . 130
10.2 Adaptation . 132
10.3 Content Migration . 133

11 Specifying Concepts 136
11.1 The Concept EntryPoint . 137
11.2 The Concept AContent . 141
11.3 The Concept Contains . 144
11.4 The Concept Neighbor . 145
11.5 The Concept LinksTo . 146

12 Specifying and Checking Preservation Requirements 149
12.1 Formal Preservation Requirements . 149
12.2 Evaluating Runtime Costs . 152

13 Summary — Costs and Benefits 159

V Conclusions 162

14 Related Work 163
14.1 Migration in Digital Archives . 163
14.2 Migration and Transformation in Other Contexts 164
14.3 Notions of Preservation . 166
14.4 Formal Approaches to Digital Archiving 166
14.5 Systems for Formal Quality Assurance . 167
14.6 Graph-based Queries . 168

15 Conclusion and Outlook 170
15.1 Summary . 170
15.2 Future Work . 173

A Specification of the Basic DA 180

B Continuative Examples on Formal Parts 182
B.1 Objects and Digital Archives . 182
B.2 Contexts and Concepts . 184
B.3 Formal Preservation Requirements . 187
B.4 Migration Algorithms . 193

C Proofs 204
C.1 Proofs for Chap. 3 . 204
C.2 Proofs for Chap. 4 . 210
C.3 Proofs for Chap. 5 . 215
C.4 Proofs for Chap. 6 . 217
C.5 Proofs for Chap. 7 . 223
C.6 Proofs for Chap. 11 . 227

Abstract

Rapid technology evolution lets Digital Archives (DA) face great challenges in pre-
serving the contents of digital objects. A standard approach to preservation is to mi-
grate digital objects to new technologies periodically. There, object representations may
change whereas their contents must not. In large-scale scenarios automated quality as-
surance is a major concern: Did a given migration process preserve all relevant object
properties? However, automation is often hindered as preservation requirements are
expressed informally. In these cases, quality assurance is often hand-crafted, which is
time-consuming, expensive, and error-prone.

We introduce a framework that is designed to support automation of migration and
quality assurance processes in digital archiving. In particular, we express semantic pres-
ervation requirements formally; automated routines test migration processes for adher-
ence to them. Theoretic well-foundedness and smooth integration into internal workflows
of DAs have been important design goals.

A customizable, state-based archival context enables workflow integration. Here, we
presuppose little system knowledge only: Objects must be uniquely identifiable. Users
can integrate domain-specific object types and functionality. Well-defined state changes
capture the effects of migration processes. There, our system ensures object immutability
based on a formal notion of object contents.

Semantic requirements of the form “When transforming objects o1, ..., on, preserve
property φ” constrain migration processes. This preservation language bases on full
first order logic. Object properties are captured by so-called concepts. Preservation
requirements refer to concepts by name so that implementation details are hidden. This
keeps specifications readable and less prone to changing implementations.

Our generic notion of preservation relates (1) source and target objects, (2) object
histories, and (3) concepts. A concept is preserved if the target objects are new versions
of the source objects and the concept equally holds for the source and target objects.
There, we permit different concept implementations for the source and target objects —
we support content migration.

When migrations are executed, our system traces changes to digital objects and re-
ports constraint violations automatically. There, object traces derive from (iterated)
object transformations. Concept interfaces allow for partial, thus, efficient tracing here.
Reports relate concrete source and target objects to violated requirements. This facili-
tates adequate and customized reactions.

Due to a coherently formal underpinning, our methods satisfy a high degree of “trust-
worthiness”. A case study in the field of website migration shows that our methods are
applicable, beneficial, and scale to a relevant problem size. In the case study we also
demonstrate formal model construction facilities of our framework. We have developed
a general approach to integrating graph-based queries and apply these methods to au-
tomated URL construction. Runtime measurements show acceptable performance when
using our prototype implementation.

vii

viii

Acknowledgements

I would like to thank everyone who supported me while I was writing this thesis.
Some people, however, should receive special mention. First, and foremost, I thank my
supervisor Uwe M. Borghoff for his continuous advice and for“pushing”me towards early
publications. Reviewers have provided most valuable comments on our conference and
journal submissions. I am convinced that this has increased relevance and quality of our
work. Second, I thank my advisor Gunther Schmidt. He has provided most valuable
comments on the formal parts of this thesis. Especially in the early phases he made
me “think globally” instead of delving too deeply into theoretical aspects. Furthermore,
my thanks go to the staff of the Institute for Software Technology. They have provided
a friendly, lively, and creative research climate. In particular, I am grateful to Lothar
Schmitz, Peter Rödig, and Steffen Mazanek for many fruitful discussions and for proof-
reading parts of this thesis. Also, I thank all other members of the Department for
Computer Science. Many interesting discussions and joint conference visits have provided
variety and have expanded my scope to all the other interesting fields of Computer
Science. Finally, I thank my family and my friends for their patience, their support,
and for continuously reminding me that there is something beyond this work; to Inga
Schmundt I am particularly grateful for proof-reading parts of this thesis.

ix

x

Part I

Introduction and Informal Survey

1

Chapter 1

Introduction and Motivation

Long term preservation of non-digital objects has been a well-known issue for a long
time. Museums, libraries and archives preserve artifacts like books, paintings, sculptures
or other works of art that are part of our cultural and intellectual heritage.

Since the emergence and world-wide deployment of Personal Computers, however, we
have recognized an ever-increasing growth of digital material [BRSS06]. The advantages
of digital deployment are obvious. Digital objects can be processed automatically, they
can be accessed almost barrier-free over the World Wide Web, and they support auto-
mated full-text search as well as “perfect” copies. This, e.g., led to mass-digitization of
books [Goo07]. In addition, more and more artifacts are “born digital”. In this respect,
online-publishing of research results, the “paperless office”, and fully digital document
workflows have been propagated and implemented for quite a while.

Therefore, long term preservation of digital material has become an urgent issue over
the past decades. It turned out that Digital Archives (DA) with long-term focus face
great challenges [Tas96, Con02]. Their aim is to preserve digital objects over long (i.e.,
essentially undefined) periods of time. However, there is an important difference between
non-digital and digital objects. Any non-digital object can be perceived through the five
human senses; no digital object can be perceived without hardware and software environ-
ments. For this reason, digital preservation comprises keeping digital objects readable,
understandable, and processable [Con02, BRSS06]. In that, the rapid technological evo-
lution of hardware and software environments frequently causes DAs to transfer digital
objects from obsolete technologies to newer ones.

The literature describes and examines two major approaches for that purpose —
emulation and migration. Emulation does not affect the digital objects directly. It is
rather used to emulate older hardware environments on newer ones. In this way, the
original objects can be read on newer hardware technologies while using old software.
In this thesis, however, we will be concerned with migration. This approach is used to
directly transfer the original object to the new technology and may well induce changes
to the object itself. Although parts of the objects change, one still wishes to preserve
the information they carry. File format transformation is a typical scenario. Since the
emergence of the XML-technology [Wor04b] and the resulting diversity of domain-related
formats, migration has become part of day-to-day business in automated knowledge
exchange. The information content of the exchanged objects, however, must not change.

2

1.1 General Conditions of the Application Domain 3

Database migration, file format transformations or migration and deployment of soft-
ware products on different platforms are good examples to show the general complexity
of migration tasks. Plenty of interrelated digital objects have to be migrated and several
semantic relationships have to be preserved. It is easy to comprehend that migration,
if automated and planned in an ad-hoc manner, can lead to unintended effects and
information loss. Hence, quality assurance becomes a major concern. Often enough,
migration (and already ingesting objects into an archive can be considered to be a mi-
gration), is either done hand-crafted by human actors [GW05] or human reviewers have
to go through objects “by hand” that are themselves produced semi-automatically, only.
This is time-consuming, expensive, and still error-prone. In addition, semantic relation-
ships and preservation requirements being expressed informally often prevent automatic
checks.

By the end of 2005, leading researchers in the field of digital preservation met in
Warwick, UK, and defined the research agenda for the next decade. In their final report
[GW05], they identify the necessity to “...develop data description tools and associated
generic migration applications to facilitate automation...” and to “...develop code gen-
eration tools for automatically creating software for format migration...” as part of the
research agenda for the next five years. Since migration is the most widely practiced
preservation strategy and still lacks sufficient automated support [Dig01, GW05], it is
high time to integrate automation techniques and digital archive migration.

In this thesis, we propose a general framework that meets parts of these challenges
and supports archivists in planning and running migrations. The major objective is to
increase the level of automation and to improve the quality of executed migrations. In the
next sections we will introduce important general conditions that drove the development
of our approach. In particular, we will give reasons why and explain how we restrict the
application domain. We will present the key ideas of our approach and motivate it with
the application domain. Additionally, we will summarize the objectives of this thesis
and provide the reader with an outline and a reading guide.

1.1 General Conditions of the Application Domain

In order to illustrate the environment in which this thesis is settled, Fig. 1.1 depicts a
simplified schematic view on DAs. It can be seen as a reference structure identifying the
basic components and actors. First, DAs have an organizational component, in which
policies and practices of the corresponding archive are fixed. They serve as overall guide
for the preservation of the digital objects that are brought into the archive by producers
(today) and are potentially used by consumers somewhen in the future. Preservation
over a long period of time is a complex task and faces several challenges like technical
decay of data storage media or changing hardware and software technologies. Therefore,
digital objects usually undergo several processes. These processes are supported by the
technical infrastructure of the archive and possibly by external vendors and suppliers.

This — deliberately vaguely formulated — description, however, leaves open many
questions. What are digital objects? What kind of processes run inside an archive?
What does preservation mean? How does migration come into play?

The Reference Model for Open Archival Information Systems (OAIS, [Con02]) serves

3

4 Introduction and Motivation

Producers Consumers
Digital Archive

Organization

Processes

Digital Objects

Technical
Infrastructure

vendor/
supplier

Figure 1.1: Simplified view on a Digital Archive

as the entry point to get first answers to these questions. It directly addresses the
problem of preserving digital material over a long period of time and is widely accepted
nowadays as a reference model. The archive structure shown in Fig. 1.1 is drawn from
the descriptions in [Con02]. In particular, the OAIS reference model

• introduces the basic terminology,
• provides an abstract information model for digital objects,
• includes an organizational model for DAs,
• defines a basic functional model for processes that run inside DAs, and
• describes concrete preservation methods like migration and emulation.

All these aspects bear inside general conditions that drove the development of the ap-
proach presented in this thesis. Therefore, we will deal with them separately in the
following subsections and describe how they influenced the development of the frame-
work and restrict the application domain. In that we will introduce the basic terminology
used throughout this thesis and briefly answer the questions raised above.

1.1.1 Information and Object Model

An appropriate information and object model is the basis for the introduction of further
concepts. Since the OAIS model is a reference model, it structurally covers a broad
variety of digital objects(see Fig. 1.2). The left-hand part of Fig. 1.2 shows the strict
distinction between Data Objects and Information Objects. Data objects represent the
pure, unrepresented data and consist of bit streams. This is indicated by a floppy disk
icon and modeled by the aggregation relation in the right-hand part of Fig. 1.2. Using
the Representation Information that is attached to a data object, the representation
process yields an information object. In this example, we — at least — need a browser
(program icon) and a style sheet for being able to render the data object as a web
page. This web page can be considered to be the information object that represents the
bit stream on the floppy disk. The information object is the real intellectual property
which is to be preserved. When we speak of digital objects in the sequel, we refer

4

1.1 General Conditions of the Application Domain 5

to the information object. Notice that representation information can contain other
representation information, which yields representation networks.

The generality of this information model shows the potential complexity and diver-
sity of digital objects. To mention some, today’s DAs administrate audio and video
files, databases, images, websites, office documents like presentations, spread sheets,
or text documents, electronic mails etc. All these different kinds of digital objects re-
quire different preservation policies [Dig01]. Emulation, for example, seems to be the
most promising approach for the preservation of complex databases and multi media
files [Dig01]. In particular, if legal aspects are involved, it can otherwise be difficult
(if not impossible) to guarantee integrity of these objects. Additionally, the content of
multimedia files is often compressed or scrambled, which prevents direct access.

In contrast, this is no issue for websites. They are usually deployed using text-
based file formats. However, embedded scripts, or referenced external resources (like
databases) complicate preservation over the long term. Moreover, websites are usually
highly interrelated such that link-consistency is a problem.

These observations demand for a restriction of the class of objects that can be handled
by our approach. This will be done in Sect. 1.2. We shall, however, see that we still
cover a broad class of digital objects.

1.1.2 Organizational and Functional Model

In order to maintain availability and understandability of the stored digital objects,
several archiving activities necessitate data re-processing and data exchange between
archival components. For this purpose, the OAIS reference model identifies five Func-
tional Entities: (1) Preservation Planning, (2) Administration, (3) Ingest, (4) Data
Management, (5) Archival Storage, and (6) Access. Their interrelations are depicted
in Fig. 1.3.

Figure 1.2: Difference between data and information ([Con02])

5

6 Introduction and Motivation

Figure 1.3: Functional Entities in the OAIS reference model ([Con02])

These entities serve to

• define general policies, practices, procedures, and preservation strategies (Preserva-
tion Planning),

• control adherence to these regulations on a day-to-day basis (Administration),
• provide catalogs and inventories on what may be retrieved from the archive including

algorithms and procedures that can be run on retrieved data (Data Management),
• provide services and functions for the storage, maintenance and retrieval of digital

objects (Archival Storage),
• provide services and functions to accept submissions from producers and prepare

the contents for storage and management (Ingest), and
• provide services and functions that support consumers in determining the existence,

description, location and availability of information stored in the OAIS, and allow-
ing consumers to request and receive information products (Access), respectively
[Con02].

Preservation Planning and Administration are two central organizational entities. They
are particularly important when it is up to a decision whether to migrate digital objects.
According to [Con02], “Preservation Planning [...] develops detailed Migration plans,
software prototypes and test plans to enable implementation of Administration migration
goals”. Administration then “... also provides system engineering functions to monitor
and improve archive operations, and to inventory, report on, and migrate/update the
contents of the archive...”. The approach developed in this thesis is designed to support
these organizational entities. In particular, our framework is expected to

• support Preservation Planning in expressing their preservation requirements and
• provide automated support for Administration in checking whether the migration

results meet these requirements.

Therefore, the requirements must be expressible in a sufficiently formal way and our
framework should smoothly integrate into internal migration processes.

Fig. 1.3 also shows the several types of information packages that have been identified
in [Con02]. We do not go into detail with it but want to mention that objects already

6

1.1 General Conditions of the Application Domain 7

undergo non-trivial processes before they are stored somewhere permanently or issued
to the consumer. On ingest, e.g., incoming objects are packaged into a Submission
Information Package (SIP). Then they are adapted to an internal storage model called
Archival Information Package (AIP), which usually includes addition of meta data and
re-packaging. When making these objects available to the public or exchanging them
between different archives, the dissemination process can include transformations to an
exchange format called Dissemination Information Package (DIP). In Sect. 1.1.3 we
shall see that this already meets the definition of migration of [Con02]. These internal
processes exhibit three important facts:

(1) Different kinds of meta data are usually attached to digital objects. These meta
data serve different purposes like describing the provenance or context of the digital
objects. In particular context information can comprise semantic meta data that is,
e.g., formulated using Dublin Core ([DCMID08]), the Resource Description Frame-
work (RDF, [Wor99]), or Topic Maps ([Top01]). In any case, relationships between
objects and their meta data are important and must not get lost. Hence, semantic
object interrelations will play a central role in this thesis.

(2) Digital objects follow life cycles from the producer to the consumer. Whenever
migrations produce unwanted results, reversibility becomes an important factor.
The easiest way to achieve this is to retain the original objects and store their
history. Hence, the necessity to trace object histories has guided the development
of our approach significantly.

(3) As archives usually maintain large bodies of digital objects, automation is crucial.
Hence, one may ask for trustworthiness. More specifically: Can one really trust in
the fact that the consumer somewhen in the future receives the same (or seemingly
the same) digital object that has been archived by the producer today? Especially if
legal aspects are involved, this plays a key role. Suppose the paperwork of a specific
court trail has been archived in electronic form and is needed for another trail in the
future. Clearly, the consumer then expects to receive a copy the content of which
“equals” the original. Things get even more serious for DAs if clients can claim
damage recovery. In line with the conclusions from above, we interpret the demand
for trustworthiness as follows: Preservation requirements must be expressible and
adherence to them must be traceable in a sufficiently formal way. In this way, we
can recapitulate an objects history and conclude what has been and what has not
been preserved up to the “current version” of this object.

1.1.3 Migration and Preservation

As this thesis aims at a framework for the automated support of migration processes, we
need to clarify the notion “migration” in the context of DAs. The OAIS reference model
identifies four forms of migration.

(1) The bitwise copying of stored AIPs to another instance of the same storage media
type is called Refreshment. A bitwise clone of a CD is a refreshment. This is
well-handled in practice.

7

8 Introduction and Motivation

(2) Replication is an extended variant of refreshment, where the storage media type
may change. Copying a file to another location, e.g., is a replication provided that
the bit sequence is identical.

(3) A Repackaging affects the packaging information that is needed to address and
access the digital object. The transfer from a CD to a DVD is a typical scenario.
Assume a digital object is stored on a CD that implements the ISO9660 file system.
Furthermore, let the DVD implement the UDF file system. Copying the file-based
structure and content of the digital object to the DVD yields a repackaging because
the DVD implements a different file system.

(4) Transformation is the most challenging variant of migration [Con02, Dig01]. It
directly affects the content of the underlying digital object and may include the
other variants as well. File format transformation is a typical scenario; [Con02]
describes the change of file encodings from ASCII to UTF-8 as another example.

Object transformations introduce a variety of complex issues. We explain some of them in
the following using a file format transformation from Microsoft Word to PDF. First, the
original digital object may be copyrighted. Automatically, the question arises whether
the archive has appropriate rights to transform (i.e., potentially adulterate) this object’s
content. Similar questions come up when the original document is digitally signed. Even
if the original document is not copyrighted, integrity is an issue. Maintaining integrity
means preventing the original object from being altered or destroyed in an unauthorized
way [Con02]. Second, the producer of the object may doubt originality of the result.
Is the PDF still understood in the same way as the original document? Already small
layout changes (unintended page breaks etc.) can affect the answer to this question.
Third, Microsoft Word is a proprietary format. This hampers or even prevents access to
the internal structure of the original document and complicates the implementation of
appropriate transformations.

Throughout this thesis we will abstract from these aspects. Concerning Digital Rights
Management (DRM), we refer the interested reader to [SL05]. Furthermore, we assume
that the archives’ security policies assure integrity of all hosted objects. This is in
wide areas a matter of the technical environment (access to permanent storages etc.)
and is beyond the scope of this thesis. The question of originality of the migration
result has already been answered. Although digital migration has a “...focus on the
preservation of the full information content...” and“...a perspective that the new archival
implementation of the information is a replacement for the old...” ([Con02]), one can say
that the transformation result is only a new version of the original. Also, we neglect the
aspect of proprietary file formats and assume that tools are available for accessing the
digital objects and exploring their internal structure. This is virtually no limitation since
most archives accept non-proprietary formats only, and archive policies mostly require
archiving formats to be open standards.

In the sequel we will use the notions migration and transformation as synonyms in
order to emphasize that migration processes potentially change object content. In the
last subsection we have already raised the question of “trustworthiness”. More specif-
ically: Can we rely on the fact that the new version of the original object represents
the original information content? In order to give a reliable answer to this question, we
will have to clarify the notions information and preservation in more detail and rate the

8

1.2 The Approach in this Thesis 9

Process integration

migration process

source objects target objects

property
specifications

preservation
requirements

FrameworkFramework
tracing

property
matching

property
matching

automated verification

notification

Concepts and contexts

ConceptConcept

Context HTML Context XML

......

... ...

link anchor

link source

link target

InterfaceInterface

......

<e xmlns:link...>

Content Information
Website

Figure 1.4: Overview of the approach of this thesis

quality of migration processes w.r.t. the information they preserve.1

Among others, the following three facts about information and preservation are
widely accepted:

(1) The information does not comprise the bit stream only; there can be different
views on what the information of a digital object is [Con02, Dig01, PRE05]. As
an example, take a website that consists of a source directory and a collection of
resources. These entities as well as the fact that they belong to this website can be
considered (part of) this website’s information. So can the content and “look and
feel” of the resources when they are rendered by a browser. Therefore, our approach
will have to support the definition of information pieces w.r.t. digital objects.

(2) It is hardly feasible to preserve all information that is carried by digital objects
[Con02, Whe01, Dig01]. Our approach will have to facilitate the specification of
preservation requirements directly.

(3) Applications of format transformation show that information or the process of re-
trieving information can be implemented differently for the source and target ob-
jects. These different implementations will have to be considered with our notion
of preservation.

In the next section we survey the key ideas of our approach.

1.2 The Approach in this Thesis

In the left-hand part Fig. 1.4 illustrates how our approach conceptually integrates into
migration processes that run inside DAs. Generally, our framework is designed to build
on top of implemented migration processes while causing only a minimal influence to
the processes themselves. In order to check whether a migration process meets given
preservation requirements, our framework needs two formal inputs: (1) a specification
of relevant semantic object properties and object relationships and (2) the preserva-
tion requirements for the migration process. As soon as a migration process starts, our

1w.r.t. = with respect to

9

10 Introduction and Motivation

framework matches the known properties to the source objects. Whenever the migra-
tion process executes “relevant” operations such as transforming an object or creating
an object, we require the process to communicate this operation to our framework. In
this way, we can trace the source objects, i.e., relate them directly to their respective
migration targets. As soon as the migration process is completed, our framework checks
the preservation requirements w.r.t. the source and the target objects. Hence, the abil-
ity to trace semantic object properties through running migration processes and along
different versions of digital objects is a key ingredient of our framework. We imple-
ment this facility using Abstract State Machines (ASM, [BS03]). In this way, we receive
a state-based operational system semantics for DAs which is both sound and natural.
It allows us to capture effects of migration processes on the whole archive. Whenever
a migration process communicates the events from above, our framework executes an
appropriate “formal state change” as well. Preservation requirements are then checked
w.r.t. a source state (starting point of the migration) and the final state (finishing point
of the migration). Apart from that, this state-based view provides a natural semantics
for rollbacks or “undos”. This is an important property for practical applications; finan-
cial or other resource insufficiencies can cause migration processes to be interrupted and
switched back to the last “sensible” archival state.

Apart from this conceptual overview, some technical questions remain open. We
have already mentioned that information or the process of retrieving information can
be implemented differently for the source and target objects. We cover this by so-
called concepts and contexts. The upper right-hand part of Fig. 1.4 depicts a schematic
overview of this approach. A concept groups different implementations of a semantic
property of one or more (interrelated) objects. For this purpose, concepts include an
interface. The semantic property can then be implemented in different contexts, where
these implementations must adhere to the interface. This is a well-known technique in
programming languages. The example in Fig. 1.4 shows an html document that contains
a link to another resource. This property can be expressed as follows: The html document
contains a link anchor, the reference attribute of which points to the respective resource.
XML links, for example, are implemented similarly using a link source, a link anchor, and
a link target. Hence, the concept’s interface in Fig. 1.4 comprises these three entities. On
an appropriately low level of abstraction, the implementations of html links and XML
links differ (cf. the different implementations of the link anchors in Fig. 1.4). These
different implementations are supported by our approach. Since the concept’s interface
is common to all its implementations, it serves as tracing point for the preservation of
specified properties. We use history traces together with the state-based semantics in
order to report violations of preservation requirements and their reasons.

The explanations so far already indicate our view on information and preservation.
Throughout this thesis we will use a technical notion of information. It is sketchily
depicted in the lower right-hand part of Fig. 1.4. We consider all content-based prop-
erties to be part of an object’s information as well as everything that can be “derived”
therefrom. In Fig. 1.4 we illustrate this by a website that consists of a collection of
resource files. These entities as well as their textual content (indicated by a derivation
arrow for some icons) can be part of the information carried by this website. So can
the “look and feel” of an html file when rendered by a browser (outermost right-hand

10

1.2 The Approach in this Thesis 11

derivation). In that, we distinguish content information and (semantic) relationships,
which is in line with the most relevant literature [PRE05, Con02]. Content information
(like the textual content of a file) usually has a certain value and can be derived directly
from an object’s representation. Other content information (like the first line of the tex-
tual content) can possibly be derived from it. In contrast, semantic relationships (like
linking) usually hold between several objects. The value of a semantic relationship is
restricted to “does hold” or “does not hold”. No further content information is derivable.
As already mentioned, this notion of information is a technical one. It does not serve to
capture the “real meaning” or “intended meaning” of a document. It rather deals with
the technical properties that are considered to be relevant for extracting the meaning of
a digital object. Neither does the pure textual content of a website (content information)
nor the fact that all links are working (semantic relationship) reflect the “meaning” of
a website. Yet the meaning of a website cannot be extracted without them. Therefore,
preserving these properties is considered to be vital in web archiving [PRE05].

Altogether, our notion of information has an important property. It is reasonably
formalizable and can be specified w.r.t. a digital object. We argue that sufficient for-
malization is a prerequisite for trustworthy automation. The facility to identify, extract,
and process only parts of an objects information helps in handling complexity. We can
focus on “critical” aspects (significant properties) and neglect properties the preservation
of which is not worth formal treatment due to their simplicity or unimportance. Link
consistency may be considered to be critical since the meaning of a website may get lost
if links do not work. On the contrary, directory and file structures “in the background”
might be unimportant.

Using this view on information, preservation can — roughly speaking — be under-
stood as follows:

When an object is migrated and a piece of information can be derived from
this object’s properties, this information piece is preserved, if it can be derived
from the transformation result as well.

This is in line with our approach using concepts and contexts from above. In Chapter 2
we will discuss this notion of preservation in more detail and illustrate its different facets
with an example. At this point, however, we already mention that preservation require-
ments are expressed w.r.t. specified concepts. In particular, concepts are addressed by
their name, which is globally unique. Using concepts, we hide implementation details,
and raise specifications to an abstract level. We claim that this preservation language
is more easily understood by archivists than the technical implementations. Also, these
specifications are not prone to changing implementations.

We conclude this section by listing restrictions of our approach. Most of them have
already been motivated by the preceding explanations.

• Digital objects: The content and structure of digital objects is accessible and pro-
cessable in an automated way by the DA. Objects do not contain dynamic content.
In particular, our approach does not cover software, video, or audio apart from
their fixed manifestation (e.g., as a file). The DA has all permissions to access and
process the stored digital objects; our approach does not innately cover any issues
related to digital rights management (DRM).

11

12 Introduction and Motivation

• Information and preservation: Information content of and relationships between
digital objects are reasonably formalizable; we implement a “technical” notion of
information. Preservation is restricted to the preservation of formalized aspects. In
particular, we do not capture aspects like human cognition.

• Digital Archives: Our approach does not cover any organizational or technical is-
sues apart from articulating and verifying preservation requirements concerning the
preservation of information content of digital objects during migration processes.
We do not model complex internal workflows and processes, preservation approaches
other than migration, or any costs arising from a migration. Hence, our approach
cannot be used for strategic planning in terms of finding the best preservation strat-
egy or estimating the potential effects of a migration; we presume the decision pro
migration has been made.

Yet these limitations still let our approach cover a broad variety of digital objects and
preservation scenarios. With permission of the Universität der Bundeswehr München,
preliminary results of this thesis have been published in [TBS05, TB06, TB07a, TB07c,
TB07b, Tri07]. In [TB07c, Tri07] we have evaluated our method in the context of software
specifications. Therefore, we argue that our approach can be used in application domains
other than digital archiving as well.

1.3 Objectives

The overall objective of this thesis is as follows.

The results of this thesis contribute to a better automation of quality assur-
ance for migration processes in digital archiving. Basing on suitable formal
notions of information and preservation, our method allows to express pres-
ervation requirements formally and evaluate adherence to them in an auto-
mated way. The formal underpinning of our approach results in a high degree
of trustworthiness. Practicability, well-foundedness, the ability to pinpoint
violations of preservation requirements and smooth integration into internal
workflows of DAs have been important design goals for our method.

Sub-ordinate objectives are:

• We define a customizable, state-based environment that captures digital objects,
object contents, object relationships, and migration processes.

• We model formal object properties that are subject to preservation and can be
implemented in different ways.

• We introduce a preservation language that can be used to specify the preservation
of object properties in a formal way. Along with a formal notion of preservation,
the semantics includes history traces for objects and, thus, enables automated eval-
uation of preservation requirements.

• We define the syntax and the semantics of a programming language for migration
processes. The semantics integrates into our state-based environment. It, thus,
facilitates automated and formal quality assurance; migration processes that are

12

1.4 Outline and Reading Guide 13

implemented in our programming language can be checked w.r.t. adherence to given
preservation requirements in an automated way.

• We prove practicability and usefulness of our methods by a case study in the field
of website migration. Runtime measurements using our prototype implementation
underline that our approach scales to a relevant problem size.

1.4 Outline and Reading Guide

We organize this thesis into five parts. Apart from this introduction, Part I contains an
expanded informal overview of our approach (Chap. 2). There, we introduce the running
example for the thesis (a website transformation) and apply our approach to automating
quality assurance on an informal level.

In Part II, we formalize our approach. We start by introducing a formal state-based
digital archive in Chap. 3. This includes formal object types, a formal notion of object
content, and basic state changes. Migrations are defined as sequences of these state
changes. In Chap. 4 we define syntax and semantics of functional and non-functional
concepts. There, we distinguish a static and a dynamic semantics. Concepts are evalu-
ated in a dynamic environment where objects may not exist. Dynamic concept semantics
is strict and evaluates to“undefined” if concept implementations refer to non-existing ob-
jects. We close part two by introducing our preservation language (Chap. 5). We define
object traces and a preservation predicate formally. Then we introduce basic functional
and non-functional preservation constraints; they refer to functional and non-functional
concepts, respectively. Existential and universal trace quantifiers are used to handle
branching histories. Finally, preservation formulas add facilities to select object collec-
tions and to apply preservation constraints to all their members.

In order to improve usability (Part III), we provide a functional programming lan-
guage for implementing migration processes (Chap. 6). We start by introducing state
change operations that implement the state changes of Chap. 3. These operations are
then integrated into a functional language. The language semantics generates formal
migration sequences and, thus, smoothly integrates into our dynamic environment. We
conclude Part III by integrating regular graph query languages. In general, expressing
graph queries tends to be laborious as we use FOPL. We, however, define a specifica-
tion scheme for query semantics and a method for combining query syntax (context-free
grammars) to query semantics appropriately. This yields so-called dominated product au-
tomata, which can be used to evaluate and construct graph-based queries automatically.
We apply these techniques to automated URL construction.

In Part IV we present the full case study. There, we evaluate our methods using the
website migration example of Chap. 2. This comprises datatype specifications (Chap. 9),
implementing the transformation process (Chap. 10), concept specifications (Chap. 11),
and expressing preservation requirements (Chap. 12). Chap. 12 includes performance
measurements for our prototype system. Costs and benefits of our formal quality assur-
ance approach are discussed in Chap. 13.

Part V concludes this thesis. Related work is discussed in Chap. 14. In Chap. 15
we summarize our contributions. In particular, we point up how we have met our initial
objectives and point out directions for future research.

13

14 Introduction and Motivation

Reading Guide

The following reading order provides a significant overview of our contributions but skips
all technical parts. We suggest if for a first reading and for those who have no technical
background.

Introduction:
Chap. 1 (Introduction)
Chap. 2 (Informal Survey)

Case study :
Prolog of Chap. 8 (Case Study)
Sect. 12.2 (Evaluating Runtime Costs)
Chap. 13 (Summary — Costs and Benefits)

Conclusions:
Sect. 15.1 (Summary) of Chap. 15 (Conclusion and Outlook)

For a more sophisticated insight we suggest the following reading order; it still skips
technical details, but also provides an overview of how to apply our approach.

Introduction:
Chap. 1 (Introduction)
Chap. 2 (Informal Survey)

Formal Parts:
Informal survey and summary of chapters 3 (Modeling Object Contents and Digital
Archives) to 7 (Incorporating Graph-Based Queries)

Case study :
Chap. 8 (Case Study)
Chap. 9 (Modeling Datatypes)
Chap. 10 (Implementing the Migration)
Introduction of Chap. 11 (Modeling Concepts)
Chap. 12 (Specifying and Checking Preservation Requirements)
Chap. 13 (Summary — Costs and Benefits)

Conclusions:
Chap. 15 (Conclusion and Outlook)

Readers who are interested in mathematical details should start with the “first reading”.
A general overview of our method is necessary to understand reasons for choosing exactly
those formal techniques that we use. The formal chapters in part II (Formalization)
depend on each other in ascending order of chapter numbers. Hence, readers should
have read chapters 3 and 4 before reading Chap. 5. The chapters in Part III (Improving
Usability) are mutually independent, but require knowledge of Part II. All “formal”
chapters start with an informal or semi-formal survey. There, we match notions of the
application domain to notions and techniques known in Mathematics and Computer
Sciences. In the subsequent sections we then apply these techniques to the application
domain. These parts are all formal. We use short examples to underline important
aspects. For readability, we source out proofs to App. C. The proofs are linked in the

14

1.4 Outline and Reading Guide 15

text. In some chapters we provide sophisticated semantics definitions (e.g., for concepts
and preservation constraints). For these parts we provide continuative insights in App. B
by fully formalizing parts of our running example; affected chapters include hints.

15

Chapter 2

Informal Survey

To start with, we give an overview of our approach and its application in a real-word
setting. We first introduce a running example and then illustrate several facets of our
approach and of the notion “preservation” on an informal level.

2.1 Running Example — Website Transformation

We use a structural website transformation as running example; the full case study will
be presented in Chap. 8. Fig. 2.1 shows a simplified web archive and illustrate how the
website transformation is integrated into an internal archival process. The web archive
consists of two components. The Archiver includes a permanent storage for long-term
preservation of the hosted websites. The servers being annotated with locks indicates
that access to this storage environment is not permitted from “outside” the archive. The
latter is provided by the Browser-component, which includes a web-storage with fast
server access. The archive has two external communication interfaces – the customer
interface (CI) and the user interface (UI). Customers can ingest a website to the archive,
which corresponds to the event INGEST. The Browser component provides a service for
full website browsing as well as quick search facilities. Users can request these services
by issuing a REQUEST -event. Upon request, they will receive the corresponding data
as a RESPONSE -event.

On ingest, the Archiver first extracts metadata and stores the uploaded website
as well as the extracted metadata permanently (extractMetadata, storePerm). After

PermStorage 1 PermStorage 2 PermStorage m

...
Server 1

...

Archiver Browser

Server 2 Server n

UICI
INGEST REQUEST /

RESPONSE

EXPOSE

BII

Archive
Customer User

Permanent Storage Web Storage

storePerm
extractMetadata store

respond

Figure 2.1: Example web archive

16

2.1 Running Example — Website Transformation 17

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

<title of index.html>

<some IP address>

htmlindex.html resources

Website Calculation

<non-html only><html only>
......

Website format BWeb Example transformation

<some html file>

......
<some content>

Website format AWeb

<some name>

<some IP address> <some IP address>

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

<title of index.html>

<some IP address>

htmlindex.html resources

Website Calculation

<non-html only><html only>
......

Website format BWeb Example transformation

<some html file>

......
<some content>

Website format AWeb

<some name>

<some IP address> <some IP address>

Figure 2.2: Website models and example transformation

that, the Archiver sends the internal event EXPOSE to the Browser’s internal interface
(BII). The Browser then stores the website in the web storage (store). The Archiver and
Browser use different website models for storage. The EXPOSE event, thus, includes a
structural transformation of the underlying website.

Both the Archiver’s and Browser’s website model AWeb and BWeb, respectively,
are depicted in the left-hand part of Fig. 2.2. The Archiver receives websites that have
been harvested from some server or ingested by a customer and only requires them to
contain a source directory and a welcome page (“home”-icon), which has to be located
somewhere in the source directory. The Browser stores all websites on a web server and
constrains directory content and structure of these websites in the following way:

(1) The source directory of the website exactly contains two sub-directories “html” and
“resources”, respectively, and a file named “index.html”, which is the welcome page
of the website.

(2) The names of the source directory and of the website are equal. If the website’s
welcome page has a <title> element with non-empty textual content, both names
equal the content of this element.

(3) All html-files except “index.html” must reside in the directory “html”, which is il-
lustrated by the special directory icon.

(4) The directory “resources” contains all non-html-files.

In the right-hand part, Fig. 2.2 depicts an example instance of the standard website
model AWeb, which resides on a server with IP 137.193.60.82 and is to be transformed
to BWeb. The website “Calculation” consists of a directory structure containing two
html-files and one pdf-file, where “start.html” is the welcome page. For this introductory
survey we do not yet need the contents of the html-files. Yet we already mention that
“start.html” contains the title of the page and a relative link to “doclist.html”. Moreover,
“doclist.html” includes a link to “calc.pdf”. These “technical” properties will be studied
in more detail in the technical part of this thesis.

The transformation from AWeb to BWeb is to adhere to the requirements shown
in Fig. 2.3. The website’s title mentioned in item (5) can be derived from its welcome

17

18 Informal Survey

(1) The transformation result matches the BWeb format.
(2) Preserve file names as far as possible.
(3) Preserve directory names as far as possible.
(4) Preserve the website’s name if possible.
(5) Preserve the title of the website.
(6) Preserve link consistency while transforming absolute to relative links.
(7) Preserve content and structure of the html-files as far as possible.
(8) Keep the bit-wise content of all non-html files unchanged.
(9) Preserve the directory and file structure of the source website in both the

“html” and “resources” directory.

Figure 2.3: Preservation requirements for running example

page. Non-html content is separated from html content in the target model. However,
item (9) assures that all html content in the “html” directory adheres to the directory
structure of the source website. The same is true for all non-html content in “resources”.
In this way we avoid name conflicts. The website on the right-hand side of Fig. 2.2 is an
appropriate transformation result of “Calculation” w.r.t. the requirements in Fig. 2.3.

However, up to now the preservation requirements are still expressed too informally
for being verified automatically. While still remaining on an illustrative level, we will ren-
der some of them more precise in the following sections. In particular, we will (1) identify
concepts for modeling these requirements, (2) illustrate different concept implementa-
tions in the source and target website models, (3) formulate preservation requirements
more precisely, and (4) illustrate different variants of preservation and their relations to
tracing object properties.

2.2 Concept Identification and Matching

According to our explanations in Sect. 1.2, the first step towards “trustworthy” automa-
tion is sufficient formalization. In order to keep this part as untechnical as possible, we
postpone the formal parts to Chap. 3. We rather depict some of the properties of the
requirement listing in the last section and illustrate how to apply our approach.

We start with preservation requirements (1) and (9) of Fig. 2.3 and show how to model
the concepts related to them. Whenever a collection of files is ingested or harvested from
the web, we have to identify it as a well-formed website. Our archive merely accepts
websites that adhere to AWeb. For this purpose, we have to specify this format in more
detail. The same is true for BWeb. First, we observe that both representations have
a source directory that contains an html file. This html file is the entry point of the
website. Additionally, both formats comprise a website object, which can be understood
as being “abstract”. In practice, it could be represented by some meta data containing
the title of the website, for example (cf. [PRE05]).

These explanations exhibit an existing semantic relationship between these three
entities. We capture this relationship by introducing a concept EntryPoint as shown

18

2.3 Preservation — Variants and Specification 19

website

source dir

home page

source

target

ContainsEntryPoint

source

overview

137.193.60.82

Calculation

html

overview

Calculation Calculation

parent

child

Contains
source

start.html

137.193.60.82

Calculation

htmlindex.html resources

Calculation Calculation

website

source dir

home page

EntryPoint
<some IP address>

<some IP address>

Figure 2.4: Example concepts and contexts

in the left-hand part of Fig. 2.4. The interface contains three role names: website,
source dir, and home page. All implementations of EntryPoint have to assign these
roles to concrete objects. These objects are called interface objects in the following. On
the left-hand and right-hand side of the EntryPoint concept we show the relevant parts of
the source and target website. The arrows show role assignment. The directory “source”
of website “Calculation”, e.g., takes the role source dir. So does the folder “Calculation”
of the target website. Since all roles are assignable, we can match the concept EntryPoint
to both the source and target website. However, this concept is implemented differently
for AWeb and BWeb. We have indicated this by shaded areas. In particular, the target
website must contain an “html” and a “resources” directory so as to conform to BWeb;
this is not necessary for the source website. We say that the websites in Fig. 2.4 match
EntryPoint in different contexts. This directly corresponds to our intention expressed in
Sect. 1.2, where we stated that concepts group different implementations of one and the
same aspect in different contexts.

In its right-hand part, Fig. 2.4 depicts another concept. It models directory contain-
ment and contains the roles parent and child. This concept is necessary for requirement
(9) (preservation of directory structures). Again, the shaded areas indicate different im-
plementations. In particular, the source directory may not contain any sub-directories
other than “html” and “resources” in the BWeb format. Hence, all sub-directories must
reside in one of these directories. Fig. 2.4 depicts containment in the “html” directory as
an example.

Preservation requirements (2), (3), and (4) relate to an attribute of files, directories,
and websites, respectively — they require the preservation of their names. This is
modeled by a concept Name and the value of this concept must be identical for the
source and target objects. As opposed to the semantic relationships in Fig. 2.4, different
implementations can yield values other that “does hold” and “does not hold”. In our
approach we cover this difference by non-functional and functional concepts. EntryPoint
is non-functional, Name is functional.

2.3 Preservation — Variants and Specification

Now that we have identified relevant concepts for the preservation requirements, we
have to formulate the preservation requirements themselves in a machine-processable

19

20 Informal Survey

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

home page

EntryPoint

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

parent

child

Contains

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

entity

entity

entity

(1)

(2) (3)
Context AWeb Context BWeb

source dir

website

Name

Name

Name

<some IP address>

<some IP address><some IP address>

Figure 2.5: Different variants of preservation.

manner. Yet before we clarify the variants of preservation that are supported by our
approach. During the following explanations one important aspect has to be kept in
mind: According to the most relevant literature [Con02, PRE05], objects — once they
are stored in an archive — are considered to be immutable. Whenever a change is to
be made to an object, a new version of this object has to be generated (i.e., the object
has to be transformed). This newly created object receives a new ID number, which is
unique system-wide.

As indicated at the end of the last section, we support two variants of preservation.
We call them non-functional concept preservation and functional concept preservation.
Non-functional concepts can be used to preserve semantic relationships. Functional con-
cepts embody object content. Hence, non-functional concept preservation corresponds
to preserving object content.

In its upper left-hand part, Fig. 2.5 illustrates the preservation of the non-functional
concept EntryPoint. We have highlighted three important aspects related to the source
and target website using marks (1), (2), and (3).

• We trace the transformation of those objects that are assigned to role names of
the concept that is to be preserved (mark (1)). Transformations of other elements
are irrelevant for the preservation of this concept. This directly corresponds to our
view on a concept’s interface — only objects taking roles in a concept definition
are considered to be relevant for this concept. Keeping in mind that all objects are
immutable, only transformations can cause changes by creating new object versions.
This is why we strictly relate the notion of preservation to transformations.

• Whenever a transformation of the interface objects is recognized, we check whether

20

2.3 Preservation — Variants and Specification 21

concept satisfaction in the source context AWeb (shaded area marked with (2)) cor-
relates with concept satisfaction in the target context BWeb (shaded area marked
with (3)). Only if both checks result in the same truth-value, this concept is pre-
served.

The bottom part of Fig. 2.5 illustrates the preservation of the functional concept Name.
Websites, directories, and files have a name-property (or attribute) the value of which
has to be preserved by the transformation. This concept is preserved if the source and
target object have equal names. Again, object immutability requires transformation if a
change is desired. Notice the strong correlation between functional and non-functional
concept preservation. In order to satisfy the concept EntryPoint in the target concept,
the home page file is always named index.html. This prevents the preservation of the
name property in our example since the home page file of the source website is named
start.html. Therefore the corresponding preservation requirement has been expressed
by “Preserve file names where possible”.

Up to now, we have considered “linear” object histories only. The upper right-hand
part of Fig. 2.5, however, shows an example where we produce different versions of certain
directories. In particular, preservation requirement (9) demands the preservation of the
full directory and file structure of the source website in both the “html” and “resources”
directory of the target website. Concerning the directories “calc05” and “overview”, this
yields two new versions for each. According to this preservation requirement we also
have to preserve containment of the file “doclist.html” in “overview” and “calc.pdf” in
“calc05”, respectively. One may have realized that this preservation requirement can
be satisfied for one new version of the corresponding directories, only. The reason is
that “html” may contain hypertext content only. Analogously, “resources” may contain
non-hypertext only. These different preservation requirements are to be covered by our
approach.

With these remarks we have already made a step towards expressing preservation
requirements in a more precise way. In the technical part of this thesis we will introduce
formal preservation constraints the verification of which can be done automatically. In
order to get an understanding of the way we use these formal constraints, we start
with a first progress from the informal requirements of Fig. 2.3 towards semi-formal
requirements, which are expressed more precisely. Recall that preservation requirement
(1) is simply expressed by “The transformation result matches the BWeb format.” in
Fig. 2.3. We have modeled this property using EntryPoint. According to our explanations
so far, we directly relate our notion of concept preservation to the concept itself, to the
transformation of the concept’s interface objects, and to a source and target context.
Therefore, we formulate this preservation requirement more precisely as follows:

When transforming an object, which is assigned to one of the roles website,
source dir, or home page of the concept EntryPoint, all new versions of
all interface objects of EntryPoint must satisfy the concept EntryPoint in
the target context BWeb, if and only if the source objects satisfied
EntryPoint in the source context AWeb.

Two parts of this sentence require for explicit attention:

21

22 Informal Survey

(1) We want all new versions of the source objects to satisfy this requirement. The
reason for this explicit distinction has been explained before (using the Contains
concept of Fig. 2.5).

(2) We postulate the strong correspondence“if and only if”between concept satisfaction
in the source and target context, respectively. This automatically includes that the
transformation results must also not satisfy the concept EntryPoint if the source
objects did not. This corresponds to a rigorous understanding of preservation: We
want to preserve the status of concept satisfaction w.r.t. the concept EntryPoint. In
our view, this includes both cases — satisfaction and failure.

The above semi-formal formulation of preservation requirement (1) is sufficiently
precise in the sense that it expresses the following five intentions:

(1) Concept preservation for all histories —
“... for all new versions ... ”

(2) Relation to transformation of interface objects —
“When transforming ... ”

(3) Relation to concept and its interface objects —
“... source objects satisfied EntryPoint...”

(4) Definition of permitted source contexts —
“satisfied EntryPoint in the source context AWeb”

(5) Definition of permitted target contexts —
“satisfy ... EntryPoint in the target context BWeb”

In particular, we permit different implementations of one and the same aspect in dif-
ferent contexts, while nothing is said about how the contexts AWeb and BWeb really
implement the interface of EntryPoint. All we know is that they comprise three interface
objects that have semantic relationships. Hence, changing implementations do not nec-
essarily induce a change to requirements specifications. This interface-based approach is
a well-established technique in the context of programming. Additionally, our preserva-
tion language supports readability of the preservation requirements even for those that
have no or limited background in Mathematics or Computer Science. What is still miss-
ing, is a precise, machine-readable syntax as well as a formal semantics for expressing
and evaluating preservation requirements. We shall see that the syntax is a straight-
forward technical realization of the formulation above. According to our explanations
above, the semantics for constraint evaluation has to take into account operations (like
a transformation) and concept evaluation for different implementations in possibly dif-
ferent system states. The technical details will be explained in Part II. In the following
section we briefly sketch how our framework works in terms of automated verification of
preservation requirements.

2.4 Verifying Preservation Requirements

In the following we demonstrate the state-based functionality of our framework. We
transform parts of the source website of Fig. 2.2 step by step and explain what is hap-
pening “behind the curtain”. In our explanations, we always refer to the following two
preservation requirements:

22

2.4 Verifying Preservation Requirements 23

Calculation

Example transformation

source

start.html html resources

source

start.html html resourcesindex.html

Calculation

html resources

source

start.html index.html

Calculation

html resources

source

start.html index.html

calc05 overview

calc.pdf doclist.html

calc05 overview

calc.pdf doclist.html

calc05 overview

calc.pdf doclist.html

calc05 overview

calc.pdf doclist.html

Calculation

Calculation Calculation Calculation

create(html), create(resources)

1 2

3 4

transform(start.html -> index.html)

transform(source -> Calculation)

transform(Calculation -> Calculation

website

source dir

home page

EntryPoint

website

source dir

home page

EntryPoint

website

source dir

home page

EntryPoint

website

source dir

home page

EntryPoint

entityentity

entity

Name

entity

Name
entity

Name

Name

Figure 2.6: State-based transformation and verification.

(1) Preservation of concept EntryPoint: When transforming an object, which is as-
signed to one of the roles website, source dir, or home page of the concept
EntryPoint, all new versions of all interface objects of EntryPoint must satisfy the
concept EntryPoint in the target context BWeb, if and only if the source objects
satisfied EntryPoint in the source context AWeb.

(2) Preservation of concept Name: When transforming a website object, which is as-
signed to the role entity of the concept Name, the value of the concept Name in
context WN for all new versions of the interface object must equal the value of the
concept Name in context WN for the source object.

In Fig. 2.6 we show four transformation steps. In step one (upper left-hand part),
we create two directories “html” and resources, respectively. Next to this box we have
indicated the preservation requirements by the interfaces of EntryPoint and Name. These
two operations do not affect any preservation requirement so far as our notion of pres-
ervation is related to transformations only. Nevertheless, the migration process has to
communicate these operations to our framework as they are relevant when checking the
target website for BWeb conformity. So far, our system has recorded the migration se-
quence 〈create(html),create(resources)〉. In the next step, the welcome page of the
source website is transformed to “index.html”. Again, this operation is communicated
to the system, which yields the overall migration sequence

〈create(html),create(resources),transform(start.html -> index.html)〉.

The file “start.html” is the welcome page of the source website and, hence, meets the pre-
requisite “When transforming an object, which is assigned to one of the roles website,
source dir, or home page of the concept EntryPoint..” for the application of preserva-
tion requirement (1) from above. This activates concept matching, which is shown by
the shaded area in the upper right-hand part of Fig. 2.6. Our system is now aware of this
transformation and marks the corresponding role “activated” for the concept EntryPoint,
the source object, and the target object. The same is done in step three with the di-
rectory “source” and role source dir. Hence, in state three, two out of three roles are

23

24 Informal Survey

activated of EntryPoint’s interface. In step four, the website object is transformed. This
activates the role website. Additionally, this transformation has to preserve the name
of the website object. The overall migration sequence becomes

〈create(html),create(resources),transform(start.html -> index.html),

transform(source -> Calculation), transform(Calculation -> Calculation)〉.

The transformation is finished in state four. At this point, our system has to be notified
in order to activate the verification of the underlying preservation requirements. In our
example, the target website satisfies the concept EntryPoint in the context BWeb, which
means that the first preservation requirement is satisfied. Also, the website’s name is
preserved, which satisfies requirement (2) from above. If one of the requirements was
not satisfied, our system would precisely report (1) which preservation requirement has
not been met, and (2) which objects are to blame for this violation. This allows for
adequate reactions.

2.5 Summary

We have surveyed our approach in an informal manner. A website transformation appli-
cation has been introduced as running example. It exhibits all aspects that are necessary
to understand our approach. Although this example may seem to be simplistic, we shall
see that the formal treatment of some preservation requirements (like link consistency)
is not simple at all.

To start with, we have introduced the corresponding preservation requirements on
an informal level. Afterwards, we have demonstrated three steps towards automating
the verification process of these requirements:

(1) Define relevant properties (i.e., concepts) related to the preservation requirements.
(2) Express the preservation requirements in a sufficiently formal way.
(3) Verify these preservation requirements in a state-based environment.

In that, we have identified two variants of preservation, namely functional and non-
functional concept preservation. The latter handles the preservation of semantic object
relationships that may be implemented differently for the source and target objects. In
contrast, functional concept preservation handles object content. Preservation in this
respect means identical preservation of the value of the functional concept.

We have progressed from informal to semi-formal formulations of preservation re-
quirements. Semi-formal formulations precisely relate source and target objects to con-
cepts that are to preserved in (possibly different) source and target contexts. This coin-
cides with the basic intention behind our notions of preservation. Hence, there is only a
small step to translating semi formal requirements to machine-processable preservation
constraints.

Finally, we have used excerpts of the example transformation to demonstrate the
operation of our framework. In order to automate the verification process, our system
must be notified on state changes like object creation or object transformation. It then

24

2.5 Summary 25

records these migration sequences and particularly uses transformations for tracing ob-
ject histories. That way we can relate source objects to their new versions and, thus,
check preservation requirements in an automated way.

25

Part II

Formalizing Migration and
Preservation

26

Chapter 3

Modeling Objects and Digital
Archives

Here we introduce a basic dynamic environment for Digital Archives (DA). It (1) covers
datatypes for digital objects as well as functions and semantic relationships defined on
them and (2) captures the effects of migration processes by well-defined basic state
changes. With these preliminaries we can introduce formal concepts (Chap. 4) and our
preservation language (Chap. 5); formal preservation requirements can be evaluated in
the basic DA.

The outline is as follows:

• An informal survey is provided in Sect. 3.1.
• Object content and object relationships are modeled in Sect. 3.2. We motivate why

we use Abstract Data Types (ADTs) and define the necessary formal structures.
• In Sect. 3.3 we integrate these (static) structures into a dynamic environment. We

define a basic formal DA. It includes predefined administrative components that
suffice to characterize the content of digital objects formally. Sequences of formal
state transitions (object creation, object transformation, object deletion) cover mi-
gration processes. These state transitions will be characterized by pre- and post
conditions; this facilitates to prove some important system invariants. A refer-
ence implementation is provided in Chap. 6 by means of Abstract State Machines
(ASMs).

• We close with a short summary in Sect. 3.4.

All formal parts will be accompanied by non-formal explanations related to our running
example.

3.1 Informal Overview

According to our explanations in Chap. 1, we have to obey some constraints when
modeling DAs:

• DAs usually comprise administrative components that serve the preservation of
their hosted digital objects (cf. Fig. 1.3, page 6). Hence, predefined functionality

27

28 Modeling Objects and Digital Archives

oid : ID
name : String
content : HTMLElem

HTMLDoc
HTMLDoc(oid:ID,

name:String,
content:HTMLElem)

doclist.html

html

head

body

...

oid : OID
name : String
subDirs : Set[Dir]
subDocs : Set[Doc]

Dir
Dir (oid : OID, name : String,

subDirs : Set[Dir],
subDocs: Set[Doc])

source

calc05 overview

start.html

type Dir<{DObj} =
begin

constr
ˆ

Dir : OID× String× Set[Dir]× Set[Doc] → @

ops

2664
oid : @ → OID

name : @ → String

subDirs : @ → Set[Dir]
subDocs : @ → Set[Doc]

axioms

2666664
∀oid : OID, name : String, subDirs : Set[Dir],
subDocs : Set[Doc] •

oid(Dir(oid, name, subDirs, subDocs)) = id∧
name(Dir(oid, name, subDirs, subDocs)) = n∧
subDirs(Dir(oid, name, subDirs, subDocs)) = subDirs∧
subDocs(Dir(oid, name, subDirs, subDocs)) = subDocs

end Dir;

Figure 3.1: Object type Dir as UML-like visualization and ADT specification

like validity or integrity checks must be supported.
• Objects must be uniquely identifiable and their content must be accessible.
• DAs evolve due to running migration processes that create, delete, or transform

digital objects.
• Objects are immutable; content changes result in new objects with a new ID. We,

thus, have to characterize object content.

We specify object types, object contents, and archival functionality as Abstract Datatypes
(ADT,[CoF04, EGL89, Wir95, ABK+02]). In Fig. 3.1 we show, a UML-like visualization
(left-hand part) and an algebraic ADT specification (right-hand part) of the object type
Dir (directories). This pseudo specification language will be used in the sequel and is
very much related to the CASL specification language [BM04]. It, however, emphasizes
our focus on datatypes. The constr-part specifies constructors, ops specifies opera-
tions, and the axioms part fixes all axioms. The symbol @ means “self”, the preamble
type Dir<{DObj} states that Dir is a subtype of type DObj; DObj is the super-type of
all digital objects.

Objects are constructed using distinguished constructors which we basically handle
like regular functions. However, they will be used for characterizing object contents.
According to Fig. 3.1, Dir constructs directories. The axioms on the right-hand side
show that the parameters oid (object ID), name (name), subDirs (sub-directories), and
subDocs (sub-documents) fix the value of the corresponding attributes 1 (oid, name,
subDirs, and subDocs). These attributes describe named, tree-like directory structures
(see bottom left-hand part of Fig. 3.1); generally speaking, attributes reflect accessible
object content. Type Set shows that we support generic types; this supports re-use.

ADTs are a key to our approach. They are defined inductively and allow for equality-
based reasoning. Inductive structures (like trees) frequently occur in our setting. Also,
we will introduce an equality-based notion of preservation in Chap. 5.

Notice the difference between object IDs in our setting and object references (e.g., in
object-oriented systems). We include IDs as part of object content; they are persistent.
As objects are immutable, object IDs cannot be changed as well. This helps maintaining

1In the context of ADT specifications, attributes are rather called selectors. In the DA community,
however, the term attribute is more common; we adapt the latter.

28

3.1 Informal Overview 29

object integrity. In contrast, references are mostly not durable over the long term but
may include object ID (like web-URLs that include document identifiers (DOI)).

Our basic DA includes the following administrative components:

The datatype OID:
It models (an infinite set of) IDs that can be attached to objects on creation; given
an ID id, the next valid ID can be computed by nextID(id).

The datatype DObj:
DObj is the supertype of all digital objects; types being no subtype of DObj are
called basic types.

The function existDObj:
It stores the set of existing objects. On object creation existDObj is extended; on
object deletion it is reduced.

The function usedOIDs
It stores all object IDs that have ever been used. These IDs are never used again.

Basic types and functions belong to the static parts of an archive. In particular, the
semantics of static functions (like nextID) never changes. In contrast, the semantics of
dynamic functions (existDObj, usedOIDs) can evolve.

Example 3.1.1 (Effect of basic state changes)
Tab. 3.1 depicts a sample archive evolution; we create the “source” directory of our
example website (Fig. 2.2, page 17) and delete it again. The resulting state changes are
visualized in the upper part. The table rows contain the contents of usedOIDs (column
two) and existDObj (column three) in the respective system state (column one).
HTMLDoc constructs html files; the terms are abbreviated for the sake of simplicity.
In concrete syntax, the corresponding basic state changes are given as follows:

(1) x0 := cre(HTMLDoc(initID, “start.html“, ...)) (State 0)
(2) x1 := cre(Dir(nextID(initID), “calc05“, {}, {})) (State 1)
(3) x2 := cre(Dir(nextID2(initID), “overview“, {}, {})) (State 2)
(4) x3 := cre(Dir(nextID3(initID), “source“, {x1, x2}, {x0})) (State 3)
(5) del(x2) (State 4)
(6) del(x3) (State 4)

We have assigned newly created objects to variables x0 to x3 in order to abbreviate
notation.

2

In state zero usedOIDs and existDObj are empty; no objects exist. After that,
“start.html”, “calc05”, and “overview” are created successively. The values of existDObj
and usedOIDs adapt adequately. Notice that we require all object constructors to have
an ID parameter in the first position; all objects contain a persistent identifier.

In state three we create the directory “source”; it contains x1 (“calc05”) and x2

(“overview”) as sub-directories (attribute subDirs) and x0 (“start.html”) as sub-document
(attribute subDocs).

In the next step we try to delete “overview”; this, however, is blocked. As “overview”
is a sub-directory of “source”, it belongs to the object-valued content of “source”; delet-
ing “overview” would change the content of “source”. As objects are immutable, this
operation has no effect. This is assured fully automatically by our system.

29

30 Modeling Objects and Digital Archives

Table 3.1: Example archive evolution

source

calc05 overview start.htmlstart.html overview start.html calc05 overview start.html

source

calc05 overview start.html calc05 overview start.html

1 4 4 52 30

State Value usedOIDs Value existDObj
0 {} {}
1 {initID} {HTMLDoc(initID, “start.html“, ...)}

2 {initID, nextID(initID)}


HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})

ff
3


initID, nextID(initID),
nextID2(initID)

ff 8<: HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})
Dir(nextID2(initID), “overview“, {}, {})

9=;
4


initID, nextID(initID),
nextID2(initID), nextID3(initID)

ff 8>><>>:
HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})
Dir(nextID2(initID), “overview“, {}, {})
Dir(nextID3(initID), “source“, {x1, x2}, {x0})

9>>=>>;
4


initID, nextID(initID),
nextID2(initID), nextID3(initID)

ff 8>><>>:
HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})
Dir(nextID2(initID), “overview“, {}, {})
Dir(nextID3(initID), “source“, {x1, x2}, {x0})

9>>=>>;
5


initID, nextID(initID),
nextID2(initID), nextID3(initID)

ff 8<: HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})
Dir(nextID2(initID), “overview“, {}, {})

9=;
In the last step, we delete “source”. There, usedOIDs stays unchanged. However, the

just-described content-relationship is released; x0, x1, or x2 could now be deleted as well.
A state change trans(tsrc 7→ ttrg) models an object transformation. Since our basic

DA does not store object histories explicitly, this state change basically has the same
effect on existDObj as creating ttrg using cre(ttrg). However, transformations are used to
trace object histories in the course of migration processes. They will play an important
role for our notion of preservation later on.

To sum up, our basic archive satisfies the following properties (cf. Tab. 3.1):

• All objects in existDObj have different IDs.

• Whenever an object is in existDObj, all its object-valued content is in existDObj.

• Object creation/transformation extends existDObj, if all object-valued content of
the candidate exists; otherwise the operation has no effect.

• Object deletion reduces existDObj, if the candidate is not in the content of another
existing object; otherwise the delete operation does nothing.

• Object IDs are used once only.

In the following sections we will provide the necessary formalisms.

3.2 Modeling Object Contents and Relationships

Our approach is to capture the preservation of properties related to digital objects. We,
thus, first have to describe object content and object relationships. Before we introduce
the formalisms, we want to mention the key observations that drove our decision:

30

3.2 Modeling Object Contents and Relationships 31

• In our application domain, digital objects are usually classified, although this clas-
sification may vary between different layers of abstraction. Document formats are
one particular example. Therefore, a typing mechanism for objects is necessary.

• We have to model functionality defined for objects. In the last section we mentioned
validity checks. This functionality is defined w.r.t. an object’s content and usually
has certain formal properties. An html document starting with another than an
<html>-tag is no valid html document. A validity check must not return True in
that case. The methodology has to offer facilities to express these properties.

• Object relationships are important. As an example, (recursive) directory contain-
ment occurred in the example survey of Sect. 2.1. All these properties do not depend
on the evolving system but can be specified statically.

These aspects must be covered with sufficient formal clarity in order to meet our claim for
high trustworthiness. Given these requirements, the literature offers two standard meth-
ods that are worth being considered in more detail. First, object-oriented specification
techniques are strongly supported by the Unified Modeling Language [HKKR05]. Typ-
ing is implemented by classes. The content of digital objects is captured by attributes.
Invariants or specific restrictions can be specified using the Object Constraint Language
(OCL, [Ric02]). Object relationships are modeled by associations and multiplicities,
but can also be refined using set-valued attributes etc. The sophisticated tool-support
including graphical visualization clearly eases understanding of the described models.
Yet there is no substantial tool-support available for automated reasoning w.r.t. UML
specifications. This has two reasons: First, the UML-semantics itself is not specified
formally. Second, UML aims at stateful objects, i.e., such changing their attribute val-
ues over lifetime. The semantics of an object is very complex as it covers a full state
space. Function calls work by reference (object reference), the value then is dynamically
determined in the system state the function call is executed in. Therefore, functional
properties are usually specified by pre- and post conditions. In our setting, however, we
focus at immutable (i.e., stateless) objects.

As opposed to the UML-approach, algebraic specifications of Abstract Data Types
[EGL89, Wir95] do not inherently cover stateful objects. They are rather used to spec-
ify a type domain by fixing all properties that instances of this domain have to satisfy.
Datatypes are defined inductively by constructors, which facilitates induction proofs.
Since function calls work by value, properties of functions and relationships (predicates)
can be specified using equality, which allows for induction proofs based on equality and
term-rewriting. The ADT-approach is, thus, optimized for stateless reasoning. It has
been pushed forward over the last years resulting in growing tool-support. The CASL
specification language ([BM04, CoF04]) is a prominent example. It is integrated into the
powerful theorem prover Isabelle ([Isa02]) and, hence, offers support for automated rea-
soning. With the extension HasCASL, implementations for the functional programming
language Haskell ([Tho99]) can be derived automatically. Algebraic ADT specifications
base on formal model theory. All specifications have a clear semantics, but strong expert
skills are necessary in order to pervasively understand this specification method. Also,
the notion of object-valued content has to be characterized separately; the ADT-approach
does not cover attributes innately. Yet the following criteria drove our decision to use
algebraic ADTs:

31

32 Modeling Objects and Digital Archives

(1) The approach offers a sound semantics. This prevents ambiguity and facilitates to
apply formal proof techniques in the domain of digital preservation.

(2) Inductive type definitions frequently occur in the context of digital preservation.
As an example, most document formats are tree- or graph based. Also, directory
structures are trees. Available tools can, thus, be used for automated, inductive
reasoning in our application domain.

(3) Digital objects are immutable, thus, stateless.

These observations are particularly confirmed by our case study (Part IV). In order to
ease the understanding of datatype specifications, we will often represent them using the
UML-like graphical visualization shown in the upper left-hand part of Fig. 3.1.

Incorporating formal datatype specifications requires some effort. In the following
section we introduce the necessary formal structures and define datatype specifications
formally.

Formal Structures for Datatype Specifications

We start by introducing some notational conventions. Throughout this thesis, we will
often deal with calculi that can be used to derive certain properties. For this purpose,
we introduce the rule notation

φ1

...
φm

φ′1
...
φ′n

ψ

It reads as follows: The assumption ψ can be inferred if the judgments φ1 through φm
and φ′1 through φ′n hold. This introduces a derivability relation (which is often denoted
by ` in the literature). Notice that we will always refer to the least fitting relation that
satisfies the specified rules. As an example, we will introduce a calculus for deriving the
semantic value of a syntactic term. This will be denoted by (A, η, t) t

; v where A is
an algebra, η a variable assignment, t a term of a given signature, and v the resulting
semantic value of t. The ; operator will occur in different variants and is always used
to compute semantic values of syntactic elements. We, e.g., use

op
; for the derivation of

the semantic effect of basic operations or
mig
; for the effect of migration algorithms (the

latter occurs in Chap. 6).
We start by defining the syntax for ADT specifications by means of signatures.

Definition 3.2.1 (Signature Σ) A signature Σ := (T , <,P, C,F), C ⊆ F , consists
of

• a set of type symbols T , where T ∗ denotes the set of all ordered type tuples τi :=
(τ1, τ2, ...τn) over T , 1 ≤ i ≤ n ∈ N,

• a pre-ordering as subtype relation <, which we extend to a relation over T ∗ × T ∗
by τ1,i<τ2,i (i ∈ {1, ..., n}), iff2 τ1,1<τ2,1, ..., τ1,n<τ2,n,

2iff = if and only if

32

3.2 Modeling Object Contents and Relationships 33

• a set P, which is partitioned by sets Pτi , i ∈ {1, ..., n}, containing finitely typed qual-
ified predicate symbols p : τ1× ...× τn, τ1, ..., τn ∈ T including a set of distinguished,
overloaded instance predicates {instτ : τ ′ | τ, τ ′ ∈ T },

• a set C, which is partitioned by non-empty sets Cτ for each τ ∈ T containing the
type constructors c : τi → τ ∈ Fτi→τ for τ , and

• a set F , which is partitioned by sets Fτi→τ , i ∈ {1, ..., n} containing finitely typed
qualified function symbols f : τ1 × ...× τn → τ , τ1,...,τn,τ ∈ T .

Given a predicate symbol p : τi, p is the predicate name and τi is the predicate signature.
Analogously, f is the function name and τi → τ the function signature for a function
symbol f : τi → τ . We require predicate names, and function names to be pairwise
disjoint sets not including =, i.e., NP ∩NF = ∅, and = 6∈ NP ∪NF , where NP = {p | n ∈
N, p : τ1 × ... × τn ∈ P}, NF = {f | n ∈ N, f : τ1 × ... × τn → τ ∈ F}. The set |Σ| of
symbols of Σ is defined by |Σ| := T ∪NP ∪NF ∪ {=}. 2

Notice that we support an explicit inst predicate that is supposed to hold whenever
the value of a term is in the respective type domain. In the following we will often use
the short-hand notation pτi and fτi→τ for predicate symbols p : τi and function symbols
f : τi → τ , respectively.

Notice that we permit multiple signatures τi → τ for the same function/predicate
name f/p. Yet we still forbid mixing predicate names and function names. This will be
important later on when we introduce a functional language for programming migration
algorithms. In this language predicates can be used as regular Boolean-valued functions,
which might lead to name conflicts.

In the following we will introduce algebras that assign interpretations to each func-
tion/predicate symbol. In conjunction with multiple inheritance, this symbol overload-
ing may lead to ambiguities [CoF04]. Drastic solutions comprise excluding multiple
inheritance or demanding globally unique function names. We argue that both are not
practical in our setting. Globally distinct function names lead to “unreadable” specifica-
tions because equal aspects are expressed differently. Also, multiple inheritance occurs
frequently in our application domain. In the case study (Chap. 9) we present a design
pattern that bases on multiple inheritance. It can be used to trace structures partially
and, thus, keep the number of objects in the system to a minimum. Also, there are
usually different views on objects. This can be implemented by multiple inheritance in
a comfortable way.

We adopt the solution of [CoF04] and identify an overloading relation and constrain
algebras appropriately w.r.t. this relation.

Definition 3.2.2 (Overloading relation) Given a signature Σ := (T , <,P, C,F). Two
predicate symbols pτ1,i ∈ P and pτ2,j ∈ P are in the overloading relation (denoted by
pτ1,i

∼=P pτ2,j , iff there is a τk ∈ T ∗ such that τk<τ1,i, τ2,j .
Two function symbols fτ1,i→τ1 ∈ F and fτ2,j→τ2 ∈ F are in the overloading relation
(denoted by fτ1,i→τ1

∼=F fτ2,j→τ2), iff there are τk ∈ T ∗ and τ ∈ T such that τk<τ1,i, τ2,j
and τ1, τ2<τ . 2

The so-declared ∼= relation can be used to characterize unambiguous interpretations
of overloaded function symbols in algebras A.

33

34 Modeling Objects and Digital Archives

Definition 3.2.3 (Σ-algebra) Given a signature Σ := (T , <,P, C,F). A Σ-algebra
A := (T A,PA, CA,FA) consists of

• a non-empty carrier set τA for each type τ ∈ T such that

(1) v ∈ τA ∩ τ ′A implies that there is τ ′′<τ, τ ′ such that v ∈ τ ′′A, and
(2) τ<τ ′ implies τA ⊆ τ ′A

for all τ, τ ′ ∈ T ,
• a predicate pAτ1×...×τn ⊆ τA1 × ... × τAn for each qualified predicate symbol pτ1×...×τn

in Pτi , where instAτ = τA for all τ ∈ T ,
• an element cA in τA for each constant constructor c : τ ∈ Cτ , and
• a partial function fAτ1×...×τn→τ : τA1 × ... × τAn → τA for each qualified function

symbol fτ1×...×τn→τ in Fτi→τ . We define the strict extension fA
⊥

: τA1 ∪{⊥}× ...×
τAn ∪ {⊥} → τA ∪ {⊥} of a partial function fA by

fA
⊥

(v1, ..., vn) =
{
⊥, any of the vi is ⊥
fA(v1, ..., vn), otherwise

.

Given τk ∈ T ∗ (1 ≤ k ≤ n), we also denote τA1 ×...×τAn by τkA and require predicate
and function interpretations to respect the overloading relation:

• Whenever pτ1,i
∼=P pτ2,j , and τk<τ1,i, τ2,j then for all vk ∈ τkA it is true that

vk ∈ pAτ1,i
⇔ vk ∈ pAτ2,j

.

• Whenever fτ1,i→τ1
∼=F fτ2,j→τ2 , and τk<τ1,i, τ2,j then for all vk ∈ τkA it is true

that fAτ1,i→τ1
(vk) = fAτ2,j→τ2

(vk).

The set of all algebras over Σ is denoted by A(Σ). The carrier of A is defined by
|A| :=

⋃
τ∈T τ

A

2

According to this definition, type domains of any two types τ, τ ′ are disjoint if they
have no subtypes in common. This is virtually no limitation and facilitates unambiguous
overloading. Notice that we explicitly require constant constructors to have an interpre-
tation. Also, the semantics for the overloaded inst predicate is built-in (instAτ = τA).
Therefore, we have to prove that this predicate respects the overloading relation. This
is a conclusion of the following lemma.

Lemma 3.2.1 (inst-predicate well-defined) Given a signature Σ := (T , <,P, C,F)
and types τk, τ1, τ2 ∈ T such that τk<τ1, τ2. Furthermore, given sets τAk ⊆ τA1 , τA2 and a
value vk ∈ τAk . Then vk ∈ τA1 ⇔ vk ∈ τA2 . 2

The proof is easy since the element vk is in both τA1 and τA2 . Notice that the required
subset relationship in the lemma is assured by the < condition on type domains in
Defn. 3.2.3. Since all instance predicates instτ cover the whole type domain τA, the
lemma is directly applicable. Consequently, instance predicates respect overloading.

Before we introduce the formal syntax and semantics of terms and formulas, we define
variable assignments.

34

3.2 Modeling Object Contents and Relationships 35

Definition 3.2.4 (Variable assignments) Given a signature Σ := (T , <,P, C,F) and
a set X of variables. Then X is suitable for Σ, if

• X is the union of disjoint sets Xτ , τ ∈ T ,
• X contains non-overloaded symbols, only, i.e., for all τ, τ ′ it is true that τ 6= τ ′

implies {x | x : τ ∈ Xτ} ∩ {x | x : τ ′ ∈ Xτ ′} = ∅, and
• X is disjoint to all symbols of Σ.

An element x : τ is a qualified variable, where x is the name of that variable and τ is
its type. Let X be a set of variables suitable for Σ and A be a Σ-algebra. A variable
assignment or environment η for X and A is a function mapping X to

⋃
τ∈T τ

A such
that

x ∈ Xτ ⇒ η(x) ∈ τA ∪ {⊥}

Let η be a variable assignment, x ∈ Xτ a variable and v ∈ τA. Then the pointwise
update η[x 7→ v] of η is defined by

η[x 7→ v](y) :=
{
v, x = y
η(y), otherwise

.

We also call it the update of η at x. The set Env(X,A) denotes the set of all environments
for X and A. Moreover, we denote the set of all environments for X,Σ by Env(X,Σ) :=⋃
A∈A(Σ)Env(X,A). 2

With these preliminaries we can define the syntax and semantics of terms and for-
mulas over given signatures. Throughout this thesis we will, however, have to define
different languages. They mostly differ in the syntax and semantics of their terms and
atomic formulas, only. Their extensions to formulas of first order logic (FOL formulas)
including logical operators like ∧ and ¬ and quantifiers are done quite similar. Therefore,
we introduce term and formula structures and appropriate extension operators for these
structures in order to shorten notation.

Definition 3.2.5 (Term structures, formula structures) Given a signature Σ and
a set X of variables suitable for X. Then a term structure TSX,Σ := (T, t

;,FV) over
Σ, X consists of

(1) a set T of terms over X,Σ such that T is the union of terms Tτ of type τ , i.e.,
T =

⋃
τ∈T

Tτ , such that τ<τ ′ ⇒ Tτ ⊆ Tτ ′ for all τ, τ ′ ∈ T ,

(2) a value relation t
;⊆ A(Σ)× Env(X,Σ)× T ×

⋃
A∈A(Σ)

|A| ∪ {⊥} such that

t ∈ Tτ ⇒ (τA ∪ {⊥}) ∩ {v | (A, η, t) t
; v} 6= ∅ for all A, η, t, τ .

