
University of the Federal Armed Forces, Munich
Computer Science Department

Institute of Information Systems

Doctoral Dissertation

Service Oriented Security Architecture
applied to Spatial Data Infrastructures

by

Cristian Aurel OPINCARU

Munich, 2008

©2008 Cristian Aurel Opincaru. All rights reserved.

Map on the Cover Page

Planisphaerium Ptolemaicum siue machina orbium mundi ex hypothesi Ptolemaica in plano disposita, Author: Andreas
Cellarius, published in Harmonia Macrocosmica (Amsterdam, 1661), Dimensions (original): 46 x 64 cm. Courtesy of the
Norman B. Leventhal Map Center at the Boston Public Library.
The map shows the view of Claudius Ptolemy (2nd century A.D.) on the universe. At the center of this diagram there is
a small map of the Earth’s northern hemisphere. Revolving around the Earth in separate orbits are the Moon, Mercury,
Venus, the Sun, Mars, Jupiter, and Saturn. The outer circle was reserved for the stars, represented as the constellations
of the zodiac [44].
The map is intended as a metaphor. It illustrates a complex system, which is composed from several independent entities
that take part in a choreography (the planets orbit around the Earth).

UNIVERSITÄT DER BUNDESWEHR MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Service Oriented Security Architecture
applied to Spatial Data Infrastructures

Dipl. Ing. Cristian Aurel OPINCARU

Von der Fakultät für Informatik der Universität der Bundeswehr München zur Erlangung des

akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Peter Hertling

Universität der Bundeswehr München

1. Berichterstatter: Prof. Dr. Gunnar Teege

Universität der Bundeswehr München

2. Berichterstatter: Prof. Dr. Johann Schlichter

Technische Universität München

Datum des Kolloquiums: 11. Januar 2008

Abstract

Web services have been a major technology trend in the IT industry for almost a decade now.
They have been promoted as a means of reducing costs, increasing reuse, simplifying integration
and creating more agile infrastructures. For these reasons the industry has witnessed a pervasive
shift in the use of technology, as Web services and Service Oriented Architecture (SOA) replace
other methods and technologies used in design, development, deployment and integration, and
management services. In this context, security represents a special concern, because without a
solid foundation for security, the Web services stack would be next to useless.
In this dissertation the topic of security in the context of Web services is addressed and an archi-
tecture for security systems is proposed. The main idea behind this architecture is that security
functions such as authentication, authorization, audit, etc. are implemented externally to the ser-
vice provider, and not embedded in this one or implemented at the message middleware layer.
Furthermore, the different security functions are realized as independent services and designed ac-
cording to the principle of separation of concerns. This leads to a collection of security services
forming a security infrastructure: these services can be used to protect several service providers
within a network. Enterprise Application Integration (EAI) techniques are used for combining the
security services together and binding them to service providers through the definition of choreogra-
phies. Because of its service-oriented approach to security, the architecture is named the Service
Oriented Security Architecture or SOSA .
In the dissertation, the existing work in this direction is first evaluated. Then, the main compo-
nents, connectors and information elements of this architecture are specified by means of the ISO
Reference Model for Open Distributed Processing. Two prototype implementations are showed,
and practical experiences using these implementations to protect Web services serving geographical
content are described. The architecture is analyzed both from a design point of view as well as
from the point of view of the impact that it has on the performance of service providers. This work
closes with a conclusion and outlook.

Kurzfassung

Die Technologie der Web Services hat sich in den letzten Jahren als ein wichtiger Trend für die
IT Industrie entwickelt. Web Services werden besonders deswegen als wesentlich erachtet, weil
sie das Potential zur Reduzierung der Kosten, zur Erhöhung der Wiederverwendung haben und
zur Verweinfachung der Integration beizutragen und somit die Schaffung einer agileren verteilten
Infrastruktur ermöglichen. Aus diesem Grund findet ein Technologiewechsel zu Web Services und
Service Oriented Architecture (SOA) statt, der allerdings ein Umdenken bzgl. Design, Entwick-
lung und Verteilung der Dienste sowie deren Integration und Management erfordert. In diesem
Zusammenhang richtet sich besonderes Augemerk auf verschiedene Sicherheitsaspekte, die sich u.a.
durch die zugrunde liegende Service Oriented Architecture ergeben und ohne deren Umsetzung eine
Nutzung von Web Services undenkbar wäre.
Diese Dissertation stellt eine Sicherheitsarchitektur im Kontext von Web Services vor mit der die
Umsetzung von typischen Sicherheitsaspekten flexibel möglich ist. Die Kernidee der Architektur ist
es, dass Sicherheitsfunktionalitäten wie Authentifizierung, Autorisierung und Überwachung quasi
unabhängig von der eigentlichen Anwendung implementiert und betrieben werden. Insbesondere
sollen die Sicherheitsfunktionalitäten als autark verfügbare Web Services nach dem Prinzip der
Gewaltenteilung entwickelt und betrieben werden. Dies führt zu einer Infrastruktur von orchestri-
erten Sicherheitsdiensten, die es auf der Grundlage von Enterprise Application Integration (EAI)
erlauben, verschiedene - evtl. voneinander unabhängige - Anwendungen zu schützen. Wegen dieses
Vorgehens heißt die hier vorgestellte Architektur Service Oriented Security Architecture, oder kurz
SOSA .
Zuerst werden in dieser Dissertation die bereits existierenden Arbeiten in diesem Forschungsgebiet
untersucht und ausgewertet. Anschließend werden erforderliche Komponenten, Schnittstellen und
Informationselemente für SOSA gemäß dem ISO Reference Model for Open Distributed Processing
vorgestellt. Es werden zwei prototypische Implementierungen als Proof-Of-Concept für den Schutz
von geo-spezifischen Web Services vorgestellt und hierbei gewonnene Erfahrungen diskutiert. Ab-
schließend wird die vorgestellte Architektur vom Gesichtspunkt des Designs bewertet. Ebenso
wird analysiert, welche Auswirkungen die Performance auf die Nutzbarkeit der Architektur zum
Schutz von verteilten Anwendungen hat. Diese Arbeit schließt mit einer Zusammenfassung und
einem Ausblick, in dem auch auf die Auswirkungen für die aktuelle sowie weitergehende Forschung
eingegangen wird.

Foreword

Context

This dissertation has been carried out while I worked as a research associate at the Institute of
Information Systems within the Computer Science Department of the University of the German
Armed Forces in Munich. It is based on the knowledge and experience that I gained between 2003
and 2007 while being involved in various research and industry projects. The projects most relevant
to this dissertation are the following:

• The OGC Web Services, Phase 3 1 test bed (2005). I was involved in the GeoDRM thread,
where click-through licensing extensions for the WMS and WFS service interfaces were defined.

• Disclaimer-Enablement for the WMS service (2006) commissioned for the Bavarian Mapping
Agency. In this research project the results from OWS-3 were further developed.

• The OGC Web Services, Phase 4 2 test bed (2006). I was involved in the GeoDRM thread,
where different components and specifications for the licensing of content served via WMS and
WFS services were drafted.

Further experience and knowledge related to security topics I gained while working together with
the other members of the Open Geospatial Consortium. I was involved in the activities of the
GeoDRM WG and the Security WG and participated in the creation of several documents [149,
105, 79, 65, 68].
The involvement in all these geospatial-related activities offered me a good opportunity to exper-
iment with SOSA in real-life scenarios. The practical work of this dissertation is in the field of
geospatial Web services.

Acknowledgments

First of all I would like to thank Prof. Dr. Gunnar Teege for supervising my work, for giving me
the freedom in choosing my topic, for supporting me throughout the past four years, for always
being able to find funding for my research (I know this hasn’t been always easy) and for making me
learn the German language. Further thanks go to Prof. Dr. Johann Schlichter for proof-reading
this thesis. Next, I would like to thank all my colleagues at the university for good discussions,
in particular the people I shared the office with - Andreas Matheus (special thanks) and Frank
Eyermann.
Next I would like to thank the current members of the GeoDRM working group within the OGC.
I met extraordinary people here and during the almost three years that I’ve been involved in their

1http://www.opengeospatial.org/projects/initiatives/ows-3
2http://www.opengeospatial.org/projects/initiatives/ows-4

vii

http://www.opengeospatial.org/projects/initiatives/ows-3
http://www.opengeospatial.org/projects/initiatives/ows-4

activities I gained a lot of knowledge and had many fruitful discussions. It was fun and I hope I
will be able to remain in contact with this group in the future.
Further thanks go to the Round Table GIS for supporting my research and allowing me to par-
ticipate in research projects that provided me a good insight in the field of GIS and geospatial
information. I thank Prof. Dr. Matthäus Schilcher and Dr. Andreas Donaubauer. Further experi-
ence in the field of geospatial information I gained during my part-time work at Intergraph GmbH;
for this I want to thank my supervisor there, Mr. Lothar Urban.
I also thank the students that chose me as their supervisor for their diploma thesis or their student
assignments. Many parts of the SOS!e framework have been developed in this way. Special thanks
are addressed to: Andreas Hänel, Ole Pophal, Przemyslaw Stefaniak, Ofelia Tindea, Gabriela Ghe-
orghe and Sebastian Zimmer. Further thanks go to Lidia Gietler for her help with the OGC
performance testing.
Finally, I thank all my friends that supported me: those in Munich, those in Bucharest and those
scattered across the globe. The most special thanks and the deepest appreciation are addressed to
my family who has missed me for the past four years while I’ve been away from Bucharest.

Munich, August 2007

Contents

Foreword vii

Contents ix

1 Introduction 1
1.1 Motivation . 1

1.1.1 SOA with Web Services . 1
1.1.2 Security in the Context of SOA . 2
1.1.3 External Security. Service Oriented Security Architecture 2

1.2 Scope . 3
1.3 Outline . 3

2 Basic Concepts 5
2.1 Service Oriented Architecture . 5

2.1.1 SOA with Web Services . 6
2.1.2 Typical Interactions in a SOA . 6
2.1.3 Concepts and Definitions . 7
2.1.4 Standards and Technologies for SOA . 8
2.1.5 XML . 10
2.1.6 DTD and XML Schema . 10
2.1.7 Service Description: WSDL . 12
2.1.8 Messaging: SOAP and REST . 13
2.1.9 Discovery: UDDI . 16

2.2 Spatial Data Infrastructures . 17
2.2.1 Introduction . 17
2.2.2 Interoperability for Geospatial Information . 18
2.2.3 Standards in an SDI . 18
2.2.4 GML . 19
2.2.5 OGC Service Specifications . 22
2.2.6 WMS . 24
2.2.7 WFS . 24

2.3 Enterprise Services Bus . 25
2.3.1 Definitions . 25
2.3.2 Characteristics of an ESB . 26
2.3.3 Capabilities of an ESB . 28

ix

x CONTENTS

2.3.4 Enhancing Service Capabilities through Mediation 29
2.3.5 EAI Patterns in an ESB . 30
2.3.6 Infrastructure Services in an ESB . 33
2.3.7 Implementations . 33
2.3.8 Relation to this Dissertation . 33

2.4 Security in the Context Web Services . 34
2.4.1 The Security Stack . 34
2.4.2 Security Functions . 37
2.4.3 Annex Security Functions . 39

3 Security in a Web Services World 41
3.1 Architectural Evaluation of Security Systems . 41
3.2 Security Implementation for Web Services . 45

3.2.1 Analysis Overview . 48
3.3 External Security Approaches . 49

3.3.1 Perimeter Security . 49
3.3.2 Enforcement Points . 51
3.3.3 Security Services as SOAP Intermediaries . 51
3.3.4 Mixed Approaches . 51
3.3.5 Conclusions . 53

3.4 Problem Statement . 53
3.4.1 SOSA , SOS!e and the Rest of the Dissertation 54
3.4.2 Assumptions . 55

4 Service Oriented Security Architecture 57
4.1 Service Oriented Security . 57
4.2 Service Definition . 58

4.2.1 Interaction Types . 58
4.2.2 Aggregation Methods . 59

4.3 Communication between Security Services . 64
4.4 Illustrative Example . 64

4.4.1 Scenario . 65
4.4.2 Message Routing Solution . 65
4.4.3 Analogy to Real-Life Paper-Based Communication 66

5 Service Oriented Security Architecture - System Description 69
5.1 The Reference Model for Open Distributed Processing 69
5.2 The Enterprise Viewpoint . 71

5.2.1 System’s Environment . 71
5.2.2 System’s Role . 72
5.2.3 Functions . 73
5.2.4 Multiple Security Domains. Security Off-Shoring 73

5.3 The Computational Viewpoint . 75
5.3.1 Computational Object . 75
5.3.2 Security Services . 75
5.3.3 Service Interactions. Interaction Interfaces . 76

xi

5.3.4 Service Workflow . 77
5.3.5 Exceptions . 79
5.3.6 Service Taxonomy . 79
5.3.7 Granularity and Reusability . 92

5.4 The Information Viewpoint . 92
5.4.1 Messages . 94
5.4.2 Information Model for Annotations . 96
5.4.3 Information Model for Exceptions . 99
5.4.4 Information Model for Service Composition . 100

5.5 The Engineering Viewpoint . 102
5.5.1 Web Services Composition . 102
5.5.2 Service Chains . 103
5.5.3 Realization of Choreographies . 103
5.5.4 Transactions . 104
5.5.5 Exception Handling . 105
5.5.6 Service Clustering . 105
5.5.7 Patterns in SOSA . 106

5.6 The Technology Viewpoint . 118
5.6.1 Standards . 119
5.6.2 SOS!e 1.0 . 119
5.6.3 SOS!e 2.0 . 127

6 Practical Experiences with SOSA 133
6.1 Security for Geospatial Web Services . 133

6.1.1 Context . 133
6.1.2 Approach . 134
6.1.3 SOAP Communication . 134
6.1.4 Proxy Components . 134
6.1.5 The SOS!e Framework . 134

6.2 Click-through Licensing for OGC Web Services . 135
6.2.1 Context . 135
6.2.2 Problem Statement and Objectives . 135
6.2.3 Requirements Analysis . 136
6.2.4 Design and Implementation . 137

6.3 Biometric Authentication for OGC Web Services . 139
6.3.1 Context . 139
6.3.2 Problem Statement and Objectives . 140
6.3.3 Requirements Analysis . 140
6.3.4 Design and Implementation . 141

6.4 Cryptography for OGC Web Services . 145
6.4.1 Context . 145
6.4.2 Problem Statement and Objectives . 145
6.4.3 Requirements Analysis . 146
6.4.4 Design and Implementation . 147

6.5 Authentication and Licensing for WFS-T . 149

xii CONTENTS

6.5.1 Context . 149
6.5.2 Problem Statement and Objectives . 149
6.5.3 Requirements Analysis . 149
6.5.4 Design and Implementation . 151

6.6 Further Practical Experiences . 153
6.6.1 Kerberos Authentication Service . 153
6.6.2 Accounting and Charging with PayPal . 154

6.7 Conclusions . 156

7 Analysis and Evaluation 159
7.1 Architectural Evaluation . 159
7.2 Performance Evaluation . 162

7.2.1 Performance Parameters . 162
7.2.2 Performance Model for Web Services . 163
7.2.3 Performance Testing with a Lightweight Environment 165
7.2.4 Realization of the Environment . 166
7.2.5 Experimental Results . 168
7.2.6 Discussion . 173

8 Conclusions and Outlook 175
8.1 Conclusions . 175
8.2 Contributions to Information and Computer Science 176
8.3 Contribution to the World of Geospatial Information 176
8.4 Outlook for Future Research . 176

Bibliography 179

List of Figures 186

List of Tables 189

Listings 190

A SOAP Message Examples 193
A.1 Land Register Information System . 193

A.1.1 WFS GetFeature Request . 193
A.1.2 WFS GetFeature Response . 193

B UML Notation 197
B.1 UML Class Diagrams . 197
B.2 UML Sequence Diagrams . 199
B.3 UML Activity Diagram . 199

C Graphical Notations 201
C.1 Service Diagrams . 201
C.2 Message Patterns . 202
C.3 Information Model Diagrams . 202

xiii

D Testing Environment 203
D.1 Servers - Dell PowerEdge 750 . 203
D.2 Network Switch - Dell PowerConnect 2424 . 203
D.3 Software . 203

E Abbreviations 205

F Curriculum Vitae 207

Chapter 1

Introduction

This chapter frames the scope of this dissertation and provides motivation for its scope. In the
end, an outline of this work is presented.

1.1 Motivation

1.1.1 SOA with Web Services

Web services have been a major technology trend in the IT industry for almost a decade now.
Whether they are implemented based on the SOAP protocol stack or follow the REST paradigm,
Web services provide the ability to build distributed systems that are interoperable, although they
run on different hardware architectures, have been developed using different programming lan-
guages and they rely on different Application Programmable Interfaces (APIs). Furthermore, as
remarked in [93], Web services promise a future where applications can be created by combining
multiple services in a single workflow. This results in more flexible applications because services
can be added, removed or replaced from a workflow, either statically (in the development phase)
or dynamically (at run-time). Due to the standardization efforts of numerous organizations, most
notably W3C and OASIS, the vision of Service Oriented Architectures (SOAs) has become today
a reality.
Web services have been promoted as a means of reducing costs, increasing reuse, simplifying in-
tegration and creating more agile infrastructures. A Gartner investigation in the market of Web
services from 2005 [55] has showed that the IT professional services market involving well-defined
Web services is forecast to reach $261 billion by 2008 (up from an estimate of $3.8 billion in 2003).
According to the same source, this represents a pervasive shift in the use of technology rather than
an incremental market opportunity: Web services and SOA replace other methods and technologies
used in design, development, deployment and integration, and management services.
This shift in technology can be seen not only in the mainstream IT industry, but also in the re-
lated domains. In the field of geospatial1 information, the Open Geospatial Consortium2 (the most
important standardization organization in this domain) published its first service specification in
year 2000 - the Web Map Service (WMS). Over the past seven years, several other service specifi-

1According to [59] geospatial is more precise than geographic in many contexts, because geospatial information is often used in

ways that do not involve a graphic representation (such as maps) of the information.
2http://www.opengeospatial.org

1

http://www.opengeospatial.org

2 CHAPTER 1. INTRODUCTION

cations and data encoding formats have been approved by the OGC membership and adopted by
national agencies as implementation standards for spatial information distribution. A survey by
Skylab Mobilesystems Ltd. from 2006 [106] shows that 994 WMS services, hosting 339,254 layers
are publicly available.

1.1.2 Security in the Context of SOA

Quite naturally, everybody deploying applications over the Internet expect their Web services to
provide a solid foundation for security. As the author of ”Web Service Security” [71] points out it
should be obvious that the prospect of different companies communicating together, while powerful,
is fraught with security concerns. In fact, without a conceiving security model, the Web services
framework we’ve outlined would be next to useless.
Security is a key requirement in the success of any SOA project and although standards like SOAP
and WSDL have been in place for almost a decade, security is still a present topic. A survey of
the Gartner group from 2005 where 1,300 CIOs where interviewed [97] showed that in the top 10
technology priorities indicated by the CIOs, security occupied the first place.
In an attempt to make Web services a solid ground, OASIS has standardized a number of exten-
sions to SOAP messaging which address different security issues related to Web services. These
extensions are WS-Security [35], WS-Trust [40], WS-Federation [33], WS-SecureConversation [28]
and WS-Policy3. In addition to the SOAP extensions, other security specifications can be used in
combination with Web services - XACML [18] , SAML [22] or the newer Digital Signatures Services
[38] are some examples. These specifications are very useful and have been embraced by the indus-
try. However, they only deal with distinct aspects of security and no comprehensive architectural
guideline is provided by the standards organizations.
Similar to the mainstream IT industry, security is a present topic also in the geospatial information
field. Two working groups within the OGC address this issue (the GeoDRM WG and the Security
WG) and there have been numerous approaches both from the industry [105, 68, 149, 37] as well
as from the academia [107, 118, 152] to enhancing OGC service interfaces with security features.

1.1.3 External Security. Service Oriented Security Architecture

As opposed to the client-server model where a message is sent from the client directly to the server,
when using SOAP, a message travels from the requester to the ultimate receiver through zero
ore more intermediaries. These intermediaries can modify the message in whole or in part and
offer a very elegant way to implement additional functionality and to create value-added services.
In the context of security, we can imagine intermediary services implementing different security
functions (i.e. authentication, authorization, audit, etc). In this case the security system is no
longer implemented in the Web service itself, rather it is external to this one. As remarked in [92],
one can speak about security unaware services: the assumption is that any security data or security
process is provided outside the application.
This idea can be taken one step further, in that the security system can be architected as a collection
of Web services, each one implementing a different security function. These security services will
form a kind of infrastructure that can be reused throughout the network: when a new application
is deployed a security solution can be realized by putting together several security services and
configuring them to work together with the newly deployed application. Enterprise Application

3WS-Policy has been submitted for standardization at W3C

1.2. SCOPE 3

Integration (EAI) techniques are used for combining the security services together with the service
providers through the definition of orchestrations or choreographies. The approach has several
obvious advantages: it is simple, has a high degree of reusability and scalability, and easily allows
for extensions.
Further advantages of this solution constitute the fact that security services are independent from
one another and can be hosted in different physical locations. This opens the way for the outsourcing
of security management: certain security tasks can be delegated to trusted third-parties. This is
especially appealing in the context of geospatial Web services, where data providers often do not
have the necessary know-how available in the company to implement complex A4C4 solutions
required by online business models.

1.2 Scope

This dissertation addresses the issue of security in the context of Web services and proposes an
architecture for security systems where security is externalized and realized as a set of modular
security services: the Service Oriented Security Architecture or SOSA .
The following topics fall within the scope of this dissertation:

• An analysis of the possible approaches to implementing security systems;

• An investigation into existing approaches where external security is used;

• A detailed description of the proposed architecture from different perspectives using the ISO
RM-ODP specification, including a taxonomy of possible security services;

• The description of prototype implementations of the proposed architecture;

• Practical experiences with the prototype implementations in the field of security for geospatial
Web services;

• An evaluation of the proposed architecture, both from the design point of view as well as from
the point of view of the performance impact on the service provider.

1.3 Outline

The outline of the dissertation is graphically illustrated in figure 1.1. A brief description of the
contents of each chapter is presented below:

Chapter 2 Introduces the basic concepts required to understand this work.

Chapter 3 Defines metrics for evaluating software architectures and by this means, an analysis of
different approaches to implementing security systems is performed. Existing approaches to
externalize security are showed and the problem addressed in this dissertation is framed.

Chapter 4 Constitutes a preamble to chapter 5. Here, the main ideas behind the proposed archi-
tecture are presented, and some clarifications regarding design decisions are made.

Chapter 5 Contains a detailed description of the proposed architecture using the ISO RM-ODP
specification. This covers the scope and the functions of the security system, the most im-
portant information elements, the distribution of the components together with the required
infrastructure as well as implementation aspects.

4Authentication, Authorization, Audit, Accounting and Charging

4 CHAPTER 1. INTRODUCTION

Chapter 5: ISO RM-ODP System Description

Enterprise Computational EngineeringInformation Technology

Chapter 4: Service Oriented Security Architecture

Chapter 2: Basic Concepts

SOA SDI ESB

Security

Chapter 3: Security in a WS World

Security Approaches

External Security

Problem Statement

Main Idea Clarifications

P
ro

p
o

se
d

 A
rc

h
it

ec
tu

re

Chapter 6: Practical Work Chapter 7: Evaluation

Architectural Evaluation

Performance Evaluation

Click-Through Biometric Auth.

Cryptography Licensing

A
pp

en
dix

G
ra

ph
ica

l N
ota

tio
ns

A
bb

re
via

tio
ns

U
M

L N
o

ta
tio

n

Chapter 1: Introduction

Chapter 8: Conclusions & Outlook

Example

Viewpoints

Figure 1.1: Outline of the dissertation

Chapter 6 Shows how the proposed architecture has been applied in practice in several projects
where the topic of securing geospatial Web services was addressed.

Chapter 7 Evaluates the proposed architecture using the metrics defined in chapter 3. A detailed
performance evaluation is presented and the impact on the performance of service providers
are discussed.

Chapter 8 Concludes with the results of this work, enumerates the contributions this dissertation
brings to information and computer science as well as the world of geospatial information, and
provides an outlook for future research.

Chapter 2

Basic Concepts

This chapter introduces the relevant concepts and technologies necessary to understand this dis-
sertation. Four different topics are addressed: Service Oriented Architecture (SOA), Spatial Data
Infrastructures (SDI), Enterprise Services Bus (ESB) and security in the context of Web services.
Because they are presented in a brief manner, readers are advised to follow the provided references.

2.1 Service Oriented Architecture

The Reference Model for Service Oriented Architecture 1.0 [140] defines Service Oriented Archi-
tecture as a paradigm for organizing and utilizing distributed capabilities that may be under the
control of different ownership domains. Because it aims at being a reference model, and as such
independent of any specific standard, technology, implementation or other concrete details, the doc-
ument describes the concepts relative to SOA in terms of matching one’s needs with someone else’s
capabilities. The document notes that the following are the key concepts in the SOA paradigm:

Visibility Refers to the capacity of those with needs and those with capabilities to be able to see
each other. It refers to the process of matching the needs with the capabilities.

Interaction Refers to the activity of using a capability.

Real World Effect Refers to the outcome of an interaction. As such, the purpose of using a
capability is to realize one or more real world effects. This can be the return of information
or the change of state of the entities involved in the interaction.

Interestingly enough, the reference model also notes that the context of SOA should not be restricted
to Web services. There are various other implementation strategies by which services can be
made visible, support interaction and generate effects. In fact, the document also gives a SOA
example taken from the non-software world: an electricity utility. However, the most common
way of implementing a SOA are Web service-based architectures, and this is the only relevant
implementation of SOA in this dissertation.
A less abstract definition can be found in [93] where SOA is described as an environment where
software applications expose functionality via a service provider messaging interface. As such, other
software agents can act as service consumers by using the functionality exposed by the service
providers.

5

6 CHAPTER 2. BASIC CONCEPTS

Similar to the client-server model, in a SOA an entity can be both service consumer and service
provider, although in one interaction it acts as either consumer or provider. An example for this
is the classical airline ticket booking service: an application uses the booking system of several
airlines in order to find the cheapest ticket for a given trip - in this case the application acts as a
service consumer. At the same time the application provides a service to its customers (i.e. finding
and booking the cheapest airline ticket).
In the rest of this section I will first present the most important concepts that are related to service
oriented architecture and then briefly introduce the technologies and standards that are associated
with the SOA paradigm.

2.1.1 SOA with Web Services

What is a Service?

According to [140] a service is a mechanism to enable access to one or more capabilities, where
the access is provided using a prescribed interface and is exercised consistent with constraints and
policies as specified by the service description.
A service is accessed by means of a service interface and is usually opaque to the service con-
sumer (its internal implementation is not revealed). The consequence of executing a service is the
realization of a real world effect.

What is a Web service?

According to [49] a Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

Remarks

• This definition is very rigid because it also includes the communication protocols and the
service description language. The mentioned protocols (XML, SOAP, WSDL) are used in the
implementation of the security system (see technology viewpoint, section 5.6). However, the
security system could also be implemented using other messaging systems, and as such these
standards are not a requirement for the SOS concept.

• A definition which does not reference any specific protocols or standards is the one found in
the OGC Glossary of Terms ([59]): Web services are self-contained, self-describing, modular
applications that can be published, located, and invoked across the Web. Web services perform
functions that can be anything from simple requests to complicated business processes. Once
a Web service is deployed, other applications (and other Web services) can discover and invoke
the deployed service.

2.1.2 Typical Interactions in a SOA

Figure 2.11 shows the typical steps to engaging a Web service in a SOA:

1This figure is taken from [49]. For copyright information see http://www.w3.org/Consortium/Legal/2002/

copyright-documents-20021231.

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

2.1. SERVICE ORIENTED ARCHITECTURE 7

1. The requester and the provider become known to each other

2. The two entities agree on the description of the service and the semantics of the messages

3. The semantics and service description are realized by the software agents

4. The interaction takes place, thus the requester and the provider exchange messages

Figure 2.1: Interactions in a SOA

We therefore find that the most important components in a SOA are the following:

Discovery Is the process by which the service requester and service provider become known to each
other (it is actually enough if the requester knows the service provider). This can be realized
in various ways, from out-of-band non-automated processes - for example a user receives the
service description per email - to fully automated machine-to-machine interactions such as
UDDI.

Description Once the service provider is known, the requester and the provider need to agree
on the way the messages are exchanged (protocol, ports, etc.) as well as the contents of the
messages. One way to realize the service description is the Web Services Description Language
(see 2.1.7 for more details). Note that the two entities need to agree on both the syntax as
well as the semantics of the messages exchanged - WSDL only addresses the first one.

Messaging The most important component is the message exchange. This can be realized for
example by using SOAP together with a transport protocol such as HTTP (more about that
in 2.1.8). Note that there are different message interactions possible: most commonly, the two
way request-response interaction is used; however other exist: one-way, notify, etc.

2.1.3 Concepts and Definitions

Agent A software agent is a software program acting on behalf of a person or organization [49].

Choreography A choreography defines the sequence and conditions under which multiple coop-
erating independent agents exchange messages in order to perform a task to achieve a goal state
[49].

8 CHAPTER 2. BASIC CONCEPTS

Message A message is the basic unit of data sent from one Web service agent to another [49].

Message Exchange Pattern A message exchange pattern is a template, devoid of application
semantics, that describes a generic pattern for the exchange of messages between agents. It de-
scribes the relationships (e.g., temporal, casual, sequential, etc.) of multiple messages exchanged
in conformance with the pattern, as well as the normal and abnormal termination of any message
exchange conforming to the pattern [49]. MEPs are usually of small scale (whereas choreographies
are of larger scale.

Orchestration An orchestration defines the sequence and conditions in which one Web service
invokes other Web services in order to realize some useful function [49]. It can be differentiated
from a choreography which describes the interactions between several agents, without having one
orchestrator.

Policy A policy is a constraint on the behavior of agents or people or organizations [49]. The
constraints can take various forms from a specific protocol to be used when accessing the service
to providing identity information based on which access control is done. Most Web services (for
obvious reasons) usually have such constraints that need to be enforced. Enforcing and realizing
such policies is one of the main goals of this dissertation.

Service Intermediary A service intermediary is a Web service whose role is to transform messages
in a value-added way [...] specifically, we say that a service intermediary is a service whose outgoing
messages are equivalent to its incoming messages in some application-defined way [49]. Service
intermediaries are implemented in SOAP (see 2.1.8) and are an important concept in both ESB
and the realization of SOSA .

2.1.4 Standards and Technologies for SOA

As you can see in figure 2.2, SOA requires many interrelated technologies and standards.

XML, DTD, XML Schema, XML Encryption, XML Signature

D
es

cr
ip

tio
n

W
S

D
L

D
is

co
ve

ry

U
D

D
I

M
es

sa
gi

n
g

Transport

HTTP, SMTP, FTP, JMS, etc.

R
E

S
T

SOAP

SOAP Extensions

Security, Reliability,
Transactions, etc.

Base technologies

Figure 2.2: Technologies related to SOA

The foundation of Service Oriented Architecture are the technologies placed on the bottom of the
drawing. These are XML, DTD and XML Schema. They are standardized by W3C and are briefly

2.1. SERVICE ORIENTED ARCHITECTURE 9

introduced in sections 2.1.5 and 2.1.6.
Building on the base technologies you can see three columns representing the three important
components of a SOA: messaging, description and discovery. The latter two are introduced in
sections 2.1.7 and 2.1.9 respectively.
The messaging column cumulates both the content of the message as well as the delivery. As far as
the content of the message is concerned there are two major architectural approaches: REST and
SOAP; both of them are presented in section 2.1.8. For the delivery of messages, Web services use
already existing protocols such as HTTP or SMTP. The reason behind having so many choices for
transporting the message is that each of these protocols has its advantages and disadvantages which
make them suitable for particular scenarios. For example, HTTP is widely deployed and passes
through most firewalls, SMTP is asynchronous, IIOP can be used for integration with CORBA,
etc.
There is a maze of technologies and standards behind Web services, and because of the extensibility
of standards such as SOAP or WS-Security, new specifications are emerging every year. For this
reason, standards2 and standardization organizations are crucial. The most important organizations
that are involved in the standardization process for SOA related technologies are:

W3C The World Wide Web Consortium3 has standardized most core technologies such as XML,
XML Schema, XML Encryption, XML Signature as well as some messaging standards such
as SOAP and some SOAP extensions (addressing, choreography, etc.). WSDL (version 2.0) is
also in the process of standardization at W3C.

OASIS The Organization for the Advancement of Structured Information Standards4 has been in-
volved in several XML specifications: UDDI, ebXML, several security standards (WS-Security,
XACML, SAML) and several SOAP extensions (WS-Reliability, WS-ResourceFramework, etc.)

WS-I The Web Services Interoperability Organization5 has profiled several standards (SOAP,
WSDL) resulting in so called ”basic interoperability profiles” which aim at achieving full
interoperability across platforms, operating systems and programming languages.

Interoperability

ISO defines interoperability as the capability to communicate, execute programs, or transfer data
among various functional units in a manner that requires the user to have little or no knowledge
of the unique characteristics of those units [19].
The success of Web services and what made SOA possible is that interoperability is not based on
a standard programming interface but rather on a standard format for the messaging protocol.
This results in a loosely coupled design which allows systems to exchange messages regardless of
hardware platform, operating system or programming language.
Because of the loosely coupled design, in SOA components have few dependencies. This makes it
easy for parts of the system to be designed and implemented separately or to be integrated with
other already existing components. This design pattern is exploited very much by the security
system proposed in this dissertation.
At the same time interoperability also comes as a challenge when designing a security system to

2A funny quote about standards is: the good thing about standards is that there are plenty to choose from. This is particularly

relevant when dealing with SOA and the WS-* specifications.
3http://www.w3c.org
4http://www.oasis-open.org
5http://www.ws-i.org

10 CHAPTER 2. BASIC CONCEPTS

be deployed in a SOA, because the security layer should itself be interoperable and not hinder the
otherwise existing interoperability.

What Follows

The intention of the following few sections is to familiarize the reader with the most important
technologies and standards related to SOA. Each technology will be briefly introduced by answering
the following questions:

• What is it? (where appropriate, examples shall be provided)

• What is the relation with the other technologies?

• What are the features and weaknesses?

• What is the relation with this dissertation?

The reader is invited to follow the references for those technologies that are unfamiliar to him.

2.1.5 XML

The eXtensible Markup Language (XML) is a simple, very flexible, general-purpose markup
language supporting a wide variety of applications. It is based on SGML (ISO 8879) and is currently
a W3C recommendation. Much like HTML, XML was designed for describing data. However, as
opposed to HTML where the focus is on the representation of data, XML was designed to describe
the structure of data.
Some of the strengths of XML are: it is both human readable and machine readable, it has a
hierarchical structure which is suitable for most documents, it has a self-documenting format and
it is expressed as plain text which makes it platform-independent.
XML uses tags for structuring the data. The syntax in XML is defined by either Document Type
Definitions (DTD) or by XMLSchema, the latter one being much more powerful (see section 2.1.6
for details).
Probably one of the most important features if we think about XML in the context of Web services
is its extensibility capability and the fact that it allows several XML languages to be combined in
one document by means of namespaces. These features are use extensively by standards such as
SOAP and the WS-* specifications.
The implementation of the concepts described in this dissertation are based on SOAP and the
WS-* specifications. Because of that, messages and other information objects are encoded in XML.
This allows them to take advantage of all XML features (flexibility, extensibility, platform neutral-
ity, ability to combine vocabularies), while suffering at the same time from the XML weaknesses
(verbosity and redundancy which can lead to efficiency problems).

2.1.6 DTD and XML Schema

Both Document Type Definition (DTD) and XML Schema are schema languages for XML
which are used to specify one type of XML document. This is done in terms of constrains on
the structure and the contents of that document type. Through the use of document schemes,
independent groups of people can agree to use a common format for documents and then exchange
information. Because the document structure is defined, the exchanged information can be verified.
This is especially important when exchanging messages in a SOA, because the partners do not know

2.1. SERVICE ORIENTED ARCHITECTURE 11

each other in advance.
XML itself specifies basic syntax constrains. An XML document that conforms to the XML syntax
rules is called well-formed. If a schema is defined for that document type and the document
conforms to this particular schema, then the document is called valid.

Document Type Definitions

Document Type Definitions are defined in the XML specification itself [32] and come from the
ancestor of XML - SGML. They provide grammar for a class of documents. The grammar is defined
as a list of declarations where each declaration can be either one of: an element type declaration,
an attribute list declaration, an entity (type) declaration or an annotation declaration. However,
although they are included in the XML specification, DTDs have attracted a lot of criticism due to
their limitations: no support for namespaces, lack of expressiveness as well as the fact that DTD
are not themselves XML documents.

XML Schema

As opposed to DTDs, XML Schemas are XML documents themselves. Because of this, they
enjoy all design advantages of XML (for example they can be validated in the exact same way an
XML document is validated).
XML Schema is a W3C recommendation [17] and is the schema language of choice for many of the
structured information standards that involve SOA. The main reason for that is the fact that XML
Schema allows the specification of data types (such as integer, string, etc.) together with finer-
grained constraints on element contents (as fine-grained as for example specifying the minimum as
well as the maximum value of an integer field). Furthermore, XML schema also supports namespaces
which allow several XML vocabularies to be combined into one document, as well as an object-
oriented inheritance model for element definition through its extensibility mechanism.
Listing 2.1 exemplifies the basic features of XML Schema by showing the definition of a SOAP
message which is structured in header and body.� �

1 <xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

2 xmlns : tns=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”

3 targetNamespace=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /” >

4

5 < !−− Envelope , header and body −−>

6 <xs : e l ement name=”Envelope” type=” tns :Enve lope ” />

7 <xs:complexType name=”Envelope” >

8 <xs : s equence>

9 <xs : e l ement r e f=” tns :Header ” minOccurs=”0” />

10 <xs : e l ement r e f=” tns:Body” minOccurs=”1” />

11

12 <xs :any namespace=”##other ” minOccurs=”0”

13 maxOccurs=”unbounded” processContents=” lax ” />

14 </ xs : s equence>

15 <xs :anyAtt r ibute namespace=”##other ” processContents=” lax ” />

16 </xs:complexType>� �
Listing 2.1: Part of the XML schema definition for SOAP messages

Because the concepts described in this dissertation are implemented in XML, the information ele-
ments are described using XML Schema. In addition, schema definitions help preventing security
attacks aimed toward the application and its XML parser where the an attacker purposely sends
messages with incorrect structure in order to speculate bugs. For this, an XML Validation service

12 CHAPTER 2. BASIC CONCEPTS

is proposed.
Note that other alternatives to XML schemes exist (RELAX NG - ISO standard, Document Struc-
ture Descriptions). However because most of the standards and technologies used in this dissertation
are using DTDs and XML Schema for describing information elements they are not presented here.

2.1.7 Service Description: WSDL

Web Services Description Language (WSDL) is an XML language used to describe Web
services end points. The current version of this standard is 2.0 [39], which has recently been
approved. However, in this dissertation the previous version is used, WSDL 1.1 [158]. This has
been the de facto service description language for the past six years, and it has support implemented
in most products. It is also the version endorsed by the WS-I Basic Profile 1.1 ([31] - the current
one at the time of writing).
A WSDL document contains the information about how to communicate with a Web service.
Specifically, it contains the following information:

• A description of the content of the messages (using XML Schema);

• The operations that the Web service supports;

• The supported transport protocol bindings (how the Web service can be accessed).

To illustrate this, I present in listing 2.2 the WSDL definition for a Web Map Service as described
in [66]. Two operations are defined: GetCapabilities and GetMap - the first one returns an XML
document, while the latter one returns an image. For both operations the messages are encoded as
literal (no restrictions are set on the content of the request messages).

� �
1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <w sd l : d e f i n i t i o n s

3 <!−− Namespace d e f i n i t i o n s are omit ted −−>

4 <wsd l :b ind ing

5 name=”WMS SOAP Binding” type=”wms−req:WMS XML Port”>

6 <soap :b ind ing s t y l e=”document”

7 t ranspo r t=” ht tp : // schemas . xmlsoap . org / soap/http ”/>

8 <wsd l : ope ra t i on name=” GetCapab i l i t i e s ”>

9 <s oap : ope ra t i on />

10 <wsd l : i nput>

11 <soap:body use=” l i t e r a l ”/>

12 </ wsd l : i nput>

13 <wsdl :output>

14 <soap:body use=” l i t e r a l ”/>

15 </ wsdl :output>

16 <wsd l : f a u l t name=” except ion ”>

17 <s o a p : f a u l t name=” except ion ” use=” l i t e r a l ”/>

18 </ w sd l : f a u l t>

19 </ wsd l : ope ra t i on>

20 <wsd l : ope ra t i on name=”GetMap”>

21 <s oap : ope ra t i on />

22 <wsd l : i nput>

23 <soap:body use=” l i t e r a l ”/>

24 </ wsd l : i nput>

25 <wsdl :output>

26 <mime:content type=”image/∗”/>

27 </ wsdl :output>

28 <wsd l : f a u l t name=” except ion ”>

29 <s o a p : f a u l t name=” except ion ” use=” l i t e r a l ”/>

2.1. SERVICE ORIENTED ARCHITECTURE 13

30 </ w sd l : f a u l t>

31 </ wsd l : ope ra t i on>

32 </ wsd l :b ind ing>

33 </ w s d l : d e f i n i t i o n s>� �
Listing 2.2: WSDL definition for a WMS service

One of the important features that WSDL brings is the ability for a client to interact with a service
without requiring custom software development or configuration. This is possible because of the
standardized machine-readable service description language. In most cases, tools can automatically
generate most of the code required for the client implementation, allowing the programmer to
concentrate on the application logic.
Furthermore, a number of specifications such as WS-Addressing [151] and WS-PolicyAttachments
[34] define bindings for WSDL. In this way, it is possible, for example, to specify the security
policy for a Web service (i.e. how should the client authenticate, what parts of the message
should be encrypted, etc.) using WS-SecurityPolicy [29] and attach this policy by means of WS-
PolicyAttachments to a WSDL interface description. Like this, service requesters will know a priori
what security tokens to include in a service request. It is even possible to have the security logic
on the client side (at least partially) automatically generated by tools.
The theoretical concepts described in this dissertation are implemented using SOAP and the security
services as well as the protected services are described using WSDL. The standardization of Web
services description allows the realization of a flexible security framework where security services
can be changed without affecting an already deployed system. Furthermore the use of WSDL tools
such as WSDL2Java [42] has lowered the implementation effort.

2.1.8 Messaging: SOAP and REST

Messaging represents the core component of SOA. While other interactions (description, discovery)
can take place out-of-band, interoperability at the messaging layer is critical.

SOAP

The Simple Object Access Protocol (SOAP) [88] is a W3C recommendation since 2003 (version
1.2). It describes a protocol for exchanging XML messages over a network. SOAP represents the
foundation for the Web services stack, and as such it defines a basic messaging framework on which
the upper layers (less abstract specifications) can build on. A message, as defined by SOAP, is
structured in two parts:

Header This part is designed for holding control information; it contains a number of header
blocks. The blocks can be used for different functions (for example the WS-* specifications
leverage this feature to enhance messaging with reliability, security, etc). Furthermore, the
blocks can be processed by independent nodes: each block has a target actor / role6 as desti-
nation.

Body This is where the application payload is stored. This section can hold any number of blocks;
it is also possible to have no payload.

6In SOAP 1.1 terminology - actor, in SOAP 1.2 terminology - role

14 CHAPTER 2. BASIC CONCEPTS

S
O

A
P

 E
nv

el
op

e

Header

Block #1

Block #2

……………………………………

Body / Payload

Block #1

Block #2

……………………………………

Attachment #2

Attachment #1

……………………………………

Figure 2.3: The structure of a SOAP message

Application Payload Applications are responsible for the content of the message body. For this,
SOAP was designed to support two operational models:

RPC Remote Procedure Call, as the name sounds, is suitable for scenarios where the applications
are more tightly coupled. In this mode, the function interfaces, together with parameters and
return values are exposed by the Web service.

Document In the document model, the content of the payload is left up to the applications to
define. No constraints are made on the structure of the body blocks. This model fits better
more loosely-coupled scenarios.

Independent of the selected mode, two encodings are defined:

Literal In this case, the XML InfoSet is serialized and sent to the transport protocol; no informa-
tion about the encoding is present in the message; only the sender and the ultimate receiver
are able to interpret the content

Encoded In this case, a specific encoding is used for the payload; information about the encoding
is explicitly present in the message.

According to [53], document/literal and rpc/encoded are the two frequently used styles. OGC Web
services normally define document/literal bindings.

The SOAP Processing Model As opposed to the client - server model where a message is sent by
the client directly to the server, when using SOAP, a message travels from the service requester
to the ultimate receiver through zero or more intermediaries (see figure 2.4). The intermediaries
can process the message in whole or in part (they can only modify some header blocks or they can
replace the message with a totally new one).
This processing model is described in the SOAP specification itself [88]. The concept is leveraged
by both ESB as well as SOSA .

2.1. SERVICE ORIENTED ARCHITECTURE 15

Ultimate ReceiverSender

Intermediary Intermediary

...

Figure 2.4: The SOAP distributed processing model

SOAP Attachments As seen in figure 2.3, besides the header and the body, a SOAP envelope can
contain zero or more attachments. This makes is possible for applications to exchange messages
with binary content without serializing the binary content as XML (and thus wasting performance
due to parsing overhead). For this, a Multipart-MIME encoding is used and each of the attachments
will be accordingly encoded. The SOAP message then references these attachments. The exact
encoding is specified in [23], [30] and [150].
The OGC WMS specification recommends that returned images be sent as SOAP attachments.
SOS!e (the prototype implementation of SOSA) was also deployed and tested for such a service;
see chapter 6 where the practical experiences are described.

Transport Protocol One of the main design considerations for SOAP was the ability to transport the
messages by a multitude of transport protocols. One of the frequently used transport protocols is
HTTP, because of its simplicity and wide deployment due to the Internet. This is also the binding
included in the SOAP specification [89]. Listings 2.3 and 2.4 show a WFS DescribeFeatureType

request and the corresponding response; the two communicate via HTTP.� �
1 POST / ax i s / s e r v i c e s /ManhattanDataProxy HTTP/1 .0

2 Content−Type: t ex t /xml ; cha r s e t=utf−8

3 Accept : app l i c a t i on / soap+xml , app l i c a t i o n /dime , mul t ipar t / r e l a t ed , t ex t /∗
4 User−Agent: Axis /1 .4

5 Host : i i sdemo . in fo rmat ik . unibw−muenchen . de :80

6 Cache−Cont ro l : no−cache

7 Pragma: no−cache

8 SOAPAction: ””

9 Content−Length: 4155

10

11 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

12 <SOAP−ENV:Envelope

13 xmlns:SOAP−ENV=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

14 <SOAP−ENV:Header>

15 < !−− Header content s i s omit ted f o r c l a r i t y −−>

16 </SOAP−ENV:Header>

17 <SOAP−ENV:Body>

18 <ns1 :Descr ibeFeatureType xs i : s chemaLocat ion=” . . . ”

19 outputFormat=”XMLSCHEMA” s e r v i c e=”WFS” version=” 1 . 0 . 0 ”

20 xmlns:ns1=” ht tp : //www. openg i s . net /wfs ”

21 xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”>

22 </ ns1 :Descr ibeFeatureType>

23 </SOAP−ENV:Body>

24 </SOAP−ENV:Envelope>� �
Listing 2.3: SOAP-over-HTTP request

16 CHAPTER 2. BASIC CONCEPTS

� �
1 HTTP/1 .1 200 OK

2 Se r v e r : Apache−Coyote /1 .1

3 connec t i on : c l o s e

4 da t e : Fri , 26 Jan 2007 19 : 3 9 : 4 6 GMT

5 s e r v e r : Apache−Coyote /1 .1

6 Content−Type: t ex t /xml ; cha r s e t=utf−8

7 Connect ion: c l o s e

8

9 <?xml version=” 1 .0 ” encoding=”utf−8”?>

10 <soapenv:Envelope

11 <!−− Namespace d e c l a r a t i on s are omitted f o r c l a r i t y −−>

12 <soapenv:Body>

13 <xs:schema version=” 1 .0 ”

14 attr ibuteFormDefau l t=” unqua l i f i e d ”

15 elementFormDefault=” q u a l i f i e d ”

16 targetNamespace=” ht tp : //www. census . gov”>

17 < !−− Rest o f SOAP message i s omit ted f o r c l a r i t y −−>

18 </ soapenv:Body>

19 </ soapenv:Envelope>� �
Listing 2.4: SOAP-over-HTTP response

Other protocols can also be used for transporting SOAP messages. Examples are: SOAP-over-
SMTP, SOAP-over-JMS, etc. The implementation of SOSA uses SOAP-over-HTTP, mainly be-
cause the current implementations for OGC services use SOAP-over-HTTP.

REST

SOAP has come to criticism due to its complexity. Another architectural style has been proposed
that better leverages the architecture of the web today (which is based on HTTP): Representation
State Transfer (REST). The model is described in depth by Roy Fielding in his dissertation [73].
In REST software agents use URIs to invoke Web services and manipulate resources. This is easily
implementable using the methods provided by the HTTP protocol: GET, POST, PUT, DELETE.
For example, to search for books on eBay, one would execute a GET for the following URL ([67]):� �

1 http :// r e s t . ap i . ebay . com/ r e s t a p i ?CallName=GetSearchResults&Query=book� �
Listing 2.5: eBay REST API example

The debate whether to SOAP or to REST has been analyzed by many (including [49], [43]).
Furthermore, according to [49], the two architectural approaches are not irreconcilable, as SOAP
1.2 can be used in a manner consistent with REST.
OGC Web services use primarily the REST approach, mainly because SOAP was not around when
the first OGC services were defined. However, new OGC service specifications also define SOAP
bindings (for example WFS 1.1 - [154]).
SOSA uses the SOAP model, because it is reacher in features and more standardized. Some SOSA

principles could also be applied to RESTful Web services (such as the principle of separation of
concerns). However, because intermediaries are not explicitly defined in the REST model, and
because REST is more appropriate for light-weight services, I consider a SOSA implementation
for REST unfeasible.

2.1.9 Discovery: UDDI

Before a service can be invoked, the requester and the provider need to have knowledge of each
other. This process is called discovery and refers to obtaining the information necessary to invoke a

2.2. SPATIAL DATA INFRASTRUCTURES 17

service, including service endpoint, interface and protocol information. It is worth stating that the
discovery phase can either take place automatically, using a communication / brokering protocol
or by an out-of-band process.
The Universal Description, Discovery and Integration (UDDI) specification falls in the
first category, proposing a machine-to-machine discovery protocol. It is an XML-based, platform-
independent registry service for businesses. Industries and companies publish their services in the
registry so that clients can then find them by means of queries. UDDI, encapsulates the functionality
of the following 3 types of registries:

White Pages Listing of name, address and contact information;

Yellow Pages Listing of services indexed by service type (usually based on standardized tax-
onomies);

Green Pages Technical information about the services exposed by each business.

The UDDI specifications describe both a data model as well as a SOAP interface for managing
registry entries (publish, modify, delete) and for querying the registry for information.
Both UDDI Version 2 ([10]) and UDDI Version 3 are standards from OASIS. The latest UDDI
version is 3.0.2 ([15]) which is currently a committee draft.
Service discovery and UDDI are not directly used in this dissertation. Rather, it is assumed that
the service requester and the service provider are known to each other in advance (the discovery
phase has happened out-of-band). However, since the aim of this dissertation is to create a flexible
security framework based on SOA, we can envisage that security services may be published in an
enterprise UDDI registry. In this way, requesters could discover and integrate security services
without having prior knowledge of these services. For more about this, see section 8.4 where future
work is described.

2.2 Spatial Data Infrastructures

In this section I’m introducing the basic concepts about Spatial Data Infrastructures. The purpose
of this introduction is to familiarize the reader with the standards and technologies related to
geospatial Web services. In chapter 6 I will show how SOSA was applied to geospatial Web
services in several projects.

2.2.1 Introduction

According to the SDI Cookbook [113] from GSDI the term Spatial Data Infrastructure (SDI)
is often used to denote the relevant base collection of technologies, policies and institutional ar-
rangements that facilitate the availability of and access to spatial data. The SDI provides a basis
for spatial data discovery, evaluation, and application for users and providers within all levels of
government, the commercial sector, the non-profit sector, academia and by citizens in general. The
cookbook continues by stating that an SDI hosts geographic data, attributes, metadata, means to
discover, visualize and evaluate the data, as well as some method to provide access to the geographic
data.
Today’s SDI implementations provide data as well as access to data by means of services (which
are discoverable). Besides data delivery services, SDIs also implement a growing number of spa-
tial analysis and processing services. From an architectural point of view, SDI implementations

18 CHAPTER 2. BASIC CONCEPTS

follow a lot of the SOA principles. Actually, from a service-oriented point of view, an SDI is a
service-based infrastructure where the exchanged data is spatial (geographical) information and the
provided services are relevant to the information exchanged. As in the case of SOA, services are
loosely-coupled and the publish-find-bind paradigm is followed. SDI implementations are usually
deployed using the same technologies as the ones used in SOA.

2.2.2 Interoperability for Geospatial Information

The importance of interoperability when coming to using distributed, heterogeneous geospatial in-
formation was highlighted in may publications, including [112, 113, 64, 107]. As in the case of SOA,
a successful SDI is based on standards for both data as well as service specifications. The main
standardization organization active in the geospatial domain is the Open Geospatial Consortium
(OGC), formerly known as OpenGIS Consortium7.
As stated on their website OGC is a non-profit, international, voluntary consensus standards orga-
nization that is leading the development of standards for geospatial and location based services. Its
mission is to serve as a global collaboration forum for users and developers of spatial data products
and to advance the development of standards for geospatial interoperability.
OGC standards follow a set of guidelines that are collectively called The Abstract Specification.
The documents are named Topics, and are intended to provide conceptual foundation for the im-
plementation specifications. The topics cover issues such as geospatial features, imagery, metadata,
service architecture and semantics.
As mentioned earlier the geospatial community is just a branch of the general IT community. Be-
cause of that, the OGC specifications rely on a couple of foundation standards which are defined
by other organizations. [112] enumerates 9 of them which are listed in table 2.1. The first four
are important SOA technologies, and have already been presented in 2.1. As for the rest of them,
JPEG2000 and TIFF are well-known standards for image encoding (GeoTIFF extends TIFF allow-
ing the image to be geo-referenced), the EPSG Geodetic Parameter Dataset is a categorization of
coordinate reference systems and Z39.50 is a protocol used for searching and retrieving information
from remote computer databases.

