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Abstract

Smartphones have become an important utility that affects many aspects of our daily life.
Due to their large dissemination and the tasks that are performed with them, they have
also become a valuable target for criminals. Their specific capabilities and the way they
are used introduce new threats in terms of information security.

The research field of smartphone security has gained a lot of momentum in the past
eight years. Approaches that have been presented so far focus on investigating design
flaws of smartphone operating systems as well as their potential misuse by an adversary.
Countermeasures are often realized based upon extensions made to the operating system
itself, following a host-based design approach. However, there is a lack of network-based
mechanisms that allow a secure integration of smartphones into existing I'T infrastruc-
tures. This topic is especially relevant for companies whose employees use smartphones
for business tasks.

This thesis presents a novel, network-based approach for smartphone security called
CADS: Context-related Signature and Anomaly Detection for Smartphones.
It allows to determine the security status of smartphones by analyzing three aspects: (1)
their current configuration in terms of installed software and available hardware, (2) their
behavior and (3) the context they are currently used in. Depending on the determined
security status, enforcement actions can be defined in order to allow or to deny access
to services provided by the respective IT infrastructure. The approach is based upon the
distributed collection and central analysis of data about smartphones. In contrast to other
approaches, it explicitly supports to leverage existing security services both for analysis
and enforcement purposes.

A proof of concept is implemented based upon the IF-MAP protocol for network security
and the Google Android platform. An evaluation verifies (1) that the CADS approach is
able to detect so-called sensor sniffing attacks and (2) that reactions can be triggered based
on detection results to counter ongoing attacks. Furthermore, it is demonstrated that
the functionality of an existing, host-based approach that relies on modifications of the
Android smartphone platform can be mimicked by the CADS approach. The advantage
of CADS is that it does not need any modifications of the Android platform itself.
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Zusammenfassung

Smartphones sind zu einem wichtigen Werkzeug geworden, welches viele Aspekte in un-
serem taglichen Leben betrifft. Da Smartphones auch fiir sensitive Aufgaben verwendet
werden, sind sie ebenfalls zu einem begehrten Ziel fiir Kriminelle geworden. Durch ihre
Funktionsvielfalt entstehen neue Bedrohungen im Bereich der Informationssicherheit.

In den letzten acht Jahren wurden daher zahlreiche Forschungsarbeiten veroffentlicht,
die sich mit dem Thema Smartphone-Sicherheit befassen. Viele der aktuellen Arbeiten
basieren darauf, Schwéchen in der auf Smartphones eingesetzten Software zu finden,
um diese wiederum fiir Angriffe auszunutzen. Gegenmafinahmen werden oft durch Host-
basierte Erweiterungen realisiert, in der Regel durch Modifikationen an dem Betriebssys-
tem des Smartphones selbst. Im Gegensatz dazu existieren nur wenige Netzwerk-basierte
Ansitze, die sich mit der sicheren Anbindung von Smartphones an vorhandene IT-Infra-
strukturen befassen. Dabei ist das Thema insbesondere dann relevant, wenn Smartphones
innerhalb eines Unternehmens eingesetzt werden.

In dieser Arbeit wird ein neuer, Netzwerk-basierter Ansatz zur sicheren Integration von
Smartphones in vorhandene IT-Infrastrukturen vorgestellt: CADS: Context-related
Signature and Anomaly Detection for Smartphones. CADS basiert auf einer
verteilten Sammlung und zentralen Auswertung von Daten, mit denen sich der Sicher-
heitsstatus eines Smartphones ermitteln ldsst. Zur Ermittlung dieses Sicherheitsstatus
werden drei Eigenschaften von Smartphones betrachtet: (1) ihre aktuelle Konfiguration
im Sinne von installierter Software und verwendeter Hardware, (2) ihr Verhalten und
(3) der Kontext, in dem Smartphones verwendet werden. Abhéngig von dem ermittel-
ten Sicherheitsstatus konnen Reaktionen definiert werden, um den Zugriff auf bestimmte
Bereiche der IT-Infrastruktur, in dem das Smartphone verwendet wird, zuzulassen oder
zu unterbinden. Im Gegensatz zu existierenden Ansédtzen unterstiitzt CADS explizit die
Integration vorhandener Sicherheitslosungen.

Im Rahmen der Arbeit wird ein Prototyp des CADS Ansatzes vorgestellt, der basierend
auf dem IF-MAP Protokoll und der Google Android Smartphone-Plattform entwickelt
worden ist. Eine Evaluation zeigt, (1) dass mit dem CADS Ansatz so genannte Sensor
Sniffing Angriffe erfolgreich erkannt werden kénnen und (2) dass Reaktionen ausgelost
werden konnen, um stattfindende Angriffe zu unterbinden. Auflerdem wird demonstri-
ert, wie mit CADS die Funktionalitdt eines existierenden, Host-basierten Ansatzes fur
Smartphone-Sicherheit nachgebildet werden kann. Der Vorteil bei der Verwendung von
CADS ist, dass auf Modifikationen der Smartphone-Plattform selbst verzichtet werden
kann.
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1 Introduction

“The beginning is the most

important part of the work.”

(Plato)
Contents
1.1 DMotivation . . . ... ... i e e e e e e 1
1.2 Research Questions . . ... ... ... ... ... ... 4
1.3 Outline of the Thesis . .. ... ... ... ... ..., 5

1.1 Motivation

Today, the importance of secure and reliable information technology (IT) infrastructures
is obvious. Almost any domain of our everyday life depends on IT services. Social net-
working, online banking and e-commerce are some examples. The Internet is the crucial
backbone that enables the necessary communication between the participating computer
systems. Nowadays, news about attacks on IT services and infrastructures are common.
Some recent targets of cyber attacks include the Sony PlayStation Network (PSN) [1]
and newspapers like the New York Times [2]. The relevance of information security has
become even more severe, as coordinated online attacks between different countries can
be considered as an act of war [3].

Over the past years, the dissemination of a new type of computing device has changed
the I'T landscape: the so-called smartphones. Besides ordinary telephony services known
from mobile phones, one key aspect of these devices is the support of Internet based
communication. There is a trend already observed in 2008 that in developed countries

mobile handsets are going to outnumber the country’s population [4]. According to the



1 Introduction

International Data Corporation (IDC), more than 494 million smartphone devices have
been shipped alone in 2011 [5]. A recent study conducted by Google in partnership with
Ipsos OTX MediaCT proves the significance of smartphones, as 89% of the surveyed
people state that they use their phone for their daily life activities, such as shopping or
performing searches for local information [6].

Today’s smartphones provide a wide range of features such as
1. mobile access to the Internet,

2. the support of sensors to capture data about the physical environment the smart-

phone is used in (such as video, audio and position data) and

3. the support of third-party applications (apps). Those apps allow users to customize

their smartphones according to their personal needs.

Companies can use smartphones for business tasks [7]. Since smartphones support mo-
bile access to the Internet, employees can react faster on emails and the scheduling of
appointments. Although the usefulness of smartphones in corporate environments is ob-
vious, their impact in terms of information security is an open question. Smartphones
have specific characteristics that change the attack surface of the environment they are
used in. For example, they provide a rich set of built-in sensors in order to obtain the
current location, record audio via the microphone or capture pictures via the camera. Fur-
thermore, the way smartphones are extended by third-party apps is distinct from other
computing devices. For example, on a laptop running a standard operating system such as
Linux, Windows or OS X, usually a single web browser is used in order to view arbitrary
websites. On smartphones, this situation is different. A general purpose web browser is
also available. However, it is common that websites provide third-party apps in order to
deliver their content in a way that is more suitable for smartphones, both in terms of
usability and functionality. Examples include social networks like Facebook! or Google+?2
as well as news portals. That is, instead of using just a single, general purpose app for
surfing the Internet, smartphones usually have additional apps installed in order to access

specific websites or services.

http://www.facebook.com
’http://plus.google.com
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1.1 Motivation

Companies have to deal with smartphones as new type of devices whether they choose
to use them for business tasks or not. There are basically three options for a company to

address and regulate the use of smartphones:

1. Allow smartphones for business tasks and provide corporate owned devices to the

employees.

2. Allow smartphones for business tasks but allow employees to use their privately
owned devices. This is commonly referred to as Bring Your Own Device (BYOD)

policy.

3. Forbid the use of smartphones for business tasks. In environments where highly
sensitive information is available (such as a company’s research and development
department), this might lead to policies that forbid employees to even bring their

privately owned devices with them.

If smartphones are allowed to be used, the challenge is to integrate them into the
company’s existing I'T infrastructure in a secure way. What “secure” actually means in
this context is discussed in the remainder of this thesis.

No matter whether smartphones are used for business tasks or not, sensitive data is
processed by them. Common examples include credit card information that needs to be
entered by the user to buy goods such as new apps. In addition, a user has to enter his
credentials to access online services like his email account. As a consequence, smartphones
have become a valuable target for attackers. Third-party apps turn out to be one major
threat for modern smartphones. Malware as it is known from other computing platforms
has become a real threat for smartphones as well. The research community has pro-
posed several proof of concept malware prototypes for various platforms [8, 9, 10, 4, 11].
Furthermore, malware has also hit the “real world”, spreading itself by leveraging the
respective platform’s online market stores [12, 13]. The malicious functionality is diverse,
ranging from simple denial of service attacks (for example by draining the smartphone’s
battery) to more sophisticated attacks that aim to steal sensitive data by leveraging the
smartphone’s built-in sensors.

Approaches that aim to improve the security of smartphone platforms have been pro-
posed as well (such as [14, 15, 16, 17, 18]). Most of them suggest host-based security

extensions that are able to prevent certain types of attacks or to detect the presence of
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malicious apps. They tackle the field of smartphone security from the perspective of the
smartphones themselves, focusing on improving the security of the smartphone platforms
that are used. However, there are only few network-based approaches that engage the field
of smartphone security from the perspective of the IT infrastructures the smartphones
are used in. One reason for favoring host-based approaches is that they allow to add
security mechanisms at several layers of the respective smartphone platform. However,
it also means that unmodified versions of the smartphone platforms cannot benefit from
this type of host-based extensions. For example, approaches like BizzTrust® modify both
the Linux kernel and the middleware of the Android smartphone platform. Although this
allows to easily add security related functionality like better isolation of apps, it comes at
the cost of rendering the use of unmodified Android versions infeasible. Especially when
a company allows to use privately owned devices, those approaches are not suitable. In-
stead, a more lightweight approach that at most requires to install additional third-party
apps but omits the need for modifying the smartphone platform itself is often desired.
The thesis proposes a novel, network-based approach for the secure integration of smart-
phones into existing I'T infrastructures. It allows to determine the security status of smart-
phones by analyzing three aspects: (1) their current configuration in terms of installed
software and available hardware, (2) their behavior and (3) the context they are currently
used in. Depending on the determined security status, enforcement actions can be de-
fined in order to allow or to deny access to services provided by the IT infrastructure.
The approach is based upon the distributed collection and central analysis of data about
smartphones. In contrast to other approaches, it explicitly supports to leverage existing

security services both for analysis and enforcement purposes.

1.2 Research Questions

The following research questions are addressed in the remainder of this thesis:
1. What approach is appropriate to enable a secure integration of smartphones into
existing IT infrastructures?

The field of smartphone security is dominated by host-based approaches that add

specific security extensions to current smartphone platforms. However, an approach

3http://www.bizztrust.de/


http://www.bizztrust.de/

1.3 Outline of the Thesis

that addresses the problem of securely integrating smartphones into existing IT
infrastructures from the infrastructure’s perspective is still missing. By answering
this question a set of requirements is derived that must be fulfilled to enable a secure

integration of smartphones into existing I'T infrastructures.

2. What data should be collected and how should the collected data be analyzed in

order to determine the security status of smartphones?

Smartphones can be customized by users via third-party apps, have various built-in
sensors and support Internet-based communication. As a consequence, smartphones
can be in a status that is considered to be insecure from the perspective of the IT
infrastructure they are used in. An open research question is what data is appropri-
ate for determining the security status of smartphones. Furthermore, to know what
data is needed is not sufficient. It is also necessary to use appropriate methods in

order to analyze the data. Both aspects are addressed by answering this question.

3. How can the context of smartphones be obtained and used in order to contribute

to their secure integration into existing I'T infrastructures?

Smartphones accompany their users throughout the day. As a consequence, they
are used in a number of different contexts. A context is defined as “the situation
in which something happens and that helps you to understand it” [19]. One goal
of this thesis is to investigate how the context, a smartphone is currently used in,
can be captured. Furthermore, it is investigated to what extent information about
a smartphone’s context can contribute to its secure integration into existing IT

infrastructures.

The research questions stated above are reflected in Chapter 7, with respect to the

results that were achieved within this thesis.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows (cf. Figure 1.1). Chapter 2 presents a
set of scenarios that form the motivating background for the remainder of this thesis. They

are formulated with respect to the reference IT infrastructure of a company. Based on
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the identified scenarios, requirements are derived that must be fulfilled by the developed
approach. These requirements especially define the necessary functionalities for a secure
integration of smartphones into existing IT infrastructures. Thus, Chapter 2 addresses
research question 1.

An analysis of the state of the art in the field of smartphone security is conducted in
Chapter 3. The analysis covers both standard security mechanisms that are supported
by today’s smartphone platforms as well as approaches that have been proposed by the
research community. Furthermore, the IF-MAP protocol [20] for network security is in-
troduced. It is used in the remainder of this thesis to implement a prototype of the
developed approach. Based on the literature review, an assessment is done with respect
to the requirements that were derived in Chapter 2. The assessment reveals that existing
approaches are not able to fulfill the stated requirements in a sufficient manner.

A novel, network-based approach for smartphone security is developed and presented
in Chapter 4. It is referred to as CADS: Context-related Signature and Anomaly
Detection for Smartphones and represents the main contribution of this thesis. The
approach is composed of four parts: (1) a conceptual model that defines its main building
blocks and the relationships between them, (2) an architecture that defines logical roles
that must be fulfilled by components in order to support the distributed collection and
central analysis of data about smartphones, (3) a correlation model that defines how
the collected data can be analyzed and (4) a process to create so-called domain-specific
instances. Thus, this chapter addresses the research questions 2 and 3.

A prototype of the CADS approach is presented in Chapter 5. It is implemented based
on the previously mentioned IF-MAP protocol. The chapter discusses how the CADS
approach can be realized by leveraging IF-MAP and presents the software components
that have been developed for that purpose.

An evaluation of the CADS approach is presented in Chapter 6. It investigates to what
extent the CADS approach is able to ensure the secure integration of smartphones into
existing IT infrastructures.

Finally, conclusions are drawn in Chapter 7. The results of the thesis are discussed
regarding the research questions that were stated in Section 1.2. Furthermore, directions

for future work are given.
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2 Scenarios and Requirements

“Do, or do not. There is no 'try"”

(Yoda)
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This chapter introduces the scenarios that form the motivating background for the re-
mainder of this thesis. In the first place, a reference IT infrastructure is defined. After
that, four scenarios are presented. These scenarios were developed as part of the anal-
ysis phase within the ESUKOM research project [21]. They depict use cases that the
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participating companies agreed upon to be relevant in terms of the secure integration of
smartphones into their IT infrastructures. Based on the scenarios, a terminology that is
used within the remainder of this thesis is defined. Furthermore, assumptions regarding
the trustworthiness of some components are described within a trust model.

Given the scenarios, the terminology and the trust model, a list of requirements is de-
rived that define the functionality which is needed for a secure integration of smartphones
into existing IT infrastructures. The requirements will be used in the remainder of this
thesis to assess related work that has been conducted in the field of smartphone security
and to assess the novel, network-based approach for smartphone security that is developed
within this thesis.

2.1 Reference IT Infrastructure

Today, virtually any company uses some sort of I'T infrastructure to support their business
activities. The details and the complexity of such infrastructures vary greatly, depend-
ing on factors like the company size and its main business model. For example, a large
company with departments distributed across Europe is likely to have a more complex
infrastructure compared to a small to medium sized company with just one local depart-
ment. Furthermore, a company that provides general consulting services will have different
IT systems in use compared to a company that provides hosting services for their cus-
tomers, or even offer their own developed services to the public like social networks or
cloud service providers.

Although there is a certain degree of diversity in terms of current IT infrastructures,
there are also lots of common aspects that are shared across them. Therefore standards
like the IT-Grundschutz! methodology [23, 24, 25, 26] of the Federal Office for Information
Security (BSI) can be used effectively.

In order to limit the scope of the following scenario definitions and to provide a set
of common terms, a reference IT infrastructure is defined. It models a generic I'T infras-
tructure that explicitly addresses the integration of smartphones. It basically defines a
network topology, mentions smartphones as special type of endpoints, and highlights a

set of services that are common in most I'T infrastructures. The description aims to be

T-Grundschutz is also referred to as IT Baseline Protection in some BSI publications [22].
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Figure 2.1: Reference IT Infrastructure. Icons taken from Openclipart [27].

independent of concrete technologies and rather focuses on the purpose that the deployed
services fulfill. The reference IT infrastructure is depicted in Figure 2.1. The basic net-
work topology, the notion of endpoints and the set of available services are detailed in the

following.

2.1.1 Network Topology

The reference I'T infrastructure defines a very basic network topology. It follows the well-
known approach of establishing a Demilitarized Zone (DMZ) with firewalls in order to
separate the internal network from the Internet. The approach is widely adopted and can
be seen as baseline in order to manage and secure access from the Internet to services in
the internal network and vice versa.

In real IT infrastructures, the network topology is likely to be more complex. Especially
the internal network is often partitioned into further subnetworks, either for security pur-

poses (like isolation of productive from testing environments) or to provide quality of
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service aspects (for example in order to handle voice over IP with higher priority). Isola-
tion between these subnetworks can be enforced by different technical means, including
simple routing, dedicated firewall systems or by establishing Virtual Local Area Networks
(VLANS) according to IEEE 802.1Q [28].

2.1.2 Endpoints

Endpoints are computing devices that are used by employees within the IT infrastructure
of a company. They make use of available services, but do not provide services on their
own. Examples include classical desktop computers, laptops, tablets and smartphones.
The latter ones are of special interest for the remainder of this thesis. Although some
concepts can be adopted for other types of endpoints, the approach focuses on those.
Thus, only smartphones are depicted in Figure 2.1.

Basically, smartphones can access the IT infrastructure in two different ways. The
first one is to establish access locally via a Wireless Local Area Network (WLAN). The
WLAN is provided by dedicated infrastructure components referred to as Wireless Access
Points (WAPs). Depending on the configuration of the WAP and its physical location,
the smartphone has either access to the public zone or to the internal zone. The wireless
communication is often based on the IEEE 802.11 set of standards. The second way is to
access the IT infrastructure remotely over the Internet. This typically involves a remote
access technology like a Virtual Private Network (VPN).

It should be noted that the use of VPNs is not limited to enabling remote access. When
smartphones access the IT infrastructure locally via the WLAN, the use of additional
VPNs can be reasonable as well. A common use case for the combination of both access

technologies is to establish isolated environments within a company network via dedicated

VPNs.

2.1.3 Services

An IT infrastructure is composed of a set of services. The purpose and the functionality of
such services varies. For example, common services that are deployed in virtually any IT
infrastructure are the dynamic assignment of IP addresses to endpoints via the Dynamic
Host Configuration Protocol (DHCP) or the mapping between domain names and IP
addresses via the Domain Name System (DNS).

12
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Services that are relevant in terms of information security are of special interest for the
remainder of this thesis. They are referred to as security services. Most companies that
plan to integrate smartphones into their I'T infrastructure in a secure way will already have
existing security services deployed. However, those services will have little or no specific
functionality to address smartphone specific threats. The approach that is developed
within this thesis shall allow to leverage these existing security services in order to achieve
a secure integration of smartphones. In the following, a list of relevant security services is

given (cf. Figure 2.1):

AAA AAA refers to authentication, authorization and accounting. Services that provide
AAA functionality are used to verify the user’s identity (authentication), grant
access to other services based on the user’s identity (authorization) and also track
the consumption of services by the user (accounting). Today, two protocols are
commonly used in order to implement AAA services: Remote Authentication Dial
In User Service (RADIUS) [29] and its successor Diameter [30].

Flow Controller The term flow controller refers to any service that can actively modify or
block the network traffic. The notion of a flow controller is derived from the Trusted
Network Connect (TNC) specifications published by the Trusted Computing Group
(TCG). Examples include packet filters that operate on the network and transport
layer according to the Open Systems Interconnection (OSI) model [31]. In terms
of the reference IT infrastructure, there are two types of flow controllers. First, a
firewall is used in order to establish the DMZ. Note that additional firewalls can
be added to protect services that are of special interest or that operate on sensitive
data. The second type of flow controllers are WAPs that support IEEE 802.1X [32].

IDS An Intrusion Detection System (IDS) monitors the behavior of a computer system
or the traffic within a network in order to detect malicious activities. According to
the National Institute of Standards and Technology (NIST), an IDS “.. is software
that automates the intrusion detection process.” [33]. One popular example for a

network-based open source IDS is Snort?.

Remote Access Companies often require that employees get remote access to their I'T

infrastructure, either completely or to a subset of the provided services. If the ser-

2http://www.snort.org/
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vices themselves should not be exposed to the Internet, a VPN is usually deployed.
Various protocols exist in order to implement a VPN. Among others the Internet
Protocol Security (IPsec) protocol suite is popular to realize a VPN at the OSI
layer 3. The systems that provide services for remote access are typically deployed

within the DMZ.

NAC The term Network Access Control (NAC) is not precisely defined. The term is com-

monly used in order to refer to protocols, components and software that grant access
to the local network based on the users identity and the software configuration of
the endpoint. Different vendors provide products that implement NAC functionality,
including Microsoft® [34] and Cisco* [35]. Furthermore, the TCG has published the
TNC standards [36] in order to provide an open, interoperable and vendor-neutral

framework for implementing NAC services.