(3) a mapping FV : T → 2X returning the set of free variables3.

A formula structure FSX,Σ := (F,Mod, |=,FV) over X,Σ consists of

(1) a set of F of formulas over X,Σ,
(2) a set Mod of models,

3 2X denotes the power set of X

35

36 Modeling Objects and Digital Archives

(3) a satisfaction relation |=⊆Mod× Env(X,Σ)× F , and
(4) a mapping FV : F → 2X returning the set of free variables.

2

The components of term structures include terms in T and their semantics. In
particular, the value relation determines values for terms t w.r.t. a given Σ-algebra A
and a variable assignment η. In general t

; need not be a function. Also, we do not
require the sets Tτ to be disjoint. We will, for example introduce concept terms. There,
a given term can have different types and values. Yet we require that t has a value in
τA ∪ {⊥} if t is of type τ .

Similar to term structures, formula structures carry syntax and semantics of for-
mulas. Yet they contain an explicit set of models. The satisfaction relation |= is then
determined w.r.t. a model M ∈ Mod, a formula φ, and a variable assignment. In con-
trast to terms, formulas of languages that we introduce in this thesis will sometimes
be evaluated w.r.t. models other than Σ-algebras. Preservation requirements, e.g., are
evaluated w.r.t. migration sequences.

The following definition introduces Σ-terms as a term structure.

Definition 3.2.6 (Term syntax and semantics) Let Σ be a signature and X a suit-
able set of variables for Σ. Then the term structure TX,Σ for terms over Σ, X is defined
by

TX,Σ := (T(X,Σ), t
;,FV), T(X,Σ) =

⋃
τ∈T

Tτ (X,Σ),

where the sets Tτ (X,Σ), τ ∈ T , of Σ-terms of type τ , the value relation t
;, the function

FV, and the set T≤τ (X, t) of subterms of t of type τ are defined inductively as shown in
Tab. 3.2. Terms with FV(t) = ∅ are called ground terms. We denote the set of ground
terms over Σ of type τ by GTτ (Σ). 2

As shown here, we refer to the term set by T(X,Σ) and to the corresponding term
structure by TX,Σ. The rules of the calculus in Tab. 3.2 combine well-formedness and
well-typedness of terms. To keep notation short, we will identify term tuples by ti in the
following whenever the value of i plays no role or is clear from the context. A function
application f(ti) then denotes the application of f to ti. Apart from that, syntactic term
identity, which will be denoted by ≡.

Sample derivations for terms and subterms using the calculus in Tab. 3.2 can be
found in App. B.1, page 182. According to the following lemma TX,Σ is a well-defined
term structure (cf. Defn. 3.2.5).

Lemma 3.2.2 (Σ terms are well-defined) Given a signature Σ := (T , <,P, C,F)
and a set X of variables suitable for Σ. Then TX,Σ is a well-defined term structure,
i.e.,

(1) For all τ, τ ′ ∈ T it is true that τ<τ ′ implies Tτ (X,Σ) ⊆ Tτ ′(X,Σ).
(2) For all types τ ∈ T , all terms in Tτ (X,Σ), all algebras A ∈ A(Σ) and variable

assignments η ∈ Env(X,A) there is v ∈ τA ∪ {⊥} such that (A, η, t) t
; v.

2

36

3.2 Modeling Object Contents and Relationships 37

Table 3.2: Syntax and semantics of terms
Syntax:

(1) Variables:
x : τ ∈ Xτ

x ∈ Tτ (X,Σ)
FV(x : τ) = {x : τ}

(2) Functions:
t1 ∈ Tτ1(X,Σ), ..., tn ∈ Tτn

(X,Σ) fτi→τ ∈ F
f(t1, ..., tn) ∈ Tτ (X,Σ)

FV(f(t1, ..., tn)) =
⋃
i

FV(ti)

(3) Subtyping:
t ∈ Tτ ′(X,Σ) τ ′<τ

t ∈ Tτ (X,Σ)

(4) Subterms:
t ∈ Tτ (X,Σ)
t ∈ T≤τ (X, t)

f(t1, ..., tn) ∈ Tτ (X,Σ)
ti ∈ Tτi

(X,Σ) (1 ≤ i ≤ n)
ti ∈ T≤τi

(X, f(t1, ..., tn))

t ∈ T≤τ (X, t′)
t′ ∈ T≤τ ′ (X, t′′)
t ∈ T≤τ (X, t′′)

Semantics:

(1) Variables:
x : τ ∈ Xτ η ∈ Env(X,A)

(A, η, x) t
; η(x)

(2) Function application:
t1 ∈ Tτ1(X,Σ), ..., tn ∈ Tτn

(X,Σ)
fτi→τ ∈ F

A ∈ A(Σ), η ∈ Env(X,A)
(A, η, t1) t

; v1, ..., (A, η, tn) t
; vn

v1 ∈ τA1 ∪ {⊥}, ..., vn ∈ τAn ∪ {⊥}
(A, η, f(t1, ..., tn)) t

; fA
⊥

τi→τ (v1, ..., vn)

The proof can be found in App. C.1, page 204, and goes by straightforward induction
on t. Generally, the value of a term is not uniquely determined as we permit overloading.
In the following lemma we provide a sufficient condition for global uniqueness of derived
term values.

Lemma 3.2.3 (Unique term values) Given a signature Σ := (T , <,P, C,F), a set
X of variables suitable for Σ, a Σ-algebra A ∈ A(Σ), and a variable assignment η ∈
Env(X,A). If there is Top ∈ T such that τ<Top for all τ ∈ T , the following holds: For
all terms t ∈ T(X,Σ) it is true that (A, η, t) t

; v1 and (A, η, t) t
; v2 together imply

v1 = v2. 2

The proof is provided in App. C.1, page 204. We will require existence of a type Top
for the basic DA later on. In this way we assure uniqueness of term values and implement
a JAVA-like overloading (cf. JAVA type Object). In particular, type Top existing and
adherence to the overloading relation together exclude the pattern test : τ → τ1 and
test : τ → τ2 for types τ1, τ2 with disjoint carriers. Functions having equal parameter
types and names may not have disjoint return types. In JAVA even equal return types
are required. The benefit of this restricted overloading has just been expressed; term
values are uniquely determined. Also, type checking is accelerated in practice.

The presence of a greatest type Top justifies the introduction of an explicit value
function V 〚 〛, which is standard in the literature where overloading is not permitted.

Definition 3.2.7 (Value function for terms) Given a signature Σ := (T , <,P, C,F)
such that there is Top ∈ T such that τ<Top for all τ ∈ τ ′. Given furthermore A ∈ A(Σ),
X suitable for Σ, η ∈ Env(X,Σ) and a term t ∈ T(X,Σ). Then

VA〚t〛η = v ⇔ (A, η, t) t
; v.

2

37

38 Modeling Objects and Digital Archives

Since the basic DA will have a greatest type, the value function can be used. Next
we introduce constructor terms. They will play an important role when we characterize
object content.

Definition 3.2.8 (Constructor terms) Given a signature Σ := (T , <,P, C,F). Then
the set CTτ (Σ) of constructor terms over Σ is defined by

CTτ (Σ) := GTτ (Σ′)

where Σ′ = (T , <,P, C, C). Given a type τ and a constructor term t ∈ CTτ (Σ) the length
l(t) of t is inductively defined as follows:

• l(c) = 1, iff c ≡ t is a constant constructor c : τ ∈ Fτ .

• l(c(t1, ..., tn)) =
n∑
i=1

l(ti).

2

Σ′ rules out all non-constructor functions. All ground terms over Σ′ are constructor
terms for Σ. The length of constructor terms is determined by counting the number
of occurrences of constructors. Constructor length is needed in the following definition,
where we formalize the notions of minimal constructors and generatedness. The latter
is often referred to as the “no junk”-principle in the literature [BM04]. It assures that
all elements in a type domain are indeed produced by a constructor term.

Definition 3.2.9 (Generatedness) Given a signature Σ := (T , <,P, C,F), a type
τ ∈ T , a Σ-algebra A, and a value v ∈ τA. Then v is constructor-generated, iff there is a
term t in CTτ (Σ) such that (A, ∅, t) t

; v. The set of all constructor terms that generate v
is denoted by CTA(Σ, v). Moreover, the set CTminA (Σ, v) of constructor terms of minimal
length that generate v (or minimal constructor terms for v) is determined by

CTminA (Σ, v) := {t | t ∈ CTA(Σ, v),∀t′ ∈ CTA(Σ, v) • l(t′) ≥ l(t)}

2

Later on, we will only permit term-generated specification models. Constructor terms
of minimal length will be used to characterize those digital objects that are part of the
content of another digital object.

Having defined terms and their semantics, we now switch to Σ-formulas. As explained
before, we aim at suitable extension operators that can be applied to term and formula
structures. Σ-formulas will then be defined in terms of these operators.

Definition 3.2.10 (Extension operators for term / formula structures) Given a
term structure TSX,Σ := (T, t

;,FV), a formula structure FSX,Σ := (F,Mod, |=,FV),
and a domain mapping

dom : (Mod×X × Env(X,Σ))→ (A(Σ)×
⋃

A∈A(Σ)

2|A|)

such that
dom(M,x : τ, η) = (A, d)⇒ η ∈ Env(X,A) ∧ d ⊆ τA.

Then we define:

38

3.2 Modeling Object Contents and Relationships 39

(1) AT (TSX,Σ) :=
(F at(TX,Σ), A(Σ), |=t,FVat) (atomic formulas over TSX,Σ)

(2) FOL(FSX,Σ,dom) :=
(F fol(FSX,Σ),Mod, |=fol,FVfol) (FOL formulas over FSX,Σ under dom)

where the respective components

(1) F at(TSX,Σ), |=t, FVat, and
(2) F fol(FSX,Σ), |=fol, and FVfol

are determined by the rules shown in Tab. 3.3.
Given a term structure TS′X,Σ := (T ′, t

′
;,FV ′). Then the join TSX,Σ] TS′X,Σ of TSX,Σ

and TS′X,Σ is defined, iff

((A, η, t) t
; v ⇔ (A, η, t) t′

; v) ∧ FV(t) = FV ′(t) for all
(A, η, t, v) ∈ A(Σ)× Env(X,Σ)× (T ∩ T ′)×

⋃
A∈A(Σ)

|A| ∪ {⊥}

Then TSX,Σ] TS′X,Σ := (T ∪ T ′, t
; ∪ t′

;,FV ∪ FV ′). 2

On the whole, Defn. 3.2.10 introduces three operators that can be applied to term
and formula structures, respectively. The components of the first two operators are
depicted in Tab. 3.3. Given a term structure TSX,Σ := (T, t

;,FV), AT (TSX,Σ) yields
the formula structure for atomic formulas over T . They comprise term equality and
predicate application for a given predicate in P. The semantics is standard. Yet notice
that we use an existential equality. Both terms of a formula s = t must be defined in
order to conclude s = t.

The operator FOL(FSX,Σ,dom) lifts a given formula structure FSX,Σ to a structure
of first order logic. Rule (1) integrates the original structure FSX,Σ. Rules (2) and
(3) supplement conjunction ∧ and negation ¬. In this way, FOL(FSX,Σ,dom) covers
formulas of propositional logic. The induced semantics is standard. Notice, however, that
we use arbitrary models M ∈ Mod instead of Σ-algebras. Rule (4) adds the universal
quantifier ∀. Therefore, the FOL operator requires an explicit domain mapping dom.
Given a formula ∀x : τ • φ, this mapping determines the quantification scope for
x : τ . In particular, the domain is computed w.r.t. a model M , a variable x : τ , and an
environment η. In order to assure that the semantics is well-defined, the result (A, d)
of dom(M,x : τ, η) must be suitable for η. In particular, the update η[x 7→ a] must be
defined. Also, the type τ of x must be respected. Therefore, we explicitly require

dom(M,x : τ, η) = (A, d)⇒ η ∈ Env(X,A) ∧ d ⊆ τA

in Defn. 3.2.10. Disregarding the genericness coming from the explicit domain mapping,
the semantics for the universal quantifier ∀ is standard. On the whole, our syntax merely
supports a minimal set ∧,¬,∀ of logical operators in order to keep proofs short. Yet we
will use ∨ (or), ⇒ (implies), ⇐ (follows from), ⇔ (equivalent to), and ∃ (exists) with
their usual translations using the operators of Tab. 3.3.

When introducing the preservation language in Chap. 5, we will employ the join-
operator]. It is used to join two term structures. In order to prevent ambiguity, the

39

40 Modeling Objects and Digital Archives

Table 3.3: Semantics of extension operators for term- and formula structures
Atomic formulas over TSX,Σ:

(1) Equality:
s ∈ Tτ , t ∈ Tτ ′ τ<τ

′ ∨ τ ′<τ
s = t ∈ F at(TSX,Σ)

FVat(s = t) = FV(s) ∪ FV(t)

(2) Predicates:
t1 ∈ Tτ1 , ..., tn ∈ Tτn pτi ∈ P
p(t1, ..., tn) ∈ F at(TSX,Σ)

FVat(p(t1, ..., tn)) =
S

1≤i≤n

FV(ti)

(1) Equality:

s = t ∈ F at(TSX,Σ) A ∈ A(Σ), η ∈ Env(X,A)

(A, η, s) t
; v, (A, η, t) t

; v, v 6= ⊥
A |=t s = t[η]

(2) Predicates:

t1 ∈ Tτ1 , ..., tn ∈ Tτn

pτi ∈ Pτi

A ∈ A(Σ), η ∈ Env(X,A)

(A, η, t1)
t

; v1, ..., (A, η, tn)
t

; vn

v1 ∈ τA1 ∪ {⊥}, ..., vn ∈ τA1 ∪ {⊥}
vi ∈ pAτi

A |=t p(t1, ..., tn)[η]

FOL-formulas over FSX,Σ:

(1) Formulas of FSX,Σ:
φ ∈ F
φ ∈ F fol(FSX,Σ)

FVfol(φ) = FV(φ)

(2) Negation:
φ ∈ F fol(FSX,Σ)

¬φ ∈ F fol(FSX,Σ)
FVfol(¬φ) = FVfol(φ)

(3) Conjunction:
φ ∈ F fol(FSX,Σ) ψ ∈ F fol(FSX,Σ)

φ ∧ ψ ∈ F fol(FSX,Σ)
FVfol(φ ∧ ψ) = FVfol(φ) ∪ FVfol(ψ)

(4) Quantification:
φ ∈ F fol(FSX,Σ) x : τ ∈ X
∀x • φ ∈ F fol(FSX,Σ)

FVfol(∀x : τ • φ) = FVfol(φ)\{x}s

(1) Formulas of FSX,Σ:

φ ∈ F
η ∈ Env(X,Σ)

M ∈Mod
M |= φ[η]

M |=fol φ[η]

(2) Negation:
¬φ ∈ F fol(FSX,Σ)
η ∈ Env(X,Σ)

M ∈Mod
not M |=fol φ[η]

M |=fol ¬φ[η]

(3) Conjunction:
φ ∧ ψ ∈ F fol(FSX,Σ)
η ∈ Env(X,Σ)

M ∈Mod
M |=fol φ[η] and M |=fol ψ[η]

M |=fol φ ∧ ψ[η]
(4) Quantification:

∀x : τ • F fol(FSX,Σ)
η ∈ Env(X,Σ)

dom(M,x, η) = (A, d)
M |=fol φ[η[x 7→ a]] for all a ∈ d

M |=fol ∀x : τ • φ[η]

structures must handle all those terms equally that both of them share. In particular,
the set of free variables and the satisfaction relations must work equally.

In the following definition we introduce regular Σ-formulas in terms of the just-
provided operators.

Definition 3.2.11 (Formula syntax and semantics, sentences) Let Σ be a signa-
ture andX a suitable set of variables for Σ. Then the formula structure FX,Σ for formulas
over Σ, X is defined by FX,Σ := FOL(AT (TX,Σ),dom), where

dom(A, x : τ, η) :=
{

(A, τA), η ∈ Env(X,A)
undefined, otherwise

for all (A, x : τ, η) ∈ A(Σ)×X × Env(X,Σ).
Throughout this thesis, we identify the components of FX,Σ by F (X,Σ), |=, and FV,
respectively. We denote the fact that A |= φ[η] cannot be derived by A 6|= φ[η]. A

40

3.3 Basic Formal Digital Archive 41

formula φ is a sentence over Σ, if φ contains no free variables, i.e., FV(φ) = ∅. The set
of all sentences over Σ is denoted by Sen(Σ). 2

Closed formulas or sentences are important in ADT specifications.
Since we use FOL(,) in Defn. 3.2.11, we have to prove that (1) the quantification

scopes determined by dom contain elements in τA only and (2) η is a suitable environment
for X,A (cf. Defn. 3.2.10). Yet this directly follows from the definition of dom. Since
we will need it later on, we fix this result in the following corollary.

Corollary 3.2.1 (Σ formulas well-defined) Given a signature Σ := (T , <,P, C,F),
and a set X of variables suitable for Σ. Then FX,Σ is a well-defined formula structure,
i.e.,

(1) For all A ∈ A(Σ), x : τ ∈ X, and η ∈ Env(X,Σ) it is true that dom(A, x : τ, η) =
(A′, d) implies η ∈ Env(X,A′) and d ⊆ τA′ .

2

Specifications, specification models and formal specification extensions are introduced
in the following definition.

Definition 3.2.12 (Specifications, models, extensions) A specification over Σ is a
tuple Spec := (Σ,Sen) such that Sen ⊆ Sen(Σ). A model for Spec is an algebra
A ∈ A(Σ) such that

(1) A |= φ for all formulas φ ∈ Sen and
(2) for all types τ and elements v ∈ τA the set of constructor terms is not empty, i.e.,

CTA(Σ, v) 6= ∅.
A specification Spec′ := (Σ′,Sen′) is an extension of Spec, iff

(1) Σ ⊆ Σ′ and
(2) A′|Σ |= φ for all models A′ for Spec′ and all sentences φ ∈ Sen.

2

Notice that we permit constructor-generated models, only. Specification extensions
will be important later on. We provide a specification for a basic DA, only. This
specification has to be extended in order to include user-defined datatypes. In the
definition above, A′|Σ denotes the reduct of A′ to Σ.

Notice that the set of all models is usually conceived to be the semantics of a specifi-
cation. In this thesis we do not go into detail with model theory, but refer the reader to
[EGL89, CoF04]. Yet we mention that models may not exist. Therefore, we will always
give reasons why models exist or directly provide them for those specifications that are
used in this thesis.

3.3 Basic Formal Digital Archive

Having introduced the technical vehicles for ADT specifications, we can introduce DAs.
In particular, we will specify a basic system that comprises datatypes for the supported
content of DAs, dynamic functions that control the evolution of DAs, and controlled state
transitions. We conclude this section by providing a notion of migration algorithms. It
covers sequences of basic state changes.

41

42 Modeling Objects and Digital Archives

Table 3.4: Static signature ΣDA
s of basic DA

Types T DAs :
Top Supertype of all types
DObj Supertype of all object types
OID Object IDs
Bool Boolean values
Set[α] Generic type for sets

Predicates PDAs :
<id: OID× OID Strict ordering on object IDs
empty : Set[α] Set emptiness
∈: α× Set[α] Set containment
⊆: Set[α]× Set[α] Set inclusion

Static functions FDAs :
initID : OID Initial object ID (constructor)
nextID : OID→ OID Next object ID (constructor)
createDObj : OID→ DObj Constructor for type DObj
oid : DObj→ OID Attribute oid of type DObj
True : Bool, False : Bool Boolean values true and false (construc-

tors)
{} : Set Empty set (constructor)
{}s : α→ Set[α] Singleton set (constructor)
∪ : Set[α]× Set[α]→ Set[α] Set union (constructor)
\ : Set[α]× Set[α]→ Set[α] Set difference
rep : Set[α]→ α Selector for a representative of the set

3.3.1 Static and Dynamic Signature

In the following we will require all specifications that we consider to be an extension of
the specification of the basic DA.

Definition 3.3.1 (Static parts of basic Digital Archive) The static specification of
the basic DA SpecDAs := (ΣDA

s ,SenDAs) is given by the static signature ΣDA
s shown in

Tab. 3.4 and the axioms of the data types specified in App. A.
The set of subtype axioms <DAs is the least relation over T DAs × T DAs satisfying the
subtype conditions:

(1) <DAs is reflexive, transitive, and antisymmetric on T DAs .
(2) For all τ ∈ T DAs it is true that τ<DAs Top.
(3) For all generic types τ [ρi] and τ1i, τ2i ∈ (T DAs)∗ the following holds: τ1i<DAs τ2i ⇒

τ [τ1i]<sτ [τ2i].

2

In the following we will often omit the indices when referring to the components of
a signature if the meaning is clear from the context. The basic DA includes a basic
set of types only. The subtype conditions assure that (1) <DAs is an ordering and
(2) there is a greatest type Top. Recall that this implies uniqueness of term values
(cf. Lemma 3.2.3). Also, we require generic types to preserve subtype relationships.
Notice that we distinguish two kinds of objects. Digital objects have an object type
(subtype of DObj). All other elements have a basic type (no subtype of DObj). There,

42

3.3 Basic Formal Digital Archive 43

we explicitly permit types that are subtypes of basic types and object types at the same
time.

All types in T DAs are specified formally as abstract data types in App. A, where types
Bool and Set[α] are standard (cf. [CoF04]). Notice that we use a function rep returning
a representative of a given set. It is non-deterministic in general. If applied to a set of
digital objects, however, it returns the representatives in ascending order w.r.t. their ID.

Recall that OID captures object IDs. We define an initial ID initID and proceed
to the next ID using nextID. We demand injectivity of nextID and a strict ordering
relation <id on object IDs. In the dynamic system irreflexivity of this relation assures
that nextID computes an ID which has not been used before.

Lemma 3.3.1 (OID circle-free) Given type OID as specified in App. A. Then we have

∀id : OID, i ≥ 1 • id 6= nextIDi(id).

2

The proof can be found in App. C.1. According to this lemma, OID is circle-free
w.r.t. nextID. The natural numbers with 0 = initID, (+1) = nextID and < = <id are
an example model for OID.

As explained before, the record type DObj is the supertype of all digital objects stored
in the DA. Later on, we control object histories of objects of this type and its subtypes,
only. The specification comprises a constructor createDObj and an attribute oid.

The basic DA of Defn. 3.3.1 can be extended in a controlled manner.

Definition 3.3.2 (Permissible extensions) A specification Spec := (Σ,Sen) is a
permissible extension of SpecDAs , iff Spec is an extension of SpecDAs , < satisfies the
subtype conditions, all types τ<DObj satisfy the ID-property

(1) All constructors for τ contain exactly one variable of type OID in the first position.
(2) The property ∀id : OID, xi : τi • oid(c(id, xi)) = id holds for all constructors

c : OID× τi → τ of τ .

and the constructor property

(1) For all terms t, t′ in GTDObj(Σ) it is true that whenever A |= t = t′ then there is a
term c(ti) ∈ T≤DObj(∅, t) such that c is a constructor and A |= c(ti) = t′.

(2) For all types τ ∈ T and terms t in GTτ (Σ) it is true that

{VA〚tDObj〛 | tDObj ∈ T≤DObj(∅, tmin)} = {VA〚tDObj〛 | tDObj ∈ T≤DObj(∅, t′min)}

for all tmin, t′min ∈ CTminA (Σ,VA〚t〛).

2

The notion of a permissible extension covers both, introducing new types and extend-
ing existing ones as long as the subtype conditions of Defn. 3.3.1, the ID-property, and
the constructor-property are obeyed. In particular, all type constructors of all subtypes
of DObj must have an attribute of type OID (ID-property). That way, we can attach IDs
on creation.

Notice that both parts of the constructor property are expressed by means of con-
structor terms:

43

44 Modeling Objects and Digital Archives

(1) If t equals a digital object t′, t′ is included in t already (t′ equals a constructor term
which is a subterm of t).

(2) Any two minimal constructor terms that construct the same term t contain equal
subterms of type DObj.

This reflects our intention to characterize the content of digital objects by means of
minimal constructor terms later on. On the whole, the constructor-property assures two
things:

(1) Functions cannot create new digital objects; this can be done by basic state changes
later on. In particular, digital objects cannot themselves cause state changes (as
opposed to models of object-oriented systems). This is standard for objects of our
application domain. They are stored permanently and methods defined on them
serve to access their content, only.

(2) Objects that appear as the content of other objects already exist on creation of
their parent object. Also, they may not be deleted as long as the parent object still
exists.

In App. B.1 we explain the constructor and ID property in more detail using some
examples.

According to the following lemma, ΣDA
s satisfies both the ID-property and the con-

structor property and, hence, is a permissible extension of itself.

Lemma 3.3.2 (Static basic DA well-defined) The specification SpecDAs of the ba-
sic DA in Defn. 3.3.1 satisfies the ID-property and the constructor property. 2

The proof can be found in App. C.1. Recall that we require all specification mod-
els (thus, all models for SpecDAs) to be term-generated . This induces a bi-directional
correspondence between semantic values and syntactic terms, which is important in our
setting. The implementation of our system, e.g., uses JAVA class instances as interpreta-
tions. Users can implement transformations in JAVA and construct new class instances.
When tracing transformations, our system constructs syntactic representatives of these
values. This is possible only in presence of global term-generatedness (which is true for
JAVA objects). Notice that non-empty models exist for SpecDAs since we have specified
all data types up to isomorphism and equipped some of them with “initial constructors”
(like initID). They may not be partial and, hence, must have an interpretation.

Recall that we want to characterize those digital objects that belong to the content
of another digital object. This prevents parent objects from unintentional changes to
their contents. In the introductory survey to this chapter we, e.g., could not delete
the directory “overview” as it was a sub-directory of “source”. The following definition
introduces digital objects and content of digital objects.

Definition 3.3.3 (Digital objects, contents) Given a specification Spec := (Σ, Sen)
that is a permissible extension of SpecDAs and a Σ-model A for Spec. Then a term
t ∈ GTDObj(Σ) is called a digital object.
Given a type τ , a set X of variables suitable for Σ, a term t ∈ Tτ (X,Σ) and a variable
assignment η. Then the object-valued content of t in A under η is defined by

contA,ηDObj(t) := T≤DObj(∅, ctt),

44

3.3 Basic Formal Digital Archive 45

where ctt is a fixed minimal constructor term in CTminA (Σ,VA〚t〛η).
Given a term t′ ∈ Tτ ′(X,Σ), we, furthermore, define:

A |= t′ ∈ contA,ηDObj(t)[η]⇔ there is a term t′′ ∈ contA,ηDObj(t) such that A |= t′ = t′′[η].

2

The object-valued content of a term t yields the subterms of type DObj of an arbitrary,
but fixed constructor term of minimal length for t. These terms can be understood as
representatives of those digital objects that are in the content of t. This “technical”
characterization of the object-valued content assures a solid mathematical foundation.
In practice, mostly constructor terms of minimal length are used. As an example, the
record-like types that we use have one constructor only. Constructor terms of this
kind are, thus, always minimal. If a datatype has more than one constructor, but all
constructors have disjoint domains, all constructor terms of this type are also minimal.
This applies to trees, for example.

Due to part (2) of the constructor property in Defn. 3.3.2, the choice of the con-
structor term ct is irrelevant as any two minimal constructor terms that construct equal
terms contain the same sub-objects. The following lemma justifies the term “object-
valued content”.

Lemma 3.3.3 (Properties of the relation contDObj()) Given a specification Spec :=
(Σ, Sen), Σ := (T , <,P, C,F), that is a permissible extension of the basic DA and a Σ-
model A for Spec. Then the following holds:

(1) Given terms s, t ∈ Tτ (X,Σ) and a variable assignment η. Then

A |= s ∈ contA,ηDObj(t)
⇔

There is ctt ∈ CTminA (Σ,VA〚t〛η) such that VA〚s〛η ∈ {VA〚t′〛η | t′ ∈ T≤DObj(∅, ctt)}.

(2) The relation RcontA := {(t, t′) | t, t′ ∈ GTDObj(Σ),A |= t ∈ contADObj(t′)} is an ordering.
In particular:

(2.1) RcontA is reflexive, i.e., ∀t ∈ GTDObj(Σ) • (t, t) ∈ RcontA .
(2.2) RcontA is transitive, i.e., ∀s, t, u ∈ GTDObj(Σ) • (s, t) ∈ RcontA ∧ (t, u) ∈ RcontA ⇒

(s, u) ∈ RcontA .
(2.3) RcontA is antisymmetric, i.e., ∀s, t ∈ DObjA • (s, t) ∈ RcontA ∧ (t, s) ∈ RcontA ⇒

A |= s = t.

(3) Digital objects that are the results of applying a non-constructor function appear
in the object-valued content of one of the arguments of this function application,
i.e.:
Given a function f : τ1 × ...× τn → τ such that τ<DObj and fτi→τ 6∈ Cτ , and terms
t1 ∈ GTτ1(Σ), ..., tn ∈ GTτn(Σ), t ∈ GTτ (Σ) such that A |= f(t1, ...tn) = t. Then
there is a ti (1 ≤ i ≤ n) such that A |= t ∈ contADObj(ti).

2

45

46 Modeling Objects and Digital Archives

The proof is provided in App. C.1, page 206. Property (1) provides an alternative
characterization of the object-valued content. Also, it underlines that the definition
of contDObj() does not depend on the choice of the minimal constructor term ctt in
Defn. 3.3.3; we merely demand an arbitrary constructor to exist such that the term
value of one of its sub-terms equals the term value of s.

According to property (2), contA,ηDObj(t) induces a semantic term ordering on the terms
of type DObj. This is what we want — relate syntactic term construction to a semantic
notion of object content.

Property (3) states that all objects that can be extracted from a term are in the
object-valued content of that term. In our example, attributes like home or srcDir
extract sub-objects of given objects. Examples can be found in App. B.1.

In our setting we need to a dynamic environment and have to distinguish existing
objects and non-existing objects. For this purpose we could, e.g., let the type domains
evolve; those objects that are in a type domain exist, the others do not. Recall that
we implement our basic state changes as ASM programs later on. In standard ASMs,
type domains are represented by predicates that can be extended by choosing elements
from a reserve non-deterministically. Baumeister and Zamulin in [BZ00] extend this
approach to CASL specifications. In our setting, however, concrete objects are created.
The set of existing objects is always a subset of the type domain of type DObj. Also,
our type domains cannot evolve. They are fixed as models of the basic DA specification.
Therefore, we follow [Zam97, Zam98] and model evolving parts by appropriate dynamic
functions.

Definition 3.3.4 (Dynamic signature, static and dynamic part) Given a static
signature Σs := (Ts, <s,Ps, Cs,Fs) and a Σs - state A. A dynamic signature Σd :=
(Ts, <s,Ps, ∅,Fd) suitable for Σs extends Σs by a set of dynamic (evolving) function
symbols Fd that are typed over Ts such that Fd ∩ Fs = ∅. An expanded state for Σ :=
Σs ∪Σd additionally contains interpretations fA for all function symbols f ∈ Fd. Terms
and formulas over Σ are defined similar to Defn. 3.2.11 but may include function symbols
of Fd as well. Analogously, term values and formula semantics expand to the dynamic
functions. We identify the static and dynamic part of Σ, respectively, by Σs = sp(Σ)
and Σd = dp(Σ). 2

Notice that constructors always belong to the static part of a signature according to
this definition. In the following we introduce the dynamic signature of the basic DA.

Definition 3.3.5 (Dynamic basic Digital Archive) Given the static signature ΣDA
s

of our basic DA. The dynamic signature ΣDA
d := (T DAs , <DAs ,PDAs , ∅,FDAd) for ΣDA

s is
determined by

FDAd := {existDObj : Set[DObj], usedOIDs : Set[OID]}.

2

Notice that ΣDA
d is suitable for ΣDA

s according to Defn. 3.3.4. The full basic DA
including all static and dynamic parts is defined as follows.

46

3.3 Basic Formal Digital Archive 47

Definition 3.3.6 (Basic DA, object existence) The basic Digital Archive is given
by SpecDA := (ΣDA, SenDAs)), where, sp(ΣDA) = ΣDA

s and dp(ΣDA) = ΣDA
d .

A specification Spec := (Σ, Sen) is a permissible extension of SpecDA, iff Sen = Sen|sp(Σ),
(sp(Σ), Sen) is a permissible extension of (ΣDA

s , SenDAs), and ΣDA
d ⊆ dp(Σ).

Given a specification Spec := (Σ, Sen) that is a permissible extension of SpecDA. Then
an object t ∈ GTDObj(Σ) exists in a Σ-model A of Spec, iff A |= t ∈ existDObj. 2

Permissible extensions of the full basic DA may not contain sentences over dynamic
parts. This might prevent state changes, which we introduce in the next section, from
being well-defined. Hence, we explicitly require Sen = Sen|sp(Σ). Also, this definition
assures ΣDA

s ⊆ sp(Σ) and ΣDA
d ⊆ dp(Σ) such that we can use both the static and

dynamic components of the basic DA whenever we deal with permissible extensions.
The notion of object existence in Defn. 3.3.6 is bound to existDObj. Together with
the set of used IDs (usedOIDs), existDObj is adjusted on object creation and object
deletion.

We conclude this section by summing up some important points:

• The basic DA can be extended in a controlled manner. There, we require the
ID-property and the constructor-property to hold.

• Models have to be term-generated.
• Terms of type DObj are referred to as digital objects. Digital objects that are part

of the content of another digital object are characterized via minimal constructor
terms for their parent object; they occur as sub-terms of these constructor terms.
This definition is well-defined only because the constructor property requires all
minimal constructor terms to contain equal sets of sub-terms of type DObj.

• The object-valued content of a term is denoted by contA,ηDObj(t). This relation is an
ordering.

• We have introduced the dynamic parts of our basic DA. There, we have fixed a
notion of object existence. An object exists if it is in existDObj.

In the next section we introduce basic state changes and migrations formally. That
way we add system dynamics.

3.3.2 Basic State Changes, Migration Sequences

Various kinds of state transition systems and methods for their high-level analysis can be
found in the literature. As we aim at tracing transformation processes operationally and,
hence, want to evaluate adherence to pre-defined preservation requirements w.r.t. their
input and output and given source and result states only, we do not introduce a formal
state transition system. Yet we mention that our approach naturally induces a state
transition system, where algebras are system states and the basic state changes are tran-
sitions. In particular, we characterize all basic operations via pre- and post conditions,
only. Since algebras carry semantics and formula validity can be checked w.r.t. given
states, this framework can be translated to Kripke Structures. Beyond others, Kripke
Structures are used for model checking complex systems w.r.t. properties that are for-
mulated in modal or temporal logics [MOSS99]. This may serve as a starting point for
future research.

47

48 Modeling Objects and Digital Archives

Table 3.5: Syntax of basic state changes w.r.t. Σ and a Σ-state A
Syntax:

(1) Object creation:
t ∈

⋃
v∈τA

CTmin
A (Σ, v) τ<DObj

cre(t) ∈ BT rτ (Σ,A)

(2) Object deletion
t ∈

⋃
v∈τA

CTmin
A (Σ, v) τ<DObj

del(t) ∈ BT rτ (Σ,A)

(3) Object transformation:

tsrc ∈
⋃

v∈τA
CTmin

A (Σ, v)

ttrg ∈
⋃

v∈τ ′A
CTmin

A (Σ, v)
τ<DObj
τ ′<DObj

trans(tsrc 7→ ttrg) ∈ BT rτ ′(Σ,A)

The basic DA evolves according to the state transitions

(1) cre(t),
(2) trans(tsrc 7→ ttrg), and
(3) del(t),

where t, tsrc, ttrg are terms of type DObj. Object creation introduces t as a new object,
transformation produces a new version ttrg of tsrc, and deletion removes t from the
system.

In the introduction to this chapter, we have already expressed expected pre-and post
conditions. In the next definition we define them formally.

Definition 3.3.7 (Basic state changes) Given a specification Spec := (Σ, Sen) such
that Spec is a permissible extension of the basic DA. Given a Σ-model A for Spec, the
set of basic state transitions over Σ and A is defined by the rules in Tab. 3.5.
A Σ-state A′ is subsequent to A w.r.t. op ∈ BT rDObj(Σ,A), iff (A, op) btr; A′, where btr

; is
defined as follows:

• (A, cre(t)) btr; A′, iff the following holds:

(1) A |= t′ ∈ existDObj for all t′ ∈ T≤DObj(∅, t)\{t}.
(2) A′ |= t ∈ existDObj ∧ oid(t) ∈ usedOIDs.
(3) For all objects t′ ∈ GTDObj(sp(Σ)) it is true that A |= t′ ∈ existDObj iff

A′ |= t 6= t′ ∧ t′ ∈ existDObj.

(4) For all terms id of type OID it is true that A |= id ∈ usedOIDs iff A′ |= id 6=
oid(t) ∧ id ∈ usedOIDs.

(5) A|sp(Σ) = A′|sp(Σ).

• (A, del(t)) btr; A′, iff the following holds:

(1) For all t′ ∈ GTDObj(sp(Σ)) is true that A |= t′ ∈ existDObj⇒ t 6∈ contADObj(t′)∨
t = t′.

(2) A |= t ∈ existDObj.
(3) For all t′ ∈ GTDObj(sp(Σ)) it is true that A |= t′ ∈ existDObj ∧ t′ 6= t iff

A′ |= t′ ∈ existDObj.

48

3.3 Basic Formal Digital Archive 49

(4) For all terms id of type OID it is true that A |= id ∈ usedOIDs iff A′ |= id ∈
usedOIDs.

(5) A|sp(Σ) = A′|sp(Σ).

• (A, trans(tsrc 7→ ttrg))
btr
; A′, iff the following holds:

(1) (A, cre(ttrg))
btr
; A′.

(2) A |= tsrc ∈ existDObj.

2

We restrict the syntax of the basic transitions in BT rDObj(Σ,A) to constructor terms
of minimal length. Hence, we need a reference algebra A in order to determine these
terms. This speeds up the evaluation of the object-valued content. Recall that these
terms contain exactly those digital objects as sub-terms that are in their object-valued
content. Also, minimal constructor terms can be evaluated faster in practice, which
supports efficient concept matching. Later on, the basic state changes will have to be
implemented anyway (they are specified by pre- and post conditions only). This includes
generating ground terms since we do not store variable assignments in the system. Often,
generating constructor terms of minimal length does not cause an overhead in practice.
Recall that constructor terms are always minimal w.r.t. a given datatype if (1) only one
constructor exists for that type or (2) any two different constructors for that type have
disjoint domains. In this thesis, all user-defined datatypes will satisfy this property. In
Sect. 6.2 we will implement the basic state changes by corresponding basic operations.
These operations are defined in terms of ASM programs and may serve as a reference.

The subsequence relation btr
; respects the desired pre- and post conditions. Concern-

ing object creation, the requirements assure the following:

(1) All sub-objects of t of type DObj already exist in existDObj; objects have to be
constructed bottom-up. That way we avoid “dead” references. In the example
trace in Tab. 3.1, page 30, creating all sub-directories before creating the “source”
directory is, thus, mandatory.

(2) t must exist in the target state and its ID has to be registered in the system. This
is the intended effect of object creation.

(3) Object creation causes a minimal change to existDObj. This includes that all those
objects that exist in A do still exist in A′. Also, we can derive A |= t 6∈ existDObj
and A |= oid(t) 6∈ existDObj (cf. Lemma 3.3.4 below).

(4) Object creation causes a minimal change to usedOIDs. Also, t must not have an
ID that has already been used in the system. This assures that objects are globally
uniquely identifiable.

(5) The static parts of the source algebra A do not change. In particular type domains
are equal in both algebras. Since constructor terms belong to the static parts of a
signature, BT rDObj(Σ,A) = BT rDObj(Σ,A′) if A′ is the result of applying an object
creation to A.

Object deletion is inverse to object creation. Hence, an object cannot be deleted
if it is a part of another object in existDObj (requirement (1)). Recall, e.g., that the

49

50 Modeling Objects and Digital Archives

directory “overview” could not be deleted in the example trace in Tab. 3.1. Analogous
to object creation, requirements (2) to (5) assure that exactly the respective object is
deleted and no further changes are made to the system.

Object transformation works similar to object creation in terms of creating the trans-
formation result ttrg. We, however, explicitly require the transformation source tsrc to
exist. This is the intended meaning of transformation: Take an existing object and relate
it to a newly created object.

The following lemma lists some elementary properties of the basic state changes.

Lemma 3.3.4 (Properties of basic state changes) Given a specification Spec :=
(Σ, Sen) such that Spec is a permissible extension of the basic DA. Given furthermore
Σ-models A,A′ for Spec and a basic state transition tr ∈ BT rDObj(Σ) such that (A, tr) btr;

A′. Then the following properties hold:

• If tr ≡ cre(t) then
(1) A |= t 6∈ existDObj.
(2) A |= oid(t) 6∈ usedOIDs.

• If tr ≡ del(t) then
(3) A′ |= t 6∈ existDObj.

2

The proof can be found in App. C.1, page 208. The non-operational specification of
the basic transitions using pre-and post conditions has an important advantage: Users
can provide their own implementations. These implementations are not bound to a spe-
cific language. Moreover, their way of function is constrained by the above requirements,
only. As an example, the basic DA could be extended by an explicit object history. This
would lead to additional requirements concerning the basic state changes. In particular,
a state that is the result of a transformation trans(tsrc 7→ ttrg) should contain a history
entry for tsrc and ttrg. We support all user-defined extensions and implementations that
refine the specifications related to the basic DA and the basic state changes.

The basic state changes are single-step transitions. Yet we want to capture migration
processes. For this purpose, we introduce migration sequences.

Definition 3.3.8 (Migration sequence) Given a specification Spec := (Σ, Sen) such
that Spec is a permissible extension of the basic DA. Given furthermore n ∈ N, Σ-states
A0, ...,An and operations tr1, ..., trn ∈ BT rDObj(Σ) such that (Ai−1, tri)

btr
; Ai for all

1 ≤ i ≤ n. Then
∆ := 〈A0, tr1,A1, tr2,,An−1, trn,An〉

is a migration sequence over Σ of length n from A0 to An. We call A0 the source state
of ∆, denoted by src(∆) and An the result state of ∆, denoted by res(∆).
Given another migration sequence

∆′ := 〈A′0, tr′1,A′1, tr′2,,A′m−1, tr
′
m,A′m〉

of length m from A′0 to A′m. Then ∆ and ∆′ are composable, iff An = A′0. The
composition of ∆ and ∆′ yields a migration sequence

∆; ∆′ := 〈A0, tr1,A1, tr1,,An−1, trn,A′0, tr′1,A′1, tr′2,,A′m−1, tr
′
m,A′m〉

50

3.3 Basic Formal Digital Archive 51

of length m + n from A0 to A′m. The set of all migration sequences over Σ is denoted
by MS(Σ). 2

Defining migration processes as sequences of basic state changes may seem simplistic.
It is, however, sufficient for our purposes. We leave further examination on parallelism
or control features up to future research.

Migration processes can be understood as runs through an abstract state transition
system. The ; operation implements regular sequential composition. ∆; ∆′ is defined
only, if the result state of ∆ equals the source state of ∆′. This assures that all basic
state changes in ∆; ∆′ are valid w.r.t. btr

;. In App. B.1, page 184, we show a sample
migration sequence related to the trace of Tab. 3.1 on page 30.

In the following lemma we list some important properties that are preserved by the
basic state changes.

Lemma 3.3.5 (Properties preserved by basic state changes) Given a specifica-
tion Spec := (Σ, Sen) such that Spec is a permissible extension of the basic DA. Given
furthermore Σ-models A,A′ for Spec and a basic state transition tr ∈ BT rDObj(Σ) such

that (A, tr) btr
; A′. Then the following properties are preserved (if they hold before

executing the state change, they hold afterwards as well):

(1) The IDs of all existing objects are registered as used IDs, i.e.,
∀x : DObj • x ∈ existDObj⇒ oid(x) ∈ usedOIDs

(2) All existing objects have different IDs, i.e.,
∀x, x′ : DObj • (x ∈ existDObj ∧ x′ ∈ existDObj)⇒

(oid(x) = oid(x′)⇒ x = x′)
(3) The object-valued content of all existing objects does also exist, i.e.,

∀x, x′ : DObj • x ∈ existDObj ∧ x′ ∈ contADObj(x)⇒ x′ ∈ existDObj

(4) Given a constructor term tid of type OID, this ID has been used before and no object
in existDObj has this ID, i.e.,
tid ∈ usedOIDs∧ ∀x : DObj • x ∈ existDObj⇒ oid(x) 6= tid

2

The proof can be found in App. C.1, page 208. The first property assures that the IDs
of all existing objects are registered. According to property (2), existing objects having
the same ID have equal values as well. In this way objects are uniquely identifiable.
Property (3) states that the object-valued content of all existing digital objects also
exists. This is particularly important in order to avoid dead references. Object-valued
content cannot be deleted as long as the parent object exists. Preservation of property
(4) guarantees that an object’s ID can never be used again if the object is deleted. Later
on we shall see that these properties imply object immutability.

In the next definition we introduce initial states and a notion of “permissible” deriva-
tions using basic state transitions.

Definition 3.3.9 (Initial and derived states) Given a specification Spec := (Σ, Sen)
such that Spec is a permissible extension of the basic DA. A Σ-model AI is an initial
state, iff A |= existDObj = {}. A Σ-model A is derived by basic transitions, iff there is
an initial state AI and a migration ∆ that leads from AI to A. 2

51

52 Modeling Objects and Digital Archives

Initial states do not contain existing objects. A state that is derived by basic tran-
sitions must be derived form an initial state via a valid migration sequence. With these
prerequisites properties (1) to (3) of Lemma 3.3.5 become system invariants.

Corollary 3.3.1 (System invariants) Given a specification Spec := (Σ, Sen) such
that Spec is a permissible extension of the basic DA. Then properties (1) to (3) of
Lemma 3.3.5 hold in all Σ-models A of Spec that are derived by basic transitions,
i.e.,

(1) A |= ∀x : DObj • x ∈ existDObj⇒ oid(x) ∈ usedOIDs

(2) A |= ∀x, x′ : DObj • (x ∈ existDObj ∧ x′ ∈ existDObj)⇒
(oid(x) = oid(x′)⇒ x = x′), and

(3) A |= ∀x, x′ : DObj • x ∈ existDObj ∧ x′ ∈ contADObj(x)⇒ x′ ∈ existDObj.

2

Property (4) of Lemma 3.3.5 does not necessarily hold in all states. However, when
an object with ID id is deleted, the property holds henceforth in all subsequent states.

This concludes the introduction of the evolving DA. The basic state changes cor-
respond to a state transition system. Migration sequences are particular runs through
this system. They can be used for syntactic tracing of more sophisticated migration
processes. These processes, in turn, can be implemented using the functional language
that will be introduced in Chap. 6.

3.4 Summary

We have introduced some basic prerequisites for the rest of this thesis. The content of
digital objects is modeled using algebraic datatypes. They are particularly suitable in
our setting since inductive data structures like trees or graphs frequently occur; this has
been underlined by our the running example.

Our basic DA includes some administrative structures like a type OID modeling object
IDs or a type DObj for digital objects. We have introduced conditions for well-founded
extensions of the basic DA. They guarantee existence of a suitable notion of object-valued
content. This is necessary to prevent the content of digital objects from being changed
unintentionally.

Apart from these static parts, some dynamic parts have been introduced. The central
part here is the function existDObj. It stores the set of all existing objects and evolves
according to the three state changes (1) object creation, (2) object deletion, and (3)
object transformation.

In summary, our dynamic system implements the following properties:

• Object types, functions, and semantic relationships can be described formally as
long as they adhere to the following:

• All objects are identifiable by an ID of type OID.
• An objects ID is considered to be part of its content and can be attached to

an object on creation.

52

3.4 Summary 53

• Functions do not create new digital objects. If a function returns a digital
object, this object is part of the object-valued content of one of the arguments
of the function.

• Objects are immutable. All IDs are used once only and are attached to objects on
creation or transformation.

• An object may not be created unless all its object-valued content exists in the
system.

• An object may not be deleted whenever it still has a parent object.

We proceed by introducing the formal syntax and semantics of concept definitions.
Concepts are the basis for formal preservation requirements.

53

Chapter 4

Contexts and Concepts

Concepts and contexts are used to specify those semantic properties that have to be
preserved by migration processes. In Sect. 2.2 of our introductory survey we have used
the concept EntryPoint in order to highlight some important design goals. Concepts
group different implementations of a property into different contexts. Also, a concept’s
interface defines role names for its interface objects. Only lifecycles of these objects are
traced when checking preservation requirements. All concepts and contexts have names
that are globally unique. Hence, they can be referenced globally without referring to a
detailed implementation directly. In this way, we abstract from concrete implementations
and can use concepts and contexts as language elements in the high-level preservation
language that will be introduced in Chap. 5. In the following sections we will provide
the necessary formalisms. The agenda is as follows:

• As usual, we start with an informal survey in Sect. 4.1.
• In Sect. 4.2 we introduce formal concept specifications. They comprise context def-

initions, concept definitions, interface definitions, role names, and role-assignments
(cf. Sect. 2.2 of the introductory survey of this thesis).

• Section Sect. 4.3 deals with dynamic concept evaluation. As opposed to static term
values and formula semantics, term and formula evaluation is reduced to the set of
existing objects in the dynamic setting. We will prove important correspondence
properties between static and dynamic evaluation results. Finally, we use dynamic
term values and dynamic formula semantics for the formal definition of concept
terms, concept formulas, and their semantics.

• The results are summarized in Sect. 4.4.

4.1 Informal Overview

Interfacing mechanisms and formal interface description languages (IDLs, e.g., CORBA
IDL or Java IDL) are well-known in Computer Science. In general, these languages
describe interface functionality by typing constraints and pre- and post-conditions. They,
however, usually do not “know” their concrete implementations. In digital archiving,
however, the latter is normally required. As an example, most DAs support archiving
formats that are open standards only. Keeping digital objects in proprietary formats is

54

4.1 Informal Overview 55

source

137.193.60.82

Calculation

Calculation Calculation

entity

source

start.html

137.193.60.82

Calculation

htmlindex.html resources

Calculation Calculation

website

source dir

home page

EntryPoint

Name

source

start.html

137.193.60.82

Calculation

index.html

Calculation Calculation

entity

entity

entity

Name[WebN]

Name[DirN]

Name[DocN]

<some IP address>

<some IP address>

<some IP address>

concept EntryPoint =
begin
Interface:

〈website : αw, sourcedir : αd,
homepage : αh〉
αw<Website ∧ αd<Dir∧
αh<HTMLDoc

Context AWeb:
ιA validAWeb(website)∧

sourcedir = srcDir(website)∧
homepage = home(website)

Context BWeb:
ιB validBWeb(website)∧

sourcedir = srcDir(website)∧
homepage = home(website)

end EntryPoint;

Figure 4.1: Specification of concept EntryPoint and website names

commonly considered to be too risky as it hinders (if not prevents) access to the internal
structure of the hosted objects; the archive would become dependent on the (usually
commercial) owners of these formats. Therefore, concepts in our setting comprise both,
a well-defined interface and all known implementations.

In the left-hand part of Fig. 4.1 we have depicted two “visual concept specifications”.
Recall that we distinguish two variants of preservation. The concept EntryPoint (upper
left-hand part) captures a semantic relationship. The lower left-hand part shows the
Name concept. It is functional and covers object content. On the right-hand side we
have listed the specification of EntryPoint in the pseudo language that will be used in this
thesis (as we will cover both concept variants similarly, we omit the other specification
for brevity). The specification consists of the following parts:

• The concept’s name occurs at the top-most line. We will require this name to be
globally unique later on.

• The interface is specified within the Interface part. It defines an arity by means of
a sequence of (generically) typed role names. These role names are marked bold and
are distinguished from regular variables that are used in concept implementations.
An additional formula is used to impose further type constraints. In our example,
we permit the concept EntryPoint to hold between a website (type Website), a
directory, and an html document only.

• The specification introduces two contexts AWeb and BWeb. These names have
to be globally unique as well. The implementations ιA and ιB are regular FOPL
formulas.

Later on, the source and target objects of migration processes are matched w.r.t. concept
interfaces in order to check desired preservation requirements. Typing can be seen as
a pre-filter and speeds up the matching process. If the type check fails, matching fails
immediately. If the type check succeeds, the implementing formulas (the contexts) are
evaluated. The predicates validAWeb and validBWeb in Fig. 4.1 return True if a website

55

56 Contexts and Concepts

corresponds to the AWeb or BWeb format, respectively (cf. preservation requirements
in the introductory survey to this thesis). The attributes srcDir and home return the
source directory and home page, respectively, of a website. In the left-hand part of
Fig. 4.1 we have shaded those objects that are affected by these format requirements.
An object tuple satisfies a concept, if one of the concept’s implementations evaluates to
True.

Notice that we deliberately keep the specification scheme for concepts simple. We
could, e.g., have introduced more genericness like is done in most general-purpose ADT
specification languages like CASL. They allow for generic predicates and functions as
well. Yet we have had no obligation to introduce these mechanisms up to now. But, it
is clearly a point of future extensions.

Since all datatypes are specified statically, the question arises of how to evaluate
these static formulas in a dynamic environment where objects may not exist; we would
expect that only existing objects are considered. In our system we evaluate concept
implementations dynamically modulo the set existDObj. The value of a non-existing
object is “undefined”. Functions applied to a non-existing object produce undefined
values as well. Moreover, all predicates fail when applied to non-existing objects.

Example 4.1.1 (Dynamic term and formula evaluation)

In Tab. 4.1 we have listed the results of evaluating some example terms and formulas in
the different system states (represented by the set of existing objects) of the example
archive evolution in Tab. 3.1 (page 30). In order to abbreviate notation, we have
named the respective terms as follows:
starthtml = HTMLDoc(initID, “start.html“, ...)
calcdir = Dir(nextID(initID), “calc05“, {}, {})
overviewdir = Dir(nextID2(initID), “overview“, {}, {})
sourcedir = Dir(nextID3(initID), “source“, {calcdir, overviewdir}, {starthtml}

The terms t1, t2 and formulas φ1, φ2 are defined as follows:
t1 := subDirs(sourcedir)
t2 := calcdir
φ1 := overviewdir = overviewdir
φ2 := ∀x : Dir • name(x) = “calc05“

Term t1 returns all sub-directories of the “source” directory, t2 corresponds to the
“calc05” directory, φ1 simply checks whether the directory “overview” equals itself, φ2

checks if all directories have name “calc05”.

2

For each of the terms/formulas Tab. 4.1 lists the static and dynamic evaluation result. In
state zero no objects exist. Therefore, the semantics of t1 is undefined whereas it equals
the set {calcdir, overviewdir} when evaluated statically. Also, the semantics of calcdir
is undefined. Formula φ1 always holds (indicated by True) in the static setting since
the “overview” directory equals itself. However, this formula does not hold (indicated by
False) when evaluated dynamically. Recall that we implement an existential variant of
equality — equality never holds if one of the terms is undefined. The formula φ2 holds in
the dynamic setting as the quantifier sphere reduces to the set of existing objects (which
is empty in state zero). φ2, however, never holds when evaluated statically as directories
may well have names other than “calc05”. 7In state one, all terms and formulas are

56

4.2 Specifying Contexts and Concepts 57

Table 4.1: Examples for dynamic term and formula semantics
S Value existDObj Value t1 Value t2 Value φ1 Value φ2

0 {} static

dynamic

{calcdir, overviewdir}
⊥

calcdir
⊥

True

False

False

True

1 {starthtml} static

dynamic

{calcdir, overviewdir}
⊥

calcdir
⊥

True

False

False

True

2
˘
starthtml, calcdir

¯ static

dynamic

{calcdir, overviewdir}
⊥

calcdir
calcdir

True

False

False

True

3


starthtml, calcdir,
overviewdir

ff
static

dynamic

{calcdir, overviewdir}
⊥

calcdir
calcdir

True

True

False

False

4


starthtml, calcdir,
overviewdir, sourcedir

ff
static

dynamic

{calcdir, overviewdir}
{calcdir, overviewdir}

calcdir
calcdir

True

True

False

False

evaluated to the same results as in state zero as creating “start.html” does not affect
them. In state two, the term calcdir becomes defined in the dynamic setting because
the directory “calc05” is created. In state three φ1 (overview = overview) holds since
the directory “overview” has been created. Also, the quantifier sphere for φ2 extends to
{calcdir, overviewdir} such that φ2 does not hold anymore. Finally, t1 becomes defined
due to creation of the “source” directory. This example exhibits some properties of the
dynamic term and formula semantics:

• Whenever being different from ⊥, dynamic term values equal the corresponding
static term values.

• Dynamic evaluation results for quantifier-free formulas equal the static results if all
contained objects exist in the respective system state.

• Universally quantified formulas may hold in the dynamic setting even if they do not
hold in the static setting.

• Quantified formulas may switch their truth values as the system evolves.

4.2 Specifying Contexts and Concepts

Here we introduce the syntax of concepts and their implementations in contexts. The
next section then deals with concept semantics. To start with, we define subtype con-
straints over a signature Σ and type variables TV which we will need when defining
concept interfaces.

Definition 4.2.1 (Type constraints) Given a signature Σ := (T , <,P, C,F). Then
a set TV of type variables is suitable for Σ, iff TV ∩ T = ∅. A type binding θ maps TV
to TV ∪ T . The pointwise update is defined similar to variable assignments η.
The simultaneous update θ[{α1 7→ τ1, ..., αn 7→ τn}] of α1, ..., αn ∈ TV ∪ T in θ with
τ1, ..., τn ∈ T is defined, iff ∀i 6= j ∈ {1, ..., n} • αi, αj ∈ TV ∧ αi = αj ⇒ τi = τj . In
this case,

θ[{α1 7→ τ1, ..., αn 7→ τn}](α) :=
{
τi, α = αi, i ∈ {1, ..., n}
θ(α), otherwise

for α ∈ TV .
Given a type binding θ and an element α ∈ TV ∪T . Then the value VΣ〚α〛θ of α under
type binding θ is defined by

57

58 Contexts and Concepts

Table 4.2: Syntax and semantics of type constraints over TV
Syntax:

(1) Equality:
s ∈ T ∪ TV t ∈ T ∪ TV
s = t ∈ TC(TV,Σ)

FV(s = t) = FV(s) ∪ FV(t)

(2) Subtyping:
s ∈ T ∪ TV t ∈ T ∪ TV

s<t ∈ TC(TV,Σ)
FV(s<t) = FV(s) ∪ FV(t)

(3) Negation:
φ ∈ TC(TV,Σ)

¬φ ∈ TC(TV,Σ)
FV(¬φ) = FV(φ)

(4) Conjunction:
φ ∈ TC(TV,Σ) ψ ∈ TC(TV,Σ)

φ ∧ ψ ∈ TC(TV,Σ)
FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)

Semantics:

(1) Equality:
s = t ∈ TC(∅,Σ) VΣ〚s〛θ ≡ VΣ〚s〛θ

Σ |= s = t[θ]

(2) Subtyping:
s<t ∈ TC(∅,Σ) (VΣ〚s〛θ,VΣ〚t〛θ) ∈ <

Σ |= s<t[θ]

(3) Negation:
¬φ ∈ TC(∅,Σ) not Σ |= φ[θ]

Σ |= ¬φ[θ]

(4) Conjunction:
φ ∧ ψ ∈ TC(∅,Σ) Σ |= φ[θ] and Σ |= ψ[θ]

Σ |= φ ∧ ψ[θ]

VΣ〚α〛θ :=
{
θ(α), α ∈ TV
α, α ∈ T

Given a signature Σ := (T , <,P, C,F) a suitable set TV of type variables, and a type
binding θ. Then the set TC(TV,Σ) of type constraints over Σ and TV , the set FV of
free variables, and the semantics of type constraints are defined as shown in Tab. 4.2. 2

Notice that we define a simultaneous update of type bindings. This will shorten
notation in the following definitions. A simultaneous update is defined only, if the single
updates do not clash. If there is αi = αj and τi 6= τj , the simultaneous update is
undefined. Now we are ready to introduce concept definitions.

Definition 4.2.2 (Contexts, interfaces, concepts) Given a specification Spec :=
(Σ, Sen), Σ := (T , <,P, C,F), such that Spec is a permissible extension of the basic
DA. Given furthermore a set TV of type variables suitable for Σ, a set of variables X
suitable for Σ, and a set R of role names suitable for TV,Σ ({α | r : α ∈ R} ⊆ TV ∪ T ,
{r | r : α ∈ R} ∩ |Σ| = ∅). Then the sets

(1) CDf (X,Σ) and CDnf (X,Σ) of functional/non-functional context definitions over
X,Σ,

(2) IDf (R, TV,Σ) and IDnf (R, TV,Σ) of functional/non-functional interface defini-
tions over R, TV,Σ, and

(3) KDf (R, TV,Σ) and KDnf (R, TV,Σ) of functional/non-functional concept defini-
tions over R, TV,Σ

are defined as shown in Tab. 4.3.
Given an interface definition I ∈ ID(R, TV,Σ) that exactly contains roles r1 : α1, ..., rn :
αn in its signature. Then role(i, I) := ri : αi determines the role at position i of I. The
set of all roles of I is determined by roles(I) := {r1 : α1, ..., rn : αn}.
Given a context definition C = ιC and an interface definition I with roles r1 : α1, ..., rn :

58

4.2 Specifying Contexts and Concepts 59

Table 4.3: Context, interface, and concept definitions over TV,R,X,Σ
Syntax:
(1) Context definitions:

C 6∈ NX ∪ |Σ|
ιC ∈ TTop(X,Σ)
τ<DObj for all x : τ ∈ FV(ιC)

C = ιC ∈ CDf (X,Σ)

C 6∈ NX ∪ |Σ|
ιC ∈ F (X,Σ)
τ<DObj for all x : τ ∈ FV(ιC)

C = ιC ∈ CDnf (X,Σ)
(2) Interface definitions:

r1 : α1 ∈ R, ..., rn : αn ∈ R,
∀i 6= j ∈ {1, ..., n} • ri 6= rj
α ∈ T ∪ TV, φ ∈ TC(TV,Σ)

(r1 : α1, ..., rn : αn)→ α[φ]
∈ IDf (R, TV,Σ)

r1 : α1 ∈ R, ..., rn : αn ∈ R,
∀i 6= j ∈ {1, ..., n} • ri 6= rj
φ ∈ TC(TV,Σ)

(r1 : α1, ..., rn : αn)[φ]
∈ IDnf (R, TV,Σ)

(3) Concept definitions:
K 6∈ NR ∪NX ∪ |Σ| ∪

⋃
i Ci,

X1, ..., Xn suitable for Σ,
C1 = ιC1 ∈ CDf (X1,Σ), ..., Cn = ιCn

∈ CDf (Xn,Σ),
(r1 : α1, ..., rn : αn)→ α[φ] ∈ IDf (R, TV,Σ),
C1 = ιC1 implements (r1 : α1, ..., rn : αn)→ α[φ], ...,
Cn = ιCn

implements (r1 : α1, ..., rn : αn)→ α[φ]
K(r1 : α1, ..., rn : αn)→ α[φ] = {C1 = ιC1 , ..., Cn = ιCn

} ∈ KDf (R, TV,Σ)

K 6∈ NR ∪NX ∪ |Σ| ∪
⋃

i Ci,
X1, ..., Xn suitable for Σ,
C1 = ιC1 ∈ CDnf (X1,Σ), ..., Cn = ιCn ∈ CDnf (Xn,Σ),
(r1 : α1, ..., rn : αn)[φ] ∈ IDnf (R, TV,Σ),
C1 = ιC1 implements (r1 : α1, ..., rn : αn)[φ], ...,
Cn = ιCn

implements (r1 : α1, ..., rn : αn)[φ]
K(r1 : α1, ..., rn : αn)[φ] = {C1 = ιC1 , ..., Cn = ιCn

} ∈ KDnf (R, TV,Σ)

αn, the role assignment ra(C, I) : FV(ιC)→ roles(I) for C and I is defined by

ra(C, I)(x : τ) :=
{

r : α, r : α ∈ roles(I), x = r
undefined, otherwise

.

Given a type binding θ. A non-functional context C = ιC over X and Σ implements a
non-functional interface I := (r1 : α1, ..., rn : αn)[φ] over Σ, TV iff

(1) ra(C, I) is total and
(2) θ′ := θ[{α′ 7→ τ ′ | x : τ ′ ∈ FV(ιC), ra(C, I)(x : τ ′) = r : α′)}] is defined and φ[θ′] is

satisfiable.

Given a type binding θ. A functional context C = ιC over X and Σ, ιC ∈ Tτ (X,Σ),
implements a functional interface I := (r1 : α1, ..., rn : αn)→ α[φ] over Σ, TV iff

(1) ra(C, I) is total and
(2) θ′ := θ[{α′ 7→ τ ′ | x : τ ′ ∈ FV(ιC), ra(C, I)(x : τ ′) = r : α′)} ∪ {α 7→ τ}] is defined

and φ[θ′] is satisfiable.

2

Whenever it plays no role whether we refer to functional or non-functional con-
text, interface, and concept definitions, we refer to them by CD(X,Σ), ID(R, TV,Σ),

59

60 Contexts and Concepts

and KD(R, TV,Σ), respectively. Concept definitions have similarities to function dec-
larations in programming languages. Concept interfaces correspond to signatures and
context definitions introduce implementations or function bodies. Context definitions
comprise a context name that is globally unique and either a term over Σ,X or a for-
mula over Σ,X. In the former case we speak of functional contexts, where the other
variant is non-functional. The given term/formula of a context is the implementation
and embeds this context into a concept. For this purpose, variables may occur free in
contexts, but have to be of type DObj or below. Concept interfaces fix the (generic)
signature of a concept and define role names. Again, we distinguish functional and non-
functional interfaces. The set of permissible instantiations can be restricted by a type
constraint φ.

All contexts of a concept have to implement the concept’s interface. Non-functional
interfaces may be implemented by non-functional contexts only. The same is true for
functional interfaces and functional contexts. In both cases the definition above requires
a name-preserving mapping from the free variables of the context’s implementation to
the roles of the interface. This mapping is called role assignment in analogy to the ex-
ample survey in Sect. 2.2. It, however, is also sometimes referred to as fitting morphisms
[CoF04] or signature morphisms [EGL89] in the literature. Since we do not map full
signatures, but map variables to roles only, we have decided to use this more precise
notion. Also, fitting morphisms are, in general, not name-preserving, which results in
sets of suitable morphisms. In contrast, role assignments are uniquely determined. This
speeds up concept matching. Also, notice that role assignments need not be surjective.
Implementations can include less free variables than interfaces offer. We, however, re-
quire that all role-assignments respect the imposed type constraint φ. For this purpose,
a type-binding θ is computed according to the role assignment. The type constraint
must still be satisfiable under this type binding. This property has to be checked only
once when contexts and concepts are specified. Performance is, thus, a minor issue. In
the left-hand part of Fig. 4.1 on page 55 we have indicated role assignments by dotted
arrows.

Concept definitions consist of an interface and context definitions. Depending on
the type of interface (functional / non-functional) we distinguish functional and non-
functional concepts. In either case, concept names have to be distinct from all context
names and all symbol names of Σ. Also, all included context definitions must implement
the concept’s interface. Sample concept definitions for EntryPoint and Name can be found
in App. B.2.

Notice that we permit concept implementations to contain dynamic functions (like
existDObj). Concept satisfaction, thus, can depend on system states, which provides
an additional and necessary degree of expressiveness and flexibility. We will provide an
example in our case study (Part IV).

4.3 Evaluating Concepts

Since concept implementations are Σ-terms or Σ-formulas, concept semantics is strongly
related to evaluating terms and formulas. However, concepts are evaluated in our dy-
namic environment where objects may not exist. In particular, non-existing objects are

60

4.3 Evaluating Concepts 61

Table 4.4: Dynamic term semantics
Dynamic term value:

(1) Variables:
x : τ ∈ Xτ η ∈ Env(X,A)

(A, η, x) td
; η(x)

(2) Function application:

(2.1)
f(t1, ..., tn) ∈ Tτ (X,Σ)
τ<DObj

A ∈ A(Σ), η ∈ Env(X,A)
A |= ¬(f(t1, ..., tn) ∈ existDObj)[η]

(A, η, f(t1, ..., tn)) td
; ⊥

(2.2)

f(t1, ..., tn) ∈ Tτ (X,Σ)
τ<DObj

A ∈ A(Σ), η ∈ Env(X,A)
A |= f(t1, ..., tn) ∈ existDObj[η]
(A, η, f(t1, ..., tn)) t

; v

(A, η, f(t1, ..., tn)) td
; v

(2.3)

f(t1, ..., tn) ∈ Tτ (X,Σ)
¬τ<DObj
c(t′1, ..., t

′
m) ∈ CTmin

τ (Σ, v)

A ∈ A(Σ), η ∈ Env(X,A)
(A, η, f(t1, ..., tn)) t

; v

(A, η, t′1) td
; v1, ..., (A, η, t′m) td

; vm

(A, η, f(t1, ..., tn)) td
; cA

⊥
(v1, ..., vm)

expected to have “undefined” semantics.
In the following we introduce a dynamic semantics for Σ-terms and Σ-formulas. It

will both, adhere to the requirements explained in the introduction to this chapter, and
cause a “minimal” influence to static term and formula evaluation only. In particular,
we can prove strong correspondence theorems to the static semantics. Finally, we will
introduce formal concept terms and concept formulas together with their semantics.

Dynamic Term Values

The term structure of Σ-terms with dynamic term value is defined as follows.

Definition 4.3.1 (Dynamic values) Given a permissible extension Spec := (Σ, Sen)
of the basic DA and a set X of variables suitable for Σ. Then the structure T dX,Σ of
terms over Σ with dynamic value is defined by

T dX,Σ := (TTop(X,Σ), td;,FV)

where the components TTop(X,Σ) and FV are determined as shown in Tab. 3.2, page

37, and td
; is defined as shown in Tab. 4.4. In analogy to static term values, we write

v = VAd 〚t〛η for (A, η, t) td
; v. 2

First, notice that η may contain an update x 7→ a where a is in the type domain
DObjA. When evaluating VAd 〚t〛η we, thus, have to consider the case that a is the
semantics of a term t that does not exist in the system (i.e., t 6∈ existDObj). In the
sequel we will, however, always compute environments using the dynamic semantics; if
a 6= ⊥, t exists in the system. Therefore, we do not explicitly distinguish this case and
keep our semantics simple.

Function application is separated into three rules:

61

62 Contexts and Concepts

(2.1) If f(t1, ..., tn) is of type DObj and the result is not in existDObj (w.r.t. the static
semantics), this term yields ⊥. This directly realizes our intention not to permit
non-existing objects. As an example, confer row one of the example in Tab. 4.1 on
page 57. No objects exist and, hence, calcdir evaluates to ⊥. Since all functions
are strict in our setting, superior function calls also yield ⊥ if applied to this result.

(2.2) If f(t1, ..., tn) is of type DObj and the result is in existDObj, the static value is
returned. Again, this does not assure our intended semantics directly. Generally,
one of the sub-terms might contain non-existing digital objects. We, however, eval-
uate concepts only in our dynamic environment. There, state changes assure the
system invariants stated in Lemma 3.3.5 on page 51. In particular, all object-valued
content of all existing objects also exists.

(2.3) If f(t1, ..., tn) is of type DObj, we generate a constructor term of minimal length
that represents f(t1, ..., tn). Recall that these constructor terms contain all relevant
object-valued content for f(t1, ..., tn) as the constructor property holds in all permis-
sible extensions of the basic DA. When evaluating this constructor term we, thus,
automatically assure that all relevant sub-objects of the original term f(t1, ..., tn)
are checked for existence.

In the following, we prove correspondence between t
; and td

;. We start by showing
that the static term values equal dynamic term values if the latter are not ⊥.

Lemma 4.3.1 Given a permissible extension Spec := (Σ, Sen) of the basic DA, a set X
of variables that is suitable for Σ, a type τ ∈ T , a term t ∈ Tτ (X,Σ), a Σ-model A, and
a variable assignment η. If the dynamic term value of t in A under η defined, it equals
the static term value of t, i.e..

VAd 〚t〛η 6= ⊥ ⇒ VAd 〚t〛η = VA〚t〛η.

2

The proof can be found in App. C.2, page 210, and goes by straightforward induc-
tion on the structure of t. With this prerequisite, we can prove the following strong
correspondence between static and dynamic term values.

Theorem 4.3.1 (Dynamic term values correspond to static term values) Given
a permissible extension Spec := (Σ, Sen) of the basic DA and a set X of variables suit-
able for Σ. Given furthermore a Σ-model A that is derived by basic transitions, a
variable assignment η such that for all x 7→ a ∈ η, a ∈ τA, it is true that VAd 〚t′〛 = a for
t′ ∈ CTminA (Σ, a), and a term t ∈ Tτ (X,Σ) such that VAd 〚t〛η 6= ⊥. Then the following
holds:

(1) Static and dynamic term value of a term are equal iff all objects in the object-valued
content of that term exist, i.e.,

VAd 〚t〛η = VA〚t〛η ⇔ A |= ∀y : DObj • y ∈ contA,ηDObj(t)⇒ y ∈ existDObj[η],

(2) The dynamic term value for t is undefined iff not all objects in the object-valued
content of that term exist, i.e.,

VAd 〚t〛η = ⊥ ⇔ A |= ∃y : DObj • y ∈ contA,ηDObj(t) ∧ y 6∈ existDObj[η],

62

4.3 Evaluating Concepts 63

There y 6∈ FV(t).
2

This theorem applies to functional concepts; their semantics will be determined using
dynamic term values later on. The proof in App. C.2, page 211, goes by induction on the
structure of t and exploits the fact that A is derived by basic transitions. This property
holding implies that the system invariants of Lemma 3.3.5 hold. Using part (1) of the
theorem above and Lemma 4.3.1, we can also prove part (2). It states that the dynamic
term semantics shows the intended behavior in presence of non-existing objects in the
object-valued content. The formal arguments are also provided in App. C.2.

The strong correspondence between static and dynamic term values together with
Lemma 3.2.2 (TX,Σ is well-defined) imply that T dX,Σ is well-defined. This is fixed in the
following corollary.

Corollary 4.3.1 (Dynamic term values are well-defined) Given a signature Σ :=
(T , <,P, C,F) and a set X of variables suitable for Σ. Then T dX,Σ is a well-defined term

structure and td
; is a function, i.e.,

(1) For all τ, τ ′ ∈ T it is true that τ<τ ′ implies Tτ (X,Σ) ⊆ Tτ ′(X,Σ).
(2) For all types τ ∈ T and all terms in Tτ (X,Σ), A ∈ A(Σ), and η ∈ Env(X,A) there

is a unique v ∈ τA ∪ {⊥} such that (A, η, t) t
; v.

2

In App. B.2, page 185, we refine the introductory explanations on dynamic term
values.

Dynamic Formula Semantics

The next definition introduces the dynamic semantics of formulas. It strongly bases on
dynamic term values.

Definition 4.3.2 (Dynamic formula semantics) Given a permissible extension
Spec := (Σ, Sen) of the basic DA and a set X of variables suitable for Σ. Then the
formula structure F dX,Σ of formulas over Σ with dynamic semantics is defined by

F dX,Σ := FOL(AT (T dX,Σ),dom).