XML, Version 1.1 (W3C)

XML Schema, Version 1.0 (W3C)

Simple Object Access Protocol (SOAP), Version 1.2 (W3C)

Web Services Description Language (WSDL), Version 1.1 (W3C)

Geodetic Parameter Dataset, Version 6.9 (OGP, formerly EPSG)

Geographic Tagged Image File Format (GeoTIFF), Version 1.0

JPEG 2000 (ISO/IEC)

Information Retrieval Z39.50 (ISO)

Table 2.1: Foundation standards for OGC specifications

2.2.3 Standards in an SDI

[112] proposes the definition of a set of compatible standards that would represent an evolution
cycle similar to the mobile communications community. As such, the paper considers the following
standards to be included on the SDI 1.0 list:

7http://www.opengeospatial.org

2.2. SPATIAL DATA INFRASTRUCTURES 19

OGC Web Map Service (WMS) Produces map images of spatially referenced data from geo-
graphic information (further described in 2.2.6) [63];

OGC Web Feature Service (WFS) Delivers geographical objects (vector-based geometries to-
gether with attributes) in the form of GML documents (further described in 2.2.7) [154]; the
interface can also be used to update the database behind the service by inserting / modifying
/ deleting geographical information;

OGC Web Coverage Service (WCS) Supports the networked interchange of geospatial data
as ”coverages” containing values or properties of geographic locations (from the specification
[153]); it is similar to the Web Map Service interface, but instead of presenting the client
with an already rendered picture, it returns the raw information allowing the client to further
process this information before rendering;

OGC Catalog Services for the Web (CSW) Defines an interface to discover and query meta-
data about resources (data, services or other relevant resources);

OGC Filter Encoding Specification Defines an XML grammar for expressing geospatial queries.
It is used by other specifications (WFS, CS-W);

OGC Geography Markup Language (GML) Defines an abstract model for expressing geo-
graphical features together with an XML-based language (further described in 2.2.4);

FGDC Content Standard for Digital Geospatial Metadata A standard from the U.S. Fed-
eral Geographic Data Committee describing an abstract model for content, relationships, obli-
gations and repeatability of properties describing geospatial information.

Besides these standards there are many other, some of them are not as widely deployed the ones
above (the Web Coordinate Transformation Service [153] is one such example), while others are
currently being developed - this is the case of the Sensor Web Enablement activity that currently
takes place within the OGC. Abstract Topic 12 [114] presents a taxonomy for geographic services
which contains a couple of dozens of services divided in 9 categories.
Furthermore, there are also numerous activities coming from the industry where geospatial Web
services are being deployed and the interfaces are made public for the community to take advantage
of. This is currently the case for Google Maps [87], Google Earth [86] or Microsoft VirtualEarth
[109]. Another similar initiative comes from the GIS market leader ESRI: ArcWeb Services [70].
All these industry activities are based on SOA technologies as described in 2.1.
In this dissertation we show how the SOS concept can be applied to only two service interfaces:
WMS and WFS. The two are of relevance to this dissertation because they have the widest deploy-
ment8 and because they represent two different classes of services: WMS serves bitmap images,
while WFS serves vector graphics expressed in an XML language. SOSA can be applied in a
similar fashion to all other service interfaces.

2.2.4 GML

The Geography Markup Language (GML) is an OGC standard for encoding geographic features
in XML developed by OGC ([104]). This allows applications to encode geographic information in
a compatible manner and thus to interoperability exchange such information. There are currently
three major versions of this standard:

8Considering only the OGC Specifications.

20 CHAPTER 2. BASIC CONCEPTS

Version 1 This was the first version of GML; it was defined using DTD. It is rarely used in present.

Version 2 This was the first GML version to use XML Schema. The specification [84] is relatively
simple, and it is widely deployed today. [112] recommends this version to be on the SDI 1.0
list of standards.

Version 3 This version introduces a lot of new features, but it also makes the specification quite
complex9. The last version of GML 3 is expected to become an ISO standard (19136).

GML defines an abstract model which is specified by means of XML Schema. This model consists
of primitive object types such as feature, geometry, coordinate reference system, time, etc. In order
to use GML, applications need to define a so called application schema which defines the concrete
objects that are to be encoded using GML. In GML language, these are called features. For example
an aviation application would define features such as runway, taxiway, heliport, radar station, etc.
The application schema (also defined as XML Schema) references the base GML types, but this
schema is customized for the application - it defines for each feature type the exact attributes as
well as the associated geometry. It is important to note that GML defines the syntax but not the
semantics.

Features In GML features are the representation of a physical object. They can have zero or more
attributes and zero or more geometries. To continue our example, a runway can be described as
polygon and have several attributes describing technical aspects such as the types of plane that are
able to land on it or the date of the next scheduled repair.

Geometries The types of geometries supported by GML vary depending on the GML version.
Version 2 supports point, line string and polygon. GML 3 introduces more complex geometries
such as curves. The coordinates of the points forming the geometries are defined relative to a
coordinate reference system which needs to be explicitly specified. For this purpose GML uses the
EPSG Geodetic Parameter Dataset (see table 2.1).

GML Profiles These are restrictions of the GML specifications (defined as either schema or as text
document) and were introduced in GML 3, in part because of the complexity of this specification.
They are intended to simplify the specification for those applications that do not need complicated
features. Several profiles exist: Point Profile (only defines point geometry), Simple Features Profile,
GML in JPEG2000 (for georeferencing JPEG2000 imagery), GML profile for GeoRSS (for including
geographical references in RSS feeds).

GML Usage GML serves as an encoding format for exchanging geographical information and as
such numerous GIS applications currently support it. Some of the profiles are also used in applica-
tions not related to the GIS world - for example the GML profile of GeoRSS or the Point Profile.
However, here GML presents interest because it is the data encoding format for the Web Feature
Service. The data returned by this service is GML. Furthermore when new objects are inserted or
when existing objects are modified, the input data is expected to be GML encoded.

9The GML 3.1.0 specification document [85] has 601 pages.

2.2. SPATIAL DATA INFRASTRUCTURES 21

Examples In order to give the reader a feeling of GML, an example taken from the GML 2.1.2
specification [84] is provided. Listing 2.6 shows fragments of a GML application schema. It contains
the definition of a GML feature called Dean, having several attributes, one of them being its location
described by a point. Listing 2.7 shows a document conforming to the schema (in GML terminology
a GML document instance).� �

1 <element name=”Dean” type=”ex:DeanType” subst i tut ionGroup=” gml : Feature ”/>

2

3 <complexType name=”DeanType”>

4 <complexContent>

5 <extens i on base=”gml:AbstractFeatureType ”>

6 <sequence>

7 <element name=”familyName” type=” s t r i n g ”/>

8 <element name=”age” type=” i n t e g e r ”/>

9 <element name=”nickName” type=” s t r i n g ” minOccurs=”0”

10 maxOccurs=”unbounded”/>

11 <element r e f=” gm l : l o c a t i on ”/>

12 </ sequence>

13 </ extens i on>

14 </complexContent>

15 </complexType>� �
Listing 2.6: GML application schema example

� �
1 <Dean>

2 <familyName>Smith</familyName>

3 <age>42</age>

4 <nickName>Smithy</nickName>

5 <nickName>Bonehead</nickName>

6 <gm l : l o c a t i on>

7 <gml:Point>

8 <gml:coord>

9 <gml:X>1 .0</gml:X>

10 <gml:Y>1 .0</gml:Y>

11 </ gml:coord>

12 </ gml:Point>

13 <gm l : l o c a t i on>

14 </Dean>� �
Listing 2.7: GML document instance example

Relation to this Dissertation

This dissertation shows how the SOS concept can be applied to SDI. Chapter 6 shows how WMS
and WFS services can be enhanced with security functions. Because the WFS specification uses
GML as encoding format, the SOS concept and the implementation should accommodate the
specific requirements of GML.
One of the unique aspects of designing security systems for SDI services, is the geographical aspect
of the data. This has implications particularly on the authorization process, where data should be
restricted for specific geographical areas. This has been investigated in [107] and the results have
been further developed in this dissertation.
Other challenges include the GML encoding, and the fact that little has been done to secure it. In
chapter 6, I will show how GML can be combined with XML Signature [159] and XML Encryption
[160] to accommodate a land register information system scenario.

22 CHAPTER 2. BASIC CONCEPTS

2.2.5 OGC Service Specifications

All OGC service interfaces follow the same design principles defined in the OGC Web Services
Common specification [115]. This document specifies aspects that are, or should be, common to
all or multiple OWS interface Implementation Specifications, particularly the contents of operation
requests and responses, the parameters included in the requests and the format of the correspond-
ing responses. Additionally, two different encodings are defined for parameters: XML and KVP10.
Other common aspects of OGC services are defined in the Abstract Specification, Topic 12 [114].
Because some of the OGC services were defined before most SOA technologies became popular,
these services currently do not adhere to the SOAP / WSDL / UDDI technologies. For messag-
ing the OGC services mainly use the REST paradigm (as presented in section 2.1.8), for service
description they use an own mechanism (capabilities documents) and for service discovery an own
registry service is defined (the catalog service). The OGC currently invests effort into correlating
its specifications with the mainstream IT technologies.
The general message exchange pattern for an OGC service is depicted in figure 2.5. Before interact-
ing with the service, a client will first make a getCapabilities request. The response to this service
call is an XML document containing the service metadata. By parsing this information the client
will be able to make valid requests to the service. The interaction continues with service specific
requests (for example map requests).

sd General Client Serv ice Interaction

Client

OGC Service

GetCapabilities(Service, AcceptedVersions, AcceptedFormats)

Capabi lities.xml()

Request()

Response()

Figure 2.5: General message exchange pattern for OGC services

Capabilities Documents As opposed to WSDL documents that only contain information referring
to the service, OGC capabilities documents also contain information describing the data served by
the service. A typical Capabilities document will contain metadata describing the service (admin-
istrator, etc.), metadata describing the operations as well as metadata describing the geographic
data offered by the service.

Bindings [115] defines recommended encodings for requests using HTTP GET and HTTP POST.
Most service specifications usually define these bindings, but some of them also define other bindings

10Key-Value-Pair

2.2. SPATIAL DATA INFRASTRUCTURES 23

in addition to those. For example the WFS 1.1 specification defines a SOAP binding and the CS-W
2.0 specification defines a Z39.50 binding.

HTTP GET Binding

The HTTP GET binding follows the REST paradigm where requests are expressed as URLs. The
parameters are encoded as Key-Value-Pair and the request is transmitted as an HTTP GET request.
The response is the HTTP message response. A request example is provided in listing 2.8, where
a GetCapabilities request is executed for a WCS service.� �

1 http :// hostname : port /path?SERVICE=WCS&REQUEST=GetCapab i l i t i e s&

2 ACCEPTVERSIONS=1.0 .0 ,0 .8 .3&SECTIONS=Contents&

3 UPDATESEQUENCE=XYZ123&ACCEPTFORMATS=text /xml� �
Listing 2.8: HTTP GET example

HTTP POST Binding

The HTTP POST binding was developed because of the shortcomings of the GET binding, namely
the fact that URL length are limited (not by the HTTP specification itself [130], but by the current
implementations [50]). This makes it impractical to have parameters with large data values URL-
encoded. For this, an XML encoding is defined for the request. This XML message is then sent via
HTTP POST to the service. The response is the HTTP message response. This binding is very
similar to SOAP-over-HTTP, the only difference being how the request is encoded.
A request example is showed in listing 2.9. Here a client requests the schema definition for feature
types TreesA 1M and RoadL 1M from a WFS.� �

1 <?xml version=” 1 .0 ” ?>

2 <DescribeFeatureType version=” 1 . 1 . 0 ” s e r v i c e=”WFS”>

3 <TypeName>ns01:TreesA 1M</TypeName>

4 <TypeName>ns02:RoadL 1M</TypeName>

5 </DescribeFeatureType>� �
Listing 2.9: HTTP POST request example

SOAP Binding

The SOAP binding is not currently defined in [115]. However some of the newer specification define
it (for example WFS 1.1). Furthermore, there are other documents motivating why this binding
should be introduced and describing how it shall be realized ([66, 79, 141]).
[141] investigates the possibilities and recommends that the SOAP bindings for all OGC service
follow the document/literal encoding style. For this, the body of the message shall contain the
XML POST encoding for the request. The response will be transmitted as SOAP message and,
depending on the content type, it will be either placed in the body section (if XML) or as attach-
ment (if it is an image or other media type). Listing 2.10 shows the same request as in the previous
section, encoded as SOAP message.

� �
1 <?xml version=” 1 .0 ” ?>

2 <soap:Envelope xmlns:soap=” . . . ”>

3 <soap:Header>

4

5 </ soap:Header>

24 CHAPTER 2. BASIC CONCEPTS

6 <soap:Body>

7 <DescribeFeatureType version=” 1 . 1 . 0 ” s e r v i c e=”WFS”>

8 <TypeName>ns01:TreesA 1M</TypeName>

9 <TypeName>ns02:RoadL 1M</TypeName>

10 </DescribeFeatureType>

11 </ soap:Body>

12 </ soap:Envelope>� �
Listing 2.10: SOAP request example

The advantages of using SOAP are the fact that one can leverage the WS-* specification and the
processing model defined by SOAP.

Relation to this Dissertation

The implementation of the SOS concept is based on SOAP. Furthermore there are numerous
security standards (such as WS-Security and its extensions, SAML, etc.) that are mainly used
together with SOAP. For these reasons, only the SOAP profiles for the OGC services are considered
in this dissertation.

2.2.6 WMS

The Web Map Service (WMS) produces maps of spatially referenced data dynamically from
geographic information [63]. The maps are either bitmap, already rendered images such as PNG,
GIF, JPEG or vector graphics such as SVG or WebCGM. The use of transparency for background
allows a client to overlay maps from different services.

Service operations

The WMS interface defines the following three operations:

GetCapabilities Returns metadata about the service operations and its data. The data is structured
in layers that form a hierarchical structure. The capabilities document contains information
intended for both machines (output image formats, layer IDs, etc.) as well as information
intended for humans (textual description for layers, contact information for administrator,
etc).

GetMap Returns a map representation of the data from a requested area. The area is specified as
bounding box, which is described by the coordinates of the two corner points and the coordinate
reference system. Other arguments include: the image output format, dimensions of the image,
the layers (in order), a rendering style for each layer, background color, transparency of the
background, etc.

GetFeatureInfo This operation is optional. It requires the X,Y coordinates of a point and it returns
information about the features located at the specified coordinates.

2.2.7 WFS

The Web Feature Service (WFS) allows a client to retrieve and update geospatial data encoded
in Geography Markup Language (GML) from multiple Web Feature Services [154]. It defines
operations for data access and operations for data manipulation. [154] defines the following three
types of WFS Service:

2.3. ENTERPRISE SERVICES BUS 25

Basic WFS Provides only operations for access to geographical data as well as metadata; the
supported operations are GetCapabilities, DescribeFeatureType and GetFeature;

XLink WFS In addition to the basic WFS implements the GetGmlObject operation;

Transactional WFS In addition to the basic WFS it provides data manipulation functionality;
the additional operations are: LockFeature, Transaction.

Service operations

The WFS interface defines the following six operations:

GetCapabilities Returns metadata about the service and the geographical data it serves. The
geographical data is structured in feature types, representing different classes of geographical
objects. Each feature type has associated metadata (description, bounding box, etc.) as well
as an enumeration of the supported operations for this feature type. Additionally, capabilities
documents contain information about the filter operations implemented.

DescribeFeatureType Returns an XML schema description for the requested features

GetFeature Returns features in GML format (it is possible to specify the desired GML version). A
client can formulate complex queries that contain both spatial as well as non-spatial conditions
which are encoded using the Filter Encoding specification.

GetGmlObject Allows retrieval of features and elements by ID from a web feature service. A
GetGmlObject request is processed by a WFS, and an XML document fragment, containing the
result set, is returned to the client. The GetGmlObject request provides the interface through
which a WFS can be asked to traverse and resolve XLinks to the features and elements it
serves. [154]

LockFeature Is used in combination with the transaction operation to lock a feature so that data
hazards are avoided and consistency is ensured.

Transaction Allows data manipulation using the WFS interfaces. The operation supports insert,
delete and update operations.

2.3 Enterprise Services Bus

Enterprise Services Bus refers to both a software architecture and a class of software products
used for the realization of SOA. The concepts behind ESB are described in depth in [56, 100];
[134, 138] also give a good overview of the concepts. This section will only introduce the basics
about ESB.
I start with a couple of definitions, then introduce the ESB architecture, present its capabilities
and list the architectural patterns that are associated with ESB. This leads to a number of reusable
services that are described at the end of the section.

2.3.1 Definitions

Message Oriented Middleware (MOM)

According to Webopedia [3] MOM is a type of software that connects two otherwise separate
applications. Furthermore, [56] states that Message Oriented Middleware is a concept that in-

26 CHAPTER 2. BASIC CONCEPTS

volves the passing of data between applications using a communications channel that carries self-
contained units of information (messages). In such a system, communication usually takes place
asynchronously. Applications rely on the MOM system to deliver the messages to their destinations.
Example of MOMs are JMS, SOAP Web services, CORBA, etc.

Enterprise Services Bus (ESB)

According to Webopedia [3] ESB is an open standards-based distributed synchronous or asyn-
chronous messaging middleware that provides secure interoperability between enterprise applica-
tions via XML, Web services interfaces and standardized rules-based routing of documents.
According to [56] the ESB provides a highly distributed, event-driven Service Oriented Architec-
ture (SOA) that combines Message Oriented Middleware (MOM), web services, intelligent routing
based on content, and XML data transformation.

2.3.2 Characteristics of an ESB

The ESB (see figure 2.6) is a MOM and as such it provides the connectivity layer between service
providers and service consumers. It is the duty of the ESB to deliver messages from the requester
to the ultimate receiver.
The ESB provides a further abstraction layer on top of the communication protocol facilitating
the integration of applications developed using different MOMs. This is possible due to a common
format for all messages circulating on the bus. For those applications that do not natively support
the common messaging format, adapters (connectors) are provided that transform messages from
their native format to the format of the ESB before placing them on the bus.

Enterprise Services Bus

Provider
A

A
da

pt
er

Provieder
B

A
da

pt
er

WS
Client X

WS
Client Y

XSLT
Service

Audit
Service

A
da

pt
er

Gateway

External
Network

A
da

pt
er

Web
Portal

• Common Message Format
• Distributed Infrastructure
• Common Runtime Environment
• Generalized Invocation Framework

Figure 2.6: Enterprise Services Bus

[134] recognizes the following as being the most important characteristics of an ESB:

• The use of explicit implementation-independent interfaces to define services;

• The use of communication protocols that stress location transparency and interoperability;

• The definition of services that encapsulate reusable business functions.

2.3. ENTERPRISE SERVICES BUS 27

Figure 2.6 shows an ESB connecting two service providers, two client applications and two in-
frastructure services - the XSLT service and the Audit Service (these services can be integrated in
workflows together with other services). Additionally, two other client variations are showed: a Web

Portal - user interactions are mapped to Web service invocations, and a Gateway which connects the
ESB to an external network (possibly converting messages from other protocols and at the same
time providing some security features).

ESB vs. Point-to-Point

The first integration architecture that emerged was point-to-point (showed in figure 2.7). In such
an architecture each component will integrate with the other components separately (there is no
before-planning). Because of this, in literature [56] it is sometimes called the accidental architecture
suggesting that this is how integration evolves if it is not planned in advance. This architecture is
typical for tighter-coupled components, such as when using Remote Procedure Call.
The disadvantages of such an architecture are obvious: if we expect n components to intercommu-
nicate then each component needs to implement n−1 interfaces, bringing the total implementation
effort at n(n−1)/2 implementation modules. Of course, in practice, not always all the components
need to intercommunicate, but nevertheless this architecture is impractical for systems containing
more than a few components.

C1

Integration
BrokerC2

C3

P1

P2

P3

C1 C2 C3

P1 P2 P3

Hub-and-spoke

Eneterpise Services Bus

BUS

C1

C2

C3

P1

P2

P3

Point-to-point

Figure 2.7: ESB vs. point-to-point and hub-and-spoke

ESB vs. Hub-and-Spoke

Another integration architecture is hub-and-spoke. The ESB is often compared in literature ([56,
134, 100]) with this more traditional integration approach. Some of the advantages of the ESB over
the hub-and-spoke approach are:

• In hub-and-spoke there is one monolithic broker application which does all the integration.
This provides a single point of failure. In contrast, in an ESB the service invocation is dis-
tributed (there is no single point of failure).

28 CHAPTER 2. BASIC CONCEPTS

• The ESB architecture is more scalable because of its distribution. In an ESB it is possible to
deploy services on an as-needed basis.

• ESB is based on standards in contrast to the hub-and-spoke solutions which are usually based
on proprietary solutions.

2.3.3 Capabilities of an ESB

As a middleware system, ESBs usually provide several capabilities. These capabilities can used by
the applications that are integrated by means of an ESB with little or no effort. The work described
in [134, 56] lay the foundation for the following.

Communication Capabilities

Message Routing This can be either content-based or itinerary-based.

Messaging Styles Usually both synchronous as well as asynchronous messaging are supported.

Message Exchange patterns Several patterns are usually supported: request-reply, one-way
only, solicit-response, notification.

Transport Protocols Several protocols are usually implemented: HTTP, SMTP, JMS as well as
proprietary protocols such as IBM MQ, Microsoft MQ, etc.

Quality of Service Capabilities

Message Delivery This includes support for delivery models such as once-and-only-once, at-most-
once, at-least-once, etc. as well as constraints such as ”messages are to be received in the same

order in which they were sent” or ”failure to deliver a message be made known to both the sender

and receiver.” Because these assurances need to be fulfilled even in the case of system failure,
asynchronous messaging and store-and-forward delivery are usually requirements. Message
delivery is tightly bounded to the transport protocol - some of the transport protocols support
reliable messaging by design. Were this is not the case, WS-* specifications can be used,
namely the WS-Reliability standard from OASIS ([16]).

Transactions This includes support for both short duration as well as longer running transactions;
for each of these various transactional models are possible. These can either be supported
by proprietary middleware technologies, or through the WS-Coordination framework, which
includes WS-AtomicTransaction [24] (for short lived, ACID transactions), as well as the WS-
BusinessActivity specification [25] (for longer running business transactions).

Integration Capabilities

Orchestration This includes both the orchestration runtime environment as well as editors for
orchestration scripts. The most common orchestration script is BPEL4WS.

Choreography Supported through choreography specifications. Message routing is one alternative
for realizing choreographies.

Integration Connectors Different ready-to-use connectors for integration with different types of
applications and databases. These connectors are integrated in the application by means of
APIs and allow the application to be plugged to the bus.

2.3. ENTERPRISE SERVICES BUS 29

Protocol Transformation Similar to connectors but at the protocol level; they allows for different
protocols to be converted to the common messaging format of the bus.

Various Programming Languages API support for different programming languages (C, C++,
Java, C#, etc).

Management and Infrastructure Capabilities

Publishing / Discovery Typical to SOA, these features allow for services to be invoked at run-
time without previous knowledge. They are usually realized by means of registries (such as
UDDI) and description languages (such as WSDL).

Monitoring Ability to monitor specific parameters (in Java this can be realized by means of JMX).

Metering Ability to meter specific service parameters.

Logging Used for debugging as well as audit purposes.

Load-Balancing The ability to balance the load among different service providers.

Fault-Tolerance Because of it’s distributed nature, fault-tolerance comes as a really important
aspect.

Security Most ESBs come with some support for authentication, authorization as well as crypto-
graphic functions.

2.3.4 Enhancing Service Capabilities through Mediation

Because it relies heavily on message routing, ESBs are sometimes compared to decentralized proxies
that have the ability to manage, monitor or enhance the capabilities of services. In a typical inter-
action, a message from a service requester will be routed by the ESB through several intermediary
services before finally reaching its destination (see figure 2.8). Each of these intermediary services
will apply some transformations to the original message. Thus, from this perspective, the ESB
services can be seen as a list of chained proxies. They manage, monitor or enhance the capabilities
of the destination service.

ESB

Requester
Destination

Service
...

Message Transformations

A B Z

Figure 2.8: Mediations in an ESB

In reality, the ESB is a lot more than a chained list of simple proxies because different message
routing patterns can be applied - thus dynamically assigning the intermediary services that process
a certain message (and their order) and messages can be split and aggregated (see next section) -
thus resulting in more than one execution chain. Nevertheless the concept of monitoring, managing
and enhancing the capabilities of a service through consecutive transformations of the request /
response messages is fundamental for the ESB architecture [56, 134, 92].

30 CHAPTER 2. BASIC CONCEPTS

Examples of enhancing the capabilities of a service through service-mediations are: supporting
several transport protocols through protocol conversion or advertising different service interfaces
through data type conversion. As more complex transformations are available, other service capa-
bilities such as security functions (identity, authorization, etc.) and quality of service (reliability,
availability) can be supported through ESB mediations [92]. In this dissertation, I’m investigating
how ESB mediations can be used to implement and manage the security of services.

2.3.5 EAI Patterns in an ESB

There are many integration patterns for messaging systems; [95] lays the foundation work for this.
Most of these can be applied in the context of SOA / ESB. However, due to the model induced by
the ESB architecture, I consider the following six patterns to be most relevant.

Content-Based Routing

In this pattern (see figure 2.9), after the message has arrived it is inspected and, depending on its
content, it is forwarded to one service or another. This type of routing is similar to the routing of
IP packets with the remark that IP packets are only routed according to one field of the message
(the IP address). Routing policies for messages can be more complex as any part of the message
can be used for routing. If messages are XML-based, then routing policies can be easily defined
using XPath expressions.

P1
Content-Based Router

P3

P2

Figure 2.9: The content-based routing pattern

Itinerary Routing

In this pattern (see figure 2.10), a complete itinerary is attached to the message before the message
being forwarded to the first process. The message then follows the path described by the itinerary
(each process will forward the message according to the itinerary).
Note that itinerary routing can be combined with content-based routing, so that the itinerary for
the message to follow is determined based on the content of the message.

P1

Itinerary Router

P3P2

Figure 2.10: The itinerary routing pattern

2.3. ENTERPRISE SERVICES BUS 31

Dynamic Routing

Dynamic routing (see figure 2.11) is a variation of content-based routing where the routing polices
change based on execution events. We can continue the analogy to the IP network where most of
the routing policies are dynamically determined.

P1

P3

P2

Routing Policy

Dynamic Router

Figure 2.11: The dynamic routing pattern

Splitter/Aggregator

In the case of a splitter (figure 2.12) a message is divided into several messages which then follow
independent paths. The reason for splitting the message can be for example a divide-et-impera
strategy where a bigger problem is divided into smaller, less complex, subproblems. This also
follows the ESB re-usability principles.

Splitter

P1

P2

Figure 2.12: The splitter pattern

The opposite service is an aggregation service (figure 2.13) which does a join operation on messages.
Several messages are combined together and the results are forwarded as a single message. As
opposed to the split operation which is always executed without delays, when aggregating several
messages, the service needs to wait until all messages are received before producing the result.

P1

Aggregator

Figure 2.13: The aggregator pattern

32 CHAPTER 2. BASIC CONCEPTS

Orchestrator

After receiving a message, an orchestration service (figure 2.14) invokes several services before
forwarding the resulted message. The service should not only be able to invoke the services, but
also deal with synchronization issues and error-handling.
The effect is similar to the itinerary routing pattern, in that several services are executed. However
in itinerary routing the execution is done in a distributed manner, while in this case the execution
is centralized. This allows an architect to more easily define complex invocation scripts (such as
the ones containing branches, loops, etc). A popular language for expressing orchestration scripts
is BPEL4WS.

Orchestration Service

P1 P2

P3

Figure 2.14: The orchestrator pattern

Message Transformation

Message transformation (also called mediation) involves changing the content of the messages. The
following three types of transformations are most important:

Message Transformer

Figure 2.15: The message transformer pattern

Envelope Wrapper The original message is wrapped by an enveloping message. The enveloping
message usually provides extra-features that are used through the rest of the processing chain. One
such example is a service converting OGC HTTP POST requests to SOAP messages.

Normalizer The original message is converted into a reference format. This pattern is applied when
plugging new applications to the ESB: messages generated by these applications are converted from
their native format into the common messaging format used by the ESB.

Content Transformer The content of the original message is modified. We distinguish two important
transformations:

2.3. ENTERPRISE SERVICES BUS 33

Enriching In this case extra information is added to the message. For example, a gateway may
extract information from the transport protocol and the append it to the message; an ex-
ample of such information is authentication information for a SOAP message travelling over
HTTPS/SSL.

Filtering In this case parts of the message are removed. An example is a policy enforcement point
which removes parts of a request in order to enforce the security policy.

2.3.6 Infrastructure Services in an ESB

From the capabilities and the integration patterns previously illustrated, we come to the conclusion
that some of the features that an ESB is equipped with should be realized as services. This will
allow other services to leverage their functionality using the above presented integration patterns.
[56] recognizes the following three as possible infrastructure services.

Orchestration Service An orchestration service follows the previously described orchestrator pat-
tern. Because orchestration languages are being standardized (i.e. BPEL4WS) and because many
implementations for runtime environments are now available, an orchestration service represents a
quick and simple way to aggregate several services. This task is simplified by the availability of
graphical tools for writing orchestration scripts and viewing how the processes execute.

Message Transformation Service A message transformation service implements the content trans-
former pattern. If bus messages are encoded in XML, then XSLT can be used to specify the
mediations, making this a very flexible and standards based solution. As XSLT transformations
represent a significant computational-load, these services can be replicated and distributed over the
network (perhaps on more powerful machines having specialized hardware).

Message Storage and Caching Service The implementation of reliable messaging requires messages
to be stored in the case of a system failure (when the service is back, the messages are forwarded).
For this, a message storage service is required. This can be equipped with caching services in order
to boost performance. This is a common functionality that can be leveraged by many applications.

2.3.7 Implementations

There are numerous implementations of the ESB model. Most of them are commercial (some of
these are updated versions of the integration brokers used a decade ago), but open-source imple-
mentations are also emerging. Some of the most important implementations are listed below:

• Cape Clear

• IBM WebSphere MQ

• Mule (open-source)

2.3.8 Relation to this Dissertation

ESB is the architecture of choice when it comes to integrating security services in this disserta-
tion. Although other architectures are possible (for example hub-and-spoke), ESB has been chosen
because of the following arguments:

34 CHAPTER 2. BASIC CONCEPTS

• SOSA involves splitting the security system into small reusable services. ESBs are more
appropriate for integrating services with little functionality.

• As mentioned in section 2.3.2, ESBs are more oriented toward standards. In SOSA , both
messaging standards and security standards are very important. Furthermore, the bus archi-
tecture provides an efficient way to join standards together by means of mediations, which
makes it possible to realize systems supporting multiple security standards ([35, 60] underline
that multiple security standards is one of the key requirements for Web services).

• The common bus messaging format, combined with the integration patterns presented in
section 2.3.5 result in a relatively simple design model for systems. We will show later how
this model can be leveraged in designing security systems.

Furthermore, besides a convenient architectural model, ESBs also provide a number of infrastruc-
ture capabilities that can be leveraged by security systems. Some of these capabilities are present
at the protocol level (such as quality of service assurances), while others are provided as services
(as seen in section 2.3.6).

2.4 Security in the Context Web Services

In this section, I’m introducing the basic concepts related to information security. I’m starting
by defining the purpose of security, then analyzing the different types of threats addressed to
information both while it is in transit, as well as when it is at repose. After this, the main security
functions are presented, together with the related technologies and standards that are applicable
in the context of Web services.

2.4.1 The Security Stack

In literature it is often said that no security system is 100% secure. However if the system’s
designers take the possible threats into consideration and employ adequate protection strategies,
an acceptable level of security can be achieved. In this section we will look at the possible threats
and will present technologies that can be deployed as countermeasures.
In the case of Web services, the goal of a security system is to protect information. According to
[71, 136], we can assume that information is found in one of two distinct states: at repose or in
transit. For each of the two states, different threats are relevant. The two models are presented in
the following sections.

Information at Repose

Information at repose can either be in storage (files, databases, etc.) or be in the course of pro-
cessing. In both cases, the possible threats are addressed to the system which hosts the data.
Information can be processed by either a Web service or a client application accessing a Web ser-
vice. Figure 2.16 shows how these run on top of a Message Oriented Middleware, which in turn
runs as an application inside an Operating System, which runs on a hardware computer system.
Information in storage (databases and files) resides inside the Operating System. This approach to
structuring security is also discussed in [118, 117].

2.4. SECURITY IN THE CONTEXT WEB SERVICES 35

Physical Computer System

Web service

Message Oriented Middleware

Operating System
Database

Application

Figure 2.16: The security stack: Data at repose

Physical Computer System At this layer, threats can come from malicious persons that have access
to the machine where the application is running. A further threat is represented by hardware
failures. Countermeasures for these threats consist of access restrictions to hardware equipment
together with redundancy (backup, uninterruptible power supply, etc.).

Operating System At this layer, threats can come from malicious persons with access to the com-
puter (most operating systems support multiple users). Further threats are represented by viruses,
Trojans and other software that can interfere with the MOM or the stored information. It is im-
portant to remark that the operating system is situated between the human person (user of the
client application or administrator of the Web service) and the Web service application. Counter-
measures are good administration, anti-virus and anti-spyware software, intrusion detection and
intrusion prevention systems, etc.

Message Oriented Middleware MOMs implement the Web services protocols and represent the in-
terface between the application and the network. They can be implemented as either application
servers (AXIS / Tomcat) or as lightweight libraries. In both cases, threats are represented by
malicious persons and misconfiguration of the MOM.

Web Service At this layer we place the Web service or (on the client machine) a software application
accessing a Web service. For this layer, the security functions described in 2.4.2 are relevant.

Information in Transit

By means of Web services, software systems exchange information over a network. The information
is segmented into messages which travel by means of various network protocols. Threats can be
targeted at any of these protocols.
Figure 2.17 presents the 7 layer OSI stack together with some relevant protocols for each layer.
OSI does not further specify the application layer, however I chose to segment this layer into two
sub-layers, because Web services are traveling on top of transport protocols, such as HTTP, FTP,
SMTP, etc.
Firewalls are the most widely deployed countermeasure for preventing network threats. Depending
on the network layer where they act, [71] recognizes the following types of firewalls:

Packet-Filtering Firewalls These firewalls work at layer 3 of the OSI stack and filter IP packets
based on information found in the header of the package (source, destination, port).

36 CHAPTER 2. BASIC CONCEPTS

Circuit-Level Firewalls These work at layer 4 (TCP) of the OSI stack and are able to monitor
TCP handshaking and TCP sessions, and filter traffic based on more sophisticated criteria.

Application-Level Gateways Work at the top layer of the OSI stack and are able to understand
the traffic for specific application protocols. One such example are the XML firewalls which
are firewalls designed to filter SOAP traffic. Typical tasks for them are XML validation
or protection against common types of attacks (replay attacks, DoS attacks, etc). Because
XML firewalls understand the SOAP protocol, they often offer further capabilities to protect
information passing through the firewall such as XML encryption or the ability to digitally
signing messages.

Physical Layer Wire, Radio, Fiber Optic

Data Link Ethernet, ISDN, 802.1, WiFi

Network IP, IPSEC (VPN), ICMP

Transport TCP, UDP, etc.

Session TLS/SSL, etc.

Presentation ...

Application
Web Services

Transport HTTP, SMTP, FTP, ...

SOAP

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Figure 2.17: The security stack: Data in transit

Each of the seven layers has some security features built in by design: some data link protocols
(such as WiFi) support data encryption and authentication, at the network layer IPSec can be
deployed, while at the session layer TLS/SSL is very popular; furthermore, at the transport layer
there are several possibilities. Normally the following rule applies: the lower the layer, the coarser
the mechanisms. However, as [72] remarks, current implementations of Web services usually take
advantage of the security features of the lower layer protocols (TLS/SSL, HTTP authentication
are examples) because current message-level security implementations are relatively poor in per-
formance.
As also remarked in [62], the distributed processing model of SOAP coupled with the protocol
layering model presented here has implications on the architectural design of security systems for
Web services. Figure 2.18 shows how one message can be processed by several nodes, and how
it can travel on different protocols between these nodes, each of these protocols conveying some
security information. In such cases, solutions need to be developed for the security information to
travel end-to-end and not only peer-to-peer.

Relation to this Dissertation

In this dissertation I discuss how security functions can be externalized and implemented as reusable
services. For this, we are looking at securing information while it is in transit and while it is pro-
cessed by systems. Physical security, Operating System security and MOM security are out of the
scope of this dissertation.

2.4. SECURITY IN THE CONTEXT WEB SERVICES 37

MAC

TCP/IP

TLS/SSL

HTTP

SOAP

Application

MAC

TCP/IP

TLS/SSL

HTTP

SOAP

Application

MAC

TCP/IP

TLS/SSL

HTTP

SOAP

Application

MAC

TCP/IP

TLS/SSL

HTTP

SOAP

Application

HTTP Authentication

MAC

TCP/IP

TLS/SSL

HTTP

SOAP

Application

WS-Security

Application

Client
IPSec
Router

SSL
Endpoint

HTTP
Endpoint

SOAP
Endpoint

Application Specific Security

IP Sec IP Sec? IP Sec? IP Sec?

TLS? TLS?

http Auth?

Intermediaries

Figure 2.18: Intermediary nodes processing security information

This dissertation addresses the security at the Web Services sub-layer of the application layer.
The purpose here is to architect a distributed security system, composed of reusable security ser-
vices which satisfies the security requirements for Web services. Integrating lower layer security
with security at the messaging layer (as exemplified in the previous section) is considered as one
requirement for the security system.

2.4.2 Security Functions

In the following I’m introducing the security functions. For each function I will give a definition
from the literature, describe it and enumerate the relevant technologies and standards in the context
of Web services.

Authentication

Definition According to [131], authentication is the process of verifying an identity claimed by
or for a system entity. The same source recognizes that authentication consists of the following two
steps:

Identification At this point an entity presents an identifier to the security system. The purpose
of this step is for the security system to be able to differentiate the requesting entity from the
other exiting entities. Identification is vital to other security functions: authorization, audit,
accounting.

Verification Presenting or generating information that corroborates the binding between the iden-
tifier and the entity.

There are numerous technologies and standards that address this issue in the context of Web
services. These technologies address both the messaging layer as well as the transport protocol.
Popular technologies that work at the transport layer are IPSEC, SSL/TLS and HTTP Authentica-
tion. At the messaging layer WS-Security [35] addresses authentication by providing the possibility
to attach various security tokens to SOAP messages.
In Web services, software agents authenticate to services. The agents can act on behalf of a human
person or on behalf of another service. In the case of a human, the authentication depends on 4
factors: something a user is (e.g. fingerprint), something a user has (e.g. private key), something
a user knows (e.g. password) or something a user does (e.g. voice recognition).
Some widely deployed methods for authentication are the following: username / password, PKI /

38 CHAPTER 2. BASIC CONCEPTS

digital signatures (implemented in various technologies - WS-Security, SSL, etc.), Kerberos, SAML,
LDAP, RADIUS, etc. The number of authentication methods represents a challenge when designing
security systems for Web services, because systems are expected to work with several authentica-
tion methods. In order to accomplish this, it is often necessary to map identities or to translate
security tokens.

Authorization

Definition (1.) An authorization is a right or a permission that is granted to a system entity to
access a system resource. (2.) An authorization process is a procedure for granting such rights.
(3.) To authorize means to grant such a right or permission [131]. In literature [18, 147, 21],
authorization is divided into the following two steps:

Decision Knowing the resource to be accessed and its context, based on a set of credentials
provided by the requester, decide whether to grant access or not. The decision is based on an
authorization policy.

Enforcement Enforce the decision taken in the previous step.

There are various models for designing and implementing security policies: Discretionary Access
Control (DAC) - where the identity of the requester is stored together with its permissions, Manda-
tory Access Control (MAC) - where access is regulated based on a mandated regulations determined
by a central authority and Role-Based Access Control (RBAC) - where users are grouped together
into roles and permissions are assigned for each role. Policy models are detailed in [137] and do
not constitute an aspect of this dissertation.
The most important authorization frameworks in the context of Web services are the following:

AAAArch [132, 147, 148] - describes an architectural framework for the authorization of Internet
resources and services. The model adheres to the principle of separation of concerns and
divides authorization into 4 services: Policy Retrieval Point, Policy Information Point, Policy
Decision Point and Policy Enforcement Point. This segmentation suggests two other steps in
the authorization process, namely the retrieval of the policy and gathering information against
which policy conditions are to be evaluated.

XACML [18] - proposes both a policy language (XML based) and a service model. The service
model contains the following entities: Policy Administration Point (similar to the Policy Re-
trieval Point), Policy Information Point, Policy Decision Point and Policy Enforcement Point.

SAML [22] - proposes a general purpose framework for exchanging security information. SAML
can be used in combination with XACML, for encoding both policies and authorization deci-
sions.

Confidentiality

Definition Referring to data, confidentiality is the property that information is not made available
or disclosed to unauthorized individuals, entities, or processes [131].
Confidentiality is achieved by means of encryption. As Web services are XML-based, the most
important encryption technologies relevant to Web services are XML-ENC [160] and WS-Security
[35]. The latter describes how XML-ENC should be used in conjunction with SOAP messages.

2.4. SECURITY IN THE CONTEXT WEB SERVICES 39

Integrity

Definition Referring to data, integrity is the property that data has not been changed, destroyed,
or lost in an unauthorized or accidental manner [131].
In practice, implementations for determining data integrity rely on hashing algorithms and digital
signatures. The relevant technologies for Web services are XML-DSIG [159] and WS-Security [35]
(WS-Security describes how XML-DSIG can be applied to SOAP messaging).

Non-Repudiation

Definition Non-Repudiation is the capability to ensure that a transferred message has been sent
and received by the parties claiming to have sent and received the message [3]. According to [131]
there are two types of non-repudiation:

Non-Repudiation with Proof of Origin Provides the recipient of data with evidence that proves
the origin of the data, and thus protects the recipient against an attempt by the originator to
falsely deny sending the data;

Non-Repudiation with Proof of Receipt Provides the originator of data with evidence that
proves the data was received as addressed, and thus protects the originator against an attempt
by the recipient to falsely deny receiving the data.

The most important methods to achieve non-repudiation are: digital signatures, confirmation ser-
vices and time-stamps.

Privacy

Definition Privacy is the right of individuals to control or influence what information related to
them may be collected and stored and by whom and to whom that information may be disclosed
(from [9]).
Privacy is usually required by national laws and services that fall under the incidence of these laws
must comply. There are no technologies for dealing with privacy. In the context of Web services, it
is rather an administrative issue to make sure that the applications are compliant with the privacy
laws. Privacy can be breached if the other security functions are breached (i.e. authorization is
bypassed and personal information is accidentally released).

Availability

Definition Availability is the property of being accessible and usable upon demand by an autho-
rized entity [9].
One of the possible reasons for a Web service not being available is a successful Denial of Service
(DoS) attack. Such attacks can be detected and solutions for this can be used for Web services.
Other reasons can include failure of software and hardware components or network connectivity.
To prevent this from happening, good planning and redundancy are important.

2.4.3 Annex Security Functions

The following functions are not primarily concerned with the security of the system. However,
because they rely on other security functions (i.e. charging requires the service to know the identity
of the requester), they will be presented here and be regarded as security functions in the rest of
this dissertation.

40 CHAPTER 2. BASIC CONCEPTS

Accounting and Metering

Definition Accounting is the process of identifying, measuring and communicating economic in-
formation to permit informed judgments and decisions by users of the information [46].
Accounting is used in combination with charging. Other reasons for deploying accounting in a
security infrastructure are: generation of statistics, capacity planing (this relates to availability),
etc. Depending on the reason for deploying accounting, additional information might be collected
- for example identity information if the requester is to be charged.
Accounting is very much dependent on the service offered (for example, grid services are accounted
differently than Geo Web services). Accounting for geospatial Web services is discussed in [76].

Charging

Definition According to [1], charging refers to the process of fixing or asking as fee or payment.
Charging requires identification of the requester and accounting for the operation to be executed
and / or the requested data. As also the case for accounting, charging is dependent on the service
offered and on the infrastructure. Charging for geospatial Web services is discussed in [152].

Chapter 3

Security in a Web Services World

At the start of this chapter several properties used in the evaluation of software architectures are
introduced. After this, three different approaches to implementing security for Web services are
presented: embedded in the application, embedded in the middleware and external. The three ap-
proaches are analyzed using the previously introduced properties and I conclude that the approach
of externalizing the security system has clear advantages. Several existing approaches in this di-
rection are presented. Finally, the problem addressed in this dissertation is framed.

3.1 Architectural Evaluation of Security Systems

In this section I will present a couple of relevant properties of software architectures that can be
used in the evaluation of architectural designs of security systems for Web services. The analysis
is based on the work of Fielding [73] who presents criteria for the evaluation of network-based
application architectures.
For such an evaluation, one needs to differentiate between the functional requirements and the
non-functional ones. The properties described in this section are related to non-functional require-
ments.
As far as the functional requirements are concerned, the most important one for a security system is
to correctly implement the security functions that are needed by the application which it protects.
These requirements have been described in 2.4. Because, from a functional perspective, the security
system is bound to the application (one influences the other), additional functional requirements
are derived from the unique aspects of the application. These are specific to each application and
it makes no sense to analyze them here.
Furthermore, it is important to understand that not all criteria have the same importance. Appli-
cation design is a matter of trade-offs especially when it comes to security. Therefore it is hard to
provide a normalized metric for comparing designs of security systems (especially since requirements
are often dictated by the application being protected). However, approaches exist: [73] describes a
model where numeric weights are associated with each property to indicate its relative importance
and relevance to the a particular design.

41

42 CHAPTER 3. SECURITY IN A WEB SERVICES WORLD

Performance

Performance can only be accurately measured once a design is implemented (I will show accurate
measurements of the SOS!e framework in chapter 7). However, even without having an imple-
mentation, it is possible to evaluate parameters based on the number and the type (i.e. API vs
network-based) of inter-component communications and thus compare different designs without
necessarily implementing these designs.

Security

Client
Application

Network

Web Service
Provider

Figure 3.1: System deployment when evaluating performance

When evaluating performance parameters, it is important to have in mind the deployment of the
system. Figure 3.1 shows this. I’m assuming that a client application is issuing requests to the
service provider. These requests and (possibly also the responses) will go through the security
system. Because there are several implementation possibilities for the security system, the two are
not clearly separated.
According to [73], performance parameters can be divided into two distinct categories: network
performance and user-perceived performance.

Network Performance This is a measure of the communication between the client and the Web
service. The important parameters are:

Round-trip-time Is the time between the moment the request was sent until the response is
received. If we consider the security system as a component separate from the service provider,
we find that rt = tnetwork + tsec + tws, where rt is the round-trip-time, tnetwork is the time the
information travels over the network, tsec is the time consumed by the security system and tws

is the time required by the Web service to process the request.

Throughput Represents the rate at which information is transfered between the client and the
service provider. In an ideal system with several components connected in serial, the total
throughput would be the minimum value of the throughput of all system’s components1. Thus,
tptotal = min(tpws, tpsec), where tptotal is the total throughput, and tpws and tpsecurity are the
throughputs of the Web service and the security system respectively. However, in practice,
because components influences each other in multiple ways, the total throughput is smaller
than this.

Bandwidth Is the maximum available throughput over a given link (from one client application
to one Web service).

From the formulas above, it is clear that the security system plays an important role in the overall
network performance. Care should be taken so that it does not become a performance bottleneck.

1We assume that the components are not working in pipeline.

3.1. ARCHITECTURAL EVALUATION OF SECURITY SYSTEMS 43

User-Perceived Performance Represents the impact that the network performance has on the user2.
The important parameters are:

Latency Is the period between initial stimulus and the indication of a response;

Completion Is the amount of time required to finish an application action.

Both parameters are very much dependent on how the client application is built and on the Web
service interface. Sometimes it is possible to obtain acceptable latency in spite of poor network
performance. Streaming responses and background processing are some solutions in this direction.

Scalability

Scalability is the ability of a system to handle a growing amount of work in a graceful manner or
to be readily enlarged [48]. In order to be scalable both the Web service as well as the security
system need to be scalable. The most determining factor for scalability is whether the load can be
distributed among different components. This counts for both the security service as well as the
Web service.

Simplicity

Simplicity is the property of being simple. The following three properties contribute to simplicity:

Complexity Normally regarded as the opposite of simplicity, complexity is a measure of the
number of inter-related parts of a system.

Understandability Is a measure of how easy a person can understand a system.

Verifiability A system is verifiable if it is possible to prove or disprove its correctness with respect
to a certain method.

In literature [137, 117] it is often remarked that simplicity is a key requirement for security systems.
Such systems need to be understandable (so that the operators can use it without making mistakes)
and verifiable (in most cases this is a requirement from the start). The two properties go hand in
hand with complexity (the less complex a system is, the easier is to understand it and to rigorously
verify it).
As also recognized in [73], the main approach to inducing simplicity into systems is the principle
of separation of concerns. Applying this principle means separating the overall functionality and
allocating it to different components. This leads to a system design with several less-complex
components which are easier to understand and test.
However, it should be noticed that interactions between components also introduce some degree
of complexity. Therefore, the more components a system has, the more complex the system. In
conclusion, it is a good practice to split the functionality into different components, but enough
functionality should be allocated to each component so that a compromise is achieved between the
simplicity of each component and the simplicity of the whole system.

2User-perceived performance only makes sense when the client of the Web service is operated by a human person. In a B2B scenario,

only network performance is important.

44 CHAPTER 3. SECURITY IN A WEB SERVICES WORLD

Changeability

Changeability represents the capability of a system to be changed without a negative impact. The
modifications can be either done when the system is not running (offline), or dynamically at runtime
(the later is obviously harder to realize).
The most important aspects of changeability are the following:

Configurability Refers to the ability of a security system to support post-deployment changes in
behavior through configuration changes. Changing the authentication method or integration
with other existing user or policy repositories are examples for this.

Extensibility Sometimes called forward-compatibility, refers to the ability to add functionality
to an existing system without having to make major changes to the system infrastructure.
Extensibility is very much an architectural and design issue: if a system is not designed with
extensibility in mind, it is hard to achieve this in the implementation phase. Best practices for
designing extensible systems are component-based design where the coupling between compo-
nents is minimized [73].

Reusability Refers to the ability to use components of a software system into other applications,
without modifying them.

The fact that Web services are open systems designed to bind different applications that were
developed using various technologies and which normally reside in different administrative domains
make changeability an extremely important aspect.

Portability

Portability is the quality of a system of being able to run on various platforms. Web services
were designed to be platform independent, in the sense that the service and the client can run on
different platforms. However, this does not make the Web services portable, since they often rely
on the middleware layer to perform various tasks (among them security functions). In such cases it
is hard to change the middleware system, even if the application Web service was developed using
platform-independent technologies such as Java.
Furthermore, security systems and security relevant information (policies, repositories) usually date
before the Web services era. It is often challenging to integrate Web services with legacy security
systems when the two reside on different platforms.

Reliability

According to IEEE, reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time [80]. In the context of distributed
systems, this is often seen as the degree to which a system is susceptible to failure at the system
level due to partial failures of its components.
Because the security system is coupled to the Web service (one can not run without the other), reli-
ability renders as an important aspect of both. General design techniques for enhancing reliability
of systems are redundancy, monitoring and avoiding single points of failure.

3.2. SECURITY IMPLEMENTATION FOR WEB SERVICES 45

3.2 Security Implementation for Web Services

As seen in section 2.4, security encompasses several functions. When it comes to implementing
these functions in a Web service, several approaches are possible. In the following I’m presenting
three different architectural choices (see figure 3.2) according to where the security system is located
in relation to the application Web service and the middleware3. Each of the approaches is then
evaluated.

Application Server

Web Service

Security Implemenation

Application Server

Web Service

Security Implemenation

Security Implemenation

Application Server

Web Service

A. Embedded in the
application

B. Embedded in the
middleware C. External

Figure 3.2: Security implementation approaches

Evaluation Methodology

The evaluation of the approaches is done according to the properties defined in the previous section.
As no exact metrics are defined for the properties (for most of them it is also impossible to define
such metrics), the evaluation is done in terms of positive / negative influences of the approach on
the properties. A plus (+) indicates positive influences, a minus (-) indicates negative influences,
while a plus-minus (±) indicates both positive and negative influences, depending on the situation.
Several signs should be considered as an accumulation.

Embedded in the Application

In this case the security functionality is coded in the application itself. The programmer writing the
Web service is responsible for writing the code for the security logic. For this task he will probably
chose to implement some of the functionality himself, while reusing some code in the from of 3rd
party libraries to implement other security aspects.
The security implementation is coupled with the application (and the 3rd party libraries) by means
of APIs. Because the security logic is realized in the application itself, there is no requirement
that these APIs be standardized. However, standardized APIs also exist, as for example the Java
Authentication and Authorization Service (JAAS) [110].
This implementation choice is analyzed in table 3.1; the findings are backed by [52].

3[41] makes a similar categorization. However, only approaches A and C are considered there.

46 CHAPTER 3. SECURITY IN A WEB SERVICES WORLD

Property Analysis Evaluation

Performance Because most of the communication between components is done
via APIs, network performance is very good in this case. Fur-
thermore, because the application does not have functional re-
quirements from the middleware, a fast light-weight middleware
can be deployed (instead of a heavy-weight application server).
This would further increase the performance by minimizing the
time a message spends in the middleware.

+ +

Scalability Because the system is monolithic, load-balancing can not be
implemented. This results in a less scalable solution.

-

Simplicity The monolithic aspect of the system affects both its understand-
ability and its verifiability. These can be increased through the
use of standardized APIs (such as JAAS) and modularization of
the code. A good design should apply the principle of separation
of concerns and split the security system into simpler modules.

- -

Changeability In such a monolithic solution, changing the security system usu-
ally requires recompilation of the code. Other solutions exist
(such as plug-ins), however this approach does not encourage
neither reusability nor extensibility.

- -

Portability The system is platform-dependent: it is tightly coupled to the
middleware and the 3rd party libraries.

-

Reliability A single component also means a single point of failure. -

Table 3.1: Security embedded in the application - analysis

Embedded in the Middleware

In this case the security functionality is provided by the middleware where the Web service is
executing. This is the case for most application servers such as the Systinet Server for Java 4 or
Apache AXIS5, where the server provides a rich set of security features in the form of interceptors
(or handlers) that can be invoked before and after the execution of the Web service. Implementing
a security policy for the application in this case is a deployment process, where the application
administrator configures the interceptors and their execution order.

A
pp

licatio
n

L
og

ic

...

...