Vulnerability Scanner Vulnerability scanners are used in order to search computer sys-

tems, networks and applications for known vulnerabilities. The notion of a vulner-
ability in terms of information security is not globally defined. RFC 4949 defines it
as follows: “A flaw or weakness in a system’s design, implementation, or operation
and management that could be exploited to violate the system’s security policy.” [37].

Examples for network vulnerability scanners are Nessus® and OpenVASS.

The set of described security services aims to form a baseline for the following definition

of scenarios. Furthermore, the network-based approach for smartphone security that is

developed in the remainder of this thesis will leverage some of these services for the

secure integration of smartphones into existing I'T infrastructures.

2.2 Scenario Definition

Four scenarios are described in the following. They form the motivating background for

the remainder of this thesis. As already mentioned, these scenarios were developed as part

of the analysis phase within the ESUKOM research project [21]. In terms of smartphone

3Instead of NAC, the term Network Access Protection (NAP) is used by Microsoft.
4Cisco refers to the term NAC as Network Admission Control.
Shttp://www.tenable.com/

Shttp://www.openvas.org/
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2.2 Scenario Definition

security, the first three scenarios focus on detection tasks, whereas the fourth scenario

addresses the need for appropriate reaction capabilities.

2.2.1 Scenario I: Smartphone Visibility

From the perspective of a companies’ IT infrastructure, smartphones are quite similar
to other endpoints. They can connect to WAPs, log in to the corporate VPN and ac-
cess virtually any service that supports the IP communication protocol. Assuming that
a smartphone is connected to a wireless network based on the IEEE 802.11 set of stan-
dards, they send the same datagrams composed of source and destination Media Access
Control (MAC) addresses, source and destination IP addresses and optionally Transmis-
sion Control Protocol (TCP) or User Datagram Protocol (UDP) port numbers plus an
arbitrary payload as other endpoints connected to the same wireless network. That is,
from a network point of view, smartphones cannot directly by differentiated from other
endpoints.

However, to know if a certain request originates from a smartphone or not can be
beneficial. For example, it allows smartphone specific provisioning of services. A service
that presents its result in a graphical way might adjust its layout depending on the type
of device that sent the request. This is already done frequently by websites that pro-
vide special mobile versions for smartphones (for example by using a subdomain like
http://m.example.com for the mobile version of http://www.example.com). Further-
more, a company might want to deny access to a service from a smartphone due to
security concerns.

Thus, the objective of this scenario is to enable application services within an infras-
tructure to determine whether a certain request was issued by a smartphone or not. This
will primarily require to express the fact that a certain device is a smartphone (binary
yes/no) in an efficient way and to propagate this knowledge within the infrastructure of

the company.

Example Use Case A company provides employees with smartphones in order to process
business emails and to manage their time schedule. However, it is not allowed to access
certain application services that process more sensitive data with them (like project spe-

cific deliverables, version control systems or servers that process personal data). In this
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case, the developed solution needs to be able to block access to those critical services
and the sensitive data when the corresponding requests originate from a smartphone.
The definition whether a service is too critical to be processed by a smartphone or not is

domain-specific.

2.2.2 Scenario |l: Context-related Service Provisioning

This scenario addresses the need to provision services with respect to the context of the
endpoint that accesses them. Following the first scenario, in addition to know whether
a certain request was issued by a smartphone or not, further information regarding the
context of the device is needed to allow or deny a certain access request.

A context in this scenario is defined by a set of variables and their associated values.
Examples for such variables are a geographical location (for example Global Positioning
System (GPS) coordinates), a time interval (like from 8am to 16pm) or the presence of
other devices (like nearby WAPs). The notion of a context is derived from CRePE [38].
However, this scenario uses a context for a different purpose. In contrast to CRePE, which
basically extends the Android framework to allow additional security checks depending
on policies that are pushed to the smartphone (more precisely additional checks for the
use of Android permissions), this scenario focuses on the provision of services based on
the smartphone’s context.

This scenario covers mechanisms to identify the current set of contexts a smartphone
is used in. Similar to the first scenario, it must be possible to distribute this knowledge

within the infrastructure of a company in an efficient way.

Example Use Case Again, a company provides their employees with smartphones.
Those devices can be used both for business as well as for private tasks. The company
wants to enforce a policy that ensures that business data is only exposed to a phone if and
only if the following contexts are fulfilled: the employee uses the smartphone on-site at
the company and the access takes place during the normal working hours. The approach
developed in this thesis must provide means to capture the smartphone’s context and to
propagate this context within the IT infrastructure. Furthermore, a service that is about
to be consumed must be able to check the context of the requesting device and allow or

deny its consumption according to a policy defined by the respective company.
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2.2.3 Scenario lll: Detection of Malicious and Unwanted Apps

One crucial aspect of modern smartphones is their support for third-party software. Users
can customize their smartphones by installing apps. While the majority of available apps
provides benign functionalities, malicious apps that aim to harm the user exist too. Their
malicious functionality ranges from simple defacement capabilities over blackmailing the
user to more sophisticated approaches that aim to sniff for sensitive data by leveraging
the built-in sensors of smartphones. The latter category of malicious apps is also referred

to as sensory malware [10].

The presence of third-party apps can impose risks both for the smartphone itself and
the IT infrastructure it is used in. It is therefore necessary to detect both the presence
and the activity of apps on smartphones. For the depicted scenario, it is not sufficient to
use existing, host-based security tools like anti virus scanners that specifically search for
malicious apps. Instead, it depends on the policy of the respective company to specify the
characteristics of an unwanted or malicious app. That is, a genuine app that is popular,
provides correct functionality and that is used by a lot of different users might nevertheless
be unwanted by a company under certain circumstances and must thus be detectable by
the developed approach. It is an open question which data and approaches are best suited
in order to find malicious and unwanted apps. The approach will investigate methods in
order to leverage the capabilities of existing security services, in conjunction with new

developed software components, in order to find adequate answers.

Example Use Case A company provides their employees with smartphones. Smart-
phones are primarily used for business tasks. However, the employees are also allowed to
use the smartphones for private purposes. This directly implies that third-party apps are
installed by the employees. Thus, it is also possible that malicious and unwanted apps
are installed. In this scenario, the term malicious refers especially to apps that try to
snoop for sensitive data by leveraging a smartphone’s built-in sensors (like audio, video
or position data), and then try to sent the gathered data to a remote destination under
the control of an adversary for further processing. The developed solution should detect
such malicious apps by analyzing data that describe the current status and activities of

the smartphone.
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2.2.4 Scenario IV: Policy-based Enforcement

The first three scenarios focused on detection capabilities that must be supported in order
to ensure a secure integration of smartphones into existing I'T infrastructures. In contrast
to that, the fourth scenario explicitly addresses the question how the endpoints and ser-
vices within an IT infrastructure can be protected once a policy violation is detected.

Regarding the first scenarios, such a policy violation can manifest itself in different ways:

1. A smartphone tries to access a service that is not allowed to be accessed by this

type of endpoints.

2. A smartphone tries to access a service while being within a context that disallows

the service consumption.

3. A smartphone has malicious or unwanted apps installed while being connected to

the IT infrastructure of the respective company.

In order to react on such policy violations, the approach must support to distribute
the detection results throughout the corporate I'T infrastructure. Thus, services that are
capable of mitigating the detected policy violation can respond accordingly. Referring to
the previously defined reference IT infrastructure, especially flow controllers are expected

to be used for this purpose.

Example Use Case Flow controllers are part of the reference IT infrastructure (cf. Fig-
ure 2.1). They are primarily firewall systems and layer 3 switches. However, also NAC
solutions and VPN gateways can provide some sort of flow controlling functionality. For
this use case, again a smartphone is used by an employee both for private and business
tasks. Thus, the employee is allowed to customize the smartphone by installing third-party
apps. Since he did not limit himself to the official app stores of his respective smartphone
platform but also installed apps from unofficial web sites, the device was compromised
with a sensory malware app as mentioned in Section 2.2.3. The presence of this malicious
app is detected based on the approach developed within this thesis. This detection result
must be propagated transparently to other parties in the network. Flow controllers are
expected to consume these results in order to limit the potential damage that can be
caused by the smartphone and the respective, malicious app. For example, a packet filter

can be configured to block any outgoing traffic that originates from the smartphone. A
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Figure 2.2: Organizational roles, technical terms and their relationships depicted as UML
class diagram.

WAP that supports IEEE 802.1X [32] can be used to isolate the connected smartphone
to a specific VLAN. If the policy violation is critical, the respective smartphone might

also be disabled remotely.

2.3 Terminology

In the following, a set of organizational roles, technical terms and their relationships are
defined in order to provide a consistent vocabulary for the remainder of this thesis. These
terms allow to express the previously defined scenarios in a more generic way. Furthermore,
the notion of administrative domains is introduced. They are used to clearly specify the

scope of this thesis.
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2.3.1 Organizational Roles

The following organizational roles are defined for the remainder of this thesis as depicted
in Figure 2.2. Their notion was derived based on the online Oxford Advanced Learner’s

Dictionary”.

Company A company represents an organization that conducts business in order to make
profit. Regarding the relevant scenarios, a company wants to use smartphones in

order to support their business tasks.

Owner This is the actual owner of the physical smartphone device. That is, the owner has
paid money in order to buy the smartphone. Thus, it is his property. A smartphone

is either owned by a company or by an employee.

Employee An employee works for a company in order to earn money. There are two types
of relevant employees that are distinguished: users and administrators. Employees

that are not appropriately represented by those two types are not of interest.

User A user is an employee that uses a smartphone for various tasks. The smartphone in
use can be his own (which means that the user is also the owner) or can be provided

by a company (which is then considered to be the owner).

Administrator An administrator is responsible for managing the I'T infrastructure of the

company he is working for.

It is important to note that an employee can be a user, an administrator and an owner

at the same time.

2.3.2 Technical Terms

IT Infrastructure For the remainder of this thesis, an I'T infrastructure is primarily com-
posed of smartphones and services. Smartphones are used within the I'T infrastruc-
ture, services are provided by the IT infrastructure. An IT infrastructure has a
security policy. Furthermore, an IT infrastructure is administered by a number of

admins.

"http://oxfordlearnersdictionaries.com/
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Service A service provides a certain functionality within an I'T infrastructure. As already
stated in Section 2.1, security services are of special interest for this thesis. However,
there might also be further services available that provide arbitrary functionality.
Those services might be considered as valuable assets, and thus need appropriate

protection from threats as well.

Security Policy A security policy defines how information security shall be established
within an organization. This is usually done on an abstract level, omitting technical
details. The security policy must be kept up to date. Changes to the security policy
are necessary if the addressed IT infrastructure changes [24]. The introduction of
a new type of devices like smartphones is an event that demands to update the

corresponding security policy.

Smartphone The term smartphone refers to the physical device. It is owned by an owner
and used by an user. Due to its mobility, a smartphone can be used in numerous IT

infrastructures.

App Apps are software components specifically developed for a certain smartphone plat-
form. They are installed on and executed by a smartphone. Apps can either be

shipped with the smartphone platform itself or can be installed later.

App Store An app store represents a service that is normally provided by the maintainer
of a concrete smartphone platform. In this case, it is referred to as official app store.
However, there are also unofficial app stores that are maintained by other parties.
This type of service enables the user of a smartphone to install third-party apps on
demand. App stores are usually web-based services and are thus accessed via the

Internet.

Sensor Smartphones come with a set of built-in sensors. A sensor is able to capture a
certain aspect of the smartphone’s physical environment (such as audio, video or
position data). The exact number and functionality of sensors vary depending on

the smartphone model and platform.

Context Generally, the term context is defined as “the situation in which something
happens and that helps you to understand it” [19]. Within this thesis, a context en-

capsulates information about the physical environment of a smartphone. Examples
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for concrete contexts are given in Section 2.2.2. A smartphone is either within a
certain context or not. That is, there is no way that a smartphone can be partially
within a concrete context. However, it can be within multiple contexts at the same

time.

Further details on the technical terms related to smartphones are given in Section 3.1

and 3.2 while discussing the state of the art in smartphone security.

2.3.3 The Notion of Administrative Domains

The last important building block is the notion of administrative domains. The term
is used in order to address all organizational roles and technical terms that belong to
the same organizational entity. Referring to a company, all components within the IT
infrastructure and all employees belong to the same administrative domain (the one of
the respective company). The company is responsible for making decisions that affect
the way the infrastructure is maintained and used. In contrast to that, an employee or
a smartphone from another company or a customer is considered to belong to another
administrative domain.

Administrative domains are important in order to clearly specify the scope of this thesis.
Any further discussion focuses on issues that are relevant within a single administrative
domain. Questions that introduce or require interaction across multiple administrative
domains are not completely ignored. However, it is not the focus of this work. For example,
app stores are usually web-based services that are maintained by the manufacturer of the
smartphone platform. Thus, those services usually do not belong to the administrative
domain of a company (as long as they do not host their own app store). However, as
app stores are a crucial part of modern smartphone’s ecosystem, they are also considered
within the remainder of this thesis.

On the other hand, the secure integration of smartphones that belong to another ad-
ministrative domain is not specifically addressed. Consider two companies A and B. Em-
ployees of company B might bring their smartphones to a meeting that is held within the
buildings of company A. The secure integration of smartphones from company B within
the IT infrastructure of company A is not directly addressed within this thesis. This use
case is more related to the problem of integrating guest devices into an IT infrastructure

in a secure way.
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With the set of organizational roles and technical terms defined above, all of the concrete
scenarios can be expressed in a more abstract way. Furthermore, the roles and terms help
to prevent ambiguity during the remainder of this thesis. In each of the concrete scenarios,
employees use smartphones within an IT infrastructure provided by their company. The
smartphone can either be their own or can be provided by the company. In each case, the
smartphone will be used for both business and private tasks. This situation covers the
current challenge that companies have to face due to the ubiquitousness and high usage

of smartphones.

Administrative domains are used to define the scope of this thesis. As stated above,
the focus of this work is to investigate what impact smartphones have with respect to
security while considering one single administrative domain. This is sufficient to cover
the scenarios stated above where employees use smartphones within the I'T infrastructure
of their company. Investigations that cover multiple administrative domains are not ad-
dressed within this thesis. However, the achieved results may form the basis for future
work that addresses multi domain scenarios. If smartphones can be securely integrated
into existing IT infrastructures of a single administrative domain, further work can be

conducted to aim for a secure integration among multiple administrative domains.

That is, use cases where an employee uses his smartphone outside of his company’s
administrative domain (for example by using a public hotspot within a coffee shop) are
considered to be out of scope. This is analogues to a user that tries to access a company’s
IT infrastructure with his smartphone although he is not an employee. In order to pro-
tect an IT infrastructure from unknown devices, several well-known techniques can be
employed. Authentication of users and devices and strong encryption of wireless networks
are two of them. To protect a company’s smartphone in foreign administrative domains is
not that trivial. However, this research question belongs primarily to the field of system
security and will most likely lead to solutions that harden the smartphone platform in use.
Although these use cases are not the focus of this work, the approach that is presented

in the following might also provide some benefits for them.
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2.4 Trust Model

Some assumptions are made regarding the trustworthiness of networks, smartphones and
the type of attacks that are considered within this thesis. They are described in the

following;:

Untrusted Networks Any network is untrusted. An attacker can modify or eavesdrop
any traffic that is carried over the network. This holds both for known (that is a
company’s) network as well as for unknown networks (such as the Internet). Thus,
measures in order to ensure confidentiality and integrity of data that is transmitted

over networks are mandatory.

Trusted Smartphone Platforms The smartphone platform (that is the hardware, the
firmware, the operating system and the smartphone platform’s middleware software
stack) form the Trusted Computing Base (TCB) as defined by Lampson et al. [39]
for the remainder of this thesis. Hardware-based attacks and attacks that modify
the smartphone platform itself are not the focus of this work. This thesis primarily
addresses threats that are caused by third-party apps that either are benign but
unwanted from the perspective of a company or apps that implement malicious

functionality.

No Insider Attacks Insider attacks are out of scope. It is expected that employees behave
in accordance to policies defined by their company. However, they can be fooled with
social engineering techniques to perform actions that violate the security policy of
their company. The detection and prevention of insider attacks is a separate field of

current research [40].

2.5 Requirements Analysis

In the following, a requirements analysis based on the presented scenarios is performed.
The analysis highlights the most important requirements that have been identified and
omits those that are considered trivial in a sense that they are virtually relevant for any
approach in any domain (for example the requirement to have an adequate documenta-
tion). Each of the stated requirements is equally important (that is, there is no weighting

of individual requirements).
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2.5 Requirements Analysis

Detection of unwanted and malicious configurations of smartphones The devel-
oped approach must support to detect unwanted and/or malicious configurations
of smartphones that are connected to the IT infrastructure. This requirement is
directly derived from the scenarios I and III (Sections 2.2.1 and 2.2.3). The term
configuration refers to the status of the smartphone’s hardware and software. In
general, the presence of malicious apps leads to a malicious configuration. The same
holds if a smartphone’s built-in sensors are activated although it is not permitted.
The approach must support to capture the current configuration of a smartphone

and to reason about it.

Detection of abnormal smartphone behavior The approach must detect if a smart-
phone behaves abnormal. Such a behavioral change can be caused by malicious apps,
which impose great risks for an IT infrastructure and the smartphone itself. How-
ever, malicious apps are just one possible factor that can cause abnormal behavior.
Others include physical loss of the device (which is then potentially used by an unau-
thorized user) or the effects of apps that are generally benign but are considered
to cause abnormal behavior under certain circumstances (like streaming video data
from a sensitive environment within an I'T infrastructure). Thus, the requirement is

derived from scenario III (Section 2.2.3).

Consideration of context information for detection This requirement is primar-
ily derived from scenario II (Section 2.2.2). The approach must provide mechanisms
to easily capture the context of each smartphone. This information will also be
used to support the fulfillment of the first two requirements. That is, based on the
context of a smartphone, it is decided whether a certain configuration is malicious

respectively unwanted or if the observed behavior is considered as being abnormal.

Policy-based reaction on detection results This requirement is derived from sce-
nario IV (Section 2.2.4). It is necessary that the approach allows to react on detec-
tion results in a flexible way based on defined policies. Simple notifications without

initiating countermeasures to mitigate identified threats are not sufficient.

Dynamic analysis at runtime The approach must support dynamic analysis at
runtime. That is, any analysis, detection and enforcement capabilities must be em-

ployed while smartphones are actually used within an I'T infrastructure. Techniques

25



2 Scenarios and Requirements

that are limited to analyze data offline (like inspecting the code of installed apps) can
be used in addition. In this case, they have to be integrated in such a way that their
results can be used at runtime without any delays, for example by precomputing
them.

R-06 Extensibility of processed data and used methods The approach must be exten-
sible. This refers both to the data that is processed in order to detect unwanted
configurations and abnormal behavior as well as to the methods that are used for
processing. The same requirement applies for the data that is used in order to de-

termine a smartphone’s context.

R-07 Ability to integrate the approach in existing environments Another requirement
is the capability to integrate the developed approach into existing environments. As
companies will have a wide range of I'T systems and security services already in use,
the goal is to find ways to leverage the functionality of available components for
the described scenarios. For example, existing services can be used to provide data
about a smartphone. This data can then be used to detect malicious apps and ab-
normal smartphone behavior. Furthermore, existing services should be used to react
on detection results. Another aspect is the fact that strategies like BYOD should
be supported as well. Thus, approaches that need modifications of the smartphone

platform itself are generally not well suited.

Table 2.1 summarizes the list of requirements. They will be used in the remainder of this
thesis in order to review related work and existing approaches. Furthermore, the require-
ments will be used in order to assess the novel, network-based approach for smartphone

security that is developed within this thesis.
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Table 2.1: Requirements that must be fulfilled in order to enable a secure integration of
smartphones into existing IT infrastructures.

ID Requirement

R-01 Detection of unwanted and malicious configurations of smartphones
R-02 Detection of abnormal smartphone behavior

R-03 Consideration of context information for detection

R-04 Policy-based reaction on detection results

R-05 Dynamic analysis at runtime

R-06 Extensibility of processed data and used methods

R-07 Ability to integrate the approach in existing environments
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“Motivation is what gets you

started. Habit is what keeps you

going.”
(Jim Rohn)
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This chapter discusses the state of the art and related work in the field of smartphone
security. Based on a literature review, an assessment of existing approaches is done with
respect to the requirements that were identified in Chapter 2. It reveals that current
approaches fail to meet all of the requirements for a secure integration of smartphones

into existing IT infrastructures.

3.1 Introduction to Smartphones

3.1.1 Definition

The field of smartphone security has gained a lot of momentum during the past six years.
Both researchers and companies have started to work on related topics in parallel. This
development and the rapid change of the capabilities of devices led to a certain amount of
ambiguity when it comes to actually name relevant concepts. This caused some confusion,
especially regarding the distinction between mobile devices, mobile phones, feature phones
and smartphones. The terminology that is defined in the following is based on the work

of Becher [41] and Zheng et al. [42] while using some of the terms defined in Section 2.1.

Mobile Device A mobile device is any endpoint that is powered by a battery. This in-
cludes laptops, PDAs, tablets and mobile phones.

Mobile Phone Mobile phones are mobile devices that provide a limited but essential set
of features. They are primarily used to make phone calls and to send Short Message
Service (SMS) messages. As they have only low processing power and small displays,
they provide a long battery life. The terms cell phone and mobile phone are used
interchangeably. Any mobile phone contains a so-called subscriber identity module
(SIM) card that is controlled by a mobile network operator (MNO).

Feature Phone In contrast to mobile phones, feature phones provide larger displays,

larger processing power and are able to browse the Internet. This comes at the
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cost of reduced battery life. Feature phones are based on closed operating systems
and although generally support the concept of apps that can be provided by their
manufacturer, they cannot be extended by adding third-party apps.