There,

dom(A, x : τ, η) :=


(A, {v | v ∈ τA, ct ∈ CTminA (Σ, v),

(A, η, ct) td
; v})

, η ∈ Env(X,A)

undefined, otherwise

for all (A, x : τ, η) ∈ A(Σ)×X × Env(X,Σ).
We identify the components of F dX,Σ by F (X,Σ) (set of formulas), |=d (satisfaction
relation), and FV (free variables), respectively. A 6|=d φ[η] denotes the fact that A |=d

φ[η] cannot be derived. 2

63

64 Contexts and Concepts

The definition largely corresponds to the static case. It, however, uses the dynamic
term structure T dX,Σ and, thus, td

; instead of t
;. Also quantifier spheres are evaluated

differently. We quantify over all values that are typed appropriately and exist in the
system. For this purpose, we take constructor terms of minimal length and derive their
dynamic value. If this value is defined (and, hence, equals v according to Lemma 4.3.1),
it is a member of the quantifier sphere. In App. B.2 we exemplify how dom works.

Analogous to the dynamic term values, our dynamic formula semantics is well-
defined. This is stated formally in the next lemma. There, we also fix the observa-
tion that quantifier spheres for object types τ<DObj reduce to existDObjA ∩ τA. This
directly reflects our intention to evaluate formulas modulo the set of existing objects.

Lemma 4.3.2 (Dynamic formula semantics well-defined) Given a signature Σ :=
(T , <,P, C,F) and a set X of variables suitable for Σ. Then (1) F dX,Σ is a well-defined
formula structure and (2) the quantifier spheres for object types reduce to the set of
existing objects, i.e.,

(1) For all A ∈ A(Σ), x : τ ∈ X, and η ∈ Env(X,Σ) it is true that dom(A, x : τ, η) =
(A, d) implies η ∈ Env(X,A) and d ⊆ τA.

(2) For all A ∈ A(Σ) such that A is derived by basic transitions, x : τ ∈ X, τ<DObj,
and η ∈ Env(X,Σ) it is true that dom(A, x : τ, η) = (A, d) implies

d = τA ∩ {VAd 〚t〛 | t ∈ GTτ (Σ),A |= t ∈ existDObj}.

2

The proof can be found in App. C.2, page 212. Again, we provide a correspondence
theorem that relates static and dynamic formula semantics.

Theorem 4.3.2 (Static and dynamic formula semantics correspond) Given a
permissible extension Spec := (Σ, Sen) of the basic DA and a set X of variables suitable
for Σ. Given furthermore a Σ-model A that is derived by basic transitions, a variable
assignment η, and a formula φ ∈ F (X,Σ) such that φ has no quantifiers and all terms
occurring in φ do not evaluate to ⊥. We define the set Tφ of terms in φ as follows:

φ ≡ s = t : Tφ := {s, t}
φ ≡ p(t1, ..., tn) : Tφ := {t1,, tn}
φ ≡ ¬ψ : Tφ := Tψ
φ ≡ ψ ∧ ψ′ : Tφ := Tψ ∪ Tψ′

Then the following holds:

(1) The dynamic semantics of φ equals the static semantics, if all objects in the object-
valued content of the terms of φ exists in A, i.e.,

A |= ∀y : DObj • y ∈
⋃
t∈Tφ

contA,ηDObj(t)⇒ y ∈ existDObj[η]

⇒
(A |= φ[η]⇔ A |=d φ[η])

64

4.3 Evaluating Concepts 65

(2) Given x : τ ∈ X such that x ∈ FV(φ). Then ∀x : τ • φ holding in the static case
implies that ∀x : τ • φ holds in the dynamic case, if all objects in the object-valued
content of all terms of φ exist in A, i.e.,

A |= ∀y : DObj • y ∈
⋃
t∈Tφ

contA,ηDObj(t)⇒ y ∈ existDObj[η]

⇒
(A |= ∀x : τ • φ[η]⇒ A |=d ∀x : τ • φ[η])

(3) Given x : τ ∈ X such that x ∈ FV(φ) and τ<DObj. Then A |= ∀x : τ • x ∈
existDObj ⇒ φ[η] iff A |=d ∀x : τ • φ[η] holds if all objects in the object-valued
content of the terms of φ exist in A, i.e.,

A |= ∀y : DObj • y ∈
⋃
t∈Tφ

contA,ηDObj(t)⇒ y ∈ existDObj[η]

⇒
(A |=d ∀x : τ • φ[η]⇔ A |= ∀x : τ • x ∈ existDObj⇒ φ[η])

2

The proof can be found in App. C.2, page 213. The results of this theorem together
with Thm. 4.3.1 apply to non-functional concepts; their semantics will be defined using
|=d later on.

As quantifier spheres may shrink when switching from the static to the dynamic set-
ting, truth-values of universally quantified formulas generally do not carry over equiva-
lently to the dynamic case. Yet valid, universally quantified formulas (w.r.t. their static
semantics) are always valid in the dynamic case when all object-valued content of all
terms in the body φ exists. This correspondence becomes especially clear with property
(3). On the left-hand side we do not have to require x ∈ existDObj because the dynamic
quantifier sphere automatically reduces to the elements in existDObj. The truth value
of this formula then is equivalent to the (static) truth value of the extended variant using
x ∈ existDObj. Since formulas ∃x • φ are equivalent to ¬∀x • ¬φ, the dual results
of Thm. 4.3.2(2) hold for existentially quantified formulas. In particular, those formulas
∃x • φ that do not hold in the static setting do not hold in the dynamic setting as well.
Due to the correspondence theorems we know which results carry over from the static
to the dynamic environment and under which circumstances they do. As an advantage,
we can employ automated theorem provers that might not work for evolving systems. In
each system state we know the set of existing objects and can decide if these so-proved
properties carry over. As an example, the system invariants listed in Cor. 3.3.1, page
52, hold in the dynamic setting as well due to Thm. 4.3.2.

Syntax and Semantics of Concept Expressions

Syntax and semantics of concept expressions, i.e., concept terms and concept formulas, is
introduced next. Concept expressions occur in formal preservation requirements, which
will be introduced in Chap. 5.

Definition 4.3.3 (Concept expressions) Given a specification Spec := (Σ, Sen), Σ :=
(T , <,P, C,F), such that Spec is a permissible extension of the basic DA. Given further-
more a set TV of type variables suitable for Σ, a set of variables X suitable for Σ, a set
R of role names suitable for TV,Σ, and a set KD ⊆ KD(R, TV,Σ) of non-overloaded

65

66 Contexts and Concepts

Table 4.5: Concept terms and concept formulas over X,Σ,KD
Syntax:
(1) Concept terms with context:

t1 ∈ Tτ1(X,Σ), ..., tn ∈ Tτn
(X,Σ)

K I = {C1 = ιC1 , ..., Cm = ιCm
} ∈ KD ∩KDf (R, TV,Σ)

I ≡ (r1 : α1, ..., rn : αn)→ α[φ]
C = ιC ∈ {C1 = ιC1 , ..., Cm = ιCm}, ιC ∈ Tτ (X ′,Σ)
Σ |= φ[{αi 7→ τi | i ∈ {1, ..., n}, ri : αi = role(i, I)} ∪ {α 7→ τ}]
∀x : τ ′ ∈ FV(ιC), i ∈ N • ra(C, I)(x : τ ′) = role(i, I)⇒ τi<τ

′

K(t1, ..., tn)[C] ∈ KTτ (X,Σ,KD)

FV(K(t1, ..., tn)[C]) =⋃
1≤i≤n

FV(ti)

(2) Concept terms with wildcard:
t1 ∈ Tτ1(X,Σ), ..., tn ∈ Tτn

(X,Σ)
K I = {C1 = ιC1 , ..., Cm = ιCm

} ∈ KD ∩KDf (R, TV,Σ)
∃C ∈ {C1, ..., Cn} • K(t1, ..., tn)[C] ∈ KTτ (X,Σ,KD)

K(t1, ..., tn)[] ∈ KTτ (X,Σ,KD)

FV(K(t1, ..., tn)) =⋃
1≤i≤n

FV(ti)

(2) Subtyping:
t ∈ KTτ (X,Σ,KD) τ<τ ′

t ∈ KTτ ′(X,Σ,KD)
Concept terms:
(1) Concept formulas with context:

t1 ∈ Tτ1(X,Σ), ..., tn ∈ Tτn
(X,Σ)

K I = {C1 = ιC1 , ..., Cm = ιCm
} ∈ KD ∩KDnf (R, TV,Σ)

C = ιC ∈ {C1 = ιC1 , ..., Cm = ιCm}
Σ |= φ[{αi 7→ τi | i ∈ {1, ..., n}, ri : αi = role(i, I)}]
∀x : τ ′ ∈ FV(ιC), i ∈ N • ra(C, I)(x : τ ′) = role(i, I)⇒ τi<τ

′

K(t1, ..., tn)[C] ∈ KF (X,Σ,KD)

FV(K(t1, ..., tn)[C]) =⋃
1≤i≤n

FV(ti)

(2) Concept formulas with wildcards:
t1 ∈ Tτ1(X,Σ), ..., tn ∈ Tτn

(X,Σ)
K I = {C1 = ιC1 , ..., Cm = ιCm} ∈ KD ∩KDnf (R, TV,Σ)
∃C ∈ {C1, ..., Cn} • K(t1, ..., tn)[C] ∈ KF (X,Σ,KD)

K(t1, ..., tn)[] ∈ KF (X,Σ,KD)

FV(K(t1, ..., tn)) =⋃
1≤i≤n

FV(ti)

concept definitions. Then the set of concept terms of KTτ (X,Σ,KD) of type τ over
X,Σ,KD, the set of concept formulas KF (X,Σ,KD) over X,Σ,KD, and the set FV
of free variables of concept terms and concept formulas are defined as shown in Tab. 4.5.

2

While concept terms can be used like regular terms, concept formulas are used like
predicates in regular Σ-formulas. According to Tab. 4.5, concept expressions need not
necessarily refer to an explicit context [C], but can include a wildcard . Concept ex-
pressions that contain wildcards are well-formed if they are well-formed for at least one
of their contexts. This may seem to be syntactic sugar. Later on, however, we will use
concept expressions in our preservation requirements. When a new implementation is
added, it is automatically considered in the concept’s semantics if wildcards are used
(due to the built in universal quantification). Existing specifications, thus, need not be
changed in that case.

Concept terms and concept formulas satisfy similar well-formedness and well-typedness

66

4.3 Evaluating Concepts 67

rules. The well-typedness rules for concept terms comprise two conditions. First,

Σ |= φ[{αi 7→ τi | i ∈ {1, ..., n}, ri : αi = role(i, I)} ∪ {α 7→ τ}]

requires type constraint φ to hold under the induced type binding. In particular, this
simultaneous update binds the type τi of term ti to αi, if αi is a type variable and it is
the type of role ri : αi at position i in the concept’s interface. This is, in general, not
fully assured by the second typing condition

∀x : τ ′ ∈ FV(ιC) • ri : αi = ra(C, I)(x : τ ′)⇒ τi<τ
′.

It basically assures that t1, ..., tn are substituted correctly in the implementation ιC .
Using the role assignment ra(C, I), we determine the position of the role that matches
x : τ ′. Assuming this index is i, term i must be substitutable for x : τ ′. This requires
the type τi of ti to be a subtype of τ ′.

Notice that no implementation details occur in concept expressions. The concrete
implementation may change without necessarily inducing a change to existing specifica-
tions. This is an important design goal of our approach.

In the following definition we introduce the semantics of concept terms and concept
formulas. It strongly relies on dynamic term and formula semantics.

Definition 4.3.4 (Semantics of concept expressions) Given a specification Spec :=
(Σ, Sen), Σ := (T , <,P, C,F), such that Spec is a permissible extension of the basic DA.
Given furthermore a set TV of type variables suitable for Σ, a set of variables X suit-
able for Σ, a set R of role names suitable for TV,Σ, and a set KD ⊆ KD(R, TV,Σ) of
non-overloaded concept definitions. Then the semantics of concept terms and concept
formulas over X,Σ,KD is defined as shown in Tab. 4.6.
Moreover, the term structure KTX,Σ,KD of concept terms over X,Σ,KD and the formula
structure KFX,Σ,KD of concept formulas over X,Σ,KD are defined by

KTX,Σ,KD := (KTTop(X,Σ,KD), td;,FV)
KFX,Σ,KD := (KF (X,Σ,KD), A(Σ), |=d,FV)

where the components are determined as shown in Tab. 4.5 and Tab. 4.6. 2

First, notice that we overload td
;, |=d, and FV. Recall that we have required concept

names to be distinct from all symbols in Σ. Therefore, the sets of concept terms and
regular Σ-terms on the one hand, and concept formulas and Σ-formulas on the other
hand, are disjoint. Hence, overloading the just-mentioned symbols does not lead to
ambiguity. Re-using them, however, underlines that we employ the dynamic semantics
when evaluating concept terms and concept formulas.

The concept value for K in C yields the dynamic value of the implementing term ιC of
C. Since all context-names are pairwise distinct, this context and it’s implementing term
are uniquely determined. In order to evaluate ιC , we need to generate an appropriate
variable update η for the free variables of ιC . For this purpose, we use the role assignment
ra(C, I). First, we determine a mapping l from the free variables of ιC to the indices
of their matching roles in I. If xj belongs to role with index l(xj) of I, we know that
term tl(xj) is to be used. The update for xj then yields xj 7→ VAd 〚t(l(xj)〛η. This is done

67

68 Contexts and Concepts

Table 4.6: Semantics of concept terms and concept formulas over X,Σ,KD
Concept terms:
(1) Concept terms with context:
K(t1, ..., tn)[C] ∈ KTτ (X,Σ,KD)
K I = {C1 = ιC1 , ..., Cm = ιCm} ∈ KD
C = ιC ∈ {C1 = ιC1 , ..., Cm = ιCm}
FV(ιC) = {x1, ..., xk}
l : FV(ιC)→ {1, ..., n}
ra(C, I)(x1) = role(l(x1), I), ...,
ra(C, I)(xk) = role(l(xk), I)

(A, η, tl(x1))
td
; vl(x1), ...,

(A, η, tl(xk))
td
; vl(xk)

(A, η[x1 7→ vl(x1)]...[xk 7→ vl(xk)], ιC) td
; v

(A, η,K(t1, ..., tn)[C]) td
; v

(2) Concept terms with wildcard:
K(t1, ..., tn) ∈ KTτ (X,Σ,KD)
K I = {C1 = ιC1 , ..., Cm = ιCm

} ∈ KD
∃C ∈ {C1, ..., Cm} •

(A, η,K(t1, ..., tn)[C]) td
; v

(A, η,K(t1, ..., tn)[]) td
; v

Concept formulas:
(1) Concept formulas with context:
K(t1, ..., tn)[C] ∈ KF (X,Σ,KD)
K I = {C1 = ιC1 , ..., Cm = ιCm

} ∈ KD
C = ιC ∈ {C1 = ιC1 , ..., Cm = ιCm

}
FV(ιC) = {x1, ..., xk}
l : FV(ιC)→ {1, ..., n}
ra(C, I)(x1) = role(l(x1), I), ...,
ra(C, I)(xk) = role(l(xk), I)

(A, η, tl(x1))
td
; vl(x1), ...,

(A, η, tl(xk))
td
; vl(xk)

A |=d ιC [η[x1 7→ vl(x1)]...[xk 7→ vl(xk)]]

A |=d K(t1, ..., tn)[C][η]
(2) Concept formulas with wildcard:
K(t1, ..., tn) ∈ KF (X,Σ,KD)
K I = {C1 = ιC1 , ..., Cm = ιCm

} ∈ KD
∃C ∈ {C1, ..., Cm} •

A |=d K(t1, ..., tn)[C][η]
A |=d K(t1, ..., tn)[][η]

for all free variables, which yields the overall variable assignment for the evaluation of
ιC . Notice that all this is well-defined only since K(t1, ..., tn)[C] is well-formed and well-
typed. In particular, ra(C, I) uniquely assigns variables to role names in the concept
interface. Also, both, role names and context names, are all pairwise distinct.

Due to the facility to use wildcards, concept terms may have multiple values, which
may seem unusual at first sight. However, we want to provide the facility to abstract from
concrete implementations. This means abstracting from concrete values as well. Suppose
we have a concept Size that extracts the file size from a given file f . Furthermore, assume
two functions intSize and strSize that, when applied to a file f , return the size of
f as an integer or string value, respectively. These functions can be used for context
definitions Int = intSize(x) and Str = strSize(x). Whenever we do not care whether
the file size is represented by intSize(f) = 12345 or by strSize(f) =“12345”, we can
simply use the concept term Size(f) instead of Size(f)[Int] or Size(f)[Str], respectively.

In App. B.2, page 186, we derive concept semantics for sample concept expressions
related to Name and EntryPoint. In the following we will often abbreviate K(t1, ..., tn)[]
by K(t1, ..., tn). We conclude the technical introduction of concepts and contexts by
proving well-definedness of the term structure KTX,Σ,KD for concept terms. Also, we

68

4.4 Summary 69

show that wildcard-free concept terms evaluate to a unique value.

Lemma 4.3.3 (Concept terms well-defined) Given a specification Spec := (Σ, Sen),
Σ := (T , <,P, C,F), such that Spec is a permissible extension of the basic DA. Given
furthermore a set TV of type variables suitable for Σ, a set of variables X suitable for
Σ, a set R of role names suitable for TV,Σ, a set KD ⊆ KD(R, TV,Σ), a Σ-model
A ∈ A(Σ) for Spec, and a variable assignment η ∈ Env(X,A). Then KTX,Σ,KD is a

well-defined term structure and td
; is a function for concept terms that do not contain

, i.e.,

(1) For all τ, τ ′ ∈ T it is true that τ<τ ′ implies KTτ (X,Σ,KD) ⊆ KTτ ′(X,Σ,KD).
(2) For all types τ ∈ T and all terms in KTτ (X,Σ,KD) there is v ∈ τA ∪ {⊥} such

that (A, η, t) td
; v.

(3) For all types τ ∈ T and all terms K(t1, ..., tn)[C] in KTτ (X,Σ,KD), C 6= , there
is a unique v ∈ τA ∪ {⊥} such that (A, η, t) td

; v.

2

The formal arguments of the proof in App. C.2, page 214, have already been stated
informally throughout this section. In particular, uniqueness of role assignments is im-
portant. Lemma 4.3.3(3) does not hold in presence of a wildcard as several values may
be derivable due to the existential quantification in the semantics of Tab. 4.6. We close
this chapter with a short summary and then move on to preservation in the next chapter.

4.4 Summary

We have introduced formal concept definitions. They include an interface and imple-
mentations (context definitions). We have distinguished non-functional and functional
concepts. The former capture semantic relationships; the latter determine concrete val-
ues and, hence, can be used for extracting object-content. We have provided an example
for each variant.

Concept expressions, i.e., concept terms and concept formulas, are used like regular
terms and predicates, respectively. They, however, refer to concept implementations.
By referring to implementations by name (or using wildcards), concept expressions hide
implementation details. This keeps them readable.

We evaluate concept expressions in our dynamic environment where objects might not
exists. For this purpose, we have defined dynamic term values and a notion of dynamic
formula satisfaction. Two correspondence theorems show how static term values and
static formula satisfaction carry over to the dynamic setting. In particular, the dynamic
and static value of a given term are equal if all objects in the object-valued of that term
exist.

There are important applications of these theorems. First, properties of digital ob-
jects can be proved in the static setting (e.g., using automated theorem provers). The
correspondence theorems state under which circumstances these properties hold in the
dynamic setting as well. Second, implications among concepts can be determined in
the static setting. The correspondence theorems can be used to decide whether these

69

70 Contexts and Concepts

implications hold in the dynamic setting as well. As concept expressions are an integral
part of the preservation language (see next chapter), this can help to avoid redundan-
cies when specifying preservation requirements. As a result, the evaluation processes is
potentially accelerated when migrations take place.

70

Chapter 5

Specifying and Evaluating
Preservation Requirements

Up to now, we have formulated preservation requirements semi-formally. However, they
cannot be processed in an automated way unless they are specified using a formal lan-
guage with well-defined semantics. Therefore, we introduce a preservation language,
which has a sound, state-based semantics. Preservation requirements are expressed
w.r.t. concepts and are evaluated w.r.t. migration processes that run in the dynamic en-
vironment that has been introduced before. This integration into one combined method
together with the coherently formal underpinning is the major contribution of this thesis.
The road map is as follows:

• In Sect. 5.1 we give an informal overview. We particularly describe the co-action
of the the preservation language and the single formal components that have been
introduced before.

• A first notion of preservation is introduced in Sect. 5.2. It does not take into account
object histories but relates concrete source and target objects to concepts.

• Object traces are introduced in Sect. 5.3. They are extracted from migration se-
quences and represent transformation paths of concrete objects.

• In Sect. 5.4 we combine object traces and the notion of object preservation of
Sect. 5.1. We introduce transformation and preservation constraints as trace for-
mulas and define their semantics w.r.t. traces. After that, we define a preservation
language. This language includes quantified trace formulas (by means of trace quan-
tifiers ∃© and ∀©) in analogy to the well-known path quantifiers in temporal logics.
Also, the language allows to specify preservation requirements for object collections
conveniently. Semantically, preservation formulas are evaluated w.r.t. migration
sequences and object traces that are extracted therefrom.

5.1 Informal Overview

Since this chapter rounds off our formal framework, we start with a brief explanation of
how the preservation language integrates into the formal dynamic environment that has

71

72 Specifying and Evaluating Preservation Requirements

C1 Ci Cn

...pres(K (o))

IK

AWeb BWeb

IEntryPoint

pres(EntryPoint(w,s,h))

∆ := <...,trans(w → w'),...>∆

⇔v v'

∆

A╞ ι

IK IK

Concept preservation
(non-functional)

=v v'

∆

vA [t]η

IK IK

Concept preservation
(functional)

vA' [t']η'

≈

δ

a

Abstract preservation scheme

a'

instantiates instantiates

...

Preservation related to concept K Preservation related to concept EntryPoint

A╞ ι'

Figure 5.1: Preservation related to concepts

been introduced in the previous chapters. Fig. 5.1 shows how formal concept specifica-
tions, migration processes, and formal preservation constraints correlate. The left-hand
part shows an abstract scheme for the preservation of a concept K. IK denotes the inter-
face of K, C1, ..., Cn denote the implementing contexts, and ∆ denotes a running migra-
tion process that has to adhere to a preservation requirement pres(K(oi)). This scheme
is instantiated on the right-hand side of Fig. 5.1 using the concept EntryPoint. Recall
the semi-formal formulation of the preservation requirement for EntryPoint (Sect. 2.3):

When transforming an object, which is assigned to one of the roles website,
source dir, or home page of the concept EntryPoint, all new versions of
all interface objects of EntryPoint must satisfy the concept EntryPoint in
the target context BWeb, if and only if the source objects satisfied
EntryPoint in the source context AWeb.

In Fig. 5.1, this requirement is represented by the constraint pres(EntryPoint(w, s, h)),
which is an abbreviated variant of those constraints that will be introduced in this chap-
ter. It expresses the above requirement formally. In particular, it refers to a concrete
concept (EntryPoint) and concrete source objects w, s, h. The constraint does not in-
clude the source and target context AWeb and BWeb for brevity as they are shown
directly next to it in Fig. 5.1. Recall that our notion of preservation is related to object
histories. The requirement above demands new versions of the source objects to sat-
isfy EntryPoint. In our system object histories are traced using the distinguished state
change trans(src 7→ trg). This is indicated by the right-hand migration sequence in
Fig. 5.1, which contains a transformation trans(w 7→ w′) for the source website w. When
evaluating adherence to given preservation requirements, our system extracts object
transformations from the underlying migration sequence and checks the requirements
w.r.t. the so-obtained object histories. This shows the general co-action between the
formal components of our framework. The last part (extraction of object histories and
evaluation of preservation requirements) is part of the semantics of the formal preser-
vation language that we introduce in this chapter. This language includes preservation
constraints as regular language elements and supports non-linear histories. Recall that
non-linear object histories occur in our running example. There, directories are dupli-
cated twice when websites are transformed as html content is separated from non-html
content.

Since our notion of preservation is related to object versions, we need a means for
addressing concrete new object versions. In Fig. 5.2 we use the concept Contains (con-
tainment in directories) as an example. The left-hand part shows the source website of

72

5.1 Informal Overview 73

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

parent

child

Contains

source

doclist.html

overview

overview

doclist.html

overview

∆ := <...,trans(d → d'),...,trans(o → o1),...,trans(o → o2),...>

∃ pres(Contains(o,d)[CDoc,CDoc])

∀ pres(Contains(o,d)[CDoc, CDoc])
d → d'

o → o1

o → o2

doclist.html

overview

overview

doclist.html

overview

d → d'

o → o1

o → o2

target
<some IP address>

Figure 5.2: Preservation of concept Contains

the running example and a target website that respects the preservation requirements
of Fig. 2.3, page 18. In particular, the source website is in format AWeb, and the target
website is in format BWeb. The directory “overview” takes the role parent, the html
file “doclist.html” takes the role child. The target website includes two new versions of
the “overview” directory (i.e., this directory has a non-linear object history), but only
one version of the html file. The relevant basic state transitions are shown in the bottom
left-hand part of Fig. 5.2. Also, we observe that the containment concept does not hold
for both “overview” directories and the html file in the target context. Hence, we need a
means for expressing preservation requirements for selected paths of object histories.

As shown in the right-hand part, we select object versions by trace quantifiers ∃©, ∀©.
This is adapted from temporal logics like CTL or CTL∗ which are used in model checking
[MOSS99]. While CTL includes temporal operators line next or until, we use

• non-functional preservation constraints of the form

presnf (Contains(o, d)[CDoc,CDoc]),

• functional preservation constraints of the form presf (Name(w)[WebN,WebN]), and
• transformation constraints of the form d 7→ HTMLDoc

as atomic trace formulas. These formulas are evaluated w.r.t. traces instead of states,
where leading trace quantifiers specify which traces to select. Transformation constraints
enforce object transformations. Non-functional and functional preservation constraints
enforce the preservation of non-functional and functional concepts, respectively. They
are used identically and even hide whether the related concept is functional or not. We
annotate them by nf and f for convenience only.

On the right-hand side of Fig. 5.2 we show the object histories for “doclist.html”
and “overview”. Versions are connected by arrows. The arrows are annotated with
those transformations that have been extracted from the migration process ∆. Concept
matchings are encircled. A trace is one parallel path of maximal length through the
histories of all existing objects. Since traces have maximal length, they cover full object
histories. Assuming As is the source state of ∆, Ar is its result state, and only o,d exist
before ∆ is executed, the (branching) object history shown in Fig. 5.2 is represented by
two separate traces:

73

74 Specifying and Evaluating Preservation Requirements

tr1 :=
(

(As, d) −→ (Ar, d′)
(As, o) −→ (Ar, o′1)

)
and tr2 :=

(
(As, d) −→ (Ar, d′)
(As, o) −→ (Ar, o′2)

)
Traces include combinations of a system state and an object. This directly relates object
versions to system states, which is important when evaluating preservation constraints.
The constraint

presnf (Contains(o, d)[CDoc,CDoc]),

e.g., holds in tr1, if Contains(o, d)[CDoc] holds in As and Contains(o′1, d
′)[CDoc] holds in

At. There, o′1 and d′ are new versions of o and d, respectively, and the assigned states
As and At are necessary to evaluate the concept formulas. This underlines the strong
correlation between concepts, contexts, and preservation.

The above-mentioned trace quantifiers now specify whether given preservation re-
quirements must hold for at least one trace (∃©) or for all traces (∀©). The effect of
both trace quantifiers is illustrated in the right-hand part of Fig. 5.2. The upper part
shows the semantics of an existential preservation constraint for the Contains concept.
It suffices to find at least one trace in {tr1, tr2} such that the new versions of the source
objects match Contains in CDoc. In contrast, the ∀© variant requires this property to
hold for both tr1 and tr2.

The specification language explained so far still lacks usability. Since DAs usually
host large object collections, the preservation language must support (1) selecting ob-
ject collections and (2) connecting concrete objects of these collections to preservation
requirements. We implement this by combining suitable FOPL formulas and trace for-
mulas. The preservation formula

∀w : Website •
∀d, d′ : Dir •

WebSrc(d,w) ∧ Contains(d, d′)[CDirRec]⇒
∃© (d 7→ Dir ∧ d′ 7→ Dir ∧ presnf (Contains(d, d′)[CDirRec,CDirHtml])) ∧
∃© (d 7→ Dir ∧ d′ 7→ Dir ∧ presnf (Contains(d, d′)[CDirRec,CDirRes]))

indicates the expressiveness of the full preservation language. There, some contexts and
concepts occur that have not been introduced before. Therefore, we explicitly explain
the semantics of this formula:

• For any website w and directories d, d′ (∀w : Website, d, d′ : Dir)
• such that d is the source directory of w (WebSrc(d,w)) and the new version of d′ is

a sub-directory of the new version of d (Contains(d, d′)[CDirRec])
• there is a trace such that d and d′ are transformed to type Dir and the new version

of d′ is a sub-directory of the new version of d in the context CDirHtml
(∃© d 7→ Dir ∧ d′ 7→ Dir ∧ presnf (Contains(d, d′)[CDirRec,CDirHtml])), and

• there is a trace such that d and d′ are transformed to type Dir and d′ is a sub-
directory of d in the context CDirRes
(∃© d 7→ Dir ∧ d′ 7→ Dir ∧ presnf (Contains(d, d′)[CDirRec,CDirRes]))

Recall that html content and non-html content are separated in BWeb. For this pur-
pose, the source directory of the target website directly contains directories “html” and

74

5.2 Preservation — a First Account 75

“resources”, respectively, which is shown in Fig. 5.2. Since “resources” may contain non-
html content only and “html” may contain html content only, Contains is implemented
in two separate contexts CDirRes and CDirHtml, respectively. These contexts occur
in the preservation formula above. When setting w =“Calculation” (example website),
d =“source” (source directory of w), and d′ =“overview”, this preservation formula re-
quires that

• both “source” and “overview” are transformed and
• the sub-directory relationship is maintained, but once for the “html” directory and

once for the “resources” directory.

The transformation result in Fig. 5.2 satisfies these requirements. As an example, two
versions have been created for the directory “overview”. Both are sub-directories of the
directory “Calculation”, but one resides in “html”, and one resides in “resources”.

The preservation formula above shows two important properties of the preservation
language:

(1) Concept terms and concept formulas are fully integrated
(2) Preservation constraints are evaluated w.r.t. given concepts where concepts and the

source and target context are referred to by name.

This supports re-use and users can express preservation requirements in an implementation-
independent way.

5.2 Preservation — a First Account

Our first notion of preservation relates concepts and source and target objects, respec-
tively, that match the concepts’ implementations. It will be the basis for the following
sections, where we supplement this notion by object traces and introduce the formal
semantics of the preservation language.

In general, formal notions of preservation can be found in different variations through-
out the relevant literature [MCG05, Por05, Grz97, WO00, ADK06]. We postpone a
discussion to Chap. 14, but show an abstract preservation scheme in Fig. 5.3 that cov-
ers most of these variants. According to this scheme, preservation means to preserve a
model property under abstractions a, a′. When transforming a source model to a target
model (indicated by δ), the abstraction result of respective parts of the source model
(using a) must correspond to the abstraction result (using a′) of the transformation tar-
get. Correspondence is denoted by ≈ in Fig. 5.3. Clearly, the real effect of this notion
depends on the chosen abstraction functions and the ≈ operator. In its left-hand and
right-hand part, Fig. 5.3 shows two instantiations of the scheme. They correspond to
non-functional and functional concept preservation; these two variants are supported by
our preservation language.

Since we consider migration sequences, we have substituted δ by ∆. Concept inter-
faces determine those parts of the source and target model that need to be related by
the notion of preservation. Concerning non-functional concept preservation, abstraction

75

76 Specifying and Evaluating Preservation Requirements

C1 Ci Cn

...pres(K (o))

IK

AWeb BWeb

IEntryPoint

pres(EntryPoint(w,s,h))

∆ := <...,trans(w → w'),...>∆

⇔v v'

∆

A╞ ι

IK IK

Concept preservation
(non-functional)

=v v'

∆

vA [t]η

IK IK

Concept preservation
(functional)

vA' [t']η'

≈

δ

a

Abstract preservation scheme

a'

instantiates instantiates

...

Preservation related to concept K Preservation related to concept EntryPoint

A╞ ι'

Figure 5.3: Abstract preservation scheme and instantiations with non-functional and
functional concept preservation

is done by the implementing formula ι and ι′ for the source and target context, respec-
tively. Hence, the interface objects are abstracted to the respective truth value. Only if
both formulas return equivalent truth values, K is preserved .

Preservation of functional concepts works quite similar. Abstraction, however, is
determined by the implementing terms t and t′ of the source and target context, re-
spectively. The ≈-operator is instantiated by equality. Only if both terms return equal
values, K is preserved.

Clearly, other instantiations of the preservation scheme may be useful depending on
the application domain. We shall see later on, that our preservation language can be
extended to other variants with little effort.

In the following definition we introduce a first notion of preservation, which directly
implements the just-described variants of preservation.

Definition 5.2.1 (Preservation predicate) Given a permissible extension Spec :=
(Σ, Sen) of the basic DA, two Σ-models As,At for Spec, a set TV of type variables
suitable for Σ, a set of variables X suitable for Σ, a set R of role names suitable for TV,Σ,
a set KD ⊆ KD(R, TV,Σ), two concept expressions K(s1, ..., sn)[Cs],K(t1, ..., tn)[Ct] ∈
KTTop(X,Σ,KD) ∪ KF (X,Σ,KD) and two variable assignments ηs, ηt. Then K is
preserved for si, Cs,As, ηs in ti, Ct,At, ηt iff

(As,At) |=d pres(K(s1, ...sn)[Cs],K(t1, ...tn)[Ct])[ηs, ηt],

where

(As,At) |=d pres(K(s1, ...sn)[Cs],K(t1, ...tn)[Ct])[ηs, ηt] ⇔{
∃v ∈ TopAs • (As, ηs,K(s1, ...sn)[Cs]) td

; v ∧ (At, ηt,K(t1, ...tn)[Ct])
td
; v, K funct.

As |=d K(s1, ...sn)[Cs][ηs]⇔ At |=d K(t1, ...tn)[Ct][ηt], K non-funct.

2

Preservation is modeled w.r.t. concrete source and target objects and w.r.t. a given
concept K. By using the dynamic semantics |=d, we implicitly require the source and
target objects s1, ..., sn and t1, ..., tn to exist in the source and target state, respectively;
“preservation”makes sense for existing objects only. Notice that putting together concept
terms KTTop(X,Σ,KD) and concept formulas KF (X,Σ,KD) to concept expressions in

76

5.2 Preservation — a First Account 77

the definition above does not lead to ambiguity. Concept definitions are not-overloaded.
Hence,

K(s1, ..., sn)[Cs] ∈ KTτ (X,Σ,KD) iff K(t1, ..., tn)[Ct] ∈ KTτ (X,Σ,KD)

and

K(s1, ..., sn)[Cs] ∈ KF (X,Σ,KD) iff K(t1, ..., tn)[Ct] ∈ KF (X,Σ,KD).

Concerning functional concepts abstraction as shown in Fig. 5.3 is instantiated by
the value relation td

;. K is preserved for s1, ..., sn in t1, ..., tn if there is a value v such
that (As, ηs,K(s1, ...sn)[Cs])

td
; v and (At, ηt,K(t1, ...tn)[Ct])

td
; v. Cs and Ct may

be wildcards. If K is non-functional, formula validity is used as abstraction. A non-
functional K is preserved if it holds for the source objects s1, ..., sn in the source context
Cs if and only if it holds for the target objects t1, ..., tn in the target context Ct. There,
we deliberately require the strong correspondence “if and only if” — we preserve the
status of concept satisfaction. As a consequence, a status change of the form “if the
concept does not hold in the source context, it is to hold in the target context” can be
enforced using a negated constraint. If we required

As |=d K(s1, ...sn)[Cs][ηs]⇒ At |=d K(t1, ...tn)[Ct][ηt]

in the definition above, this could not easily be expressed. In App. B.3, page 187, we
list samples for the semantics of pres.

Defn. 5.2.1 does not yet include migration sequences and, thus, object histories. It
will, however, be used in the semantics for trace formulas later on.

According to the following lemma the pres relation works sequentially.

Lemma 5.2.1 (Preservation is sequential) Given a permissible extension Spec :=
(Σ, Sen) of the basic DA, three Σ-models A,A′,A′′ for Spec, a set TV of type variables
suitable for Σ, a set of variables X suitable for Σ, a set R of role names suitable for TV,Σ,
a set KD ⊆ KD(R, TV,Σ), three concept expressions K(t1, ..., tn)[C], K(t′1, ..., t

′
n)[C ′],

K(t′′1, ..., t
′′
n)[C ′′] in KTTop(X,Σ,KD)∪KF (X,Σ,KD) such that C ′ 6= , and three vari-

able assignments η, η′, η′′. Then

(A,A′) |= pres(K(t1, ...tn)[C],K(t′1, ...t
′
n)[C ′])[η, η′]∧

(A′,A′′) |= pres(K(t′1, ...t
′
n)[C ′],K(t′′1, ...t

′′
n)[C ′′])[η′, η′′]

⇒
(A,A′′) |= pres(K(t1, ...tn)[C],K(t′′1, ...t

′′
n)[C ′′])[η, η′′]

2

The proof can be found in App. C.3, page 215. Notice that the prerequisite C ′ 6=
is necessary. The semantics for concept terms and concept formulas with wildcards only
requires a context to exist. This is, in general, insufficient for proving the just-shown
sequential behavior.

Later on, we will see that this sequential behavior carries over to the composition of
migration processes. If two single processes preserve a concept, the process that is the
result of concatenating these processes does as well. In other words, global preservation

77

78 Specifying and Evaluating Preservation Requirements

follows from iterated single-step-preservation. The sequential behavior of the pres rela-
tion is a must in digital archiving. Local (w.r.t. time) migration decisions have to be
made with only uncertain information of how technologies evolve. Hence, it is important
to know that a property that is preserved by two sequential migration steps is preserved
globally.

5.3 Object Traces

The pres-predicate does not yet consider object histories; it requires the source and target
objects to satisfy the same concept only. Our desired notion of preservation, however,
is strongly related to object histories; the target objects must be new versions of the
source objects. Recall that we bind the notion of object histories to basic transitions
trans(tsrc 7→ ttrg). This has two advantages. First, we assume as little as necessary about
the basic DA. Second, requiring object histories to be part of the DA may cause problems
when deleting objects. Suppose we want the name of a website w to be preserved by a
transformation process ∆. Assume src(∆) = A and res(∆) = A′ and w is deleted during
this process (i.e., there is an operation del(w) ∈ ∆). If the notion of object histories
relied on an implementation in DAs, only, (e.g., using a dynamic function history), we
could not relate w to its new version w′. The reason is that we try to relate w and w′

semantically in a state A′. Yet w does not exist anymore in A′. We avoid this by tracing
object histories syntactically using explicit transformation operations trans(w 7→ w′).

Formal object traces are defined as follows.

Definition 5.3.1 (Object traces) Given a permissible extension Spec := (Σ, Sen) of
the basic DA and a migration sequence ∆ over Σ such that src(∆) is derived by basic
transitions. Then the set tracesi(∆) of initial traces over ∆ of length i (0 ≤ i) is defined
inductively as follows:

traces0(∆) := { 〈(src(∆), t)〉 | t ∈ GTDObj(Σ), src(∆) |=d t ∈ existDObj, }
tracesi+1(∆) := tracesi(∆) ;©step(∆), where

step(∆) := { 〈(A0, t0), (A1, t1)〉 | 〈A0, trans(t0 7→ t1),A1〉 ⊆ ∆}
tr ;©tr′ := { 〈(A0, t0)..., (An−1, tn−1), (A′0, t′0), (A′1, t′1)〉 |

〈(A0, t0), ..., (An−1, tn−1), (An, tn)〉 ∈ tr,
〈(A′0, t′0), (A′1, t′1)〉 ∈ tr′,A′0 |=d tn = t′0}

Given a trace tr := 〈(A0, t0), ..., (An, tn)〉 ∈ tracesn(∆) and 0 ≤ j ≤ n, we define

|tr| := n (trace length)
version(j, tr) := tj (j-th version of t0 in tr)
state(j, tr) := Aj (j-th state of tr)
src(tr) := state(0, tr) (trace source)
res(tr) := state(|tr|, tr) (trace result)

The set maxtraces(∆) of all inclusionmaximal traces over ∆ and the set maxtraces(∆, t)
of inclusionmaximal traces over ∆ for t, t ∈ GTDObj(Σ), are defined as follows:

78

5.3 Object Traces 79

maxtraces(∆) :=⋃
i∈N
{〈(src(∆), t0), ..., (res(∆), ti)〉 | 〈(A0, t0), ..., (Ai, ti)〉 ∈ tracesi(∆),

〈(A0, t0), ..., (Ai, ti)〉 ;©step(∆) = ∅,
res(∆) |=d ti ∈ existDObj}

maxtraces(∆, t) := {tr | tr ∈ maxtraces(∆), state(0, tr) |=d version(0, tr) = t}

The set T R(∆) of full traces of ∆ is defined by

T R(∆) :=
⊗

t∈GTDObj(Σ)

src(∆)|=dt∈existDObj

maxtraces(∆, t),

where the projections are denoted by

πt : T R(∆)→ maxtraces(∆, t) (t ∈ GTDObj(Σ), src(∆) |=d t ∈ existDObj).

Given a trace tuple tr ∈ T R(∆), we set

src(tr) := src(∆) (trace source)
res(tr) := res(∆) (trace result)

2

Traces contain tuples that consist of a system state and an object. That way we relate
concrete system states to object histories, which allows for expressive trace properties
later on. Apart from that, we distinguish initial traces and inclusionmaximal traces. The
trace source of all initial traces exists in src(∆). Initial traces of length zero cover all those
objects that exist in the source state src(∆) — objects are versions of themselves. The set
step(∆) is equivalent to those subsequences of ∆ that contain a single transformation
step 〈A0, trans(t0 7→ t1),A1〉. By concatenating tracesj and step(∆) using ;©, traces
of length j + 1 are generated. According to the definition of ;©, the result object of
tr ∈ tracesj(∆) must equal the source object of tr′ ∈ step(∆) in order for ;© to be
applicable. Hence, objects in those traces generated by ;© are always versions of the
respective source object. As this does not yet assure that trace results exist in the
result state of ∆, we explicitly require this in the definition of maxtraces(∆). This is
no limitation as traces ending in non-existing target objects are useless for our purposes
— non-existing objects cannot preserve anything. In the semantics for preservation
constraints we will use inclusionmaximal traces only. These traces

(1) start in src(∆),
(2) end in res(∆), and
(3) contain history branches of their source objects of maximal length.

In particular, maximal traces for concrete objects maxtraces(∆, t) will be important later
on. They can be extracted from full parallel traces in T R(∆). T R(∆) includes all tuples
of inclusionmaximal traces of those objects that exist in src(∆) and will be used in the
semantics of preservation constraints. The projections to maxtraces(∆, t) are denoted
by πt. The functions src and res are extended to trace tuples as well. In analogy to

79

80 Specifying and Evaluating Preservation Requirements

inclusionmaximal traces, the source and target of a trace tuple yields the source and
target state of the corresponding migration sequence. In App. B.3, page 189, we list
sample traces for the example migration shown in the introduction to this chapter.

In Defn. 5.3.1 we define functions that can be used to refer to the components of
traces conveniently. Since term ti is the result of transforming t0 i times, we call it the
i-th version of the trace tr, which is denoted by ti = version(i, tr). Analogously, the i-th
state is identified by state(i, tr). These functions fully determine traces. For example,

tr := 〈(A0, t0), (A1, t1), ..., (An, tn)〉

can also be written as

〈(state(0, tr), version(0, tr)), (state(1, tr), version(1, tr)), ...,
(state(n, tr), version(n, tr))〉.

The following lemma states that (1) version(i, tr) exists in state(i, tr) for all i,tr and
(2) traces are circle-free. Object histories can, thus, be understood as trees.

Lemma 5.3.1 (Object versions exist, traces are circle free) Given a permissible
extension Spec := (Σ, Sen) of the basic DA, a migration sequence ∆ over Σ such that
src(∆) is derived by basic transitions, and an initial trace tr ∈ tracesn(∆) of length n.
Then

(1) state(i, tr) |=d version(i, tr) ∈ existDObj for all 0 ≤ i ≤ n and
(2) the trace is circle-free, i.e., state(j, tr) |= oid(version(i, tr)) 6= oid(version(j, tr))

for all 1 ≤ i < j ≤ n.

2

The proof can be found in App. C.3, page 215. It exploits the fact that the source
state of ∆ is derived by basic transitions and, thus, has been generated starting at an
initial state where no objects exist (cf. Defn. 3.3.9, page 51). As ∆ is a valid migration
sequence, intermediate system sates are subsequent to each other w.r.t. one of the basic
transitions (Defn. 3.3.8). Hence, the system invariants of Cor. 3.3.1 hold; this guarantees
circle-freeness.

5.4 Preservation Formulas – Relating Preservation and Ob-
ject Traces

Using the basic preservation predicate pres and object traces we can define the seman-
tics of transformation and preservation constraints. They belong to the class of trace
formulas.

Definition 5.4.1 (Trace formulas) Given a permissible extension Spec := (Σ, Sen)
of the basic DA, a set TV of type variables suitable for Σ, a set of variables X suitable
for Σ, a set R of role names suitable for TV,Σ, and a set KD ⊆ KD(R, TV,Σ). Then
the formula structure TFX,Σ,KD of trace formulas over X,Σ,KD is defined by

TFX,Σ,KD := FOL((TF at(X,Σ,KD),
⋃

∆∈MS(Σ)

T R(∆), |=d,FV),dom),

80

5.4 Preservation Formulas – Relating Preservation and Object Traces 81

Table 5.1: Syntax and semantics of atomic trace formulas
Syntax:
(1) Transformation constraints:

t ∈ TDObj(X,Σ) τ ∈ T , τ<DObj
t 7→ τ ∈ TF at(X,Σ,KD)

FV(t 7→ τ) = FV(t)

(2) Functional concept preservation constraints:
K I = {C1 = ιC1 , ..., Cm = ιCm} ∈ KD
K(t1, ..., tn)[Cs] ∈ KT(X,Σ,KD)
Ct ∈ {C1, ..., Cm, }
presf (K(t1, ..., tn)[Cs, Ct]) ∈ TF at(X,Σ,KD)

FV(presf (K(t1, ..., tn)[Cs, Ct])) =
S

1≤i≤n

FV(ti)

(3) Non-functional concept preservation constraints:
K I = {C1 = ιC1 , ..., Cm = ιCm} ∈ KD
K(t1, ..., tn)[Cs] ∈ KF (X,Σ,KD)
Ct ∈ {C1, ..., Cm, }
presnf (K(t1, ..., tn)[Cs, Ct]) ∈ TF at(X,Σ,KD)

FV(presnf (K(t1, ..., tn)[Cs, Ct])) =
S

1≤i≤n

FV(ti)

Semantics:
(1) Transformation constraints:

t 7→ τ ∈ TF at(X,Σ,KD)
t′ ≡ version(|πt(tr)|, πt(tr))
|πt(tr)| ≥ 1

tr ∈
S

∆∈MS(Σ) T R(∆)

η ∈ Env(X, src(tr))
res(tr) |=d instτ (t′)[η]

tr |=d t 7→ τ [η]
(2) Functional concept preservation constraints:

presf (K(t1, ..., tn)[Cs, Ct]) ∈
TF at(X,Σ,KD)
t′1 ≡ version(|πt1(tr)|, πt1(tr)), ...,
t′n ≡ version(|πtn(tr)|, πtn(tr))

tr ∈
S

∆∈MS(Σ) T R(∆)

A = src(tr), A′ = res(tr)
η ∈ Env(X,A)
(A,A′) |=d pres(K(t1, ..., tn)[Cs],K(t′1, ..., t

′
n)[Ct])[η, η]

tr |=d presf (K(t1, ..., tn)[Cs, Ct])[η]

(3) Non-functional concept preservation constraints:

presnf (K(t1, ..., tn)[Cs, Ct]) ∈
TF at(X,Σ,KD)
t′1 ≡ version(|πt1(tr)|, πt1(tr)), ...,
t′n ≡ version(|πtn(tr)|, πtn(tr))

tr ∈
S

∆∈MS(Σ) T R(∆)

A = src(tr), A′ = res(tr)
η ∈ Env(X,A)
(A,A′) |=d pres(K(t1, ..., tn)[Cs],K(t′1, ..., t

′
n)[Ct])[η, η]

tr |=d presnf (K(t1, ..., tn)[Cs, Ct])[η]

where the set TF at(X,Σ,KD) of atomic trace formulas over X,Σ,KD, the satisfaction
relation |=d, and the function FV are defined as shown in Tab. 5.1. Moreover,

dom(tr, x : τ, η) :=


(src(tr), {v| v ∈ τsrc(tr), ct ∈ CTminsrc(tr)(Σ, v),

(src(tr), η, ct) td
; v})

, η ∈ Env(X, src(tr))

undefined, otherwise

for all (tr, x : τ, η) ∈ (
⋃

∆∈MS(Σ)

T R(∆))×X × Env(X,Σ).

In the following TF (X,Σ,KD) (formulas), |=d (satisfaction relation), and FV (free
variables) denote the respective component of TFX,Σ,KD. 2

Transformation constraints, functional, and non-functional concept preservation con-
straints are atomic trace formulas. Full trace formulas are first order formulas over atomic
ones. Certainly, other kinds of trace formulas may be thinkable depending on the ap-
plication domain. Typical examples comprise next or until-operators that are used in
temporal logics for model checking dynamic systems. Since traces include intermediate

81

82 Specifying and Evaluating Preservation Requirements

system states, these operators can be defined in a straightforward way. For our purposes,
however, the just-defined trace formulas are sufficient.

In order for t 7→ τ to be well-formed, the source object t must be of type DObj or
below. The same is true for the target type τ . The semantics is determined w.r.t. a trace
tuple tr ∈ T R(∆). It requires the final version of the trace πt(tr) for t to be of type
τ . Also, the trace must have length one or greater. Hence, transformation constraints
enforce transformations; t 7→ τ does not hold before t is transformed appropriately. By
using the final version in the semantics, we implement a design goal of our preservation
language: We only constrain migration processes by pre- and post conditions and do not
restrict intermediate steps of a process. As a result, we have no notion of sub-traces.
Also, trace quantifiers ∃© and ∀© cannot be used recursively in contrast to other related
languages like CTL. Again, our decision is strongly motivated by the application domain.
The language can be extended if desired.

Syntax and semantics of concept preservation constraints is defined quite similar for
functional and non-functional concepts. We annotate the constraints by f and nf , respec-
tively, for clarity. Concept preservation constraints presf (K(t1, ..., tn)[Cs, Ct]) comprise
a concept term K(t1, ..., tn), a source context Cs, and a target context Ct. Cs and Ct
are used for matching K w.r.t. the source and target objects, respectively. Notice that
Cs, Ct may be wildcards. If both are wildcards, we will sometimes omit them in the
following.

The semantics of concept preservation constraints integrates preservation according
to Defn. 5.2.1 into our dynamic environment. In particular, it relates the interface objects
t1, ..., tn and the trace results t′1, ..., t

′
n of their traces πt1(tr), ..., πtn(tr). The pres relation

must hold for K(ti)[Cs] and K(t′i)[Ct] in (A,A′) under η. This is the desired notion of
preservation as explained in the introduction to this chapter. A,A′ are the source and
target state of the trace for t1, respectively. As all traces for ∆ start in src(∆) and end
in res(∆), the choice of ti is irrelevant. Also, the semantics is well-defined since all t′i
exist in res(∆) according to Defn. 5.3.1(Traces).

The domain mapping dom, which is used to extend atomic trace formulas to first
order logic, is similar to the one used for the dynamic semantics of Σ-formulas (cf.
Defn. 4.3.2, page 63). However, trace formulas are evaluated w.r.t. trace tuples tr ∈
T R(∆). Given a trace formula ∀x : τ • φ, we, thus, have to extract a suitable system
state from tr in order to determine the quantifier sphere for x : τ . Since preservation
requirements are evaluated for source objects of traces we use src(tr).

Continuative explanations on trace formulas can be found in App. B.3, page 189;
according to the next lemma, trace formula semantics is well-defined.

Lemma 5.4.1 (Semantics of trace formulas is well-defined) Given a permissible
extension Spec := (Σ, Sen) of the basic DA, a set TV of type variables suitable for Σ,
a set of variables X suitable for Σ, a set R of role names suitable for TV,Σ, and a set
KD ⊆ KD(R, TV,Σ). Then TFX,Σ,KD is well-defined, i.e.:

(1) For all tr ∈
⋃

∆∈MS(Σ)

T R(∆), x : τ ∈ X, and η ∈ Env(X,Σ) it is true that

dom(tr, x : τ, η) = (A, d) implies η ∈ Env(X,A) and d ⊆ τA.

2

82

5.4 Preservation Formulas – Relating Preservation and Object Traces 83

Table 5.2: Syntax and semantics of atomic preservation formulas
Syntax:
(1) Trace formulas:

φ ∈ TF (X,Σ,KD)
∀©φ ∈ PF at(X,Σ,KD)

FV(∀©φ) = FV(φ)

(2) Atomic formulas over Σ-terms and concept terms:
(F,A(Σ), |=′,FV ′) = AT (KTX,Σ,KD] T d

X,Σ) φ ∈ F
φ ∈ PF at(X,Σ,KD)

FV(φ) = FV ′(φ)

(3) Concept formulas:
φ ∈ KF (X,Σ,KD)
φ ∈ PF at(X,Σ,KD)

Semantics:
(1) Trace formulas:

∀©φ ∈ PF at(X,Σ,KD)
∆ ∈MS(Σ)

∀tr ∈ T R(∆) • tr |=d φ[η]

∆ |=d ∀©φ[η]
(2) Atomic formulas over Σ-terms and concept terms:

(F,A(Σ), |=′,FV ′) = AT (KTX,Σ,KD] T d
X,Σ), φ ∈ F

∆ ∈MS(Σ)
src(∆) |=′ φ[η]

∆ |=d φ[η]
(3) Concept formulas:

φ ∈ KF (X,Σ,KD)
∆ ∈MS(Σ)

src(∆) |=d φ[η]

∆ |=d φ[η]

The proof can be found in App. C.3, page 216. Next we introduce the formula
structure for the full preservation language; this language includes trace quantifiers ∃©
and ∀©.

Definition 5.4.2 (Preservation formulas) Given a permissible extension Spec :=
(Σ, Sen) of the basic DA, a set of variables X suitable for Σ, a set R of role names
suitable for TV,Σ, and a set KD ⊆ KD(R, TV,Σ) of concept definitions. Then the
formula structure PFX,Σ,KD of preservation formulas over X,Σ,KD is defined by

PFX,Σ,KD := FOL((PF at(X,Σ,KD),MS(Σ), |=d,FV),dom),

where the set PF at(X,Σ,KD) of atomic preservation formulas over X,Σ,KD, the satis-
faction relation |=d and the function FV are determined as shown in Tab. 5.2. Moreover,

dom(∆, x : τ, η) :=


(src(∆), {v| v ∈ τsrc(∆), ct ∈ CTminsrc(∆)(Σ, v)

(src(∆), ct) td
; v})

, η ∈ Env(X, src(∆))

undefined, otherwise

for all (∆, x : τ, η) ∈MS(Σ)×X × Env(X,Σ).
We refer to the components of PFX,Σ,KD by PF (X,Σ,KD) (preservation formulas over
X,Σ,KD), FV (free variables), and |=d (satisfaction relation). 2

According to Tab. 5.2, atomic preservation formulas PF at(X,Σ,KD) comprise

(1) universally quantified trace formulas ∀©φ, φ ∈ TF (X,Σ,KD),

83

84 Specifying and Evaluating Preservation Requirements

(2) Σ-predicates and equality applied to Σ-terms and concept terms, which is expressed
by AT (KTX,Σ,KD] TX,Σ), and

(3) concept formulas φ ∈ KF (X,Σ,KD).

The set PF (X,Σ,KD) of preservation formulas is determined by the FOPL-extension
of the set of atomic preservation formulas so that general preservation formulas include
negation, conjunction, and universal quantification.

Preservation formulas are evaluated w.r.t. a given migration sequence ∆. Atomic
formulas over Σ-terms and concept terms as well as concept formulas are evaluated in
the source state src(∆) of ∆. In this way, pre-conditions can be specified. Apart from
that, preservation formulas of the form ∀o : τ • φ ⇒ ψ can be used to select those
objects (by the condition φ) that are subject to the preservation requirement ψ.

A preservation formula ∀©φ is satisfied, iff the trace formula φ holds for all inclusion-
maximal trace tuples T R(∆) that have been extracted from ∆. This semantics is very
similar to the semantics for path quantifiers in temporal logics. In the next lemma we
state that the semantics of preservation formulas is well-defined. Notice that, in partic-
ular, the operation KTX,Σ,KD]TX,Σ is defined since concept terms and regular Σ-terms
are disjoint by definition.

Again, we have to show that the so-defined formula structure is well-defined. The
proof of the following lemma can be found in App. C.3, page 215.

Lemma 5.4.2 (Preservation formulas are well-defined) Given a permissible ex-
tension Spec := (Σ, Sen) of the basic DA, a set of variables X suitable for Σ, a set R
of role names suitable for TV,Σ, and a set KD ⊆ KD(R, TV,Σ) of concept definitions.
Then the formula structure PFX,Σ,KD is well-defined, i.e.:

(1) KTX,Σ,KD] TX,Σ is defined.
(2) For all ∆ ∈MS(Σ), x : τ ∈ X, and η ∈ Env(X,Σ) it is true that dom(∆, x : τ, η) =

(A, d) implies η ∈ Env(X,A) and d ⊆ τA.

2

In the same way we use ∃x • φ as a substitute for ¬∀x • ¬φ, we use an existential
trace quantifier ∃©φ for expressing ¬ ∀©¬φ. This is also standard in temporal logics. ∃©φ
holds if there is a trace tr such that φ holds for tr.

Definition 5.4.3 (Quantifier ∃©) Given a trace formula φ ∈ TF (X,Σ,KD), a mi-
gration sequence ∆ over Σ, and a variable assignment η. Then ∆ |=d ∃©φ[η] iff ∆ |=d

¬ ∀©¬φ[η]. 2

Notice that the full integration of concept terms and concept formulas is an impor-
tant feature of the preservation language. If only concept terms, concept formulas, and
preservation constraints are used in a preservation formula φ, the so-defined formula
fully abstracts from concrete implementations. The preservation requirement

∀w : Website •
∀d, d′ : Dir •

WebSrc(d,w) ∧ Contains(d, d′)[CDirRec]⇒
∃© d 7→ Dir ∧ d′ 7→ Dir ∧ presnf (Contains(d, d′)[CDirRec,CDirHtml]) ∧
∃© d 7→ Dir ∧ d′ 7→ Dir ∧ presnf (Contains(d, d′)[CDirRec,CDirRes])

84

5.5 Summary 85

is an example (cf. introduction to this chapter).
In App. B.3, page 193, we use selected preservation formulas to explain the semantics

of preservation formulas in more detail. Also, our case study (Part IV) will contain more
examples.

5.5 Summary

We have introduced syntax and semantics of a preservation language. First, we have
defined a preservation predicate pres that relates source objects and target objects w.r.t. a
given concept. If this concept is non-functional, this predicate holds if the concept equally
holds for the source and target objects. In case of a functional concept, the concept must
return equal values when applied to the source and target objects. This basic notion of
preservation does not yet include object histories. However, we have shown that it works
transitively. Iterated preservation results in global preservation. This is particularly
important in our domain as migrations have to be executed periodically.

After that, we have supplemented this notion of preservation by object histories.
For this purpose, we have introduced object traces. They are extracted from migration
sequences ∆ and represent parallel transformation paths for those objects that exist in
the source state of ∆. Also, traces include system states and, hence, support expressive
trace formulas. It could be proved that traces are circle-free; object histories are trees.
This is a consequence of the invariants that hold in our dynamic system and keeps the
language-semantics simple.

Traces are used to evaluate the semantics of trace formulas. Transformation and
concept preservation constraints are atomic trace formulas. The former require objects
to be transformed, the latter require that properties are preserved by transformations.
By evaluating trace formulas w.r.t. traces that have been extracted from migration se-
quences, we fully integrate trace formulas into the dynamic environment that has been
specified before. We have provided example trace formulas and derived their semantics
in order to show this integration.

At that stage, the step towards a full preservation language was a small one. Pres-
ervation formulas include trace formulas that are quantified by trace quantifiers ∀© and
∃©. These quantifiers determine whether a property must hold for all traces of a given
migration sequence ∆ or for a single trace only. Apart from that, preservation formulas
include regular FOPL formulas over Σ terms, Σ formulas, concept terms, and concept
formulas. These formulas can be understood as preconditions for migration processes or
selectors for objects collections. They are connected to trace formulas by the usual logical
operators. Overall, this results in an expressive language for preservation requirements,
which can be evaluated in an automated way.

85

Part III

Improving Usability

86

Chapter 6

Implementing Migration
Processes

Up to now, we describe migration algorithms by migration sequences (cf. Sect. 3.3.2).
When dealing with complex migration tasks, however, the resulting lack of usability
is unacceptable. Therefore, we introduce a functional programming language that can
be used to implement complex migration algorithms conveniently. The language has a
sound operational semantics based on ASMs and includes basic state change operations
as regular functions. These operations implement the basic state changes of Sect. 3.3.2,
i.e., they respect the corresponding pre- and post-conditions. By translating migration
algorithms into equivalent migration sequences, we connect the functional language to
our dynamic environment in a natural way. The agenda is as follows:

• In Sect. 6.1 we give an informal overview.
• Syntax and semantics of basic state change operations is introduced in Sect. 6.2.

We will prove that the basic operations respect the pre- and post-conditions of the
basic state changes introduced in Sect. 3.3.2.

• Syntax and semantics of the functional language is introduced in Sect. 6.3. In
particular, this includes well-formedness and well-typedness rules for expressions of
this language.

• We close with a short summary in Sect. 6.4.

6.1 Informal Overview

Our programming language must integrate object tracing; otherwise, preservation re-
quirements cannot be evaluated automatically. As object traces are extracted from
migration sequences, we define the semantics of our language in terms of migration se-
quences. This, in turn, requires that we implement the basic state changes appropriately.

Therefore, the functional language includes the following operations as regular func-
tions:

(1) create(f, ti),
(2) transform(tsrc : DObj 7→ (f, ti)), and

87

88 Implementing Migration Processes

(3) delete(t).

They implement the corresponding basic states change of Sect. 3.3.2 and particularly
respect the relevant pre- and post conditions; this assures the desired system invariants.

Notice that create(f, ti) and transform(tsrc : DObj 7→ (f, ti)) automatically attach
an ID to the result object. For this purpose, we introduce two additional administrative
dynamic functions (apart from existDObj and usedOIDs). The ID that is to be used
next is stored in oidToUse. Apart from that, dep stores object dependencies (in terms
of contDObj()). That way we need not re-evaluate the object-valued content continuously
when assuring the above-mentioned system invariants. The semantics of the basic state
change operations is explained in the following example.

Example 6.1.1 (Effect of basic operations)

Recall that we have listed an example archive evolution in Tab. 3.1 on page 30. The
table lists the values of the dynamic functions in the respective system states. In
order to show how basic operations and basic state changes coincide, Tab. 6.1 shows
the archive evolution that arises when executing the following basic operations that
are equivalent to the basic state changes of Tab. 3.1:

(1) x0 = create(HTMLDoc, “start.html“, ...) (State 0)
(2) x1 = create(Dir, “calc05“, {}, {}) (State 1)
(3) x2 = create(Dir, “overview“, {}, {}) (State 2)
(4) x3 = create(Dir, “source“, {x1, x2}, {x0}) (State 3)
(5) v1 = delete(x2) (State 4)
(6) v2 = delete(x3) (State 4)

We have assigned the created objects to variables x0 to x3 in order to emphasize that
basic operations are functions. Apart from that, v1 and v2 carry the truth-values of
the execution of the respective deletion operation. The system states in which the
operations are executed are provided in parentheses.

2

System states in Tab. 6.1 include the values for oidToUse and dep. In state zero,
oidToUse stores the initial ID initID, which means that this ID will be attached to
the next object on creation. Both existDObj and dep are empty. No objects and
no object dependencies exist. While the four object creations take place, the value of
oidToUse proceeds appropriately and existDObj is extended by the respective newly
created object. Notice that the operation calls do not contain the object’s ID. Attaching
the ID (oidToUse) to the newly created objects is a built-in feature of the semantics.
That way we assure the required system invariants.

All basic operations are functions. Object creation and object transformation return
the created object; users have direct access to created objects. Object deletion reports
success or failure by returning a truth value.

In state three, creating the “source” directory causes an update of dep because x1

(“calc05”), x2 (“overview”), and x0 (“start.html”) belong to the object-valued content of
x3. The tuple (x3, {x0, x1, x2}) in dep stores this dependency.

Next, a deletion operation is executed. It is blocked since x2 (“overview”) is part of
the content of x3 (“source”). Hence, v1 is False. This dependency can be determined
efficiently by a lookup in dep.

88

6.1 Informal Overview 89

Table 6.1: Example archive evolution using basic operations

source

calc05 overview start.htmlstart.html overview start.html calc05 overview start.html

source

calc05 overview start.html calc05 overview start.html

1 4 4 52 30

S Value usedOIDs Value oidToUse Value existDObj Value dep

0 {} initID {} {}
1 {initID} nextID(initID) {HTMLDoc(initID, “start.html“, ...)} {}

2


initID,
nextID(initID)

ff
nextID2(initID)


HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})

ff
{}

3

8<:initID,
nextID(initID),
nextID2(initID)

9=; nextID3(initID)

8<:HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})
Dir(nextID2(initID), “overview“, {}, {}.)

9=; {}

4

8>><>>:
initID,
nextID(initID),
nextID2(initID),
nextID3(initID)

9>>=>>; nextID4(initID)

8>><>>:
HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})
Dir(nextID2(initID), “overview“, {}, {})
Dir(nextID3(initID), “source“, {x1, x2}, {x0})

9>>=>>; {(x3, {x0, x1, x2})}

4

8>><>>:
initID,
nextID(initID),
nextID2(initID),
nextID3(initID)

9>>=>>; nextID4(initID)

8>><>>:
HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})
Dir(nextID2(initID), “overview“, {}, {})
Dir(nextID3(initID), “source“, {x1, x2}, {x0})

9>>=>>; {(x3, {x0, x1, x2})}

5

8>><>>:
initID,
nextID(initID),
nextID2(initID),
nextID3(initID)

9>>=>>; nextID4(initID)

8<:HTMLDoc(initID, “start.html“, ...)
Dir(nextID(initID), “calc05“, {}, {})
Dir(nextID2(initID), “overview“, {}, {})

9=; {}

The example trace in Tab. 6.1 suggests that the basic state change operations satisfy
the desired pre- and post-conditions. In particular, id <id oidToUse holds for all id ∈
usedOIDs such that indeed fresh IDs are used for newly created objects. Also, the
effect directly corresponds to the effect of the respective basic state changes in Tab. 3.1.
Altogether, the semantics of the algorithm in Tab. 6.1 yields a migration sequence of
length five.

It is, however, impracticable to provide a basic operation for each single migration
step as migrations get complex. First, these migration sequences are not re-usable.
Second, it is hardly feasible to provide basic operations explicitly for thousands of digital
objects. Therefore, we integrate these operations into a full functional programming
language. In Fig. 6.1 we show two sample function definitions that are related to our case
study (Part IV); by copying a directory structure and contained html files recursively,
they partly assure BWeb conformity of transformed websites.

There,

migDirHTML : Dir→ Website→ Dir and
migHTMLDoc : HTMLDoc→ Website→ HTMLDoc

are called function declarations as they specify name and typing of the respective func-
tion. The parts migDirHTML(d,w) = let... and migHTMLDoc(d,w) = if... are called function
body.

The functions in Fig. 6.1 exhibit most of the features that are supported by the
functional language. This includes

(1) set comprehension ({migDirHTML(d′, w) | d′ ← subDirs(d), True}),
(2) a let construct,

89

90 Implementing Migration Processes

Function migDirHTML:
migDirHTML : Dir→ Website→ Dir
migDirHTML(d,w) =

let sDirs = {migDirHTML(d′, w) | d′ ← subDirs(d), True}

sDocs =
{migHTMLDoc(d′, w) | d′ ← subDocs(d),

and(not(d′ = home(w)), instHTMLDoc(d′))}
in transform(d 7→ (Dir, name(d), sDirs, sDocs))

Function migHTMLDoc:
migHTMLDoc : HTMLDoc→ Website→ HTMLDoc
migHTMLDoc(d,w) =

if not(d = home(w))
then transform(d 7→ (HTMLDoc, name(d), content(d)))
else transform(d 7→ (HTMLDoc, “index.html“, content(d)))

Figure 6.1: Example algorithm using the functional language

(3) an if...then...else... construct,
(4) integration of basic operations (transform(d 7→ (Dir, name(d), sDirs, sDocs))),
(5) integration of components of existing Σ-models, which includes

• the instance operator (instHTMLDoc(d′)),
• equality (d′ = home(w)) as well as other predicates, and
• functions (home(w)), and

(6) recursion (in the body of migDirHTML).

The semantics of let, if, and set comprehension is largely standard. However, the
semantics additionally generates an equivalent migration sequence.

Example 6.1.2 (Effect of migration algorithms)

Let w denote a website that contains the file and directory structure of state four in
Tab. 6.1. Hence,

srcDir(w) = x3 (“source”)
home(w) = x0 (“start.html”)
x3 = Dir(nextID3(initID), “source“, {x1, x2}, {x0})

using abbreviations of Example 6.1.1. Notice that w corresponds to a part of the
example website “Calculation” in Fig. 2.2 on page 17 such that this example directly
carries over to the running example.
The function call migDirHTML(x3, w) transforms the file and directory structure of w
and results in the following migration sequence

〈 A0, trans(x1 7→ x′1), A1, trans(x2 7→ x′2), A2, trans(x0 7→ x′0), A3, trans(x3 7→ x′3), A4〉,

where we have abbreviated

x′0 = HTMLDoc(nextID6(initID), “index.html“, ...),
x′1 = Dir(nextID4(initID), “calc05“, {}, {}),
x′2 = Dir(nextID5(initID), “overview“, {}, {}),
x′3 = Dir(nextID7(initID), “source“, {x′1, x′2}, {x′0}).

2

90

6.2 Basic State Change Operations 91

Notice that the execution order is important in this example. The result is a migration
sequence and all object-valued content of an object must exist before this object can
be created. In particular, x′3 is created last because it contains x′0, x

′
1, and x′2. This

execution order is indeed assured in the body of migDirHTML. First, all sub-directories
of x3 are transformed. The result is stored in sDirs. Then x0 is transformed, which is
stored in sDocs. Finally, d is transformed while setting sDirs and sDocs as subDirs
and subDocs attribute of the result directory.

In the following sections we introduce the necessary formalisms. At the end of this
chapter we can conveniently specify migration algorithms and have a sound operational
semantics based on migration sequences that fully integrates the functional programming
language into our dynamic environment.

6.2 Basic State Change Operations

Here we provide an operational semantics for the basic operations that exactly respects
the required pre- and post-conditions of Sect. 3.3.2. In order to achieve this, we define
all operations in terms of ASM programs. That way, the effect of basic operations
is determined by a new system state that arises from executing an appropriate ASM
program. This has the following advantages:

• We can prove that the basic operations adhere to the pre-and post-conditions and,
thus, conclude that the invariants and properties of Sect. 3.3.2 hold.

• ASMs are “operational by nature”, which yields executable specifications.
• Users can extend the basic operations if desired. If this extension is a refinement,

the properties of the dynamic system are preserved.
• The ASM theory is well-established [Gur00, GS97, Rei03b, Rei03a]. It provides

theories and tools for reasoning about programs and program refinements ([BS03,
Ton98]) and has been integrated with abstract datatypes as well ([Zam98, Zam97]).

Before we provide the semantics of the basic operations, we recall some preliminaries
about ASMs ([BS03]). ASMs are used to model dynamic systems and view an abstract
state as a kind of memory that maps locations to values.

Definition 6.2.1 (Location) Given a signature Σ := Σs ∪ Σd and a Σ-state A. A
location of A is a pair loc := (f • vi), where f : τ1 × ... × τn → τ is an n-ary function
symbol of Fs ∪ Fd and vi ∈ τAi . The value fA(vAi) is called the content of the location
loc. Moreover, vi are the elements of loc. We call loc dynamic, if f ∈ Fd and static,
otherwise. 2

In this respect, we can view states A as functions that map the locations of A to
values of the corresponding type domain in A. We will denote the content of the location
loc in A by A(loc). The basic idea behind abstract state machines is to let the dynamic
locations evolve. For this purpose, the semantics, which we introduce later on, produces
appropriate location updates.

Definition 6.2.2 (Update) Given a signature Σ := Σs ∪ Σd and a Σ-state A. An
update for A is a mapping ((f • vi) 7→ v), where (f • vi) is a dynamic location of A,
f : τ1 × ...× τn → τ , and v ∈ τA. An update set is a set of updates. 2

91

92 Implementing Migration Processes

Table 6.2: Syntax and semantics of ASM transition rules
Basic ASM rules:
(1) Skip rule: skip (Do nothing)
(2) Update rule: f(si) := t (Update f at si to t)
(3) Block rule: par P1, ..., Pnend par (Execute P1, ..., Pn in parallel)
Semantics:

(1)
〚skip〛Aη = ∅

(2)
〚f(si) := t〛Aη = {((f • VA〚si〛η) 7→ VA〚t〛η)}

(3)

〚P1〛
A
η = U1

...

〚Pn〛Aη = Un

〚par P1, ..., Pn end par〛Aη =
⋃

1≤i≤n

Ui

(4.1)
〚P 〛Aη = U A |= φ[η]
〚if φ then P else Q end if〛Aη = U

(4.2)
〚Q〛Aη = V A 6|= φ[η]
〚if φ then P else Q end if〛Aη = V

Two or more updates clash if they update the same location with different values.
Hence, we need a notion of consistency for update sets.

Definition 6.2.3 (Consistent update sets) An update set U is called consistent (de-
noted by Cons(U)), if for any location loc and elements v, v′ the following holds: (loc 7→
v) ∈ U and (loc 7→ v′) ∈ U implies v = v′. 2

Consistent update sets can be fired at a given state A. This updates the dynamic
locations of A and leaves the static parts of A unchanged.

Definition 6.2.4 (Firing of updates) Given a signature Σ, a Σ-state A, and a con-
sistent update set U . The result of firing U at A is a new state A + U such that for
every location loc of A

(A+ U)(loc) =
{
v, (loc 7→ v) ∈ U
A(l), otherwise

.

The state A+ U is called the sequel of A w.r.t. U . 2

Update sets being consistent assure that A+ U is uniquely determined. With these
preliminaries we are ready to introduce basic transition rules for abstract state machines.

Definition 6.2.5 (ASM transition rules) Given a signature Σ := Σs ∪ Σd and a
dynamic function symbol f ∈ Fd. Then syntax and semantics of ASM transition rules
are defined inductively as shown in Tab. 6.2. 2

The semantics of an ASM program is the update set it yields. Although Tab. 6.2
covers only parts of the ASM syntax and semantics provided in [BS03], it is sufficient
for defining our basic state change operations.