Transport

Hanlders

Security Handler
(Rampart)AXIS Runtime

Figure 3.3: The concept of handlers in application servers

Figure 3.3 shows the principle of handlers as implemented in AXIS2 [77]. The Rampart module
implements WS-Security, providing several security functions such as authentication, encryption,
digital signing. Other functions can be implemented as separate user-defined handlers.
An noticeable improvement from the previous approach is that here, the security implementation

4http://www.systinet.com/products/ssj/overview
5http://ws.apache.org/axis, http://ws.apache.org/axis2

http://www.systinet.com/products/ssj/overview
http://ws.apache.org/axis
http://ws.apache.org/axis2

3.2. SECURITY IMPLEMENTATION FOR WEB SERVICES 47

is separated from the application logic.
This implementation choice is analyzed in table 3.2.

Property Analysis Evaluation

Performance Little network communication is involved here (both security
system and application run on the same machine). Because se-
curity is implemented in the middleware, light-weight solutions
are excluded and therefore some latency can be expected in the
middleware. However, overall, performance is good.

+

Scalability This solution scales better than the previous one because appli-
cation servers usually include load-balancing features. However,
load-balancing is achieved by replicating the whole service (to-
gether with the security system).

±

Simplicity Separating the security system from the application is a step
toward separation of concerns. Such a system is easier to under-
stand because common APIs are used (the ones provided by the
application server). Modularization can be achieved by means of
handlers, although, normally there is no separation of concerns
applied to the security system (for example in AXIS2 there is
only one module implementing authentication, authorization,
encryption and digital signatures).

±

Changeability Such a solution usually (Systinet, AXIS2) relies on configura-
tion. Extensibility is not hindered (handlers can be added /
modified / removed) but it is also not encouraged (extending the
existing handlers is not trivial). Reconfiguration and extension
can only be done offline (requires the restart of the application
server). Handlers can be reused in a similar fashion to libraries.

+

Portability The application itself is portable. Because the application does
not implement security it can easily be moved on another mid-
dleware. In this case the new middleware will be configured to
secure the freshly moved application. The security system is
not portable. It is tightly coupled to the middleware: any cus-
tomization done to the security system will not work on another
middleware system without modification.

±

Reliability Application servers usually provide replication functionality. As
previously remarked, the system can be replicated as a whole;
it is not possible to replicate it in parts.

±

Table 3.2: Security embedded in the middleware - analysis

External

In this case security is implemented outside the middleware. The Web service is loosely-connected
to the security implementation through a messaging interface. From this perspective, the security
implementation can also be regarded as an application implemented on top of a middleware system.
Several approaches in this direction are presented and compared in the next section. An analysis
for this approach is showed in table 3.3.

Mixed

It is also possible to have mixed approaches where some security functions are embedded in the
application, other are provided by the middleware, while some more are externalized. One such
example is an application server which implements WS-Security and JAAS by means of handlers.
Such a handler authenticates messages and creates a Principal object which is passed to the vir-
tual machine executing the application code. The application is then implementing authorization

48 CHAPTER 3. SECURITY IN A WEB SERVICES WORLD

Property Analysis Evaluation

Performance The application communicates with the security system via net-
work (which is a lot slower than API communication) and there-
fore the performance is worse than in the other approaches.
However, lightweight middleware systems can be used for both
application and security system.

-

Scalability The application and the security system can be scaled sepa-
rately (depending on the requirements). The security system
can be further modularized, and each of its components can be
replicated as needed so that the load is distributed on those com-
ponents that perform resource-intensive tasks. For example, as
also remarked in [116], cryptographic functions can be separated
from the rest, replicated and distributed on powerful machines.

+ +

Simplicity Because there are clearly specified interfaces between the secu-
rity system and the application, the system is easier to under-
stand. To some degree, this follows the Aspect Oriented Pro-
gramming (AOP) paradigm [101], as one aspect of the system’s
behavior - the security aspect - is separated from the rest of
the system, both conceptually, but most importantly also in the
implementation. Bringing the idea even further, the security
system can be modularized in the same fashion (components
being realized as different Web services). Such a division facil-
itates rigorous testing. Complexity is increased to some degree
due to the increased number of inter-related components, but
the gain in understandability and verifiability more than make
up for it.

+ +

Changeability Both extensibility and reusability gain from the fact that the ap-
plication is clearly separated from the security system, commu-
nicating via a standardized message interface. In this approach,
dynamic changes are also possible via redirects (as described in
[121]).

+ +

Portability Both the application as well as the security system are platform
independent.

+

Reliability Because components communicate via network (which is an un-
reliable medium) the overall probability that the system will fail
is increased. However, both application as well as the security
system can be easily replicated in order to introduce redundancy.

-

Table 3.3: Externalized security - analysis

checks using the standard JAAS APIs. Further services, such as logging, can be externalized and
implemented as SOAP intermediaries.

3.2.1 Analysis Overview

Table 3.4 summarizes the evaluation of the three approaches to implementing security systems.
From this we can clearly remark that the first approach in spite of good network performance lacks
a lot of the properties that would make it suitable for the context of Web services. This is also
one of the reasons why it is rarely deployed. Such a solution appears feasible for situation where
performance is the number one requirement.
The second approach seems to compensate the pros and the cons for all properties. It is also widely
deployed in the world of Web services. Such a solution is easy to deploy (usually only requiring
the configuration of out-of-the-box products) and fits most of the needs. However, relying on the
middleware to provide security has its disadvantages, for all with respect to scalability, extensibility,
reusability and portability.

3.3. EXTERNAL SECURITY APPROACHES 49

The third solution relies more on network communication, and therefore a lower performance is
expected. However, it is very scalable, understandable, verifiable, easily extensible, while at the
same time facilitating re-usage. In this dissertation I will further investigate this approach.

Solution P
er

fo
rm

a
n
ce

S
ca

la
b
il
it
y

S
im

p
li
ci

ty

C
h
a
n
g
ea

b
il
it
y

P
o
rt

a
b
il
it
y

R
el

ia
b
il
it
y

Embedded in the application + + - - - - - - -

Embedded in the middleware + ± ± + ± ±
External - + + + + + + + ±

Table 3.4: Comparison of the three approaches

3.3 External Security Approaches

This section introduces a number of approaches present in existing products and standards, where
different aspects of security are externalized from the protected Web service. At the end of this
section the presented approaches are analyzed to determine the advantages and the shortcomings
for each of them.

3.3.1 Perimeter Security

A popular security pattern is enforcing the security at the network border. In this way, before
a message enters the private network (where the sensitive resources are located) tasks such as
authentication and message validation are performed. Only valid messages from known parties are
allowed in the private network.
There are various patterns for this, which include the popular Demilitarized Zone (DMZ). In the
following, I will show two patterns that are relevant to securing Web services at the application
layer.

XML Firewall

XML Firewalls (sometimes also called XML Security Gateways) are devices that understand the
Web services traffic (they work at layer 7 of the OSI stack). Such devices usually support SOAP
security standards such as WS-Security, SAML, XACML and are able to satisfy a number of security
functions such as validate XML messages, perform authentication, encryption / decryption, digital
signatures, etc. The performance is usually one or two orders of magnitude higher than that of
traditional application software because of specialized hardware.
The deployment architecture (see figure 3.4) is similar to that of a network firewall. A message
originating from an application located in the external network must pass through the XML firewall
in order to reach the service to whom it is addressed.

Perimeter Service Router

A Perimeter Service Router (PSR) is a Web service which acts as an intermediary between the ap-
plications located in the external network and the protected services located in the private network
[94]. As far as security features, the functionality is similar to that offered by an XML Firewall.

50 CHAPTER 3. SECURITY IN A WEB SERVICES WORLD

Service
A

Service
B

Private NetworkExternal Network

Application
X

Application
Y

X
M

L

F
irew

a
ll

Figure 3.4: XML firewall

The difference between a PSR and an XML Firewall is that an XML Firewall is transparent for
the applications (it does not have an endpoint address), while the PSR has an endpoint address
for each of the protected services.

Perimeter
Service
Router

Service
A

Service
B

Firew
all

Firew
all

Perimeter Network Private NetworkExternal Network

Application
X

Application
Y

Application
X

Perimeter
Service
Router

Service
A

1 Send Request 2 Route Request

3 Send Response4 Route Response

A.

B.

Figure 3.5: Perimeter service router

A PSR is usually deployed in a Demilitarized Zone (figure 3.5, A). A message originating from an
application will be addressed to the PSR. After performing all inbound security tasks, the request
message will be routed to a service inside the private network (figure 3.5, B); the response message
will be routed through the PSR back to the client.

Products

There are various implementations of the two patterns, both in hardware and software products.
Companies offering such products include DataPower (IBM), Vordel and Xtradyne. To provide the
reader with an overview of the capabilities of such a product, I present the main characteristics
of the WebSphere DataPower XML Security Gateway XS40 from IBM [96]: XML well-formedness
checks, XML schema validation, XML filtering, XML denial-of-service protection, encryption, digi-
tal signatures, WS-Security authentication, fine grained authorization using XACML, content-based
routing.

3.3. EXTERNAL SECURITY APPROACHES 51

3.3.2 Enforcement Points

The XACML specification proposes a service model (figure 3.6) where resources are protected by
means of Policy Enforcement Points (PEPs). According to the XACML standard ([18]), the PEPs
should be placed at a choke point which can not be bypassed. This one is usually not located at the
perimeter of the network. Instead it is situated as close as possible to the resource being protected
(this is totally opposed to the perimeter security philosophy)

Service
A

Service
B

F
irew

all

PEP
A

PEP
B

PDP PAP

External Network

Application
X

Application
Y

Firewall

Private Network

Figure 3.6: XACML model: enforcement points

Requests targeting protected services, first reach the PEP and only after this one has received a
positive response from the decision point (PDP) and has discharged any associated obligations is
the request forwarded to the service.

3.3.3 Security Services as SOAP Intermediaries

In Part 1 - Messaging Framework, the SOAP protocol specification describes the role of SOAP
intermediaries (these have been introduced in section 2.1). One type of intermediaries are active
intermediaries which undertake additional processing and can modify the outbound SOAP message
in ways not described in the inbound SOAP message [88]. The specification further states that the
potential set of services provided by an active SOAP intermediary includes security services and
content manipulation services.
Examples of active intermediaries providing security services are also given: an encryption service
which encrypts parts of the SOAP header and / or parts of the SOAP body. Furthermore, part 0
of the same specification provides an example of a logging service which is also realized as a SOAP
intermediary [111]. In this case, the service is a forwarding intermediary, which only processes the
messages it receives and relays them further.

3.3.4 Mixed Approaches

Oracle WS Manager

A mixed approach of the two previously presented patterns is implemented in the Web Services
Manager product from Oracle (described in [54]). The relevant parts of such an infrastructure
deployment are presented in figure 3.7.
A request targeting a service in the private network is first intercepted by a gateway component.
This one is placed in a DMZ and has the role of hiding the internal organization of the network
(similar to a PSR). After having passed through the gateway, messages then hit a further enforce-

52 CHAPTER 3. SECURITY IN A WEB SERVICES WORLD

Gateway

Service
A

Service
B

Firew
all

Firew
all

Perimeter Network Private NetworkExternal Network

Application
X

Application
Y

Agent
A

Agent
B

Figure 3.7: Oracle WS Manager architecture

ment point called Agent which is located in the vicinity of the service. Each service is protected
by an Agent which is installed in the same process space with the service it protects [54].
Both Gateway and Agents perform similar tasks (enforce access control, make audit traces, im-
plement cryptographic functions, etc.). However, they serve different purposes: while the gateway
intercepts messages addressed to all services, it makes sense to have it enforce coarser grained au-
thorization polices and perform other security tasks that are relevant for all services. On the other
hand, because agents are located near the service, they can perform service specific authorization
enforcement or encryption (in order to also protect messages while travelling within the private
network).

ESB Products

Because of their distributed nature, ESB implementations are ideal candidates for externalizing
security. As there are so many ESB implementations, I chose to analyze the security features of
two popular ones, which I consider to be representative: CapeClear ESB 6.7 [57] and Mule 1.46 [2].
Both Mule and Cape Clear provide a rich set of security features. Most of the basic security
functions (such as authentication, authorization, cryptographic functions, etc.) are implemented as
interceptors which are executed before and / or after the protected Web service is executed. From
this point of view, the implementation resembles that of a traditional middleware systems such as
Apache AXIS (as previously analyzed in 3.2).

Perimeter
Service
Router

Service
A

F
irew

all

F
irew

all

Perimeter Network Private NetworkExternal Network

Application
X

Application
Y

Audit

Charging

Interceptors
Service
Choreography

Figure 3.8: Security in existing ESB implementations

However, ESB systems do provide opportunities to integrate services by means of message routing.
Both implementations provide simple logging services which can be used for audit purposes. In this

6The reasons for choosing the two are: Mule is one of the most popular open source ESB implementation, Cape Clear is a commercial

ESB with a comprehensive documentation describing the security features.

3.4. PROBLEM STATEMENT 53

way, messages travelling between two endpoints can be deviated to an audit service. Cape Clear
ESB further leverages message routing to implement a service that follows the perimeter service
router pattern (see 3.3.1).
Additionally, the rich set of tools for service orchestration and choreography provided by ESBs can
be leveraged to integrate a protected Web service with other Web services implementing annex
security functions, such as for example charging. Figure 3.8 illustrates this.

3.3.5 Conclusions

In the this section I showed a couple of approaches to externalizing security from Web services which
are currently implemented into products. The following is a brief analysis of these approaches, with
regard to the architectural properties described in section 3.1.

Perimeter Security Solutions These solutions concentrate all security functions at the network bor-
der. The performance of such solutions is usually good because of optimizations in software and
hardware. Such solutions can also scale - by use of classical load-balancing techniques - and have a
good degree of understandability and verifiability. However, due to the monolithic nature of such
solutions they are harder to extend. Furthermore, such a solution is not always suitable, because
the internal network is considered 100% trusted (there is no security applied within the internal
network perimeter). Additionally, annex security functions (such as accounting, charging) are not
addressed by these solutions.

Enforcement Points These enforce security as close as possible to the protected resource. How-
ever, in the way they are defined in XACML, they only address one aspect of security, namely
authorization.

Oracle WS Manager This product conveniently combines the advantages of perimeter security
solutions and enforcement points. However, this approach also has a monolithic nature, as both
gateway and agents combine several functional aspects of security.

ESB Implementations ESBs provide support for service choreography and orchestration which can
be leveraged for security purposes - one good use for this is the integration of annex security
functions such as charging. However, as remarked in 3.3.4, most of the basic security functions are
implemented as interceptors (handlers) provided by the middleware.
It’s worth remarking that the use of interceptors increases both simplicity (through separation of
concerns) and reusability (the same interceptor can be attached to several services). However,
because interceptors are specific to each middleware system they can not be reused with a different
middleware. This would only be possible if the desired functionality would be exposed as a reusable
service.

3.4 Problem Statement

Based on the analysis from section 3.2, we can clearly see that the approach of externalizing
the security system has obvious advantages. In section 3.3, I showed that some approaches in this
direction already exist and have been implemented into products over the past four years. However,
all of the presented approaches have some shortcomings, as discussed in section 3.3.5.
In this dissertation, I am further developing the idea of external security and proposing a model

54 CHAPTER 3. SECURITY IN A WEB SERVICES WORLD

where security is realized as small modular services. In order to have a simple, understandable
and verifiable design, the principle of separation of concerns is applied. By following this principle,
the security system is divided into services according to functionality, and a taxonomy of possible
security services is developed. These services can be regarded as infrastructure services, as they can
be shared by applications belonging to the same network. This makes the design highly reusable.
Additionally, through the use of standardized messaging interfaces, overall system portability is
ensured.
Enterprise Application Integration (EAI) techniques are used to glue the security services together
with the application Web services. Because of flexibility, the Enterprise Services Bus pattern is
used. ESBs support both service orchestration and service choreography and implementations
usually come equipped with simple-to-use orchestration editors and runtime environments which
can easily be used to architect a security solution from security services. Perhaps one of the
most important features of an ESB is message routing and the mediation pattern, which allows
functionality to be built in the system in a totally transparent fashion. Leveraging this makes
the proposed security system easily configurable, extensible and scalable. Furthermore, because
of message routing, changes to the system can also be performed online, at runtime, by using the
same technique used when upgrading web servers: traffic is temporarily redirected to a redundant
host (in terms of ESB, this translates to temporarily route change).

Service
A

F
irew

all

F
irew

all

Perimeter Network Private NetworkExternal Network

Application
X

Application
Y

Audit

Charging

Service
Choreography

Identification

VerificationValidation

AuthorizationEncryption Etc.

Service
B

B

A

Figure 3.9: Problem statement: The Service Oriented Security Architecture, SOSA

Figure 3.9 sketches the concepts by showing two services - A and B, having different policies that
are realized through different service choreographies. A number of security services are shared
between the two (Validation, Identification, Authorization, etc). Service A additionally incorporates
a Charging service (we’re assuming a scenario where this service requires payment).

3.4.1 SOSA , SOS!e and the Rest of the Dissertation

Because this model is applied to services and Service Oriented Architectures and because the core
idea is to think of security in terms of reusable services, I named this model the Service Oriented
Security Architecture or SOSA .
The main ideas behind this model together with some clarifications regarding design decisions
are introduced in chapter 4. A detailed description by means of the ISO RM-ODP is presented
in chapter 5. In the Technical Viewpoint, section 5.6, a prototype implementation of SOSA is
described: the SOS!e framework - Service Oriented Security, an Implementation Experiment.
In chapter 6, I’m showing how SOSA has been applied in several projects in the context of

3.4. PROBLEM STATEMENT 55

geospatial information, and presenting different security services that have been developed for the
SOS!e framework. The intention is to demonstrate the applicability of the concept. In chapter 7,
an evaluation of the proposed architecture is performed.

3.4.2 Assumptions

The idea of exposing security functions as services in the network might seem like a bold one. This
section tries to clarify questions that might come into the readers mind. Furthermore, because I’m
addressing a number of different issues, a frame for this dissertation is defined by describing which
issues are explicitly not addressed here.

Network Security

SOSA suggests that security be separated from the application service. By means of routing
and orchestration scripts, a message addressed to the application service will be processed by the
security services, before and after this message reaches the application service. Because the security
services are external to the application service and both communicate through a network, a couple
of question arise:

Is the Application Web Service Left Unprotected in the Network? Yes, the application Web service
is security unaware. A proxy is exposed in the perimeter network (see figure 3.9). In this way, a
service requester accessing the application from the external network is not able to see the Web
service deployed in the private network. However, somebody with access to the private network can
bypass the security services and access the application directly. A further similar security threat is
eavesdropping from the private network.
These issues are not addressed in this dissertation, and are not further discussed. If they are
considered a threat, lower layer security methods can be applied. Examples include conveniently
partitioning the internal network by use of firewalls and switches or applying authentication and
authorization at the transport layer. The result of that would be the equivalent of a trusted network
which only binds the security services and the protected application services.

What If the Communication between the Services is Compromised? Messages travel within the private
network between different security services. This introduces the risk of messages being stolen,
deviated or altered while they are in transit over the network. These threats can be directed either
at the messaging middleware (which can be compromised) or at the network (intercepting the
message while over-the-wire). In this dissertation these issues are not addressed. It is considered
that these issues are solvable through the use of lower layer security (as previously described).

Services Trust

A service request to the protected service translates to several messages being exchanged between
different security services. Each service has to fulfill their assigned task - examples of tasks are:
encrypt the message, identify the requester. The following questions arise:

How do I Know that a Service is Fulfilling its Task? After all security services have highly important
tasks - if a service is tasked to identify the requester and it always returns ”administrator”, the
service not only renders itself useless, but it sabotages the whole system.
In this dissertation the emphasis is on environments where the behavior of the services is know and

56 CHAPTER 3. SECURITY IN A WEB SERVICES WORLD

trusted by the operator of the system. Scenarios such as dynamically looking up a security service
in a public UDDI directory and then invoking that service are not addressed.
One topic which is addressed here, is the case of B2B integration where the choreography can also
include services hosted by a partner. The partner can be totally trusted or can only be partially
trusted. In the latter case, digital signatures and encryption can be used to protect information
while message correlation techniques can be used to ensure that messages are not dropped or
altered.

How do I Know that the Right Services are Invoked? It is assumed that part of the work involved in
exposing a protected service is designing a choreography for security services. This one is produced
by a responsible system administrator. Furthermore, it is assumed that the execution environment
(the messaging middleware and network) is trusted.

Chapter 4

Service Oriented Security Architecture

This chapter constitutes a preamble to the next one where SOSA is described in detail. Here,
the main ideas behind the proposed architecture are presented, and some clarifications regarding
design decisions are made. These clarifications refer to the types of interactions the security services
may implement, the way security services are aggregated together (invocation vs. mediation) and
the communication between security services. At the end of the section, an illustrative example is
presented.

4.1 Service Oriented Security

In the context of SOA, a service is a repeatable task which is published in order for applications to
leverage it in application-specific ways. Services typically deal with specific tasks / solve specific
problems, and applications are created by combining several services together in order to provide
value added functionality. Modern design encourages the separation of business functionality from
the infrastructure. In the context of security infrastructure, this separation of concerns allows the
creation of applications which are security unaware [92] - the premise is that any security data
or security process is provided outside the application itself. In section 3.2 it was showed that
externalizing security from the service implementation has clear advantages, at least from a design
point of view. One of the most important advantages is the increased understandability of the
system, due to the separation of the security aspect from the system’s logic, which is reflected in
both implementation and deployment. Other advantages are increased scalability, reusability of
components and simpler, more verifiable components.
In this dissertation the idea of external security is pushed one step further: not only is the security
functionality separated from the application, but the security implementation itself is split into a
number of security services. The reason for this is given by one of the main principles of SOA,
which states that complex business functions should be decomposed into those elements that are
repeatable, and these elements be exposed as services [92]. If we consider security separated from
the application and we have in mind that a lot of the security tasks are repeatable (most applica-
tions need authentication, encryption, etc.) applying this principle to the security implementation
is only natural.
The result is a design where instead of having the security aspects bundled together with the

57

58 CHAPTER 4. SERVICE ORIENTED SECURITY ARCHITECTURE

business application, these are implemented as a series of security services. If building a SOA busi-
ness application requires the combination of several business services, building a security solution
according to the SOSA principles requires the combination of several security services. Further-
more, if the security services are realized in the same manner as the business services, the same
technologies and patterns can be used to combine the two.

Potential Security Services

As in the case of designing a SOA application, the first step is to gather and analyze the require-
ments, identify the repeatable elements and then take into consideration the granularity trade-offs.
The security requirements for Web services have been discussed in section 2.4. These are authen-
tication, authorization, confidentiality, integrity, non-repudiation, privacy, availability, accounting
and charging. All of these tasks are repeatable elements: each of these tasks can be applied to
all messages addressed to a business service; several of these tasks may be executed in the same
way for several business services. Therefore, services may be realized that address any of the above
listed requirements; in section 5.3 the requirements are analyzed, and a list of possible security
services is proposed.
However, when taking the decision which security aspects to be implemented as services, the gran-
ularity aspect should be taken into consideration. For example authorization may be realized as
two distinct services (decision and enforcement, as logically divided in the ISO 10181 model [4]) or
it may be realized as a single service implementing both tasks. These aspects are specific to the
context of each application. For each context, an analysis needs to be done, and when making this
analysis, again, the repeatable elements need to be identified.

4.2 Service Definition

If we follow the SOAP / WSDL / UDDI model, a service defines one or more operations. Each
of these operations provides some functionality and defines an interaction pattern (i.e. request-
response, one-way, etc). Other components can interact with the service by implementing the
interaction patterns defined by its defined operations.
The goal here is to have security services defined in the same way the other services are defined.
In the following we will investigate the possibilities of defining security services, namely what kind
of interaction patterns should security services expose and how can security services be combined
together.

4.2.1 Interaction Types

WSDL 1.1 [158] defines four types of interaction primitives for service operations:

One-Way The service accepts an input message but does not generate any output message. In
this interaction pattern, a requester sends a request, but does not expect any answer.

Request-Response The service accepts an input message and generates an output message. To
interact with the service, a requester sends a request and then, at a later point in time, receives
a response.

Solicit-Response The service first sends an output message and then expects an input message.
In this interaction, the service solicits information from the client (by sending it a request)
and then expects an answer back from the client.

4.2. SERVICE DEFINITION 59

Notification The service sends only output messages to the client. In this interaction, the client
receives notification messages from the service, without requesting information.

The first two interaction primitives assume that the service is invoked by a requester (by sending
a request message), while the last two primitives assume that the service is acting by itself (needs
not be invoked by the client).
As mentioned earlier, security services are invoked for each message addressed to (or coming from)
the protected business service, and their task is to satisfy the security functions. Therefore, only
the first two interaction patterns are appropriate. Of these two, considering the requirements,
probably the most appropriate is the request-response pattern, because security services are nor-
mally expected to produce some result (i.e. encryption, authentication, etc.), or at least return
a status (i.e. authorization, charging, etc). Nevertheless, it is possible to realize security services
that implement the one-way interaction pattern (i.e. audit).

4.2.2 Aggregation Methods

From the point of view of how security services are composed together, the following two possibilities
exist:

Invocation In this case one service explicitly invokes another one. The invocation takes the form of
a message being sent from the invoker to the invoked service and, assuming a request-response
pattern, an answer is sent back at a later point in time. A typical example for this type of
service aggregation is remote procedure call (RPC). Figure 4.1A shows how several security
services can be combined together in order to enforce security policies on messages addressed
to a Business Service: an entity called Security System invokes security services S#1 to S#n

and then combines the results.

Mediation This case assumes an Enterprise Services Bus (ESB) invocation framework. In such
an environment, a request is routed by the ESB middleware from the service requester to
the service provider through several intermediaries that apply transformations to the original
request. From an execution point of view, the effect of this is that the output message of one
service is the input message for the next one along the chain. Such message transformations
are called mediations [56, 92] and are meant to provide a decoupling between the format of
the service request and the format of the service invocation. However, mediations need not
be limited to format conversions - value added services may be added along the chain, such
as security services. Figure 4.1B shows how a request is processed by security services S#1 to
S#n, before reaching the business service.

Both of these possibilities are valid ways for implementing security services, and this is confirmed
by existing approaches ([111, 33, 40], section 3.3). However, choosing one over the other has
implications on the service interface definition and the processing model. These will be presented
and analyzed (having the context of security in mind) in the following.

Invocation

Message Contents In this case the service invocation is explicitly done by the entity that creates
the request message and sends it (thus invoking the service). It is possible to define a service
interface where the semantics of the input message are well specified and reflect the functionality

60 CHAPTER 4. SERVICE ORIENTED SECURITY ARCHITECTURE

Enterprise Services Bus

Security System

S #1

Requester

S #n...

...

A. Security Services invoked by the Security System

B. Security Services realized as mediations in an ESB

Business
Service

Requester S #1 S #n Business
Service

Figure 4.1: Invocation vs. mediation

of the service. The same thing goes also for the response message. The service interface definition
is similar with the definition of a function call in a procedural programming language:

doService(input Arguments, output Argments)

Synchronous Interactions If we assume a request-reply pattern (as in the case of most security
services), we can clearly see, that such an interaction is synchronous in nature. The entity invoking
the service will have to wait until the response is received.

Execution Control / Context Because there is one entity that invokes one or more services, this one
can maintain context information between invocations.

Security Services Because in this way it is possible to specify clear semantics for the input and
output messages (for example using WSDL), there have been several standardization efforts to
specify interfaces for services implementing security functionality. Some of the standardization
efforts related to SOAP Web services are listed below:

XACML [18] Defines a service interface for the Policy Decision Point (PDP) and Policy Ad-
ministration Point (PAP). The PDP can be queried for authorization decisions by a Policy
Enforcement Point (PEP), while the PAP is normally invoked by the PDP in order for this
one to retrieve authorization policies.

WS-Trust [40] Defines a service interface for a Security Token Service (STS). The interface defines
among others an operation for verifying the validity of authentication security tokens.

WS-Federation [33] Defines service interfaces for Attribute Services and Pseudonym Services.
These services act as Policy Information Points and can be queried for information related to
the requesting entities.

Digital Signature Service [38] Defines a service interface for signing and verifying XML docu-
ments and other data.

4.2. SERVICE DEFINITION 61

Message Exchanges The number of message exchanges required to invoke N security services is 2N

(for each invocation, one request and one response message are necessary); the topology for this is
showed in figure 4.2A.

Orchestrator

S #1 S #2

S #n

S #1 S #2 S #n...

...

C
h

o
re

o
gr

ap
h

er

A. Services combined by means of an orchestrator

B. Mediation services combined by means of message routing

Figure 4.2: Combining together N security services

Mediation

Message Contents In this case the service invocation is done implicitly: a message that travels from
the original requester to the service provider is routed through intermediary mediation services.
These services are transparent to both the original requester and the service provider (it is the
middleware layer that invokes the mediation services).
As mentioned before, the processing of the message is similar to a pipeline: the output of one
service is the input of the next one along the chain. It is up to the ESB middleware (and the
administrator configuring the message routing rules), to route the message in such a way that each
service receives a message that it is able to process.
Because most security tasks deal with the information of the original message, a convenient way
of realizing security services, is to always include the original message in messages flowing between
mediation services. Of course, this may be changed (i.e. filtered, encrypted, etc.) as required by the
security policy. Furthermore, additional information (destined for the sole use of security services)
may be appended to the message as needed. The intention of this information is to convey partial
processing results which are then communicated from one service to the other.
According to the SOAP processing model [88], such services act as forwarding intermediaries, and
they can be either active (modifying the payload) or passive (only modifying the header informa-
tion). The definition of the service will look as follows:

doService(input Message, output Message)

The important difference from the previous case, is that the input message is similar to the output
message. Both messages contain the original request, together with some information destined for
the use of intermediary services.

62 CHAPTER 4. SERVICE ORIENTED SECURITY ARCHITECTURE

Asynchronous Interactions As opposed to the previous case, here the communication is asyn-
chronous by nature. The services process messages coming from the middleware and then give
the back. The services follow a send-and-forget strategy, as also described in [56].

Execution Control / Context The service execution order is reflected in the message routing rules.
Common strategies (introduced in section 2.3) are itinerary routing and content-based routing.
Because both service execution as well as message routing are done in a distributed manner, there
is no single entity that can store context information (as in the previous case). The only way to
store context, is by including this information in the message.

Security Services Because in this case the security services act as intermediaries, and because the
semantics for the service can not be clearly defined (as in the previous case) such service interfaces
have not been standardized. However, there are several existing approaches in this direction:

SOAP 1.2 [111, 88] Describes intermediary SOAP nodes. The specification mentions two types of
intermediaries: forwarding intermediaries (which only relay messages without modifying the
payload) and active intermediaries (which also modify the payload). Examples in the context
of security are also given: logging (forwarding intermediary), encryption (active intermediary).

XML Firewalls Introduced in section 3.3.1, also act as mediation services. They are able to
perform several security tasks (authentication, authorization), modify messages (for example
through encryption) and also append information to messages (SAML assertions confirming
that the authentication and authorization processes have been fulfilled).

XACML [18] Defines the Policy Enforcement Point (PEP). Although this entity is not specifi-
cally defined as a standalone service in XACML, if the PEP is to be realized as a service,
than it would act as a mediation service, dropping unauthorized messages and forwarding the
authorized ones. An RPC-style definition for this service would make little sense.

ESB In this article [92], a concept where several security functions (authentication, authorization,
data integrity, data confidentiality) are realized as mediation services and integrated by means
of an ESB is presented.

Message Exchanges The number of message exchanges required to combine N mediation services is
N + 1; the topology for this is showed in figure 4.2B. The number of exchanged messages is almost
half as in the previous case. Because message parsing is usually time and memory consuming, the
expected performance is better in this case.

Comparison Overview

In the previous subsections the differences between the two aggregation models have been presented.
As seen, each of the two models has its advantages and its limitations. A summary of what was
discussed is showed in table 4.1. The last row of the table shows the advantages of each approach
according to [56]: combining services by means of a process orchestrator allows conditional splits and
joins, while the combination of mediation services by means of message routing has the advantage
of being highly distributed.
In this dissertation, the focus is on developing a flexible security framework which is based primarily
on the mediation pattern. RPC-like services are not excluded as they can be invoked by mediation

4.2. SERVICE DEFINITION 63

Invocation Mediation

Messaging Type Synchronous Asynchronous

Service Composition Orchestration Choreography

Execution Control Centralized Distributed

Service Definition doService(input Arguments, output
Result)

doService(input Message, output
Message)

Semantics of the Request and Reply
Messages

Different Similar

Communication between Services Realized by the orchestrator,
through invocation parameters /
return values

Additional information appended
to the message (Annotations)

Execution Context Maintained by orchestrator Stored in the message

Number of Message Exchanges (see
figure 4.2)

2N N + 1

Advantages (according to [56]) Conditional splits and joins when
aggregated through an orchestra-
tion engine

Highly distributed, metadata-
driven

Table 4.1: Invocation vs. mediation

services, either directly or through orchestration services. Such examples are showed in figure 4.3:
in 4.3A, service Y (a mediation service) invokes service M in order to accomplish its task (in a
real-world example, a PEP service may call a PDP service requesting a decision); in 4.3B, there is
an orchestration service which is realized as a mediation service, and this one invokes services M,
N and P.

P

YX

M N

X

M

A. Invocation without orchestrator B. Invocation with orchestrator

Figure 4.3: Examples of mediation services invoking other services

Some reasons for realizing security services as mediation services are listed below:

1. Most security tasks deal with the information contained in the original message. Some tasks
(such as for example security tokens verification), require the whole message (both payload /
body and meta-data / header) - the reason for this is that in order to prevent replay attacks,
most security tokens are bounded to the message.

2. The mediation model fits a lot better than the invocation one for some security services:
logging, policy enforcement point, encryption, digital signature, accounting.

3. Because there are less messages being exchanged (N +1 as opposed to 2N) the overall perfor-
mance of the security system should be better.

4. Mediation services are adequate for asynchronous processing. Asynchronous messaging allows
the deployment of the system in more scenarios (synchronous messaging can be realized on
top of asynchronous messaging).

64 CHAPTER 4. SERVICE ORIENTED SECURITY ARCHITECTURE

4.3 Communication between Security Services

Each security service will process incoming messages in order to accomplish its task. Some tasks may
require several services to cooperatively process the message (for example authorization normally
requires the identification of the requester). In such a case, intermediary processing results (in the
previous example, the identity of the user) need to be exchanged between the services. The two
distinct possibilities for this are showed in figure 4.4 and described below:

Shared Database The two services communicate by means of a shared database (this integration
pattern is detailed in [95]): the first service stores the intermediary processing results in a
database, while the second one queries the database for this information. This approach is
illustrated in figure 4.4A.

Annotations The first service appends the intermediary processing results to the message before
dispatching it to the next service. This approach corresponds to the content enricher message
pattern described in [95]). In this dissertation this is called an annotated message, because
the dispatched message consists of the processed input message, witch is annotated with the
intermediary results. This approach illustrated in figure 4.4B.

Domain X Domain Y

Security
Service A

Security
Service B

Shared
Database

Domain X Domain Y

A. Communication through Messages and
Shared Database

B. Communication through Annotated Messages

Security
Service A

Security
Service B

Annotations

Figure 4.4: Communication between services

In order to deploy the first approach, both services need to have access to the shared database.
This might be an issue if the two services are located in different administrative domains. Fur-
thermore, an additional entity is introduced to the system - the shared database - which results in
communication overhead and additional management.
The second approach, where the intermediary processing results are appended to the processed
message does not have these shortcomings. Furthermore, since intermediary results refer to the
processed message, it makes sense to have the two together.
For these reasons, in the rest of this dissertation, it is assumed that security services exchange
information with one another by means of annotated messages.

4.4 Illustrative Example

In the previous sections I showed the main characteristics of security services: the interface of the
services, service coupling approaches and ways of communication between services. In the next

4.4. ILLUSTRATIVE EXAMPLE 65

chapter, I will describe in detail the issues involved in designing and deploying a SOSA security
system. Before that, I will first present an illustrative example. The purpose of this example is
to show, for a concrete case, what the security requirements are, how these requirements can be
addressed in implementation, how the security system can be divided into security services, what
functionality is assigned to each service and how the services communicate with one another.
Furthermore, for better understanding the model, an analogy between the security system proposed
in this dissertation and a document-based workflow is showed at the end of the section.

4.4.1 Scenario

A Web Map Service1 is serving maps to users. The system offers different types of subscriptions.
Based on the subscription type, users have access to maps covering different areas, containing
different types of information, and having different levels of detail. The system uses a flat-rate
charging scheme, therefore there is no need to meter service usage for each user.

4.4.2 Message Routing Solution

From the scenario above, the following security requirements can be identified:

Authentication Because the system has different users with different permissions, it is necessary
to authenticate the user’s requests. Assuming that users send a security token containing
their claimed identity together with their map request, it is necessary to verify that this
information is valid. Furthermore, once the identity is known and has been verified, it is
necessary to determine further identity attributes - in our case, the subscription type. We
therefore conclude that the following two tasks need to be performed for each request:

1. Verify that the identity information is valid;

2. Determine further identity attributes (the subscription type).

Authorization Based on the subscription type, it is necessary to determine whether a given map
request is permitted or not.

Audit In order to ensure that the security policies are respected, the system should also log
significant information found in incoming map requests and the generated responses. This
information may be used at a later point in time in order to determine the cause of system
failures or security breaches.

In order to produce an understandable design, the security requirements are assigned to services
according to the separation of concerns. As a result, we determine that the following three security
services must be implemented:

Authentication Verifies the validity of identity tokens. Furthermore, based on the identity infor-
mation, the subscription type is determined (the service connects to a user repository where
this information is stored). Finally, just before dispatching the message, an annotation con-
taining the subscription type is appended.

Authorization This service extracts the information regarding the subscription type from the
message. Afterward, the message payload is inspected and it is determined whether the request
it is permitted or not. If the request is not permitted an exception will be returned. Otherwise
the message will be forwarded.

1For details about WMS see section 2.2

66 CHAPTER 4. SERVICE ORIENTED SECURITY ARCHITECTURE

Log This service inspects the message (either request or response), extracts appropriate informa-
tion for audit and persistently stores this information.

F
irew

all

Authentication

W
M

S
 P

ro
xy

W
eb

 M
ap

S
er

vi
ce

 (
W

M
S

)

Firew
all

Service
Requester

Authorization

Log

1

2 4 5

67

8

Log
3

Perimeter Network Private NetworkExternal Network

Persistent
Log

User Profile
Registry

Figure 4.5: Security system using message routing

The deployment is showed in figure 4.5. Because the WMS service is security unaware, this one
has been deployed in the private network. However, an endpoint needs to be accessible to the
users which are located in the public network. For this reasons, a proxy service is deployed in the
perimeter network - WMS Proxy. The task of this service is to route the messages according to the
itinerary showed in the figure and to correlate the request and response messages (communication
is, as showed, asynchronous). This is conform to the Reverse Proxy Pattern, described in [95, 92].
In the following, the communication between the entities depicted in figure 4.5 is, step by step,
described:

1. The service requester creates a request message, containing a map request (as payload) and a
security token asserting its identity. The message is sent to the WMS Proxy.

2. The WMS Proxy appends the itinerary to the message and sends it to the first service along
the path - the logging service.

3. The logging service logs relevant information from the message. This service will log all
messages, including the ones that will later be rejected by the authentication and authorization
services. In this way, brute force attacks can later be detected.

4. The authentication service verifies the security token and annotates the message with the users
subscription type. If the security token is not valid, an exception will be returned to the client.

5. The authorization service determines whether or not the request is allowed based on the
subscription type.

6. The WMS processes the request and creates a response message containing the requested map.

7. The logging service logs relevant information from the response message.

8. The response is correlated with the request and is sent to the service requester.

4.4.3 Analogy to Real-Life Paper-Based Communication

The message flow and the processing model are to some degree similar to the communication
involved in a document-based workflow. An illustrative example is presented in figure 4.6.

4.4. ILLUSTRATIVE EXAMPLE 67

Archives
R&D Department

Executive Staff

Financial Department
Acquisitions &
Infrastructure

Department
Manager

Bob

Project Leader

General Manager

2

1

3

4

5

7

Computer

ordered

Computer

ordered

6

Figure 4.6: Analogy to document-based work flows

In the scenario we assume that Bob, a programmer employed in the R & D Department of a large
corporation, needs a new computer in order to better perform his work. For this, he writes a
request (perhaps motivating his demand) that he signs and sends it to his supervisor, the Project

Leader (step 1). The Project Leader inspects the request, perhaps annotates the request with some
remarks, approves it and then sends it to the Department Manager (step 2). This one will do
some more checks, approve it, perhaps annotate it with further remarks, and will send it to the
General Manager (step 3). The General Manager will inspect the request, inspect the annotations
of both the Project Leader and the Department Manager and approve it, with the condition that
enough investments funds are available in the budget. After this, the request is sent to the Financial

Department (step 4). Here, the request is inspected (all requests must be previously approved by the
executive staff), the costs for the new computer are evaluated, the company’s investment budget
is checked and finally, the request is approved. The request is then sent to the Acquisitions and

Infrastructure department (step 5). Here the computer is ordered and a message is sent to Bob,
letting him know that his new computer is on its way. However, because of internal regulations,
the response is first sent to the company’s archives, and only then sent to Bob (steps 6 and 7).
The persons involved in the workflow, follow a similar processing model to the security services:

1. They first analyze the document they received (inspecting the request and the annotations of
previous persons);

68 CHAPTER 4. SERVICE ORIENTED SECURITY ARCHITECTURE

2. Then the request is processed - the necessity is evaluated, funds are allocated (the security
services process incoming messages in an analogous way);

3. Then the request may be annotated; the reason for annotating a message is to share some
information (related to the request) with the persons along the communication chain;

4. Finally, the message is forwarded to the next person along the chain;

5. At any time, the request may be rejected (for example if there are not enough funds) or
deviated from its regular itinerary (for example, if more information is needed in order to take
the decision).

Chapter 5

Service Oriented Security Architecture - System

Description

In this chapter, I will describe in more detail the scope and the functions of the system, the most
important information elements, the distribution of the components together with the required
infrastructure as well as implementation aspects. In order to capture all these topics in a clear
and consistent manner, the proposed system will be described from five different viewpoints, as
specified by the ISO RM-ODP [7].
The chapter starts with a presentation of the ISO RM-ODP standard and the reasons for choosing
it as a means to describe the proposed security system. The next five sections describe SOSA

from five different viewpoints, as required by the ISO RM-ODP: section 5.2 - enterprise viewpoint,
section 5.3 - computational viewpoint, section 5.4 - information viewpoint, section 5.3 - computa-
tional viewpoint and section 5.6 - technology viewpoint.

5.1 The Reference Model for Open Distributed Processing

The Reference Model for Open Distributed Processing [7, 5, 6, 8] is a joint effort of the ISO and
ITU-T to develop a coordinating framework for the standardization of open distributed processing
[129]. It is an international standard for architecting open distributed processing systems that
provides a framework of building distributed systems in an incremental manner.
The RM-ODP standards have been widely adopted and are used in the specification and architec-
ture of distributed systems. [139] elaborates more on this topic and also presents three different
examples for modeling architectures using RM-ODP: a proposal for the use of RM-ODP for the
development of convergent applications, a generic architecture for customer relation management
(CRM) systems and a framework based on ODP for the integration among different computer ar-
chitectures. Furthermore, RM-ODP also constitutes the basis for several other standards. These
include the OGC Reference Model [14], the OGC GeoDRM Reference Model [149], the ISO 19100
series of geomatics standards and the OMG object management architecture.
The reason for choosing the RM-ODP as the means to describe the proposed security system is
that RM-ODP provides a rich set of architectural concepts and specification techniques that can
be applied to distributed systems of different sizes and complexities. By using the RM-ODP, the
proposed security framework can be defined in a consistent way. At the same time, because of

69

70 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

the separation of concerns introduced by the reference model, it is possible to specify for several
parts of the system in a implementation-independent fashion (the dissertation will propose a SOAP
implementation, but the security framework might as well be implemented for other messaging sys-
tems).
As distributed systems tend to be quite complex, the RM-ODP provides five viewpoints from which
to describe ODP systems. These viewpoints abstract the system from different perspectives in or-
der to simplify the description of complex systems. Table 5.1 introduces the different viewpoints
and presents the main concerns for each of them.

Viewpoint Description

Enterprise Concerned with the scope, role, policies and activities of the
system

Computational Concerned with the description of the system as a set of inter-
faces, without regard to distribution

Information Concerned with the information that needs to be stored and
processed by the system

Engineering Concerned with system distribution and the infrastructure re-
quired to support it

Technology Concerned with the choice of technology chosen to implement
the system

Table 5.1: The ISO Reference Model for Open Distributed Processing - viewpoints

Note that each of the viewpoints is a specification of the whole system - [7] advises that the different
viewpoints should be seen as projections on to certain sets of concerns rather than layers or design
methods. In that sense, the five viewpoints are interconnected, and influence each other. Figure
5.1 shows a graphical representation of the relationship between the different viewpoints. It also
shows how the viewpoints can be related to the software engineering process, as described in [129].

Computational
Viewpoint

Technology
Viewpoint

Engineering
Viewpoint

Requirements analysis

Functional Description

Design

Implementation

Enterprise
Viewpoint

Information
Viewpoint

Figure 5.1: The five viewpoints of the ISO RM-ODP

5.2. THE ENTERPRISE VIEWPOINT 71

5.2 The Enterprise Viewpoint

According to the RM-ODP, the Enterprise Viewpoint should address the roles played by the system,
the activities it engages in and policy statements, including those that define the system in relation
with its environment.
At the Enterprise level, the security system is seen as an atomic component. The different security
services are not visible. Therefore, the requirements set here, are general requirements which are
valid for most security systems for Web services.

5.2.1 System’s Environment

In Web service interactions, the actors are a service requester, a service provider and, if we follow the
SOAP model [88], one or more intermediaries. These entities can be grouped into administrative
domains. An administrative domain can be as big as a corporate network or as small as an
application client running on a user machine. Whenever a message enters or leaves an administrative
domain, a security system might be needed. Its task is to ensure that the policies for the respective
administrative domain are respected.
In terms of the relation with its environment the security system can be seen as a mediator1

(intermediary) between clients (service requesters) and service providers, where the two are located
in different administrative domains - figure 5.2 presents this metaphor. As such, the security system
receives requests2 from the clients and, after fulfilling various security functions (this might include
audit, filtering, etc.) the security system will decide whether to authorize the request or not. If the
request is authorized, the security system will hand it to the service provider. In a similar fashion,
the security system receives responses from the services and, after similar processing, the response
will be returned to the service requester.

Service
Provider

Service
Requester

... ...

Security System

Service
Requester

Service
Provider

Single Administrative DomainDifferent Administrative Domains

Figure 5.2: The mediator metaphor

Realization

There are various models, scenarios and implementations for security systems. For example the
security system can be tightly-coupled to the service provider, forming a monolithic system. In
such a case, the arrows in figure 5.2 are realized by API calls. The security system can also be
loosely-coupled to the service provider, and in this case the arrows in the picture are realized by

1Traditionally, security systems are associated with a gatekeeper (like Cerberus from the Greek mythology). The reason for choosing

another metaphor is that the purpose of the security system described here is much broader, going beyond restricting access to services.
2A request-reply message pattern is assumed for simplicity reasons. The concepts are also valid for other message patterns such as

one-way only.

72 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

means of messages. Furthermore, the security system (or at least parts of it) can be attached to
the service requester. One such example are trusted computing systems (like the ones associated
with DRM systems) where enforcement is implemented locally, on the service requester side.
In this dissertation, we assume that the security system communicates by means of messages with
the service requester and the service provider.

5.2.2 System’s Role

From an enterprise perspective the scope of the system is to provide security functionality to one
or more services (as illustrated in the mediator metaphor, figure 5.2). Figure 5.3 presents a UML
sequence diagram illustrating the role played by the security system. For simplicity reasons, in
this diagram only one service requester is accessing one protected service. However, as depicted
in the mediator metaphor one security system can protect several different services against several
different requesters.

sd EnterpriseViewpoint_Scope

Security System Protected Service

Service Requester

Service Invocation(identity, ...)

Security checks, Audit, etc.()

[Securi ty fai lure]:Notification(...)
Service Invocation(...)

Service Response()

Securi ty checks, Filtering, etc.()

Service Response()

Figure 5.3: The role of the security system

As seen here, the security system is located between the client and the protected service and has
the following tasks:

• It intercepts all messages incoming from the client;

• These messages are inspected together with the client’s credentials, and the security policies
are evaluated; this might include the verification of client’s identity, enforcement of access
control, etc.;

• If the security system decides that the client is not allowed to perform the service invocation,
a failure notification will be sent back;

• Otherwise the message is passed to the protected service, that will process the request and
return a result;

• The result is also intercepted by the security system. At this point the security system does
additional operations. This might include additional checks to determine if the client is allowed
to receive the result, encryption of message parts, filtering, etc.;

5.2. THE ENTERPRISE VIEWPOINT 73

• Finally, the client will receive a response from the security system. This can be one of the
following:

– An exception informing it that the security checks were unsuccessful;

– A modified version of the response sent by the protected service (filtered, encrypted, etc.);

– The response generated by the protected service (unchanged).

At this point it is important to make the following remarks:

1. The client sends some form of credentials together with its request. Most commonly the
credentials relate in some way to the user’s identity (examples include usernames, digital
signatures, etc). However, other credentials can be imagined, such as proofs of payment,
authorization assertions, etc. Furthermore, the credentials need not be explicitly send. Instead,
they can be implicitly determined by the security system (one such example are IP addresses).

2. The security system is trusted by the protected service to enforce the security policies on its
behalf.

3. The security policies can be as simple as only logging the client’s requests to very complex
rules involving distributed access control, message filtering, encryption, etc.

5.2.3 Functions

As showed in figure 5.2, the security system is located in the same administrative domain with the
protected services. It’s purpose is to enforce the domain specific security policies. This includes
all of the main security functions described in 2.4: authentication, authorization, confidentiality,
integrity, non-repudiation, privacy and availability. Furthermore, the security service might need
to provide other security related functions such as accounting and charging.
As the protected services and the security policies may be part of enterprise-specific workflows, the
security system should be extensible and should facilitate the integration with other services.

5.2.4 Multiple Security Domains. Security Off-Shoring

It is expected that, at least in some cases, not all of the security functions will be performed in the
same domain or organizational unit3. This is showed in figure 5.4.

Service Requester

Protected
Service

Domain #1 Domain #2

Security System

Figure 5.4: The security system spanning several domains

The motivation for this resides in the fact that a distribution of the security systems allows a more

3Organizational unit is used here in a broad sense: it can be a company, a department within a company, or simply a part of the

network that is under a different administration, possibly (but not necessarily) having different security policies

74 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

flexible solution. While dividing the responsibility and control over of the system in the same
domain allows for separation of security concerns, delegating these tasks to different organizations
would allow such things as distributed decision making, infrastructure consolidation and off-shoring
of tasks. Let’s look at two motivating examples before moving further:

a

User

Security System

Authorization

Billing Audit
Protected

Service

eBusiness Co. Data Provider Co.

Etc.

b

User

Security System

Authorization

Billing Audit
Protected
Service

eBusiness Co. Data Provider Co.

Etc.

Audit Co.

Figure 5.5: Geospatial business example

Geospatial eBusiness A geospatial data provider sets up a service that delivers geospatial in-
formation to clients. Because collecting and processing the geospatial data is expensive, the
company will not offer the service for free. Furthermore, for several reasons (Data Provider Co.
has little eBusiness know-how, etc.) they decide not to sell the service themselves. Instead,
they decide to use intermediate companies that advertise and sell the service, returning a cer-
tain percent of their selling to them. The scenario is presented in figure 5.5. Here, the dealers
(in the picture, eBusiness Co.) will only allow the users that pay to access the system. On the
other hand, because Data Provider Co. expects a certain percent from what the dealers sell,
Data Provider Co. will make an audit of all transactions. Therefore, the security system is
composed from different components that reside in different companies (see dotted line). The
example can be extended to a scenario where Data Provider Co. is not doing the audit, but
instead is delegating this task to a third party (Audit Co.).

Distributed Decision Making This is the case where the authorization decision can not be
taken in a single point. As an example, let’s look at the case of a bandwidth broker in a
multi-domain scenario (this use-case is also described in RFC2905 [148]): a user wants a
connection to another host with specific QoS parameters (see figure 5.6). In order to do this,
he will make a request to the local bandwidth broker. The local bandwidth broker will inspect
the network topology, verify if the requested bandwidth can be allocated for the connection
with the neighboring network and, if this is possible, authorize the request. However the user
needs an end-to-end connection with the requested bandwidth! In order for this to happen,
all the bandwidth brokers responsible for the intermediary networks need to accept the user’s
reservation request. Because the networks are typically under different administrative domains

5.3. THE COMPUTATIONAL VIEWPOINT 75

(usually different operators), and because the requests for bandwidth are made dynamically,
it is not possible to have a centralized place where the decision can be taken.

Bandwith Reservation

Communication

Local Network

Bandwidth
Broker

User

Bandwidth
Broker

Intermediary Network Destination Network

Bandwidth
Broker

Target Host

... ...

Authorization

Figure 5.6: The bandwidth broker example

5.3 The Computational Viewpoint

According to the RM-ODP [7], the Computational Viewpoint defines the functional decomposition
of the system into a set of services that interact at interfaces. Furthermore, this viewpoint should
capture the details such as internal actions of these services, interactions that occur between services
and contracts between the services and their environment, without regard to distribution [129, 14].
Accordingly, in this section we will decompose the security system into functional components
(security services) and will investigate the behavior and requirements for these components. We
will do this by analyzing the internal actions of the services and the interactions between them.
Furthermore, we will investigate the types of services that can be found in a security system and
present a classification based on the functionality of services.

5.3.1 Computational Object

Before going any further, lets first look at what objects and computational objects are in terms of
the ISO RM-ODP. [20] describes objects and computational objects as follows:

Object An object is a model of an entity. An object is characterized by its behavior and, dually,
by its state. An object is distinct from any other object. An object is encapsulated, i.e. any
change in its state can only occur as a result of an internal action or as a result of an interaction
with its environment.

Computational Object A computational object is an object as seen in the computational view-
point. It represents functional decomposition and interacts with other computational objects.
Since it is an object, it has state and behavior, and its interactions are achieved through
interfaces.

5.3.2 Security Services

As mentioned in the enterprise viewpoint, security systems can easily become quite complex. We
will therefore split it into smaller parts or subsystems. From a computational viewpoint, each
such a subsystem should be regarded as a computational object : it has state and behavior and it

76 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

interacts with the other subsystems in order to fulfill the scope of the security system. Here, these
subsystems are called security services.

class Security Serv ices

SecuritySystem SecurityServ ice

Serv icePart SystemPart

1

1

1

1

0..*1

Figure 5.7: Security services

As it can be seen in the UML diagram (figure 5.7), a security system can be composed from several
security services and each security service is composed from two distinct parts:

Service Part The service part is specific to the security service. It implements the functionality
of the security service. For example an audit service might have a logging routine as its service
part, while a non-repudiation service might have a digital signing routine as its service part.