Smartphone The main aspect that differentiates smartphones from feature phones is their
support for third-party apps. Smartphones have operating systems that provide a
rich application programming interfaces (APIs) to allow those third-party apps tight
integration with the rest of the platform. As already mentioned in Section 2.3, those

apps are obtained from web-based services called app stores.

Since 2011, there is a legal dispute whether the term “app store” (and variations
thereof like “appstore”) is a official trademark of the company Apple Inc. or not [43].
Furthermore, app stores recently also provide other assets besides apps like music,
videos and books. Thus, other terms like mobile markets, mobile marketplaces or
just app markets have evolved. However, since this thesis is primarily concerned
about smartphones and their extensibility by third-party apps, the generic term
app store will be used. When explicitly addressing the store maintained by Apple,
the phrase Apple App Store will be used.

In addition to the extensibility, there are further aspects that differentiate a smart-
phone from a feature phone. Smartphones provide even more processing power than
feature phones and achieve better connectivity via various interfaces such as Blue-
tooth and near field communication (NFC). They support to access the Internet
both via WLANSs that are based on the IEEE 802.11 set of standards as well as
directly via cellular phone networks. Additionally, they incorporate various sensors
in order to obtain data from their physical environment. For example, the phone’s
location can be obtained via GPS sensors, audio data via the microphone and video
data via built-in cameras. As also smartphones evolve, more sophisticated sensors
like accelerometers, gyroscopes and barometers are now also common in new devices
like the Google Nexus 4. Due to their versatility, smartphones are used for a wide
range of tasks (besides telephony and web-based services). Especially the support of
NFC has yielded new use cases such as NFC-based access tokens [44] and identity

verification techniques [45].
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3.1.2 Overview of Current Smartphone Platforms

As smartphones have evolved over the past years by means of additional processing power,
larger displays and more sophisticated built-in sensors, so have their operating systems.
Thus, there has been a wide range of both commercial and open source platforms for
smartphones. Some projects even aimed to specify both the hardware and the software of
smartphones, like the Openmoko project?.

Today, there are two major smartphone platforms of importance: Google Android and
Apple iOS. According to the “Worldwide Quarterly Mobile Phone Tracker” maintained by
IDC, those two platforms had a market share of 75% and 14.9% respectively in the third
quarter 2012 in terms of shipped units [46]. Further platforms that are still available and
that were considered by the study include BlackBerry from Research in Motion (RIM)
(4.3%), Symbian from Symbian Ltd. (2.3%) and Windows Phone 7 from Microsoft (2.0%).

These numbers proof that the presence of smartphones based on Android or iOS is
predominant. However, they are also somewhat misleading, implying that the importance
of Apple’s iOS devices is almost irrelevant compared to Android. Two side notes should

be taken into account before reasoning about the given numbers:

e The new iPhone 5 was launched late in the third quarter (September 12th 2012).
Given the fact that the demand for the new model was very high [47], the market

share will likely change accordingly.

e Although the market share of Android is predominant, the platform’s app store
generates less revenue compared to the official Apple App Store. In 2011, the Apple
App Store for iPhone generated nearly four times more revenue [48]. This even

excludes apps that are only available for the Apple iPad.

Furthermore, there might be a shift of market shares from Android and iOS to smart-
phones that use Microsoft’s Windows Phone 8, once these devices are widely available in
the fourth quarter of 2012. Nevertheless, Google Android has become the market leader
for smartphone platforms. Some of its details will be presented in Section 3.2 with a focus
on its security mechanisms. However, a lot of the concepts used in Google Android are

also available for other smartphone platforms.

http://www.openmoko.org/
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3.2 The Android Platform

The first version of the Android platform was announced in 2007. Its development is
mainly driven by Google and other members of the Open Handset Alliance. The source
code is released under the Apache License [49]. The progress of the open source develop-
ment is tracked within the Android Open Source Project (AOSP)?, which is also led by
Google. The first Android smartphone was the HT'C Dream (also known as T-Mobile G1),
which was released in October 2008. Since then, the Android platform has encountered
several extensions and improvements. This also includes specific security mechanisms like
the support for address space layout randomization (ASLR). Since version 1.5, each major
Android version is named after a dessert. The latest version at the time of this writing
was 4.2 codename “Jelly Bean” released in November 2012. The complete version history
of Android is summarized in Table A.1 in the appendix.

Since its initial release in 2008, there have been 32 updates released for Android. Most
of them included bug fixes. There have been eight larger updates, each one introducing
a new Android version with an associated codename. Those major updates normally
introduced a set of new features, including security features like updated kernel versions,
the support for VPNs, a full implementation of ASLR or the support of SELinux®. The
version history proofs that the Android platform is actively maintained, and still under
a rapid development. In addition to the official Android version, there are also projects
that provide customized Android versions, for example CyanogenMod?.

However, the plethora of Android versions also introduces some issues in terms of secu-
rity, commonly referred to as Android Update Problem [50]. Smartphone manufacturers
like HTC and Samsung provide customized versions of Android for their phones, primar-
ily to ensure their own look and feel and to adapt Android to their specific hardware
platforms. Due to the rapid frequency of updates provided by Google, manufacturers fall
behind to actually adapt the updates for their needs and to deploy them on their devices.
As a result, most of the Android devices run outdated versions of the Android platform,
thus lacking the latest bug fixes and security updates. Google provides data regarding the
distribution of Android versions on a regular basis [51]. Data that was collected during
a 14-day period ending on November 1st 2012 is depicted in Table 3.1. Only 2,7% of

2http://source.android.com/
3http://selinuxproject.org/
‘http://www.cyanogenmod.org/
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Table 3.1: Distribution of Android versions. Data obtained within a 14-day period ending
on November 1st, 2012 [51].

Version Codename API Level Distribution
1.5 Cupcake 3 0.1%
1.6 Donut 4 0.3%
2.1 Eclair 7 3.1%
2.2 Froyo 8 12%
2.3-2.3.2 Gingerbread 9 0.3%
2.3.3-23.7 10 53.9%
3.1 Honeycomb 12 0.4%
3.2 13 1.4%
4.0.3-4.04 Ice Cream Sandwich 15 25.8%
4.1 Jelly Bean 16 2. 7%

devices were running the latest Android version “Jelly Bean” that was released in July
2012. In contrast, more than 50% of the devices were still running Android “Gingerbread”
which was initially released in 2010. This problem is unique to the Google platform. For
example, when Apple releases a new version of their iOS platform, all supported devices
are updated by default (as long as the user does not choose to prevent the update). At
the Google 1/O conference 2012, Google announced that it will release a special Platform
Development Kit (PDK) for hardware developers in order to mitigate this problem. The
PDK will be made available two to three months before each major Android update.
The following sections detail certain aspects of the Android platform. An overview
of its architecture is given in Section 3.2.1. Google Play, the app store for the Android
platform, is introduced in Section 3.2.2. The fundamentals of Android apps are described
in Section 3.2.3. The main part is a discussion of Android’s built-in security mechanisms

in Section 3.2.4.

3.2.1 Architecture

The architecture of the Android platform consists of five main building blocks. They are
briefly described in the following.

Linux Kernel The fundamental basis for the Android platform is a customized Linux ker-

nel. Enhancements that are added for Android primarily address the power manage-
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ment and the support of inter-process communication (IPC) via the Binder driver.
The first Android releases including Honeycomb were based upon a Linux kernel in
version 2.6.x. Since Android Ice Cream Sandwich, a Linux kernel in version 3.x is

used.

Libraries Android includes a set of native libraries for various purposes, including SS-
L/TLS for secure connections, SQLite databases and WebKit for rendering HTML
and JavaScript. As standard C library, Android uses the Bionic libc instead of the
GNU C library.

Android Runtime The Android runtime environment consists of the Dalvik Virtual Ma-
chine (Dalvik VM) and a set of Java core libraries. Apps for Android are normally
written in Java and executed by the Dalvik VM. Java .class files are converted
to .dex (Dalvik Executable) files before they are executed by the Dalvik VM on
a device. The Java core libraries provide developers with a familiar environment,

comparable to ordinary Java Development Kits (JDKs).

Application Framework The application framework includes a set of services that are es-
sential for the Android platform in order to handle telephony, resource management

and location based tasks. Apps can use these services via a simple Java API.

Applications The applications building block includes any app that is installed and ex-
ecuted on the device. This includes so-called system apps that are directly shipped
with the device as well as third-party apps that are installed afterwards. Apps are
written in Java and make normally use of services provided by the application frame-
work. However, it is also possible to use native code within an app by leveraging
the Java Native Interface (JNI).

These components form the basic architecture of the Android platform. A more detailed

introduction to Android and its architecture is given by Reto Meier [52].

3.2.2 Google Play

Google Play® is the official app store for the Android platform. It was formerly known
as the Android Market. It was renamed in March 2012 as Google added further digi-

Shttp://play.google.com/
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tal content besides apps, including music, movies and books. The store can be accessed
directly from smartphones with the corresponding app named Google Play Store. Fur-
thermore, Google Play can also be accessed with an ordinary web browser. Users can
browse through available apps based on aspects like their category or whether they are
free or cost money. For each app, further information like the developer, the average user
rating and the number of downloads are provided as well. Currently, there are 34 different
categories supported. Those categories are itself divided into categories for “applications”
and categories for “games”. Within this thesis, both applications and games are referred
to as apps.

In October 2012, Google announced that there were more than 700,000 apps available
in their app store [53], which is a similar number as the main competitor Apple features
in its own App Store for iOS devices. Although the total numbers of available apps
are comparable, the distribution model of Google and Apple varies greatly. Whereas
Apple employs a closed approach, restricting its users solely to its official app store,

Android supports a more open model that explicitly allows unofficial app stores (such as
AndroidPIT®).

3.2.3 App Fundamentals

The extensibility through third-party apps is one major success factor of modern smart-
phones. Thus, the fundamentals of Android’s app development framework will be intro-
duced in the following. Android apps are written in Java and bundled, together with
all further resources like images or sound files, into an Android Package archive with a
(.apk) suffix. Multiple apps are executed in isolated environments, each belonging to its
own security sandbox. Section 3.2.4 gives further details on the sandboxing mechanisms
of Android. According to the Google API Guides [54], each app is composed of one or

more of the following components:

Activities An Activity is the main component for building user interfaces on Android.
Each Activity represents a single screen that is shown to the user on the smart-
phone’s display. A single app is usually composed of multiple Activities. For exam-
ple, a camera app can have one Activity in order to display the current picture and

another Activity that allows the user to specify configuration settings.

Shttp://www.androidpit.de/de/android-market
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Services Services do not provide a user interface screen. Instead, they are used for per-
forming long running tasks in the background. For example, in order to continuously
play a music file, a Service component should be implemented. The user interface

however would be realized by implementing an appropriate Activity.

Content Providers Content Providers are responsible for providing and controlling access
to data. The data can be private for one app or can be shared among multiple apps.
For example, each Android smartphone ships with a standard Content Provider that

manages access to the users address book.

Broadcast Receivers Android heavily relies on broadcast messages that are sent both
by third-party apps and system services. For example, when the screen is turned off
or an SMS message is received, appropriate broadcast messages are sent. Broadcast
Receivers are components that are responsible for receiving and reacting on such

broadcast messages.

Android supports inter-component communication (ICC). Generally, any app can start
not only its own components, but also the components of another app. For example, if a
third-party app wants to take a picture, it will likely start the corresponding activity of the
standard camera app provided as part of the Android platform. Communication between
components, whether within a single app or across multiple apps, is primarily realized by
asynchronous messages referred to as Intents. Activities, Services and Broadcast Receivers
make use of Intents. An Intent declares a recipient and optionally contains further data as
payload. The recipient can be named explicitly, ensuring that the Intent is transmitted to a
specific, known component, or implicitly by specifying a so-called action string. Receiving
components can define Intent Filters based on these action strings in order to get started
when an Intent occurs whose action string is covered by their Intent Filter. After the
called component receives the Intent, it can make use of its payload. Content Providers
are not accessed by means of Intents. Instead, they receive requests from so-called Content
Resolvers. This introduces another layer of abstraction, primarily for security reasons [54].

In order to protect an app’s components, they can be declared public or private. Fur-
thermore, permissions can be named that the calling app must have requested in order
to access the respective component. If not explicitly declared as public or private, the

Android platform infers a default setting based on other parameters provided as part of
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the app’s manifest file [55] which is detailed below. However, recent work has shown that
these default inference rules cause many developers to implement app’s that unintention-

ally provide access to components that should remain private [56].

The last crucial building block of Android’s app framework that is presented here
is the so-called manifest file. The manifest is a Extensible Markup Language (XML)
configuration file that is contained within each .apk package. Among other parameters,
it declares all of the app’s components. Furthermore, the manifest contains the list of
permissions that the corresponding app requests to use and the list of Intents that it
wants to receive. Both of them are expressed by specific XML elements referred to as

<uses-permission> and <intent-filter> respectively.

3.2.4 Security Mechanisms

The Android platform includes several security mechanisms. Most of them aim to protect
the user and its data from malicious third-party apps or in case the device is lost. Although
their concrete implementation is specific for the Android platform, the general security
mechanisms are also common on other platforms like Apple iOS. In order to describe
the security mechanisms of Android, terminologies that have been proposed in the past
(57, 58, 59] will be used. The description covers all Android versions that were available

at the time of writing, including Android 4.2.

Kernel Security

At the kernel level, Android provides basic security mechanisms that are known from clas-
sical Linux-based computing platforms such as discretionary access control (DAC) for files
based on user identities and the isolation of concurrently running processes. Furthermore,
the kernel provides protection from runtime exploits that work based on corrupting the
stack or heap memory. This includes a full ASLR implementation since Android version
4.1 and hardware-based No eXecute (NX) to prevent code execution on the stack and
heap since Android version 2.3. Furthermore, support of SELinux was added in Android

version 4.2.
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Device Access Control

Device access control mechanisms enable to control which users are allowed to use a
smartphone. The purpose is to prevent unauthorized access to the smartphone, especially
when the device is lost. Thus, in contrast to other security mechanisms, this one does
not primarily target the threats introduced by malicious apps. Protected smartphones
are “locked” when they are not actively used. In order to “un-lock” a device, Android
supports various techniques, including passwords, patterns and personal identification
numbers (PINs). Furthermore, since Android version 4.0 it is also possible to un-lock a
device by taking a picture of the user (referred to as Face Unlock). However, it is also
possible to completely disable the device access control mechanism or to configure weak
techniques that simply rely on the physical presence of any user (finger swipe). Apple iOS

provides similar device access control mechanisms as Android.

Filesystem Encryption

Filesystem encryption seeks to protect data that is stored on the smartphone in case it is
stolen or lost. Since Android version 3.0, full filesystem encryption is supported. Thus, any
smartphones that use prior Android versions are not able to protect their data this way.
Given the distribution of Android versions presented in Table A.1, more than half of the
devices are unable to appropriately protect data at rest. On Android, encryption is done
in the Linux kernel by using the dmerypt” implementation of the Advanced Encryption

Standard (AES) [60, 61]. Apple iOS supports a similar level of filesystem encryption.

Sandboxing

A crucial security concept of Android (and many other smartphone platforms) is the iso-
lation of third-party apps by means of so-called application sandboxes. Apps are both
isolated from accessing each other as well as from accessing the smartphones resources in
an uncontrolled way. Application sandboxing on Android is realized based on the features
provided by the Linux kernel. Each Android app is assigned a unique user id (UID), runs
in its own process and has its own directory. The permissions of the directory are set in

such a way that the app’s UID is the owner and only owner filesystem permissions are

"http://code.google.com/p/cryptsetup/wiki/DMCrypt
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set. Furthermore, each app runs in its own instance of the Dalvik Virtual Machine. This
sandboxing mechanism also applies for native code used by the app. Since the interaction
of apps both with other apps and with resources provided by the smartphone is essential,
Android supports mechanisms to “exit” an app’s sandbox in a defined way. These mech-
anisms are controlled by a permission-based access control model that is detailed below.

Apple’s iOS platform supports similar sandboxing mechanisms.

Permission-based Access Control

In order to enable apps to access resources and data that is not contained within their
sandbox, modern smartphone platforms implement permission-based access control mod-
els. Basically, apps are allowed to access a smartphone’s resources such as location sen-
sors and components of other apps if they have the necessary permissions to do so. The
permission model is enforced by the smartphone platform at runtime and can gener-
ally not be circumvented. Android provides a sophisticated permission framework in
order to realize mandatory access control for ICC between different apps and for the
access to the smartphone’s resources [62]. It is based upon more than 100 predefined
permissions [63] that enforce control to the smartphones resources. For example, permis-
sions that are often requested by apps include INTERNET for accessing the Internet and
ACCESS_COARSE_LOCATION respectively ACCESS_FINE LOCATION in order to obtain the
current location of the smartphone. Actually, each of the standard Android permissions
also has the prefix android.permission. However, it is omitted here for readability.
Permissions are primarily enforced by a reference monitor in the Android middleware.

However, some permissions like INTERNET are enforced by the Linux kernel.

In addition to the predefined set of permissions, developers can also define their own
permissions. These self defined permissions are normally used in order to control access
to components of an app. For example, a developer that has published many apps can
define its own set of permissions in order to limit access to exported components within

its own set of apps.

Permissions are classified according to protection levels. The purpose of a protection
level is twofold. First, it characterizes the general risk that is implied by the respective

permission. Second, it determines how the Android platform handles the process when
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apps request the respective permission. Permissions on Android are categorized into four

protection levels [64]:

1. Normal permissions impose negligible risks to the smartphone and its user. If re-
quested by an app, they are always granted by default without the user’s confir-
mation. An example for such a permission is VIBRATE, which allows access to the

vibrator of the smartphone.

2. Dangerous permissions are potentially harmful. Granting this type of permission
gives apps access to the user’s private data and to actions that can cost money. Thus,
user confirmation at install time is necessary in order to grant these permissions to
apps. An example for such a permission is SEND_SMS, which allows an app to sent a

SMS message.

3. Signature permissions are only granted to apps that have been cryptographically
signed with the same certificate as the app that initially declared the permission.
User confirmation is not necessary in this case. An example for such a permission
is CLEAR_APP_USER_DATA. It basically allows the requesting app to delete all of the
user’s data. Note that although this might seem like a severe threat, it is not. The
permission is declared by an app that was signed by a certificate owned by Google.

Thus, no third-party app can successfully request this permission.

4. SignatureOrSystem permissions are granted only to apps that are part of the default
system image or are signed with the same certificate as these apps are. According
to the official developer documentation, this protection level should not be used at
all by developers: “Please avoid using this option, as the signature protection level
should be sufficient for most needs and works regardless of exactly where applica-
tions are installed.” [65]. Permissions with this protection level are primarily used
by the Android platform in order to protect access to background services that
should not be used by ordinary third-party apps. An example is the permission
DELETE_PACKAGES that allows an app to delete installed apps.

On Android, the granting of permissions to apps is done at install time. It is an all-or-
nothing decision made by the user. That is, an app is either granted all permissions that

it requests, or it is not installed. It is not possible to just grant a subset of the requested
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permissions. Although Android’s permission model has been effective in limiting the access
of apps to resources that are within the scope of their requested permissions, it has also

some drawbacks that have been recently identified by researchers[66]:

e For users, it is difficult to interpret the meaning of some permissions.

e [t is not transparent whether a certain combination of permissions might be dan-

gerous.

e Overdeclaration is an issue, that is many apps request more permissions than they

would actually need to function properly.

In contrast to the model described above, the permission model that is supported by
Apple’s iOS platform is rather limited. Basically, all apps share the same permissions.
There is no user confirmation required at install time. Instead, the system requests the
confirmation of the user when an app aims to access sensitive data in the device at runtime.
This includes data such as the users address book, the calendar and the smartphones

location.

Application Provenance

The term “application provenance” basically refers to two concepts that are employed in
order to mitigate the threats introduced by third-party apps. First, application prove-
nance includes mechanisms that aim to ensure the integrity of an app and to authenticate
its author. This way, users can decide whether they want to install a certain app based
on the identity of the author and they can be assured that the app has not been tam-
pered. Furthermore, software developers can be made accountable for apps that behave
maliciously. Second, additional security checks are performed by the platform’s app store,
either before or after an app has been made publicly available for download.

Android supports both concepts by using digital signatures [67]. In order to fulfill
the first concept, any Android app must be digitally signed by the developer before it
can be installed on a device. This shall ensure both the integrity of the app an the
authenticity of the app developer. However, the Android app signing model is pretty
open. That is, apps can be signed by virtually any digital certificate, including self signed
ones. There is no need for a certificate authority that is trusted by Google. Consequently,

the certificate chain is not checked. The only prerequisite that must be fulfilled is that a
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corresponding developer profile is created via the Google Play Android developer console®.
That is, any developer that is willing to pay 25USD is able to publish apps with self-signed
certificates to Google Play. Regarding the used certificate, Google Play only enforces that
the expiration date is in the distant future®. Other contents of the certificate are ignored.
Furthermore, the contents of the certificate used for signing are not transparent for the
smartphone user that install the apps. As a consequence, malicious software developers
can easily create developer accounts for Google Play as needed.

An implementation of the second concept was recently introduced for Android, referred
to as Google Bouncer. It ensures that each app which is uploaded to Google Play is
executed in a virtual environment in order to detect malicious behavior. Furthermore,
new apps are compared against known malicious apps. If an app is flagged as potentially
malicious, it is further investigated manually and if necessary removed from Google Play.
The existence of Google Bouncer was only mentioned in a Blogpost [68]. According to
Google, Bouncer decreased the number of malicious downloads in the first half of 2011 by
40%. Technical details are not provided by Google. At BlackHat USA 2012, researchers
demonstrated that it is easy to circumvent Google Bouncer by making malicious apps
context-aware, thus hiding their malicious behavior when they are analyzed [69]. Thus,
although Bouncer certainly is a step forward compared to having no vetting process at
Google Play at all, there is room for future improvements. However, since there are at
least basic security checks, the security level of apps installed from Google Play is higher
compared to those obtained from unofficial app stores.