92

6.2 Basic State Change Operations 93

Table 6.3: Syntax of basic operations BOp(X,Σ) over Σ, X
Syntax:
(1) Object creation:

f : OID× τi → τ ∈ Cτ
t1 ∈ Tτ1(X,Σ), ..., tn ∈ Tτn(X,Σ) τ<DObj

create(f, ti) ∈ BOpτ (X,Σ)
FV(create(f, ti)) =

⋃
i

FV(ti)

(2) Object transformation:
tsrc ∈ TDObj(X,Σ)
f : OID× τi → τ ∈ Cτ
t1 ∈ Tτ1(X,Σ), ..., tn ∈ Tτn

(X,Σ) τ<DObj
transform(tsrc 7→ (f, ti)) ∈ BOpτ (X,Σ)

FV(transform(tsrc 7→ (f, ti))) =
FV(tsrc) ∪

⋃
i

FV(ti)

(3) Object deletion:
t ∈ TDObj(X,Σ)
delete(t) ∈ BOpBool(X,Σ)

FV(delete(t)) = FV(t)

(4) Subtyping:
op ∈ BOpτ ′(X,Σ) τ ′<τ

op ∈ BOpτ (X,Σ)

In the introduction to this chapter we mentioned that we use additional dynamic
functions for the specification of the basic operations. In particular, we store object
dependencies in dep and the next free object ID in oidToUse. Before we introduce the
syntax of basic operations, we, thus define suitable signatures for their evaluation.

Definition 6.2.6 (Signature suitable for basic operations) A signature Σ is suit-
able for evaluating basic operations, iff

{oidToUse : OID, dep : DObj→ Set[DObj]} ∪ FDAd ⊆ Fdp(Σ).

2

Signatures that are suitable for evaluating basic operations at least contain the dy-
namic functions of the basic DA as well as oidToUse and dep. Now, we are ready to
define the syntax of basic operations; some examples are listed in App. B.4, page 193.

Definition 6.2.7 (Basic operations) Given a permissible extension Spec := (Σ, Sen)
of the basic DA such that Σ is suitable for evaluating basic operations. Given, further-
more, a suitable set of variables X for Σ. Then the set BOp(X,Σ) of basic state change
operations over Σ and X and the free variables FV(op), op ∈ BOp(X,Σ), are defined as
shown in Tab. 6.3. 2

The effect of basic operations is determined by firing the corresponding ASM rule
in Tab. 6.4. Object creation is implemented by r create, which updates oidToUse and
extends existDObj, usedOIDs, and dep. Notice that dep is set to tsub, which is a
parameter of the rule application. It contains the object-valued content of the parameter
terms ti as we will see shortly; dep stores object dependencies according to contDObj().

The rule r transform implements object transformation and works similar to r create.
However, it explicitly requires tsrc to exist. As our basic DA does not administrate ob-
ject histories, r transform is relatively simple. As all other rules, it, however, can be
extended if desired; we merely require extensions to be refinements.

93

94 Implementing Migration Processes

Table 6.4: ASM rule declarations for the basic state change operations
Rule declarations r create and r delete:

r create(f, ti, tsub) ::=
if ∀x : DObj • x ∈ tsub ⇒ x ∈ existDObj
then
par

oidToUse := nextID(oidToUse)
existDObj :=
{f(oidToUse, ti)}s ∪ existDObj

usedOIDs :=
{oidToUse}s ∪ usedOIDs

dep(f(oidToUse, ti)) := tsub

end par
else

skip
end if

r delete(t) ::=
if t ∈ existDObj∧
∀x : DObj • x ∈ existDObj⇒ t 6∈ dep(x)

then
par

existDObj := existDObj\{t}s
dep(t) := {}

end par
else

skip
end if

Rule declaration r transform:
r transform(tsrc, f, ti, tsub) ::=
if tsrc ∈ existDObj ∧ ∀x : DObj • x ∈ tsub ⇒ x ∈ existDObj then

par
oidToUse := nextOID(oidToUse)
existDObj := {f(oidToUse, ti)}s ∪ existDObj
usedOIDs := {oidToUse}s ∪ usedOIDs
dep(f(oidToUse, ti)) := tsub

end par
else

skip
end if

Finally, deletion is implemented by r delete. This rule removes the corresponding
object from existDObj and deletes all dependencies. Notice that all operations have
certain pre-conditions. If they are not satisfied, the operations have no effect on the
system state.

In the following we define the effect of basic operations formally in terms of the ASM
rules of Tab. 6.4.

Definition 6.2.8 (Effect of basic operations) Given a specification Spec := (Σ, Sen)
that is a permissible extension of the basic DA such that Σ is suitable for evaluating
basic operations, a Σ-state A, a migration sequence ∆ over Σ, a suitable set of variables
X for Σ, and a basic operation op ∈ BOp(X,Σ). Then the effect of op in A under η
(denoted by (A,∆, η, op) op

; (A′,∆′, v)) is defined by the rules of Tab. 6.5. 2

Examples can be found in App. B.4, page 194. Basic operations result in a system
state, a migration sequence, and a value. With object deletion, the truth value directly
indicates the success of the operation. In the other two cases success can be verified by
checking whether the returned value is in existDObj or not. This allows to adjust the
control flow of algorithms according to an operation’s success.

94

6.2 Basic State Change Operations 95

Table 6.5: Effect of basic operations
Semantics:
(1) Object creation 1:

create(f, ti) ∈ BOpτ (X,Σ)
ct ∈ CTmin

A (Σ, v)

〚r create(f, ti, T≤DObj(∅, ct)\{ct})〛
A
η = U

(A, η, f(oidToUse, ti))
t

; v, U = ∅

(A,∆, η, create(f, ti))
op
; (A,∆, v)

(2) Object creation 2:

create(f, ti) ∈ BOpτ (X,Σ)
ct ∈ CTmin

A (Σ, v)

〚r create(f, ti, T≤DObj(∅, ct)\{ct})〛
A
η = U

(A, η, f(oidToUse, ti))
t

; v, U 6= ∅

(A,∆, η, create(f, ti))
op
; (A+ U,∆; 〈A, cre(ct),A+ U〉, v)

(3) Object transformation 1:

transform(tsrc 7→ (f, ti))
∈ BOpτ (X,Σ)
cttrg ∈ CTmin

A (Σ, v)

〚r transform(tsrc, f, ti, T
≤
DObj(∅, cttrg)\{cttrg})〛Aη = U

(A, η, f(oidToUse, ti))
t

; v, U = ∅

(A,∆, η, transform(tsrc 7→ (f, ti)))
op
; (A,∆, v)

(4) Object transformation 2:

transform(tsrc 7→ (f, ti))
∈ BOpτ (X,Σ)
ctsrc ∈ CTmin

A (Σ,VA〚tsrc〛η)
cttrg ∈ CTmin

A (Σ, v)

〚r transform(tsrc, f, ti, T
≤
DObj(∅, cttrg)\{cttrg})〛Aη = U

(A, η, f(oidToUse, ti))
t

; v, U 6= ∅

(A,∆, η, transform(tsrc 7→ (f, ti)))
op
; (A+ U,∆; 〈A, trans(ctsrc 7→ cttrg),A+ U〉, v)

(5) Object deletion 1:
delete(t) ∈ BOpBool(X,Σ) 〚r delete(t)〛Aη = U, U = ∅

(A,∆, η, delete(t))
op
; (A,∆, FalseA)

Object deletion 2:

delete(t) ∈ BOpBool(X,Σ)
ct ∈ CTmin

A (Σ,VA〚t〛η)
〚r delete(t)〛Aη = U, U 6= ∅

(A,∆, η, delete(t))
op
; (A+ U,∆; 〈A, del(ct),A+ U〉, TrueA)

The result state is determined by firing an appropriate ASM rule as defined in
Tab. 6.4. Notice the value of the parameter tsub in rules Object creation and Ob-
ject transformation. It equals the set of true subterms of ct/cttrg of type DObj or
below. Since ct and cttrg are minimal constructor terms, their subterms determine the
object-valued content for the object that is to be created. Since these terms have to be
generated anyway at this point, we could require minimal constructor terms as argu-
ments for the basic state changes (cf. Defn. 3.3.7, page 48) without causing additional
system overhead (thus, runtime costs). Continuative explanations on Defn. 6.2.8 can be
found in App. B.4, page 195.

Lemma 6.2.1 (Effect of basic operations is well-defined) The effect of basic op-
erations is well-defined, i.e., given a signature Σ := (T , <,P, C,F) such that Σ is suitable

95

96 Implementing Migration Processes

for evaluating basic operations, a set X of variables suitable for Σ, a Σ-algebra A, a
variable assignment η, a migration sequence ∆, and a basic operation op ∈ BOpτ (X,Σ),
there is exactly one A′, a migration sequence ∆′, and exactly one element v ∈ τA ∪ {⊥}
such that (A,∆, η, op) op

; (A′,∆′, v). 2

The proof can be found in App. C.1, page 217, and goes by straightforward induction
on the structure of op. Basic operations produce a unique migration sequence ∆′ only
if they fail (then ∆′ = ∆). Otherwise, the basic state change that is appended to ∆
contains a minimal constructor term, which is not uniquely determined syntactically. We
will prove shortly that the basic operations generate appropriate migration sequences on
the semantic level and adhere to the pre- and post-conditions of the basic state changes.
(cf. Defn. 3.3.7). This is prepared by the following lemma.

Lemma 6.2.2 (Basic operations yield consistent updates) Given a permissible ex-
tension Spec := (Σ, Sen) of the basic DA such that Σ is suitable for evaluating basic
operations, a set of variables X suitable for Σ, and a basic operation op ∈ BOpDObj(X,Σ).
Then op yields a consistent update, i.e., 〚op〛Aη is consistent for all Σ-states A ∈ A(Σ)
and all variable assignments η ∈ Env(X,A). 2

The proof can be found in App. C.1, page 217. It generates the resulting update
sets using the calculus in Tab. 6.2. According to the following theorem, the semantics
of basic operations produces valid state changes w.r.t. btr;.

Theorem 6.2.1 (Basic operations yield valid basic state changes) Given a per-
missible extension Spec := (Σ, Sen) of the basic DA such that Σ is suitable for evaluat-
ing basic operations. Then the basic state change operations generate valid basic state
changes, i.e.,

(1) (A,∆, η, create(f, ti))
op
; (A′,∆; 〈A, cre(ct),A′〉, v) implies (A, cre(ct)) btr; A′.

(2) (A,∆, η, transform(tsrc 7→ (f, ti)))
op
; (A′,∆; 〈A, trans(ctsrc 7→ cttrg),A′〉, v) im-

plies (A, trans(ctsrc 7→ cttrg))
btr
; A′.

(3) (A,∆, η, delete(t))
op
; (A′,∆; 〈A, del(ct),A′〉, v) implies (A, del(ct)) btr; A′.

2

The proof in App. C.1, page 218, is straightforward by showing validity of the required
pre- and post-conditions of Defn. 3.3.7. Also, it relies on validity of Lemma 6.2.2.

Due to Thm. 6.2.1 all system invariants of Lemma 3.3.5 hold. Notice that the cor-
respondence between basic operations and basic state changes can be proved only for
permissible extensions of the basic DA (cf. Defn. 3.3.6). Only the constructor property
(see Defn. 3.3.2, page 43) holding facilitates to trace object dependencies in dep using
subterms of the object that is to be created. This concludes the formal parts concern-
ing basic operations. In the next section we introduce migration algorithms and our
programming language.

6.3 Migration Algorithms

In the following, we will use the example function definitions of Fig. 6.1 on page 90
to explain different aspects of the introduced programming language. As an important

96

6.3 Migration Algorithms 97

feature, our language extends a given signature Σ. This results in smooth integration of
migration algorithms into specifications for digital archives; we can re-use Σ-models and
need not explicitly re-implement functions and predicates. For this purpose, our language
uses predicates of the signature as well as equality = as boolean-valued functions. The
first step, thus, is to translate these parts appropriately. This translation yields the
generated signature gen(Σ) for Σ.

Definition 6.3.1 (Generated signature) Given a permissible extension Spec(Σ,Sen)
of the basic DA where sp(Σ) := (T , <,P, C,F). Then the generated signature gen(Σ)
for Σ is defined by

sp(gen(Σ)) := (T , <, ∅, C,F ∪ {p : τi → Bool | p : τi ∈ P} ∪ {=: Top× Top→ Bool}).

and dp(gen(Σ)) = dp(Σ). Also, we extend Σ-algebras A to gen(Σ)-algebras gen(Σ,A)
by the following interpretations (denoting gen(Σ,A) by A′).

pA
′
(v1, ..., vn) :=


TrueA, v1 ∈ τA1 , ..., v1 ∈ τAn , (v1, ..., vn) ∈ pA
FalseA, v1 ∈ τA1 , ..., v1 ∈ τAn , (v1, .., vn) 6∈ p
⊥, otherwise

for pτi ∈ P

=A′ (v, v′) :=


TrueA, v, v′ ∈ TopA ∧ v = v′

FalseA, v, v′ ∈ TopA ∧ v 6= v′

⊥, otherwise

2

The generated signature always contains equality =: Top × Top → Bool and Σ-
predicates as Boolean-valued functions. This construction is well-defined because (1) Σ
contains types Bool and Top (Spec is a permissible extension of SpecDA) and (2) we
require function and predicate names to be disjoint (cf. Defn. 3.2.1).

Σ-algebras are extended to gen(Σ,A)-algebras by introducing strict interpretations
for the new Boolean-valued functions; equality = and predicates return ⊥ if one of the
arguments evaluates to ⊥. According to Defn. 3.2.3 we have to show that the new
functions respect overloading.

Lemma 6.3.1 (gen(Σ,A) is a well-defined algebra) Given a permissible extension
Spec(Σ,Sen) of the basic DA and an algebra A ∈ A(Σ). Then gen(Σ,A) is a well-defined
algebra according to Defn. 3.2.3. 2

The proof in App. C.4, page 222, exploits that predicates of Σ respect overload-
ing. This property is preserved when translation Σ,A to gen(Σ) and gen(Σ,A), re-
spectively. The value relation t

; for Σ-terms naturally extends to gen(Σ)-terms. Since
gen(Σ) contains a greatest type Top (Σ extends ΣDA), derived term values are unique
(cf. Lemma 3.2.3, page 37).

When developing complex migration algorithms, we are likely to declare new func-
tions (like migDirHTML and migHTMLDoc in Fig. 6.1) that are not included in ΣDA. They
are, however, typed over T . This is captured by the notion of function declarations that
are suitable for Σ.

97

98 Implementing Migration Processes

Definition 6.3.2 (Function declarations) Given a signature Σ := (T , <,P, C,F).
Then a set of function declarations Fdecl is suitable for Σ, iff Fdecl contains only non-
overloaded function symbols, all elements f : τi → τ ∈ Fdecl are typed over T , and all
function names in NFdecl

:= {f | f : τi → τ ∈ Fdecl} differ from all symbol names of Σ,
=, and cast, i.e., NFdecl

∩ (NF ∪NP ∪ {=, cast}) = ∅. 2

As explained before, this definition particularly requires fresh symbols in Fdecl that
are typed over T . Notice that we require these symbols to be distinct from the typecast
operator cast, which will be part of our expression syntax. Also, these function symbols
may not be overloaded. This keeps our semantics simple and expressiveness does not
suffer anyway.

In the following definition we introduce expressions and function definitions.

Definition 6.3.3 (Expressions, function definitions) Given a permissible extension
Spec(Σ,Sen) of the basic DA such that Σ is suitable for evaluating basic operations and
a set Fdecl of function declarations suitable for Σ. Then

(1) the set Eτ (X,Σ,Fdecl) of expressions of type τ over X, Σ, and Fdecl, and
(2) the set of free variables FV(e) for e ∈ E(X,Σ,Fdecl)
are defined as shown in the upper part of Tab. 6.6. Moreover,

(3) the set FDτ (X,Σ,Fdecl) of function definitions of type τ over Σ, Fdecl, and X

is defined as shown in the lower part of Tab. 6.6.
A set FD ⊆ FD(X,Σ,Fdecl) is suitable for Fdecl, iff there is exactly one defining ex-
pression f(x1, ..., xn) = e in FD for each f : τ1 × ... × τn → τ ∈ Fdecl such that
f(x1, ..., xn) = e ∈ FDτ (X,Σ,Fdecl). 2

Apart from terms over Σ ∪ (∅, ∅, ∅, ∅,Fdecl) the so-defined expressions include basic
operations as regular functions. We, however, permit basic operations over gen(Σ)-terms
only. This keeps our semantics simple as we can re-use

op
; (cf. Defn. 6.2.8, page 94).

Expressiveness does not suffer since variables are regular Σ-terms and, hence, values can
be assigned to them using arbitrary expressions that are encapsulated in let constructs.

The definitions of let expressions and if expressions are straightforward. Set com-
prehension is covered as well. In an expression {e′ | x← e, eB} , the term e′ computes
a member of the target set for a given x of the source set e if the Boolean term eB
evaluates to True for x. Finally, a typecast operator cast can be used for down-casts.
This is standard in regular programming languages with subtyping (cf. casts in JAVA).
At this point we do not further go into detail with expression syntax and well-typedness;
in App. B.4, page 193, we derive well-typedness of the example in Fig. 6.1.

Before we introduce the language semantics, we want to stress that the side-effects
introduced by basic operations are a source of non-determination.

Example 6.3.1 (Sources of non-determination)

Depending on the evaluation order for the parameters, the function f, which is defined
by

f(x, y) = f′(create(c, x), existDObj)
f′(x, y) = y,

98

6.3 Migration Algorithms 99

returns two different values of existDObj. Either it evaluates to the“current”existDObj
not containing the result of create(c, x), or it returns existDObj ∪ {create(c, x)}s.
Hence, non-determinism turns into ambiguity due to the side-effects of the basic op-
erations.
Also, consider the following example:

f(x, y, z) =
let result = f′(create(c, x), create(c, y), create(c, z))
in oid(snd(result)) = nextID(oid(fst(result)))

f′(x, y, z) = (x, z)

Again, f(x, y, z) returns True or False depending on the evaluation order of the three
object creation operations.

2

Table 6.6: Expressions and function definitions over Σ, X, Fdecl
Expression syntax Eτ (X,Σ,Fdecl):
(1) Σ-terms:

t ∈ Tτ (X, gen(Σ) ∪ (∅, ∅, ∅, ∅,Fdecl))
t ∈ Eτ (X,Σ,Fdecl)

(2) Basic operations:
op ∈ BOpτ (X, gen(Σ))
op ∈ Eτ (X,Σ,Fdecl)

(3) Let expressions:
e1 ∈ Eτ1(X,Σ,Fdecl)

...
en ∈ Eτn(X,Σ,Fdecl)
en+1 ∈ Eτ (X,Σ,Fdecl)

x1 : τ1 ∈ X
...

xn : τn ∈ X
let x1 = e1...xn = en in en+1 ∈ Eτ (X,Σ,Fdecl)

FV
(
let x1 = e1...
xn = en in en+1

)
=

FV(e1) ∪ FV(e2)\{x1} ∪ ...∪
FV(en+1)\{x1, ..., xn}

(4) If-then-else expressions:
e0 ∈ Eτ (X,Σ,Fdecl)
e1 ∈ Eτ (X,Σ,Fdecl) eB ∈ EBool(X,Σ,Fdecl)
if eB then e0 else e1 ∈ Eτ (X,Σ,Fdecl)

FV
(
if eB then e0
else e1

)
=

FV(eB) ∪ FV(e0) ∪ FV(e1)
(5) Set comprehension:

e ∈ ESet[τx](X,Σ,Fdecl)
x : τx ∈ X,
eB ∈ EBool(X,Σ,Fdecl)
e′ ∈ Tτ ′(X, gen(Σ) ∪ (∅, ∅, ∅, ∅,Fdecl))
{e′ | x← e, eB} ∈ ESet[τ ′](X,Σ,Fdecl)

FV({e′ | x← e, eB}) =
(FV(eB) ∪ FV(e′))\{x} ∪ FV(e)

(6) Typecast:
e ∈ Eτ ′(X,Σ,Fdecl) τ<τ ′

cast(e, τ) ∈ Eτ (X,Σ,Fdecl)
FV(cast(e, τ)) = FV(e)

(7) Subtyping:
e ∈ Eτ ′(X,Σ,Fdecl) τ ′<τ

e ∈ Eτ (X,Σ,Fdecl)
Function definition syntax:
(1) (X,Σ,Fdecl)-definitions:

x1 : τ1 ∈ X, ..., xn : τn ∈ X
e ∈ Eτ (X,Σ,Fdecl)

f : τ1 × ...× τn → τ ∈ Fdecl

FV(e) ⊆ {x1, ..., xn}
f(x1, ..., xn) = e ∈ FDτ (X,Σ,Fdecl)

99

100 Implementing Migration Processes

Hence, different evaluation strategies may result in truly different evaluation results. We
choose strict evaluation. As opposed to non-strict evaluation, this strategy evaluates all
sub-terms first and then uses their results to evaluate the overall term. Strict evaluation
applied to f(t, t′) would, thus, return existDObj ∪ {create(c, t)}s. In contrast, non-
strict evaluation would return existDObj. This shows that non-strict evaluation might
“swallow” operations that have an effect. We argue that this is counter-intuitive. Also,
strict evaluation is in line with some relevant literature dealing with reasoning about
functional programs with effects [Tal98].

The second example shows that simply evaluating all parameters first in insufficient
as well. Although no side-effect can go lost, different evaluation orders result in different
values of the function call. Hence, we also fix the evaluation order in the semantics.

Definition 6.3.4 (Language semantics) Given a specification Spec := (Σ, Sen) that
is a permissible extension of the basic DA such that Σ is suitable for evaluating ba-
sic operations, a type τ ∈ T , a set Fdecl of function declarations suitable for Σ, a
set FDτ (X,Σ,Fdecl) of function definitions suitable for Fdecl, and an expression e ∈
Eτ (X,Σ,Fdecl). Then the expression semantics for e is defined as shown in Tab. 6.7. 2

Since basic operations introduce side-effects, the language semantics carries a current
state. Also, we want to facilitate object tracing. Therefore, the language semantics
includes a migration sequence that contains exactly those basic state changes that have
been generated in the course of the algorithm execution so far. Both, the current state
and the current migration sequence can be changed by basic operations only. Respective
expressions are evaluated using the

op
; operator. Expressions of other types cannot

themselves cause state changes. They can be understood as means for computing the
parameters for the basic operations.

gen(Σ)-terms contain no function call for any of the functions in Fdecl and, hence,
can be evaluated using t

; in rule Σ-terms 1. In contrast, the rule Σ-terms 2 covers
terms including a function call for f ∈ Fdecl in their top-most position. In this case,
the body of f (according to FD) is evaluated. This is well-defined only because there
is a function definition in FD for all functions of Fdecl — FD is suitable for Fdecl. The
rule Σ-terms 3 covers terms that contain a function call of Fdecl somewhere else than
in their top-most position. We fix the evaluation order of the parameter terms in this
case from left to right.

The semantics for let expressions and if expressions is straightforward. Again, we
have to take care of side-effects in let expressions. For all i, ei is evaluated in the result
state that arises from evaluating ei−1.

The typecast operator returns ⊥ if the derived value v is not in the type domain τA.
We do not support explicit exception handling in order to keep our semantics simple.

Set comprehension is syntactic sugar; the semantics completely relies on appropriate
let and if expressions. Hence, we need not consider it explicitly when proving properties
of the functional language later on. The set comprehension semantics first evaluates e.
This expression represents the set that is to be traversed. Notice that we evaluate e
only once and store the result in y. That way, possible side-effects occur at most once.
If e yields the empty set, the whole set comprehension expression yields {}. Otherwise,
a representative of y is chosen (rep(y)). If the Boolean expression eB evaluates to

100

6.3 Migration Algorithms 101

Table 6.7: Expression semantics for E(X,Σ,Fdecl) and FD ⊆ FD(X,Σ,Fdecl)
(1) Σ-terms 1:

t ∈ Tτ (X, gen(Σ))(A, η, t) t
; v

(A,∆, η, t) mig
; (A,∆, v)

Σ-terms 2:
f(t1, ..., tn) ∈ Tτ (X, gen(Σ) ∪ (∅, ∅, ∅, ∅,Fdecl))
fτi→τ ∈ Fdecl, f(x1, ..., xn) = e ∈ FD
∀i ∈ {1, ..., n} • (Ai,∆i, η, ti)

mig
; (Ai+1,∆i+1, vi)

(An+1,∆n+1, η[x1 7→ v1]...[xn 7→ vn], e)
mig
; (A′,∆′, v)

(A1,∆1, η, f(t1, ..., tn))
mig
; (A′,∆′, v)

Σ-terms 3:
f(t1, ..., tn) ∈ Tτ (X, gen(Σ) ∪ (∅, ∅, ∅, ∅,Fdecl))\Tτ (X, gen(Σ))
fτi→τ ∈ Fgen(Σ)

∀i ∈ {1, ..., n} • (Ai,∆i, η, ti)
mig
; (Ai+1,∆i+1, vi), f

A⊥n+1
τi→τ (v1, ..., vn) = v

(A1,∆1, η, f(t1, ..., tn))
mig
; (An+1,∆n+1, v)

(2) Basic operations:
op ∈ BOpτ (X, gen(Σ)) (A,∆, η, op) op

; (A′,∆′, v)

(A,∆, η, op) mig
; (A′,∆′, v)

(3) Let expressions:

let x1 = e1...xn = en in en+1 ∈ Eτ (X,Σ,Fdecl), (A,∆, η, e1)
mig
; (A2,∆2, v1)

∀i ∈ {2, ..., n+ 1} • (A2,∆i, η[x1 7→ v1]...[xi−1 7→ vi−1], ei)
mig
; (Ai+1,∆i+1, vi)

(A,∆, η, let x1 = e1...xn = en in en+1)
mig
; (An+2,∆n+2, vn+1)

(4) If-then-else expressions:
if eB then e0 else e1 ∈ Eτ (X,Σ,Fdecl)

(A,∆, η, eB)
mig
; (A2,∆2, TrueA), (A2,∆2, η, e0)

mig
; (A′,∆′, v)

(A,∆, η, if eB then e0 else e1)
mig
; (A′,∆′, v)

if eB then e0 else e1 ∈ Eτ (X,Σ,Fdecl)

(A,∆, η, eB)
mig
; (A′,∆′, FalseA), (A2,∆2, η, e1)

mig
; (A′,∆′, v)

(A,∆, η, if eB then e0 else e1)
mig
; (A′,∆′, v)

if eB then e0 else e1 ∈ Eτ (X,Σ,Fdecl) (A,∆, η, eB)
mig
; (A′,∆′,⊥)

(A,∆, η, if eB then e0 else e1)
mig
; (A,∆,⊥)

(5) Set comprehension:
{e′ | x← e, eB} ∈ Eτ (X,Σ,Fdecl), y 6∈ FV(e) ∪ FV(e′) ∪ FV(eB)
(A,∆, η,let y = e

in if y = {} then {}
else let x = rep(y) in if eB then {e′}s ∪ {e′ | x← y\{x}s, eB}

else {e′ | x← y\{x}s, eB})
mig
; (A′,∆′, v′)

(A,∆, η, {e′ | x← e, eB})
mig
; (A′,∆′, v′)

(6) Typecast:
cast(e, τ) ∈ Eτ (X,Σ,Fdecl)

(A,∆, η, e) mig
; (A′,∆′, v)

v ∈ τA′

(A,∆, η, cast(e, τ))
mig
; (A′,∆′, v)

cast(e, τ) ∈ Eτ (X,Σ,Fdecl)

(A,∆, η, e) mig
; (A′,∆′, v)

v 6∈ τA′

(A,∆, η, cast(e, τ))
mig
; (A′,∆′,⊥)

101

102 Implementing Migration Processes

True for this representative, the set comprehension expression is called recursively for
the remaining set. The result of this recursive call together with {e′}s then form the
overall result. If, however, eB evaluates to False for the representative, the result of the
recursive call is returned. Notice that using a fresh variable y is mandatory as, otherwise,
let y = e might unintentionally bind a variable y that occurs free in e′, e. An example
is shown in App. B.4, page 195.

The next theorem states that the language semantics is well-defined and, hence,
indeed derives a unique value for each expression.

Theorem 6.3.1 (Language semantics is well-defined) The language semantics is
well-defined, i.e., given an expression e ∈ Eτ (X,Σ,Fdecl), an algebra A, a variable
assignment η, a migration sequence ∆ over Σ, and a set FD ⊆ FD(X,Σ,Fdecl) of
suitable function definitions for Fdecl, there are exactly one algebra A′, one value v ∈
τA

′ ∪ {⊥}, and a ∆′ such that (A,∆, η, e)) mig; (A′,∆′, v). 2

The proof can be found in App. C.4, page 222. It goes by straightforward induction
on the structure of e and relies on well-definedness of t

; and
op
;.

Now, we are ready to define migration algorithms.

Definition 6.3.5 (Migration algorithms) Given a permissible extension Spec(Σ,Sen)
of the basic DA, such that Σ is suitable for evaluating basic operations, a set X of vari-
ables suitable for Σ, and a set of function declarations Fdecl suitable for Σ. Then a
migration algorithm Alg(X,Σ,Fdecl) := (FD, fmain) over X, Σ and Fdecl consists of a
set FD ⊆ FD(X,Σ,Fdecl) of function definitions suitable for Fdecl and a main function
fmain ∈ Fdecl. The set of all migration algorithms over X, Σ, and Fdecl is denoted by
Alg(X,Σ,Fdecl). 2

Using an explicit function fmain we can collect all necessary functions as a unit
(algorithm). Application of an algorithm to parameters then yields the application of
the main function to these parameters. A sample algorithm is provided in App. B.4, page
195; there we also derive well-formedness and parts of the semantics of the algorithm.

6.4 Summary

Since formal state changes as introduced in Sect. 3.3.2 lack practical usability we have
introduced concrete implementations based of Abstract State Machines. The resulting
operations

• create(ti) (object creation),
• delete(t) (object deletion), and
• transform(t 7→ (f, ti)) (object transformation).

can be used as regular functions. The semantics translates function application to cor-
responding formal state changes.

These three operations have been integrated into a functional language that particu-
larly supports set comprehension. Syntax and semantics of this programming language
have been defined formally. As basic state change operations are included, the semantics

102

6.4 Summary 103

of function application yields three outputs: a resulting system state, a concrete value,
and a migration sequence containing the state change history induced by the underlying
function call.

We now have an expressive language available for programming migration algorithms.
The semantics has been proved to be sound; generated migration sequences indeed cor-
respond to those state changes that have been made when executing a function call.
Also, the generated state change history allows for a straightforward tracing of object
histories; formal preservation constraints can directly be checked if transformations are
implemented using this programming language.

103

Chapter 7

Incorporating Graph-Based
Queries

Preserving link structures can be important; the meaning of a website can — to a
large extent — be determined by its browsing structure. Although automated and
“trustworthy” preservation of link consistency is easy to postulate, it is hard to carry out,
in particular, if “trustworthy” means “provably working correct”. In general, references
must conform to standardized languages like XPath or XQuery ([Wor03, Wor07b]); in
our example, we require well-formed URIs w.r.t. [Int98]. Also, queries can appear as
part of a document’s content. Query semantics is determined w.r.t. graph structures,
which have to be extracted from ADT specifications in our approach. As applications
are manifold in our domain and graph-based queries are hard to express using FOPL
formulas, we introduce a general method to semantically evaluating and constructing
graph queries in our setting. The road map is as follows:

• In Sect. 7.1 we show how we integrate syntactic well-formedness and graph query
semantics into our approach using the running example.

• Context-free grammars describe query syntax in our system. There, selected non-
terminals are used to connect syntax and semantics. For this purpose, we introduce
two operations called separation and reduction in Sect. 7.2.

• Query semantics is dealt with in Sect. 7.3. We introduce a specification scheme for
graph-based query structures. There, digital objects are vertices and yield query
semantics. Edges are labeled appropriately for being connected to corresponding
non-terminals of the underlying context-free grammar.

• In Sect. 7.4 we combine syntax and semantics. So-called dominated product au-
tomata are introduced. They are constructed fully automatically and allow for
evaluating and constructing graph queries that are both syntactically well-formed
and semantically correct. Our method scales to a broad class of graph queries
and comes with an acceptable runtime cost; we claim that this is valuable for our
application domain.

• We close in Sect. 7.5 with a summary.

Our approach is adapted to standard techniques used in other related contexts like
model checking [MOSS99], or XML-based query evaluation [Nev02, Chi00]. Therefore,

104

7.1 Informal Overview 105

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Query Semantics

absoluteURI = 'http :' net_path
net_path = '//' IPv4Address | '//' IPv4Address abs_path
abs_path = '/' path_segments
IPv4Address = digits '.' digits '.' digits '.' digits
digts = digit | digit digits
path_segments = segment | segment '/' path_segments
segment = pchar | pchar segment
pchar = 'a' | ... | 'z' |

'A' | ... | 'Z' |
'_' | '.' | digit

digit = '0' | ... | '9'

Well-formed absolute URIs

<html>
<head>
<title>Calculation</title>

</head>
<body>
<a href=
http://137.193.60.82/source/
overview/doclist.html">
documents

</body>
</html>

Content of start.html

Figure 7.1: Example link and subset of absolute URIs as per RFC 2396

we will omit details at some points. As this chapter will be important for our case study,
we mostly exemplify the formal definitions using our running example; we do not shift
examples to the appendix as has been done in previous chapters.

7.1 Informal Overview

In Fig. 2.2 on page 17 we have depicted the example website “Calculation” and a permis-
sible transformation result. Since the transformation result must conform to the BWeb
format, the directory structure changes.

In order to integrate automated link evaluation, we have to answer the following
questions: (1) How do links occur in our model? (2) How are they constrained syntacti-
cally? (3) How are they evaluated semantically? Fig. 7.1 visualizes the answers to these
three questions using an example link.

In the middle part, we have listed the content of “start.html”. It contains an absolute
link to “doclist.html”. In the left-hand part we have highlighted the link semantics.
The link follows a path through the example directory structure. Both, the content
of “start.html” and the directory structure that is queried by this link, are part of our
website model. They are hosted by our DA as digital objects.

In the right-hand part of Fig. 7.1, we list a reduced version of the URI-reference
grammar ([Int98]). It describes syntactic well-formedness of absolute URIs and, hence,
carries no semantics in itself. For brevity, absolute URLs support the HTTP protocol
and IPv4-addresses only.

Generally speaking, we want to evaluate graph queries that occur as part of the
content of digital objects. This is challenging as our query language (FOPL) does not
include graph queries directly. Therefore, we aim at combining these two worlds —
DAs with formally specified data types and functionality on the one hand, and syntactic
well-formedness specified by context-free grammars on the other hand. With the sample
link in “start.html” we can observe some properties. First, / is purely syntactic mate-
rial for separating the IP address 137.193.060.082 and the path segments source and
doclist.html. Moreover, the IP address and the path segments are already part of our
model for servers and directories, respectively. The IP address of a Server object can be
obtained by the addr-attribute. Also, directory and document names are stored by the
name attribute. This indicates that the non-terminals IPv4Address and segment carry
semantics related to our model. Therefore, we have highlighted them bold in Fig. 7.1.

105

106 Incorporating Graph-Based Queries

occurrence of <IPv4Address> occurrence of <segment>

Figure 7.2: Example automaton for absolute URIs and a directory structure

The key idea of our approach is to separate concerns. First, we specify query struc-
tures (similar to the one in the left-hand part of Fig. 7.1) using an appropriate graph
specification scheme, which is translated to FOPL formulas. There, digital objects are
vertices and constitute query semantics. Edges labels carry words that can be assigned
to non-terminals of the underlying grammar.

Second, we translate well-formedness rules to appropriate Finite State Automata
(FSA, [HMU06]). This translation is standard. Using automata we, however, do not
need to incorporate parsers explicitly. In this context parse trees are unnecessary anyway.

Third, we combine both. There, the “semantic” non-terminal symbols are connecting
points. The resulting automaton basically evaluates both structures in parallel. The
benefits are twofold: (1) We have a procedure for checking well-formedness of graph
queries and generating well-formed graph queries. (2) We have a mechanism for eval-
uating the semantics of graph queries and for constructing queries that have a desired
semantics. There, semantics is determined by components that are hosted by a DA.
Here, this comprises directories and files. An example is shown in Fig. 7.2.

The left-hand part directly corresponds to the query structure of Fig. 7.1 (left-hand
side). Vertices are labeled with the server IP and directory/file name, respectively, of
those entities they represent. Edge labels carry IP addresses and file or directory names.
In particular, the server with IP address 137.193.060.082 has been used for the running
example. It is connected to its source directory “htdocs” (standard source directory for
Apache Web Servers) via an edge labeled with its IP address. Navigation in the directory
structure is possible from directories to directories (bidirectional) and from directories
to files. The special string “..“ is used for backwards navigation between directories (cf.
[Int98]).

In the right-hand part we show an FSA that recognizes absolute URIs. The starting
state is marked by a triangle. Final states are marked by double circles. We use two
different types of transitions. Those labeled http :, //, and / fire on recognition of
the respective symbol. The other transitions (〈IPv4Address〉, 〈segment〉) represent the
corresponding non-terminals of the URI reference grammar (marked bold in the right-
hand part of Fig. 7.1). In order to demonstrate the correlation between these hierarchical
transitions and the edges of the query graph, we have marked the corresponding edges by
differently colored stars. The edge label “137.193.060.082“ is a well-formed IP address

106

7.2 Query Syntax — Integrating Regular Languages 107

that can be produced by the non-terminal IPv4Address of the URI reference grammar.
Also, the other edge labels of the query graph are well-formed path segments, which are
produced by the non-terminal segment.

When evaluating links, we run through both structures in parallel; underlying tech-
niques are related to product automata. The link

http : //137.193.060.082/source/overview/doclist.html,

e.g., starts at state q0 of the URI automaton. The initial semantics (also semantic object)
is set to the server object in the query structure (vertex labeled with “137.193.060.082”).
Next, the URI automaton recognizes http : and proceeds from state q0 to state q1.
Query semantics remains unchanged; there is no corresponding edge in the respective
graph structure. Similarly, the URI automaton switches to q2 in the next step as it
recognizes //. The query semantics still yields the server object. Next, 137.193.060.082
is recognized. Since this word can be produced by IPv4Address, the URI automaton
switches to state q3. Also, the query semantics changes to “htdocs”; there is an edge
labeled “137.193.060.082” to the vertex representing this directory. So far we have recog-
nized the string http : //137.193.060.082. This is already a valid URI (q3 is a final state
in the URI automaton). The semantics of this URI is the directory “htdocs”. Evaluation
proceeds accordingly until the whole link has been processed. The final semantic object
yields “doclist.html”, which is indeed the intended link target.

The overall procedure is general enough for being applied to other query languages
like selectors in Cascading Style Sheets (CSS, [Wor07a]) or XPath ([Wor03]) as well.
The underlying theories are well-studied and particularly allow for proofs w.r.t. syntactic
and semantic link correctness. This meets our claim for high trustworthiness and entails
acceptable runtime costs (see case study in Chap. 8). We argue that this is beneficial
and justifies the effort. Particularly, when processing large object collections checking
this kind of property cannot be done by hand.

In the following sections we provide details. We start with query syntax, proceed
with query semantics, and finally integrate both.

7.2 Query Syntax — Integrating Regular Languages

In official specifications or standards, syntactic well-formedness rules are often given by
grammars (as indicated by the URI-reference grammar). Compared to other description
methods (like Finite State Automata) grammars tend to be more human-readable. The
names of non-terminals like IPv4Address indicate what is “meant”; we take grammars
as starting point and show how to apply them in our context.

We denote context-free grammars by G := (N,Ω, P, S), where, N denotes non-
terminals, Ω denotes terminals, and P and S denote the set of productions and the
start symbol, respectively. In order to avoid confusions, we use Ω instead of Σ or T
(which are most widely used in the literature); the latter denote signatures and terms
already. Since alphabets of FSA will also be denoted by Ω later on, this even emphasizes
the connections.

We denote productions by A → aBc, where we exclude ε productions (ε denotes
empty symbol sequences). By convention, italics like A,B denote non-terminals. Termi-

107

108 Incorporating Graph-Based Queries

nals are denoted like a, c. Greek letters α, β, γ denote elements of (Ω ∪N)∗. Derivation

in G is denoted by G⇒ (one-step) and
G
⇒∗ (iterated), respectively, and L(G) denotes the

language generated by G.
Since we aim at translating grammars into corresponding FSA, we restrict ourselves

to those grammars that can equivalently be represented by a right-linear (equivalently:
left-linear) grammar; they produce exactly those languages that can be recognized by
FSA [HMU06]. Right-linear grammars may contain productions of the form A → aB
or A → a only. Notice that the core of today’s standard query languages like XPath,
XQuery ([Wor07b]), or CSS is regular. This is already indicated by the fact that they
query graph paths. Paths are defined sequentially. This can be reflected by productions
that work sequentially (from left to right or from right to left).

Now, we switch to those non-terminals that we consider to “carry semantics”. The
basic idea is to separate them from the original grammar. After that we construct a
hierarchical FSA that exactly recognizes the language that is produced by the original
grammar. It has two different types of transitions as shown in the right-hand part of
Fig. 7.2. The top-level automaton carries the state transitions related to the purely
syntactic material of the URI references (like http :, /). The hierarchical transitions
carry those automata that are generated for the “semantic” non-terminals. Details follow
in Sect. 7.4.

Definition 7.2.1 (Non-terminal reachability) Given a grammar G := (N,Ω, P, S).
Then non-terminal reachability reachG ⊆ N ×N in G is defined by

reachG := {(A,B) | ∃α, β • A→ αBβ ∈ P}∗

Moreover, reachG(A) := {B | (A,B) ∈ reachG}. 2

Given a non-terminal A, reachG assigns all non-terminals to A that can be reached
from A by a sequence of productions in P ; ∗ denotes the reflexive-transitive closure.

Using reach, decomposition of grammars is defined as follows.

Definition 7.2.2 (Reduction and separation) Given a grammar G := (N,Ω, P, S)
and a non-terminal A ∈ N . Then the reduction red(A,G) of G to A is defined by
red(A,G) := (reachG(A),

Ω,
{X → α | X → α ∈ P,X ∈ reachG(A)},
A).

The separation sep(A,G) of A from G is defined if A 6= S. In this case, it yields
sep(A,G) := (N\{A},

Ω ∪ {A},
P\{A→ α | A→ α ∈ P},
S)

2

Reduction and separation decompose a grammar. The reduction of G to A defines
the “sub-grammar” of G with start symbol A. In particular, the language of red(A,G)
contains all words that can be produced from A in G. When separating G and A, we
shift A to the terminals and remove all productions for A. It is easy to see that both
constructions yield well-defined grammars. In particular, S ∈ N and N ∩ Ω = ∅ hold.

108

7.2 Query Syntax — Integrating Regular Languages 109

Example 7.2.1 (Reduction and separation)
Denote the grammar in Fig. 7.1 by GaURI , red(IPv4Address,GaURI) consists of:
N := { IPv4Address, digits, digit}
Ω := { , ., a, ..., z, A, ..., Z, 0, ..., 9, http :, //, /}
P := { IPv4Address→ digits . digits . digits . digits

digits → digit | digit digits
digit → 0 | ... | 9 }

S := IPv4Address
The new grammar accepts IP addresses.
sep(IPv4Address,GaURI) consists of:
N := { absoluteURI, net path, abs path,

digits, path segments, segment, pchar, digit}
Ω := { IPv4Address, , ., a, ..., z, A, ..., Z, 0, ..., 9, http :, //, /}
P := { absoluteURI → http : net path

net path → // IPv4Address | // IPv4Address abs path
abs path → / path segments
digits → digit | digit digits
path segments→ segment | segment / path segments
segment → pchar | pchar segment
pchar → | . | a | ... | z | A | ... | Z | digit
digit → 0 | ... | 9 }

S := absoluteURI

The former non-terminal IPv4Address has been shifted to Ω. Also, the production
IPv4Address→ digits... has been removed according to Defn. 7.2.2.

2

Notice that reduction preserves right-linearity. Separation does not preserve right-
linearity directly. However, the result can easily be transformed to an equivalent right-
linear grammar. The non-terminal A in question always occurs at the right-most position
in a production B → αA, where α ∈ Ω. As A has been shifted to the non-terminals, the
new production can be turned into a right-linear one by introducing a new non-terminal
X, replacing B → αA by B → αX, and adding X → A.

The following composition operation is inverse to sep and red.

Definition 7.2.3 (Grammar composition) Given two grammars G := (N,Ω, P, S)
and G′ := (N ′,Ω′, P ′, S′). Then G and G′ are composable, iff Ω∩N ′ = {S′}, Ω′∩N = ∅,
and for all A ∈ N ∩N ′ it is true that

{X → αY β | X → αY β ∈ P ′, α, β ∈ (N ′ ∪ Ω′)∗, X = A ∨ Y = A} =
{X → αY β | X → αY β ∈ P, α, β ∈ (N ∪ Ω)∗, X = A ∨ Y = A}.

The composition G;G′ of G and G′ is defined as follows:
G;G′ := (N ∪N ′,

(Ω ∪ Ω′)\{S′},
P ∪ P ′,
S).

2

The productions of G and G′ must be equal for shared non-terminals. In our exam-
ple both, red(IPv4Address,GaURI) and sep(IPv4Address,GaURI), contain digit and

109

110 Incorporating Graph-Based Queries

digits. Since they equally contain all related productions as well, both grammars are
composable.

Since the start symbol S′ of G′ occurs in Ω, the production sets P and P ′ can simply
be joined. Both production sets are valid productions for G;G′. According to the next
lemma, separating G and A and composing them again yields a grammar that generates
exactly the same language as G.

Lemma 7.2.1 (Composition inverse to decomposition) Given a grammar G :=
(N,Ω, P, S) and a non-terminal A ∈ N such that separation of A and G is defined
(recall: A 6= S). Then L(sep(A,G); red(A,G)) = L(G). 2

The proof can be found in App. C.5, page 223. Separating non-terminals from the
original grammar will be particularly important when combining syntax and semantics.

Notice that Lemma 7.2.1 holds for repeated decomposition as well. As an example,

L(G) = L(sep(A, sep(B,G)); red(B,G); red(B,G)).

This situation frequently occurs. In our example, IPv4Address and segment are af-
fected. We conclude this section by listing the productions of

sep(segment, sep(IPv4Address,GaURI))

in order to demonstrate the achievement:

absoluteURI → http : net path
net path → // IPv4Address | // IPv4Address abs path
abs path → / path segments
path segments → segment | segment / path segments

First, it is easy to see that this grammar has an equivalent right-linear grammar. Hence,
it can be translated into a corresponding FSA. This automaton is equivalent to the one
shown in the right-hand part of Fig. 7.2. Moreover, we have reduced GaURI such that
it merely produces syntactic material like the separators // and /. Those non-terminals
that carry semantics and are connected to the graph structure on the left-hand side of
Fig. 7.2 (IPv4address and segment) are handled as regular terminal symbols. They
serve as connecting points to the respective grammars that have been “sourced out”.
This will be important when constructing dominated product automata in Sect. 7.4.

7.3 Query Semantics — Specifying Graph Structures

The running example shows that query semantics is closely related to the content of DAs
in our setting. Links, e.g., point to digital objects that are organized into hierarchical
directory structures. Hence, we specify how the related graph structures can be extracted
from the formal datatypes and functionalities that are part of a DA.

The query graph in the left-hand part of Fig. 7.2 indicates that we use labeled,
directed graphs. Yet, we explicitly store permissible starting points for queries and
permissible query results; html links, e.g., may lead to directories and files only.

110

7.3 Query Semantics — Specifying Graph Structures 111

Definition of vertex set V w.r.t. variables xi

No. Variable Condition for Condition for Condition for
xi ∈ V xi ∈ V I xi ∈ V F

1 x1 : τ1 φ1
V (x1) φ1

V I (x1) φ1
V F (x1)

...
n xn : τn φn

V (xn) φn
V I (xn) φn

V F (xn)
Definition of edge set E w.r.t. variables xs

i , li, x
t
i

No. Variables Label term Condition for —
over (xs

i , x
t
i) (xs

i , li, x
t
i) ∈ E —

1 xs
1 : τ s

1 , l1 : τ l
1, x

t
1 : τ t

1 t1L(xs
1, x

t
1) φ1

E(xs
1, l1, x

t
1) —

... —
m xs

m : τ s
m, lm : τ l

m, x
t
m : τ t

m tmL (xs
m, x

t
m) φm

E (xs
m, lm, x

t
m) —

Figure 7.3: Specification scheme for graph-based query structures

In the following we will describe query structures formally by means of the specifi-
cation scheme depicted in Fig. 7.3. Vertices in the resulting structures represent query
semantics. First, we specify those objects that belong to the vertex set. These ob-
jects have to satisfy one of the imposed semantic conditions φ1

V , ..., φ
n
V . There, we use

variables xi : τi as place holders; they are universally-quantified implicitly.
Similarly, t1L(xs1, x

t
1), ..., tmL (xsm, x

t
m) and φ1

E(xs1, l1, x
t
1), ..., φmE (xsm, lm, x

t
m) specify dif-

ferent variants of edges that can occur in the query graph. We use label terms tiL(xsi , x
t
i)

that return a set of permissible labels. That way graph structures can be generated
efficiently; only labels occurring in these sets are permitted. The formal semantics of the
above scheme is introduced in the following definition.

Definition 7.3.1 (Graph specification scheme, resulting graph) Given a specifi-
cation Spec := (Σ, Sen), Σ := (T , <,P, C,F), that is a permissible extension of the basic
DA, a label type String ∈ T , a set X of variables suitable for Σ, and a Σ-algebra A. A
graph specification SG := (SVG , S

E
G) over Σ consists of

• a set of vertex specifications

SVG := {(x1 : τ1, φ1
V , φ

1
V I , φ

1
V F), ..., (xn : τn, φnV , φ

n
V I , φ

n
V F)},

where for all 1 ≤ i ≤ n it is true that

(1) xi : τi ∈ X,
(2) τi<DObj, and
(3) FV(φiV) ∪ FV(φi

V I) ∪ FV(φi
V F) ⊆ {xi : τi},

• a set of edge specifications

SVG := {(xs1 : τ s1 , l1 : τ l1, x
t
1 : τ t1, t

1
L, φ

1
E), ..., (xsm : τ sm, lm : τ lm, x

t
m : τ tm, t

m
L , φ

m
E)},

where for all 1 ≤ i ≤ m it is true that

(1) xsi : τ si , x
t
i : τ ti , li : τ li ∈ X,

(2) τ si , τ
t
i<DObj and τ li<String,

(3) tiL : Set[τ li],

111

112 Incorporating Graph-Based Queries

(4) FV(tiL) ⊆ {xsi : τ si , x
t
i : τ ti }, and

(5) FV(φiE) ⊆ {xsi : τ si , li : τ li , x
t
i : τ ti }.

The graph-based query structure G(SG ,A) := (V,E, V I , V F) resulting from SG in A is
determined by the following components:

V := {v | (x : τ, φV , φV I , φV F) ∈ SVG ,
v ∈ τA,A |= φV [{x 7→ v}]}

E := {(vs,VA〚tl〛, vt) | (xs : τ s, l : τ l, xt : τ t, tL, φE) ∈ SEG ,
vs ∈ (τ s)A, vt ∈ (τ t)A, tl ∈ GTτ l(Σ),
A |= tl ∈ tL ∧ φE [{xs 7→ vs, xt 7→ vt, l 7→ VA〚tl〛}]}

V I := {v | (x : τ, φV , φV I , φV F) ∈ SVG ,
v ∈ τA,A |= φV ∧ φV I [{x 7→ v}]}

V F := {v | (x : τ, φV , φV I , φV F) ∈ SVG ,
v ∈ τA,A |= φV ∧ φV F [{x 7→ v}]}

L := StringA.

2

As usual, V , E, and L denote the vertex set, edge set, and labels of the resulting
graph; V I and V F denote permissible initial and final vertices as explained before. Also,
we require Σ to contain a label type String. In general this type can be arbitrary.
Calling it String however, we already suggest that we use strings later on.

Formal graph specifications directly realize the scheme in Fig. 7.3. Vertex and edge
specifications are provided by tuples starting with the respective variable(s). In SVG ,
e.g., all tuples include a variable x : τ in the first position. According to the constraints
imposed in the definition above, all formulas occurring in this tuple may include no other
free variables than x. This is similar with edge specifications in SEG . The semantics of
graph specifications is given by a graph-based query structure that carries objects as
states.

Graph-based query structures can easily be translated into equivalent FSA. Notice
that we particularly support multi-graphs, i.e., such containing differently labeled edges.
In the context of XML and XPath queries, e.g., direct sub-nodes of a given XML node
n may be addressed by the child-predicate or by their node names.

Example 7.3.1 (Graph specification for the running example)
In Fig. 7.4 we show the full specification for the query graph in Fig. 7.2. The top-
most line of the vertex specification SV

G (aURI) introduces a variable x1 : Server
followed by a True entry. It states that all objects of type Server are members of the
resulting vertex set V . Moreover, all servers are starting points for query evaluation
(next True entry), but never query results (False-entry). Analogously, the other two
lines introduce directories and documents as permissible vertices. Yet queries cannot
start there. In fact, objects of type Dir or Doc yield query semantics (last True
entry of each line). Putting all together, the components V, V I , V F of the resulting
graph-based query structure yield
V := ServerA ∪ DirA ∪ DocA
V I := ServerA

V F := DirA ∪ DocA
Fig. 7.2 indicates that we have four different variants of edges, namely those between
a server and a directory, between a directory and a file, and two variants between two

112

7.3 Query Semantics — Specifying Graph Structures 113

Definition of vertex set V w.r.t. variables xi

No. Variable Condition for Condition for Condition for
xi ∈ V xi ∈ V I xi ∈ V F

1 x1 : Server True True False
2 x2 : Dir True False True
3 x3 : Doc True False True

Definition of edge set E w.r.t. variables xs
i , li, x

t
i

No. Variables Label term Condition for
over (xs

i , x
t
i) (xs

i , li, x
t
i) ∈ E

1 xs
1 : Server, l1 : String, xt

1 : Dir {addr(xs
1)}s xt

1 = srcDir(xs
1)

2 xs
2 : Dir, l2 : String, xt

2 : Dir {name(xt
2)}s xt

2 ∈ subDirs(xs
2)

3 xs
3 : Dir, l3 : String, xt

3 : Dir {“..“}s xs
3 ∈ subDirs(xt

3)
4 xs

4 : Dir, l4 : String, xt
4 : Doc {name(xt

4)}s xt
4 ∈ subDocs(xs

4)

Figure 7.4: Specification SG(aURI) of the query structure for absolute URIs

directories (downwards and upwards navigation). The edge specifications in Fig. 7.4
are a one-to-one realization thereof. In the first line we introduce variables of type
Server, Dir and String. The corresponding label term states that edges of this
type may carry the addr-attribute of their source object only. The last condition
assures that edges of this type are set only, if the edge’s target is the source directory
belonging to the server object that is the edge’s source. In that case, the edge label
is automatically set to the server’s IP (no further conditions on the label are given).
Analogously, lines two to four specify downwards/upwards navigation in directory
structures.
The edge set E of the resulting graph-based query structure is determined by
E := {(VA〚ts〛,VA〚tl〛,VA〚tt〛)

| ts ∈ GTServer(Σ), tl ∈ GTString(Σ), tt ∈ GTDir(Σ),
A |= tl ∈ {addr(ts)}s ∧ tt = srcDir(ts)}∪

{(VA〚ts〛,VA〚tl〛,VA〚tt〛)
| ts ∈ GTDir(Σ), tl ∈ GTString(Σ), tt ∈ GTDir(Σ),
A |= tl ∈ {name(tt)}s ∧ tt ∈ subDirs(ts)}∪

{(VA〚ts〛,VA〚tl〛,VA〚tt〛)
| ts ∈ GTDir(Σ), tl ∈ GTString(Σ), tt ∈ GTDir(Σ),
A |= tl ∈ {“..“)}s ∧ ts ∈ subDirs(tt)}∪

{(VA〚ts〛,VA〚tl〛,VA〚tt〛)
| ts ∈ GTDir(Σ), tl ∈ GTString(Σ), tt ∈ GTDoc(Σ),
A |= tl ∈ {name(tt)}s ∧ tt ∈ subDocs(tt)}.

The order of the disjunction terms directly corresponds to the order of the specification
lines in Fig. 7.4.

2

Notice that these specifications have to be set up only once and scale to all system
states. In the course of system evolution, the resulting graphs grow as well. The formal
underpinning of these schemes allows us to prove properties about the specified graphs.
In our example, e.g., all query results are either the source directory of a server object
or are recursively contained in a source directory of a server object. We could also prove
general properties of the result graph like uniqueness of shortest paths or loop- and
circle-freeness (the latter only in the absence of edges labeled with “..“). We omit details
for brevity.

113

114 Incorporating Graph-Based Queries

7.4 Automated Query Evaluation and Construction

In the following we need generic automata. Formally, the theory of hierarchical automata
[AKY99, MLS97] is suitable for our purposes. Yet the full theory is quite involved
and largely unnecessary in our context. Therefore, we use simple word-accepting, non-
concurrent (no parallelism) hierarchical automata, where transitions can carry automata.

There, we assume a global symbol set Ω̂ that is closed under composition ; with unit
ε (often referred to as the free monoid in the literature). In particular, Ω̂∗ ⊆ Ω; we
do not distinguish between symbols and words and tokenizing is part of our notion of
word acceptance. This requires only little extra-effort but eases datatype definitions in
practice; we can use (String,++) for (Ω̂, ;). As usual, we denote words by u, v, w.

In line with the relevant literature, we denote hierarchical automata (HA) by tuples
HA := (Ω, Q,QI , QF ,HAs, δ), where the components represent

• a set of symbols Ω ⊆ Ω̂,
• a set of states Q,
• a set of initial states QI ⊆ Q,
• a set of final states QF ⊆ Q,
• a set of sub-automata HAs, HAs ∩ Ω = ∅,
• a set of transitions δ ⊆ Q× Ω ∪HAs ×Q.

Without loss of generality we exclude ε-transitions.
Later on, we will sometimes need the extended symbol set symbolse(HA) of HA,

which carries all symbols of HA and all words that can be composed of symbols of its
sub-automata, i.e.

symbolse(HA) : HAΩ ∪ (
⋃

a∈HAs

symbolse(a)∗).

Transitions carrying elements of HAs are called hierarchical. A hierarchical FSA is called
basic, iff it has no hierarchical transitions and HAs is empty. Basic HA correspond to
regular FSA (cf. [HMU06]). Query graphs of the last section can be directly translated
into basic HA; we do not provide a separate construction and treat query graphs as HA
in the following.

Example 7.4.1 (Example HA for absolute URIs)

The automaton HAaURI for absolute URIs is given by the following components (cf.
Fig. 7.2):
ΩaURI := {“http : “, “//“, “/“}
QaURI := {q0, q1, q2, q3, q4, q5}
QI

aURI := {q0}
qF
aURI := {q3, q4, q5}
HAs

aURI := {HAIPv4,HAseg}
δaURI := {(q0, “http : “, q1), (q1, “//“, q2), (q2,HAIPv4, q3),

(q3, “/“, q4), (q4,HAseg, q5), (q5, “/“, q4)}
It has two sub-automata for producing IP-addresses and path segments, respectively.

2

114

7.4 Automated Query Evaluation and Construction 115

There are two ways transitions can fire in HA. When evaluating

“http : //137.193.060.082/source“

in HAaURI , “http : “ and “//“ are recognized by basic transitions like in regular FSA.
“137.193.60.82“, however, is recognized byHAIPv4, which is a sub-automaton ofHAaURI .
The corresponding transition (q2,HAIPv4, q3) fires because HAIPv4 accepts “http : “;
the notion of word acceptance is recursive. As we need it when proving formal correctness
of our constructions, we introduce it in the next definition.

Definition 7.4.1 (Runs, word acceptance) Given a hierarchical automaton HA :=
(Ω, Q,QI , QF ,HAs, δ) and a word w = w1...wn. A run r of HA over w is a sequence
q0w0q1...wnqn+1 of permissible steps qiwiqi+1 in HA (1 ≤ i ≤ n). A step qiwiqi+1 is
permissible in HA, iff

• qi ∈ Q, qi+1 ∈ Q, and
• there is a transition (qi, l, qi+1) ∈ δ that can fire on wi, i.e., either

• wi ∈ Ω and l = wi or
• wi ∈ Ω∗

l , l ∈ HAs and there is an accepting run of l over wi.

A run r is accepting, iff additionally q0 ∈ QI and qn+1 ∈ QF . 2

The language of HA is denoted by L(HA). Also, we denote the corresponding
acceptance relation by accepts(HA,w). A hierarchical automaton HA accepts sequences
of symbols that consist of symbols of HA or of words over symbols of its sub-automata.
In the basic case, this directly corresponds to runs of non-hierarchical FSA.

Example 7.4.2 (Accepting runs)

HAaURI accepts “http : //137.193.060.082/source“ by

q0http :q1//q2137.193.60.82q3/q4sourceq5

provided that HAIPv4 accepts 137.193.60.82 and HAseg accepts source. This is true
in our example.

2

The notion of acceptance given in Defn. 7.4.1 is, in general, non-deterministic. First,
there may be different transitions that can fire on w in a given state q. Second, hierarchi-
cal transitions may lead to sequential non-determinism. Given states QI = {q0}, QF =
{q1, q2} and transitions (q0, a, q1) and (q1, /, q2) such that a is an automaton with

L(a) = {“137.193.60.82“, “137.193.60.82/“}.

Then there q0137.193.60.82q1/q2 and q0137.193.60.82/q1 are two different accepting
runs for 137.193.60.82/; these runs end in different states. Since states carry semantics
later on, we will particularly be concerned with deterministic HA.

Definition 7.4.2 (Deterministic HA) A hierarchical automaton HA is

115

116 Incorporating Graph-Based Queries

(1) branching deterministic, iff for all q ∈ QHA, words w over symbolse(HA) and seg-
mentations w = w1w2 there is at maximum one state q′ ∈ QHA and one transition
(q, l, q′) ∈ δHA that can fire on w1.

(2) sequentially-deterministic, iff for all q ∈ QHA and words w over symbolse(HA) there
is at maximum one segmentation w = w1w2 such that there is a state q′ ∈ QHA
and a transition (q, l, q′) ∈ δHA that can fire on w1.

(3) deterministic, iff it is branching deterministic and sequentially deterministic.

2

Again, the definition reduces to the standard definition in case of basic HA. Branch-
ing determinism resolves the first source of non-determinism explained above. Sequential
determinism resolves the second one. Overall determinism assures that at each state,
either no sub-word is recognizable by HA or there is exactly one sub-word that is rec-
ognizable and it is recognized by exactly one transition; runs in deterministic automata
are uniquely determined.

Lemma 7.4.1 (Unique runs in deterministic HA) Given a deterministic hierarchi-
cal automaton HA and a word w ∈ symbolse(HA)∗. Then each two runs of HA over w
starting in the same state are equal. 2

The proof in App. C.5, page 224, goes by straightforward induction on w. Before we
show how we combine query syntax and semantics, we shortly recall the standard trans-
lation of right-linear grammars to basic HA; we need it when proving that dominated
product automata accept well-formed queries only.

Definition 7.4.3 (HA for right-linear grammars) GivenG := (N,Ω, P, S) such that
G is right-linear. Then the equivalent hierarchical automaton HA(G) for G is determined
by the following components:
ΩHA(G) := Ω
QHA(G) := N ∪ {X}, X ∈ N
QIHA(G) := {S}
QFHA(G) := {X}
HAsHA(G) := ∅
δHA(G) := {(A, a, B) | (A→ aB ∈ P} ∪ {(A, a, X) | (A→ a ∈ P}

2

The left-hand part of Fig. 7.5 shows a right-linear grammar that generates the same
language as sep(segment, sep(IPv4Address,GaURI)). The right-hand part of Fig. 7.5
depicts the HA resulting from the construction in Defn. 7.4.3. For clarity, we have labeled
the states with the corresponding non-terminal.

The notions of acceptance and derivability in automata and context-free grammars,
respectively, coincide; the following can directly be concluded.

Lemma 7.4.2 (HA(G) is equivalent to G) Given a right-linear grammar G. Then
L(G) = L(HA(G)). 2

The proof can be found in App. C.5, page 224. By separating non-terminals from
grammars G we have put a kind of hierarchy on grammars. The production of IP
addresses, e.g., is“sourced out”in this way. According to the following theorem, grammar
composition is equivalent to the composition of hierarchical automata.

116

7.4 Automated Query Evaluation and Construction 117

absoluteURI = http : net_path

net_path = // IPv4

IPv4 = IPv4Address

IPv4 = IPv4Address abs_path

abs_path = / path_segments

path_segments = segment

path_segments = segment abs_path

Figure 7.5: Right-linear grammar for absolute URIs and its corresponding FSA

Theorem 7.4.1 (Grammar composition and HA composition are equivalent)
Given two right-linear grammars G := (N,Ω, P, S) and G′ := (N ′,Ω′, P ′, S′) that are
composable. Furthermore, let HA(G) and HA(G′) be their representing HA according
to Defn. 7.4.3. Then L(G;G′) = L(HA(G)[S′ ↑ HAG′]), where HA[a ↑ HA′] is defined
iff HA′ is basic, HA′ 6∈ HAs, and a ∈ HAΩ. In this case, HA[a ↑ HA′] is determined
by the following components:
Ω↑ := HAΩ\{a}
Q↑ := HAQ
QI↑ := HAQI

QF↑ := HAQF

HAs↑ := {HA′} ∪HAs
δ↑ := {(q, b, q′) | (q, b, q′) ∈ δHA, b 6= a} ∪ {(q,HA′, q′) | (q, a, q′) ∈ δHA}

2

The proof in App. C.5, page 224, constructs runs over HA(G)[S′ ↑ HA(G′)] for
derivations in G;G′ and vice versa. According to this theorem, organizing decomposed
grammars into hierarchical automata is well-defined; the resulting automaton accepts
exactly the same language that is produced by the re-composed grammar.

Corollary 7.4.1 Given a right-linear grammar G := (N,Ω, P, S) and a non-terminal
A ∈ N,A 6= S. Then there are right-linear grammars sepG and redG with L(sepG) =
L(sep(A,G)) and L(redG) = L(red(A,G)) such that

L(G) = L(HA(sepG)[A ↑ HA(redG)]).

2

There, sepG is the result of “re-right-linearizing” sep(A,G); redG results from a
language-preserving renaming of non-terminals of red(A,G) such that sepG and redG are
composable. The process of “re-right-linearizing” sep(A,G) has been explained before.
Applied to our example, this corollary states that our grammar for absolute URIs and
the related hierarchical FSA define the same language.

The following construction is closely related to product automata. It facilitates to
evaluate and generate graph-based queries in an automated way. However, the result
automata work more efficiently than standard product automata. Using hierarchical
automata turns out to be advantageous here. The dominating automaton is hierarchical

117

118 Incorporating Graph-Based Queries

and carries syntactic elements of graph queries in its edge labels as well as those automata
that construct the semantic parts. Related to our example, the automaton HAaURI (cf.
Fig. 7.2) is dominating. The automaton for the queried structure is basic and carries
the path segments as symbols. This reduces the number of states and transitions in the
product automaton. Also, its states being servers, directories, or documents, carry the
query semantics.

Definition 7.4.4 (Dominated product automaton) Given two hierarchical auto-
mata

SY N := (Ωsyn, Qsyn, Q
I
syn, Q

F
syn,HA

s
syn, δsyn)

SEM := (Ωsem, Qsem, Q
I
sem, Q

F
sem,HA

s
sem, δsem)

such that SEM is basic. Then the dominated product domProd(SY N, SEM) of SY N
and SEM is determined by the following components:

Ω := Ωsyn ∪ Ωsem

Q := {(q, q′) | q ∈ Qsyn ∧ q′ ∈ Qsem}
QI := {(q, q′) | q ∈ QIsyn ∧ q′ ∈ QIsem}
QF := {(q, q′) | q ∈ QFsyn ∧ q′ ∈ QFsem}
HAs := ∅
δ := {(qs, q′s), w, (qt, q′t) | (qs, a, qt) ∈ δsyn, a ∈ HAssyn, (q′s, w, q′t) ∈ δsem, w ∈ L(a)}∪

{(qs, q′), s, (qt, q′) | (qs, s, qt) ∈ δsyn, s ∈ Ωsyn, q
′ ∈ Qsem}.

2

Denoting the automata by SY N and SEM we emphasize that the dominating au-
tomaton recognizes syntax, whereas the other one carries semantics in its states. It is
easy to see that domProd(SY N, SEM) yields a basic HA.

The state set of domProd(SY N, SEM) is given by the Cartesian product of the
states of SY N and SEM , respectively. Initial states (q, q′) are composed of the initial
states of SY N and SEM , respectively. In our example, query evaluation always starts
at Server objects since we implement absolute URIs. Final states (q, q′) are composed
of final states of SY N and SEM , respectively.

The transition relation is constructed differently from that of regular product au-
tomata. We let both automata run in parallel as long as transition labels of SY N and
SEM are produced (first disjunction term for δ in Defn. 7.4.4). If, however, symbols
are produced that belong to the query language only and, thus, have no correspondence
in the queried structure, we stop SEM and proceed in SY N (second disjunction term).
We say SY N dominates SEM in this case. Due to this procedure, users can neglect
purely syntactic material like / when specifying query structures.

Example 7.4.3 (Dominated product automaton)
In Fig. 7.6 we show the link automaton (for absolute links) for the website “Calcula-
tion” of the running example; it has been generated fully automatically. However, we
have omitted all isolated states. We have annotated the states with labels in order to
show their origin. All states are tuples consisting of a state of HAaURI and a state
of the query structure. The initial state q42, e.g., is composed of q0 and the server
object (denoted by its IP 137.193.060.082). The transition labeled with “http : “ in-
dicates that HAaURI dominates; the result state q43 still includes the server object

118

7.4 Automated Query Evaluation and Construction 119

Figure 7.6: Generated link automaton for the website “Calculation”

(no state change in the query structure), but has changed from q0 to q1 in HAaURI .
The transition labeled with “137.193.060.082“ from q44 to q39 shows a state change
in both automata.
We have highlighted an accepting run for our sample link

http : //137.193.060.082/source/overview/doclist.html.

It ends in q22, which carries the file “doclist.html” as its semantics.

2

The graphical visualization of the link automaton in Fig. 7.6 directly shows a major
benefit of this approach. Apart from evaluating links, it can be used to construct valid
links as well. This can be reduced to finding a path / shortest path in a graph. Since our
graphs can have cycles, worst case runtime complexity of the best known shortest path
algorithms is O(|V |2). First, we argue that this is an acceptable cost for the achieved
benefits. Second, our approach significantly reduces the number of nodes and edges of
all automata that have to be processed. In particular, we do not “unfold” or flatten
hierarchical automata (those for the query syntax). We rather compute the dominated
product directly. In particular, the automaton for the query structure carries full edge
labels as symbols. The next lemma, applied to our example, states that all accepting
runs indeed conform to well-formed URLs. Also, all accepting runs can be reduced to
accepting runs in the automaton that represents the query structure.

Lemma 7.4.3 (Languages accepted by dominated product automata) Given a
hierarchical automaton SY N and a basic HA SEM . Then the following holds:

(1) L(domProd(SY N, SEM)) ⊆ L(SY N).
(2) If ΩSEM ∩ ΩSY N = ∅, then

h(s) :=
{
s, s ∈ ΩSEM

ε, s ∈ ΩSY N

is a language homomorphism from L(domProd(SY N, SEM)) to L(SEM).

2

The proof can be found in App. C.5, page 226. Property (2) underlines well-
definedness of domProd. It holds in our example since none of the edge labels in the

119

120 Incorporating Graph-Based Queries

left-hand part of Fig. 7.2 equals any of the symbols “http : “, “/“ or “//“. The next
lemma states that this construction applied to deterministic HA produces a deterministic
HA as well. This is particularly important if unique query semantics is desired.

Lemma 7.4.4 (Dominated product preserves determinism) Given a hierarchical
automaton SY N and a basic HA SEM . Then domProd(SY N, SEM) is deterministic
if SY N is deterministic and SEM is branching deterministic. 2

The proof is listed in App. C.5, page 226. Since query semantics is defined w.r.t. the
result state of a dominated product automaton, the query semantics is uniquely deter-
mined if the query automaton is branching deterministic and the automaton for query
semantics is deterministic. Notice that determinism is usually desirable for the au-
tomaton representing the query language, but not necessarily for the other one. XPath
queries, e.g., always link to sets of XML nodes.

7.5 Summary

We have demonstrated that including graph-based queries into our framework is feasible
and useful. Since queries usually occur as document content, we have introduced a
specification scheme for extracting query structures from datatype specifications. This
results in labeled graphs that carry digital objects as states; states yield query semantics.
Query languages are described by context-free grammars, where we restrict ourselves to
right-linear grammars; they can be translated into equivalent FSA.

We have introduced dominated product automata as a means for combining query
syntax and query semantics efficiently. Having translated both, the query grammar and
the graph structure, into FSA, the resulting dominated product automaton is generated
similarly to regular product automata. It combines both “worlds” using designated non-
terminals of the underlying grammar. We have proved that dominated product automata
accept well-formed graph queries only. Also, this construction preserves determinism,
which is particularly important in our scenario: Web URLs point to exactly one location.

As a benefit of this integration, graph-based document properties can be specified in
a more comfortable manner compared to using FOPL formulas. Also, we can evaluate
and generate queries automatically, which has been demonstrated by automated URL
processing; the overall procedure is formally well-founded and meets our claim for high
trustworthiness.

120

Part IV

Case Study

121

Chapter 8

Case Study — Website
Transformation

We apply our approach to automated quality assurance to the website transformation
example described in Sect. 2.1, page 16. In particular, we

• use our functional language for programming the transformation,
• specify datatypes and concepts that are subject to preservation as per Fig. 2.3,
• express the preservation requirements of Fig. 2.3 formally using our preservation

language, and
• check the migration process for adherence to these requirements in an automated

way.

Runtime measurements will show that our methods scale to a relevant problem size. For
convenience, we have re-listed the informal requirements of Fig. 2.3 in Fig. 8.1.

Preservation requirement (6) (link consistency) will be assured in a fully automated
way. We use our automata-based techniques of Chap. 7 in order to generate well-formed
and valid URLs. There, the case study does not aim at full coverage of the related web-
technologies. It is rather reduced to adequate sample concepts that are complex enough

(1) The transformation result matches the BWeb format.
(2) Preserve file names as far as possible.
(3) Preserve directory names as far as possible.
(4) Preserve the website’s name if possible.
(5) Preserve the title of the website.
(6) Preserve link consistency while transforming absolute to relative links.
(7) Preserve content and structure of the html-files as far as possible.
(8) Keep the bit-wise content of all non-html files unchanged.
(9) Preserve the directory and file structure of the source website in both the

“html” and “resources” directory.

Figure 8.1: Preservation requirements for case study

122

8.1 Methodology 123

preservation requirements
(textual)

Identify data types

Identify concepts

Identify contexts

Specify contexts and concepts

Specify functionality

technical standards /
specificationsI. Analysis

II. Design

Methodology

Specify preservation requirements

Verify migration algorithm

III. Implementation & Testing

preservation requirements
(formal)

migration algorithm /
test data

Specification = design phase
Correlation migration algorithm
- validate formal requirements / verify migration correc

test data

verification

validation

1

2

3
4

5

8

6

Implementation7

Phase gekoppelt, da gerade ei formalen Sachen Impl & Test
einhergehen

Figure 8.2: Methodology used for case study

for evaluating our method. Another case study dealing with a file format transformation
between ODF ([Org06]) and XHTML ([Wor02]) (both annotated with CSS ([Wor07a])
layout information) can be found in [Bor07].

In the following section we describe our methodological approach. It has already
been tested in [Bor07] and may be used as a reference. Yet it is not intended to fix a
general procedure model. Further case studies will be carried out in future. On this
basis we plan to develop best practices and a more profound procedure model.

8.1 Methodology

Fig. 8.2 shows our methodological approach. It is in wide areas reflected by the structure
of this thesis. We have run through three phases (analysis, design, and implementation
& testing) that comprise a total of eight steps. Knowing that identifying and formulating
preservation requirements is a non-trivial process itself, we explicitly state that we require
this input for the analysis phase. This is the connecting point of our method to the digital
archiving world; we cannot support archives in identifying preservation requirements
strategically.