System Part The system part defines how services relate to the system as a whole. It is concerned
with the choreography/orchestration of the security services (i.e. how the security services
interact in order to fulfill the purpose of the security system). In a typical implementation
scenario, services run on top of some sort of a middleware system which implements the system
part.

The distinction of the two parts need not necessarily be reflected in the implementation of the
services/system. Nevertheless, from a computational viewpoint it is necessarily to make a clear
distinction between these two types of behaviors.

5.3.3 Service Interactions. Interaction Interfaces

Figure 5.8 shows how the security system is interacting with its environment (the service requester
and the service provider). If there is no security system in place (figure 5.8A), the service requester
communicates directly with the service provider using external messages4. When a security system
is deployed (figure 5.8B), this one will act as an intermediary between the service requester and the
service provider. Both the communication between the service requester and the security system
and the communication between the security system and the service provider is realized through
external messages. This makes the security system easy to deploy because it is practically trans-
parent to both client and protected service.
As mentioned in the previous section, internally, the security system is structured into several ser-
vices. Exactly how these services are organized and distributed is not the concern of this viewpoint
(we will look at this in the engineering viewpoint). Instead, here, we will investigate the behavior
of these services. Figure 5.9 shows a UML diagram for this.

4Messages are called external because they are external to the security system.

5.3. THE COMPUTATIONAL VIEWPOINT 77

External Message

Service
Requester

Service
Provider

Service
Requester

Service
Provider

Security
System

A. Without Security

B. With Security

Figure 5.8: Interactions through external messages

class ComputationalVP_Interactions

SecuritySystem::SecurityServ ice

- state: State

+ doService(Message*, Message) : void
+ doChoreography() : void
+ doManagement(Configuration) : void

Figure 5.9: Behavior of security services

First, a security service has an associated state. The state is internal to the service. The service
exposes a management interface - doManagement - that allows the state to be changed. This can
be used to initialize the service or to change the configuration or other parameters (for example an
encryption service can be configured by specifying the encryption key). Other administrative tasks
(such as service monitoring, etc.) can be imagined as well. Self-understandable, stateless services
are also possible: such services will not need to expose a management interface because they always
provide the same response when they are interrogated with the same request.
The functionality of the service is given by the doService method. As seen in the UML diagram, the
security service receives an input message, processes it and produces an output message. Without
going into details (the semantics of the message will be described in the information viewpoint),
it is worth noticing that internal messages5 also contain meta-information: an internal message
contains the external message (or the payload - such as the request from the client) and several
blocks of meta-information (annotations, as discussed in section 4.3).
Last, in the UML diagram doChoreography realizes the choreography. It is showed as private,
because other services do not directly invoke the choreography.

5.3.4 Service Workflow

Even though the services implement different functions, they all follow some general principles:

• As identified in the enterprise viewpoint, the purpose of the security system is to mediate
the communication between clients and the protected services. Therefore the main task of all
security services is to process messages in order to apply security functions.

5A message, as used internally by the security system.

78 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

• In order to accomplish the system’s scope, security services must work together. As previously
identified, services communicate with one another by means of annotations.

stm SecurityServ icesWorkflow

Receieve message

1. Inspect the payload
and the annotations

2. Perform security
checks / Process

message

4. Modify the payload

5. Annotate the
message / Modify

existing annotations

3. Decision

Raise Exception

Return message to middleware system

Examples:

LDAP Lookup
Logging
Make Authorization Decision

Examples:

Fi ltering
Encryption

Examples:

Annotate with LDAP Attributes
Annotate with Authorization Decision

Possible reasons:

Securi ty checks failed
Message is not authorized

Figure 5.10: Internal workflow for security services

The general internal workflow for security services is depicted in figure 5.10 and explained in the
following:

1. Upon receiving a message, a security service will first analyze the message and inspect the
payload of the message and the annotations created by the services that previously processed
this message.

2. Based on both the payload and the annotations, the processing logic will be applied. Examples
for this are verifying the identity of a user by looking up his username in an LDAP directory or
making an authorization decision based on the information in the payload and the annotations
that were prepared by services that have already processed the message.

3. If the security checks failed, or the processing logic could not be performed correctly, an
exception is raised. The messaging middleware will dispatch the exception (see next section
for more about how exceptions are handled).

4. As a result of the second step, the payload may be modified: parts of it can be filtered out, it
can be augmented or transformations can be applied (for example encryption).

5.3. THE COMPUTATIONAL VIEWPOINT 79

5. If the service needs to share information with the other services, it will introduce additional
annotations and / or modify the exiting ones.

6. Finally, the message is returned to the middleware which applies the choreography rules and
hands out the message to other services.

5.3.5 Exceptions

If the security checks fail or if the processing logic cannot be correctly applied, security services
can raise exceptions signaling the errors encountered.
Here, a model similar to the SOAP model [88] is used for exceptions: an exception is a message with
a distinct payload containing details about the fault (reason, service that generated the fault, etc).
Besides this, the exception messages may also contain annotations and other meta-information.
Exception messages must be distinctly marked as such, so that the middleware and other services
can recognize them and treat them appropriately.
Because exceptions are treated like regular messages, they can be processed in a similar way with
request and response messages. It is up to the messaging middleware to properly route the exception
messages to appropriate services that handle them.

5.3.6 Service Taxonomy

In this section we will investigate the possible types of services that could be found in a security
system. For each of the services I will describe its functionality by following the steps described in
the previous section: we will look at how messages are processed, how the payload and annotations
are altered and what (if any) decisions regarding the choreography are taken.
The description of the security services is done from a computational point of view. We will
therefore focus on the functionality of each service and on the interactions between the different
services. For each of them I will specify the prerequisites - what the service expects from the other
services that have processed the message at a previous point in time - and the responsibilities - the
functional description of the service, including the communication between this service and other
services.
Note that the security services enumerated here are not mandatory and the list of security services
is not intended to be complete: not all services presented here must appear in a security system
and other security services may be imagined as well. Furthermore, depending on the specific
requirements of the protected service, the security services might be coarser or finer defined.

Gateway Service

On its way from the service requester to the protected service a message can travel by means of
different transport protocols. All transport protocols are able to convey some kind of security-
relevant information. However, when switching from one protocol to another, it is not always
possible to pass this information forward - some protocols are richer in security information than
others. The only way to relay such information is to extract it from the transport protocol and
append it to the message.
One place where this usually represents an issue is at the network perimeter, where the message
coming from the service requester enters the security system. At this point, a gateway service can
be envisioned which extracts security relevant information from the transport protocol and appends
it to the message in the form of annotations.

80 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Furthermore, because the gateway service is located at the network perimeter, it must also convert
messages from external messages (without annotations) to internal messages (with support for
annotations). The Envelope Wrapper pattern (described in 2.3) is applied here: the original message
is wrapped around an enveloping message which is semantically richer.

Prerequisites None.

Responsibilities

1. Wraps the external message in an internal message (with support for annotations);

2. Extracts security relevant information from the transport protocol layer (i.e. IP address,
HTTP Authentication Information, HTTP Cookies, SSL/TLS information) and appends it to
the message in the form of annotations, so that other services can make use of it.

Authentication

Authentication is a key security issue because without knowing the identity of the requester other
security functions cannot be fulfilled (for example you can not charge someone unless you know
who he is).
According to [131], an authentication service is a security service that verifies an identity claimed by
or for an entity. The same source further differentiates between data origin authentication service
and peer authentication service. In the case of Web services, where communication is message-
based, data origin authentication is important - a service provider wants to know that the message
originated from the claimed sender. Peer authentication, in the case of message-based systems, is
also done by means of data origin authentication.
As described in section 2.4.2, authentication consists of two different activities: identification and
verification. Because the two activities are distinct, they can be realized as separate security
services.

Verification Service

Service requesters normally attach some information asserting their identity to service requests.
This information can be of one of the following two distinct types: information identifying the
requester and information corroborating the binding between the issuer and the identification in-
formation (credentials).
The task of a verification service is to check that the authentication information accompanying the
message are valid.

Prerequisites The service expects some credentials asserting the identity of the requester to be
present in the message. Additionally, the service should extract any other such credentials (if there
are any) from the communication channel.

Responsibilities Verify that the information asserting the identity of the requester is correct. This
might include checking the validity of digital signatures and certificates, verifying passwords and
other authentication credentials.

5.3. THE COMPUTATIONAL VIEWPOINT 81

Remarks

• It depends on the system’s policy, whether or not a message is rejected if a credential does not
validate. For example, certificates that verify but are expired might be accepted. Especially in
such cases it makes sense for the service to annotate the message with information regarding the
problems encountered when verifying credentials. The decision whether to drop the message
or not is in this case deferred until the authorization phase.

Identification Service

Identification refers to the process of distinguishing the requester from other entities. This is done
by means of attributes. Some identification information is included by the requester himself in
the message. However, in most of the cases, this information is insufficient to perform the other
security functions such as access control, audit, charging, etc.
The task of an identification service is twofold: first, it must verify the identification information
sent by the requester. Then, it must enrich it with sufficient additional attributes for the other
services to be able to perform their tasks.

Prerequisites The service expects some information related to the identity of the requester to be
present in the message. Alternatively, if such information is not present in the message, the service
should be able to procure it dynamically from other sources (such as the transport protocol).
Furthermore, in some cases, an identity might need to be assigned to the requester (for example
when a session is initiated).

Responsibilities An identification service will typically have the following behavior:

1. Verify that the supplied identification information is acceptable, sufficient and can be under-
stood. The purpose of this step is for the service to be able to differentiate the requesting
party from other entities;

2. Lookup the user in a database (such as an LDAP directory) and retrieve additional attributes
about the user;

3. Annotate the message with the attributes related to the user and/or the authentication
method, so that other services can make use of this information (for example the bank account
might be required by the charging service).

Remarks

• It does not always make sense to split the two authentication steps into separate services.
Depending on the specific requirements of the application being protected, the two services
can be implemented as a single service or as separate services.

• Identification services are useful in federation scenarios where requesters may have different
identities or they may be registered in different domains. The domains most probably use
different identification schemes. In such a scenario, an identification service can be deployed
that converts different kinds of identities to a canonical identification schema that is then used
through the rest of the system. In this way the identification is done centrally and, thanks
to the annotations, the other services can see the user as having a single identity (without

82 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

regard to the authentication method used or the registration domain), thus minimizing the
administrative overhead for other tasks such as rights management.

Authorization

As explained in section 2.4.2, authorization is the process of determining whether the requester
may use the protected service in a certain context and the process of enforcing this decision. This
is perhaps the most obvious security function of all, as for most of the applications it is crucial that
only certain users are allowed to perform certain operations that involve certain information.
Because authorization involves several tasks, most of the standards dealing with authorization
propose architectures where these tasks are distributed among different services. In the following,
we will look at how authorization is distributed in RFC2904 - AAA Authorization Framework
[147] and the OASIS XACML 2.0 standard [18]. OASIS’s XACML standard defines the following
components6:

Policy Administration Point (PAP) The system entity that creates a policy or a set of policies.

Policy Information Point (PIP) The system entity that acts as a source of attribute values.

Policy Decision Point (PDP) 1 The system entity that evaluates applicable policies and renders
an authorization decision.

Policy Enforcement Point (PEP) 1 The system entity that performs access control, by making
decision requests and enforcing authorization decisions.

IETF’s AAA Authorization Framework defines the following components:

Policy Retrieval Point (PRP) An entity responsible for retrieving the authorization policies
from a policy repository on behalf of the organization that requires it.

Policy Information Point (PIP) An entity that provides information against which policy con-
ditions are evaluated (such as resource status, session state, or time of day).

Policy Decision Point (PDP) A logical entity that makes policy decisions for itself or for other
network elements that request such decisions [133].

Policy Enforcement Point (PEP) A logical entity that enforces policy decisions [133].

As it can be seen, both specifications propose similar components. The PIP, PDP and PEP have the
same name, perform similar tasks and are interconnected in similar ways in both models (figure 5.11
shows the data flow between the different components in XACML, as described in the specification).
For policy management, XACML describes the PAP service, while [147] proposes the PRP service.
However, both services have similar functionality - their purpose is to provide the PDP with policies
that this one can then use in the decision making process.
Having the two service definition patterns (mediation vs. invocation) discussed in the previous
chapter in mind (section 4.2.2), the four components can be implemented as follows:

PIP, PDP These two services can be realized as both mediation services as well as RPC. XACML
[18] proposes an RPC definition for these services. The following sections show how the two
services can be realized as mediation services.

6The descriptions for each component are taken from the XACML specification.
1[18] states: This term is defined in a joint effort by the IETF Policy Framework Working Group and the Distributed Manage-

ment Task Force (DMTF)/Common Information Model (CIM) in [RFC3198]. This term corresponds to ”Access 272 Enforcement

Function” (AEF) in [ISO10181-3]

5.3. THE COMPUTATIONAL VIEWPOINT 83

PEP

context
handler

4. request
notification

PIP

6. attribute
query

11. response
context

1. policy

8. attribute

environment

resource

subjects

7b. environment
attributes

PAP

obligations
service

13. obligations

PDP

access
requester

2. access request

9. resource
content

3. request 12. response

7c. resource
attributes

7a. subject
attributes

5. attribute
queries

10. attributes

Figure 5.11: Data flow and component interconnections in XACML [18]

PEP If realized as a service separate from the rest of the security system, it only makes sense to
realize this service as a mediation service.

PAP / PRP The administration of policies and the policy repository, if exposed as a service, it
only makes sense to be realized as an RPC service. A possible implementation of the PAP as
mediation service, would extract the policy from the repository and attach it to the message,
in order for the PDP to evaluate it. Such an implementation introduces too much overhead
and has little practicability.

Figure 5.12 illustrates how the authorization services can be chained together in an authorization
process (in this figure, other security services are neglected for simplicity reasons). The engineering
viewpoint (section 5.5) describes in more detail the how different security services can be combined
and several patterns are proposed.

Policy Information Point - PIP

The role of the PIP is to provide information against which policy conditions are evaluated. It
must provide the PDP with enough information for this one to be able to make the access control
decision.
In XACML [18], the PIP provides information in the form of attributes. Three types of attributes
are defined: subject attributes (refer to the service requester), resource attributes (refer to the

84 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Authorization

PEPRequester ResourcePDP
PIPPIP

PIP

Figure 5.12: Data flow and component interconnection for authorization in SOSA

resource being accessed) and environment attributes (refer to the context / environment).
As a security service, a PIP may provide any of the three type of attributes. It is also possible
to have several PIP services, each of them providing a different kind of information. It should
be remarked that the previously defined identification service provides attributes associated to the
requester - subject attributes, and in that sense it is also a kind of PIP.

Prerequisites None

Responsibilities The service inspects the messages it receives and annotates them with attributes.
These attributes will later be used by PDP services when evaluating the policies.

Policy Decision Point - PDP

As mentioned earlier the PDP’s duty is to make authorization decisions based on the applicable
policies. A PDP service first needs to determine the policies which are applicable for the given
context (message, requester, environment). To do this, the PDP may query one or more PAP
services which will provide the policies to the PDP. The mechanisms for this, together with a
description of how different policies can be combined and how conflicting rules are resolved is
described in the XACML specification [18].
In the policy evaluation process, the PDP may require additional information about the requester,
the environment or the resource being accessed. In XACML, a pull model is used (see figure 5.11)
- the PDP requests attributes from the context handler, a logical component which then connects
to different PIP services. This model assumes PIP services expose an RPC-like interface. In this
dissertation it is assume that security services are realized as mediation services. In this case, a
push model is necessary: the PIP services annotate messages with attributes, in this way pushing
the information to the PDP service.
Of course, the two models do not exclude one another, and therefore it is possible to realize
PDP services which combine the two models: some of the attributes are pushed to the service by
mediation PIP services, while other attributes are retrieved by connecting to PIP services which
expose an RPC-like interface.

Prerequisites The PDP requires enough information in order to be able to evaluate the applicable
policy. Most access control decisions are based on the identity of the requester; it is the task of
identification services to provide identity attributes. Further attributes (related to the subjects,
the environment or the resource being accessed) may be provided by PIP services.

5.3. THE COMPUTATIONAL VIEWPOINT 85

Because it is possible to have several PDP services chained together, the PDP may expect that the
message contains the authorization decision of other PDP services.

Responsibilities

1. Determine the applicable authorization policies. For this the PDP may query PAP services as
described above.

2. Based on the authorization policies, the payload of the request (the external message) and
other relevant information (identity attributes, other attributes provided by PIP services,
authorization decisions from other PDP services) make an authorization decision.

3. Annotate the message with the authorization decision so that other services (PEPs, Audit,
other PDPs, etc.) can use this information.

Remarks

• The decision need not be boolean (i.e. ”authorized” / ”not authorized”). XACML [18] defines
the concept of obligations: PDP services can include obligations in their response in addition to
the decision. In this case, the PEP must grant access only if the obligations can be discharged.

• Several PDP services may exist in a security system. The PDPs can authorize different parts
of the message or they can be arranged in a sequence so that the decision result from one
service is used as input for the other services (for more, see the Distributed Decision Making
Pattern in the Engineering Viewpoint, section 5.5).

Policy Enforcement Point - PEP

As discussed earlier, the PEP’s duty is to enforce the authorization decisions taken by one or more
PDP services.

Prerequisites Typically, the PEP expects one or more authorization decisions to be attached to
the message (it is possible to have several PDP services in a security system). Furthermore, if
PDP services also implement obligations, the PEP may also expect obligations to be present in the
message.

Responsibilities

1. Retrieve the authorization decision and the obligations from the message.

2. Enforce the authorization decision and discharge the obligations. The enforcement is typically
done by denying the requests for which the authorization decision is not authorized or for
which the obligations can not be discharged. Finer grained enforcement methods can also be
imagined, where the message is filtered based on the authorization decision, so that only a
subset of the original request/result passes the enforcement point (a message filter security
service is showed on the UML diagram in figure 5.13).

3. Optionally, annotate the message with the reason for rejecting / filtering the message. This is
useful to other security services (such as audit, etc.) and informative to the client (knowing
the rejection reason, this one can fix the problem and resend its request).

86 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Remarks

• XACML recommends that the PEP be placed at a choke point, which cannot be bypassed -
this is usually close to the resource being protected. Therefore, a good strategy is to have a
distinct PEP for every service being protected by the security system

• While PEPs need not necessarily know the semantics of the payload in order to enforce an
authorized/not authorized decision, in order to build a PEP with filtering capabilities, detailed
knowledge about the payload semantics are needed.

Audit

[49] defines an audit guard as a mechanism used on behalf of an owner that monitors actions and
agents to verify the satisfaction of obligations. It is typically used to monitor the state of a resource
or service and determines whether the associated obligations are satisfied.
The same source also states that by their nature, it is not possible to proactively enforce obligations;
hence an obligation violation may result in some kind of retribution after the fact of the violation.
[47] further differentiates between passive and active auditing, where passive auditing is essentially
logging with the expectation that the log will be later analyzed and, perhaps retributions be made.
Active auditing is the complement of passive auditing and determines if the information in the
message constitutes an exceptional condition (such as a violation of the obligations) and if so, takes
action.
Audit guards can be implemented in several forms, and the exact behavior of an audit service is
in big part dependent on the service being protected (especially if we have active audit guards in
mind). In the following two sections we will propose two general-purpose security services that
illustrate passive and active audit guards.

Logging Service

A logging service is a security service that logs certain parts of a message. It is important to remark
that it can log both parts of the payload (external message) as well as meta-information such as
annotations - for example authorization decisions, authentication statements, etc.
A logging service is an example of a passive audit guard: its main duty is to persistently store
information so that later, this can be analyzed and possibly, retributions be made.

Prerequisites None.

Responsibilities To log parts of the message. Because this is a passive security service it will not
produce new information that needs to be communicated to other services, and therefore will not
annotate the message.

Remarks

• A logging service is transparent to the other services. It makes no difference for them if the
service is there or not because other services do not require information produced by the
logging service. However, having the system’s choreography in mind, other services might
prepare audit information for the logging service.

5.3. THE COMPUTATIONAL VIEWPOINT 87

Notification Service

A notification service is an example of active audit guard. Based on the information found in
the message (both payload and meta-information), the notification service would determine if an
exceptional state is reached and in this case send a notification. The notification could be sent to a
human (for example an email to the system administrator describing the situation) or to a machine
(an external Web service is invoked).

Prerequisites None.

Responsibilities To determine if an exceptional state is reached and if so, to send a notification.

Remarks

• Similar to the logging service, a notification service is normally transparent to the other ser-
vices.

• The task of determining whether an exceptional state is reached can also be delegated to a
PDP service. In this case a notification service would resemble a PEP who’s enforcement
strategy is ”allow access and send notification”.

Cryptographic Services

Cryptographic security services are services responsible for applying cryptographic functions either
to the whole message or only to specific parts of this one (the payload, parts of the payload or
annotations). Through the use of cryptographic functions the following security requirements are
addressed:

Confidentiality Achieved by means of encryption;

Integrity Achieved by means of digital signatures;

Non-Repudiation Achieved by means of digital signatures.

The following three sections describe three cryptographic security services: a digital signature
service, an encryption service and a service for the distribution of DRM-protected media. The need
for having such services separated from the protected service has been remarked in several sources
including [88, 49].

Encryption

An encryption security service would simply encrypt parts of the message. As such, it ensures
the confidentiality of the data being encrypted: only the entities possessing the decryption key
are able to read the data. The data is protected while in transit against eavesdroppers that tap
the communication channels and against intermediaries (such as external services or other security
services, etc.) that further process the message. The encryption algorithm and keys can be either
statically configured or dynamically assigned (in this case the service would also determine which
key should be used for which messages). For more about granularity see section 5.3.7.
A typical usage scenario for an encryption service is where a client invokes the protected service
and mandates that the response message be encrypted with his public key.

88 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Prerequisites None.

Responsibilities

1. Determine what parts of the message shall be encrypted, what algorithms and keys shall be
used;

2. Apply the encryption algorithm.

Digital Signature

A digital signature security service digitally signs parts of the message it processes. As such, it
ensures the integrity of these parts (i.e. other entities processing the message can be sure that
these parts were not altered) and non-repudiation (i.e. the receiving party has a proof of origin).
As in the case of the encryption service, the algorithm and keys to be used can be either statically
configured or dynamically assigned.
One typical usage scenario for a digital signature service is where a client invokes the protected
service and mandates that the response message be digitally signed by the protected service.

Prerequisites None.

Responsibilities

1. Determine what parts of the message shall be digitally signed, what algorithms and keys shall
be used;

2. Apply the digital signatures.

Digital Rights Management

[103] defines Digital Rights Management as a collection of technologies that enable technically en-
forced licensing of digital information. In most of the DRM systems the digital contents has an
associate digital license which states the conditions under which the content might be used. In
order to enforce the license, the content is usually packaged together with its license and then
encrypted. Only authorized devices (that know the semantics of the package and have knowledge
of the decryption key) are able to decrypt the package and make use of the content.
A DRM security service is a service that assigns a license to the content (this one is typically found
in the payload), bundles the license together with the contents and finally encrypts the bundle so
that only authorized devices are able to make use of the contents. It should be remarked that the
emphasis is set here on associating an appropriate license to the content and not on the encryption
process.
Such a security service would typically be used when distributing media that has associated intel-
lectual property rights. There are many examples for this: music, video, books, etc.

Prerequisites None.

Responsibilities

1. Associate a license with the contents;

2. Package the license together with the contents;

5.3. THE COMPUTATIONAL VIEWPOINT 89

3. Encrypt the package using the appropriate algorithm and keys.

Remarks

• There need not be a single content part in the payload. Instead, the payload may contain
several content parts with different associated licensees.

• Another practice used in the distribution of digital media is watermarking : small amounts of
information are embedded in the content so that at a later point in time the origin can be
traced. This functionality can be implemented by a different type of DRM service.

Accounting

As identified in [69], services can be divided in two categories:

• Simple services (for example a stock quote service), where there is no quality of service guar-
antee, which are generally available at no charge;

• Services that clients use in business transactions, in which quality of service plays an important
role, which are most probably not offered free-of-charge.

For the later category, the service provider needs to meter the usage of the service, so that he
can later charge for the usage. Charging is discussed in the next section. For the purposes of
accounting, it’s important to notice that charging could be either done on a periodical basis (i.e
monthly, yearly, etc.) or immediately.
In the proposed architecture, accounting can be implemented as a security service who’s task is
to measure the usage of the protected service for each of the users. How the usage is measured,
depends on the kind of service provided and on the business model chosen. Examples of existing
business models used for Web services are: pay-per-click, free-for-use, subscription, lease.

Prerequisites Because accounting is done on a per-user basis, the accounting service requires that
an authentication service had already authenticated the user, and had annotated the message with
details regarding his identity. In most of the cases, accounting is also audited. In this case the
presence of an audit service is also required.

Responsibilities

1. Extract information regarding the user identity from the message (this has been previously
prepared by an authentication service);

2. Compute the usage of the protected service;

3. Either store this information in a database (if the charging is done on a periodic basis) or
annotate the message with information regarding the usage so that a charging service can
charge for the usage of the service right away.

Charging/Billing

The main task of a charging/billing service is to charge users for the usage of the protected service;
this is done based on the information provided by the accounting service.

90 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Prerequisites A charging service requires that an authentication service has identified the user
and also annotated the message with information sufficient to for charging. Additionally, because
charging is done based on accounting information, the charging service requires that an accounting
service has also annotated the message. Finally, as in the case of accounting, charging is also
normally audited.

Responsibilities

1. Extract information regarding the user’s identity, especially the information necessary for
charging from the message; also extract information regarding accounting;

2. Based on the accounting information, compute the amount of money that the user needs to
be charged with;

3. Charge the user;

4. Optionally, mark the message as ”charged” (by means of annotations) so that authorization
services can use this information in authorization decisions.

Remarks

• The accounting and charging services are tightly coupled and need not necessarily be separately
implemented.

Message Validation

A message validation service must simply verify that the semantics of the message are respected.
This function is important especially when messages are coming from an unreliable source. This
service is intended as a countermeasure against several common types of attack targeted at systems
not performing input validation: buffer overflow, SQL injections, etc. [94, 71, 56] provide further
information about message validation strategies and implementation.

Prerequisites None.

Responsibilities To verify that the message is valid and if not, to drop the message and optionally
raise an exception.

Replay Prevention

Another traditional type of attack is where an attacker repeatedly transmits a valid message with
a malicious intent. Usually the middleware layer provides prevention mechanisms for this type of
attack. However, if the middleware layer is not able to prevent such attacks, this functionality
can be implemented in a standalone security service, who’s task is to ensure that messages are
not replayed. This is usually accomplished by the use of unique message identifiers, nonces or
timestamps which are stored in a replay cache. [94, 35] further detail replay attacks in the context
of Web services and provide guidance for the implementation of countermeasure strategies.

Prerequisites None.

Responsibilities To prevent messages from being replayed.

5.3. THE COMPUTATIONAL VIEWPOINT 91

Infrastructure Services

The following sections we will present a couple of services that do not deal with security relates
aspects. These services are named infrastructure services because they provide basic functionality
to the security services. They have also been identified in [56] as specialized services in Enterprise
Services Bus architectures, and have been briefly discussed in section 2.3.6.

Orchestration Service

An orchestration service is a special processing service that centrally coordinates the execution of
several other services. This is usually done by invoking the other services according to some algo-
rithmic workflow, similar to the way functions are invoked in procedural programming languages.
Such a service could address sophisticated process management situations where several services
need to interact in a complex workflow. Standardized scripting languages for describing business
processes (ex. BPEL4WS) exist and implementations available on most of the platforms, making
orchestration services a convenient choice.

Prerequisites None.

Responsibilities To centrally coordinate the execution of other services.

Message Transformation Service

A message transformation service is a processing service which transforms messages from one repre-
sentation to another, according to some transformation rules. Besides modifying the representation
of the message, a transformation message might also filter the contents of the message or augment
it. Transformation services can be used for several reasons:

• To integrate services that use different representation format for messages;

• To filter information before invoking a service (for example for privacy reasons). In this case
the transformation service removes some of the annotations and / or parts of the payload.

If messages are encoded in XML, XSLT can be used to specify the transformation rules, making
this service very convenient and with a high degree of reusability.

Prerequisites None.

Responsibilities To transform messages according to transformation rules.

Message Storage

A message storage service is a specialized service which stores messages. Message storage can be
either persistent or temporary. Persistent storage of data may be required in some authorization
scenarios where the intervention of a human person is necessary. In this case the message needs to
be stored until the human person analyzes the message and takes the authorization decision (for
more, see the Asynchronous Decision Making Pattern in the Engineering Viewpoint, section 5.5).
Temporary storage is useful in scenarios where caching is required.

Prerequisites None.

92 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Responsibilities To temporarily or persistently store messages.

UML Diagrams

Figure 5.13 shows a possible UML representation for the taxonomy of security services described in
this section. Figure 5.14 shows the dependencies between services, as identified in the prerequisites
clause for each of the services.

5.3.7 Granularity and Reusability

The granularity of the services is also an issue to be investigated. While having fine grained
defined services brings a good separation of duties which in turn makes the services reusable, this
also has its negative impact because it makes the choreography of the services complex, and may
render performance problems. When making a choice regarding the granularity of the services, it is
important to consider all the requirements of both the service requesters and the protected service.
Another issue related to granularity is reusability. There is always the choice between making a
specialized service and a more general, configurable and therefore a more reusable service. The
following shows some examples:

Cryptographic Services Here the cryptographic algorithms and keys can be either internally
defined or they can be dynamically specified for each cryptographic operation;

Message Transformation Here the transformation rules can be statically defined, can be loaded
from a repository (if some management functionality is implemented) or they can be dynami-
cally specified for each message that needs to be transformed.

When choosing between these options there plenty of issues to be taken into consideration, such as:
how often are the parameters of the security system changing, how much management should the
system cope with, how often are the requirements of the protected service changing, are there off-
the-shelf components that could be directly used? Ultimately, this is an implementation decision.
In chapter 6, I will show how these issues have been dealt with in practice and the motivation
behind the decisions taken.

5.4 The Information Viewpoint

According to the RM-ODP [6], the Information Viewpoint defines the semantics of information and
the semantics of information processing in an ODP system in terms of configuration of information
objects, the behavior of those objects and environment contracts for the system.
Accordingly, in this section the information existing in our security system will be described and
analyzed. I will examine the information exchanged between different entities of our security system:
the information used in the communication with the service requester and protected service and the
information exchanged internally between different security services, including exception messages.
Security services also store information internally, for their own use, such as policies, directories
used to store identity information, keys, etc. A detailed information model for each service is not
within the scope of this dissertation. The reason for this is that, as described in the computational
viewpoint, the exact tasks for each security service depends on specific application requirements.
Instead, only those general information aspects which are valid for all security services will be
described here. More details about the information model for specific security services can be
found in chapter 6, where the practical applications of SOSA are described.

5.4. THE INFORMATION VIEWPOINT 93

c
la

s
s

S
er

v
ic

e
sT

a
xo

n
om

y

«
a

b
st

ra
ct

»
S

ec
ur

ity
S

e
rv

ic
e

A
ut

he
n

tic
at

io
n

A
ut

ho
ri

za
tio

n

P
D

P

P
E

P
P

IP

«
a

b
st

ra
ct

»
A

u
di

tG
ua

rd

L
og

in
g

N
ot

if
ic

a
tio

n

«
a

b
st

ra
ct

»
C

ry
pt

og
ra

p
hi

c
S

er
vi

c
e

E
n

cr
yp

tio
nD
ig

it
al

S
ig

na
tu

re

D
R

M

A
cc

ou
n

tin
g

C
h

ar
gi

n
g

M
es

s
ag

eV
al

id
at

io
n

R
e

pl
a

yP
re

v
e

nt
io

n

«
a

b
st

ra
ct

»
In

fr
as

tr
u

ct
u

re
S

e
rv

ic
e

O
rc

h
es

tr
a

to
r

M
e

ss
ag

e
Tr

a
ns

fo
rm

a
tio

n

M
es

sa
ge

S
to

ra
ge

M
es

sa
ge

F
ilt

e
r

Id
en

tif
ic

at
io

n

V
er

ifi
c

at
io

n

G
a

te
w

ay

W
a

te
rm

a
rk

in
g

Figure 5.13: Taxonomy of security services

94 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

class DependencyGraph

«abstract»
SecurityService

Authentication

+ getChargingInfo() : ChargingInfo
+ getIdentity() : IdentityInfo

Authorization

«abstract»
AuditGuard

+ doAudit() : void

«abstract»
CryptographicService

Accounting

+ getAccountingInfo() : AccountingInfo

Charging

MessageValidationReplayPrev ention «abstract»
InfrastructureService

Figure 5.14: Dependency graph for security services

5.4.1 Messages

A message is the basic unit of data sent from one entity to another; entities are the service requesters,
the security services and the service providers. From the security system’s point of view, we can
differentiate between:

Internal Messages Messages exchanged within the security system, between security services;

External Messages Messages that are not internal to the security system, that is, messages that
either originate from the service requester or messages that are sent to the protected service.

As described in the enterprise viewpoint, the purpose of the security system is to enforce the
security policy on messages addressed to / originating from a protected service - these are external
messages. The security system is (as described in the computational viewpoint) composed from
several different security services that communicate among them by means of internal messages.
In the following both internal and external messages are described. External messages are requests
to the protected service or responses from this one. For this reason, the model described in W3C’s
Web Services Architecture [49] is used. Internal messages are built upon the same model, leveraging
the header mechanism.

External Messages

An external message is the basic unit of data exchanged outside the security system. The main
parts of an external message are the message header and the message body. The header is usually
built in a modular fashion and contains information that is not specific to the application and is
mainly intended for the processing of the message. The body of the message contains application
specific information.
Another important feature of messages is the addressing information. Each message has exactly

5.4. THE INFORMATION VIEWPOINT 95

one message sender and one or more message recipients. The addressing information is embedded
in the message in well-known locations so that transport services are able to locate it in order to
deliver the message.
External messages can be as easy as an HTTP GET request, in which the HTTP headers are the
header and the URL encoded parameters are the body. The addressing information is expressed
by the URL and information found in the TCP/IP protocol. However, more advanced messaging
systems such as SOAP or JMS would fit better the requirements of the security system described
here, because they provide richer support for processing among multiple messaging agents.

Internal Messages

An internal messages is the basic unit of data exchanged between security services. An internal
message contains an external message (the message that is being processed - such as a request from
the client or a message generated by the protected service) and several annotations.
Because security services are also Web services (in the same way as the protected service), the
communication among them is subject to the same requirements as the communication external to
the security service: there is a need for addressing information (so that messages get delivered) and
for a separation between header and body to facilitate modular processing of the message. Because
the requirements are similar, internal messages can be implemented on top of external messages,
by adding support for annotations. This is illustrated in the UML diagram 5.15.

class InformationVP_Messages

«abstract»
Message

«abstract»
ExternalMessage

«abstract»
InternalMessage

Annotation

0..*

1

1

1

Figure 5.15: Messages

Annotations

An annotation is the basic data structure used by security services to communicate information to
one another. As also described in section 4.3 and the computational viewpoint, after processing a
message, security services are able to annotate it with the results from the processing routine. In
this way, this information remains bound to the message, and can be used by subsequent security
services when processing the message. Annotations are described in detail in the next section,
where an information model is presented and analyzed.

96 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

5.4.2 Information Model for Annotations

Annotations can be seen as assertions: an annotation asserts some fact about something (for
example ”user john is authorized to borrow books from the library”). These assertions are created by
one service and are destined for one or more services that will later process the message. Upon
receiving a message, security services read the annotations and can take action depending on the
contents of the annotations. In complex systems, where trust relations between security services
need to be taken into considerations, certain security services may chose to ignore some annotations
or raise exceptions (for example if they do not trust the issuer of certain annotations).

class InformationVP_Annotations

«abstract»
Annotation

- ID: String
- Author: URI
- Target: URI
- Timestamp: Date

+ sign() : void
+ signContent() : void
+ encrypt() : void
+ encryptContent() : void
+ decrypt() : void
+ decryptContent() : void
+ verifySignatures() : void

AttributeValuePairAnnotation

- AttributeName: String [1..n]
- AttributeValue: String [1..n]

ArbitraryContentAnnotation

- Content: ArbitraryContent

Figure 5.16: Annotations

Following the above description, an annotation should contain at least the following information
(this is graphically illustrated by the UML diagram in figure 5.16):

Author An information that uniquely identifies the service that created the annotation (there
should be a single author for each annotation). This information is important if trust between
security services is an issue to be taken into consideration. In this case, security services can
use this field to verify the source of the information. In situations where trust between services
is not an issue, services can only look at the contents of the annotation without verifying the
source of the information.

Target An information that will identify the recipients of the annotation, that is, the service or
services that should process the annotation. This information is optional and is designed to
simplify the processing of annotations. The target does not uniquely identify a security service,
but rather announces the kind of information that the message contains, or the purpose of
this information. Therefore services can inspect this field and decide whether the contents of
the annotation is relevant to them or not.

Contents This is the assertion itself and its presence is mandatory. It should be possible to
allow for different kinds of contents: arbitrary contents, attribute pair, etc. These are further

5.4. THE INFORMATION VIEWPOINT 97

described in the next subsections.

ID A unique identifier for the annotation. This permits the annotation to be referenced from
within the message (for example by other annotations or by digital signatures) and allows a
more efficient processing (services can easily index annotations).

Timestamp The time of creation. This is useful especially in combination with digital signatures
to prevent replay attacks.

Digital Signature In complex systems, where internal messages are processed by not totally
trusted services, or in those cases where messages travel over unreliable channels, digital sig-
natures should be added to assertions. In this way, a receiver can verify that the issuer of
the annotation is the claimed entity, and therefore that the contents of the annotation can be
trusted.

Encryption In the same situations as above, there might be the need to encrypt certain anno-
tations either in whole or only the contents field. Encrypting the whole annotation means
encrypting both its contents field as well as the other fields (author, target, id and times-
tamp). If only the contents of the annotation is encrypted, the other fields will remain in clear
text.

As far as the contents field is concerned, two models are proposed: arbitrary-content annotations
and attribute-value pair annotations. The first one has no semantics defined and has the advantage
of being extensible, while the latter one has strong semantics defined, which gives it the advantage
of being simple and easy to use. The two are described in the following two subsections.
Depending on specific application needs and the exact realization (encoding) of annotations, other
information may be included in annotations or other annotations types may be defined. For this,
the arbitrary-content annotation can be used as a starting point, and new annotation types be
derived through either extension or sub-typing.

Arbitrary-Content Annotations

In the case of an arbitrary-content annotation, no structure for the contents is defined and no
constrains are placed on the contents. It is up to the service creating the annotation and the services
consuming it to decide how the contents is structured, encoded and interpreted. An example of
arbitrary-content annotation is an annotation that stores an arbitrary XML block.

Attribute-Value Pair Annotations

An attribute pair annotation stores information of the form attribute = value. For performance and
flexibility reasons, it should possible to store several attribute-value pairs in a single annotation.
In comparison with the previous annotation type, here the semantics of the information are well
defined: both attribute name and the value must be strings. Attributes can be structured, if a
corresponding naming schema is used for the attribute name (i.e. ”level1.level2.level3.name”).

Arbitrary-Content Annotations vs. Attribute-Value Pair Annotations

Attribute-value pair are semantically rich enough to accommodate annotations produced by most
security services. A couple of examples are given below:

1. Identification Service

98 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

• user.identity.department = Human Resources

• user.billing.creditCard.type = VISA

2. Authorization / Policy Information Point (PIP)

• resource.accessType = read

3. Authorization / Policy Decision Point (PDP)

• message.authorized = true

4. Accounting

• message.accountingUnits = 27

However, the attribute pair annotations do not accommodate certain annotations. One example for
this is the case of annotations created by PDP services that contain obligations - a richer semantical
model is necessary to encode obligations. For such cases, an application should either use arbitrary
contents annotations, or define a new annotation type (through extension / sub-typing).

Comparison with Other Models

It was mentioned earlier that annotations should be seen as assertions, and therefore it is worth
discussing the similarities / differences between the annotations proposed here and the assertions
defined in SAML [22].
Furthermore, because assertions are designed to store intermediate processing results, they share
similarities with the SOAP header blocks, which are designed to allow the processing of a SOAP
message by multiple services.

Annotations as Custom SOAP Headers Annotations are intended to be processed by other security
services in the same way SOAP headers are intended to be processed by certain nodes along the
message path. SOAP headers contain a role7 attribute, that identifies the SOAP nodes that must
process the header block. This field is similar to the target element of annotations.
SOAP headers do not have support for the rest of the annotation information fields (author, id,
timestamp). The contents of SOAP headers is an arbitrary XML block, with no structure defined,
which is similar to the arbitrary-content annotations. No direct support for digital signatures and
encryption is built into SOAP headers, however XML Encryption [160] and XML Digital Signature
[159] can be used to implement these features.
In SOS!e 1.0 annotations are implemented as SOAP headers (see the Technology Viewpoint,
section 5.6 for details).

Annotations as SAML Assertions SAML assertions have a similar structure with the annotations,
in that they also contain information about the issuer, the issuance timestamp and an assertion
ID. They also have built-in support for digital signatures, but not for encryption.
Because of the use-cases that lie behind the design of SAML, assertions are always made about
a subject; a subject is either a human or a software agent. This is not necessarily the case for
annotations which contain security information about the message they are bound to. Annotations
may contain assertions about a subject such as for example information regarding the sender of the

7In SOAP 1.2, [88]

5.4. THE INFORMATION VIEWPOINT 99

message, but can also contain information that is not bound to an identity - such as context infor-
mation which needs to be evaluated by a decision making service. Furthermore, SAML assertions
do not have a built in support for the target field.
These shortcomings can be overcome by developing a profile of SAML where custom assertions are
defined for annotations. This is possible, and several other specifications take advantage of this
mechanism (for example the SAML profile of XACML [18]).
Besides the up-mentioned shortcomings, SAML offers a lot of advantages: SAML attribute-pair
annotations can be used to implement attribute-value pair annotations and the combination of
WS-Security and SAML allows the binding of assertions to SOAP messages in a way that prevents
replay attacks. Through WS-Security, SAML assertions are attached to SOAP messages in special
SOAP headers - this feature can be used to leverage the advantages of the previous approach.
In SOS!e 2.0 annotations are implemented as SAML assertions (see the Technology Viewpoint,
section 5.6 for details).

5.4.3 Information Model for Exceptions

In the computational viewpoint it was mentioned that if the security checks fail or if the processing
logic cannot be correctly applied, security services can raise exceptions signaling the errors encoun-
tered. Exceptions take the form of messages which are distinctly marked as exception messages
so that the middleware system and the other security services can recognize them and treat them
appropriately.

Figure 5.17: Information model for exceptions

An information model similar to the one from the SOAP specification [111, 88, 89] is adopted here.
An exception message will contain as payload information detailing the exception (see figure 5.17).
The following fields shall be present:

Code (mandatory) An identifier for the error encountered; this field is intended to be processed
by a machine;

Reason (mandatory) A textual description of the encountered error; this field is intended to human
readable;

Detail (optional) This field carries application specific information regarding the failure;

ServiceID (optional) An identifier (such as the address) of the service that caused the error. This
field is important in certain message routing scenarios, if the exception needs to be further
processed before being sent back to the service requester.

SOAP further defines a role field which identifies the role the node was operating in at the time the
fault occurred. This is defined as optional in SOAP and is not needed here, because the security
services do not act on different roles.

100 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

5.4.4 Information Model for Service Composition

Web services composition is about proving an approach to connecting several Web services together
in order to create a higher-level business-process. In the context of this dissertation, the focus is
on assembling together several security services in order to create a security system. Furthermore,
the security system is coupled together with one or more protected Web services which are security
unaware, thus enhancing these services with security capabilities.
Such service compositions need to be described in machine-readable languages. As described in the
computational viewpoint, security services are realized as regular Web services. Because of this,
existing work in the field of Web service composition can be leveraged for defining service orchestra-
tions, choreographies and message routing rules. Leveraging this work has numerous advantages,
including the ability to use existing runtime frameworks, tools and editors (several visual, easy-
to-use Web service composition editors are available), and the ability to combine security service
compositions with other existing Web services compositions.
In the literature there is a rich amount of information about Web services composition available.
[124, 125, 156] present a review of the existing technologies, tools and standards. The two the
most important standards for describing Web service compositions (BPEL and WS-CDL) are in-
troduced below. The differences between the two of them are illustrated in figure 5.18, where a
simple composition containing three services is illustrated using both approaches.

WS-CDL
Choreography

S
e

rv
ic

e
D

(B
P

E
L

S
cr

ip
t)

Service A

Service B

Service C

Service C

Service B

Service A

Request

Response

A. Orchestration realized through BPEL B. Choreography described through WS-CDL

Figure 5.18: BPEL vs. WS-CDL

BPEL4WS [51] Currently a standard from OASIS, BPEL8 provides an XML grammar to describe
the control logic required to coordinate Web services participating in a process flow. BPEL
describes how a central entity invokes (or is invoked by) several other Web services - in other
words BPEL describes Web service orchestrations. BPEL leverages WSDL: both the services
which are invoked and the resulting composed service are described by means of WSDL. As
far as the grammar is concerned, BPEL is quite complex allowing conditional branches, loops,
parallel as well as sequential executions. Furthermore, BPEL has built-in support for handling
transactions and exceptions. Several extensions have been proposed for BPEL, such as BPEL-
J [45] - to allow orchestration processes to include code for executing computational work
written in Java, and BPEL4People [102] - to allow human people as one possible type of
participant in orchestration scripts.

8The standard is called BPEL4WS - Business Process Execution Language for Web Services. The terms BPEL and BPEL4WS are

used interchangeably throughout this dissertation.

5.4. THE INFORMATION VIEWPOINT 101

WS-CDL [26] The Web Services Choreography Description Language, which is the successor
of WSCI9 [11], defines an XML-based language for describing peer-to-peer collaborations of
participants by defining, from a global viewpoint, their common and complementary observable
behavior [26]. As opposed to BPEL which describes orchestrations, WS-CDL describes Web
services choreographies. Similar to BPEL, WS-CDL also supports a wide variety of structured
activities including sequential and parallel processing, conditional branches, loops and includes
mechanisms for business transactions and exception handling. WS-CDL is not an ”execution
language” (as BPEL is). With WS-CDL Web service choreographies can be described; having
this description, it is up to each participant that takes part in the choreography to implement
the message exchanges by means of one technology or another (BPEL is one possible choice).

BPEL is a good choice to integrate security services that expose RPC-like interfaces. It is also a
good choice for describing and implementing complex processes that are then integrated with the
rest by other means (for example message routing techniques). Furthermore, as also described in
[56], BPEL can be used to implement the content-based message routing pattern. However, because
of its centric view on Web service composition, it is not possible to specify distributed interactions
such as the ones that can be implemented by means of itinerary routing.
The disadvantages of BPEL are compensated by WS-CDL. With WS-CDL it is possible to describe
all interactions between security services the protected services and the service requesters. However,
there are several disadvantages to WS-CDL:

1. WS-CDL currently only has a W3C candidate recommendation status, and not many imple-
mentations are available at the time of writing.

2. WS-CDL is useful to describe the choreography as a whole, but these descriptions are not
directly executable. Having the WS-CDL description, each participant then needs to map the
interactions onto its internal implementation of the choreography.

3. With WS-CDL complex choreographies involving different kinds of messages and different
partners playing different roles can be described. For this reason WS-CDL might be too
complex for describing the interactions between security services which may be easier modeled
by means of message routing.

For these reasons WS-CDL was not chosen when implementing SOSA . Instead, the more sim-
pler ESB-specific service composition mechanisms have been chosen: service composition through
message routing. ESB implementations have built in support for describing message routing rules,
including itinerary routers and content-based routers [56, 134]. Some ESB implementations also
provide visual tools for creating message routing rules and defining mediations where several ser-
vices are combined together. These tools can be leveraged by implementations, to allow for a quick
and easy definition of the interactions between security services.
One further argument in favor of message routing is that in comparison with BPEL, service aggre-
gation by means of message routing renders a better performance. The most important argument
for this is that normally BPEL scripts are persisted to disk during execution in order to be able
to implement long asynchronous processes; this is not necessary for message routing, were a send-
and-forget strategy can be applied.
Nevertheless, WS-CDL (and BPEL) have applications in the context of SOSA . Complex security

9Web Services Choreography Interface

102 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

systems, containing many services and having complex security policies, can be described by means
of WS-CDL. This would provide a good way for modeling the system because various graphical
tools can be used. Furthermore, automated system-testing can be performed on the WS-CDL rep-
resentation of the system. In addition to this, specialized tools could be developed that generate
runnable representations of the service aggregations (either as message routing rules or as BPEL
scripts). These issues have not been further analyzed in this dissertation but are possible a contin-
uation of this work (see 8.4).
In the Technology Viewpoint (section 5.6) two implementations of SOSA are presented. These
implement service composition by means of message routing: SOS!e 1.0 uses a simple XML vo-
cabulary to describe itinerary routing, while SOS!e 2.0 leverages the built-in features of the Mule
ESB to implement both itinerary as well as content-based message routing.

5.5 The Engineering Viewpoint

According to the RM-ODP, the Engineering Viewpoint describes the system as a network of com-
puting nodes. If the previous three viewpoints described the purpose, the contents and the functions
of the security system, the Engineering Viewpoint will relate these to specific components linked
by means of network communication. The main concerns of this viewpoint are communication,
computing systems, software processes and the clustering of computational functions at physical
nodes of a communications network [14].
The computational nodes in our system are security services. In this section I will describe how
these services can be combined, how they communicate with each other and how they can be dis-
tributed. At the end of this section I will show a couple of patterns that show how security services
can be aggregated to solve common security issues.

5.5.1 Web Services Composition

Web services composition (aggregation) refers to the composition of multiple Web services in a
process flow. Such processes are described in terms of exchanged messages, business logic and the
order of execution for interactions. They can range from simple ones (such as when one Web service
calls another) to very complex ones which span several applications and organizations and result
in long lived, transactional, multi-step interactions [125].
As also described in [49, 125], there are two models for aggregating services: choreography and
orchestration. The difference between the two is that in orchestration the execution is controlled
centrally from a single entity. As opposed to that, choreographies are more collaborative in nature,
and each party involved in the process controls a part of the execution.
Because each of the approaches has its advantages, both of them are valid ways for composing
security services. Furthermore, one does not exclude the other, so the two approaches can be
combined - this is illustrated in figure 5.19.

Choreographies Are realized by means of message routing. After a security service has processed a
message, it will send the message to another service for processing - in figure 5.19 service A sends
the message to service B which sends the message to the orchestrator service. The control of the
execution is distributed, because each service is responsible for choosing the next service along the
chain.

5.5. THE ENGINEERING VIEWPOINT 103

A B

C E

D

Orchestrator

Choreography

Orchestration

Figure 5.19: Service composition

Orchestrations Are realized by means of orchestration services (described in the Computational
Viewpoint) - in figure 5.19, the orchestrator coordinates the activity of services C, D and E. The
orchestrated process can be exposed as a single service and can be integrated together with the
other services - figure 5.19 shows how the orchestrated process combining services C, D and E is
integrated with the other two services (as part of a choreography).

5.5.2 Service Chains

With choreographies realized through message routing in mind, considering a request-reply message
exchange, we can define two service chains: forward chain and return chain (figure 5.20). Messages
originating from the requester are travelling along the forward chain to the protected service. After
processing the request, the service generates a response message which travels along the return
chain back to the requester.

A BS
er

vi
ce

R
eq

u
es

te
r P

ro
tected

S
ervice

D C...
Security System

...Return Chain

Forward Chain

Figure 5.20: Service chains

The forward and return chain may also contain orchestrations which are exposed as services. Fur-
thermore, the split / gather message pattern (described in 2.3) can be applied to execute several
tasks in parallel.

5.5.3 Realization of Choreographies

As previously mentioned, the choreographies are realized through message routing. Having the
message routing patterns described in section 2.3 in mind, the two patterns that can be used for the
realization of choreographies are itinerary routing and content-based routing. The requirements

104 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

for each of these are described in the next two subsections, together with the advantages and
disadvantages.

Itinerary Routing

In itinerary routing a routing slip is attached to the message describing the route that the message
should follow. The routing slip fully describes the choreography. In an execution environment,
after a service has processed the message, it is the responsibility of the messaging middleware to
dispatch the messages according to the routing slip.
In a typical deployment scenario, a gateway service would receive the message from the requester,
inspect it and attach a routing slip describing both the forward and the return chains. In this way,
the protected service is aggregated together with the security services into one choreography which
is centrally described. For more, see the gateway pattern described in section 5.5.7.
The advantages of this approach are that the choreography is centrally described at the gateway ser-
vice which is the one entity attaching the routing slip. This is very convenient for the management
and administration of the whole system.

Content-Based Routing

In the case of content-based routing, after a message is processed by a service, it will be inspected
and, depending on its contents, the next service along the chain is determined. In networking,
this kind of routing is called next-hop routing, as each node determines the next destination of the
message, based on some internal routing table.
As opposed to itinerary routing where the choreography is centrally described and managed, here
the choreography is specified through routing tables which are distributed (each router has its local
routing table). The choreography is managed in a distributed fashion.

Mixed approaches

Of course mixed approaches are possible. In this case parts of the choreography are centrally
described through itineraries, while the rest is specified through routing tables. This is a good way
to combine multiple choreographies together or to handle exceptions (see section 5.5.5).

5.5.4 Transactions

Each service implements only a part of the overall functionality. In a similar fashion to database
systems, there are be cases in which it is necessary to execute several services as one single logical
operation. This is realized by means of transactions.
To make an example of such a situation, let’s consider the case of a Web service that involves pay-
ment. We assume that the payment model is pay-per-request, so the client must be charged every
time he makes a request to the Web service; however, he should not be charged if the request can
not be fulfilled. A possible SOSA implementation could have charging implemented as a security
service and deployed on the forward chain as showed in figure 5.21. In this case, it is mandatory
that the two services be executed as an atomic operation, otherwise, if the Web service fails, the
requester will still be charged.
Atomic operations can be implemented by means of transactions which are supported at the mid-
dleware layer. Because security services run on top of the middleware, they can make use of
transactions. This dissertation does not further discuss transactions.

5.5. THE ENGINEERING VIEWPOINT 105

ChargingS
er

vi
ce

R
eq

u
es

te
r

W
eb

S
ervice... ... Atomic Operation

Figure 5.21: Transaction example

Transactions from the middleware perspective are described in [56, 134]. There are also proposals
for standardized SOAP specifications for transactions, namely the WS-Coordination framework
[27], which describes extension to SOAP messaging for providing protocols that coordinate the
action of different applications. The framework contains two specific coordination types: WS-
AtomicTransaction for short duration [24], ACID transactions and WS-BusinessActivity for longer
running business transactions [25].