With Android version 4.2, Google added a so-called “application verification service”. It
allows to perform security scans of third-party apps that have been obtained form unoffi-
cial sources. Thus, the general idea of Google Bouncer is extended beyond the scope of the
Google Play app store. Although this additional security service is certainly reasonable,
first studies reveal that its detection rate is rather low (approximately 15%) compared to
those of other anti virus services [70].

In contrast to the open approach followed by Google Play for Android, the Apple App
Store is far more restrictive. First, Apple does not support to install apps from unofficial
app stores. User that want to install apps from unofficial stores need to gain root privileges

by willingly performing a privilege escalation attack. This process is also referred to as

8https://play.google.com/apps/publish/signup
9 After October 22nd 2033.
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“jailbreaking”. Second, developers must officially register at Apple and pay an annual
license fee. In response, they are issued with a digital certificate that must be used to
sign their apps. Third, each app must undergo a review conducted by Apple before it is

released in the official App Store. Details of the review process are not publicly available.

3.2.5 Summary

The previous sections gave a brief overview of the Android platform. The focus was set on
the security mechanisms that are supported by the platform. Android supports features
that are well known from other computing platforms such as kernel security features,
sandboxing techniques and filesystem encryption. Furthermore, it supports a sophisticated
and complex access control model based on so-called permissions. Among other aspects,
the permissions that are requested by installed apps will be used in the remainder of
this thesis to determine the security status of smartphones. Finally, the discussion of the
Android application provenance model revealed that it differs from the provenance model
of other smartphone platforms. Android follows an open approach. Reactive measures
such as Google Bouncer are used to counter malicious apps.

For more detailed information, especially concerning the development of apps and the
implementation of Android’s security mechanisms, the reader is referred to the official
developer documentation [54] and related work conducted by Enck et al. [55] and Shabtai
etal. [58].

3.3 Related Work on Smartphone Security

In the past years, the field of smartphone security, also referred to as mobile phone security,
has gained a lot of momentum and was extensively studied by the research community.
Starting from the first papers that began to examine the threat of malware for mobile
devices [71, 72], the number of publications has grown steadily. The topics and challenges
that have been addressed by other researchers are diverse. In order to provide a com-
plete overview of relevant related approaches, the presentation of related work is basically

structured by means of three categories:

1. The first category covers all research papers whose main contribution is to provide

a basic analysis of certain smartphone security issues. Furthermore, survey articles
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that aim to provide a scientific view on the special aspects of smartphones and the

ecosystem they are used in are presented as well.

2. The second category of presented research approaches covers work that addresses the
specific threats of smartphones in detail. Those articles usually include approaches
for exemplary attacks in order to abuse the discovered threats. This kind of work
often builds on or refers to results that were accomplished within research papers

of the first category.

3. The third category focuses on approaches that introduce countermeasures in order
to mitigate various threats that were identified for smartphones. Some approaches
also include a simple proof-of-concept attack in order to emphasize their motivation.
This third category is especially important in order to compare existing approaches

against the requirements defined in Chapter 2.

A mind map that visualizes the related work is depicted in Figure 3.1. It will be shown
that the existing approaches cover a wide range of topics in the field of smartphone se-
curity. However, no approach does sufficiently address all requirements for the scenarios
defined in Chapter 2. The analysis covers approaches that have been published from 2000
to October 2012 at conferences that employed a peer-review of the submitted papers.
Primarily, conferences held by ACM!® and IEEE!! with a good ranking were considered.
Furthermore, workshops that were held in conjunction with well-known conferences were
considered as well. Technical reports of universities and research institutions were consid-
ered if they match the scope of this thesis and provide a major contribution. Some of the
presented research papers address aspects that belong to more than just one of the men-
tioned categories. For example, a research paper can discuss a new type of attack (thus
matching category 2) and provide appropriate countermeasures (matching category 3). In

these cases, the categorization is made based on the focus of the contributions.
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3.3.1 Analysis and Survey Articles
General Analysis of Smartphone Security

The first articles that address the field of smartphone security focus on the threat of
mobile malware [71, 72, 73, 74, 8, 75, 76]. At that time (from 2000 to 2007), the term
smartphone was not even widely established. Instead, the devices were also called mobile
phones, cell phones or feature phones. It was claimed that malicious software for mobile
phones will be a crucial future threat. Given the latest news on mobile malware that
have been seen, the assumption made years ago was true. Jamaluddin etal. [74] provide
a proof of concept malware that supports SMS spamming. They emphasize that such
mobile malware has a great potential for actually causing a financial loss to the user. This
is different from malware for classical platforms. Dagon etal. [8] provide a taxonomy for
new smartphone threats. One of the new threats that was not addressed before is called
battery exhaustion. Corresponding attacks aim to deplete the battery of a smartphone in
a short time. Thus, they can be seen as kind of a Denial of Service (DoS) attack specific
for smartphones.

An state of the art survey that explicitly addresses the differences between mobile se-
curity and classical fields of information security is contributed by Becher et al. [77]. They
argue that the specifics of mobile devices is crucial for research in the field of smartphone
security. Three examples for such specifics are (1) the limited resources of the device,
(2) the ability of an attacker to easily create financial damage to the user (referred to as
creation of costs) and (3) users that are generally unaware of any security issues. Fur-
thermore, they define a classification of attack vectors for smartphones, distinguishing
between hardware-centric, device-independent, software-centric and user layer attacks.
They especially elaborate the category of software-centric attacks employed by using mo-
bile malware. In terms of the specifics of mobile devices, they conclude that some of them
will remain relevant in the long term (such as the creation of costs ) whereas others might
change (such as the device’s resource limitations).

Shabtai etal. [58] provide a detailed security analysis of the Android platform that
identifies risks and suggest appropriate countermeasures on a conceptual level. Since they
do not provide any details regarding the highlighted countermeasures, their work is cat-
egorized as analysis and survey article. They group the security mechanisms that are

incorporated in Android into three categories: (1) Linux mechanisms that are provided
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by the Linux kernel (such as app specific user IDs), (2) environmental features such as SIM
card based user authentication and (3) Android-specific mechanisms like the permission
framework. Based on their own taxonomy for Android that covers 18 potential threats,
a risk analysis is performed that maps the identified threats to a risk matrix according
to their likelihood of occurrence and their potential impact. Based on this analysis, they
derive five high-risk threat clusters and suggest appropriate countermeasures. Two of the
most important recommendations are (1) to harden the Linux kernel by leveraging access
control mechanisms such as SELinux and (2) to extend the permissions framework in order
to prevent misuse of granted permissions. Their first recommendation has been meanwhile
addressed with the release of Android version 4.2. Their second recommendation however
still remains open. A similar study about the security mechanisms of Android was also

performed by Enck et al. [55].

Oberheide et al. [78] examine the general challenges of securing mobile environments,
especially when approaches from non-mobile domains are adopted. In order to compare
existing mobile platforms in terms of security, they introduce a taxonomy for mobile se-
curity models that consists of three components: (1) app delivery refers to the ability to
verify the authenticity of an app that is deployed on a smartphone, (2) trust levels de-
scribe the ability of a platform to assign privileges to apps to access the phone’s resources
or to perform specific tasks and (3) system isolation refers to the capability of a platform
to isolate apps from each other. Five smartphone platforms are compared based on the
three mentioned categories, including Google Android and Apple iOS. Android gets the
best overall rating. In the end, the authors suggest five general commandments for fu-
ture smartphone security research like to take forward lessons and to consider multiple
platforms when developing new security concepts.

Dixon et al. [79] claim that there is a strong correlation between the location of a
smartphone and its power consumption. Depending on the location, smartphones are used
differently by their users, leading to specific, location based power consumption profiles.
The authors have gathered reference data from 20 users over a period of three months
in order to proof their hypothesis. They further claim that malicious code is likely to
increase the power consumption of smartphones (primarily due to the use of peripherals
like Bluetooth, the radio or built-in sensors). Thus, they propose to implement a malware
detection tool based on the location based power consumption of smartphones. Although

their approach sounds reasonable, it has two obvious drawbacks: (1) Other features aside
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from location and power consumption are not considered. (2) The approach fails at times
where the smartphone’s battery is charged.

Studies that address the question if smartphone users are concerned about security and
privacy have been performed as well. A study that investigates if users are willing to pay
premiums when installing apps, given that the additional costs will limit their personal
information exposure, was conducted by Egelman et al. [80] . Their results show that users
are concerned about their privacy and would pay extra money for apps that do not request
access to personal information. A more general study that investigates the perceptions of

users in terms of smartphone security was recently conducted by Chin etal. [81].

Permission Models

Permission-based access control models are one main security mechanism of modern
smartphone platforms and web browsers. Thus, this field has also gained a lot of at-
tention from the research community. The approaches to analyze permission-based access
control models vary. Shin etal. [82, 83, 84] propose a formal approach for analyzing the
Android permission model. They identify several drawbacks. Namely that (1) the user is
responsible for making informed decisions on permissions that are requested by an app,
(2) there are no naming conventions for permissions and (3) once granted, permissions
cannot be revoked without uninstalling the respective app. Another formal approach was
recently conducted by Fragkaki et al. [85]. Based on their analysis, they propose SORBET,
an extended permission system for Android. Besides other features, SORBET prevents
confused deputy attacks [86].

Barrera et al. [87] have developed a methodology for the empirical analysis of permission-
based security models. Their approach is based on Self-Organizing Maps (SOM) [88]. To
proof the feasibility of their approach, they have analyzed 1,100 Android apps in order to
learn how permissions are used and to identify the strengths and weaknesses of this im-
plemented security model. Their findings show that permissions are used diversely: there
are predominant permissions that are used very frequently (like the INTERNET permission
used by more than 60% of the apps) whereas others are requested far less frequently (like
the RECEIVE_BOOT_COMPLETED permission requested by 5% of the apps). Furthermore,
their findings show that apps of a certain category tend to request similar permissions.

In addition, there are permission pairs that provide similar functionality (like READ_SMS
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and WRITE_SMS). The authors consider the INTERNET permission to provide insufficient
semantics in terms of how an app actually uses the Internet and suggest to split it up
in more fine-grained permissions. Another identified drawback is the large number of
available permissions (more than 100), leading to developers that tend to “over-request”
permissions just to be sure that their app works properly. Thus, it is even more difficult
for users to understand the meaning of a large set of requested permissions at install time.
In order to circumvent these drawbacks, the authors suggest to introduce a hierarchical
permission structure in order to achieve a logical grouping according to the semantics of

permissions.

The problem of over-requesting permissions identified by Barrera et al. [87] has also been
addressed as the problem of permission overdeclaration. Developers often declare more
permissions than their app actually uses due to (1) the complex and partially ambiguous
permission system and (2) due to the lack of assistance in determining the right permis-
sions for specific function calls. Overdeclaration violates the principle of least privilege
[89]. The problem was recently tackled by Felt et al. [90] and Vidas et al. [91]. Both have
developed tools that help developers to infer the minimal set of necessary permissions by
performing a static analysis of the respective apps. The Permission Check Tool by Vidas
et al. is realized as an Eclipse IDE plugin that parses the source code and thus infers
the set of necessary permissions. The mapping between the Android API calls and the
actually needed permissions was derived by analyzing the available Android SDK docu-
mentation. In contrast, Felt et al. propose a tool that performs static analysis of compiled
Android apps called Stowaway. The tool maps API calls to permission checks. The map-
ping was derived by leveraging automated testing techniques on the Android API. Their
experiment with 940 apps shows that about one-third are overprivileged. Their findings
show that developers try to follow least privilege but fail due to poor API documentation
and the overall complexity of the permission model.

A general analysis of smartphone permission models is conducted by Au et al. [66].
They provide a taxonomy for the most popular smartphone platforms according to (1)
the amount of control the user has, (2) the amount of information that is conveyed to the
user which forms the basis for his decision making and (3) the level of interactivity that is
required from the user. Their results show that Android has the most complex permission
model due to the number of available standard permissions (more than 100) compared

to Blackberry OS (24 permissions), Windows Phone 7 (15 permissions) and Apple iOS
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(1 permission). Furthermore, younger smartphone platforms like Android (first release in
2008) and Windows Phone 7 (first release in 2010) have very similar permissions models,
giving the user some information based on (more or less) fine-grained permissions but
limiting the level of control and interactivity to an all-or-nothing decision at install time.
The authors claim that this trend is the cause for the problem of permission overdeclara-
tion. Similar to Felt et al. [90], they propose to use static-analysis of an app’s source code
in order to automatically derive the set of permissions that are actually used, and thus
need to be requested by the app. Their system is a work-in-progress.

The effectiveness of app permissions for the Google Chrome Extension system and the
Android platform was investigated by Felt etal. [64] as well. They notice that Android
apps request an average of less than four dangerous permissions. The most popular per-
mission is the INTERNET permission. Apps frequently access permissions that allow them
to obtain personal information (such as the location) in conjunction with the permission
to access the Internet. A security measure that solely focuses on this type of permissions
(for example that denies the installation of such apps) will thus likely fail. However, there
are also permissions that are request far less frequently, such as those of the category
COST_MONEY. The presence of such permissions can be leveraged in order to provide secu-
rity warnings to the user or implement more sophisticated security measures. The authors
further suggest that coarse permissions like INTERNET on Android would benefit from a
more fine-grained approach as it is implemented in the Google Chrome Extensions system
(where Internet access can be restricted to a set of domains).

A study that examines whether the Android permission system is effective in warning
the user about risks associated with the installation of third-party apps is conducted
by Felt etal. [92]. They performed structured interviews with participants, both on-site
and online via the Internet. The authors state that only a minority of the participants
were able to fully understand the implications of permissions that are requested by apps.
Guidelines for improving permission granting mechanisms are presented in a separate
publication [93].

Extensive analysis of the Android permission system has revealed its vulnerability to
confused deputy attacks [86]. That this is not a problem of poorly implemented, third-
party apps alone was recently proven by Grace etal. [94]. With their analysis tool Wood-
pecker, they found several apps in the stock images of Android phones that unsafely

expose permissions to other apps.
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Smartphone Usage Studies

Recently, some studies have been conducted in order to learn how users actually use their
smartphones. To learn the normal behavior of smartphone users can be beneficial for a
wide range of use cases. Within the scope of this thesis, this is especially true for any kind
of anomaly detection. Anomaly detection is a common technique that has been widely
adopted in the field of information security, especially for intrusion detection systems
(IDS) 195, 96, 97]. The concept is to built a model that expresses the normal behavior
of a system (in our case smartphones). Then, based on observations of that system, one
aims to find patterns that do not conform to the expected behavior. Observations that
deviate from the expected or normal behavior are treated as anomalies. This approach
is complementary to misuse detection which is also commonly employed by IDS. Misuse
detection aims to model bad or malicious behavior based on signatures of known attacks.

Observations of the modeled system are then compared to the list of known signatures.

Xu et al. [98] perform the first large scale study in this field, covering smartphone users
across the whole United States of America. They provide various insightful findings that
are not directly related to the field of smartphone security. For example, they state that
certain apps tend to be used in pairs. That is, if a user has installed one app of a pair,
he will likely have installed the second app as well. Furthermore, they conclude that the
context of a user has impact on the type of apps he uses. For example, social networking
apps are used more frequently when the user is moving around. Furthermore, the location

of the user has great impact on the set of apps he uses.

Another study that is still in progress is conducted by the University of Cambridge!?.
Their Device Analyzer app for Android collects various data on the phone, including
apps in use, when the user makes phone calls and the coarse, network-based location.
Although there have been more than 10,000 contributors, there is still no publication

available. Furthermore, even preliminary results are not published yet.

Although there have been some studies that tackle the question of smartphone usage,

the effort that is put into this research field is limited compared to other areas.

2http://deviceanalyzer.cl.cam.ac.uk/
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App Analysis

As already stated, third-party apps impose a major threat for smartphones. Thus, a lot of
work that explicitly studies smartphone apps and the corresponding app store platforms

has been done.

A major contribution in this field was conducted by Enck etal. [99]. They provide an
in-depth study of 1,100 popular, free Android apps. That is, they did not limit their study
on data which can be easily obtained from the Android app store (such as app rating,
category or the use of permissions). Instead, they developed the ded decompiler to recover
the source code from binary .apk files. The recovered code is analyzed by automated tests
and manual inspection. They contribute four main findings: (1) apps misuse sensitive
information such as phone identifiers or geographic locations, (2) background recording
of audio or video data was not observed, (3) advertisement libraries are common for
free apps and (4) developers fail to use the Android APIs in a secure way. The PiOS
study conducted by Egele et al. [100] yields similar results in terms of misuse of sensitive
information and the use of advertisement libraries for iOS apps by using static analysis

techniques as well.

The first survey discussing mobile malware was conducted by Felt at al. [101]. They
focus on mobile malware for Android, iOS and Symbian that was seen in the wild from
January 2009 to June 2011. Their work basically provides three key findings: First, ma-
licious apps can be classified according to their behavior. The most common malicious
activities include the collection of user information and the sending of premium-rate SMS
messages. Future malware is expected to exploit new features of smartphones, such as
NFC. Second, the detection of malicious apps based upon their requested permissions is
in general feasible. For example, 73% of the malicious Android apps requested the per-
mission to send SMS messages, which also allows them to send such messages silently
without user notification. Benign apps normally do not request that permission (96%).
Even if they need to send SMS messages, they would use the built-in SMS messenger,
allowing them to send SMS messages without the need to request any special permission.
In this case, the user will be notified about each SMS message that is sent. Other permis-
sions are less obvious in terms of their potential for malicious abuse (like the permission
to access the Internet). Hence, future work is needed in order to derive meaningful per-

mission sets that reliably indicate malicious behavior. Third, root exploits are used both
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by authors of malicious apps and benign users in order to gain privileged access to a
smartphone. Their analysis shows for at least 74% of a smartphone’s lifetime, a working
root exploit is available. Thus, approaches that tackle the field of smartphone security,
especially in terms of integration them into existing IT infrastructures, should also aim
to leverage network-based measures.

Chin etal. [56] investigate vulnerabilities of Android apps with a focus on inter app
communication. They present ComDroid, a tool that performs static analysis of disas-
sembled Android apps. Their findings show that many apps include components that
are unintentionally accessible by other apps, enabling Broadcast injection and Activity
hijacking attacks among others. This attack vector can be abused by malicious apps in
order to employ attacks on the device against benign apps.

Fahl et al. [102] analyzed the 13,500 most popular, free Android apps. Their analysis fo-
cuses on how apps make use of the SSL/TLS protocols in order to protect data in transit.
With their static code analyzer MalloDroid, they find severe programming flaws in the
SSL/TLS code in 8% of the apps. A manual inspection of a subset of those apps showed
that 41 of 100 inspected apps were vulnerable to Man-in-the-Middle (MITM) attacks.
Thus, the authors were able to capture various sensitive data, including credit card num-
bers and login credentials. Their study shows that there is need for better education of
developers and for better tools to support secure development of Android apps. Further-
more, it again proofs that companies who want to securely integrate smartphones within
their I'T infrastructure must be concerned about the threats imposed by third-party apps.

The recent work of Sanz et al. [103] aims at classifying apps into categories (like game,
travel, etc.) by using machine learning techniques. They considered features that were
directly obtained from the app’s package (contained strings and permissions) as well as
features obtained from the Google Play app store (rating, number of ratings and size of
the app). They provide an empirical evaluation of several machine learning classifiers,
including Bayesian Networks [104], Decision Trees [105], K-Nearest Neighbour [106] and
Support Vector Machines [107], where Bayesian Networks perform best.

Zhou etal. [108] perform an evaluation of apps obtained from non-official, third-party
app stores. They explicitly aim to detect malicious apps that have been created by repack-
aging benign apps. For this purpose, they have developed a system called DroidMOSS
that can measure the similarity of Android apps. Their findings show that up to 13%
of apps hosted in unofficial app stores fall into this category. Although the main focus
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of such repackaged apps is to change the in-app advertisements in order to re-route ad-
vertisement revenues, the technique can also be employed for other malicious tasks like
stealing sensitive information from the smartphone. Thus, the authors claim that there is
a need to improve the vetting process for third-party app stores. When integrating smart-
phones into existing I'T infrastructures, the knowledge whether a certain smartphone uses
apps from unofficial app stores might be beneficial in order to reason about the devices
security status.

The latest, large scale analysis of Android malware was conducted by Zhou et al. [109] as
well. They were able to collect 1,200 malware samples between August 2010 and October
2011. Based on these collected samples, they provide an characterization based on aspects
like installation methods, activation techniques, the concrete malicious payload and the
permission use. Their findings show that malicious apps tend to request more permissions
than benign apps (11 versus 4 in average). Furthermore, the majority of malware families
(68%) were obtained from unofficial app stores. Repackaging is the predominant installa-
tion method for malicious apps (86%). Furthermore, more than one third (36,7%) try to
employ privilege escalation attacks once installed. Based on their dataset, they evaluated
several mobile anti-virus tools. Detection rates varied from 79,6% to only 20,2%. The au-
thors conclude that there is a need for better anti-mobile-malware solutions. In addition,
they made their dataset publicly available!3.

In order to examine the overall “health” of both official and unofficial Android app
stores, Zhou etal. propose DroidRanger [110]. The term health refers to the ratio of
benign to malicious apps that are provided within the respective app store. DroidRanger
allows to classify apps as benign or malicious based on two schemes: (1) permission-based
behavioral footprinting and (2) heuristics-based filtering. The first one aims to detect
known malware by analyzing the app’s requested permissions retrieved from the manifest
file. Furthermore, they employ a static code analysis in order to detect suspicious API
call patterns (like Broadcast Receivers whose Intent Filter allows to be notified about
received SMS messages and that subsequently hinder the respective Intent from further
dissemination by calling an appropriate API function (abortBroadcast). The second
scheme aims to detect unknown malware (that is malware without any sample apps).
This is done by using heuristics during the static code analysis of apps. The heuristics

are based on the assumption that the dynamic loading and execution of code is a strong

Bhttp://www.malgenomeproject.org/
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indicator for a potentially malicious app. Apps that match the heuristics are further
analyzed by dynamic execution and function call monitoring. Their system uncovered 211
malicious apps and two zero-day malware samples from 204,040 apps collected from May
to June 2011. The infection rates of the analyzed app stores are generally low (ranging
from 0,02% to 0,47%). However, this study proofs that unofficial app stores impose a
higher threat level due to the fact that their infection rates are more than a magnitude
higher (0,2% to 0,47%) compared to the official Android app store (0,02%).

