
A Pattern-based Approach for the Combination
of Different Layout Algorithms in Diagram Editors

Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von
Sonja Maier
im Juni 2012

Vorsitzender der Kommission: Prof. Dr. Peter Hertling
1. Berichterstatter: Prof. Dr.-Ing. Mark Minas
2. Berichterstatter: Prof. Paolo Bottoni

1. Prüfer: Prof. Dr. Gunnar Teege
2. Prüfer: Prof. Dr.-Ing. Wolfgang Reinhardt

Tag der mündlichen Prüfung: 24. September 2012

Universität der Bundeswehr München
Fakultät für Informatik

ii

Abstract

Nowadays, visual languages are widely used. Examples of visual languages
are graphs and class diagrams. The usage of meta-tools minimizes the effort
that is needed for the creation of visual language editors. By the help of
an abstract specification, a large amount of the functionality of an editor
may be described. Unfortunately, in most commonly used meta-tools, the
definition of the layout behavior is only insufficiently supported. In order to
be able to develop a fully functional visual language editor, which lets the
editor user draw comprehensible and visual appealing diagrams, this part is
of great importance.
In this thesis, a pattern-based layout approach for the specification of layout
behavior is described. The approach is based on meta-models and enables
the combination of all commonly used approaches for the definition of layout
behavior. Amongst others, graph drawing algorithms and constraint-based
approaches can be used. Furthermore, a newly developed rule-based ap-
proach can easily be integrated.
Layout patterns are the main concept of the approach: Each layout pattern
encapsulates certain layout behavior. Several layout patterns may be applied
to a diagram simultaneously, even to diagram parts that overlap. A control
algorithm that is included in the approach deals with such situations.
One import characteristic of the approach is that the layout is continuously
maintained during diagram modification, and that it is updated at runtime.
The possibility to reuse layout patterns, and to integrate them in a huge
variety of different visual language editors are two more characteristics.
Based on the layout approach, several layout features were developed: User-
controlled layout behavior allows the editor user to influence the layout at
runtime by applying layout patterns to certain parts of the diagram. For
instance, the editor user can align components horizontally by applying the
horizontal alignment pattern. This layout behavior is preserved until the edi-
tor user explicitly removes it again. The editor is capable of suggesting layout
patterns being applied to certain parts of the diagram. This feature is called
layout suggestions. For instance, the editor suggests to apply the horizontal

iii

iv

alignment pattern to components that are almost horizontally aligned. Fur-
thermore, the editor can even automatically apply these suggestions. This
feature is named ad-hoc layout.
In this thesis, the practical relevance of the introduced approach is demon-
strated: Several layout patterns are specified and used to define the layout
behavior of four DiaMeta editors, namely a graph editor, a class diagram
editor, a GUI forms editor, and a VEX diagram editor. Additionally, they
are used to define the layout behavior of one GEF editor, namely a graph
editor.

Contents

1 Introduction 1
1.1 Context of the Work . 2
1.2 Overview of the Proposed Approach 6
1.3 Scientific Contributions . 10
1.4 Thesis Outline . 11

2 Related Work 15
2.1 Visual Language Editors . 15
2.2 Design Patterns . 16
2.3 Constraints . 18
2.4 Layout in Visual Language Editors 22
2.5 Human Computer Interaction 23
2.6 Summary . 24

3 Running Examples 27
3.1 Graphs . 28
3.2 Class Diagrams . 29
3.3 GUI Forms . 32
3.4 VEX Diagrams . 33
3.5 Layout Behavior . 36
3.6 Summary . 45

4 Pattern Concept and Reusability 47
4.1 General Idea . 47
4.2 Meta-Models and their Correlation 49
4.3 Layout Patterns . 63
4.4 Specification and Integration of Algorithms 66
4.5 Atomic Layout Patterns . 76
4.6 Summary . 78

v

vi CONTENTS

5 Control Algorithm for Pattern Combination 79
5.1 General Idea . 79
5.2 Definitions . 80
5.3 Control Algorithm . 83
5.4 Example Execution of the Algorithm 85
5.5 Characteristics of the Algorithm 97
5.6 Future Work . 99
5.7 Summary . 100

6 User-Controlled Layout Behavior 103
6.1 Instantiation of Layout Patterns 103
6.2 Examples of User-Controlled Instantiation 106
6.3 Useful Features . 109
6.4 Future Work . 116
6.5 Summary . 117

7 Layout Suggestions and Ad-hoc Layout 119
7.1 Layout Suggestions . 119
7.2 Ad-hoc Layout . 123
7.3 Future Work . 127
7.4 Summary . 128

8 Examples of Layout Patterns 129
8.1 Examples of Layout Patterns 129
8.2 Integration of Layout Patterns in an Editor 155
8.3 Summary . 158

9 Evaluation 159
9.1 User Study . 159
9.2 Performance Evaluation . 164
9.3 Summary . 187

10 Conclusions 189
10.1 Summary . 189
10.2 Application Areas . 190
10.3 Future Directions . 192
10.4 Summary . 196

A Specification and Implementation 197
A.1 Layout Framework . 197
A.2 Integration into Diagram Editors 198
A.3 Summary . 203

Chapter 1

Introduction

“A picture is worth a thousand words.” This sentence dates back to Ivan
Turgenev, who states in his book Fathers and Sons [110]: “A picture shows
me at a glance what it takes dozens of pages of a book to expound.”
Following this principle, diagrams are used almost everywhere. In computer
science, for instance, UML diagrams are used for the specification, the con-
struction and the documentation of software parts.
Diagrams can either be drawn with the help of pen and paper, or they can be
created with the help of a computer. Here, we distinguish software that solely
allows to draw diagrams, and software that not only allows to draw diagrams,
but also provides further functionality, such as syntax-directed editing.
Diagrams are an abstract representation of information [118]: The structure
of a diagram usually has meaning, while the layout of a diagram, i.e. the
shape and the arrangement of components, usually has no meaning. Instead,
the user may define the layout in order to emphasize certain aspects and (or)
to improve readability.
Some visual languages have particular drawing conventions, e.g. generaliza-
tion in class diagrams is usually drawn from top to bottom. Others allow
the user to freely shape and arrange components, e.g. nodes in a graph are
usually positioned arbitrarily. Therefore, for some types of diagrams, the
layout is typically created automatically. For other types of diagrams, an
automatic layout only partially makes sense. For those, a user-controlled
layout is indispensable.
In most visual language editors, users are forced to manually maintain the
layout desired. As an alternative, the layout engine could maintain the layout
automatically, which means that so-called permanent layout is supported.
In order to enable automatic layout, user-controlled layout and permanent
layout, a diagram editor is needed that incorporates a powerful and flexible
layout engine. In an interactive environment, performance is usually the

1

2 CHAPTER 1. INTRODUCTION

limiting factor. Throughout the last years, computers got more and more
powerful, which clears the way for a powerful and flexible layout engine.
In this thesis, an approach for layout computation is introduced that is specif-
ically tailored to an interactive environment, such as visual language editors.
With the help of this approach, the user is able to create a diagram editor
and its layout engine with small effort.
This chapter is structured as follows: The context of this thesis is outlined
in Section 1.1. An overview of the proposed approach is given in Section 1.2.
The scientific contributions of this thesis are summarized in Section 1.3, and
an outline of it is given in Section 1.4.

1.1 Context of the Work
The approach for layout computation presented in this thesis is tailored to
the interactive nature of visual language editors. It is designed for meta-
model based visual language editors, whose syntax is defined by the help of
EMF [102], as it is done, for instance, in DiaMeta [86, 87] editors and in GEF
[30] editors.

1.1.1 Visual Language Editors
As already stated, visual languages are used almost everywhere. Some ex-
amples of visual languages are graphs, class diagrams, GUI forms and VEX
[20] diagrams. These visual languages will serve as the running examples
throughout this thesis.

Abstract and Concrete Syntax

The core of a visual language is its abstract and concrete syntax specifica-
tion. Literature often provides different understandings of the terms abstract
syntax and concrete syntax. In this thesis, these terms are used as follows:
The abstract syntax (AS) of a visual language describes the “underlying”
structure of a diagram of the visual language. The concrete syntax (CS)
describes the visual appearance of the visual language elements.
For instance, the abstract syntax describes a graph as a set of nodes and a
set of directed edges, where each edge exactly connects two nodes. As can
be seen in Figure 1.1, the graph consists of the nodes A, B, C, D and E,
and the four edges that connect the nodes A and B, A and C, B and D and
B and E. In contrast, the concrete syntax of a visual language describes
graphs as circles, whose center is at a certain (x, y)-position (e.g. (0, 0)),

1.1. CONTEXT OF THE WORK 3

and arrows, whose start point and end point are at certain (x, y)-positions
(e.g.[(0, 0), (−1, 1)]). As can be seen in Figure 1.1, the graph consists of circles
at the positions (0, 0), (−1, 1), (1, 1), (−2, 2) and (0, 2), and arrows at the
positions [(0, 0), (−1, 1)], [(0, 0), (1, 1)], [(−1, 1), (−2, 2)] and [(−1, 1), (0, 2)].

A

B C

D E

Figure 1.1: Visual Language: Graphs

One might ask, whether or not one of the equations AS ⊆ CS or CS ⊆ AS
holds. In general, none of these equations must hold. The concrete syntax
may contain some information that is not part of the abstract syntax, for
example, information about the position or size of components. The abstract
syntax may contain some information that is not visualized, for instance, in
case of class diagrams, program code that is associated with a method.

Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) [102] is a modeling framework that
provides a code generation facility: From a model specification, code is gener-
ated, which comprises a set of classes that enable creating and editing model
instances. EMF comprises a meta-model, called Ecore, for describing the
models and it comprises the runtime support for the models. In this thesis,
meta-models are described by the help of Ecore. Hence, Ecore serves as a
meta-meta-model in this case.

DiaMeta

DiaGen and DiaMeta [86, 87] are frameworks for prototyping visual language
editors. In DiaMeta, the abstract syntax of a visual language is defined with
Ecore, whereas in DiaGen [85], it is defined via a grammar. The rest of the
editor is specified by the help of the DiaGen-DiaMeta framework. One char-
acteristic of DiaGen and DiaMeta is that they support structured editing as
well as freehand editing. Structured editors offer the user editing operations

4 CHAPTER 1. INTRODUCTION

that transform correct diagrams into other correct diagrams. Freehand edi-
tors, on the other side, allow to arrange diagram components on the screen
without any restrictions.

Graphical Editing Framework (GEF)

The Graphical Editing Framework (GEF) [30] is a framework that enables
the creation of graphical editors, such as visual language editors, for the
Eclipse platform. The abstract syntax of a visual language of such an editor
can, for instance, be defined with EMF.

1.1.2 Layout in Visual Language Editors

Literature often provides different understandings of the term layout. In
this thesis it is defined as follows: Layout comprises all facets of the shape
and the arrangement of diagram components. This also comprises the shape
and the arrangement of a single component. More precisely, the layout of a
component is defined by a set of attributes and their corresponding values.
E.g. a node is defined by its (x, y)-position and by its radius. The layout of
a diagram is defined by the layout of all components, the diagram consists
of, and hence, a set of attributes and their corresponding values.
Updating the layout of a diagram usually implies the change of the concrete
syntax of the diagram, only. It should not imply the change of the abstract
syntax.

Layout in a Static and a Dynamic Context

Layout computation in a static context means that a diagram is visualized,
often without having any previous layout information available. Layout com-
putation in a static context is usually less time-critical than in a dynamic
one. In contrast, layout computation in a dynamic context usually means
that a user changes a diagram, and afterwards the layout engine updates
the diagram. The layout engine should take previous layout information into
account, and should present the result immediately. Hence, performance is
a big issue.
Automatic graph layout dominates the research in the area of layout. As
a consequence, graph aesthetics [109] are usually the main measure for the
quality of the layout, and hence, for the quality of the layout algorithm. Ex-
amples of aesthetic criteria are symmetry and edge crossing minimization.
The overall goal of these criteria is that the layout of a diagram maximally

1.1. CONTEXT OF THE WORK 5

supports the user to understand and remember the information that is visu-
alized [114].
Graph aesthetics are a good measure in a static context, but not in a dynamic
one, such as in graph editors or visual language editors. Here, other criteria
should be used, such as mental map preservation [16]: When looking at a
drawing, the user has to build a mental map. This essentially means that he
or she has to understand the structure and the meaning of the diagram. In
a dynamic context, the diagram as well as the layout of a diagram change
over time, and the user has to update his or her mental map. The user can
be supported in two ways: Layout changes can be minimized, or they can be
highlighted and animated.
In summary, in a static context, the following is very important:

• Graph aesthetics and other aesthetics criteria.

In a dynamic context, the following is important:

• Performance in terms of response time of the system.

• Mental map preservation, which means that the user can follow the
changes performed in the diagram.

Layout Modifications

Layout algorithms are used for the definition (implementation) of layout
behavior. Examples are graph drawing algorithms, such as the Sugiyama
algorithm [109]. Layout algorithms change the layout of a diagram in a sense
that attribute values are changed. One can distinguish layout algorithms
that imply “big changes”, and layout algorithms that imply rather “small
changes”.
Usually, only a small number of layout algorithms, which imply “big changes”
in the diagram, are applied simultaneously to a diagram. Examples are graph
drawing algorithms that rearrange the whole diagram.
Usually, a high number of layout algorithms, which imply rather “small
changes” in the diagram, are applied simultaneously to a diagram. Examples
would be an algorithm that aligns components vertically or an algorithm that
takes care of the correct connection of edges. This kind of layout behavior is
usually neglected by editor developers, and often hand-coded and hard-wired
in the specific system.

6 CHAPTER 1. INTRODUCTION

Standardization and Formalization of Layout

There is a lack of standardization and formalization concerning the layout
functionality of visual language editors. As a consequence, each editor de-
veloper is challenged by the layout engine, and often neglects this part of
the editor. It is a common fact that layout is a demanding task. Neverthe-
less, developers tend to reinvent the wheel, meaning that the layout engine is
built from scratch for every tool. To avoid this needless effort, a framework
is needed, which enables and simplifies the reuse of certain layout behavior.

Layout Approaches

Several layout approaches that can be used in a diagram editor exist. As
experience shows, developers tend to use only one layout approach and utilize
it for the specification of every layout behavior they want. Each layout
approach has its own strengths, and therefore a combination of different
approaches is more reasonable than the usage of only one of them.
Most tools either solely provide automatic layout, which may not be influ-
enced by the user, or only provide a quite restricted form of user-controlled
layout. In contrast, we are convinced that tools should provide the possibility
to allow the user to strongly influence the layout at runtime.

1.2 Overview of the Proposed Approach
In the following, an overview of the pattern-based layout approach, which is
introduced in this thesis, is given. The cornerstones of the approach are the
concept of layout patterns and an algorithm that controls the combination
of different layout patterns. Based on the layout approach, several layout
features were developed. The most important ones are user-controlled layout
behavior, layout suggestions and ad-hoc layout. In [72], an overview of the
layout approach and its integration into an editor is given.
The purpose of a visual language editor is to draw diagrams. As shown in
Figure 1.2, internally, a diagram is represented by a language-specific model
(LM). This language-specific model is an instance of a language-specific meta-
model (LMM), which defines the abstract and concrete syntax of the visual
language. The current layout of a diagram is represented by the LM, whereas
the layout behavior of a diagram editor is defined by a set of layout pattern
instances. Each layout pattern, in turn, encapsulates certain layout behavior.
Editing a diagram comprises the creation and deletion of diagram compo-
nents. It also comprises the modification of the layout of a diagram, e.g.
the editor user can move or reshape diagram components. As visualized in

1.2. OVERVIEW OF THE PROPOSED APPROACH 7

Editor

Diagram

Language-Specific
Model (LM)

Language-Specific
Meta-Model (LMM)

instance of

Edge Connector
Pattern

Layout Pattern
Instance

Horizontal Alignment
(Top) Pattern

Layout Pattern
Instance

Layout Pattern
Instance

correspondence correspondence correspondence

instance of instance of instance of

uses

Figure 1.2: Overview of the Approach

Figure 1.2, after the user has edited a diagram, the LM that corresponds
to this diagram is automatically created (updated). Furthermore, several
layout pattern instances are automatically created (updated). Based on the
LM and the layout pattern instances, the new layout of the diagram is auto-
matically computed, and the diagram is updated accordingly. For instance,
if the editor user moves circle A in the diagram shown in Figure 1.3, the four
outgoing arrows are automatically updated.

A

B

C D

E

Figure 1.3: Graphs: Example Diagram

8 CHAPTER 1. INTRODUCTION

1.2.1 Concept of Layout Patterns

A layout pattern encapsulates certain layout behavior. An example is the
edge connector pattern, which ensures that edges are correctly connected to
nodes. Another example is the horizontal alignment (top) pattern, which
makes sure that a certain set of nodes is horizontally aligned at the top.
After the user has edited a diagram, several pattern instances are created,
and a correspondence between the LM and each of these pattern instances is
established (cf. Figure 1.2).
A layout pattern may be instantiated one or more times for the same diagram.
The instantiation of a layout pattern is either performed automatically, or it is
triggered by the user. For instance, the edge connector pattern is instantiated
automatically. For the diagram shown in Figure 1.3, one pattern instance
is created for the nodes A, B, C, D and E together with the four edges.
In contrast, the instantiation of the horizontal alignment (top) pattern is
triggered by the user. For the diagram shown in Figure 1.3, for instance, two
pattern instances could be created - one for the nodes A and E, and one for
the nodes B, C and D. The edge connector pattern instance and the two
horizontal alignment (top) pattern instances are shown in Figure 1.2.
A layout pattern (cf. Figure 1.4) is defined on top of a pattern-specific
meta-model (PMM). It has one or more associated p-constraints (pattern-
constraints), and each p-constraint consists of one predicate, which has one
or more associated rules. The predicates of all pattern instances present in a
diagram assure the layout of the diagram. The layout of a diagram is correct
if all predicates hold. The layout of a diagram is incorrect and needs to be
updated if one or more predicates are broken. The rules give guidance on
how to repair broken predicates.

Layout Pattern

P-Constraint

* Predicate

*

Rule

PMM

Layout Pattern
Instance

*

*

Figure 1.4: Layout Pattern

1.2. OVERVIEW OF THE PROPOSED APPROACH 9

For instance, the horizontal alignment (top) pattern has the associated pred-
icate c1.y = c2.y. This predicate has the two associated rules c1.y := c2.y
and c2.y := c1.y. c1 and c2 are two components. c1.y is the y-position of
the first component, and c2.y is the y-position of the second component. For
the example mentioned above, the predicate as well as the associated rules
are “instantiated” several times: For the alignment of the components A and
E, they are instantiated for the pair of components {A,E}. For the align-
ment of the components B, C and D, they are instantiated for the pairs of
components {B,C} and {C,D}.
First ideas of the layout approach are described in [63, 64, 65, 61, 69, 67]. A
more detailed description can be found in Chapter 4.

Layout Algorithms

Rules give some guidance on how to repair broken predicates. Each of these
rules encapsulates a layout algorithm. The most commonly used types of
layout algorithms are graph drawing algorithms, constraint-based (layout)
algorithms and rule-based (layout) algorithms. Rule-based algorithms are
introduced in this thesis, and are specifically tailored to the interactive nature
of diagram editors.
The different types of algorithms and their integration into the pattern-based
layout approach are described in [68]. A more detailed description can be
found in Chapter 4.

1.2.2 Control Algorithm for Pattern Combination
The control algorithm for pattern combination is essentially a local propaga-
tion-based constraint solver that uses backtracking. It gets the set of layout
pattern instances that are present in a diagram as input. The purpose of
the control algorithm is to find a valid layout after user modification. The
algorithm checks all (potentially violated) predicates. For each violated pred-
icate, it applies one associated rule, which in turn triggers the application of
the encapsulated layout algorithm. This way, the rule changes one or more
attribute values, in order to repair the predicate.
In [70], the control algorithm is described. A more detailed description can
be found in Chapter 5.

1.2.3 User-Controlled Layout Behavior
To support the user in an interactive environment, it is not sufficient to apply
the same layout patterns in every situation. Instead, the user wants to alter

10 CHAPTER 1. INTRODUCTION

the layout behavior at runtime. To do so, the editor user has the possibility
to manually create and delete pattern instances: He or she may choose a
part of the diagram and the layout pattern to be applied to this part. For
instance, the editor user may apply the horizontal alignment (top) pattern
to the circles B, C and D of Figure 1.3. As a consequence, the three circles
are horizontally aligned.
A detailed description of user-controlled layout behavior can be found in
Chapter 6.

1.2.4 Layout Suggestions and Ad-hoc Layout
Layout suggestions and ad-hoc layout are two features that are built upon
the pattern-based layout approach.
After the editor user selects a certain part of a diagram, the layout engine is
able to determine all layout patterns that can potentially be applied to this
part. The layout engine can then further compute the attribute changes that
become necessary after one of these layout patterns is applied. Based on this
information, the layout engine can suggest layout patterns whose application
results in small modifications of the layout of the diagram. For instance,
the editor user selects the components B, C and D of Figure 1.3. As these
components are almost horizontally aligned, the layout engine suggests to
apply the horizontal alignment (top) pattern.
Automatic ad-hoc layout goes even one step further: While the editor user
edits the diagram, layout patterns whose application results in small modi-
fications of the layout of the diagram are automatically applied. The layout
patterns are not only applied to the components selected, but to the com-
ponents selected together with some other components. For instance, the
editor user moves the component B upwards (cf. Figure 1.3). As soon as the
components B, C and D are almost horizontally aligned, the layout engine
automatically applies the horizontal alignment (top) pattern.
In [73], layout suggestions and ad-hoc layout are described. A more detailed
description can be found in Chapter 7.

1.3 Scientific Contributions
This thesis provides the following scientific contributions:

• A pattern-based layout approach has been developed. The approach en-
ables the definition of layout patterns, which are language-independent,
and which may be integrated into different visual language editors.

1.4. THESIS OUTLINE 11

• A control algorithm has been developed, which allows for a flexible
combination of different layout patterns.

• Based on the pattern-based layout approach and the control algorithm,
several layout features were developed. The most import ones are user-
controlled layout behavior, layout suggestions and ad-hoc layout.

The applicability of the presented approach is justified by the following:

• The pattern-based layout approach as well as the layout features were
integrated in DiaMeta editors as well as GEF editors.

1.3.1 Research Methodology
The goal of this thesis was the development of a layout approach, which
seamlessly integrates with the editor generation framework DiaMeta. In this
environment, the layout is updated continuously, beautifying the diagram
while the user modifies the diagram. Furthermore, the editor user is able
to influence the layout by moving or reshaping components and by applying
layout patterns to certain parts of the diagram.
The conceptual design and the implementation of the new layout approach
was supported by a user-centered design process. In several iterations, a
prototype of the layout framework was created, taking the findings of a user
study and the feedback of editor users into account. This iterative process
focused on the user requirements and was driven by an evaluation of each
iteration.

1.4 Thesis Outline
• Related work is discussed in Chapter 2. Related work concerning vi-

sual language editors and generation frameworks for visual language
editors is sketched in Section 2.1. An overview of related work in the
area of patterns and pattern formalization is given in Section 2.2. In
Section 2.3, related work concerning constraints in visual language ed-
itors is discussed. Related work concerning layout in visual language
editors is described in detail in Section 2.4. Related work in the area
of human computer interaction is outlined in Section 2.5.

• In Chapter 3, four visual languages are introduced: Graphs (Section 3.1),
class diagrams (Section 3.2), GUI forms (Section 3.3) and VEX dia-
grams (Section 3.4). In Section 3.5, the layout behavior is described
that is included in editors for these four visual languages.

12 CHAPTER 1. INTRODUCTION

• Chapter 4 introduces layout patterns as means to encapsulate certain
layout behavior. Based on this concept, an algorithm automatically
computes the layout, as described in Chapter 5. The general con-
cept of the pattern-based layout approach is outlined in Section 4.1.
The different meta-models, namely the language-specific meta-model,
the pattern-specific meta-models and their correlation are described in
Section 4.2. In Section 4.3, the concept of layout patterns is discussed
in detail. In Section 4.4, it is explained how the different types of algo-
rithms, namely graph drawing algorithms, constraint-based algorithms
and rule-based algorithms, are specified and integrated. In Section 4.5,
the concept of atomic layout patterns is introduced.

• In Chapter 5, details are given about the control algorithm whose pur-
pose it is to control the combination of different layout patterns. The
general idea of this control algorithm is sketched in Section 5.1. In Sec-
tion 5.2, some definitions are given. The control algorithm is described
in detail in Section 5.3, and two examples are given in Section 5.4.
Some characteristics of the algorithm are discussed in Section 5.5. In
Section 5.6, future work is outlined.

• The user-controlled instantiation of layout patterns and some special
features that are useful in the context of user-controlled instantiation
of layout patterns are described in Chapter 6. The automatic and user-
controlled instantiation of layout patterns is discussed in Section 6.1.
In Section 6.2, two examples of user-controlled instantiation are given.
Some special features that are useful in the context of user-controlled
instantiation of layout patterns are described in Section 6.3. In Sec-
tion 6.4, future work is outlined.

• In Chapter 7, the concept of layout suggestions and the concept of ad-
hoc layout are described, two features that are based on the idea of
user-controlled layout behavior. The concept of layout suggestions is
discussed in Section 7.1. In Section 7.2, the concept of ad-hoc layout
is described. In Section 7.3, future work is outlined.

• In Chapter 8, several layout patterns are described, and their inte-
gration in diagram editors is discussed. In Section 8.1, several layout
patterns are described in detail. In Section 8.2, it is discussed how these
layout patterns are integrated in the editors described in Chapter 3.

• An evaluation of the approach in terms of usability and in terms of
performance is given in Chapter 9. A user study, which aims at identi-
fying layout patterns that are commonly “needed” in diagram editors,

1.4. THESIS OUTLINE 13

is described in Section 9.1. In Section 9.2, a performance evaluation is
presented.

• The thesis is concluded in Chapter 10. A summary is given in Sec-
tion 10.1. In Section 10.2, some related areas are mentioned, which
had a point of contact with this thesis. Some future directions are
discussed in Section 10.3.

• In Appendix A, some specification and implementation details are given.
Details about the layout framework itself are given in Section A.1. In
Section A.2, some details are given about the integration of a layout
engine, which is defined by the help of this framework, into DiaMeta
editors and into GEF editors.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In this chapter, related work is discussed. Related work concerning visual
language editors and generation frameworks for visual language editors is
sketched in Section 2.1. An overview of related work in the area of patterns
and pattern formalization is given in Section 2.2. In Section 2.3, related
work concerning constraints in visual language editors is discussed. Related
work concerning layout in visual language editors is described in detail in
Section 2.4. Related work in the area of human computer interaction is
outlined in Section 2.5.

2.1 Visual Language Editors
The aim of this thesis was to design a layout approach that is tailored to
diagram editors (i.e. visual language editors), and also (to some extent) to
diagram drawing tools.
A huge variety of diagram editors exist. Examples are graph editors, class
diagram editors, GUI forms editors, VEX [20] diagram editors, mind map
editors and business process model editors. Examples of diagram drawing
tools are commercial tools such as Paint, Powerpoint or Visio.

2.1.1 Meta Tools
Diagram editors provide tool support for modeling techniques. They provide
support for editing, simulation, validation, transformation, code generation,
and so on. Meta tools provide support for specifying visual modeling tech-
niques. They allow for the generation of visual modeling environments. They
also allow for an automated or semi-automated support for developing dia-
gram editors. They provide support for developing editors, simulation tools,

15

16 CHAPTER 2. RELATED WORK

validation tools, transformation tools, code generators, and so on.
One can distinguish three kinds of meta tools: Generic tools, such as Rational
Rose, are tools for one visual modeling technique with variants. Frameworks,
such as GEF [30], are reusable and incomplete applications that can be com-
pleted and customized in order to create specialized tools. Generators, such
as DiaGen [85], DiaMeta [86, 87], MetaEdit+ [53] or VL-Eli [98], enable
the specification of visual modeling environments, and specific tools may be
generated from this specification.
The two most commonly used approaches for the specification of the abstract
syntax of a visual language are graph transformation-based approaches, such
as used within DiaGen, and meta-model-based approaches, such as used
within GEF (in combination with EMF) and DiaMeta. In the first approach,
symbols and relations are defined by type graphs, and the abstract syntax is
defined by graph grammars. In the second approach, symbols and relations
are described by class diagrams, and the abstract syntax is defined by well-
formedness rules.

2.1.2 Comparison
The pattern-based layout approach presented in this thesis is integrated
within DiaMeta editors and GEF editors, two types of editors that are de-
fined using the meta-model-based approach. DiaMeta editors are built via a
generator, whereas GEF editors are built upon a framework.
The meta-model-based approach was chosen, because it is more commonly
used than the grammar-based approach. Another criterion for this choice is
that EMF can be used for syntax specification in both cases. An editor that
is built via a generator as well as an editor that is built upon a framework
was chosen in order to cover a wide spectrum of editors.

2.2 Design Patterns
Design patterns [45] serve as the formal basis of the pattern-based layout ap-
proach that is described in this thesis. A design pattern is a general reusable
solution to a common problem within a certain context. It is not a finished
solution that can be transformed directly into code. It is rather a template
(or description), which gives guidance on how to solve a problem, and which
can be used in many different situations. Hence, design patterns are formal-
ized best practices.
Design patterns have their origins in interaction patterns [111, 108], which
were invented by Alexander [1]. Interaction patterns are quite important in

2.2. DESIGN PATTERNS 17

practice today, and huge libraries of interaction patterns exist. Each interac-
tion pattern (design rule) is a small part of the complete (design) knowledge.
A “full realization” of interaction patterns as well as of design patterns is
enabled by a formalization of the notion of patterns. Several approaches
that aim at formalizing interaction patterns as well as design patterns exist.
For instance, in [13], a formalization of interaction patterns is detailed, and in
[14], a formalization of design patterns is described by the same authors. Both
approaches are based on meta-models. Other formalizations are described,
for instance, in [57, 76, 75, 24, 38], to name just a few.
In [11, 12], a suite of meta-models is proposed, which describe common types
of visual languages. Amongst others, an editor for a certain visual language
can be defined by specializing some of these meta-models that are relevant
for the visual language.

2.2.1 Pattern-based Model Transformation
In [21], pattern-based model-to-model transformations are presented. The
approach is based on patterns which describe positive and negative conditions
that have to be satisfied by two models in order to be considered being
consistent. This means that transforming the first model results in the second
one. Patterns have a high-level semantics that enables the decision of whether
or not two models are consistent. The patterns are translated into operational
mechanisms, which are based on triple graph grammar rules [99].

2.2.2 Pattern-based Layout
In VL-Eli [98], tree grammars are used as the basis for specifying visual
languages and layout. The approach presented in this thesis uses meta-
models instead, because they are more widely used today. Similar to the
approach presented in this thesis, layout is encapsulated in certain patterns.

2.2.3 Comparison
In this thesis, a new type of patterns, namely layout patterns, are introduced.
A layout pattern is essentially a general reusable solution to a common layout
problem. This solution is a finished solution, already, which can be directly
transformed into code. The formalization of layout patterns is based on
meta-models.
The pattern-based layout approach that is described in this thesis requires
the transformation between different models. The transformation between
these models follows a model-based approach.

18 CHAPTER 2. RELATED WORK

2.3 Constraints
Constraints have been used to maintain relationships between components
from the very beginning of graphical user interfaces [106]. Constraints are
declarative in a sense that they permit the developer to express what they
wish to hold true, rather than to describe how to maintain these constraints.
Constraints are especially well suited for graph and diagram layout. A thor-
ough overview of the usage of constraints in diagram editors is given in [4].
A constraint system is usually limited by the expressiveness and the per-
formance of the underlying constraint solver. One challenge a constraint
solver has to tackle is dealing with under-constrained systems. In such a
system, multiple possible solutions exist. In the course of the choice of a
solution, the stability of the system has to be maintained: In case a system
is under-constrained, and therefore several solutions exist, a solution should
be chosen that “minimizes” the changes performed. Constraint hierarchies [9]
address this issue, and remove ambiguities by over-constraining the system
with constraints at a “lower” level.

2.3.1 Theory of Constraints
Three types of constraint solvers [4] are mainly used in diagram editors:
Local propagation-based solvers, iterative numeric solvers and direct numeric
solvers.

Local Propagation-based Solvers

Local propagation-based solvers are among the earliest developed solvers, and
are quite simple: In a local propagation-based solver, changes are propagated
through the diagram. The limitation of propagation-based solvers is their
inability to consider more than one constraint at a time. Their strengths are
their efficiency and their ability to handle constraints over arbitrary domains.
Local propagation-based solvers that handle one-way constraints are distin-
guished from those that handle multi-way constraints. E.g. the first kind
of solver may maintain the constraint a = 2b + 3c by setting a, whereas the
second kind of solver may maintain this constraint by setting a, b and (or) c.
The second kind of solvers is more powerful, and the underlying algorithms
are more complex. Lessons learned from programmer’s experiences in the
use of one-way constraints are described in [120]: Constraints should be al-
lowed to contain arbitrary code, constraints are difficult to debug and better
debugging tools are needed, and developers will use constraints to specify
layout behavior, but must be trained to use them in another context. In

2.3. CONSTRAINTS 19

[97] and [119], the use of one-way constraints and multi-way constraints in
diagram editors is compared. The user studies presented give evidence that
both - one-way as well as multi-way constraints - are useful in the context
of the definition of layout behavior. They also give evidence that multi-way
constraints are more useful than one-way constraints.
There exists a huge variety of local propagation-based solvers. Prominent
examples of such constraint solvers that handle multi-way constraints are
Blue [40], DeltaBlue [39] and SkyBlue [96], just to mention a few of them.
Other examples are Sketchpad [106] and ThingLab [8], two tools that include
a local propagation-based solver.

Iterative Numeric Solvers

Iterative numeric solvers have also been used for quite a while. Their strength
is that they are very general. Furthermore, they allow solving non-linear
constraints simultaneously. Their drawback is that they are relatively slow,
and hence, are not especially well suited for an interactive environment.
Behind the scenes, relaxation is used. Relaxation is some sort of iterative
“hill climbing” algorithm, and is used to find a local minimum. It does not
find a global one.
The tools Sketchpad as well as ThingLab, for instance, use an iterative nu-
meric solver as a fallback technique. This means that if the local propagation-
based solver is not successful, an iterative numeric solver is used. Another
tool that uses an iterative numeric solver is GLIDE [95].

Direct Numeric Solvers

Direct numeric solvers avoid the problems of iterative numeric solvers. Es-
sentially, direct numeric solvers try to find a solution through direct manip-
ulation of the constraints.
The easiest direct numeric solvers use Gaussian elimination. This type of
constraint solver does only find solutions for a certain class of constraint
satisfaction problems (CSPs). Furthermore, it only finds a unique solution if
the system is not under-constrained. If there are no cycles, propagation can
be used instead of Gaussian elimination.
An alternative is the Simplex algorithm. This type of constraint solver also
does only find solutions for a certain class of CSPs. It is able to compute
a solution for under-constrained systems. An “optimal” solution is found by
optimizing a goal function. In a first step, the algorithm computes an initial
solution, and in a second step, it determines the optimal one.

20 CHAPTER 2. RELATED WORK

Orange [40], Cassowary [10, 5] and QOCA [77] are three prominent examples
that use the Simplex algorithm as the underlying concept.

QOCA

QOCA [77] is based on the active set method, which is similar to the Simplex
algorithm. It is incremental in a sense that it permits adding and removing
constraints while maintaining the solved form. QOCA is also able to handle
cycles.

IPSep-CoLa

IPSep-CoLa [26] provides constrained force-directed layout, and is incremen-
tal. It has the benefits of force-directed layout methods: Strongly connected
components are placed close together, and weekly connected components are
separated. The constrained force-directed layout method is some sort of con-
straint solver, as the approach incorporates so-called separation constraints,
which can be used to specify drawing styles and placement relationships.

2.3.2 Constraint-based Tools
In the following, several tools are described that use constraints as the un-
derlying concept for layout computation.

Commercial Tools

Several commercial tools that use constraints for layout computation exist.
Examples are Powerpoint, Visio and ConceptDraw. They all support one-
way constraints, only, and hence, only provide restricted layout functional-
ities. For instance, all three tools allow to align components horizontally.
In Powerpoint, the components are aligned only once. In Visio and Con-
ceptDraw, persistent layout is realized via guidelines. When the guideline is
moved, all components that “belong” to this guideline are also moved. This
behavior can be defined via one-way constraints. When one of the compo-
nents is moved, the other components and the guideline do not move. This
is due to the limitations of one-way constraints.

Sketchpad

Sketchpad [106] is the earliest interactive constraint-based system that per-
mits constraints explicitly being specified for the components in the diagram.
Sketchpad uses a local propagation-based solver, namely the so-called “one

2.3. CONSTRAINTS 21

pass method”, whenever possible. If this solver is unable to compute a solu-
tion in one pass, it uses an iterative numeric solver instead.

GLIDE

GLIDE [95] is an interactive system for graph layout that uses constraints.
It provides some user-controlled layout behavior, for instance, a mechanism
for aligning nodes. All constraints available, such as alignment and even
spacing, specify local relationships among small groups of nodes. The idea is
that the editor user is responsible for a global layout, and the layout algorithm
focuses on local optimization. GLIDE uses an iterative numeric solver, which
is force-based and which uses a generalized spring model.

Dunnart

Dunnart [118, 29] is an interactive system for drawing graph-based diagrams.
It provides some user-controlled layout behavior, and supports permanent
layout, which they call persistent in contrast to once-off placement. Dunnart
formerly used the constraint solver QOCA [77], but now uses the force-based
constraint solver IPSep-CoLa [26] instead. So-called separation constraints
can be used to specify layout behavior.