5.5.5 Exception Handling

Security services may throw exceptions if they cannot fulfill their tasks. Exceptions, as already
described in both information and computational viewpoint, are messages that contain as payload
details about the failure (reason, code, description, etc). Because exception messages are distinctly
marked, the messaging middleware can take special action. In orchestration scripts (such as BPEL)
exception handlers can be declared, defining the actions to be taken in case of failure. In the case
of choreographies realized through message routing, content-based routers can be configured to
inspect if the result message is an exception message, and in this case, to route the message on a
special route.
The simplest strategy for exception handling is to return the exception messages back to the re-
quester. Because they contain information regarding the failure reason and details about the it,
the requester can fix the problem and resend its request. However, more complex strategies can be
applied such as routing exceptions to a central exception-handling service, that implements excep-
tion recovery strategies, releases any resources associated with the request, unrolls any transactions
pending and further processes the exception message (through either enrichment or filtering) before
sending it back to the service requester.

5.5.6 Service Clustering

Because in SOSA several services need to cooperatively process one message, the failure of one
service results in a system failure. Furthermore, because the security functionality is distributed
among services following the principle of separation of concerns and not using the processing load
as a main criteria, it is most probable that some services will spend more time processing a message
than others. This results in some services being performance bottlenecks for the whole system.
To address these issues, and still profit from the SOSA model, solutions available for server clus-
tering can be deployed. In such a design, several services are configured to appear as one single
logical service (figure 5.22). The technique can be used for enhancing availability, scalability or
both.

106 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Service Cluster...
Logical
Service

Physical Services

Figure 5.22: Service clustering

Clustering is usually supported both at the networking layer as well as at the middleware layer.
The security services can easily take advantage of these features.
The technical aspects involved in clustering are not further discussed here. [145] describes server
clustering in the context of Web services in more detail. [56, 2, 100] address clustering in the
context of ESB.

5.5.7 Patterns in SOSA

The majority of books addressing Web services architectures, ESB and messaging-based integration
such as [56, 95, 145, 94] present their contents in the form of patterns. A pattern10 describes a
recurring problem that occurs in a particular situation and recommends a solution [94]. The solution
alone is not enough for transmitting the knowledge to the reader; it must be accompanied by the
decisions that must be made, the considerations that go into those decisions and it must discuss
possible alternatives [95].
Patterns are a very powerful approach to documenting knowledge in a way that it can be easily
understood and readily applied by others. In the following, I will present a couple of patterns related
to SOSA . The patterns address common security problems related to Web services. The purpose
of this is on one hand to document how security services can be designed and coupled together
in order to build a SOSA security solution. On the other hand, the purpose is to illustrate the
practicability of SOSA .
The patterns address disparate aspects of security (authentication in federated domains, distributed
authorization, session establishment, etc). They show how the security services described in the
Computational Viewpoint (section 5.3) can be linked together by means of common messaging
patterns - the ones described in section 2.3. Because of the loosely-coupled nature of the system,
it is easy to assemble together several patterns and build complex security solutions.
Each pattern has a suggestive name and is described in terms of the context, problem, solutions,
variations, benefits, considerations and related patterns11. In addition to this, the relation to
approaches taken by others to solving the same problem is discussed where appropriate.

10Christopher Alexander notes that each pattern describes a problem which occurs over and over again in our environment, and

then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without

ever doing it the same way twice. [78]
11Similar approaches to describing patterns are taken by [95, 94].

5.5. THE ENGINEERING VIEWPOINT 107

The Gateway Pattern

Context External applications require access to one or more Web services which are deployed inside
the private network. The access to these services is restricted to authenticated users. External
applications should not be able to access or determine the existence of services and other resources
deployed inside the private network. However, it should be possible for services inside the private
network to have access to transport level security information (IP address, SSL authentication,
etc.) which is sent by the service requester together with his requests.

Problem How to make Web services in the private network available to external applications,
without exposing the other resources?

Solution The solution (figure 5.23 A) involves a Gateway service (see section 5.3) located at the
perimeter of the network, in a demilitarized zone. This pattern builds on the perimeter security
idea, specifically on the Perimeter Security Router described in section 3.3.

Gateway

F
irew

all

F
irew

all

Perimeter Network Private NetworkExternal Network

Service
Requester

A Deployment

RealizationB

Services

Figure 5.23: Gateway pattern

The Gateway Service is the only entity visible from the external network; the protected service
together with the rest of the security services are hidden from applications running in the external
network. The tasks of the Gateway service are as follows:

• Transform the message into the canonical message format used by the security services (with
support for annotations).

• Extract and, if possible, also verify security relevant information provided by the transport
protocol. This step is required because the Gateway service is an intermediary between the
service requester and the other services, and as such, it interrupts the connection at the
transport layer (i.e. IP, SSL, HTTP, etc).

• Determine the forward and return chains for the given request message. This involves the
following steps:

– If several services are exposed as a single endpoint, or if one service has several operations
with possibly different security requirements, the message content must be inspected in
order to determine the message itinerary;

108 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

– Append the itinerary to the message and route the message to the first service on the
forward chain.

• If the security system is implemented using asynchronous messaging and the protected service
requires a request-response message exchange pattern, the Gateway must correlate the request
messages with the responses and deliver the response to the requesting party. This follows the
Smart Proxy Pattern described in [95].

Considerations

• If message validation and / or replay prevention are not implemented as separate security
services, the corresponding checks should be implemented by the Gateway service.

• Figure 5.23 B, shows how the Gateway service uses three ESB patterns: message transformer
- to transform the message into the canonical message format, content-based router - to de-
termine the itinerary according to the message type and itinerary-based router to route the
message on the forward and return chains.

Benefits The major benefits of implementing the Gateway Pattern are the following:

Concentrate Security Administration The rules describing which security services need to be
invoked for which type of requests are centrally manged by the Gateway service. The Gateway
Service acts as a single point of administration for the security policy.

Multiple Transport Protocols As also remarked in [92], the Gateway service can be imple-
mented so that it provides the same service on a variety of transport protocols. By this, the
Web service logic and the security implementation are decoupled from the transport protocol
on which the Web service is being offered.

Related Approaches A similar pattern is discussed in [92, 94]. However there, the Gateway service
has more responsibilities: it also involves authentication and authorization. Here, the Gateway
service relies on the other security services to perform these tasks. [92] additionally describes a
Reverse-Proxy pattern, which is equivalent to a Perimeter Security Router, but also implementing
authentication and authorization. [95] describes a Smart Proxy pattern which is a service that
correlates request messages with the corresponding response messages.

The Federation Pattern

Context A protected Web service must accept users which are registered in several security do-
mains. Each domain contains a user management system which stores attributes about the reg-
istered users. These attributes are required during the security process (for example one of the
attributes contains access permissions necessary for the authorization process).
External applications send requests to the protected service that contain some kind of authenti-
cation credentials. However, from the credentials, it is not possible to know the domain where
the requester is registered ([33] describes this situation as implicit federation, because federation is
hidden from the requester). One illustrative example is a situation where all users are identified by
username and no mapping exists between the username and the registration domain.

Problem How to retrieve the attributes of the requester from the home domain?

5.5. THE ENGINEERING VIEWPOINT 109

Identification
Domain #1

Identification
Domain #N

...

Figure 5.24: Federation pattern - without knowing user’s home domain

Solution A service wrapper is built around the local user management system in each domain. This
wrapper service resembles the identification service described in 5.3. Its tasks are to identify users
based on the credentials provided in the message, to convert their identity to a canonical identity
(which is understood by the following services along the chain) and to annotate the message with
the attributes found in the user management system (all or a predefined list of them).
Because the user’s home domain is not known, all identification services must be invoked. In order
to optimize this operation, the splitter-aggregator pattern is used (see figure 5.24). A splitter
broadcasts the message to all identification services. The execution of these services is done in
parallel, thus optimizing execution time and minimizing failure. We consider the requesters identity
to be unique, therefore at most one identification service will execute successfully. An aggregator
service then joins the messages together by simply dropping the messages containing failures.

Identification
Domain #1

Identification
Domain #N

...

Figure 5.25: Federation pattern - knowing user’s home domain

Variations The following four represent variations of the context described above:

Explicit Federation In the case of an explicit federation, where it is possible to determine the
user’s home domain from the provided credentials (the domain is specified besides the authen-
tication credentials or there is some kind of mapping between the authentication credentials
and the home domain), a content-based router can be used instead of the splitter (see figure
5.25). The router determines the home domain and routes the message to the associated iden-
tification service. Because the message is not split (as in the previous case), there is no need
for an aggregator service.

Orchestrator Another variation involves aggregating the identification services by means of an or-
chestration service (figure 5.26). If the home domain can not be determined, the orchestration
will call all identification services in parallel. Otherwise, the orchestrator will first determine
the home domain, and then only call the corresponding identification service.

110 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Verification Depending on the type of credentials the user provides, it may also be necessary
to verify these credentials in the home domain. In this case, each domain must provide two
security services (verification and identification) which are linked together or, alternatively, a
single service that implements both tasks.

Distributed Profile Another variation of this pattern is where the user is registered in several
domains. The user management systems associated with each domain, contains a user profile
storing only some attributes (and not the whole profile). In this case the aggregator will
combine the user attributes found in each message received. The services following along the
chain will receive the complete user profile.

Identification
Domain #1

Identification
Domain #N...

Figure 5.26: Federation pattern - using an orchestration service

Benefits The major benefits of implementing the Federation Pattern are the following:

• Several domains are aggregated together in a manner totally transparent for the user.

• The solution is optimized in terms of time (execution is parallel) and fault tolerance (if the
identification service of one domain is down, the users in the other domains are not affected).

• The identification services are built as wrappers around the existing infrastructure. This
technique provides a middleware layer between the user repository and the security system.
It is thus possible to integrate different user management repositories (like LDAP, proprietary
database, etc.) in a single system.

• Several authentication methods (password, digital signature, etc.) can be supported by dele-
gating the verification process to different verification services.

• The identification service receives the whole message, including the service request and the
itinerary of the message. It is possible to build identification services that inspect the service
request and the itinerary of the message and, based on this information, respond with different
attributes or attribute values. Such services are able to enforce privacy on behalf of their users,
serving a similar purpose with the pseudonym services described in [33].

Related Approaches WS-Federation [33] also addresses federation in the context of Web services.
The specification defines attribute and pseudonym services that can be queried through defined
interfaces. These services serve similar purposes with the identification services described here.
Security Token Services (defined in WS-Trust [40]) are used to verify the credentials. All these
types of services could be integrated by means of an orchestrator, as described in the Orchestrator
variation above.

5.5. THE ENGINEERING VIEWPOINT 111

Sequential Decision Making Pattern

Context The decision as to weather or not a given Web service can be accessed in a certain context
can not be taken in a single place or by a single entity. One justification for this could be the fact
that the access permissions are not all stored in a single place, and in order to grant the access, the
complete set of permissions is required. Another scenario could be one where the resource is under
the authority of several security domains and, in order to take the access decision, the cooperation
of several entities is required.

Problem How to have messages authorized by multiple entities?

PDP #1 PDP #2 PDP #N
...

PEP
Protected

Service

Figure 5.27: Sequential decision making pattern

Solution Several Policy Decision Point (PDP) services are deployed, one for each place where
messages need to be authorized. A single Policy Enforcement Point (PEP) is deployed. Because
the enforcement should be as close as possible to the resource being protected, this one will be
located right in front of the Protected Service (see figure 5.27).
The PDP services, the PEP and the Protected Service are chained together by means of itinerary
routing. Messages are routed such that they sequentially pass through each of the PDP services.
The PDPs inspect each message they receive and annotate it with their decision and possibly also
with obligations. Because messages sequentially visit each PDP, a PDP in the middle of the chain
will be able to ”see” the decision of the services that previously processed the message and will be
able to use this information when making their own decision.
It is the task of the PEP to combine all decisions. If the combined access decision is ”access granted”

and all the obligations are either satisfied or they can be discharged, only then the message is
forwarded to the Protected Service.

Example To illustrate this scenario, consider the situation where PDP#1 annotates a given message
with ”access granted, but only if (1) PDP#2 agrees and (2) an audit trace is stored”. PDP#2
annotates the message with ”access granted” and then the message passes through an audit service
which annotates it with ”audit trace stored”. In this case, the combined access decision is ”access

granted” and, because the two obligations are satisfied, the PEP should forward the message to the
Protected Service.

Benefits The major benefits of deploying the Sequential Decision Making Pattern are the following:

• Several entities can collaborate in taking an access control decision;

• Enforcement is done in a single place, close to the resource;

112 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

• Through obligations, requirements can be specified. These requirements can refer to decisions
taken by other PDPs or the action of other security services.

Variations The following is a variation of the context above:

QoS Negotiation Instead of taking a boolean decision as to whether or not the access is granted,
the PDPs can negotiate quality-of-service parameters for the Web service. In this case, each
PDP annotates the service with certain values of the QoS parameters (in doing this, the values
set by the services that previously processed the message may be taken into consideration).
The duty of the PEP is to combine the values of all PDP services. One application scenario for
this pattern variation is the bandwidth broker example described in the Enterprise Viewpoint
(section 5.2) and [148].

Related Approaches [92] describes chaining of different security services named Security Enforce-
ment Services (SES). These services have common features with the security services described in
this dissertation, handling encryption/decryption, digital signing / validation, authentication or
enforcement. However, the decision services are not combined by means of chaining; instead these
are invoked by the SESs.

Related Patterns Linking several security services together, can result in delays that might be
unacceptable if several messages are exchanged between the service requester and the protected
service as part of a conversation. The Session Establishment Pattern addresses this issue.
The Asynchronous Authorization Pattern shows how asynchronous decision processes - like for
example when human intervention is required - can be integrated in a security system. Such
asynchronous decisions makers can be sequentially chained together with other decision makers.

Session Establishment Pattern

Context A Web service is protected using a SOSA -like security system. The access control
system is quite complex and involves several authentication and authorization services which are
connected by means of message routing and / or orchestration services. One such example was
already presented in the sequential decision making pattern.
Application clients accessing the protected Web service normally make several consecutive requests.
The complexity of the security system results in long round-trip times for requests and low through-
put values for the service. This seriously affects the performance of the client application.

Problem How to improve round-trip time and throughput if the access control system can not be
simplified?

Solution The solution involves the deployment of a Session Management Service (SMS) which is
responsible for creating sessions (possibly also for destroying them). The service requester must
first invoke a GetSession operation on the SMS. This results in the request being routed through
the complex authentication and authorization process (see figure 5.28). At the end of this process,
the SMS creates a session which is deposited in a persistent repository. At the same time, the
SMS returns a session token to the service requester. The session represents an established security
context. The session token is a proof that the session has been established and thus, a proof that
the process of authentication and authorization was successful and that certain permissions have

5.5. THE ENGINEERING VIEWPOINT 113

Verification

P
ro

te
cted

S
erv

ic
e

S
es

sio
n

 M
an

ag
e

m
e

n
t

S
erv

ic
e (S

M
S

)
S

e
rv

ic
e

R

e
q

u
es

te
r

1: GetSession

2: SessionToken

3: CallService

4: ServiceResponse

...

...

Complex Authentication & Authorization

PDP

Persistent
Session

Repository

Figure 5.28: Session establishment pattern

been granted.
Having the session token, the service requester accesses the protected service, sending the session
token together with his request message. This request bypasses the complex access control system,
being routed instead through only one Verification service, which verifies the validity of the session
token. From this perspective, the token can be regarded as a bypass ticket for certain security
services.
Figure 5.28 shows that the verification service may connect to the session repository in order to
verify the token. Weather or not this is required depends on the kind of session token - for example
if the token is digitally signed by the SMS its validity can be determined without connecting to the
repository.

Benefits The major benefits of deploying the Session Establishment Pattern are the following:

• The number of security services that are invoked for a given message are reduced to a single
one;

• The round-trip time per request is lowered while throughput is increased.

Considerations

• This pattern is not applicable if the authorization context changes throughout the lifetime of
the session token. In this case, requests to the protected service need to be authorized every
time.

• Session tokens must be designed so that they eventually expire. In addition to GetSession, a
DestroySession operation may also be offered. Service requesters will call this operation in
order to cancel a given token and instruct the SMS to clear any related information from the
persistent repository. This is equivalent to a logout operation.

Variations The following three represent variations of the solution presented above:

With PDP An optional PDP service can be chained after the Verification service. Assuming
that the session context contains a list of allowed actions / permissions, the PDP will verify

114 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Figure 5.29: Session establishment pattern - the CBR variation

that the request conforms to the permissions associated with the session token. Depending on
where these permissions are stored (token or repository), the PDP may also query the session
repository.

With CBR Both access ways - the complex authorization and authentication process and the
session based authorization - can be offered at the same time. For this, a content-based router
is introduced along the CallService path. The messages containing session tokens are routed
through the ”express-way”, while the others are routed through the complex process. This is
depicted in figure 5.29.

Transparent Session Establishment In the presented solution, the session is explicitly initiated
by the service requester. A variation of this solution is one where the service is the one initiating
the session. In this case, after making a request which is routed through the complex process,
the service returns the session token together with the response. This variation simplifies the
service definition, as the GetSession operation is no longer needed.

Related Solutions Session establishment is common practice. The most basic example are HTTP
cookies, which can also be leveraged by Web services if the transport protocol is HTTP. A much
more powerful mechanism that is also independent of the transport protocol is specified by WS-
SecureConversation [28]. This specification defines the contents and the syntax for a special type
of tokens - Security Context Tokens (SCTs) - as well as ways to create and exchange such tokens
through mechanisms defined in WS-Trust. The WS-SecureConversation model is compatible with
the pattern described here, as session tokens can be implemented through SCTs, while the SMS
can expose a WS-Trust interface.
WS-SecureConversation further describes token negotiation mechanisms as well as key derivation
algorithms for SCT. These can be leveraged by implementations of this pattern.

Related Patterns This pattern can be used to optimize situations where the authentication and
authorization processes are complex. Such examples are the Federation Pattern and the Sequential
Decision Making Pattern.

Asynchronous Authorization Pattern

Context The decision whether or not a certain request is accepted or denied is asynchronous by
nature. Decisions can not be taken immediately and the response for a decision request can be
delayed for very long periods of time. One possible scenario is where every request needs to be
approved by a human person (for example, whether or not an email tagged as spam should be
posted on a mailing list).

5.5. THE ENGINEERING VIEWPOINT 115

Problem How to integrate decision processes that require very long periods of time in the security
system?

PDP

Persistent
Message Storage

Figure 5.30: Asynchronous authorization pattern

Solution Because the decision processes require very long periods of time to finish, it is impractical
to queue the messages at the decision maker. The queue might get full, resulting in messages being
dropped.
It is therefore necessary to persistently store messages until the decision maker is able to process
them. For this, a message storage service is deployed before the decision maker (see figure 5.30).
Both push and pull models can be used. In the push model, the message storage service will
constantly try to send messages to the PDP service, until the latter one accepts them. In the pull
model, the PDP service connects to the message storage requesting new messages.

Considerations

• In most of the cases, services can be aggregated by means of both orchestration and message
routing. In this particular case, because of the asynchronous nature of the communication,
aggregation by means of an orchestrator is not feasible.

• Some middleware systems support reliable messaging. This allows the sender to specify deliv-
ery assurances which are then met by the middleware. If reliable messaging is used, then there
is no need for a message storage service, because the middleware handles message delivery.
However, reliable messaging is supported through persistent message stores which assure that
in the case of a system failure, messages are not lost [134].

Security Off-Shoring Pattern

Context A Web service is deployed within the internal network of Company A. For certain reasons,
not all security functions can be performed within the network of Company A. One motivation for
this could be that Company A has decided to off shore some of the security functions to a partner
organization - Company B.
In this scenario, the security system is not all located within one organizational boundary. Mes-
sages must exit the private network of Company A and enter Company B’s network. So that not
everybody can use their services, company B may require messages to be authenticated (a proof
that they come from Company A should be presented). Furthermore, Company B may perhaps
also use some internal authorization mechanisms.
Because of privacy regulations, Company A may be required not to release certain information in
clear text outside their network perimeter.

116 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Problem How to integrate security services located in a partner network while respecting the
policies of both networks?

DSig DSigVENC DEC

Offshored Services

Administrative
Domain

For

Partner Network

Company A

Company B

Firewall

Firewall

Figure 5.31: Security off-shoring pattern

Solution The solution involves routing the messages such that they exit the network of Company
A, enter the network of Company B where the off shored security tasks are performed and then
comes back in the network of Company A (figure 5.31).
Because messages may contain information which is not to be released outside the network perime-
ter, an encryption service (ENC) may be introduced on the message route, before exiting the network
of Company A. Its task is to encrypt the sensitive information. A corresponding decryption service
is introduced on the message path, after the message returns from the partner’s network.
Messages may also be signed with Company A’s key in order to be authenticated by Company B.
For this, messages are routed through a DSig service which computes and appends digital signa-
tures. Besides digital signature, other authentication methods (i.e. password, etc.) can be used as
well. The message should then be routed through a service which adds the corresponding authen-
tication information.
If the partner is not totally trusted, or if the message travels over untrusted transport protocols,
additional signatures can be added to the message. The signatures ensure that certain parts of the
message are not altered (the message can not be signed as a whole, because the services hosted by
the partner need to modify the message). When the message returns from the partner’s network,
the validity of the signatures will be verified.

Authentication

Session
Repository

DSigENC DEC

Auth Inc.

WS

Service Provider Inc.

...

Firewall

Firewall

Firew
all

1: LogIn

2: AuthenticationToken

Figure 5.32: SSO with off-shoring of the authentication service

5.5. THE ENGINEERING VIEWPOINT 117

Example Figure 5.32 shows how Single Sign On can be implemented by off shoring the authentica-
tion service. In this case, Auth Inc. operates an authentication service which exposes a LogIn op-
eration. Auth Inc. may also host a profile for each user which contains attributes and pseudonyms,
together with privacy rules (i.e. which attributes may be released to which service or for which
purpose).
A service requester, will first call the LogIn operation, receive an authentication token in response,
and use this one when calling the WS service provided by Service Provider Inc. Messages addressed
to this service are routed through the Authentication service which verifies the authentication to-
ken and annotates the message with the user profile. As previously explained, messages may be
encrypted or signed before being sent to Auth Inc.

Benefits The following are benefits of implementing the Security Off Shoring Pattern:

• Security functions can be implemented in different networks which are governed by different
policies

• Privacy can be achieved through encryption, while integrity can be achieved through digital
signatures

• The partner can be fully trusted or only partially trusted. Through digital signatures it is
possible to ensure integrity of certain parts of the message.

Considerations

• The partner must always be trusted to perform the tasks it is assigned. It is normally not
possible to verify that these tasks were performed correctly.

• The partner may not always be trusted in other matters besides performing its tasks. For
these reasons, digital signatures and encryption may be used in order to assure integrity and
enforce confidentiality.

Service Sharing Pattern

Context A security system shall be designed which must protect not only one, but several Web
services. All these Web services have certain security aspects in common. For both administrative
reasons (simplicity, higher understandability) as well as resource allocation reasons (better resource
allocation) it would be more profitable to have these security aspects implemented centrally for all
Web services.
Any of the security aspects described in section 2.4.2 are subject to being centrally implemented.
Figure 5.33 shows several protected Web services sharing authentication. Centralized authentica-
tion brings many advantages: on one hand side it allows the clients to use a single identity to access
all services (single-sign-on); on the other hand side it makes it easier to manage permissions.

Problem How to implement and enforce certain security aspects centrally for different protected
Web services?

Solution The solution assumes that the Gateway Pattern is used. Each of the protected Web
services is deployed in the private network while a corresponding service proxy is deployed in the
perimeter network (figure 5.33). As described in the gateway pattern, the proxy is responsible

118 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Firew
all

A

B

Z

Authentication

A’

B’

Z’

Perimeter Network Private Network

F
irew

all

.
.
.

.
.
.

Figure 5.33: Service sharing pattern - centralized authentication

for determining both forward and return chains. In order to have several Web services share one
security service, the proxies will have to be configured such that they route messages through the
desired security service.
In figure 5.33, proxy services A’ to Z’ all include the Authentication service on the forward chain.

Benefits The benefits of implementing the Service Sharing Pattern are the following:

• The overall management overhead is lowered because services are not replicated.

• A better allocation of resources is achieved. Processor intensive tasks can be implemented as
services and deployed on more powerful machines. These services need not be replicated for
every protected service.

Related Approaches XML firewalls (described in section 3.3) centrally implement different security
functions for all Web services inside the private network. However, they tend to concentrate them
in a single physical and logical location, on the perimeter network. In the pattern above, no
assumption is made regarding the location of the shared services (they can be located in both the
private network and the perimeter network) or their number (several services can be shared).

5.6 The Technology Viewpoint

According to the RM-ODP [7], the Technology Viewpoint focuses on the technology aspects related
to the system and its environment. It describes the hardware and software components used in
the distributed system together with the infrastructure which allows the distributed components to
communicate [14]. [129] states that the technology viewpoint should describe the implementation
of the system together with information required for testing.
Because SOSA is a security system for Web services (these have been designed to address a mul-
titude of platforms and implementations) and because it is an architectural design (providing a
higher level of abstraction), several implementations are possible. The purpose of the Technology
Viewpoint is therefore not to present the implementation of the system, but rather to exemplify
how such a system can be built and to show how the most important aspects regarding SOSA can
be realized by means of Web services technologies. The aspects discussed here concern the real-
ization of the system as a whole and not the implementation of specific security services; concrete
implementation of security services and the deployment of the framework in real-world scenarios is

5.6. THE TECHNOLOGY VIEWPOINT 119

showed in chapter 6.
In the following, two implementations of SOSA will be introduced. The implementations are
named SOS!e (SOSIE)12: Service Oriented Security - an Implementation Experiment. Both im-
plementations are designed for SOAP Web services and take advantage of the SOAP processing
model and the SOAP extensions.
SOS!e 1.0 was the first prototype implementation developed; it is based on AXIS 1.2 and other
open-source libraries. Later, after analyzing the shortcomings of this implementation, a better
implementation was developed - SOS!e 2.0 ; this is more aligned with standards and also takes
advantage of the ESB model.
The aspects presented for each implementation concern the realization of choreographies and or-
chestrations, service definition and communication through annotated messages. In order to show
how the framework is deployed and how the security services are connected, a wiring diagram is
presented and the most important services together with the required infrastructure are described.

5.6.1 Standards

There are several possible realizations for SOA, several possible realizations for messaging systems
and also several possible realizations for Web services (these have been discussed in chapter 2).
However, the concepts described in the previous four viewpoints have been only implemented
for SOAP Web services and related technologies. An implementation for SOAP messaging was
considered desirable as it offers interoperability with other platforms.
The following lists the most important standards that are leveraged by the implementations together
with a brief description of how they are used:

SOAP All messages, including the communication with the service requester, the service provider
and the communication internal to the security system are SOAP messages. Furthermore,
message routing is implemented based on the processing model defined by SOAP (both SOS!e

1.0 and 2.0).

WS-Security Security tokens are encoded and attached to messages by means of WS-Security.
Furthermore, the same specification is leveraged for encrypting parts of messages and attaching
digital signatures (both SOS!e 1.0 and 2.0). In SOS!e 2.0 , SAML security tokens are used
as annotations; these are encoded and attached to SOAP messages by means of WS-Security.

BPEL Service orchestrations are described in BPEL and executed through BPEL runtime-engines
(both SOS!e 1.0 and SOS!e 2.0).

SAML Message annotations are realized by means of SAML assertions (only in SOS!e 2.0).

WS-Addressing This specification provides enhances SOAP messaging with addressing capabili-
ties that are independent of the transport protocol. These are leveraged by the ESB middleware
in SOS!e 2.0 to deliver messages to services accessed through different transport protocols.

5.6.2 SOS!e 1.0

SOS!e 1.0 was the first implementation of the concepts described in this dissertation. It was
developed as part of several diploma thesis [128, 75, 90] and student assignments [74, 81, 144]

12In French, sosie means a person who physically resembles another person to an extent that it is hard to distinguish the two of them.

Besides being an acronym, the name was chosen because the implementation follows the gateway pattern described in the engineering

viewpoint (section 5.5): a proxy service is deployed in the perimeter network which exposes the same interface as the protected service.

A service requester located in the public network will only see the sosie of the protected service and not the protected service itself.

120 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

and was applied in several projects (OWS4 [68], OWS3 [105]) during the course of which it was
improved and extended with new services. For detailed information regarding the implementation
please refer to the bibliographic citations.

Software Platform, Libraries and Tools

The security framework was implemented in Java using open-source software. Apache AXIS 1.x
was chosen as Web services container as it was the state-of-the-art implementation at the time.
Subsequent versions of this software were used: 1.2, 1.3 and finally 1.4. This had several drawbacks
which are discussed at the end of this section, among them the fact that AXIS 1.x has limited
support for asynchronous messaging.
Several other open-source libraries are also used by the implementation, the most important to
mention being the following: Xerces 1.4.4 parser (http://xerces.apache.org/xerces-j), Xalan
2.7.0 for XPath evaluations (http://xml.apache.org/xalan-j), WSS4J 1.5.1 as the WS-Security
implementation (http://ws.apache.org/wss4j), OpenSAML 1.1 as the SAML implementation
(http://www.opensaml.org), Log4J 1.2.9 and Commons-HttpClient 3.0.

Wiring Diagram

Figure 5.34 shows the most important services in the implementation together with the communica-
tion paths between them. The protected service is located in the private network and is not visible
to service requesters. The only endpoint that the requesters are able to access is the Front-Side
Proxy, which is a service that exposes the same interface as the protected service and follows the
gateway pattern presented earlier in the Engineering Viewpoint.

Firew
all

A

F
ro

n
t-

S
id

e
P

ro
xy

Protected
Service

...
Private Network

Return ChainForward Chain

S
O

A
P

 In
vo

ke
r

S
er

vi
ce

Z...Firew
all

Perimeter Network

Service
Requester

Figure 5.34: SOS!e 1.0 wiring diagram

The task of the Front-Side Proxy is to determine the itinerary for the request to follow and attach
an itinerary slip to the message. The request is then forwarded by the Front-Side Proxy to the first
security service along the forward chain - in figure 5.34, service A. Each of the security services
then implements itinerary routing, and thus the request travels according to the itinerary slip.
The message eventually reaches a special service called SOAPInvoker. This service invokes the
protected service and then passes the response further along the return chain. The response then
travels along the return chain, until it reaches the last service - in figure 5.34, service Z.

http://xerces.apache.org/xerces-j
http://xml.apache.org/xalan-j
http://ws.apache.org/wss4j
http://www.opensaml.org

5.6. THE TECHNOLOGY VIEWPOINT 121

Remarks

• Because AXIS 1 has no support for asynchronous messaging, services in SOS!e 1.0 follow
the request-reply pattern. Each service calls the next one along the chain and then waits for
the answer to come.

Security Services Realization and Deployment

The implementation provides a middleware layer upon which the security services can be built.
This is depicted in figure 5.35 where it is showed how the security services are running inside the
SOS!e middleware, which is deployed as a Web service inside Apache AXIS, which instead runs
as a servlet inside the Tomcat servlet container.

Apache AXIS

SOS!e Middleware

Security Services

Apache Tomcat

Figure 5.35: Realization and deployment of security services

For optimization reasons, a message request can be processed by several security services which are
running inside a single AXIS Web service. Exactly how this is realized will be showed later in this
section, when message routing is described.
As middleware, SOS!e is responsible for invoking the security services and for the realization of
the choreography. In other words, when a message request is received, AXIS will invoke the SOS!e

middleware, which will invoke the necessary security services and in the end, will make sure that
the message follows its predetermined itinerary.

WSDL Interface for Security Services

Each of the security services along both chains will receive a message, process it and then execute
the choreography. In the implementation, all security services use the SOAP document / literal
operational mode (listing 5.1 shows the WSDL definition for a security service). The services
define a single operation (in the WSDL definition called invoke) which accepts an arbitrary XML
document as request and provides an arbitrary XML document as response. The reason for not
further defining the request and response messages is twofold: (1) in this way the interface of the
security services matches any interface the protected service might have and (2) most of the security
services are only concerned with the header of the message and not the body (WSDL documents
only define the syntax of the body section of messages).� �

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <w sd l : d e f i n i t i o n s

3 [. . . Namespace d e f i n i t i o n s are omitted . . .]

4 <wsd l : type s>

5 <schema targetNamespace=” ht tp : // framework . s e r v i c e s . s 3 f . unibw . de”

6 xmlns=” ht tp : //www.w3 . org /2001/XMLSchema”>

7 <element name=” invoke ” type=”xsd:anyType” />

122 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

8 </schema>

9 <schema targetNamespace=” ht tp : // l o c a l h o s t : 8 0 8 0 / ax i s / s e r v i c e s / Rout ingServ ice ”

10 xmlns=” ht tp : //www.w3 . org /2001/XMLSchema”>

11 <element name=” invokeReturn” type=”xsd:anyType” />

12 </schema>

13 </ wsd l : type s>

14

15 <wsdl :message name=” invokeRequest ”>

16 <wsd l :pa r t element=” tn s1 : i nvoke ” name=”part ” />

17 </wsdl :message>

18

19 <wsdl :message name=” invokeResponse ”>

20 <wsd l :pa r t element=” impl : invokeReturn ” name=” invokeReturn” />

21 </wsdl :message>

22

23 <wsdl :portType name=” Rout ingServ ice ”>

24 <wsd l : ope ra t i on name=” invoke ”>

25 <wsd l : i nput message=” impl : invokeRequest ” name=” invokeRequest ” />

26 <wsdl :output message=” impl : invokeResponse ” name=” invokeResponse ” />

27 </ wsd l : ope ra t i on>

28 </wsdl :portType>

29

30 <wsd l :b ind ing name=”RoutingServiceSoapBinding ” type=” impl :Rout ingServ i c e ”>

31 <wsd l soap :b ind ing s t y l e=”document”

32 t ranspo r t=” ht tp : // schemas . xmlsoap . org / soap/http ”/>

33 <wsd l : ope ra t i on name=” invoke ”>

34 <wsd l soap :ope ra t i on soapAction=”” />

35 <wsd l : i nput name=” invokeRequest ”>

36 <wsdlsoap:body use=” l i t e r a l ” />

37 </ wsd l : i nput>

38

39 <wsdl :output name=” invokeResponse ”>

40 <wsdlsoap:body use=” l i t e r a l ” />

41 </ wsdl :output>

42 </ wsd l : ope ra t i on>

43 </ wsd l :b ind ing>

44

45 <wsd l : s e r v i c e name=” Rout ingSe rv i c eSe rv i c e ”>

46 <wsd l :po r t b inding=” impl :Rout ingServ iceSoapBinding ” name=” Rout ingServ ice ”>

47 <wsd l soap :addre s s l o c a t i o n=” ht tp : // hos t : 8080 / ax i s / Rout ingServ ice ” />

48 </ wsd l :po r t>

49 </ w sd l : s e r v i c e>

50 </ w s d l : d e f i n i t i o n s>� �
Listing 5.1: WSDL definition for a security service

Message Routing

As previously explained, the most important task of the Front-Side Proxy is to attach the itinerary
to incoming request messages. In SOS!e 1.0 , the itinerary consists of a series of hops, each hop
representing an AXIS Web service. The information model for itineraries is showed in figure 5.36.

Hops contain an address - the Web service endpoint URL, and a list of security services to be
invoked. The services are described through a ClassName and zero or more parameters. When a
request message is received, the SOS!e middleware will sequentially invoke each of the services
specified for the respective hop. This is done by instantiating the class and passing the parameters
as initialization arguments.

5.6. THE TECHNOLOGY VIEWPOINT 123

Figure 5.36: Information model for itineraries in SOS!e 1.0

Firew
all

Username

F
ro

n
t-

S
id

e
P

ro
xy

Protected
Service

S
O

A
P

 In
vo

ke
r

S
er

vi
ceFirew

all

Service
Requester

XACML Log

1st Hop 2nd Hop
3rd Hop

Figure 5.37: Itinerary example

Example Listing 5.2 shows the example of an itinerary as XML code; the same itinerary is showed
as a wiring diagram in figure 5.37. The itinerary contains three hops:

1. First, the message is processed by a service which verifies the identity of the requester, based
on information stored in a file. The class name is Username and has one single configuration
parameter which is the name of the authentication file.

2. Then, the message is processed by an XACML Policy Enforcement Point service. There are
two configuration parameters for this service: the URL of the PDP service and its type.

3. The final hop has two services: the first one is the SOAPInvokerService which invokes the
protected service (the URL of the protected service is passed as parameter), while the second
one is an audit service which logs the response before sending it to the requester - this service
requires no parameters.� �

1 <I t i n e r a r y xmlns=” ht tp : //www. unibw . de/ s 3 f ”>

2 <Hop>

3 <Address>ht tp : //some . host /some/ s e r v i c e /1</Address>

4 <Se rv i c e>

5 <ClassName>de . unibw . s 3 f . s e r v i c e s . au then t i c a t i on . Username</ClassName>

6 <Parameter>

7 <Name>au th en t i c a t i o nF i l e</Name>

8 <Value>authen t i c a t i on . p r op e r t i e s</Value>

124 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

9 </Parameter>

10 </ Se rv i c e>

11 </Hop>

12 <Hop>

13 <Address>ht tp : //some . host /some/ s e r v i c e /2</Address>

14 <Se rv i c e>

15 <ClassName>de . unibw . s 3 f . s e r v i c e s . au tho r i z a t i on .XACML</ClassName>

16 <Parameter>

17 <Name>pdp . u r l</Name>

18 <Value>ht tp : // i i sdemo . in fo rmat ik . unibw−muenchen . de/GeoPDP/ s e r v i c e</Value>

19 </Parameter>

20 <Parameter>

21 <Name>pdp . type</Name>

22 <Value>geopdp</Value>

23 </Parameter>

24 </ Se rv i c e>

25 </Hop>

26 <Hop>

27 <Address>ht tp : //some . host /some/ s e r v i c e /3</Address>

28 <Se rv i c e>

29 <ClassName>de . unibw . s 3 f . s e r v i c e s . framework . SOAPInvokerService</ClassName>

30 <Parameter>

31 <Name>u r l</Name>

32 <Value>ht tp : / / 127 . 0 . 0 . 1 :8080 / ax i s / s e r v i c e s /MSD3ProxyOWS4</Value>

33 </Parameter>

34 </ Se rv i c e>

35 <Se rv i c e>

36 <ClassName>de . unibw . s 3 f . s e r v i c e s . aud i t . LogServ ice</ClassName>

37 </ Se rv i c e>

38 </Hop>

39 </ I t i n e r a r y>� �
Listing 5.2: Itinerary example

Message Routing Implementation The itinerary, encoded in XML as exemplified before, is inserted
in the message as a special SOAP header element (this is showed in listing 5.3). The only difference
is that here, each hop has an additional boolean field - processed; its value is either true, if the
corresponding hop has already been visited or false, otherwise. Upon receiving a request, the
SOS!e middleware (1) locates the SOAP header corresponding to the itinerary, then (2) locates
the hop block corresponding to itself (this is done by finding the first entry in the itinerary where
the processed field is marked false), then (3) invokes the services specified in the block, after that
(4) modifies the processed field to true and finally (5) sends the message to the address specified in
the next hop block.� �

1 <SOAP−ENV:Header>

2 [. . .]

3 <p r oxy : I t i n e r a r y xmlns:proxy=” . . . ” SOAP−ENV:actor=” . . . ”

4 SOAP−ENV:mustUnderstand=”0”>

5 <proxy:Hop>

6 <proxy:Address>ht tp : //some . u r l /some/ s e r v i c e /1</ proxy:Address>

7 [. . . The r e s t o f the Hop element contents i s omitted . . .]

8 <proxy :Proces sed>t rue</ proxy :Proces sed>

9 </proxy:Hop>

10 <proxy:Hop>

11 [. . . The r e s t o f the Hop element contents i s omitted . . .]

12 <proxy :Proces sed> f a l s e</ proxy :Proces sed>

13 </proxy:Hop>

14 [. . .]� �
Listing 5.3: Itinerary in the header of a SOAP message

5.6. THE TECHNOLOGY VIEWPOINT 125

Annotations

SOS!e 1.0 does not implement the whole information model presented in the Information View-
point. Annotations incorporate only the following information (the information model is showed
in figure 5.38): author, target, ID, timestamp and contents. Because the implementation is only
a prototype, encryption and digital signatures are not implemented. However, these are imple-
mentable through XML ENC [160] and XMD DSig [159]. Furthermore, for the same reasons, only
one type of annotations is supported - attribute pair.

Figure 5.38: Information model for annotation

Annotations are encoded in XML and are implemented as SOAP header elements. According to the
SOAP specification [111], header elements contain information which can individually be targeted
at SOAP nodes that might be encountered in the path of a message from a sender to an ultimate
receiver. This is the case for annotations, which are targeted to specific security services that the
message encounters along its path.
For this reason, the actor13 SOAP attribute is used to represent the target security services. The
rest of the information fields are realized as XML elements.

Example Listing 5.4 shows an example annotation. As it can be seen, the annotation is authored
by an authentication service and asserts that the userid of the requester is alice27.� �

1 <SOAP−ENV:Envelope xmlns:SOAP−ENV=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

2 <SOAP−ENV:Header>

3 [. . .]

4 <s3 f :Annotat i on xmlns : s 3 f=” ht tp : //www. unibw . de/ s 3 f ”

5 s3f :Annotat ionType=” Att r ibutePa i r ”

6 SOAP−ENV:actor=” ht tp : //www. unibw . de/ s 3 f ”

7 SOAP−ENV:mustUnderstand=”0” >

8

9 <s 3 f : I d>15903241−6d7b−40ac−853c−72b20685204c</ s 3 f : I d>

10 <s3f:Timestamp>2006−10−31T10:52:53 .703Z</ s3f:Timestamp>

11 <s3 f :Author>ht tp : //www. unibw . de/ s 3 f / au then t i c a t i on</ s3 f :Author>

12 <s 3 f :A t t r i b u t e>us e r i d</ s 3 f :A t t r i b u t e>

13 <s 3 f :Va lu e>a l i c e 2 7</ s3 f :Va lu e>

14 </ s3 f :Annota t i on>

15 [. . .]� �
Listing 5.4: Annotation in a SOAP message

13In SOAP 1.1 this attribute is named actor. In SOAP 1.2 the attribute is named role. However the semantics of the attribute are

the same in both versions.

126 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Developing Custom Security Services in SOS!e 1.0

SOS!e 1.0 has several security services already implemented. These implement common security
tasks such as authentication by means of user-name - password or X509 certificates, simple au-
thorization, logging, mail alert, encryption and digital signing. However, SOS!e is designed as a
framework, and it therefore provides the necessary support to build custom security services.
To do this, the AbstractService class must be extended (figure 5.39). This class provides basic
support for retrieving configuration and runtime parameters, processing annotations and altering
the message itinerary. Derived classes must implement the abstract method serve; this is the place
where the message mediation is realized. The framework then takes care of the rest the aspects
(routing, message dispatching) and invokes this method when necessary.

class SOS!e 1.0

«abstract»
AbstractServ ice

config: Properties

+ serve(Message) : Message
loadProperties(String) : Properties
setConfiguration(Properties) : void
getAnnotations(String, SOAPEnvelope) : Annotation[]
deleteAnnotation(Annotation, SOAPEnvelope) : void
getRoute() : HHop[]
setRoute(HHop[]) : void

LogServ ice

+ serve(Message) : Message

Figure 5.39: Implementation of security services in SOS!e 1.0

Listing 5.5 illustrates the extension mechanisms by showing how a very simple logging service can
be implemented. The service simply appends the whole content of the SOAP message at the end
of a log file.� �

1 // Some content i s omit ted f o r c l a r i t y reasons

2 public class LogServ ice extends Abst rac tSe rv i c e {
3 private St r ing l o gF i l e ;

4 public Message s e rve (Message msg) throws Serv i ceExcept ion {
5 try {
6 Pr intWriter l og = new PrintWriter (new Fi l eWr i t e r (l o gF i l e , true) , true) ;

7 l og . p r i n t l n (msg . getSOAPPartAsString ()) ;

8 l og . c l o s e () ;

9 } catch (Exception e) {
10 e . pr intStackTrace () ;

11 throw new Serv i ceExcept ion (e . getMessage () , e) ;

12 }
13 return msg ;

14 }
15 }� �

Listing 5.5: Simple implementation of a logging service

5.6. THE TECHNOLOGY VIEWPOINT 127

Analysis

SOS!e 1.0 was deployed in two projects (OWS3 and OWS4) during the course of which feedback
was gathered. The SOSA concepts were found to be satisfying, but shortcomings were found in
several aspects of the implementation. These are discussed in the following paragraphs.

Choreographies Several aspects regarding the realization of choreographies were found dissatisfying
and need improvement:

Custom Implementation Perhaps the most important shortcoming is that choreographies are
implemented from scratch in a custom way without leveraging related work. The reason for
this was that ESB systems were only in development at the time SOS!e 1.0 was developed,
and most of the existing implementations were not open-source. At the time of writing, several
open-source ESB systems are in development; integrating security services by means of an ESB
would bring a lot of advantages.

SOAP Only The framework can only integrate SOAP Web services.

Message Routing Only itinerary routing is supported in the current implementation. Content-
based routing is not supported.

Asynchronous Messaging Because it is implemented on top of AXIS 1.x, all services expose a
request-reply interface. The routing of messages is implemented on top of this request-reply
pattern which leads to lower performance and higher memory consumption because services
block and wait for the rest of the queue to finish.

Annotations There is no support for encryption and digital signatures.

Speed and Memory Several factors lead to poor performance and high memory requirements. One
of them was already mentioned - the use of synchronous messaging. Another factor is the use of
the DOM XML parsing model: even though most security services only process a small portion of
the message, the parser will first build the whole DOM tree consuming both memory and processor
time. Other parsing models, such as the newer XPP used by AXIS2 [126], are expected to visibly
improve performance.

5.6.3 SOS!e 2.0

After experimenting with SOS!e 1.0 , it was decided that a complete rewriting of the framework
is necessary in order to test some new concepts and implementation possibilities. The major driver
for this was the development of Enterprise Services Bus (ESB) software - several implementations,
both commercial and open-source, made their way into the market.
SOS!e 2.0 was developed as part of a diploma thesis [82]. The framework was used in another
diploma thesis [161] where accounting and charging services have been developed. An article de-
scribing the concept, implementation and some preliminary testing results is also pending publica-
tion [119]. For detailed information regarding the implementation please refer to the bibliographic
citations.

128 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

Software Platform, Libraries and Tools

As its first version, SOS!e 2.0 is implemented in Java and uses several open-source libraries,
most notably the Xerces 1.4.4 parser (http://xerces.apache.org/xerces-j), Xalan 2.7.0 for
XPath evaluations (http://xml.apache.org/xalan-j), WSS4J 1.5.2 as WS-Security implemen-
tation (http://ws.apache.org/wss4j), OpenSAML 1.1 as SAML implementation (http://www.
opensaml.org), Log4J 1.2.9 and Commons-HttpClient 3.0.1. Ant 1.7 was used to automate build
tasks (http://ant.apache.org).
The major difference to the first version is that the Mule ESB 1.4.0 is used to aggregate the services
together (http://mule.codehaus.org). Although the original plan was to use AXIS2 as container
for Web services, this was not possible because the up-mentioned version of Mule only supports
AXIS 1.x services. Integration with AXIS2 remains an item for future work (see 8.4).

Wiring Diagram

Figure 5.40 shows the deployment of the SOS!e 2.0 framework. Several security services, in the
figure named A, B, ..., Z, are plugged into the Mule ESB. They are stand alone Web services and
can each be deployed in a separate Web service container. In order to be able to communicate with
one another, all security services use the SOS!e 2.0 annotation library which contains the main
functions necessary to read, create, modify and delete annotations from a SOAP message.

Mule ESB

A ...Security Services

...Service
Requester

Endpoint α
Endpoint ω

B Z

α ...β ω
Protected Services

SOS!e 2.0
Annotation Library

Other #1

Other #N

...
O

th
er

 s
er

vi
ce

s
pl

u
gg

ed
 in

 th
e

 E
S

B

Figure 5.40: Wiring diagram for SOS!e 2.0

Also connected to the ESB are several protected services, in figure 5.40 these are named with Greek
letters (α, β, ..., ω). For each of these protected services, an endpoint is exposed (Endpoint α ...
Endpoint ω). The ESB is configured to route the request messages that it receives on each of the
endpoints through a chain of security services before sending them to the protected service. In a
similar fashion, response messages are routed through several security services, before being sent
back to the requester. Furthermore, the ESB can be configured to take advantage of other services
already existing in the infrastructure (in the figure named Other #1, ..., Other #N).

http://xerces.apache.org/xerces-j
http://xml.apache.org/xalan-j
http://ws.apache.org/wss4j
http://www.opensaml.org
http://www.opensaml.org
http://ant.apache.org
http://mule.codehaus.org

5.6. THE TECHNOLOGY VIEWPOINT 129

Remarks

• The proxy pattern is also applied here: the endpoints mentioned above are proxies for the
respective protected services. They expose the same functionality, but the interface is enhanced
to support security features.

• In comparison with the initial version of SOS!e , here the aspects related to message routing
and orchestrations are completely left to the ESB software. This is a powerful integration
middleware which supports a variety of routing patterns, message exchange patterns and
transport protocols. This brings more flexibility in architecting security systems and decouples
the aspects related to service orchestration (realized through the ESB) from the communication
aspects specific to security services (implemented in the SOS!e annotation library).

Message Routing and Orchestrations

The Mule ESB was used for the realization of message routing and orchestrations. It supports most
of the messaging patterns described in [95], including itinerary routing and content-based routing.
There are various possibilities as to how the ESB can be configured and deployed - the details of
this are described in the Mule User Guide [2]. To illustrate the concepts, a sample configuration
file is presented in listing 5.6 and briefly described in the following.� �

1 <mule−c on f i g u r a t i on id=”MuleChainingSample” version=” 1 .0 ”>

2 <d e s c r i p t i o n>Example SOS ! e 2 .0 c on f i gu r a t i on</ d e s c r i p t i o n>

3 <mule−environment−p r op e r t i e s synchronous=” true ”/>

4 <t rans f o rmer s>

5 <t rans fo rmer name=”SOAP2String” className=”org . mule . samples .myApp. SOAPMessageToString”/>

6 </ t rans f o rmer s>

7

8 <model name=”MuleConfig”>

9 <mule−d e s c r i p t o r name=” s o s i e ” implementation=”org . mule . components . s imple . BridgeComponent”>

10 <inbound−rou t e r>

11 <endpoint address=” ht tp : // l o c a l h o s t : 8 0 8 1 /demo” remoteSync=” true ”/>

12 </ inbound−rou t e r>

13

14 <outbound−rou t e r>

15 <r ou t e r className=”org . mule . rout ing . outbound . ChainingRouter ”>

16 <endpoint address=” a x i s : h t t p : //some . host / Authent icat ion ” synchronous=” true ”>

17 <p r op e r t i e s>

18 <property name=” s t y l e ” va lue=”document”/><property name=”use ” value=” l i t e r a l ”/>

19 </ p r op e r t i e s>

20 </ endpoint>

21 <endpoint address=” a x i s : h t t p : //some . host / Author i zat ion ” synchronous=” true ”>

22 <p r op e r t i e s>

23 <property name=” s t y l e ” va lue=”document”/><property name=”use ” value=” l i t e r a l ”/>

24 </ p r op e r t i e s>

25 </ endpoint>

26 <endpoint address=” a x i s : h t t p : //some . host /Echo” synchronous=” true ”>

27 <p r op e r t i e s>

28 <property name=” s t y l e ” va lue=”document”/><property name=”use ” value=” l i t e r a l ”/>

29 </ p r op e r t i e s>

30 </ endpoint>

31 </ route r>

32 </outbound−r ou t e r>

33 </mule−d e s c r i p t o r>

34 </model>

35 </mule−c on f i g u r a t i on>� �
Listing 5.6: Example configuration for the Mule ESB

130 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

In this example, a single mule-descriptor is defined which contains an inbound-router as well as
an outbound-router. As a simple rule, messages received on the endpoints specified in the inbound-

router, are processed by the Mule middleware (here a BridgeComponent is used), and then forwarded
according to the outbound-router.
In the example above, all messages received on http://localhost:8081/demo are processed by the
BridgeComponent (this leaves the messages unchanged), and then given to the outbound-router.
The one used here (ChainingRouter) implements itinerary routing and will first forward messages
to an authentication service, then to an authorization service and finally to the protected service
(http://some.host/Echo). The axis prefix in front of the URLs tells the ESB that AXIS Web service
invocations shall be used, while the properties defined for each endpoint specify that the document
/ literal SOAP style shall be used.

Remarks

• In this example the security functionality is implemented in stand-alone Web services deployed
in an AXIS container. However it is also possible to implement the same functionality directly
into the Mule ESB. For this purpose Mule defines two possibilities: interceptors and trans-

formers. This approach renders better performance (instead of converting messages into XML
and sending them over the wire, Java objects are passed from one class to the other inside
the same JVM) at the cost of having the implementation dependable on the middleware (less
portability).

• Mule also defines filters which can be used in specifying content-based routing rules. The
current version contains several very useful implementations that filter messages based on the
payload type, regular expressions, XPath expressions, etc.

• The inbound-router as well as the outbound-router can also be used to aggregate / split messages
(see ESB patterns, section 2.3.5).

Annotations

In SOS!e 2.0 annotations are implemented using SAML attribute assertions. Most of the infor-
mation elements for annotations are already present in SAML assertions:

Author The issuer of the SAML assertion;

ID The ID of the SAML assertion;

Timestamp The issue instant of the SAML assertion;

Content Several attribute-value pairs can be included in an attribute assertion.

The only field that is not present in SAML assertions is target. This has been implemented as a
special attribute (name collision is avoided through the use of different attribute namespaces).

Example Listing 5.7 shows an annotation attached to a SOAP message. The annotation is issued
by an AuthenticationService and asserts that the userid of the requester is johndoe27. The annotation
is digitally signed, however the body of the signature is omitted in the listing.