A system that works very similar but specifically aims to find Zero-day malware for
Android is RiskRanker [111]. Among the 118,318 apps collected from multiple Android
app stores from September to October 2011, their system found 718 malicious apps,
including 322 being zero-day.

Research in the field of app analysis strongly focuses on the Android platform. Probably
because of its more open approach compared to other platforms. However, Egele et al. [100]
conducted a study of iOS apps. They developed PiOS, a tool that aims to detect potential
privacy leaks in Mach-0 binaries that were compiled from Objective-C code. They found
that the majority of apps leak the smartphone’s unique device identifier. However, they
were not able to find instances of apps that secretly leak sensitive information that can

directly be attributed to a person.

3.3.2 Attacks

Besides the analysis of smartphone platforms and their security mechanisms, a lot of effort

has been put into performing actual attacks.

Taxonomy for Attacks

Vidas et al. [112] provide a survey on current attacks for the Android platform. They
contribute a taxonomy for mobile attack classes, give concrete examples of attacks and
present guidelines for mitigations where possible. They claim that one of Android’s vul-
nerabilities is the combination of an open, less restrictive app store to purchase apps with
the long patch cycle durations (as already introduced as Android Update Problem in Sec-
tion 3.2). They classify attacks according to five classes, basically differentiating between
unprivileged attacks carried out by fooling the user to install malicious apps, remote ex-

ploitation attacks that aim to get privileged access and attacks that need physical access
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to the device. Concerning mitigations, among others a reduction of the patch cycle length
and the usage of a Trusted Platform Module (TPM) [113, 114, 115] are proposed.

Sensory Malware

The first sensor sniffing attack was performed by Xu etal. [11]. They implemented SVC,
the Stealthy Video Capturer for Windows Mobile. SVC captures video data which in turn
can be sent to a remote party via email. While doing so, SVC behaves stealthy, limiting
costly operations to a minimum. At that time, none of the established anti virus tools
was able to detect SVC. This early work proofs that the built-in sensors of smartphones
can be abused to compromise the user’s privacy.

Schlegel et al. [10] have presented Soundcomber, a stealthy sensory Trojan for Android.
Soundcomber can retrieve sensitive data such as credit card numbers and PINs when
the user is interacting with a so-called interactive voice response (IVR) system and can
send the gathered data to a remote system. It is composed of two colluding apps, one
responsible for data collection and processing, the second responsible for data transmission
to the attacker. Since both apps communicate on the device via covert channels, they
have only a limited set of unsuspicious permissions on their own. Speech recognition and
exfiltration of sensitive data is done on the device, thus limiting the amount of data that
is transmitted to the attacker over the Internet. The authors discuss multiple defense
mechanisms, including a more fine-grained permission model. The authors claim that
monitoring the network traffic for anomalies will likely fail to detect Soundcomber, given
the fact that it only transmits very few data over any communication channel.

The first malware for Android was developed by Schmidt etal. [116]. They abuse func-
tions of the Android API that were undocumented in its early versions in order to execute
native code on retail devices. Their attacks are based on Android’s support for execut-
ing native code from the Java environment by using the JNI. This way, it was possible
to bypass some parts of the Android permission system (for example the permission
BATTERY_STATS). Although the authors state that their first findings are not critical, it
proofs that the support of using native code from any third-party app is a potential attack
vector.

Bickford et al. [117] investigate rootkits for smartphones. They perform exemplary at-

tacks that allow an attacker to (1) snoop for sensitive data (conversations and geographic
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location) and (2) to perform a DoS attack by depleting the phone’s battery. Their proof-

of-concept rootkits are targeting the Openmoko platform.

Distributed Denial of Service Attacks and Botnets

Liu et al. [118] were the first who discussed the potential of Distributed Denial of Service
(DDoS) attacks performed by smartphones in detail. They describe how smartphones that
are infected by malicious apps can be used in order to attack the public 911 emergency
service. A similar study was done by Traynor etal. [119], focusing on the threats of
mobile botnets. Furthermore, Singh et al. [120] investigate the feasibility to use Bluetooth

as communication channel for botnet command and control on mobile phones.

Privilege Escalation Attacks

Davi et al. [9] have successfully performed privilege escalation attacks on Android. In gen-
eral, this type of attacks circumvent Android’s mandatory permission system by enabling
unprivileged apps to use resources of the smartphone although they do not have sufficient
permissions (like sending SMS messages). The proposed attacks are based upon the run-
time compromise concept of return-oriented programming (ROP) without returns [121].

Egners etal. [122] recently presented a sequence of attacks that abuse vulnerabilities
of the Android permission model. They allow them to establish a bidirectional commu-
nication channel to the Internet, without using the INTERNET permission. It is another
example for privilege escalation attacks on Android.

Luo etal. [123] have identified that one critical attack vector for modern smartphones
is their support of a technology referred to as WebView. It enables third-party apps to
easily render and interact with content from web servers by using the HT'TP protocol.
The integration of JavaScript is supported as well. As already stated in Section 3.1, one
important aspect of smartphones is that instead of using a general purpose browser for
browsing the Internet, dedicated apps to interact with single web pages are common. The
authors describe numerous attacks, either employed by malicious web sites or by malicious
apps. Their work proofs that smartphones have a different attack surface compared to
other computing platforms.

Orthacker et al. [124] provide an analysis of the Android permission framework. They

especially describe the problem of permission spreading. The problem refers to the fact
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that collaborating, malicious apps are able to disguise the total set of their granted per-
missions. In this case, the user can still reason about the subset of permissions that are
requested by each app. However, it is not transparent for him whether installed apps col-
laborate with each other in such a way that functionality which is protected by a certain
permission is exposed via custom interfaces or covert channels. In this case, an app could
access a phone’s resources although it does not have the required permissions. Permission
spreading is especially useful to separate suspicious permissions from each other: For ex-
ample, a third-party app that can both access the Internet and is able to read the user’s
private contacts would be considered to possibly leak private data. If the permissions are
spread across two collaborating apps, this observation cannot be made anymore by the
user. The authors provide a demo implementation of a permission spreading attack where
two collaborating apps leak the phone’s GPS position to a Twitter account. Their re-
sults show that apps can access phone resources although they do not have the necessary

permissions.

Phishing

The threat of phishing attacks on mobile devices was first investigated by Felt and Wag-
ner [125]. Their findings show that phishing attacks on Google Android and Apple iOS are
feasible due to the lack of so-called application identity indicators. A user has little means
to verify that the current screen belongs to an app that he considers to be trustworthy for
a specific task (such as logging into his social network account). Since users are used to
enter credentials as part of their normal workflow (for example when sharing information
on social networks, when purchasing music or when updating already installed apps), it
is easy to fool them to enter their sensitive information to a phishing app that fakes a

benign app.

3.3.3 Countermeasures

Several countermeasures have been proposed in order to mitigate threats that smartphones
have to face. Most approaches address mobile malware. In the following, countermeasures
are presented and grouped according to their architecture as being either host-based,
network-based or hybrid. Host-based approaches focus on extending existing smartphone

platforms with additional security mechanisms. Network-based approaches aim to limit
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the necessary changes that need to be made to an existing smartphone platform, while
introducing new components whose functionality is accessible via the network. Hybrid

approaches combine both host- and network-based ideas.

Host-based

Some major contributions have been made by members of the Systems and Internet In-
frastructure Security Laboratory (SIIS)!* in the department of Computer Science and
Engineering (CSE) at Pennsylvania State University. Their work primarily aims at miti-
gating the threats that are introduced by third-party apps.

One of their first approaches is called the Policy Reduced Integrity Measurement Archi-
tecture (PRIMA) for the Symbian platform and was introduced by Muthukumaran et al.
[126]. PRIMA enables to protect the phone’s integrity by isolating trusted code (like an
app for online banking) from untrusted code (like a game). This is achieved by enforcing a
mandatory access control policy which is based on SELinux that encapsulates the allowed
information flows between the phone’s components (both trusted and untrusted). The
term reduced refers to the fact that PRIMA uses a coarse-grained policy with only three
types describing the levels of integrity (namely kernel, trusted and untrusted), whereas
default SELinux policies leverage hundreds of types in order to achieve the least privilege
principle. PRIMA implements the CW-Lite integrity model [127] which is less restrictive
than the classical Biba model [128]. More precisely, CW-Lite requires filtering methods
for processes that allow them to drop or upgrade their integrity level based upon the
data they have read. For PRIMA this is necessary in order to support the installation
of both trusted and untrusted apps while maintaining the desired isolation. The installer
component is generally trusted. If it installs an untrusted app (like one that has not been
digitally signed), the installer drops its integrity level to untrusted, with all the impli-
cations in terms of access to the phone’s resources. PRIMA also supports to attest the
enforced policy to a remote party.

Their first work that explicitly addresses the Android platform is the Kirin security
service [129, 14]. Kirin aims to mitigate malware at install time by checking the respec-
tive app’s security configuration against a predefined policy. The policy is like a blacklist
that encapsulates undesired properties of third-party apps. If an app that is about to

Yhttp://siis.cse.psu.edu
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be installed matches one of these properties, the user is informed about the potential
threat and the installation of the app is denied. The policies are written in the Kirin
Security Language (KSL). The authors provide nine example policy rules that render
undesired example properties. Each rule encapsulates a list of Android permission labels
(like SEND_SMS) and Intent Filter action strings (like CALL) that are combined by logical
and operators. According to their evaluation based on the example policy, five out of 311
apps from the official Google Play app store implement potentially dangerous functional-
ity. This work proves that it is worth to take the security configuration of Android apps
into account in order to determine the security status of a smartphone, especially in terms
of mitigating malicious apps.

Ongtang et al. introduce the Secure Application INTeraction (Saint) framework for
Android [15]. It addresses the fact that the Android platform does only provide very
limited means to regulate the interaction between apps that are running on a smartphone
based upon permission labels. However, application interaction is a core principle for
the Android platform in order to reuse existing functionality: in order to make a phone
call, an app developer would leverage the existing phone app by sending an appropriate
Intent message rather than implementing the functionality on its own. Saint generally
allows to specify two types of policies: install-time and runtime policies. The install-time
policy allows to define under which conditions a permission label P defined by an app A
is granted to another app B at install time. Once this permission label is granted, the
respective app can make use of it at any time (for example in order to access the phone’s
microphone), without referring to the corresponding policy again. Run-time policies on
the other hand allow to regulate the IPC that takes place at runtime. They allow to specify
access rules for the caller and expose rules for the callee. The IPC is only allowed if all
specified rules match. The concept is comparable to a stateful packet filter: the source and
the destination of each rule are Android apps (or components thereof), combined with
further conditions (like a minimum version of the destination component). A remarkable
feature of these runtime policies is that it is possible to include conditions based on context
information like location, time or the status of communication interfaces like Bluetooth.
Furthermore, conditions can cover requirements related to the app developer’s signature
key.

The TaintDroid system is another approach to detect malicious third-party apps that
was introduced by Enck et al. [16]. They adapted the idea of information flow tracking [130]
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for the Android platform. TaintDroid extends the Android core components in such a way
that allows tracking of privacy sensitive data (like location, audio, video and sensor data)
on a smartphone through third-party apps. TaintDroid notices when sensitive data leaves
the phone via untrusted apps and informs the user about it. Their results proof that
leaking privacy sensitive data through such third-party apps is a real issue: 20 out of 30
popular apps available on the Google Play app store leaked data in an undesired way.

Besides the SIIS laboratory, other research groups have also suggested host-based ap-
proaches in order to improve the security of smartphones.

The problem that many third-party apps tend to leak private data of the user to a
remote party [16] is also addressed by Hornyack et al. [131]. To counter this threat, they
propose an extension to the Android platform called AppFence. It basically adds two
benefits. First, when apps request access to sensitive data on the device, users can choose
to provide faked, so-called shadow data instead. This may break the correct functionality
of some apps that require valid sensitive data (such as the users contact list). Thus,
AppFence also supports to grant apps access to sensitive data, but prevents the data
from leaving the device over any communication channel. This functionality is referred to
as exfiltration blocking. In order to implement the additional security checks, the Android
platform must be extended. However, there is no need to modify third-party apps to work
on a device that uses AppFence.

Nauman et al. suggest Apex, a new policy enforcement framework for Android [132]. Tt
addresses one major drawback of Android: the “all-or-nothing” decision that a user must
make when a third-party app is installed. As already stated, the term “all-or-nothing”
refers to the fact that a user must either grant all permissions that the app requests, or
to decide to deny all of them, and thus abort the installation completely. Apex enables
the user to make more fine-grained decisions under which circumstances permissions shall
be granted to apps. Apex basically improves the Android framework in three ways: (1) at
install time, the user can choose to grant only a subset of the permissions requested by
the app, (2) at runtime, the usage of resources can be restricted based upon the phone’s
context (such as its location), (3) the access to resources protected by permissions can
also be restricted based on the app’s behavior and its current state (enabling policies that
cover aspects like a maximum amount of SMS messages an app is allowed to send). The
authors present a formal model for Apex policies and furthermore mention a prototype

implementation of their approach.
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Conti et al. [38] propose CRePE, a system that enables context-related enforcement of
fine-grained policies for Android. A context is defined by a set of variables (like location
or time), the presence of other devices, specific user interactions or a combination thereof.
A policy consists of rules that allow or deny access to resources. Resources are either
apps or system services. Policies can be defined both locally by the user and remotely
by a trusted third party and are always associated with a specific context. If the context
is active (such as the phone is within a specific location), the corresponding policy is
enforced. CRePE enables use cases such as a company that enforces a restricted set of
available apps for their employees when they are working. Their prototype implementation
imposes negligible time overhead (at most 0.6 ms for additional permission checks) but
a considerable overhead in terms of energy consumption (50% to 100% for permission

checks and context observation).

Ongtang et al. [133] introduce Porscha, a Digital Rights Management (DRM) exten-
sion for Android. They address the drawback that today’s smartphones, including Android
based phones, provide almost no means to enforce DRM policies on content that is de-
livered to the phone. Porscha supports to enforce policies within two separate phases: (1)
when the content is in transit, which means when it is delivered to the respective phone
and (2) when the content is located on the platform. Porscha allows to bind content both
to a particular phone as well as to a set of endorsed apps on the phone. Furthermore, the
use of delivered content can be constrained (for example allowing to play a video within
48h of the purchase date). The authors focus on SMS, Multimedia Messaging Service
(MMS) and Email as content providing communication channels. Content in transit is
protected by Identity-based encryption [134], an asymmetric encryption scheme. Content
on the phone is protected by adding a Porscha mediator to the Android middleware that
acts as reference monitor which enforces the content policies. Porscha’s DRM mechanism
could be leveraged in an enterprise environment in order to protect sensitive data.

Felt et al. [17] discuss the impact of permission re-delegation attacks for modern smart-
phone platforms. Permission re-delegation occurs when an unprivileged app accesses pro-
tected resources without the necessary permissions by abusing another, privileged app’s
vulnerable interface. It is a special case of a confused deputy attack [86]. Their survey of
popular Android apps shows that more than one third of the considered apps are vulner-
able to such attacks, including even core system apps that are directly shipped with the

smartphone. The authors also propose a possible defense mechanism called IPC Inspec-
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tion. When a communication is initiated between a caller and a callee, IPC Inspection
reduces the permissions of the callee to the intersection of the caller’s and the callee’s
permission set. Thus, permission re-delegation attacks can be prevented. However, this
approach places a burden on genuine apps to correctly request the permissions that they
use indirectly via deputies.

Quire [135] is another security extension for Android. Similar to IPC inspection in-
troduced before, Quire aims to prevent confused deputy attacks. It keeps track of the
IPC call chain, allowing an app to drop its privileges to those requested by the calling
app. Furthermore, Quire enables the called app to reason about the complete call chain
of preceding apps, instead of only seeing the last calling app. One major drawback of
the approach compared to others like IPC inspection is the fact that apps need to be
recompiled in order to support Quire.

Xie et al. [136] propose pBMDS, a behavior-based malware detection system. Their
approach aims to correlate user input characteristics (such as touchscreen usage) with
system calls at the kernel level in order to detect malicious behavior. pPBMDS is a host-
based, probabilistic approach that leverages Hidden Markov Models in order to learn
normal user and system call behavior. It was primarily designed to detect malware that
propagates through MMS/SMS and Bluetooth. Their prototype implementation is based
on the Openmoko platform. Modern platforms such as Google Android are not specifically
addressed. The authors claim that their approach was one of the first that introduces
artificial intelligence (AlI) for smartphone security.

Zhou et al. [137] address the threat of apps that leak sensitive, personal information of
the user to a third party. They argue that modern smartphones need a privacy mode that
enables the user to enforce fine-grained policies regarding which information can be used
by which apps. They present TISSA, a prototype of their system for the Android plat-
form. TISSA supports to specify the availability of sensitive information such as location,
contacts and the phone’s identity (IMEI) on a per app basis. For each type of sensitive
information, TISSA can be configured to either allow the access, return anonymous or
fake results or simply return nothing. The last option however will likely cause many
installed apps to not work properly. Although the approach is sound, it is questionable if
users really have the passion to maintain such policies on a per app basis.

Shabtai et al. [18] propose Andromaly, a lightweight, host-based IDS for Android-based

devices. In order to detect malicious apps, their framework is able to collect 88 features
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with different semantics (such as CPU Usage or Incoming SMS). Furthermore, it supports
different algorithms for both the selection of features (i.e. those that are used for further
analysis) and the detection of malicious apps (such as k-means and Bayesian Networks).
Their empirical findings show that machine learning techniques are a viable approach for
the detection of malicious software on Android powered devices. They conclude that a
reasonable enhancement would be to combine anomaly detection algorithms and misuse-

based detectors (such as rule-based approaches).

Bugiel et al. [138] propose XManDroid, a security framework for Android that is capa-
ble of detecting and preventing application-level privilege escalation attacks at runtime.
The authors particularly address the threat of sophisticated malware apps that use ad-
vanced techniques such as covert channels in order to hide their malicious functionality
(like Soundcomber [10]) as well as confused deputy attacks where vulnerable interfaces of
genuine apps are exploited [86, 135]. XManDroid extends the Android reference monitor
to enable runtime monitoring of communication between apps. Based on a system policy
which is consulted when a particular interaction between two apps is requested, these
communication links can either be allowed or denied. The system policy encapsulates
rules that are based on previous work done by Enck et al. [129, 14]. However, XMan-
Droid’s policies are not solely restricted to permissions. Instead, they also incorporate the
concepts of ICC content inspection and user confirmation. This allows more fine-grained
policy rules such as to allow the sending of text messages depending on the confirmation
of the user. XManDroid is an extension of the Android middleware and thus can only de-
tect malicious behavior that actually uses Android’s ICC mechanisms. This drawback is
addressed in a subsequent paper, where a kernel-level module is added to the XManDroid
approach [139]. Although they provide seven example rules, the engineering of reasonable
security policies remains a challenging task for future work.

Bugiel et al. [62] also propose TrustDroid, a security framework for Android that enables
to isolate installed apps based on their trustworthiness. Their motivating example is to
separate private apps from those that are used for business tasks, preventing unauthorized
communication and data access between them. TrustDroid adds security checks at several
layers of the Android stack: (1) the middleware layer, (2) the kernel layer and (3) the
network layer. Context-related policies are supported as well, enabling use cases such as
to prevent untrusted apps from using the Internet while an employee’s smartphone is

connected to the company’s IT infrastructure. Their trust model is similar to the one
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defined in Section 2.4. They provide a prototype implementation and proof that their
approach imposes negligible overhead in terms of battery consumption. Thus, TrustDroid
is well suited for isolating apps based on their trustworthiness, limiting the potential
damage that malicious apps can cause. Especially within a corporate scenario, TrustDroid
could be beneficial. However, the approach does not include any detection capabilities.
Furthermore, it requires extensive changes to the Android platform.

Pearce et al. [140] have conducted a study of the Google Play Store in order to inves-
tigate how advertising libraries (also referred to as ad libraries) impact the permission
usage of third-party apps. Advertising is a crucial part of the Android ecosystem. As
many apps are available for free, ad libraries are a convenient way for developers to gain
revenue by displaying in-app advertisements. They just have to bundle an appropriate
ad library together with their app. A side effect is that many apps tend to request pri-
vacy sensitive permissions only because of the bundled ad library (for example in order
to obtain the location of the smartphone). This is a clear instance of the over declara-
tion problem introduced before. In order to address this problem, the authors propose
AdDroid, a new advertisement framework for Android. It introduces a new API and a
set of new permissions, enabling third-party developers to display advertisement within
their apps without requesting otherwise unnecessary and privacy sensitive permissions.
Another study dealing with the impact of advertisement libraries that yield similar results

was also conducted by Grace etal. [141].