2.3.3 Comparison

For the use in an interactive environment, a constraint solver should be
fast, expressive, understandable and reusable. For the design of a constraint
solver, the advantages of diagram editors should be taken into account: users
are good at direct manipulation and at global search, whereas interactive sys-
tems should focus on local layout improvement. Hence, the constraint solver
does not need to do everything.
The algorithm used for constraint solving in the approach presented in this
thesis is a simple local propagation-based solver. The approach is based on
the assumption that the user is responsible for the global layout, whereas the
layout engine focuses on local improvement of the layout. A local propaga-
tion-based algorithm is well suited for this context.
In contrast to the usage of the constraint solver in the tools described in the
last paragraphs, the constraint solver is used on some sort of “meta-level” in
the approach described in this thesis.
Further details on rule-based constraint propagation are given in [15], and
it is argued that rule-based approaches for constraint propagation are useful

22 CHAPTER 2. RELATED WORK

for explanation as well as implementation. This argumentation influenced
our design decision.

2.4 Layout in Visual Language Editors

In visual language editors, the layout is usually either defined by graph draw-
ing algorithms, by constraints, or by some sort of self-implemented algorithm.
In [25], for instance, some details are given on how to embed graph drawing
algorithms into visual language editors.

2.4.1 Graph Drawing Libraries

Graph drawing libraries are usually built for the purpose to create an optimal
layout in terms of graph aesthetics. Therefore, they are usually not well
suited for the use in an interactive environment: They are far away from
optimal in terms of mental map preservation and are unsuitable in terms of
performance.
A huge variety of graph drawing libraries exist. Typical types of graph draw-
ing algorithms are layered graph drawing algorithms, force-directed graph
drawing algorithms, and orthogonal graph drawing algorithms.
Two libraries that are implemented in Java are, for instance, yFiles [117],
a commercial library, and Jung [90], an open source library. Both libraries
were included in the approach presented in this thesis, and provide many
typical graph drawing algorithms. The yFiles library provides organic layout
algorithms, circular layout algorithms, hierarchical layout algorithms, tree
layout algorithms and orthogonal layout algorithms. Besides, it provides
several incremental layout algorithms and several edge routers. The Jung
library provides the Kamada-Kawai algorithm, the Fruchterman-Rheingold
algorithm, a simple force-directed layout algorithm, Meyer’s Self-Organizing
Map layout algorithm, and a circular layout algorithm.
Kieler [43] is a graph drawing library that is tailored to GEF editors, and that
is based on meta-models. Their approach focuses on completely automatic
diagram layout for specific visual languages. This way, further functionality,
such as the layout computation after diagram import or layout computation
after structured editing, is enabled.
ZEST [32] is part of the GEF framework and comprises typical graph drawing
algorithms, namely a spring layout algorithm, a tree layout algorithm, a
radial layout algorithm and a grid layout algorithm. ZEST is usually used
for diagram visualization, and is only limited useful in a dynamic context.

2.5. HUMAN COMPUTER INTERACTION 23

Graphviz [49] is a graph visualization software, and comprises a handful of
common layout algorithms: a Sugiyama-style hierarchical layout algorithm,
the Kamadama-Kawai algorithm and the Fruchtermann-Reingold algorithm
for symmetric layouts, a radial layout algorithm described by Wills, and a
circular layout algorithm combining the approach described by Six and Tollis
and the approach described by Kaufmann and Wiese.

2.4.2 Constraint-based Approaches

A special type of graph drawing algorithms are linear constraints, which
provide a declarative approach to layout. For this kind of layout algorithm,
a constraint solver is needed in order to compute the layout. Here, the
techniques are used that were described in Section 2.3.

2.4.3 Language-specific Diagram Layout

A variety of layout algorithms exist that are tailored to one specific visual
language. Most of these special-purpose layout algorithms are designed for
completely automatic diagram layout, only.
For instance, special-purpose algorithms for UML diagrams and Euler dia-
grams [37] exist: In [34], a topology-shapes-metrics approach for the auto-
matic layout of UML class diagrams is described. In [43], automatic layout
and structure-based editing of UML diagrams is described. In [101], a layout
algorithm is described that is specifically tailored to Euler diagrams.

2.4.4 Comparison

With the pattern-based approach presented in this thesis, the approaches de-
scribed in the last paragraphs may be combined. This way, the pattern-based
approach benefits from the strengths of each of these approaches. Further-
more, the reuse of algorithms is fostered.

2.5 Human Computer Interaction
When creating a layout algorithm for a visual language, some criteria that
guide the design decisions need to be identified. These criteria might dif-
fer from visual language to visual language. For instance, in [103], Stoerrle
presents a user study that discusses the impact of layout quality to under-
standing UML diagrams. As a second example, in [37], a user study is

24 CHAPTER 2. RELATED WORK

presented that gives details on the comprehension of Euler diagrams, which
may guide the design of a layout algorithm for Euler diagram editors.
The similarity between a layout that is automatically computed by a layout
algorithm and a layout that is manually created by a user can also serve as
a quality criterion. In [27], a comparison of user-generated and automatic
graph layouts is presented.
In general, graph aesthetics give some guidance for the layout of diagrams in
a static environment, whereas mental map preservation gives some guidance
for the layout in an interactive one.

2.5.1 Graph Aesthetics
Developers of graph drawing algorithms are usually concerned with creating
algorithms that take into account aesthetic criteria. This is because following
aesthetic rules is crucial for the understanding of diagrams [109]. Examples
of aesthetic rules are few edge crossings, high orthogonality, short edges and
few edge segments. The fulfillment of all these aesthetic rules is usually not
possible, as some of them contradict each other. Only a few user studies have
been performed that give evidence that following these rules leads to more
comprehensible diagrams. In [93], Purchase et al. show that the aesthetic
criteria mentioned above are the most important ones in UML diagrams.

2.5.2 Mental Map Preservation
Dynamic graph layout [16] aims at creating incremental layout techniques
that are specifically tailored to an interactive context. The underlying idea
is that the user’s mental map of the graph is preserved, rather than following
aesthetic rules [92].

2.5.3 Comparison
The approach presented in this thesis is a framework that allows for the
creation of language-specific layout engines. Its focus lies on mental map
preservation rather than following aesthetic rules.

2.6 Summary
In this chapter, related work was discussed. Related work concerning visual
language editors and generation frameworks for visual language editors was
sketched in Section 2.1. An overview of related work in the area of patterns

2.6. SUMMARY 25

and pattern formalization was given in Section 2.2. In Section 2.3, related
work concerning constraints in visual language editors was discussed. Related
work concerning layout in visual language editors was described in detail in
Section 2.4. Related work in the area of human computer interaction was
outlined in Section 2.5.

26 CHAPTER 2. RELATED WORK

Chapter 3

Running Examples

Visual languages can be roughly divided into two different categories: Graph-
based, i.e. box-and-arrow-based, and other visual languages, e.g. contain-
ment-based, adjacency-based or position-based. Most visual languages com-
bine characteristics of both categories. The approach presented in this thesis
supports graph-based and other visual languages and is particularly well
suited for visual languages that combine characteristics of both categories.

In this chapter, four visual languages are introduced: Graphs (Section 3.1),
class diagrams (Section 3.2), GUI forms (Section 3.3) and VEX diagrams
(Section 3.4). In Section 3.5, the layout behavior is described that is included
in editors for these four visual languages.

The introduced visual languages will serve as the running examples through-
out this thesis. The first two languages, graphs and class diagrams, are
mainly graph-based visual languages, whereas the second two languages, GUI
forms and VEX diagrams, feature many non-graph-based characteristics.

For each visual language, the language itself is described, and a meta-model
is presented, which specifies the abstract syntax of the visual language. This
meta-model is called abstract syntax meta-model (ASMM) in the following.
It is visualized as a class diagram.

In the following, a diagram component is defined via its attributes. If not
mentioned otherwise, a node is defined via the attributes x, y, w and h, as
can be seen in Figure 3.1(a). The point with coordinates (x, y) is the top
left corner of the component. w is the width of the component, and h is its
height. An edge is defined via the attributes x1, y1, x2 and y2, as can be
seen in Figure 3.1(b). The coordinates (x1, y1) are the starting point of the
edge, the coordinates (x2, y2) are its end point.

27

28 CHAPTER 3. RUNNING EXAMPLES

(x,y) w

h

(a) Node - x, y, w, h

(x1, y1)

(x2, y2)

(b) Edge - x1, y1, x2, y2

Figure 3.1: Nodes and Edges

3.1 Graphs

The first visual language introduced are graphs. This visual language serves
as the main running example throughout this thesis. Although the example
is quite simple, most of the layout approach is described with the help of
this example. Especially node overlap removal and the integration of graph
drawing algorithms will be highlighted with the help of this example.

3.1.1 Language

As can be seen in Figure 3.2, graphs consist of nodes and edges. Nodes are
visualized as rounded rectangles, whereas edges are visualized as arrows. In
addition, a node may have a name, which is visualized as plain text in the
middle of the corresponding node. The example diagram shown consists of
four nodes that hold the names A, B, C andD. Besides, the diagram contains
an edge that connects the nodes A and C, and an edge that connects the
nodes B and C.

Figure 3.2: Graphs

3.2. CLASS DIAGRAMS 29

3.1.2 Meta-Model
The abstract syntax of the visual language is described by a meta-model,
which is shown in Figure 3.3. Nodes and edges are represented by the classes
Node and Edge. A node may have a name, which is stored in the attribute
text of class Node. An edge connects two nodes. This connection is repre-
sented via the associations from and to.

Figure 3.3: Meta-Model of Graphs

3.2 Class Diagrams
Class diagrams are the second visual language that serves as a running ex-
ample. This visual language is a “real-world” example: The abstract syntax
of the visual language is described by a predefined meta-model, the UML2
Ecore model [102]. This meta-model is more or less aligned with OMG’s
EMOF (Essential MOF), which comprises the essential parts of OMG’s MOF
[84]. MOF is a so-called closed meta-modeling architecture, which defines the
UML. In contrast to the graphs introduced in the last section, in class dia-
grams, nesting of components is frequently used. Therefore, class diagrams
are used to describe aspects of the layout approach that relate to nesting of
components.

3.2.1 Language
Class diagrams may contain a huge variety of different components, and
therefore, the Ecore model is quite complex. To keep the example sim-
ple, only a subset of components is considered, namely packages, classes,
attributes, generalizations and associations. As can be seen in Figure 3.4,
packages are visualized as boxes with a label at the top. Classes are visual-
ized as boxes with two compartments. The upper compartment contains a
label, the lower one may contain a list of attributes. Attributes are visualized

30 CHAPTER 3. RUNNING EXAMPLES

as plain text, consisting of a label and a type, separated by “:”. Generaliza-
tions are visualized as lines with a triangle at one end and associations are
visualized as lines that may have an arrow at no, one or two ends. Addition-
ally, both ends of the line may have a label and a multiplicity. The example
diagram shown consists of the packages pack1 and pack2. Furthermore, it
contains the classes A, B, and C. Class A contains the attributes attr1 of
type int and attr2 of type String. The diagram contains a generalization
from class C to A and a unidirectional association from class B to class A
with the role ref1 and the multiplicity 0..1.

Figure 3.4: Class Diagrams

3.2.2 Meta-Model

The part of the UML2 Ecore model relevant for the example diagrams pre-
sented in this thesis is shown in Figure 3.5. As can be seen in Table 3.1, in
the meta-model, each component and each correlation between components
is either represented by a class or an association in the meta-model.1

Types of attributes, as well as multiplicities and roles of associations are also
represented in the meta-model, but are not shown in Figure 3.5.

1xxx$yyy stands for a bidirectional association with the roles xxx and yyy.

3.2. CLASS DIAGRAMS 31

Figure 3.5: Excerpt of the Meta-Model of Class Diagrams

Component Represented by
packages class EPackage
correlation “package in package” assoc. eSuperPackage$eSubpackages
classes class EClass
correlation “class in package” association eClassifiers$ePackage
attributes class EAttribute
correlation “attribute of class” association eAttributes
associations class EReference
correlation “reference from class” association eReferences
correlation “reference to class” association eReferenceType
bidirectional references class EReference (2x)

association eOpposite
generalizations association eSuperTypes

Table 3.1: Meta-Model of Class Diagrams

32 CHAPTER 3. RUNNING EXAMPLES

3.3 GUI Forms
A somewhat different visual language are GUI forms. With this example,
it will be shown that the approach is applicable in very diverse domains. A
basic layout engine for this visual language may be created with the approach
straightforwardly. A more sophisticated layout engine would also be feasible
with this approach, but will not be described in this thesis.

3.3.1 Language
As can be seen in Figure 3.6, GUI forms may consist of frames, panels,
buttons, labels, text fields, checkboxes and radio buttons. In contrast to the
other components, frames and panels may contain components.

Figure 3.6: GUI Forms

Each component is visualized as some sort of rectangle. In addition, each
component may have a label (called text in the meta-model), which is visu-
alized as plain text. Panels and text fields do not have a label. The example
diagram shown consists of a frame containing two panels. The left panel
contains one button, one label and one text field (from top to bottom). The
right panel contains one checkbox and one radio button (from top to bot-
tom). The frame has the label Frame1, the button Button1, the label Label1,
the checkbox CheckBox1, and the radio button RadioButton1.

3.4. VEX DIAGRAMS 33

3.3.2 Meta-Model
The abstract syntax of the visual language is described by a meta-model,
which is shown in Figure 3.7. It establishes a tree structure, and therefore
mainly consists of the abstract class AbstractNode and the two abstract
subclasses SingleNode and NestedNode. The structure of the meta-
model follows the composite pattern: The “container” components Frame
and Panel are represented by the abstract class NestedNode, whereas the
other components, such as Button or Label, are represented by the abstract
class SingleNode.

Figure 3.7: Meta-Model of GUI Forms

3.4 VEX Diagrams
VEX diagrams serve as the last running example in this thesis. VEX dia-
grams are a visual notation of lambda calculus [20]. This visual language
has been chosen because it requires a somewhat different and complex layout
behavior. Note that a slightly modified variant of this visual language is used
here, which can be defined straightforwardly by the help of a meta-model:
Each application is surrounded by an additional circle.

3.4.1 Language
Each VEX diagram represents a λ-expression. As can be seen in Figure 3.8,
VEX diagrams consist of thin circles (circles with a thin border), bold circles

34 CHAPTER 3. RUNNING EXAMPLES

(circles with a bold border), lines and arrows. A λ-expression is inductively
defined. It is either a variable, an application of one λ-expression to another
one or an abstraction that consists of the parameter and the abstraction
body. For these three types, visual representations are defined:

• In VEX diagrams, free variables are represented by a line, which con-
nects a bold circle, namely the variable, and a thin circle, which again
is a λ-expression. On the left side of Figure 3.8, an example is shown:
The diagram stands for the λ-expression (x), where x is the name of
the variable represented by the bold circle.

• Application is visualized by a thin circle that contains two thin cir-
cles. The two contained circles are located next to each other, and
are connected by an arrow. The two contained circles are again two
λ-expressions. The expression at the end of the arrow represents the
function being applied, and the expression at the start represents the
argument. In the middle of Figure 3.8, an example is shown: The di-
agram stands for the λ-expression (xy). x and y are the names of the
two variables that are represented by the two bold circles.

• Abstraction is visualized as a thin circle, which contains two thin circles
- one attached to the inner side of its border and one located in its
center. The two contained circles are connected by a line. The circle
located in its center is again a λ-expression. The circle that is attached
to the inner side of its border represents the parameter, and the circle
that is located in its center represents the abstraction body. On the
right side of Figure 3.8, an example is shown: The diagram stands for
the λ-expression λx.(x).

Figure 3.9 shows two more complex examples. The first diagram consists
of seven thin circles, two lines and one arrow. The diagram stands for the
λ-expression λx.λy.(xy). The second diagram also consists of seven thin
circles, two lines and one arrow. The diagram stands for the λ-expression
(λx.x)(λy.y).

3.4.2 Meta-Model
The abstract syntax of the visual language is described by a meta-model,
which is shown in Figure 3.10. A λ-expression is represented by the abstract
class Expr. A λ-expression may be a free variable (class FreeVar), an
application (class Appl) or an abstraction (class Abstr). Free variables
are represented by the class FreeVar. The association bound references

3.4. VEX DIAGRAMS 35

the binding of the variable. Applications are represented by the class Appl.
The two associations first and second reference the two λ-expressions,
the application consists of. Abstractions are represented by the class Abstr.
The two associations param and body reference the parameter and the λ-
expression, the abstraction consists of.

Figure 3.8: VEX Diagrams: Variable Binding, Application and Abstraction

Figure 3.9: VEX Diagrams

36 CHAPTER 3. RUNNING EXAMPLES

Figure 3.10: Meta-Model of VEX Diagrams

3.5 Layout Behavior
A layout pattern encapsulates certain layout behavior. It defines the layout
of a set of components. This also comprises the layout of a single component.
The layout patterns, which are included in editors for the four visual lan-
guages introduced in the last sections, are described in the following. An
overview can be seen in Table 3.2. The description of all layout patterns and
their encapsulated layout behavior is based on the graph editor, although
not all of them are included in the graph editor.
Visual language editors, such as the ones for the languages described in the
last sections, require layout patterns that are tailored to the visual language.
E.g. the node overlap removal pattern is used in the graph editor and in the
class diagram editor as follows: In the graph editor, nodes should not overlap.
In the class diagram editor, some packages and classes should not overlap,
while others should overlap, as they should be correctly nested. Nevertheless,
some layout patterns can be reused straightforwardly in different editors.
E.g. the edge connector pattern is used in the graph editor and in the class
diagram editor as follows: In the graph editor, edges should stay attached to
their corresponding nodes, and in the class diagram editor, associations and
generalizations should stay attached to their corresponding classes.
Many of the layout patterns described in the next paragraphs are available

3.5. LAYOUT BEHAVIOR 37

Pattern Graph Class GUI VEX
Tree Layout x

Layered Layout x
Circular Layout x

Node Overlap Removal x x
Edge Connector x x x

Equal Horizontal Distance x x x
Equal Vertical Distance x x x

Quadratic Component x x
Minimal Size Component x x x x

Equal Height x x x
Equal Width x x x

Align in a Row x x x
Align in a Column x x x

Horizontal Alignment x x x
Vertical Alignment x x x

List x x
Rectangular Containment x x

Circular Containment x

Table 3.2: Patterns in Diagram Editors

in different variants. For instance, a spacing between the container and the
contained element can be defined for the rectangular containment pattern.
Details about variants of layout patterns, and about the integration of pat-
terns into the editors described in the last sections will be given in Chapter 8.

3.5.1 Tree Layout
The first pattern presented, the tree layout pattern, establishes a tree struc-
ture in the graph. To do so, it applies a standard graph drawing algorithm,
e.g. one of the tree layout algorithms that are included in the yFiles library
[117]. The pattern is restricted to trees, and cannot be applied to general
graphs. Figure 3.11(a) shows a diagram after applying the pattern.

3.5.2 Layered Layout
The layered layout pattern establishes a layered structure in the graph. To do
so, it applies a standard graph drawing algorithm, e.g. one of the hierarchical
layout algorithms that are included in the yFiles library [117]. The pattern
is quite similar to the tree layout pattern in a sense that nodes are positioned

38 CHAPTER 3. RUNNING EXAMPLES

on one or more horizontal or vertical lines, namely the layers. In contrast to
the tree layout pattern, it may be applied to arbitrary graphs. Hence, it is
(more or less) a generalized version of the tree layout pattern. Figure 3.11(b)
shows a diagram after applying the layered layout pattern.

A

B C

D E

(a) Tree Layout

A

B C

D E

(b) Layered Layout

Figure 3.11: Tree Layout and Layered Layout

3.5.3 Circular Layout
The circular layout pattern is also applicable to arbitrary graphs, and estab-
lishes a circular structure in the graph. This means that nodes are positioned
on one or more circles. To do so, it applies a standard graph drawing algo-
rithm, e.g. one of the circular layout algorithms that are included in the
yFiles library [117]. Figure 3.12(a) shows a diagram after applying the cir-
cular layout pattern.

3.5.4 Node Overlap Removal
The node overlap removal pattern is a somewhat different layout pattern.
It is applied to nodes only and eliminates all node overlaps. The size and
the shape of a component are crucial and need to be taken into account.
Node overlap removal is usually achieved by pulling nodes apart. To do so,
it applies a force-directed layout algorithm, e.g. one that is included in the
Jung library [90]. Figure 3.12(b) shows a diagram after applying the node
overlap removal pattern.

3.5.5 Edge Connector
The edge connector pattern ensures that edges are correctly connected to
nodes. Figure 3.13 shows a diagram after applying the pattern.

3.5. LAYOUT BEHAVIOR 39

A

B C

DE

F

G

(a) Circular Layout

A

B

CD

E

(b) Node Overlap Removal

Figure 3.12: Circular Layout and Node Overlap Removal

A

B

CD

E

Figure 3.13: Edge Connector

3.5.6 Equal Horizontal Distance

The equal horizontal distance pattern is applied to nodes, and establishes
an equal horizontal distance between them. One characteristic of this layout
pattern is that the horizontal ordering of nodes is preserved. Figure 3.14(a)
shows a diagram after applying the equal horizontal distance pattern.

3.5.7 Equal Vertical Distance

Analogously, the equal vertical distance pattern establishes an equal vertical
distance between nodes. One characteristic of this pattern is that the vertical
ordering of nodes is preserved. Figure 3.14(b) shows a diagram after applying
the equal vertical distance pattern.

40 CHAPTER 3. RUNNING EXAMPLES

A

B

C

D

(a) Equal Horizontal Distance

A

B

C

D

(b) Equal Vertical Distance

Figure 3.14: Equal Horizontal and Equal Vertical Distance

3.5.8 Quadratic Component

The quadratic component pattern ensures that all nodes are squares. Fig-
ure 3.15 shows a diagram after applying the quadratic component pattern.
It consists of some nodes of different sizes, whose width and height is equal.
This layout pattern is different in a sense that it can be applied to a single
component, and its purpose is to change the component itself.

A B C

Figure 3.15: Quadratic Component

3.5.9 Minimal Size Component

The minimal size component pattern ensures that nodes are bigger than a
certain minimal size. Figure 3.16 shows a diagram after applying the minimal
size component pattern. It consists of some nodes of different sizes that are
all bigger than a certain minimal size.
Similar to the quadratic component pattern, the pattern can be applied to a
single component, and its purpose is to change the component itself.

3.5. LAYOUT BEHAVIOR 41

A B C

Figure 3.16: Minimal Size Component

3.5.10 Equal Height
The equal height pattern causes all nodes to have the same height. Fig-
ure 3.17(a) shows a diagram, in which an equal height of components is
established. It consists of some nodes that all have the same height.

3.5.11 Equal Width
The same width of a set of nodes can be achieved by applying the equal
width pattern. Figure 3.17(b) shows a diagram, in which an equal width of
nodes is established. It consists of some nodes that all have the same width.

A

B

CD

E

(a) Equal Height

A

B

CD

E

(b) Equal Width

Figure 3.17: Equal Height and Equal Width

3.5.12 Align in a Row
Via the align in a row pattern, nodes are aligned at the top, in the center or
at the bottom. Furthermore, nodes have a fixed and equal distance between
them. Figure 3.18(a) shows a diagram after applying the pattern. It consists
of some nodes that are aligned in the center.

3.5.13 Align in a Column
Via the align in a column pattern, nodes are aligned at the left side, in
the center or at the right side. Furthermore, nodes have a fixed and equal
distance between them. Figure 3.18(b) shows a diagram after applying the
pattern. It consists of some nodes that are aligned in the center.

42 CHAPTER 3. RUNNING EXAMPLES

A B C D

(a) Align in a Row

A

B

C

D

(b) Align in a Column

Figure 3.18: Align in a Row and Align in a Column

3.5.14 Horizontal Alignment

Nodes are aligned horizontally via the horizontal alignment pattern. It is
possible to align nodes at the top, in the center or at the bottom of a compo-
nent. Figure 3.19(a) shows a diagram after applying the horizontal alignment
pattern. It consists of some nodes that are aligned at the top, in the center
and at the bottom. This is possible, because all nodes have the same height.

3.5.15 Vertical Alignment

Nodes are aligned vertically via the vertical alignment pattern. It is possible
to align nodes at the left side, in the center or at the right side of a component.
Figure 3.19(b) shows a diagram after applying the vertical alignment pattern.
It consists of some nodes that are aligned at the left side, in the center and
at the right side. This is possible, because all nodes have the same width.

3.5.16 List

The list pattern establishes a list structure. All list elements are aligned
either vertically or horizontally and have a fixed and equal distance between
them. The list pattern is almost equal to the align in a row pattern. The
main difference is that a list is always contained in some sort of container.
Figure 3.20(a) shows a diagram after applying the list pattern. It consists of
some nodes that are arranged as a list, which is aligned vertically.

3.5. LAYOUT BEHAVIOR 43

3.5.17 Rectangular Containment
The rectangular containment pattern establishes the correct nesting of nodes
with a rectangular shape. Figure 3.20(b) shows a diagram after applying the
rectangular containment pattern. It consists of a small node that is contained
in a big node. This pattern also allows for an arbitrary nesting of several
nodes, meaning that one node may contain more than one node and (or) that
a node may contain a node that again contains a node.

A B C D

(a) Horizontal Alignment

A

B

C

D

(b) Vertical Alignment

Figure 3.19: Horizontal and Vertical Alignment

A

B

C

D

(a) List (b) Rectangular Containment

Figure 3.20: List and Rectangular Containment

3.5.18 Circular Containment
The circular containment pattern ensures that the nesting of nodes with a
circular shape is correct.
This pattern was specifically designed for the VEX diagram language. Hence,
each circle either stands for an application or an abstraction. This means

44 CHAPTER 3. RUNNING EXAMPLES

that it exactly contains two circles. In case of an application, both inner
circles may contain other circles. In case of an abstraction, only the inner
circle in the middle may contain other circles.
The pattern consists of four different parts. Figure 3.21 shows four diagrams
after “applying” one of these parts.

• Abstraction (Inner Attach): A circle is attached to the inner border of
a circle (Figure 3.21(a)). The green circle is the one that is attached
to the inner border.

• Application (Outer Attach): A circle is attached to the outer border of
a circle (Figure 3.21(b)). The green circle is the one that is attached
to the outer border.

• Abstraction (Containment) and Application (Containment): One circle
is contained in another circle (Figure 3.21(c) and Figure 3.21(d)). In
both cases, the green circle is the one contained in another circle. In
addition, another circle is attached to the inner border of the outer
circle (cf. Figure 3.21(c)), or another circle is attached to the outer
border of the inner circle (cf. Figure 3.21(d)).

(a) Abstraction (Inner Attach) (b) Application (Outer Attach)

(c) Abstraction (Containment) (d) Application (Containment)

Figure 3.21: Circular Containment

3.6. SUMMARY 45

This layout pattern could also be defined differently, meaning that other
parts are defined. The editor developer has to make such design decisions.

3.6 Summary
In this chapter, four visual languages were introduced: Graphs (Section 3.1),
class diagrams (Section 3.2), GUI forms (Section 3.3) and VEX diagrams
(Section 3.4). In Section 3.5, the layout behavior was described that is in-
cluded in editors for these four visual languages.
The visual languages introduced in this chapter will serve as the running
examples throughout this thesis. A huge variety of other visual languages
exist that are also supported by the approach presented in this thesis. Ex-
amples are mindmaps, business process models, and class diagrams. These
visual languages are explored in a user study in Chapter 9. Other exam-
ples of visual languages are entity-relationship diagrams, flowcharts, Nassi
Shneiderman diagrams [89], organizational charts, petri nets, reducer rules
(a visual language for editor specification [85]), circuit diagrams, and state
charts. For all these visual languages, a DiaMeta editor exists. More exotic
examples are, for instance, webpages, text (such as newspapers or books)
and mathematical formulas.
Most of the layout patterns described in this chapter focus on nodes: They
change the position and (or) shape of nodes. Only one layout pattern de-
scribed focuses on the edges, namely the edge connector pattern, and none
focuses on edge labels. It is worth mentioning that the pattern based layout
approach, which will be described in Chapter 4, and the control algorithm,
which will be presented in Chapter 5, can handle all types of layout patterns.
All layout patterns described in this chapter are suitable for an interactive
environment. They take previous layout information, such as the position,
shape or size of a component, into account. In addition, most of them perform
only minor diagram modifications, and hence mental map preservation is
achieved. One example is the equal horizontal distance pattern, as can be
seen in Figure 3.14(a): The order of the nodes A, B, C and D is used for
the computation of a “correct” layout: In the example diagram shown, for
instance, the distance between A and B and between B and C is equal,
whereas the distance between A and B and between A and C is not equal.
More details about the specification of each of the layout patterns described
in this chapter will be given in Chapter 8.

46 CHAPTER 3. RUNNING EXAMPLES

Chapter 4

Pattern Concept and Reusability

This chapter introduces layout patterns as means to encapsulate certain lay-
out behavior. One or more layout patterns can be applied to one or more
parts of a diagram. Each application means that a layout pattern instance
is created. The set of instances present in a diagram defines the layout
behavior of the diagram. Based on these instances, an algorithm automati-
cally computes the layout, as described in Chapter 5. The first ideas of the
pattern-based layout approach are described in [63, 64, 65, 61, 69, 67]. A
more detailed description of the approach is given in this chapter.
The chapter is structured as follows: The general concept of the pattern-
based layout approach is outlined in Section 4.1. The different meta-models,
namely the language-specific meta-model, the pattern-specific meta-models
and their correlation are described in Section 4.2. In Section 4.3, the concept
of layout patterns is discussed in detail. In Section 4.4, it is explained how the
different types of algorithms, namely graph drawing algorithms, constraint-
based algorithms and rule-based algorithms, are specified and integrated. In
Section 4.5, the concept of atomic layout patterns is introduced.

4.1 General Idea
The core of a visual language editor is the language-specific meta-model
(LMM). This meta-model contains all information needed for layout compu-
tation. It consists of two parts, the abstract syntax meta-model (ASMM) and
the concrete syntax meta-model (CSMM). The abstract syntax meta-model
defines the abstract syntax of the visual language. For the four running ex-
amples, the abstract syntax meta-model was already described in Chapter 3.
The concrete syntax meta-model defines all aspects of the concrete syntax of
the visual language in focus needed for layout computation.

47

48 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

Layout behavior could directly be defined on the basis of the LMM. This
would have the drawback that layout behavior would need to be defined
from scratch for every visual language. Furthermore, the definition of layout
behavior might not be straightforward, because the information needed for
layout computation might not be available directly in the meta-model.
Therefore, a layout pattern is defined on a language-independent, but pattern-
specific meta-model (PMM), instead of being defined on the LMM. This way,
reuse of layout behavior is made possible, and the complexity of the layout
specification is usually decreased, as information is directly available. Graph
drawing algorithms, constraint-based algorithms and rule-based algorithms
are defined on top of these PMMs.
All the described meta-models may be instantiated: The language-specific
model (LM) is an instance of the LMM, the abstract syntax model (ASM) is
an instance of the ASMM, the concrete syntax model (CSM) is an instance
of the CSMM, and the pattern-specific model (PM) is an instance of the
PMM. In terms of the meta-modeling hierarchy, LMs, ASMs, CSMs and
PMs are on the M1 level. LMMs, ASMMs, CSMMs and PMMs are on the
M2 level. In this thesis, LMs, ASMs, CSMs and PMs are visualized as object
diagrams, whereas LMMs, ASMMs, CSMMs and PMMs are visualized as
class diagrams.

LM

LMM

conforms to

PM

PMM

conforms to

application of
transformation

Figure 4.1: LMM, PMM, LM, PM

In order to use a layout pattern for a certain visual language, a correspon-
dence between the language’s LM and the pattern’s PM must be established.
This correspondence identifies the roles that the components of the visual
language play in the layout pattern. Following this correspondence, a LM
can be transformed into a PM (cf. Figure 4.1). The correlation between the
diagram, the language-specific model, the pattern-specific model, and such a
language-independent layout pattern instance is visualized in Figure 4.2. It is
also possible to define layout patterns directly on top of the language-specific
meta-model. This option is usually chosen, if an “exotic” layout pattern is
required. As will be seen in Chapter 8, this option is needed only in very rare

4.2. META-MODELS AND THEIR CORRELATION 49

cases. The correlation between the diagram, the language-specific model and
such a language-dependent layout pattern instance is visualized in Figure 4.3.

Diagram Language-Specific Model

Pattern-Specific Model

application of
transformation

Language-independent
Layout Pattern Instance

operates on

Figure 4.2: Correlation: Diagram, LM, PMs and Language-independent Pattern
Instance

Diagram Language-Specific Model

Language-dependent
Layout Pattern Instance

operates on

Figure 4.3: Correlation: Diagram, LM and Language-dependent Pattern Instance

4.2 Meta-Models and their Correlation
In the following, the LMM, the PMMs, and the correlation between those
meta-models will be described.

4.2.1 Language-Specific Meta-Model
A visual language is defined via its LMM. During layout computation, in-
formation about the abstract as well as the concrete syntax is required, and
may be accessed via the LMM. In the class diagram editor example, at the
abstract syntax level, for instance, information about nesting of packages
and classes is directly available. In contrast, information about the visual

50 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

appearance of diagram components is only available at the concrete syntax
level. E.g. a class is represented by a rectangle with a certain size, and
attributes are visualized in a certain order (cf. Figure 4.4).

Figure 4.4: Example Class Diagram

Although information about both, the abstract and the concrete syntax is
needed for layout computation, and hence, is available in the LMM, a sepa-
ration between the two parts is preserved. Therefore, the LMM consists of
two parts:

• Abstract syntax meta-model (ASMM)

• Concrete syntax meta-model (CSMM)

The ASMM is exactly the meta-model that specifies the abstract syntax
of a visual language, as described in Chapter 3. The CSMM specifies the
concrete syntax of a visual language, and contains geometric information
that is needed for layout computation. The ASMM and the CSMM are
connected via modelObject links. This way, the ASMM can simply be
reused. Only the CSMM and the modelObject links need to be defined,
in order to use the layout engine. In the CSMM, each visual component is
represented by a class. Variables that define the position or shape of a visual
component are represented by its attributes. Correlations between visual
components are represented by associations.
An excerpt of the ASMM for class diagrams is shown in Figure 3.5. As
already mentioned, it mainly consists of the classes EPackage, EClass,

4.2. META-MODELS AND THEIR CORRELATION 51

Figure 4.5: CSMM of Class Diagrams and its Connections to the ASMM

EAttribute and EReference and some associations. The ASMM is equal
to the UML2 Ecore specification, as can be found in [102].
An excerpt of the CSMM for class diagrams and its connections to the cor-
responding ASMM is visualized in Figure 4.5. It consists of the classes
CPackage, CClass, CAttribute, CGeneralization and CReferen-
ce, which stand for the five different types of components, class diagrams
may consist of. Packages, classes and attributes are defined via their x-
and y-coordinates (top-left corner). In addition, packages and classes have
a variable size, defined via width and height. Generalizations and refer-
ences are defined via their start point (xStart, yStart) and end point
(xEnd, yEnd). Besides, two different associations can be found in the
CSMM, namely attaches and contains. These two associations stand
for the two different types of correlations that may be present in class dia-

52 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

grams. The correlation attaches is used if two components attach each
other. In class diagrams, a class may attach generalizations and references.
The correlation contains is used if one component is inside another com-
ponent. In class diagrams, a package may contain classes and packages.
Furthermore, a class may contain attributes.

The ASMM and the CSMM are connected via modelObject links, as can be
seen in Figure 4.5. Four modelObject links are present, namely between
the classes CPackage and EPackage, the classes CClass and EClass,
the classes CAttribute and EAttribute, and the classes CReference
and EReference. There exists no modelObject link between the classes
CGeneralization and EGeneralization, because the ASMM does not
present a class EGeneralization. Instead, this concept is defined through
the association eSuperTypes.

Person : CClass Student: CClass

g: CGeneralization

university: CPackage

age : CAttribute

name : CAttribute

attaches attaches
contains

contains
contains contains

CSM

: EClass : EClass

: EPackage

: EAttribute

: EAttribute
ePackage ePackage

eClassifiers eClassifiers
eAttributes

eAttributes eSuperTypes

ASM

modelObject modelObject

modelObject

modelObject

modelObject

Figure 4.6: ASM and CSM of the Example

4.2. META-MODELS AND THEIR CORRELATION 53

Instantiation of LMM

While the editor user interacts with a visual language editor, an instance of
the LMM is automatically created and maintained. This instance conforms
to the diagram created. E.g. the diagram shown in Figure 4.4 consists of
the package university, the two classes Person and Student, the two
attributes name and age, and one generalization. The CSM and the ASM
of this diagram are shown in Figure 4.6. The two parts are connected via
modelObject links, which are colored in blue.
As already mentioned, not every object in the CSM is “connected” to an
object in the ASM via a modelObject link. In the example, this is the
case for the object of type CGeneralization.

4.2.2 Pattern-Specific Meta-Models

As mentioned previously, language-independent layout patterns are defined
on top of a pattern-specific meta-model, not on the language-specific meta-
model. The most commonly used pattern-specific meta-models are shown in
Figure 4.7.

Elem PMM

The Elem PMM represents one component, consisting of the class Single-
Elem. An instance of this meta-model consists of one SingleElem object.

Elems PMM

The Elems PMM represents a set of components, consisting of the classes
Elems and Elem and the association elems. An instance of this meta-
model consists of one Elems object and an unordered set of Elem objects.
The Elems object is connected to all Elem objects via elems links.

Containment PMM

The Containment PMM defines a containment structure, consisting of the ab-
stract class Composite, the subclasses ContainerElem and Container
and an association with the two roles containerElems and container.
An instance of this meta-model consists of a set of Container objects and
a set of ContainerElem objects. The containment structure is established
via container$containerElems links.