5.6. THE TECHNOLOGY VIEWPOINT 131

� �
1 <soapenv:Envelope xmlns:soapenv=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

2 <soapenv:Header>

3 <wss e : S e cu r i t y soapenv :ac to r=” ht tp : //unibw . de/ s o s i e /dummy” soapenv:mustUnderstand=”1”>

4 <Asse r t i on xmlns=” . . . ” Assert ionID=” 198bdd0d5201265b1d19e8cdc367c58e ”

5 I s s u e I n s t an t=”2007−07−29T08:07:41 .218Z” I s s u e r=” Authent i ca t i onSe rv i c e ”

6 MajorVersion=”1” MinorVersion=”1”>

7

8 <Condit ions NotBefore=”2007−07−29T08:07:41 .218Z”

9 NotOnOrAfter=”2007−07−29T08:08:41 .218Z”/>

10

11 <Attr ibuteStatement>

12 <Subject>

13 <NameIdent i f i e r>Authent i ca t i onSe rv i c e</ NameIdent i f i e r>

14 <SubjectConf i rmat ion>

15 <ConfirmationMethod>urn :oas i s :names : tc :SAML:1 . 0 :cm:sender−vouches</ConfirmationMethod>

16 </ SubjectConf i rmat ion>

17 </ Subject>

18 <Attr ibute AttributeName=” us e r i d ” AttributeNamespace=” [. . .] annotat ion / a t t r i b u t e s ”>

19 <Attr ibuteValue>johndoe27</Attr ibuteValue>

20 </ Att r ibute>

21 <Attr ibute AttributeName=”TARGET” AttributeNamespace=” [. . .] annotat ion / framework”>

22 <Attr ibuteValue>ht tp : //unibw . de/ s o s i e / au then t i c a t i on</Attr ibuteValue>

23 </ Att r ibute>

24 </Attr ibuteStatement>

25

26 <ds :S i gna tu r e xmlns :ds=” ht tp : //www.w3 . org /2000/09/ xmldsig#”>

27 [. . .]

28 </ d s : S i gna tu r e>

29 </ Asse r t i on>� �
Listing 5.7: Annotation in a SOAP message (as SAML assertion)

Developing Custom Security Services in SOS!e 2.0

Several security services were implemented on top of the SOS!e 2.0 framework. These implement
common security tasks such as authentication by means of user-name password against an LDAP
directory, simple authorization, audit, accounting or charging by means of PayPal. More details
can be found in [82, 161] and in the next chapter.
As far as developing custom security services, the mechanisms built in SOS!e 2.0 are similar to
the ones from the first version of the framework. An AbstractService class is defined which must be
extended by all security services. This class implements the functions for processing annotations
(retrieval, creation, deletion, modification). The UML diagram in figure 5.41 shows how a LogService

can be defined by extending the AbstractService and implementing the serve method.

Remarks

• From the UML diagram one can see that here the security services are not handling the
orchestration aspects. As opposed to SOS!e 1.0 where the API exposed functions for the
modification of the message itinerary, here no such functions are exposed. The reason for this
is that the orchestration aspects are entirely left to the ESB software.

132 CHAPTER 5. SERVICE ORIENTED SECURITY ARCHITECTURE - SYSTEM DESCRIPTION

class SOSIE2 Serv ice Definition

AbstractServ ice

- actor: String

+ serve(SOAPEnvelope*, SOAPEnvelope) : void
addAnnotation(String, SAMLAnnotation, Document) : void
deleteAnnotation(String, Document) : Document
getAllAnnotations(Document) : SAMLAnnotation[]
getAnnotations(String, Document) : SAMLAnnotation[]

LogServ ice

+ serve(SOAPEnvelope*, SOAPEnvelope) : void

Figure 5.41: Implementation of custom security services in SOS!e 2.0

Analysis

SOS!e 2.0 was built based on feedback received for the first version of the framework. The
following represent the major changes in this version of the framework:

Choreographies These are realized by means of an off-the-shelf ESB software (Mule). This brings
several advantages: support for more message routing patterns, more transport protocols,
more message exchange patterns (including asynchronous messaging) and more deployment
configurations.

Annotations These are built on top of the SAML specification. This increases the level of in-
teroperability (SAML is a well established standard for exchanging security information) and
allows annotations to be digitally signed.

As a drawback, this implementation is not able to work with AXIS2 Web services because the
current version of Mule does not support this feature. However, because the framework is separated
from the ESB software, it will be easy to upgrade the framework when the AXIS2 support will be
implemented in Mule.

Chapter 6

Practical Experiences with SOSA

The concepts described in the previous chapter have been applied in several projects, where the
topic of securing geospatial Web services was addressed.
This chapter opens with a brief introduction to the problematic of securing geospatial Web services,
and then several projects are presented. Each project is described in terms of context, problem state-
ment and objectives, requirements and design and implementation. After this, three independently
developed security services are briefly described. Finally, conclusions are drawn and the practical
experiences are summarized.

6.1 Security for Geospatial Web Services

6.1.1 Context

Geospatial information is the key data for enabling decision making in many business sectors.
Because Web services offer a very good data distribution channel, both governments and private
organizations are currently building Spatial Data Infrastructures (SDIs). Several interfaces for
geospatial services are defined by the Open Geospatial Consortium - these have been introduced in
section 2.2.
An important obstacle in the adoption of this technology are aspects related to security. [91]
remarks that because it is expensive to create and maintain, many organizations involved in the
production and trading of geodata find the need to protect their Intellectual Property (IP) assets
through the digital distribution value chain; further motivation for considering the security aspects
can be found in [64]. However, little guidance is provided as to how these aspects are to be handled:
the current versions of the OGC service specifications do not address these issues and the OGC
provides no best practices documents for this.
There are nevertheless approaches to this both from the industry as well as from the academia,
examples for this are described in [118, 107, 152]. In the following I will show how the concepts
described in this dissertation have been applied in several projects where different security solutions
for geospatial Web services were prototypically implemented.

133

134 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

6.1.2 Approach

The general approach is to separate the security aspects from the geo-processing functionality as
much as possible at the technical level. The purpose of this is to treat the geo-processing services
as security unaware and to implement the security externally, independent of the geo-processing
functionality. The principle together with the advantages for this approach have been discussed in
section 3.2.

6.1.3 SOAP Communication

The basis for this approach is to use SOAP as the communication protocol. SOAP permits a
clear separation between the payload (which is geo-specific) and the security information (licenses,
authentication information, etc). The security information is carried in the SOAP header part, as
specified in WS-Security and the related standards. The geo-data specific requests and answers are
carried in the SOAP body and need not be modified normally.

6.1.4 Proxy Components

In order to take advantage of the existing implementations for OGC Web services and clients, proxies
(façades) were used. These are deployed in front of a geo-processing service or client in order to
enhance their functionality (see figure 6.1). This architectural design facilitates the separation
between the geo-processing functionality and the security aspects at the implementation level and
has been applied several times:

• On the client-side the proxy enhances the client capabilities by implementing the security
aspects.

• Because only few OGC service implementations supporting SOAP were available, several
server-side proxies were used as HTTP-SOAP protocol converters.

• A server-proxy was used to implement a Gateway service (see Computational Viewpoint,
section 5.3).

Geo-Processing
Client

Client-Side
Proxy

Server-Side
Proxy

Geo-processing
Service

Internet

Figure 6.1: Proxies for geo-processing services

6.1.5 The SOS!e Framework

Having a SOAP communication which separates the geospatial aspects from the security aspects at
the information level, the SOS!e framework was leveraged to implement various security aspects.
For this, different security services were developed according to the requirements of each project.
Figure 6.2 illustrates this.

6.2. CLICK-THROUGH LICENSING FOR OGC WEB SERVICES 135

Geo-Processing
Client

Client-Side
Proxy

Gateway

Internet

...

...

Geo-processing
Service

SOS!e Framework

Security Services

Figure 6.2: SOS!e protecting geo-processing services

6.2 Click-through Licensing for OGC Web Services

6.2.1 Context

As part of the GeoDRM thread of the OGC Web Services Testbed 3 activity, the University of
the German Armed Forces has participated in the design and implementation of click-through
licensing for the Web Map Service and Web Feature Service interfaces. The results of this project
are documented in [105], have been presented within the 55th OGC TC Meeting and are available
online, both on the OGC website1 and on the UniBw’s website2. The concepts developed here were
further improved in a joint research project with the Bavarian Surveying Office3 - the results of the
latter one are documented in [120].
In the following, I will briefly describe different aspects of the project. The emphasis is here on
how SOSA was applied in the solution design. Other issues, such as proposed extensions to the
WMS/WFS specifications or details about the implementation are intentionally left out. For these,
please refer to the references provided above.
Even though the security requirements for this project are very basic (in its simplest case, only some
basic form of authorization is necessary), this project illustrates how two of the SOSA patterns
described in the Engineering Viewpoint (section 5.5) can be applied in practice: the gateway pattern
and the session establishment pattern.

6.2.2 Problem Statement and Objectives

The exact objectives of the project together with detailed requirements, use cases, deliverables and
component diagrams are detailed in [122]. This subsection only presents an overview.
The objective of the GeoDRM thread within OWS-3 was to extend the ”click-through” licensing
concept which is widely deployed on web sites to geospatial Web services. In particular, click-
through licensing techniques needed to be developed for the Web Map Service (WMS) [63] and
Web Feature Service (WFS) [154]. Furthermore, the activity should be coordinated with the
Feature Portrayal Service (FPS) [157] specification so that the same techniques developed for the
WMS and WFS could be readily applied to the FPS.
The click-through license (also known as clickwrap license or clickwrap agreement) is a common
type of agreement which is often found on the Internet. The content and form of these agreements
vary widely, however most of them require the end user to manifest its acceptance of a certain
textual license by clicking on an OK button. Typical uses of click-though licensing on the Internet

1http://www.opengeospatial.org/projects/initiatives/ows-3
2http://iisdemo.informatik.unibw-muenchen.de/ows3
3Landesamt für Vermessung und Geoinformation - http://www.geodaten.bayern.de

http://www.opengeospatial.org/projects/initiatives/ows-3
http://iisdemo.informatik.unibw-muenchen.de/ows3
http://www.geodaten.bayern.de

136 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

involve disclaimer of warranty and limitation of liability.
In the OWS-3 project it was required that before a certain user could make use of a WMS or
WFS service, he or she would need to first read and accept a certain license agreement which is
presented in textual form. In addition to this, the service needs to implement some sort of session
mechanism, so that the user is only presented once with the click-through license and not before
every request (imagine a user requesting an initial map and then navigating by performing pan /
zoom operations). The licenses are enforced on a per-layer basis in the case of WMS (each layer
can have its own license) and on a per-feature-class basis in the case of WFS (each feature class
can have its own license). A further requirement are audit traces: the server should maintain a log
documenting the accesses for each service, and the acceptance of licenses.

6.2.3 Requirements Analysis

Use-Cases and Agreement Workflow

In the analysis phase, several use-cases were developed. Two of these use-cases which were also
implemented during the project, are described below. The workflows involved in the two use-case
are illustrated in figure 6.3.

Named-User In this use-case users are known by the service. We assume that they register with
the service before requesting geospatial information. During this process some form of authen-
tication information is generated by the service and shared with the user. The interactions
are showed in figure 6.3A. After registration, the users attach their identity information to
subsequent service requests. The responses contain either the requested information or an
exception with an URL to a website where the click through license can be read and accepted.

Annonymous-User In this use-case the service does not keep track of the identity of the users.
Because of this, an additional step is required, namely the establishment of a session. This is
done explicitly by the client which calls the GetSession operation and receives a session token
in return. The rest of the process is the same as in the previous case. The interactions are
showed in figure 6.3B.

Security Requirements

From the use-cases described above and the project objectives described in 6.2.2, considering the
security requirements described in 2.4, the following three security issues render as important and
should be taken into consideration in the system design:

Authentication In the Named User use-case, the identity of the clients must be verified. In the
Anonymous User use-case, the validity of the session token must be verified for every request
received. Therefore authentication is important in both use-cases.

Authorization Knowing the identity of the requester (the session token), the service needs to
verify if the requester has agreed with the licenses corresponding to the requested layers /
feature classes.

Audit The service should maintain audit trails documenting for each user the layers viewed, the
applicable licenses and the date and time when the user acknowledged those licenses.

6.2. CLICK-THROUGH LICENSING FOR OGC WEB SERVICES 137

Client
Click-through

Enhanced WMS
GetCapabilities

GetSession

Session Token

5

1

2

GetMap + Token

Exception + URL

3

4
(Standard Browser) Go to URL, read
and accept the license

Map

GetMap + Token

Client
Click-through

Enhanced WMS

GetCapabilities

5

1

2

GetMap + Token

Exception + URL
3

4
(Standard Browser) Go to URL, read
and accept the license

Map

GetMap + Token

(Standard Browser) Register

A. Named User Use-Case B. Annonymous User Use-Case

Figure 6.3: Click-through licensing for OGC Web services: Use-cases

6.2.4 Design and Implementation

Session Management

In the Named-User use-case, the click-through agreements are associated with the user name. This
one is sent together with every request, in the header of the SOAP message.
In the Anonymous-User use-case, the click-through agreements are associated with a session ID. In
order to have a unified design, sessions are implemented on top of username-password authentication
tokens. The GetSession operation returns a username-password pair that is valid for a single session
(an example is given in listing 6.1 below).� �

1 <SOAP−ENV:Envelope xmlns:SOAP−ENV=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

2 <SOAP−ENV:Header/>

3 <SOAP−ENV:Body>

4 <ows3:UserNameToken xmlns:ows3=” ht tp : // i i s . unibw−muenchen . de/ows3”>

5 <ows3:UserName>se s s ionID:550e8400−e29b−41d4−a716−446655440000</ows3:UserName>

6 <ows3:Password>7263db23</ows3:Password>

7 </ows3:UserNameToken>

8 </SOAP−ENV:Body>

9 </SOAP−ENV:Envelope>� �
Listing 6.1: Example response for the GetSession operation

Wiring Diagram

The system design is presented in figure 6.4. In this figure the main components, data stores and
inter-component communications are showed. The description of the components can be found
below.

Gateway This is an implementation of the Gateway pattern presented in the Engineering View-
point. This component acts as an endpoint for the service (clients from the external network

138 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

F
irew

all

F
irew

all

Gateway
License

Verification
HTTP – SOAP

Converter
Legacy
WMS

GetCapabilities
GetMap

GetFeatureInfo
GetSession

Session
Repository

User
Repository

License
Repository

Session
Management

Web
Interface

External Network Perimeter Network Internal Network

HTTP
Communication

SOAP Communication

Figure 6.4: Click-through licensing for OGC Web services: Wiring diagram

can only access this Web service endpoint). The responsibilities of this component are listed
below4:

• Inspects the incoming messages and determines their itineraries: the GetSession calls will
be sent to the Session Management component, while the other calls will be routed through
the License Verification component.

• Attach the itinerary to the request.

• Forward the request to the first service from the itinerary.

Session Management This component implements the GetSession operation. For this, it generates
session IDs (username-password pairs) and stores them in the Session Repository.

License Verification This component implements all three security functions determined in the
analysis: it verifies that the supplied username-password pairs are valid (by inspecting the User

Repository and the Session Repository), checks if the appropriate click-through agreements have
been accepted by the requester (by inspecting the License Repository) and also leaves audit
trails.

HTTP-SOAP Converter Because no WMS/WFS services implementing SOAP were available at
the time of the implementation, a protocol converter was introduced. The converter is an
implementation of the Message Transformation Pattern described in [95]. Such converters are
typical examples for mediation services in an ESB.

Legacy WMS This is the Web Map Service itself, an of-the-shelf component. It does not need
modifications or special configuration.

Web Interface Through the web interface users can register with the service (as required in the
Named-User use-case) and can read and accept license agreements. For this, the interface

4For a detailed description of this component refer to section 5.6, where SOS!e 1.0 is described (this component corresponds to the

FrontSideProxy described there).

6.3. BIOMETRIC AUTHENTICATION FOR OGC WEB SERVICES 139

interacts with the User Repository - in order to introduce new users and the License Repository

- in order to update the license agreements. This component is not a web service: it consists
of dynamic web pages and can be implemented with technologies such as JSP, ASP, PHP, etc.

Design Analysis

The design of the security system adopts the SOSA principles: the security system is external
to the protected Web service and is composed of several Web services which are aggregated by
means of message routing. However, the security services are not developed according to the
taxonomy presented in the Computational Viewpoint (section 5.3): instead of implementing three
different services performing authentication, authorization and audit, a single security service (the
License Verification service) is proposed which implements all three functions. The motivation
for this decision is that the tasks for all three functions are very simple and separating them into
independent services would only introduce delays in the response time without any further benefits.
Because the services process the requests independently (there is no need to exchange information
among services), annotations are not used.

6.3 Biometric Authentication for OGC Web Services

6.3.1 Context

As a research project started in 2004 at the University of the German Armed Forces and further
developed at the University of Zürich, BioLANCC (Biometric Local Area Network Control Center)
is a system for managing physical access that uses biometric data (fingerprint, iris scans, etc.)
to identify users. The system aims at providing an extensible solution which is operating system
independent, database independent and is able to integrate different types of biometric devices
from different manufacturers.

Door #1

Door #3

Door #2

IP Network

BioLANCC

Figure 6.5: Typical deployment for BioLANCC

In a typical deployment, each door is fitted with a biometric access control device. The devices allow
users to authenticate themselves, perform access control and can be connected to relays that open
the doors (see figure 6.5). The communication between the biometric devices and the BioLANCC
is done be means of TCP/IP, and allows the BioLANCC server to configure access restrictions on
the devices and the devices to report events to the server (successful / failed authentications, etc).

140 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

In the following the BioLANCC will not be further detailed - for more information about this topic
please refer to [90, 127, 135, 142]. Instead, I will show how the BioLANCC system was integrated
by means of SOS!e 1.0 so that it provides authentication to OGC Web services. This integration
was developed as part of several diploma thesis at the University of the German Armed Forces.
The results are described in [90, 128] - please refer to these for details. Furthermore, this project
was presented at several industry fairs: Systems 2005, RTGIS Fortbildungsseminar 2006, Systems
2006. The rest of this section presents in short the problem, analysis elements and shows the system
design (which follows the SOSA principles).

6.3.2 Problem Statement and Objectives

The objective was to integrate the BioLANCC system with OGC Web services (WMS and WFS) so
that it is possible to authenticate users through BioLANCC. This will allow users to authenticate
themselves by using one of the biometric readers which are connected to BioLANCC. Furthermore,
because BioLANCC also stores user attributes, these can be used in the authorization process - i.e.
access restrictions can be developed based on these attributes.

6.3.3 Requirements Analysis

This project is a typical example for a security integration project - some existing security infras-
tructure (the BioLANCC system) needs to be integrated with another system which was developed
independent of the previous one - the OGC Web services.
The following list enumerates the most important requirements that were taken into consideration
when designing the security system:

• Because it is an existing system which is installed and running (the deployment at the In-
formatics Department, UniBw consists of more than 15 fingerprint readers and a database
with more than 100 users), the modifications to the system should be minimal and a clear
separation between the BioLANCC and the servers hosting the OGC Web Services should be
kept (the two are deployed in separate networks).

• The biometric readers used were fingerprint scanners equipped with a numeric keypad. In order
to authenticate to such a device, a user needs to first introduce its PIN and then perform a
fingerprint scan.

• Besides authentication, the integration should also take into consideration authorization and
audit. It should be possible to define simple authorization rules and the security system should
document the accesses to the protected Web service.

• As already mentioned, the outcome of this experiment was to be able to use the biometric
readers when authenticating users accessing Web services. Because these terminals are usually
fitted in the wall, near access doors, the access control can only be provided for users which are
physically located near one of these terminals (such as for example users accessing a Web service
from within a room which is equipped with a biometric reader). Several possible deployment
scenarios are possible, however these will not be discussed here - for more information about
deployment scenarios as well as a security analysis refer to [90].

6.3. BIOMETRIC AUTHENTICATION FOR OGC WEB SERVICES 141

6.3.4 Design and Implementation

Authentication Process

In order to be authenticated and to access the Web service, several steps are required. The com-
munication between the different components involved in the authentication process is described
below and illustrated in figure 6.6.

sd BioLANCC work flow

OGC Client BioLANCC Biometric Reader Web Service

1: GetDeviceList()

2: DeviceList()

3: GetSAMLAssertion(ID, PIN)

waitForBiometricReader()

4: UserAuthenticated()

5: SAMLAssertion()

6: GetMap(SAMLAssertion, Parameters)

7: Map()

Figure 6.6: Biometric authentication for OGC Web services: Authentication process

1. The client requests the list of biometric devices from the BioLANCC server.

2. The service returns the requested list.

3. With this list, he chooses one of the devices form the list (perhaps the one closest to him),
introduces its PIN and requests a SAML Authentication Assertion from the BioLANCC server.

4. The user then authenticates to the biometric reader, by typing its PIN and scanning its finger.
Biometric readers report all events, including successful / unsuccessful authentications, to the
BioLANCC. Upon receieving a request for an assertion, BioLANCC will wait a certain amount
of time to receive a successful authentication event from the specified fingerprint reader.

5. After the event is received, BioLANCC will generate a SAML authentication assertion and
send this one to the client in response to its request. The assertion is signed with a private
key which is installed on the BioLANCC server.

6. The client then makes a request to the OGC service, attaching the SAML assertion to its
request. The service can authenticate the client based on the information from the SAML
assertion. Furthermore, having the corresponding public key, it is also possible to verify the
authenticity of the SAML assertion.

142 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

Extensions to Existing software

The following extensions to existing software were developed (these are also showed in figure 6.7):

OGC Client A client-side proxy was developed which is able to connect to the BioLANCC server
and request SAML authentication assertions. When sending OGC requests, the client includes
the retrieved assertions in the WS-Security SOAP header.

BioLANCC A Web service interface was implemented for the BioLANCC. The following two
operations were exposed:

GetNodeList() Returns a list with all the biometric devices which are managed by the system.

GetSAMLAssertion(String ID, String PIN) Receives the ID of a biometric reader and a PIN
identifying the requester. The system then waits for the user to authenticate to the spec-
ified biometric reader and, if the authentication is successful, a SAML Authentication
Assertion is returned. This method implements the SAML protocol for querying authen-
tication statements, as described in [12]. Example request and response messages are
showed in listings 6.2 and 6.3 respectively.

OGC Services The OGC services were enhanced by means of the SOS!e 1.0 framework. Several
services were developed; these are presented in the next section together with the wiring
diagram.� �

1 <Request I s s u e I n s t an t=” . . . ” MajorVersion=”1” MinorVersion=”1” RequestID=” . . . ”>

2 <RespondWith>saml :Authent icat ionStatement</RespondWith>

3 <Authenticat ionQuery AuthenticationMethod=” urn :oas i s :names : tc :SAML:1 . 0 :am:HardwareToken”>

4 <Subject xmlns=” urn :oas i s :names : tc :SAML:1 . 0 : a s s e r t i o n ”>

5 <NameIdent i f i e r Format=” urn :oas i s :names : tc :SAML:1 . 1 :nameid−f o rma t : un sp e c i f i e d ”

6 NameQual i f ier=”UserID”>3008</ NameIdent i f i e r>

7 <SubjectConf i rmat ion>

8 <ConfirmationMethod>NodeID:15</ConfirmationMethod>

9 </ SubjectConf i rmat ion>

10 </ Subject>

11 </Authenticat ionQuery>

12 </Request>� �
Listing 6.2: GetSAMLAssertion request� �

1 <Response InResponseTo=” . . . ” I s s u e I n s t an t=” . . . ” MajorVersion=”1” MinorVersion=”1”

2 Rec ip i ent=”pc63−163. in fo rmat ik . unibw−muenchen . de /137 . 193 . 63 . 163 ” ResponseID=” . . . ”>

3 <Status>

4 <StatusCode Value=” samlp :Succes s ”/>

5 </ Status>

6 <Asse r t i on xmlns=” urn :oas i s :names : tc :SAML:1 . 0 : a s s e r t i o n ”

7 Assert ionID=” . . . ” I s s u e I n s t an t=”2005−06−01T13:39:56 .312Z”

8 I s s u e r=” i i sdemo . in fo rmat ik . unibw−muenchen . de” MajorVersion=”1” MinorVersion=”1”>

9 <ds :S i gna tu r e xmlns :ds=” ht tp : //www.w3 . org /2000/09/ xmldsig#”>Re2A . . . ak=</ d s : S i gna tu r e>

10 <Condit ions NotBefore=”2005−06−01T13:39:56 .312Z” NotOnOrAfter=”2005−06−02T15:39:56 .312Z”/>

11 <Authent icat ionStatement Authent i ca t i on Ins tant=”2005−06−01T13:39:56 .312Z”

12 AuthenticationMethod=” urn :oas i s :names : tc :SAML:1 . 0 :am:HardwareToken”>

13 <Subject>

14 <NameIdent i f i e r Format=” urn :oas i s :names : tc :SAML:1 . 1 :nameid−f o rma t : un sp e c i f i e d ”

15 NameQual i f ier=”UserID”>3008</ NameIdent i f i e r>

16 <SubjectConf i rmat ion>

17 <ConfirmationMethod>NodeID:15</ConfirmationMethod>

18 </ SubjectConf i rmat ion>

19 </ Subject>

20 <Sub j e c tLoca l i t y DNSAddress=”pc63−163. in fo rmat ik . unibw−muenchen . de”

6.3. BIOMETRIC AUTHENTICATION FOR OGC WEB SERVICES 143

21 IPAddress=” 137 . 193 . 63 . 163 ”/>

22 </Authent icat ionStatement>

23 </ Asse r t i on>

24 </Response>� �
Listing 6.3: Response to a GetSAMLAssertion request

Wiring Diagram

The system design is presented in figure 6.7. In this figure the main components, data stores and
inter-component communications are showed. The description of the components can be found
below. Figure 6.8 shows how the contents of a request to the OGC service is altered as the message
passes through the security framework.

Legacy
OGC Service

Firew
all

Firewall

Firew
all

OGC Client
Client
Proxy

BioLANCC

SAML Assertion

G
at

ew
ay

Assertion
Generation

B
io

m
et

ri
c

A
u

th
en

tic
at

io
n

A
u

th
or

iz
a

tio
n

S
O

A
P

-H
T

T
P

C
on

ve
rt

er

A
u

di
t

Events

Extension to existing software

Profile Store Policy Store Log

User

Fingerprint
Reader

Figure 6.7: Biometric authentication for OGC Web services: Security system design

Gateway Similar to the design approach taken in the previous project, this component is an im-
plementation of the Gateway pattern. It acts as an endpoint for the service (clients can only
access the OGC service through the gateway). Its responsibility is to build the itinerary for
the request, to attach this itinerary to the message and to forward the message according to
the itinerary. Refer to the Technology Viewpoint, section 5.6, for details. The Gateway is
deployed in a DMZ.

Biometric Authentication This component extracts the SAML Authentication Assertion from the
header of the SOAP message and checks the digital signature of the assertion. If the signature is
valid, the user’s profile is retrieved from a database and the associated information is attached
to the message in the form of annotations. Because in this project only a prototype was
developed, the only information which is passed by means of annotations is the username.
This service acts as both a verification service (it verifies the user’s credentials) and as an
identification service - it supplies attributes related to the user’s identity.

Authorization Because authorization was not the primal focus of this project, a simple authoriza-
tion service was implemented, that only supports rules based on the username (i.e. ”user Bob is

144 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

/ isn’t authorized”). The implementation reads the annotation generated by the authentication
service, extracts the username and takes the authorization decision based on the information
stored in the policy store.

Audit The message contains enough information to generate proper audit trails (see figure 6.8).
However, only a prototype implementation was realized for the audit service which stores the
messages, as received, in a local log file. More advanced implementations could further process
the message and only log relevant information.

SOAP-HTTP Converter Because the OGC services used do not implement SOAP messaging, a
SOAP-HTTP protocol converter was required. Because multiple profiles are defined for each
OGC specification and because most implementations only implement some of the defined
profiles, it is not possible to implement a general purpose converter. In the project a custom
converter was developed which converts the WMS SOAP profile to WMS HTTP GET.

Legacy OGC Service The implementation was only tested with an OGC WMS service.

Header
SAML Assertion

Payload
OGC Request

Header
Itinerary
SAML Assertion

Payload
OGC Request

Header
Itinerary
SAML Assertion
Annotation

Payload
OGC Request

C
lie

nt

G
at

ew
ay

A
u

th
en

tic
at

io
n

A
ut

ho
riz

at
io

n

Header
Itinerary
SAML Assertion
Annotation

Payload
OGC Request

A
ud

it

OGC Request

S
O

A
P

-H
T

T
P

Header
Itinerary
SAML Assertion
Annotation

Payload
OGC Request O

G
C

 S
er

vi
ce

SOAP Msg. SOAP Msg. SOAP Msg.

SOAP Msg. SOAP Msg. HTTP GET

Figure 6.8: Biometric authentication for OGC Web services: Message propagation in the framework

Design Analysis

The design of the security system adopts the SOSA principles: the security system is external to
the protected Web service and is composed of several Web services which are aggregated by means
of message routing. The security services resemble the ones described in the taxonomy presented
in the Computational Viewpoint and the security tasks are realized into services according to the
principles of separation of concerns: authentication, authorization and audit are realized as differ-
ent services. This leads to a clear and understandable design and has the obvious advantage that
services can be replaced with little configuration effort (for example instead of the simple audit
service, a more complex audit implementation can be deployed).
Because only very simple access control rules are supported, the authorization task was imple-
mented into a single service. Dividing this task into PDP, PEP and PIP services (as described
in the Computational Viewpoint) was not feasible in this case. A more complex authorization

6.4. CRYPTOGRAPHY FOR OGC WEB SERVICES 145

implementation is described in section 6.5.
Finally, it should be remarked that this project illustrates very good how the Authentication-
Authorization-Audit security services chain can be realized by means of SOS!e .

6.4 Cryptography for OGC Web Services

6.4.1 Context

Encryption and digital signatures are common security tasks. For XML communication, as is the
case of SOAP Web services, these operations are supported through the XML Encryption [160],
XML Digital Signatures [159] and the WS-Security [35] specifications. For messages containing
non-XML content they are supported through the SOAP with Attachment (SwA) [36] profile of
WS-Security.
As described in 2.4, through encryption and digital signatures integrity, confidentiality and non-
repudiation can be achieved. There are various application scenarios where OGC services are
required to implement these functions; one of them, involving a land register information system,
will be described in this section.
OGC Web service interfaces do not have built in support for cryptographic operations. A simple and
easy to deploy solution to address this problem is though SSL, but this has several disadvantages,
most of them related to the fact that SSL works at a lower layer of the network stack: SSL
implements only encryption (it is not possible to have the content digitally signed), SSL only works
for point-to-point message transfers, not end-to-end, and SSL does not allow selective encryption
of the content (the whole payload must be encrypted).
In this project, two security services were realized that allow SOAP messages to be digitally signed
and encrypted by leveraging the specifications mentioned in the beginning of this section. The
implementation is documented in detail in [144]. One possible application example for these two
components in the context of security for geospatial Web services involves land register information
(because of data protection laws). This scenario is described in the next section.

6.4.2 Problem Statement and Objectives

Scenario

A land register information system, containing information about land parcels and ownership, must
be deployed in the Internet. The system exposes a Web Feature Service (WFS) interface through
which users can query for information about the land parcels and their owners. The WFS returns
vector information encoded in GML. It is assumed that the service is read-only (not WFS-T), in
other words, the database can not be modified through the exposed service interface.
Because it contains personal information, land register information is subject to privacy regulations
in many countries ([64] elaborates on this topic). Such information may only be accessed by
authorized persons and the information should be protected against unauthorized access (both
read and modification) while in transit over the network. Furthermore, if the data is stored or
cached on the client machine, the same security measures should be applied.

Objectives

The main objective of this project are to extend the SOS!e 1.0 framework by developing two
security services that implement XML encryption and XML digital signatures. The two services

146 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

should accommodate general purpose SOAP messaging and should have a high degree of reusability.
In the following, I will describe the most important aspects related to the two cryptographic services
and will also show how a security system based on the SOS!e 1.0 framework can be deployed and
configured to handle the various security aspects involved in the land register information system
scenario described above.

6.4.3 Requirements Analysis

Requirements for the Two Cryptographic Security Services

Because the two security services should have a high degree of reusability, the following requirements
render as important:

• The security services should be able to process general purpose XML messages. Because the
application scenario involves a WFS service, these services should be tested in combination
with WFS response messages.

• The services should permit that only some parts of the message content be encrypted / digitally
signed. Because messages are XML, the desired parts can be specified by means of XPath
expressions.

• Because these services may be used by more than one protected service it should be possible
to specify the cryptographic keys and the content to be encrypted through parameters. This
will allow the two services to be shared, without the need to replicate them (as in the case of
the Service Sharing Pattern - Technology Viewpoint, section 5.6).

• The services should support several encryption and hashing algorithms. Both symmetric and
asymmetric encryption should be supported.

Security Requirements for the Land Register Information System Scenario

From the scenario above, considering the security requirements described in section 2.4, the fol-
lowing security issues render as important and should be taken into consideration in the system
design:

Authentication Because the service is not available for everybody, the identity of service re-
questers must be verified. The identity of the requester is important for both authorization
and audit.

Authorization Because not all users should have access to the whole database, some authorization
process must be implemented in the system. The exact authorization process is out of the
scope of this dissertation; usually access to land register information is regulated by national
laws.

Audit The system should maintain audit trails documenting for each user both what the user has
requested as well as the information generated by the WFS.

Integrity The service must guarantee that the information arrives at the client without being
altered (accidentally or maliciously) when travelling over the network. One way to enforce
this is by digitally signing the content of messages before dispatching them.

6.4. CRYPTOGRAPHY FOR OGC WEB SERVICES 147

Confidentiality Because the ownership information is subject to privacy laws, this information
should be encrypted while in transit over the external network. However, other kinds of data
that the service may return, such as for example information about the land parcels, need not
be encrypted because this information is not subject to privacy regulations.

Non-Repudiation Proof of origin is important in this scenario. This can be realized through
digital signatures: the service signs the content of response messages before dispatching them.

6.4.4 Design and Implementation

Implementation

The two services were implemented on top of the SOS!e 1.0 framework. The implementation
is based on two open source libraries from Apache: XML Security - the Java implementation of
XMLENC and XMLDS, and WSS4J - the Java implementation of WS-Security.

Configuration

In order to avoid service replication, the two services are built such that parameters are expected
in the message to be processed, leveraging the parametrization features of the SOS!e 1.0 frame-
work (for details refer to section 5.6.2). In this way the Gateway service can specify the service
parameters when building the message itinerary.
Listing 6.4 illustrates the configuration parameters for an encryption service (the digital signature
service is configured in a similar fashion). The first parameter contains a list of XPath expressions
that identify the nodes to be encrypted, the second parameter specifies the configuration file con-
taining the encryption parameters and the key store location, while the last parameter indicates
the key to be used in the encryption process.� �

1 <Hop>

2 <Address>ht tp : //some . u r l / s e r v i c e s / enc</Address>

3 <Se rv i c e>

4 <ClassName>de . unibw . s 3 f . s e r v i c e s . encrypt ion . Encrypt ionServ i ce</ClassName>

5 <Parameter>

6 <Name>ElementsToEncrypt</Name>

7 <Value>Xpath1 ; Xpath2 ; . . . </Value>

8 </Parameter>

9 <Parameter>

10 <Name>CryptoPropert iesFi leName</Name>

11 <Value>c r yp t o t e s t . p r op e r t i e s</Value>

12 </Parameter>

13 <Parameter>

14 <Name>UserName</Name>

15 <Value>tom test</Value>

16 </Parameter>

17 </ Se rv i c e>

18 </Hop>� �
Listing 6.4: Service configuration example

Listing 6.5 shows an example XPath expression that matches features of type Kataster5 in a WFS
SOAP message response. Specifying this in the configuration would result in the land register
features being encrypted.

5Kataster is the German word for land register.

148 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

� �
1 / soapenv : Envelope/ soapenv : Body/gmgml : f e a t u r eCo l l e c t i o n /gml : featureMember/gmgml : Kataster� �

Listing 6.5: Example XPath expression matching Kataster feature types in a SOAP message

Wiring Diagram for the Land Register Information System Scenario

The wiring diagram for the land register information system scenario is presented in figure 6.9. It
is similar to the wiring diagrams presented in the previous sections of this chapter. Some of the
components - Gateway, Authorization, Audit and SOAP-HTTP Converter are the same components
as in the case of the biometric authentication system - this demonstrates the reusability of the
SOS!e security services.
The different components are the authentication service - here, instead of the biometric authenti-
cation a service supporting username - password authentication is used, and the two cryptographic
services.

Firew
all

F
irew

all

WFS Client
Client
Proxy

G
a

te
w

ay

A
u

th
en

tic
at

io
n

A
u

th
or

iz
at

io
n S
O

A
P

-H
T

T
P

C
o

nv
er

te
r

A
u

di
t

Legacy
WFS ServiceX

M
L

E
nc

ry
p

tio
n

X
M

L
D

ig
ita

l S
ig

.

Internal NetworkExternal Network Perimeter Network

Figure 6.9: Cryptography for OGC Web services: Security system design

The message flow is similar to the one showed in the previous section. However, here several ser-
vices are introduced on the message return chain: the request is first authenticated, authorized and
audited, then the corresponding response is generated. After that, the response message is digitally
signed and finally encrypted. For digital signing the private key of the service will be used, while
for encryption the public key of the requester will be used.
Example SOAP messages illustrating a GetFeature request containing the authentication creden-
tials and two responses containing GML feature collections where only the Kataster features are
encrypted / digitally signed are showed in appendix A.1.

Design Variations

Because of the up-mentioned data privacy regulations, it might not always be possible to perform
the authorization process without the intervention of a human person. For this, the Asynchronous
Authorization Pattern described in the Engineering Viewpoint (section 5.5) may provide a solution.
In this case, the authorization service takes the form of an interface where a human person inspects
the requests and then manually accepts or rejects them. The messages are persistently stored at

6.5. AUTHENTICATION AND LICENSING FOR WFS-T 149

the service until the human person performs the authorization task, and only then forwarded along
the processing chain.

6.5 Authentication and Licensing for WFS-T

6.5.1 Context

As part of the GeoDRM thread of the OGC Web Services Testbed 4 activity, the University of
the German Armed Forces has participated in the design and implementation of licensed access
to geospatial information. The results of this project are documented in [68, 65, 79], have been
presented within the 59th OGC TC Meeting and are available online, both on the OGC’s website6

and on the UniBw’s website7.
In the following I will briefly describe different aspects of the project. Similar to the previous
sections of this chapter, the emphasis will be on how SOSA was applied in the solution design
and how the SOS!e 1.0 framework was leveraged for the implementation. Other issues, such
as proposed extensions to the WMS/WFS specifications or details about the implementation are
intentionally left out. For these, please refer to the references provided above.

6.5.2 Problem Statement and Objectives

The exact objectives of the project together with detailed requirements, use cases, deliverables and
component diagrams are detailed in [123]. This subsection only presents an overview.
The objective of the GeoDRM thread within OWS-4 was to develop the engineering concepts and a
prototype implementation for licensing of geospatial information. The GeoDRM Reference Model
[149] lays the foundation in this field by specifying the required infrastructure from the enterprise,
computational and informational perspectives. In OWS-4, a corresponding engineering viewpoint
had to be developed and, based on this one, prototype implementations for both the WMS and the
WFS had to be built. Furthermore, a corresponding trust model had to be built that addresses
the service protocol, service request, chaining with other services and service response required to
form a complete trusted services chain.
In the following only one of the four given use-cases will be discussed8. This use-case involves a
client making a request to a transactional feature service (WFS-T). In order for the transaction to
be executed, the identity of the requester needs to be verified and the request needs to be authorized
based on the requester’s identity and its permissions (it is assumed that a license containing the
requester’s permissions is presented to the service). The service must keep audit trails documenting
the requesters and the operations executed. Furthermore, in the case of transactions (insert, update
or delete operations), the service should send notifications announcing that modifications were
performed on the dataset.

6.5.3 Requirements Analysis

Interactions and Trust Model

The interactions between the OGC client and the other entities are described in [68] and illustrated
in figure 6.10. As it can be seen here, the client is acquiring an identity token from an Identity

Provider and one or more license tokens from the License Broker. For the acquisition of these tokens

6http://www.opengeospatial.org/projects/initiatives/ows-4
7http://iisdemo.informatik.unibw-muenchen.de/ows4
8This was the use-case implemented by UniBw; the implementation was based on the SOS!e framework.

150 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

the mechanisms described in WS-Trust [40] can be used. However this process is besides the scope
of this dissertation - we will only focus on how the SOS!e framework was leveraged in order to
enforce the security policy of the GeoDRM Enabled WFS-T.
Having the tokens described above, the client is now able to make requests to the GeoDRM Enabled

WFS-T. For this, he will create a request message containing the WFS-T operation request as
payload, attach the tokens to the message (one identity token asserting its identity and one or
more license tokens asserting its permissions) and then send it to the service.

Identity Provider

Issue Token

Renew Token

Validate Token

Cancel Token

License Broker

GeoDRM Enabled
WFS-T Client

Security Policy

Security Policy

Security Policy

Issue Token

Renew Token

Validate Token

Cancel Token

Identity
Tokens

License
Tokens

Security
TokensClaims

Tokens WFS-T Request

GeoDRM Enabled
WFS-T

Figure 6.10: Authentication and licensing for WFS-T: Trust model [68]

The two types of tokens contain the following information:

Identity Tokens Contain information asserting identity together with information about the is-
suing authority (Identity Provider). Examples of such tokens are X.509 certificates and SAML
assertions.

License Tokens Contain information asserting the permissions of a certain subject and informa-
tion about the issuing authority. The subject must prove its identity when presenting a license
token. In OWS-4, license tokens were implemented as SAML assertions.

Verification Procedure and Security Requirements

Once the request message reaches the service, this one will have to perform the authentication and
authorization steps. The procedure is graphically displayed in figure 6.11. Looking at this figure,
we notice that the procedure can be split into two distinct activities:

Verification The validity of the tokens is verified - this corresponds to steps 1 - 5 in figure 6.11.

Authorization The permissions asserted by the license tokens are evaluated against the WFS-T
request - step 6 in figure 6.11.

In addition to these two activities, the service should also perform audit tasks, as follows:

6.5. AUTHENTICATION AND LICENSING FOR WFS-T 151

2. Verify that
Identity Token(s) are valid

1. Verify that
Idenity Provider is trusted

3. Verify that
License Broker is trusted

4. Verify that
License Token(s) are valid

5. Verify that
License Token(s) are

accompanied by
corresponding identity tokens

6. Verify that
License Claims are sufficient

to execute the WFS-T Request

If all conditions are satisfied
execute OWSRequest

Receive Message

Figure 6.11: Authentication and licensing for WFS-T: Verification process [68]

Logging Audit trails should be left documenting, for each user both the requests executed and
the information returned. The latter is required because the WFS-T data store may change
over time, therefore from the request alone it is not possible to determine after-the-fact the
corresponding response.

Alerting If one of the operations executed was a transaction, an alert must be generated. In this
project, the alerts were email messages sent to an administrator; upon receiving an email, this
one would manually inspect the changes.

6.5.4 Design and Implementation

The security system for the GeoDRM Enabled WFS-T was designed as a list of components that were
assembled together by means of the SOS!e 1.0 framework. The principle of separation of concerns
was applied and the functionality of the components reflects the previously identified requirements.

Wiring Diagram

The system design is presented in figure 6.12. Here, the main components, data stores and inter-
component communications are showed. The relevant components are described below.

Verification Verifies both the identity tokens and the license tokens. The OWS-4 implementation
was able to verify two types of identity tokens: username-password tokens and X.509 certifi-
cates accompanied by a corresponding digital signature; for the latter, an extension to the
client was developed that allowed the use of smartcards and cryptographic tokens (for more,
refer to the demo website). The Verification service was also able to verify license tokens en-
coded as SAML assertions. If the verifications are successful, this component also annotates
messages with a unique user identifier that is used as a canonical requester identifier (see
section 5.3, Identification Service). This identifier is used by the rest of the security services
(PEP, Logging and MailAlert) to identify the requester.

PEP For the authorization process the GeoXACML implementation developed in [107] was lever-
aged. For every request, the enforcement point communicates with the GeoPDP to determine

152 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

F
irew

all

Firew
all

WFS Client
Client
Proxy

G
at

ew
ay

V
er

ifi
ca

tio
n PEP S
O

A
P

-H
T

T
P

C
o

nv
er

te
r

Lo
g

gi
n

g

Legacy
WFS Service

M
ai

lA
le

rt

Internal NetworkExternal Network Perimeter Network

GeoPDP

License
Broker

GeoXACML
License Repository

Figure 6.12: Authentication and licensing for WFS-T: System design

if the request should be permitted or denied. For this, the PEP implements the XACML
request-response protocol, as described in [13].

GeoPDP This component is part of the GeoXACML implementation (see [107]) and only minor
implementation modifications were performed. It is able to perform authorization based on
different criteria, including the WFS-T request type and its geographical boundaries.

Logging Logs both requests and response messages. Because the message is annotated with the
canonical requester identifier, both the request and the corresponding response can be traced
back to the requester.

MailAlert A general purpose alert service was developed for the notification task. The alerts are
specified as XPath expressions which are evaluated for all messages received. In this project,
the MailAlert service was configured to send emails if a transaction operation was performed
(for WFS-T, this can also be determined by investigating the response message).

License Broker This component was realized as a web interface. By accessing it, new licenses can
be generated; the corresponding license token is returned to the client and the GeoXACML

License Repository is updated.

Design Analysis

In contrast to the previous three projects where the authorization was realized as a single service,
here it is divided into PDP and PEP. However, the PDP is not realized as a mediation services,
but rather as a service which is invoked by the PEP. The reason for this choice, is that the existing
GeoXACML implementation was leveraged, and this implementation conforms to the XACML
service model where the PDP is implemented as an invocation service.
Because it leverages existing security capabilities, this design is a good example of how existing
security services can be integrated in the SOS!e framework and leveraged by means of SOSA .

6.6. FURTHER PRACTICAL EXPERIENCES 153

Design Variations

The Federation Pattern The verification service used here is able to verify all the different kinds of
security tokens. This fits the requirements of the OWS-4 project. However, in other cases it may
not be possible to have a single service which verifies all types of tokens. For such situations the
Federation Pattern (section 5.5) may provide solutions.

Notifications through Message Routing Figure 6.13 shows another possible design for implementing
the notification workflow (only the return chain is showed in the figure). After the logging service, a
message splitter is introduced in the chain: one route leads to the Gateway service and then back to
the requester and the other to the Notification service. This latter one is implemented as a message
filter9: the messages that do not fit the alert criteria are simply dropped. The other ones are sent
to a persistent store which is connected asynchronously with an Application for Inspecting WFS-T

Transactions.

G
at

e
w

a
y

S
O

A
P

-H
T

T
P

C
on

ve
rt

er

L
og

g
in

g

Legacy
WFS Service

Notification

Persistent
Message Store

Application
for Inspecting

WFS-T Transactions

Message Splitter

Figure 6.13: Authentication and licensing for WFS-T: System design variation

In SOS!e 1.0 this is rather complicated to realize. However in SOS!e 2.0 , which is based on
an ESB, this is very easy to realize and does not require a single line of code: both message filters
and splitters are supported through configuration scripts.

6.6 Further Practical Experiences

6.6.1 Kerberos Authentication Service

The purpose of this experiment was to develop a security service that is able to perform user
authentication based on a provided Kerberos token. Because Kerberos is the default authentication
protocol used in current versions of Microsoft Windows, such a security service is very useful as it
leverages the authentication infrastructure already existing in Microsoft Networks. The experiment
was performed as a study assignment at the University of the German Armed Forces and the results
are described in [81].
In the following this experiment will be briefly introduced by presenting an application scenario
and a couple of relevant aspects about the implementation. For further information about Kerberos
and authentication in Windows networks, please refer to [61].

9This is one of the EAI patterns discussed in [95].

154 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

Application Scenario

When a user logs in a domain on a machine running Windows, the Kerberos authentication pro-
tocol is used and the machine will acquire a TGT10 from the domain controller. This TGT can be
retrieved by a client software, and a session ticket (ST) can be requested. With this ST, the client
can make requests to a Web service, attaching the ticket to the request and using the ticket key
to sign the message. On the server side, the developed Kerberos authentication service will test
the validity of the token and the authenticity of the signature and, by connecting to the Active
Directory service, retrieve different user attributes which are then passed to other security services
through annotations.
Kerberos provides a simple authentication procedure on the client side and by means of the devel-
oped Kerberos authentication service, the SOS!e framework can be integrated with the existing
Windows infrastructure for authentication and access control.

Implementation

SOAP communication was used and the Kerberos tokens were encoded by means of WS-Security.
Because Microsoft .NET offers a very good API for Kerberos, both the Kerberos security service
and the client were developed using .NET. The rest of the SOS!e framework, as described in
section 5.6, is developed in Java. However, because SOAP and WS-Security are independent of
both operating system and development environment, it is possible to integrate .NET services in
the Java-based framework. Figure 6.14 illustrates the deployment.

G
at

ew
ayService

Requester

Protected
Web Service

K
er

b
er

o
s

A
u

th
e

n
ti

ca
ti

o
n

.NET Implementation

Java Implementation

...

...

Security Services

Figure 6.14: Deployment of the Kerberos authentication service

This demonstrates another application scenario for SOSA : instead of developing a monolithic
security system where the developer is forced to use a single technology, different security aspects
can be implemented as different security services. Most importantly, the developers are free to
choose the programming language to implement these services and the target deployment platform.

6.6.2 Accounting and Charging with PayPal

In this experiment the objectives were to develop two security services: one accounting service
implementing different accounting models for the WMS and WFS, and one charging service that
is able to charge users by means of PayPal11. Putting together these two security services with
the rest of the security services presented earlier in this chapter, would result in a complete A4C12

10Ticket Granting Ticket
11http://www.paypal.com
12A4C is an acronym for Authentication, Authorization, Audit, Accounting and Charging

6.6. FURTHER PRACTICAL EXPERIENCES 155

security system, able to support complex eBusiness scenarios. These two services are developed as
part of a diploma thesis and the results are described in [161]. In the following I will only present
some relevant aspects of the two services.

The Accounting Service

The accounting service meters the usage of the service and produces information for the charging
service. The metering is done independently for each user, and the metering data is both persistently
stored as well as transmitted by means of annotations to the charging service.
Because a generic implementation can not be realized for service metering, it was decided to support
two OGC services: WMS and WFS. A separate accounting service is developed for each service
interface. The following accounting models are supported by each service (the models are inspired
from [76, 152]):

• WMS Accounting Service

Pay-Per-Pixel A fixed price is charged for each pixel of the requested image. The model can
be refined to include different prices for different layers offered by the WMS.

Pay-Per-Request A fixed price is charged for each request; this model is sometimes also
referred to as pay-per-click.

• WFS Accounting Service

Pay-Per-Feature A fixed price is charged for each feature returned; different prices can be
set for different feature classes.

Pay-Per-Request A fixed price is charged for each request (pay-per-click).

It is worth to remark that, in case of the WMS the information required to perform accounting is
found in the request message, while in the case of the WFS this information is found in the response
message. This has implications on how the security services are deployed: the WMS accounting
service must be deployed on the forward chain, while the WFS accounting service must be deployed
on the return chain.

The Charging Service

As discussed in the Computational Viewpoint (section 5.3), charging can be either done on a
periodical basis (monthly, yearly, etc.) or immediately. The scope here was to realize a service that
implements the latter case.
In order for the charging service to be able to perform its task it requires the following information:

• Information necessary to retrieve the charged amount (i.e. credit card) together with infor-
mation regarding the address where the invoice shall be sent. This information is provided by
the identification service (it is assumed that the charging information is saved together with
the rest of the requester’s profile).

• The amount of money that must be charged (and possibly also additional information that
should be printed on the invoice). This is provided by the accounting service.

The implementation uses the PayPal SOAP API [98]. This permits developers to build custom
applications and services that make use of corresponding services to the ones PayPal offers on its
website.

156 CHAPTER 6. PRACTICAL EXPERIENCES WITH SOSA

6.7 Conclusions

In this chapter I showed how the SOS!e framework was used in several projects in order to enhance
OGC Web services with different security features. This demonstrated the feasibility of the Service
Oriented Security Architecture - SOSA - described in this dissertation. Before going to the next
chapter, where the architecture is analyzed and evaluated, the following remarks are made:

Service Type Implemented Services

Authentication Username-Password Authentication
X.509 (Smartcard) Authentication
Biometric Authentication (BioLANCC)
Kerberos Token Authentication

Authorization Simple Authorization
XACML Authorization

Audit Logging
Mail Alert

Cryptographic Service XML Encryption
XML Digital Signing

Accounting WMS Accounting
WFS Accounting

Charging PayPal Charging

Table 6.1: Security services implemented for the SOS!e framework

• In the projects illustrated here, there were cases where the security services were not built
strictly as described in the taxonomy presented in the Computational Viewpoint (section
5.3). In many cases, the functionality of several services was implemented as a single service.
This shows that when designing a security system, the exact requirements should be taken
into consideration. It does not always make sense to fragment the security implementation
because as the route followed by a message gets longer, the round-trip-time increases (see
next section). Furthermore, sometimes it is more complicated to implement certain security
functions as independent services. Nevertheless the security services taxonomy provides a
good reference model, as it clearly illustrates how the most common security functions can be
implemented as services.

• The projects revealed different reasons for using SOSA :

– The ability to have a modular, component based implementation that facilitates reusabil-
ity; because reusability occurs at the service-level, no replication is necessary (see 6.3, 6.4,
6.5);

– The ability to implement components in different programming languages and deploy them
on different platforms (see 6.6.1);

– The ability to quickly integrate already existing security infrastructure with newly devel-
oped Web services (see 6.3, 6.6.1, 6.6.2).

• The projects illustrated how some of the patterns described in the Engineering Viewpoint
(section 5.5) can be applied in practice. In addition to what was already presented, having in
mind the particular case of geospatial Web services, the following two patterns can be applied
to all four projects (sections 6.2, 6.3, 6.4, 6.5):

The Security Off-Shoring Pattern For most data providers, dealing with the security as-
pects related to their services is a hard job, because it requires highly qualified personnel.

6.7. CONCLUSIONS 157

By applying this pattern, some of the security aspects can be off-shored to specialized
companies, permitting the data providers to focus on producing, maintaining and serving
the data.

The Service Sharing Pattern Data providers usually deploy several services hosting dif-
ferent types of data (for scalability reasons), but having similar security policies. For such
cases, the service sharing pattern provides an elegant solution - the management effort is
lowered because of the centralization.

• The security services developed for the SOS!e framework are showed in table 6.1. As it can
be seen, by combining them together complex security solutions can be developed. This is
achieved with little effort as it only requires the configuration of an itinerary that incoming
messages should follow and the configuration of the respective service instances.

Chapter 7

Analysis and Evaluation

In this chapter an evaluation of the proposed architecture is performed. First, the architecture
is analyzed according to the properties defined in 3.2. Then a detailed performance evaluation is
performed with the purpose of determining the impact that a SOSA based security system has on
the performance of the service provider. The results are discussed at the end of the section.