In the analysis phase we have identified relevant data types (step one) as well as
relevant concepts and contexts (steps two, three). We do not re-produce the single steps
but highlight some points. The preservation requirements in Fig. 8.1 directly suggest the
data types Dir, Doc, HTMLDoc, and Website; the specification contains terms “directory”,
“file”, “html file”, and “website”. Similarly, some concepts can be identified directly. The
terms “name”, “content”, “structure”, “format” and “link consistency” occur in different
“settings”. The corresponding concepts will be Name, AContent, Contains, EntryPoint,
and LinksTo. Recall that concept identification also includes role identification. There,
we suggest using meaningful role names. The concept LinksTo, e.g., has been specified
between a link source source, a link anchor, and a link target. In all that, existing
domain-specific taxonomies or ontologies may serve as an orientation (see Chap. 14).

123

124 Case Study — Website Transformation

The different “settings” will be implemented in formal contexts. Requirements (2)
to (4), e.g., speak of “directory”, “file”, and “website” names; this suggests respective
contexts for the concept Name. Requirements (7) and (8) deal with the content of
html and non-html files, respectively, which suggests corresponding contexts of AContent
as well. Also, the last example shows that step one and two are usually carried out
iteratively; modeling file content in our example requires for new data types and, hence,
for switching back to step one.

After having completed (the first iteration of) phase one, we have started the design
phase by specifying concepts and contexts formally. There, additional technical docu-
ments were necessary. In particular, there are web standards specifying the syntax and
semantics of absolute and relative links. Also, the HTML format is standardized. Of
course, this could have been considered in the analysis phase already. We, however, pro-
pose the other approach. It keeps the analysis model abstract enough for being discussed
with archivists. To be more precise: Does an archivist care about an <a> element that
implements html links? We consider this to be a matter of technical specification and
prefer the more abstract phrase “anchor” that has been used above. As incorporating
technical specifications may well induce changes to existing analysis models, we support
iteration cycles between phase one and two.

In step five we have specified all functionality that was necessary to implement con-
texts and concepts. In this case study we have kept contexts as simple as possible and
sourced out complex functionality to predicates and functions. This corresponds to a
stepwise refinement (top-down), which keeps concept specifications readable and also
speeds up concept evaluation; functions and predicates will be implemented and com-
piled later on while formulas that occur in concept specifications are evaluated fully
formally in our system.

At the end of the design phase we have specified the formal preservation requirements,
which required the least effort compared to steps one to five; preservation formulas hide
implementation complexity in order to be comprehensible with only minor mathematical
knowledge. The “technical” work has to be done in advance. Link consistency is a good
example. We have dedicated a whole chapter (Chap. 7) to describing of how to model
this property; the related preservation requirement itself, however, is expressed quite
easily.

In phase three the formal output of the design phase has to be implemented using
our prototype system. This includes implementing the data types as JAVA classes and
registering the formal signature that derives from the above specifications. In our case,
we also had to implement the migration algorithm itself from scratch. If an existing
algorithm is to be checked, it has to be connected to our system. The resulting JAVA
implementation, however, is used in step eight to check the underlying transformation
process against the preservation requirements.

Notice the co-action between phase three and the migration algorithm (shown by the
arrows annotated with “verification” and “validation”). The output of the formalization
process above may lack validity while properties like soundness can be proved. In con-
trast, proving formal correctness of complex migration algorithms may be impossible in
practice. Hence, both, adapting the specification (backwards arrow from implementa-
tion phase to design phase) and adapting the migration algorithm may be sensitive when

124

8.2 Outline 125

our formal system reports violations; we advocate validating specifications and verifying
preservation requirements interactively.

8.2 Outline

In the following chapters we present the results of the case study. We do not recapitulate
the single steps shown in Fig. 8.2. The outline is as follows:

(1) Data types for website structures and html content will be introduced in Chap. 9.
(2) In Chap. 10 we introduce the migration algorithm that we have used to migrate

websites. It has been implemented using our functional language and incorporates
automated link generation.

(3) Concepts are modeled in Chap. 11. There, we will extend the data types of Chap. 9
by additional functionality where necessary.

(4) Formal preservation constraints are provided in Chap. 12. Also, we evaluate runtime
performance of our prototype system; we check all preservation requirements for
differently sized models.

(5) In Chap. 13 we summarize our results; costs and benefits of our formal quality
assurance approach are discussed.

125

Chapter 9

Modeling Datatypes

We separate two blocks. First, we introduce all data types related to websites and
directory structures. Second, we model html content. There, we will not provide the full
data type specifications but rather highlight important aspects.

9.1 Modeling Websites, Servers, and Directory Structures

In Fig. 9.1 we provide the website model together with a code snippet that demonstrates
datatype registration in our prototype system. Also, we show our example website
“Calculation” in the right-hand part of Fig. 9.1 for convenience and reference. The data
model in the left-hand part does not contain any functionality so far. It merely shows
those attributes1 that reflect the content of the different data types.

All data types in Fig. 9.1 are object types; they are subtypes of type DObj (shown
by a grouping box and a UML-like extension arrow). All attributes of super-types are
inherited by their sub-types. In Fig. 9.1 we have omitted inherited attributes for brevity.

Type Website models websites. Type Server represents servers. It does in no way
cover real-life web-servers but suffices to model simple web links. In particular, the
addr attribute carries the web-address of a server. The source directory is stored by the
srcDir attribute. Since we have used an Apache Web Server for our case study, the
source directory of the web-server is “htdocs” (cf. right-hand part of Fig. 9.1).

Directory structures are modeled by type Dir. Directories have a non-empty name
and contain sets of sub-directories and sub-documents; we do not further restrict direc-
tory names for the sake of simplicity. Type Doc covers documents. Again, document
names must not be empty. Content (attribute content) is represented as a byte se-
quence. The basic types Byte and Seq are standard and are not shown for brevity. The
so-defined type Doc covers arbitrary static web-documents. Streaming (like RSS-feeds)
cannot be represented. Type HTMLDoc models html documents. It is a sub-type of Doc
and, hence, inherits all respective attributes. It, however, overrides the content at-
tribute. We will provide the data model for html content in the next section. Notice
that, sub-directories and sub-documents of given directories must have distinct names;
file paths may be ambiguous otherwise.

1In the context of ADT specifications, attributes are rather called selectors. In the DA community,
however, the term attribute is more common; we adapt the latter.

126

9.2 Modeling Html Content 127

HTMLDoc (oid : OID,
name : String,
content : HTMLElem)

name : String
home : HTMLDoc
srcDir : Dir

content : HTMLElem

HTMLDoc

Website(oid:OID, name:String,
home : HTMLDoc,
srcDir : Dir)

Website
Doc (oid : OID,

name : String,
content : Seq[Byte])

name : String
content : Seq[Byte]

Doc

addr : String
srcDir : Dir

Server
Dir(oid : OID,

addr : String,
srcDir : Dir)

DObj(oid: OID)

oid : OID

DObj

Dir
Dir(oid : OID, name : String,

subDirs : Set[Dir],
subDocs : Set[Doc])

name : String
subDirs : Set[Dir]
subDocs : Set[Doc]

source

calc05
overview

calc.pdf doclist.html

start.html

137.193.60.82

Website Example

01 // type Website
02 OTypeSymbol websiteType = new OTypeSymbol("Website");
03 asig.addOType(websiteType);
04 impl.addOTypeImpl(websiteType, "dissexample.Website");
05
06 // name of type Website
07 AttrSymbol websiteName = new AttrSymbol("name", websiteType, asig.getType("String"));
08 asig.addAttr(websiteName);
09 impl.addAttrImpl(websiteName, "name");

Data Model

Website Registration

htdocs

...

Figure 9.1: Websites, servers, and directory structures

To generate a feeling for the required implementation work, the code snippet in the
bottom part of Fig. 9.1 shows how type Website and its name attribute are registered in
our prototype system. In line two, we define a new object type symbol for Website; class
OTypeSymbol represents object types. After that, the so-defined type symbol is registered
in the current signature asig; asig is an instance of the class ArchSignature, which
represents signatures. Website is implemented in the JAVA class dissexample.Website.
In line four, this class is registered as Website’s interpretation (semantics). There,
impl is an instance of the class Implementation; Implementation administrates symbol
interpretations in our system.

The name attribute is registered in line seven following the same scheme. A symbol is
declared (of class AttrSymbol) and added to both the signature and implementation. In
particular, line nine registers the JAVA-method name of class Website as interpretation
for the name attribute.

9.2 Modeling Html Content

We represent html documents as DOM - trees (Document Object Model, [Wor04a]). The
elements shown in the left-hand part of Fig. 9.2 directly reflect those parts of the DOM
specification that we support in our case study. In order to have an example, we have
listed the content of the file “start.html” in the right-hand part of Fig. 9.2. The data
model represents static html content only. Dynamic aspects like html forms and related
events cannot be represented. Notice that we use basic types in the first instance. Type
HTMLContElem is the super-type of all html content types. It introduces the attribute

127

128 Modeling Datatypes

name : String
attrs : Set[HTMLAttr]
content : Seq[HTMLContElem]

HTMLElem
HTMLElem(
name : String,
attrs : Set[HTMLAttr],
content: Seq[HTMLContElem])

HTMLContElem (
content : Top)

content : Top

HTMLContElem

HTMLCDataElem (
content : String)

content : String

HTMLCDataElem

HTMLCommentElem (
content:String)

content : String

HTMLCommentElem
HTMLTextElem (

content : String)

content : String

HTMLTextElem

HTMLObjElem
HTMLObjElem(
oid : OID,
name : String,
attrs : Set[HTMLAttr],
content: Seq[HTMLContElem])

DObj(oid: OID)

oid : OID

DObj
HTMLAttr (name : String,

value : String)

name : String
value : String

HTMLAttr Content of start.html

01 <html>
02 <head>
03 <title>
04 Calculation
05 </title>
06 </head>
07 <body>
08 <!– reference list -->
09 <a href=
10 "http://
11 137.193.060.082/
12 source/overview/
13 doclist.html">
14 documents
15
16 </body>
17 </html>

Figure 9.2: Content model for html documents

content : HTMLContElem → Top representing general content (recall that Top is the
super-type of all types). The sub-types of HTMLContElem refine this attribute. Text el-
ements (HTMLTextElem), comment elements (HTMLCommentElem), and CDATA elements
(CDataElem) have textual content; the content attribute has return type String. Type
HTMLElem is recursive and models complex content. It can have attributes (attrs) as
well as further sub-elements (content). There, we require all attributes to have mutu-
ally distinct names. Html attributes are modeled by type HTMLAttr. They have a name
(name) and (value) (cf. href-attribute in the right-hand part).

Apart from these basic types we introduce an object type HTMLObjElem, which is
a sub-type of HTMLElem. Recall that we trace histories of digital objects only. When
checking preservation of link-consistency we will have to trace link anchors. For the
sake of simplicity, we model links in <a> elements only. Tracing link anchors, thus,
corresponds to tracing <a> elements. Tracing other than <a> elements, however, is not
necessary. To keep the number of objects in the system to a minimum, we model html
content by basic elements and only keep <a> elements as digital objects. We propose this
technique as a general design pattern whenever data structures have to be traced only
partly; our support for multiple inheritance is vital in this setting. In the next section
we provide the formal signature that derives from the data types introduced so far.

9.3 Formal Signature

Apart from the static parts of the basic DA (cf. Tab. 3.4, page 42), the current (static)
signature consists of the components shown in Tab. 9.1. We have listed it for later ref-
erence. The output is generated by our system and particularly shows the benefits of
overloading. Equal aspects (like directory, website, or document names) can be imple-
mented for different types by equally named functions. This concludes the introduction
of the basic data model. In the next chapter we introduce the underlying transformation,
which has been implemented using our functional language.

128

9.3 Formal Signature 129

Table 9.1: Basic signature for case study
Types and < :
Dir < {Top, Dir, DObj}
Doc < {Top, Doc, DObj}
HTMLDoc < {Top, Doc, HTMLDoc, DObj}
Website < {Top, Website, DObj}
Server < {Top, Server, DObj}
HTMLContElem < {Top, HTMLContElem}
HTMLElem < {HTMLElem, Top, HTMLContElem}
HTMLObjElem < {HTMLElem, Top, HTMLContElem, HTMLObjElem, DObj}
HTMLCommentElem < {Top, HTMLContElem, HTMLCommentElem}
HTMLCDataElem < {Top, HTMLContElem, HTMLCDataElem}
HTMLTextElem < {Top, HTMLContElem, HTMLTextElem}
HTMLAttr < {Top, HTMLAttr}
Byte < {Byte, Top}
String < {Top, String}

Functions:
name : Dir→ String name of a Dir

subDirs : Dir→ Set[Dir] sub-directories of a Dir

subDocs : Dir→ Set[Doc] sub-documents of a Dir

content : Doc→ Seq[Byte] content of a Doc

name : Doc→ String name of a Doc

content : HTMLDoc→ HTMLElem content of an HTMLDoc

home : Website→ HTMLDoc home of a Website

name : Website→ String name of a Website

srcDir : Website→ Dir source directory of a Website

addr : Server→ String web-address of a Server

srcDir : Server→ Dir source directory of a Server

content : HTMLContElem→ Top content of an HTMLContElem

name : HTMLElem→ String name of an HTMLElem

attrs : HTMLElem→ Set[HTMLAttr] attributes of an HTMLElem

content : HTMLElem→ Seq[HTMLContElem] content of an HTMLElem

content : HTMLCommentElem→ String content of an HTMLCommentElem

content : HTMLCDataElem→ String content of an HTMLCDataElem

content : HTMLTextElem→ String content of an HTMLTextElem

name : HTMLAttr→ String name of an HTMLAttr

value : HTMLAttr→ String value of an HTMLAttr

Constructors:
Dir : OID× String× Set[Dir]× Set[Doc]→ Dir

Doc : OID× String× Seq[Byte]→ Doc

HTMLDoc : OID× String× HTMLElem→ HTMLDoc

Website : OID× String× HTMLDoc× Dir→ Website

Server : OID× String× Dir→ Server

HTMLContElem : Top→ HTMLContElem

HTMLElem : String× Set[HTMLAttr]× Seq[HTMLContElem]→ HTMLElem

HTMLObjElem : OID× String× Set[HTMLAttr]× Seq[HTMLContElem]→ HTMLObjElem

HTMLCommentElem : String→ HTMLCommentElem

HTMLCDataElem : String→ HTMLCDataElem

HTMLTextElem : String→ HTMLTextElem

HTMLAttr : String× String→ HTMLAttr

129

Chapter 10

Implementing the Migration

Recall that our transformation algorithm is expected to satisfy the preservation require-
ments in Fig. 8.1. To achieve this goal, our algorithm works in three steps:

(1) Structural transformation: Transform the source directory and file structure
such that it conforms to BWeb; do not alter html content.

(2) Adaptation: Parse the title of the website and possibly adapt the names of the
source directory of the target website and of the target website itself (cf. constraints
of the BWeb format and preservation requirement (1)).

(3) Content migration: Migrate all html content; use link automata to evaluate links
in the source website and to generate suitable relative links for the target website.

Step three includes “garbage collection” as well. We, however, keep the source website.
We deal with these steps separately in the following sections. There, we do not

introduce the full algorithm; we highlight important aspects only. In particular, the
algorithm is to demonstrate how automated link construction can be incorporated.

10.1 Structural Transformation

The result of this transformation step is visualized in Fig. 10.1. The output is twofold.
First, we generate a target website that conforms to the BWeb format and contains
all content of the source website. Also, the input website is maintained. In order to
distinguish source and target, we have underlined all components of the target website.
Second, we generate a transformation history (“Traces” box on the right-hand side in
Fig. 10.1). This transformation history is used in step three for generating relative links
with appropriate source and target files; recall that we have to transfer links between
objects in the source structure to their transformation results in the target structure.

Step one meets requirements (2) to (5), (7) to (9), and, in large parts, requirement
(1) (see Fig. 8.1, page 122). The title of the target website does not yet necessarily
match the name of the website; this will be assured in step two. Also, html links are
not yet adapted; we simply copy the original html content. The html files of the target
website, thus, still point to the original locations (dotted arrows).

The main function for step one is typed as follows:

migAWebToBWeb : Website→ Tuple[Website, Set[Tuple[DObj, DObj]]].

130

10.1 Structural Transformation 131

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

source

overview

doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

start.html index.html

doclist.html doclist.html

calc.pdf calc.pdf

Traces

Links

INPUT OUTPUT

INPUT OUTPUT

start.html index.html

doclist.html doclist.html

calc.pdf calc.pdf

Traces

Links

calc05

calc.pdf

source

overview

doclist.html

start.html

137.193.60.82

calc05

calc.pdf

Figure 10.1: Result of transformation step one

It takes a website w and returns a tuple containing the transformation target of w and
the transformation history. Histories are modeled by sets containing mappings from
source files to their transformation results.

In the body

migAWebToBWeb(w) =
let new home = migHTMLDoc(home(w), w)

new src = migSrcDir(srcDir(w), w, new home)
in Tuple(transform(w 7→ (Website, name(w), new home, fst(new src))), snd(new src))

the target website receives a new source directory and home page, which are computed
by migHTMLDoc and migSrcDir, respectively. The function migHTMLDoc has two input
parameters — the html document d that is to be transformed and a website w. If the
html document is the home page of the website, the resulting html document is named
“index.html“, as required by the BWeb format. Otherwise, the name of the source
document is preserved.

The function migSrcDir is given by:

migSrcDir(d,w, new home) =
let rec dir = {migDirHTML(x,w) | x← subDirs(d), True}

htmlSubDirs = {fst(x) | x← rec dir, True}
rec doc = {let r = migHTMLDoc(cast(x, HTMLDoc), w)

in Tuple(r, {Tuple(cast(x, HTMLDoc), r)}s)
| x← subDocs(d), and(inst(x, HTMLDoc), not(x = home(w)))}

htmlSubDocs = {fst(x) | x← rec doc, True}
htmlDir = create(Dir, “html“, htmlSubDirs, htmlSubDocs)
...
resDir = create(Dir, “resources“, resSubDirs, resSubDocs)
all trans = joinTrans(rec dir) ∪ joinTrans(rec doc)∪

joinTrans(rec dir2) ∪ joinTrans(rec doc2)
in Tuple(transform(d 7→ (Dir, name(w), {htmlDir, resDir}, {new home}s)), all trans)

It has three input parameters — the directory d that is to be transformed, a website w,
and the new home page new home of w.

According to the BWeb format, a website’s source directory must exactly contain
a directory “html“ for html content, a directory “resources“ for non-html content,
and the website’s home page named “index.html“. In the let part, migSrcDir, thus,
executes the following steps:

131

132 Implementing the Migration

• It uses migDirHTML to clone the sub-directory structure of d for the “html“ di-
rectory. The result type of migDirHTML is Tuple[Dir, Set[Tuple[DObj, DObj]]]; the
result carries the transformation target and a mapping reflecting all executed trans-
formations. The overall result is stored in rec dir. Also, migDirHTML assures that
all included directories contain html content only.

• It stores the new sub-directories of “html” in htmlSubDirs. There, fst and snd
return the first and second element of a tuple, respectively.

• It uses migHTMLDoc to transform the html documents of d. The result type of
migHTMLDoc is HTMLDoc.

• It creates the “html“ directory htmlDir and attaches the just-created sub-directory
structure.

• It creates the “resources“ directory resDir; the sub-directory structure is gen-
erated in the parameters rec dir2, resSubDirs, rec doc2, and resSubDocs in the
same way it has been created for “html” (details are omitted, which is indicated
by dots). Instead of migDirHTML and migHTMLDoc, however, migDirResources and
transform are used. There, migDirResources assures that the result contains
non-html content only.

• It uses joinTrans to join the histories of all executed transformations; joinTrans
has result type Set[Tuple[DObj, DObj]].

Finally, migSrcDir transforms the website w and attaches the respective components
in the constructor call. In this way, requirements (1) and (3) of the BWeb format are
satisfied.

10.2 Adaptation

In order to fully assure that the target website is in BWeb format (requirement (1)), we
potentially have to adapt the website’s name. We use

adaptWebName : Website→ Website
adaptWebName(w) =

let title = parseTitle(0, home(w))
in if or(title = {}, name(w) ∈ title) then w

else let n = rep(title)
d = create(Dir(n, subDirs(srcDir(w)), subDocs(srcDir(w))))

in transform(w 7→ (Website, n, home(w), d))

to check whether the home page of the input website w has a title (function parseTitle);
if it does not, w remains unchanged. The same is true if the name of w already matches
the title. Otherwise, w and its source directory are transformed appropriately. There, a
string n in title is chosen non-deterministically. The implementation of parseTitle is
not provided for brevity; the specification, however, can be found in Fig. 11.2, page 139.

132

10.3 Content Migration 133

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

source

calc05 overview

calc.pdf doclist.html

start.html

137.193.60.82

source

overview

doclist.html

start.html

137.193.60.82

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

start.html index.html

doclist.html doclist.html

calc.pdf calc.pdf

Traces

Links

INPUT OUTPUT

INPUT OUTPUT

start.html index.html

doclist.html doclist.html

calc.pdf calc.pdf

Traces

Links

calc05

calc.pdf

source

overview

doclist.html

start.html

137.193.60.82

calc05

calc.pdf

Figure 10.2: Result of transformation step three

10.3 Content Migration

Step three migrates html contents. It is the most challenging one as it includes link
generation and “garbage collection”; intermediate structures have to be deleted. In
the following we, however, factor out object deletion and focus on link generation. In
Fig. 10.2 we show the effect of step three. The input comprises the output of step two
and the transformation history generated in step one (“Traces”box). All html contents is
to be cloned except for links. They must be adapted to the new structure. The output is
shown on the right-hand side. Links (dotted arrows) do not longer point to locations in
the source website but point to their corresponding transformation results in the target
website. The latter are extracted from the transformation history. The target model in
the right-hand part of Fig. 10.2 includes the trace for “doclist.html” in order to visualize
how the link from “index.html” is adapted.

Step three is started by calling

migWebHTMLContent : Website× Set[Tuple[DObj, DObj]]→ Website.

It gets the source website w and the transformation history of step one as input. In the
body

migAWebHTMLContent(w, trans) =
let new home = migHTMLContent(home(w), trans, srcDir(w))

new src = migSrcDirContent(srcDir(w), trans, new home)
result = transform(w 7→ (Website, name(w), new home, new src))
...

in result

migAWebHTMLContent migrates the content of the home page of w using migHTMLContent
and then migrates all html content recursively that is contained in its source directory
(migSrcDirContent). The transformation history is passed through to both function
calls as it is used to generate new links appropriately. The dots indicate that we have
skipped some function calls; we delete intermediate object structures there.

Both, migSrcDirContent and migHTMLContent basically delegate their calls to

migHTMLElem : HTMLContElem× Set[Tuple[DObj, DObj]]× Dir→ HTMLContElem

which migrates html elements. In the following we list the function body in order to
demonstrate how we use link automata to generate valid links.

133

134 Implementing the Migration

migHTMLElem(e, trans, pDoc, pDir) =
if instHTMLElem(e)
then let ee = cast(e, HTMLElem)

new content = migHTMLElemSeq(content(ee), trans, pDoc, pDir)
in if name(ee) = “a“ then

let nhattrs = {a | a← attrs(ee), name(a) 6= “href“}
hattrs = {genAttrForLink(ee, a, trans, pDoc, pDir)

| a← attrs(ee), name(a) = “href“}
new attrs = nhattrs ∪ hattrs

in if instHTMLObjElem(ee) then
transform(ee 7→ HTMLObjElem, name(ee), new attrs, new content)

else HTMLElem(name(ee), new attrs, new content)
else

if instHTMLObjElem(ee) then
transform(ee 7→ HTMLObjElem, name(ee), attrs(ee), new content)

else HTMLElem(name(ee), attrs(ee), new content)
else e

The parameters pDoc and pDir are the parent html document of the HTMLElem e and the
parent directory of pDoc, respectively. Both are needed to generate relative links. If e is
a basic content element (e.g., of type HTMLTextElem), it is returned directly. Otherwise,
e is casted to HTMLElem and stored in ee for convenience. Also, the new content of e is
computed recursively; migHTMLElemSeq simply calls migHTMLElem for all corresponding
elements in content(e).

If ee is no <a> element, we check whether ee is of type HTMLObjElem. If true, it is
transformed and receives the new content. Otherwise, a new HTMLElem (basic type) is
returned; it has the new content as well.

If ee is an <a> element, we generate a set new attrs that contains the attributes for
the transformed <a> element. There, hattrs contains all new href attributes whereas
nhattrs contains all other attributes. Recall that hattrs is empty or a singleton. In
hattrs we use genAttrForLink to generate new links as follows:

genAttrForLink(e, a, trans, pDoc, pDir) =
let trg = linkTargets(pDoc, e)
in if ¬empty(trg)

then rep({HTMLAttr(“href“,
findWord(RelURIAutomaton(existDObj), pDir, snd(tr)))

| tr ← trans, fst(tr) ∈ trg})
else a

The function linkTargets returns all link targets that the <a> element e points to.
Both, absolute and relative linking is considered. Therefore, linkTargets needs an ex-
plicit starting point in the first parameter. In our case, this is pDoc (parent document
of e). If the second parameter contains no valid URI, linkTargets returns the empty
set. Otherwise, the result contains exactly one element. It is used to create a new at-
tribute. There, the transformation history trans is used to determine the transformation
results of those objects the original link has pointed to (fst(tr) ∈ trg). Since trg is a
singleton and documents have been transformed only once, at most one resulting new
href attribute is generated. There, snd(tr) carries the transformation result of fst(tr)
such that findWord generates a word leading from pDir to the transformation result of

134

10.3 Content Migration 135

the original link target. Recall that pDir is the parent directory of pDoc; the relative
link is generated between pDoc and snd(tr). There, RelURIAutomaton is instantiated
w.r.t. existDObj such that the generated link is indeed valid in the current system state.

Among others, the functions used in step three show two things: First, content
migration is not trivial in our example; transformations had to be traced “by hand” and
several case distinctions have to be made. Indeed, our formal constraints have helped in
developing this transformation and in correcting initial functional errors.

Second, our automata-based techniques smoothly integrate into our framework. Au-
tomata are regular datatypes. Their functions hide complexity and can be used in a
straightforward way. This concludes our explanations on the migration algorithm. In
the next chapter we proceed with concept specifications.

135

Chapter 11

Specifying Concepts

Having implemented the underlying transformation algorithm, we now have to spec-
ify those properties that are to be preserved according to the requirements in Fig. 8.1.
Tab. 11.1 shows those concepts and contexts that have been extracted from these infor-
mal requirements. There, we relate requirements (column one) and general terms that
occur in different variants in their formulations (columns two and three) to the corre-
sponding concept, roles, and implementing context (columns four to six). Details of the
respective specifications can be found in the sections shown in the last column.

The concepts EntryPoint and Name cover website formats and names, respectively.
Link consistency is modeled by the concept LinksTo. There, we distinguish absolute
and relative links; both variants significantly differ on the implementation level. Links
are identified w.r.t. a link source, a link anchor, and a link target, where the contexts
AbsURI and RelURI implement absolute and relative links, respectively.

The concept AContent covers the term “content”. In our example, it will be used
in a functional preservation constraint in order to compare the content of files (context

Table 11.1: Identified concepts and contexts
Req. Term Description Concept Roles Context Details

(1) format AWeb format EntryPoint website, sourcedir, AWeb Sect. 11.1
BWeb format homepage BWeb

(2) name file name Name entity DocN —
(3) directory name DirN
(4) website name WebN
(6) link consistency absolute links LinksTo source,anchor, AbsURI Sect. 11.5
(6) relative links target RelURI

(5),(7) content content of html files AContent container HtmlDocC Sect. 11.2
(8) content of non-html files DocC
(9) content of directories DirC
(7) structure html file contains html elem. Contains parent, child CHtmlElem Sect. 11.3
(7) html elem. contains html elem. CElemElem
(9) direct directory containment CDir
(9) direct file containment CDoc
(9) rec. directory containment CDirRec
(9) rec. file containment CDocRec
(9) source directory in BWeb CDirHtml

contains directory in “html”
(9) source directory in BWeb CDirRes

contains dir. in “resources”
(7) structure html elements are neighbors Neighbor left, right NHtmlElem Sect. 11.4

136

11.1 The Concept EntryPoint 137

source

calc.pdf

start.html
calc05

index.html

Calculation Calculation

container

container

container

AContent[DocC]

AContent[HtmlDocC]

AContent[DirC]

calc05

Calculation

calc.pdf

resources

source

start.html

137.193.60.82

Calculation

htmlindex.html resources

Calculation Calculation
website

source dir

home page

EntryPoint
[AWeb] [BWeb]

<some IP address>

Specification for validAWeb, validBWeb

∀w : Website • validAWeb(w)⇔
∃d : HTMLDoc • containsDoc(srcDir(w), d)

∀w : Website • validBWeb(w)⇔
name(w) = name(srcDir(w))∧
home(w) ∈ subDocs(srcDir(w))∧
parseBWeb(0, srcDir(w), name(w)) = True

∀d : Dir, d′ : Doc • containsDoc(d, d′)⇔
d′ ∈ subDocs(d)∨
∃d′′ : Dir • d′′ ∈ subDirs(d) ∧ containsDoc(d′′, d′)

concept EntryPoint =

begin
Interface:

〈website : αw, sourcedir : αd,
homepage : αh〉
αw<Website ∧ αd<Dir∧
αh<HTMLDoc

Context AWeb:
ιA validAWeb(website)∧

sourcedir = srcDir(website)∧
homepage = home(website)

Context BWeb:
ιB validBWeb(website)∧

sourcedir = srcDir(website)∧
homepage = home(website)

end EntryPoint;

Figure 11.1: Specification of concept EntryPoint and predicate containsDoc

DocC), html-files (HtmlDocC), and directories (DirC) before and after a transformation.
For this purpose, we will partly abstract from the real content, which justifies the suffix
A in the concept name.

Finally, we have to deal with “structure” — html files have structured content and
websites contain directory structures. In the first instance, we interpret structures as
a containment relation. Hence, the corresponding concept is called Contains and uses
roles parent and child. The structure of html content, however, adds an additional
dimension; the order of the html elements is important. This is covered by the con-
cept Neighbor. It has roles left and right and is implemented for html elements only
(NHtmlElem). The concept Contains has several additional implementations that are
described briefly in Tab. 11.1.

In the following sections we provide details. There, we omit Name for brevity; it is
simple and has already briefly been introduced before.

11.1 The Concept EntryPoint

This concept has already been introduced in Chap. 4. For convenience, we have listed
the specification and a visualization again in Fig. 11.1. The two contexts are imple-
mented quite similarly but use different validity checks. In context AWeb we check for
conformance to the AWeb format. This is done by the predicate validAWeb, the speci-
fication of which is shown in the lower left-hand part of Fig. 11.1. It simply requires the
source directory of w to contain an html file. There, containsDoc models recursive file
containment and belongs to type Dir. BWeb conformity is implemented by validBWeb.
It delegates the check to parseBWeb.

Before we introduce the full specification, we recall the format description for BWeb:

(1) The source directory of the website exactly contains two sub-directories “html” and

137

138 Specifying Concepts

“resources”, respectively, and a file named “index.html”, which is the welcome page
of the website.

(2) The names of the source directory and the website are equal. If the website’s
welcome page has a <title> element with non-empty textual content, both names
equal the content of this element.

(3) All html-files except “index.html” must reside in the directory “html”.
(4) The directory “resources” contains all non-html-files.

This declarative formulation can be translated into suitable FOPL formulas with little
effort. Yet, we use a parser, i.e., a function, that will be specified operationally later
on. This considerably speeds up the process of checking BWeb conformity on the one
hand, but introduces a proof obligation on the other hand. Does successful parsing really
indicate BWeb conformity? Does parsing succeed for all websites conforming to BWeb?
Before we can prove these properties, we have to translate the above textual format
description into a formal one. The result is provided in the following definition.

Definition 11.1.1 (BWeb format and containsElem) Given a website w. Then w
conforms to BWeb iff the following holds:

(1) size(subDirs(srcDir(w))) = 2∧
∃d′ : Dir • d′ ∈ subDirs(srcDir(w)) ∧ name(d′) = “html“∧
∃d′ : Dir • d′ ∈ subDirs(srcDir(w)) ∧ name(d′) = “resources“∧
size(subDocs(srcDir(w))) = 1∧
name(home(w)) = “index.html“ ∧ home(w) ∈ subDocs(srcDir(w))

(2) name(w) = name(srcDir(w))∧
∀e : HTMLElem • (containsElem(content(home(w)), e)⇒ name(e) 6= “title“)∨
∃e : HTMLElem • (containsElem(content(home(w)), e) ∧ name(e) = “title“∧

(∀e′ : HTMLTextElem • (containsElem(e, e′)⇒ content(e′) = ““))∨
(∃e′ : HTMLTextElem • (containsElem(e, e′) ∧ content(e′) 6= ““∧

content(e′) = name(w))))
(3) ∀d : Dir, d′ : HTMLDoc • ((d ∈ subDirs(srcDir(w)) ∧ containsDoc(d, d′))⇒ name(d) = “html“)
(4) ∀d : Dir, d′ : Doc • (

(d ∈ subDirs(srcDir(w)) ∧ containsDoc(d, d′) ∧ ¬instHTMLDoc(d′))⇒ name(d) = “resources“)

There, the predicate containsElem reflects recursive containment of an HTMLContElem
and is defined by

∀e : HTMLElem, e′ : HTMLContElem •
containsElem(e, e′)⇔

e′ ∈ content(e) ∨ (∃e′′ : HTMLElem • e′′ ∈ content(e) ∧ containsElem(e′′, e′))

2

Formulas (1), (3), and (4) are straightforward realizations of requirements (1), (3),
and (4), respectively. In formula (2) we introduce a predicate containsElem : HTMLElem×
HTMLContElem, which belongs to type HTMLElem and models recursive html element con-
tainment. Formula (2) is satisfied if the welcome page of w contains no <title> element
(line two) or it contains a <title> element (line three) that either has only empty tex-
tual content (line four) or contains an HTMLTextElem the content of which equals the
website’s name. This implements requirement (2) above. Yet we assume that website
titles are permissible directory names for the sake of simplicity. Also, we define the
website’s title to be the content of one text element that occurs as sub-element of a

138

11.1 The Concept EntryPoint 139

Specification for parseBWeb

∀d : Dir, i : Nat, n : String •
parseBWeb(0, d, n) = True⇔

size(subDirs(d) = 2)∧
∃d′ : Dir • d′ ∈ subDirs(d) ∧ name(d′) = “html“∧

parseBWeb(1, d′, n) = True∧
∃d′ : Dir • d′ ∈ subDirs(d) ∧ name(d′) = “resources“∧

parseBWeb(2, d′, n) = True∧
size(subDocs(d) = 1)∧
∃d′ : HTMLDoc • d′ ∈ subDocs(d) ∧ name(d′) = “index.html“∧

(parseTitle(0, content(d′)) = {}∨
n ∈ parseTitle(0, content(d′)))∧

parseBWeb(1, d, n) = True⇔
(∀d′ : Dir • d′ ∈ subDirs(d)⇒ parseBWeb(1, d′, n) = True)∧
(∀d′ : Doc • d′ ∈ subDocs(d)⇒ instHTMLDoc(d

′))∧
parseBWeb(2, d, n) = True⇔

(∀d′ : Dir • d′ ∈ sDirs⇒ parseBWeb(2, d, n) = True)∧
(∀d′ : Doc • d′ ∈ subDocs(d)⇒ ¬instHTMLDoc(d′))∧

i > 2⇒ parseBWeb(i, d, n) = False

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

1 2

0

<html>

<head> <body>

<title>

...

...... ...

1

0

parseBWeb : Nat x Dir x String → Bool

parseTitle : Nat x HTMLElem →
Set[String]

Specification for parseTitle

∀e : HTMLElem, i : Nat, n : String •
n ∈ parseTitle(0, e)⇔

(name(e) = “title“ ∧ n ∈ parseTitle(1, e)) ∨
(∃e′ : HTMLElem • e′ ∈ content(e) ∧ n ∈ parseTitle(0, e′)) ∧

n ∈ parseTitle(1, e)⇔
(∃e′ : HTMLTextElem • content(e′) 6= ““ ∧ content(e′) = n) ∨
(∃e′ : HTMLElem • e′ ∈ content(e) ∧ n ∈ parseTitle(1, e′))∧

i > 1⇒ parseTitle(i, e) = {}

Calculation

html

overview

doclist.html

index.html

calc05

resources

overview

calc.pdf

calc05

1 2

0

<html>

<head> <body>

<title>

...

...... ...

1

0

parseBWeb : Nat x Dir x String → Bool

parseTitle : Nat x HTMLElem →
Set[String]Figure 11.2: Specification for BWeb parser

<title> element and, hence, do not consider concatenation of text elements. Finally, we
assume that element names contain lower case letters only. This is no limitation. Also,
our JAVA-implementation includes a parser that assures this property when generating
the formal data structures.

Now, we are ready to introduce the full specification of parseBWeb. It is listed in
Fig. 11.2. We specify a tree parser that parses directory structures in three states and
calls a parser for html document titles (parseTitle) that works in two states. The
figures in the right-hand part relate parsing states of the respective parser to those areas
of a well-formed structure (w.r.t. BWeb or html format) that they parse in the respective
sate.

In state zero parseBWeb checks format requirement (1) from above (cf. Defn. 11.1.1);
the directory d must exactly contain two directories “html” and “resources” as well as a
file “index.html”. If parseBWeb succeeds in state zero it proceeds by parsing “html” and
“resources” recursively in states one and two, respectively. There, requirements (3) and
(4) are checked. Satisfaction of requirement (2) is verified by parseTitle. It remains
in state zero until a <title> element is found. If no <title> element exists, parseTitle
returns the empty set. Otherwise it returns the content of all non-empty textual content
of HTMLTextElem elements that are sub-elements of <title>.

As an advantage, the specification in Fig. 11.2 is directly operational. A working

139

140 Specifying Concepts

Table 11.2: New functions introduced for EntryPoint
Function / predicate Implementing data type

validAWeb : Website Website
validBWeb : Website Website
containsDoc : Dir× Doc Dir
containsElem : HTMLElem× HTMLContElem HTMLElem
parseBWeb : Nat× Dir× String→ Bool Website
parseTitle : Nat× HTMLElem→ Set[String] Website

JAVA implementation could be deduced easily. Yet we remain to prove correctness of
parseWeb and validBWeb. This is done in the proof of the next lemma. Also the lemma
states that websites conforming to BWeb conform to AWeb as well.

Lemma 11.1.1 (validBWeb is sound) Given a website w : Website. Then we have:

(1) validBWeb(w)⇒ validAWeb(w).
(2) validBWeb(w) ⇔ w conforms to BWeb.

2

The proof can be found in App. C.6, page 227.
This concludes the formal specification of EntryPoint. We have seen that our ADT-

based approach suits well to handle tree structures, which frequently occur in our domain.
As an example the tree parser parseWeb could be specified recursively in a straightfor-
ward way. Also, we were able to prove that it has the desired behavior. Before we briefly
explain how EntryPoint can be registered in our prototype system, we collect those func-
tions and predicates in Tab. 11.2 that have been introduced in this section. There, size
and the data type Nat are not shown; they are standard. The functions collected in
Fig. 11.2 indicate that iteration cycles between the analysis and design phase can in
general not be avoided (particularly in large projects); we had to include new datatypes.

In Fig. 11.3 we show code snippets that specify and register EntryPoint and AWeb in
our system. On the left-hand side the specification of EntryPoint starts by introducing
a new concept symbol of arity three (lines 02, 03), which is non-functional (false pa-
rameter). Again, class ArchSignature administrates all concept symbols; registration is
done in line 04. Starting at line 07, the roles of EntryPoint are registered. We use role
website as an example. It is registered at position zero in the interface of EntryPoint and
is treated like a regular variable (class VarSymbol). The type constraint (cf. Fig. 11.1)
is set in line 17. There, classes BinOpFormula and InfixPredFormula implement formulas
that include binary boolean operators (like ∧, ∨, ⇒) and binary predicates in infix no-
tation (like =, <), respectively. Also, they are sub-classes of class Formula, which is the
super-class of all types of formulas that our system supports.

The right-hand part of Fig. 11.3 lists parts of the implementation of AWeb. First,
a non-functional context symbol (class NFContext) aWeb is introduced in line 02. Having
prepared the parameter list in line 05, which consists of a variable website : Website
only, we can register the implementing formula (cf. Fig. 11.1). In particular, AWeb con-
formity validAWeb(website) is represented by an instance of class PredFormula (line 12),
which implements predicate application. The condition sourcedir = srcDir(website) is

140

11.2 The Concept AContent 141

01 // define non-functional concept symbol
02 ConceptSymbol epc =
03 new ConceptSymbol("EntryPoint", 3, false);
04 // register concept
05 asig.addConcept(epc);
06 // set roles
07 epc.setParam(0,
08 new VarSymbol(
09 "website", new TypeVarSymbol("alpha_w")));
... ...
16 // set type constraint
17 epc.setTypeConstraint(
18 new BinOpFormula(
19 DigArchiveSystem.BOOL_OPERATOR_AND,
20 new InfixPredFormula(
21 DigArchiveSystem.BOOL_OPERATOR_SUBTYPE,
22 new TypeVarSymbol("alpha_w"),
23 asig.getType("Website")
24),
25 new BinOpFormula(
... ...
35)));

01 // define non-functional context
02 ContextSymbol aWeb = new NFContext("AWeb");
03 // parameters for calling "srcDir"
04 ArrayList pars = new ArrayList ();
05 pars.add(new VarSymbol("website",
06 asig.getType("Website")));
07 // register implementation for AWeb
08 aWeb.addConceptImpl(
09 epc,
10 new BinOpFormula(
11 DigArchiveSystem.BOOL_OPERATOR_AND,
12 new PredFormula("validAWeb", pars),
13 new BinOpFormula(
14 DigArchiveSystem.BOOL_OPERATOR_AND,
15 new InfixPredFormula(
16 DigArchiveSystem.BOOL_OPERATOR_EQUAL,
17 new VarSymbol("sourcedir",
18 asig.getType("Dir")),
19 new FunTerm("srcDir", pars)
20),
21 new InfixPredFormula(
... ...
25))));

Specification of EntryPoint Specification of AWeb

Figure 11.3: Specification and registration of EntryPoint and AWeb

implemented at line 15. There, class FunTerm represents terms including function appli-
cation (like srcDir(website)). When evaluating these terms, function calls are delegated
to the respective JAVA methods that have been registered in advance.

11.2 The Concept AContent

The specification of AContent is shown in Fig. 11.4. Recall that AContent is func-
tional and models content abstraction for non-html files (context DocC), html files
(HtmlDocC), and directories (DirC). The upper left-hand part of Fig. 11.4 shows
matches for AContent in our example website. Later on, we will use AContent to spec-
ify content preservation for these types of containers. In general, the interface (upper
right-hand part of Fig. 11.4) permits arbitrary return types (αt<Top).

Recall that content of html-files is to be preserved “as far as possible” only. In partic-
ular, html links will change during the transformation process. Therefore, we introduce
an explicit abstraction function abstrContElem : HTMLContElem→ HTMLContElem. The
induced preservation scheme is shown in the bottom right-hand part of Fig. 11.4. When a
source element of type HTMLObjElem (i.e., an <a> element in our example) is transformed
to a new HTMLObjElem, its content is to be preserved under abstraction abstrContElem;
the results of applying abstrContElem to the source and target element must be equal.
In Fig. 11.4 we already indicate that abstrContElem sets the value of the href attribute
to ““ when applied to an <a> element. All other parts remain unchanged. The specifi-
cation follows shortly.

Analogously, directory content is abstracted (lower left-hand part of Fig. 11.4); the
implementation of DirC uses a function abstrContent : HTMLDoc → AbstrDir, which
returns a tree-like structure (AbstrDir) that contains no files anymore. Recall that non-
html and html content is strictly separated in BWeb. Directory structures in the source
and target model will, thus, not be fully equal. The pure directory structure (containing

141

142 Specifying Concepts

source

calc.pdf

start.html
calc05

index.html

Calculation Calculation

container

container

container

AContent[DocC]

AContent[HtmlDocC]

AContent[DirC]

calc05

Calculation

calc.pdf

resources

source

start.html

137.193.60.82

Calculation

htmlindex.html resources

Calculation Calculation
website

source dir

home page

EntryPoint
[AWeb] [BWeb]

<some IP address>

concept AContent =

begin
Interface:

〈container : αc〉 → αt

αt<Top ∧ αc<DObj
Context HtmlDocC:
ιHtmlDocC abstrContElem(content(container))
Context DirC:
ιDirC abstrContent(container)
Context DocC:
ιDocC content(container)

end AContent;

<a href=
"http://..."/>

<10010101>

<a href=
"./source..."/>

<10010101>
overview

doclist.html

overview

overview calc.pdf calc.pdf

<10010101>

Abstraction by abstrContElemAbstraction by contentAbstraction by abstrContent

HTMLObjElemHTMLObjElemDir Dir Doc Doc

Seq[Byte]AbstrDir

AContent[HtmlDocC]AContent[DocC]AContent[DirC]

source target

HTMLElem

source targetsource target

Figure 11.4: Specification of concept AContent

no files), however, is to be preserved. Both AbstrDir and abstrContent will be specified
at the end of this section.

As we require preserving the bit-wise content of non-html files, DocC is implemented
by content(container); container is of type Doc, and abstraction is done by content.
The scheme is shown in the lower middle part of Fig. 11.4. File content is indicated by
bit sequences. Abstraction is to extract this bit sequence here; the return type is set to
Seq[Byte].

Abstraction as shown in Fig. 11.4 is a general design pattern in our approach: Define
a datatype that abstracts from certain parts of the original datatype and specify related
abstraction functions for the source and target context. The abstracted content then
can be specified to be preserved using functional preservation constraints.

Specifying Abstraction of Html Content

Html content may change as we require websites in BWeb to contain relative links only.
Other changes than that, however, are not accepted. The specification of abstrContElem
in Fig. 11.5 defines a suitable class of abstraction functions and implements the preser-
vation scheme in the lower right-hand part of Fig. 11.4. First, all basic content (text,
CDATA, and comment elements) is preserved by abstrContElem. If e has complex con-
tent (i.e., e is an instance of HTMLElem or HTMLObjElem), abstraction is delegated to
abstrElem. There, we treat abstraction of <a> elements separately. If e is an <a> ele-
ment, attributes other than href have to be equally included in the abstracted element
(cf. abstrAttr). The values of href attributes, however, are set to ““.

142

11.2 The Concept AContent 143

Specification for abstrContElem : HTMLContElem→ HTMLContElem:

∀e : HTMLContElem • ¬instHTMLElem(e)⇒ abstrContElem(e) = e ∧
∀e : HTMLElem • abstrContElem(e) = abstrElem(e)

Specification for abstrElem : HTMLElem→ HTMLElem:

∀e : HTMLElem • ¬instHTMLObjElem(abstrElem(e))∧
name(abstrElem(e)) = name(e)∧
(name(e) = “a“⇒ ∀a : HTMLAttr • abstrAttr(a) ∈ attrs(abstrElem(e))⇔ a ∈ attrs(e))∧
(name(e) 6= “a“⇒ ∀a : HTMLAttr • a ∈ attrs(abstrElem(e))⇔ a ∈ attrs(e))∧
∀i : Nat • get(content(abstrElem(e)), i) = abstrElem(get(content(e), i))

Specification for abstrAttr : HTMLAttr→ HTMLAttr:

∀a : HTMLAttr • ((name(a) 6= “href“⇒ abstrAttr(a) = a) ∧
(name(a) = “href“⇒ abstrAttr(a) = HTMLAttr(“href“, ““))

Figure 11.5: Abstraction functions for html content

Apart from references in <a> elements, abstrContent : HTMLDoc → HTMLElem also
abstracts from object identity; abstrElem does not contain any HTMLObjElems. Other-
wise, the abstracted content of a source and target document could not be equal; object
IDs before and after a transformation are different.

Notice that preservation of html content w.r.t. abstrContElem does not assure that
link anchors of the source document occur at the same position in the target document.
This structural property will be modeled by Contains and Neighbor later on.

Recall that we want to preserve a website’s title (requirement (5) in Fig. 8.1). When
specifying concept EntryPoint in Sect. 11.1 we have already introduced the function
parseTitle. When applied to an HTMLElem e it returns a set of strings corresponding
to the content of all text elements that occur as sub-elements of a <title> element in
e. Since abstrContElem changes no text elements and no <title> elements, it preserves
the result of parseTitle; preserving the content of an html file w.r.t. abstrContElem
includes preserving the title of that file. This will be important when preserving website
titles later on (preservation requirement (5)).

Specifying Abstraction of Directory Structures

According to preservation requirement (9), directory and file structures have to be pre-
served. In particular, the source directory structure is to be duplicated; one copy is
appended to the “html” directory and one is appended to the “resources” directory of the

Specification of AbstrDir: Specification of abstrContent:

type AbstrDir<{Top} =
begin

constr
ˆ
AbstrDir : String× Set[AbstrDir]→ @

ops

»
name : @→ String

subDirs : @→ AbstrDir

axioms

24 ∀n : String, sd : Set[AbstrDir]
name(AbstrDir(n, sd) = n)∧
subDirs(AbstrDir(n, sd) = sd

end AbstrDir;

∀d : Dir •
name(abstrContent(d)) = name(d)∧
∀d′ : Dir •

abstrContent(d′) ∈
subDirs(abstrContent(d))⇔

d′ ∈ subDirs(d)

Figure 11.6: AbstrDir and specification of abstrContent

143

144 Specifying Concepts

Table 11.3: New functions introduced for AContent
Function / predicate / type Implementing data type

abstrContElem : HTMLContElem→ HTMLContElem HTMLContElem
abstrElem : HTMLElem→ HTMLElem HTMLElem
abstrAttr : HTMLAttr→ HTMLAttr HTMLAttr

AbstrDir
abstrContent : Dir→ AbstrDir Dir

target website. Since html- and non-html content is separated, our abstraction function
considers directories only; preservation of file containment will be covered by concept
Contains later on.

Abstracted directories will have type AbstrDir, which is specified in the left-hand
part of Fig. 11.6. Type AbstrDir abstracts from object IDs and file-related content
of directories; it merely stores directory names and sub-directories of type AbstrDir.
The specification of abstrContent in the right-hand part of Fig. 11.6 is straightfor-
ward in this respect; whenever abstrContent(d) = abstrContent(d′), d and d′ have
equal names and contain equally named directories. It is easy to see that preserving
abstrContent for a given directory implies preserving the name as well. In formal
terms, AContent(d)[DirC] ⇒ Name(d)[DirN] holds for all d; we need not check name
preservation explicitly later on.

Again, we conclude the section by listing those data types and functions in Tab. 11.3
that have newly been introduced.

11.3 The Concept Contains

The specification of Contains is shown in Fig. 11.7. Contexts CDir and CDoc implement
direct directory / file containment. CDirRec covers recursive directory containment. It
calls containsDir, which works similar to containsDoc.

Contexts CDirHtml and CDirRes are particularly relevant for websites conforming
to BWeb. When specifying preservation requirements later on, these contexts will be
used as shown by the upper two visualizations in the left-hand part of Fig. 11.7. Our
migration algorithm is required to generate two new versions of each directory of the
source website — one copy for “html” and one copy for “resources”. This yields two
constraints:

(1) Whenever a directory is contained in the source directory of the source website
(CDirRec), in must be contained in the “html” directory of the target website
(CDirHtml, cf. upper visualization in Fig. 11.7).

(2) Whenever a directory is contained in the source directory of the source website
(CDirRec), in must be contained in the “resources” directory of the target website
(CDirRes, cf. middle visualization).

In the implementation of CDirRec we use a function getSubDirByName. When applied
to a directory d, it returns the direct sub-directory of d, that has the respective name.
If such a directory does not exists, getSubDirByName is undefined.

The contexts CHtmlElem and CElemElem deal with structure of html content. The
former implements recursive element containment in an html document as is shown by

144

11.4 The Concept Neighbor 145

calc05

parent

child

Calculation

resources

calc05

parent

child

Contains
[CDirRec] [CDirHtml]

Calculation

html

parent

child

Contains[CHtmlElem]

calc05

source

calc05

source

Contains
[CDirRec] [CDirRes]

<html>

<body>

...
<a>

...

...

start.html

left

right

Neighbor[NHtmlElem]
<html>

<body>

...
<a>

...

......

<a>

concept Contains =

begin
Interface:

〈parent : αp, child : αc〉
(αp<Dir ∧ (αc<Dir) ∨ αc<Doc)∧
((αp<HTMLDoc ∨ αp<HTMLObjElem)∧
αc<HTMLObjElem)

Context CDir:
ιCDir child ∈ subDirs(parent)
Context CDoc:
ιCDoc child ∈ subDocs(parent)
Context CDirRec:
ιCDirRec containsDir(parent, child)
Context CDirHtml:
ιCDirHtml containsDir(

getSubDirByName(
parent, “html“),

child)
Context CDirRes:
ιCDirRes containsDir(

getSubDirByName(
parent, “resources“),

child)
Context CElemElem:
ιCElemElem containsElem(parent, child)
Context CHtmlElem:
ιCHtmlElem containsElem(parent, child)

end Contains;

Figure 11.7: Specification of concept Contains

the lower visualization in Fig. 11.7; the latter covers recursive element containment in
HTMLElems. Both use a predicate containsElem for this purpose.

In Tab. 11.4 we show the signatures for the newly introduced functions of Fig. 11.7.
All specifications are straightforward realizations of the functionalities described above
and are omitted for brevity. Yet notice that getSubDirByName only works because all
names of all sub-directories are mutually distinct (cf. Sect. 9.1).

11.4 The Concept Neighbor

The specification of Neighbor is shown if Fig. 11.8. In our example it occurs in the
pattern visualized in the left-hand part; we trace <a> elements only. The implementation
of NHtmlElem uses the predicate isNeighbor the specification of which is shown in the
bottom part of Fig. 11.8. It returns true iff e′ is located somewhere below e in the
html tree w.r.t. some parent element pe. This seemingly complicated implementation is
necessary as we trace html structures only partly.

Table 11.4: New functions introduced for Contains
Function / predicate / type Implementing data type

getSubDirByName : Dir× String→ Dir Dir
containsDir : Dir× Dir Dir
containsElem : HTMLDoc× HTMLElem HTMLDoc
containsElem : HTMLElem× HTMLContElem HTMLContElem

145

146 Specifying Concepts

calc05

parent

child

Calculation

resources

calc05

parent

child

Contains
[CDirRec] [CDirHtml]

Calculation

html

parent

child

Contains[CHtmlElem]

calc05

source

calc05

source

Contains
[CDirRec] [CDirRes]

<html>

<body>

...
<a>

...

...

start.html

left

right

Neighbor[NHtmlElem]
<html>

<body>

...
<a>

...

......

<a>

concept Neighbor =
begin
Interface:

〈left : αl, right : αr〉
αl<HTMLObjElem∧
αr<HTMLObjElem

Context NHtmlElem:
ιNHtmlElem isNeighbor(left, right)∨

isNeighbor(right, left)
end Neighbor;

Specification for isNeighbor : HTMLContElem× HTMLContElem:
∀e, e′ : HTMLContElem • isNeighbor(e, e′)⇔
∃i, j : Nat, pe : HTMLElem •

i 6= j ∧ e = get(content(pe), i)∧
(e′ = get(content(pe), j) ∨ containsElem(get(content(pe), j), e′))

Figure 11.8: Specification of concept Neighbor

Notice that the relative positioning of link anchors within a given html document is
uniquely determined by Neighbor and Contains; preservation of these two concepts, thus,
means preserving the link positioning within html documents.

11.5 The Concept LinksTo

A general approach to incorporating graph-based querying has been introduced in Chap. 7
already. Html linking is an instance thereof. In Chap. 7 we have particularly introduced
a grammar for well-formed URLs, the graph specification scheme for querying directory
structures, and an example link automaton for absolute URLs. Therefore, we do not
recapitulate the single parts here, but directly switch to the specification of LinksTo in
Fig. 11.9. The contexts AbsURI and RelURI are visualized in the left-hand part. The
shaded areas indicate that a server is included whenever AbsURI is matched. In contrast,
relative URIs (RelURI) navigate relative to the link source.

For the sake of simplicity, we merely cover links in <a> elements and relative links
containing no leading / (right-hand part of Fig. 11.9). Thus, both ιAbsURI and ιRelURI
require the link anchor to have name “a“. Also, it must be in the content of the link
source. If this is true, both contexts use different acceptance conditions of the underly-
ing automata. Concerning AbsURI, the predicate acceptsIn(ha, ref, trg) is true iff the
automaton ha accepts the word ref in a final state with semantics trg when starting at
an arbitrary initial state. There, AbsURIAutomaton(existDObj) constructs a dominated
product automaton that

• recognizes valid absolute URIs as has been explained in Chap. 7 and
• contains existing objects as states only.

In particular, we have used the graph specification in Fig. 7.4 on page 113. As automata
are standard, we do not explicitly introduce the specification for DomProductAutomaton,
which handles dominated product automata in our system. Notice, however, that both,

146

11.5 The Concept LinksTo 147

<html>

<body>

...
<a>

...

start.html

source

start.html

137.193.60.82

Calculation

htmlindex.html resources

Calculation Calculation
website

source dir

home page

EntryPoint
[AWeb] [BWeb]

source

137.193.60.82

overview

doclist.html

source

anchor

target

LinksTo
[AbsURI] [RelURI]

Calculation

htmlindex.html

overview

doclist.html
...... ...

...

...

<a>

Specification for getAttrByName

∀e : HTMLElem, n : String, a : HTMLAttr •
getAttrByName(e, n) = a⇔

(a ∈ attrs(e) ∧ name(a) = n)

concept LinksTo =

begin
Interface:

〈source : αs,anchor : αa, target : αt〉
αs<HTMLDoc ∧ αa<HTMLObjElem ∧ αt<Doc

Context AbsURI:
ιAbsURI name(anchor) = “a“∧

containsElem(source, anchor)∧
acceptsIn(

AbsURIAutomaton(existObj),
value(

getAttrByName(anchor, “href“)),
target)

Context RelURI:
ιRelURI name(anchor) = “a“∧

containsElem(source, anchor)∧
∃d : Dir •
source ∈ subDocs(d)∧
accepts(

RelURIAutomaton(existObj),
d,
value(

getAttrByName(anchor, “href“)),
target)

end LinksTo;

Figure 11.9: Specification of concept LinksTo

AbsURIAutomaton and RelURIAutomaton are subtypes of DomProductAutomaton; we
implement graph specification schemes by refining DomProductAutomaton. As automata
are regular datatypes, concept specifications remain short and readable (cf. Fig. 11.9);
at the same time, we do not loose the constructive semantics of automata.

Since servers are initial states in AbsURIAutomaton, acceptsIn does not need an
explicit source node for being evaluated. The function getAttrByName selects the href

attribute and is specified in the lower left-hand part of Fig. 11.9. It is undefined if no
suitable attribute exists. This specification works since we have required attribute names
to be mutually distinct.

Relative links are evaluated w.r.t. a concrete source object, which is implemented
by accepts. There, accepts(ha, src, ref, trg) holds iff there is a run in ha starting at
an initial state with semantics src and ending at a final state with semantics trg while
recognizing ref . Hence, LinksTo(src, anc, trg)[RelURI] holds if the value of the href

attribute of anc leads from the parent directory of src to trg.
Notice that ιAbsURI and ιRelURI instantiate AbsURIAutomaton and RelURIAutomaton,

respectively, using existDObj. This is inefficient if done each time LinksTo is evaluated.

Table 11.5: New functions introduced for LinksTo
Function / predicate / type Implementing data type

AusURIAutomaton, RelURIAutomaton<DomProductAutomaton
AusURIAutomaton : Set[DObj]→ AbsURIAutomaton AbsURIAutomaton

RelURIAutomaton : Set[DObj]→ RelURIAutomaton RelURIAutomaton

acceptsIn : DomProductAutomaton× String× DObj DomProductAutomaton

accepts : DomProductAutomaton× DObj× String× DObj DomProductAutomaton

getAttrByName : HTMLElem× String→ HTMLAttr HTMLElem

147

148 Specifying Concepts

Therefore, we administrate automata iteratively (w.r.t. system evolution) on the imple-
mentation level. This is a built-in feature of our prototype implementation. Future work
might include formal integration of this feature into our framework. We conclude by list-
ing those datatypes, functions, and predicates in Tab. 11.5 that have been introduced
here. On the whole, we now have all concepts available that are needed to formulate our
preservation requirements formally.

148

Chapter 12

Specifying and Checking
Preservation Requirements

Implementing concepts and contexts requires the most effort when applying our ap-
proach; technical implementation details can be challenging. In contrast, preservation
requirements hide implementation details, which keeps formulations short and readable.
In the following we provide formal preservation constraints for the running example and
evaluate runtime costs for checking our migration algorithm against these constraints.

12.1 Formal Preservation Requirements

We separate four blocks: (1) Format preservation, (2) preservation of file and directory
structure, (3) preservation of file content, and (4) preservation of link consistency.

Website Format

Website formats have been modeled by EntryPoint; the related preservation constraint
is given as follows and fully covers preservation requirement (1) of Fig. 8.1:

(1) ∀w : Website •
∀d : Dir •
∀h : HTMLDoc •

EntryPoint(w, d, h)[AWeb] ⇒ ∀©presnf (EntryPoint(w, d, h)[AWeb,BWeb])

Recall that validBWeb(w) ⇒ validAWeb(w) for all websites w (Lemma 11.1.1,
page 140). Hence, the antecedent in the implication above covers both, websites con-
forming to AWeb and such conforming to BWeb. If the source website is in format
BWeb already, no transformation is required. If it is in AWeb and not in BWeb, a
transformation is implicitly enforced. There, we require only “positive” preservation. If
EntryPoint(w, d, h)[AWeb] does not hold, we do not require preservation of that status;
we are interested in transformation results of valid websites only.

Since preservation formulas are treated as regular formulas in our prototype system,
setting them up and registering them is quite similar to concept implementations (cf.
Fig. 11.3). Therefore, we omit an explicit listing.

149

150 Specifying and Checking Preservation Requirements

Directory Structures

Directory structures are covered by AContent and Contains; we provide three preservation
formulas that — when adhered to — assure that the target website (in BWeb format)
contains the source directory structures as sub-structures of “html” and “resources”.

(2) ∀d : Dir •
¬(∃w : Website • ∃h : HTMLDoc • EntryPoint(w, d, h)[AWeb])⇒
∀©presf (AContent(d)[DirC,DirC])

(3) ∀parent : Dir •
(∃w : Website • ∃h : HTMLDoc •

EntryPoint(w, parent, h)[AWeb] ∧ ¬EntryPoint(w, parent, h)[BWeb])⇒
∀child : Dir •
∃©presnf (Contains(parent, child)[CDirRec,CDirHtml])∧
∃©presnf (Contains(parent, child)[CDirRec,CDirRes])∧
∀©presnf (Contains(parent, child)[CDirRec,CDirHtml])∨

presnf (Contains(parent, child)[CDirRec,CDirRes])
(4) ∀d : Dir •

(∃w : Website • ∃h : HTMLDoc • EntryPoint(w, d, h)[AWeb])⇒
∀d′ : Doc •

Contains[CDoc](d, d′)⇒ (∃©d′ 7→ Doc⇒ presnf (Contains(d, d′)[CDoc,CDocRec]))∧
¬(∃w : Website • ∃h : HTMLDoc • EntryPoint(w, d, h)[AWeb])⇒
∀d′ : Doc • ∃©d′ 7→ Doc⇒ presnf (Contains(d, d′)[CDoc,CDoc])

Constraint (2) requires preservation of sub-directory structures. It is applied to
those directories only that are no source directory of any website; in the other case a
change is enforced by introducing “html” and “resources”. Again, we do not enforce
transformations; constraint (2) always holds if no transformations take place.

The third constraint enforces duplication of the source structure if parent is the entry
point of a website that is valid, but not yet in format BWeb; websites conforming to
BWeb remain untouched. If parent is an appropriate directory, another directory child
is selected. If it is a sub-directory of parent, we require two traces to exist. The first
trace assures that a copy of child is made and appended to the “html” directory in the
target structure. Similarly, the second trace requires a copy for “resources”. The last two
lines of constraint (3) assure that the transformation process generates no other copies
than these two.

Preservation of direct file containment is required by constraint (4). There, some
special cases must be considered. First, we distinguish source directories of websites
(EntryPoint holds in this case) and other directories (EntryPoint does not hold). When
transforming a directory in the latter case, there must be a trace such that direct file
containment is preserved. When transforming a directory in the former case, direct
containment cannot be preserved; either d′ is located in the transformed source directory
(then d′ = h) or it is located in “html” or “resources”, respectively. Notice that d′ cannot
be located in other than these three directories as (1) all directories of the source website
have an ID (2) their transformations are traced, and (3)

(∃©d′ 7→ Dir⇒ presf (Contains(d, d′)[CDoc,CDoc]))

150

12.1 Formal Preservation Requirements 151

holds for all d that are different to the website’s source directory. In particular, a di-
rectory cannot contain a file in the target structure if its transformation source did not
contain the transformation source of that file in the source structure; “html”, “resources”
and the new website source directory are the only directories not affected by this con-
straint.

Also, notice that the prerequisite Contains(d, d′)[CDoc] is important in the first part
of constraint (4) (d is the source directory of a website). Otherwise we would prohibit
the transformation result of d′ to be recursively contained in the source directory of the
result website. This does not hold in our example.

On the whole, constraints (2) to (4) cover preservation requirements (3) and (9) of
Fig. 8.1. The detailed explanations indicate that care has to be taken as soon as case
distinctions occur. Indeed our initial formulation of constraint (4) did not meet the
intended preservation requirement.

File Contents

Here we distinguish non-html files and html files; the former are subject to bitwise content
preservation (requirement (8) in Fig. 8.1). In contrast, html content is to be preserved
under abstraction abstrContent. Also, positioning of link anchors must be maintained.

(5) ∀d : Doc • ¬instHTMLDoc(d)⇒
∀©presf (Name(d)[DocN,DocN]) ∧ presf (AContent(d)[DocC,DocC])

(6) ∀parent : HTMLDoc •
presf (AContent(parent)[HtmlDocC,HtmlDocC])∧
∀child : HTMLObjElem •
∀©presnf (Contains(parent, child)[CHtmlElem,CHtmlElem])

(7) ∀e : HTMLObjElem •
∀e′ : HTMLObjElem •
∀©presnf (Contains(e, e′)[CElemElem,CElemElem])∧
presnf (Neighbor(e, e′)[NHtmlElem,NHtmlElem])

Constraint (5) fully assures preservation requirement (8) as AContent(d)[DocC] re-
turns the bit-wise content of d. Also, it assures requirement (2) partly. Constraint (6)
assures preservation of html content w.r.t. abstrContent and html element containment.
This partly realizes requirement (7). Recall that abstrContent preserves the output of
parseTitle; constraint (6) subsumes preservation of website titles and, hence, covers
requirement (5) as well. Again, we explicitly mention that

presnf (Contains(parent, child)[CHtmlElem,CHtmlElem])

requires preservation of the status of containment; the result file must not contain html
elements that were not in the source file.

It remains to constrain positioning of link anchors. We achieve this by preserving
mutual containment and neighborship in constraint (7). There, it is important that all
link anchors are digital objects; otherwise they are not covered by constraint (7). If both
constraints (6) and (7) hold for given source and target html files, these files differ in
their html links at maximum.

151

152 Specifying and Checking Preservation Requirements

Link Consistency

Similar to format preservation, the necessary implementation work is the most challeng-
ing part; the requirement itself is easily stated and fully covers preservation requirement
(6) of Fig. 8.1.

(8) ∀src : HTMLDoc •
∀anc : HTMLObjElem •
∀trg : Doc •

LinksTo(src, anc, trg)[]⇒ ∀©presnf (LinksTo(src, anc, trg)[,RelURI])

The wildcard in the antecedent of the implication and in the non-functional preser-
vation constraint itself keeps the specification short. Recall that it causes all contexts of
LinksTo to be checked. In our example, the constraint indeed has to be applied whenever
an arbitrary link is found. The output of a link transformation, however, is constrained
to be a relative URI.

12.2 Evaluating Runtime Costs

System performance is important when aiming at practical acceptance. In general, how-
ever, high performance w.r.t. computation time and high trustworthiness of underlying
methods are mutually limiting goals. Related to our example, there are a lot of link
consistency checkers available that work quite efficiently. Yet their functional correct-
ness and reliability are difficult to estimate. Also — to the best of our knowledge —
there are no tools available that are capable of tracing object histories and checking
formal preservation requirements in the fashion described in this thesis. When standard
link consistency checkers report link consistency this does not mean preservation in our
sense; it simply reports that all found links point to valid locations.

The measurements in this section mainly reflect runtime costs of formal object tracing
and formal property checking. We are well aware that cutting down the claim for formal
correctness results in better runtime performance. However, we shall see that runtime
costs strongly depend on the implementation and formulation of preservation require-
ments; relevant model sizes and properties can be handled when using advantageous
constraint formulations.

Preparations and Test Environment

In order to have configurable test data, we have implemented a website generator that
is generic in

(1) the number d of directories,
(2) the number h of html files,
(3) the number nh of non-html files,
(4) the number l of links per html file, and
(5) the number e of additional html elements per html file.

152

12.2 Evaluating Runtime Costs 153

The underlying directory and file structure is generated randomly. Included links are
valid absolute URIs w.r.t. RFC 2396; the transformation process indeed has to generate
new relative links. Test results in the next section relate to different configurations.

All tests have been carried out on a Windows XP workstation with 1 GB RAM and
an Intel P4 CPU with 3.2 GHz. Test websites have been deployed on an Apache Web
Server version 2.2. All caching has been turned off in our system in order to achieve
unadulterated results.

The underlying migration algorithm has been introduced in Chap. 10. As it is im-
plemented in our functional language, it is operational immediately in our system. In
general, however, the underlying migration algorithm has to be connected to our sys-
tem. There, transformations are executed using registered transformation classes; each
single transformation step must be communicated. Tracing has to be activated in ad-
vance. Upon completion of the transformation, constraint checking has to be activated;
this immediately starts constraint checking and report generation. The resulting report
contains a detailed summary of elapsed time (for each single constraint) and constraint
violations; violations always refer to concrete object IDs.

Test Configurations and Results

On the whole we have set up three test scenarios. We deal with each of them separately
in the following subsections.

Scenario One

In our example LinksTo is computationally the most complex concept; we exclude it for
the time being and consider it separately in the subsequent scenarios.

Here, we compare computation times for checking preservation constraints (1) to (7)
w.r.t. different website configurations. The results are shown in Fig. 12.1.

The x− and y− axis carry the used website configuration and the time in seconds,
respectively. Website configurations are denoted as tuples (d, h, nh, l, e) as described in
the last section. Hence, the website for the left-most configuration contains 50 directories,
50 html files, 100 non-html files, 50 links (one per html file), and an additional load of
100 html elements per html file. From left to right we have increased configurations by
50 directories, 50 html files, and 100 non-html files in each step; as the number of links
and the number of additional html elements are defined per file, their amount increases
accordingly. This constantly increases the overall number of objects in the system by
250. Website sizes range from 0, 5MB to 3, 5MB.

The top-most line in Fig. 12.1 shows the overall computation time. This time in-
cludes tracing, evaluation times for constraints (1) to (7), and system overhead (recall
that our system assures some invariants). It does not include parsing (i.e., generating
the formal website model) and serializing the transformation result. While constraint
(5) (preservation of name and content of non-html files) requires the least computation
time, constraints (6) (html file content AContent,Contains), (4) (direct file containment
Contains), and (7) (structure of html content Contains,Neighbor) are the most time con-
suming ones. This is not surprising; they include non-functional preservation constraints

153

154 Specifying and Checking Preservation Requirementssetup1

Seite 1

(50, 50, 100, 1, 100) (100, 100, 200, 1, 100) (150, 150, 300, 1, 100) (200, 200, 400, 1, 100) (250, 250, 500, 1, 100) (300, 300, 600, 1, 100)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Constraint (1)
Constraint (2)
Constraint (3)
Constraint (4)
Constraint (5)
Constraint (6)
Constraint (7)
Overall

configuration

tim
e

in
 s

ec
on

ds

Figure 12.1: Runtimes for constraint checking, excluding LinksTo

the arguments of which are universally quantified. A considerable number of matches
can be found in the respective models.

The overall behavior is linear w.r.t. the number of objects in the system. Indeed, we
do not expect runtime performance to behave better than that; constraints (1) to (7)
cover all parts of the source and target website. In Tab. 12.1 we show detailed results
for the overall performance. There, we relate configurations #1 to #6 to the resulting
number of objects in the system and the overall evaluation time for constraints (1) to
(7) (cf. Fig. 12.1). In particular, we evaluate two quotients: The first one divides the
number of objects for configuration i by the number of objects for configuration i − 1.
The other one relates evaluation times for configuration i and i − 1. On average, the
overall evaluation time grows with factor 1, 32 compared to the growth of number of
objects in the system (cf. last column of the table). This factor contains two sources of
overhead — system overhead and redundancy in the preservation constraints. Neverthe-
less, the results confirm the expected linear correlation between model sizes and overall
computation times. Also, we conclude that constraints (1) to (7) contain acceptable
redundancy as, otherwise, the factor 1.32 would be worse.

Table 12.1: Overall performance excluding LinksTo
Configuration Objects in system Time Quotient 1 Quotient 2 Factor

#1 : (50, 50, 100, 1, 100) 250, 00 0, 87 − − −
#2 : (100, 100, 200, 1, 100) 500, 00 2, 4 2, 00 2, 76 1, 38
#3 : (150, 150, 300, 1, 100) 750, 00 5, 17 1, 50 2, 16 1, 44
#4 : (200, 200, 400, 1, 100) 1000, 00 8, 74 1, 33 1, 69 1, 27
#5 : (250, 250, 500, 1, 100) 1250, 00 13, 2 1, 25 1, 51 1, 21
#6 : (300, 300, 600, 1, 100) 1500, 00 20, 45 1, 20 1, 55 1, 29

average: 1, 46 1, 93 1, 32

154

12.2 Evaluating Runtime Costs 155
setup2

Seite 1

50 100 150 200 250
0

2,5
5

7,5
10

12,5
15

17,5
20

22,5
25

27,5
30

Performance of original implementation

link evaluation
link genera-
tion
administration
overall

number of links

tim
e

in
 s

ec
on

ds

setup3

Seite 1

50 100 150 200 250 300
0

0,25

0,5

0,75

1

1,25

1,5

1,75

2
Performance of improved implementation

link evaluation
link genera-
tion
administration
overall

number of links

tim
e

in
 s

ec
on

ds

Figure 12.2: Performance for link processing w.r.t. original and improved implementation

Scenario Two

As explained in Chap. 7, link consistency represents a broad and relevant class of prop-
erties in our application domain. Among others, our methods can be used to gener-
ate document layout, document structures, and other graph-related queries like XPath.
Therefore, we examine the computational behavior w.r.t. LinksTo in detail in the follow-
ing two scenarios.

Compared to the other concepts, LinksTo potentially has the most matches in our
example. A website of configuration (d, h, nh, l, e) has h · l ·(h+nh) potential matches for
LinksTo; in configuration #1, e.g., 50 ·150 = 7500 checks are performed when computing
the antecedent of constraint (8). This results in high runtime costs as is shown in the
left-hand part of Fig. 12.2. There, we have used configuration #1 as a starting point
and increased the number of links per html file by one in each step. This resulted in 50
links in the smallest configuration and 250 links in the largest one. Also, we have used
formal link evaluation and link generation techniques as explained in Chap. 7.