54 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

(a) Elem PMM (b) Elems PMM (c) Containment PMM

(d) List PMM (e) Graph PMM

Figure 4.7: Pattern-Specific Meta-Models (PMMs)

List PMM

The List PMM establishes a list structure, consisting of the classes List-
Container and ListContainerElem, and the associations container-
$containerElems and next. An instance of this meta-model consists
of one ListContainer object and an ordered set of ListContainer-
Elem objects. The ListContainer object is connected to all ListElem
objects via container$containerElems links. The order of List-
ContainerElem objects is established via next links between them.

Graph PMM

The Graph PMM establishes a graph structure, consisting of the three classes
Graph, Node and Edge, and four associations. An instance of this meta-
model consists of one Graph object, a set of Node objects, and a set of Edge
objects. The Graph object is connected to all Node objects via nodes links,
and to all Edge objects via edges links. Each Edge object has one from
link and one to link. Via these links between Node objects and Edge
objects, the graph structure is established.

4.2. META-MODELS AND THEIR CORRELATION 55

4.2.3 Correlation of LMM, PMMs and Layout Patterns
Each layout pattern is based on a pattern-specific meta-model. It may be
the case that two different layout patterns are based on the same meta-
model. Table 4.1 shows a list of the layout patterns that were introduced in
Chapter 3, and the pattern-specific meta-model they are based on.

Layout Pattern Pattern-Specific Meta-Model
Tree Layout Pattern Graph PMM

Layered Layout Pattern Graph PMM
Circular Layout Pattern Graph PMM

Node Overlap Removal Pattern Graph PMM
Edge Connector Pattern Graph PMM

Equal Horizontal Distance Pattern List PMM
Equal Vertical Distance Pattern List PMM

Quadratic Component Pattern Elem PMM
Minimal Size Component Pattern Elem PMM

Equal Height Pattern Elems PMM
Equal Width Pattern Elems PMM

Align in a Row Pattern List PMM
Align in a Column Pattern List PMM

Horizontal Alignment Pattern Elems PMM
Vertical Alignment Pattern Elems PMM

List Pattern List PMM
Rectangular Containment Pattern Containment PMM

Circular Containment Pattern –

Table 4.1: Pattern Meta-Models

Usually, patterns that incorporate only one component are based on the Elem
PMM, ones that incorporate an unordered set of components are based on
the Elems PMM, and ones that incorporate an ordered set of components are
based on the List PMM. Patterns that encapsulate graph drawing algorithms
are based on the Graph PMM, and ones that cope with nested components
are based on the Containment PMM. The circular containment pattern is
based on no PMM, as it is a language-dependent layout pattern.

Correspondence between LM and PMs

In order to be able to apply a certain layout pattern, a correspondence be-
tween the LM and the PM this layout pattern is defined on, needs to be
defined. This correspondence is split into two parts:

56 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

• A correspondence between objects and links of the LM and the PM.

• A correspondence between the attributes of the LM and the PM.

Following these correspondences, an LM can be transformed into a PM, and
a PM can be transformed into an LM. In the approach presented, this cor-
respondence is used as follows:

• The first correspondence is used to transform objects and links of an
LM into objects and links of a PM. Hence, the correspondence is used
for a unidirectional transformation, only.

• The second correspondence is used to transform attributes of an LM
into attributes of a PM. In addition, it is used to transform attributes
of a PM into attributes of an LM. Hence, the correspondence is used
for a bidirectional transformation.

This restriction turned out to be reasonable, because the layout engine usu-
ally does not change the “structure” of the LM. It does not add or remove
objects or links. It usually changes attribute values only.
The transformation between objects and links of the LM and the PM is
performed via a model transformation, and will be described in the following.
The transformation between attributes of the LM and the PM is performed
via constraints of a specific type (so-called mapping constraints), and will be
described in detail in Chapter 5.
The first correspondence is defined via triple graph grammars (TGGs)[99, 54]
in the following. TGGs allow us to define the relation between the LM and
the PM and to transform one of these models into the other. The relation
between the two models is defined in a declarative way. This definition can
then be made operational, and the transformation can be performed.
The relation between objects and links is defined by so-called TGG-rules.
E.g. in the class diagram editor example, the horizontal alignment pattern,
which is based on the Elems PMM, may be applied to packages and classes.
For that purpose, the following relations between objects of the LM and
objects of the Elems PM are defined:
The first TGG-rule is shown in Figure 4.8. It defines the relation between a
CPackage object and an EPackage object on one side, and an Elem object
on the other side. On the left-hand side is the source domain (the LM), on the
right-hand side is the target domain (the PM), and in the middle is the part
defining the correspondences between the elements of the different models.
These objects are called correspondence nodes. The meaning of this TGG-
rule is as follows: The black parts, which are not marked with ++, represent

4.2. META-MODELS AND THEIR CORRELATION 57

: ClassDiagram

: CPackage

: EPackage

++

++

packages
++

modelObject
++

LM

: Elems

: Elem
++ elems

++

PM

: ClassD2HAlign

: Package2Elem
++

Figure 4.8: TGG-Rule 1

: ClassDiagram

: CClass

: EClass

++

++

classes
++

modelObject
++

LM

: Elems

: Elem
++ elems

++

PM

: ClassD2HAlign

: Class2Elem
++

Figure 4.9: TGG-Rule 2

a LMM instance that corresponds to a PMM instance via the correspondence
node ClassD2HAlign. The green parts, which are marked with ++, insert
a CPackage object and an EPackage object into the LMM instance, as
well as the corresponding Elem object into the PMM instance. The corre-
spondence node Package2Elem keeps track of the correspondence.
The second TGG-rule is shown in Figure 4.9. Analogously to the first rule,
it defines the relation between a CClass object and an EClass object on
one side, and an Elem object on the other side.
In combination with the two meta-models - the LMM and the PMM - and
the meta-model of the correspondence nodes, these TGG-rules define how to
construct corresponding pairs of LMM instances and PMM instances. One
starts from an “empty” LMM instance corresponding to an “empty” PMM

58 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

instance. This is called a TGG-axiom. The first meta-model for the example
is shown in Figure 3.5 together with Figure 4.5, and the second meta-model
is shown in Figure 4.7(b). The meta-model of the correspondence nodes is
shown in Figure 4.11. Note that in the LMM, the class ClassDiagram was
added, which serves as the “root node” of a class diagram. In the PMM, the
class Elems serves as the “root node”. The TGG-axiom for the example is
shown in Figure 4.10.

: ClassDiagram

LM

: Elems

PM

: ClassD2HAlign

Figure 4.10: TGG-Axiom

ClassDiagram

CClass

EClass

Corresp. Nodes

CPackage

EPackage

Elems

Elem

ClassD2HAlign

Class2Elem

Package2Elem

Figure 4.11: Meta-Model of the Correspondence Nodes

In certain situations, it may be the case that more than one correspondence
needs to be defined between the LM and one PM, depending on the layout
pattern defined on it. E.g. in the class diagram editor example, the lay-
ered layout pattern may be applied to classes together with generalizations,
whereas the edge connector pattern may be applied to classes together with
generalizations and associations. For that purpose, two correspondences are
defined between the LM and the Graph PM.
To date, the correspondence between objects and links of the LM and the
PM is hand-coded. Furthermore, the transformation that is guided by this
correspondence is also hand-coded. The support of a transformation language
would be reasonable.

4.2. META-MODELS AND THEIR CORRELATION 59

Transformation between LM and PMs

When the editor user creates or modifies a diagram, an LMM instance that
corresponds to this diagram is automatically created. Furthermore, if one
or more pattern instances are present in the diagram, the corresponding
PMM instances are automatically created as well. These PMs are created by
applying the corresponding transformations. This means that if n pattern
instances are present in a diagram, then n transformations are applied and
n PMs are created (cf. Figure 4.12).

Diagram LM

Elems PM

Horizontal Alignment
(Top) Pattern Instance

Elems PM

Horizontal Alignment
(Top) Pattern Instance

Graph PM Edge Connector
Pattern Instance

application of
transformation

application of
transformation

Figure 4.12: Correlation: Diagram, LM, PM and Layout Pattern Instances

Figure 4.13: Example Class Diagram

In Figure 4.13, a diagram is shown, in which three pattern instances are
present: One edge connector pattern instance is created for the five classes

60 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

together with the four associations, one horizontal alignment (top) pattern
instance is created for the classes A and E, and one horizontal alignment
(top) pattern instance is created for the classes B, C and D. In Figure 4.12,
the correlation between the diagram, the corresponding LM, the three PMs
and the three pattern instances is sketched. The diagram and the LM are
visualized as orange rectangles, the PMs as blue rectangles, and the layout
pattern instances as blue ovals.

(a) Example Class Diagram

: ClassDiagram

A: CClass B: CClass C: CClass D: CClass

classes classes classes classes

: EClass : EClass : EClass : EClass
modelObject modelObject modelObject modelObject

(b) Language-specific Meta-Model Instance

: Elems

A: Elem B: Elem C: Elem D: Elem

elems elems elems elems

Horizontal Alignment (Elems PM)

(c) Elems PMM Instance

Figure 4.14: Diagram and Meta-Model Instances

Another example is shown in Figure 4.14. Figure 4.14(a) shows a diagram,
which consists of four classes that are aligned horizontally. One layout pat-
tern instance is present in this diagram, namely a horizontal alignment pat-
tern instance that aligns the four classes. The corresponding LM is visualized
in Figure 4.14(b), and Figure 4.14(c) shows the corresponding Elems PM that
is generated.

4.2. META-MODELS AND THEIR CORRELATION 61

: ClassDiagram

A : CClass

: EClass

classes

modelObject

B : CClass

: EClass

classes

modelObject

C : CClass

: EClass

classes

modelObject

D : CClass

: EClass

classes

modelObject

LM

: Elems

A : Elem

++ elems
++

B : Elem

++ elems
++

C : Elem

++ elems
++

D : Elem

++ elems
++

PM

: ClassD2HAlign

: Class2Elem
++

: Class2Elem
++

: Class2Elem
++

: Class2Elem
++

Figure 4.15: Example: After Transformation

As already mentioned, TGGs are used for the transformations between the
LM and the PMs. In this scenario, the LM exists already, and the corre-
sponding PMs are generated. This transformation is typically called forward
transformation. In order to perform one transformation, one starts from the
LM. Then, matching the source domain of the rules of the TGG to the ex-
isting LM is tried. Thereafter, one adds the missing correspondence objects
and the missing objects and links in the PM. Once the LM has been fully
matched, the correspondence objects and the PM have been fully generated.
For the example (cf. Figure 4.14(a)), the transformation between the LM and
the PM is guided by the TGG, which was described in the last section. One

62 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

(a) Example Class Diagram

A: CClass B: CClass C: CClass D: CClass

: EClass : EClass : EClass : EClass
modelObject modelObject modelObject modelObject

: CGeneralization : CGeneralization : CReference

: EReference

attaches attaches attaches attaches attaches attaches

eSuperTypes

eSuperTypes
eReferences

eType

(b) Language-specific Meta-Model Instance

A: Node

: Edge

B: Node

: Edge

C: Node

from from

to to

Layered Layout (Graph PM)

A: Node

: Edge

B: Node

: Edge

C: Node

: Edge

D: Node

from from

to to from to

Edge Connector (Graph PM)

(c) Different Graph PMM Instances

Figure 4.16: Diagram and Meta-Model Instances

starts with the black parts shown in Figure 4.15. After applying TGG-rule 2
(cf. Figure 4.9) four times, one ends up in the situation shown in Figure 4.15:
For each triple (CClass object, EClass object, modelObject link), one
Class2Elem object and one tuple (Elem object, elems link) are created.

4.3. LAYOUT PATTERNS 63

Another example is shown in Figure 4.16. The diagram visualized in Fig-
ure 4.16(a) consists of four classes, two generalizations and one association.
Two layout pattern instances are present in the diagram, one layered layout
pattern instance that is applied to the classes together with the generaliza-
tions, and one edge connector pattern instance that is applied to the classes
together with the generalizations and the association. The LM that corre-
sponds to the diagram is visualized in Figure 4.16(b).1 The two correspond-
ing Graph PMs that are generated are shown in Figure 4.16(c).2 In the first
Graph PM, essentially, for each class in Figure 4.16(a), a Node object is
created, and for each generalization, an Edge object is created. In the sec-
ond Graph PM, in addition, for each association, an Edge object is created.
Furthermore, several links are created in both cases.

4.3 Layout Patterns
In the following, layout patterns and their corresponding instances are de-
fined. Language-dependent layout patterns and their corresponding instances
are distinguished from language-independent layout patterns and their corre-
sponding instances. Language-dependent layout patterns are defined on the
LMM, whereas language-independent layout patterns are defined on a PMM.

Pattern [comps, opts]

P-Constraint

* Predicate

*

Rule

Figure 4.17: Pattern Structure

Figure 4.17 shows the general structure of a layout pattern. A pattern has one
or more associated p-constraints. Each p-constraint consists of one predicate,
and each predicate has one or more associated rules. A p-constraint is not
satisfied if the predicate does not hold. Each pattern gets as input a set
comps of components, the pattern is applied to. For some patterns, several

1The ClassDiagram object and the classes links were omitted.
2The Graph objects, nodes links, and edges links were omitted.

64 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

different variants exist. To choose a certain variant, each pattern has a set
of options opts. This set may be empty. E.g. the minimal size pattern has
an option size that specifies the minimal size allowed.
The term constraint used here should not be mistaken for the term “con-
straint” used in the context of constraint-based layout. Therefore, these dif-
ferent types of constraints are called p-constraint and csp-constraint in the
following.

4.3.1 Instantiation of Layout Patterns
A layout pattern is instantiated for a set of components. In case of a language-
dependent pattern, it gets as input a part of the LMM instance that corre-
sponds to the set of components. In case of a language-independent pattern,
it gets as input a PMM instance for the set of components. The layout
pattern instance also gets as input values for all options.
Layout pattern instances are written in the form I(p, comps, opts) in the
following. p denotes the instantiated layout pattern, comps is the set of
components, the layout pattern is instantiated for, and opts is an (optional)
set of options.

Example

The horizontal alignment (bottom) pattern is based on the Elems PMM. It
has one associated p-constraint with one predicate a.y + a.h = b.y + b.h. a
and b are two Elem objects. The predicate has four associated rules:

a.y := b.y + b.h− a.h
a.h := b.y + b.h− a.y
b.y := a.y + a.h− b.h
b.h := a.y + a.h− b.y
More details about predicates and rules will be given in the remainder of this
chapter.
If the horizontal alignment (bottom) pattern is instantiated for the com-
ponents A, B, C and D shown in Figure 4.18, this instance is written as
I(pAlignH, {A,B,C,D}, {b}). Here, pAlignH stands for the horizontal align-
ment pattern. {b} stands for the alignment at the bottom.

A B C D

Figure 4.18: Example Diagram

4.3. LAYOUT PATTERNS 65

4.3.2 Atomic Layout Patterns
In Chapter 3, several layout patterns were introduced. Each of these patterns
defines some layout behavior for a set of components. For example, the
horizontal alignment (bottom) pattern aligns n nodes. In order to decrease
the complexity of the specification of a layout pattern, the pattern usually
does not define layout behavior on top of an arbitrary number of components.
Instead, it defines layout behavior on one, two or three components. This
layout pattern is then instantiated multiple times.

Example

In case of the horizontal alignment (bottom) pattern, the corresponding pat-
tern takes exactly two components into account. For n components, the
pattern is instantiated n− 1 times.
For the set of nodes shown in Figure 4.18, the pattern, and hence the El-
ems PM, is instantiated three times, as can be seen in Figure 4.19: For the
nodes A and B, for the nodes B and C, and for the nodes C and D. Hence,
the instance I(pAlignH, {A,B,C,D}, {b}) is equivalent to the three instances
I(pAlignH, {A,B}, {b}), I(pAlignH, {B,C}, {b}), and I(pAlignH, {C,D}, {b}). An
alternative would have been the instantiation for the following pairs of nodes:
A and B, A and C, and A andD. Choices of this kind need to be made by the
pattern creator and may have some implications regarding layout behavior
and (or) performance.

: Elems

A: Elem B: Elem

Alignment (Elems PM)

elems elems

: Elems

B: Elem C: Elem

Alignment (Elems PM)

elems elems

: Elems

C: Elem D: Elem

Alignment (Elems PM)

elems elems

Figure 4.19: PMM Instances of Atomic Pattern Instances

66 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

4.4 Specification and Integration of Algorithms
Graph drawing algorithms, constraint-based algorithms, as well as rule-based
algorithms may all be encapsulated in patterns. As already mentioned, rule-
based algorithms are specialized constraint-based algorithms. When the con-
trol algorithm triggers the execution of one of these algorithms, one or more
new attribute values are computed on the basis of the PMM instance, hence
based on the “old” values. These new values are passed on to the control
algorithm, and the layout engine “generates” the new layout of the diagram.
In the current implementation, the layout patterns described in Chapter 3
are defined by the following algorithms:

• Graph Drawing Algorithms

– Tree Layout

– Layered Layout

– Circular Layout

– Node Overlap Removal

– Edge Connector

• Constraint-based Algorithms

– Equal Horizontal Distance

– Equal Vertical Distance

• Rule-based Algorithms

– Quadratic Component

– Minimal Size Component

– Equal Height

– Equal Width

– Align in a Row

– Align in a Column

– Horizontal Alignment

– Vertical Alignment

– List

– Rectangular Containment

– Circular Containment

4.4. SPECIFICATION AND INTEGRATION OF ALGORITHMS 67

As can be seen, most layout patterns were defined via rule-based algorithms.
All these layout patterns show a “local” nature, meaning that only small num-
bers of components are required for the computation. In contrast, “global”
changes are performed via graph drawing algorithms or via constraint-based
algorithms. Graph drawing algorithms are used when the graph is affected
by the changes, whereas constraint-based algorithms are used when other
“global” changes are performed. Local layout patterns and global layout pat-
terns are defined as follows:

• Local layout patterns require only a small and fixed number of compo-
nents for layout computation.

• Global layout patterns require a large and varying number of compo-
nents for layout computation.

Some of the layout patterns could have also been defined by another algo-
rithm. Some more details will be given in Chapter 8. In terms of performance
(cf. Chapter 9), rule-based algorithms are the first choice, graph drawing al-
gorithms are the second choice and constraint-based algorithms are the third
choice.

4.4.1 Specification of Graph Drawing Algorithms
Graph drawing algorithms tend to be quite complex. Hence, it is reasonable
to implement them, and not to define them on an abstract level. Therefore
the possibility to encapsulate self-implemented algorithms is offered. It is
also possible to encapsulate existing implementations, i.e. graph drawing
libraries. Examples for standard graph drawing algorithms are a layered
layout algorithm, which is used in the layered layout pattern, or a force-
directed layout algorithm, which is used in the node overlap removal pattern.
Many of the existing graph drawing libraries focus on the visualization of
graphs. For instance, they do not take the position or shape of nodes into
account. Besides, they often lack of flexibility in terms of user choices.
Nevertheless, several situations exist where graph drawing algorithms are
useful. Hence, it is sensible to build a library of graph drawing algorithms
that fit into the context of visual language editors. In general, the diversity
of the different visual languages and the interactive nature of visual language
editors needs to be carefully taken into account when integrating standard
graph drawing algorithms.
In the layout patterns described in Chapter 3, several third-party graph draw-
ing algorithms were integrated. They were integrated into the tree layout

68 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

pattern, the layered layout pattern, the circular layout pattern and the node
overlap removal pattern. The algorithms that were included are either part
of the yFiles library [117] or of the Jung library [90]. In addition, one self-
programmed graph drawing algorithm was integrated, namely the one used
in the edge connector pattern.
Other graph drawing algorithms planned to be included are the edge router
called Dokulil [23], which is included in Dunnart [118], and algorithms that
are available in the ZEST framework [32], which is part of the Eclipse Plugin
GEF [30]. The edge router is chosen because it is an algorithm that perfectly
fits into an interactive environment. The ZEST framework is chosen, because
it is part of GEF, and perfectly fits into the environment, the layout engine
described in this thesis is designed for.

Example - Node Overlap Removal

An example of graph drawing algorithms is the node overlap removal pattern,
which ensures that components do not overlap. In the node overlap removal
pattern, a force-directed layout algorithm is used. More details about the
node overlap removal pattern will be given in Chapter 8.
A force-directed layout algorithm is based on the concept of forces, meaning
repulsion and attraction. The idea is that two nodes that are not connected
via an edge push each other apart, whereas two nodes that are connected via
an edge pull themselves tight. The graph is changed incrementally until a
balance of forces is reached.
In the node overlap removal pattern, the force-directed layout algorithm is
applied to nodes, only: The algorithm expands the diagram in each step, and
is applied until no more overlaps are present in the diagram.

4.4.2 Specification of Constraint-based Algorithms
A constraint-based algorithm is defined by providing a set of csp-constraints.
A general-purpose constraint solver then computes a solution to this con-
straint satisfaction problem (CSP). In the context of this work, no constraint
solver was implemented. Instead, a third-party constraint solver is used.
This decision was made because there already exist constraint solvers that
proved to perform good in the context of layout computation. One of these
solvers is the constraint solver QOCA [77]. It was chosen, as it was already
integrated in DiaGen [85], the editor generation framework DiaMeta is based
on. In the past, the constraint solver QOCA proved to be well suited for
layout computation in DiaGen editors - both in terms of functionality and
performance. The multi-way constraint solver QOCA supports linear con-

4.4. SPECIFICATION AND INTEGRATION OF ALGORITHMS 69

straints, such as 2x+3y = 5, but cannot handle constraints involving higher
order polynomials, such as x2 + y3 = 5. Furthermore, QOCA can deal with
both, equalities and inequalities, such as x+ y = 5 or x+ y ≤ 5. The restric-
tions mentioned are acceptable: With the help of this constraint solver, it is
possible to define the layout behavior chosen to be supported.
In [116], a comparison of several constraint solvers is provided. In the context
of this work, the constraint solver CHOCO [107] was used to define the layout
of two DiaMeta editors, namely a formula editor and an NSD editor. The
solver proved to be suitable for our context, but our conclusion is that there
is no need to exchange QOCA by another constraint solver.

Example - Equal Horizontal Distance

An example of constraint-based algorithms is the equal horizontal distance
pattern, which ensures an equal distance between a set of components. Fig-
ure 4.20 shows a diagram after applying this pattern. More details about the
equal horizontal distance pattern will be given in Chapter 8.

A
B

C

D

Figure 4.20: Equal Distance between Components

For a set of n components, n−2 csp-constraints are created: For every triple
of components next to each other, one csp-constraint is created. For the
example shown in Figure 4.20, the following two csp-constraints are created:

B.x− (A.x+ A.w) = C.x− (B.x+B.w)
C.x− (B.x+B.w) = D.x− (C.x+ C.w)

The n− 2 csp-constraints, together with a list of attributes that should not
be modified, are the input for the constraint solver. The attributes that
should not be modified “belong” to the component(s) that were changed by
the user, and it is avoided that their values are changed by the constraint
solver. Based on these requirements, the constraint solver then computes a
solution, trying to minimize the attribute changes performed.

4.4.3 Specification of Rule-based Algorithms
Rule-based algorithms are a variation of constraint-based algorithms. Besides
a set of csp-constraints, also a set of rules is provided to help satisfying the

70 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

CSP. This way, the solution computed is more in control and performance
is improved. A performance comparison of constraint-based algorithms and
rule-based algorithms can be found in Chapter 9.

Example - Horizontal Alignment (Bottom)

An example of rule-based algorithms is the horizontal alignment (bottom)
pattern. Figure 4.22 shows four diagrams after applying this pattern to the
diagram shown in Figure 4.21. More details about the horizontal alignment
(bottom) pattern will be given in Chapter 8.

A

B

Figure 4.21: Diagram

A
B

(a) Attribute y of A changed

A
B

(b) Attribute y of B changed

A B

(c) Attribute h of A changed

A
B

(d) Attribute h of B changed

Figure 4.22: Horizontal Alignment – Four Solutions

For a set of n components, n− 1 csp-constraints are created: For every tuple
of components next to each other, one csp-constraint is created. For the
example shown in Figure 4.21, the following csp-constraint is created:

A.y + A.h = B.y +B.h

4.4. SPECIFICATION AND INTEGRATION OF ALGORITHMS 71

Furthermore, the following four rules are created for these two components:

A.y := B.y +B.h− A.h
A.h := B.y +B.h− A.y
B.y := A.y + A.h−B.h
B.h := A.y + A.h−B.y

If the csp-constraint is not satisfied, e.g. as can be seen in Figure 4.21,
one of these rules may be applied in order to fulfill the csp-constraint. In
order to repair the example shown in Figure 4.21, either the y-coordinate of
component A is changed, the y-coordinate of B is changed, the height of A
is changed or the height of B is changed, as can be seen in Figure 4.22.
The nature of rule-based algorithms is that a small subset of the imaginable
solutions is “allowed”. This subset is defined by the pattern creator. In the
example described above, for instance, it is not possible that the layout engine
moves and resizes node B. At first sight, this seems to be a restriction, but
some informal user experiments showed that rule-based algorithms mostly
provide the behavior the user expects. Other (potentially correct) solutions
might result in an unexpected or unwanted behavior of the layout engine.

4.4.4 Integration of Graph Drawing Algorithms
Each graph drawing algorithm is viewed as a certain layout pattern. A graph
drawing algorithm operates on a pattern-specific meta-model, the Graph
PMM, which represents the graph structure.

Pattern [comps, opts]

P-Constraint

1 Predicate: GD Algorithm

1

Rule: GD Algorithm

Figure 4.23: Pattern Structure: Graph Drawing Algorithms

As can be seen in Figure 4.23, a pattern that encapsulates a graph drawing
algorithm consists of exactly one p-constraint, and the p-constraint has one

72 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

predicate and one rule. The predicate checks whether or not a certain algo-
rithm needs to be applied. This “check” is performed by applying the graph
drawing algorithm. If the algorithm changes one or more attribute values,
the predicate is not satisfied and the changes are performed. Otherwise, the
predicate is satisfied and nothing happens.

Discussion

Graph drawing algorithms usually require the graph in a certain form as
input. This data structure needs to be created by the pattern. Therefore,
a transformation between a Graph PMM instance and this data structure
needs to be performed.
After the execution of the algorithm, a translation is applied to the result
computed. This way, the diagram is moved to the “correct” position. E.g.
if the user moves a node, the layout algorithm should not change this node,
but update the rest of the graph.
One might think that the algorithm always needs to be executed after the
modification of a component, but this is not the case. E.g. in case of the
node overlap removal pattern, the algorithm only updates the diagram if two
nodes overlap.

(a) Diagram (b) Diagram after Resizing Node A

Figure 4.24: Circular Layout

One might also think that the rest of the graph only has to be moved (i.e.
the same translation is applied to all nodes) after the modification of a com-
ponent, but this is not the case either. E.g. Figure 4.24 shows a graph before
and after resizing node A. In this example, resizing the node causes the

4.4. SPECIFICATION AND INTEGRATION OF ALGORITHMS 73

layout algorithm to move each node separately, instead of applying the same
translation to all nodes.
Generally, third-party graph drawing algorithms are viewed as a black box.
As a consequence, a tight combination with other layout patterns is impos-
sible. To improve this situation, two different approaches are imaginable:

1. If the implementation of the algorithm is known, but cannot be changed,
one could design layout patterns that are specifically tailored to the
graph drawing algorithm.

2. If the implementation of the algorithm is known and can be changed,
one could adjust the implementation such that the algorithm is specif-
ically tailored to the other layout patterns.

Example - Layered Layout Pattern

The layered layout pattern is applied to n components. For that purpose,
one pattern instance is created. Checking the predicate of this instance
means that the layered layout algorithm is applied to all n nodes. If the
algorithm changes the diagram, the predicate is not satisfied and the changes
are performed.

4.4.5 Integration of Constraint-based Algorithms

A constraint-based pattern operates on a certain pattern-specific meta-model
and encapsulates a certain set of csp-constraints.
As can be seen in Figure 4.25, a pattern that encapsulates a constraint-based
algorithm has one p-constraint, which consists of one predicate and one rule.
The rule encapsulates the set of csp-constraints and the constraint solver. If
the p-constraint is not satisfied, the rule invokes the constraint solver.

Discussion

A constraint solver usually tries to minimize the number of attribute values
changed, which is a pleasing characteristic of constraint solvers in the context
of mental map preservation.
In addition to the csp-constraints mentioned in the last paragraph, the system
adds some additional csp-constraints: The system freezes the components
that were changed by the user (or by the layout engine). For each component
a that was changed by the user, the following csp-constraints are added:

74 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

freeze(a.x)
freeze(a.y)
freeze(a.w)
freeze(a.h)

These csp-constraints ensure that the layout engine does not change (i.e.
freezes) the components that were changed by the user.

Pattern [comps, opts]

P-Constraint

1 Predicate

1

Rule: CSP-Constraints +
Constraint Solver

Figure 4.25: Pattern Structure: Constraint-based Algorithms

Example - Equal Horizontal Distance Pattern

The equal horizontal distance pattern is applied to n components. For that
purpose, one pattern instance is created. The pattern instance has a predi-
cate of the following form:

b.x− (a.x+ a.w) = c.x− (b.x+ b.w)
∧ c.x− (b.x+ b.w) = d.x− (c.x+ c.w)
...

If this predicate is not satisfied, the following n − 2 csp-constraints are the
input for the constraint solver:

b.x− (a.x+ a.w) = c.x− (b.x+ b.w)
c.x− (b.x+ b.w) = d.x− (c.x+ c.w)
...

Assuming that component a was changed, then the following csp-constraints
are also added:

4.4. SPECIFICATION AND INTEGRATION OF ALGORITHMS 75

freeze(a.x)
freeze(a.y)
freeze(a.w)
freeze(a.h)

4.4.6 Integration of Rule-based Algorithms
As a third category, rule-based algorithms may be included. A rule-based
algorithm operates on an arbitrary pattern-specific meta-model, e.g. the
Elems PMM, which represents the required structure.
As can be seen in Figure 4.26, a pattern that encapsulates a rule-based
algorithm has a set of p-constraints, and each p-constraint has one predicate
and a set of rules. If a predicate is not satisfied, meaning that the predicate is
not fulfilled, one corresponding rule is applied. The control algorithm, which
will be described in Chapter 5, chooses which associated rule is applied.

Pattern [comps, opts]

P-Constraint

* Predicate

*

Rule

Figure 4.26: Pattern Structure: Rule-based Algorithms

Example - Horizontal Alignment (Bottom) Pattern

The horizontal alignment (bottom) pattern is applied to n components. For
that purpose, one pattern instance is created. The pattern instance has a
predicate of the following form:

a.y + a.h = b.y + b.h
∧ b.y + b.h = c.y + c.h
...

The following n− 1 sets of rules are associated with this predicate:

{ a.y := b.y + b.h− a.h, a.h := b.y + b.h− a.y,
b.y := a.y + a.h− b.h, b.h := a.y + a.h− b.y }

76 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

{ b.y := c.y + c.h− b.h, b.h := c.y + c.h− b.y,
c.y := b.y + b.h− c.h, c.h := b.y + b.h− c.y }
...

If the predicate is not satisfied, one rule is chosen from each of these sets.
For instance, the following rules are executed in order to repair the layout:

b.y := a.y + a.h− b.h
c.y := b.y + b.h− c.h
...

4.5 Atomic Layout Patterns
In order to construct atomic layout patterns, atomic predicates have to be
defined. Therefore, each predicate is split into several modular predicates.
This can be done as follows:

• Rule-based patterns: These layout patterns can usually be constructed
in an atomic fashion. E.g. the horizontal alignment (bottom) pattern
has a predicate of the form

a.y + a.h = b.y + b.h
∧ b.y + b.h = c.y + c.h
...

This predicate can be transformed into an atomic rule-based pattern
with a predicate of the form

a.y + a.h = b.y + b.h

The following four rules are associated with this predicate:

a.y := b.y + b.h− a.h
a.h := b.y + b.h− a.y
b.y := a.y + a.h− b.h
b.h := a.y + a.h− b.y

The first pattern needs to be instantiated once, whereas the second
atomic pattern needs to be instantiated n − 1 times. E.g. the pat-
tern instance I(pAlignH, {A,B,C,D}, {b}) is equal to the atomic pattern
instances I(pAlignH, {A,B}, {b}), I(pAlignH, {B,C}, {b}), and I(pAlignH,
{C,D}, {b}).

4.5. ATOMIC LAYOUT PATTERNS 77

• Constraint-based patterns: These layout patterns can also be con-
structed in an atomic fashion. E.g. the equal horizontal distance pat-
tern has a predicate of the form
b.x− (a.x+ a.w) = c.x− (b.x+ b.w)
∧ c.x− (b.x+ b.w) = d.x− (c.x+ c.w)
...

This predicate can be transformed into an atomic constraint-based pat-
tern with a predicate of the form
b.x− (a.x+ a.w) = c.x− (b.x+ b.w)

The first pattern needs to instantiated once, whereas the second atomic
pattern needs to be instantiated n−2 times. Important is that if one of
the pattern instances is violated, the constraint solver needs to compute
a solution on the basis of all n− 2 “atomic” predicates:
b.x− (a.x+ a.w) = c.x− (b.x+ b.w)
c.x− (b.x+ b.w) = d.x− (c.x+ c.w)
...

Hence, these n − 2 “atomic” predicates are the csp-constraints, which
are the input for the constraint solver.
E.g. the pattern instance I(pEqDistH, {A,B,C,D}) is equal to the
atomic pattern instances I(pEqDistH, {A,B,C}), and I(pEqDistH, {B,C,
D}).

• Graph-based patterns: These layout patterns are different, because an
“explicit” predicate does not exist. Instead, the predicate is “checked”
by applying the encapsulated graph drawing algorithm. An instance
of this type of pattern usually gets a set of n components as input. In
contrast, the atomic version gets only one component as input. The
first pattern needs to be instantiated once, whereas the second atomic
pattern needs to be instantiated n times. Important is that if one of
the instances has to be checked, the graph drawing algorithm has to
be executed for all n components. E.g. the layered layout pattern in-
stance I(pLayered, {A,B,C,D}) is equal to the atomic pattern instances
I(pLayered, {A}), I(pLayered, {B}), I(pLayered, {C}), and I(pLayered, {D}).

Atomization of rule-based patterns and constraint-based patterns has the
benefit that the specification of predicates as well as rules is simplified. In
case of graph-based patterns, there is no benefit. Hence, rule-based pat-
terns and constraint-based patterns are usually defined in an atomic fashion,
whereas graph-based patterns are not.

78 CHAPTER 4. PATTERN CONCEPT AND REUSABILITY

4.6 Summary
This chapter introduced layout patterns as means to encapsulate certain
layout behavior. Based on this concept, an algorithm automatically com-
putes the layout, as described in Chapter 5. The general concept of the
pattern-based layout approach was outlined in Section 4.1. The different
meta-models, namely the language-specific meta-model, the pattern-specific
meta-models and their correlation were described in Section 4.2. In Sec-
tion 4.3, the concept of layout patterns was discussed in detail. In Section 4.4,
it was explained how the different types of algorithms, namely graph drawing
algorithms, constraint-based algorithms and rule-based algorithms, are spec-
ified and integrated. In Section 4.5, the concept of atomic layout patterns
was introduced.
The main benefits of the concept of layout patterns are the modularization
of layout behavior and the separation of visual language and layout behavior.
This way, reuse of layout behavior is enabled.

4.6.1 Integration into an Editor
Technical details about the integration of the layout engine into an editor is
postponed to Appendix A. The integration mainly consists of three parts:

• An instance of the LMM needs to be created from the diagram.

• Based on this LMM instance, the layout engine computes a valid layout,
and updates the LMM instance.

• The diagram needs to be updated in accordance to the updated LMM
instance.

Additionally, the GUI needs to be extended to make use of the whole func-
tionality of the approach and to improve usability. Some details are given in
Chapter 6.

Chapter 5

Control Algorithm for Pattern
Combination

In this chapter, details are given about the control algorithm whose purpose
it is to control the combination of different layout patterns. In [70], the
control algorithm is outlined. A more detailed description of the algorithm
can be found in this chapter. The general idea of this control algorithm
is sketched in Section 5.1. In Section 5.2, some definitions are given. The
control algorithm is described in detail in Section 5.3, and two examples are
given in Section 5.4. Some characteristics of the algorithm are discussed in
Section 5.5. In Section 5.6, future work is outlined.

5.1 General Idea
The layout of a diagram needs to be updated if the user has changed one
or more components. It also has to be updated if the user has triggered the
creation of a layout pattern instance. Updating the layout essentially means
that the control algorithm is executed.
While computing the layout, a certain set of layout pattern instances comes
into play. Based on these pattern instances, a valid layout is computed. The
algorithm for pattern control guides this computation. Essentially, it orders
the layout pattern instances, and triggers the layout modifications, these
pattern instances require.
More precisely, each pattern instance has one or more dedicated p-constraints,
and each p-constraint has one dedicated predicate and one or more dedicated
rules. All p-constraints present in a diagram form a constraint network. The
layout of a diagram is valid, if all p-constraints are satisfied. The purpose
of the control algorithm is to find a variable assignment for which all p-

79

80 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

constraints are satisfied. Therefore, the algorithm applies one rule for each
unsatisfied p-constraint in order to “repair” this p-constraint. Cases exist,
where the algorithm is unable to find a solution. If the algorithm fails to find
a solution, an undo of the user changes is performed. As an alternative, the
user could be asked how he or she wants to proceed, e.g. undoing the user
changes, or breaking one or more pattern instances.
Some of the layout pattern instances present in the diagram are automatically
created, while others are explicitly created by the editor user. This automatic
and user-controlled instantiation of layout patterns is described in Chapter 6.
Layout patterns may either be combined manually or automatically. The
approach presented in this thesis supports both mechanisms. Manual com-
bination of layout patterns means that a control program has to be provided
for a visual language editor. This control program handles the combination
of a set of layout patterns. Such control programs usually tend to be quite
complex, already for very small toy-like examples. Hence, writing such a
control program only makes sense in some very rare cases. Automatic combi-
nation of layout patterns means that manually written control programs are
unnecessary. Instead, a generic control algorithm is used. As will be seen, in
most cases, it is possible to compute the layout with the help of this generic
control algorithm.