Network-based

Cheng etal. [142] present SmartSiren, a collaborative virus detection system. They ad-
dress the threat of mobile viruses that infect smartphones and try to spread themselves
by abusing the phone’s communication capabilities (for example SMS/MMS, Bluetooth
and IP-based communication). Their system includes an agent on the smartphone that
monitors the device’s communication activities, creates appropriate reports and sends
them to a remote server. Monitoring and detection capabilities are limited to SMS/MMS
messages, emails or messages sent via Bluetooth. The remote server tries to detect the
presence of viruses by processing the reports received from the agents. SmartSiren gen-
erally supports three detection strategies: (1) performing statistical calculations on the

overall amount of traffic (moving average), (2) counting the number of messages for each

66



3.3 Related Work on Smartphone Security

destination in order to detect highly frequented destinations and (3) the use of fake con-
tacts added to the smartphone’s address book. The last detection method is used in order
to detect viruses that try to disseminate themselves by a brute force strategy. Upon de-
tection, alerts are sent both to the infected smartphone as well as to smartphones that
are logically connected (via contact lists) or physically connected (that is via proximity)
to the infected device. This early work proofs that network-based approaches for mobile
malware detection are feasible.

The early work of Kim et al. [143] addresses mobile malware that targets the depletion
of battery energy. They propose a framework consisting of two components (1) a power
monitor that measures the power consumption on a mobile device and (2) a data analyzer
that generates power signatures based on the taken measurements. These signatures are
compared against a priori defined energy consumption profiles that express normal behav-
ior. The approach of Buennemeyer et al. [144] works similar. In contrast to the approach
that is developed within this thesis, they solely rely on the power consumption and do
not consider any further aspects of smartphones. Furthermore, these early approaches
can easily be circumvented if (1) mobile malware does not use a lot of resources or (2)
mobile malware is context-aware, thus performing costly tasks only at times when the
smartphone’s battery is currently charged.

Oberheide et al. [145] were one of the first that introduce the concept of providing cloud
security services for smartphones in order to circumvent their resource constraints. They
leverage their CloudAV malware detection engine and extended it with a mobile-specific
behavioral detection engine. This engine performs dynamic analysis of apps based on
system calls. Furthermore, they envision that their approach can offer more sophisticated
security services like SMS spam filtering that go beyond the classical anti virus detection.
Their prototype is realized based on Nokia smartphones.

The Paranoid Android system is proposed by Portokalidis et al. [7]. Their idea is to
host virtual replicas of the smartphones on remote servers. Based on these virtual repli-
cas, various security checks are performed. In order to establish security measures that
are independent of the smartphones resource constraints, the authors envision to provide
security in terms of attack detection as a cloud service. A monitoring component on the
smartphone, called tracer, gathers execution traces which are then send to a component
located on the remote server, called replayer. The execution trace covers all necessary

information to replay the execution that has taken place on the smartphone within its
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virtual replica (such as system calls that pass data from kernel to user space or operat-
ing system signals). The authors propose four categories of security methods that can be
employed on the remote server: (1) dynamic runtime analysis, (2) anti virus scanning, (3)
memory scanners and (4) system call anomaly detection. A prototype for the Android
platform is also presented which exemplary implements two security methods: Dynamic
Taint Analysis [146] (which falls in category 1) and a ClamAV anti virus scanner (be-
longing to category 2). The necessary execution trace is recorded by leveraging the Linux
ptrace system call. An evaluation of their prototype shows that their approach is feasible
in terms of introduced processing and data transmission overhead. The authors claim
that their approach is also capable of detection zero-day-exploits. However, they do not

provide concrete examples for detected attacks.

An approach to monitor Symbian OS smartphones for remote anomaly detection was
introduced by Schmidt et al. [147]. Their architecture consists of a monitoring component
located on a phone and a remote server that hosts the anomaly detection components.
The monitoring component sends the feature vectors to the remote server, which in turn
can leverage various methods from the field of artificial intelligence like Self-Organizing
Maps (SOM) [88] in order to detect anomalies. The proposed features that are extracted
include system properties like the amount of free RAM, usage properties like whether
the user is currently inactive and smartphone properties like the amount of sent SMS
messages. In order to capture the normal behavior of a phone, the authors specified 40
use cases (such as playing a specific game on the smartphone) with corresponding testing
protocols. The resulting feature vectors where aggregated and considered as being the
normal behavior. This way, they were able to proof quiet obvious facts, like that the
CPU usage is significantly higher when a game is played compared to when the user
writes a SMS message. In order to learn abnormal behavior, they monitored the features
when executing a known malicious app developed by Jamaluddin et al. [74]. This malware
sends an SMS every time the key “2” is pressed, which caused an abnormal increase of
the SMS SENT COUNT feature.

Another approach to detect malware on Android is the Android Application Sandbox
System (AASandbox) proposed by Blésing et al. [148]. Besides static analysis features,
it also supports dynamic analysis of apps at runtime. Static analysis is done prior to
the installation of an app by decompressing and disassembling it. Dynamic analysis is

performed by leveraging the Android emulator in an isolated environment. The system
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is intended to be provided as a cloud service. AASandbox processes Android .apk files
and performs a two step detection approach: first, a simple static pre-check is performed
which basically scans the decompiled Java bytecode for suspicious patterns (like usage of
Java Native Interface to load native libraries or the presence of Java code that is capable
to spawn native child processes). Afterward, the dynamic analysis component monitors
the behavior of the respective app within an Android emulator. The component basi-
cally logs all system calls that take place to a separated log file. The authors evaluate
their approach based on a sample malicious app which they implemented on their own.
The malware basically launches a Denial of Service attack targeting the smartphone itself
by continuously creating new child processes. The static analysis component detects the
suspicious Java instructions that spawn the child processes. The dynamic analysis compo-
nent in turn detects that the behavior of the malicious app is suspicious compared to the
normal behavior of third-party apps. However, the authors do not provide suggestions for
concrete machine learning techniques in order to process the dynamically observed data
set.

Burguera et al. [149] propose the Crowdroid system for dynamic, behavior-based mal-
ware detection on Android powered smartphones. They specifically aim to detect trojan
horses that infect benign apps in order to spread themselves (like DroidDream in March
2011). Thus, they are focussing on finding apps that have the same name and version,
but behave differently due to the added malicious code. The Crowdroid client monitors
system calls on an Android device and sends the collected traces to a remote server. The
remote server then creates system call vectors based on the received traces. Afterwards,
partitional clustering by leveraging the k-means algorithm is applied on the system call
vectors in order to distinguish between benign and malicious samples. Their detection rate
of self-written malware was 100% and 85% to 100% against malware that was seen in the
wild. Aside from solely focusing on system calls as only features, the major limitation is
that Crowdroid can only detect malware samples that have a matching goodware sample

(that is a benign app).

Hybrid

One of the first papers on intrusion detection for smartphones that follow a hybrid ap-

proach was conducted by Miettinen et al. [95]. They propose a framework that leverages
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both host-based and network-based detection methods. An IDS module on the smart-
phone obtains relevant features and raises alerts if intrusions are detected. These alerts
are forwarded to a network-based IDS module, which in turn correlates them with other
alerts that have been observed due to monitoring the network traffic. Besides the architec-
ture of the framework, only little detail is given on the smartphone features that should
be used for intrusion detection. The authors provide three general categories of features
(operating system events, measurements and application level events) and give few ex-
amples of features that have been used in the past on commodity PC platforms (such as
system calls and CPU usage). However, in contrast to this thesis, they do not provide a
detailed analysis of features that should be obtained on smartphones. Furthermore, no
approach is presented in order to realize the network-based correlation engine. Their work

does not address any particular smartphone platform at all.

Schmidt et al. [150] introduce the concept to use static analysis of executable for col-
laborative malware detection on Android. Their system provides three main services: (1)
on device-analysis (2) collaboration and (3) remote analysis. The on-device analysis com-
ponent is responsible for extracting system and library calls from binaries by leveraging
the readelf command and can perform first analysis methods. When on-device analysis
is not feasible, the data can also be sent to a remote server which then performs the
analysis. Furthermore, the collaboration function enables to even share analysis results
directly between smartphones. In order to create reference data for a benign smartphone,
the function calls of all Executable and Linking Format (ELF) compliant Linux system
commands available on Android were extracted. Accordingly, to create malicious refer-
ence data, a set of known malware for Linux was processed in the same way. Although
not specifically targeted for Android, the authors argue that the malware examples would
only show minor differences when cross-compiled to Android’s ARM architecture, and
thus form a reasonable basis for malicious reference data. Based on the readelf output,
attribute sets were defined that basically encapsulate the names of the system functions
that were called. The data was then processed with three different classifiers: PART [151],
Prism [152] and a modified version of the Nearest Neighbor Algorithm. Their findings
show that classifying malware based on function calls is feasible. The classifiers in use

performed well, with high detection and low false positive rates.

Nauman et al. [153] introduce an approach to enable the concept of remote attestation

as defined by the TCG for the Android platform. They leverage the Integrity Measurement

70



3.4 The IF-MAP Protocol for Network Security

Architecture (IMA) for Linux in order to bootstrap a chain of trust from the kernel level.
Based on this chain of trust, they support two attestation schemes. The first one supports
to attest the integrity of complete apps. The second one enables the more fine-grained
attestation of individual class files. The approach can be used by administrators of an
IT infrastructure in order to obtain the software configuration of connected smartphones,
secured by leveraging the capabilities of a TPM. However, it requires extensive modifica-
tions to the Android platform itself. Furthermore, the authors do not address the problem
how informed decisions can be made based on the attested software configuration, which
is a fundamental challenge for all attestation approaches.

The number and variety of presented approaches proofs that smartphone security has
become and still is a hot topic in the research community. The focus of the presented publi-
cations ranges from survey and analysis papers over exemplary attacks to countermeasures
that aim to mitigate identified threats. An assessment of the discussed countermeasures

is provided in Section 3.5.

3.4 The IF-MAP Protocol for Network Security

In the following, the IF-MAP protocol for network security is introduced. Its major
strength is the ability to integrate existing security and management systems, enabling
them to share data about the network in order to employ collaborative efforts for mitigat-
ing potential threats. Although IF-MAP is not related to the field of smartphone security,
it will be used in the remainder of this thesis to implement the CADS approach which
is presented in Chapter 4. Details why IF-MAP is suitable for implementing the CADS
approach are discussed in Section 5.1.

The term IF-MAP refers to a set of specifications that were published by the Trusted
Computing Group (TCG) as part of the Trusted Network Connect (TNC) framework.
TNC defines and open set of standards and protocols for building interoperable Network
Access Control solutions. IF-MAP defines a network protocol for exchanging so-called
metadata among an arbitrary number of MAP clients (MAPCs) via a central MAP server
(MAPS) in real-time. The main motivating scenario for IF-MAP is to distribute security
related metadata between components within a network in a standard and thus interop-
erable way. The term metadata with respect to IF-MAP refers to data that describes the

overall status of the network, including attached devices and their users. Since the speci-
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fications include a flexible extension mechanism, IF-MAP can be customized to virtually
any scenario even beyond the classical network security domain.

[F-MAP in its latest version 2.1 is specified by two types of documents: One document
defines the core data model, the basic operations that MAPCs and the MAPS must
support and their encapsulation within SOAP [20]. The second type of documents specifies
metadata for specific domains. For example, there is currently one dedicated specification
that addresses metadata for the domain of network security [154] and another one that
addresses security in the domain of industrial control systems (ICS) [155]. Thus, it is easy
to integrate metadata for further domains, without the need to change the core protocol.

A specification that addresses the domain of smartphone security does not exist yet.

3.4.1 TNC Architecture

The TNC architecture is depicted in Figure 3.2. The architecture is organized in five

columns, each one representing a logical role:
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Figure 3.2: TNC Architecture [36].

1. An Access Requestor (AR) represents an endpoint that wants to get access to a
TNC protected network.

2. A Policy Decision Point (PDP) is located within the protected network and is

responsible for authenticating endpoints that try to access the network. This usually

72



3.4 The IF-MAP Protocol for Network Security

includes an authentication of the user as well as a check of the endpoint’s current

integrity state (that is its software configuration).

. A Policy Enforcement Point (PEP) is located at the edge of a protected network.
The AR tries to access the protected network via the PEP. The PEP is responsible

for enforcing the access decision of the PDP.

. A Metadata Access Point (MAP) is responsible for storing and providing state in-
formation about ARs (such as current integrity state, IP Address, authenticated
user) and other components of the TNC protected network. This state information
is generally referred to as metadata. It can be used for further policy decision mak-
ing and enforcement. The specification defines the role simply as MAP. However,
in order to emphasize that a MAP provides server functions to store and retrieve
arbitrary metadata, it is also referred to as Metadata Access Point Server (MAP
Server, or simply MAPS).

. A MAP Client (MAPC) is able to publish metadata to and receive metadata from a
MAP Server. Examples for MAPCs include sensors like Intrusion Detection Systems
(IDS) that publish metadata that describes security alerts.

The PDP and the PEP can act as MAPCs as well. For example, a PDP that sup-
ports IF-MAP will publish metadata to the MAPS for each user and each device that

is authenticated by means of TNC. The logical roles are further subdivided in several

components that perform a specific task within the TNC framework. Three layers group

components that provide similar functionality. Dashed lines depict the interfaces between

those components that are specified within the TNC framework.

3.4.2 Data Model

The data model of IF-MAP is represented by an undirected graph where cycles and loops

are allowed. It is composed by three types of components:

1. Identifiers are represented by the nodes of the graph. Each identifier belongs to a

certain type as specified by an XML schema document. The type limits the potential

values of an identifier. There are five basic types of identifiers:
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a) ip-address to represent an IP address that is currently used within a network.

b) mac-address to represent a MAC address that is currently used within a net-

work.

¢) identity primarily used to represent users who have been authenticated within

a network.

d) device to represent devices (servers and endpoints) that are connected to a

network.

e) access-request to represent a request for access to a network that was issued

by an endpoint.

2. Links are represented by the edges of the graph. A link establishes an undirected,

bi-directional relationship between two identifiers.

3. Metadata is specified by XML schema documents. Metadata can be attached both

to single identifiers or to links that connect two identifiers.

Depending on its actual type, metadata should or must be attached to a specific type
of identifier or on a link between two identifiers of a specific type respectively. For exam-
ple, one standard type of metadata is ip-mac. It can be attached on a link between an
mac-address and an ip-address identifier. This would express the fact that one device
is using the associated MAC and IP addresses (for example as provisioned by a DHCP
server). An example of an IF-MAP graph is depicted in Figure 3.3.

3.4.3 Communication Model

[F-MAP is a content-based publish-subscribe network protocol. In essence, a MAPC and
a MAPS exchange XML documents encapsulated within SOAP over HTTPS [156]. Thus,
the protocol is secured by means of TLS [157]. MAP clients and MAP servers must
mutually authenticate themselves. MAP clients must verify a MAP server’s certificate
and determine whether it is trustworthy or not. MAP servers in turn must authenticate
MAP clients either by (1) verifying a client’s certificate as part of the TLS handshake
or (2) by employing password based basic authentication as described in RFC 2617 [158]
after the TLS handshake was finished.
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Figure 3.3: Example of an IF-MAP graph.

I[F-MAP follows the request-response paradigm. A MAPC initiates the communication
by sending a request that expresses an IF-MAP operation. The MAPS performs the re-
quested operation and answers with an appropriate IF-MAP response, either immediately

or with a certain delay. The following operations are supported:

e The publish operation is used by a MAPC to create, change or delete metadata
stored in a MAPS.

e The search operation is used in order to search the current [F-MAP graph that is
stored in the MAPS. A single identifier must be specified that represents the root of
the search, that is where the search starts. The search algorithm can be implemented
either by following a depth-first or a breadth-first strategy. A couple of parameters
can be specified to customize the way the IF-MAP graph is traversed during the
search. This especially includes the maximum depth to which the graph is traversed

(relative to the root identifier). Furthermore, it can be specified that certain links
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in the graph are only traversed if they have a certain type of metadata attached to

them (also referred to as match-links filter).

The subscribe operation is similar to the search operation. In fact, the syntax of
the operation is basically the same. It enables a MAPC to get notified immediately
when changes to the IF-MAP graph in the MAPS are made that match one of his
subscriptions. A MAPC can hold numerous subscriptions to one MAPS at the same

time. Basically, those subscriptions work like stored search operations.

The poll operation is used by a MAP client to get notified as soon as changes to
the IF-MAP graph are made that match one of his previously issued subscriptions.
That is, the poll operation is a blocking operation. It returns in the event that a part
of the IF-MAP graph that is covered by the MAP client’s subscriptions is changed.
The subscribe/poll operations allow a MAP client to specify which metadata it is
interested in and to get notified immediately after the respective metadata has been
changed. Once a poll operation returns, the MAP client can process the received
metadata. Afterwards, it can issue another request that contains a poll operation in

order to get notified when the IF-MAP graph changes again.

[F-MAP distinguishes between two types of channels: a Synchronous Send and Receive
Channel (SSRC) and an Asynchronous Receive Channel (ARC). The latter one is only
used for the blocking poll operation. Any other IF-MAP operation is issued over the

SSRC. Further details regarding the IF-MAP protocol and its operations are provided by

the respective specification [20].

3.5 Assessment

In the following, the approaches in the field of smartphone security that have been pre-

sented in Section 3.3 are assessed regarding the requirements that have been identified in

Section 2.5. Approaches that solely focus on exemplary attacks or analysis of smartphone-

specific threats are omitted. The purpose of this assessment is twofold:
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e Second, the presented approaches are compared to the requirements defined in Sec-

tion 2.5. The goal is to analyze to what extend existing approaches are feasible to

fulfill the list of requirements.

The approaches that have been presented so far are summarized in Table 3.2. It is

subdivided into two parts:

e The left part summarizes general information of the respective approach. It includes

the name (or the name of the author), the focus of the approach, the architecture it

is based on and the platform it aims at. Architecture-wise, the approaches have been
classified as being host-based (H), network-based (N) or hybrid (X) or offline/out-

of-band (-). The last category encapsulates approaches that aim to enhance compo-

nents of a smartphone’s ecosystem like the platform’s app store. Relevant platforms
include Android (A), iOS (i), Openmoko (O), Symbian (S), Windows CE/Mobile
(W) and Maemo (M).

e The right part depicts to what extent each of the presented approaches fulfill the

requirements defined in Section 2.5. The fulfillment grade is classified into three

categories: complete (+), partial (o) and not fulfilled/addressed (-).

Table 3.2: Comparison of previous work in the field of smartphone security regarding the requirements defined in Section 2.5.

The focus is on related research approaches.
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3.5.1 General Findings

Based on the related work that has been discussed so far, the following general findings

can be made.

Host-based security extensions are predominant Most of the approaches that have
been proposed recently focus on host-based extensions for certain smartphone platforms.
Out of the 38 approaches listed in Table 3.2, 17 implement a host-based architecture.
Only 8 implement a network-based architecture and 4 follow a hybrid approach combin-
ing host- and network-based mechanisms. Since the majority of security extensions aim
to prevent some type of attack, it is reasonable to follow a host-based approach that
extends a concrete platform with the appropriate additional security mechanisms. The
distribution also proofs that the question how IT infrastructures can be protected from
threats introduced by smartphones has not gained a lot of attention. Recently, several
approaches have been proposed that do not match the classification as being host-based,

network-based or hybrid (9 out of 38). Instead, these approaches aim to improve aspects
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of the ecosystem of smartphones, namely the platform’s app stores. The primary goal of

these approaches is to analyze third-party apps in order to detect malware.

Android related research is predominant Early approaches have focused on the Sym-
bian platform. However, since the first release of Android in 2008, research focuses on
Android as smartphone platform. iOS is only addressed by one of the presented ap-
proaches. The same is true for the outdated Openmoko and Maemo platforms. Although
most of the developed concepts are platform independent, researchers tend to built their
prototypes on Android. One main reason is the accessibility and openness of the platform,
enabling researchers to add new security features based on the officially available source
code. Furthermore, the Google Play app store for Android is more opened compared to

its competitors, easing the deployment of apps that are subject of research.

Countermeasures focus on privilege escalation attacks, privacy leaks and malware
The countermeasures that have been developed thus far focus on three security problems

of modern smartphones.

1. To prevent privilege escalation attacks. Especially the Android platform is prone to

this kind of attacks due to the design of its permission model.

2. To prevent leakage of sensitive data (private contacts, messages, the users location)
to remote third parties. This problem is especially important since it is not restricted
to malicious apps. Also benign apps tend to leak sensitive data, either on purpose

or by accident.

3. To detect and mitigate malware. Third-party apps have been identified as the ma-
jor threat for modern smartphones. Thus, many approaches focus on the problem
to effectively detect malicious apps. Some of them even focus on the detection of

malware that exploits zero-day vulnerabilities.

Commonly known security mechanisms are applied to smartphones Although smart-
phones have special characteristics that need to be taken into account such as limited
battery power, mobile usage, and app-based architectures, many approaches are based on

known techniques that are adapted for smartphones. This especially include work that
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aims to detect malicious apps. These approaches are based on the static analysis of bina-
ries or the dynamic behavior of apps. The same techniques have also been used in order to
detect malicious software on other platforms. However, the main challenge is to determine
relevant features that are suitable for the specific problem. For example, which features

should be considered in order to distinguish malicious from benign apps.

Smartphone usage patterns are not well understood The question how users prefer-
ably use their smartphone, in terms of what tasks they perform under which circum-
stances, is only addressed by very few approaches. However, this knowledge can be bene-
ficial for various use cases, including smartphone security. Regarding the given scenarios
defined in Chapter 2, it is a precondition to know the normal behavior of a smartphone
in a certain IT infrastructure before any anomalies can be detected. If it is known how
users preferably use their smartphones in a given IT infrastructure, this knowledge can

be used to actually develop models that express the normal behavior of smartphones.

3.5.2 Fulfillment of Requirements

In the following, the discussed approaches will be compared to the requirements identified

in Section 2.5.

R-01 Detection of unwanted and malicious configurations of smartphones The
majority of the presented approaches fulfill this requirement partially. This is because
their focus lies on the detection of malicious apps and on the prevention of certain types
of attacks (primarily privilege escalation). The fact that benign apps can be unwanted
within an IT infrastructure under certain circumstances is not properly addressed by
these approaches. Furthermore, they do not cover the fact that the status of smartphones
itself can violate a company’s security policy (like the activation of the camera within a
sensitive environment). Only one approach fulfills this requirement completely due to the
adoption of remote attestation for smartphones. However, this comes at the cost of the
inherent drawbacks of remote attestation, namely certain hardware requirements (a TPM

is needed), scalability and privacy issues.