The top-most line in Fig. 12.2 shows the overall computation time. It includes (from
top to bottom) times for formal link evaluation, link generation, and administration of
link automata. There, the administrative overhead for link automata is negligible; it is
a constant factor since the model size does not change. Also, link generation shows the
expected performance; generating 250 links in this (comparatively small) model took
0, 75 seconds.

In contrast, link evaluation shows poor performance, which results in unacceptable
runtimes for configurations #2 to #5. While the functional behavior is linear w.r.t. the
number of links in the system, link evaluation took 26, 84 seconds in the largest model.
This is due to the high number of needless tries; in the largest model (250 links), our
system performed more than 100000 link evaluations.

On the right-hand side of Fig. 12.2 we show the performance when using the follow-
ing constraint, which is equivalent to constraint (8) but minimizes the number of link
evaluations:

155

156 Specifying and Checking Preservation Requirements

(8’) ∀src : HTMLDoc •
∀anc : HTMLObjElem • anc ∈ contentElems(src)⇒
∀trg : Doc • trg ∈ linkTargets(src, anc)⇒
∀©presnf (LinksTo(src, anc, trg)[,RelURI])

There, two standard techniques are used, the benefit of which has been pointed out
in related works already (e.g., [Sch04]). First, we use set-valued functions contentElems
and linkTargets that compute those combinations of src, anc, and trg that definitely
match LinksTo. In particular, contentElems returns all <a> elements (recall: we trace
no other html elements than these) and linkTargets(src, anc) returns a set containing
exactly those documents anc points to; in our example this set is empty or a singleton.
Since we support ADTs and formal specification techniques, we do not loose the formal
underpinning; we maintain a high degree of trustworthiness.

Second, quantification scopes are minimized in constraint (8’). Roughly, quantifiers
are put inward as far as possible. Also, the quantors are “guarded”, which avoids un-
necessary computations. A more sophisticated technique, which subsumes minimizing
quantification scopes, is known as miniscoping in the literature ([Wan60, de 86]).

The gain in performance is obvious in the right-hand part of Fig. 12.2. In particular,
the overall linear behavior w.r.t. the number of links in the system is confirmed and link
evaluation is less time consuming than link generation. Using constraint (8’) we reduce
the maximum number of link evaluations to 5 · 50 = 250 in the least configuration and
5·250 = 1250 in the largest of; we speak of a maximum number since wildcard evaluation
stops as soon as a match is found. Also, linkTargets checks both, relative and absolute
links. Hence, 3 · 50 = 150 and 3 · 250 = 750 link evaluations are necessary in the best
case.

Notice, however, that the techniques above are applicable only because of our tolerant
formulation of link consistency; we require existing links to be maintained but do not
care about non-existing links. If we required preservation of the latter status as well,
evaluating LinksTo for all possible combinations of link sources and link targets would
be mandatory.

Apart from that, constraint (8’) exposes implementation details of LinksTo whereas
constraint (8) does not. Therefore, we do not enforce the implementation pattern in
constraint (8’) but mark automated miniscoping for future work. Also, we admit that
performance improvements should be taken into account when planning time schedules
for developing and implementing preservation requirements; several iteration cycles may
be necessary in order to achieve acceptable runtimes.

Scenario Three

Here we check system performance when evaluating LinksTo in the configurations of
scenario one — the underlying model sizes are practically more relevant than those used
in scenario two. The results are shown in Fig. 12.3. The overall computation time
ranges from 0, 92 to 9, 47 seconds. All parts show linear behavior w.r.t. the number
of objects in the system. Concerning administrative overhead this cannot be expected
in general; it includes adapting automata to model evolutions. Link graphs, however,
are sparse, i.e., the number of edges is considerably smaller than |V |2, where |V | is the
number of vertices (cf. Fig. 7.6, page 119). Adding a file, e.g., causes a local update of

156

12.2 Evaluating Runtime Costs 157

setup4

Seite 1

(50, 50, 100, 1, 100) (100, 100, 200, 1, 100) (150, 150, 300, 1, 100) (200, 200, 400, 1, 100) (250, 250, 500, 1, 100) (300, 300, 600, 1, 100)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

8

8,5

9

9,5

Link evalutation
Link generation
Adminstration
Overall

configuration

tim
e

in
 s

ec
on

ds

Figure 12.3: Runtimes for checking LinksTo

the related automaton only; one state and one transition has to be added. The resulting
good performance cannot be expected in presence of highly connected structures. In our
application domain, however, tree structures and sparse graph structures have various
applications such that it seems to be sensitive to consider using our automata-based
methods in these areas.

Tab. 12.2 shows detailed results for the overall performance w.r.t. LinksTo. The
columns from left to right carry the following information:

Config.: The configuration.
Objects: The number of objects in the source state.
Link eval.: Overall time for link evaluation.
Link gen.: Overall time for link generation.
Quot. 1: Ratio of numbers of objects in configurations #i and #(i− 1).
Quot. 2: Ratio of link evaluation times in configurations #i and #(i− 1).
Quot. 3: Ratio of link generation times in configurations #i and #(i− 1).
Factor 1: Growth rate of link evaluation times compared to growth rate of

number of objects in the system.

Table 12.2: Overall performance for LinksTo
Config. Objects Link eval. Link gen. Quot. 1 Quot. 2 Quot. 3 Factor 1 Factor 2

#1 250 0,05 0,12 - - - - -
#2 500 0,13 0,49 2,00 2,72 3,96 1,36 1,98
#3 750 0,22 0,83 1,50 1,75 1,70 1,17 1,14
#4 1000 0,34 1,78 1,33 1,57 2,14 1,17 1,61
#5 1250 0,59 2,89 1,25 1,73 1,63 1,38 1,3
#6 1500 0,78 3,87 1,20 1,32 1,34 1,1 1,12

average: 1,46 1,82 2,15 1,27 1,51

157

158 Specifying and Checking Preservation Requirements

Factor 2: Growth rate of link generation times compared to growth rate of
number of objects in the system.

On average, link evaluation grows with factor 1, 27 (before-last column) compared to
the model size; indeed a factor close to 1 can be expected here. Link generation times
grow with factor 1, 51 (last column) on average and w.r.t. the number of objects in
the system. Again, considerable worse behavior up to O(|V |2) can be expected if the
underlying graphs (automata) are highly connected.

All in all, the above linear behavior is promising. Keeping in mind that there is still
potential for improvements, we consider the runtimes above to be acceptable. After all,
runtimes include generation and evaluation. Also, checking LinksTo in the target model
might be considered to be superfluous — we can prove that links are working and point
to the desired location when our formal link generation techniques are used.

158

Chapter 13

Summary — Costs and Benefits

On the whole, this case study together with the one conducted in [Bor07] let us conclude
the following:

• Our methods are both suitable and beneficial for our application domain. Our pres-
ervation language together with the ADT-based approach offer sufficient expressive-
ness for handling relevant classes of properties. Our automata-based approach could
be used to handle link consistency in a fully automated way.

• It is important to select those properties that are worth being treated formally as
concept specifications can require considerable effort.

• Our measurements show that moderately sized website models can be handled with
acceptable performance (largest model: 300 directories, 300 html files, 600 non-html
files, 300 html links, 100 html elements per html file).

• We assess the runtime performance to be sufficient to support the development of
transformation algorithms as tests can be conducted with models that are small,
but highly aligned.

• We advocate an interactive process when specifying preservation requirements and
implementing transformations. In our example, we found both, overspecifications
in the preservation requirements and functional errors in the transformations. The
precise reports generated by our system helped here.

The following parts provide some more details.

Datatype Specification

Basic datatype specifications (i.e., datatypes including attributes only) required minor
effort; they are related to XML data in our example and are, thus, largely standard.
Also, they are re-usable. In our application domain XML data is used frequently, be
it in digital objects themselves or as meta data. XML is tree-structured, which results
in comfortable and short data models; (recursive) ADTs are well-suited for this do-
main. Related techniques (like tree parsers) can easily be specified and implemented (cf.
parseTitle).

However, XML formats are quite “verbose”. This has brought up the necessity to
reduce the number of traced nodes in our example. Clearly, this is a general issue; need-
less tracing slows down system performance considerably. We have shown an example

159

160 Summary — Costs and Benefits

and have suggested a general design pattern for tackling this issue. Since we had to
trace <a> elements only, we have introduced an explicit object type HTMLObjElem, which
is a subtype of the basic type HTMLElem; html content has been modeled by basic types
in the first instance; only <a> elements are covered by HTMLObjElem. Our support for
multiple inheritance is important here; HTMLObjElem is a subtype of both, HTMLElem and
DObj HTMLObjElem.

The datatypes in our case study model static content only. This keeps our models
simple but neglects document dynamics; in our example, no html forms and related
actions could be modeled. Extending our framework into this direction is surely a topic
of future research.

Concept Specification

This part has been the most time-consuming one. We have propagated keeping concept
specifications short by outsourcing property checking to functions and predicates; they
are compiled in our system, which speeds up constraint checking considerably. While
the resulting concept specifications are short, specifying corresponding predicates and
functions and deriving a reliable implementation may be quite involved. We propose
to keep the step from function specifications towards running implementations small.
This supports confidence in the derived implementations but may require for formal
refinement steps. Using formal ADTs is beneficial here; refinement processes can be
supported by theorem provers and other related tools. Also, tree-like structures as they
occur in our system can naturally be handled quite well by ADTs. Due to the formal
underpinning we could, e.g., prove that our BWeb parser works correctly.

The concepts that have been identified in the case study have been quite gen-
eral. Containment Contains and other structure, content AContent, format validity, and
graph-based querying LinksTo, e.g., occur in many other contexts. This favors re-use
and decreases development times when concept libraries grow larger. Particularly, our
automata-based approach is promising. As automata are regular datatypes, concept
specifications remain short and readable. At the same time, we do not loose the con-
structive semantics. The proper choice of “semantic” non-terminals of the underlying
grammar is vital (cf. Chap. 7). In general, this requires expert-level knowledge of the
approach and of the application domain. Concerning the URI specification [Int98], how-
ever, the mapping to corresponding parts of the formal datatypes for servers, directo-
ries, and documents could be done quickly. Setting up the graph specification has been
straightforward then. Finally, the underlying automata are constructed automatically
such that specifications are operational immediately.

Implementing the Transformation Process

When implementing transformations some knowledge about our system is necessary. It is
particularly important to distinguish between object creation and object transformation.
Concept interfaces are a good indicator. Whenever objects are subject to preservation
(i.e., they match a concept), they have to be be transformed. Otherwise their histories
are not traced. This shows that, in general, specifying preservation requirements and
implementing transformations should be carried out interactively. Also, deleting objects

160

161

requires some system-related knowledge. Objects have to be deleted top-down due to
our system invariants. Whenever an object belongs to the content of another object,
it cannot be deleted. As transformations get complex, it may be useful to build up
intermediate structures. There, it can be quite involved to determine when corresponding
objects can be deleted. We faced this issue when implementing our example algorithm.
While support in this respect is surely desirable in future extensions, we argue that the
importance of assuring object immutability outweighs the just-described difficulties.

Apart from that, our transformation algorithm has benefited from the model con-
struction facilities of our automata-based approach; links could be generated automat-
ically. There, access to the dynamic parts of our system is vital; link automata had to
be instantiated w.r.t. existDObj.

Constraint Formulation

The concise requirements formulations in Chap. 12 satisfy our demand for readability.
To our experience, however, constraint formulation gets involved when case distinctions
come into play. Different variants of directory and file containment resulted in different
preservation requirements in our example; the resulting constraints (3), (4) were not
easy-to-formulate. Yet these constraints have helped in developing the transformation;
a functional error could be found in earlier versions of the algorithm. Clearly, formal
constraint formulation is a task for experts.

Concerning runtime costs, non-functional preservation constraints tend to be more
time-consuming than functional preservation constraints; link consistency and contain-
ment (in different variants) were the most expensive properties. There, performance
improvements can be achieved by using advantageous implementations. Three potential
techniques for gaining efficiency are:

(1) Use functions and predicates to determine properties.
(2) Miniscope constraints.
(3) Combine constraints.

The potential performance gain when using techniques (1) and (2) has been shown us-
ing link consistency. Yet, miniscoping exposes implementation details, which may be
declined by users. Combining constraints reduces evaluation overhead as variables and
terms can be shared. It, however leads to less detailed reports and less readable speci-
fications. We are, however, confident that both demerits can be overcome in future by
automated constraint pre-processing. There are, e.g., techniques for automated minis-
coping [de 86].

161

Part V

Conclusions

162

Chapter 14

Related Work

Before we discuss related work, we summarize the most relevant properties that, put
together, distinguish our approach:

• Our system has a coherently formal underpinning. This includes object types, a
notion of object content, system states, state changes, preservation requirements,
and a functional language for implementing migration algorithms.

• Despite the formal underpinning, our system is fully implemented.
• Our approach is declarative — we abstract from concrete transformation approaches.
• We sacrifice decidability for expressiveness; concept and requirements specification

base on full First Order Logic.
• Objects are immutable; new versions can be created by transformations only. This

property is provably guaranteed by our system.
• Our approach is independent from particular object formats and technologies for

describing such (like XML Schema, XML DTDs). Also, we support user-defined
functions and predicates.

• We trace object histories using a well-defined transformation operation; object his-
tories need not be part of the model for digital archives.

• Preservation requirements relate to object histories, concepts, and contexts. Con-
cepts are used like predicates and, thus, hide their implementation; this supports
re-use and readability.

In the following sections we discuss related work in detail.

14.1 Migration in Digital Archives

The Reference Model for Open Archival Information Systems (OAIS, [Con02]) is widely
accepted nowadays as a reference model for Digital Archives. It introduces basic termi-
nology, provides an abstract information model for digital objects, includes an organi-
zational model for DAs, defines a basic functional model for processes that run inside
DAs, and describes concrete preservation methods like migration. These aspects bear
general conditions of the application domain that drove our research. In particular, this

163

164 Related Work

reference model can be used to classify our approach: We support Preservation Plan-
ning in expressing their preservation requirements and provide automated support for
the Administration in checking whether the migration results meet these requirements.
There, we can handle content migration and partly support model construction.

In [SRR+06, SBNR07] a test bed for evaluating preservation strategies is introduced.
It defines an environment for repeatable experiments in standardized laboratory set-
tings. This particularly includes a workflow of how to conduct experiments. This test
bed underlines the necessity for a well-founded methodology for evaluating preservation
procedures. Our methodological approach to the case study has been influenced by the
workflow introduced in [SRR+06]. Also, the preservation-centric view and integration
into existing environments are design goals that go back to these works. Apart from that,
earlier case studies carried out using the test bed have shown that preserving text-based
formats like e-mail can be handled well by migration [Dig01]. In contrast, preserving
dynamic media is stated to be better-handled by emulation; this drove our decision to
exclude dynamic documents. We are convinced that the formal underpinning and our
preservation language are well-suited for being integrated into this test bed.

14.2 Migration and Transformation in Other Contexts

As model transformation has applications in many other areas like model-driven soft-
ware development (MDD) or automated knowledge exchange [FP00, RSV04, SKB06,
PHS+06], many approaches exist in this respect. When applied, transformations usually
are designed to preserve certain properties. In MDD, e.g., abstract models are trans-
formed into more specific ones while preserving the behavior of the specified software
system [MCG05].

QVT [Obj05] is an OMG standard and defines a standard way to transform models
that conform to given MOF-based meta models. There, the QVT language integrates
the OCL 2.0 standard [GRB03, Ric02] for selecting model entities. Apart from included
model mapping languages, QVT can be used declaratively and supports the so-called
QVT/BlackBox mechanism. The latter can be used to invoke transformations that are
expressed in other languages like XSLT or XQuery. For each transformation step, QVT
generates a so-called trace instance; tracing is supported by this system and can be used,
e.g., for model synchronization. Hence, we share some important concepts with QVT:
(1) The declarative style, (2) independence of concrete transformation approaches, and
(3) facilities for object tracing. Our system, however, includes a notion of object con-
tents and a preservation language. We can check object traces w.r.t. given preservation
requirements. Also, our approach is MOF-independent.

Database migration is a widely examined research field; a literature research has been
conducted in [Bar04]. In [MDM+94] technologies and methods are discussed for han-
dling hierarchically structured data by relational databases; [AFL02, BFM05] deal with
XML serialization of database content. As XML serialization is an important approach
to preserving databases, this can directly be transferred to our application domain. Both
applications particularly show that migrations require for approaches that do not rely
on specific technologies for representing digital objects. We argue that our ADT-based
approach offers sufficient flexibility here. Apart from that, schema transformation ap-

164

14.2 Migration and Transformation in Other Contexts 165

proaches are widely practiced in database migration as well. Usually the physical data
itself is not transformed, but queries are translated from the new schema to the old one.
Reversible transformations and decidability of the underlying transformation approach
are of major interest [MP99, Hai05]. The former allows for bi-directional mappings;
the latter assures automation. Although reversible transformations are desirable in our
setting as well [GW05, Con02], they cannot be expected in large-scale projects like doc-
ument format transformations. However, our state-based approach naturally allows for
rollbacks if the original objects are kept. Both together drove our decision to sacrifice
decidability for expressiveness. We do not primarily aim at generating transformations
but focus on verifying adherence to given preservation requirements.

Although our approach is independent of a particular transformation approach, some
basic concepts have been adapted from application-independent methodologies that exist
in this area. First, diverse variants of graph transformation [Grz97, SWZ99, EGdL+05]
exist for automating model transformations. In particular, approaches like [SWZ99] offer
control mechanisms. This results in executable specifications. In [KK96] a unified theory
for graph transformation is introduced. Basically, matches are comparable to concept
matches in our setting. We adapt the basic idea to match the left-hand side of a “rule”
(concept) in the source context and integrate the right-hand side into a target context.
However, we use concepts as a means of abstraction. Concept interfaces allow for “selec-
tive” tracing and do not cover the whole context. Also, we use an explicit transformation
operation and embed migrations into an archival context. In [KK96], transformations
are modeled by rule application. Although control mechanisms like“iterated application”
guide the transformation process, explicit tracing is not supported. However, integrating
control features may be beneficial for our approach as well. There, theoretical approaches
of [KK96] like the “interleaving semantics” of graph transformations are interesting for
future work. Object tracing in conjunction with graph transformation is examined in
[MDJ02, MEDJ05]. There, Mens et al. use tracking functions in the context of behavior
preserving model refactorings. Tracking functions relate vertices of source and target
graphs. That way sequential rule applications can be traced back and preservation-
oriented proofs can be conducted. We have adapted this technique to our needs; traces
relate interface objects that are subject to preservation constraints. Yet we use an ex-
plicit transformation operation whereas Mens et al. annotate graph rewriting rules by
tracking functions.

Second, ontology mapping approaches [KS03, SM01, ES07] have been subject to
increasing interest over the past decade. This resulted in growing tool support [GYS07,
LS06]. Early applications comprise knowledge exchange and database migration. In
the meantime, approaches like [HC04, FBR06] have been used in digital archiving as
well to detect automatically when objects are outdated and to propose appropriate
preservation strategies. We particularly adapt the notion of a concept, which describes
semantic relationships in ontologies as well. However, ontology mapping is usually based
on decidable description logics so as to support automation. We, however, need more
expressive logics in order to describe sophisticated document formats (like XML Schema
[Wor01]). Apart from that, the constructor-based approach of ADTs is more suitable for
tree- or graph-based formats which frequently occur in our domain. However, ontologies
are surely interesting during the concept identification phase of our approach. Also,

165

166 Related Work

exchanging concept specifications between different archives may require for concept
mappings; in different archives, different concept hierarchies may have evolved that cover
similar properties. These considerations open interesting topics for future research.

14.3 Notions of Preservation

Formal notions of preservation can be found in different variations throughout the rele-
vant literature [MCG05, Por05, Grz97, WO00, ADK06]. Refinement, e.g., usually means
a reformulation of system properties in the same language such that the newly specified
system inherits all properties of the former system [MCG05]. The Typed Object Model
(TOM, [WO00]), e.g., fully bases the notion of object preservation on refinement. The
system is discussed in more detail in Sect. 14.5. Although we explicitly support re-
finement using formal ADTs, basing preservation purely on refinement seems to be too
restrictive. We rather prefer to keep the degree of formality (trustworthiness) scalable.

In node replacement approaches of graph transformation, authors usually speak of
preservation w.r.t. those nodes and edges of the source graph that are not affected by a
rule application [Grz97]. However, usually node/edge identity is required, which is too
restrictive for our purposes. As has been shown in [MEDJ05], explicit object tracing is
required in order to reason about “functional” preservation.

In [ADK06] preservation of FOPL formulas under model homomorphisms is studied
with applications to database queries. In principle, we use homomorphisms as well;
source and target models are abstracted to concept interfaces. The semantics of object
abstraction, however, is user-defined in our system. In particular, abstraction functions
can be specified formally. We favor this approach as it does not introduce an inherent
formal notion of preservation; the user has to implement “preservation” himself while we
check this property w.r.t. different versions of given objects.

Semantic values have been introduced in [SSR94]. They are to enable interoperability
between different database systems. A semantic value is a concrete value together with
a context. Contexts describe a set of properties that apply to that value and, thus,
can be understood as meta data. They guide transformers that are used to interpret
semantic values in concrete systems. As an example, the value 1.25 together with the
context Currency = US − Dollar forms a semantic value. It may be interpreted in
countries other than the US by transforming it to the local currency. We have adapted
the basic idea to permit different representations for semantic objects. Semantic values
can be compared to digital objects in our system. In both approaches transformations
(“conversions” [SSR94]) have to preserve semantics. In [SSR94] source and target object
have to be comparable w.r.t. a reference context. This very much corresponds to the
notion of preservation in TOM (type abstraction) and can be implemented in our system
as well. The approach in [SSR94], however, does not support semantic relationships and
tracing.

14.4 Formal Approaches to Digital Archiving

In [CLB01] the authors concentrate on preservation strategies. Archives are described by
algebras. Objects themselves are modeled as state sequences representing the object’s

166

14.5 Systems for Formal Quality Assurance 167

history. An object is preserved if it has the same interpretation in all states of its life
cycle. Game theory is employed to model an indifferent two-player-game of the archive
against environmental influences. Both sides can take specific actions (e.g., migration
on the archive’s side and data corruption on the environment’s side). The mutual effects
then can be studied, which results in suitability assessments of certain preservation
strategies. We have adopted the idea of describing archives by algebras. However,
we concentrate on the operational impact of migrations; we do not consider strategies.
Object representations may change. Therefore, we support different implementations
of one and the same aspect. Also, we cover object relationships, which play only a
minor role in [CLB01], quite extensively. Apart from that, we have a generic notion of
preservation; users have to implement it.

5SL [GF02] is a formal description language for specifying digital libraries. It bases
on the 5S-theory [GFWK04] and allows for automated derivation of prototypes that meet
a given specification. Object contents is described by streams; structural information is
described by structures. Spaces model user interfaces. Internal processes like searching
are defined via scenarios. Societies model communities that access digital libraries. The
whole theory does not so much address preservation and migration as the interaction
of digital libraries, their internal processes, and user access via interfaces. Hence, the
5S theory can be used to describe the environment in which our approach is integrated.
In particular, we see interesting points for future research concerning descriptions of
internal processes.

14.5 Systems for Formal Quality Assurance

The Typed Object Model (TOM, [Ock98]) incorporates and deploys type descriptions via
a type brokerage system. It focuses on file format transformations and covers structured
file format transformations with focus on preservation. The system is object-oriented and
administrates type hierarchies with formal pre-and post conditions and type invariants.
Preservation is defined w.r.t. sub-typing. Object preservation means preserving object
content w.r.t. a common super-type of the source and target object; sub-typing is used
as abstraction function. We borrow the idea from TOM to base our notions for object
preservation (functional concepts) on object types and abstraction but implement it in
a less restrictive way. Also, TOM does neither incorporate object relationships (non-
functional concepts) explicitly nor an archival context. In particular, it has no formal
notion of transformation and does not support object tracing.

The xlinkit system [NCEF02] deals with automatic checks of semantic document
properties. It allows for expressing properties of interrelated documents by means of
FOPL-formulas. Documents and their content may be addressed by XPath-expressions.
These XPath expressions are then used to generate “smart” links between those docu-
ments that violate given consistency requirements.

In [SBRS04, Sch04] this idea has been extended. Document repositories are examined
with particular focus on version control systems. Documents are defined via a language
of first order temporal logic. Thus, consistency rules between documents in different
system states can be specified. A provably correct-working, iterative consistency checking
strategy is developed that pinpoints inconsistencies and suggest repair actions.

167

168 Related Work

Both, the xlinkit and the CDET system, are fully implemented and have been eval-
uated in practice. As both systems use FOPL formulas to describe document properties
we have incorporated FOPL as well. The xlinkit system, however, does not incorporate
transformations at all. Consistency conditions are checked w.r.t. static document sets.
Document versioning in CDET can be understood as a migration; document properties
before and after a state change can be related using temporal logics. We share some
basic ideas. First, we use types and sub-typing to structure objects and object contents.
Second, both systems support object histories and have a formal underpinning. Third,
we specify requirements (“consistency rules” in CDET) using temporal logics. In CDET,
however, branching is not supported. Also, we implement a preservation-oriented view;
we use object traces to relate source and target objects directly w.r.t. concept interfaces.
There, concepts provide abstraction. Preservation requirements have to refer to a con-
cept but need not refer to concrete implementations. In contrast, consistency rules in
[SBRS04] exhibit all details. Also, the approach lacks a suitable notion of preservation.
We argue that our preservation constraints are easier to communicate to archivists than
temporal formulas.

14.6 Graph-based Queries

Automated link generation has been examined in the digital library community for quite
a while. There, techniques are studied for using information retrieval to generate“seman-
tic” hypertext [ACM97, Gol97, WS99]. Continuative approaches deal with translating
user queries to corresponding hypertext automatically [HL07]. Automated link gener-
ation is understood as a means for customizing search results and representing them
as hypertext in a convenient manner [OC03]; computer-human interaction approaches
come into play. We, however, focus on techniques for generating well-formed and valid
links. This includes link translation during transformation processes in order to preserve
link consistency.

As mentioned before, the xlinkit system [NCEF02] incorporates XPath expressions
for addressing documents. In particular, the system generates navigable consistency
reports. This feature supports user-acceptance and helps to resolve inconsistencies in
interrelated documents. Although the need for a general integration mechanism for query
languages has been identified, such a mechanism has not yet been provided. The system
rather fixes the XPath semantics statically. Due to the practical experiences made with
xlinkit and due to our experiences with html linking, we have found integrating query
languages important for gaining practical acceptance. Although it requires some effort
in advance (graph specification scheme, transformation of context-free grammars), we
argue that the benefits overweigh.

Due to the rapid emergence of the XML technology, there is much related work avail-
able dealing with query languages based on tree automata. Usually, a tree automaton
[CDG+07] is constructed for a given query; the set of all accepted trees is considered the
semantics of that query. This approach targets at drawing conclusions w.r.t. query sub-
sumption and is well-suited for that purpose. In our scenario, however, this technique
requires for constructing tree automata for every single query so as to check whether
the automaton accepts the given structure. This procedure tends to be time-consuming

168

14.6 Graph-based Queries 169

and usually is not needed; we do not want to reason over query subsumption properties.
Instead we need a trustworthy mechanism to semantically evaluating and constructing
queries. Apart from that, tree automata based techniques embody parts of the query
semantics already in their state transitions [Nev02, Chi00, BALD03]. In order to capture
this semantics, the user would have to specify the tree automata in question. This is
impractical in our setting since it has to be done for every single query. In contrast, our
approach implements a mechanism that accepts all queries of a given language (due to
its formal grammar) and computes semantic query results when applied to given query
structures.

In general, applying product automata for dealing with syntax and semantics in
parallel is a standard technique in the literature. In model checking, e.g., software
systems and formulas of temporal logics are both translated to Finite State Automata
[HMU06, MOSS99, RSV04]. We have, however, adjusted these standard techniques such
that they are applicable conveniently in our setting. In particular, we do not translate
single queries (as is done in model checking) due to the reasons explained above. Also, we
use hierarchical automata in order to keep the number of states to a minimum — state
space explosion is a well-known problem in model checking and, in general, whenever
product automata are constructed.

169

Chapter 15

Conclusion and Outlook

15.1 Summary

In Sect. 1.3 we have formulated our overall objective as follows:

The results of this thesis contribute to a better automation of quality assur-
ance for migration processes in digital archiving. Basing on suitable formal
notions of information and preservation, our method allows to express pres-
ervation requirements formally and evaluate adherence to them in an auto-
mated way. The formal underpinning of our approach results in a high degree
of trustworthiness. Practicability, well-foundedness, the ability to pinpoint
violations of preservation requirements and smooth integration into internal
workflows of DAs have been important design goals for our method.

We sum up by showing how our approach meets these functional and non-functional
requirements.

Improve Automation in Quality Assurance

Our framework allows to formulate preservation requirements formally. When executing
migrations, our prototype implementation traces changes to digital objects automati-
cally. Also, violations of given requirements are pinpointed. Apart from that, we have
demonstrated model construction facilities in the case study. URLs could be transformed
automatically such that they met the underlying preservation requirements.

Both applications support automation of quality assurance. The former helps in
verifying the output of migration algorithms and detecting functional errors. The lat-
ter (partly) generates correct-working migrations. As models grow large, automation
becomes vital. Therefore, we consider our contributions to be of high relevance. Full
automation, however, cannot be expected in general. Some properties cannot be handled
fully formally, others are not worth the effort.

Suitable Notion of Preservation

Our notion of preservation relates source objects and target objects. A property is
preserved if the target objects are new versions of the source objects and the property

170

15.1 Summary 171

equally holds for both the source and target objects; preservation considers object his-
tories (equivalently: object traces). However, different implementations of the property
may be used for the source and target objects; we support content migration ([Con02]).

In our system, we use the term “concept” instead of “property”; this stresses con-
nections to concepts in ontologies. Apart from their implementations, concepts include
a well-defined interface for matching. As we distinguish functional and non-functional
concepts, our notion of preservation applies to both object contents and object rela-
tionships. On the whole, it implements the view on “preservation” in digital archiving
directly (cf. [Con02, Tas96]); we conclude that it suits the needs in this domain. This
has been proved by our case study where we formulate and verify relevant preservation
tasks related to a website migration.

Expressing Preservation Requirements

We use an expressive preservation language. Preservation constraints are at the heart of
this language. Their semantics directly implements the above-described view on preser-
vation. Hence, they contain source objects, a concept, a context for matching the source
objects and a context for matching the target objects. There, we use a compact notation
in order to keep specifications short and readable. A wildcard can be used instead of con-
crete source and target contexts. That way we support evolving concept specifications.
This is particularly important in digital archiving. As technologies evolve, concepts may
be extended by new implementations.

Preservation formulas express more sophisticated preservation requirements. They
can be used to select object collections and to apply preservation constraints to all
contained objects. Using trace quantifiers we support branching object histories. They
specify whether a constraint must apply to all traces of the source objects or to at least
one trace. On the whole, our preservation language bases on first order logic. It offers
sufficient expressive power for relevant practical examples. However, the language can
be extended or customized to more specific needs.

Practical Applicability

Our system is fully implemented and supports all steps that are necessary to formulate
and evaluate preservation requirements. Also, it meets basic requirements of digital
archiving:

• We are independent of particular object formats and technologies for describing
such (like XML Schema, XML DTDs).

• We support user-defined functionality. Implementations can be integrated into our
prototype system and evolve over time.

• Objects are immutable. The formal underpinning of our system guarantees this
property. For this purpose, we have introduced an explicit notion of object contents.

• Preservation requirements are formulated from an archivist’s perspective as de-
scribed above; as preservation constraints refer to concepts and hide implementa-
tions, specifications remain “readable”.

171

172 Conclusion and Outlook

• Migration algorithms can be implemented using our functional language. This lan-
guage is integrated into the overall framework and allows for automated change
tracking.

The case study has shown applicability of our methods; we could handle complex
properties in an automated way. Performance measurements have shown acceptable
results for model sizes of practical relevance.

Well-foundedness

All parts of our system have been specified using formal methods. In particular, we have
introduced digital archives together with a notion of a “permissible extension”. Also, we
have introduced a formal notion of object content. Well-defined state transitions can
change an archival states only. If a digital archive has been extended in a “permissible”
way, these state changes provably guarantee object immutability and uniqueness of object
IDs. Even if an object is deleted, its ID will never be used again.

Apart from that, concepts, preservation formulas, and our functional language have
a well-defined semantics. In all that, we have used standard methods like Abstract Data
Types (ADTs) and Abstract State Machines (ASMs), which are well-studied. Together
with the coherently formal underpinning our approach is a step towards a high degree
of “trustworthiness”.

Pinpoint Constraint Violations

Preservation requirements are defined for concrete objects. As we trace object histories,
constraint violations can be reported for concrete source objects, target objects, and
w.r.t. a concept. This is vital when interpreting unexpected migration results. It may
particularly help when developing migration algorithms; this is a lesson we have learned
from our case study.

Work Flow Integration

We presuppose little system knowledge only. Objects must have an ID, which is unique
system-wide, and the sets of existing objects and used IDs have to be known. As these
requirements are a must for digital archives, our approach can be applied in that domain.
Our basic digital archive can be extended and customized by user-defined datatypes and
functionality. Also, we are independent of a particular transformation approach. Users
can choose whether they use our programming language or implement their migrations in
other languages and connect them to our system. When using our functional language,
we permit full access to all parts of a digital archive. This particularly includes the
set of existing objects and object IDs. That way internal migration processes can be
implemented; no intermediate access control is established.

172

15.2 Future Work 173

15.2 Future Work

On the whole, we conclude that this thesis meets our initial claims; we have defined
and implemented a framework for supporting automated quality assurance of migration
processes in digital archiving. However, important points for future extensions remain.

In particular, further case studies need to be conducted. There, we do not focus
on digital archiving only; other domains like model-driven software development seem
to offer interesting applications as well. Additional case studies will help to develop
domain-specific procedure models. Also, they will suggest best practices in embedding
our framework into existing workflows. Concerning digital archiving, integrating our
approach into the test bed developed in [SRR+06, SBNR07] seems useful. Apart from
that, future work should cover the following areas.

Functional Extensions

Some functional limitations of our approach have been mentioned previously; future
work should examine how they can be overcome. Future extensions should particularly
cover:

Dynamic content:
Dynamic object content appears in many relevant applications. Web forms and
video/audio streams, e.g., naturally occur when dealing with website preservation.
Formal handling of video and audio seems difficult; both contain continuous data
and require a hardware/software environment for rendering. Discrete systems, how-
ever, may be handled by automata-based techniques; interaction using web-forms
is an example. User-support in modeling dynamic content is desirable here.

Deferred migration:
Migrations may be expensive and induce risks to digital objects. It may, thus, be
sensitive to defer them until triggers like “access” or a specific date activate it. A
possible solution could be to mark datatypes as “deprecated”; access to an object
of a deprecated type then requires a previous transformation. Integrating a related
mechanism into our approach seems to be useful. Relevant technologies exist in the
database community, for example.

Graph-based queries:
We support regular query languages only. Standard languages like XPath and
CSS-selectors, however, additionally support predicates and terms for selecting sets
of tree nodes. Since we integrate user-implemented functions, integrating the full
language into our automata-based techniques seems feasible. Special “evaluation
nodes” or delay nodes as proposed in [Mai06] could be used.

Migration algorithms:
Our functional language does not support pattern matching and higher order func-
tions. The former supports readability, the latter supports abstraction and re-use.
Both extensions are standard in functional programming [Tho99, Jon95, GPN96,
Erw96] and may be implemented with moderate effort.

173

174 Conclusion and Outlook

Improvements Through Formal Techniques

Structuring concepts:
We do not yet include structuring and re-use mechanisms for concepts. In par-
ticular, concept interfaces are generic in the object types only; generic predicates
or functions are not supported. Also, concept implementations cannot include con-
cept formulas. Integrating these features requires some technical effort but is useful.
First, proofs can be structured and re-used. Second, concept libraries and concept
hierarchies can be set up. The CASL language semantics [CoF04] may serve as a
guide when integrating these features; most of them are supported by the CASL
language.

Reasoning support:
As we use First Order Logic, the implication problem is undecidable, in general.
Nevertheless, many applications still allow for formal reasoning. Also, user interac-
tion can guide the inference process. Formal reasoning support may be useful for
the following areas, where integration with existing theories and theorem provers
([Isa02, McC06, McC03]) should be examined as well:

Concepts:
Detecting implications among (static) concept specifications helps to reduce
redundancy. This speeds up the process of checking preservation requirements.
Suitable techniques exist (e.g., [CoF04]); integrating them seems to be a matter
of implementation.
Truth values of concept formulas may change in the course of system evo-
lution. In order to avoid unnecessary concept re-evaluations, a theory may
help in characterizing those state changes that preserve truth values of concept
formulas.

Preservation:
Similar to concepts it is desirable to detect redundancies among preservation
requirements. A theory for reasoning about preservation formulas has to in-
clude object histories, concepts, and system states. Existing proof theories for
temporal and model logics may serve as an orientation here.

Migration Algorithms:
Reasoning support for functional programs is a well-established research field.
However, relevant approaches focus on term equality, which is of minor interest
in our setting; our programs produce migration sequences and, hence, side
effects. It would be useful to have a theory that allows for deriving properties
like “Function f satisfies preservation formula φ”. This theory would, thus,
integrate functional programs, object histories, and preservation formulas. To
our appraisal, it is likely that existing theories for reasoning about functions
with side-effects (e.g., [Tal98]) can be customized.

Model coverage:
In our case study several case distinctions had to be made when specifying directory
structure preservation. As applications get complex, this may lead to “gaps” in
model coverage. These, in turn, may cause unintended migration effects to go

174

15.2 Future Work 175

unnoticed. Formal approaches to test coverage (e.g., [HLSU02]) may be interesting
here.

Ontologies:
Digital archives usually use standard formats for their hosted digital objects. Also,
related formats usually support related concepts; re-using concept specifications
should be supported. Concepts and their interrelations are often described by on-
tologies. Ontologies may, thus, serve as an orientation when identifying relevant
concepts that are subject to preservation. Also, specifications may be subject to
formal proofs whether they match a given ontological description. Different com-
munities, however, may use different terms for describing equivalent aspects. This
may prevent re-use. Therefore, integrating our system and approaches to ontology
merging (e.g., [KS03]) seems to be beneficial.

Constraint evaluation:
We have shown that the way of formulating preservation requirements considerably
influences evaluation performance. Minscoping [de 86, Wan60] has helped to de-
crease runtimes; other techniques related to static pre-processing should be studied
as well.
In [Sch04] FOPL formulas are evaluated iteratively in an evolving system. It has
been shown that this results in considerable performance improvements. As pres-
ervation formulas base on first order logic, the approach seems to be applicable to
our system.

Implementation

We have developed a prototype in order to evaluate our methods. It can be understood
as the core of a more sophisticated system that can be

• used as a testing environment or
• integrated into real-life systems.

The following improvements will serve these purposes and potentially increase user-
acceptance:

Language interfaces:
Up to now user-defined data types, functions, and predicates have to be imple-
mented in JAVA. If our system, however, is to be included in existing software
environments, interfacing with other languages like C and C++ may be required.
The current implementation has already been designed in view of these extensions;
syntax and semantics are handled fully independently of each other.

User interfaces:
Due to the formal underpinning, strong expert skills are necessary to apply our
methods. A coherent IDE supporting datatype, concept, and constraint specifica-
tion as well as programming migration algorithms will accelerate the overall process.
Also, visualization techniques may increase user-acceptance. Constraint coverage or
constraint violations, e.g., could be displayed w.r.t. concrete models; this can help
experts in communicating these aspects to non-experts.

175

176 Conclusion and Outlook

Code generation:
State-of-the-art CASE tools offer code generation facilities; otherwise practical ac-
ceptance would suffer. Apart from the standard translation of datatypes with at-
tributes and constructors into code frames, we see the following potential:

Graph-based querying:
Our prototype already includes a framework for handling automata. The graph
specification scheme introduced in this thesis allows for code generation. The
resulting automata refine general hierarchical automata by constraining the
sets of permissible states and state transitions. Indeed, we have generated the
code for the running example. As our prototype is implemented in JAVA,
refinement has been realized by sub-classing and method overriding.

Migration algorithms:
Instead of compiling our functional language to machine code, it seems useful
to offer code translations for the most common programming languages like
C, C++, JAVA etc. Migration algorithms, thus, could be translated into the
language that is used for datatype, function, and predicate implementations.
The overall system then can be compiled with state-of-the-art compilers. They
are usually highly optimized and produce very efficient code.

176

List of Figures

1.1 Simplified view on a Digital Archive . 4
1.2 Difference between data and information ([Con02]) 5
1.3 Functional Entities in the OAIS reference model ([Con02]) 6
1.4 Overview of the approach of this thesis . 9

2.1 Example web archive . 16
2.2 Website models and example transformation 17
2.3 Preservation requirements for running example 18
2.4 Example concepts and contexts . 19
2.5 Different variants of preservation. 20
2.6 State-based transformation and verification. 23

3.1 Object type Dir as UML-like visualization and ADT specification 28

4.1 Specification of concept EntryPoint and website names 55

5.1 Preservation related to concepts . 72
5.2 Preservation of concept Contains . 73
5.3 Abstract preservation scheme and instantiations with non-functional and

functional concept preservation . 76

6.1 Example algorithm using the functional language 90

7.1 Example link and subset of absolute URIs as per RFC 2396 105
7.2 Example automaton for absolute URIs and a directory structure 106
7.3 Specification scheme for graph-based query structures 111
7.4 Specification SG(aURI) of the query structure for absolute URIs 113
7.5 Right-linear grammar for absolute URIs and its corresponding FSA 117
7.6 Generated link automaton for the website “Calculation” 119

8.1 Preservation requirements for case study 122
8.2 Methodology used for case study . 123

9.1 Websites, servers, and directory structures 127
9.2 Content model for html documents . 128

10.1 Result of transformation step one . 131

177

178 LIST OF FIGURES

10.2 Result of transformation step three . 133

11.1 Specification of concept EntryPoint and predicate containsDoc 137
11.2 Specification for BWeb parser . 139
11.3 Specification and registration of EntryPoint and AWeb 141
11.4 Specification of concept AContent . 142
11.5 Abstraction functions for html content . 143
11.6 AbstrDir and specification of abstrContent 143
11.7 Specification of concept Contains . 145
11.8 Specification of concept Neighbor . 146
11.9 Specification of concept LinksTo . 147

12.1 Runtimes for constraint checking, excluding LinksTo 154
12.2 Performance for link processing w.r.t. original and improved implementa-

tion . 155
12.3 Runtimes for checking LinksTo . 157

178

List of Tables

3.1 Example archive evolution . 30
3.2 Syntax and semantics of terms . 37
3.3 Semantics of extension operators for term- and formula structures 40
3.4 Static signature ΣDA

s of basic DA . 42
3.5 Syntax of basic state changes w.r.t. Σ and a Σ-state A 48

4.1 Examples for dynamic term and formula semantics 57
4.2 Syntax and semantics of type constraints over TV 58
4.3 Context, interface, and concept definitions over TV,R,X,Σ 59
4.4 Dynamic term semantics . 61
4.5 Concept terms and concept formulas over X,Σ,KD 66
4.6 Semantics of concept terms and concept formulas over X,Σ,KD 68

5.1 Syntax and semantics of atomic trace formulas 81
5.2 Syntax and semantics of atomic preservation formulas 83

6.1 Example archive evolution using basic operations 89
6.2 Syntax and semantics of ASM transition rules 92
6.3 Syntax of basic operations BOp(X,Σ) over Σ, X 93
6.4 ASM rule declarations for the basic state change operations 94
6.5 Effect of basic operations . 95
6.6 Expressions and function definitions over Σ, X, Fdecl 99
6.7 Expression semantics for E(X,Σ,Fdecl) and FD ⊆ FD(X,Σ,Fdecl) . . . 101

9.1 Basic signature for case study . 129

11.1 Identified concepts and contexts . 136
11.2 New functions introduced for EntryPoint 140
11.3 New functions introduced for AContent . 144
11.4 New functions introduced for Contains . 145
11.5 New functions introduced for LinksTo . 147

12.1 Overall performance excluding LinksTo . 154
12.2 Overall performance for LinksTo . 157

B.1 Example migration sequence and extracted traces 189

179

Appendix A

Specification of the Basic DA

The sentences SenDAs of the specification of the basic digital archive are determined by
the following data type specifications.

type Bool<{Top} =
begin

constr

[
True : @
False : @→ @

ops

[
not : @→ @
and : @×@→ @

axioms

 not(True) = False ∧ not(False) = True∧
and(True, True) = True ∧ and(True, False) = False∧
and(False, True) = False ∧ and(False, False) = False

end Bool;

type OID<{Top} =
begin

constr

[
initID : @
nextID : @→ @

preds
[
<id : @×@

ops [

axioms


∀id : @ • initID 6= nextID(id)
∀id, id′ : @ • <id (id, nextID(id))
∀id, id′, id′′ : @ • <id (id, id′)∧ <id (id′, id′′)⇒<id (id, id′′)
∀id : @ • ¬ <id (id, id)

end OID;

type DObj<{Top} =
begin
constr

[
createDObj : OID→ @

ops
[
oid : @→ OID

axioms
[
∀id : OID • oid(createDObj(id)) = id

180

181

end DObj;

type Set[Top]<{Top} =
begin

constr

 {} : @
{}s : Top→ @
∪ : @×@→ @ (assoc,comm,idem,unit {})

preds

 empty : @
∈ : Top×@
⊆ : @×@

ops
[
rep : @→ Top

axioms



∀s : Set[Top] • empty(s)⇔ s = {}
∀x : Top, s : Set[Top] • ¬x ∈ {}
∀x : Top, y : Top, s : Set[Top] • x ∈ {y}s ⇔ x = y
∀x : Top, s : Set[Top], t : Set[Top] • x ∈ s ∪ t⇔ x ∈ s ∨ x ∈ t
∀s : Set[Top] • {} ⊆ s
∀x : Top, s : Set[Top] • {x}s ⊆ s⇔ x ∈ s
∀s : Set[Top], t : Set[Top], u : Set[Top] • s ∪ t ⊆ u⇔ s ⊆ u ∧ t ⊆ u
∀s, s′ : Set[Top] • s = s′ ⇔ (∀x : Top • x ∈ s⇔ x ∈ s′)
¬instTop(rep({}))
∀s : Set[Top] • s 6= {} ⇒ rep(s) ∈ s
∀s : Set[DObj], x : DObj • x = rep(s)⇒

∀y : DObj • y ∈ s⇒ (oid(x) = oid(y)∨ <id (oid(x), oid(y)))
end Set[Top];

The annotation “(assoc, comm,idem,unit {})” is adopted from the CASL language and
states that ∪ is associative, commutative, idempotent, and has unit {}.

181

Appendix B

Continuative Examples on Formal
Parts

B.1 Objects and Digital Archives

In the following we provide examples on well-typedness of terms, on the basic DA, and
on migration sequences (Chap. 3).

Sample Derivations for Terms and Subterms

We derive well-typedness of name(home(x)) ∈ TString(X,Σ), where X = {x : Website}
and

Σ = ({Website, HTMLDoc, Doc, String},
{Website<Website, HTMLDoc<HTMLDoc, HTMLDoc<Doc, String<String}
∅,
{...}
{name : Doc→ String, home : Website→ HTMLDoc, ...}).

x : Website ∈ X
x ∈ TWebsite(X,Σ)

home : Website→
HTMLDoc ∈ F

home(x) ∈ THTMLDoc(X,Σ) HTMLDoc<Doc

home(x) ∈ TDoc(X,Σ) name : Doc→ String ∈ F
name(home(x)) ∈ TString(X,Σ)

In order to have an example for subterm relationships, we provide the derivation for
x ∈ T≤Website(X, name(home(x))).

home(x) ∈ THTMLDoc(X,Σ)
x ∈ TWebsite(X,Σ)
x ∈ T≤Website(X, home(x))

name(home(x)) ∈ TString(X,Σ)
home(x) ∈ THTMLDoc(X,Σ)
home(x) ∈ T≤HTMLDoc(X, name(home(x)))

x ∈ T≤Website(X, name(home(x)))
The assumption home(x) ∈ THTMLDoc(X,Σ) can be derived as shown above.

182

B.1 Objects and Digital Archives 183

Permissible Archive Extensions

Simple extensions of type Dir may serve as examples for the ID and constructor prop-
erties.
ID-property: Recall the record-like type Dir (Fig. 3.1, page 28). It has a constructor

Dir : OID× String× Set[Dir]× Set[Doc]→ Dir

and axioms of the form
∀id : OID, n : String,

subDirs : Set[Dir], subDocs : Set[Doc] • a(Website(id, n, d, h)) =
for all attributes a (including oid). There, stands for the constructor parameter

that corresponds to a. It is easy to see that datatypes of this style satisfy the ID-property.
Constructor-property (1): All record-like data types also satisfy the first part of the
constructor property. Their attributes simply return the constructor parameters.
As a counterexample, suppose we had an additional constructor

Dir2 : OID→ Dir

and
rep(srcDirs(Website2(id))) = Dir(nextID(id), “some“, ∅, ∅).

Then rep(srcDirs(Website2(id))) does not contain Dir(id, “some“, ∅, ∅). This violates
the constructor property. Intuitively, constructor property (1) requires that all digital
objects that can be extracted from another object have to be provided upon creation
of that object already; we prohibit “default values” that have an object type. Only this
facilitates to characterize object-valued content by constructor terms.
Constructor-property (2): If type Dir consists of the constructors Dir and Dir2,
only, the second part of the constructor property is satisfied. Even if there were values
that can be constructed by both constructors, a constructor term using Dir2 is truly
shorter then a term using Dir. Thus, the property remains valid. In general, this
part of the constructor property assures that the object-valued content can be uniquely
determined by using minimal constructor terms.

Object-Valued Content

Recall the constructor term

x3 := Dir(nextID3(initID), “source“, {x1, x2}, {x0})

representing the directory “source” (cf. Tab. 3.1, page 30), where we abbreviate

x0 := HTMLDoc(initID, “start.html“, ...),
x1 := Dir(nextID(initID), “calc05“, {}, {}),
x2 := Dir(nextID2(initID), “overview“, {}, {}).

Since types Dir and HTMLDoc have one constructor only, x3 is at the same time mini-
mal and unique for the represented value. According to Defn. 3.3.3 contADObj(x3) yields
the set of all sub-terms of x3 of type DObj. Hence, contADObj(x3) = {x0, x1, x2, x3}.

183

184 Continuative Examples on Formal Parts

Also, this confirms reflexivity of the relation RcontA in Lemma 3.3.3. Generally, the sub-
object-relationship is an ordering and, hence, can be represented by Hasse-diagrams.
In particular, the graphical visualizations for directory and file structures that we have
been using so far represent sub-object relationships.

As another example, the term {} ∪ {x3}s represents a set containing the directory
“source”. This term is not minimal. The same set can be represented by {x3}s. Hence,
the set of all subterms of type DObj of {x3}s determines the object-valued content of
{} ∪ {x3}s, i.e., contADObj({} ∪ {x3}s) := {x0, x1, x2, x3}.

The term rep({x3}s) chooses a representative of {x3}s. Since rep is no constructor,
this term meets the prerequisites that are necessary for Lemma 3.3.3(3) to be applica-
ble. According to this lemma, the result of rep({x3}s) is in contADObj({x3}s). Indeed,
rep({x3}s) = x3 ∈ contADObj({x3}s).

Migration Sequences

The example trace of Tab. 3.1 on page 30 is represented by the migration sequence
∆ := 〈 A0, cre(HTMLDoc(initID, “start.html“, ..., ∅)),

A1, cre(Dir(nextID(initID), “calc05“, {}, {})),
A2, cre(Dir(nextID2(initID), “overview“, {}, {})),
A3, cre(Dir(nextID3(initID), “source“, {x1, x2}, {x0}s)),
A4, del(Dir(nextID3(initID), “source“, {x1, x2}, {x0}s)),
A5〉,

where we have abbreviated
x0 := HTMLDoc(initID, “start.html“, ...)
x1 := Dir(nextID(initID), “calc05“, {}, {})
x2 := Dir(nextID2(initID), “overview“, {}, {}).
The value of existDObj in state Ai exactly corresponds to the one shown in the row
corresponding to state i in Tab. 3.1.

Notice that the failed try of deleting the directory “overview” does not occur in ∆.
Requirement (1) of Defn. 3.3.7(del()) does not hold for del(x2) since “overview” (x2)
belongs to the object-valued content of “source”.

B.2 Contexts and Concepts

Here we exemplify the formal definitions for concept syntax and semantics (Chap. 4).

Concept definitions

The formal concept definition for EntryPoint (cf. Fig. 4.1, page 55) is given as follows:
ASpec := AWeb = validAWeb(website) ∧ sourcedir = srcDir(website)∧

homepage = home(website)
BSpec := BWeb = validBWeb(website) ∧ sourcedir = srcDir(website)∧

homepage = home(website)
I := (website : αw, sourcedir : αd,homepage : αh)

[αw<Website ∧ αd<Dir ∧ αh<HTMLDoc]
KEP := EntryPoint I = {ASpec,BSpec}
There, AWeb and BWeb implement I. The role assignment ra is given by

184

B.2 Contexts and Concepts 185

ra(website : Website) = website : αw,
ra(sourcedir : Dir) = sourcedir : αd,
ra(homepage : HTMLDoc) = homepage : αh.

Given a type binding θ, θ′ yields

θ′ = θ[{αw 7→ Website, αd 7→ Dir, αh 7→ HTMLDoc}]

such that φ[θ′] becomes

Website<Website ∧ Dir<Dir ∧ HTMLDoc<HTMLDoc

which is obviously satisfiable.
The functional concept Name (lower left-hand part of Fig. 4.1) is given as follows:

KName :=
Name(entity : αe)→ String[αe<DObj] = {WebN = name(entity : Website)}

WebN implements the interface, where the role assignment ra yields ra(entity : Website) =
entity : αe. There, we refer to a general named entity using the role entity : αe. The
type variable αe may be instantiated by an arbitrary object type. Yet we require the
result type String. The context WebN instantiates αe with Website. The concept def-
inition for Name particularly shows similarities to function definitions in programming
languages.

Dynamic Term Values

We encourage the reader to verify the results shown in Tab. 4.1, page 57, using the formal
semantics provided in Tab. 4.4, page 61. Apart from that we mention that the dynamic
term semantics is tolerant in some sense. The term name(Dir(id, n, sdirs, sdocs)), e.g,
evaluates to n even if the directory does not exist. In our view, the term has no object-
valued content since it can simply be represented by a constructor of type String.

As another example, take sequences that are restricted to a maximum length of one.
Then the term 〈t1, t2〉 would evaluate to 〈t1〉 if t1 exists. Both terms represent the same
sequence (a try to add t2 fails since the the sequence is limited to length one), but the
latter is shorter; we merely consider constructor terms of minimal length.

Dynamic Formula Semantics

We derive the quantifier sphere for

∀w : Website • Name(w)[WebN] = “Calculation“.

in order to show how the domain mapping dom of Defn. 4.3.2 works. According to
Defn. 4.3.2,

dom(A, x : τ, η) = (A, {v | v ∈ τA, ct ∈ CTminA (Σ, v), (A, ct) td
; v}).

Applied to the formula above, this yields

185

186 Continuative Examples on Formal Parts

dom(A, w : Website, η) = (A, {v | v ∈ WebsiteA, ct ∈ CTminA (Σ, v),

(A, ct) td
; v}),

which is equivalent to

dom(A, w : Website, η) = (A, WebsiteA∩
{VAd 〚t〛 | t ∈ GTWebsite(Σ),A |= t ∈ existDObj})

according to Lemma 4.3.2(2) above. Hence, the quantifier sphere reduces to the set
of existing objects of type Website. If “Calculation” is the only existing website, the
formula above holds.

Semantics of Concept Expressions

Given a term tw ∈ TWebsite(X,Σ), a state A, and a variable assignment η, the concept
term

Name(tw)[WebN]

is evaluated as follows according to Tab. 4.6, page 68: Using the concept definition

Name(website : αe)→ String[αe<DObj] = {WebN = name(entity)},

the components of rule Concept terms with context in Tab. 4.6 are determined by:

WebN = name(entity) (context definition)
FV(name(entity)) = {entity : Website} (free variables of ιWebN)
l(entity : Website) = 1 (index mapping w.r.t. role assignment)

Hence, the update for entity : Website is given by entity : Website 7→ VAd 〚tw〛η such
that

VAd 〚Name(tw)[WebN]〛η = VAd 〚name(entity)〛η[entity : Website 7→ VAd 〚tw〛η].

This yields the name of the website tw as desired.
Given terms tw ∈ TWebsite(X,Σ), td ∈ TDir(X,Σ), and th ∈ THTMLDoc(X,Σ), a state A,

and a variable assignment η, the concept formula

EntryPoint(tw, td, th)[AWeb]

is evaluated as follows: Using the parts

AWeb = validAWeb(website) ∧ sourcedir = srcDir(website)∧
homepage = home(website)

I := (website : αw, sourcedir : αd,homepage : αh)
[αw<Website ∧ αd<Dir ∧ αh<HTMLDoc]

of the concept definition and the role assignment ra(AWeb, I)

ra(website : Website) = website : αw,
ra(sourcedir : Dir) = sourcedir : αd,
ra(homepage : HTMLDoc) = homepage : αh,

186

B.3 Formal Preservation Requirements 187

the components of Concept formulas in Tab. 4.6 are determined by:

AWeb = validAWeb(website)∧ (context definition)
sourcedir = srcDir(website)∧
homepage = home(website)

FV(name(website)) = {website : Website, sourcedir : Dir, (free variables of ιAWeb)
homepage : HTMLDoc}

l(website : Website) = 1 (index mapping w.r.t.
l(sourcedir : Dir) = 2 role assignment)
l(homepage : HTMLDoc) = 3

Hence, the updates for website, sourcedir, and homepage are given by

upd1 := website : Website 7→ VAd 〚tw〛η,
upd2 := sourcedir : Dir 7→ VAd 〚td〛η, and
upd3 := homepage : HTMLDoc 7→ VAd 〚th〛η.

If additionally

A |=d validAWeb(website) ∧ sourcedir = srcDir(website)∧
homepage = home(website)[η[upd1][upd2][upd3]]

we concludeA |=d EntryPoint(tw, td, th)[AWeb][η]. The variant EntryPoint(tw, td, th) holds
iff the website tw has an arbitrary website format that is implemented in EntryPoint. Sup-
pose we have specified format preservation using a wildcard. Whenever a new website
format is added, this specification need not be adapted. The concept semantics auto-
matically quantifies over all known implementations.

B.3 Formal Preservation Requirements

Here we provide examples related to the preservation predicate pres, traces, trace for-
mulas, and preservation formulas as defined in Chap. 5.

Preservation Predicate

We provide examples for non-functional and functional concepts.
Preservation of non-functional concepts: In the example of the introduction to
Chap. 5, o and d are transformed to o′1, o

′
2 and d′, respectively. Preservation of the

concept Contains w.r.t. o, d and o′1, d
′ is expressed by

pres(Contains(o, d)[CDoc],Contains(o′1, d
′)[CDoc])

According to Defn. 5.2.1, page 76, this holds if

As |=d Contains(o, d)[CDoc][ηs]⇔ At |=d Contains(o′1, d
′)[CDoc][ηt].

Negation is interesting as it enforces a status change. If Contains(o, d)[CDoc] does not
hold,

¬pres(Contains(o, d)[CDoc],Contains(o′1, d
′)[CDoc])

187

188 Continuative Examples on Formal Parts

holding enforces Contains(o′1, d
′)[CDoc] due to the strong correspondence ⇔. In partic-

ular,

¬(As |=d Contains(o, d)[CDoc][ηs]⇔ At |=d Contains(o′1, d
′)[CDoc][ηt])

is equivalent to

As 6|=d Contains(o, d)[CDoc][ηs]⇔ At |=d Contains(o′1, d
′)[CDoc][ηt].

Preservation of functional concepts: In Chap. 4 we have introduced the specifica-
tion for the concept Name. Suppose we extend it to

Name(entity : αe)→ String[αe<DObj] = { WebN = name(entity : Website)}
DirN = name(entity : Dir)}

such that it additionally covers directory names in the context DirN. Preservation of
Name for o in o′1 can be expressed in different ways. Examples are

(1) pres(Name(o)[DirN],Name(o′1,)[DirN]),
(2) pres(Name(o)[],Name(o′1,)[DirN]), and
(3) pres(Name(o)[],Name(o′1,)[]).

In contrast, pres(Name(o)[WebN],Name(o′1,)[]) is ill-typed according to Defn. 4.3.3 as
directory o cannot be matched to type Website.

Expressions (1) to (3) hold iff

(1) ∃v ∈ TopAs • (As, ηs,Name(o)[DirN]) td
; v ∧ (At, ηt,Name(o′1)[DirN]) td

; v,
(2) ∃C ∈ {WebN,DirN}, v ∈ TopAs •

(As, ηs,Name(o)[C]) td
; v ∧ (At, ηt,Name(o′1)[DirN]) td

; v,
(3) ∃C,C ′ ∈ {WebN,DirN}, v ∈ TopAs •

(As, ηs,Name(o)[C]) td
; v ∧ (At, ηt,Name(o′1)[C ′]) td

; v

according to Defn. 5.2.1 and Defn. 4.3.4. Variant (1) reduces to

∃v ∈ TopAs •
(As, ηs[entity : Dir 7→ VAs

d 〚o〛ηs], name(entity : Dir)) td
; v ∧

(At, ηt[entity : Dir 7→ VAt
d 〚o′1〛ηt], name(entity : Dir)) td

; v.

As desired, the pres predicate holds if o and o′1 have equal names. Since DirN is the only
suitable context for o, o′1, variants (2) and (3) are equivalent to variant (1). In general,
however, evaluating (2) and (3) is considerably more inefficient than evaluating (1) as
all known contexts are checked.

Negation of pres(Name(o)[DirN],Name(o′1,)[DirN]) holds according to Defn. 5.2.1 if
o or o′1 do not exist or Name(o)[DirN] and Name(o′1,)[DirN] cannot be reduced to equal
values. If o and o′1 exist, negation holds iff Name(o)[DirN] and Name(o′1,)[DirN] are
different.

188

B.3 Formal Preservation Requirements 189

Table B.1: Example migration sequence and extracted traces

source

overview

doclist.html

Calculation

html

overview

doclist.html

resources

overview

∆ traces0(∆) step(∆) traces1(∆) maxtraces(∆)
〈 A0, trans(d 7→ d′), 〈(A0, d)〉 〈(A0, d), (A1, d′)〉 〈(A0, d), (A1, d′)〉 〈(A0, d), (A6, d′)〉
A1, trans(o 7→ o′1), 〈(A1, o)〉 〈(A1, o), (A2, o′1)〉 〈(A1, o), (A2, o′1)〉 〈(A0, o), (A6, o′1)〉
A2, trans(o 7→ o′2), 〈(A2, o), (A3, o′2)〉 〈(A2, o), (A3, o′2)〉 〈(A0, o), (A6, o′2)〉
A3, cre(h),
A4, cre(r),
A5, trans(s 7→ c), 〈(A0, s)〉 〈(A5, s), (A6, c)〉 〈(A5, s), (A6, c)〉 〈(A0, s), (A6, c)〉
A6〉 0@ 〈(A0, d), (A6, d′)〉,

〈(A0, o), (A6, o′1)〉,
〈(A0, s), (A6, c)〉

1A 0@ 〈(A0, d), (A6, d′)〉,
〈(A0, o), (A6, o′2)〉,
〈(A0, s), (A6, c)〉

1A
T R(∆)

Object Traces

In Tab. B.1 we show an excerpt of the example website transformation explained in
the introduction to Chap. 5. The underlying transformations are visualized by arrows
in the left-hand part. In particular, we transform the directory / file chain starting at
“source” and ending at “doclist.html”. The table in the right-hand part shows the formal
transformation sequence ∆, where we have abbreviated

d, d′ – html file “doclist.html” and its transformation result,
o, o′1, o

′
2 – directory “overview” and its transformation results,

h – directory “html”,
r – directory “resources”, and
s, c – directory “source” and its transformation result “Calculation”.

We assume that only the source objects d, o, s exist in A0. The set of traces of length
zero, thus, contains those traces that are shown in the column labeled traces0(∆). The
set step(∆) represents the single transformation steps of ∆. Recall that it is used to
generate traces of length i+ 1 from traces of length i. For all i, the element in row i in
column traces1 is determined by trj ;©tr′i, where trj and tr′i denote the element in row
j in column traces0(∆) and the element in row i in column step(∆), respectively, such
that the source of trj equals the source of tr′i.

The set of inclusionmaximal traces maxtraces(∆) is shown in the right-most column.
In this example, it is similar to traces1(∆). However, all traces in maxtraces(∆) start in
state src(∆) and end in state res(∆). Finally, the set T R(∆) contains the trace tuples
shown in the lower right-hand part of Tab. B.1. They cover inclusionmaximal histories
for all existing objects in parallel.

Trace Formulas

Here we explain syntactic and semantic aspects of some selected trace formulas in more
detail.
Syntax: The transformation constraint

(1) Dir(nextID2(initID), “overview“, {}, {d}) 7→ Dir

requires “overview” to be transformed to type Dir and is well-formed according to
Defn. 5.4.1 and Tab. 5.1; the prerequisites Dir(nextID2(initID), “overview“, {}, {d}) ∈

189

190 Continuative Examples on Formal Parts

TDObj(X,Σ) and Dir<DObj hold.
The functional preservation constraint presf (Name(o)[Cs, Ct]) is well-formed, provided
that Name(o)[Cs] is in KT(X,Σ,KD) and Ct ∈ {WebN,DirN, }. Hence, permissible
variants include

(2) presf (Name(o)[DirN,DirN]),
(3) presf (Name(o)[DirN,WebN]), and
(4) presf (Name(o)[,]).

Well-formedness rules for non-functional concept preservation constraints very much
correspond to those for functional concept preservation constraints. In particular,

presnf (Contains(o, d)[CDoc,CDoc])

is well-formed since Contains(o, d)[CDoc] is a valid concept formula in KF (X,Σ,KD)
and CDoc is a context name of Contains.

Using conjunction, negation, and quantification, more complex trace formulas can
be composed from these atomic ones. Examples are:

(5) ¬Dir(nextID2(initID), “overview“, {}, {d}) 7→ DObj,
(6) ¬presnf (Contains(o, d)[CDoc,CDoc]), and
(7) ∀h : HTMLDoc • o 7→ Dir ∧ presnf (Contains(o, h)[CDoc,CDoc]).

Formula (5) prevents “overview” from being transformed. Trace formula (6) says that
the status of directory containment between o and d must not be preserved. According
to formula (7) the Contains concept is to be preserved for o, all html files h and CDoc
in context CDoc.
Semantics: In the following we use the trace

tr :=

 〈(A0, d), (A6, d
′)〉,

〈(A0, o), (A6, o
′
1)〉,

〈(A0, s), (A6, c)〉


of Fig. B.1, page 189 in order to determine the semantics of some of the trace formulas
above. According to the rules in Tab. 5.1,
o 7→ Dir ∈ TF at(X,Σ,KD)
t′ ≡ version(|πo(tr)|, πo(tr))
|πo(tr)| ≥ 1

tr ∈
⋃

∆∈MS(Σ) T R(∆)
η ∈ Env(X, src(tr))
res(tr) |=d instDir(t′)[η]

tr |=d o 7→ Dir[η]
Since

πo(tr) = 〈(A0, o), (A6, o
′
1)〉,

version(|πo(tr)|, πo(tr)) = o′1
src(tr) = A0

res(tr) = A6

this rule is equivalent to
o 7→ Dir ∈ TF at(X,Σ,KD)
|〈(A0, o), (A6, o

′
1)〉| ≥ 1

η ∈ Env(X,A0)
A6 |=d instDir(o′1)[η]

tr |=d o 7→ Dir[η].

190

B.3 Formal Preservation Requirements 191

Hence, this transformation constraint is satisfied for tr and has the desired semantics:
The last version o′1 of the trace for o has type Dir and o is indeed transformed; its trace
has a length greater or equal to one.

Constraint (5) above holds if tr |=d o 7→ DObj[η] does not hold, i.e. the rule
o 7→ DObj ∈ TF at(X,Σ,KD)
|πo(tr)| ≥ 1

η ∈ Env(X,A0)
A6 |=d instDObj(o′1)[η]

tr |=d o 7→ Dir[η].
must not be applicable. This implies |πo(tr)| 6≥ 1 (i.e., o is not transformed) since all
other prerequisites of the rule hold. In particular, A |=d instDObj(x)[η] is a tautology
for all existing objects.

Constraint (3) (presf (Name(o)[DirN,WebN])) is evaluated using the rule
presf (Name(o)[DirN,WebN]) ∈
TF at(X,Σ,KD)
t′1 ≡ version(|πo(tr)|, πo(tr))

tr ∈
⋃

∆∈MS(Σ) T R(∆)
A = src(πo(tr)), A′ = res(πo(tr))
η ∈ Env(X,A)
(A,A′) |=d pres(Name(o)[DirN],Name(t′1)[WebN])[η, η]

tr |=d presf (Name(o)[DirN,WebN])[η].
Since

πo(tr) = 〈(A0, o), (A6, o
′
1)〉,

version(|πo(tr)|, πo(tr)) = o′1,
src(πo(tr)) = A0,
res(πo(tr)) = A6,

this rule is equivalent to
presf (Name(o)[DirN,WebN])
∈ TF at(X,Σ,KD)

η ∈ Env(X,A0)
(A0,A6) |=d pres(Name(o)[DirN],Name(o′1)[WebN])[η, η]

tr |=d presf (Name(o)[DirN,WebN])[η].
This constraint does not hold. The trace result o′1 is not of type Website. Hence, it
cannot be matched to Name in WebN. In general, this constraint does not hold before
o is transformed to type Website; preservation constraints can enforce transformations.
Notice, however, that preservation constraints cannot forbid transformations. Hence,
transformation constraints are not purely syntactic sugar.

The other two variants

presf (Name(o)[DirN,DirN]) and presf (Name(o)[,])

from above hold. This results from substituting the contexts appropriately in the just-
provided rule.

Recall that negated preservation constraints enforce a status change. In the following
we derive the semantics for constraint (6) from above in order to have an example.
Applying rule Negation (Tab. 3.3, page 40) we get

presnf (Contains(o, d)[CDoc,CDoc])
∈ TF (X,Σ,KD)

not
tr |=d presnf (Contains(o, d)[CDoc,CDoc])[η]

tr |=d ¬presnf (Contains(o, d)[CDoc,CDoc])[η].
Applying rule Non-functional concept preservation constraints we get

presnf (Contains(o, d)[CDoc,CDoc]) ∈ TF (X,Σ,KD)
(A0,A6) |=d pres(Contains(o, d)[CDoc],

Contains(o′1, d
′)[CDoc])[η, η]

tr |=d presnf (Contains(o, d)[CDoc,CDoc])[η].

191

192 Continuative Examples on Formal Parts

Since presnf (Contains(o, d)[CDoc,CDoc]) ∈ TF (X,Σ,KD) is true,

tr |=d presnf (Contains(o, d)[CDoc,CDoc])[η]

holds unless (A0,A6) 6|=d pres(Contains(o, d)[CDoc],Contains(o′1, d
′)[CDoc])[η, η].Accord-

ing to Defn. 5.2.1, this is equivalent to

A0 6|=d Contains(o, d)[CDoc][η]⇔ A6 |=d Contains(o′1, d
′)[CDoc][η],

since all affected objects exist in the system. This corresponds to the just-mentioned
status change.

We conclude this example by deriving the semantics of trace formula (7) from above.
Applying rule Quantification (Tab. 3.3, page 40) we get
∀h : HTMLDoc •
o 7→ Dir∧
presnf (Contains(o, h)[CDoc,CDoc])

∈ TF (X,Σ,KD)

dom(tr, h, η) = (A, d)
tr |=d o 7→ Dir∧

presnf (Contains(o, h)[CDoc,CDoc])
[η[h 7→ a]]

for all a ∈ d
tr |=d ∀h : HTMLDoc • o 7→ Dir ∧ presnf (Contains(o, h)[CDoc,CDoc])[η].

In Defn. 5.4.1 dom is defined by

dom(tr, x : τ, η) := (src(tr), {v | v ∈ τsrc(tr), ct ∈ CTminsrc(tr)(Σ, v),

(src(tr), ct) td
; v}).

Applied to this example,

dom(tr, h : HTMLDoc, η) = (A0, {v | v ∈ HTMLDocA0 , ct ∈ CTminA0
(Σ, v),

(A0, ct)
td
; v}).

Assuming d is the only html file that exists in A0, dom(tr, h : HTMLDoc, η) evaluates to
(A0, {VA0

d 〚d〛η}. Substituting this in the rule above results in
∀h : HTMLDoc •
o 7→ Dir∧
presnf (Contains(o, h)[CDoc,CDoc])

∈ TF (X,Σ,KD)

tr |=d o 7→ Dir∧
presnf (Contains(o, h)[CDoc,CDoc])
[η[h 7→ a]]

for all a ∈ {VA0
d 〚d〛η}

tr |=d ∀h : HTMLDoc • o 7→ Dir ∧ presnf (Contains(o, h)[CDoc,CDoc])[η]
This is the desired semantics — Contains(o, h) is to be preserved for all existing html
files h while o is transformed to type Dir. Since traces contain one explicit history chain
for the objects that exist in the source state,

tr |=d ∀h : HTMLDoc • o 7→ Dir ∧ presnf (Contains(o, h)[CDoc,CDoc])[η]

holding assures that one transformation result of o satisfies the constraint

presnf (Contains(o, h)[CDoc,CDoc])

for one transformation result of each existing html file.

192

B.4 Migration Algorithms 193

Preservation Formulas

In the following we list some selected examples for preservation formulas. As their
evaluation reduces to evaluating Σ-terms, concept formulas and trace formulas in a
straightforward way (cf. Tab. 5.2 on page 83), we do not derive their semantics explicitly.

Apart from those examples that have already been provided previously, the following
are well-formed preservation formulas:

(1) ∀d : Dir • ∀©¬d 7→ DObj⇒ presf (Name(d)[,])
(2) ∀d : Dir • ∃©d 7→ Dir ∧ ∀h : HTMLDoc • presnf (Contains(d, h)[CDoc,CDoc])
(3) ∀w : Website •

∀d, d′ : Dir •
d = srcDir(w)⇒
∃© d 7→ Dir ∧ d′ 7→ Dir ∧ presnf (Contains(d, d′)[CDirRec,CDirHtml])

There, formula (1) states that directory names are to be preserved for those directories
that are not transformed. This is a tautology. Formula (1) even scales to all object
types and all concepts the value of which depend on the arguments only. This is often
referred to as referential transparency in the literature. Generally speaking, formula (1)
reflects object immutability in our system; an object’s properties cannot change unless
it is transformed.

Preservation formula (2) extends formula (7) of the previous example for trace for-
mulas. It quantifies over all directories and requires a trace to exist for each directory d
such that

(1) d is transformed and
(2) the concept Contains is preserved for all html files and d w.r.t. that trace.

This shows the difference between quantifying outside and inside of trace formulas, re-
spectively. There may be different traces for different directories d. The html files,
however, are determined w.r.t. the same trace.

Finally, formula (3) is a modification of the above shown preservation requirement
of the introduction to Chap. 5. Instead of WebSrc(d,w) we have used d = srcDir(w);
we permit regular Σ-terms in preservation formulas. Yet notice that formula (3) reveals
implementation details of WebSrc, which can make the preservation requirement prone
to changing implementations of WebSrc.