5.2 Definitions
In the following, definitions are given for the terms variables, p-constraints,
predicates, (repair) rules, and constraint nets.

5.2.1 Variables
The control algorithm is based on a certain set of variables. This set consists
of some language-specific variables, which are part of the LMM, and some
pattern-specific variables, which are part of the PMMs. Based on these
variables, p-constraints, predicates as well as rules are defined.

5.2.2 P-Constraints
Three different types of p-constraints are distinguished. The first type are
layout p-constraints that “belong” to patterns that modify a set of compo-
nents and that either operate on language-specific variables or on pattern-
specific variables. The second type are component p-constraints that “belong”
to patterns that modify a single component and that also either operate on

5.2. DEFINITIONS 81

language-specific variables or on pattern-specific variables. The last type
are mapping p-constraints. These p-constraints relate pattern-specific and
language-specific variables. Hence, they form the second part of the cor-
respondence between the language-specific model and the pattern-specific
models, as was already mentioned in Chapter 4.

Layout P-Constraints

Layout p-constraints “belong” to patterns that modify a set of components.
They either operate on language-specific variables or on pattern-specific ones.
This depends on whether it is a language-dependent or language-independent
layout pattern. Typically, these p-constraints are of the second type, and
hence, the variables are part of the pattern-specific meta-models. An example
is the horizontal alignment pattern, which is defined on top of the Elems
PMM, and which makes sure that a set of components is horizontally aligned.

Component P-Constraints

Component p-constraints “belong” to patterns that modify a single compo-
nent, which means that they take care of variables inside a single component.
They also either operate on language-specific variables or on pattern-specific
ones. Again, this depends on whether it is a language-dependent or language-
independent layout pattern. Typically, these p-constraints are also of the
second type, and hence, the variables are part of the pattern-specific meta-
model. An example is the quadratic component pattern, which is defined on
top of the Elem PMM, and which makes sure that a component is quadratic.

Mapping P-Constraints

Mapping p-constraints relate pattern-specific and language-specific variables.
They are part of the definition of the correspondence between the LM and
the PMs.

5.2.3 Predicates and (Repair) Rules

Each layout p-constraint, component p-constraint, and mapping p-constraint
has one predicate and one or more rules assigned. A p-constraint is not
satisfied if the predicate does not hold. If only one rule is assigned, a p-
constraint may be “repaired” by applying this rule. If more than one rule is
available, a choice can be made.

82 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

Encapsulated Algorithms

As already described, four types of layout patterns are distinguished, which
encapsulate constraint-based layout algorithms, rule-based algorithms, and
graph drawing algorithms.

• If a pattern encapsulates a constraint-based algorithm, predicates are
defined straightforwardly, and a set of csp-constraints as well as the
constraint solver is encapsulated in one associated rule.

• If a pattern encapsulates a rule-based algorithm, predicates as well as
rules are defined straightforwardly.

• If a pattern encapsulates a graph drawing algorithm, it is not necessary
to define a predicate. Instead, it is “checked” if executing the algorithm
changes one or more variable values. If this is the case, these changes
are performed.

5.2.4 Constraint Net
Several pattern instances are present in a diagram. All p-constraints that “be-
long” to these pattern instances together with all other p-constraints present
in the diagram form a constraint network. A constraint net is defined as
follows:

Definition 1. A constraint net consists of a set V of variables and a set C of p-
constraints. An assignment α : V → R assigns a value α(v) to each variable
v ∈ V . A status function σ : Vc → {u, f, c} assigns a status σ(v) to each variable
v ∈ V . A p-constraint c ∈ C consists of a predicate Pc and a set Rc = {r1, ..., ri}
of (repair) rules. An assignment α satisfies a p-constraint c ∈ C iff α assigns
values to the variables such that Pc is satisfied, denoted by Pc(α). Each rule
r ∈ Rc comes with an applicability predicate Ar, and r is applicable iff Ar(α, σ)
holds. If applicable, r computes a new assignment α′ and a new status function
σ′ such that Pc(α

′) holds.

If a p-constraint c is not satisfied, a rule may be applied, which changes
the value and the status of some variables, thus “repairing” the p-constraint.
Therefore, a rule operates on the variables Vc, and reads α(v1), ..., α(vi) and
σ(v1), ..., σ(vi). It replaces α by α′ and σ by σ′, following these rules:

• The status of a variable v ∈ Vc may be one of the following:

5.3. CONTROL ALGORITHM 83

– unchanged and unfixed: σ(v) = u

– changed: σ(v) = c

– fixed: σ(v) = f

A variable has the status changed if its value was previously changed by
the user or by the layout engine, and the status fixed if it was previously
fixed by the user or by the layout engine. It has the status unchanged
and unfixed if it neither has the status changed nor fixed.

• A variable may be changed or fixed only once. Hence, a rule r ∈ Rc is
applicable, iff:

– ∀v ∈ Vc : α(v) 6= α′(v)⇒ (σ(v) = u ∧ σ′(v) = c)

– and ∀v ∈ Vc : σ(v) 6= σ′(v)⇒ σ(v) = u.

• A repair rule can either change the value of a variable or it may fix the
value of a variable:

– σ(v) = c and α(v) 6= α′(v)

– σ(v) = f and α(v) = α′(v)

• After rule application, all variables involved are either changed or fixed:

– ∀v ∈ Vc : (σ′(v) = c ∨ σ′(v) = f)

5.3 Control Algorithm
As already mentioned, the purpose of the control algorithm is to compute a
variable assignment for which all p-constraints are satisfied. The algorithm
is sketched in Listing 5.1. Its idea is that changes made are propagated in
the diagram. First, two scenarios have to be distinguished:

• The user has changed one or more components. All variables that were
changed are marked as changed. All other variables that “belong” to
these components are marked as fixed.

• A layout pattern instance has been created for a certain set of com-
ponents: All variables that “belong” to one of these components are
marked as fixed. This component is usually the component that was
marked first by the user.

84 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

function search (α, σ)
begin

if Pc(α) holds for each p−constraint c ∈ C then the solution is α
return success

end if
compute ordered list L1 of p−constraints c ∈ C
such that ¬Pc(α) for each c ∈ L1 (∗)

if each c ∈ L1 is repairable then
for each c ∈ L1 do
compute ordered list L2 of rules in Rc

such that Ar(α, σ) for each r ∈ L2 (∗∗)
for each r ∈ L2 do
apply r, obtaining α′, σ′

if search(α′, σ′) is successful then
return success

end if
end for

end for
end if
return failure

end

Listing 5.1: Control Algorithm for Pattern Combination

Starting with the variable(s) changed or fixed, all p-constraints are checked
that involve these variables. For each violated p-constraint, one of the cor-
responding rules is applied. This rule changes one or more variable(s) and
fixes the other variable(s) involved. Again, all p-constraints are checked that
involve the variable(s) changed or fixed. This procedure is continued until
all p-constraints that need to be checked are satisfied. The first result found
is chosen and the algorithm stops immediately. If no solution can be found,
the algorithm signals a failure.
In one step, it might be the case that more than one p-constraint needs to
be repaired, and hence, more than one rule needs to be executed. In line
(*), the algorithm creates an ordered list L1 of all p-constraints that are not
satisfied. The order is defined by the editor developer.
Furthermore, if a p-constraint is violated, there might be several rules avail-
able to “repair” this violation. Line (**) determines an ordered list L2 of re-
pair rules based on some prioritization scheme, which is defined by the layout
pattern creator. The rules are tried out by backtracking until the algorithm
terminates either by finding a new assignment satisfying the predicates of all
p-constraints, or by signaling a failure.

5.4. EXAMPLE EXECUTION OF THE ALGORITHM 85

5.3.1 Discussion

The control algorithm described in this chapter is essentially a rule-based
constraint solver. As usual, it gets as input a set of p-constraints, and com-
putes a solution to this constraint satisfaction problem. The algorithm is
rather simple and uses local propagation. It uses backtracking in order to be
able to find a solution in many cases. The two main characteristics of it are:

• The p-constraints are defined on some sort of meta-level, enabling the
integration of graph drawing algorithms, constraint-based algorithms
and rule-based algorithms.

• The computation of a solution is guided by rules.

A huge variety of other constraint solving techniques exist. For instance, in
[100], a first approach is described that aims at combining different layout
modules. In [56], it is discussed how graph drawing algorithms can be com-
bined and how they can be integrated into a visual language editor. Both
approaches were quite complex, and suffered from their complexity. The
charm of the technique described in this section is mainly its simplicity. One
benefit is that the performance of the algorithm is quite convincing, as per-
formance tests as well as user experiments showed. Another benefit is that
the solutions that are computed are the ones the user expects. This obviously
requires that the layout patterns are defined in a way that other solutions
are not allowed. One drawback is that in some cases the algorithm is not
able to compute a solution. As user experiments showed, the solutions that
are computed are usually sufficient. Another drawback is that the layout
patterns themselves are quite complex. This drawback is compensated by
the fact that a layout pattern only needs to be defined once, and then can be
reused afterwards. The drawback is further mitigated by the introduction of
the concept of atomic layout patterns.

5.4 Example Execution of the Algorithm
In the following, two detailed examples of the execution of the control algo-
rithm are given. First, the combination of different layout patterns in the
graph editor is examined. This is a rather basic example for the control al-
gorithm. As a second example, the combination of different layout patterns
in the VEX editor is examined. Compared to the first one, this is a very
demanding example for the control algorithm.

86 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

5.4.1 Graph Editor
For the graph editor, several layout patterns have been combined. More
details about these layout patterns will be given in Chapter 8. The ap-
proach presented in the last sections is discussed via the example shown in
Figure 5.1(a). The diagram consists of the components L, M and N .

L

M

N

(a) Diagram

L

M

N

(b) User Modification

L

M

N

(c) L and N are resized,
M is moved to the right

L

M

N

(d) L, N and M are resized

Figure 5.1: Running Example: Two Layout Alternatives

The layout pattern instances present in the diagram require that all three
components are quadratic, that L and N are aligned at the top and at the
bottom, and that M and N are aligned at the right. Hence, the following
pattern instances are present in the diagram:

• (1) Horizontal Alignment (Top): I(pAlignH, {L,N}, {t})

• (2) Horizontal Alignment (Bottom): I(pAlignH, {L,N}, {b})

• (3) Vertical Alignment (Right): I(pAlignV, {M,N}, {r})

• (4) - (6) Quadratic Component: I(pQuad, {L}), I(pQuad, {M}),
I(pQuad, {N})

5.4. EXAMPLE EXECUTION OF THE ALGORITHM 87

The user changes the width of component L (see Figure 5.1(b)). Now the
layout engine has to update the diagram accordingly. The two solutions, the
layout engine potentially computes, are shown in Figures 5.1(c) and 5.1(d).
Figure 5.2 shows the LM of the diagram shown in Figure 5.1(a).

L: CNode

x = 0.0
y = 2.0
w = 1.0
h = 1.0

M: CNode

x = 2.0
y = 0.0
w = 1.0
h = 1.0

N: CNode

x = 2.0
y = 2.0
w = 1.0
h = 1.0

: Node : Node : Node

modelObject modelObject modelObject

Figure 5.2: Instance of LMM

The horizontal and the vertical alignment pattern both operate on the Elems
PMM. In the following, two variants of the Elems PMM are considered,
as shown in Figures 5.3(a) and 5.3(b): Both variants consist of the classes
Elems and Elem, which are connected by an association. In the first variant,
the class Elem has the attributes x, y, w and h, which stand for the (x, y)-
position of the top-left corner, the width and the height. In the second
variant, the class Elem has the attributes t, b, l and r, which denotes the
y-coordinate of the top, the y-coordinate of the bottom, the x-coordinate of
the left and the x-coordinate of the right border.
The quadratic component pattern operates on the Elem PMM. Here one
variant is considered, only, as shown in Figure 5.4(a): the class SingleElem
has the attributes x, y, w and h.

Variables

The control algorithm operates on the following set of variables:1

• Language-specific variables: As shown in Figure 5.2, the shape of each
node c is defined via its language-specific variables c.x, c.y, c.w and
c.h, which denote its top-left corner (x-position, y-position), width and
height (w and h).

• Pattern-specific variables (variant 1): As shown in Figure 5.3(c), the
alignment pattern refers to the pattern-specific variables ci.x, ci.y, ci.w
and ci.h, which stand for the (x, y)-position of the top-left corner, the
width and the height of a component.

1Note that A is the object in the LM, whereas ci is the object in the PM.

88 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

Elems

Elem
x : EDouble
y : EDouble
w : EDouble
h : EDouble

0..*
elems

(a) Variant 1

Elems

Elem
t : EDouble
b : EDouble
l : EDouble
r : EDouble

0..*
elems

(b) Variant 2

:Elems

L1:Elem

x = 0.0
y = 2.0
w = 1.0
h = 1.0

N1:Elem

x = 2.0
y = 2.0
w = 1.0
h = 1.0

elems elems

:Elems

L2:Elem

x = 0.0
y = 2.0
w = 1.0
h = 1.0

N2:Elem

x = 2.0
y = 2.0
w = 1.0
h = 1.0

elems elems

:Elems

M3:Elem

x = 2.0
y = 0.0
w = 1.0
h = 1.0

N3:Elem

x = 2.0
y = 2.0
w = 1.0
h = 1.0

elems elems

(c) Instances (1) - (3): Variant 1

:Elems

L1:Elem

t = 0.0
b = 1.0
l = 2.0
r = 3.0

N1:Elem

t = 2.0
b = 3.0
l = 2.0
r = 3.0

elems elems

:Elems

L2:Elem

t = 0.0
b = 1.0
l = 2.0
r = 3.0

N2:Elem

t = 2.0
b = 3.0
l = 2.0
r = 3.0

elems elems

:Elems

M3:Elem

t = 2.0
b = 3.0
l = 0.0
r = 1.0

N3:Elem

t = 2.0
b = 3.0
l = 2.0
r = 3.0

elems elems

(d) Instances (1) - (3): Variant 2

Figure 5.3: Elems PMM

SingleElem
x : EDouble
y : EDouble
w : EDouble
h : EDouble

(a) Elem PMM

L4:SingleElem

x = 0.0
y = 2.0
w = 1.0
h = 1.0

M5:SingleElem

x = 2.0
y = 0.0
w = 1.0
h = 1.0

N6:SingleElem

x = 2.0
y = 2.0
w = 1.0
h = 1.0

(b) Instances (4) - (6)

Figure 5.4: Elem PMM

5.4. EXAMPLE EXECUTION OF THE ALGORITHM 89

• Pattern-specific variables (variant 2): As shown in Figure 5.3(d), the
alignment pattern refers to the pattern-specific variables ci.t, ci.b, ci.l
and ci.r, which stand for the y-coordinate of the top, the y-coordinate
of the bottom, the x-coordinate of the left, and the x-coordinate of the
right border of a component ci.

• Pattern-specific variables: As shown in Figure 5.4(b), the quadratic
component pattern refers to the pattern-specific variables ci.x, ci.y,
ci.w and ci.h, which stand for the (x, y)-position of the top-left corner,
the width and the height of a component ci.

P-Constraints Variant 1

The following p-constraints are present in variant 1 of the example:

• Three layout p-constraints were added:

– Nodes L and N are aligned at the top
(layout p-constraint [L1N1 : alignt]): L.y = N.y

– Nodes L and N are aligned at the bottom
(layout p-constraint [L2N2 : alignb]): L.y + L.h = N.y +N.h

– Nodes M and N are aligned at the right
(layout p-constraint [M3N3 : alignr]): M.x+M.w = N.x+N.w

• Three component p-constraints were added:

– Node L is quadratic
(component p-constraint [L4 : quad]): L.h = L.w

– Node M is quadratic
(component p-constraint [M5 : quad]): M.h =M.w

– Node N is quadratic
(component p-constraint [N6 : quad]): N.h = N.w

The following holds for all components c, and hence rather trivial mapping
p-constraints are required for all pattern instances:
c.x = ci.x
c.y = ci.y
c.w = ci.w
c.h = ci.h

These mapping p-constraints are omitted in the following, in order to reduce
the complexity of the diagrams as well as the explanations.
Figure 5.5 shows the complete constraint net. Variables are displayed as
ovals, p-constraints as rectangles, and dependencies as lines.

90 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

L1N1 : alignt L2N2 : alignb N3M3 : alignr

L.y L.h N.y N.h

N.x

N.w

M.x

M.w

L4 : quad N5 : quad M6 : quad

L.w M.h

Figure 5.5: Constraint Network of the Example (Variant 1)

P-Constraints Variant 2

The following p-constraints are present in variant 2 of the example:

• Three layout p-constraints were added:

– Nodes L and N are aligned at the top
(layout p-constraint [L1N1 : alignt]): L1.t = N1.t

– Nodes L and N are aligned at the bottom
(layout p-constraint [L2N2 : alignb]): L2.b = N2.b

– Nodes M and N are aligned at the right
(layout p-constraint [M3N3 : alignr]): M3.r = N3.r

• Six mapping p-constraints were added to relate pattern-specific and
language-specific variables:

– Mapping p-constraint [L1L : mapt]: L1.t = L.y

– Mapping p-constraint [L2L : mapb]: L2.b = L.y + L.h

– Mapping p-constraint [N1N : mapt]: N1.t = N.y

– Mapping p-constraint [N2N : mapb]: N2.b = N.y +N.h

– Mapping p-constraint [N3N : mapr]: N3.r = N.x+N.w

– Mapping p-constraint [M3M : mapr]: M3.r =M.x+M.w

• Three component p-constraints were added:

– Node L is quadratic
(component p-constraint [L4 : quad]): L.h = L.w

5.4. EXAMPLE EXECUTION OF THE ALGORITHM 91

– Node M is quadratic
(component p-constraint [M5 : quad]): M.h =M.w

– Node N is quadratic
(component p-constraint [N6 : quad]): N.h = N.w

Once again, the following holds for all components c, and hence rather triv-
ial mapping p-constraints are required for the quadratic component pattern
instances:

c.x = ci.x
c.y = ci.y
c.w = ci.w
c.h = ci.h

These mapping p-constraints are omitted in the following, in order to reduce
the complexity of the diagrams as well as the explanations.
Figure 5.6 shows the complete constraint net. Variables are displayed as
ovals, p-constraints as rectangles and dependencies as lines.

L1N1 : alignt L2N2 : alignb N3M3 : alignr

L1.t L2.b N1.t N2.b N3.r M3.r

L1L : mapt L2L : mapb N1N : mapt N2N : mapb N3N : mapr M3M : mapr

L.y L.h N.y N.h

N.x

N.w

M.x

M.w

L4 : quad N5 : quad M6 : quad

L.w M.h

Figure 5.6: Constraint Network of the Example (Variant 2)

92 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

Rules

In this example, every p-constraint has one or more associated rules. E.g.
the component p-constraint [L4 : quad] has the associated rules L.w := L.h
and L.h := L.w. A full list of rules is omitted here. All rules “needed” during
the execution of the control algorithm will be introduced on the fly.

Control Algorithm

For the example, the control algorithm may determine two valid solutions:
The first one is that L and N are resized, and M is moved to the right, as
can be seen in Figure 5.1(c). The second one is that L, N andM are resized,
as can be seen in Figure 5.1(d). The example run of the control algorithm for
variant 1 is shown in Figure 5.7, the example run for variant 2 is visualized in
Figure 5.8. Each arrow denotes a call of the recursive function search. Only
the two branches that lead to the two valid solutions are visualized. In the
end, the control algorithm chooses the first valid solution as the result.

Variant 1 As visualized in Figure 5.7, the starting point is the variable L.w,
which was changed by the user. As a consequence, the p-constraint [L4 :
quad] is violated and one corresponding rule is applied. The rule associated
with [L4 : quad] changes the variable L.h. Afterwards, the p-constraint
[L2N2 : alignb] is violated, and the corresponding rule updates the variable
N.h. Then, the p-constraint [N5 : quad] is violated and one corresponding
rule changes the variable N.w. Next, the p-constraint [N3M3 : alignr] is
violated, and now two rules lead to a valid solution. The component M is
either moved to the right (rule 1) or it is resized (rule 2). In the first case, rule
1 changes the variable M.x and Solution 1 is found. In the second case, rule
2 changes the variable M.w. As a consequence, the p-constraint [M6 : quad]
is violated. One associated rule updates the variable M.h, and Solution 2 is
found. The backtracking algorithm stops when the first variable assignment
is found, which satisfies all p-constraints. In the example, this is Solution 1.
Hence, Solution 2 is not computed.

Variant 2 As visualized in Figure 5.8, starting point is again the variable
L.w, which was changed by the user. As a consequence, the p-constraint [L4 :
quad] is violated and the corresponding rule is applied. One rule associated
with [L4 : quad] updates the variable L.h. Afterwards, the p-constraint
[L2L : mapb] is violated, and one corresponding rule updates the variable
L2.b. Then, [L2N2 : alignb] is violated, and one corresponding rule updates
the variable N2.b. Next, the p-constraint [N2N : mapb] is violated, and

5.4. EXAMPLE EXECUTION OF THE ALGORITHM 93

L resized (L.w)

L

M

N

L4 : quad L2N2 : alignb

L resized (L.h)

N5 : quad

N resized (N.h)

N3M3 : alignr

N resized (N.w)

M6 : quad

M resized (M.w)

Solution 2

M resized (M.h)

Solution 1

M moved (M.x)

Figure 5.7: Example Run of the Algorithm (Variant 1)

L resized (L.w)

L

M

N

L4 : quad L2L : mapb

L resized (L.h)

L2N2 : alignb

(L2.b)

N2N : mapb

(N2.b)

N5 : quad

N resized (N.h)

N3N : mapr

N resized (N.w)

N3M3 : alignr

(N3.r)

M3M : mapr

(M3.r)

M6 : quad

M resized (M.w)

Solution 2

M resized (M.h)

Solution 1

M moved (M.x)

Figure 5.8: Example Run of the Algorithm (Variant 2)

94 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

the variable N.h is updated via one corresponding rule. This procedure is
continued until the first variable assignment is found, which satisfies all p-
constraints. Here, this is Solution 1.

Discussion

The main difference between variant 1 and variant 2 is that variant 2 requires
mapping p-constraints whereas variant 1 requires quite simple mapping p-
constraints, only. Variant 1 has the benefit that the constraint net is usually
less complex. One consequence is often a better performance. In contrast,
variant 2 has the benefit that the defined p-constraints and rules are poten-
tially simpler. Which variant to choose has to be decided from case to case.
In most cases, variant 1 is the better choice. Variant 2 should only be chosen
in cases where the layout behavior being defined is quite complex.

5.4.2 VEX Editor
Within a VEX diagram editor, several layout patterns - the containment
pattern, the minimal size component pattern and the edge connector pattern
- need to heavily interact with each other. More details about these layout
patterns will be given in Chapter 8. Instances of all these layout patterns are
automatically created. None of them is a layout pattern, whose instantiation
is triggered by the user.
The diagram shown in Figure 5.9 and in Figure 5.10(a) represents the λ-
expression λx.(xy). The circle A is colored in red, because this is the compo-
nent that is changed by the user in the example described in the next section.
In the diagram shown, nine pattern instances are automatically created. The
first two pattern instances (1) - (2) ensure the correct nesting of the circles.
The next five pattern instances (3) - (7) ensure that the circles have a min-
imal size. The last pattern instances (8) - (9) ensure the correct connection
of the two lines and the arrow:

• (1) Containment (Abstraction): I(pCAbs, {A,B,C})

• (2) Containment (Application): I(pCAppl, {C,D,E})

• (3) - (7) Minimal Size Component: I(pMS, {A}), I(pMS, {B}),
I(pMS, {C}), I(pMS, {D}), I(pMS, {E})

• (8) Edge Connector: I(pEC, {B,D,E, F, e1, e2}), I(pEC, {D,E, a1});
e1 is the edge between F and D, e2 is the edge between B and E, and
a1 is the arrow between D and E.

5.4. EXAMPLE EXECUTION OF THE ALGORITHM 95

A

B

C

D EF

Figure 5.9: VEX Diagram Example

(a) Initial Diagram (b) Circle A Moved

(c) Circle A Resized (d) Circle A Resized (2)

Figure 5.10: VEX Diagram Example

96 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

Moving a Component

If the user moves the circle A to the right, the four contained circles B, C,
D and E are moved, too. In addition, the lines and the arrow are updated.
This example is shown in Figure 5.10(b). The changes performed by the
different pattern instances are visualized in Figure 5.11. The user moves
component A. As a consequence, components B and C are moved by the
circular containment pattern instance (1), components D and E are moved
by the circular containment pattern instance (2), and the three edges are
updated by the edge connector pattern instances (8) - (9).

circle A moved

1

circle B moved

1

circle C moved

2

circle D moved

2

circle E moved

8

lines updated

9

arrow updated

Figure 5.11: Moving a Component

Resizing a Component

If the user reduces the size of the circle A, the four contained circles are
moved, and the lines and the arrow are updated. This example is shown
in Figure 5.10(c). The changes performed by the different pattern instances
are shown in Figure 5.12. The user resizes component A. As a consequence,
components B and C are moved by the circular containment pattern instance
(1), components D and E are moved by the circular containment pattern
instance (2), and the three edges are updated by the edge connector pattern
instances (8) - (9).

circle A resized

1

circle B moved

1

circle C moved

2

circle D moved

2

circle E moved

8

lines updated

9

arrow updated

Figure 5.12: Resizing a Component

5.5. CHARACTERISTICS OF THE ALGORITHM 97

If the size of the circle A drops below a certain threshold, the size of circle
C is decreased, the circles B, D and E are moved, and the lines and the
arrow are updated. This example is shown in Figure 5.10(d). The changes
performed by the different pattern instances are shown in Figure 5.13. The
user resizes component A. As a consequence, component B is moved and C
is resized by the circular containment pattern instance (1), components D
and E are moved by the circular containment pattern instance (2), and the
three edges are updated by the edge connector pattern instances (8) - (9).
If the editor user reduces the size of the circle A even more, the size of the
circles B, D and (or) E is also decreased. The user can reduce the size of the
circle until one or more circles “reach” their minimal size. Then, the minimal
size component pattern instances (3) - (7) prevent the user from reducing
the size of the circle even more.

circle A resized

1

circle B moved

1

circle C resized

2

circle D moved

2

circle E moved

8

lines updated

9

arrow updated

Figure 5.13: Resizing a Component (2)

5.5 Characteristics of the Algorithm
In the following, some characteristics of the control algorithm are discussed.

5.5.1 Correctness
First, the following definition is given:

Definition 2. The layout of a diagram is correct iff all p-constraints are satisfied.

The layout of a diagram is correct at any time during user interaction, i.e. all
p-constraints that are present in the diagram are satisfied. (User interaction
also comprises the computation of the layout.) The correctness of the layout
is ensured as follows:

• It is assumed that the layout is correct before the user modifies the di-
agram. Afterwards, only p-constraints that involve changed variables

98 CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

are possibly incorrect. All these p-constraints are checked by the al-
gorithm. If one or more of those p-constraints are not satisfied, some
variables are changed. Again, all p-constraints are checked that involve
these changed variables. This procedure is continued until either all of
these p-constraints are satisfied or the algorithm signals that no valid
solution can be found. If no valid solution can be found, the changes
performed by the user are undone.

5.5.2 Runtime Complexity
Performance tests showed that the most time consuming part of layout com-
putation is usually the execution of the control algorithm presented in this
chapter. Either the control algorithm itself or the encapsulated layout al-
gorithm is responsible for this. The following factors are important in the
context of performance:

• The size of the diagram.

• The number of p-constraints “present” in the diagram.

• The degree of connectivity of the corresponding constraint network.

The approach is designed for a context in which diagrams are medium sized
(0 − 200 components), a small number of p-constraints is present in the
diagram (0 − 200 p-constraints), and the constraint network has a small
degree of connectivity. In such practical scenarios, runtime complexity is
usually quite good. In Chapter 9, several performance tests are presented
that further support the claim that the layout approach can be used in an
interactive environment.

5.5.3 Discussion
Several details concerning the control algorithm are discussed in the follow-
ing.

Component P-Constraints and Layout P-Constraints

The difference between component p-constraints and layout p-constraints
is that component p-constraints are responsible for the layout of a single
component, whereas layout p-constraints are responsible for the layout of a
set of components. Therefore, component p-constraints are allowed to change

5.6. FUTURE WORK 99

variables of a component the user changed, whereas layout p-constraints are
not:
In case of layout p-constraints, if one variable of a component is changed,
all other variables of this component are fixed. The reason for that is that
it would be unnatural if, for instance, the layout engine resizes a component
after the user moves this component.
But there are some cases where the layout pattern has to change variables of
the same component. One example is the quadratic component pattern. It
ensures that a component is always quadratic. If the user changes the width
of a component, the layout engine has to update the height of the same
component. Such layout behavior is defined via component p-constraints.

Intermediate Results

In rule-based layout patterns, only extreme solutions are usually computed.
As an alternative, also intermediate solutions could be computed. E.g. if
the components A (with y = 10) and B (with y = 20) are aligned at the
top, then the extreme solutions are that either A.y = 10 and B.y = 10 or
A.y = 20 and B.y = 20. An intermediate solution would be, for instance,
that A.y = 12 and B.y = 12. One argument for the first variant is that
the resulting layout is often more predictable. One argument for the second
variant is that there might be cases where the first variant does not find a
valid solution, whereas the second variant does.

5.6 Future Work

In the following, future work concerning the control algorithm is discussed.

5.6.1 Initial Layout

In the examples shown in the last sections, only an incremental layout was
computed. With the help of the approach presented, it is also possible to
compute an initial layout. For that purpose, all variables are initialized with a
certain value, and certain pattern instances are created. Afterwards, not only
p-constraints that involve variables that were changed by the user need to
be checked, but all p-constraints. This way, a valid layout can be computed.
More details about the initialization of variables and about the creation of
pattern instances in the context of initial layout computation will be given
in Chapter 10.

100CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

5.6.2 Partial Results
A partial result is a result in which one or more p-constraints are broken. If
the algorithm does not succeed, such a partial result could be computed, and
the diagram could be updated accordingly. Considering partial results might
have the benefit that the layout engine is more flexible. But it might have
the downside that changes performed in the diagram are irreproducible for
the user. Moreover, it might have the disadvantage that these kind of layout
changes result in semantic changes of the diagram.

5.6.3 Combination with Constraint Solver
It may be the case that the algorithm does not find a solution. In such
situations, one could collect all (or a subset of) p-constraints and determine a
result with the help of a constraint solver. Especially if a rule-based algorithm
does not succeed, one could provide a fallback solution via a constraint solver.
This “feature” could be added easily. The feature was not focused on, because
it could produce unexpected changes.

5.6.4 Snap to Grid and Hypersnapping
With the approach at hand, it would be straightforward to define snap-
dragging [6] and hypersnapping [78] as follows:

• After a user has modified a component, the layout engine updates this
component in a sense that it is moved to the “correct” position, e.g.
the top-left corner of the component is “snapped” to the grid. This
functionality contradicts the rule: “A layout engine should never modify
a diagram component the user is currently modifying.” Obedient to this
rule, this functionality was not included.

• Alternatively, the layout engine could prevent the user from moving
a component to a position that is not “correct”, e.g. the left side of
the component is not aligned to the grid. As this kind of functionality
would restrict user interaction, it is not supported by this approach
either.

5.7 Summary
In this chapter, details were given about the control algorithm whose purpose
it is to control the combination of different layout patterns. The general

5.7. SUMMARY 101

idea of this control algorithm was sketched in Section 5.1. In Section 5.2,
some definitions were given. The control algorithm was described in detail in
Section 5.3, and two examples were given in Section 5.4. Some characteristics
of the algorithm were discussed in Section 5.5. In Section 5.6, future work
was outlined.
The most important property of the control algorithm is performance. In
general, the worst-case time complexity of the algorithm is exponential. But
as will be shown in Chapter 9, the performance in practical scenarios is quite
convincing.

102CHAPTER 5. CONTROL ALGORITHM FOR PATTERN COMBINATION

Chapter 6

User-Controlled Layout Behavior

In the last chapters, the general concept of the layout approach was described.
In this chapter, another concept, namely user-controlled layout behavior,
which is based on the pattern concept, will be described. The purpose of user-
controlled layout behavior is that the user has the possibility to influence the
layout pattern instantiation at runtime. Due to the fact that user interaction
is required, the graphical user interface of the system is a critical factor.
Therefore, the description of user-controlled layout behavior will be based on
the user interface of the DiaMeta graph editor, as shown in Figure 6.1.
In this chapter, the user-controlled instantiation of layout patterns and some
special features that are useful in the context of user-controlled instantia-
tion of layout patterns are described. The automatic and user-controlled
instantiation of layout patterns is discussed in Section 6.1. In Section 6.2,
two examples of user-controlled instantiation are given. Some special fea-
tures that are useful in the context of user-controlled instantiation of layout
patterns are described in Section 6.3. In Section 6.4, future work is outlined.

6.1 Instantiation of Layout Patterns
There are two mechanisms of instantiation. The first one is the automatic
instantiation of layout patterns, the second one is the user-controlled instan-
tiation of layout patterns.

6.1.1 Automatic Instantiation
In case of automatic instantiation, pattern instances are created automati-
cally. The user may only alter the behavior by completely turning a pattern
on or off. The options frame of the graph editor is shown in Figure 6.2. In

103

104 CHAPTER 6. USER-CONTROLLED LAYOUT BEHAVIOR

Figure 6.1: DiaMeta Graph Editor

Figure 6.2: GUI for Turning Layout Patterns On and Off

6.1. INSTANTIATION OF LAYOUT PATTERNS 105

the example, the user has turned off the node overlap removal pattern.
Turning a pattern off is, for instance, useful in the following situations:

• It is often pleasing to deactivate one or more layout patterns during
the layout improvement - e.g. deactivating the node overlap removal
pattern, if the user wants to position components right next to each
other, or if he or she wants to move a component across the diagram.

• The deactivation is also sometimes useful during the modification of a
diagram - e.g. turning off the containment pattern. Afterwards, the
user can change the nesting of components.

6.1.2 User-Controlled Instantiation
In case of user-controlled instantiation, the user may define a part of a dia-
gram to which a certain layout pattern is applied. To do so, the user selects
a set of components, and afterwards chooses the layout pattern he or she
wants to apply to this part of the diagram. From this point on, the layout
pattern is applied to this part of the diagram each time the layout engine
is called until the user removes this instantiation request. During the first
application of the layout pattern, one component is fixed. This means that
the component may not be changed by the layout engine. By selecting the
desired component first, the user has the possibility to choose the component
to be fixed. In the diagram, the set of selected components is surrounded by
a light blue rectangle. In addition, the component that was selected first is
also surrounded by a light blue rectangle.

(a) Diagram (b) Diagram: Horizontal Alignment

(c) Pattern Instance List

Figure 6.3: User-Controlled Application

In the example shown in Figure 6.3(a), the user has selected the components
0, 1, 2 and 3. The component 1 was selected first. Afterwards, the user

106 CHAPTER 6. USER-CONTROLLED LAYOUT BEHAVIOR

has selected the layout pattern Horizontal Alignment (top) in the list on the
right side of the editor. As a consequence, the four components are aligned
at the top, as can be seen in Figure 6.3(b). In addition, the entry Horizontal
Alignment T [0, 1, 2, 3] is added to the list at the bottom right of the editor,
as can be seen in Figure 6.3(c). The user can remove this pattern instance
again by double-clicking this list entry.

6.1.3 Behind the Scenes

For each pattern instance, an instance of the PMM that corresponds to this
layout pattern needs to be created. Therefore, the LM is transformed into
a PM. In case of automatic instantiation, the input of the transformation is
the complete LM, whereas in case of user-controlled instantiation, the input
of the transformation is only an excerpt of the LM. This excerpt corresponds
to the user-selected components.

6.2 Examples of User-Controlled Instantiation

Some examples of automatic instantiation as well as of user-controlled instan-
tiation were already provided in Chapter 4. In the following, two examples
of user-controlled instantiation of layout patterns will be described in detail.
Here, the layered layout pattern, which encapsulates a graph drawing algo-
rithm, and the horizontal alignment pattern, which encapsulates a rule-based
algorithm, are depicted.

6.2.1 Layered Layout Pattern

The instantiation of the layered layout pattern can be controlled by the user:
The user selects a set of components and applies the layout pattern desired.
In the example shown in Figure 6.4, the user added two instantiation requests.
As a consequence, two pattern instances are created, and hence, two Graph
PMM instances are created. The first Graph PMM instance consists of three
Node instances for the components A, B and C, and two Edge instances.
The second Graph PMM instance consists of four Node instances for the
components D, E, F and G, and three Edge instances. These two Graph
PMs are visualized in Figure 6.5.1

1The Graph objects, nodes links, and edges links were omitted.

6.2. EXAMPLES OF USER-CONTROLLED INSTANTIATION 107

Figure 6.4: Two Layered Layout Pattern Instances

A: Node

: Edge

B: Node

: Edge

C: Node

from from

to to

Layered Layout (Graph PM)

D: Node

: Edge

E: Node

: Edge

F: Node

: Edge

G: Node

from from

to to from to

Layered Layout (Graph PM)

Figure 6.5: Two Layered Layout Pattern Instances

6.2.2 Horizontal and Vertical Alignment Pattern
The instantiation of the horizontal and the vertical alignment pattern is
also performed manually. Again, the user selects a set of components and
applies the layout pattern desired. In the example shown in Figure 6.6, the
user added three instantiation requests. The Elems PM of the first instance
contains three Elem instances for the components A, B and C, the second
one three instances for A, D and E, and the third one two instances for F
and C. The three Elems PMs are visualized in Figures 6.7 and 6.8. The
first instance, a vertical alignment pattern instance, holds the option left,
the second one, a horizontal alignment pattern instance, the option top and
the third one, a horizontal alignment pattern instance, the option bottom.