R-02 Detection of abnormal smartphone behavior Various anomaly detection tech-

niques have been applied to the field of smartphone security. Early approaches focused
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on detecting abnormal battery usage of smartphones as an indicator for malicious apps.
Other approaches rely on monitoring system calls instead. The requirement is partially
met by 11 of the presented approaches. They only meet this requirement partially because
they are either limited in the type of data that can be considered for anomaly detection or
the concrete anomaly detection techniques that can be used. Furthermore, the approaches
focus on detecting anomalies that are caused by malicious apps. They do not explicitly
address cases where anomalies are caused by benign apps. Only the Andromaly approach
completely fulfills this requirement. It supports to capture various types of data on a
smartphone which in turn can be processed by numerous anomaly detection methods.
However, it fails to meet almost all of the remaining requirements, thus renders itself as

not being applicable to the scenarios described before.

R-03 Consideration of context information for detection The context of a smart-
phone is only taken into account by few of the presented approaches (7 out of 38). Five of
the approaches partially meet this requirement as they leverage basic context information
for the detection of malicious apps. However, the use of context information is gener-
ally restricted to basic timestamps that enable to order sequences of observed events for
further processing. Only the approach proposed by Dixon et al. [79] aims to use sophisti-
cated context information for detection purposes. However, the authors lack of presenting
concrete results. The two approaches that completely meet this requirement use context
information in order to enforce policies on the smartphone itself rather than for analysis or
detection purposes. Furthermore, they do not consider to restrict access to services within
the IT infrastructure but rather focus on granting access to resources on the smartphone
depending on its context. That is, although context information has been taken into ac-
count, existing approaches either limit themselves to time-based context information or

use the context for different purposes as demanded by this requirement.

R-04 Policy-based reaction on detection results Similar to the previous requirement,
a policy-based reaction is only supported by few of the presented approaches. This re-
quirement is partially met by 7 out of 38 approaches. They provide the user with basic
means to react on a detection result. For example, if a potential privacy leak is detected,
the user can choose to supply no data at all, to supply anonymized data or to supply his

real data. However, the majority of the approaches focuses on the detection task and does
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not deal with the dissemination of the detection result. Thus, mechanisms that enable an
IT infrastructure to react on identified threats are generally not discussed at all. Since
existing IT infrastructures commonly provide a wide range of security services, it is an
open question how these can be effectively used to mitigate threats that are introduced

by smartphones.

R-05 Dynamic analysis at runtime The majority of approaches works at runtime (28
out of 38). Thus, they can employ their analysis or detection capabilities when the smart-
phone is actually used within an IT infrastructure, completely fulfilling this requirement.
The approaches generally impose negligible overhead in terms of resource consumption.
However, it must be noted that the runtime capabilities are restricted to the detection
of either malicious configurations or anomalies. The dissemination of detection results at
runtime within an I'T infrastructure is generally not covered. Approaches that cannot be
used at runtime as required by the defined scenarios primarily aim to improve the secu-
rity of a smartphone platform’s app store. Thus, they are complementary to the approach

developed in this thesis.

R-06 Extensibility of processed data and used methods None of the presented ap-
proaches explicitly addresses the requirement to ensure extensibility in terms of data that
is processed and the methods that are employed for processing. However, approaches that
implement a network-based, hybrid or out-of-band architecture are generally extensible,
thus partially fulfilling the respective requirement. These approaches perform most of the
data processing remotely. This generally allows to add further detection methods without
changing the components that are deployed on the smartphones themselves. However, if
new data can be easily added for processing depends on the concrete implementation of
the approach. Still, there is no general framework that allows both to define what data
should be captured and what detection methods should be used in order to process them.
The host-based approaches fail to meet this requirement. In addition to the lack of a
sound framework, they also require extensive modifications to the respective smartphone

platform.

R-07 Ability to integrate the approach in existing environments The question how

new approaches for smartphone security can be integrated into existing I'T infrastructures
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is generally not discussed at all. Host-based approaches are usually based upon low-level
modifications to the smartphone platform. Thus, they do not meet this requirement.
Out-of-band approaches can generally be added to existing I'T infrastructures. However,
there is no defined way to make their detection results available to existing security
services. Thus, they only partially fulfill the requirement. The same generally also holds
for network-based and hybrid approaches. However, depending on the implementation of
the components that gather the data for processing, some of them also fail to meet this
requirement. Since some rely on agents that capture low level data on smartphones which
makes modifications to the smartphone platform itself necessary, those approaches fail to

fulfill this requirement.

3.6 Summary

This chapter provided an extensive presentation of related work in the field of smartphone
security. The assessment in Section 3.5 proofs that there is no suitable approach that
adequately addresses all requirements derived from the scenarios defined in Chapter 2.
Besides the drawbacks of existing approaches in fulfilling the stated requirements, the
analysis revealed that most of the related work focuses on detecting malicious apps or
on extending smartphone platforms with additional security mechanisms. However, the
question how smartphones can be securely integrated in existing IT infrastructures is not
addressed at all. In terms of detecting unwanted configurations and anomalies, there is no
extensible framework available that allows to define both the data that shall be collected
and the methods that should be used to process them in a flexible way. The context
of smartphones is often ignored by current approaches. Furthermore, there is a lack of
understanding how smartphones are actually used by their users due to the absence of
representative studies. Thus, the remainder of this thesis tackles these questions and aims
to answer them with a novel, network-based approach for smartphone security. During
the evaluation that is presented in Chapter 6, it will also be demonstrated that the
novel approach is capable of mimicking the functionality of the host-based Kirin security
service that has been presented above, while omitting the need for any modifications to
the Android platform.
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“You can’t defend. You can't

prevent. The only thing you can

do is detect and respond.”

(Bruce Schneier)
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This chapter introduces a novel, network-based approach for smartphone security. The
approach addresses the requirements stated in Section 2.5 that have been identified based

on the scenarios defined in Section 2.2. Hence, the approach aims
e to detect unwanted configurations and abnormal behavior of smartphones,
e to use the context of smartphones for detection purposes and
e to enable immediate reactions on detected threats

in order to securely integrate smartphones into existing I'T infrastructures. The approach
is referred to as CADS: Context-related Signature and Anomaly Detection for

Smartphones. It is composed of four main parts:

1. A generic, conceptual model that defines the main building blocks and the relation-

ships between them, especially the notion of signatures and anomalies.

2. A distributed architecture that identifies the components that need to be deployed

in the target IT infrastructure and their responsibilities.
3. A correlation model that defines how collected data is processed.

4. A process model that defines how the first three parts of the CADS approach can
be mapped to a specific problem domain. The domain-specific mapping presented
in this thesis targets the problem domain of securely integrating smartphones into

existing IT infrastructures as discussed in Chapter 2.
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4.1 Conceptual Model

In the following, the components of the conceptual model and their relationships are
defined (cf. Figure 4.1). The components are defined in order to meet the requirements

that were specified in Section 2.5. There are five different types of components:

1. Core Components. They are used to describe data about smartphones in an abstract
manner. The Core Components ensure that CADS is not limited to a certain type of
data. Therefore, they primarily address requirement “R-06 Extensibility of processed

data and used methods”.

2. Context-related Components. They are used to express the context of smartphones.
Therefore, they primarily address requirement “R-03 Consideration of context in-

formation for detection”.

3. Signature Components. They provide the functionality to express the configuration
of smartphones. Signature Components are primarily used to address requirement

“R-01 Detection of unwanted and malicious configurations of smartphones”.

4. Anomaly Detection Components. These components allow to detect abnormal be-
havior of smartphones. They are mainly used to address requirement “R-02 Detec-

tion of abnormal smartphone behavior”.

5. Policy Components. These components are used to express policies based on the
other types of components. They allow to define under which circumstances certain
reactions should be employed. Thus, they are primarily used to address requirement

“R-~04 Policy-based reaction on detection results”.

It should be noted that two requirements (“R-05 Dynamic analysis at runtime” and “R-
07 Ability to integrate the approach in existing environments”) are not directly addressed
by the Conceptual Model. Instead, they are covered by the CADS architecture (Section
4.2) and the Correlation Model (Section 4.3).

4.1.1 Core Components

The Core Components form the most basic building blocks of the model. They are used in

order to describe the data that is collected and processed in a structured manner. One of
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Figure 4.1: CADS Conceptual Model.

the main challenges is the fact that the question what data should be collected and pro-
cessed in order to detect unwanted configurations and abnormal behavior of smartphones
cannot be generally answered. As discussed in Chapter 3, existing approaches have used
different types of data for the detection of malicious apps and abnormal behavior. Types
of data that have been used include system calls, data that describes static properties
of apps and data that represents low level aspects of the smartphone device itself (such
as the depletion rate of its battery). However, in order to fulfill the requirements defined
in Section 2.5, especially requirement R-06 “Extensibility of processed data and used
methods”, an extensible mechanism that allows to consider arbitrary data is necessary. In
this respect, the term “arbitrary data” means that the approach must not be limited to a
certain type of data (battery level, permissions of apps) for employing its detection tasks
as existing approaches are. Instead, it must provide a mechanism that allows to define on
demand what type of data should be considered for the detection tasks. This is achieved

by introducing the Core Components Feature and Category.

Feature A Feature describes the most basic building block of the model and thus forms

the fundamental basis for any further components. In essence, a Feature represents an
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issue of interest within a certain problem domain. The notion of the Feature component
is derived from the field of artificial intelligence, specifically the field of anomaly detec-
tion. There, the term “feature” is used to describe data instances that are used as input
for concrete anomaly detection techniques [96]. A Feature is composed of the following

elements:

e A globally unique identifier. This enables to unambiguously identify a certain Fea-

ture within the set of all potentially defined Features.
e A value that contains data to represent the issue of interest.

e A type that provides information regarding the data that is contained in the value
element. There are three different types of values that are distinguished: (1) qualified
(2) quantitative and (3) arbitrary.

— The content of qualified values stems from a limited list of possible values (such

as low, medium or high).

— Quantitative values contain numerical, ordinal data that can have a measure-

ment unit associated (such as percent).

— Regarding the content of arbitrary values, no restrictions are made. They are
not limited by an enumeration and have no associated measurement units. This

type of value is necessary to express arbitrary Features like the name of an app.

For convenience, the terms qualified, quantitative or arbitrary Feature refer to a
Feature whose value has the corresponding type (either qualified, quantitative or

arbitrary).

e A set of Context Parameters. They encapsulate data that describe the contextual

situation at the moment when the Feature’s value is set.
e A human readable description that provides the semantics of the Feature.

Thus, a Feature combines data with semantics. Regarding the conceptual model, a
Feature represents an atomic piece of information. At runtime, instances of Features are
created, transmitted, updated and deleted. The logical roles that are involved in these
operations are presented in Section 4.2. The elements of a Feature can be classified as

being either static or dynamic. The static part is set once when an instance of a Feature
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is created and never changes afterwards. The dynamic part of a Feature instance can
be changed during its lifetime. It is composed of the Features value and the referenced
Context Parameters. As there has been a lot of ambiguity regarding the terms data and
information, a definition that is used to distinguish the terms throughout the rest of this
thesis is provided now.

Information is defined as data attached with semantics. For example, a qualified Feature
has the value “false”. The value alone is just data representing the string “false”. However,
considering the Feature’s identifier and the description, semantic background is given that
enables to derive information based on the provided data. That is, information which is
derived from the data varies depending on the definition of the Feature. For example, the
value “false” can provide the information that the user is not present or that a certain
sensor of a smartphone is not active. A more involved discussion regarding the differences
between data and information that also covers the term knowledge is given by Boisot and
Canals [159].

Category Categories are used to structure the set of defined Features according to their
semantics. Thus, a Category contains Features that have similar semantics. Furthermore,
Categories themselves can be hierarchically structured as well. That is, a Category can
have multiple sub Categories in addition to the Features it contains. However, each Cat-
egory can only have a single parent Category. A Category is composed of the following

elements:

e A globally unique identifier. This enables to unambiguously identify a certain Cat-

egory within the infinite set of all potentially defined Categories.

e A value. As Categories primarily work as containers for Features and other Cate-
gories, a single value does not make much sense. Instead, the value of a Category is

the set of identifiers of all contained Features and Categories.

e A cardinality. It defines the cardinality of the contained Features and is set to either
1 or N. For example, a Feature that represents a smartphone’s current battery level
will be contained by a Category with a cardinality of 1 (as there is always one
single valid value for such a Feature at any given time). In contrast, a Feature that

represents the name of a permission requested by an app on a smartphone will be
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contained within a Category with the cardinality N (since apps likely request more
than a single permission). Thus, there will be multiple instances of this Feature at
the same time. As already stated, the components and the process that details the

instantiation of Features are presented in Section 4.2.
e A human readable description that provides the semantics of the Category.

Note that Categories do no have any Context Parameters. This is due to the fact that

their primary purpose is to structure the infinite set of Features that can be defined.

Identifier Generation for Core Components Both Features and Categories need a
globally unique identifier. Although those could be chosen totally random, the following
production rules should be followed when defining Features and Categories for a specific
problem domain.

The naming of identifiers should follow a similar, hierarchical approach as the naming
conventions of Java packages and classes do [160]. According to the naming conventions,
Java packages are named by lower case American Standard Code for Information Inter-
change (ASCII) letters. Each layer of the hierarchy is separated by a dot (.). Classes are
named by ASCII letters as well. However, at least the first letter is capitalized. Long
class names that constitute of more than one word may also follow the CamelCase nota-
tion, that is the first letter of each word is capitalized. This approach is adopted for the
definition of identifiers for Features and Categories. Categories are named like Java pack-
ages (lower case ASCII letters). Features are named like Java classes (ASCII letters with
CamelCase). The hierarchy of Categories is expressed by concatenating their respective
identifiers by dot notation.

Assuming there is a Category ¢ with a sub Category s and assuming that this sub

Category includes a feature F', the fully qualified identifiers are as follows:
e The fully qualified identifier for Category ¢ would simply be c.
e The fully qualified identifier for Category s would be c.s.
e The fully qualified identifier for Feature F’ would be c.s.F.

Thus, the fully qualified identifiers always represent the complete hierarchy of Categories

and the contained Feature. If there is no ambiguity, only the single identifiers of Categories
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and Features will be used in the remainder of this thesis in order to address them, omitting
their hierarchical relation ship. Regarding the example above, the phrase “the Feature F'
is used” refers to the Feature whose fully qualified identifier is c.s.F.

However, a problem still exists if single instances of Features that are contained by
Categories with a cardinality of N should be referenced by their identifier. Given the
production rule above, this can lead to collisions as there might be more than one instance
of the same Feature F' at the same moment in time. Given the production rule above, those
instances cannot be distinguished if necessary. Thus, in order to solve this problem, a slight
addition to the production of identifiers for Categories is made, referred to as instance
dispatch. If a Category is of cardinality N and single instances should be identified, its
identifier is attached with an instance counter. Referring to the example above, assume
that Category s is of cardinality V. If multiple instances of the Category (and its contained

sub-categories and Features) must be distinguished, they can be identified as follows:
e The identifier for the first instance is ¢.sg.F".
e The identifier for the second instance is c.s;.F.
e The identifier for the n" instance is c.s,,.F.

As discussed later in this thesis, there are circumstances where both the instance aware
and instance unaware identifiers are used. Again, the short form of identifiers will be
used throughout the remainder of this thesis as long as it unambiguously identifies the
respective Category and Feature (that is F' instead of c.s.F or c.s,.F).

With these two Core Component types it is possible to render issues that are of interest
for a specific problem domain in a structured manner, encapsulating both the semantics
and the actual data for later processing. An example for a Feature that represents the
name of an Android app could be defined as follows: smartphone.android.app.Name.
In this case, the Category smartphone.android.app would be the only one that is of
cardinality N, whereas smartphone and smartphone.android would be of cardinality
1. Thus, the identifier smartphone.android.app.Name would match all instances of the
respective Feature, whereas smartphone.android.apps.Name would only match the 6th

instance of the Feature.
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4.1.2 Context-related Components

This type of components is used to express the context of a Feature. More precisely, they
describe the context at the moment when the value of the respective Feature is set. There

are two components of this type: Context Parameter and the Context.

Context Parameter Context Parameter encapsulate data that describe the context of
a Feature at that moment when its value is set. Each Feature references a set of Context
Parameters. Examples for Context Parameter include timestamps and location data. Their
internal structure is similar to that of a Feature. However, there are two main differences:
(1) Context Parameters cannot be hierarchically structured by means of Categories and
(2) their only purpose is to form the basis for the definition of Context components as

described below. A Context Parameter is composed of the following elements:
e A type that provides the semantic background for the Context Parameter.
e A value that contains data to represent the contextual information.

For example, in order to express the geographical location at which the value of a
Feature was set, one can define Context Parameters that encapsulate the coordinates
obtained via GPS.

Context A Context is basically a Boolean expression that is formulated based on the
previously introduced Context Parameters. By evaluating the Boolean expression, it is
determined whether the Context is fulfilled (the Boolean expression evaluates to true) or
not (the Boolean expression evaluates to false). A Context is composed of the following

elements:

e A globally unique identifier. As for the Core Components, this is used to unambigu-
ously identify a certain Context. However, since there is no hierarchical structuring
of Context components, its generation is more simple. The identifier could be cho-
sen randomly. However, it is again advised to choose meaningful names composed
of ASCII letters, where the first letter is capitalized and an appropriate prefix is
used. That is, in order to identify a Context that expresses the time interval of a

company’s working hours, the identifier can be set as context.WorkingH ours.
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e A Boolean expression which is formulated based on Context Parameters. The ex-
pression only uses basic binary Boolean operations, that is “and” (A) and “or” (V).
The Boolean expression itself is composed of numerous relational expressions which
are combined by the previously mentioned Boolean operators. Each relational ex-
pression is composed of a Context Parameter, a relational operator and a value. The
following relational operators can be used: <, >, <, >, = #. In order to evaluate a
relational expression, the value of the respective Context Parameter is compared
against the value that is provided as part of the relational expression. The same
Context Parameter can be used in multiple relational expressions (thus comparing

its value against multiple other values).

e A flag that indicates whether the Context is a so-called sliding Context. This flag
is relevant during the evaluation of the Context’s Boolean expression and used for
Context definitions that are based on temporal Context Parameters. For example,
a sliding Context based on a temporal Context Parameter could define that only
Features whose values have been set within the last five minutes fulfill the Context
(thus ensuring their freshness). The different handling of sliding and normal Context

components is further detailed in Section 4.3.

That is, the general structure of the Boolean expression of a Context ctx Expr can be
formalized as follows: ¢ denotes any binary Boolean operator, =< denotes any relational
operator. Let N be the number of Context Parameters that are used by a Context. A
Context Parameter is denoted as ctxP; with 0 < i < N. Each Context Parameter can be
used in multiple relational expressions. Let M; be the number of relational expressions
the Context Parameter ctxP; is used in. Thus, the value of ctx P; is compared against M;
other values denoted as val; ; with 0 < j < M;. Then, the formal definition of a Context’s

Boolean expression is as follows:
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ctxExpr =
((ctxPy < valyg) ¢ (ctx Py < valpy) . ..o (ctxPy < valg py,) ©

(ctz Py < valyp) o (ctxPy < valyq) o . ..o (cta Py < valy ) ©

Boolean expression

(ctxPy_1 < valy_1p9) ¢ (ctxPn_1 X valy) o ... (ctePy_y X valy_1py_,))

relational expression relational expression relational expression

Given the scenarios defined in Chapter 2, the number of Context Parameters that
are actually used by a Context will likely be small (not more than three). Furthermore,
the number of relational expressions used per Context Parameter is likely to be at most
two (in order to test a certain interval, for example (ctxPy > 5) A (ctzFPy < 10). If a
sliding Context is used, there will likely be only one relational expression. For example,
(ctxPy < 00 : 03 : 00) in order to select Features whose values have been set within the

last three minutes.

The purpose of a Context is primarily to easily choose instances of Features that are
relevant for further processing. That is, it allows to easily select instances of Features
whose values have been set at a given time or at a given location (depending on which
Context Parameters are used). If the Boolean expression of a Context is true for a specific
Feature instance, it fulfills the respective Context. This is essential for the detection
capabilities of the introduced approach. For example, the use of a certain app might be
prohibited by the company’s security policy for smartphones. However, this only applies
if the smartphone is currently used on site at the company during working hours. The
question whether the smartphone is on site or not and whether the respective app was

used during working hours or not can be answered by using appropriate Contexts.

4.1.3 Signature Components

Signature components are used to express patterns based on Feature and Context com-

ponents. One essential requirement stated in Section 2.5 is the ability to detect unwanted
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configurations of smartphones. Signature components are the main components that en-

able to fulfill this requirement. There is one component of this type.

Signature The purpose of a Signature is to express a pattern based on a set of previously
defined Features. Furthermore, a Signature can reference a set of Contexts that have been
defined. Similar to a Context, the notion of a Signature is binary, that is the pattern which
is defined by a respective Signature actually matches or not. A Signature is composed of

the following elements:

e A globally unique identifier. As for the Core Components, this is used to unam-
biguously identify a certain Signature. Similar to the Context components described
above, there is no hierarchical structuring of Signatures. Thus, their identifier should
be composed following the rules defined for the Context component, with a different

prefix (sig).

e A Boolean expression which is formulated based on Features. The structure of the
expression is the same as the one used by a Context. The only difference is that Sig-
natures use Features instead of Context Parameters. That is the Boolean expression
for a Signature is composed of relational expressions that compare Features (more
precisely the values of Features) against values that are specified as part of the Sig-
nature definition. The same Feature can be used in multiple relational expressions
(thus comparing its value against multiple other values). During the evaluation of
the Boolean expression, all instances that are available for a referenced Feature are
considered. For example, if a Signature references a Feature that represents a re-
quested permission of an app, it could match multiple times depending on how many
apps have requested the respective permission. Further details on the evaluation of

Signatures are given in Section 4.3 as part of the Correlation Model.

e A list of referenced Context components. These are used in order to limit the set of
Feature instances that are considered during the evaluation of the Signature. That
is, only instances of Features that fulfill all of the referenced Context components

will be considered during the evaluation of the Boolean expression.