B.4 Migration Algorithms

Here we explain syntactic and semantic aspects of basic operations and migration algo-
rithms in more detail.

Basic Operations

The sample archive evolution in Tab. 6.1 contains a series of basic operations. When
fully expanded and executed in a state A, these operations look as follows:

193

194 Continuative Examples on Formal Parts

(1) create(HTMLDoc, “start.html“, ..., ∅)
(2) create(Dir, “calc05“, {}, {})
(3) create(Dir, “overview“, {}, {})
(4) create(Dir, “source“, {x1, x2}, {x0}s)

η(x0) = VA〚HTMLDoc(initID, “start.html“, ...)〛
η(x1) = VA〚Dir(nextID(initID), “calc05“, {}, {})〛
η(x2) = VA〚Dir((nextID2(initID), “overview“, {}, {})〛

(5) delete(Dir((nextID2(initID), “overview“, {}, {}))
(6) delete(Dir, “source“),

η(x0) = VA〚HTMLDoc(initID, “start.html“, ...)〛
η(x1) = VA〚Dir(nextID(initID), “calc05“, {}, {})〛
η(x2) = VA〚Dir((nextID2(initID), “overview“, {}, {})〛

The operation

transform(Dir(nextID(initID), “calc05“, {}, {}) 7→ (Dir, “calc06“, {}, {}))

transforms the directory “calc05” to a new directory “calc06”.
The operation create(Dir, “test“, {}) is ill-formed because it has too few parameters

for the constructor Dir. As another negative example, create(Dir, “test“, {}, Empty)
is ill-formed. It has the right number of parameters but Empty is not of type Set.

Effect of Basic ASM Transition Rules

The example archive evolution of Tab. 6.1 on page 89 is the result of applying the formal
ASM rules

(1) r create(HTMLDoc, “start.html“, ..., ∅)
(2) r create(Dir, “calc05“, {}, {}, ∅)
(3) r create(Dir, “overview“, {}, {}, ∅)
(4) r create(Dir, “source“,

{Dir(nextID(initID), “calc05“, {}, {}),
Dir((nextID2(initID), “overview“, {}, {})},
{HTMLDoc(initID, “start.html“, ...)}s,
{Dir(nextID(initID), “calc05“, {}, {}),
Dir((nextID2(initID), “overview“, {}, {}),
HTMLDoc(initID, “start.html“, ...)})

(5) r delete(Dir((nextID2(initID), “overview“, {}, {}))
(6) r delete(Dir, “source“,

{Dir(nextID(initID), “calc05“, {}, {}),
Dir((nextID2(initID), “overview“, {}, {})},
{HTMLDoc(initID, “start.html“, ...)}s)

consecutively. For clarity, we have distinguished the empty set constructor {} of type
Set and the empty set ∅ in the example above. The former denotes a parameter in
a constructor call (e.g., Dir(nextID(initID), “calc05“, {}, {})). The latter denotes an
empty set tsub of subterms of type DObj as it is used in the rule declarations above.

194

B.4 Migration Algorithms 195

Effect of Basic Operations

We recapitulate an excerpt of the example archive evolution of Tab. 6.1 on page 89 in
order to demonstrate the effect of the

op
;-relation. The basic operations (1), (5), and (6)

have the following semantics:

(1) 〚r create(HTMLDoc, “start.html“, ..., ∅)〛Aη = U 6= ∅,
(A, η, HTMLDoc(initID, “start.html“, ...)) t

; v

−→ (A,∆, η, create(HTMLDoc, “start.html“, ...))
op
;

(A+ U,∆; 〈A, cre(HTMLDoc(initID, “start.html“, ...)),A+ U〉, v)
(5) 〚r delete(Dir, “overview“, {}, {})〛Aη = U = ∅,
−→ (A,∆, η, delete(Dir, “overview“, {}, {})) op

; (A,∆, FalseA)
(6) 〚r delete(Dir, “source“, {x1, x2}, {x0}s)〛Aη = U 6= ∅,
−→ (A,∆, η, delete(Dir, “source“, {x1, x2}, {x0}s))

op
;

(A+ U,∆; 〈A, del(Dir(nextID3(initID), “source“, {x1, x2}, {x0}s)),A+ U〉, TrueA)

Only the most relevant parts of the rules in Tab. 6.5 are shown. The −→ arrow
indicates derivation. Notice particularly operation (5). The migration sequence ∆ stays
unchanged and False is returned in order to report failure. Since the“overview”directory
is in the object-valued content of the “source” directory, the pre-condition of the rule
r delete is not satisfied. Firing rule r delete, thus, yields skip, which leads to an empty
update set U .

Source of Ambiguity in Set Comprehension Semantics

Consider the following constellation:
e := {x | x← d′, d = d′}
η = {d 7→ VA〚{Dir(initID, “d1“, {}, {})}s〛,

d′ 7→ VA〚{Dir(initID, “d2“, {}, {})}s〛}.
There, d and d′ yield singleton sets of differently named directories. According to
Tab. 6.7, evaluating (A, η, e) corresponds to evaluating a let construct of the form let y =
d′ in.... Now suppose y ≡ d. This is indeed possible in our example since y and d are of
type Set[Dir]. Then y is evaluated to η(d′) in η, i.e., to VA〚{Dir(initID, “d2“, {}, {})}s〛.
The let semantics now evaluates the if-expression using η′ := η[d 7→ η(d′)]. This results
in
η′ = {d 7→ VA〚{Dir(initID, “d2“, {}, {})}s〛,

d′ 7→ VA〚{Dir(initID, “d2“, {}, {})}s〛}.
Hence, the expression eB := d = d′ has semantics True, which has not been intended
originally. With a distinct variable y, the if-expression would have been evaluated with
η = {d 7→ VA〚{Dir(initID, “d1“, {}, {})}s〛,

d′ 7→ VA〚{Dir(initID, “d2“, {}, {})}s〛,
y 7→ VA〚{Dir(initID, “d2“, {}, {})}s〛}

such that d = d′ is False. This is the intended semantics of e.

Sample Migration Algorithm

The algorithm covering the functions in Fig. 6.1, page 90, is described by Aex :=
(FDex, fmain) ∈ Alg(X,Σ,Fdecl), where

195

196 Continuative Examples on Formal Parts

Fdecl := { migDirHTML : Dir→ Website→ Dir
migHTMLDoc : HTMLDoc→ Website→ HTMLDoc },

FDex := {
migDirHTML(d,w) =

let sDirs = {migDirHTML(d′, w) | d′ ← subDirs(d), True}

sDocs=
{migHTMLDoc(d′, w) | d′ ← subDocs(d),

and(not(d′ = home(w)), instHTMLDoc(d′))}
in transform(d 7→ (Dir, name(d), sDirs, sDocs)),

migHTMLDoc(d,w) =
if not(d = home(w))

then transform(d 7→ (HTMLDoc, name(d), content(d)))
else transform(d 7→ (HTMLDoc, “index.html“, content(d))) }

fmain := migDirHTML : Dir→ Website→ Dir

Deriving Well-Formedness

We derive well-formedness of the sample algorithm Aex of App. B.4, page 195. This
corresponds to showing FDex ⊆ FD(X,Σ,Fdecl), which will be done in two steps:

Step 1: Show migHTMLDoc(d,w) = e1 ∈ FDHTMLDoc(X,Σ,Fdecl).
Step 2: Show migDirHTML(d,w) = e2 ∈ FDDir(Σ, X,Fdecl).

Since e1 and e2 contain all syntactic elements of our language, both derivations together
should generate a feeling for syntactic program correctness and static typing. We derive
these properties in consecutive order.
Step 1:

not(d = home(w)) ∈ EBool(X,Σ,Fdecl)
transform(d 7→ (HTMLDoc, ...)) ∈ EHTMLDoc(X,Σ,Fdecl)
transform(d 7→ (HTMLDoc, ...)) ∈ EHTMLDoc(X,Σ,Fdecl)

if not(d = home(w))
then transform(d 7→ (HTMLDoc, ...))
else transform(d 7→ (HTMLDoc, ...))

∈ EHTMLDoc(X,Σ,Fdecl)
d : HTMLDoc ∈ X,w : HTMLDoc ∈ X

migHTMLDoc : HTMLDoc× Website→
HTMLDoc ∈ Fdecl

{d,w} ⊆ {d,w}
migHTMLDoc(d,w) =
if not(d = home(w))

then transform(d 7→ (HTMLDoc, name(d), content(d)))
else transform(d 7→ (HTMLDoc, “index.html“, content(d)) ∈ FDHTMLDoc(X,Σ,Fdecl))

Hence, there are three derivation steps left. We start by deriving not(d = home(w)) ∈
EBool(X,Σ,Fdecl) and denote gen(Σ) ∪ (∅, ∅, ∅, ∅,Fdecl) by Σ′ and the components of Σ′

by F ′,P ′ etc.

d : HTMLDoc ∈ X
d ∈ THTMLDoc(X,Σ′) HTMLDoc<Top

d ∈ TTop(X,Σ′)

w : Website ∈ X
w ∈ TWebsite(X,Σ′)
homeWebsite→HTMLDoc ∈ F ′
home(w) ∈ THTMLDoc(X,Σ′) HTMLDoc<Top

home(w) ∈ TTop(X,Σ′)

=Top×Top→Bool∈ F ′
d = home(w) ∈ TBool(X,Σ′)
notBool→Bool ∈ F ′
not(d = home(w)) ∈ TBool(X,Σ′)
not(d = home(w)) ∈ EBool(X,Σ)

196

B.4 Migration Algorithms 197

The derivation for transform(d 7→ (HTMLDoc, name(d), content(d))) ∈ EHTMLDoc(X,Σ,Fdecl)
looks as follows (we denote gen(Σ) by Σ′):

... ...
name(d) ∈ TString(X,Σ′)
d ∈ TDObj(X,Σ′)

... ...
content(d) ∈ THTMLElem(X,Σ′)
HTMLDoc : OID× String× HTMLElem→ HTMLDoc ∈ C′HTMLDoc
HTMLDoc<DObj

transform(d 7→ (HTMLDoc, name(d), content(d))) ∈ BOpHTMLDoc(X,Σ′)
transform(d 7→ (HTMLDoc, name(d), content(d))) ∈ EHTMLDoc(X,Σ,Fdecl)

where the remaining derivations are

d : HTMLDoc ∈ X
d ∈ THTMLDoc(X,Σ′) HTMLDoc<DObj

d ∈ TDObj(X,Σ′)
,

d : HTMLDoc ∈ X
d ∈ THTMLDoc(X,Σ′)
nameHTMLDoc→String ∈ F ′
name(d) ∈ TString(X,Σ′)

,

and
d : HTMLDoc ∈ X
d ∈ THTMLDoc(X,Σ′)
contentHTMLDoc→HTMLElem ∈ F ′
content(d) ∈ THTMLElem(X,Σ′)

.

Showing that transform(d 7→ (HTMLDoc, “index.html“, content(d))) is inEHTMLDoc(X,Σ,Fdecl)
works similar to the just-provided derivation. It is omitted for brevity.

Step 2: We derive migDirHTML(d,w) = e2 ∈ FDDir(Σ, X,Fdecl).

The let-rule delivers
...

{migDirHTML(d′, w) | d′ ← ..., ...} ∈ ESet[Dir](X,Σ′)
{migHTMLDoc(d′, w) | d′ ← ..., ...} ∈ ESet[Doc](X,Σ′)
transform(d 7→ (Dir, name(d), ...)) ∈ EDir(X,Σ′)
sDirs : Set[Dir] ∈ X, sDocs : Set[Doc] ∈ X

letsDirs= {migDirHTML(d′, w) | d′ ← ..., ...}
sDocs= {migHTMLDoc(d′, w) | d′ ← ..., ...}

in transform(d 7→ (Dir, name(d), ...))
∈ EDir(X,Σ′), d : Dir ∈ X,w : Website ∈ X

migDirHTMLDir×Website→Dir

∈ Fdecl, {d,w} ⊆ {d,w}
migDirHTML(d,w) =
letsDirs= {migDirHTML(d′, w) | d′ ← subDirs(d), True}

sDocs=
{migHTMLDoc(d′, w) | d′ ← subDocs(d),

and(not(d′ = home(w)), instHTMLDoc(d′))}
in transform(d 7→ (Dir, name(d), sDirs, sDocs)) ∈ FDDir(Σ, X,Fdecl)

resulting in three remaining proof obligations — the two set comprehension expressions
and the transformation. We merely derive that

{migHTMLDoc(d′, w) | d′ ← subDocs(d),
and(not(d′ = home(w)), instHTMLDoc(d′))}

is in ESet[Doc](X,Σ,Fdecl); the other set comprehension expression works similar and the
above derivations already include transformations similar to the one used here.

The set comprehension rule delivers

197

198 Continuative Examples on Formal Parts

...
subDocs(d) ∈ ESet[Doc](X,Σ,Fdecl)
and(not(d′ = home(w)), instHTMLDoc(d′)) ∈ EBool(X,Σ,Fdecl)
migHTMLDoc(d′, w) ∈ EDoc(X,Σ,Fdecl)
d′ : Doc ∈ X
{migHTMLDoc(d′, w) | d′ ← subDocs(d),

and(not(d′ = home(w)), instHTMLDoc(d′))}
∈ ESet[Doc](X,Σ,Fdecl)

such that three proof obligations remain. The simple ones are
d : Dir ∈ X
d ∈ TDir(X,Σ′)
migHTMLDocDoc×Website→Doc ∈ F ′
subDocs(d) ∈ TSet[Doc](X,Σ′)

subDocs(d) ∈ ESet[Doc](X,Σ,Fdecl)
and

d′ : Doc ∈ X
d′ ∈ TDoc(X,Σ′)

w : Website ∈ X
w ∈ TWebsite(X,Σ′)

subDocsDir→Set[Doc] ∈ F ′
migHTMLDoc(d′, w) ∈ TDoc(X,Σ′)

migHTMLDoc(d′, w) ∈ EDoc(X,Σ,Fdecl)
such that showing and(not(d′ = home(w)), instHTMLDoc(d′)) ∈ EBool(X,Σ,Fdecl) concludes the
overall derivation. The derivation tree looks as follows

... ...
not(d′ = home(w)) ∈ TBool(X,Σ′)

d′ : HTMLDoc ∈ X
d′ ∈ THTMLDoc(X,Σ′) HTMLDoc ∈ T
instHTMLDoc(d′) ∈ TBool(X,Σ′)

andBool×Bool→Bool ∈ F ′
and(not(d′ = home(w)), instHTMLDoc(d′)) ∈ TBool(X,Σ′)

and(not(d′ = home(w)), instHTMLDoc(d′)) ∈ EBool(X,Σ,Fdecl)
where not(d′ = home(w)) ∈ TBool(X,Σ′) has already been derived at the beginning of
this section (for d instead of d′).

The overall derivation shows that our migration routines are well-formed and well-
typed.

Deriving Semantics

Here we demonstrate how the
mig
; relation works. For this purpose, we derive the se-

mantics for migDirHTML(td, tw), where

td ≡ Dir(nextID3(initID)“source“, {Dir(nextID(initID)“calc05“, {}, {})}s, {})
tw ≡ Website(...).

Recall that td reflects parts of the directory structure of our running example (the di-
rectory “source” contains the directory “calc05”). The website tw is not further specified
as this is largely unimportant for the derivation. Yet suppose it is a simple constructor
term Website(...). It is thus evaluable by t

; and causes no state changes. The initial mi-
gration sequence ∆ equals 〈A〉, where A is an arbitrary starting state A. The derivation
starts by applying the rule Σ-terms 2, where we denote gen(Σ)∪ (∅, ∅, ∅, ∅,Fdecl) by Σ′

and the function body for migDirHTML by e1.

198

B.4 Migration Algorithms 199

(A,∆, η, td)
mig
; (A,∆, vsource)

(A,∆, η, tw)
mig
; (A,∆, vw)

(A,∆, {d 7→ vsource, w 7→ vw}, e1)
mig
; (A′,∆′, vnew

source)
migDirHTML(td, tw) ∈ TDir(X,Σ′)
migDirHTML(d,w) = e1 ∈ FDex

(A,∆, η, migDirHTML(td, tw))
mig
; (A′,∆′, vnew

source)
The values vsource, vw, and vnewsource denote the value of the “source” directory, the value
of the website w, and the migrated “source” directory, respectively. vsource and vw are
derived using the rule Σ-terms 1, which results in evaluating the usual term semantics
via t

; as follows:
...

(A, η, td) t
; vsource

td ∈ TDir(X, gen(Σ))

(A,∆, η, td)
mig
; (A,∆, vsource)

...

(A, η, tw) t
; vw

tw ∈ TWebsite(X, gen(Σ))

(A,∆, η, tw)
mig
; (A,∆, vw)

Hence, we have to derive (A,∆, {d 7→ vsource, w 7→ vw}, e1)
mig
; (A′,∆′, vnewsource). After

applying the let rule
let sDirs = ... ∈ EDir(X,Σ,Fdecl)
(A,∆, {d 7→ vsource, w 7→ vw},

{migDirHTML(d′, w) | d′ ← ..., ...})
mig
; (A2,∆2, v1)

(A2,∆2, {d 7→ vsource, w 7→ vw, sDirs 7→ v1},
{migHTMLDoc(d′, w) | d′ ← ..., ...})

mig
; (A3,∆3, v2)

(A3,∆3, {d 7→ vsource, w 7→ vw, sDirs 7→ v1, sDocs 7→ v2},
transform(d 7→ (Dir, name(d), sDirs, sDocs)))

mig
; (A′,∆′, vnew

source)
(A,∆, {d 7→ vsource, w 7→ vw},

let
sDirs = {migDirHTML(d′, w) | d′ ← ..., ...}
sDocs= {migHTMLDoc(d′, w) | d′ ← ..., ...}

in transform(d 7→ (Dir, name(d), sDirs, sDocs)))
mig
; (A′,∆′, vnew

source)
we have three remaining derivation steps.

Step 1: Show
(A,∆, {d 7→ vsource, w 7→ vw},

{migDirHTML(d′, w) | d′ ← ..., ...})
mig
; (A2,∆2, v1).

Step 2: Show
(A2,∆2, {d 7→ vsource, w 7→ vw, sDirs 7→ v1},

{migHTMLDoc(d′, w) | d′ ← ..., ...})
mig
; (A3,∆3, v2).

Step 3: Show
(A3,∆3, {d 7→ vsource, w 7→ vw, sDirs 7→ v1, sDocs 7→ v2},

transform(d 7→ (Dir, name(d), sDirs, sDocs)))
mig
; (A′,∆′, vnew

source).

Notice that the execution order is important since the single steps rely on previous
results. We derive the semantics in consecutive order.
Step 1: We start by applying the set comprehension rule to
{migDirHTML(d′, w) | d′ ← subDirs(d), True})

mig
; (A2,∆2, v1).

This yields

199

200 Continuative Examples on Formal Parts

{migDirHTML(d′, w) | d′ ← subDirs(d), True} ∈ ESet[Dir](X,Σ,Fdecl)
y 6∈ FV(e) ∪ FV(e′) ∪ FV(eB)
(A,∆, {d 7→ vsource, w 7→ vw},

let y = subDirs(d)
in if y = {} then {}

else let d′ = rep(y) in
if True then {migDirHTML(d′, w)}s∪

{migDirHTML(d′, w) | d′ ← y\{d′}s, True}
else {migDirHTML(d′, w) | d′ ← y\{d′}s, True})

mig
; (A2,∆2, v1)

(A,∆, {d 7→ vsource, w 7→ vw},
{migDirHTML(d′, w) | d′ ← subDirs(d), True})

mig
; (A2,∆2, v1)

At this point it is important to notice that the expression subDirs(d) is evaluated once
upon first execution of the set comprehension term and then stored in the variable y. If
subDirs(d) caused state changes (which it does not in this example), these state changes
would be performed only once. Therefore, we use the seemingly complicated variant with
a let construct. The just-described effect becomes clearer with the following resolution
of the let construct.

(A,∆, {d 7→ vsource, w 7→ vw}, subDirs(d))
mig
; (A, η, vsDirs)

(A,∆, {d 7→ vsource, w 7→ vw, y 7→ vsDirs},
if y = {} then {}
else let d′ = rep(y) in

if True then {migDirHTML(d′, w)}s∪
{migDirHTML(d′, w) | d′ ← y\{d′}s, True}

else {migDirHTML(d′, w) | d′ ← y\{d′}s, True})
mig
; (A2,∆2, v1)

{migDirHTML(d′, w) | d′ ← subDirs(d), True} ∈ ESet[Dir](X,Σ,Fdecl)
(A,∆, {d 7→ vsource, w 7→ vw},

let y = subDirs(d)
in if y = {} then {}

else let d′ = rep(y) in
if True then {migDirHTML(d′, w)}s∪

{migDirHTML(d′, w) | d′ ← y\{d′}s, True}
else {migDirHTML(d′, w) | d′ ← y\{d′}s, True})

mig
; (A2,∆2, v1)

Now, the upper variable assignment assigns the value vsDirs to y; this value represents
the set {Dir(“calc05“, ...)}s. The assignment for this value is passed through to the
recursive set comprehension terms. Hence, the source set need not be computed again.

We slightly abbreviate the further derivation steps. First, the value vsDirs is the
evaluation result of the simple function call subDirs(d) and, hence, is determined by
t

;. Also, we abbreviate evaluation of the if clauses. At this point y 6= {} and True
hold. Therefore, the semantics of the above expression is determined by evaluating the
expression

let d′ = rep(y)
in {migDirHTML(d′, w)}s ∪ {migDirHTML(d′, w) | d′ ← y\{d′}s, True} .

The let construct assigns a value vcalc := repA(y) = repA(vsDirs) to d′. We call this
value vcalc since it represents the “calc05” directory in our example. Notice the role of
the function rep. It chooses a representative of a set. We fix the evaluation order of
set comprehension in this way. Yet we leave it up to the user to specify this function in
detail.

200

B.4 Migration Algorithms 201

The current variable assignment is {d 7→ vsource, w 7→ vw, y 7→ vsDirs, d
′ 7→ vcalc}.

Since y\{d′} evaluates to the empty set {} under the given variable assignment (the
directory “source” contains the directory “calc05”, only), the expression

{migDirHTML(d′, w) | d′ ← y\{d′}s, True}

evaluates to {}. Hence, we only have to derive the semantics for {migDirHTML(d′, w)}s
which results in the following derivation tree (rule Σ-terms 3 and Σ-terms 2 are applied
consecutively):

(A,∆, {d 7→ vsource, w 7→ vw, y 7→ vsDirs, d
′ 7→ vcalc},

d′)
mig
; (A,∆, vcalc)

(A,∆, {d 7→ vsource, w 7→ vw, y 7→ vsDirs, d
′ 7→ vcalc},

w)
mig
; (A,∆, vw)

(A,∆, {d 7→ vcalc, w 7→ vw, y 7→ vsDirs, d
′ 7→ vcalc},

e1)
mig
; (A2,∆2, v

new
calc)

migDirHTML(d′, w) ∈ TDir(X,Σ′)
migDirHTML(d,w) = e1 ∈ FDex

(A,∆, {d 7→ vsource, w 7→ vw, y 7→ vsDirs, d
′ 7→ vcalc},

migDirHTML(d′, w))
mig
; (A2,∆2, v

new
calc)

{}As (vnew
calc) = v1

(A,∆, {d 7→ vsource, w 7→ vw, y 7→ vsDirs, d
′ 7→ vcalc},

{migDirHTML(d′, w)}s)
mig
; (A2,∆2, v1)

There d′ and w are evaluated to vcalc = η(d′) and vw = η(w), respectively. In the
third expression vnewcalc represents the value of the migrated directory. Notice the variable
assignment in the derivation for e1. According to rule Σ-terms 2, d is bound to the
value vcalc. Recall that vcalc is the value of the representative of subDirs(d) (above),
which is the semantic value of the “calc05” directory in our example. Since “calc05” does
neither have sub-directories nor sub-documents, both set comprehension expressions in
the body of migDirHTML evaluate to {}, which yields the variable assignments sDirs 7→ ∅
and sDocs 7→ ∅. Hence, the derivation step for (A,∆, {d 7→ vcalc, w 7→ vw, y 7→ vsDirs, d

′ 7→
vcalc}, e1) corresponds to deriving the semantics for (A,∆, {d 7→ vcalc, w 7→ vw, y 7→ ∅, d′ 7→
vcalc, sDirs 7→ ∅, sDocs 7→ ∅}, transform(d 7→ (Dir, ...))).

This derivation uses the rule Basic operations and starts as follows:

transform(d 7→ (Dir, ...)) ∈
BOpτ (X, gen(Σ))

... ...
(A,∆, {d 7→ vcalc, w 7→ vw, y 7→ vsDirs, d

′ 7→ vcalc,
sDirs 7→ ∅, sDocs 7→ ∅},

transform(d 7→ (Dir, ...)))
op
; (A′,∆′, vnew

source)
(A,∆, {d 7→ vcalc, w 7→ vw, y 7→ vsDirs, d

′ 7→ vcalc, sDirs 7→ ∅, sDocs 7→ ∅},
transform(d 7→ (Dir, name(d), sDirs, sDocs)))

mig
; (A′,∆′, vnew

source)

We proceed by applying the rule Object transformation 2 for
op
; (cf. Tab. 6.5, page

95).

201

202 Continuative Examples on Formal Parts

transform(d 7→ (Dir, name(d), sDirs, sDocs)) ∈ BOpDir(X, gen(Σ))
〚r transform(d, Dir, (name(d), sDirs, sDocs), {d})〛A{d7→vcalc,sDirs7→∅,sDocs7→∅} = U

U 6= ∅
(A,∆, η, Dir(oidToUse, name(d), sDirs, sDocs)) t

; vnew
calc

ctcalc ∈ CTmin
A (Σ, vcalc)

ctnew
calc ∈ CTmin

A (Σ, vnew
calc)

(A,∆, {d 7→ vcalc, w 7→ vw, y 7→ vsDirs, d
′ 7→ vcalc, sDirs 7→ ∅, sDocs 7→ ∅},

transform(d 7→ (Dir, name(d), sDirs, sDocs)))
op
; (A+ U,

∆; 〈A, trans(ctcalc 7→ ctnew
calc),A+ U〉,

vnew
calc)

This can be derived under the assumption that A |= d ∈ existDObj[∅[d 7→ vcalc]]. Since
vcalc is the value of the “calc05” directory in our example, the assumption holds. Thus
step one is completed. The overall derivation has delivered the following:
(A,∆, {d 7→ vsource, w 7→ vw},

{migDirHTML(d′, w) | d′ ← subDirs(d), True})
mig
; (A2,∆2, v1)

where

A2 = A+ U
vcalc = VA〚Dir(nextID(initID), “calc05“, {}, {})〛
vnew

calc = VA〚Dir(oidToUse, “calc05“, {}, {})〛
∆2 = ∆; 〈A, trans(ctcalc 7→ ctnew

calc),A+ U〉
v1 = {vnew

calc }As = VA〚{Dir(oidToUse, “calc05“, {}, {})}s〛

At this point, the derivation yields an element of type Set[Dir] that contains the
transformation result for the directory “calc05”. We proceed with step two.
Step 2: This step computes the derivation

(A2,∆2, {d 7→ vsource, w 7→ vw, sDirs 7→ v1}
{migHTMLDoc(d′, w) | d′ ← subDocs(d),

and(not(d′ = home(w)), instHTMLDoc(d′))}
)

mig
; (A3,∆3, v2)

Since subDocs(d) is empty (the directory“source”contains no sub documents), A3 = A2,
∆3 = ∆2, and v2 = {}A holds. Hence, we can directly switch to the last step.
Step 3: The remaining derivation target looks as follows:

(A3,∆3, {d 7→ vsource, w 7→ vw, sDirs 7→ v1, sDocs 7→ v2},
transform(d 7→ (Dir, name(d), sDirs, sDocs)))

mig
; (A′,∆′,

vnew
source)

Since it is very similar to the transformation operation just shown, we omit a de-
tailed derivation. Yet this step generates the overall result for the initial function call
migDirHTML(td, tw). Due to the variable assignment d 7→ vsource (vsource represents the
directory “source”), the directory “source” is transformed. The target directory receives
the name “source” as well. The sub-directories and sub documents of the transformation
target are set to sDirs and sDocs, respectively. The latter two have been computed
in steps one and two. The values are bound to the respective variables in the variable
assignment (sDirs 7→ v1, sDocs 7→ v2). The derivation for this operation constructs
another update set U ′, such that A′ = A+U +U ′. The value v represents the transfor-
mation result and ∆3 is extended by trans(ctsource 7→ ctnewsource), where ctsource and ctnewsource
are minimal constructor terms for vsource and vnewsource, respectively. Hence, the overall
derivation yields

(A,∆, migDirHTML(td, tw))
mig
; (A+ U + U ′,

∆; 〈A, trans(ctcalc 7→ ctnew
calc),A+ U〉;

〈A+ U, trans(ctsource 7→ ctnew
source),A+ U + U ′〉, vnew

source)

202

B.4 Migration Algorithms 203

where

td ≡ Dir(nextID3(initID), “source“, {Dir(nextID(initID), “calc05“, {}, {})}s, {}),
vsource = VA〚td〛,
vcalc = VA〚Dir(nextID(initID), “calc05“, {}, {})〛,
vnew

calc = VA〚Dir(oidToUse, “calc05“, {}, {})〛, and
vnew

source = VA+U 〚Dir(oidToUse, “source“, {x}s, {})〛{x 7→ vnew
calc }

The semantics confirms the behavior of migDirHTML(d,w) as explained in the intro-
duction to Chap. 6. This function first transforms all sub-directories and sub-documents
of d and collects all these results in sets. Then it transforms the directory d to a new
representation and attaches the transformed sub directories and sub-documents. Hence,
it corresponds to a kind of recursive cloning of d.

203

Appendix C

Proofs

The proofs are structured by chapter.

C.1 Proofs for Chap. 3

Proof C.1.1 (Proof of Lemma 3.2.2) We show the properties of Defn. 3.2.5 consec-
utively.

(1) t ∈ Tτ ′(X,Σ) ∧ τ ′<τ ⇒ t ∈ Tτ (X,Σ) according to rule Subtyping in Tab. 3.2.
(2) We show the property by induction on the structure of t.

Case 1 (t ≡ x): We conclude:
x ∈ Tτ (X,Σ)⇒ ∃x : τ ′ ∈ Xτ ′ • τ ′<τ ∧ (A, η, x) t

; η(x) Tab. 3.2

⇒ τ ′<τ ∧ (A, η, x) t
; η(x) ∧ η(x) ∈ τ ′A ∪ {⊥} Defn. 3.2.4

⇒ τ ′A ⊆ τA ∧ (A, η, x) t
; η(x) ∧ η(x) ∈ τA ∪ {⊥} Defn. 3.2.3

⇒ (A, η, x) t
; η(x) ∧ η(x) ∈ τA ∪ {⊥}

⇒ ∃v ∈ τA ∪ {⊥} • (A, η, x) t
; v

Case 2 (t ≡ f(ti)): We conclude:
f(ti) ∈ Tτ (X,Σ)

⇒ ∃fτi→τ ′ ∈ Fτi→τ ′ • τ ′<τ ∧ ti ∈ Tτi(X,Σ) Tab. 3.2

⇒ ∃fτi→τ ′ ∈ Fτi→τ ′ • τ ′<τ ∧ ti ∈ Tτi(X,Σ)∧
∃vi ∈ τAi ∪ {⊥} • (A, η, t1)

t
; v1 ∧ ... ∧ (A, η, tn)

t
; vn ind.hyp.

⇒ τ ′<τ ∧ (A, η, f(ti))
t

; fA
⊥

(vi) ∧ fA
⊥

(vi) ∈ τ ′A ∪ {⊥} Tab. 3.2, Defn. 3.2.3

⇒ τ ′<τ ∧ ∃v ∈ τ ′A ∪ {⊥} • (A, η, f(ti))
t

; v

⇒ τ ′A ⊆ τA ∧ ∃v ∈ τ ′A ∪ {⊥} • (A, η, f(ti))
t

; v Defn. 3.2.3

⇒ ∃v ∈ τA ∪ {⊥} • (A, η, x) t
; v

2

Proof C.1.2 (Proof of Lemma 3.2.3) We show the property by induction on the
structure of t. Ambiguity can arise due to symbol overloading only. Therefore, we start
the proofs by assuming two different typings for t.

Case 1 (t ≡ x): Informally, the property holds since Xτ ′ ∩Xτ = ∅ if τ 6= τ ′ according
to Defn. 3.2.4 and, hence, η(x) is uniquely determined. Formally, we conclude:

204

C.1 Proofs for Chap. 3 205

x ∈ Tτ (X,Σ) ∧ (A, η, x) t
; v1 ∧ (A, η, x) t

; v2
⇒ ∃x : τ ′1 ∈ Xτ ′1

, x : τ ′2 ∈ Xτ ′2
• v1 = η(x : τ ′1) ∧ v2 = η(x : τ ′2) Tab. 3.2

⇒ τ ′1 = τ ′2 ∧ v1 = η(x : τ ′1) ∧ v2 = η(x : τ ′2) Defn. 3.2.4
⇒ v1 = v2

Case 2 (t ≡ f(ti)): In the proof we suppose v1 6= ⊥ ∨ v2 6= ⊥ and refer to this fact by
(*). If both v1 and v2 are ⊥, the assumption trivially holds.

f(ti) ∈ Tτ (X,Σ) ∧ (A, η, f(ti))
t

; v1 ∧ (A, η, f(ti))
t

; v2
⇒ ∃fτ1,i→τ ′1

∈ Fτ1,i→τ ′1
, fτ2,i→τ ′2

∈ Fτ2,i→τ ′2
•

(A, η, t1)
t

; w1 ∧ ... ∧ (A, tn, η)
t

; wn ∧ v1 = fA
⊥

τ1,i→τ ′1
(wi) ∧

(A, η, t1)
t

; w′1 ∧ ... ∧ (A, tn, η)
t

; w′n ∧ v2 = fA
⊥

τ2,i→τ ′2
(w′i) Tab. 3.2

⇒ w1 = w′1 ∧ ... ∧ wn = w′n∧ ind.hyp.

v1 = fA
⊥

τ1,i→τ ′1
(wi) ∧ v2 = fA

⊥

τ2,i→τ ′2
(wi) ∧

wi ∈ τA1,i ∧ wi ∈ τA2,i (*), Lemma 3.2.2(2)

⇒ v1 = fA
⊥

τ1,i→τ ′1
(wi) ∧ v2 = fA

⊥

τ2,i→τ ′2
(wi) ∧

wi ∈ τA1,i ∧ wi ∈ τA2,i

∃τj • (τj<τ1,i ∧ τj<τ2,i) ∧ τ ′1, τ ′2<Top Defn. 3.2.3

⇒ v1 = fA
⊥

τ1,i→τ ′1
(wi) ∧ v2 = fA

⊥

τ2,i→τ ′2
(wi) ∧

wi ∈ τA1,i ∧ wi ∈ τA2,i ∧
fτ1,i→τ ′1

∼=F fτ1,i→τ ′1
Defn. 3.2.2

⇒ v1 = v2 Defn. 3.2.3

2

Proof C.1.3 (Proof of Lemma 3.3.1) As <id is transitive and irreflexive, the prop-
erty directly follows. 2

Proof C.1.4 (Proof of Lemma 3.3.2) We start by proving parts (1) and (2) of the
ID-property.

(1) In ΣDA
s DObj is the only subtype of DObj. It has one constructor only (createDObj),

which has the required parameter of type OID in the first position.

(2) The specification for type DObj contains the axiom

∀id : OID • oid(createDObj(id)) = id.

The property, thus, holds.

We proceed by proving parts (1) and (2) of the constructor property. In both proofs we
will use the following property: Whenever A |= t ∈ s, t ∈ GTτ (Σ), s ∈ GTSet[Top](Σ),
there is t′ ∈ T≤τ (∅, s) such that A |= t = t′. We prove this by induction on the structure
of s. Notice that the set constructors and the function rep are the only operations
that return elements of type Set. Also, A |= t ∈ s excludes s ≡ {} according to
Defn. 3.3.1.

Case 1 (s ≡ {t′}s): Then t′ ∈ T≤τ (∅, s) and A |= t ∈ s⇔ t = t′ according to Defn. 3.3.1.

Case 2 (s ≡ s′ ∪ s′′): According to Defn. 3.3.1 A |= t ∈ s ⇔ t ∈ s′ ∨ t ∈ s′′. By
induction hypothesis the property follows.

Case 3 (s ≡ rep(s′)): We conclude

205

206 Proofs

s ≡ rep(s′) ∧ A |= t ∈ s
⇒ s ≡ rep(s′) ∧ A |= t ∈ s ∧ s ∈ s′ Defn. 3.3.1
⇒ s ≡ rep(s′) ∧ A |= t ∈ s ∧ s ∈ s′∧

there is s′′ ∈ T≤Top(∅, s′) such that A |= s = s′′ ind.hyp.
⇒ s ≡ rep(s′) ∧ A |= t ∈ s ∧ s ∈ s′∧ Defn. 3.3.1

there is s′′ ∈ T≤Top(∅, s′) such that A |= t ∈ s′′
⇒ s ≡ rep(s′) ∧ A |= t ∈ s ∧ s ∈ s′∧

there is s′′ ∈ T≤Top(∅, s′) such that A |= t ∈ s′′∧
there is t′ ∈ T≤τ (∅, s′′) such that A |= t = t′ ind.hyp.

⇒ s ≡ rep(s′) ∧ A |= t ∈ s ∧ s ∈ s′∧
there is t′ ∈ T≤τ (∅, s′) such that A |= t = t′

⇒ there is t′ ∈ T≤τ (∅, s) such that A |= t = t′

Now, we are ready to prove that SpecDAs satisfies both constructor properties.

(1) We prove the property by induction on the structure of t. Notice that the constructor
createDObj and the function rep applied to a term of type Set[DObj] are the only
functions of ΣDA

s that return a result of type DObj.

Case 1 (t ≡ createDObj(t′i)): Since createDObj is a constructor and createDObj(t′i) ∈
T≤DObj(∅, createDObj(t′i)), createDObj(t′i) satisfies the property.

Case 2 (t ≡ rep(s)): We conclude
t ≡ rep(s)⇒A |= t ∈ s Defn. 3.3.1

⇒ there is t′ ∈ T≤DObj(∅, s) such that A |= t = t′ above

⇒ there is t′ ∈ T≤DObj(∅, s) such that A |= t = t′∧
there is c ∈ C, c(ti) ∈ T≤DObj(∅, t′) such that A |= c(ti) = t ind.hyp.

⇒ there is c ∈ C, c(ti) ∈ T≤DObj(∅, s) such that A |= c(ti) = t

⇒ there is c ∈ C, c(ti) ∈ T≤DObj(∅, t) such that A |= c(ti) = t

(2) Given two minimal constructor terms ct, ct′ of type Set[τ] such that A |= ct = ct′,
we conclude
A |= ct = ct′⇔A |= ∀x : τ • x ∈ ct⇔ x ∈ ct′ Defn. 3.3.1

⇒A |= ∀x : DObj • x ∈ ct⇔ x ∈ ct′
⇒ for all t ∈ GTDObj(Σ) it is true that

(there is t′ ∈ T≤DObj(∅, ct) such that A |= t = t′)⇔ above,

(there is t′′ ∈ T≤DObj(∅, ct′) such that A |= t = t′′) Defn. 3.2.11
⇒ for all t ∈ GTDObj(Σ) it is true that

(VA〚t〛 ∈ {VA〚t′〛 | t′ ∈ T≤DObj(∅, ct)})⇔ Defn. 3.2.11

(VA〚t〛 ∈ {VA〚t′′〛 | t′′ ∈ T≤DObj(∅, ct′)})
⇒ {VA〚t′〛 | t′ ∈ T≤DObj(∅, ct)} = {VA〚t′′〛 | t′′ ∈ T≤DObj(∅, ct′)}

2

Proof C.1.5 (Proof of Lemma 3.3.3) We prove the properties in consecutive order.

(1) We conclude
A |= s ∈ contA,η

DObj(t)[η]

⇔ there is a term t′ ∈ contA,η
DObj(t) such that A |= s = t′[η] Defn. 3.3.3

⇔ there is a term t′ ∈ T≤DObj(∅, ctt), ctt ∈ CTmin
A (Σ,VA〚t〛η),

such that A |= s = t′[η] Defn. 3.3.3

⇔ VA〚s〛η ∈ {VA〚t′〛η|t′ ∈ T≤DObj(∅, ctt)} Defn. 3.2.11

⇔ there is ctt ∈ CTmin
A (Σ,VA〚t〛η) Defn. 3.3.2,

such that VA〚s〛η ∈ {VA〚t′〛η | t′ ∈ T≤DObj(∅, ctt)} constr.prop. (2)

206

C.1 Proofs for Chap. 3 207

(2) We have to show reflexivity, transitivity, and antisymmetry.

Reflexivity: Given a term t ∈ GTDObj(Σ), we conclude
t ∈ GTDObj(Σ)
⇒ t ∈ GTDObj(Σ) ∧ for all ct ∈ CTmin

A (Σ,VA〚t〛) A |= t = ct Defn. 3.2.9
⇒ t ∈ GTDObj(Σ) ∧ for all ct ∈ CTmin

A (Σ,VA〚t〛) A |= t = ct

and ct ∈ T≤DObj(∅, ct) Defn. 3.2.6
⇒ t ∈ GTDObj(Σ)∧

there is a term t′ ∈ contADObj(t) such that A |= t = t′ Defn. 3.3.3, (*)
⇒ t ∈ GTDObj(Σ) ∧ A |= t ∈ contADObj(t) Defn. 3.3.3
⇒ (t, t) ∈ Rcont

A

With (*) we refer to the fact that t′ = ctt satisfies the condition, where ctt is the
fixed minimal constructor term of Defn. 3.3.3.

Antisymmetry: We conclude
(s, t) ∈ Rcont

A ∧ (t, s) ∈ Rcont
A

⇒A |= s ∈ contADObj(t) ∧ A |= t ∈ contADObj(s)
⇒ there is a term t′ ∈ contADObj(t) such that A |= s = t′∧

there is a term s′ ∈ contADObj(s) such that A |= t = s′ Defn. 3.3.3

⇒ there are terms t′, ctt such that t′ ∈ T≤DObj(∅, ctt),
ctt ∈ CTmin

A (Σ,VA〚t〛),A |= s = t′ ∧ ctt = t, and

there are terms s′, cts such that s′ ∈ T≤DObj(∅, cts),
cts ∈ CTmin

A (Σ,VA〚s〛),A |= t = s′ ∧ cts = s Defn. 3.3.3

⇒A |= t′ = cts ∧ s = cts ∧ l(t′) = l(cts) ∧ t′ ∈ T≤DObj(∅, ctt)∧ t′ min.constr.for s

A |= s′ = ctt ∧ t = ctt ∧ l(s′) = l(ctt) ∧ s′ ∈ T≤DObj(∅, cts) s′ min.constr.for t
⇒A |= t′ = cts ∧ s = cts ∧ l(t′) = l(cts) ∧ l(t′) ≤ l(ctt)∧
A |= s′ = ctt ∧ t = ctt ∧ l(s′) = l(ctt) ∧ l(s′) ≤ l(cts)

⇒A |= t′ = cts ∧ s = cts ∧ l(t′) ≤ l(s′)∧
A |= s′ = ctt ∧ t = ctt ∧ l(s′) ≤ l(t′)

⇒A |= t′ = cts ∧ s = cts ∧ l(t′) = l(s′)∧
A |= s′ = ctt ∧ t = ctt

⇒A |= t′ = s ∧ t′ = s′ ∧ s′ = t t′ ≡ s′
⇒A |= s = t

Transitivity: We conclude
(s, t) ∈ Rcont

A ∧ (t, u) ∈ Rcont
A

⇒A |= s ∈ contADObj(t) ∧ A |= t ∈ contADObj(u)
⇒ there is ctt ∈ CTmin

A (Σ,VA〚t〛) such that

VA〚s〛 ∈ {VA〚t′〛 | t′ ∈ T≤DObj(∅, ctt)} and

⇒ there is ctu ∈ CTmin
A (Σ,VA〚u〛) such that

VA〚t〛 ∈ {VA〚u′〛 | u′ ∈ T≤DObj(∅, ctu)} Lemma 3.3.3(1)

⇒ VA〚s〛 ∈ {VA〚t′〛 | t′ ∈ T≤DObj(∅, ctt)}∧
there is ut ∈ T≤DObj(∅, ctu) such that VA〚t〛 = VA〚ut〛∧
ut, ct ∈ CTmin

A (Σ,VA〚t〛) ctu min.constr.

⇒ VA〚s〛 ∈ {VA〚t′〛 | t′ ∈ T≤DObj(∅, ctt)}∧
{VA〚t′〛 | t′ ∈ T≤DObj(∅, ctt)} = {VA〚u′〛 | u′ ∈ T≤DObj(∅, ut)}∧ constr.prop.

{VA〚u′〛 | u′ ∈ T≤DObj(∅, ut)} ⊆ {VA〚u′〛 | u′ ∈ T≤DObj(∅, ctu)} ut ∈ T≤DObj(∅, ctu)

⇒ VA〚s〛 ∈ {VA〚u′〛 | u′ ∈ T≤DObj(∅, ctu)}
⇒ there is ctu ∈ CTmin

A (Σ,VA〚u〛) such that

VA〚s〛 ∈ {VA〚u′〛 | u′ ∈ T≤DObj(∅, ctu)}
⇒ A |= s ∈ contADObj(u) Lemma 3.3.3(1)
⇒ (s, u) ∈ Rcont

A

(3) We conclude

207

208 Proofs

A |= f(t1, ..., tn) = t ∧ f 6∈ Cτ

⇒A |= f(ct1, ..., ctn) = t ∧ f 6∈ Cτ

for cti ∈ CTmin
A (Σ,VA〚ti〛)(1 ≤ i ≤ n) Defn. 3.2.9

⇒ there is ctt ∈ T≤DObj(∅, f(ct1, ..., ctn)) such that A |= ctt = t∧ Defn. 3.3.2

f 6∈ Cτ ∧ cti ∈ CTmin
A (Σ,VA〚ti〛)(1 ≤ i ≤ n) constr.prop.(1)

⇒ there is ctt ∈
S

i T
≤
DObj(∅, cti) such that A |= ctt = t∧ f 6∈ Cτ

cti ∈ CTmin
A (Σ,VA〚ti〛)(1 ≤ i ≤ n)

⇒ there is k ∈ {1, ..., n}, ctt ∈ T≤DObj(∅, ctk) such that A |= ctt = t∧
ctk ∈ CTmin

A (Σ,VA〚tk〛)
⇒ there is k ∈ {1, ..., n} such that VA〚t〛 = VA〚ctt〛 and

VA〚ctt〛 ∈ {VA〚t′〛 | t′ ∈ T≤DObj(∅, ctk)}
⇒ there is k ∈ {1, ..., n} such that A |= t ∈ contADObj(tk) Lemma 3.3.3(1)

2

Proof C.1.6 (Proof of Lemma 3.3.4) We show the properties in consecutive order.

(1)
True⇒A′ |= t = t

⇒A′ |= ¬(t ∈ existDObj ∧ t 6= t)
⇒A |= t 6∈ existDObj req. (3)

(2)
True⇒A′ |= oid(t) = oid(t)

⇒A′ |= ¬(oid(t) ∈ usedOIDs ∧ oid(t) 6= oid(t))
⇒A |= oid(t) 6∈ usedOIDs req. (4)

The result for tr ≡ del(t) follows analogously. 2

Proof C.1.7 (Proof of Lemma 3.3.5) We show that all three basic state changes
preserve properties (1) to (4). We start with object creation.

tr = cre(t) :

(1) Suppose A |= ∀x : DObj • x ∈ existDObj⇒ oid(x) ∈ usedOIDs and (A, cre(t)) btr;

A′. We conclude
A′ |= x ∈ existDObj

⇒A′ |= (x ∈ existDObj ∧ x = t) ∨ (x ∈ existDObj ∧ x 6= t)
⇒A′ |= oid(x) ∈ usedOIDs ∨ (x ∈ existDObj ∧ x 6= t) req. (2)
⇒A′ |= oid(x) ∈ usedOIDs ∨ A |= x ∈ existDObj req. (3)
⇒A′ |= oid(x) ∈ usedOIDs ∨ A |= oid(x) ∈ usedOIDs prereq.
⇒A′ |= oid(x) ∈ usedOIDs ∨ (oid(x) 6= oid(t) ∧ oid(x) ∈ usedOIDs) req. (4)
⇒A′ |= oid(x) ∈ usedOIDs

(2) In the proof we will need the following property, which will be referred to by (*):
For all x : DObj it is true that A |= x ∈ existDObj implies A′ |= oid(x) 6= oid(t).
The proof goes es follows:
A |= x ∈ existDObj⇒A |= oid(x) ∈ usedOIDs prop. (1)

⇒A′ |= oid(x) ∈ usedOIDs ∧ oid(x) 6= oid(t) req. (4)
⇒A′ |= oid(x) 6= oid(t)

Now, we are ready to prove property (2) of Lemma 3.3.5. Suppose A |= ∀x, x′ :
DObj • (x ∈ existDObj ∧ x′ ∈ existDObj) ⇒ (oid(x) = oid(x′) ⇒ x = x′) and
(A, cre(t)) btr; A′. First, we conclude

208

C.1 Proofs for Chap. 3 209

A′ |= x ∈ existDObj ∧ x′ ∈ existDObj ∧ oid(x) = oid(x′)
⇒A′ |= x ∈ existDObj ∧ x′ ∈ existDObj ∧ oid(x) = oid(x′) ∧ x = t ∨
A′ |= x ∈ existDObj ∧ x′ ∈ existDObj ∧ oid(x) = oid(x′) ∧ x 6= t

Now, we derive A′ |= x = x′ for both sides of the disjunction.
A′ |= x ∈ existDObj ∧ x′ ∈ existDObj ∧ oid(x) = oid(x′) ∧ x = t
⇒A′ |= x′ ∈ existDObj ∧ oid(x′) = oid(t) ∧ x = t
⇒A |= x′ 6∈ existDObj ∧ A′ |= x′ ∈ existDObj ∧ x = t (*)
⇒A′ |= (x′ 6∈ existDObj ∨ x′ = t) ∧ x′ ∈ existDObj ∧ x = t req. (3)
⇒A′ |= x′ = t ∧ x = t
⇒A′ |= x′ = x

We remain to show the derivation for the other side of the disjunction.
A′ |= x ∈ existDObj ∧ x′ ∈ existDObj ∧ oid(x) = oid(x′) ∧ x 6= t
⇒A |= x ∈ existDObj ∧ A′ |= x′ ∈ existDObj ∧ oid(x) = oid(x′) req. (3)
⇒A |= x ∈ existDObj∧
A′ |= x′ ∈ existDObj ∧ oid(x) = oid(x′) ∧ oid(x) 6= oid(t) (*)

⇒A |= x ∈ existDObj ∧ A′ |= x′ ∈ existDObj ∧ oid(x′) 6= oid(t)
⇒A |= x ∈ existDObj ∧ A′ |= x′ ∈ existDObj ∧ x′ 6= t
⇒A |= x ∈ existDObj ∧ x′ ∈ existDObj req. (3)
⇒A |= x = x′ prereq.
⇒A′ |= x = x′ req. (5)

(3) Suppose A |= ∀x, x′ : DObj • (x ∈ existDObj ∧ x′ ∈ contADObj(x)) ⇒ x′ ∈
existDObj and (A, cre(t)) btr; A′. First, we conclude
A′ |= x ∈ existDObj ∧ x′ ∈ contA

′
DObj(x)

⇒A′ |= x ∈ existDObj ∧ x′ ∈ contA
′

DObj(x) ∧ x 6= t ∨
A′ |= x ∈ existDObj ∧ x′ ∈ contA

′
DObj(x) ∧ x = t

Now, we derive A′ |= x′ ∈ existDObj for both sides of the disjunction.
A′ |= x ∈ existDObj ∧ x′ ∈ contA

′
DObj(x) ∧ x 6= t

⇒A |= x ∈ existDObj ∧ A′ |= x′ ∈ contA
′

DObj(x) req. (3)
⇒A |= x ∈ existDObj ∧ x′ ∈ contADObj(x) req. (5)
⇒A |= x′ ∈ existDObj prereq.
⇒A′ |= x′ ∈ existDObj ∧ x′ 6= t req. (3)
⇒A′ |= x′ ∈ existDObj

We remain to show the derivation for the other side of the disjunction.
A′ |= x ∈ existDObj ∧ x′ ∈ contA

′
DObj(x) ∧ x = t

⇒A′ |= x′ ∈ contA
′

DObj(t)

⇒A′ |= x′ = t ∨ A′ |= x′ 6= t ∧ x′ ∈ contA
′

DObj(t)

⇒A′ |= x′ ∈ existDObj ∨ A′ |= x′ 6= t ∧ x′ ∈ contA
′

DObj(t) req. (2)
⇒A′ |= x′ ∈ existDObj ∨ A |= x′ 6= t ∧ x′ ∈ contADObj(t) req. (5)
⇒A′ |= x′ ∈ existDObj∨

(VA〚x′〛 6= VA〚t〛∧ Defn. 3.2.11
there is ctt ∈ CTmin

A (Σ,VA〚t〛) such that

VA〚x′〛 ∈ {VA〚t′〛 | t′ ∈ T≤DObj(∅, ctt)}) Lemma 3.3.3(1)
⇒A′ |= x′ ∈ existDObj∨

(VA〚x′〛 6= VA〚t〛 ∧ VA〚x′〛 ∈ {VA〚t′〛 | t′ ∈ T≤DObj(∅, t)}) constr.prop.(2)
t min.constr.term

⇒A′ |= x′ ∈ existDObj∨
VA〚x′〛 ∈ {VA〚t′〛 | t′ ∈ T≤DObj(∅, t)\{t}}

⇒ A′ |= x′ ∈ existDObj ∨ A |= x′ ∈ existDObj req. (1), Defn. 3.2.11
⇒A′ |= x′ ∈ existDObj ∨ (x′ ∈ existDObj ∧ x′ 6= t) req. (3)
⇒A′ |= x′ ∈ existDObj

(4) Given an appropriate tid, we conclude

209

210 Proofs

A |= tid ∈ usedOIDs ∧ ∀x : DObj • x ∈ existDObj⇒ oid(x) 6= tid
⇒A′ |= tid ∈ usedOIDs ∧ oid(t) 6= tid ∧ req. (4)
A |= tid ∈ usedOIDs ∧ ∀x : DObj • x ∈ existDObj⇒ oid(x) 6= tid

⇒A′ |= tid ∈ usedOIDs ∧ oid(t) 6= tid ∧
A′ |= ∀x : DObj • (x ∈ existDObj ∧ x 6= t)⇒ oid(x) 6= tid req. (3),(4)

⇒A′ |= tid ∈ usedOIDs ∧ ∀x : DObj • x ∈ existDObj⇒ oid(x) 6= tid

tr = trans(tsrc 7→ ttrg) :
Since transformation uses object creation it is easy to see that the properties hold.

tr = del(t) :

(1) Suppose A |= ∀x : DObj • x ∈ existDObj⇒ oid(x) ∈ usedOIDs and (A, del(t)) btr;

A′. We conclude
A′ |= x ∈ existDObj⇒A |= x ∈ existDObj ∧ x 6= t req. (3)

⇒A |= x ∈ existDObj

⇒A |= oid(x) ∈ usedOIDs prereq.
⇒A′ |= oid(x) ∈ usedOIDs req. (4)

(2) Suppose A |= ∀x, x′ : DObj • (x ∈ existDObj ∧ x′ ∈ existDObj) ⇒ (oid(x) =
oid(x′)⇒ x = x′) and (A, del(t)) btr; A′. We conclude
A′ |= x ∈ existDObj ∧ x′ ∈ existDObj ∧ oid(x) = oid(x′)
⇒A |= x ∈ existDObj ∧ x 6= t ∧ x′ ∈ existDObj ∧ x′ 6= t∧ req. (3)
A′ |= oid(x) = oid(x′)

⇒A |= x ∈ existDObj ∧ x′ ∈ existDObj ∧ A′ |= oid(x) = oid(x′)
⇒A |= x ∈ existDObj ∧ x′ ∈ existDObj ∧ oid(x) = oid(x′) req. (5)
⇒A |= x = x′ prereq.
⇒A′ |= x = x′ req. (5)

(3) Suppose A |= ∀x, x′ : DObj • (x ∈ existDObj ∧ x′ ∈ contADObj(x)) ⇒ x′ ∈
existDObj and (A, cre(t)) btr; A′. Then we conclude
A′ |= x ∈ existDObj ∧ x′ ∈ contA

′
DObj(x)

⇒A |= x ∈ existDObj ∧ x 6= t ∧ A′ |= x′ ∈ contA
′

DObj(x) req. (3)
⇒A |= x ∈ existDObj ∧ x 6= t ∧ x′ ∈ contADObj(x) req. (5)
⇒A |= x ∈ existDObj ∧ x′ ∈ contADObj(x) ∧ x′ ∈ existDObj ∧ x 6= t prereq.
⇒A |= x′ ∈ existDObj ∧ x 6= t ∧ (x = t ∨ x′ 6= t) req. (1)
⇒A |= x′ ∈ existDObj ∧ x′ 6= t
⇒A′ |= x′ ∈ existDObj req. (3)

(4) Given an appropriate tid, we conclude
A |= tid ∈ usedOIDs ∧ ∀x : DObj • x ∈ existDObj⇒ oid(x) 6= tid
⇒A′ |= tid ∈ usedOIDs∧ req. (4)
A′ |= ∀x : DObj • (x ∈ existDObj ∨ x = t)⇒ oid(x) 6= tid req. (3)

⇒A′ |= tid ∈ usedOIDs ∧ ∀x : DObj • x ∈ existDObj⇒ oid(x) 6= tid

2

C.2 Proofs for Chap. 4

Proof C.2.1 (Proof of Lemma 4.3.1) We show the property by induction on the
structure of t.

Case 1 (t ≡ x): By definition VAd 〚x〛η = η(x) = VA〚x〛η.
Case 2 (t ≡ f(t1, ..., tn)): We distinguish two cases.

210

C.2 Proofs for Chap. 4 211

Case 2.1 (τ<DObj): We conclude
⊥ 6= VAd 〚t〛η⇒A |= t ∈ existDObj[η] Tab. 4.4

⇒ VAd 〚t〛η = VA〚t〛η Tab. 4.4

Case 2.2 (¬τ<DObj): We conclude
⊥ 6= VAd 〚t〛η⇒ ∃c(t′1, ..., t′m) ∈ CTmin

A (Σ,VA〚t〛η) •
⊥ 6= VAd 〚t〛η = cA

⊥
(VAd 〚t′1〛η, ...,VAd 〚t′m〛η) Tab. 4.4

⇒ c(t′1, ..., t
′
m) ∈ CTmin

A (Σ,VA〚t〛η)∧
VAd 〚t〛η = cA

⊥
(VAd 〚t′1〛η, ...,VAd 〚t′m〛η)∧

∀i ∈ {1, ...,m} • VAd 〚t′i〛η 6= ⊥ Defn. 3.2.3
⇒ c(t′1, ..., t

′
m) ∈ CTmin

A (Σ,VA〚t〛η)∧
VAd 〚t〛η = cA

⊥
(VAd 〚t′1〛η, ...,VAd 〚t′m〛η)∧

∀i ∈ {1, ...,m} • VAd 〚t′i〛η 6= ⊥ ∧ VAd 〚t′i〛η = VA〚t′i〛η ind.hyp.
⇒ c(t′1, ..., t

′
m) ∈ CTmin

A (Σ,VA〚t〛η)∧
VAd 〚t〛η = cA

⊥
(VA〚t′1〛η, ...,VA〚t′m〛η)

⇒ c(t′1, ..., t
′
m) ∈ CTmin

A (Σ,VA〚t〛η)∧
VAd 〚t〛η = VA〚c(t′1, ..., t′m)〛η Tab. 3.2

⇒ VAd 〚t〛η = VA〚t〛η Defn. 3.2.9

2

Proof C.2.2 (Proof of Thm. 4.3.1) We prove the properties in consecutive order.

(1) We show both directions by induction on the structure of t ∈ Tτ (X,Σ).

Case 1 (t ≡ x):

(=⇒)
We conclude:
⊥ 6= VA〚x〛η = VAd 〚x〛η
⇒ η(x) 6= ⊥ ∧ η ∈ τA Defn. 3.2.4
⇒ (∃ct ∈ CTmin

A (Σ, η(x)) • VAd 〚ct〛 = η(x)) ∧ η(x) 6= ⊥ prereq. in Thm. 4.3.1
⇒ VA〚x〛η = VAd 〚ct〛 ∧ VAd 〚ct〛 6= ⊥ Defn. 3.2.6
⇒ VA〚x〛η = VA〚ct〛∧ Lemma 4.3.1
∀y : DObj • y ∈ contADObj(ct)⇒ y ∈ existDObj ind.hyp.

⇒ ∀y : DObj • y ∈ contA,η
DObj(x)⇒ y ∈ existDObj Defn. 3.3.3

(⇐=)
By definition VAd 〚x〛η = η(x) = VA〚x〛η.

Case 2 (t ≡ f(t1, ...tn)):

(=⇒)
Assume ⊥ 6= VAd 〚t〛η. We have to distinguish two cases.

Case 1 (τ<DObj): According to Tab. 4.4 this implies A |= t ∈ existDObj[η]. If
τ<DObj∧A 6|= t ∈ existDObj[η] was true, VAd 〚x〛η = ⊥ would hold. Therefore,
we conclude:
t ∈ existDObj ∧ A derived by basic transitions
⇒ t ∈ existDObj∧
A |= ∀x, x′ : DObj •
x ∈ existDObj ∧ x′ ∈ contADObj(x)⇒ x′ ∈ existDObj[η] Cor. 3.3.1(3)

⇒A |= ∀y : DObj • y ∈ contA,η
DObj(t)⇒ y ∈ existDObj[η]

211

212 Proofs

Case 2 (¬τ<DObj): We conclude
⊥ 6= VA〚t〛η = VAd 〚t〛η
⇒ ∃c(t′1, ..., t′m) ∈ CTmin

A (Σ,VA〚t〛η) •
⊥ 6= VA〚t〛η = cA

⊥
(VAd 〚t′1〛η, ...,VAd 〚t′m〛η) Tab. 4.4

⇒ c(t′1, ..., t
′
m) ∈ CTmin

A (Σ,VA〚t〛η)∧
∀i ∈ {1, ...,m} • VAd 〚t′i〛η 6= ⊥ Defn. 3.2.3

⇒ c(t′1, ..., t
′
m) ∈ CTmin

A (Σ,VA〚t〛η)∧
∀i ∈ {1, ...,m} • VAd 〚t′i〛η 6= ⊥ ∧ VAd 〚t′i〛η = VA〚t′i〛η Lemma 4.3.1

⇒ c(t′1, ..., t
′
m) ∈ CTmin

A (Σ,VA〚t〛η)∧
∀i ∈ {1, ...,m} • A |= ∀y ∈ contA,η

DObj(t
′
i) • y ∈ existDObj[η] ind.hyp.

⇒ c(t′1, ..., t
′
m) ∈ CTmin

A (Σ,VA〚t〛η)∧ ¬τ<DObj,
A |= ∀y ∈ contA,η

DObj(c(t
′
1, ..., t

′
m)) • y ∈ existDObj[η] Defn. 3.3.3

⇒A |= ∀y ∈ contA,η
DObj(t) • y ∈ existDObj[η] Lemma 3.3.3(1)

(⇐=)
We distinguish τ<DObj and ¬τ<DObj. We shall see that τ<DObj implies t ∈
existDObj such that the case τ<DObj,A 6|= t ∈ existDObj[η] in Tab. 4.4 can be
neglected.

Case 1 (τ<DObj): We conclude:
A |= t ∈ contA,η

DObj(t)[η] ∧ A derived by basic transitions Defn. 3.3.3,
prereq. of Thm. 4.3.1

⇒A |= t ∈ contA,η
DObj(t)[η]∧

A |= ∀x, x′ : DObj •
x ∈ existDObj ∧ x′ ∈ contADObj(x)⇒ x′ ∈ existDObj[η] Cor. 3.3.1(3)

⇒A |= t ∈ existDObj[η]
⇒ VAd 〚t〛η = VA〚t〛η Tab. 4.4

Case 2 (¬τ<DObj): By induction on the structure of t we conclude:
A |= ∀y : DObj • y ∈ contA,η

DObj(t)⇒ y ∈ existDObj[η]∧ prereq. of

VA〚t〛η 6= ⊥ Thm. 4.3.1
⇒ ∀ct ∈ CTmin

A (Σ,VA〚t〛η) •
A |= ∀y : DObj • y ∈ contA,η

DObj(ct)⇒ y ∈ existDObj[η]∧ Defn. 3.3.3

VA〚t〛η 6= ⊥
⇒ VA〚t〛η 6= ⊥∧
∀ct ∈ CTmin

A (Σ,VA〚t〛η) • (VA〚t〛η = VA〚ct〛η∧
A |= ∀y : DObj • y ∈ contA,η

DObj(ct)⇒ y ∈ existDObj[η]) Defn. 3.2.9

⇒ VA〚t〛η 6= ⊥∧
∀ct ∈ CTmin

A (Σ,VA〚t〛η) • ind.hyp.
VA〚t〛η = VA〚ct〛η ∧ VA〚ct〛η = VAd 〚ct〛η (l(ct) < l(t) as ¬τ<DObj)

⇒ VAd 〚t〛η = VA〚t〛η Tab. 4.4

(2) Both directions are direct results of property (1) and Lemma 4.3.1. We conclude:
VAd 〚t〛η = ⊥⇔ VAd 〚t〛η = ⊥ ∧ VA〚t〛η 6= ⊥ prereq. of

Thm. 4.3.1
⇔ VA〚t〛η 6= ⊥ ∧ VAd 〚t〛η 6= VA〚t〛η Lemma 4.3.1(for ⇐)

⇔A |= ¬(∀y : DObj • y ∈ contA,η
DObj(t)⇒ y ∈ existDObj)[η] Thm. 4.3.1(1)

⇔A |= ∃y : DObj • ¬(y ∈ contA,η
DObj(t)⇒ y ∈ existDObj)[η]

⇔A |= ∃y : DObj • y ∈ contA,η
DObj(t) ∧ y 6∈ existDObj)[η]

2

Proof C.2.3 (Proof of Lemma 4.3.2) We prove the assumptions consecutively.

212

C.2 Proofs for Chap. 4 213

(1) We conclude:
dom(A, x : τ, η) = (A, d) ∧ a ∈ d
⇒ η ∈ Env(X,A) ∧ a ∈ {v | v ∈ τA, ct ∈ CTmin

A (Σ, v), (A, ct) td
; v} Defn. 4.3.2

⇒ η ∈ Env(X,A) ∧ a ∈ τA

(2) We conclude:
a ∈ d⇔ ∃v ∈ τA, ct ∈ CTmin

A (Σ, v) • a = v ∧ (A, ct) td
; v Defn. 4.3.2

⇔ ∃v ∈ τA, ct ∈ CTmin
A (Σ, v) •

a = v ∧ A |= ∀y : DObj • y ∈ contADObj(ct)⇒ y ∈ existDObj Thm. 4.3.1(1)
⇔ ∃v ∈ τA, ct ∈ CTmin

A (Σ, v) • Cor. 3.3.1(3) (for ⇐)
a = v ∧ A |= ct ∈ existDObj Defn. 3.3.3 (for ⇒)

⇔ ∃v ∈ τA, t ∈ GTτ (Σ) • Defn. 3.2.9(for ⇒)
a = v ∧ VAd 〚t〛 = v ∧ A |= t ∈ existDObj Defn. 3.2.12(for ⇐)

⇔ a ∈ τA ∩ {VAd 〚t〛 | t ∈ GTτ (Σ),A |= t ∈ existDObj}

2

Proof C.2.4 (Proof of Thm. 4.3.2)

(1) We prove the assumption by induction on the structure of φ. Throughout the proof
we use (*) when referring to the prerequisite that the object-valued content of all
terms in Tφ exists.
Case 1 (φ ≡ s = t): Then Tφ = {s, t} and we conclude:
A |= s = t[η]⇔⊥ 6= VA〚s〛η = VA〚t〛η Tab. 3.3

⇔⊥ 6= VA〚s〛η = VA〚t〛η∧ (*),
VA〚s〛η = VAd 〚s〛η ∧ VA〚t〛η = VAd 〚t〛η∧ Thm. 4.3.1(1)
⊥ 6= VAd 〚s〛η = VAd 〚t〛η

⇔A |=d s = t[η] Tab. 3.3,Tab. 4.4

Case 2 (φ ≡ p(t1, ..., tn)): Then Tφ = {t1, ..., tn} and we conclude
A |= p(t1, ..., tn)[η]
⇔ ∃pτi ∈ P • (VA〚t1〛η, ...,VA〚tn〛η) ∈ pAτi

Tab. 3.3
⇔ ∃pτi ∈ P • (VA〚t1〛η, ...,VA〚tn〛η) ∈ pAτi

∧
∀i ∈ {1, ..., n} • VA〚ti〛η 6= ⊥ Defn. 3.2.3

⇔ ∃pτi ∈ P • (VAd 〚t1〛η, ...,VAd 〚tn〛η) ∈ pAτi
∧ (*),

∀i ∈ {1, ..., n} • VAd 〚ti〛η 6= ⊥ Thm. 4.3.1(1)
⇔A |=d p(t1, ..., tn)[η] Tab. 3.3,Tab. 4.4

Case 3 (φ ≡ ψ ∧ ψ′): The assumption holds by induction hypothesis.
Case 4 (φ ≡ ¬ψ): The assumption holds by induction hypothesis.

(2) We conclude:
A |= ∀x : τ • φ[η]
⇒A |= φ[η[x 7→ a]] for all a ∈ τA Tab. 3.3
⇒A |= φ[η[x 7→ a]] for all

a ∈ {v | v ∈ τA,A |= ∀y : DObj • y ∈ contA,η[x7→v]
DObj (x)[η[x 7→ v]]}

⇒ A |= φ[η[x 7→ a]] for all
a ∈ {v | v ∈ τA, ct ∈ CTmin

A (Σ,VA〚x〛η[x 7→ v]),
A |= ∀y : DObj • y ∈ contADObj(ct)} Defn. 3.2.9

⇒A |= φ[η[x 7→ a]] for all
a ∈ {v | v ∈ τA, ct ∈ CTmin

A (Σ, v),A |= ∀y : DObj • y ∈ contADObj(ct)} Tab. 3.2
⇒A |= φ[η[x 7→ a]] for all

a ∈ {v | v ∈ τA, ct ∈ CTmin
A (Σ, v),VAd 〚ct〛 = v} Thm. 4.3.1(1)

⇒A |=d ∀x : τ • φ[η] Defn. 4.3.2,
Tab. 3.3, (*),
Thm. 4.3.2(1)

213

214 Proofs

(3) We conclude:
A |= ∀x : τ • x ∈ existDObj⇒ φ[η]
⇔A |= x ∈ existDObj⇒ φ[η[x 7→ a]] for all a ∈ τA Tab. 3.3
⇔A |= x ∈ existDObj[η[x 7→ a]] implies A |= φ[η[x 7→ a]] for all a ∈ τA
⇔A |= φ[η[x 7→ a]] for all Tab. 3.2,

a ∈ τA ∩ {VA〚t〛 | t ∈ GTτ (Σ),A |= t ∈ existDObj} Tab. 3.3
⇔A |= φ[η[x 7→ a]] for all

a ∈ τA ∩ {VAd 〚t〛 | t ∈ GTτ (Σ),A |= t ∈ existDObj} Thm. 4.3.1(1)
⇔A |= φ[η[x 7→ a]] for all

a ∈ {v | v ∈ τA, ct ∈ CTmin
A (Σ, v),VAd 〚ct〛 = v} Lemma 4.3.2(2)

⇔A |=d ∀x : τ • φ[η] Defn. 4.3.2,
Tab. 3.3, (*),
Thm. 4.3.2(1)

2

Proof C.2.5 (Proof of Lemma 4.3.3) We prove the assumptions in consecutive or-
der.

(1) This directly follows from rule Subtyping in Tab. 4.5.

(2) We consider wildcard-free concept terms only. According to Tab. 4.6 the results
apply to concept terms with wildcards in a straightforward way.
We have to show that η[x1 7→ vl(x1)]...[xk 7→ vl(xk)] is a suitable variable assignment
in Env(X,A) for ιC and that v is in τA ∪ {⊥}:
K(ti)[C] ∈ KTτ (X,Σ,KD) ∧ (A, η,K(ti)[C])

td
; v

⇒ ∃τi • ti ∈ Tτi(X,Σ)∧
K I {C1 = ιC1 , ..., Cm = ιCm} ∈ KD}∧
C = ιC ∈ {C1 = ιC1 , ..., Cm = ιCm} ∧ ∃X ′ • ιC ∈ Tτ (X ′,Σ)∧
FV(ιC) = {x1 : τ ′1, ..., xk : τ ′k}∧
l : FV(ιC)→ {1, ..., n}∧
∀j ∈ {1, ..., k} • ra(C, I)(xj) = role(l(xj), I)∧ Tab. 4.6
∀x : τ ′ ∈ FV(ιC) • ra(C, I)(x) = role(i, I)⇒ τi<τ

′∧ Tab. 4.5
v = VAd 〚ιC〛η[x1 7→ VAd 〚tl(x1)〛η]...[xk 7→ VAd 〚tl(xk)〛η]

⇒ ti ∈ Tτi(X,Σ) ∧ ιC ∈ Tτ (X ′,Σ)∧
FV(ιC) = {x1 : τ ′1, ..., xk : τ ′k}∧
l : FV(ιC)→ {1, ..., n}∧
∀j ∈ {1, ..., k} • τl(xj)<τ

′
j∧

v = VAd 〚ιC〛η[x1 7→ VAd 〚tl(x1)〛η]...[xk 7→ VAd 〚tl(xk)〛η]
⇒ ιC ∈ Tτ (X ′,Σ)∧
FV(ιC) = {x1 : τ ′1, ..., xk : τ ′k}∧
l : FV(ιC)→ {1, ..., n}∧
∀j ∈ {1, ..., k} • τl(xj)<τ

′
j ∧ VAd 〚tl(xj)〛η ∈ τAl(xj) ∪ {⊥}∧ Cor. 4.3.1

v = VAd 〚ιC〛η[x1 7→ VAd 〚tl(x1)〛η]...[xk 7→ VAd 〚tl(xk)〛η]
⇒ ιC ∈ Tτ (X ′,Σ)∧
FV(ιC) = {x1 : τ ′1, ..., xk : τ ′k}∧
l : FV(ιC)→ {1, ..., n}∧
∀j ∈ {1, ..., k} • VAd 〚tl(xj)〛η ∈ (τ ′j)

A ∪ {⊥}∧
v = VAd 〚ιC〛η[x1 7→ VAd 〚tl(x1)〛η]...[xk 7→ VAd 〚tl(xk)〛η]

⇒ η[x1 7→ VAd 〚tl(x1)〛η]...[xk 7→ VAd 〚tl(xk)〛η] ∈ Env(X,A)∧ Defn. 3.2.4
VAd 〚ιC〛η[x1 7→ VAd 〚tl(x1)〛η]...[xk 7→ VAd 〚tl(xk)〛η] ∈ τA ∪ {⊥}∧ Cor. 4.3.1
v = VAd 〚ιC〛η[x1 7→ VAd 〚tl(x1)〛η]...[xk 7→ VAd 〚tl(xk)〛η]

⇒ v ∈ τA ∪ {⊥} Tab. 4.6

214

C.3 Proofs for Chap. 5 215

(3) In the proof of part (2) of this lemma role assignments (thus, the index labeling
l) are uniquely determined. Also, we have used the value function Vd〚〛 in order to
emphasize that the value for ιC is unique. The property, thus, directly follows.
In presence of a wildcard , in general, multiple values can be derived due to the exis-
tential quantification over all existing contexts in the concept semantics (cf. Tab. 4.6).