108 CHAPTER 6. USER-CONTROLLED LAYOUT BEHAVIOR

Figure 6.6: Three Alignment Pattern Instances

: Elems

A: Elem B: Elem C: Elem
elems elems elems

Vertical Alignment (Elems PM)

Figure 6.7: One Vertical Alignment Pattern Instance

: Elems

A: Elem D: Elem E: Elem
elems elems elems

Horizontal Alignment (Elems PM)

: Elems

F: Elem C: Elem
elems elems

Horizontal Alignment (Elems PM)

Figure 6.8: Two Horizontal Alignment Pattern Instances

6.3. USEFUL FEATURES 109

6.3 Useful Features
In the context of the approach, some useful features worth mentioning were
added. These features enable a more comfortable usage of the layout ap-
proach.

6.3.1 Pattern Instance Aggregation
In a diagram, it might be the case that there is more than one pattern
instance present. It is even possible that two or more pattern instances are
of the same type. For instance, the following instances of the horizontal
alignment pattern pAlignH could be present in the diagram:

• I(pAlignH, {A,B}, {t})

• I(pAlignH, {A,B}, {t})

• I(pAlignH, {B,C}, {t})

• I(pAlignH, {B,C}, {t})

• I(pAlignH, {B,C,D}, {t})

The layout engine is able to automatically aggregate instances where possible.
This essentially means that two or more pattern instances are replaced by one
pattern instance that describes the same layout behavior. For the example
shown above, this means that the five pattern instances are replaced by the
pattern instance I(pAlignH, {A,B,C,D}, {t}).
The procedure for pattern instance aggregation is usually as follows:

• For any pattern p, duplicate pattern instances are removed. This means
that two pattern instances I(p, comps1) and I(p, comps2) are replaced
by the pattern instance I(p, comps1) if comps1 = comps2. For the
example, this means that the second and the fourth pattern instance
are removed:

– I(pAlignH, {A,B}, {t})
– I(pAlignH, {B,C}, {t})
– I(pAlignH, {B,C,D}, {t})

Note that duplicate pattern instances can be created by the editor user,
who creates the same pattern instance twice. They might also be the
result of the computation of automatic ad-hoc layout (cf. Chapter 7).

110 CHAPTER 6. USER-CONTROLLED LAYOUT BEHAVIOR

• For a pattern p that realizes a transitive relation on components, e.g.,
the vertical alignment (left) pattern, two pattern instances I(p, C1)
and I(p, C2) are replaced by the pattern instance I(p, C1 ∪ C2) if
C1 ∩ C2 6= ∅. For the example, this means that the remaining in-
stances are aggregated as follows: First, I(pAlignH, {A,B}, {t}) and
I(pAlignH, {B,C}, {t}) are combined to I(pAlignH, {A,B,C}, {t}), and
then I(pAlignH, {A,B,C}, {t}) and I(pAlignH, {B,C,D}, {t}) are com-
bined to I(pAlignH, {A,B,C,D}, {t}).
As can be seen, aggregation is performed incrementally. In each step,
two pattern instances are replaced by one pattern instance. This pro-
cedure is continued as long as possible.

In general, the aggregation of pattern instances is pattern-dependent. This
means that the pattern creator has to define how pattern instances are ag-
gregated: Duplicate pattern instances are always automatically removed.
Besides, the pattern creator has to state whether or not the layout pattern
realizes a transitive relation on components. If it realizes a transitive relation
on components, then the replacement of pattern instances is automatically
performed, following the strategy described above.
If the aggregation strategy described is not sufficient, the pattern creator also
has the possibility to implement his own aggregation strategy.

6.3.2 Pattern Instance Visualization: Diagram
Interaction with the diagram proved to be quite complicated if user-controlled
pattern instances are not visualized in the diagram. For that purpose, a
pattern instance visualization mode is included, which allows to recognize
layout pattern instances in the diagram. The existence of a user-controlled
instantiation request is visualized in a certain way in the diagram. Some
possibilities are shown in Figure 6.9:

• A vertical or horizontal line at the top, bottom, left, or right side of
each component. (cf. Figure 6.9(a))

• A rectangle that surrounds all components involved. (cf. Figure 6.9(b))

• Vertical or horizontal arrows between every pair of components in-
volved. (cf. Figure 6.9(c))

• A triangle in one corner of each component. (cf. Figure 6.9(d))

User experiments showed that the following pattern instance visualization is
meaningful:

6.3. USEFUL FEATURES 111

Pattern Visualization
Tree Layout Rectangle

Layered Layout Rectangle
Circular Layout Rectangle

Node Overlap Removal –
Edge Connector –

Equal Horizontal Distance Arrows
Equal Vertical Distance Arrows

Quadratic Component Triangle
Minimal Size Component –

Equal Height Triangle
Equal Width Triangle

Align in a Row Horizontal Line
Align in a Column Vertical Line

Horizontal Alignment Horizontal Line
Vertical Alignment Vertical Line

List –
Rectangular Containment –

Circular Containment –

Table 6.1: Pattern Visualization

(a) Line (b) Rectangle (c) Arrows (d) Triangle

Figure 6.9: Visualization of Pattern Instances

• User-controlled pattern instances are highlighted in a certain way, where-
as automatically created pattern instances are not highlighted.

• The different types of user-controlled pattern instances are visualized
as shown in Table 6.1.

112 CHAPTER 6. USER-CONTROLLED LAYOUT BEHAVIOR

Different pattern instances of the same type may be visualized in different
colors. This feature can be turned on and off via the option Colored In-
stances in the options frame of the editor, which is shown in Figure 6.2.
In Figure 6.10, as an example, four colored instances of the layered layout
pattern are shown.

Figure 6.10: Coloring of Pattern Instances

6.3.3 Pattern Instance Visualization: List
User-controlled pattern instances are not only visualized in the diagram itself,
but also in the list at the bottom right of the editor. For each pattern
instance, one list entry is created. If the user selects one of those list entries,
a gray cross is added to each component belonging to the corresponding
pattern instance.

(a) List of Pattern Instances (b) Selected Pattern Instance

Figure 6.11: Selection of Pattern Instances

6.3. USEFUL FEATURES 113

E.g. in the diagram shown in Figure 6.11(b), four pattern instances were cre-
ated by the user. As a consequence, the list, which is shown in Figure 6.11(a),
has four list entries. E.g. the list entry Vertical Alignment L [0,4,5,6] denotes
that a vertical alignment (left) pattern instance is present in the diagram,
and that this instance makes sure that the components 0, 4, 5 and 6 are
aligned vertically. The list entry Vertical Alignment L [0,4,5,6] was selected
by the user, and hence a gray cross was added to the components 0, 4, 5 and
6 in the diagram. These components are the ones that are affected by the
corresponding vertical alignment (left) pattern instance.

6.3.4 Syntax Preservation Mode
DiaMeta supports freehand editing, enabling the editor user to freely posi-
tion diagram components on the screen. The framework then automatically
examines this drawing and creates the corresponding LM. As a consequence,
the editor user as well as the layout engine may potentially “destroy” the
diagram. As shown in Figure 6.12, the user or the layout engine could move
node B in a sense that it no longer connects the nodes A and B, but now
potentially connects the nodes A and C. To restrain the user and the layout
engine from doing something like this, a so-called syntax preservation mode
was invented.

(a) Diagram (b) Diagram after Layout Com-
putation

Figure 6.12: Syntax Preservation

The syntax preservation mode may be turned on and off via the option
Preserve Syntax, which is available in the options frame shown in Figure 6.2.
In syntax preservation mode, it is impossible that the user or the layout
engine “destroys” the diagram.

114 CHAPTER 6. USER-CONTROLLED LAYOUT BEHAVIOR

Syntax preservation is achieved by a comparison of the diagram before and
after user changes (including the execution of the layout engine). If the
syntax of the diagram would be changed, all attribute changes that were
performed by the user and the layout engine are undone.
In DiaMeta, the internal graph representation of the diagram is used for the
comparison. This graph representation is called graph model [86]. Arrange-
ments of diagram components are described by spatial relationships between
them: Each diagram component has several attachment areas at which it can
be connected to other diagram components. In graphs, a circle, for instance,
has its border as attachment area and an arrow has its start point and its
end point as attachment areas. Connections can be established by spatially
related attachment areas. In graphs, an arrow has to start or end at the
border of a circle in order to be connected to this circle.
In the graph model, each component is modeled by a node (called component
node). Each attachment area is also modeled by a node (called attachment
node). Edges (called attachment edges) connect component nodes with all
attachment nodes that belong to this component node. Furthermore, edges
(called relationship edges) connect attachment nodes that are in relationship
with each other.
Figure 6.14 shows the graph model of the diagram shown in Figure 6.13.
Attachment nodes are drawn as black circles, component nodes as blue rect-
angles, attachment edges as thin black arrows and relationship edges as thick
blue arrows.

A

B C

Figure 6.13: Graphs: Example

arrow arrow

circle circle circle

border

at to from at at from to at

border border

Figure 6.14: Graph Model: Example

6.3. USEFUL FEATURES 115

The graph model (GM) (named g1 in the following) that represents the dia-
gram before the user changes took place, and the graph model (GM) (named
g2 in the following) that represents the diagram afterwards are compared.
The algorithm that is used for the comparison is shown in Listing 6.1. First,
it is checked if g1 and g2 have the same set of attachment nodes, namely
if the sets AN1 and AN2 are equal. Afterwards, for each attachment node
an ∈ AN1, all relationship edges that are connected to it in g1 are determined.
These sets of relationship edges are stored in the set RE1. Analogously, all
relationship edges that are connected to it in g2 are determined. These sets
of relationship edges are stored in the set RE2. (RE1 and RE2 are sets of
sets of relationship edges.) Finally, it is checked whether the sets RE1 and
RE2 are equal.
As an alternative, if the user changes would result in syntax changes, instead
of undoing all attribute changes, a subset of the changes performed could
be undone. This procedure was perceived being too complex, and the result
being more or less irreproducible for the user. Hence, this idea was not
developed further.
function compareGMs (g1: GM, g2 : GM)
begin
AN1 := g1.attachmentNodes
AN2 := g2.attachmentNodes
if AN1 6= AN2 do

return false
end if
for each an ∈ AN1 do
RE1 := g1.relationshipEdges(an)
RE2 := g2.relationshipEdges(an)
if RE1 6= RE2 do

return false
end if

end do
return true

end

Listing 6.1: Algorithm for Graph Model Comparison

Syntax Changes

In syntax preservation mode, it is impossible to change the syntax of the
diagram. If the user wants to perform this kind of changes, he or she has to
leave this mode. Usually, the user only enters the syntax preservation mode
if he or she solely wants to update the layout of the diagram.

116 CHAPTER 6. USER-CONTROLLED LAYOUT BEHAVIOR

Correctness and Completeness of a Specification

The syntax preservation mode turned out to be a useful tool for the edi-
tor developer. In this mode, he or she can easily examine the correctness
and completeness of a specification. Actually, some specification errors were
discovered during the experimentation in syntax preservation mode.
Figure 6.15(a) shows an example where the user places two classes (more or
less) on top of each other, such that they (more or less) completely overlap.
This diagram is correct, and hence is allowed in syntax preservation mode.
Figure 6.15(b) shows an example where the user tries to place two classes on
top of each other. This time, this modification would result in an ambiguity,
and hence is not allowed in syntax preservation mode: After further moving
class A, the attribute x of class A could either be an attribute of class A or
of class B.

(a) Example 1 (b) Example 2

Figure 6.15: Examination of Diagram Correctness

6.4 Future Work
In the following, future work concerning user-controlled layout behavior is
discussed.

6.4.1 Conflict Highlighting
As mentioned, it might be the case that the layout engine fails at computing
a valid layout.
The existence of unsatisfiable constraints is always possible and does not
automatically mean that there is a mistake in the layout specification. E.g.
it is impossible to apply the layered layout pattern as well as the alignment
pattern to the same set of nodes. Nevertheless, it is reasonable to provide

6.5. SUMMARY 117

the user both layout patterns. In such situations, a set of conflicting pattern
instances could automatically be identified and highlighted in the diagram.
The challenge here is to identify the set of conflicting pattern instances, as
this set is ambiguous.
Algorithmically, one could proceed as follows: Add one pattern instance after
the other and execute the layout engine. Automatically applied patterns are
added first, user-controlled layout patterns are added thereafter. If the layout
is no longer computable, the system outputs (highlights) the last pattern
instance added together with the pattern instances that were not added,
yet. These highlighted pattern instances form the set of conflicting pattern
instances. Via this procedure, an optimal solution is usually not found. The
procedure rather tries to be fast and to find a comprehensible solution. (For
instance, an optimization criterion could be the minimization of the number
of conflicting pattern instances.)

6.5 Summary
In this chapter, the user-controlled instantiation of layout patterns and some
special features that are useful in the context of user-controlled instantiation
of layout patterns were described. The automatic and user-controlled instan-
tiation of layout patterns was discussed in Section 6.1. In Section 6.2, two
examples of user-controlled instantiation were given. Some special features
that are useful in the context of user-controlled instantiation of layout pat-
terns were described in Section 6.3. In Section 6.4, future work was outlined.
Obviously, the seamless integration of the layout engine into an editor is a
crucial factor. Besides user-controlled layout behavior, many other useful
features are imaginable. Two of them will be described in Chapter 7, namely
layout suggestions and ad-hoc layout.

118 CHAPTER 6. USER-CONTROLLED LAYOUT BEHAVIOR

Chapter 7

Layout Suggestions and Ad-hoc
Layout

In this chapter, the concept of layout suggestions and the concept of ad-
hoc layout are described, two features that are based on the idea of user-
controlled layout behavior. In [73], layout suggestions and ad-hoc layout
have been sketched already. A more detailed description can be found in this
chapter. The concept of layout suggestions is discussed in Section 7.1. In
Section 7.2, the concept of ad-hoc layout is described. In Section 7.3, future
work is outlined.

7.1 Layout Suggestions
When the editor user selects a set of diagram components and, therefore,
defines a sub-diagram, the layout engine can identify those patterns from
the set of all available patterns that may be applied to the sub-diagram. To
help the user decide what layout pattern he or she should apply, a quality
criterion is introduced. This quality criterion identifies those layout patterns
whose application would result in a small layout modification. Based on this
quality criterion, the layout suggestions are computed.

7.1.1 Highlighting of Layout Suggestions
In a diagram editor, layout suggestions can be used as follows: The user
selects diagram components and then pushes the button Compute Layout
Suggestions. As a consequence, the layout engine computes the layout sug-
gestions. They are displayed by highlighting the corresponding buttons on
the right side of the editor in a certain color. Gray indicates that the cor-

119

120 CHAPTER 7. LAYOUT SUGGESTIONS AND AD-HOC LAYOUT

responding pattern cannot be applied to the selected components because it
either does not fit the chosen diagram part or is inconsistent with the cur-
rently active pattern instances. The other buttons are colored blue. Stars
are added to the button labels of the patterns within the set of layout sug-
gestions, i.e. whose application would result in a small layout modification.
Figure 7.1 shows a diagram that consists of several nodes and edges. The user
already added two user-defined pattern instances: A horizontal alignment
(top) pattern instance was created for the nodes 0, 1 and 2. A layered layout
pattern instance was created for the nodes 1, 3, 4 and 5 and the edges 8, 9
and 10. Now the user selects the nodes 0, 6 and 7, and asks the system what
layout patterns could be applied. The system indicates that all patterns
can be applied. The equal height pattern and the vertical alignment (left)
pattern are suggested because they only require small attribute changes.

Figure 7.1: Highlighting of Layout Suggestions

7.1. LAYOUT SUGGESTIONS 121

(a) Layered Layout (b) Circular Layout (c) Equal Vert. Dist.

(d) Equal Horiz. Dist. (e) Equal Width (f) Equal Height

(g) Horiz. Align. (t) (h) Horiz. Align. (b) (i) Vert. Align. (l)

(j) Vert. Align. (r)

Figure 7.2: Preview of Layout Suggestions

122 CHAPTER 7. LAYOUT SUGGESTIONS AND AD-HOC LAYOUT

7.1.2 Preview of Layout Suggestions
To further support the user, a preview of the updated diagram after the
application of a layout pattern is provided. Here, three different variants are
imaginable:

• As the first alternative, a preview of the whole diagram could be shown.

• As the second alternative, only the selected components could be pre-
sented. This way, only a small part of the diagram is shown.

• As the third alternative, the preview could show the selected compo-
nents together with the components that are affected by the layout
changes. This way, only the “important” part of the diagram is shown.

Currently, the first alternative is integrated in the system: When the editor
user moves his or her mouse over one of the buttons, a preview of the whole
diagram after the corresponding layout pattern is applied, is shown. E.g.
in Figure 7.1, a preview of the diagram after the equal width pattern was
applied to the nodes 0, 6 and 7 is shown. In Figure 7.2, all previews for the
example shown in Figure 7.1 are visualized.
The first variant was chosen, because it gives the best overview of the changes
that are implied by the application of the layout pattern. This variant should
only be chosen if the diagrams that are drawn are quite small.

7.1.3 Concept
First, two questions need to be answered:

• Which layout patterns should be suggested?

• How can these layout patterns be identified?

It turned out that computing the set of layout suggestions is straightforward:

• The set of layout suggestions initially contains all available layout pat-
terns.

• First, all patterns are removed from the set that cannot be applied
to the selected sub-diagram because the pattern either does not fit
to the chosen sub-diagram or is inconsistent with the currently active
pattern instances. The pattern does not fit the chosen sub-diagram if no
match can be found in the LM. Inconsistency is checked by applying the
layout pattern temporarily. If the layout engine is not able to compute
a valid layout afterwards, the layout pattern is not applicable, and
hence, inconsistent with the currently active pattern instances.

7.2. AD-HOC LAYOUT 123

• For each of the remaining patterns, the layout engine computes the
layout modifications that would be necessary if the pattern was applied.
Only those patterns are kept in the set that would require a small layout
modification, the others are removed from the set.

Quality Criterion

A rather simple metrics is used for deciding whether a layout modification
is small, namely the mean square of all attribute changes. It is computed as
follows: Let Cs be the set of components selected by the user and A(c) the
set of all attributes of a component c ∈ Cs. Furthermore, for any component
c ∈ Cs and any attribute a ∈ A(c), let valprev(a) and val(a) be the attribute
value of a before and after computing the layout modification. Then the size
d of the layout modification is computed by

d =

∑
c∈Cs

∑
a∈A(c)(val(a)− valprev(a))

2∑
c∈Cs
|A(c)|

.

A layout modification is considered small if d < m for some threshold m.
Figure 7.1 shows the results when computing the layout suggestions for the
nodes 0, 6, and 7. All buttons are drawn in light blue since each pattern can
be applied. But not all of them would result in small layout modifications,
e.g. aligning these three nodes vertically on the right side. Vertical Alignment
(right), therefore, is not a layout suggestion and not marked with stars.
In contrast, Vertical Alignment (left) is a layout suggestion since the three
nodes are almost aligned vertically on the left side. This button, therefore,
is marked with stars.
Instead of the mean square of all attribute changes, a more sophisticated
strategy might become necessary. The quality criterion currently used leads
to the following problem: Suppose you have two diagrams, one with one
component named A, and one with one component named B. Let component
A have the attributes x and y, and component B the attributes x, y, w and
h. Suppose that the attribute x is increased by 10. Then d is computed
as follows: dA = 100/2 = 50 and dB = 100/4 = 25. Hence, this difference
potentially could lead to differing suggestions in the two scenarios.

7.2 Ad-hoc Layout
So far, layout suggestions have been computed based on some user-selected
diagram parts. Automatic ad-hoc layout as a more powerful mode of opera-
tion is made possible by allowing the layout engine to autonomously extend

124 CHAPTER 7. LAYOUT SUGGESTIONS AND AD-HOC LAYOUT

the set of selected components. The following sections restrict these exten-
sions in different ways, enabling different kinds of ad-hoc layout.

7.2.1 Global Ad-hoc Layout

Global Ad-hoc Layout (GAL) means that layout suggestions are computed
and automatically applied for all elementary extensions C of the set Cs of
user-selected components, i.e., for each set C ⊆ Call such that |C \ Cs| = 1
where Call indicates the set of all diagram components.
The algorithm is outlined in Listing 7.1. It gets as input the set P of all layout
patterns available in the diagram editor, the set Cs of selected components,
and the set Call of all components (formal parameter Cmax). It returns true
iff it has applied a pattern. The algorithm may influence the diagram layout
globally because it considers every diagram component.

proc computeAdHocLayout(P,Cs, Cmax)
candidates := P × (Cmax \ Cs)
do
instances := ∅
for each (p, c) ∈ candidates do

if p applied to Cs ∪ {c} results in small layout modifications then
apply p to Cs ∪ {c}
add (p, c) to instances

end if
end do
candidates := candidates \ instances

while instances 6= ∅
return candidates 6= P × (Cmax \ Cs)

end

Listing 7.1: Algorithm for Computing GAL and LAL

E.g. in the example shown in Figure 7.3(a), the user has moved component
A. As a consequence, layout suggestions are computed and applied for the
sets {A,B}, {A,C}, and {A,D} of components. The horizontal alignment
(top) pattern is instantiated for these sets because the attribute changes after
application are quite small, as can be seen in Figure 7.3(b).

7.2.2 Local Ad-hoc Layout

GAL must try layout patterns for all diagram components, even those far
apart from the user-selected ones. Therefore, performance is an issue, and

7.2. AD-HOC LAYOUT 125

(a) Unmodified Diagram (b) Diagram after GAL Computation

(c) Diagram after LAL Computation (d) Diagram after LAL/P Computation

Figure 7.3: Automatic Ad-hoc Layout

it may lead to some surprising layout modifications at distant diagram loca-
tions. Local ad-hoc layout (LAL) enhances on these aspects. In contrast to
GAL, LAL computes layout suggestions only for components that are in a
close neighborhood of the selected components. These components form the
set Cn ⊆ Call of components. More precisely, only components c ∈ Call that
are near the set Cs of selected components are considered. For that purpose,
the minimal distance between the bounding box of the component c and the
bounding box of each of the selected components cs ∈ Cs is computed. A
component is considered being near the selected components if this distance
is less than a certain threshold t:

Cn = {c ∈ Call | ∃cs ∈ Cs : dist(c, cs) < t}

LAL can again use the algorithm in Listing 7.1. However, it is called with
the neighborhood Cn instead of the set Call of all components.
E.g., in the example shown in Figure 7.3(a), the user has moved the compo-
nent A. The neighborhood of Cs is just Cn = {A,B} since the components C
and D are too far apart. LAL then suggests and applies the horizontal align-
ment (top) pattern for the set {A,B} of components. The result is shown in
Figure 7.3(c).

7.2.3 Local Ad-hoc Layout with Propagation
As the example shows, LAL has only small benefits. Local ad-hoc layout with
propagation (LAL/P) enhances on this aspect. It starts with the set C = Cs

of user-selected components and computes the local ad-hoc layout for C. The
set C is then extended by all components that have just been modified, and
local ad-hoc layout is computed again for this extended set C of components.

126 CHAPTER 7. LAYOUT SUGGESTIONS AND AD-HOC LAYOUT

This iteration is continued until no further pattern instance has been created.
This way, layout improvement is “propagated” through the diagram, as long
as new layout suggestions can be computed. The propagation algorithm is
outlined in Listing 7.2.

proc computeAdHocLayoutWithPropagation(P,Cs, Call)
C = Cs

do
compute neighborhood Cn of C
changed := computeAdHocLayout(p, C,Cn)
Cc := components changed by the layout engine
C := C ∪ Cc

while changed
end

Listing 7.2: Algorithm for Computing LAL/P

E.g., in the example shown in Figure 7.3(a), the user has moved the com-
ponent A. As described before, local ad-hoc layout suggests and applies a
layout modification horizontally aligning A and B whereas components C
and D are too far apart. Since component B has just been changed, local
ad-hoc layout is applied again for the set C = {A,B} of components with a
neighborhood Cn = {A,B,C}. This time, C is horizontally aligned to A and
B by local ad-hoc layout. The next iteration with the set C = {A,B,C} has
the neighborhood Cn = {A,B,C} again since D is located too far apart. No
suggestions are computed, and the algorithm stops. The result is shown in
Figure 7.3(d).
The example above shows that the layout engine cannot just add new pat-
tern instances to the set of active pattern instances: The first iteration
added a pattern instance i1 = I(pAlignH, {A,B}, {t}), and the second iter-
ation i2 = I(pAlignH, {A,B,C}, {t}) where pAlignH indicates the horizontal
alignment pattern. Pattern instance i2 apparently includes i1. The layout
engine, therefore, automatically combines pattern instances where possible,
as already described in Chapter 6.

7.2.4 Discussion
GAL is quite powerful, but produces unpredictable layout “improvements”.
LAL improves on this aspect, but only enables quite small layout improve-
ments. LAL/P turned out to be a good compromise between predictability
and power. At the moment, LAL/P is integrated in the system.
A comparison of GAL, LAL and LAL/P in terms of performance will be
given in Chapter 9.

7.3. FUTURE WORK 127

At the moment, components that are in a “small neighborhood” of the se-
lected components are chosen as input for the computation of the LAL and
the LAL/P. As an alternative, components that are (completely) visible from
one of the selected components, or components that are near a certain area,
such as a horizontal line, in case of the horizontal alignment (top) pattern,
could be chosen.

7.3 Future Work
In the following, future work concerning layout suggestions and ad-hoc layout
is discussed.

7.3.1 Distinction of Pattern Instances

At the moment, all pattern instances are visualized in the diagram as well as
in the list at the bottom right of the editor. The current visualization does not
distinguish pattern instances that were created by the user himself or herself
and the ones that were created in the course of automatic ad-hoc layout.
A more sophisticated visualization could allow the user to distinguish these
different types of pattern instances. E.g. the two types could be distinguished
by using a different text color in the list at the bottom right of the editor.

7.3.2 Partial Ad-hoc Layout

Currently, ad-hoc layout is enabled for all patterns at once. To improve
flexibility, one could also allow the user to choose the layout pattern(s), for
which ad-hoc layout is automatically computed.

7.3.3 Preview of Ad-hoc Layout

Instead of applying layout patterns and updating the diagram, the layout
improvement could be visualized in the diagram first. Afterwards, the user
could decide whether or not he or she wants to carry out these modifications.
For the visualization, two variants came to mind: Firstly, the updated di-
agram could be shown in light gray on top of the diagram. Secondly, the
new pattern instances could be visualized in the diagram, as it is done for
user-controlled layout patterns, without updating the diagram itself. The
second variant is similar to the way it is done in tools like Powerpoint or
Visio.

128 CHAPTER 7. LAYOUT SUGGESTIONS AND AD-HOC LAYOUT

7.4 Summary
In this chapter, the concept of layout suggestions and the concept of ad-
hoc layout were described, two features that are based on the idea of user-
controlled layout behavior. The concept of layout suggestions was discussed
in Section 7.1. In Section 7.2, the concept of ad-hoc layout was described.
In Section 7.3, future work was outlined.
The features presented so far are only a small subset of imaginable features
that could be created based on the layout approach. Some more ideas will
be sketched in Chapter 10.

Chapter 8

Examples of Layout Patterns

In this chapter, several layout patterns are described, and their integration
in diagram editors is discussed. In Section 8.1, several layout patterns are
described in detail. In Section 8.2, it is discussed how these layout patterns
are integrated in the editors described in Chapter 3.

8.1 Examples of Layout Patterns
The functionality of several layout patterns was already described in Chap-
ter 3. Now, details of the specification of these layout patterns will be given.
As shown in Figure 8.1, a pattern gets a set (comps) of components as input.
In addition, a pattern may be available in several variants, and for that
purpose, a set (opts) of options is added as input. A pattern has a set of
associated p-constraints, and each p-constraint has a predicate and a set of
rules. Predicates as well as rules are defined on the basis of a set (vars) of
variables. Patterns and p-constraints are colored blue, predicates are colored
green, and rules are colored yellow. In the following visualizations, the blue
rounded rectangle on the right side is omitted. Predicates as well as rules
are sorted from left to right. This sorting defines an order on the predicates
and on the rules, and potentially influences the layout that is computed, as
already described in Chapter 5.
Language-independent patterns are distinguished from language-dependent
patterns. The main difference is that the layout pattern is specified on top
of the PM in the first case, and on top of the LM in the second case. The
“structure” of the set (comps) of components is defined by the associated
model, hence either the PM or the LM. Patterns that belong to the first
category are described next, and patterns that belong to the second category
are described thereafter.

129

130 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

Pattern [comps, opts]

P-Constraint

*
Predicate [vars]

*

Rule [vars]

Figure 8.1: Pattern Structure

8.1.1 Introductory Example
In Figure 8.2, a diagram is shown that consists of the three classes A, B
and C. Internally, this diagram is represented by an LMM instance. The
equal height pattern is applied to the three components A, B and C. As a
consequence, two (atomic) instances of the Elems PMM are created, one for
the components A and B, and one for the components B and C. Further-
more, two (atomic) pattern instances are created, namely I(pEqH, {A,B})
and I(pEqH, {B,C}). The equal height pattern is a language-independent
pattern, and hence, the “structure” of the set (comps) of components of each
pattern instance is defined by the associated Elems PM.

Figure 8.2: Sample Diagram

The diagram, the LM, the two Elem PMs and the two equal height pattern
instances are shown in Figure 8.3. The orange arrows indicate the correlation
between these artifacts.

8.1. EXAMPLES OF LAYOUT PATTERNS 131

A B C

A: CClass B: CClass C: CClass

: EClass : EClass : EClass
modelObject modelObject modelObject

: Elems

A: Elem B: Elem
elems elems

Elems PM

: Elems

B: Elem C: Elem
elems elems

Elems PM

I(pEqH, {A,B}) I(pEqH, {B,C})

Figure 8.3: Introductory Example

The equal height pattern ensures that each component in a set of components
has the same height. It gets two components as input, which are named A
and B.
The pattern has one associated predicate and one associated rule that is
instantiated twice, which either updates the height of the first or of the second
component. The predicate PEqualSize [a.h, b.h] is not fulfilled if a.h = b.h
does not hold. If applied, the rule REqualSize [a.h, b.h] performs a.h := b.h,
and the rule REqualSize [b.h, a.h] performs b.h := a.h.

EqualHeightPattern [{a, b}]

PEqualSize [a.h, b.h]

REqualSize [a.h, b.h] REqualSize [b.h, a.h]

132 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

8.1.2 Running Example
If not mentioned otherwise, the example shown in Figure 8.4 serves as the
running example in the following sections. The diagram consists of the nodes
A, B, C and D.

Figure 8.4: Sample Diagram

8.1.3 Language-independent Patterns
In the following, several language-independent layout patterns are described.
First, graph-based patterns are described, then constraint-based patterns are
depicted, and finally rule-based patterns are described. As already mentioned
in Chapter 4, rule-based patterns and constraint-based patterns are usually
defined in an atomic fashion, whereas graph-based patterns are not.

Tree Layout Pattern

The tree layout pattern applies a tree layout algorithm to a set of components.
For that purpose, an external graph drawing algorithm is integrated.
The pattern gets the set of components comps, the pattern is applied to, as
input. It has one associated predicate and one associated rule that applies
the graph drawing algorithm.

TreePattern [comps]

PTree []

RTree []

For all components, one pattern instance is created. For the example shown
in Figure 8.4, an instance is created for the following set of components:

• {A,B,C,D}

8.1. EXAMPLES OF LAYOUT PATTERNS 133

The predicate PTree is not fulfilled if the graph drawing algorithm would
modify the diagram. In order to decide this, the graph drawing algorithm is
executed.
The rule RTree performs the following (cf. Listing 8.1): First, a graph is
created for the set of components comps. Based on this graph, the external
graph drawing algorithm computes the layout. The resulting layout is then
moved to the “correct” position via translation. The “correct” position is
determined by the changed component A that triggered the execution of
the layout algorithm: This component remains at the position the user has
moved it to.

proc apply(A, comps)
graph = createGraph(comps)
layout = doTreeLayout(graph)
translate(layout, A)

end

Listing 8.1: Graph Drawing Algorithm

Layered Layout Pattern

The layered layout pattern applies a layered layout algorithm to a set of
components. For that purpose, an external graph drawing algorithm is inte-
grated. This pattern is defined analogously to the tree layout pattern.

LayeredPattern [comps]

PLayered []

RLayered []

Circular Layout Pattern

The circular layout pattern applies a circular layout algorithm to a set of
components. For that purpose, an external graph drawing algorithm is inte-
grated. This pattern is also defined analogously to the tree layout pattern.

134 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

CircularPattern [comps]

PCircular []

RCircular []

Node Overlap Removal Pattern

The node overlap removal pattern avoids the overlap of components. It may
either be implemented by a force-directed layout strategy, or by a constraint-
based approach. In the following, the first variant will be described. Later
on, the second variant will be described.

OverlapRemovalPattern [comps]

POverlapRemoval []

ROverlapRemoval []

For all components, one pattern instance is created. Hence, for the example
shown in Figure 8.4, an instance is created for the following set of compo-
nents:

• {A,B,C,D}

The predicate POverlapRemoval is not fulfilled if component A (the compo-
nent that was modified by the user) overlaps with one of the components of
the set comps of components.
The ruleROverlapRemoval performs the following (cf. Listing 8.2): First, all
overlapping components of the set comps of components are determined. For
this set of overlapping components, a graph is created. Based on this graph,
the external graph drawing algorithm computes the layout. This procedure
is continued until no more components overlap. As a last step, the resulting
layout is moved to the “correct” position via translation.

8.1. EXAMPLES OF LAYOUT PATTERNS 135

proc apply(A, comps)
list = identifyOverlappingComps(comps)
while list 6= ∅ do
graph = createGraph(list)
layout += doForceDirectedLayout(graph)
overlapComps = identifyOverlappingComps(comps)

end do
translate(layout, A)

end

Listing 8.2: Graph Drawing Algorithm for Node Overlap Removal

The force-directed layout algorithm is solely applied to nodes instead of ap-
plying it to nodes as well as edges. This procedure was chosen, as user
experiments showed that this variant provided a more natural “feeling” while
interacting with an editor.
The force-directed layout algorithm is applied to nodes that overlap instead
of to all nodes. This has the benefit that performance is improved. Further-
more, an unnecessary expansion of the diagram is avoided. The drawback
is that there might be cases where it is not possible to compute a valid lay-
out via this procedure. But as user experiments showed, this almost never
happens.
A force-directed layout algorithm can be used as described above if it fulfills
the following criterion: The force-directed layout algorithm allows for an
incremental (step-by-step) application. This way, it is possible to execute
the force-directed layout algorithm step-wise, as described above.
There is a huge variety of implementations available that could potentially
be used. The following third-party force-directed layout algorithms were
considered being integrated, because they are widely used and because they
are implemented in Java:

• A force-directed layout algorithm contained in the Jung library [90].
The algorithm provides a special mode for node overlap removal, which
allows for an incremental application of the algorithm.

• A force-directed layout algorithm contained in the yFiles library [117].
The algorithm does not provide a special mode for node overlap re-
moval.

The first force-directed layout algorithm was chosen, as the “special mode for
node overlap removal” fulfills the criterion mentioned earlier.

136 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

Edge Connector Pattern

The edge connector pattern ensures that edges are correctly connected to
their corresponding nodes. For that purpose, an external graph drawing
algorithm is integrated. This pattern is also defined analogously to the tree
layout pattern.

EdgeConnectorPattern [comps]

PEdgeConnector []

REdgeConnector []

Up to now, only one pattern was created that focuses on edges, namely the
edge connector pattern. Of course it is possible to create other patterns that
take care of edges.

Equal Distance Pattern

The equal vertical (horizontal) distance pattern preserves an equal vertical
(horizontal) distance between a set of components. Two variants of this pat-
tern exist - a rule-based version and a constraint-based version. Both variants
of the equal vertical distance pattern will be described in the following.

Rule-based Version The first variant has one associated predicate and two
associated rules.

EqualDistanceVerticalPattern [{a, b, c}]

PEqualDistance
[a.y, a.h, b.y, b.h, c.y, c.h]

REqualDistanceFirst
[a.y, a.h, b.y, b.h, c.y, c.h]

REqualDistanceSecond
[a.y, a.h, b.y, b.h, c.y, c.h]

The components are sorted by their y-position, as an equal vertical distance
is established. For three components that are next to each other, one pattern
instance is created. Hence, for the example shown in Figure 8.4, instances
are created for the following sets of components:

8.1. EXAMPLES OF LAYOUT PATTERNS 137

• {A,B,C}, {B,C,D}

The predicate PEqualDistance is not fulfilled if the following does not hold:

b.y − a.y − a.h = c.y − b.y − b.h

The rule REqualDistanceFirst performs the following:

dist := b.y − a.y − a.h
c.y := b.y + b.h+ dist

The rule REqualDistanceSecond performs the following:

dist := c.y − b.y − b.h
a.y := b.y − dist− a.h

The equal horizontal distance pattern is defined analogously to the equal
vertical distance pattern. It reuses the predicate PEqualDistance and the
rules REqualDistanceFirst and REqualDistanceSecond for the attributes a.x,
a.w, b.x, b.w, c.x and c.w.

EqualDistanceHorizontalPattern [{a, b, c}]

PEqualDistance
[a.x, a.w, b.x, b.w, c.x, c.w]

REqualDistanceFirst
[a.x, a.w, b.x, b.w, c.x, c.w]

REqualDistanceSecond
[a.x, a.w, b.x, b.w, c.x, c.w]

Constraint-based Version The second variant has one associated predicate
and one associated rule that calls the constraint solver.