7.1 Architectural Evaluation

In section 3.1, several properties that are used in the evaluation of architectural designs have
been presented: performance, scalability, simplicity, changeability, portability and reliability. In
section 3.2, three different design approaches to implementing security for Web services have been
introduced and evaluated against the aforementioned properties: security system embedded in
the application, security system embedded in the middleware and security system external to the
application - the last one is the approach taken by the architecture proposed in this dissertation.
In the following, I will evaluate SOSA against the up mentioned architectural properties.

Performance

In section 3.2 a preliminary evaluation of the performance of external security approaches was
presented. This evaluation was not exact because it only took into consideration the design without
measuring a concrete implementation. It was showed there that the performance of applications
where the security system is implemented externally is lower than that of comparable applications
where the security system is embedded in the application or in the middleware.
A more accurate measurement of the performance of the proposed architecture is presented in
section 7.2. There, the SOS!e 2.0 framework is evaluated in order to determine the effects of
different service chaining configurations on network performance parameters (round-trip-time and
throughput). At the end of section 7.2 I’m discussing whether SOSA is appropriate or not for
different classes of applications.

Scalability

Scalability is the ability of a system to handle a growing amount of work in a graceful manner or to
be readily enlarged. In SOSA the different security tasks that a security system must perform are

159

160 CHAPTER 7. ANALYSIS AND EVALUATION

split in different components that are implemented as services. These are independent from one
another and communicate by means of messages. Therefore the same techniques that are applied
in scaling Web services can be applied individually to each security service. The following are the
most important aspects that ensure the scalability of the proposed architecture:

Load Balancing As described in the Engineering Viewpoint, section 5.5, service clustering tech-
niques can be applied to the security services. As such, several services can be configured to
appear as one single logical service which is capable of handling an increased load.

Specialized Hardware Some security functions (mostly cryptographic functions) are CPU-intensive.
Specialized hardware is available that usually provides performance boosts of 10 to 100 times
in the number of messages per second that can be processed. However, because they are rela-
tively expensive, it is difficult to equip each server which such hardware. By means of SOSA

these CPU-intensive tasks can be distributed on machines with specialized hardware, and be
used by services located on other machines.

Simplicity

Simplicity is the property of being simple. The factors that contribute to simplicity are Complexity,
Understandability and Verifiability.

Complexity is a measure of the number of inter-related parts of a system. There are both positive
and negative aspects of this property in relation with SOSA :

Negative On one side, the fact that the security tasks are divided into components (these are
by their nature inter-related), increases the complexity of the system to some degree. This
has effects also on the understandability and the verifiability of the system, as there is some
overhead in understanding how the components are coupled together and some overhead in
verifying that the components are correctly coupled together.

Positive Nevertheless, because there is a clear separation between the components (they commu-
nicated thought a messaging interface) the inter-connections are actually loosely-couplings.
Furthermore, as showed in chapter 6, in normal cases it does not make sense to introduce a
large number of security services.

In conclusion, complexity is increased to some degree, but this is not significant. Other approaches,
as showed in section 3.2, although they may have less well-defined components, the inter-connections
are a lot stronger.

Understandability is a measure of how easy a person can understand a system. This is a strong
point of the proposed architecture. The following two factors contribute to understandability:

• The different security tasks are divided into well-defined components that are implemented
as different services. These components are therefore separated at the implementation level -
they only communicate by means of a messaging interface.

• Security systems are designed by applying the principle of separation of concerns. This sep-
arates the components at a conceptual level: different tasks are implemented into different
components.

7.1. ARCHITECTURAL EVALUATION 161

As previously mentioned, there is some overhead due to the aggregation of the different security
services. This is low if graphical tools for the definition and visualization of orchestrations are used.

Verifiability is a measure of how easy it is possible to prove or disprove the correctness of a system.
The system is a sum of well defined components, which can be individually tested. Security services
have clearly defined interfaces (though WSDL or similar technologies) and usually do not implement
complex functions. For this reasons it is relatively easy to develop automatic tests for the them.
However it is not so trivial to develop automatic tests for the whole system - these tests should
automatically prove or disprove the correctness of the choreography. For this, WS-CDL could
provide some solutions, as tools could be developed that perform automatic testing of the WS-
CDL representation of the service choreography (for more, see 5.4 and 8.4).

Changeability

Changeability represents the capability of a system to be changed without a negative impact. The
factors that contribute to this property are: Configurability, Extensibility and Reusability.

Configurability Represents the ability of a system to support post-deployment changes in behavior
through configuration changes. Configuration can be programed in the security system at both
service level (each service can have its own configuration) as well as at the system level (the service
choreography).

Individual Services Configuration of the individual services is possible via the management in-
terface (this was described in the Computational Viewpoint, section 5.3). There are various
possibilities to implement this depending on the platform and middleware on top of which the
security services are implemented. Examples in the context of Java are JMX1, deployment
descriptors, configuration files, etc. The services developed on top of the SOS!e framework
(see chapter 6) allow for different parameters to be specified through configuration files.

Service Orchestration The orchestration of services is described by message routing rules. These
are also configurable (they are usually stored in files or other types of persistent stores).

In conclusion, the architecture permits the design of configurable systems. However, the degree of
configurability depends on the concrete design and the implementation.

Extensibility Refers to the ability to add functionality to an existing system without having to make
major changes to the system infrastructure. Because the system is composed from several services
that communicate through messages, it is easy to extend a system by simply adding new services
or by replacing (upgrading) existing ones. Furthermore, it is possible to do this both offline (by
temporarily stopping the system) as well as online (without stopping the system). For the latter
one, techniques similar to the ones used when upgrading Web servers can be applied, where traffic
is temporarily redirected.

Reusability Refers to the ability to use components of a software system into other applications,
without modifying them. This aspect represents another strong point of the proposed architecture:
security services can be reused both through redeployment (the security service is deployed in
a different network and reconfigured) or by sharing a single service instance between multiple

1Java Management Extensions, see http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement.

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement

162 CHAPTER 7. ANALYSIS AND EVALUATION

applications. The latter was illustrated in the Service Sharing Pattern and the Security Off-Shoring
Pattern (Engineering Viewpoint, section 5.5).

Portability

Portability is the property of a system of being able to run on multiple platforms. Web services are
designed to be platform-independent in the sense that the service requester and service provider can
run on different platforms. Web services are nevertheless often bound to the middleware system.
SOSA applies the external security approach, dividing the protected service and the security
system. This gives more flexibility with regard to portability as the two can be deployed on different
platforms. Moreover, in SOSA the security system is realized as a series of security services, each
of which can run on independent platforms.

Reliability

Reliability is the ability of a system or component to perform its required functions under stated
conditions for a specified period of time. In the context of distributed systems, this is often seen as
the degree to which a system is susceptible to failure at the system level due to partial failure of
its components.
The proposed architecture introduces several interdependent components - the failure of one of
them leads to a failure of the system because the security policy can not be applied. However,
as showed in the Engineering Viewpoint, section 5.5, service clustering techniques can be applied
which increase the availability of individual services and through this the availability of the system
as a whole. Furthermore, because services communicate via messages, upgrades and maintenance
for individual services can be dynamically executed (with the system running) by redirecting the
traffic.

7.2 Performance Evaluation

In this section a performance evaluation of the proposed architecture is presented. As reference
implementation the SOS!e 2.0 framework is used. The goal is to determine the effects of different
deployments of the SOS!e framework on the performance of the service provider. Two performance
parameters are measured: the throughput and the message round-trip-time (message delay). The
results are commented at the end of the section.

7.2.1 Performance Parameters

As already discussed in section 3.1, performance parameters can be divided into two distinct cate-
gories:

Network Performance Is a measure of the communication between the client and the Web ser-
vice. The most important aspects that influence network performance are the network QoS
parameters and the implementation of the service components.

User-Perceived Performance Represents the impact that the network performance has on the
user. This type of performance is very much dependent on how the client application is built.

Because the proposed architecture refers to securing Web services (it does not have implications
on the architecture of the client applications), only network performance will be analyzed here.

7.2. PERFORMANCE EVALUATION 163

According to [143], the most important parameters for network performance in the context of Web
services are the following:

Throughput Represents the number of Web service requests served in a given period of time.

Latency Also known as message delay or round-trip-time2 or , is the time elapsed between sending
a request and receiving the response.

Execution Time Is the time taken by a Web service to process its sequence of activities.

Transaction Time Represents the period of time that passes while the Web service is completing
one complete transaction.

As a rule, higher throughput, lower latency, lower execution times and faster transaction times
represent good performing Web services.
As far as the performance evaluation for SOSA is concerned, only the first two parameters are
taken into consideration in the tests. The reason for this choice is that the execution time and the
transaction time are included in the latency. Furthermore, Latency and Throughput give a good
indication of the performance, and are used in most Web service performance analysis [155, 146, 58].

7.2.2 Performance Model for Web Services

In a Web service interaction, the service requester and the service provider exchange information
using SOAP. In the following subsections, I will first present a model where the SOS!e framework is
not considered (the service requester communicates directly with the service provider). This model
is inspired from [155]. Afterward, this model will be extended to include the SOS!e framework as
an intermediary between the service requester and the service provider.
The goal is to first understand where time is spent in a typical Web service communication and then
to understand the delays introduced by the SOS!e framework. Knowing these, a couple of simple
scenarios are proposed, which are representative and can be used in the performance evaluation.

Service Requester Communicates Directly with the Service Provider

In a request-reply interaction, the requester will first construct the request message (converting
the parameters from its own in-memory representation into XML) and send the request to the
service provider. This one will parse the request, convert the parameters into its native in-memory
representation, process the request, then construct the response message and return this one to the
requester. The requester will receive the response and deserialize it. Therefore, the factors that
influence the RTT are the following (they are graphically illustrated in figure 7.1):

1. Time spent by the Web Service Client (WSC) to retrieve the values from its internal data
structures.

2. Time spent by the WSC to construct a message by embedding the previously retrieved values.

3. Time spent by the WSC to dispatch the message.

4. Time spent by the message to arrive at the Web Service Server (WSS).

5. Time spent by the WSS to read the incoming message.

6. Time spent by the WSS to parse the message and retrieve the required data.
2Round-Trip-Time is abbreviated RTT in the following.

164 CHAPTER 7. ANALYSIS AND EVALUATION

7. Time spent by the WSS to construct appropriate data structures that can be manipulated in
memory.

8. Time spent by the WSS to complete the execution of the request.

9. Time spent by the WSS to retrieve the values for the response message from its internal data
structures.

10. Time spent by the WSS to construct the response message by embedding the previously
retrieved values.

11. Time spent by the WSS to dispatch the response message.

12. Time spent by the response message to arrive at the client.

13. Time spent by the WSC to read the incoming message.

14. Time spent by the WSC to parse the response message and retrieve the required data.

15. Time spent by the WSC to construct suitable data structures and populate them so that they
can be used in execution.

Network

HTTP Implementation

SOAP Framework

Service Requester

HTTP Implementation

SOAP Framework

Service Provider

3

1,2

5

6,79,1014,15

8

4

11

12

13

Figure 7.1: Web services performance model

Of these fifteen factors, factors 1, 2, 3 and 13, 14, 15 depend on the implementation of the client.
Factors 4 and 12 depend on the performance of the network. Factors 5 and 11 depend on the HTTP
protocol implementation (SOAP-over-HTTP is considered in this analysis). Factors 6, 7 and 9, 10
depend on the implementation of the SOAP framework. Finally, 8 represents the time taken by the
Web service to complete execution, which is dependent on the implementation of the Web service.

Service Requester, SOS!e and Service Provider

If the SOS!e framework is deployed between the service requester and the service provider (figure
7.2), steps 4 - 12 are repeated for each intermediary security service introduced along the message
itinerary. However, for each security service, step 8 described above can be split into the following
two sub-steps:

8a. Time spent by the security service to execute the security operations.

8b. Time spent by the security service because of the imposed processing model. This represents
the time spent by processing annotations (creation, deletion, modification).

7.2. PERFORMANCE EVALUATION 165

If the security policy is to be enforced (i.e. there is a security system in place that is realized either
embedded in the application or embedded in the middleware), step 8a is anyway executed (i.e.
parts of the message are encrypted, authentication tokens must be verified, etc). Therefore, the
overhead introduced by the SOS!e framework is caused by factors 4 - 7, 8b and 9 - 12.

SOS!e

A BS
er

vi
ce

R
eq

u
es

te
r P

ro
tected

S
ervice

D C......
Figure 7.2: SOS!e deployment

Use-cases for Evaluation

In order to accurately measure the overhead introduced by the SOS!e framework, time spent in step
8a must be null. We therefore consider ”empty” services in the evaluation, which only implement
framework specific operations. The following types of services will be used in the evaluation:

Simple A service that does nothing (it simply sends the message to the next service along the
chain). This service simulates the framework-specific overhead in services that do not need to
communicate with other services. Examples of such security services are: logging, encryption,
PEP.

Simple with Annotation A service that reads the annotations found in the message and appends
a new annotation to the message before forwarding it. This service simulates the framework-
specific overhead in services that do communicate with other services. Examples of such
services are: identification, PDP, PIP.

Simple with Digitally Signed Annotation SOS!e 2.0 supports annotations containing digi-
tal signatures. This service is similar with the previous one, just that it verifies the signature
of the annotations found in the message and signs the newly created annotation.

7.2.3 Performance Testing with a Lightweight Environment

There are various approaches to performance testing [155, 146, 108, 58]. The approach taken in the
evaluation of SOSA was to build a lightweight environment that can be realized in a laboratory.
The software used was open-source and the servers were, as it will later be seen, equivalent to
medium-size PCs. This kind of environment is inexpensive and can be realized by anybody that is
willing to deploy a SOSA solution, and is interested to do an early capacity testing. The approach
is inspired from [146].
The test environment must be built in such a manner that the load is distributed mostly on the
security system (after all, this is the component whose performance needs to be determined). If
other components represent bottlenecks it is not possible to accurately determine the performance
of the security system.
Figure 7.3 presents a typical deployment, where a service requester connects though the SOS!e

framework to a service provider. As is often the case, the service provider relies on one or more

166 CHAPTER 7. ANALYSIS AND EVALUATION

back-end databases. Furthermore, the SOS!e framework also connects to databases where security
information is persistently stored (examples are LDAP repositories, XACML PAPs, etc).

Bottleneck!?

DatabaseDatabase

Service
Requester

Service
ProviderSOS!e

Bottleneck!? Bottleneck!? Bottleneck!?

Security
Database

DatabaseDatabaseBack-end
Database

Figure 7.3: Possible bottlenecks in the testing environment

The testing environment must be built in such a way that the only bottleneck is the SOS!e

framework. If any of the other components represent bottlenecks or if significant time is consumed
by those components, the measurements would be inaccurate. In order to minimize the effects that
these components have on the performance parameters (message delay and throughput), lightweight
versions of these components were built:

Service Requester The task of this component is to generate requests and send them to the
service provider. This component was realized as a workload generator. In order to provide
a good load on the service provider, the generator can be configured to use several parallel
threads, simulating several requesters concurrently accessing the service.

Security Database The security services used in the testing environment have been presented in
section 7.2.2. They do not connect to external databases.

Service Provider A minimal implementation of the service provider was realized. This resembles
a ”Hello World” application: it waits for a request message, it modifies a tag from the body
of the message and responds with this modified version of the original message. In this way
the request and the response messages have comparable complexities. No back-end database
is accessed.

7.2.4 Realization of the Environment

Service Requester

The service requester was realized as a workload generator. Apache JMeter3 [99] was chosen for
this purpose because it is an open-source tool with multiple configuration possibilities. JMeter is
also able to measure both throughput and RTT and to compute several types of statistics.
In order to boost performance (JMeter consumes a lot of CPU, especially if it is configured to
simulate large numbers of clients), the requests were not generated on the fly. Instead, the request
messages were prepared in advanced as files.

Service Provider

The service provider was implemented in the same way as the other Web services. It was developed
in Java and deployed in Apache AXIS (this one runs inside Apache Tomcat).

3http://jakarta.apache.org/jmeter

http://jakarta.apache.org/jmeter

7.2. PERFORMANCE EVALUATION 167

The SOS!e Framework

Different configurations of the SOS!e framework were tested. The following parameters were
varied:

Deployment Type Different deployments of the security services and different configurations of
Mule ESB were tested. These are detailed in the next section.

Security Services Type The types of security services used in the testing environment have
already been presented in section 7.2.2. These are: Simple, Simple with Annotations, Simple
with Digitally Signed Annotations.

Number of Security Services The number of security services that a message encounters on its
itinerary ranged from one to five. This simulates different levels of complexity for the security
system.

Configuration Parameters

In the testing environment, the following parameters could be configured:

Number of Threads This is a measure of the number of clients simultaneously accessing the
service provider. In order to have an optimal load for the service provider, three different values
were tested: 3, 30 and 100. We expected this to impact on both the RTT and throughput.
A lower number of concurrent clients is expected to result in a lower message RTT because
messages wait less in order to be processed. However, a higher number of concurrent clients
is expected to produce more accurate throughput results as the service is better solicited.

Message As far as the transacted messages are concerned, the goal was to use real-world messages:
OGC service requests and responses were used in the tests. The size of the messages ranged
from 1KB (a WMS GetCapabilites request) to 64KB (a WFS GetFeature response containing
38 features).

Number of Messages As also described in [108], it is important that the number of messages
is high enough so that the tested system reaches a stable state. Between 15.000 and 50.000
message requests were used for each test - the number was roughly calculated so that each
test takes between 3 and 15 minutes. In most cases, the system reached a stable state after
one minute.

Monitored Parameters

It is common practice [146, 108, 99] that all the machines which are part of the testing environment
be monitored during the performance test. In order to obtain accurate results it is important that
load on both the service requester machine and the service provider machine be low and the load
on the machines running the SOS!e framework be high. In order to ensure that this is the case,
the CPU usage was monitored on all machines during the tests.

Hardware

The tests were executed on eight Dell PowerEdge 750 4 machines (2.8GHz Intel Pentium 4 Processor,
2GB RAM, Gigabit NIC). As far as the network is concerned, the eight servers were interconnected
by means of a Dell PowerConnect 2324 switch providing 100MBit connectivity.

4For the exact description of the machines as well as the installed software, see appendix D.

168 CHAPTER 7. ANALYSIS AND EVALUATION

The Testing Environment

The testing environment is graphically illustrated in figure 7.4. The service requester and the
service provider were deployed each on one machine. The machine hosting the service requester
was at the same time monitoring the CPU usage on all eight servers. The SOS!e framework was
running on one or more machines, depending on the use-case; details will be provided in the next
section.

Service
Requester

Service
ProviderSOS!e

CPU Monitoring

Monitor

Figure 7.4: The realization of the testing environment

7.2.5 Experimental Results

Goals

The first goal of the performance tests was to determine the variation in performance when messages
are routed through a different number of security services. For this purpose several use-cases were
considered. Each use-case represents a possible deployment of the SOS!e framework. The use-
cases together with the results of the performance tests are presented in the next subsection.
A further goal of the performance tests was to determine the variation in performance depending
on the size of the messages. Because the parsing of XML messages is expected to introduce a
significant overhead, it was important to determine how much the performance degrades with the
increase of the message size.

Performance Variations with Different SOS!e Deployments

As it happens with most distributed systems, also in the case of SOS!e there are multiple de-
ployment possibilities. Four different use-cases were taken into consideration for the performance
testing - see below. The use-cases illustrate typical usage scenarios. The number of security services
ranged from a single one to five (in the following figures these are noted S1 ... S5).

Use-Case #1 In this use-case (figure 7.5), the Mule ESB and the security services were all hosted
on a single physical machine. This is a simple scenario, however not a very practical one, as in
practice it is expected that the security services are deployed on different machines.
The results of the performance tests for this use-case are showed in figure 7.6. What can be seen
here is that when the SOS!e framework is introduced, there is a significant impact on throughput:
from 392 requests/s without SOS!e , the throughput decreases to 136 requests/s when a single
security service is introduced. The throughput then decreases linearly when additional security
services are introduced. A justification for this initial performance shift is the overhead introduced
by the Mule ESB.

7.2. PERFORMANCE EVALUATION 169

Tomcat with AXIS

Service
Provider

Tomcat with AXIS

Mule ESB

S1 S5S2 S3 S4

Service
Requester

JMeter

SOS!e Framework

Figure 7.5: Use-case #1: Deployment diagram

The initial shift is less visible for the message delay: this parameter increases from 6 ms without
SOS!e to 21 ms when a single security service is introduced and then to 35, 54, 82, 109 ms when
additional security services are introduced. The variation of message delay is linear with the number
of security services.

Use-Case #1: Throughput

13
6

83

59 44 35

11
5

81

46 34 26

48

24 16 11 9

39
2

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

0 1 2 3 4 5

Number of Security Services

T
h

ro
u

g
h

p
u

t
[r

eq
u

es
ts

 /
s]

Simple Annotation Signed Annotation No SOS!e

Use-Case #1: Average Message Delay

21 36 48

67

84

25 36

55

88

11
5

61

12
2

19
0

26
6

35
3

6

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

0 1 2 3 4 5

Number of Security Services

A
ve

ra
g

e
M

sg
. D

el
ay

 [
m

s]

Simple Annotation Signed Annotation No SOS!e

Figure 7.6: Performance results for use-case #1

As far as the impact of the type of security service used on performance, what we can see is that
simple services perform slightly better than the annotations services (both in terms of throughput
and message delay). Furthermore, the security services processing digitally signed annotations
perform significantly worse than the other two. This fact is justified by the fact that cryptographic
operations are CPU-intensive.

Use-Case #2 In this use-case (figure 7.7), there is a central Mule ESB which coordinates the
activity of all security services. One of the security services is deployed on the same machine with
the Mule ESB, while the other security services are deployed on remote machines.
The results of the performance tests for this use-case are showed in figure 7.8. They are very similar
to the ones from the previous use-case. The difference here is that both throughput and message
delay have slightly better values. This is justified by the fact that the security services are deployed
on different physical machines and thus more processing power is available for the framework. An
illustrative example is the message delay for a scenario with 5 security services using digitally signed
annotations: 353 ms in the previous use-case, compared to just 200 ms in this use-case.

170 CHAPTER 7. ANALYSIS AND EVALUATION

Tomcat with AXIS

Service
Provider

Tomcat with AXIS

Service
Requester

Mule ESB

S1

Tomcat
with AXIS

S2

Tomcat
with AXIS

S3

Tomcat
with AXIS

S4

Tomcat
with AXIS

S5

JMeter

SOS!e Framework

Figure 7.7: Use-case #2: Deployment diagram

Use-Case #2: Throughput

13
6

82 76

58 43

11
5

81

52 43 31

48 35 25 19 15

39
2

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

0 1 2 3 4 5

Number of Security Services

T
h

ro
u

g
h

p
u

t
[r

eq
u

es
ts

 /
s]

Simple Annotation Signed Annotation No SOS!e

Use-Case #2: Average Message Delay

21

35 38

50

69

25

36

57

69

96

61

85

11
9

15
6

20
0

6

0,00

50,00

100,00

150,00

200,00

250,00

0 1 2 3 4 5

Number of Security Services

A
ve

ra
g

e
M

sg
. D

el
ay

 [
m

s]

Simple Annotation Signed Annotation No SOS!e

Figure 7.8: Performance results for use-case #2

Use-Case #3 In this use-case (figure 7.9), there are several Mule ESB instances, each deployed on
a different physical machine. The Mule ESB instances communicate with one another and each of
them invokes one security service which is hosted on the same machine with the ESB.

Tomcat with AXIS

Service
Provider

Tomcat with AXIS

Service
Requester

S1

Mule

Tomcat with AXIS

S5

Mule...

JMeter

SOS!e Framework

Figure 7.9: Use-case #3: Deployment diagram

The results of the performance tests for this use-case are similar to the first use-cases (figure 7.10).
Compared to use-case #2, the results are slightly worse, the justification for this being the overhead

7.2. PERFORMANCE EVALUATION 171

in XML parsing introduced by the Mule ESBs: each message is parsed twice for each intermediary
service (once by the Mule ESB and once by AXIS).

Use-Case #3: Throughput

13
2

84

55

36 27

11
4

69

41 27 20

49 33 21 13 10

39
2

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

0 1 2 3 4 5

Number of Security Services

T
h

ro
u

g
h

p
u

t
[r

eq
u

es
ts

 /
s]

Simple Annotation Signed Annotation No SOS!e

Use-Case #3: Average Message Delay

21 34

53

80

10
8

25

41

70

11
0 15

0

59

88

14
3

22
4

31
0

6

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

0 1 2 3 4 5

Number of Security Services

A
ve

ra
g

e
M

sg
. D

el
ay

 [
m

s]

Simple Annotation Signed Annotation No SOS!e

Figure 7.10: Performance results for use-case #3

Use-Case #4 The deployment configuration in this use-case (figure 7.11) is similar with the previ-
ous one, the difference being that the security services are not realized as Web services (and hosted
in AXIS), but are instead realized as Mule components (see 5.6.3). This use-case is expected to
render better performance as it saves the overhead of converting messages into SOAP for each
security service invocation.

Service
Requester

Mule

...

Tomcat with AXIS

Service
Provider

S1

Mule

S5

JMeter

SOS!e Framework

Figure 7.11: Use-case #4: Deployment diagram

The results of the performance tests for this use-case are showed in figure 7.12. The same linear
variations of the throughput and message delay can also be observed here. However, compared
to the previous use-case the performance is significantly better - for the simple security services,
throughput is almost double while the average message delay is almost half. The justification for
this is the fact that messages are only parsed once (by the Mule ESB).

Performance Variations with the Increase of the Message Size

In order to determine how the performance varies with the increase of the message size, a typical
Authentication-Authorization-Audit scenario was investigated. As in the previous use-cases, be-
cause it was desired that only the overhead introduced by the security framework be considered, the
security services were simulated by dummy services. Two simple services performing annotations
were used (simulating the authentication and the authorization services) together with one simple

172 CHAPTER 7. ANALYSIS AND EVALUATION

Use-Case #4: Throughput

1
92

1
3

4

92

6
6

5
0

9
8

5
7

3
9

29

5
8

41

2
4

16 1
1

39
2

1
40

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

0 1 2 3 4 5

Number of Security Services

T
h

ro
u

g
h

p
u

t
[r

eq
u

es
ts

 /
s]

Simple Annotation Signed Annotation No SOS!e

Use-Case #4: Average Message Delay

14 21 31 43

57

28

48

75

10
1

49

71

12
3

19
2

26
3

6

19

0,00

50,00

100,00

150,00

200,00

250,00

300,00

0 1 2 3 4 5

Number of Security Services

A
ve

ra
g

e
M

sg
. D

el
ay

 [
m

s]

Simple Annotation Signed Annotation No SOS!e

Figure 7.12: Performance results for use-case #4

service simulating the audit service. The deployment was the one described in the previous section
in use-case #4.

Throughput Variation with Message Size

67

15
10

7 5

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

1 16 32 48 64

Message Size [KB]

T
h

ro
u

g
h

p
u

t
[r

eq
u

es
ts

 /
s]

Round-Trip-Time Variation with Message Size

44

194

318

459

601

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

1 16 32 48 64

Message Size [KB]

A
ve

ra
g

e
M

es
sa

g
e

D
el

ay
 [

m
s]

Figure 7.13: Throughput and delay variation with message size

The results are showed in figure 7.13. As expected, as the message size increases, the performance
degrades:

Throughput The throughput is highly affected by the increase in message size: from 67 requests/s

for 1KB messages this one drops to only 5 requests/s when the message size is increased to 64KB.
The reason for this is the overhead caused by XML parsing which is both CPU consuming
and memory consuming.

Message Delay As illustrated by the trend line, the average message delay increases almost lin-
early with the size of the message. For larger messages, high delays are to be expected: in our
case more than half of a second for a 64KB message.

7.2. PERFORMANCE EVALUATION 173

7.2.6 Discussion

As seen in this section, the SOS!e framework has a significant influence on both throughput
and message delay. In this conditions, in order to determine whether or not it is appropriate to
deploy a SOSA based solution for a concrete application, the following issues should be taken into
consideration:

Performance of the Application If the performance parameters (average message delay and
throughput) of the service provider are worse compared to the values showed in the previous
section, than the impact of deploying a SOSA based approach will not be significant. How-
ever, if the service provider is performing very good (low latency and high throughput), the
introduction of a SOSA based approach will lead to the security system being a bottleneck
for the system.

Service Requester’s Expectations If the service requesters have high expectation with regard
to throughput and latency, then probably SOSA is not the right answer. However, there are
several types of applications where the performance expectations are not so strict. Examples
are given below:

• B2B transactions where there is no human person waiting for the response to come back
from the service provider.

• Asynchronous Web service invocations where the requester does not block waiting for the
response to come.

• Request-only Web service invocations were there is no response at all.

Performance Evaluation for OGC Web Services

Because most of the practical work related to SOSA was applied to OGC Web services (see also
chapter 6), the performance implications of protecting WMS and WFS services with a SOSA based
approach will be discussed briefly.
Figures 7.14 and 7.15 show the results of performance tests carried out on the deegree5 open-source
framework. The tests are described in [83] and were executed on different databases ranging from
3.000 objects (DB1) to 768.000 objects (DB9).

Throughput As indicated by the graphs, the throughput in the case of WMS ranges from 10.000

maps/hour to about 1.000 maps/hour. This translates to a range between 2.7 maps/s to 0.27 maps/s.
The throughput for the WFS ranges from 0.2 feature collections/s to 0.11 feature collections/s. This
values are a very low in comparison with the results obtained for the SOS!e framework which
ranged from 136 requests/s to about 5 requests/s depending on deployment and message size.
Because the throughput of WMS and WFS services is so low, it is expected that the deployment
of a SOSA based security solution will have little influence on the overall application throughput.

Average Message Delay The average message delay ranged from 600ms to more than 9s for the
WMS and from 400ms to more than 4s in the case of the WFS. The tests performed on the SOS!e

framework showed that this one introduces delays ranging from 21ms to about 600ms depending

5deegree is an open-source project implementing several OGC standards. It was the reference implementation for the WMS speci-

fication. http://www.deegree.org.

http://www.deegree.org

174 CHAPTER 7. ANALYSIS AND EVALUATION

Round-Trip-Time for the Deegree WMS 1.1.2

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

Number of Concurent Clients

A
ve

ra
g

e
M

sg
. D

el
ay

 [s
]

WMS_DB1 WMS_DB6 WMS_DB7 WMS_DB8 WMS_DB9

Throughput for the Deegree WMS 1.1.2

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70

Number of Concurent Clients

T
h

ro
u

g
h

p
u

t [
M

ap
s

/ H
o

u
r]

WMS_DB1 WMS_DB6 WMS_DB7 WMS_DB8 WMS_DB9

Figure 7.14: Performance measurements for WMS according to [83]

Round-Trip-Time for the Degree WFS 1.2.3

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18

Number of Concurent Clients

A
ve

ra
g

e
M

sg
. D

el
ay

 [s
]

WFS_DB1 WFS_DB6 WFS_DB7 WFS_DB8 WFS_DB9

Throughput for the Degree WFS 1.2.3

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18

Number of concurent clients

T
h

ro
u

g
h

p
u

t [
F

ea
tu

re
 C

o
ls

 /
H

o
u

r]

WFS_DB1 WFS_DB6 WFS_DB7 WFS_DB8 WFS_DB9

Figure 7.15: Performance measurements for WFS according to [83]

on the deployment configuration and message size.
As described in section 3.1, the delay introduced by the security system ads to the message delay
of the protected service. Introducing a SOSA security system would have some influence on
the overall application performance. For the faster WMS and WFS operations the influence is
greater, while for the slower ones the overhead introduced by the security framework will be barely
observable.

Chapter 8

Conclusions and Outlook

This chapter concludes with the results of this work, enumerates the contributions this dissertation
brings to computer science and the world of geospatial information, and provides an outlook for
future research.

8.1 Conclusions

Web services have been a major technology trend in the IT industry for almost a decade now, and
this trend is continuing as SOA and Web services replace other methods and technologies used in
the design, development, deployment and distribution. The motivation behind their wide-spread
adoption is related to the advantages this technology brings: cost-reduction, increase reuse, simpli-
fied integration, more agile infrastructures.
Quite naturally everybody willing to relay on this technology expects a solid foundation for security
that would allow for secure back-office transactions and support various business models over the
Internet. Security has been repeatedly described as a key requirement in the success of any SOA
project [97, 71, 107].
In this dissertation the topic of security in the context of Web services was addressed and an
architecture for security systems was proposed. The main idea behind this architecture is that
security functions such as authentication, authorization, audit, etc. are implemented externally to
the protected application, and not embedded in the application or implemented at the message
middleware layer. Furthermore, the different security functions are realized as independent services
and designed according to the principle of separation of concerns. This leads to a collection of
security services forming a security infrastructure: these services can be used to protect several
applications within the network. Enterprise Application Integration (EAI) techniques are used
for combining the security services together and binding them to the applications being protected
through the definition of orchestrations or choreographies. Because of its service-oriented approach
to security, the architecture is named the Service Oriented Security Architecture or SOSA .
In this dissertation this architecture has been described by means of the ISO RM-ODP, proto-
type implementations have been showed, and experiences using these implementations in different
projects have been presented. These experiences show the feasibility of the proposed architecture.
Furthermore, a detailed evaluation of SOSA was presented, both from an architectural point of
view (using metrics suggested by [73]), as well as from a performance point of view. The evalu-

175

176 CHAPTER 8. CONCLUSIONS AND OUTLOOK

ation showed that while a SOSA based security system (depending on the implementation and
deployment) can have significantly degrade the overall application performance, it brings a lot of ad-
vantages with regard to system design, implementation and maintenance. The following constitute
strong points of the proposed architecture: scalability, understandability, verifiability, extensibility,
reusability, portability.
With regard to the performance concerns, it was showed that while SOSA is not adequate for
applications where high performance (low latency, high throughput) is expected, there are multiple
classes of applications for which SOSA is adequate. One such example are OGC Web services.

8.2 Contributions to Information and Computer Science

This dissertation brings the following contributions to the field of Information and Computer Sci-
ence:

• An architectural evaluation based on a consistent set of architectural properties of different
approaches to implementing security for Web services;

• The Service Oriented Security Architecture or SOSA - an architecture for the design of Web
services security systems, including a taxonomy of security services;

• A set of patterns addressing common security issues related to Web services;

• An evaluation of the proposed architecture using the aforementioned consistent set of archi-
tectural properties together with a performance evaluation based on the SOS!e prototype
implementation.

8.3 Contribution to the World of Geospatial Information

Through the practical experiences described in chapter 6, this dissertation contributes to the world
of geospatial information by showing how to deal with different security-related issues associated
with the distribution of geospatial information. The topics discussed here are: click-through licens-
ing, GeoDRM, non-repudiation and confidentiality, and integration with legacy infrastructures.
The solutions described show how these issues are handled using open standards and open-source
software.

8.4 Outlook for Future Research

The following topics have not been further considered in this dissertation and are possible directions
for future research:

Dynamic Binding Extend the concept of security services to business registries (such as UDDI).
This will certainly not fit all scenarios, but one can imagine for example an enterprise-wide
UDDI registry containing information about all security services deployed in the enterprise. A
proper categorization and good service meta-data would allow a client to discover the necessary
services and integrate them without having prior knowledge of their existence and capabilities.
Another example here are security services that have a clear task such as encryption or digital
signing. One can envisage such services listed in a public UDDI registry (such as http:

//uddi.org). Of course, in order to be trusted by the clients (nobody wants to give their
private key to an untrusted entity) they should have some sort of certification (mechanisms
similar to the ones for code signing could also be applied to services).

http://uddi.org
http://uddi.org

8.4. OUTLOOK FOR FUTURE RESEARCH 177

WS-CDL Complex security systems, containing many services and having complex security poli-
cies, can be described by means of WS-CDL. This would provide a good way for modeling the
system because various graphical tools are available. Furthermore, automated system-testing
can be performed on the WS-CDL representation of the system. In addition to this, specialized
tools could be developed that generate runnable representations of the service aggregations
(either as message routing rules or as BPEL scripts).

SOS!e There are several shortcomings to the existing implementations of the SOS!e framework
(see both section 5.6.2 and section 5.6.3 in the Technology Viewpoint). After building SOS!e

1.0 and experiencing with it, SOS!e 2.0 was developed. This new version incorporated the
feedback received together with some new ideas. However, this new framework also has some
shortcomings. These shortcomings should be addressed by future versions of the framework.
Below, a list of issues to be addressed by future versions of the framework is provided:

• Support for Web services deployed on AXIS2. AXIS2 is a complete re-write and redesign
of the Apache AXIS SOAP stack. It provides better performance (because of the StAX1

parser) and lower memory footprint.

• Development of more security services performing common security tasks, such as: image
watermarking, DRM packaging using different existing DRM stacks (ISO REL, ODRL,
etc.), integration with popular services storing user attributes (such as eBay or PayPal).

1Streaming API for XML

Bibliography

[1] The merriam-webster english dictionary. online. http://www.m-w.com/.

[2] Mule 1.4.0 esb user guide. online. http://dist.codehaus.org/mule/docs/mule-1.4.0-website-docs.pdf.

[3] Webopedia. online. http://www.webopedia.com/.

[4] ISO 10181-3:1996 Information technology – Open Systems Interconnection – Security frameworks for open systems:

Access control framework. International Standards Organization (ISO), September 1996.

[5] ISO/IEC 10746-2: Information technology - Open Distributed Processing - Reference Model: Foundations. Interna-

tional Standards Organization (ISO), 1996. http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/

PubliclyAvailableStandards.htm.

[6] ISO/IEC 10746-3: Information technology - Open Distributed Processing - Reference Model: Architecture. Interna-

tional Standards Organization (ISO), 1996. http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/

PubliclyAvailableStandards.htm.

[7] ISO/IEC 10746-1: Information technology - Open Distributed Processing - Reference Model: Overview. Interna-

tional Standards Organization (ISO), 1998. http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/

PubliclyAvailableStandards.htm.

[8] ISO/IEC 10746-4: Information technology - Open Distributed Processing - Reference Model: Architectural Semantics.

International Standards Organization (ISO), 1998. http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_

Home/PubliclyAvailableStandards.htm.

[9] Information processing systems – Open Systems Interconnection – Basic Reference Model – Part 2: Security Architecture.

International Standards Organization (ISO), June 2000.

[10] UDDI Version 2. OASIS, July 2002. Status: OASIS Standard, http://www.oasis-open.org/committees/uddi-spec/

doc/tcspecs.htm.

[11] Web Service Choreography Interface (WSCI) 1.0. World Wide Web Consortium (W3C), August 2002. Status: W3C

Note, http://www.w3.org/TR/2002/NOTE-wsci-20020808/.

[12] Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V1.1. OASIS, September 2003. Sta-

tus: OASIS Standard, http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf.

[13] eXtensible Access Control Markup Language v1.0. OASIS, February 2003. Status: OASIS Standard, http://www.

oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf.

[14] OGC Reference Model. Open Geospatial Consortium (OGC), 2003. Version 0.1.3, http://www.opengeospatial.org/

specs/?page=baseline.

[15] UDDI Version 3.0.2. OASIS, October 2004. Status: Committee Draft, http://uddi.org/pubs/uddi-v3.0.2-20041019.

htm.

[16] WS-Reliability 1.1. OASIS, November 2004. Status: OASIS Standard, http://docs.oasis-open.org/wsrm/

ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf.

[17] XML Schema Part 0: Primer Second Edition. World Wide Web Consortium (W3C), 2004. Status: W3C Recommenda-

tion, http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

[18] eXtensible Access Control Markup Language v2.0. OASIS, February 2005. Status: OASIS Standard, http://docs.

oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf.

[19] Information technology - Vocabulary - Part 1: Fundamental terms. International Standards Organization (ISO), 2005.

[20] ISO/IEC 2382-01: Information Technology - Open Distributed Processing - Use of UML for ODP system specifications.

International Standards Organization (ISO), committee draft v02.00 edition, May 2005.

[21] The Open Grid Services Architecture, Version 1.0. Global Grid Forum, 2005. https://forge.gridforum.org/sf/go/

doc13515?nav=1.

179

http://www.m-w.com/
http://dist.codehaus.org/mule/docs/mule-1.4.0-website-docs.pdf
http://www.webopedia.com/
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.w3.org/TR/2002/NOTE-wsci-20020808/
http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
http://www.opengeospatial.org/specs/?page=baseline
http://www.opengeospatial.org/specs/?page=baseline
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
https://forge.gridforum.org/sf/go/doc13515?nav=1
https://forge.gridforum.org/sf/go/doc13515?nav=1

180 BIBLIOGRAPHY

[22] Security Assertions Markup Language (SAML) V2.0 - Core. OASIS, March 2005. Status: OASIS Standard, http:

//docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

[23] SOAP Message Transmission Optimization Mechanism. World Wide Web Consortium (W3C), January 2005. Status:

W3C Recommendation, http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/.

[24] Web Services Atomic Transaction (WS-AtimicTransaction). IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA,

August 2005. http://www-128.ibm.com/developerworks/library/specification/ws-tx.

[25] Web Services Business Activity (WS-BusinessActivity). IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA, August

2005. http://www-128.ibm.com/developerworks/library/specification/ws-tx.

[26] Web Services Choreography Description Language Version 1.0. World Wide Web Consortium (W3C), November 2005.

Status: W3C Candidate Recommendation, http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/.

[27] Web Services Coordination (WS-Coordination). IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA, August 2005.

http://www-128.ibm.com/developerworks/library/specification/ws-tx.

[28] Web Services Secure Conversation Language. IBM, BEA Systems, Microsoft, Computer Associates, Actional, VeriSign,

Layer 7 Technologies, Oblix, OpenNetwork Technologies, Ping Identity, Reactivity, RSA Security, February 2005. http:

//www-128.ibm.com/developerworks/library/specification/ws-secon/.

[29] Web Services Security Policy Language (WS-SecurityPolicy), Version 1.1. IBM, Microsoft, RSA Security, VeriSign, July

2005. ftp://www6.software.ibm.com/software/developer/library/ws-secpol.pdf.

[30] XML-binary Optimized Packaging. World Wide Web Consortium (W3C), January 2005. Status: W3C Recommendation,

http://www.w3.org/TR/2005/REC-xop10-20050125/.

[31] Basic Profile Version 1.1. Web Services Interoperability Organization (WS-I), 2006. Status: Final Material, http:

//www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html.

[32] Extensible Markup Language (XML) 1.1 (Second Edition). World Wide Web Consortium (W3C), 2006. Status: W3C

Recommendation, http://www.w3.org/TR/2006/REC-xml11-20060816.

[33] Web Services Federation Language (WS-Federation). BEA Systems, BMC Software, CA, Inc., IBM, Layer 7 Technologies,

Microsoft, Novell, VeriSign, version 1.1 edition, December 2006. http://www-128.ibm.com/developerworks/library/

specification/ws-fed/.

[34] Web Services Policy 1.2 - Attachment (WS-PolicyAttachment). World Wide Web Consortium (W3C), 2006. Status:

Member Submission, http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/.

[35] Web Services Security: SOAP Message Security 1.1. OASIS, February 2006. Status: OASIS Standard, http://www.

oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[36] Web Services Security SOAP Messages with Attachments (SwA) Profile 1.1. OASIS, February 2006. Status: OASIS

Standard, http://www.oasis-open.org/committees/download.php/16672/wss-v1.1-spec-os-SwAProfile.pdf.

[37] Architecture of Spatial Data Infrastructure Germany, Version 1.0. GDI-DE, May 2007.

[38] Digital Signature Service Core Protocols, Elements, and Bindings Version 1.0. OASIS, 1.0 edition, February 2007. Status:

OASIS Standard, http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-cs-v1.0-r1.htm.

[39] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language. World Wide Web Consortium (W3C),

June 2007. Status: W3C Recommendation, http://www.w3.org/TR/2007/REC-wsdl20-20070626/.

[40] WS-Trust 1.3. OASIS, March 2007. OASIS Standard, http://docs.oasis-open.org/ws-sx/ws-trust/200512/

ws-trust-1.3-os.html.

[41] Mohamad Afshar, Nickolaos Kavantzas, Ramana Turlapati, Roger Goudarzi, Barmak Meftah, and Prakash Yamuna. Best

practices for securing your soa: A holistic approach. Java Developer’s Journal, June 2006. http://java.sys-con.com/

read/232071.htm.

[42] Apache axis user’s guide. online. http://ws.apache.org/axis/java/user-guide.html.

[43] Amit Asaravala. Giving soap a rest. online, October 2002. http://www.devx.com/DevX/Article/8155.

[44] Norman B. Leventhal Map Center at the Boston Public Library. Planisphaerium ptolemaicum siue machina orbium

mundi ex hypothesi ptolemaica in plano disposita. online. http://maps.bpl.org/id/M8727.

[45] Michael Blow (BEA), Yaron Goland (BEA), Matthias Kloppmann (IBM), Frank Leymann (IBM), Gerhard Pfau (IBM),

Dieter Roller (IBM), and Michael Rowley (BEA). Bpelj: Bpel for java. white paper, March 2004. ftp://www6.software.

ibm.com/software/developer/library/ws-bpelj.pdf.

[46] Norton Bedford. A Statement of Basic Accounting Theory. Chicago American Accounting Association, 3rd edition, 1970.

[47] M. Bishop. A model of security monitoring. In Fifth Annual Computer Security Applications Conference, December

1989.

[48] Andr B. Bondi. Characteristics of scalability and their impact on performance. In 2nd international workshop on Software

and performance, pages 195 – 203.

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www-128.ibm.com/developerworks/library/specification/ws-tx
http://www-128.ibm.com/developerworks/library/specification/ws-tx
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www-128.ibm.com/developerworks/library/specification/ws-tx
http://www-128.ibm.com/developerworks/library/specification/ws-secon/
http://www-128.ibm.com/developerworks/library/specification/ws-secon/
ftp://www6.software.ibm.com/software/developer/library/ws-secpol.pdf
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www-128.ibm.com/developerworks/library/specification/ws-fed/
http://www-128.ibm.com/developerworks/library/specification/ws-fed/
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment-20060425/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16672/wss-v1.1-spec-os-SwAProfile.pdf
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-cs-v1.0-r1.htm
http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://java.sys-con.com/read/232071.htm
http://java.sys-con.com/read/232071.htm
http://ws.apache.org/axis/java/user-guide.html
http://www.devx.com/DevX/Article/8155
http://maps.bpl.org/id/M8727
ftp://www6.software.ibm.com/software/developer/library/ws-bpelj.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpelj.pdf

181

[49] David Booth, Hugo Haas, Fracis McCabe, Eric Newcomer, Michael Champion, Chris Ferris, and David Orchard, editors.

Web Services Architecture. World Wide Web Consortium (W3C), 2004. Status: W3C Working Group Note, http:

//www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[50] Boutell.Com. Www faqs: What is the maximum length of a url? online, October 2006. http://www.boutell.com/

newfaq/misc/urllength.html.

[51] Web Services Business Process Execution Language Version 2.0. OASIS, April 2007. Status: OASIS Standard, http:

//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[52] G. Brose. Securing Web Services with SOAP Security Proxies. Proc. Int’l Conf. Web Services (ICWS’03), pages 231–234,

2003.

[53] Russell Butek. Which style of wsdl should i use? online, October 2004. http://www-128.ibm.com/developerworks/

webservices/library/ws-whichwsdl/.

[54] Rick Caccia. An introduction to oracle web services manager. May 2005. http://www.oracle.com/technology/products/

webservices_manager/pdf/oracle_wsm_402_wp.pdf.

[55] Michele Cantara. Market focus: Trends and forecast for it professional services for web services and soa, 2005. June 2005.

Gartner Dataquest Paper.

[56] David A. Chappell. Enterprise Service Bus. O’Reilly, 2004.

[57] Cape Clear. Cape clear esb security. white paper, November 2005. http://developer.capeclear.com/SecurityPaper.

[58] Frank Cohen. Performance testing soap-based applications. IBM developerWorks, November 2001. http://www.ibm.com/

developerworks/webservices/library/ws-testsoap/.

[59] Open Geosaptial Consortium. Ogc glossary of terms. online. http://www.opengeospatial.org/resource/glossary.

[60] IBM Corporation and Microsoft Corporation. Security in a web services world: A proposed architecture and roadmap.

Whitepaper, April 2002. ftp://www6.software.ibm.com/software/developer/library/ws-secmap.pdf.

[61] Microsoft Corporation. Windows 2000 kerberos authentication. Microsoft TechNet. http://www.microsoft.com/technet/

prodtechnol/windows2000serv/deploy/confeat/kerberos.mspx.

[62] Tony Cowan. Web services security with websphere application server v6 – part 1. IBM WebSphere Developer Techni-

cal Journal, March 2006. http://www-128.ibm.com/developerworks/websphere/techjournal/0603_cowan/0603_cowan.

html.

[63] Jeff de la Beaujardiere, editor. OpenGIS Web Map Service (WMS) Implementation Specification, Version 1.3.0. Open

Geospatial Consortium (OGC), 2006. http://www.opengeospatial.org/standards/wms.

[64] Andreas Donaubauer. Interoperable Nutzung verteilter Geodatenbanken mittels standardisierter Geo Web Services. PhD

thesis, Technical University of Munich, 2004. http://mediatum2.ub.tum.de/node?id=601056.

[65] Jan Drewnak, Christian Elfers (Editor), Roland M. Wagner (Editor), and Cristian Opincaru. Geodrm engineering view-

point and supporting architecture. Interoperability program report, Open Geospatial Consortium (OGC), April 2007.

OGC #06-184r2.

[66] Philippe Duschene and Jerome Sonnet. WMS Change Request: Support for WSDL and SOAP. Open Geospatial Con-

sortium (OGC), 2005. Status: Discussion Paper, OGC #04-050r1.

[67] ebay web services rest api. online. http://developer.ebay.com/developercenter/rest/.

[68] Cristian Opincaru (Editor). Trusted GeoServices IPR. Open Geospatial Consortium (OGC), April 2007. OGC #06-107.

[69] Wolfgang Eibach and Dietmar Kuebler. Metering and accounting for web services. IBM developerWorks, July 2001.

http://www-128.ibm.com/developerworks/webservices/library/ws-maws/.

[70] Esri arcweb services website. online. http://www.esri.com/software/arcwebservices/index.html.

[71] Mark O’neill et al. Web Services Security. McGraw Hill, 2003.

[72] Von Welch et al. Globus toolkit version 4 grid security infrastructure: A standards perspective. September 2005.

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf.

[73] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis, Univer-

sity of California, Irvine, 2000. http://roy.gbiv.com/pubs/dissertation/fielding_dissertation_2up.pdf.

[74] Tim Fisher. Sichere web services unter dem microsoft .net framework. Student Assignment IS 34/2004, University of the

German Armed Forces, Munich, December 2004.

[75] Tim Fisher. Ein sicherheits-framework fuer opengis web services unter nutzung des bpel-standard. Diploma Thesis ID

08/2005, University of the German Armed Forces, Munich, September 2005.

[76] Dr. Martin Fornefeld and Peter Oefinger. Billing models for geo web services a contribution to create a spatial data

infrastructure in switzerland. Technical report, MICUS Management Consulting GmbH, January 2005.

[77] Apache Software Foundation. Apache axis2 user’s guide. online. http://ws.apache.org/axis2/1_1_1/userguide.html.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.boutell.com/newfaq/misc/urllength.html
http://www.boutell.com/newfaq/misc/urllength.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.oracle.com/technology/products/webservices_manager/pdf/oracle_wsm_402_wp.pdf
http://www.oracle.com/technology/products/webservices_manager/pdf/oracle_wsm_402_wp.pdf
http://developer.capeclear.com/SecurityPaper
http://www.ibm.com/developerworks/webservices/library/ws-testsoap/
http://www.ibm.com/developerworks/webservices/library/ws-testsoap/
http://www.opengeospatial.org/resource/glossary
ftp://www6.software.ibm.com/software/developer/library/ws-secmap.pdf
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/kerberos.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/kerberos.mspx
http://www-128.ibm.com/developerworks/websphere/techjournal/0603_cowan/0603_cowan.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0603_cowan/0603_cowan.html
http://www.opengeospatial.org/standards/wms
http://mediatum2.ub.tum.de/node?id=601056
http://developer.ebay.com/developercenter/rest/
http://www-128.ibm.com/developerworks/webservices/library/ws-maws/
http://www.esri.com/software/arcwebservices/index.html
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf
http://roy.gbiv.com/pubs/dissertation/fielding_dissertation_2up.pdf
http://ws.apache.org/axis2/1_1_1/userguide.html

182 BIBLIOGRAPHY

[78] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[79] Rdiger Gartman. Ows-4 ipr: Ows common change request: Add ws-security to ows soap binding. Technical report, Open

Geospatial Consortium (OGC), April 2007. OGC #06-177.

[80] Anne Geraci, Freny Katki, Louise McMonegal, Bennett Meyer, John Lane, Paul Wilson, Jane Radatz, Mary Yee, Hugh

Porteous, and Fredrick Springsteel, editors. IEEE Standard Computer Dictionary: Compilation of IEEE Standard

Computer Glossaries. Institute of Electrical and Electronics Engineers Inc., The, 1991.

[81] Sebastian Gerken. Kerberos authentifikation fuer web services mit .net. Student Assignment IS 68/2006, University of

the German Armed Forces, Munich, December 2006.

[82] Gabriela Gheorghe. Implementation and test of a service oriented security (sos) system. Diploma thesis, Polytechnic

University of Bucharest, Romania, October 2007.

[83] Lydia Gietler. Leistungsbewertung von ogc web services. 7. Seminar GIS and Internet, Neubiberg, Germany, September

2004.

[84] OpenGIS Geography Markup Language (GML) Implementation Specification, Version 2.1.2. Open Geospatial Consortium

(OGC), September 2002. http://portal.opengeospatial.org/files/?artifact_id=11339.

[85] OpenGIS Geography Markup Language (GML) Implementation Specification, Verson 3.1.0. Open Geospatial Consortium

(OGC), February 2004. http://portal.opengeospatial.org/files/?artifact_id=4700.

[86] Google earth com api documentation. online. http://earth.google.com/comapi/index.html.

[87] Google maps api. online. http://www.google.com/apis/maps/.

[88] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk Nielsen, editors. SOAP Ver-

sion 1.2 Part 1: Messaging Framework. World Wide Web Consortium (W3C), June 2003. Status: W3C Recommendation,

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/.

[89] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk Nielsen, editors. SOAP

Version 1.2 Part 2: Adjuncts. World Wide Web Consortium (W3C), June 2003. Status: W3C Recommendation,

http://www.w3.org/TR/2003/REC-soap12-part2-20030624/.

[90] Andreas Haenel. Nutzung des biolancc system als authentifizierungsmodul fuer ogc web services. Diploma Thesis ID

06/2005, University of the German Armed Forces, Munich, September 2005.