2

C.3 Proofs for Chap. 5

Proof C.3.1 (Proof of Lemma 5.2.1) Assume K is non-functional. Then we con-
clude:
(A,A′) |= pres(K(t1, ...tn)[C],K(t′1, ...t

′
n)[C′])[η, η′] ∧

(A′,A′′) |= pres(K(t′1, ...t
′
n)[C′],K(t′′1 , ...t

′′
n)[C′′])[η′, η′′]

⇔A |=d K(t1, ...tn)[C][η]⇔ A′ |=d K(t′1, ...t
′
n)[C′][η′] ∧

A′ |=d K(t′1, ...t
′
n)[C′][η′]⇔ A′′ |=d K(t′′1 , ...t

′′
n)[C′′][η′′] Defn. 5.2.1

⇒A |=d K(t1, ...tn)[C][η]⇔ A′′ |=d K(t′′1 , ...t
′′
n)[C′′][η′′] Tab. 4.6, C′ 6=

⇔ (A,A′′) |= pres(K(t1, ...tn)[C],K(t′′1 , ...t
′′
n)[C′′])[η, η′′] Defn. 5.2.1

The proof for functional K goes similar — substitute ⇔ by equality. 2

Proof C.3.2 (Proof of Lemma 5.3.1) We prove the assumptions in consecutive or-
der.

(1) We prove the assumption by induction on the length n of tr.

Case 1 (n = 0): Then tr ≡ 〈(A0, t0)〉 and A0 |=d t0 ∈ existDObj by definition such
that state(0, tr) |=d version(0, tr) ∈ existDObj.

Case 2 (n 7→ n+ 1): We conclude:
tr ∈ tracesn+1(∆)
⇒ ∃trn ∈ tracesn(∆), tr′ ∈ step(∆) • {tr} = {trn} ;©{tr′} Defn. 5.3.1
⇒ ∀i ∈ {1, ..., n− 1} • (

state(i, tr) = state(i, trn) ∧ version(i, tr) = version(i, trn)∧ Defn. 5.3.1
state(i, trn) |=d version(i, trn) ∈ existDObj) ∧ ind.hyp

state(n, tr) = state(0, tr′) ∧ version(n, tr) = version(0, tr′)∧ Defn. 5.3.1
state(0, tr′) |=d version(0, tr′) ∈ existDObj∧ Defn. 3.3.7,Thm. 4.3.2
state(n+ 1, tr) = state(1, tr′) ∧ version(n+ 1, tr) = version(1, tr′)∧ Defn. 5.3.1
state(1, tr′) |=d version(1, tr′) ∈ existDObj Defn. 3.3.7,Thm. 4.3.2

⇒ ∀i ∈ {1, ..., n+ 1} • state(i, tr) |=d version(i, tr) ∈ existDObj

(2) We show the stronger variant

state(j, tr) |=d oid(version(i, tr)) 6= oid(version(j, tr))∧oid(version(i, tr)) ∈ usedOIDs

for all 0 ≤ i < j ≤ n by induction on the length n of tr. Since src(∆) is derived by basic
transitions, the invariants of Cor. 3.3.1 hold, which will be used in the proof.

Case 1 (n = 0): Then state(0, tr) |=d version(0, tr) ∈ existDObj by definition. This
implies state(0, tr) |=d oid(version(0, tr)) ∈ usedOIDs according to Cor. 3.3.1(1).

Case 2 (n 7→ n+ 1): We conclude

215

216 Proofs

tr ∈ tracesn+1(∆)
⇒ ∃trn ∈ tracesn(∆), tr′ ∈ step(∆) • {tr} = {trn} ;©{tr′} Defn. 5.3.1
⇒ ∀i ∈ {0, ..., n− 1} • (state(i, tr) = state(i, trn) ∧ version(i, tr) = version(i, trn)) ∧ Defn. 5.3.1
∀i < j ∈ {0, ..., n} •

(state(j, trn) |=d oid(version(i, trn)) 6= oid(version(j, trn))∧ ind.hyp
state(j, trn) |=d oid(version(i, trn)) ∈ usedOIDs) s∧

state(0, tr′) |=d version(n, trn) = version(0, tr′)∧
state(n, tr) = state(0, tr′) ∧ version(n, tr) = version(0, tr′)∧
state(n+ 1, tr) = state(1, tr′) ∧ version(n+ 1, tr) = version(1, tr′)∧
〈state(0, tr′), trans(version(0, tr′) 7→ version(1, tr′)), state(1, tr′)〉 ⊆ ∆ Defn. 5.3.1

⇒ ∀i < j ∈ {0, ..., n} •
(state(j, tr) |=d oid(version(i, tr)) 6= oid(version(j, tr))∧
state(j, tr) |=d oid(version(i, tr)) ∈ usedOIDs)

state(n+ 1, tr) |=d oid(version(n, tr)) 6= oid(version(n+ 1, tr)) ∧ (below)
∀id : OID • (state(n, tr) |=d id ∈ usedOIDs⇒ state(n+ 1, tr) |=d id ∈ usedOIDs) ∧
state(n, tr) |=d oid(version(n+ 1, tr)) 6∈ usedOIDs

⇒ ∀i < j ∈ {0, ..., n+ 1} •
(state(j, tr) |=d oid(version(i, tr)) 6= oid(version(j, tr))∧
state(j, tr) |=d oid(version(i, tr)) ∈ usedOIDs)

where the remaining implication follows by
state(0, tr′) |=d version(n, trn) = version(0, tr′)∧
state(n, tr) = state(0, tr′) ∧ version(n, tr) = version(0, tr′)∧
state(n+ 1, tr) = state(1, tr′) ∧ version(n+ 1, tr) = version(1, tr′)∧
〈state(0, tr′), trans(version(0, tr′) 7→ version(1, tr′)), state(1, tr′)〉 ⊆ ∆

⇒ state(n, tr) = state(0, tr′) ∧ version(n, tr) = version(0, tr′)∧
state(n+ 1, tr) = state(1, tr′) ∧ version(n+ 1, tr) = version(1, tr′)∧
state(0, tr′) |=d version(0, tr′) ∈ existDObj ∧ Defn. 3.3.7
∀id : OID • (state(0, tr′) |=d id ∈ usedOIDs⇒ state(1, tr′) |=d id ∈ usedOIDs) ∧ Defn. 3.3.7
state(1, tr′) |=d version(1, tr′) ∈ existDObj ∧ Defn. 3.3.7
state(0, tr′) |=d oid(version(1, tr′)) 6∈ usedOIDs Lemma 3.3.4

⇒ state(n, tr) |=d version(n, tr) ∈ existDObj ∧
∀id : OID • (state(n, tr) |=d id ∈ usedOIDs⇒ state(n+ 1, tr) |=d id ∈ usedOIDs) ∧
state(n+ 1, tr) |=d version(n+ 1, tr) ∈ existDObj ∧
state(n, tr) |=d oid(version(n+ 1, tr)) 6∈ usedOIDs

⇒ state(n, tr) |=d oid(version(n, tr)) ∈ usedOIDs ∧ Cor. 3.3.1(1)
∀id : OID • (state(n, tr) |=d id ∈ usedOIDs⇒ state(n+ 1, tr) |=d id ∈ usedOIDs) ∧
state(n+ 1, tr) |=d oid(version(n+ 1, tr)) ∈ usedOIDs ∧ Cor. 3.3.1(1)
state(n, tr) |=d oid(version(n+ 1, tr)) 6∈ usedOIDs

⇒ state(n+ 1, tr) |=d oid(version(n, tr)) 6= oid(version(n+ 1, tr)) ∧
∀id : OID • (state(n, tr) |=d id ∈ usedOIDs⇒ state(n+ 1, tr) |=d id ∈ usedOIDs) ∧
state(n, tr) |=d oid(version(n+ 1, tr)) 6∈ usedOIDs

2

Proof C.3.3 (Proof of Lemma 5.4.1) We conclude
dom(tr, x : τ, η) = (A, d) ∧ a ∈ d
⇒ η ∈ Env(X, src(tr)) ∧ A = src(tr) ∧ a ∈ d Defn. 5.4.1
⇒ η ∈ Env(X,A) ∧ A = src(tr)∧
a ∈ {v | v ∈ τsrc(tr), ct ∈ CTmin

src(tr)(Σ, v), (src(tr), ct)
td
; v} Defn. 5.4.1

⇒ η ∈ Env(X,A) ∧ a ∈ τA
2

Proof C.3.4 (Proof of Lemma 5.4.2) We show the properties consecutively.

(1) Since all concept names are disjoint from all symbol names of Σ and X according
to Tab. 4.3 and Defn. 4.3.3, KTτ (X,Σ,KD) ∩ Tτ (X,Σ) = ∅. Hence, the required
property of Defn. 3.2.10 (extension operators) is satisfied.

(2) We conclude

216

C.4 Proofs for Chap. 6 217

dom(tr, x : τ, η) = (A, d) ∧ a ∈ d
⇒ η ∈ Env(X, src(∆)) ∧ A = src(∆) ∧ a ∈ d Defn. 5.4.2
⇒ η ∈ Env(X,A) ∧ A = src(∆)∧
a ∈ {v | v ∈ τsrc(∆), ct ∈ CTmin

src(∆)(Σ, v), (src(∆), ct)
td
; v} Defn. 5.4.2

⇒ η ∈ Env(X,A) ∧ a ∈ τA

2

C.4 Proofs for Chap. 6

Proof C.4.1 (Proof of Lemma 6.2.1) We prove the assumption by induction on the
structure of op.

Case 1 (op ≡ create(f, ti)):
First, Σ includes Top. Hence, term values are unique (Lemma 3.2.3).
Second, f(oidToUse, ti) ∈ Tτ (X,Σ) since fOID×τi→τ ∈ Cτ and ti ∈ Tτi(X,Σ) for all
1 ≤ i ≤ n (Tab. 6.3). Hence, VA〚f(oidToUse, ti)〛η ∈ τA ∪ {⊥} (Lemma 3.2.2).
Apart from that, rule application of r create returns a unique update set U (cf.
Tab. 6.2). If U = ∅, then A′ = A and ∆′ = ∆. Otherwise, A′ = A + U and
∆′ = ∆; 〈A, cre(ct),A + U〉, ct ∈ CTminA (Σ, v). In both cases A′ is uniquely deter-
mined (cf. Defn. 6.2.4).

Case 2 (op ≡ transform(tsrc 7→ (f, ti))): Similar.
Case 3 (op ≡ delete(t)): Similar.

2

Proof C.4.2 (Proof of Lemma 6.2.2) The skip-operation trivially leads to a con-
sistent update set. We show consistency for the if-cases by deriving the update sets with
the calculus of Tab. 6.2.

(1) The derivation
〚oidToUse := nextID(oidToUse)〛Aη =

{((oidToUse •) 7→ VA〚nextID(oidToUse)〛η)}
〚existDObj := {f(oidToUse, ti)}s ∪ existDObj〛Aη =

{((existDObj •) 7→ VA〚{f(oidToUse, ti)}s ∪ existDObj〛η)}
〚usedOIDs := oidToUse ∪ usedOIDs〛Aη =

{((usedOIDs •) 7→ VA〚{oidToUse}s ∪ usedOIDs〛η)}
〚dep(f(oidToUse, ti)) := tsub〛Aη = {((dep • VA〚f(oidToUse, ti)〛η) 7→ VA〚tsub〛η)}

〚par oidToUse := ...end par〛Aη =8>><>>:
((oidToUse •) 7→ VA〚nextID(oidToUse)〛η),
((existDObj •) 7→ VA〚{f(oidToUse, ti)}s ∪ existDObj〛η),
((usedOIDs •) 7→ VA〚{oidToUse}s ∪ usedOIDs〛η),
((dep • VA〚f(oidToUse, ti)〛η) 7→ VA〚tsub〛η)

9>>=>>;
shows the consistency for create(f, ti) (cf. Tab. 6.2.7).

(2) If the precondition is satisfied, a transformation transform(tsrc : DObj 7→ (f, ti))
yields the same update set as a creation operation create(f, ti), which proves the
consistency.

(3) The derivation

217

218 Proofs

〚existDObj := existDObj\{t}s〛Aη =

{((existDObj •) 7→ VA〚existDObj\{t}s〛η)}
〚dep(t) := tsub〛Aη = {((dep • VA〚t〛η) 7→ VA〚{}〛η)}
〚par existDObj := ...end par〛Aη =

((existDObj •) 7→ VA〚existDObj\{t}s〛η),
((dep • VA〚t〛η) 7→ VA〚{}〛η)

ff
shows the consistency for delete(t).

2

In the proof of Thm. 6.2.1 we use the Hoare-style proof logic developed in [Ton97].
We need the following three rules in order to cover the rules r create, r delete, and
r transform.

(1) {Cons(U) ∧ φ[σU]} U {φ} (Upd)

(2)
{π ∧ φ} P {ψ} {π ∧ ¬φ} Q {ψ}
{π} if φ then P else Q end if {ψ} (If)

(3)
φ⇒ π {π} P {χ} χ⇒ ψ

{φ} P {ψ} (Conseq)

Rule (1) deals with update sets U that contain simple updates of the form s := t only.
It corresponds to the usual assignment axiom of the Hoare calculus, but may assign new
values not only to variables but to (dynamic) locations of the underlying algebra as well.
In that, σU is the term substitution deriving from U . Having an update s := t, φ[σU]
derives from φ by substituting all occurrences of those terms s by t simultaneously that
equal t. Moreover, we deal with parallel updates, which may cause update sets to be
inconsistent. Therefore, the explicit consistency requirement Cons(U) is integrated into
the rule’s precondition.

Rules (2) and (3) handle if-clauses and logical consequence, respectively, similar to
the usual Hoare-calculus.

Proof C.4.3 (Proof of Thm. 6.2.1) In order to prove the desired properties, we need
the following invariants

inv1 := ∀x ∈ existDObj • oid(x) <id oidToUse
inv2 := ∀id ∈ usedOIDs • id <id oidToUse
inv3 := ∀x, x′ : DObj • x ∈ existDObj⇒ (x′ ∈ contADObj(x)⇔ x′ ∈ dep(x) ∨ x = x′)

They will be proved for the single operations. Invariants inv1 and inv2 state that
oidToUse steadily grows and does not store an ID that has already been used in the
system. The latter states that dep(t) contains the full object-valued content of existing
digital objects t, except t itself.
Throughout the proof we show all properties (including the invariants) following the
scheme

φ ⇒ {ψ[σU]} U {ψ}
{φ} U {ψ}

where φ and ψ either represent the invariant or represent the respective pre-and post-
conditions of the basic state change. U is the update set that derives from the respective
basic operation when the pre-condition is satisfied.

218

C.4 Proofs for Chap. 6 219

Object creation: From Lemma 6.2.2 we know that the update set for the creation
operation create(f, ti) is consistent. Hence, we can omit it in the preconditions.
Moreover, create(f, ti) results in the ASM rule

r create(f, ti, T
≤
DObj(∅, ct)\{ct}).

There, A |= ct = f(oidToUse, ti), which will be referred to by (*) in the proofs when
needed. Since the result sequence ∆ is extended, the if-case of the rule declaration
r create is used according to Defn. 6.2.8. The update set of r create, thus corresponds
to:

U :=


oidToUse := nextID(oidToUse)
existDObj := {f(oidToUse, ti}s ∪ existDObj
usedOIDs := {oidToUse}s ∪ usedOIDs
dep(f(oidToUse, ti)) := tsub

 ,

We first prove the invariants.

inv1 : We conclude
∀x ∈ existDObj • oid(x) <id oidToUse

⇒ ∀x ∈ existDObj • oid(x) <id nextID(oidToUse)∧
oidToUse <id nextID(oidToUse) Defn. 3.3.2

⇒ ∀x ∈ existDObj ∪ {f(oidToUse, ti)} • oid(x) <id nextID(oidToUse)
≡ ∀x ∈ existDObj • oid(x) <id oidToUse[σU]

inv2 : We conclude
∀id ∈ usedOIDs • oid(x) <id oidToUse

⇒ ∀id ∈ usedOIDs • id <id nextID(oidToUse)∧
oidToUse <id nextID(oidToUse) Defn. 3.3.2

⇒ ∀x ∈ usedOIDs ∪ {oidToUse} • oid(x) <id nextID(oidToUse)
≡ ∀x ∈ usedOIDs • id <id oidToUse[σU]

inv3 : Since inv3[φU] is different for x = f(oidToUse, ti) and x 6= f(oidToUse, ti), we
distinguish these two cases.

Case (x = f(oidToUse, ti)):
Then

inv3[σU] ≡ f(oidToUse, ti) ∈ existDObj ∪ {f(oidToUse, ti)} ⇒
(x′ ∈ contADObj(f(oidToUse, ti))⇔ x′ ∈ tsub ∨ x = x′)

and we conclude
f(oidToUse, ti) ∈ existDObj ∪ {f(oidToUse, ti)}
⇒ True

⇒ tsub = T≤DObj(∅, ct)\{ct} Defn. 6.2.8

⇒ (x′ ∈ contADObj(ct)⇔ x′ ∈ tsub ∨ ct = x′) Defn. 3.3.3
⇒ x′ ∈ contADObj(f(oidToUse, ti))⇔ x′ ∈ tsub ∨ x = x′ (*)

Case (x 6= f(oidToUse, ti)):
Then

inv3[σU] ≡ x ∈ existDObj ∪ {f(oidToUse, ti)} ⇒
(x′ ∈ contADObj(x)⇔ x′ ∈ dep(x) ∨ x = x′)

and we conclude
x ∈ existDObj ∪ {f(oidToUse, ti)}
⇒ x ∈ existDObj x 6= f(oidToUse, ti)
⇒ x′ ∈ contADObj(x)⇔ x′ ∈ dep(x) ∨ x = x′ prereq.

219

220 Proofs

Now, we are ready to show that create(ct) respects the pre- and post conditions of
Defn. 3.3.7. In particular, we show the following properties:

(1) A |= ∀x : DObj • x ∈ tsub ⇒ x ∈ existDObj implies A |= t′ ∈ existDObj for all
t′ ∈ T≤DObj(∅, ct)\{ct}.

(2) ct ∈ existDObj ∧ oid(ct) ∈ usedOIDs[σU].
(3) t ∈ existDObj⇒ (t ∈ existDObj ∧ t 6= ct[σU]) for arbitrary t ∈ GTDObj(sp(Σ)).
(3’) t 6∈ existDObj⇒ (t 6∈ existDObj ∨ t = ct[σU]) for arbitrary t ∈ GTDObj(sp(Σ)).
(4) id ∈ usedOIDs⇒ (id ∈ usedOIDs∧id 6= oid(ct)[σU]) for arbitrary id ∈ GTOID(sp(Σ)).
(4’) id 6∈ usedOIDs ⇒ (id 6∈ usedOIDs ∨ id = oid(ct)[σU]) for arbitrary id ∈
GTOID(sp(Σ)).

Properties (1) and (2) assure requirements (1) and (2), respectively, of Defn. 3.3.7.
There, the first part of property (1) is the if-condition of the rule r create. Properties
(3),(3’) and (4),(4’) assure requirements (3) and (4), respectively. Requirement (5)
of Defn. 3.3.7 always holds as ASM rule applications may change dynamic functions
only.

(1) According to Defn. 6.2.8 tsub = T≤DObj(∅, ct)\{ct}, which proves the assumption.
(2) Since

ct ∈ existDObj ∧ oid(ct) ∈ usedOIDs[σU] ≡
ct ∈ existDObj ∪ {f(oidToUse, ti)}∧
oid(ct) ∈ {oidToUse}s ∪ usedOIDs

and oid(ct) = oidToUse due to (*), the assumption ct ∈ existDObj ∧ oid(ct) ∈
usedOIDs[σU] directly follows.

(3) Since

t ∈ existDObj ∧ t 6= ct[σU] ≡ t ∈ existDObj ∪ {f(oidToUse, ti)} ∧ t 6= ct,

oidToUse = oid(ct) due to (*), t ∈ existDObj⇒ oid(t) <id oidToUse (inv1), and,
hence, oid(t) 6= oidToUse, the implication t ∈ existDObj⇒ (t ∈ existDObj ∧ t 6=
ct[σU]) directly follows.

(3’) Since

t 6∈ existDObj ∨ t = ct[σU] ≡ t 6∈ existDObj ∪ {f(oidToUse, ti)} ∨ t = ct

and ct = f(oidToUse, ti) due to (*), the implication t 6∈ existDObj ⇒ (t 6∈
existDObj ∨ t = ct[σU]) directly follows.

(4) Since

id ∈ usedOIDs ∧ id 6= oid(ct)[σU] ≡
id ∈ usedOIDs ∪ {oidToUse)} ∧ id 6= oid(ct),

oidToUse = oid(ct) due to (*), id ∈ usedOIDs ⇒ id <id oidToUse (inv2), and,
hence, id 6= oidToUse, the implication id ∈ usedOIDs ⇒ (id ∈ usedOIDs ∧ id 6=
oid(ct)[σU]) directly follows.

(4’) Since

id 6∈ usedOIDs ∨ t = ct[σU] ≡ id 6∈ usedOIDs ∪ {oidToUse} ∨ id = oid(ct)

and (*), the implication id 6∈ usedOIDs ⇒ (id 6∈ usedOIDs ∨ t = ct[σU]) directly
follows.

220

C.4 Proofs for Chap. 6 221

Object transformation: From Lemma 6.2.2 we know that the update set for the
transformation operation transform(tsrc : DObj 7→ (f, ti)) is consistent. Again, we
only consider the if-case. Then this operation yields the same update set U as for
create(f, ti). Since the if-condition of an object transformation implies the one for a
corresponding creation operation, the proves carry over using rule Conseq.

Object deletion: From Lemma 6.2.2 we know that the update set for the delete oper-
ation delete(ct) is consistent. Hence, we can omit it in the preconditions. Again, we
use ct = f(oidToUse, ti) and refer to it by (*) in the proofs. Let

U :=
{

existDObj := existDObj\{ct}s
dep(ct) := {}

}
denote the corresponding rule set.

We start by showing validity of inv1, inv2, inv3. Since always existDObj\{ct}s ⊆
existDObj and usedOIDs is not affected at all by these rules, it is easy to see that
inv1 and inv2 hold. The proof for inv3 is given as follows:

inv3 : Since inv3[φU] is different for x = ct and x 6= ct, we distinguish these two
cases.

Case (x = ct):
Then

inv3[σU] ≡ ct ∈ existDObj\{ct}s ⇒
(x′ ∈ contADObj(ct)⇔ x′ ∈ {} ∨ ct = x′)

and we conclude
ct ∈ existDObj\{ct}s ⇒ False

⇒ (x′ ∈ contADObj(ct)⇔ x′ ∈ {} ∨ ct = x′)

Case (x 6= ct):
Then

inv3[σU] ≡ x ∈ existDObj\{ct}s ⇒
(x′ ∈ contADObj(x)⇔ x′ ∈ dep(x) ∨ x = x′)

and we conclude
x ∈ existDObj\{ct}s ⇒ x ∈ existDObj

⇒ x′ ∈ contADObj(x)⇔ x′ ∈ dep(x) ∨ x = x′ prereq.

Now, we show that delete(ct) respects the pre- and post conditions of Defn. 3.3.7.
We do this in analogy to object creation cre(ct). In particular, we show the following
properties:

(1) A |= ct ∈ existDObj ∧ ∀x : DObj • x ∈ existDObj ⇒ ct 6∈ dep(x) implies
A |= t ∈ existDObj⇒ ct 6∈ contADObj(t) ∨ t = ct for all t ∈ GTDObj(sp(Σ)).

(2) A |= ct ∈ existDObj ∧ ∀x : DObj • x ∈ existDObj ⇒ ct 6∈ dep(x) implies
A |= ct ∈ existDObj.

(3) t ∈ existDObj ∧ t 6= ct⇒ (t ∈ existDObj[σU]) for arbitrary t ∈ GTDObj(sp(Σ)).

(3’) t 6∈ existDObj ∨ t = ct⇒ (t 6∈ existDObj[σU]) for arbitrary t ∈ GTDObj(sp(Σ)).

(4) id ∈ usedOIDs⇔ (id ∈ usedOIDs[σU]) for arbitrary id ∈ GTOID(sp(Σ)).

221

222 Proofs

Properties (1), (2), and (4) assure requirements (1), (2), and (4) of Defn. 3.3.7, re-
spectively. There, the first part of properties (1),(2) is the if-condition of the rule
r delete. Properties (3),(3’) assure requirement (3). Requirement (5) of Defn. 3.3.7
always holds as ASM rule applications may change dynamic functions only.

(1) Assume ct ∈ existDObj ∧ ∀x : DObj • x ∈ existDObj ⇒ ct 6∈ dep(x). Then we
conclude:
A |= t ∈ existDObj⇒A |= ct 6∈ dep(t) prereq.

⇒A |= ct 6∈ contADObj(t) ∨ t = ct inv3

(2) This trivially holds.
(3) We conclude

t ∈ existDObj ∧ t 6= ct⇒ t ∈ existDObj\{ct}s
≡ t ∈ existDObj[σU]

(3’) We conclude
t 6∈ existDObj ∨ t = ct⇒ t 6∈ existDObj\{ct}s

≡ t 6∈ existDObj[σU]

(4) We conclude
id ∈ usedOIDs⇔ id ∈ usedOIDs

≡ id ∈ usedOIDs[σU]

2

Proof C.4.4 (Proof of Lemma 6.3.1) We merely show that the new Boolean-valued
functions respect overloading. It is easy to see that validity of all other consistency
conditions is preserved when translating Σ-algebras to gen(Σ)-algebras. Suppose

fτ1,i→Bool, fτ2,j→Bool ∈ Fgen(Σ) and fτ1,i , fτ2,j ∈ PΣ.

We denote gen(Σ,A) by A′ and conclude:
fτ1,i→Bool

∼= fτ2,j→Bool ∧ τk<τ1,i, τ2,j ∧ vk ∈ τA′k

⇒ fτ1,i
∼= fτ2,j ∧ τk<τ1,i, τ2,j ∧ vk ∈ τAk prereq.

⇒ vk ∈ fAτ1,i
⇔ vk ∈ fAτ2,j

Defn. 3.2.3

⇒ fA
′

τ1,i→Bool(vk) = TrueA
′
⇔ fA

′
τ2,j→Bool(vk) = TrueA

′
∧ Defn. 6.3.1

fA
′

τ1,i→Bool(vk) = FalseA
′
⇔ fA

′
τ2,j→Bool(vk) = FalseA

′
Defn. 6.3.1

2

Proof C.4.5 (Proof of Thm. 6.3.1) We prove the assumption by induction on the
structure of e.

Case 1 (e ∈ Tτ (X, gen(Σ) ∪ (∅, ∅, ∅, ∅,Fdef))):
We distinguish two cases.

Case 1.1 (e ∈ Tτ (X, gen(Σ))):
This case is covered by rule Σ-terms 1. There, A′ = A and ∆′ = ∆. Also, t

;

derives unique term values for gen(Σ)-terms (Lemma 6.3.1, Lemma 3.2.2).
Case 1.2 (e 6∈ Tτ (X, gen(Σ))):

This case is covered by rules Σ-terms 2 and Σ-terms 3. Since e is not in
Tτ (X, gen(Σ)) it contains at least one function symbol of NFdef

. Now, either
e ≡ f(t1, ...tn), f ∈ NFdef

or e ≡ f(t1, ..., tn), f 6∈ NFdef
(n ≥ 0).

222

C.5 Proofs for Chap. 7 223

Case 1.2.1 (e ≡ f(t1, ...tn), f ∈ NFdef
):

Suppose fτi→τ ∈ Fdef . We apply rule Σ-terms 2. Since e ∈ Tτ (X, gen(Σ) ∪
(∅, ∅, ∅, ∅,Fdef)), FD is suitable for Fdef , and Fdef is not overloaded, there is a
unique function definition f(x1, ..., xn) = e′ ∈ FD such that e′ ∈ Eτ (X,Σ,Fdef)
(Defn. 6.3.2, Defn. 6.3.3). Furthermore, the terms t1, ..., tn and the expression e′

are shorter than f(t1, ..., tn). By induction hypothesis they, thus, return unique

Ai+1, vi ∈ τAi+1 ∪ {⊥} (i ∈ {1, ..., n}) and A′, v ∈ τA′ ∪ {⊥} using
mig
; . As the

overall result for e is set to (A′,∆′, v), the assumption holds.
Case 1.2.2 (e ≡ f(t1, ...tn), f 6∈ NFdef

):
Rule Σ-terms 3 is applied. The result follows similar to case 1.2.1.

Case 2 (e ∈ BOpτ (X,Σ)):
The rule Basic operations is applied. Since

op
; satisfies the property (Lemma 6.2.1),

mig
; does as well.

Case 3 (e ≡ let x1 = e1...xn = en in en+1):
The rule Let expressions is applied. The expressions e1, ..., en+1 are shorter than e.
By induction hypothesis they, thus, return unique A2, v1 ∈ τA2 ∪ {⊥} and Ai+1, vi ∈
τAi+1 ∪ {⊥} (i ∈ {2, ..., n + 1}) using

mig
; . As the overall result for e is set to

(An+2,∆n+2, vn+1), the assumption holds.
Case 4 (e ≡ if eB then e0 else e1):

Depending on the value of eB, which is uniquely determined by induction hypothe-
sis, exactly one of the three variants of rule if-then-else expressions is applicable.
Hence, the result is set to ⊥, the result for e0, or the result for e1, respectively, which
proves the assumption (ind.hyp.).

Case 5 (e ≡ cast(e′, τ)):
Follows similarly.

2

C.5 Proofs for Chap. 7

Proof C.5.1 (Proof of Lemma 7.2.1) It is easy to see that sep(A,G) and red(A,G)
are composable. We show that the components of sep(A,G); red(A,G) equal their coun-
terpart in G. There, we abbreviate sep(A,G); red(A,G) by G;.

(NG; = NG):
NG; = reachG(A) ∪NG\{A} = {A} ∪NG\{A} = NG.

(ΩG; = ΩG)
ΩG; = ((ΩG ∪ {A}) ∪ ΩG)\{A} = ΩG (as A 6∈ ΩG).

(PG; = PG):
PG; = (PG\{A→ α | A→ α ∈ PG}) ∪ {X → α | X → α ∈ PG, X ∈ reachG(A)} =
(PG\{A→ α | A→ α ∈ PG}) ∪ {A→ α | A→ α ∈ PG} =
PG (since A ∈ reachG(A)).

(SG; = SG): This directly follows from the definition.

2

223

224 Proofs

Proof C.5.2 (Proof of Lemma 7.4.1) Given a deterministic HA and a word w. We
prove the assumption by induction on the length l of a maximal segmentation w0....wl−1

of w such that there is a run of HA over w; these segmentations exist since we forbid
ε-transitions.
Case 1 (l = 1): Then w0 = w ∈ symbolse(HA). Given two runs q0wq1 and q0wq

′
1.

Since HA is branching deterministic, q1 = q′1 (Defn. 7.4.2(1)).
Case 2 (l > 1):. Given runs q0w1q1....qn and q0w

′
1q
′
1...qm of HA over w, and let w =

w1w2 and w = w′1w
′
2. Since q0w1q1, there is a transition (q0, l1, q1) ∈ δHA that can fire on

w1. Analogously, there is a transition (q0, l2, q′1) ∈ δHA that can fire on w′1. Since HA is
sequentially deterministic, w′1 = w1 (Defn. 7.4.2(1)). As HA is branching deterministic,
q1 = q′1 and l1 = l′1. Since w2 and w′2 (thus, lengths of maximal segmentations for w1 and
w2) are shorter and both runs start in the same state (q1), we can apply the induction
hypothesis. We conclude that the overall run is unique. 2

Proof C.5.3 (Proof of Lemma 7.4.2) Derivations in G always have the following
form:

S
G⇒ a0A1

G⇒ ...
G⇒ a0...an−1An

G⇒ a0...an

From the construction in Defn. 7.4.3 we see that Sa0A1...an−1AnanX is an accepting run
in HA(G). Analogously, runs over HA(G) are translated to derivations in G. 2

Proof C.5.4 (Proof of Thm. 7.4.1) We show the two directions separately and ab-
breviate G;G′ by G; and HAG[S′ ↑ HA′G] by HA ↑.
L(G;) ⊆ L(HA ↑)

Given a word w and a derivation

S
G;⇒ α1β1

G;⇒ ...
G;⇒ αn−1βn−1

G;⇒ w.

Without loss of generality, we assume that this derivation is left-recursive (i.e., inner-
most non-terminals are resolved first, cf. [HMU06]). Both, G and G′ are right-linear.
Hence we can assume that αi is a (possibly empty) sequence of terminals; we denote
αi by wi. Also, βi contains none, one, or two non-terminals and no terminals. In
particular, occurrences of S′β resolve S′ in G′ first and somewhen lead to w′β, where
w′ ∈ Ω∗

G;
(βi stays unchanged until S′ is completely resolved).

We reduce the above derivation appropriately such that it becomes an accepting run
from S to X in HA ↑. For this purpose, we apply the following procedure, where
A0 = S and result = 〈〉.
(1) Set i = 1. Go to (2).

(2) If βi = ε goto (3). Otherwise take the derivation step wi−1βi−1
G;⇒ wiβi and

distinguish the following patterns:

Case 1 (wi−1Ai−1
G;⇒ wiS

′β′i (βi ≡ S′β′i)): Then there is a derivation S′
G′⇒

w′i+i...
G′⇒ w′k in G′ such that wiS′β′i

G;⇒ wi+1βi+1...
G;⇒ wkβk is a derivation in G;,

βj = βi for i ≤ j ≤ k and wiw
′
j = wj for i < j ≤ k (in particular, wiw′k = wk).

This derivation exists since w is accepted, the overall derivation is left-recursive,
and G,G′ are composable; all productions of shared non-terminals of G and G′

224

C.5 Proofs for Chap. 7 225

are equal (cf. Defn. 7.2.3). We conclude that HA(G′) accepts w′k (Lemma 7.4.2).
Also, βk is either empty or a non-terminal Ak. Hence, either (Ai−1, S

′, X) or
(Ai−1, S

′, Ak) is a transition inHAG (Defn. 7.4.3). Thus, either (Ai−1,HA(G′), X)
or (Ai−1,HA(G′), Ak) is a hierarchical transition in HA ↑. Since HA(G′) accepts
w′k, this transition can fire and is a permissible step in HA ↑ (Defn. 7.4.1).
Append Ai−1w

′
kX and Ai−1w

′
kAk, respectively, to result; set i to k + 1 and go

to (2).

Case 2 (wi−1Ai−1
G;⇒ wiβi, βi ∈ {ε} ∪ (N;\{S′})): Then there is w′ such that

wi = wi−1w
′ and Ai−1 → w′ is a production in G;. Since Ai−1 ∈ N;, this is also a

production in G (Defn. 7.2.3). If βi = ε, (Ai−1, w
′, X) is a transition in HA(G).

If βi = Ai, Ai ∈ N;\{S′}, (Ai−1, w
′, Ai) is a transition in HA(G) (Defn. 7.4.3).

Since w′ 6= S′, either of the transitions is also in HA ↑ and can fire. Thus,
Ai−1w

′X and Ai−1w
′Ai, respectively, is a permissible step in HA ↑.

Append Ai−1w
′X and Ai−1w

′Ai, respectively, to result; set i to i+ 1 and go to
(2).

(3) Stop.

L(HA ↑) ⊆ L(G;)
In the prove just shown we have reduced derivations in G; such that they become
accepting runs in HA ↑. Now, we have to expand accepting runs of HA ↑ such that
they are valid derivations in G;. Given an accepting run

Sw1A1w2....An−1wnX

of HA ↑ over w = w1....wn. Then there are transitions

δ1 = (A0, l1, A1), δ2 = (A1, l2, A2), ..., δn = (An−1, ln, An) (A0 = S,An = X)

such that δi that can fire on wi in HA ↑.
For (1 ≤ i ≤ n) we set the initial derivation d(i) as follows:

d(i) :=

{
Ai−1

G;⇒ α
k(i)
i A′i, li = wi

Ai−1
G;⇒ S′Ai

G;⇒ α1
iB

1A′i
G;⇒ ...

G;⇒ α
k(i)−1
i Bk(i)−1A′i

G;⇒ α
k(i)
i A′i, li = HA(G′)

There, αk(i)i = wi, A
′
i = Ai for 1 ≤ i < n, and A′n = ε; k(i) ∈ N denotes the derivation

length for wi in G;. If li = wi then k(i) = 1. Otherwise, k(i) is the derivation length
for wi in G′.
d(i) derives wi inG, if step i of the accepting run corresponds to firing a basic transition
in HA ↑; this automatically is a derivation in G;. However, if step i is the result of
firing a hierarchical transition (then li = HA(G′)), d(i) bases on the derivation

S′
G′⇒ α1

iB
1 G′⇒ ...

G′⇒ α
k(i)−1
i Bk(i)−1 G′⇒ α

k(i)
i

for wi in G′. It exists since HA(G′) accepts wi. As HA ↑ has been constructed from
G by substituting S′ with HAG′ (Defn. 7.4.3), HA(G) has a transition (Ai−1, S

′, Ai).

225

226 Proofs

Hence, G has a production Ai−1 → S′A′i. Therefore, the derivation sequence Ai−1
G;⇒

S′Ai
G;⇒ α1

iB
1A′i

G;⇒ ...
G;⇒ α

k(i)−1
i Bk(i)−1A′i

G;⇒ α
k(i)
i A′i is indeed valid for G;.

Up to now, the d(i) are valid derivations for wi in G;. We remain to extend the overall
derivation such that w = w1...wn is derived. We define w<0 = ε, w<i = w0...wi−1 and
set

d′(i) := w<i Ai−1
G;⇒ w<i α

1
iB

1A′i
G;⇒ ...

G;⇒ w<i α
k(i)−1
i Bk(i)−1A′i

G;⇒ w<i α
k(i)
i A′i

for
d(i) = Ai−1

G⇒ S′Ai
G;⇒ α1

iB
1A′i

G;⇒ ...
G;⇒ α

k(i)−1
i Bk(i)−1A′i

G;⇒ α
k(i)
i A′i.

Concatenating all d′(i) in ascending order yields a left-recursive derivation for w =
w1...wn in G; (recall: A0 = S,An = ε).

2

Proof C.5.5 (Proof of Lemma 7.4.3) We abbreviateHAd := domProd(SY N, SEM).
Given a word w = w0w1...wn such that w ∈ L(HAd). Then there is an accepting run
(q0, q′0)w0(q1, q′1)...(qn, q′n)wn(qn+1, q

′
n+1) of HAd over w, where wi ∈ symbolse(HAd)

(1 ≤ i ≤ n).

(1) We show that q0w0q1...qnwnqn+1 is an accepting run of SY N over w by show-
ing:

(1.1) q0 ∈ QIsyn and qn+1 ∈ QFsyn.
(1.2) For all 1 ≤ i ≤ n it is true that (qi, wi, qi+1) is a valid step in an accepting run

of SY N over w according to Defn. 7.4.1.

We conclude:

(1.1) From (q0, q′0) ∈ QIHAd
we know that q0 ∈ QIsyn. Analogously, qn+1 ∈ QFsyn.

(1.2) Assume (qi, q′i)wi(qi+1, q
′
i+1) ∈ δHAd

. From wi ∈ symbolse(HAd) we know wi ∈
symbolse(SY N) or wi ∈ Ωsem (recall: SY N may be hierarchical, where SEM has
to be basic). We have to distinguish two cases according to Defn. 7.4.4.
Case 1 ((qi, a, qi+1) ∈ δsyn, a ∈ HAssyn, (q

′
i, wi, q

′
i+1) ∈ δsem, wi ∈ L(a)): Since

wi ∈ L(a), there is an accepting run of a over wi. Additionally, a ∈ HAssyn. Put
together, we conclude that (qi, wi, qi+1) is a valid step of an accepting run of SY N
over w (cf. Defn. 7.4.1).
Case 2 ((qi, wi, qi+1) ∈ δsyn, q′i = q′i+1, wi ∈ Ωsyn): The assumption follows directly
(cf. Defn. 7.4.1).

(2) Whenever wi ∈ Ωsyn, wi 6∈ Ωsem (Ωsyn ∩ Ωsem = ∅). Hence, q′i = q′i+1 holds
for all transitions (qi, q′i)wi(qi+1, q

′
i+1) in an accepting run over HAd if wi ∈ ΩSY N

(cf. Defn. 7.4.4). Also, (q′i, wi, q
′
i+1) ∈ δsem holds for all transitions (qi, q′i)wi(qi+1, q

′
i+1)

if wi ∈ HAssyn. Put together, removing steps q′iεq
′
i from q′0h(w0)q′1...q

′
nh(wn)q′n+1 yields

an accepting run of SEM over w.

2

Proof C.5.6 (Proof of Lemma 7.4.4) We abbreviateHAd := domProd(SY N, SEM).
Given a state (q, q′) ∈ QHAd

, a word w in symbolse(HA)∗ we prove that HAd is both,
branching deterministic and sequentially deterministic.

226

C.6 Proofs for Chap. 11 227

(HAd is branching deterministic)
Given a segmentation w1w2 = w. Suppose there are transitions ((q, q′), w1, (q1, q′1))
and ((q, q′), w1, (q2, q′2)) that can fire on w1. According to Defn. 7.4.4, both, (q, w1, q1)
and (q, w1, q2) can fire on w1 in SY N . Since SY N is branching deterministic, q1 = q2.
We remain to show q′1 = q′2. If w1 ∈ Ωsyn, this directly follows by Defn. 7.4.4 (Dom-
inated Product). If w1 ∈ Ωsem, both (q′, w1, q

′
1) and (q′, w1, w

′
2) can fire on w1 in

SEM . Since SEM is branching deterministic, q′1 = q′2.
(HAd is sequentially deterministic)

In any case SY N has to be able to fire on w (Defn. 7.4.4). Hence, there is a unique
segmentation w = w1w2 such that SY N can fire (SY N is sequentially deterministic).
If additionally SEM fires, there is another segmentation w = w′1w

′
2 such that SEM

fires on w′1. Since both fire, w1 = w′1 (Defn. 7.4.4). Thus, HAd is sequentially
deterministic.

2

C.6 Proofs for Chap. 11

Proof C.6.1 (Proof of Lemma 11.1.1) We show the assumptions consecutively.

(1) This directly follows from
validBWeb(w)⇒ home(w) ∈ subDocs(srcDir(w)) Def. validBWeb (Fig. 11.1)

⇒ containsDoc(srcDir(w), home(w)) Def. containsDoc (Fig. 11.1)
⇒ validBWeb(w) Def. validAWeb (Fig. 11.1)

(2) We show both directions separately.

(=⇒)
We have to show that validBWeb implies the constraints for BWeb in Defn. 11.1.1.
We denote them by Defn. 11.1.1(1) to Defn. 11.1.1(4).

(1) We conclude:
validBWeb(w)
⇒ home(w) ∈ subDocs(srcDir(w)) ∧ parseBWeb(w, srcDir(w), name(w)) Fig. 11.1
⇒ home(w) ∈ subDocs(srcDir(w))∧

size(subDirs(srcDir(w))) = 2∧
(∃d′ : Dir • d′ ∈ subDirs(srcDir(w)) ∧ name(d′) = “html“)∧
(∃d′ : Dir • d′ ∈ subDirs(srcDir(w)) ∧ name(d′) = “resources“)∧
size(subDocs(srcDir(w))) = 1∧
(∃d′ : HTMLDoc • d′ ∈ subDocs(srcDir(w)) ∧ name(d′) = “index.html“) Fig. 11.2

⇒ Defn. 11.1.1(1)

(2) First, the implications
parseTitle(0, e) = {}
⇒ (∀e′ : HTMLElem • containsElem(e, e′)⇒ name(e′) 6= “title“) ∨

(∃e′ : HTMLElem •
containsElem(e, e′) ∧ name(e′) = “title“∧
∀e′′ : HTMLTextElem • (containsElem(e′, e′′)⇒ content(e′′) = ““))

parseTitle(0, e) 6= {}
⇒ ∃e′ : HTMLElem •

containsElem(e, e′) ∧ name(e′) = “title“∧
∃e′′ : HTMLTextElem • (containsElem(e′, e′′) ∧ content(e′′) 6= ““)

227

228 Proofs

hold; this can be seen from the definitions of parseTitle and containsElem.
The proof is omitted for brevity; formally, it goes by induction on the structure
of e. We refer to the implications by (*) and (**), respectively, and conclude:
validBWeb(w)
⇒ name(w) = name(srcDir(w)) ∧ home(w) ∈ subDocs(srcDir(w))∧

parseBWeb(w, srcDir(w), name(w)) Fig. 11.1
⇒ name(w) = name(srcDir(w)) ∧ home(w) ∈ subDocs(srcDir(w))∧

size(subDocs(srcDir(w))) = 1∧
∃d′ : HTMLDoc •

d′ ∈ subDocs(d) ∧ name(d′) = “index.html“∧
(parseTitle(0, content(d′)) = {} ∨ name(w) ∈ parseTitle(0, content(d′)) Fig. 11.2

⇒ name(w) = name(srcDir(w))∧
(parseTitle(0, content(home(w))) = {}∨
name(w) ∈ parseTitle(0, content(home(w))))

⇒ name(w) = name(srcDir(w))∧
((∀e′ : HTMLElem • containsElem(content(home(w)), e′)⇒
name(e′) 6= “title“) ∨

(∃e′ : HTMLElem •
containsElem(content(home(w)), e′) ∧ name(e′) = “title“∧
∀e′′ : HTMLTextElem • (containsElem(e′, e′′)⇒ content(e′′) = ““))∨ (*)

(∃e′ : HTMLElem •
containsElem(content(home(w)), e′) ∧ name(e′) = “title“∧
∃e′′ : HTMLTextElem •

containsElem(e′, e′′) ∧ content(e′′) 6= ““ ∧ name(w) = content(e′′)) (**)
⇒ Defn. 11.1.1(2)

(3) Suppose there is d : Dir, d′ : HTMLDoc, and w : Website such that

d ∈ subDirs(srcDir(w)) ∧ containsDoc(d, d′) ∧ validBWeb(w).

Due to the definition of parseBWeb, this can hold in a directory only if parseBWeb
succeeds in state one. In subDirs(srcDir(w)) this is true for “html” only. Hence,
name(d) = “html“ follows.

(4) Follows similar to (3).

(⇐=)
We show

¬validBWeb(w) ⇒ w does not conform to BWeb

by assuming that at least one of the conjunction terms in the definition of validBWeb
does not hold.

Case 1 (name(w) 6= name(srcDir(w))):
Trivially, Defn. 11.1.1(2) does not hold.

Case 2 (home(w) 6∈ subDocs(srcDir(w))):
Then Defn. 11.1.1(1) does not hold.

Case 3 (parseBWeb(0, srcDir(w), name(w)) 6= True):
If parseBWeb does not succeed in states one and two, respectively, Defn. 11.1.1(4)
and Defn. 11.1.1(3) do not hold. If it succeeds in both, state one and state two,
Defn. 11.1.1(1) or Defn. 11.1.1(2) do not hold.

2

228

Bibliography

[ABK+02] Egidio Astesiano, Michel Bidoit, Helene Kirchner, Bernd Krieg-Bruckner,
Peter D. Mosses, Donald Sannella, and Andrzej Tarlecki. CASL: the
common algebraic specification language. Theoretical Computer Science,
286(2):153–196, September 2002.

[ACM97] Maristella Agosti, Fabio Crestani, and Massimo Melucci. On the use of in-
formation retrieval techniques for the automatic construction of hypertext.
Inf. Process. Manage., 33(2):133–144, 1997.

[ADK06] Albert Atserias, Anuj Dawar, and Phokion G. Kolaitis. On preservation un-
der homomorphisms and unions of conjunctive queries. J. ACM, 53(2):208–
237, 2006.

[AFL02] Marcelo Arenas, Wenfei Fan, and Leonid Libkin. What’s hard about xml
schema constraints? In DEXA ’02: Proceedings of the 13th International
Conference on Database and Expert Systems Applications, pages 269–278,
London, UK, 2002. Springer-Verlag.

[AKY99] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Communicating
hierarchical state machines. In Automata, Languages and Programming:
26th International Colloquium, ICALP’99, pages 703–703, Prague, Czech
Republic, July 1999. Springer (LNCS Vol. 1644).
www.springerlink.com/content/980rt2de1mqqu2ll.

[BALD03] Béatrice Bouchou, Mirian Halfeld Ferrari Alves, Dominique Laurent, and
Denio Duarte. Extending tree automata to model xml validation under
element and attribute constraints. In ICEIS, volume 1, pages 184–190,
2003.

[Bar04] Erik Peter Barnsleben. Database migration: A literature review and case
study, November 2004. Master’s thesis.

[BFM05] Denilson Barbosa, Juliana Freire, and Alberto O. Mendelzon. Designing
information-preserving mapping schemes for xml. In VLDB ’05: Proceed-
ings of the 31st international conference on Very large data bases, pages
109–120. VLDB Endowment, 2005.

229

230 BIBLIOGRAPHY

[BM04] Michel Bidoit and Peter D. Mosses. Casl User Manual. LNCS 2900 (IFIP
Series). Springer, 2004. With chapters by T. Mossakowski, D. Sannella, and
A. Tarlecki.

[Bor07] Daniel Borkowitz. Konzeption, Spezifikation und Realisierung einer Trans-
formation von Kernelementen der XHTML- und CSS-Spezifikation in das
Open Document Format (ODF), 2007. Master’s thesis, Universität der
Bundeswehr München, UniBwM-ID 22/2007.

[BRSS06] Uwe M Borghoff, Peter Rödig, Jan Scheffczyk, and Lothar Schmitz. Long-
Term Preservation of Digital Documents. Springer Verlag, Heidelberg, 2006.

[BS03] Egon Börger and Robert Stärk. Abstract State Machines. A Method for
High-Level System Design and Analysis. Springer Verlag, Heidelberg, 2003.

[BZ00] Hubert Baumeister and Alexandre V. Zamulin. State-based extensions of
CASL. In Integrated Formal Methods (IFM), pages 3–24. Springer, 2000.

[CDG+07] Hubert Comon, Max Dauchet, Remi Gilleron, Christof Löding, Florent
Jacquemard, Denis Lugiez, Sohie Tison, and Marc Tommasi. Tree au-
tomata techniques and applications, October 2007.
www.grappa.univ-lille3.fr/tata.

[Chi00] Boris Chidlovskii. Using regular tree automata as XML schemas. In Proc.
Int. IEEE Conf. on Advances in Dig. Lib (ADL2000), pages 89–98, Wash-
ington, DC, USA, May 2000.

[CLB01] James Cheney, Carl Lagoze, and Peter Botticelli. Towards a theory of
information preservation. Technical report, Cornell University, Ithaca, New
York, 2001.

[CoF04] CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS
2960 (IFIP Series). Springer, 2004.

[Con02] Consultative Committee for Space Data Systems. Reference model for an
open archival information system. Technical report, Space Data Systems,
January 2002.
public.ccsds.org/publications/archive/650x0b1.pdf.

[DCMID08] The Dublic Core Metadata Initiative (DCMI). DCMI metadata terms,
January 2008.
dublincore.org/documents/dcmi-terms/.

[de 86] D. de Champeaux. Subproblem finder and instance checker, two cooperating
modules for theorem provers. Journal of the ACM, 33(4):633–657, 1986.

[Dig01] Digital Preservation Testbed. Migration: Context and current status, 2001.
White Paper,
www.digitaleduurzaamheid.nl/bibliotheek/docs/Migration.pdf.

230

BIBLIOGRAPHY 231

[EGdL+05] Karsten Ehrig, Esther Guerra, Juan de Lara, Laszló Lengyel, Tihamér Lev-
endovszky, Ulrike Prange, Gabriele Taentzer, Dániel Varró, and Szilvia
Varró-Gyapay. Model transformation by graph transformation: A com-
parative study. In MTiP 2005, International Workshop on Model Transfor-
mations in Practice (Satellite Event of MoDELS 2005), 2005.

[EGL89] Hans-Dieter Ehrich, Martin Gogolla, and Udo W. Lipeck. Algebraische
Spezifikationen abstrakter Datentypen. B. G. Teubner, Stuttgart, 1989.
ISBN 3-519-02266-4.

[Erw96] Martin Erwig. Active patterns. In Proc. of the 16th Int. Workshop on
Implementation of Functional Languages, volume 1268, pages 21–40, Bonn-
Bad-Godesberg, GE, Sep. 1996. Springer LNCS.

[ES07] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag,
Heidelberg (DE), 2007.

[FBR06] Miguel Ferreira, Ana Alice Baptista, and José Carlos Ramalho. A founda-
tion for automatic digital preservation. Ariadne, 48, July 2006.

[Fla04] Stephan Flake. Towards the completion of the formal semantics of ocl 2.0.
In ACSC ’04: Proceedings of the 27th Australasian conference on Computer
science, pages 73–82, Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc.

[FM02] Stephan Flake and Wolfgang Mueller. An OCL extension for real-time
constraints. In Object Modeling with the OCL, Berlin / Heidelberg, 2002.
Springer.

[FP00] Piero Fraternali and Paolo Paolini. Model-driven development of web ap-
plications: the AutoWeb system. ACM Trans. Inf. Syst., 18(4):323–382,
2000.

[GF02] Marcos André Gonçalves and Edward A. Fox. 5SL - a language for declar-
ative specification and generation of digital labraries. In Joint Conference
on Digital Libraries 2002 (JCDL’02). ACM, June 2002.

[GFWK04] Marcos André Gonçalves, Deward A. Fox, Layne T. Watson, and Neill A.
Kipp. Streams, structures, spaces, scenarios, societies (5S): A formal model
for digital libraries. ACM Transactions on Information Systems, 22(2):270–
312, April 2004.

[Gol97] Gene Golovchinsky. What the query told the link: the integration of hy-
pertext and information retrieval. In HYPERTEXT ’97: Proceedings of the
eighth ACM conference on Hypertext, pages 67–74, New York, NY, USA,
1997. ACM.

[Goo07] The google library program, 2007.
books.google.com/googlebooks/library.html.

231

232 BIBLIOGRAPHY

[GPN96] Pedro Palao Gostanza, Ricardo Pena, and Manuel Núnez. A new look at
pattern matching in abstract data types. In ICFP ’96: Proceedings of the
first ACM SIGPLAN international conference on Functional programming,
pages 110–121, New York, NY, USA, 1996. ACM.

[GRB03] Martin Gogolla, Mark Richters, and Jörn Bohling. Tool support for val-
idating uml and ocl models through automatic snapshot generation. In
Proceedings of theAnnual Research Conference South African Institute of
Computer Scientists and Information Technologists on Enablement through
Technology (SAICSIT’2003), pages 248–257, 2003.

[Grz97] Grzegorz Rozenberg et al. Handbook of Graph Grammars and Computing
by Graph Transformation. World Scientific Publishing, New Jersey, 1997.

[GS97] Yuri Gurevich and Marc Spielmann. Recursive abstract state machines.
J.UCS: Journal of Universal Computer Science, 3(4):233–246, 1997.

[Gur00] Yuri Gurevich. Sequential abstract-state machines capture sequential algo-
rithms. ACM Trans. Comput. Logic, 1(1):77–111, 2000.

[GW05] David Giaretta and Heather Weaver. Digital curation and preservation:
Defining the research agenda for the next decade. Technical report, Digital
Curation Centre, November 2005.
www.dcc.ac.uk/events/warwick_2005/Warwick_Workshop_report.pdf.

[GYS07] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic
matching: Algorithms and implementation. Journal on Data Semantics
IX, pages 1–38, 2007.

[Hai05] Jean L. Hainaut. Transformation-based database engineering. In L. Rivero,
J. Doorn, and V. Ferraggine, editors, Encyclopedia of Database Technologies
and Applications. IDEA Group, 2005.

[HC04] J. Hunter and S. Choudhury. A semi-automated digital preservation system
based on semantic web services. Digital Libraries, 2004. Proceedings of the
2004 Joint ACM/IEEE Conference on Digital libraries, pages 269–278, 7-11
June 2004.

[HD04] Johannes Henkel and Amer Diwan. A tool for writing and debugging al-
gebraic specifications. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 449–458. IEEE Computer Soci-
ety, 2004.

[HKKR05] Martin Hitz, Gerti Kappel, Elisabetz Kapsammer, and Werner Retschitzeg-
ger. UML@Work. dpunkt Verlag, Heidelberg, 3rd edition, 2005.

[HL07] Michael Huggett and Joel Lanir. Static reformulation: a user study of static
hypertext for query-based reformulation. In JCDL ’07: Proceedings of the
7th ACM/IEEE joint conference on Digital libraries, pages 319–328, New
York, NY, USA, 2007. ACM.

232

BIBLIOGRAPHY 233

[HLSU02] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A temporal
logic based theory of test coverage and generation. In TACAS ’02: Proceed-
ings of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 327–341, London, UK, 2002.
Springer-Verlag.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison Wesley, 3rd
edition, July 2006. ISBN: 978-0321455369.

[Int98] Internet Engineering Task Force (IETF), Network Working Group. Uniform
resource identifiers (URI): Generic syntax, 1998. RFC2396,
www.ietf.org/rfc/rfc2396.txt.

[Isa02] Isabelle/HOL: a proof assistant for higher-order logic. Springer-Verlag, Lon-
don, UK, 2002.

[Jon95] Mark P. Jones. Functional programming with overloading and higher-order
polymorphism. In Advanced Functional Programming, pages 97–136, 1995.

[KK96] Hans-Jörg Kreowski and Sabine Kuske. On the Interleaving Semantics of
Transformation Units—A Step into GRACE. In Janice E. Cuny, Hart-
mut Ehrig, Gregor Engels, and Grzegorz Rozenberg, editors, Proc. 5th Int.
Workshop on Graph Grammars and their Application to Computer Science,
volume 1073, pages 89–106. Springer-Verlag, 1996.

[KS03] Yannis Kalfoglou and Marco Schorlemmer. If-map: An ontology-mapping
method based on information-flow theory. Journal on Data Semantics,
pages 98–127, 2003.

[LS06] Monika Lanzenberger and Jennifer Sampson. Alviz - a tool for visual on-
tology alignment. In IV ’06: Proceedings of the conference on Information
Visualization, pages 430–440, Washington, DC, USA, 2006. IEEE Computer
Society.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[Mai06] Jacques le Maitre. Describing multistructured XML documents by means
of delay nodes. In Proc. of the ACM Symp. on Doc. Eng. (DocEng 2006),
pages 155–164, Amsterdam, The Netherlands, October 2006.

[MBDH02] Jayant Madhavan, Philip A. Bernstein, Pedro Domingos, and Alon Y.
Halevy. Representing and reasoning about mappings between domain mod-
els. In Eighteenth national conference on Artificial intelligence, pages 80–86.
American Association for Artificial Intelligence, 2002.

233

234 BIBLIOGRAPHY

[McC03] William McCune. Mace4 reference manual and guide. Technical report, Ar-
gonne National Laboratory, Mathematics and Computer Science Division,
2003. Technical Memo ANL/MCS-TM-264.

[McC06] William McCune. Prover9 manual. Technical report, Argonne National
Laboratory, Mathematics and Computer Science Division, 2006.

[MCG05] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. 04101 discussion – a
taxonomy of model transformations. In Jean Bezivin and Reiko Heckel, ed-
itors, Language Engineering for Model-Driven Software Development, num-
ber 04101 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,
2005.

[MDJ02] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour pre-
serving program transformations. In Graph Transformation, volume 2505
of Lecture Notes in Computer Science, pages 286–301. Springer, 2002.

[MDM+94] A. Meier, R. Dippold, J. Mercerat, A. Muriset, J.-C. Untersinger, R. Ecker-
lin, and F. Ferrara. Hierarchical to relational database migration. Software,
IEEE, 11(3):21–27, May 1994.

[MEDJ05] Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. Formal-
izing refactorings with graph transformations: Research articles. J. Softw.
Maint. Evol., 17(4):247–276, 2005.

[MLS97] Erich Mikk, Yassine Lakhnech, and Michael Siegel. Hierarchical automata
as model for statecharts. In Advances in Computing Science - ASIAN’97,
pages 181–196. Springer (LNCS Vol. 1345), 1997.
www.springerlink.com/content/vk4328r678n1k036.

[MOSS99] Markus Müller-Olm, David A. Schmidt, and Bernhard Steffen. Model-
checking: A tutorial introduction. In SAS ’99: Proceedings of the 6th Inter-
national Symposium on Static Analysis, pages 330–354, London, UK, 1999.
Springer-Verlag.

[MP99] Peter McBrien and Alexandra Poulovassilis. A uniform approach to inter-
model transformations. In Proceedings of the 11th International Conference
on Advanced Information Systems Engineering (CAiSE’99), volume 1626,
pages 333–348. Springer Verlag LNCS, 1999.

[NCEF02] Christian Nentwich, Licia Capra, Wolfgang Emmerich, and Anthony Finkel-
stein. xlinkit: a consistency checking and smart link generation service.
ACM Trans. Inter. Tech., 2(2):151–185, 2002.

[Nev02] Frank Neven. Automata, logic, and XML. In Proc. of the 16th Int. Work-
shop CSL 2002, 11th Ann. Conf. of the EACSL, volume 2471, pages 2–26,
Edingburgh, UK, Sep. 2002. Springer LNCS.

234

BIBLIOGRAPHY 235

[Obj05] Object Management Group. QVT: Revised submission for MOF 2.0
Query/View/Transformation RFP. Request for Proposal, 2005. ad/2002-
04-10 version 2.1.

[OC03] Christopher Olston and Ed H. Chi. Scenttrails: Integrating browsing and
searching on the web. ACM Trans. Comput.-Hum. Interact., 10(3):177–197,
2003.

[Ock98] John Ockerbloom. Mediating among diverse data formats. Technical report,
Carnegie Mellon Computer Science, 1998.

[Org06] Organization for the Advancement of Structured Information Standards
(OASIS). Open Document Format for Office Applications (OpenDocu-
ment) v1.0 (Second Edition), 2006. ISO Standard ISO/IEC 26300:2006,
www.oasis-open.org/committees/download.php/19274/OpenDocument-

v1.0ed2-cs1.pdf.

[PHS+06] Stoyan Paunov, James Hill, Douglas Schmidt, Steven D. Baker, and John M.
Slaby. Domain-specific modeling languages for configuring and evaluating
enterprise DRE system quality of service. In Proc. 13th IEEE Int. Symp.
on Eng. of Comp. Based Sys. (ECBS’06), pages 196–208, Washington, DC,
USA, 2006. IEEE Computer Society.

[Por05] Ivan Porres. Rule-based update transformations and their application to
model refactorings. Software and System Modeling, 4(4):368–385, 2005.

[PRE05] PREMIS working group. Data dictionary for preservation metadata. Tech-
nical report, OCLC: Dublin, Ohio, RLG: Mountain View, California, 2005.
www.oclc.org/research/projects/pmwg/premis-final.pdf.

[Rei03a] Wolfgang Reisig. On Gurevich’s Theorem on Sequential Algorithms. Acta
Informatica, 39(5):273–305, 2003.

[Rei03b] Wolfgang Reisig. The Expressive Power of Abstract State Machines. Com-
puting and Informatics, 22(3):209–219, 2003.

[Ric02] Mark Richters. A precise approach to validating UML models and OCL con-
straints. In Martin Gogolla, Hans-Jörg Kreowski, Bernd Krieg-Brückner,
Jan Peleska, and Bernd-Holger Schlingloff, editors, BISS Monographs, vol-
ume 14. Logos Verlag, Berlin, 2002. ISBN: 3-98722-842-4.

[Rot99] Jeff Rothenberg. Avoiding Technological Quicksand: Finding a Viable Tech-
nical Foundation for Digital Preservation. Council on Library & Informa-
tion Resources, 1999.

[RS01] Markus Roggenbach and Lutz Schröder. Towards trustworthy specifications
I: Consistency checks. Lecture Notes in Computer Science, 2267:305+, 2001.

235

236 BIBLIOGRAPHY

[RSV04] A. Rensink, Schmidt, and D. Varró. Model checking graph transformations:
A comparison of two approaches. In H. Ehrig, G. Engels, F. Parise-Presicce,
and G. Rozenberg, editors, International Conference on Graph Transforma-
tions (ICGT), volume 3256 of Lecture Notes in Computer Science, pages
226–241, Berlin, 2004. Springer Verlag.

[SBNR07] Stephan Strodl, Christoph Becker, Robert Neumayer, and Andreas Rauber.
How to choose a digital preservation strategy: evaluating a preservation
planning procedure. In JCDL ’07: Proceedings of the 2007 conference on
Digital libraries, pages 29–38, New York, NY, USA, 2007. ACM Press.

[SBRS04] Jan Scheffczyk, Uwe M. Borghoff, Peter Rödig, and Lothar Schmitz. Man-
aging inconsistent repositories via prioritized repair actions. In Proc. of the
ACM Symp. on Doc. Eng. (DocEng 2004), pages 137–146, 2004.

[Sch04] Jan Scheffczyk. Consistent Document Engineering. PhD thesis, Univer-
sität der Bundeswehr München, Fakultät für Informatik, Neubiberg, August
2004.

[SKB06] T. Szemethy, G. Karsai, and D. Balasubramanian. Model transformations
in the model-based development of real-time systems. In Proc. 13th IEEE
Int. Symp. on Eng. of Comp. Based Sys. (ECBS’06), pages 188–196, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[SL05] Andreas U. Schmidt and Zbynĕk Loebl. Legal security for transformations of
signed documents: Fundamental concepts. In Proceedings of the 2nd Euro-
pean PKI Workshop, volume 3545, pages 255–270. Springer Verlag (LNCS),
June 2005.

[SM01] Gerd Stumme and Alexander Maedche. Ontology merging for federated
ontologies on the semantic web. In Proc. Int. Workshop for Foundations of
Models for Information Integration (FMII-2001), 2001.

[SRR+06] Stephan Strodl, Andreas Rauber, Carl Rauch, Hans Hofman, Franca De-
bole, and Giuseppe Amato. The DELOS testbed for choosing a digital pres-
ervation strategy. In Digital Libraries: Achievements, Challenges and Op-
portunities, volume 4312, pages 323–332. Springer Verlag (LNCS), Novem-
ber 2006.

[SSR94] Edward Sciore, Michael Siegel, and Arnon Rosenthal. Using semantic val-
ues to facilitate interoperability among heterogeneous information systems.
ACM Trans. Database Syst., 19(2):254–290, 1994.

[SWZ99] Andy Schürr, Andreas Winter, and Albert Zündorf. The PROGRES ap-
proach: language and environment. In Handbook of graph grammars and
computing by graph transformation: vol. 2: applications, languages, and
tools, pages 487–550. World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 1999.

236

BIBLIOGRAPHY 237

[Tal98] Carolyn Talcott. Reasoning about functions with effects. In Higher order
operational techniques in semantics, pages 347–390, New York, NY, USA,
1998. Cambridge University Press. ISBN: 0-521-63168-8.

[Tas96] Task Force on Archiving of Digital Information. Preserving digital infor-
mation. Technical report, Research Library Ground (RLG), May 1996.
www.rlg.org/legacy/ftpd/pub/archtf/final-report.pdf.

[TB06] Thomas Triebsees and Uwe M. Borghoff. Preservation-centric and
constraint-based migration of digital documents. In DocEng ’06: Proceed-
ings of the 2006 ACM Symposium on Document Engineering, pages 59–61,
New York, NY, USA, 2006. ACM Press.

[TB07a] Thomas Triebsees and Uwe M. Borghoff. A theory for model-based transfor-
mation applied to computer-supported preservation in digital archives. In
Proc. 14th Ann. IEEE International Conference on the Engineering of Com-
pupter Based Systems (ECBS’07), Tucson, AZ, USA, March 2007. IEEE
Computer Society Press.

[TB07b] Thomas Triebsees and Uwe M. Borghoff. Towards automatic document
migration: semantic preservation of embedded queries. In DocEng ’07:
Proceedings of the 2007 ACM symposium on Document engineering, pages
209–218, New York, NY, USA, 2007. ACM Press.

[TB07c] Thomas Triebsees and Uwe M. Borghoff. Towards constraint-based pres-
ervation in systems specification. In Proceedings of the International Con-
ference on Conputer-aided Systems Theory (EuroCAST07), volume 4739,
pages 894–902. Springer Verlag (LNCS), February 2007.

[TBS05] Thomas Triebsees, Uwe M. Borghoff, and Jan Scheffczyk. Controlled mi-
gration in digital archives. In Proceedings of the International Conference
on Digital Archive Technologies (ICDAT2005), pages 5–19, June 2005.

[Tho99] Simon Thompson. The Craft of Functional Programming. Addison-Wesley
Longman, Amsterdam, 2nd edition, 1999. ISBN 978-0201342758.

[Ton97] Hans Tonino. A Theory of Many-sorted Evolving Algebras. PhD thesis,
Delft University of Technology, Delft, 1997.

[Ton98] Hans Tonino. A sound and complete SOS-semantics for non-distributed
deterministic abstract state machines. In Workshop on Abstract State Ma-
chines, pages 91–110, 1998.

[Top01] TopicMaps.Org Authoring Group. XML Topic Maps (XMT) 1.0, June
2001.
www.topicmaps.org/xtm/index.html.

[Tri07] Thomas Triebsees. Constraint-based model transformation: Tracing the
preservation of semantic properties. Journal of Software, 2(2):1–11, 2007.

237

238 BIBLIOGRAPHY

[Val04] Valoris. Comparative assessment of open documents formats market
overview. Technical report, European Commission, Specific agreement no.3-
IDA.20030523, 2004.

[Wan60] Hao Wang. Toward mechanical mathematics. IBM Journal of Research and
Development, 4(1):2–22, 1960.

[WD96] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and
Proof. Prentice Hall, New Jersey, 1996.

[Whe01] Paul Wheatley. Migration — a CAMiLEON discussion paper, 2001.
www.ariadne.ac.uk/issue29/camileon/intro.html.

[Wir95] Martin Wirsing. Algebraic specification languages: An overview. In Recent
Trends in Data Type Specification. Springer, Berlin / Heidelberg, 1995.

[WO00] Jeanette M. Wing and John Ockerbloom. Respectful type converters. IEEE
Trans. on Software Eng., 26:579–593, July 2000.

[Wor99] World Wide Web Consortium W3C. RDF primer, 1999. W3C Recommen-
dation,
www.w3.org/TR/REC-rdf-syntax/.

[Wor01] World Wide Web Consortium W3C. XML Schema part 0: Primer, 2001.
W3C Recommendation,
www.w3.org/TR/xmlschema-0/.

[Wor02] World Wide Web Consortium W3C. XHTML 1.0 The Extensible Hyper-
Text Markup Language (Second Edition), 2002. W3C Recommendation,
www.w3.org/TR/xhtml1/.

[Wor03] World Wide Web Consortium W3C. XML path language (XPath) 2.0, 2003.
W3C Recommendation,
www.w3.org/TR/xpath20/.

[Wor04a] World Wide Web Consortium W3C. Document Object Model (DOM) Level
3 Core Specification, 2004. W3C Recommendation,
www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/.

[Wor04b] World Wide Web Consortium W3C. Extensible Markup Language (XML)
1.1, 2004. W3C Recommendation,
www.w3.org/TR/xml11.

[Wor07a] World Wide Web Consortium W3C. Cascading Style Sheets Level 2 Revi-
sion 1 (CSS 2.1) Specification, 2007. W3C Candidate Recommendation,
www.w3.org/TR/CSS21/.

[Wor07b] World Wide Web Consortium W3C. XQuery 1.0: An XML Query Lan-
guage, 2007. W3C Recommendation,
www.w3.org/TR/xquery/.

238

BIBLIOGRAPHY 239

[WS99] Ross Wilkinson and Alan F. Smeaton. Automatic link generation. ACM
Computing Surveys, pages 27–40, December 1999.

[Zam97] Alexandre Zamulin. Typed gurevich machines revisited. Joint CS & IIS
Bulletin, Computer Science, 1997.

[Zam98] Alexandre Zamulin. Specification of Dynamic Systems by Typed Gure-
vich Machines. In Z. Bubnicki and A. Grzech, editors, Proceedings of the
13th International Conference on System Science, pages 160–167, Wroc llaw,
Poland, 15-18 1998.

[ZG03] Paul Ziemann and Martin Gogolla. OCL extended with temporal logic.
In Perspectives of System Informatics: 5th International Andrei Ershov
Memorial Conference, Berlin / Heidelberg, 2003. Springer.

239

	I Introduction and Informal Survey
	1 Introduction and Motivation
	1.1 General Conditions of the Application Domain
	1.2 The Approach in this Thesis
	1.3 Objectives
	1.4 Outline and Reading Guide

	2 Informal Survey
	2.1 Running Example --- Website Transformation
	2.2 Concept Identification and Matching
	2.3 Preservation --- Variants and Specification
	2.4 Verifying Preservation Requirements
	2.5 Summary

	II Formalizing Migration and Preservation
	3 Modeling Objects and Digital Archives
	3.1 Informal Overview
	3.2 Modeling Object Contents and Relationships
	3.3 Basic Formal Digital Archive
	3.4 Summary

	4 Contexts and Concepts
	4.1 Informal Overview
	4.2 Specifying Contexts and Concepts
	4.3 Evaluating Concepts
	4.4 Summary

	5 Specifying and Evaluating Preservation Requirements
	5.1 Informal Overview
	5.2 Preservation --- a First Account
	5.3 Object Traces
	5.4 Preservation Formulas -- Relating Preservation and Object Traces
	5.5 Summary

	III Improving Usability
	6 Implementing Migration Processes
	6.1 Informal Overview
	6.2 Basic State Change Operations
	6.3 Migration Algorithms
	6.4 Summary

	7 Incorporating Graph-Based Queries
	7.1 Informal Overview
	7.2 Query Syntax --- Integrating Regular Languages
	7.3 Query Semantics --- Specifying Graph Structures
	7.4 Automated Query Evaluation and Construction
	7.5 Summary

	IV Case Study
	8 Case Study --- Website Transformation
	8.1 Methodology
	8.2 Outline

	9 Modeling Datatypes
	9.1 Modeling Websites, Servers, and Directory Structures
	9.2 Modeling Html Content
	9.3 Formal Signature

	10 Implementing the Migration
	10.1 Structural Transformation
	10.2 Adaptation
	10.3 Content Migration

	11 Specifying Concepts
	11.1 The Concept EntryPoint
	11.2 The Concept AContent
	11.3 The Concept Contains
	11.4 The Concept Neighbor
	11.5 The Concept LinksTo

	12 Specifying and Checking Preservation Requirements
	12.1 Formal Preservation Requirements
	12.2 Evaluating Runtime Costs

	13 Summary --- Costs and Benefits

	V Conclusions
	14 Related Work
	14.1 Migration in Digital Archives
	14.2 Migration and Transformation in Other Contexts
	14.3 Notions of Preservation
	14.4 Formal Approaches to Digital Archiving
	14.5 Systems for Formal Quality Assurance
	14.6 Graph-based Queries

	15 Conclusion and Outlook
	15.1 Summary
	15.2 Future Work

	A Specification of the Basic DA
	B Continuative Examples on Formal Parts
	B.1 Objects and Digital Archives
	B.2 Contexts and Concepts
	B.3 Formal Preservation Requirements
	B.4 Migration Algorithms

	C Proofs
	C.1 Proofs for Chap. 3
	C.2 Proofs for Chap. 4
	C.3 Proofs for Chap. 5
	C.4 Proofs for Chap. 6
	C.5 Proofs for Chap. 7
	C.6 Proofs for Chap. 11