EqualDistanceVerticalConstraintPattern [{a, b, c}, comps]

PEqualDistanceVerticalConstraint
[a.y, a.h, b.y, b.h, c.y, c.h]

REqualDistanceVerticalConstraint []

138 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

The predicate PEqualDistanceVerticalConstraint is not fulfilled if the follow-
ing does not hold:

b.y − a.y − a.h = c.y − b.y − b.h

The rule REqualDistanceVerticalConstraint performs the following: For each
component ci ∈ comps, the variables ci.y and ci.h are created.
In addition, the following constraints are created:
The first constraint fixes the ordering of the components. This predicate is
created for each tuple of components ci and ci+1, where ci, ci+1 ∈ comps and
ci.y < ci+1.y and ¬∃ck ∈ comps : ci.y < ck < ci+1.y :

ci+1.y − ci.y > 20

The second constraint ensures an equal distance. This constraint is created
for each triple of components ci, ci+1 and ci+2, where ci, ci+1, ci+2 ∈ comps
and ci.y < ci+1.y < ci+2.y and ¬∃ck ∈ comps : ci.y < ck < ci+1.y and
¬∃ck ∈ comps : ci+1.y < ck < ci+2.y:

ci+1.y − ci.y − ci.h = ci+2.y − ci+1.y − ci+1.h

This constraint is reformulated as follows:

2ci+1.y − ci+2.y − ci.y = ci.h− ci+1.h

The constraint solver only updates the variables on the left side of the equa-
tion, namely ci.y, ci+1.y and ci+2.y. It does not update the variables on the
right side, namely ci.h, ci+1.h and ci+2.h.
The constraint-based version of the equal horizontal distance pattern is de-
fined analogously to the constraint-based version of the equal vertical dis-
tance pattern. For that purpose, a new predicate PEqualDistanceHorizontal-
Constraint and a new rule REqualDistanceHorizontalConstraint are defined
for the attributes a.x, a.w, b.x, b.w, c.x and c.w. The predicate PEqualDis-
tanceVerticalConstraint and the rule REqualDistanceVerticalConstraint can-
not be reused, because components have to be ordered differently: Instead
of ordering them by their y-coordinate, they now have to be ordered by their
x-coordintate.

8.1. EXAMPLES OF LAYOUT PATTERNS 139

EqualDistanceHorizontalConstraintPattern [{a, b, c}, comps]

PEqualDistanceHorizontalConstraint
[a.x, a.w, b.x, b.w, c.x, c.w]

REqualDistanceVerticalConstraint []

Quadratic Component Pattern

The quadratic component pattern ensures that a component has the same
height and width all the time.
It has one associated predicate and one associated rule, which is instantiated
twice. The rule RQuadratic tries to update the width or the height of the
component.

QuadraticPattern [{a}]

PQuadratic [a.w, a.h]

RQuadratic [a.w, a.h] RQuadratic [a.h, a.w]

For each component, one pattern instance is created. Hence, for the ex-
ample shown in Figure 8.4, instances are created for the following sets of
components:

• {A}, {B}, {C}, {D}

The predicate PQuadratic is not fulfilled if the following does not hold:

a.w = a.h

The first instance of the rule RQuadratic performs the following:

a.h := a.w

Analogously, the second instance performs the following:

a.w := a.h

140 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

Minimal Size Component Pattern

The minimal size component pattern makes sure that a component is not
smaller than a minimal size. In case of the MinimalWidthPattern, the pa-
rameter size defines the minimal width of a component, whereas in case of
the MinimalHeightPattern, the parameter size defines the minimal height of
a component.
The minimal width pattern has one associated predicate and one associated
rule.

MinimalWidthPattern [{a}, size]

PMinimalSize [a.w]

RMinimalSize [a.w]

For each component, one pattern instance is created. Hence, for the ex-
ample shown in Figure 8.4, instances are created for the following sets of
components:

• {A}, {B}, {C}, {D}
The predicate PMinimalSize is not fulfilled if the following does not hold:

a.w > size

The rule RMinimalSize performs the following:

a.w := size

The minimal height pattern is defined analogously to the minimal width
pattern. It reuses the predicate PMinimalSize and the rule RMinimalSize
for the attribute a.h.

MinimalHeightPattern [{a}, size]

PMinimalSize [a.h]

RMinimalSize [a.h]

8.1. EXAMPLES OF LAYOUT PATTERNS 141

Equal Size Pattern

The equal size pattern makes sure that each component in a set of com-
ponents has the same height (equal height pattern) or width (equal width
pattern).
The equal width pattern has one associated predicate and one associated rule
that is instantiated twice, which either updates the width of the first or of
the second component.

EqualWidthPattern [{a, b}]

PEqualSize [a.w, b.w]

REqualSize [a.w, b.w] REqualSize [b.w, a.w]

For each pair of components, one pattern instance is created. Hence for the
example shown in Figure 8.4, instances are created for the following sets of
components:

• {A,B}, {B,C}, {C,D}

The predicate PEqualSize is not fulfilled if the following does not hold:

a.w = b.w

The two instances of the rule REqualSize perform the following:

a.w := b.w

b.w := a.w

This rule is instantiated twice, and hence either the width of the first com-
ponent is updated, or the width of the second component is updated.
The equal height pattern is defined analogously to the equal width pattern.
It reuses the predicate PEqualSize and the rule REqualSize for the attributes
a.h and b.h.

142 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

EqualHeightPattern [{a, b}]

PEqualSize [a.h, b.h]

REqualSize [a.h, b.h] REqualSize [b.h, a.h]

Align in a Row / Column Pattern

The align in a row/column pattern orders a set of components in a row or
in a column. The parameter dist defines the horizontal or vertical distance
between components. In case of the AlignRowPattern, the parameter type
defines, whether the components are aligned at the top, at the center or at
the bottom. In case of the AlignColumnPattern, the parameter type defines,
whether the components are aligned at the left side, at the center or at
the right side. In the following, the AlignRowPattern is described, where
type = center.
The pattern has one associated predicate and two associated rules, which
either update the first component or the second component.

AlignRowPattern [{a, b}, dist, type]

PAlignRowColumn
[a.x, a.y, a.w, a.h, b.x, b.y, b.w, b.h]

RAlignRowColumn
[a.x, a.y, a.w, a.h, b.x, b.y, b.w, b.h]

RAlignRowColumn2
[b.x, b.y, b.w, b.h, a.x, a.y, a.w, a.h]

The components are sorted by their x-position, as they are aligned in a row.
For each pair of components, one pattern instance is created. Hence for the
example shown in Figure 8.4, instances are created for the following sets of
components:

• {A,B}, {B,C}, {C,D}

The predicate PAlignRowColumn is not fulfilled if the following does not
hold:

(a.y + a.h/2 = b.y + b.h/2) ∧ (b.x = a.x+ a.w + dist)

8.1. EXAMPLES OF LAYOUT PATTERNS 143

The rule RAlignRowColumn performs the following:

b.y := a.y + a.h/2− b.h/2
b.x := a.x+ a.w + dist

The rule RAlignRowColumn2 performs the following:

a.y := b.y − a.h/2 + b.h/2

a.x := b.x− a.w − dist

The align in a column pattern is defined analogously to the align in a row
pattern. It reuses the predicate PAlignRowColumn and the rules RAlign-
RowColumn and RAlignRowColumn2.

AlignColumnPattern [{a, b}, dist, type]

PAlignRowColumn
[a.y, a.x, a.h, a.w, b.y, b.x, b.h, b.w]

RAlignRowColumn
[a.y, a.x, a.h, a.w, b.y, b.x, b.h, b.w]

RAlignRowColumn2
[b.y, b.x, b.h, b.w, a.y, a.x, a.h, a.w]

The align in a row pattern and the align in a column pattern are defined in
such a way that the components are centered. In case of the align in a row
pattern, the components could also be aligned at the left or at the right side.
In case of the align in a column pattern, the components could also be aligned
at the top or at the bottom. These variants can be defined analogously.

Alignment Pattern

The alignment pattern aligns components either vertically or horizontally. In
case of the HorizontalAlignmentPattern, the parameter type defines whether
the components are aligned at the top, in the center or at the bottom. In
case of the VerticalAlignmentPattern, the parameter type defines, whether
the components are aligned at the left side, at the center or at the right
side. In the following, the HorizontalAlignmentPattern is described, where
type = top and also where type = bottom.
The horizontal alignment pattern has two associated predicates. The predi-
cate PAlignmentTopLeft aligns the components at the top, and the predicate
PAlignmentBottomRight aligns the components at the bottom.

144 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

The predicate PAlignmentTopLeft has one associated rule, which is instan-
tiated twice. It updates the y-position of component a or b. The predicate
PAlignmentBottomRight has two associated rules, both instantiated twice.
The rule RAlignBR updates the y-position of component a or b, and the rule
RAlignBRResize updates the height of component a or b.

HorizontalAlignmentPattern [{a, b}, type]

PAlignmentTopLeft [a.y, b.y]
PAlignmentBottomRight
[a.y, a.h, b.y, b.h]

PAlignmentTopLeft [a.y, b.y]

RAlignTL [a.y, b.y] RAlignTL [b.y, a.y]

PAlignmentBottomRight
[a.y, a.h, b.y, b.h]

RAlignBR
[a.y, a.h, b.y, b.h]

RAlignBR
[b.y, b.h, a.y, a.h]

RAlignBRResize
[a.y, a.h, b.y, b.h]

RAlignBRResize
[b.y, b.h, a.y, a.h]

For each pair of components, one pattern instance is created. Hence, for the
example shown in Figure 8.4, instances are created for the following sets of
components:

• {A,B}, {B,C}, {C,D}

The predicate PAlignmentTopLeft is not fulfilled if the following does not
hold:

a.y = b.y

The predicate PAlignmentBottomRight is not fulfilled if the following does
not hold:

a.y + a.h = b.y + b.h

8.1. EXAMPLES OF LAYOUT PATTERNS 145

The two instances of the rule RAlignTL perform the following:

b.y := a.y

a.y := b.y

The two instances of the rule RAlignBR perform the following:

b.y := a.y + a.h− b.h
a.y := b.y + b.h− a.h

The two instances of the rule RAlignBRResize perform the following:

b.h := a.y + a.h− b.y
a.h := b.y + b.h− a.y

The vertical alignment pattern is defined analogously to the horizontal align-
ment pattern. It reuses the predicates PAlignmentTopLeft and PAlignment-
BottomRight for the attributes a.x, a.w, b.x and b.w.
The horizontal alignment pattern and the vertical alignment pattern are de-
fined in such a way that the components are aligned at the top-bottom or
at the left-right. As an alternative, the components could also be centered.
This variant can be defined analogously.

List Pattern

The list pattern arranges components as a vertical list. The parameters
shiftx and shifty define a spacing between list container and list elements.
The parameter dist defines the vertical distance between list elements. In its
current form, the list pattern is defined in a way that the list elements are
aligned vertically at the left side. Here, once again, other variants could be
defined.
The pattern has two associated predicates and two associated rules.

ListPattern [{a, b, c}, shiftx, shifty, dist]

PListFirst [b.x, b.y, c.x, c.y]

RListFirst [b.x, b.y, c.x, c.y]

PListOthers [a.x, a.y, b.x, b.y]

RListOthers [a.x, a.y, b.x, b.y]

146 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

Figure 8.5: Sample Diagram

The list elements are sorted by their y-position, as they are aligned in a
column. For each pair of list elements together with the list container, one
pattern instance is created. Hence, for the example shown in Figure 8.5,
instances are created for the following sets of components:

• {−, A,X}, {A,B,X}, {B,C,X}

The predicate PListFirst is initialized only for the first element of the list
({A,X}). The predicate is not fulfilled if the following does not hold:

(a.x = c.x+ shiftx) ∧ (a.y = c.y + shifty)

The rule RListF irst performs the following:

a.x := c.x+ shiftx

a.y := c.y + shifty

The predicate PListOthers is initialized for all pairs of elements in the list
({A,B}, {B,C}, {C,D}). The predicate is not fulfilled if the following does
not hold:

(b.x = a.x) ∧ (b.y = a.y + dist)

The rule RListOthers performs the following:

b.x := a.x

b.y := a.y + dist

8.1. EXAMPLES OF LAYOUT PATTERNS 147

Alternative The list pattern could also be defined via one predicate and
one rule. This predicate is (again) initialized for all sets of components
({−, A,X}, {A,B,X}, {B,C,X}). Internally the same actions are per-
formed, depending on whether or not the first component in the list is −.

ListPattern [{a, b, c}, shiftx, shifty, dist]

PList [a.x, a.y, b.x, b.y, c.x, c.y]

RList [a.x, a.y, b.x, b.y, c.x, c.y]

Performance Comparing these two variants, the constraint network of the
first variant is less connected than the one of the second variant, as can be
seen in Figures 8.6 and 8.7. C1 is the predicate for the set of components
{−, A,X}, C2 is the predicate for the set of components {A,B,X}, and C3

is the predicate for the set of components {B,C,X}.
E.g. the user moves component X. For the first variant, this means that
component A needs to be updated in the first iteration, whereas for the
second variant, the components A, B, and C need to be updated in the first
iteration. As a consequence, the number of cases the propagation algorithm
has to take into account in the first iteration for the second variant is much
higher than for the first variant. The cases that have to be taken into account
in each iteration are visualized in Figures 8.8 and 8.9.

X.x

X.y

A.x

A.y

B.x

B.y

C.x

C.y

C1 C2 C3

Figure 8.6: Constraint Network of the Example (Variant 1)

148 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

X.x

X.y

A.x

A.y

B.x

B.y

C.x

C.y

C1 C2 C3

Figure 8.7: Constraint Network of the Example (Variant 2)

V ariant1

C1

C2

C3

Figure 8.8: Propagation (Variant 1)

V ariant2

C1

C2

C3

C3

C2

C2

C1

C3

C3

C1

C3

C1

C2

C2

C1

Figure 8.9: Propagation (Variant 2)

8.1. EXAMPLES OF LAYOUT PATTERNS 149

Rectangular Containment Pattern

The rectangular containment pattern is responsible for the correct nesting
of components. In case the nesting is not correct, either the container or
the contained components may be changed. Each component may either
be moved or resized. The parameters shiftx and shifty define the spacing
between the container and the contained element.
The pattern has one associated predicate and two associated rules. The rule
RContainmentMove updates the position of the component (x-position and
(or) y-position), and the rule RContainmentResize updates the size of the
component (width and (or) height).

ContainmentRectPattern [{a, b}, shiftx, shifty]

PContainmentRect
[a.x, a.y, a.w, a.h
, b.x, b.y, b.w, b.h]

RContainmentRectMove
[a.x, a.y, a.w, a.h
, b.x, b.y, b.w, b.h]

RContainmentRectResize
[a.x, a.y, a.w, a.h
, b.x, b.y, b.w, b.h]

For each pair of components (contained component & container), one pattern
instance is created. Hence for the example shown in Figure 8.10, instances
are created for the following sets of components:

• {A,X}, {B,X}, {C,X}, {D,X}

The predicate PContainmentRect is not fulfilled if the following does not
hold:

(a.x > b.x) ∧ (a.x+ a.w < b.x+ b.w)

∧(a.y > b.y) ∧ (a.y + a.h < b.y + b.h)

The rule RContainmentRectMove moves the inner component. It performs
the following:

150 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

if (a.x+ a.w > b.x+ b.w)
a.x := b.x+ b.w − a.w

else if (a.x < b.x)
a.x := b.x

end if
if (a.y + a.h > b.y + b.h)

a.y := b.y + b.h− a.h
else if (a.y < b.y)

a.y := b.y
end if

The rule RContainmentRectResize resizes the outer component. It performs
the following:

if (a.x+ a.w > b.x+ b.w)
b.w := a.x+ a.w − b.x

else if (a.x < b.x)
b.x := a.x
b.w := b.w + (a.x− b.x)

end if

Note that shiftx and shifty were omitted in the predicates and rules in order
to improve readability.

Figure 8.10: Sample Diagram

8.1.4 Language-dependent Patterns

In the following, one language-dependent layout pattern is described, namely
the circular containment pattern, which is specifically designed for the VEX
editor.

8.1. EXAMPLES OF LAYOUT PATTERNS 151

Circular Containment Pattern

The circular containment pattern was specifically designed for VEX dia-
grams. It is responsible for the correct nesting of components that have
a circular shape. In case the nesting is incorrect, either the container or the
contained components may be changed, by moving or resizing them.

A

B

C

D EF

Figure 8.11: Sample Diagram

The pattern responsible for a correct nesting of abstraction has the two as-
sociated predicates PInnerAttach and PContainmentThree. The pattern re-
sponsible for a correct nesting of function application has the two associated
predicates POuterAttach and PContainmentThree.
For each variable abstraction, one instance of ContainmentPatternAbstrac-
tion is created, and for each function application, one instance of Contain-
mentPatternApplication is created.

ContainmentPatternAbstraction [{a, b, c}]

PInnerAttach PContainmentThree

ContainmentPatternApplication [{a, b, c}]

POuterAttach PContainmentThree

152 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

Hence, for the example shown in Figure 8.11, one instance of Containment-
PatternAbstraction is created for the following set of components:

• {A,B,C}

Furthermore, one instance of ContainmentPatternApplication is created for
the following set of components:

• {C,D,E}

The predicate PInnerAttach has two associated rules. The rule RIAMove1
updates the position of a, the outer circle (x-position and (or) y-position).
The rule RIAMove2 updates the position of b, the inner circle (x-position
and (or) y-position).

PInnerAttach
[a.x, a.y, a.r
b.x, b.y, b.r]

RIAMove1
[a.x, a.y, a.r
b.x, b.y, b.r]

RIAMove2
[a.x, a.y, a.r
b.x, b.y, b.r]

The predicate POuterAttach also has two associated rules. The rule ROA-
Move1 updates the position of b, the first circle (x-position and (or) y-
position). The rule ROAMove2 updates the position of c, the second circle
(x-position and (or) y-position).

POuterAttach
[b.x, b.y, b.r
c.x, c.y, c.r]

ROAMove1
[b.x, b.y, b.r
c.x, c.y, c.r]

ROAMove2
[b.x, b.y, b.r
c.x, c.y, c.r]

The predicate PContainmentThree has five associated rules. The rule
RCTMoveO updates the position of a, the outer circle (x-position and (or)
y-position). The rule RCTMoveI updates the position of c, the inner circle
(x-position and (or) y-position). (It does not update the position of the
third component.) The rule RCTResizeO updates the size of a, the outer

8.1. EXAMPLES OF LAYOUT PATTERNS 153

component (width and (or) height). The rule RCTResizeI updates the size
of c, the inner component (width and (or) height). The rule RCTResizeI2
updates the size of b, the second inner component, which is either attached
to the border of the outer circle or to the border of the inner circle (width
and (or) height).

PContainmentThree
[a.x, a.y, a.r
b.x, b.y, b.r c.x, c.y, c.r]

RCTMoveO
[a.x, a.y, a.r
b.x, b.y, b.r
c.x, c.y, c.r]

RCTResizeO
[a.x, a.y, a.r
b.x, b.y, b.r
c.x, c.y, c.r]

RCTMoveI
[a.x, a.y, a.r
b.x, b.y, b.r
c.x, c.y, c.r]

RCTResizeI
[a.x, a.y, a.r
b.x, b.y, b.r
c.x, c.y, c.r]

RCTResizeI2
[a.x, a.y, a.r
b.x, b.y, b.r
c.x, c.y, c.r]

8.1.5 Node Overlap Removal Pattern, Freeze Component
Pattern & Snap to Grid Pattern

In this section, details are given about three rather unusual layout patterns,
namely the node overlap removal pattern, the freeze component pattern and
the snap to grid pattern.

Node Overlap Removal Pattern

In the context of the design of the node overlap removal pattern, two variants
are imaginable:

• The first one is that it is not possible to move a component on top of
another component. This kind of pattern can easily be defined with
the help of a collision detection algorithm.

• The other one is to move away components that would overlap with
the component in focus.

As already described, it was decided to integrate the second variant. The
reason for this decision was that the behavior of this variant is similar to
the other layout patterns: User changes are performed if the layout engine is
able to compute a valid layout. They are not suppressed or tampered by the
layout pattern. A drawback of this variant is that there may be cases where
it interrupts users in their productive work with the editor. E.g. suppose

154 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

that the user wants to move a component from one side of the diagram to the
other side of the diagram without changing the rest of the diagram. Then
he or she cannot simply move the component across the rest of the diagram,
because the other components would be moved away. As a solution, the
user can either move the component around the diagram, or he or she can
(temporarily) deactivate the node overlap removal pattern.
The feature may either be implemented via a graph drawing algorithm or via
a constraint-based algorithm. The first variant was already described. The
second variant will be described in the following.

Constraint-based Version The definition of constraints for the constraint-
based algorithm is straightforward. For each pair of components that are
next to each other horizontally, the following predicate is added:

(a.x+ a.w < b.x) ∨ (b.x+ b.w < a.x)

For each pair of components that are next to each other vertically, the fol-
lowing predicate is added:

(a.y + a.h < b.y) ∨ (b.y + b.h < a.y)

Related Work Several approaches for node overlap removal exist. Some
related approaches are the following: In [60], an approach for node overlap
removal is presented that uses spring algorithms. In [28], an algorithm for fast
node overlap removal is presented. In their approach, separation constraints
are generated first. Thereafter, an algorithm tries to find a solution to this
constraint satisfaction problem. The algorithm aims at finding a solution that
modifies the graph as few as possible. In [46], an efficient algorithm for node
overlap removal is presented. This algorithm uses a proximity stress model.
In [47], an efficient, proximity-preserving algorithm for node overlap removal
is presented. This algorithm performs well at maintaining the graph’s shape.
All of the above-mentioned algorithms are essentially some sort of force-
directed layout algorithm or a set of declarative constraints together with a
constraint solver. Hence, they are either similar to the first variant presented,
or to the second one presented.

Freeze Component Pattern

The freeze component pattern freezes the position and the shape of a certain
component. Therefore, all values of the variables are frozen. This pattern

8.2. INTEGRATION OF LAYOUT PATTERNS IN AN EDITOR 155

is quite simple, but worth mentioning, because it provides a very useful
functionality. For a node a, the following predicates are added:

freeze(a.x) ∧ freeze(a.y) ∧ freeze(a.h) ∧ freeze(a.w)

For an edge e, the following predicates are added:

freeze(e.x1) ∧ freeze(e.y1) ∧ freeze(e.x2) ∧ freeze(e.y2)

Snap to Grid Pattern

The snap to grid pattern enforces components being “snapped” to a grid.
This pattern contradicts the rule “a component that is currently modified by
the user should not be modified by the layout engine”.

8.1.6 Guidelines for the Creation of Layout Patterns
In summary, the following guidelines can be deduced from the creation of the
layout patterns described in this Chapter:

• Patterns, predicates and rules should be reused, where possible.

• Parametrization should be used, in order to reduce the number of pat-
terns, predicates and rules.

• The structure of the constraint network is crucial in terms of perfor-
mance.

8.2 Integration of Layout Patterns in an Editor
The patterns shown in Table 8.1 are integrated in the four editors that were
described in Chapter 3. In the next paragraphs, some details about their
integration are given.

8.2.1 Graph Editor
In the graph editor, most of the patterns were added. This language does not
comprise any sort of list, and hence, the list pattern was not added. In the
language, no containment hierarchy is available, and as a consequence, the
rectangular containment pattern as well as the circular containment pattern
were not added either. The other patterns were added straightforwardly.

156 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

Pattern Graph Class GUI VEX
Tree Layout x

Layered Layout x
Circular Layout x

Node Overlap Removal x x
Edge Connector x x x

Equal Horizontal Distance x x x
Equal Vertical Distance x x x

Quadratic Component x x
Minimal Size Component x x x x

Equal Height x x x
Equal Width x x x

Align in a Row x x x
Align in a Column x x x

Horizontal Alignment x x x
Vertical Alignment x x x

List x x
Rectangular Containment x x

Circular Containment x

Table 8.1: Patterns in Diagram Editors

8.2.2 Class Diagram Editor
In the class diagram editor, the layered layout pattern and the circular layout
pattern were not added. It was also not reasonable to add the quadratic
component pattern or the circular containment pattern. The other patterns
were added as follows:

• The tree layout pattern may be applied to classes together with gener-
alizations.1

• The node overlap removal pattern is automatically applied to classes
as well as packages inside the same package.

• The edge connector pattern is automatically applied to classes, gener-
alizations and associations.

• The equal horizontal distance pattern as well as the equal vertical dis-
tance pattern may be applied to packages and classes. Also a “mixed
list” is possible here.

1In the class diagram editor, only single inheritance is allowed. Hence, the application of the
tree layout pattern is always possible.

8.2. INTEGRATION OF LAYOUT PATTERNS IN AN EDITOR 157

• The minimal size component pattern is automatically applied to classes
as well as packages. For classes and packages, different sizes were de-
fined. In addition, the parameters height and width have different
minima, due to the “standard” shape of classes and packages.

• The equal height pattern as well as the equal width pattern may be
applied to classes and packages.

• The align in a row pattern and the align in a column pattern may be
applied to classes and packages.

• The horizontal alignment pattern and the vertical alignment pattern
may be applied to classes and packages.

• The list pattern is automatically applied to the attributes inside a class.

• The rectangular containment pattern is automatically applied to classes
and packages. A package may contain classes as well as packages.

8.2.3 GUI Forms Editor
In the GUI forms editor, no edges exist. Hence, the tree layout pattern, the
layered layout pattern, the circular layout pattern and the edge connector
pattern were not added. Besides, the node overlap removal pattern was not
added, because such a behavior is not helpful in the context of GUI creation.
As all GUI components have a rectangular shape, the circular containment
pattern was not needed. The other patterns were added as follows:

• The equal horizontal distance pattern and the equal vertical distance
pattern may be applied to all components.

• The quadratic component pattern may be applied to all components.

• The minimal size component pattern is automatically applied to all
components.

• The equal height pattern and the equal width pattern may be applied
to all components.

• The align in a row pattern and the align in a column pattern may be
applied to all components.

• The horizontal alignment pattern as well as the vertical alignment pat-
tern may be applied to all components.

158 CHAPTER 8. EXAMPLES OF LAYOUT PATTERNS

• The list pattern may be applied to all components inside a frame or
panel.

• The rectangular containment pattern is automatically applied to frames
and panels that represent the containers, and arbitrary components
that represent the container elements.

8.2.4 VEX Editor
In the VEX editor, most of the layout patterns are not useful, and hence
were not added. The remaining patterns were added as follows:

• The edge connector pattern is automatically applied to circles together
with lines. It is also automatically applied to circles together with
arrows.

• The minimal size component pattern is automatically applied to circles.

• The circular containment pattern takes care of the correct nesting of
circles. It is also automatically applied.

8.3 Summary
In this chapter, several layout patterns were described, and their integration
in diagram editors was discussed. In Section 8.1, several layout patterns were
described in detail. In Section 8.2, it was discussed how these layout patterns
are integrated in the editors described in Chapter 3.

Chapter 9

Evaluation

In this chapter, an evaluation of the approach in terms of usability and
in terms of performance is given. A user study, which aims at identifying
layout patterns that are commonly “needed” in diagram editors, is described
in Section 9.1. In Section 9.2, a performance evaluation is presented.

9.1 User Study
In a user study, students created several visual language editors, mainly
focusing on the layout engine. This user study is outlined in [71]. A more
detailed description can be found in [2].
The purpose of the user study was to examine the desired properties of a
layout engine for visual language editors. We had the following expectations,
which turned out to be true:

• Different visual language editors require similar layout patterns.

• The combination of graph drawing algorithms and other layout algo-
rithms is reasonable.

9.1.1 Setup
The setup of the user study was as follows: Seven groups of students, con-
sisting of two or three students each, were asked to use DiaMeta. First, each
group had to create a visual language editor to get familiar with the system.
Afterwards, each group had to define a layout algorithm for this visual lan-
guage. They were asked to implement a standard layout algorithm, meaning
a layout algorithm that was designed for graph visualization, following the

159

160 CHAPTER 9. EVALUATION

descriptions of [109]. They were also asked to adapt the algorithm to the
special requirements of their visual language editor.
The visual languages were chosen with respect to two criteria: Visual lan-
guages were chosen that comprise graph-like as well as non-graph-like parts,
and it was tried to cover a wide range of visual languages. The graph drawing
algorithms were chosen by examining the visual languages and selecting the
ones that fit well. The following “pairs” were chosen:

• mindmaps, tree layout

• business process models, layered layout

• class diagrams, edge routing

• reducer rules (a visual language for editor specification), force-directed
layout

• organizational charts, incremental connector routing

• entity relationship diagrams, polyline drawings

• circuit diagrams, interactive orthogonal drawings

9.1.2 Results
To show some of the students’ design decisions, three representative examples
are described in the following:

• tree layout applied to mindmaps

• layered layout applied to business process models

• edge routing applied to class diagrams

For each layout algorithm, first, the layout behavior is listed that was defined
via graph drawing algorithms. Then, the layout behavior is listed that was
defined outside the graph drawing algorithms.

Mindmaps

A tree layout algorithm was applied to the obvious tree structure of a mind-
map (Figure 9.1). The students implemented a circular and a layered layout
strategy.

9.1. USER STUDY 161

• Layout behavior defined via graph drawing algorithms: Nodes should
stay near the position where the user has placed them. Besides, the
different node shapes (e.g. a cloud) and sizes need to be considered.

• Layout behavior defined outside graph drawing algorithms: Lists (dia-
monds followed by text) are required to remain attached to their owner
nodes, and the order of list entries should be preserved (cf. list pat-
tern). Links between different branches need to stay attached and must
be routed without crossing other nodes (cf. edge connector pattern).

Figure 9.1: Mindmaps: Circular and Layered Layout Strategy

Business Process Models

A layered layout algorithm was applied to business process models (Fig-
ure 9.2). Here, flow objects serve as nodes and connecting objects as edges.
To alter the drawing, the students have provided many options, e.g. hori-
zontal or vertical alignment of components.

• Layout behavior defined via graph drawing algorithms: Changing the
diagram should not result in objects being moved to a different layer.

• Layout behavior defined outside graph drawing algorithms: A special
edge router is used to cope with nodes of different sizes (cf. edge
connector pattern). Swimlanes allow for node nesting, which has to
be preserved (cf. rectangular containment pattern). The layout engine
should further maintain the vertical or horizontal order of these lanes
(cf. list pattern).

162 CHAPTER 9. EVALUATION

Figure 9.2: Business Process Models

Class Diagrams

For class diagrams (Figure 9.3), the students have implemented two edge
routers, which may be combined. Edge routers are a somewhat different cat-
egory of drawing algorithms as node positions are fixed. For class diagrams,
the edge routers are applied to associations and generalizations.

• Layout behavior defined outside graph drawing algorithms: Nodes should
not overlap (cf. node overlap removal pattern). Besides, attributes need
to be aligned (cf. list pattern) and the nesting of packages and classes
needs to be preserved (cf. rectangular containment pattern).

The first implemented edge router is an edge connector that makes sure
that edges “follow” a component and start exactly at the contour of this
component.

• Layout behavior defined via graph drawing algorithms: For class dia-
grams, edges need to follow classes, which are visualized as rectangles,
or packages, whose shape is a bit more complex (cf. edge connector
pattern).

The second implemented edge router is an edge positioner, whose purpose
is to route edges, e.g. to introduce bend points. The algorithm especially
avoids that edges cross nodes.

• Layout behavior defined via graph drawing algorithms: Again, the
shape of nodes is important. For simplification, the bounding box of
nodes is used as the basis of the computation. Other important re-
quirements are that edge crossings are avoided and that two edges do
not start or end at the same point.

9.1. USER STUDY 163

Figure 9.3: Class Diagrams: Before and After Moving Class Person

Figure 9.3 shows a sample user interaction: The initial diagram is shown on
the left side. The user moves the class Person to the right. After movement,
the layout engine enlarges the package, moves the attributes, and updates
the generalization. The resulting diagram is shown on the right side.

9.1.3 Discussion

With the help of this user study, it was demonstrated that different editors
require similar layout behavior. Evidence was given that the combination of
graph drawing algorithms and other layout algorithms makes sense.
As expected, different groups of students defined similar layout patterns. For
instance, some sort of edge connector pattern was defined for all three editors.
In addition, some sort of list pattern was also defined for all three editors.
Furthermore, some sort of rectangular containment pattern was defined for
the business process model editor as well as the class diagram editor. It can
be concluded that it makes sense to reuse and combine layout patterns in
different layout engines.
It was further examined that some layout behavior was built into the graph
drawing algorithms themselves, while other layout behavior was defined out-
side of the graph drawing algorithms. Most students defined the preservation
of the size of nodes, the containment of nodes and the order of nodes (lists)
outside the graph drawing algorithms. This functionality could be easily de-
fined via constraint-based algorithms or rule-based algorithms. Hence, the
combination of graph drawing algorithms and other layout algorithms sug-

164 CHAPTER 9. EVALUATION

gests itself.
One finding was a bit surprising: The students rather preferred to be in
control of the layout engine instead of achieving a “perfect” layout. Without
being asked, they put quite an effort on adapting the layout engine such
as allowing influencing the layout at runtime. For instance, several options,
such as the distance between nodes were provided for most of the graph
drawing algorithms. In addition, the algorithms were adjusted to allow for
options such as the preservation of the horizontal and (or) vertical ordering
of nodes. Most groups also modified the framework in a sense that layout
algorithms were no longer called automatically after user changes. Instead,
the algorithm is explicitly called by clicking a button. Here, a tendency was
apparent: Graph drawing algorithms that perform major structural changes,
such as the layered layout or the circular layout, are explicitly triggered by the
user. Graph drawing algorithms that only perform minor structural changes,
such as the edge connector or the edge positioner, are called automatically.

9.2 Performance Evaluation
One could guess that the creation of all the artifacts, such as the meta-
model instances, could lead to a bad performance. This is not the case
because most of the computations are very cheap and do not influence the
overall performance. Performance tests showed that the only expensive part
is the algorithm that controls the pattern combination. In some scenarios,
the use of backtracking can lead to an explosion of cases resulting in a bad
performance. The number of cases increases if many predicates involve the
same variables. User studies showed that this is usually not the case in “real
world scenarios”. Instead, a result is found without doing backtracking at all
in most cases.
In this section, a performance evaluation is given. The test environment is de-
scribed in Section 9.2.1 and an introductory example is given in Section 9.2.2.
The general performance test architecture is described in Section 9.2.3. In
Section 9.2.4, a description of a performance test is provided for each of
the layout patterns that were presented in Chapter 8. In Section 9.2.5, two
performance experiments are outlined that give some insight into the perfor-
mance of ad-hoc layout.

9.2.1 Test Environment
Performance was measured on a machine with the following technical details:

9.2. PERFORMANCE EVALUATION 165

• Processor: 3.4 GHz Intel Core i7

• Memory: 8 GB 1333 MHz DDR3

• Operating System: Mac OS X Version 10.7.3

• Java: JDK 1.6.0_29

A special test environment was created that enables the testing of layout
patterns. Each test is structured as follows:

• A diagram is created.

• One or more pattern instances are created for this diagram.

• User changes are simulated.

• The layout algorithm is executed.

• The time needed for layout computation is recorded.

• The diagram before and after layout adjustment is visualized.

9.2.2 Introductory Example
Figure 9.4(a) shows a diagram which consists of n nodes.

Pattern Instances

All n nodes are aligned vertically at the left side. In the following, the
performance of two variants is examined:

• Variant 1: Instances are created for the following sets of components:
{A,B}, {B,C}, {C,D}, etc.

• Variant 2: Instances are created for the following sets of components:
{A,B}, {A,C}, {A,D}, etc.

The editor developer who defines the layout pattern decides on how pattern
instances are created. In an editor, usually only one variant is available.
As will be seen in the following, such design decisions influence the overall
performance.

166 CHAPTER 9. EVALUATION

User Interaction

The user may interact with the diagram in different ways: He or she may
either move an arbitrary component or resize it. As a consequence, all other
components need to be updated accordingly. In the following, four variants
are examined:

• Component A is moved to the right.

• The width of component A is changed.

• The n/2-th component (component X) is moved to the right.

• The width of the n/2-th component (component X) is changed.

A

B

C

D

...

(a) Example (b) Runtime

Figure 9.4: Performance of the Introductory Example

The chart visualized in Figure 9.4(b) shows the time it takes to update the
diagram shown in Figure 9.4(a), after the user changes one component. As
can be seen, in case of variant 1, updating 100 components takes about 0.01
seconds and updating 800 components still takes less than 0.2 seconds. In
case of variant 2, updating components takes a bit more time.
The first variant of the vertical alignment pattern performs better than the
second variant. The reason for that is the construction of the different pat-
tern instances, and hence, the structure of the constraint network. In both

9.2. PERFORMANCE EVALUATION 167

variants, the movement of component A performs better than the movement
of component X. Once again, the reason for that is the construction of the
pattern instances. Changing the width of component A or of component X
does not result in any layout changes. Hence, layout computation takes more
or less no time.

9.2.3 Performance Test Architecture
In the following, tests for several patterns are presented. For each of these
tests, a “construction” of pattern instances is chosen that shows a good per-
formance. Furthermore, a user interaction is chosen that causes the layout
engine to modify a huge part of the diagram.

Pattern # Comps # Pattern Inst. # Ch. Comps
Layered Layout 2n− 1 1 (n atomic) 2n− 1
Circular Layout 2n− 1 1 (n atomic) 2n− 1

Node Overlap Removal n 1 (n atomic) 2
Equal Horizontal Distance n n− 2 n

Quadratic Component n n 1
Minimal Size Component n n 1

Equal Width n n− 1 n
Align in a Column (center) n n− 1 n

Vertical Alignment (left) n n− 1 n
List n+ 1 n n+ 1

Rectangular Containment n n− 1 n
C: Inner Attachment n n− 1 n
C: Outer Attachment n n− 1 n

C: Abstraction 2n+ 1 2n 2n+ 1
C: Application 2n+ 1 2n 2n+ 1

Table 9.1: Test Design

Each test is designed in a way that after the chosen user interaction is per-
formed, if possible, all predicates that are present in the diagram need to be
checked, all predicates are violated, and for each predicate, an associated rule
changes the diagram. In contrast to this worst-case scenario, in real-world
scenarios only a few predicates are usually affected after a user changes the
diagram.
The performance depends on the number of components, the number of pat-
tern instances and the degree of connectivity of the constraint network.
The tests are designed in such a way that they are comparable. Therefore,
in each test, approximately n (atomic) pattern instances are created that in-

168 CHAPTER 9. EVALUATION

volve approximately n components. A user change is performed that changes
exactly one component and that requires updating as many other diagram
components as possible. Table 9.1 lists the tests created, together with the
number of components created, the number of pattern instances created and
the number of components that are changed by the layout engine.