[91] Charles Heazel and Rick Morrison. Geo-digital rights management working group charter. online, visited 06.2007, May

2004. http://www.opengeospatial.org/projects/groups/geormwg.

[92] Heather Hinton, Maryann Hondo, and Dr. Beth Hutchison. Security patterns within a service-oriented architecture.

November 2005. http://searchwebservices.techtarget.com/searchWebServices/downloads/SecuritySOA_(2).pdf.

[93] Frederick Hirsh, John Kemp, and Jani Ilkka. Mobile Web Services - Architecture and Implementation. John Wiley and

Sons, 2006.

[94] Jason Hogg, Don Smith, Fred Chong, Lonnie Wall Dwayne Taylor, and Paul Slater. Web Service Security: Scenarios,

Patterns, and Implementation Guidance for Web Services Enhancements (WSE) 3.0. Microsoft Press, December 2005.

http://msdn.microsoft.com/practices.

[95] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solu-

tions. Addison-Wesley, 2003.

[96] IBM. Websphere datapower xml security gateway xs40 - features and benefits. online. http://www-306.ibm.com/

software/integration/datapower/xs40/features/index.html.

[97] Gartner Inc. Gartner Survey of 1,300 CIOs Shows IT Budgets to Increase by 2.5 Percent in 2005. Press Release, 2005.

http://www.gartner.com/press_releases/asset_117739_11.html.

[98] PayPal Inc. Paypal soap api developer reference. online, April 2007. Document Number: 100002.enUS − 20070411,

https://www.paypal.com/en_US/pdf/PP_APIReference.pdf.

[99] Jmeter user manual. online. http://jakarta.apache.org/jmeter/usermanual/index.html, (visited August 2007).

[100] Martin Keen, Amit Acharya, Susan Biscop, Alan Hopkins, Sven Milinski, Chris Nott, Rick Robinson, Jonathan Adams,

and Paul Verschueren. Patterns: Implementing an SOA Using an Enterprise Services Bus. IBM, July 2004. http:

//www.redbooks.ibm.com/.

[101] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.

Aspect-oriented programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference on

Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[102] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen, P. Schmidt, and I. Trickovic. WS-BPEL

Extension for People–BPEL4People. Joint white paper, IBM and SAP, July, 2005.

http://portal.opengeospatial.org/files/?artifact_id=11339
http://portal.opengeospatial.org/files/?artifact_id=4700
http://earth.google.com/comapi/index.html
http://www.google.com/apis/maps/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
http://www.opengeospatial.org/projects/groups/geormwg
http://searchwebservices.techtarget.com/searchWebServices/downloads/SecuritySOA_(2).pdf
http://msdn.microsoft.com/practices
http://www-306.ibm.com/software/integration/datapower/xs40/features/index.html
http://www-306.ibm.com/software/integration/datapower/xs40/features/index.html
http://www.gartner.com/press_releases/asset_117739_11.html
https://www.paypal.com/en_US/pdf/PP_APIReference.pdf
http://jakarta.apache.org/jmeter/usermanual/index.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

183

[103] Rob H. Koenen, Jack Lacy, Michael Mackay, and Steve Mitchell. The long march to interoperable digital rights manage-

ment. volume 92, pages 883 – 897, June 2004. http://ieeexplore.ieee.org/iel5/5/28864/01299164.pdf.

[104] Ron Lake. Introduction to gml geography markup language. W3C online. http://www.w3.org/Mobile/posdep/

GMLIntroduction.html.

[105] Joshua Lieberman, Roderick Morrison, Cristian Opincaru, Ugo Taddei, and Roland M. Wagner. OWS-3 GeoDRM Thread

Activity and Interoperability Program Report: Access Control and Terms of Use (ToU) Click-through IPR Management.

Open Geospatial Consortium (OGC), February 2006.

[106] Skylab Mobilesystems Ltd. Ogc wms server list. October 2006. http://www.skylab-mobilesystems.com/en/wms_

serverlist.html.

[107] Andreas Matheus. Declaration and Enforcement of Access Restrictions for Distributed Geospatial Information Objects.

PhD thesis, Technical University of Munich, 2005. http://mediatum2.ub.tum.de/node?id=601767.

[108] Daniel A. Menasce and Virgilio A.F. Almeida. Capacity Planning for Web Services: Metrics, Models, and Methods.

Prentice Hall, 2002.

[109] Microsoft virtual earth developer website. online. http://dev.live.com/virtualearth.

[110] Sun Microsystems. Java authentication and authorization service (jaas) overview. online. http://java.sun.com/

products/jaas/overview.html.

[111] Nilo Mitra, editor. SOAP Version 1.2 Part 0: Primer. World Wide Web Consortium (W3C), June 2003. Status: W3C

Recommendation, http://www.w3.org/TR/2003/REC-soap12-part0-20030624/.

[112] Doug Nebert, Carl Reed, and Roland M. Wagner. Proposal for a compatible sdi standards suite, sdi 1.0. In GSDI-9,

November 2006. www.gsdi9.cl/english/papers/TS19.1paper.pdf.

[113] Douglas D. Nebert, editor. The SDI Cookbook, Version 2.0. online, January 2004. http://www.gsdi.org/docs2004/

Cookbook/cookbookV2.0.pdf.

[114] OpenGIS Abstract Specification, Topic 12 - The OpenGIS Service Architecture. Open Geospatial Consortium (OGC),

version 4.3 edition, 2002. http://portal.opengeospatial.org/files/?artifact_id=1221.

[115] OpenGIS Web Service Common Implementation Specification, Version 1.0. Open Geospatial Consortium (OGC), 2005.

http://www.opengeospatial.org/standards/common.

[116] Jon Oltsik. Web services meet the network. IBM whitepaper, December 2005. http://publibfp.boulder.ibm.com/epubs/

pdf/22476020.pdf.

[117] Cristian Opincaru. A security concept for the targeteam system. Diploma thesis, Polytechnic University of Bucharest,

Romania, July 2003.

[118] Cristian Opincaru. Study about securing opengis web services. Technical report, Runder Tisch GIS e.V., January 2004.

[119] Cristian Opincaru and Gabriela Gheorghe. Service oriented security architecture. EMISA 2007: Enterprise Modelling

and Information Systems Architectures, Lecture Notes in Informatics, October 2007.

[120] Cristian Opincaru and Andreas Matheus. Disclaimer-enablement fuer den web map service des ogc. Project documenta-

tion, University of the German Armed Forces, September 2006.

[121] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based runtime software evolution. In ICSE ’98:

Proceedings of the 20th international conference on Software engineering, pages 177–186, Washington, DC, USA, 1998.

IEEE Computer Society.

[122] Request for quotation (rfq) and call for participation in the ows-3 web services initiative (ows-3), February 2005.

[123] Request for quotation (rfq) and call for participation in the ows-4 web services initiative (ows-4), April 2006.

[124] Michael P. Papazoglou and Dubray Jean-jacques. A survey of web services technologies. Technical Report DIT-04-058,

University of Trento, July 2004. http://eprints.biblio.unitn.it/archive/00000586/01/mike.pdf.

[125] Chris Peltz. Web services orchestration and choreography. Computer, 36(10):46– 52, October 2003.

[126] Srinath Perera and Ajith Ranabahu. Axis2 - the future of web services. JAX Magazine. http://www.jaxmag.com/itr/

online_artikel/psecom,id,747,nodeid,147.html.

[127] Mathias Pitt. Entwicklung einer sicheren 3-tier architektur fr ein biometrisches zugangskontrollsystem einschlielich der

netzwerkschnittstelle zur anbindung von fingerscannern. Diploma thesis, University of the German Armed Forces, Munich,

2005.

[128] Ole Pophal. Ein sicherheitsframework fuer ogc webservices auf basis des soap. Diploma Thesis IS 07/2005, University of

the German Armed Forces, Munich, September 2005.

[129] Kerry Raymond. Reference model of open distributed processing (rm-odp): Introduction. 1995. http://www.dstc.edu.

au/Research/Projects/ODP/papers/icodp95.ps.

http://ieeexplore.ieee.org/iel5/5/28864/01299164.pdf
http://www.w3.org/Mobile/posdep/GMLIntroduction.html
http://www.w3.org/Mobile/posdep/GMLIntroduction.html
http://www.skylab-mobilesystems.com/en/wms_serverlist.html
http://www.skylab-mobilesystems.com/en/wms_serverlist.html
http://mediatum2.ub.tum.de/node?id=601767
http://dev.live.com/virtualearth
http://java.sun.com/products/jaas/overview.html
http://java.sun.com/products/jaas/overview.html
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
www.gsdi9.cl/english/papers/TS19.1paper.pdf
http://www.gsdi.org/docs2004/Cookbook/cookbookV2.0.pdf
http://www.gsdi.org/docs2004/Cookbook/cookbookV2.0.pdf
http://portal.opengeospatial.org/files/?artifact_id=1221
http://www.opengeospatial.org/standards/common
http://publibfp.boulder.ibm.com/epubs/pdf/22476020.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/22476020.pdf
http://eprints.biblio.unitn.it/archive/00000586/01/mike.pdf
http://www.jaxmag.com/itr/online_artikel/psecom,id,747,nodeid,147.html
http://www.jaxmag.com/itr/online_artikel/psecom,id,747,nodeid,147.html
http://www.dstc.edu.au/Research/Projects/ODP/papers/icodp95.ps
http://www.dstc.edu.au/Research/Projects/ODP/papers/icodp95.ps

184 BIBLIOGRAPHY

[130] RFC2616: Hypertext Transfer Protocol – HTTP/1.1. Internet Engineering Task Force (IETF), June 1999. Category:

Standards Track, http://tools.ietf.org/html/rfc2616.

[131] RFC2828: Internet Security Glossary. Internet Engineering Task Force (IETF), May 2000. Category: Informational,

http://tools.ietf.org/html/rfc2828.

[132] RFC2903: Generic AAA Architecture. Internet Engineering Task Force (IETF), August 2000. Category: Experimental,

http://www.rfc-editor.org/.

[133] RFC3198: Terminology for Policy-Based Management. Internet Engineering Task Force (IETF), November 2001. Cate-

gory: Informational, http://www.rfc-editor.org/.

[134] Rick Robinson. Understand enterprise service bus scenarios and solutions in service-oriented architecture, part 1, 2 and

3. IBM developerWorks, June 2004. http://www-128.ibm.com/developerworks/webservices/library/ws-esbscen/.

[135] Michael Roth. A java ee framework for managing biometric data based on biolancc. Diploma thesis, University

of Zurich, Department of Informatics (IFI), December 2006. https://www.ifi.unizh.ch/fileadmin/site/teaching/

Diplomarbeiten/Abgeschlossene_Diplomarbeiten/Jahrgang_2007/Roth_Michael.pdf.

[136] Deborah Russell and G.T. Gangemi Sr. Computer Security Basics. O’Reilly, 1992.

[137] Pierangela Samarati and Sabrina de Capitani di Vimercati. Access control: Policies, models, and mechanisms. Lecture

Notes in Computer Science, 2171/2001:137, 2001.

[138] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen. The enterprise services bus: Making service-oriented archi-

tecture real. IBM Systems Journal, 44(4):781–797, 2005. http://www.research.ibm.com/journal/sj/444/schmidt.html.

[139] A.P. Gonalves Serra, S.A. Vicente, D. Karam Jr, and M. Martucci Jr. Architecting frameworks for specific applications

with rm-odp. In 1st International Workshop on ODP in the Enterprise Computing (WODPEC 2004), 2004.

[140] Reference Model for Service Oriented Architecture. OASIS, August 2006. Status: OASIS Standard, http://www.

oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf.

[141] Jerome Sonnet and Charles Savage. OWS 1.2 SOAP Experiment Report. Open Geospatial Consortium (OGC), 2003.

Status: Discussion Paper, OGC #03-014.

[142] Burkhard Stiller, Thomas Bocek, Ming Peter, Frank Eyermann, Jrgen Sauerland, Jan Angrabeit, Mark Voelkl, and Jan-

Christian Tylka. Management of biometric data in a distributed internet environment. Integrated Management 2007

(IM2007), May 2007.

[143] Rajesh Sumra and Arulazi D. Quality of service for web servicesdemystification, limitations, and best practices. devel-

oper.com, March 2003. http://www.developer.com/services/article.php/2027911.

[144] Ofelia Tindea. Encryption and digital signatures for ogc web services. Internal report / project documentation, University

of the German Armed Forces, Munich, July 2006.

[145] David Trowbridge, Dave Mancini, Dave Quick, Gregor Hohpe, James Newkirk, and David Lavigne. Enterprise Solution

Patterns Using Microsoft .NET. Microsoft Press, June 2003. http://msdn.microsoft.com/practices.

[146] K. Ueno and M. Tatsubori. Early Capacity Testing of an Enterprise Service Bus. Proceedings of the IEEE International

Conference on Web Services (ICWS’06)-Volume 00, pages 709–716, 2006.

[147] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence.

RFC2904: AAA Authorization Framework. Internet Engineering Task Force (IETF), August 2000. Category: Informa-

tional, http://www.rfc-editor.org/.

[148] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence.

RFC2905: AAA Authorization Application Examples. Internet Engineering Task Force (IETF), 2000. Category: Infor-

mational, http://www.rfc-editor.org/.

[149] Graham Vowles, John R. Herring, Cecil Goodwin, Mark V. Scardina, Andreas Matheus, Cristian Opincaru, and Wayne

Debeugny. Topic 18 - Geospatial Digital Rights Management Reference Model (GeoDRM RM). Open Geospatial Con-

sortium (OGC), 2006. Version 1.0.0, http://portal.opengeospatial.org/files/?artifact_id=17802.

[150] SOAP 1.2 Attachment Feature. World Wide Web Consortium (W3C), June 2004. Status: W3C Working Group Note,

http://www.w3.org/TR/2004/NOTE-soap12-af-20040608/.

[151] Web Services Addressing 1.0 - Core. World Wide Web Consortium (W3C), 2006. Status: W3C Recommendation,

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/.

[152] Roland Wagner. A model for the digital representation and transaction of complex pricing and ordering for high-value

spatial products and services. PhD thesis, Technical University Berlin, 2003.

[153] Web Coverage Service (WCS), Version 1.0.0 (Corrigendum). Open Geospatial Consortium (OGC), 2005. http://www.

opengeospatial.org/standards/wcs.

[154] Web Feature Service Specification 1.1. Open Geospatial Consortium (OGC), 2005. http://portal.opengeospatial.org/

files/?artifact_id=8339.

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2828
http://www.rfc-editor.org/
http://www.rfc-editor.org/
http://www-128.ibm.com/developerworks/webservices/library/ws-esbscen/
https://www.ifi.unizh.ch/fileadmin/site/teaching/Diplomarbeiten/Abgeschlossene_Diplomarbeiten/Jahrgang_2007/Roth_Michael.pdf
https://www.ifi.unizh.ch/fileadmin/site/teaching/Diplomarbeiten/Abgeschlossene_Diplomarbeiten/Jahrgang_2007/Roth_Michael.pdf
http://www.research.ibm.com/journal/sj/444/schmidt.html
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.developer.com/services/article.php/2027911
http://msdn.microsoft.com/practices
http://www.rfc-editor.org/
http://www.rfc-editor.org/
http://portal.opengeospatial.org/files/?artifact_id=17802
http://www.w3.org/TR/2004/NOTE-soap12-af-20040608/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wcs
http://portal.opengeospatial.org/files/?artifact_id=8339
http://portal.opengeospatial.org/files/?artifact_id=8339

185

[155] Narada Wickramage and Sanjiva Weerawarana. A benchmark for web service frameworks. In SCC ’05: Proceedings of

the 2005 IEEE International Conference on Services Computing, pages 233–242, Washington, DC, USA, 2005. IEEE

Computer Society.

[156] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web Services Composition Languages:

The Case of BPEL4WS. 22nd International Conference on Conceptual Modeling (ER 2003), 2813:200–215, 2003.

[157] Bill Woodward and Arliss Whiteside, editors. Feature Portrayal Service. Open Geospatial Consortium (OGC), September

2005. OGC Discussion Paper, http://portal.opengeospatial.org/files/?artifact_id=13186.

[158] Web Services Description Language (WSDL) 1.1. World Wide Web Consortium (W3C), 2001. Status: W3C Note,

http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[159] XML-Signature Syntax and Processing. World Wide Web Consortium (W3C), 2002. Status: W3C Recommendation,

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[160] XML Encryption Syntax and Processing. World Wide Web Consortium (W3C), 2002. Status: W3C Recommendation,

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/.

[161] Sebastian Zimmer. Authorization, accounting and charging (with paypal). Diploma thesis, University of the German

Armed Forces, Munich, October 2007.

http://portal.opengeospatial.org/files/?artifact_id=13186
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

List of Figures

1.1 Outline of the dissertation . 4

2.1 Interactions in a SOA . 7
2.2 Technologies related to SOA . 8
2.3 The structure of a SOAP message . 14
2.4 The SOAP distributed processing model . 15
2.5 General message exchange pattern for OGC services . 22
2.6 Enterprise Services Bus . 26
2.7 ESB vs. point-to-point and hub-and-spoke . 27
2.8 Mediations in an ESB . 29
2.9 The content-based routing pattern . 30
2.10The itinerary routing pattern . 30
2.11The dynamic routing pattern . 31
2.12The splitter pattern . 31
2.13The aggregator pattern . 31
2.14The orchestrator pattern . 32
2.15The message transformer pattern . 32
2.16The security stack: Data at repose . 35
2.17The security stack: Data in transit . 36
2.18 Intermediary nodes processing security information . 37

3.1 System deployment when evaluating performance . 42
3.2 Security implementation approaches . 45
3.3 The concept of handlers in application servers . 46
3.4 XML firewall . 50
3.5 Perimeter service router . 50
3.6 XACML model: enforcement points . 51
3.7 Oracle WS Manager architecture . 52
3.8 Security in existing ESB implementations . 52
3.9 Problem statement: The Service Oriented Security Architecture, SOSA 54

4.1 Invocation vs. mediation . 60
4.2 Combining together N security services . 61
4.3 Examples of mediation services invoking other services 63
4.4 Communication between services . 64

186

187

4.5 Security system using message routing . 66
4.6 Analogy to document-based work flows . 67

5.1 The five viewpoints of the ISO RM-ODP . 70
5.2 Enterprise Viewpoint: The mediator metaphor . 71
5.3 Enterprise Viewpoint: The role of the security system . 72
5.4 Enterprise Viewpoint: The security system spanning several domains 73
5.5 Enterprise Viewpoint: Geospatial business example . 74
5.6 Enterprise Viewpoint: Bandwidth broker example . 75
5.7 Computational Viewpoint: Security services . 76
5.8 Computational Viewpoint: Interactions through external messages 77
5.9 Computational Viewpoint: Behavior of security services 77
5.10Computational Viewpoint: Internal workflow for security services 78
5.11Computational Viewpoint: Data flow and component interconnections in XACML 83
5.12Computational Viewpoint: Data flow and component interconnection for authorization

in SOSA . 84
5.13Computational Viewpoint: Taxonomy of security services 93
5.14Computational Viewpoint: Dependency graph for security services 94
5.15 Information Viewpoint: Messages . 95
5.16 Information Viewpoint: Annotations . 96
5.17 Information Viewpoint: Information model for exceptions 99
5.18 Information Viewpoint: BPEL vs. WS-CDL . 100
5.19Engineering Viewpoint: Service composition . 103
5.20Engineering Viewpoint: Service chains . 103
5.21Engineering Viewpoint: Transaction example . 105
5.22Engineering Viewpoint: Service clustering . 106
5.23Engineering Viewpoint: Gateway pattern . 107
5.24Engineering Viewpoint: Federation pattern . 109
5.25Engineering Viewpoint: Federation pattern - knowing user’s home domain 109
5.26Engineering Viewpoint: Federation pattern - using an orchestration service 110
5.27Engineering Viewpoint: Sequential decision making pattern 111
5.28Engineering Viewpoint: Session establishment pattern . 113
5.29Engineering Viewpoint: Session establishment pattern - the CBR variation 114
5.30Engineering Viewpoint: Asynchronous authorization pattern 115
5.31Engineering Viewpoint: Security off-shoring pattern . 116
5.32Engineering Viewpoint: SSO with off-shoring of the authentication service 116
5.33Engineering Viewpoint: Service sharing pattern - centralized authentication 118
5.34Technology Viewpoint: SOS!e 1.0 wiring diagram . 120
5.35Technology Viewpoint: Realization and deployment of security services 121
5.36Technology Viewpoint: Information model for itineraries in SOS!e 1.0 123
5.37Technology Viewpoint: Itinerary example . 123
5.38Technology Viewpoint: Information model for annotations 125
5.39Technology Viewpoint: Implementation of security services in SOS!e 1.0 126
5.40Technology Viewpoint: Wiring diagram for SOS!e 2.0 128
5.41Technology Viewpoint: Implementation of custom security services in SOS!e 2.0 . . . 132

188 LIST OF FIGURES

6.1 Proxies for geo-processing services . 134
6.2 SOS!e protecting geo-processing services . 135
6.3 Click-through licensing for OGC Web services: Use-cases 137
6.4 Click-through licensing for OGC Web services: Wiring diagram 138
6.5 Typical deployment for BioLANCC . 139
6.6 Biometric authentication for OGC Web services: Authentication process 141
6.7 Biometric authentication for OGC Web services: Security system design 143
6.8 Biometric authentication for OGC Web services: Message propagation in the framework 144
6.9 Cryptography for OGC Web services: Security system design 148
6.10Authentication and licensing for WFS-T: Trust model . 150
6.11Authentication and licensing for WFS-T: Verification process 151
6.12Authentication and licensing for WFS-T: System design 152
6.13Authentication and licensing for WFS-T: System design variation 153
6.14Deployment of the Kerberos authentication service . 154

7.1 Web services performance model . 164
7.2 SOS!e deployment . 165
7.3 Possible bottlenecks in the testing environment . 166
7.4 The realization of the testing environment . 168
7.5 Use-case #1: Deployment diagram . 169
7.6 Performance results for use-case #1 . 169
7.7 Use-case #2: Deployment diagram . 170
7.8 Performance results for use-case #2 . 170
7.9 Use-case #3: Deployment diagram . 170
7.10Performance results for use-case #3 . 171
7.11Use-case #4: Deployment diagram . 171
7.12Performance results for use-case #4 . 172
7.13Throughput and delay variation with message size . 172
7.14Performance measurements for WMS according to [83] 174
7.15Performance measurements for WFS according to [83] . 174

B.1 Association between classes . 197
B.2 Association cardinality . 198
B.3 Aggregation between classes and class inheritance . 198
B.4 UML sequence diagram . 199
B.5 UML activity diagram . 199

C.1 Elements used in service diagrams . 201
C.2 Communication between entities in service diagrams . 201
C.3 Message routing patterns . 202
C.4 Graphical notation for information model diagrams . 202

List of Tables

2.1 Foundation standards for OGC specifications . 18

3.1 Security embedded in the application - analysis . 46
3.2 Security embedded in the middleware - analysis . 47
3.3 Externalized security - analysis . 48
3.4 Comparison of the three approaches . 49

4.1 Invocation vs. mediation . 63

5.1 The ISO Reference Model for Open Distributed Processing - viewpoints 70

6.1 Security services implemented for the SOS!e framework 156

189

Listings

2.1 Part of the XML schema definition for SOAP messages 11
2.2 WSDL definition for a WMS service . 12
2.3 SOAP-over-HTTP request . 15
2.4 SOAP-over-HTTP response . 16
2.5 eBay REST API example . 16
2.6 GML application schema example . 21
2.7 GML document instance example . 21
2.8 HTTP GET example . 23
2.9 HTTP POST request example . 23
2.10 SOAP request example . 23
5.1 WSDL definition for a security service . 121
5.2 Itinerary example . 123
5.3 Itinerary in the header of a SOAP message . 124
5.4 Annotation in a SOAP message . 125
5.5 Simple implementation of a logging service . 126
5.6 Example configuration for the Mule ESB . 129
5.7 Annotation in a SOAP message (as SAML assertion) 131
6.1 Example response for the GetSession operation . 137
6.2 GetSAMLAssertion request . 142
6.3 Response to a GetSAMLAssertion request . 142
6.4 Service configuration example . 147
6.5 Example XPath expression matching Kataster feature types in a SOAP message . . . 148
A.1 WFS request containing authentication information 193
A.2 WFS response containing encrypted GML features 194
A.3 WFS response containing digitally signed GML features 195

190

Appendices

191

Appendix A

SOAP Message Examples

A.1 Land Register Information System

A.1.1 WFS GetFeature Request

The following listing shows a GetFeature SOAP request requesting GML features of type Kataster

and Flurstueck. The SOAP header of the request contains a WS-Security header which includes a
username token. This is used in the authentication process.� �

1 <SOAP−ENV:Envelope xmlns:SOAP−ENV=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

2 <SOAP−ENV:Header>

3 <wss e : S e cu r i t y xmlns:wsse=” . . . ”>

4 <wsse:UsernameToken xmlns:wsu=” . . . ” wsu:Id=”UsernameToken−12864175”>

5 <wsse:Username> j o hn t e s t</wsse:Username>

6 <wsse:Password Type=” . . .# PasswordDigest ”>2W3Yp3WX21CGM4nX0V+1lU9vb3o=</wsse:Password>

7 <wsse:Nonce>u9ue3VrobUibsYCPI5Sv4Q==</wsse:Nonce>

8 <wsu:Created>2007−01−15T13:55:50 .328Z</wsu:Created>

9 </wsse:UsernameToken>

10 </ ws s e : S e cu r i t y>

11 </SOAP−ENV:Header>

12

13 <SOAP−ENV:Body>

14 <wfs :GetFeature xmlns :wfs=” ht tp : //www. openg i s . net /wfs ”

15 outputFormat=”GML2” s e r v i c e=”WFS” version=” 1 . 0 . 0 ”>

16 <wfs:Query typeName=”Kataster ”>

17 . . . F i l t e r In format ion Here . . .

18 </wfs:Query>

19 <wfs:Query typeName=” Flurs tueck ”>

20 . . . F i l t e r In format ion Here . . .

21 </wfs:Query>

22 </wfs :GetFeature>

23 </SOAP−ENV:Body>

24 </SOAP−ENV:Envelope>� �
Listing A.1: WFS request containing authentication information

A.1.2 WFS GetFeature Response

Listing A.2 shows a result to the previously listed request, where all GML features of type Kataster

are encrypted. For simplicity reasons only one feature from each feature class is showed, and most
of the feature attributes are omitted.
Please pay attention to the header of the SOAP message: because asymmetric encryption is slow,
an AES123-CBC key is generated, this one is asymmetrically encrypted, and the GML features are

193

194 APPENDIX A. SOAP MESSAGE EXAMPLES

encrypted using AES key. This encryption scheme saves time for both the encryption and the
decryption process.� �

1 <soapenv:Envelope xmlns:soapenv=” . . . ” xmlns:xenc=” . . . ” xmlns:xsd=” . . . ” xmlns :x s i=” . . . ”>

2 <soapenv:Header>

3 <wss e : S e cu r i t y xmlns:wsse=” . . . ”>

4 <xenc:EncryptedKey Id=”EncKeyId−10736847”>

5 <xenc:EncryptionMethod Algorithm=” ht tp : //www.w3 . org /2001/04/ xmlenc#rsa−1 5 ”/>

6 <ds :KeyInfo xmlns:ds=” ht tp : //www.w3 . org /2000/09/ xmldsig#”>

7 <wsse :Secur i tyTokenReference>

8 <ds:X509Data>

9 <d s :X509 I s s u e r S e r i a l>

10 <ds:X509IssuerName>CN=Tom,OU=INF3 ,O=UniBw ,L=Munich ,ST=BY,C=DE</ds:X509IssuerName>

11 <ds:X509SerialNumber>12</ds:X509SerialNumber>

12 </ d s :X509 I s s u e rS e r i a l>

13 </ds:X509Data>

14 </ wsse :Secur i tyTokenReference>

15 </ ds :KeyInfo>

16 <xenc:CipherData>

17 <xenc:CipherValue>MZRB. . . at==</ xenc:CipherValue>

18 </xenc:CipherData>

19 <xenc :Re f e r en c eL i s t>

20 <xenc :DataReference URI=”#EncDataId−11646147”/>

21 </ xenc :Re f e r en c eL i s t>

22 </xenc:EncryptedKey>

23 </ ws s e : S e cu r i t y>

24 </ soapenv:Header>

25

26 <soapenv:Body>

27 < f e a t u r eCo l l e c t i o n xmlns=” . . . ” xmlns:gmgml=” . . . ” xmlns:gml=” . . . ”>

28 <gml:boundedBy>

29 <gml:Box srsName=”EPSG:31467”>

30 <gml : coo rd ina t e s>3476227 .969 ,5367755 .176 3477566 .626 ,5368168 .248</ gml : coo rd ina t e s>

31 </gml:Box>

32 </gml:boundedBy>

33 <gml:featureMember>

34 <Flurs tueck f i d=” Flurs tueck .8239 ”>

35 <STRID> 2 </STRID>

36 <Geometry1 SK> 1BLHZˆZ/ </Geometry1 SK>

37 <Geometry1>

38 <gml :L ineSt r ing srsName=”EPSG:31467”>

39 <gml : coo rd ina t e s> 3477565 .436 ,5367829 .68 3477562 .343 ,5367824 .654

40 3477562 .343 ,5367789 .333 3477564 .035 ,5367786 .055 3477566 .626 ,5367757 .027

41 3477555 .733 ,5367755 .176 3477555 .441 ,5367756 .59 </ gml : coo rd ina t e s>

42 </ gml :L ineSt r ing>

43 </Geometry1>

44 </ Flurs tueck>

45 </gml:featureMember>

46

47 <gml:featureMember>

48 <Kataster Id=” id −11646147” f i d=”Kataster .43968 ”>

49 <xenc:EncryptedData Id=”EncDataId−11646147”

50 Type=” ht tp : //www.w3 . org /2001/04/ xmlenc#Content”>

51 <xenc:EncryptionMethod Algorithm=” ht tp : //www.w3 . org /2001/04/ xmlenc#aes128−cbc”/>

52 <xenc:CipherData>

53 <xenc:CipherValue>boSL . . .GYY=</ xenc:CipherValue>

54 </xenc:CipherData>

55 </xenc:EncryptedData>

56 </Kataster>

57 </gml:featureMember>

58 </ soapenv:Body>

59 </ soapenv:Envelope>� �
Listing A.2: WFS response containing encrypted GML features

A.1. LAND REGISTER INFORMATION SYSTEM 195

Listing A.3 shows the result to the previously listed request, where a digital signature is created
for all GML features of type Kataster. Similarly, for simplicity reasons only one feature from each
feature class is showed,and most of the feature attributes are omitted.� �

1 <soapenv:Envelope xmlns:soapenv=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”>

2 <soapenv:Header>

3 <wss e : S e cu r i t y xmlns:wsse=” . . . ”>

4 <ds :S i gna tu r e Id=”Signature −10688173” xmlns:ds=” ht tp : //www.w3 . org /2000/09/ xmldsig#”>

5 <ds : S i gned In f o>

6 <ds :Canonica l i zat ionMethod Algorithm=” ht tp : //www.w3 . org /2001/10/xml−exc−c14n#”/>

7 <ds:SignatureMethod Algorithm=” ht tp : //www.w3 . org /2000/09/ xmldsig#rsa−sha1”/>

8 <ds :Re f e r ence URI=”#id −6440356”>

9 <ds :Transforms>

10 <ds:Transform Algorithm=” ht tp : //www.w3 . org /2001/10/xml−exc−c14n#”/>

11 </ ds :Transforms>

12 <ds:DigestMethod Algorithm=” ht tp : //www.w3 . org /2000/09/ xmldsig#sha1”/>

13 <ds :Diges tVa lue>STYKsvSV1JM/qavrZconm+Qa0yA=</ ds :Diges tVa lue>

14 </ ds :Re f e r ence>

15 </ d s : S i gned In f o>

16 <ds :S ignatureVa lue>Re2A . . . ak=</ ds :S ignatureVa lue>

17 <ds :KeyInfo Id=”KeyId−19253663”>

18 <wsse :Secur i tyTokenReference wsu:Id=”STRId−30926415” xmlns:wsu=” . . . ”>

19 <ds:X509Data>

20 <d s :X509 I s s u e r S e r i a l>

21 <ds:X509IssuerName>CN=LMIS ,OU=INF3 ,O=UniBw ,L=Munich ,ST=Bayern ,C=DE</ds:X509IssuerName>

22 <ds:X509SerialNumber>100011</ds:X509SerialNumber>

23 </ d s :X509 I s s u e rS e r i a l>

24 </ds:X509Data>

25 </ wsse :Secur i tyTokenReference>

26 </ ds :KeyInfo>

27 </ d s : S i gna tu r e>

28 </ soapenv:Header>

29

30 <soapenv:Body>

31 <gmgml : f ea tu reCo l l e c t i on xmlns:gmgml=” ht tp : //www. in te rg raph . com/geomedia/gml”>

32 <gml: xmlns:gml=” ht tp : //www. openg i s . net /gml”>

33 <gml:Box srsName=”EPSG:31467”>

34 <gml : coo rd ina t e s>3476227 .969 ,5367755 .176 3477566 .626 ,5368168 .248</ gml : coo rd ina t e s>

35 </gml:Box>

36 </gml:boundedBy>

37

38 <gml:featureMember xmlns:gml=” ht tp : //www. openg i s . net /gml”>

39 <gmgml:Flurstueck f i d=” Flurs tueck .8239 ”>

40 <gmgml:STRID>2</gmgml:STRID>

41 <gmgml:Geometry1 SK>1BLHZˆZ/</gmgml:Geometry1 SK>

42 <gmgml:Geometry1>

43 <gml :L ineSt r ing srsName=”EPSG:31467”>

44 <gml : coo rd ina t e s>3477565 .436 ,5367829 .68 3477562 .343 ,5367824 .654 3477562 .343 ,

45 5367789.333 3477564 .035 ,5367786 .055 3477566 .626 ,5367757 .027 3477555 .733 ,

46 5367755.176 3477555 .441 ,5367756 .59 </ gml : coo rd ina t e s>

47 </ gml :L ineSt r ing>

48 </gmgml:Geometry1>

49 </ gmgml:Flurstueck>

50 </gml:featureMember>

51

52 <gml:featureMember xmlns:gml=” ht tp : //www. openg i s . net /gml”>

53 <gmgml:Kataster Id=” id −6440356” f i d=”Kataster .43968 ”>

54 <gmgml:HALINID>43968</gmgml:HALINID>

55 <gmgml:MALFD>43634</gmgml:MALFD>

56 <gmgml:Geometry1 SK>1BLHZˆvKF</gmgml:Geometry1 SK>

57 <gmgml:Geometry1>

58 <gml :L ineSt r ing srsName=”EPSG:31467”>

59 <gml : coo rd ina t e s>3476234 .43 ,5368168 .248 3476227 .969 ,5368152 .664</ gml : coo rd ina t e s>

196 APPENDIX A. SOAP MESSAGE EXAMPLES

60 </ gml :L ineSt r ing>

61 </gmgml:Geometry1>

62 </gmgml:Kataster>

63 </gml:featureMember>

64 </ gmgml : f ea tu reCo l l e c t i on>

65 </ soapenv:Body>

66 </ soapenv:Envelope>� �
Listing A.3: WFS response containing digitally signed GML features

Appendix B

UML Notation

Some of the diagrams in this document are presented using the Unified Modeling Language (UML)
2.0. The rest of this appendix presents the notations.

B.1 UML Class Diagrams

The UML class diagram notations used in this document are exemplified in figures B.1, B.2 and
B.3.

class Association

Class1

- privateAttribute: type
protectedAttribute: type
+ publicAttribute: type

- operation() : void

Class2

- attribute: type

+ operation(String) : void

+Source Role Association Name +Target Role

Figure B.1: Association between classes

In the diagrams, the following stereotypes are used:

• <<abstract>> A stereotyped class that cannot be instantiated, but can be subclassed. The
class can include both operations and attributes. Some of the operations defined may be
abstract.

• <<interface>> A definition of a set of operations that is supported by objects having this
interface. An Interface class cannot contain any attributes

• <<type>> A stereotyped class used for specification of a domain of instances (objects), to-
gether with the operations applicable to the objects. A Type class may have attributes and
associations.

In this document, the following standard data types are used:

• Boolean - A value specifying TRUE or FALSE

• Date - A timestamp, containing both date and time

197

198 APPENDIX B. UML NOTATION

• Double - A double precision floating point number

• Integer - An integer number

• String - A sequence of characters

• URI - An identifier of a resource that provides more information

In addition to those, the following non-standard types are used:

• ArbitraryContent - An arbitrary content (in a message)

• Configuration - Information describing configuration parameters for a service

• Message - A message

• State - Information describing the state of an object / service

class Multiplicity

Class

Class

Class

Class

Class

Class

Only one

Specific number

Zero or more

Optional (zero or more)

One or more

0..1

1..*

n

0..*

Figure B.2: Association cardinality

class Aggregation / Inheritance

Aggregate Class

Component Class
#1

Component Class
#2

Component Class
#n

Superclass

Subclass #1 Subclass #2 Subclass #n

Figure B.3: Aggregation between classes and class inheritance

B.2. UML SEQUENCE DIAGRAMS 199

B.2 UML Sequence Diagrams

The basic elements of an UML sequence diagram, as used in this dissertation, are presented in
figure B.4.

sd Sequence Diagram

Object Object

Synchonous Call of an Operation()

Recursion()

Response()

Figure B.4: UML sequence diagram

B.3 UML Activity Diagram

The basic elements of an UML activity diagram, as used in this dissertation, are presented in figure
B.5.

act Activ ity

Activ ity

Initial State

Final State

Decision

Activ ityActiv ity

Fork / Join

Figure B.5: UML activity diagram

Appendix C

Graphical Notations

Throughout this dissertation various diagrams are used. The graphical elements used in these
diagrams are consistent throughout the dissertation, forming a kind of graphical language. The
purpose of this is to provide clarity and make the reading easier. The elements of the different
types of diagrams are illustrated in this appendix.

C.1 Service Diagrams

The main elements used in service diagrams are displayed in figure C.1. Figure C.2 shows the
representation of communication between components.

Service
requester

Message Processing
Entity

Persistent store

Annotations

Message Message containing annotations

Physical Machine

Figure C.1: Elements used in service diagrams

Entity

Message communication

Entity

Entity

Persistent Store

Other type of communication

Figure C.2: Communication between entities in service diagrams

201

202 APPENDIX C. GRAPHICAL NOTATIONS

C.2 Message Patterns

The graphical notation used to represent message patterns is represented in figure C.3. The graphi-
cal elements are consistent with the graphical notations used in the literature (for example [95, 56]).
The patterns are explained in section 2.3.5.

Content-Based Router Itinerary Router

SplitterAggregator

Orchestrator Message Transformer

Figure C.3: Message routing patterns

C.3 Information Model Diagrams

Figure C.4 shows an example of an information model diagram. The most important diagram
elements are explained (see red comments in boxes).

Simple Type

Sequence

Complex Type

Attribute

Figure C.4: Graphical notation for information model diagrams

Appendix D

Testing Environment

The following is the description of the hardware and software used for the performance evaluation
of the SOS!e framework (see section 7.2).

D.1 Servers - Dell PowerEdge 750

• Single Intel Pentium 4, 2.8GHz Processor

• 2GB DDR-400MHz SDRAM

• 2 x 80GB SATA @7200RPM Disk Drives configured for RAID 1 (Mirroring)

• 2 x Gigabit NICs (only one of them was configured)

D.2 Network Switch - Dell PowerConnect 2424

• 24 x 10/100Base-T Ports

• 2 x 1000Base-T ports

• Switching Capacity: 8.8 Gbps

• Forwarding Rate: 14.5 Mpps

D.3 Software

• SuSe Linux 10.2 (Kernel 2.6.18.2-34)

• Apache Tomcat 5.5.23

• Apache AXIS 1.4

• Mule 1.4.0

• JMeter 2.3RC3

203

Appendix E

Abbreviations

AAA Authentication, Authorization and Audit
A4C Authentication, Authorization, Audit, Accounting and Charging
B2B Business to Business
B2C Business to Client

BioLANCC Biometric Local Area Network Control Center
DCP Distributed Computing Platform
EAI Enterprise Application Integration
ESB Enterprise Services Bus

GML Geometry Markup Language (see [84, 85])
ISO The International Organization for Standardization

JVM Java Virtual Machine
KVP Key-Value Pair

MOM Message Oriented Middleware
RM-ODP Reference Model for Open Distributed Processing (ISO standard)

OASIS Organization for the Advancement of Structured Information Standards
OGC Open Geospatial Consortium
OWS OGC Web Service

OWS-3, OWS-4 OGC Web Services Test Bed 3,4
PAP Policy Administration Point (see XACML [18])
PDP Policy Decision Point (see XACML [18])
PEP Policy Enforcement Point (see XACML [18])
PIP Policy Information Point (see XACML [18])

PRP Policy Retrieval Point (see AAAArch [147])
QoS Quality of Service
RTT Round-Trip-Time (delay)

SAML Security Assertions Markup Language (see [22])
SOA Service Oriented Architecture

SOSA Service Oriented Security Architecture
SOS!e Service Oriented Security - an Implementation Experiment (prototype implementa-

tion for SOSA)
UML Unified Modeling Language

UniBW University of the German Armed Forces (Universität der Bundeswehr)
W3C World Wide Web Consortium

XACML eXtensible Access Control Markup Language (see [13, 18])
XML eXtensible Markup Language

205

Appendix F

Curriculum Vitae

Cristian-Aurel OPINCARU

Education

Dr. Rer. Nat. (2008)

University of the German Armed Forces, Munich, Germany

Computer Science Department, Institute for Information Systems

Advisor: Prof. Dr. Gunnar Teege

Thesis: Service Oriented Security Architecture applied to Spatial Data Infrastructures

Computer Science Engineer (2003)

Polytechnic University of Bucharest, Romania

Major: Distributed Systems

Thesis: A Security System for the Targeteam System

Analyst (1998)

St. Sava High School, Bucharest, Romania

Professional Experience

10/2003 - 11/2007 Research Associate at the Institute for Information Systems, Computer Science Department,

University of the German Armed Forces, Munich, http://www.unibw.de

10/2004 - 10/2005 Developer at Intergraph GmbH

Munich, Germany (part-time), http://www.intergraph.de

10/2001 - 02/2003 Teaching Assistant at the Polytechnic University of Bucharest

Bucharest, Romania, http://www.acs.pub.ro

10/2000 - 12/2001 Java Programmer at WebCab Components Ltd.

Bucharest, Romania, http://www.webcabcomponents.com

08/1999 - 09/2000 Programmer at Icemenerg S.A.

Bucharest, Romania, http://www.icemenerg.ro

Publications

Books

• Valeriu Iorga, Cristian Opincaru, Corina Stratan and Paul Chirita. Data Structures and Algorithms - Aplications in

C++ using STL, Polirom Publishing House, 2005, Romanian language, 352 pages. ISBN: 973-681-872-1

• Valeriu Iorga, Paul Chirita, Cristian Opincaru and Corina Stratan - C/C++ Programming Problems, Niculescu Publishing

House, 2003, Romanian language, 256 pages. ISBN: 973-568-800-X

• Livia Toca, Andreea Demco, Cristian Opincaru and Adrian Sindile. Informatics text book for the 10th grade, Niculescu

Publishing House, 2000, Romanian language, 156 pages, ISBN: 973-568-422-5

Industry Standards / Papers

• Cristian Opincaru (Editor), Andreas Matheus, Christian Elfers, Jan Martin Senne and Roland Wagner. Trusted Geo

Services IPR. February 2006

• Jan Drewnak, Christian Elfers, Roland M. Wagner and Cristian Opincaru. GeoDRM Engineering Viewpoint and sup-

porting Architecture IPR. February 2006

207

http://www.unibw.de
http://www.intergraph.de
http://www.acs.pub.ro
http://www.webcabcomponents.com
http://www.icemenerg.ro

208 APPENDIX F. CURRICULUM VITAE

• Joshua Lieberman, Roderick Morrison, Cristian Opincaru, Ugo Taddei and Roland M. Wagner. OWS-3 GeoDRM Thread

Activity and Interoperability Program Report: Access Control & Terms of Use (ToU) Click-through IPR Management,

February 2006

• Graham Vowles, John R. Herring, Cecil Goodwin, Mark V. Scardina, Andreas Matheus, Cristian Opincaru and Wayne

Debeugny. The OpenGIS®Abstract Specification Topic 18: Geospatial Digital Rights Management Reference Model

(GeoDRM RM), January 2006

• Cristian Opincaru. A general concept of associating credentials with OWS messages. Position paper within the OGC

GeoDRM WG. November 2005

• Andreas Donaubauer, Cristian Opincaru, Stephan Plabst, Julia Stahl. Verfeinerung der Leitungsauskunft - Abschluss-

bericht. Runder Tisch GIS. November 2005

• Cristian Opincaru. Preliminary Study: Securing OpenGIS Web Services. Runder Tisch GIS. January 2004

Articles

• Cristian Opincaru, Gabriela Gheorghe. Service Oriented Security Architecture. EMISA 2007: Enterprise Modelling and

Information Systems Architectures, Lecture Notes in Informatics. October 2007

• Cristian Opincaru et. al. Trendanalyse zur INTERGEO vom 10. 12. Oktober 2006 in Mnchen. zfv 6/2006, pp. 370 -

376

• Gunnar Teege, Cristian Opincaru, Andreas Donaubauer. The OGC Test Platform of Runder Tisch GIS e.V. Information

about architecture, use and operation. Runder Tisch GIS. October 2006

• Cristian Opincaru et. al. Trendanalyse zur INTERGEO 2005. PFG 1/2006, pp. 67 - 74

Industry Fairs

• Project: Security for OGC Web Services. SYSTEMS 2006, Munich, Germany

• Projects: Click-Through Licensing for GeoWeb Services, Biometric Authentication for GeoWeb Services. SYSTEMS

2005, Munich, Germany

• Project: Click-Through Licensing for GeoWeb Services. INTERGEO 2005, Düsseldorf, Germany

Organized Workshops

• Sicherheit für Geo Web Services (4h). Speakers: Andreas Matheus, Cristian Opincaru and Gunnar Teege. Fortbil-

dungsseminar 2007, Munich, Germany, March 2007

• Security for Geo Web Services: From Problem Statement to Implementation (4h). Speakers: Cristian Opincaru, Andreas

Matheus. GITA Conference 2007, San Antonio, TX, USA, March 2007

• GeoDRM Workshop (8h) Speakers: Andreas Matheus and Cristian Opincaru. Organized for the Bavarian Mapping

Agency, Munich, 2005

• Security for Geo Web Services (3h). Speaker: Cristian Opincaru. Organized for the Municipality of Strasbourg, France,

February 2006

Invited talks

• Trusted Geo Services IPR. 62th OGC TC Meeting, Ottawa, Canada, April, 2006

• Authentication in OWS4. 61th OGC TC Meeting, San Diego, CA, USA, December, 2006

• Trusted Geo Services IPR / OGC# 06-107. 61th OGC TC Meeting, San Diego, CA, USA, December, 2006

• GeoDRM: Keeping Free and Remaining Open, with Joshua Lieberman. Free and Open Source Software for Geoinformatics

Conference (FOSS4G2006), Lausanne, Switzerland, November, 2006

• Security for Geo Web Services: Problems & Solutions. GeoWeb Conference (GeoWeb2006), Vancouver, Canada, July,

2006.

• GeoDRM: Enabling Technologies. 59th OGC TC Meeting, Edinburgh, United Kingdom, June, 2006

• [Interoperable] Digital Rights Management for Geospatial Web Services. OASIS Symposium 2006, San Francisco, CA,

USA, May, 2006.

• Sicherheit bei Service-basierten Geodateninfrastrukturen, with Andreas Matheus. Cegi OGC Interoperabilittstag, Bonn,

Germany, November, 2005

• Requirements & Use-Cases in OWS3.GeoDRM, with Joshua Lieberman. 55th OGC TC Meeting, Bonn, Germany,

November, 2005

• Implementation of the University of German Armed Forces in OWS3. 55th OGC TC Meeting, Bonn, Germany, Novem-

ber, 2005

• Security for OGC Web Services. GDI NRW AG Security Meeting, Münster, Germany, May, 2005

• A SOAP-Based Security Framework for Securing OGC Web Services. 53th OGC TC Meeting, Frascati, Italy, April,

2005

209

Organizing Committee / Review Committee

• 41th Hawaii International Conference on System Sciences (HICSS 2008) - Review Committee

• 10th IEEE Integrated Network Management Conference (IM 2007) - Organizing Committee

• 22nd Annual Computer Security Applications Conference (ACSAC 2006) - Review Committee

Professional Associations / Organizations

• Association for Computing Machinery (ACM)

• Geospatial Information & Technology Association (GITA)

• Open Geosaptial Consortium (OGC) - GeoDRM WG, Security WG, XACML RWG

	Foreword
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 SOA with Web Services
	1.1.2 Security in the Context of SOA
	1.1.3 External Security. Service Oriented Security Architecture

	1.2 Scope
	1.3 Outline

	2 Basic Concepts
	2.1 Service Oriented Architecture
	2.1.1 SOA with Web Services
	2.1.2 Typical Interactions in a SOA
	2.1.3 Concepts and Definitions
	2.1.4 Standards and Technologies for SOA
	2.1.5 XML
	2.1.6 DTD and XML Schema
	2.1.7 Service Description: WSDL
	2.1.8 Messaging: SOAP and REST
	2.1.9 Discovery: UDDI

	2.2 Spatial Data Infrastructures
	2.2.1 Introduction
	2.2.2 Interoperability for Geospatial Information
	2.2.3 Standards in an SDI
	2.2.4 GML
	2.2.5 OGC Service Specifications
	2.2.6 WMS
	2.2.7 WFS

	2.3 Enterprise Services Bus
	2.3.1 Definitions
	2.3.2 Characteristics of an ESB
	2.3.3 Capabilities of an ESB
	2.3.4 Enhancing Service Capabilities through Mediation
	2.3.5 EAI Patterns in an ESB
	2.3.6 Infrastructure Services in an ESB
	2.3.7 Implementations
	2.3.8 Relation to this Dissertation

	2.4 Security in the Context Web Services
	2.4.1 The Security Stack
	2.4.2 Security Functions
	2.4.3 Annex Security Functions

	3 Security in a Web Services World
	3.1 Architectural Evaluation of Security Systems
	3.2 Security Implementation for Web Services
	3.2.1 Analysis Overview

	3.3 External Security Approaches
	3.3.1 Perimeter Security
	3.3.2 Enforcement Points
	3.3.3 Security Services as SOAP Intermediaries
	3.3.4 Mixed Approaches
	3.3.5 Conclusions

	3.4 Problem Statement
	3.4.1 SOSA , SOS!e and the Rest of the Dissertation
	3.4.2 Assumptions

	4 Service Oriented Security Architecture
	4.1 Service Oriented Security
	4.2 Service Definition
	4.2.1 Interaction Types
	4.2.2 Aggregation Methods

	4.3 Communication between Security Services
	4.4 Illustrative Example
	4.4.1 Scenario
	4.4.2 Message Routing Solution
	4.4.3 Analogy to Real-Life Paper-Based Communication

	5 Service Oriented Security Architecture - System Description
	5.1 The Reference Model for Open Distributed Processing
	5.2 The Enterprise Viewpoint
	5.2.1 System's Environment
	5.2.2 System's Role
	5.2.3 Functions
	5.2.4 Multiple Security Domains. Security Off-Shoring

	5.3 The Computational Viewpoint
	5.3.1 Computational Object
	5.3.2 Security Services
	5.3.3 Service Interactions. Interaction Interfaces
	5.3.4 Service Workflow
	5.3.5 Exceptions
	5.3.6 Service Taxonomy
	5.3.7 Granularity and Reusability

	5.4 The Information Viewpoint
	5.4.1 Messages
	5.4.2 Information Model for Annotations
	5.4.3 Information Model for Exceptions
	5.4.4 Information Model for Service Composition

	5.5 The Engineering Viewpoint
	5.5.1 Web Services Composition
	5.5.2 Service Chains
	5.5.3 Realization of Choreographies
	5.5.4 Transactions
	5.5.5 Exception Handling
	5.5.6 Service Clustering
	5.5.7 Patterns in SOSA

	5.6 The Technology Viewpoint
	5.6.1 Standards
	5.6.2 SOS!e 1.0
	5.6.3 SOS!e 2.0

	6 Practical Experiences with SOSA
	6.1 Security for Geospatial Web Services
	6.1.1 Context
	6.1.2 Approach
	6.1.3 SOAP Communication
	6.1.4 Proxy Components
	6.1.5 The SOS!e Framework

	6.2 Click-through Licensing for OGC Web Services
	6.2.1 Context
	6.2.2 Problem Statement and Objectives
	6.2.3 Requirements Analysis
	6.2.4 Design and Implementation

	6.3 Biometric Authentication for OGC Web Services
	6.3.1 Context
	6.3.2 Problem Statement and Objectives
	6.3.3 Requirements Analysis
	6.3.4 Design and Implementation

	6.4 Cryptography for OGC Web Services
	6.4.1 Context
	6.4.2 Problem Statement and Objectives
	6.4.3 Requirements Analysis
	6.4.4 Design and Implementation

	6.5 Authentication and Licensing for WFS-T
	6.5.1 Context
	6.5.2 Problem Statement and Objectives
	6.5.3 Requirements Analysis
	6.5.4 Design and Implementation

	6.6 Further Practical Experiences
	6.6.1 Kerberos Authentication Service
	6.6.2 Accounting and Charging with PayPal

	6.7 Conclusions

	7 Analysis and Evaluation
	7.1 Architectural Evaluation
	7.2 Performance Evaluation
	7.2.1 Performance Parameters
	7.2.2 Performance Model for Web Services
	7.2.3 Performance Testing with a Lightweight Environment
	7.2.4 Realization of the Environment
	7.2.5 Experimental Results
	7.2.6 Discussion

	8 Conclusions and Outlook
	8.1 Conclusions
	8.2 Contributions to Information and Computer Science
	8.3 Contribution to the World of Geospatial Information
	8.4 Outlook for Future Research

	Bibliography
	List of Figures
	List of Tables
	Listings
	A SOAP Message Examples
	A.1 Land Register Information System
	A.1.1 WFS GetFeature Request
	A.1.2 WFS GetFeature Response

	B UML Notation
	B.1 UML Class Diagrams
	B.2 UML Sequence Diagrams
	B.3 UML Activity Diagram

	C Graphical Notations
	C.1 Service Diagrams
	C.2 Message Patterns
	C.3 Information Model Diagrams

	D Testing Environment
	D.1 Servers - Dell PowerEdge 750
	D.2 Network Switch - Dell PowerConnect 2424
	D.3 Software

	E Abbreviations
	F Curriculum Vitae