9.2.4 Performance Tests

In the following, tests for most of the layout patterns that were described in
Chapter 3 are presented.

Layered Layout

The layered layout pattern is tested as shown in Figure 9.5. n nodes and
n− 1 edges are created. Node 0 is connected with all other nodes. 1 pattern
instance (alternatively n atomic pattern instances) is created that enforces
the whole graph being layouted via a layered layout algorithm. A pattern
instance is created for the following set of components:

• {0, 1, 2, ...}

User interaction is simulated in a sense that node 0 is moved to the bottom.
As a consequence, the layout algorithm moves all other nodes to the correct
position and updates all edges accordingly.

Figure 9.5: Layered Layout

9.2. PERFORMANCE EVALUATION 169

Circular Layout

The circular layout pattern is tested as shown in Figure 9.6. n nodes and
n− 1 edges are created. Node 0 is connected with all other nodes. 1 pattern
instance (alternatively n atomic pattern instances) is created that enforces
the whole graph being layouted via a circular layout algorithm. A pattern
instance is created for the following set of components:

• {0, 1, 2, ...}

User interaction is simulated in a sense that node 0 is moved to the left. The
layout algorithm now updates the diagram by moving all other nodes to the
correct position and updating all edges accordingly.

Figure 9.6: Circular Layout

Node Overlap Removal

The node overlap removal pattern is tested as shown in Figure 9.7. n nodes
are created. 1 pattern instance (alternatively n atomic pattern instances) is
created that ensures that the nodes do not overlap. A pattern instance is
created for the following set of components:

• {0, 1, 2, ...}

User interaction is simulated in a sense that node 0 is moved to the right onto
node 1. As a consequence, the layout algorithm moves some other nodes to
ensure that nodes do not overlap. In the example shown in Figure 9.7, node
1 and node 2 are moved.

170 CHAPTER 9. EVALUATION

Figure 9.7: Node Overlap Removal

Performance of Graph Drawing Algorithms

The performance of patterns that encapsulate graph drawing algorithms is
shown in Figure 9.8. The overall performance is better than the performance
of constraint-based patterns, but worse than the performance of rule-based
patterns. E.g. updating 100 components requires about 0.02 seconds.

Figure 9.8: Performance of Graph Drawing Algorithms

9.2. PERFORMANCE EVALUATION 171

The curve that corresponds to the circular containment pattern shows some
irregularities. These irregularities have their origins in the third-party graph
drawing algorithm that is encapsulated in the circular layout pattern.

Equal Horizontal Distance

The equal horizontal distance pattern is tested as shown in Figure 9.9. The
diagram consists of n nodes. n−2 pattern instances are created that enforce
these nodes having an equal distance. Pattern instances are created for the
following sets of components:

• {0, 1, 2}, {1, 2, 3}, {2, 3, 4} etc.

User interaction is simulated in a sense that node 0 is moved to the right. As
a consequence, the layout algorithm moves all other nodes to an appropriate
position.

Figure 9.9: Equal Horizontal Distance

Performance of Constraint-based Algorithms

The performance of the pattern that encapsulates a constraint-based algo-
rithm is shown in Figure 9.10. In the figure, performance is compared to the
performance of a rule-based layout pattern that provides the (more or less)
same functionality. As can be seen, the rule-based version performs much
better than the constraint-based version. Nevertheless, the performance of
the constraint-based version is still satisfactory: E.g. updating 100 com-
ponents requires less than 0.1 seconds. (Note that the chart has another
scale.)

172 CHAPTER 9. EVALUATION

Figure 9.10: Performance of Constraint-based Algorithms

Constraint-based algorithms perform worst in our setting. Reasons for that
are:

• Constraint solvers are general and powerful, and do not provide a
problem-specific solution.

• The integration of the constraint solver in the framework is not perfect.
The constraint solver receives an almost unordered set of many small
csp-constraints as input. A reformulation and an ordering of these
csp-constraints could increase the overall performance.

• After user changes, the CSP is not solved incrementally. Instead, the
CSP is solved from scratch each time the user modifies the diagram.

Quadratic Component

The quadratic component pattern is tested as shown in Figure 9.11. n nodes
are created. n pattern instances are created that enforce the n nodes being
quadratic. Pattern instances are created for the following sets of components:

• {0}, {1}, {2} etc.

9.2. PERFORMANCE EVALUATION 173

User interaction is simulated in a sense that the height of node 1 is increased.
The layout algorithm now updates the diagram by increasing the width of
node 1 as well.

Figure 9.11: Quadratic Component

Minimal Size Component

The minimal size component pattern is tested as shown in Figure 9.12. n
nodes are created. n pattern instances are created that enforce the n nodes
having a minimal size. Pattern instances are created for the following sets of
components:

• {0}, {1}, {2} etc.

User interaction is simulated in a sense that the width of node 0 is decreased.
This action is not allowed by the layout algorithm, and hence the algorithm
undos the user change.

Equal Width

The equal width pattern is tested as shown in Figure 9.13. n nodes are cre-
ated. n − 1 pattern instances are created that enforce all nodes having the
same width. Pattern instances are created for the following sets of compo-
nents:

• {0, 1}, {1, 2}, {2, 3} etc.

User interaction is simulated in a sense that the width of node 0 is increased.
The layout algorithm updates the diagram by increasing the width of all
other nodes.

174 CHAPTER 9. EVALUATION

Figure 9.12: Minimal Size Component

Figure 9.13: Equal Width

Align in a Column (Center)

The align in a column (center) pattern is tested as shown in Figure 9.14. n
nodes are created. n − 1 pattern instances are created that enforce the n
nodes being aligned in a column at the center. Pattern instances are created
for the following sets of components:

• {0, 1}, {1, 2}, {2, 3} etc.

User interaction is simulated in a sense that node 0 is moved to the left. The
layout algorithm updates the diagram by moving all other components to
the left.

9.2. PERFORMANCE EVALUATION 175

Figure 9.14: Align in a Column (Center)

Vertical Alignment (Left)

The vertical alignment (left) pattern is tested as shown in Figure 9.15. n
nodes are created. n − 1 pattern instances are created that enforce the n
nodes being vertically aligned at the left side. Pattern instances are created
for the following sets of components:

• {0, 1}, {1, 2}, {2, 3} etc.

User interaction is simulated in a sense that node 0 is moved to the right.
The layout algorithm updates the diagram by moving all other components
to the right.

List

The list pattern is tested as shown in Figure 9.16. One container node and
n contained nodes are created. n pattern instances are created that enforce
the contained nodes being arranged as a list. Pattern instances are created
for the following sets of components:

• {−, 1, 0}, {1, 2, 0}, {2, 3, 0}, {3, 4, 0} etc.

User interaction is simulated in a sense that the container node is moved
to the right. The layout algorithm now updates the diagram by moving all
contained nodes to the right.

176 CHAPTER 9. EVALUATION

Figure 9.15: Vertical Alignment (Left)

Figure 9.16: List

Rectangular Containment

The rectangular containment pattern is tested as shown in Figure 9.17. n
rectangles are created. n − 1 pattern instances are created that enforce
all rectangles being correctly nested. Pattern instances are created for the
following sets of components:

• {0, 1}, {1, 2}, {2, 3} etc.

User interaction is simulated in a sense that rectangle 0 is moved to the
bottom. The algorithm now updates the diagram by increasing the height of
all other rectangles.

9.2. PERFORMANCE EVALUATION 177

Figure 9.17: Rectangular Containment

Performance of Rule-based Algorithms

The performance of patterns that encapsulate rule-based algorithms is shown
in Figure 9.18, and is quite convincing. E.g. updating 100 components
requires less than 0.02 seconds.

Figure 9.18: Performance of Rule-based Algorithms

178 CHAPTER 9. EVALUATION

Circular Containment

The test of the circular containment pattern consists of four parts: In the
first two tests, the inner attachment as well as the outer attachment are
tested individually. In the other two tests, the nesting of abstractions and
the nesting of applications are tested individually as well.

Inner Attachment The first part is tested as shown in Figure 9.19. n circles
are created. n−1 pattern instances are created that enforce the correct inner
attachment of the circles. Pattern instances are created for the following sets
of components:

• {0, 1}, {1, 2}, {2, 3} etc.

User interaction is simulated in a sense that circle 0 is moved to the right.
The algorithm now updates the diagram by moving all other components to
the right.

Figure 9.19: Circular Containment: Inner Attachment

Outer Attachment The second part is tested as shown in Figure 9.20. n
circles are created. Each circle has one circle at the outer border of the
circle. n − 1 pattern instances are created that enforce the correct outer
attachment of the circles. Pattern instances are created for the following sets
of components:

• {0, 1}, {1, 2}, {2, 3} etc.

User interaction is simulated in a sense that circle 0 is moved to the right.
The algorithm updates the diagram by moving all other circles to the right.

9.2. PERFORMANCE EVALUATION 179

Figure 9.20: Circular Containment: Outer Attachment

Abstraction The third part is tested as shown in Figure 9.21. 2n+1 circles
are created. The structure is as follows: Each circle contains two circles: One
at the inner border of the circle, and one inside the circle. About 2n pattern
instances are created that enforce the correct nesting of the circles. Pattern
instances are created for the following sets of components:

• Inner Attachment: {0, 1}, {2, 3}, {4, 5} etc.

• Circular Containment: {0, 1, 2}, {2, 3, 4}, {4, 5, 6} etc.

User interaction is simulated in a sense that circle 2n (14 in the example) is
moved to the left. The algorithm now updates the diagram by moving all
other circles to the left.

Application The fourth part is tested as shown in Figure 9.22. 2n+1 circles
are created. The structure is as follows: Each circle contains two circles: One
inside the circle, and one at the outer border of this circle. About 2n pattern
instances are created that enforce the correct nesting of the circles. Pattern
instances are created for the following sets of components:

• Outer Attachment: {1, 2}, {3, 4}, {5, 6} etc.

• Circular Containment: {0, 1, 2}, {2, 3, 4}, {4, 5, 6} etc.

User interaction is simulated in a sense that circle 2n (14 in the example) is
moved to the left. The algorithm now updates the diagram by moving all
other circles to the left.

180 CHAPTER 9. EVALUATION

Figure 9.21: Circular Containment: Abstraction

Figure 9.22: Circular Containment: Application

Performance of Circular Containment Pattern for VEX Editor

The performance of the circular containment pattern is shown in Figure 9.23.
As can be seen, the performance of the inner attachment and the outer at-
tachment is better than the performance of the abstraction and of the appli-
cation. This is because the abstraction part contains the inner attachment
part and the application part contains the outer attachment part.

9.2. PERFORMANCE EVALUATION 181

Figure 9.23: Performance of Circular Containment Pattern

Vertical Alignment (Variant 1 and Variant 2)

In Chapter 5, two variants of the vertical alignment pattern were described.
In the first variant, the Elems PMM contains the attributes x, y, w, and
h, which are mapped to the components’ attributes x, y, w and h. As
these attributes are equal, no mapping p-constraints are required. In the
second variant, the Elems PMM contains the attributes t, b, l, and r, which
are mapped to the components’ attributes x, y, w and h. In this variant,
several mapping p-constraints are required. As a consequence, the constraint
network that corresponds to the second variant is more complex than the
constraint network that corresponds to the first variant.
The design of the test for the second variant is equal to the design of the test
for the first variant that was already described.

Performance of Patterns with Mapping Constraints

The performance of the first and the second version of the vertical alignment
pattern are shown in Figure 9.24. As can be seen in the figure, the perfor-
mance of the second variant is worse than the performance of the first variant.
This is because there is an increased number of predicates that need to be
checked, and an increased number of attributes that need to be updated.

182 CHAPTER 9. EVALUATION

Figure 9.24: Performance of Patterns with Mapping Constraints

9.2.5 Performance Experiments
In the following, two performance experiments are presented. These ex-
periments were already outlined in [73]. They give some insight into the
performance of global ad-hoc layout, local ad-hoc layout and local ad-hoc
layout with propagation.
In the two performance experiments, ad-hoc layout is computed for the ver-
tical alignment (left) pattern only. Furthermore, no pattern instances are
present in the diagram before ad-hoc layout is computed.

Ad-hoc Layout: Experiment 1

The first performance experiment starts with a diagram that consists of n
components that are arranged almost vertically. The user moves the topmost
component to the left. As a consequence, the GAL as well as the LAL/P align
all components vertically, whereas the LAL aligns the moved component and
its lower neighbor only.
Figure 9.25 shows an example: The diagram consists of n = 6 components
that are arranged almost vertically. The left figure in Figure 9.25(a) and
the left figure in Figure 9.25(b) show the diagram after the user has moved
component 0. The right figure in Figure 9.25(a) shows the diagram after
the LAL was computed and the diagram was updated: The two topmost

9.2. PERFORMANCE EVALUATION 183

components are aligned vertically. The right figure in Figure 9.25(b) shows
the diagram after the GAL or the LAL/P was computed and the diagram
was updated: All components are aligned vertically. In case of the LAL,
pattern instances were created for the following sets of components for the
example:

• {0, 1}

In case of the GAL and the LAL/P, pattern instances were created for the
following sets of components for the example:

• {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}

(a) Diagram - LAL (b) Diagram - GAL & LAL/P

Figure 9.25: Automatic Ad-hoc Layout (Test 1)

Figure 9.27 shows the time in milliseconds it takes to compute the GAL
(red), the LAL (green) and the LAL/P (blue) for n components. As can be
seen, the computation of the LAL is very fast. The computation of the GAL
and the LAL/P is more time-consuming. For instance, the computation of
the LAL for n = 40 components takes about 1 millisecond, the computation
of the GAL takes about 30 milliseconds, and the computation of the LAL/P
takes about 90 milliseconds.

Ad-hoc Layout: Experiment 2

The second performance experiment starts with a diagram that consists of n
components that are arranged as a matrix. The matrix is almost quadratic,
e.g. a diagram with 100 components has 10 rows and 10 columns. The user

184 CHAPTER 9. EVALUATION

moves the component in the top-left corner to the left. As a consequence,
the GAL as well as the LAL/P align the leftmost column vertically, whereas
the LAL aligns the moved component and its lower neighbor only.

(a) Diagram - LAL

(b) Diagram - GAL & LAL/P

Figure 9.26: Automatic Ad-hoc Layout (Test 2)

Figure 9.26 shows an example: The diagram consists of n = 40 components,
which are arranged as a matrix. The left figure in Figure 9.26(a) and the left
figure in Figure 9.26(b) show the diagram after the user has moved component
0. The right figure in Figure 9.26(a) shows the diagram after the LAL
was computed: The components 0 and 1 are aligned vertically. The other
components have not been modified. The right figure in Figure 9.26(b) shows
the diagram after the GAL or the LAL/P was computed: The components
of the leftmost column are aligned vertically. The other components have
not been modified. In case of the LAL, pattern instances were created for
the following sets of components for the example:

• {0, 1}

9.2. PERFORMANCE EVALUATION 185

In case of the GAL and the LAL/P, pattern instances were created for the
following sets of components for the example:

• {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}

Figure 9.28 shows the time in milliseconds it takes to compute the GAL (red),
the LAL (green) and the LAL/P (blue) for n components. As can be seen,
the computation of the LAL is very fast. The computation of the LAL/P
takes a bit more time, but is still acceptable for the use in an interactive
environment. In contrast, the GAL is rather time-consuming. For instance,
the computation of the LAL for the example shown in Figure 9.26 (n =
40 components) takes about 1 millisecond, the computation of the LAL/P
takes about 5 milliseconds, and the computation of the GAL takes about 30
milliseconds.

Discussion

The most striking difference between the results of the two performance
experiments is that GAL performs better than LAL/P in the first experi-
ment, while it is slower in the second experiment. GAL performs better than
LAL/P in the first experiment, because all components are involved in layout
computation in both cases, and GAL does not need to take the neighborhood-
relation of components into account. In the second performance test, LAL/P
performs better than GAL, because only a small subset of components are
involved in layout computation.
As experiments showed, usually only a small subset of components is involved
in layout computation in practical scenarios. Therefore, the first experiment
can be considered as worst-case scenario, while the second one as average-
case scenario. Our summarization is that GAL rapidly results in performance
issues, whereas LAL as well as LAL/P turned out to be practically usable.
This is due to the fact that layout improvements are only computed locally,
and hence performance does not (directly) depend on the size of the diagram,
but rather depends on the layout behavior defined for it.

186 CHAPTER 9. EVALUATION

Figure 9.27: Automatic Ad-hoc Layout (Test 1): Performance

Figure 9.28: Automatic Ad-hoc Layout (Test 2): Performance

9.3. SUMMARY 187

9.3 Summary
In this chapter, an evaluation of the approach in terms of usability and in
terms of performance was given. A user study, which aims at identifying lay-
out patterns that are commonly “needed” in diagram editors, was described
in Section 9.1. In Section 9.2, a performance evaluation was presented.

9.3.1 Performance Evaluation
In the performance tests, each layout pattern was tested on its own. The
combination of layout patterns was not tested via automatic tests, but via
informal user experiments. These user experiments showed that the perfor-
mance is convincing.
As mentioned in the beginning, the most expensive part of layout computa-
tion is the algorithm that controls the pattern combination. The performance
of this algorithm usually depends on the number of components, the number
of pattern instances and the degree of connectivity of the constraint network.
In order to create some sort of worst-case scenario, the tests were designed
in a sense that the number of pattern instances as well as the degree of con-
nectivity of the constraint network was maximized. The tests showed that
the performance in this scenario is still convincing.
As experiments showed, in contrast to this worst-case scenario, real-world
scenarios usually only affect a few pattern instances after a user changes the
diagram. Hence, performance is much better.
The performance tests mentioned in this chapter are based on a prototypical
implementation of the concepts described in this thesis. Performance could
be improved by enhancing the following:

• Currently, layout information is computed from scratch each time it is
needed.

– The reuse of already computed “layout information” would im-
prove performance.

– The computation of the “layout information” in advance would
also improve performance.

• At the moment, the layout is continuously updated during movement.
This means that the layout is more or less updated “for every pixel”, or
more precisely, after each mouse event. Updating the layout less often
would be a good alternative.

188 CHAPTER 9. EVALUATION

Chapter 10

Conclusions

In this chapter, the thesis is concluded. A summary is given in Section 10.1.
In Section 10.2, some related areas are mentioned, which had a point of
contact with this thesis. Some future directions are discussed in Section 10.3.

10.1 Summary
In this thesis, a general approach for the definition of layout behavior for
diagram editors was described. In Chapter 2, related work was discussed.
Chapter 3 introduced four visual languages, namely the running examples
used in this thesis. In addition, several layout patterns were described that
are used in editors for these visual languages. The concept of layout pat-
terns was described in Chapter 4. In Chapter 5, details were given about the
control algorithm whose purpose it is to combine different layout patterns.
In Chapter 6, the user-controlled instantiation of layout patterns and some
special features that are useful in the context of user-controlled instantiation
of layout patterns were described. In Chapter 7, the concept of layout sug-
gestions and of ad-hoc layout were introduced. In Chapter 8, several layout
patterns were described in detail. In Chapter 9, an evaluation of the ap-
proach in terms of usability and in terms of performance was given. Finally,
in Appendix A, some specification and implementation details are provided.
In the approach, layout functionality is defined via layout patterns that en-
capsulate certain layout behavior and thus make reuse easier. Instantiation
of layout patterns may either be performed automatically or user-controlled.
Layout behavior can be defined (amongst others) via one of the following
approaches: Graph drawing algorithms, constraint-based algorithms or rule-
based algorithms. Different layout patterns may be combined by the help
of the control algorithm. The pattern-based layout approach enables two

189

190 CHAPTER 10. CONCLUSIONS

new features, namely layout suggestions and automatic ad-hoc layout. The
usability evaluation and the performance evaluation show that the approach
fulfills the requirements of an editor user and that it is practically usable.
All in all, with the help of the layout approach presented in this thesis, a
layout engine for a new diagram editor can be created quite fast, as already
defined layout behavior can be reused. Hence, the approach is especially
well suited for DiaMeta, an environment that aims at creating prototypes of
diagram editors as fast as possible.
Furthermore, with the help of this approach, it is possible to define a great
variety of functionalities that support the user in an inherently dynamic
environment.

10.2 Application Areas
The layout approach presented in this thesis can also be used in other areas.
Some application areas that were touched during the development of the
layout approach are described in the following.

10.2.1 Layout Specification via Graph Transformations
In this thesis, three different types of layout patterns were described, namely
layout patterns that encapsulate graph drawing algorithms, constraint-based
algorithms and rule-based algorithms.
In [65], a fourth category was sketched: It is possible to define a layout
algorithm via a graph (or model) transformation. Algorithms that consist of
multiple phases are well suited to be defined via graph transformations. One
example is the Sugiyama algorithm [89, 35], which creates a layered layout.
The algorithm has several phases: (1) cycle removal, (2) layering, (3) node
ordering, and (4) coordinate assignment. These phases can easily be defined
via graph transformations, as was shown in [65].

10.2.2 Diagram Import
In DiaMeta, the editor user usually creates a diagram. Internally, a meta-
model instance is automatically created that corresponds to this diagram.
The creation of this meta-model instance is straightforward. In contrast,
the automatic creation of a diagram from a meta-model instance is more
complex. In [88], it is described how the automatic creation of a diagram can
be performed in DiaGen. In [3], it is outlined how triple graph grammars
[99] can be used to enable this functionality in DiaMeta. TGGs are well

10.2. APPLICATION AREAS 191

suited, because they allow for a bidirectional transformation between the
graph model and the instance graph (see Appendix A). One crucial step
during diagram import is the computation of an initial layout. The approach
presented in this thesis can potentially be useful in this context.

10.2.3 Different Views of a Diagram

In [52, 51], DiaMeta was extended in a sense that it now provides different
views of the same diagram. If the user modifies the diagram in one of the
views, the other views need to be updated. This means that also the layout
needs to be updated. In this context, the approach described in this thesis
might be helpful.
Fish-eye viewing and semantic zooming [55] are related topics here. Their
realization also requires a powerful layout approach.

10.2.4 Layout for Three-dimensional Diagrams

In [113], a three-dimensional variant of DiaMeta editors was presented. In
[112], GEF3D, a three-dimensional variant of GEF was described. These
three-dimensional diagram editors could be combined with the layout ap-
proach presented in this thesis. The combination should be straightforward.

10.2.5 Animated Visual Languages

Animated visual languages describe diagrams that change over time. One
example are petri nets. A petri net mainly consists of places, transitions
and arcs. It can be executed, which means that enabled transitions are
fired nondeterministically one after another. Strobl et al. describe in [104,
105] a framework for generating editors for animated visual languages. The
framework is an extension of the DiaMeta framework. Ermel et al. also
describe a framework for the creation of editors for animated visual languages
[33, 7]. The layout approach presented in this thesis might be helpful when
the diagram needs to be updated after one execution step.
Games are also some sort of animated visual languages. DiaMeta can be
used to define simple state-based games, such as Ludo [58, 66, 94]. It can
even be used to prototype more complex games [74]. Once again, the layout
approach could be utilized in these “editors”.

192 CHAPTER 10. CONCLUSIONS

10.2.6 Sketched Diagrams
The most natural way of drawing a diagram is via sketching. E.g. in [50],
a general approach for the recognition of diagrams is described. In [22],
another approach is described, which, for instance, enables sketching and
recognition of Euler diagrams. In [91, 22], Plimmer et al. describe how a
sketched diagram can be updated automatically after layout modification.
In [18, 19, 17], Brieler et al. describe an extended version of the DiaGen
framework, which enables the generation of visual language editors that al-
low for sketching a diagram with a stylus. With the help of the approach
presented by Plimmer et al., the sketched diagram could be beautified by
using the layout approach presented in this thesis. As the extended version
is based on DiaGen, not on DiaMeta, the layout approach cannot be used
straightforwardly.

10.2.7 Diagram Editors for Multi-Touch Screens
In [44], a graph editor is described that runs on an iPod, iPhone or iPad.
Such an editor also requires a layout engine. The layout approach presented
in this thesis could also be used here.
These kinds of input devices provide somewhat different interaction mecha-
nisms. Amongst others, one or more fingers can be used as input. For such
input devices, the layout approach could be extended in a sense that it also
supports such interaction mechanisms. E.g. shaking the device could result
in updating the layout of the whole diagram.
In [41, 42], Frisch et al. describe some layout behavior that is specifically
tailored to multi-touch screens. The layout behavior described in this paper
is hand-coded. Such layout behavior could also be defined via the layout
approach described in this thesis.

10.3 Future Directions
In this section, first of all, some usability improvements concerning the spec-
ification of layout patterns and the definition of a layout engine for a certain
visual language editor are discussed. Thereafter, the creation of an initial
layout with the help of the approach presented in this thesis is sketched.

10.3.1 Specification of the Layout Engine
The specification of the layout engine for a certain visual language editor
consists of two parts:

10.3. FUTURE DIRECTIONS 193

• The specification of layout patterns.

• The integration of layout patterns into an editor.

– The choice of layout patterns and the definition of correspondences
between LM and PMs.

– The extension of the GUI of the visual language editor.

Implementation of Layout Patterns

First, layout patterns need to be specified. At the moment, language-dependent
layout patterns as well as language-independent layout patterns are written
by hand.
It turned out that the most natural procedure during the creation of a
language-independent layout pattern is as follows:

1. Creation of a language-dependent version of the layout pattern.

2. Manual “transformation” of this language-dependent layout pattern
into a language-independent one.

Instead of writing the language-dependent version of a layout pattern by
hand, an abstract specification mechanism could be used. Here, some sort of
(visual) DSL could be invented. Based on this specification, the correspond-
ing Java code could be generated.
Furthermore, the transformation of a language-dependent layout pattern into
a language-independent one could be performed (partially) automatic.
A tool for the specification of layout patterns could even be generated. In
this context, also some sort of visual specification of layout patterns could
be enabled. This idea as well as a prototypical implementation was outlined
in [62].

Integration of Layout Patterns into an Editor

Besides the specification of layout patterns, they need to be integrated into
an editor. First, layout patterns need to be chosen, which is performed man-
ually at the moment. GUI support for this part would be straightforward.
Second, correspondences between the LM and the PMs need to be defined.
At the moment, these correspondences are also defined manually. Instead,
a certain transformation language could be used. As EMF [102] is used for
the specification of the LMM and the PMMs, a specification language that
is based on EMF, e.g. based on Xtext [36], would be a good choice. Alterna-
tively, even a visual model transformation language could be used. Last, the

194 CHAPTER 10. CONCLUSIONS

integration into the framework needs to be performed. For that purpose, the
DiaMeta framework as well as the GEF framework were extended in such a
way that nothing else needs to be specified.

Discussion

All the improvements mentioned above involve the introduction of a new
DSL and (or) GUI. As a consequence, the editor developer would need to get
used to a new DSL and (or) GUI.
In our opinion, for many editor developers, a plain Java interface (as it is
used now) is the better alternative. This has the benefit that the editor
developer can use a language he or she is familiar with. He or she does not
need to get used to a new DSL and (or) GUI. This has also the benefit that
it is easier to react on modifications, as changes only imply the change of the
Java interface, not the change of the DSL and (or) the GUI.

10.3.2 Initial Layout
The pattern-based layout approach presented in this thesis could be used
for the creation of an initial layout. In order to create an initial layout, the
following procedure is proposed:

• All attribute values are initialized.

• All pattern instances are created that are triggered by the automatically
applied layout patterns.

• Zero or more additional layout pattern instances are created. Here, a
pattern that encapsulates a graph drawing algorithm is a good choice.

• The initial layout is computed

• The additionally created pattern instances are removed again.

• The user refines the layout.

The input format for a graph could, for instance, be GraphML [48]:

<graphml>
<graph id="g">
<node id="A"/>
<node id="B"/>
<node id="C"/>
<node id="D"/>

10.3. FUTURE DIRECTIONS 195

<edge source="A" target="B"/>
<edge source="B" target="C"/>
<edge source="B" target="D"/>

</graph>
</graphml>

Firstly, all attributes are initialized: Each node is located at the position
(0, 0), has the width 0 and the height 0. Each edge starts at the position
(0, 0) and ends at the position (0, 0). For this diagram, the following pattern
instances are automatically created: Instances of the minimal size pattern
are created for the sets {A}, {B}, {C} and {D} of components. An instance
of the edge connector pattern is created for the following set of components:
{A,B,C,D, e1, e2, e3}. e1 is the edge between the components A and B, e2
is the edge between the components B and C, and e3 is the edge between the
components B and D. In addition, the layered layout pattern is manually
applied to all nodes and edges. As a consequence, the diagram is arranged
as can be seen in Figure 10.1.
In this example, all attributes are initialized with the value 0. Alternatively,
attributes could also be initialized with other values. This way, the “quality”
of the initial layout could possibly be improved.

Figure 10.1: Initial Layout of the Diagram

Open Issues

In the example shown above, this procedure leads to an acceptable layout.
But this may not be the case for other visual languages. In general, the
following question needs to be answered: Which additional layout pattern
instances should be created?

196 CHAPTER 10. CONCLUSIONS

Besides, the layout algorithm is usually triggered by a user modification.
But what is the “user modification” in this scenario? As a first solution, an
arbitrary node could be chosen being the changed component.

Structured Editing

The mechanism for initial layout creation could be further used for struc-
tured editing. Here, a layout pattern could be applied to the newly created
components and (maybe) to some components that are in the direct neigh-
borhood of these components. At this point, this is only a rough idea, and
has to be examined in more detail.

Content Assist

In [80, 81, 83, 79], Mazanek et al. present some new methods for syntax-based
user assistance. These methods comprise the possibility to automatically
extend incomplete diagrams and to generate correct diagrams of an arbitrary
size. After modifying a diagram or after generating a diagram from scratch,
an important issue is the layout of the newly created diagram components, as
discussed in [82]. This problem is quite similar to structured editing, and the
layout approach presented in this thesis could be helpful. These new methods
for syntax-based user assistance were developed for DiaGen, and hence, are
based on hypergraph grammars instead of meta-models. As a consequence,
the layout approach described in this thesis cannot be used straightforwardly.

10.4 Summary
In this chapter, the thesis was concluded. A summary was given in Sec-
tion 10.1. In Section 10.2, some related areas were mentioned, and in Sec-
tion 10.3, some future directions were discussed.
The two future directions mentioned were chosen, because some ideas have
already been developed. In general, future directions can be categorized as
follows:

• Usability enhancement for the editor user and the editor developer.

• Extension of the layout approach.

• Utilization of the layout approach in other application domains.

Appendix A

Specification and Implementation

All concepts described in this thesis are implemented in Java, and are part
of a layout framework. This framework enables the specification of layout
patterns, comprises the control algorithm and provides a test environment.
Furthermore, a library of layout patterns and one or more unit tests for each
of these layout patterns are part of this framework.
In this chapter, some specification and implementation details are given.
Details about the layout framework itself are given in Section A.1. In Sec-
tion A.2, some details are given about the integration of a layout engine,
which is defined by the help of this framework, into DiaMeta and into GEF
editors.

A.1 Layout Framework
With the help of the framework, layout patterns, which were described in
Chapter 8, may be specified. These patterns may be instantiated, and the
instances may be combined via the control algorithm described in Chapter 5,
which is also part of the framework. The framework makes user-controlled
layout behavior (Chapter 6) possible. Furthermore, it enables layout sugges-
tions and automatic ad-hoc layout (Chapter 7).
In addition, the framework provides a test environment, which enables the
specification of unit tests for layout patterns. In this test environment, it
is possible to measure performance. In addition, layout modifications that
are performed by the layout patterns can be visualized. For instance, the
performance tests presented in Chapter 9 were defined with the help of this
test environment, and also the figures shown in Chapter 9 were generated
with the help of this test environment.
The framework comprises a library of layout patterns and unit tests for these

197

198 APPENDIX A. SPECIFICATION AND IMPLEMENTATION

patterns. Amongst others, all layout patterns described in Chapter 8 are part
of the framework, and for each of these patterns, a unit test exists.

A.2 Integration into Diagram Editors
In this section, the integration of a layout engine, which is created with
the help of the layout framework, into DiaMeta editors as well as into GEF
editors is described. First of all, the transformation between the LM and the
PMs is described in general. Afterwards, special details are given for the two
types of editors.

A.2.1 Transformation
The integration of the layout engine into a diagram editor implicates the
transformation between different models, namely the LM and the different
PMs. As already described in Chapter 4, this transformation is hand-coded,
and is not part of the framework.
A transformation is also required at another point, namely inside the layout
patterns themselves:

• Graph drawing libraries require a certain input format. For that pur-
pose, a “transformation” between the Graph PM and the input format
of the algorithms that are included in the Jung library and a “transfor-
mation” between the Graph PM and the input format of the algorithms
that are included in the yFiles library was defined.

• Constraint solvers also require a certain input format. For that pur-
pose, a “transformation” between the PM and the input format of the
constraint solver was defined. E.g. in case of the equal horizontal dis-
tance pattern, a transformation between the List PMM and the input
format for the QOCA constraint solver was defined.

All these transformations could be standardized, and could potentially be
defined via a model transformation language, as already mentioned in the
future work section of Chapter 4.

A.2.2 Integration into DiaMeta Editors
The layout framework was initially designed for DiaMeta editors. In DiaMeta,
the abstract syntax of a visual language is defined via an Ecore meta-model.

A.2. INTEGRATION INTO DIAGRAM EDITORS 199

Architecture

An overview of the architecture is shown in Figure A.1. In a DiaMeta ed-
itor, an editor user, first of all, draws a diagram. Internally, this diagram
is represented by a graph model. This graph model is transformed into a
so-called instance graph. Then, an ASMM instance is created for this in-
stance graph. This is done by solving a constraint satisfaction problem, as
described in [87]. Finally, a CSMM instance is created from the diagram
itself. The ASM together with the CSM forms the LM, which forms the
basis for layout computation. Based on the LM, layout pattern instances
are created. Some of these instances are automatically created, while others
are created by the editor user. The layout engine gets the LM as well as all
layout pattern instances as input. After layout computation, all attribute
changes are collected, and the diagram is updated. Based on the changed
diagram, the graph model, the instance graph, the ASM and the CSM are
updated automatically.

Diagram

graph model

instance graph

LM

ASM CSM

Layout Pattern
Instance
Layout Pattern
Instance

Layout Engine

edits

creates

creates

update
attribute
values

correspondence

input

input

Figure A.1: Integration into DiaMeta

Challenges

In the following paragraphs, some challenges are described that occurred
during the integration of the layout engine into DiaMeta editors.

200 APPENDIX A. SPECIFICATION AND IMPLEMENTATION

Extension of the GUI First of all, the GUI of the editor had to be extended.
The extensions were already described in detail in Chapter 6 and Chapter 7
and may be categorized as follows:

• GUI elements that enable the creation of user-controlled layout pattern
instances.

• The visualization of pattern instances in a list as well as in the diagram
itself.

• A menu that allows setting of several options.

Freehand Editing One characteristic of DiaMeta that had to be carefully
taken into account is freehand editing. As already mentioned in Chapter 6,
a special syntax preservation mode was introduced in order to preserve the
syntax during user modifications and during layout adjustments.
The presence of freehand editing in a diagram editor also implies that a
diagram may be (partially) incorrect. In DiaMeta, this means that this
part of the diagram cannot be “transformed” into a LMM instance. As a
consequence, this part of the diagram cannot be beautified by the layout
approach presented in this thesis. Coping with (partially) incorrect diagrams
is up to future work.

Editor Generation Another important characteristic of DiaMeta is that it is
an editor generation framework. The only part that had to be implemented
by hand is the layout engine. With the layout approach described in this
thesis, a step forward is taken, and the implementation of the layout engine
is simplified: First of all, layout patterns can be reused, and secondly, new
layout patterns can be defined quite easy. As a next step, the layout engine
could even (partially) be generated.

Save and Load It turned out that it makes sense that the layout pattern
instances the user created are stored when the diagram is saved. Therefore,
the save mechanism of DiaMeta was extended as follows:

• The diagram itself is stored in an XML file. This file remains un-
changed.

• Layout pattern instances are stored in a separate XML file. The infor-
mation needing to be stored is the type of the pattern instance and the
diagram components this pattern instance is applied to.

A.2. INTEGRATION INTO DIAGRAM EDITORS 201

A.2.3 Integration into GEF Editors
The layout framework is not restricted to being used in DiaMeta editors, but
can be used in any visual language editor. In order to prove this, the layout
framework was used for the creation of the layout engine of a GEF editor.
In [59], the GEF editor itself, and the integration of the layout engine into
this editor is described. Furthermore, some newly developed layout patterns
are introduced.

Figure A.2: GEF Graph Editor

GEF is a framework that enables the creation of visual language editors for
the Eclipse Workbench. The editor that was created with this framework is
a simple graph editor. A screenshot of the editor can be seen in Figure A.2.
The architecture of a GEF editor follows the model-view-controller pattern
(MVC pattern). In the graph editor, the model is defined via an Ecore meta-
model. This design decision was made in order to allow for a straightforward
creation of the layout engine.

202 APPENDIX A. SPECIFICATION AND IMPLEMENTATION

Architecture

An overview of the architecture is shown in Figure A.3. In a GEF editor, a
user, first of all, draws a diagram. Internally, the diagram is represented by
an Ecore meta-model instance. Based on the Ecore model, layout pattern
instances are created. Some of these instances are automatically created,
others are created by the editor user. The layout engine gets the Ecore model
as well as all layout pattern instances as input. After layout computation,
all attribute changes are collected, and the Ecore model is updated. Based
on the changed Ecore model, the diagram is updated automatically.

Diagram Ecore Model

Layout Pattern
Instance
Layout Pattern
Instance

Layout Engine

edits

creates correspondence
update

attribute
values

input

creates

input

Figure A.3: Integration into GEF

Challenges

In the following paragraphs, some challenges are described that occurred
during the integration of the layout engine into GEF editors.

Extension of the GUI As for a DiaMeta editor, the GUI of the editor needs
to be extended. The only difference is that no syntax preservation mode is
needed in the GEF editor, as GEF editors do not support freehand editing.
The visualization of layout pattern instances in the diagram itself turned out
to be a bit more complicated than expected. The visualization of the layout
pattern instances cannot be drawn into the diagram itself, as this would imply
that this visualization would be treated as a diagram component. Hence, this
would, for instance, imply that this “component” can be selected, and that
handles are created for this “component”. Instead, the visualization of pattern
instances has to be drawn into a new layer.

A.3. SUMMARY 203

Diagram Preview during Modification In GEF editors, only a preview of
the diagram is shown while the editor user modifies the diagram, not the
diagram itself. As a consequence, the layout of the diagram is not updated
during modification. This behavior led to some usability issues, as the editor
user was not able to see the layout adjustments that were triggered by his
or her diagram modifications. To cope with this challenge, the GEF edi-
tor was modified in a sense that the diagram itself is now updated during
modification.

Components and Connections The GEF framework is designed for the cre-
ation of editors for graph-based visual languages. Therefore, components
and connections are treated differently in this framework. As a consequence,
up to this point, layout patterns that modify connectors are not possible. In
order to support this type of layout patterns, the GEF editor would need to
be modified. One possibility would be to define edges as components instead
of as connections.

Editor Implementation vs. Editor Generation The GEF editor described in
this section is implemented, not generated from an abstract specification as
it is done in case of the DiaMeta editor. Hence, the creation of such an editor
is rather time consuming.
Graphiti [115] is based on EMF and GEF. It enables an easy creation of
homogeneous graphical editors. Therefore, it bridges the gap between GEF
and EMF and tries to minimize the complexity of GEF by offering predefined
features. The layout approach described in this thesis can also be used for
such an editor, and already fulfills the aim of being quite easy.
The Graphical Modeling Framework (GMF) [31] is also based on EMF and
GEF. It allows for the generation of GEF editors. The layout approach
described in this thesis can also be used for such an editor.

A.3 Summary
In this chapter, some specification and implementation details were given.
Details about the layout framework itself were given in Section A.1. In
Section A.2, some details were given about the integration of a layout engine,
which is defined by the help of this framework, into DiaMeta editors and into
GEF editors.
In summary, it can be concluded that a layout engine, which is defined by
the help of the layout framework, can be integrated into (almost) any visual

204 APPENDIX A. SPECIFICATION AND IMPLEMENTATION

language editor that is implemented in Java. Only minor adaptions of the
editor are necessary, mainly affecting the GUI of the editor.

List of Listings

5.1 Control Algorithm for Pattern Combination 84
6.1 Algorithm for Graph Model Comparison 115
7.1 Algorithm for Computing GAL and LAL 124
7.2 Algorithm for Computing LAL/P 126
8.1 Graph Drawing Algorithm . 133
8.2 Graph Drawing Algorithm for Node Overlap Removal 135

205

206 LIST OF LISTINGS

List of Tables

3.1 Meta-Model of Class Diagrams 31
3.2 Patterns in Diagram Editors 37
4.1 Pattern Meta-Models . 55
6.1 Pattern Visualization . 111
8.1 Patterns in Diagram Editors 156
9.1 Test Design . 167

207

208 LIST OF TABLES

List of Figures

1.1 Visual Language: Graphs . 3
1.2 Overview of the Approach . 7
1.3 Graphs: Example Diagram . 7
1.4 Layout Pattern . 8

3.1 Nodes and Edges . 28
3.2 Graphs . 28
3.3 Meta-Model of Graphs . 29
3.4 Class Diagrams . 30
3.5 Excerpt of the Meta-Model of Class Diagrams 31
3.6 GUI Forms . 32
3.7 Meta-Model of GUI Forms . 33
3.8 VEX Diagrams: Variable Binding, Application and Abstraction 35
3.9 VEX Diagrams . 35
3.10 Meta-Model of VEX Diagrams 36
3.11 Tree Layout and Layered Layout 38
3.12 Circular Layout and Node Overlap Removal 39
3.13 Edge Connector . 39
3.14 Equal Horizontal and Equal Vertical Distance 40
3.15 Quadratic Component . 40
3.16 Minimal Size Component . 41
3.17 Equal Height and Equal Width 41
3.18 Align in a Row and Align in a Column 42
3.19 Horizontal and Vertical Alignment 43
3.20 List and Rectangular Containment 43
3.21 Circular Containment . 44

4.1 LMM, PMM, LM, PM . 48
4.2 Correlation: Diagram, LM, PMs and Language-independent

Pattern Instance . 49

209

210 LIST OF FIGURES

4.3 Correlation: Diagram, LM and Language-dependent Pattern
Instance . 49

4.4 Example Class Diagram . 50
4.5 CSMM of Class Diagrams and its Connections to the ASMM . 51
4.6 ASM and CSM of the Example 52
4.7 Pattern-Specific Meta-Models (PMMs) 54
4.8 TGG-Rule 1 . 57
4.9 TGG-Rule 2 . 57
4.10 TGG-Axiom . 58
4.11 Meta-Model of the Correspondence Nodes 58
4.12 Correlation: Diagram, LM, PM and Layout Pattern Instances 59
4.13 Example Class Diagram . 59
4.14 Diagram and Meta-Model Instances 60
4.15 Example: After Transformation 61
4.16 Diagram and Meta-Model Instances 62
4.17 Pattern Structure . 63
4.18 Example Diagram . 64
4.19 PMM Instances of Atomic Pattern Instances 65
4.20 Equal Distance between Components 69
4.21 Diagram . 70
4.22 Horizontal Alignment – Four Solutions 70
4.23 Pattern Structure: Graph Drawing Algorithms 71
4.24 Circular Layout . 72
4.25 Pattern Structure: Constraint-based Algorithms 74
4.26 Pattern Structure: Rule-based Algorithms 75

5.1 Running Example: Two Layout Alternatives 86
5.2 Instance of LMM . 87
5.3 Elems PMM . 88
5.4 Elem PMM . 88
5.5 Constraint Network of the Example (Variant 1) 90
5.6 Constraint Network of the Example (Variant 2) 91
5.7 Example Run of the Algorithm (Variant 1) 93
5.8 Example Run of the Algorithm (Variant 2) 93
5.9 VEX Diagram Example . 95
5.10 VEX Diagram Example . 95
5.11 Moving a Component . 96
5.12 Resizing a Component . 96
5.13 Resizing a Component (2) . 97

6.1 DiaMeta Graph Editor . 104

LIST OF FIGURES 211

6.2 GUI for Turning Layout Patterns On and Off 104
6.3 User-Controlled Application 105
6.4 Two Layered Layout Pattern Instances 107
6.5 Two Layered Layout Pattern Instances 107
6.6 Three Alignment Pattern Instances 108
6.7 One Vertical Alignment Pattern Instance 108
6.8 Two Horizontal Alignment Pattern Instances 108
6.9 Visualization of Pattern Instances 111
6.10 Coloring of Pattern Instances 112
6.11 Selection of Pattern Instances 112
6.12 Syntax Preservation . 113
6.13 Graphs: Example . 114
6.14 Graph Model: Example . 114
6.15 Examination of Diagram Correctness 116

7.1 Highlighting of Layout Suggestions 120
7.2 Preview of Layout Suggestions 121
7.3 Automatic Ad-hoc Layout . 125

8.1 Pattern Structure . 130
8.2 Sample Diagram . 130
8.3 Introductory Example . 131
8.4 Sample Diagram . 132
8.5 Sample Diagram . 146
8.6 Constraint Network of the Example (Variant 1) 147
8.7 Constraint Network of the Example (Variant 2) 148
8.8 Propagation (Variant 1) . 148
8.9 Propagation (Variant 2) . 148
8.10 Sample Diagram . 150
8.11 Sample Diagram . 151

9.1 Mindmaps: Circular and Layered Layout Strategy 161
9.2 Business Process Models . 162
9.3 Class Diagrams: Before and After Moving Class Person 163
9.4 Performance of the Introductory Example 166
9.5 Layered Layout . 168
9.6 Circular Layout . 169
9.7 Node Overlap Removal . 170
9.8 Performance of Graph Drawing Algorithms 170
9.9 Equal Horizontal Distance . 171
9.10 Performance of Constraint-based Algorithms 172

212 LIST OF FIGURES

9.11 Quadratic Component . 173
9.12 Minimal Size Component . 174
9.13 Equal Width . 174
9.14 Align in a Column (Center) 175
9.15 Vertical Alignment (Left) . 176
9.16 List . 176
9.17 Rectangular Containment . 177
9.18 Performance of Rule-based Algorithms 177
9.19 Circular Containment: Inner Attachment 178
9.20 Circular Containment: Outer Attachment 179
9.21 Circular Containment: Abstraction 180
9.22 Circular Containment: Application 180
9.23 Performance of Circular Containment Pattern 181
9.24 Performance of Patterns with Mapping Constraints 182
9.25 Automatic Ad-hoc Layout (Test 1) 183
9.26 Automatic Ad-hoc Layout (Test 2) 184
9.27 Automatic Ad-hoc Layout (Test 1): Performance 186
9.28 Automatic Ad-hoc Layout (Test 2): Performance 186

10.1 Initial Layout of the Diagram 195

A.1 Integration into DiaMeta . 199
A.2 GEF Graph Editor . 201
A.3 Integration into GEF . 202

List of Abbreviations

ASM abstract syntax model

ASMM abstract syntax meta model

CSM concrete syntax model

CSMM concrete syntax meta model

CSP constraint satisfaction problem

EMF eclipse modeling framework

GAL global ad-hoc layout

GEF graphical editing framework

GMF graphical modeling framework

LAL local ad-hoc layout

LAL/P local ad-hoc layout with propagation

LM layout model

LMM layout meta model

TGG triple graph grammar

XML extensible markup language

213

214 LIST OF FIGURES

Bibliography

[1] ALEXANDER, C., ISHIKAWA, S., AND SILVERSTEIN, M. A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University Press, 1977.

[2] ALKHALIFA, E. M., AND GAID, K. Cognitively Informed Intelligent
Interfaces: Systems Design and Development. IGI Global, 2012.

[3] BACKEN, T. Analyse und Umsetzung von Tripel-Graph-Grammatiken
als Hilfsmittel zur Diagrammanalyse. Master’s thesis, Universitaet der
Bundeswehr Muenchen, 2008.

[4] BADROS, G. Extending interactive graphical applications with con-
straints. PhD thesis, University of Washington, 2000.

[5] BADROS, G., BORNING, A., AND STUCKEY, P. J. The Cassowary Lin-
ear Arithmetic Constraint Solving Algorithm. ACM Transactions on
Computer Human Interaction 8 (2001), 267–306.

[6] BIER, E. A., AND STONE, M. C. Snap-dragging. In Proceedings of
the 13th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH’86) (1986), ACM, pp. 233–240.

[7] BIERMANN, E., EHRIG, K., ERMEL, C., AND TAENTZER, G. Generating
Eclipse Editor Plug-Ins Using Tiger. In Proceedings of Applications of
Graph Transformations with Industrial Relevance (2008), vol. 5088 of
LNCS, Springer-Verlag, pp. 583–584.

[8] BORNING, A. ThingLab - A Constraint-Oriented Simulation Labora-
tory. PhD thesis, Stanford University, 1979.

[9] BORNING, A., FREEMAN-BENSON, B., AND WILSON, M. Constraint
Hierarchies. LISP and symbolic computation 5, 3 (1992), 223–270.

[10] BORNING, A., MARRIOTT, K., STUCKEY, P., AND XIAO, Y. Solving lin-
ear arithmetic constraints for user interface applications. In Proceedings

215

216 BIBLIOGRAPHY

of the 10th Annual ACM Symposium on User Interface Software and
Technology (UIST’97) (1997), ACM, pp. 87–96.

[11] BOTTONI, P., AND COSTAGLIOLA, G. On the definition of visual lan-
guages and their editors. In Proceedings of Dagrammatic Representa-
tion and Inference (2002), vol. 2317 of LNCS, Springer-Verlag, pp. 337–
396.

[12] BOTTONI, P., AND GRAU, A. A Suite of Metamodels as a Ba-
sis for a Classification of Visual Languages. In Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’04) (2004), IEEE Computer Society, pp. 83–90.

[13] BOTTONI, P., GUERRA, E., AND DE LARA, J. Metamodel-based defini-
tion of interaction with visual environments. In Proceedings of the 2nd
International Workshop on Model Driven Development of Advanced
User Interfaces (MDDAUI’06) (2006), CEUR Workshop Proceedings.

[14] BOTTONI, P., GUERRA, E., AND DE LARA, J. A language-independent
and formal approach to pattern-based modelling with support for com-
position and analysis. Information and Software Technology 52, 8
(2010), 821–844.

[15] BRAND, S. Rule-Based Constraint Propagation. PhD thesis, University
of Amsterdam, 2004.

[16] BRANKE, J. Dynamic graph drawing. Drawing Graphs, Methods and
Models (2001).

[17] BRIELER, F. A Generic Approach to the Recognition and Analysis of
Sketched Diagrams Using context Information. PhD thesis, Universi-
taet der Bundeswehr Muenchen, 2010.

[18] BRIELER, F., AND MINAS, M. Recognition and processing of hand-
drawn diagrams using syntactic and semantic analysis. In Proceedings
of the Working Conference on Advanced Visual Interfaces (AVI ’08)
(2008), ACM, pp. 181–188.

[19] BRIELER, F., AND MINAS, M. A model-based recognition engine for
sketched diagrams. Journal of Visual Languages and Computing 21, 2
(2010), 81–97.

[20] CITRIN, W., HALL, R., AND ZORN, B. Programming with visual ex-
pressions. In Proceedings of the 11th International IEEE Symposium on

BIBLIOGRAPHY 217

Visual Languages (VL’95) (1995), IEEE Computer Society, pp. 294–
301.

[21] DE LARA, J., AND GUERRA, E. Pattern-based Model-to-Model Trans-
formation. In Proceedings of the 4th International Conference on Graph
Transformations (ICGT’08) (2008), vol. 5214 of LNCS, Springer-
Verlag, pp. 426–441.

[22] DELANEY, A., PLIMMER, B., STAPLETON, G., AND RODGERS, P. Rec-
ognizing Sketches of Euler Diagrams Drawn with Ellipses. In Pro-
ceedings of 16th International Conference on Distributed Multimedia
Systems (DMS’10) (2010).

[23] DOKULIL, J., AND KATRENIAKOVA, J. Edge Routing with Fixed Node
Positions. In Proceedings of the 12th International Conference Informa-
tion Visualisation (IV ’08) (2008), IEEE Computer Society, pp. 626–
631.

[24] DONG, J., YANG, S., AND ZHANG, K. Visualizing Design Patterns in
Their Applications and Compositions. IEEE Transactions on Software
Engineering 33, 7 (2007), 433–453.

[25] DUBE, D. Graph Layout for Domain-Specific Modeling. Master’s the-
sis, McGill University, 2006.

[26] DWYER, T., KOREN, Y., AND MARRIOTT, K. IPSep-CoLa: An Incre-
mental Procedure for Separation Constraint Layout of Graphs. IEEE
Transactions on Visualization and Computer Graphics 12, 5 (2006),
821–828.

[27] DWYER, T., LEE, B., FISHER, D., QUINN, K. I., ISENBERG, P.,
ROBERTSON, G., AND NORTH, C. A Comparison of User-Generated
and Automatic Graph Layouts. IEEE Transactions on Visualization
and Computer Graphics 15, 6 (2009), 961–968.

[28] DWYER, T., MARRIOTT, K., AND STUCKEY, P. Fast node overlap
removal. In Proceedings of Graph Drawing 2006 (GD’06) (2006),
vol. 3843 of LNCS, Springer-Verlag, pp. 153–164.

[29] DWYER, T., MARRIOTT, K., AND WYBROW, M. Dunnart: A constraint-
based network diagram authoring tool. In Proceedings of Graph Draw-
ing 2008 (GD’08) (2009), vol. 5417 of LNCS, Springer-Verlag, pp. 420–
431.

218 BIBLIOGRAPHY

[30] ECLIPSE: GEF. http://www.eclipse.org/gef/. 2012.

[31] ECLIPSE: GMF. http://www.eclipse.org/modeling/gmp/. 2012.

[32] ECLIPSE: ZEST. http://www.eclipse.org/gef/zest/. 2012.

[33] EHRIG, K., ERMEL, C., HAENSGEN, S., AND TAENTZER, G. Gener-
ation of visual editors as eclipse plug-ins. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing (ASE’05) (2005), ACM, pp. 134–143.

[34] EIGLSPERGER, M. Automatic Layout of UML Class Diagrams:
A Topology-Shape-Metrics Approach. PhD thesis, Eberhard-Karls-
Universitaet Tuebingen, 2003.

[35] EIGLSPERGER, M., SIEBENHALLER, M., AND KAUFMANN, M. An effi-
cient implementation of sugiyama’s algorithm for layered graph draw-
ing. In Proceedings of Graph Drawing 2004 (GD’04) (2004), vol. 3383
of LNCS, Springer-Verlag, pp. 155–166.

[36] EYSHOLDT, M., AND BEHRENS, H. Xtext: implement your language
faster than the quick and dirty way. In Proceedings of the ACM confer-
ence on Systems, Programming, Languages and Applications: Software
for Humanity (Companion) (SPLASH’10) (2010), ACM.

[37] FISH, A., KHAZAEI, B., AND ROAST, C. User-comprehension of Euler
diagrams. Journal of Visual Language and Computing 22, 5 (2011),
340–354.

[38] FRANCE, R. B., KIM, D.-K., GHOSH, S., AND SONG, E. A UML-
based Pattern Specification Technique. IEEE Transactions on Software
Engineering 30, 3 (2004), 193–206.

[39] FREEMAN-BENSON, B. N., AND MALONEY, J. The DeltaBlue algo-
rithm: An incremental constraint hierarchy solver. In Proceedings of
8th Annual International Phoenix Conference on Computers and Com-
munications (1989), IEEE Computer Society, pp. 538–542.

[40] FREEMAN-BENSON, B. N., MALONEY, J., AND BORNING, A. An incre-
mental constraint solver. Communications of the ACM 33, 1 (1990),
54–63.

[41] FRISCH, M., HEYDEKORN, J., AND DACHSELT, R. Investigating Multi-
Touch and Pen Gestures for Diagram Editing on Interactive Surfaces.

BIBLIOGRAPHY 219

In Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces (ITS’09) (2009), ACM, pp. 149–156.

[42] FRISCH, M., KLEINAU, S., LANGNER, R., AND DACHSELT, R. Grids
& guides: multi-touch layout and alignment tools. In Proceedings of
the 2011 annual conference on human factors in computing systems
(CHI’11) (2011), ACM, pp. 1615–1618.

[43] FUHRMANN, H., SPOENEMANN, M., MATZEN, M., AND VON HANXLE-
DEN, R. Automatic Layout and Structure-Based Editing of UML Dia-
grams. In Proceedings of the 1st Workshop on Model Based Engineering
for Embedded Systems Design (M-BED’10) (2010).

[44] GAERTNER, S. Konzeptionierung und Umsetzung eines Graphedi-
tors für das iPhone. Bachelor’s thesis, Universitaet der Bundeswehr
Muenchen, 2009.

[45] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley
Professional, 1995.

[46] GANSNER, E., AND HU, Y. Efficient node overlap removal using a
proximity stress model. In Proceedings of Graph Drawing 2009 (GD’09)
(2009), vol. 5417 of LNCS, Springer-Verlag, pp. 206–217.

[47] GANSNER, E. R., AND HU, Y. Efficient, Proximity-Preserving Node
Overlap Removal. Journal of Graph Algorithms and Applications 14,
1 (2010), 53–74.

[48] GRAPHML. http://graphml.graphdrawing.org/. 2012.

[49] GRAPHVIZ. http://www.graphviz.org/. 2012.

[50] HAMMOND, T., AND DAVIS, R. LADDER, a sketching language for user
interface developers. Computer and Graphics 29, 4 (2005), 518–532.

[51] JARASCH, G., MAIER, S., KINGSBURY, P., MINAS, M., AND SCHULTE,
A. Design methodology for an artificial cognitive system applied to
human-centred semi-autonomous uav guidance. In Proceedings of the
Second International Conference on Humans Operating Unmanned Sys-
tems (HUMOUS’10) (2010).

[52] JUNG, S. Erweiterung von DiaGen-DiaMeta um die Möglichkeit der
Nutzung mehrerer Sichten. Bachelor’s thesis, Universitaet der Bun-
deswehr Muenchen, 2009.

220 BIBLIOGRAPHY

[53] KELLY, S. Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM.
In Proceedings of the ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’04) (2004),
ACM.

[54] KINDLER, E., AND WAGNER, R. Triple graph grammars: Concepts,
extensions, implementations, and application scenarios. Tech. rep.,
Universitaet Paderborn, 2007.

[55] KOETH, O., AND MINAS, M. Structure, abstraction, and direct manip-
ulation in diagram editors. In Proceedings of the 2nd International Con-
ference on Diagrammatic Representation and Inference (Diagrams’02)
(2002), vol. 2317 of LNCS, Springer-Verlag, pp. 290–304.

[56] KRAUSE, F. Layout graphartiger visueller Sprachen. Bachelor’s thesis,
Universitaet der Bundeswehr Muenchen, 2010.

[57] LAUDER, A., AND KENT, S. Precise Visual Specification of De-
sign Patterns. In Proceedings of the 12th European Conference on
Object-Oriented Programming (ECCOP’98) (1998), vol. 1445 of LNCS,
Springer-Verlag, pp. 114–134.

[58] LECAT, A.-C. Umsetzung des Spiels Pacman mithilfe von DiaMeta.
Bachelor’s thesis, Universitaet der Bundeswehr Muenchen, 2008.

[59] LEWERENZ, P. Identifikation und Realisierung von Layout-
Funktionalitaet in Diagramm-Editoren. Bachelor’s thesis, Universitaet
der Bundeswehr Muenchen, 2012.

[60] LI, W., EADES, P., AND NIKOLOV, N. Using spring algorithms to re-
move node overlapping. In Proceedings of the 2005 Asia-Pacific Sym-
posium on Information Visualisation (APVis’05) (2005), pp. 131–140.

[61] MAIER, S., MAZANEK, S., AND MINAS, M. Layout Specification on
the Concrete and Abstract Syntax Level of a Diagram Language. In
Proceedings of the Workshop on the Layout of (Software) Engineering
Diagrams (LED’08) (2008), vol. 13, Electronic Communications of the
EASST.

[62] MAIER, S., MAZANEK, S., AND MINAS, M. Visual Specification of Lay-
out. In Proceedings of Graph Drawing 2009 (GD’09) (2009), vol. 5417
of LNCS, Springer-Verlag, pp. 443–444.

BIBLIOGRAPHY 221

[63] MAIER, S., AND MINAS, M. A Pattern-Based Layout Algorithm for
Diagram Editors. In Proceedings of the Workshop on the Layout of
(Software) Engineering Diagrams (LED’07) (2007), vol. 7, Electronic
Communications of the EASST.

[64] MAIER, S., AND MINAS, M. A Generic Layout Algorithm for Meta-
Model Based Editors. In Proceedings of Applications of Graph Trans-
formations with Industrial Relevance (2008), vol. 5088 of LNCS,
Springer-Verlag, pp. 66–81.

[65] MAIER, S., AND MINAS, M. A Static Layout Algorithm for DiaMeta. In
Proceedings of the Seventh International Workshop on Graph Transfor-
mation and Visual Modeling Techniques (GT-VMT’08) (2008), vol. 10,
Electronic Communications of the EASST.

[66] MAIER, S., AND MINAS, M. Ludo meets DiaMeta. In Preliminary
Proceedings of Applications of Graph Transformations with Industrial
Relevance (2008), vol. 5088 of LNCS, Springer-Verlag, pp. 493–513.

[67] MAIER, S., AND MINAS, M. Pattern-Based Layout Specifications for
Visual Language Editors. In Proceedings of the 1st International Work-
shop on Visual Formalisms for Patterns (2009), Electronic Communi-
cations of the EASST.

[68] MAIER, S., AND MINAS, M. Rule-based Diagram Layout using Meta
Models. In Proceedings of the International Conference on Distributed
Multimedia Systems (DMS’09) (2009).

[69] MAIER, S., AND MINAS, M. Specification of a Drawing Facility for
Diagram Editors. In Proceedings of the 13th International Conference
on Human-Computer Interaction (2009), vol. 5611 of LNCS, Springer-
Verlag, pp. 850–859.

[70] MAIER, S., AND MINAS, M. Combination of Different Layout Ap-
proaches. In Proceedings of the 2nd International Workshop on Visual
Formalisms for Patterns (2010), vol. 31, Electronic Communications
of the EASST.

[71] MAIER, S., AND MINAS, M. Interactive diagram layout. In Proceedings
of the 2010 annual conference on human factors in computing systems
(CHI’10) (2010), ACM, pp. 4111–4116.

[72] MAIER, S., AND MINAS, M. Integration of a Pattern-based Layout
Engine into Diagram Editors. In Proceedings of Applications of Graph

222 BIBLIOGRAPHY

Transformations with Industrial Relevance (2012), Springer-Verlag (to
appear).

[73] MAIER, S., AND MINAS, M. Layout Improvement in Diagram Ed-
itors by Automatic Ad-hoc Layout. In Proceedings of the 11th In-
ternational Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT’12) (2012), vol. 47, Electronic Communications
of the EASST.

[74] MAIER, S., AND VOLK, D. Facilitating language-oriented game devel-
opment by the help of language workbenches. In Proceedings of the
2008 Conference on Future Play: Research, Play, Share (2008), ACM,
pp. 224–227.

[75] MAK, J. K. H., CHOY, C. S. T., AND LUN, D. P. K. Precise Modeling
of Design Patterns in UML. In Proceedings of the 26th International
Conference on Software Engineering (ICSE’04) (2004), IEEE Com-
puter Society, pp. 252–261.

[76] MAPELSDEN, D., HOSKING, J., AND GRUNDY, J. Design pattern mod-
elling and instantiation using DPML. In Proceedings of the 40th In-
ternational Conference on Tools Pacific: Objects for internet, mobile
and embedded applications (CRPIT ’02) (2002), Australian Computer
Society, Inc, pp. 3–11.

[77] MARRIOTT, K., CHOK, S. S., AND FINLAY, A. A Tableau Based Con-
straint Solving Toolkit for Interactive Graphical Applications. In Pro-
ceedings of the 4th International Conference on Principles and Prac-
tice of Constraint Programming (CP’98) (1998), vol. 1520 of LNCS,
Springer-Verlag, pp. 340–354.

[78] MASUI, T. HyperSnapping. In Proceedings of the IEEE 2001 Symposia
on Human Centric Computing Languages and Environments (HCC’01)
(2001), IEEE Computer Society, pp. 188–194.

[79] MAZANEK, S. Exploiting hypergraph grammars for the realization of
syntax-based user assistance in diagram editors. PhD thesis, Universi-
taet der Bundeswehr Muenchen, 2010.

[80] MAZANEK, S., MAIER, S., AND MINAS, M. An Algorithm for Hyper-
graph Completion According to Hyperedge Replacement Grammars. In
Proceedings of the 4th International Conference on Graph Transforma-
tions (ICGT’08) (2008), vol. 5214 of LNCS, Springer-Verlag, pp. 39–53.

BIBLIOGRAPHY 223

[81] MAZANEK, S., MAIER, S., AND MINAS, M. Auto-completion for
diagram editors based on graph grammars. In Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’08) (2008), IEEE Computer Society, pp. 242–245.

[82] MAZANEK, S., MAIER, S., AND MINAS, M. Exploiting the Layout
Engine to Assess Diagram Completions. In Proceedings of the Workshop
on the Layout of (Software) Engineering Diagrams (LED’08) (2008),
vol. 13, Electronic Communications of the EASST.

[83] MAZANEK, S., AND MINAS, M. Business Process Models as a Showcase
for Syntax-Based Assistance in Diagram Editors. In Proceedings of the
12th International Conference on Model Driven Engineering Languages
and Systems (Models’09) (2009), vol. 5795 of LNCS, Springer-Verlag,
pp. 322–336.

[84] META OBJECT GROUP. Meta Object Facility (MOF) Core Specification.
2006.

[85] MINAS, M. Spezifikation und Generierung graphischer Diagrammed-
itoren. PhD thesis, Friedrich-Alexander-Universitaet Erlangen-
Nuernberg, 2001.

[86] MINAS, M. Generating Meta-Model-Based Freehand Editors. In Pro-
ceedings of the International Workshop on Graph-based Tools (Gra-
BaTs’06) (2006), vol. 1, Electronic Communications of the EASST.

[87] MINAS, M. Syntax analysis for diagram editors: a constraint satisfac-
tion problem. In Proceedings of the working conference on Advanced
visual interfaces (AVI’06) (2006), ACM, pp. 167 – 170.

[88] MINAS, M., AND STRÜBER, F. Unparsing of Diagrams with DiaGen.
In Proceedings of the First International Conference on Graph Trans-
formation (ICGT’02) (2002), vol. 2505 of LNCS, Springer-Verlag,
pp. 302–316.

[89] NASSI, I., AND SHNEIDERMAN, B. Flowchart techniques for structured
programming. ACM SIGPLAN Notices 8, 8 (1973), 12–26.

[90] O’MADADHAIN, J., FISHER, D., SMYTH, P., WHITE, S., AND BOEY, Y.
Analysis and Visualization of Network Data using JUNG. Journal of
Statistical Software 10 (2005), 1–35.

224 BIBLIOGRAPHY

[91] PLIMMER, B., PURCHASE, H., YANG, H. Y., LAYCOCK, L., AND MIL-
BURN, J. Preserving the Hand-drawn Appearance of Graphs. In
Proceedings of the International Conference on Distributed Multime-
dia Systems (DMS’09) (2009).

[92] PURCHASE, H., AND SAMRA, A. Extremes Are Better: Investigating
Mental Map Preservation in Dynamic Graphs. In Proceedings of the
5th International Conference on Diagrammatic Representation and In-
ference (2008), vol. 5223 of LNCS, Springer-Verlag, pp. 60–73.

[93] PURCHASE, H. C., MCGILL, M., COLPOYS, L., AND CARRINGTON,
D. Graph drawing aesthetics and the comprehension of UML class
diagrams: an empirical study. In Proceedings of the 2001 Asia-
Pacific Symposium on information Visualization (APVis’01) (2001),
Australian Computer Society, Inc, pp. 129–137.

[94] RENSINK, A., DOTOR, A., ERMEL, C., JURACK, S., KNIEMEYER, O.,
LARA, J., MAIER, S., STAIJEN, T., AND ZÜNDORF, A. Ludo: A Case
Study for Graph Transformation Tools. In Proceedings of Applications
of Graph Transformations with Industrial Relevance (2008), vol. 5088
of LNCS, Springer-Verlag, pp. 493–513.

[95] RYALL, K., MARKS, J., AND SHIEBER, S. An interactive constraint-
based system for drawing graphs. In Proceedings of the 10th annual
ACM symposium on User interface software and technology (UIST ’97)
(1997), ACM, pp. 97–104.

[96] SANNELLA, M. Skyblue: A Multi-way Local Propagation Constraint
Solver for User Interface Construction. In Proceedings of ACM Sym-
posium on User Interface Software and Technology (UIST’04) (1994),
ACM, pp. 137–146.

[97] SANNELLA, M., MALONEY, J., FREEMAN-BENSON, B., AND BORNING,
A. Multi-way versus one-way constraints in user interfaces: experience
with the DeltaBlue algorithm. Software: Practice and Experience 23,
5 (1993), 529–566.

[98] SCHMIDT, C. Generierung von Struktureditoren fuer anspruchsvolle
visuelle Sprachen. PhD thesis, Universitaet Paderborn, 2006.

[99] SCHUERR, A. Specification of Graph Translators with Triple Graph
Grammars. Graph-Theoretic Concepts in Computer Science 903
(1995), 151–163.

BIBLIOGRAPHY 225

[100] SEELISCH, A.-C. Musterbasierte Spezifikation des Diagrammlayouts
in Editoren fuer visuelle Sprachen. Master’s thesis, Universitaet der
Bundeswehr Muenchen, 2009.

[101] STAPLETON, G., AND RODGERS, P. Drawing Euler Diagrams with Cir-
cles and Ellipses. In Proceedings of IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC’11) (2011), IEEE
Computer Society, pp. 209–212.

[102] STEINBERG, D., BUDINSKY, F., PATERNOSTRO, M., AND MERKS, E.
EMF: Eclipse Modeling Framework 2.0, 2nd ed. Addison-Wesley Pro-
fessional, 2009.

[103] STOERRLE, H. On the Impact of Layout Quality to Understanding
UML Diagrams. In Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC’11) (2011), IEEE
Computer Society, pp. 135–142.

[104] STROBL, T., AND MINAS, M. Specifying and generating editing en-
vironments for interactive animated visual models. In Proceedings of
the 9th International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT’10) (2010), vol. 29, Electronic Com-
munications of the EASST.

[105] STROBL, T., MINAS, M., PLEUSS, A., AND VITZTHUM, A. From the
Behavior Model of an Animated Visual Language to its Editing En-
vironment Based on Graph Transformation. In Proceedings of the
International Workshop on Graph-Based Tools (GraBaTs’10) (2010),
vol. 32, Electronic Communications of the EASST.

[106] SUTHERLAND, I. E. Sketchpad: A man-machine graphical communica-
tion system. In Proceedings of the SHARE design automation workshop
(DAC’64) (1964).

[107] THE CHOCO TEAM. Choco: an Open Source Java Constraint Program-
ming Library. In Proceedings of the CPAIOR Workshop on Open-Source
Software for Integer and Constraint Programming (2008).

[108] TIDWELL, J. Designing Interfaces: Patterns for Effective Interaction
Design. O’Reilly, 2005.

[109] TOLLIS, I., EADES, P., DI BATTISTA, G., AND TAMASSIA, R. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall,
1998.

226 BIBLIOGRAPHY

[110] TURGENEV, I. Fathers and Sons. 1862.

[111] VAN WELIE, M., AND VAN DER VEER, G. Pattern languages in interac-
tion design: Structure and organization. In Proceedings of Interact’03
(2003).

[112] VON PILGRIM, J., DUSKE, K., AND MCINTOSH, P. Eclipse GEF3D:
Bringing 3D to existing 2D editors. Information Visualization 8, 2
(2009), 107–119.

[113] VOSS, V. Dreidimensionale Darstellung zweidimensionaler visueller
Sprachen. Master’s thesis, Universitaet der Bundeswehr Muenchen,
2008.

[114] WARE, C., PURCHASE, H., COLPOYS, L., AND MCGILL, M. Cogni-
tive measurements of graph aesthetics. Information Visualization 1, 2
(2002), 103–110.

[115] WENZ, M. Graphiti Building Graphical Editors the Easy Way. In
EclipseCon’11 (2011).

[116] WETTBERG, T. Verwendung eines Constraint Solvers zur Beschreibung
des Layouts modellbasierter Editoren. Bachelor’s thesis, Universitaet
der Bundeswehr Muenchen, 2010.

[117] WIESE, R., EIGLSPERGER, M., AND KAUFMANN, M. yFiles: Visual-
ization and Automatic Layout of Graphs. In Proceedings of Graph
Drawing 2002 (GD’02) (2002), vol. 2265 of LNCS, Springer-Verlag,
pp. 588–590.

[118] WYBROW, M. Using semi-automatic layout to improve the usability of
diagrammnig software. PhD thesis, Monash University, 2008.

[119] WYBROW, M., MARRIOTT, K., MCIVER, L., AND STUCKEY, P. Com-
paring usability of one-way and multi-way constraints for diagram edit-
ing. ACM Transactions on Computer-Human Interaction 14, 4 (2008).

[120] ZANDEN, B. T. V., HALTERMAN, R., MYERS, B. A., MILLER, R.,
SZEKELY, P., GIUSE, D. A., KOSBIE, D., AND MCDANIEL, R. Lessons
learned from programmers’ experiences with one-way constraints. Soft-
ware: Practice and Experience 35, 13 (2005), 1275–1298.

	Introduction
	Context of the Work
	Overview of the Proposed Approach
	Scientific Contributions
	Thesis Outline

	Related Work
	Visual Language Editors
	Design Patterns
	Constraints
	Layout in Visual Language Editors
	Human Computer Interaction
	Summary

	Running Examples
	Graphs
	Class Diagrams
	GUI Forms
	VEX Diagrams
	Layout Behavior
	Summary

	Pattern Concept and Reusability
	General Idea
	Meta-Models and their Correlation
	Layout Patterns
	Specification and Integration of Algorithms
	Atomic Layout Patterns
	Summary

	Control Algorithm for Pattern Combination
	General Idea
	Definitions
	Control Algorithm
	Example Execution of the Algorithm
	Characteristics of the Algorithm
	Future Work
	Summary

	User-Controlled Layout Behavior
	Instantiation of Layout Patterns
	Examples of User-Controlled Instantiation
	Useful Features
	Future Work
	Summary

	Layout Suggestions and Ad-hoc Layout
	Layout Suggestions
	Ad-hoc Layout
	Future Work
	Summary

	Examples of Layout Patterns
	Examples of Layout Patterns
	Integration of Layout Patterns in an Editor
	Summary

	Evaluation
	User Study
	Performance Evaluation
	Summary

	Conclusions
	Summary
	Application Areas
	Future Directions
	Summary

	Specification and Implementation
	Layout Framework
	Integration into Diagram Editors
	Summary