Similar to the Context component, the general structure of the Boolean expression of

a Signature sigFxpr can be formalized. Let N be the number of Features that are used
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by a Signature. A Feature is denoted as (; with 0 < ¢ < N, identified by means of its
global identifier. Each Feature can be used in multiple relational expressions. Let M; be
the number of relational expressions for a Feature ;. The value of each instance of the
Feature (; is compared against M; other values denoted as val; ; with 0 < j < M;. Thus,

the complete definition is as follows:

sigBxpr =
((CO = UalO,O) <o (C() = U(llOJ) ... .0 (C() = ’UCLZQMO) <o

(G < wvalyp) o (G =xvalyp)o...o(( < valy ) ©

Boolean expression

(CN—I = UCLlN_Lo) < ( CN—I = UCLlnl ) L. 0 (CN—I = UalN—l,MN,l))

relational expression relational expression relational expression

To summarize, a Signature is used to define patterns based on Features. In order to eval-
uate a Signature, its Boolean expression is evaluated based on a set of Feature instances.
Only those Feature instances are relevant for evaluation that (1) have an identifier that is
used within one of the Signatures relational expressions and (2) that fulfill the referenced

Context components.

One example for a Signature is to define a pattern to detect a suspicious app. A company
could define a Signature that states an app as being suspicious when it has (1) a certain
combination of dangerous permissions and (2) was obtained from an unofficial app store.
Furthermore, it could leverage Context components in order to specify that the presence
of such apps should only be detected within a certain time interval each day and at a

specific location (for example the company’s research facilities).

4.1.4 Anomaly Detection Components

As already stated in Chapter 3, anomaly detection techniques have been widely used in
the field of information security. According to Chandola et al. [96], an anomaly is defined

as follows:
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“At an abstract level, an anomaly is defined as a pattern that does not conform

to expected normal behavior.”

The goal of this approach is to model normal behavior based on the previously defined
Core Components (Section 4.1.1), primarily the Features, while leveraging the benefits
introduced by the Context-related Components. This is achieved by defining appropriate
Anomaly Detection Components in the following. One major challenge is that at this time,
the concrete technique that is used for detecting anomalies should not be specified. That
is, the model must be flexible in expressing which Features should be analyzed by which
methods in order to detect anomalies. This is achieved by introducing three components,
referred to as (1) Anomaly, (2) Hint and (3) Procedure. Anomaly components are defined
based on Hints, and Hints make use of Procedures. The details of the components are

described in the following.

Anomaly The Anomaly component is used to express that an abnormal behavior was
detected. This is not done by referencing Features directly (like the Signature does).
Instead, there are two intermediary components used in order to provide the necessary
flexibility to process arbitrary Features with arbitrary anomaly detection techniques. An

Anomaly is composed of the following elements:

e A globally unique identifier which should be generated similar to the identifier of a

Signature. However, instead of the prefix sig the prefix ano should be used.

e A Boolean expression which is formulated based on Hints. The structure of the
expression is comparable to the one used by a Signature, but less complex. This
time the relational expressions are using Hints instead of Features (more precisely
the scoring of each Hint that was returned by their respective Procedure as detailed
below). In contrast to a Signature, there can only be one relational expression for
each Hint. This limitation is possible since the relational expressions are only used
in order to verify to what extent a certain Hint is fulfilled (based on the scoring

result of its Procedure).

e A list of referenced Context components. These are used in order to limit the set
of Feature instances that are considered during the evaluation of an Anomaly. Note

that Anomaly components do not reference Features directly. Instead, this is done by
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the Hint components as detailed below. Thus, the referenced Context components

determine the set of Feature instances for all Hints that are used by an Anomaly.

A formal definition of an Anomaly’s Boolean expression anoFExpr is given in the fol-
lowing. Let N be the number of Hints that are used by an Anomaly. Each Hint is denoted
as h; with 0 <7 < N. The definition is less complex since there is only exactly one rela-
tional expression for each Hint. Within each of the relational expressions, the score that
is returned by the Hint’s Procedure is compared against the given value denoted as val;

with 0 <17 < N. Thus, the complete definition is as follows:

Boolean expression

anoExpr:=( ho=waly )o( hy=<wvaly )o...o(hy_1 =<valy_1)
— —

relational expression relational expression relational expression

If the Boolean expression of an Anomaly evaluates to true, an abnormal behavior was
detected. The use of Hints allows to specify which Features should be processed by which
anomaly detection techniques in a flexible way as detailed below. It is important to note
that many anomaly detection techniques have constraints, especially concerning the data
that they can process [96]. Since the conceptual model does not limit the nature of Features
and their semantics nor the anomaly detection methods that can be used, the flexibility

provided by Hints is essential.

Hint A Hint is a part of an Anomaly. A Hint generally expresses whether the value of
a set of Features differs from the expected values in such a way that it is considered as
being abnormal. The actual anomaly detection technique that is used in order to analyze
the set of Features is referred to as a so-called Procedure. Each Hint references exactly
one such Procedure. The same Hint can be referenced by multiple Anomaly components.

Each Hint is composed of the following elements:

e A globally unique identifier which should be generated similar to the identifier of

an Anomaly. However, instead of the prefix ano the prefix hint should be used.

e A list of Features that are referenced by their respective identifiers. The set of
Feature instances that are considered during the evaluation of a Hint is limited by

the Context components that are referenced by the respective Anomaly component.
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e A referenced Procedure. The Procedure is responsible for processing all Feature
instances (that is all Feature instances that have been referenced by the Hint and
that fulfill all Context components as defined by the respective Anomaly) in order

to detect abnormal behavior.

Thus, the main purpose of a Hint is to map a certain set of Feature instances to a
certain Procedure. The Procedure employs a concrete anomaly detection method. The
idea is that one Anomaly (that is a smartphone’s abnormal behavior) can manifest itself
in such a way that different Features must be processed by different anomaly detection
techniques. This is supported by the model by means of Hint components that make use

of Procedures.

Procedure A procedure is referenced by a Hint in order to process a set of Feature
instances to detect abnormal behavior. Within the conceptual model, a Procedure is a
generic component and does not rely on or propose a specific anomaly detection technique.
Instead, it models a generic interface with only minor assumptions that must be fulfilled.

These are
e the Procedure must be able to process a set of Feature instances as input data and

e the Procedure must support to map its detection result to an anomaly score in
the range of [—1, 1] indicating the amount of abnormal behavior that was detected.
—1 indicates that there was no abnormal behavior, 1 indicates that the Procedure
is certain to have observed abnormal behavior. Decimal values in between are also
possible (such as 0.75). Anomaly scores are a common approach to render the output
of anomaly detection techniques [96]. The score that is returned by a Procedure thus

indicates to what extent the respective Hint is fulfilled.

The range of [—1,1] was chosen arbitrarily. Other ranges would work as well, as
long as it is defined which end of the range indicates abnormal behavior and which

range indicates normal behavior.

This allows to use virtually any anomaly detection method that might give reason-
able results for a specific set of Features. Examples include simple statistical analysis or
more sophisticated machine learning techniques. Thus, regarding the conceptual model,

a Procedure basically consists of only two elements:
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Figure 4.2: Configuration of a Procedure.

e A globally unique identifier which should be generated similar to the identifier of

an Anomaly. However, instead of the prefix ano the prefix proc should be used.

e A configuration that ensures that the assumptions stated above are met. The con-

figuration basically defines three aspects as depicted in Figure 4.2:

1. Tt defines an input mapping. This mapping handles how the set of Features,
their values and their Context Parameters are mapped to the concrete anomaly
detection technique (such as mapping the Features to input signals of a neural

network).

2. Similar to that, an output mapping is necessary as well. This mapping defines
how the result of the concrete anomaly detection technique is mapped to the

range [—1,1].

3. Further configuration parameters that are specific for the concrete anomaly
detection technique. For a neural network, this would include parameters such

as the number of nodes and their associated weights.

The introduced components for anomaly detection enable to model the expected, nor-
mal behavior based on Features while providing the flexibility to use virtually any anomaly

detection technique that follows the stated assumptions.
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4.1.5 Policy Components

This type of components provides means in order to formulate policies based on the previ-
ously introduced components of the conceptual model. This ensures that the functionality
provided by the approach can be used in various companies with different requirements
in terms of the integration of smartphones. There are four components of this type. It is
important to note that the presented approach does not aim to make any major contri-
bution in the research fields related to policy design and policy languages but just applies

existing approaches.

Policy A Policy P within the conceptual model is composed of a set of Rules. An expert
is necessary in order to formulate reasonable Policies for a specific domain. Regarding the
scenarios described in Section 2.2, there will be one Policy for each administrative domain.
The purpose of a Policy is twofold: (1) it defines which Signatures and Anomalies should
be detected and (2) what Actions should be employed in order to react on detected

Signatures and Anomalies.

Rule A Rule R in the conceptual model is a simple statement of the form if Condition

do Actions. If the Condition is fulfilled, the associated Actions are performed.

Condition A Condition C' is a Boolean expression that is used to trigger Actions. Condi-
tions in the conceptual model are formulated based on the previously introduced Signature
and Anomaly components. This way, a domain expert can specify which reactions are nec-
essary upon the occurrence of a Signature respectively an Anomaly. Both Signature and
Anomaly instances can be formulated based on Contexts, thus allowing Context-related

policies.

Action An action Act can change, create or delete a set of Feature instances once it
is triggered by its corresponding Rule. The idea is to model the consequences that are
associated to a rule that has fired by using the Core Components again. For example,
in order to render a notification about an intrusion that was detected, appropriate alert
Features can be created. Besides the general flexibility, this back coupling approach pro-
vides a major benefit: it allows to reuse Features that are created, changed or deleted by

Actions as basis for further Signature and Anomaly definitions.
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4.2 Architecture

The previous sections introduced the conceptual model of the CADS approach. Its main
purpose is to provide a domain independent model that defines the basic structure and no-
tion of Signatures, Anomalies and Contexts. The Feature was introduced as fundamental
basis for any further components. However, it has not yet been defined which components
are necessary in order to make use of the conceptual model.

This is done now by introducing the CADS architecture. It defines logical roles and their
responsibilities. These roles must be fulfilled by components that are deployed within an
IT infrastructure in order to benefit from the CADS approach. The idea to define an
architecture based on logical roles was adapted from the TNC Architecture for Interoper-
ability specification that was defined by the TCG [36]. The use of logical roles emphasizes
that the architecture is mostly independent from physical aspects. For example, the func-
tionality that is expected by a single logical role can be provided by numerous software
or hardware components.

In order to fulfill the defined logical roles, it is not necessarily required to deploy new
components or services to an existing I'T infrastructure. Instead, it is expected that exist-
ing components and services (like those discussed as part of the reference IT infrastructure
in Section 2.1) are extended with additional functionality. Those extended components

and services can then fulfill some of the logical roles as defined by the CADS architecture.

4.2.1 Logical Roles

There are four logical roles defined by the CADS architecture:
1. Feature Collector,
2. Feature Provider,
3. Correlation Engine and
4. Feature Consumer.

They are detailed in the following.
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Figure 4.3: Architecture of the CADS approach.

Feature Collector The main responsibility of Feature Collectors is to collect Features

that are expected to be useful in order to detect unwanted configurations and abnor-

mal behavior of smartphones at runtime. Compared to known approaches in the field of

intrusion detection, Feature Collectors act as sensors in the CADS architecture. Thus,

Feature Collectors can reside at arbitrary components and services within the respective

corporate IT infrastructure. This also includes the smartphones themselves. The process

of collecting a Feature constitutes of two sub steps:

1. Feature Measurement. In order to be used, Features need to be instantiated at
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runtime. This generally involves to observe a certain issue of interest (for example
like monitoring the outgoing traffic of a smartphone), create an instance of a Feature
that reflects the issue of interest and to set its value. Furthermore, a Feature Collec-
tor is required to tag each created Feature with appropriate information about its
context by setting the Feature’s Context Parameters accordingly (like the current
time or location of the Feature Collector). The same Feature Collector can measure
multiple Features, that is Features that have different identifiers. Furthermore, a
single Feature Collector can generally measure Features for multiple smartphones,

depending on where it is deployed in the target I'T infrastructure. Depending on the
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cardinality of the Categories a Feature is contained in, the measurement step may

require to create multiple instances of the same Feature.

2. Feature Transmission. This involves to marshal the measured Feature instances
and to send the resulting message to the Feature Provider. The communication
protocol that is used for Feature Transmission is not specified by the CADS archi-
tecture. However, general requirements that must be met by a protocol that shall

be used for implementing the CADS approach are given in Section 4.2.2.

The collection of Features can be triggered by different means. Collecting Features at
predefined time intervals (like every 15 minutes) or based on certain events (like having
moved a specific distance) are two examples. There will be several components and services
acting as Feature Collectors in an IT infrastructure that implements the CADS approach.
In addition to measuring and transmitting Features, a Feature Collector can also choose to
delete Feature instances that have been collect before. In this case, the Feature Collector
is only required to transmit a list of identifiers corresponding to the Feature instances it

wishes to delete.

Feature Provider The Feature Provider acts as single point of storage for all Features
that have been collected. Communication among the logical roles always involves the par-
ticipation of the Feature Provider. It provides functionality to store, retrieve and delete
Feature instances based on their global identifier. Since Features describe issues of inter-
ests of smartphones, and since there will be numerous smartphones present within the
same IT infrastructure, the Feature Provider must provide means to distinguish the re-
ceived Features according to the smartphone they belong to. This is required for all three

operations supported by the Feature Provider (store, retrieve, delete).

1. Feature Storage. This is composed of three sub-steps. A set of Features must be
received (either from a Feature Collector or the Correlation Engine), unmarshalled
and then stored for later use. If the Feature Provider has received the same instance
of a Feature before, it simply updates the respective instance by setting its value and
Context Parameters accordingly. For each Feature instance, the Feature Provider
keeps track of all changes that have been applied until the respective instance is
deleted.
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2. Feature Retrieval. A Feature Provider includes functionality to retrieve Features
it has stored before. The retrieval is triggered by requests sent from either the
Correlation Engine or a Feature Consumer. The requests specify which Features
should be retrieved, thus acting like a search query. After receiving such a request,
the Feature Provider looks up the matching Feature instances it has stored, marshals
them and transmits the resulting message to the logical role that has issued the

request. Within CADS, this is either the Correlation Engine or a Feature Consumer.

3. Feature Deletion. A Feature Provider also supports to delete Feature instances
it has stored before. This involves to receive a set of Feature identifiers that spec-
ify which instances should be deleted, unmarshal them and perform the necessary
delete operations within the storage of the Feature Provider. That is, the previ-
ously stored Feature instances are flagged as being deleted. Deleted Features are
also covered by the retrieval functionality. This is necessary in order to let Feature
Consumers and the Correlation Engine know when a certain Feature was deleted.
For the deletion of Features, it is sufficient to sent the appropriate identifiers to the
Feature Provider. Again, similar to the storage functionality, the Feature Provider
must be able to distinguish between the numerous smartphones that are present in
an I'T infrastructure. This functionality is used either by a Feature Collector or the

Correlation Engine.

Again, the concrete protocols that are used in order to access the Feature Provider’s
storage and retrieval functionalities are not specified at this point. However, referring to
the classical client-server model of distributed systems [161], the Feature Provider acts as
server (hosting Features), whereas the other logical roles act as clients that aim to access

the functionality provided by the Feature Provider.

Correlation Engine Within the CADS architecture, there is exactly one Correlation
Engine that is responsible for processing the set of collected Features. In order to do so,
it evaluates a Policy that has been defined according to the conceptual model described
in Section 4.1. In order to obtain the set of Features that are needed for processing,
the Correlation Engine leverages the retrieval functionality of the Feature Provider. The
evaluation of the Policy is done by checking the Condition of each Rule, thus looking for

matching Signatures and abnormal behavior. As for the anomaly detection, any technique
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can be used, as long as it meets the assumptions regarding the definition of a Procedure
in Section 4.1.4. For each Rule that fires, the associated Actions are performed. This
can trigger the creation of new Feature instances or the update / deletion of existing
Feature instances. Thus, the storage and deletion capabilities of the Feature Provider are
leveraged as well. Within the CADS architecture, the Correlation Engine is the only logical
role that both receives Features from and transmits Features to the Feature Provider. The
algorithms that are employed in order to evaluate the Policy based on the set of Feature

instances are detailed in Section 4.3.

Feature Consumer The last logical role within the CADS architecture is the Fea-
ture Consumer. Similar to the Correlation Engine, it requests Features from the Feature
Provider and processes them. However, the Consumer is not responsible for evaluating
the defined Policy. Instead, it is expected to react on Features that have been created,
updated or deleted by the Correlation Engine. This allows any component within the
IT infrastructure that acts as Feature Consumer to react on the detection results of the
Correlation Engine. The way a Feature Consumer receives new Feature from the Feature
Provider depends on the concrete communication protocol that is used in order to imple-
ment the CADS approach. For example, depending on the communication protocol and
its capabilities, the Feature Consumer is notified about new Features or needs to actively

poll the Feature Provider for any updates at a regular interval.

4.2.2 Communication Protocol

So far, the main logical roles of the CADS architecture have been defined. Components
and services that fulfill these roles must be deployed within an IT infrastructure in order
to benefit from the CADS approach. Whereas the Correlation Engine and the Feature
Provider will likely be implemented by new components and services which are added
to the respective IT infrastructure, Feature Collectors and Feature Consumers can be
realized by extending existing components and services. Communication between these
logical roles must be possible in order to exchange Features. As the logical roles will be
fulfilled by components that are distributed in the target I'T infrastructure, this calls for

a network communication protocol.
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A concrete protocol is not chosen at this point. This would limit the CADS approach to

a specific technology. However, some requirements can be defined that a communication

protocol must fulfill in order to be used for implementing the CADS approach:
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Request-Response Interaction. The communication protocol must allow a point-
to-point interaction between the Feature Provider (acting as server) and each of the
other logical roles (acting as clients). This interaction is based on requests that are
sent to the Feature Provider which in turn answers each request with an appropriate

response.

Proper Transmission of Features. The protocol must allow to transmit a set of
Features between the logical roles of the CADS architecture. That is, it must allow
proper marshalling and unmarshalling of Features and their transmission as payload.
Furthermore, the protocol must allow to distinguish which measured Features belong

to which smartphone.

Support for Remote Procedure Calls. The protocol must allow to encapsulate
remote procedure calls. This is necessary in order to specify which functionality of
the Feature Provider is desired by the requesting logical role on a per request basis.
That is, each request that is sent to the provider must be marked according to the
operation that should be triggered (either store, retrieve or delete). The arguments

of the remote procedure calls are Features that are encapsulated as payload.

Secure. The communication protocol must ensure a secure transmission of Features.
Secure means that the integrity and confidentiality of the transported Features must
be ensured. As stated in Section 2.4, it is assumed that an attacker can eavesdrop

and modify any traffic that is transported over the network.

Efficient and Scalable. The amount of Features that are exchanged between the
logical roles can be high. Depending on the concrete IT infrastructure the CADS
approach is deployed in, this amount might range from some tens of Features to
thousands of Features per second. Thus, the communication protocol must be effi-

cient and scalable in terms of Feature encapsulation and transmission.
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Figure 4.4: CADS Communication Flow Example.

As shown later in Chapter 5, the IF-MAP protocol for network security presented in
Section 3.4 completely fulfills all of the stated requirements and is thus well suited for

implementing the CADS approach.

With this basic definition of requirements regarding the communication protocol that
can be used for implementing the CADS approach, the generic interaction between com-
ponents and services that fulfill the logical roles can be specified. The sequence diagram
depicted in Figure 4.4 visualizes a generic example of such an interaction. The example
assumes that there are two Feature Collectors (F'Col-1, FCol-2), the Feature Provider
(FP), the Correlation Engine (CE) and one Feature Consumer (FCon-1). Each one of
the Feature Collectors only collects one Feature (denoted as F-1 and F-2 respectively).
It is assumed that the Policy that is used by the Correlation Engine includes Signature
and Anomaly definitions that make use of these Features. Furthermore, it is assumed that
at least one of the defined Rules fires (as their Condition is fulfilled), which causes the
creation of a new Feature by the Correlation Engine (denoted as F-CE). This Feature in
turn is consumed by the Feature Consumer. The interaction among the logical roles is

detailed in the following:
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1. As the first step, the Feature Collector FCol-1 measures the Feature F-1. Depending
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on the definition of the Feature, that is its encapsulation in Categories of cardinality
N and depending on the actual issue of interest that the Feature Collector can
observe, this leads to the creation of a set of appropriate Feature instances (denoted
as {F-1}). For example, a Feature Collector deployed on a smartphone that measures
a Feature which encapsulates the name of an app will create as many instances as

there are apps installed on the smartphone.

In the second step, the Feature Collector transmits all measured Features to the
Feature Provider. It does so by marshalling a message that encapsulates all Fea-
ture instances obtained in step 1 and the type of operation it requests from the
Feature Provider (store in this case). The resulting request message is sent to the
Feature Provider (likely via a network connection). The Feature Provider receives
the request, performs the operation (stores all contained Feature instances), and
acknowledges the request with a response. Throughout the example, it is assumed
that all operations are successful. Thus the Feature Provider simply acknowledges
the operation (OK).

Similar to the first step, the second Feature Collector now measures F-2, resulting
in M instances of the Feature (denoted as {F-2}).

Similar to the second step, Feature Collector FCol-2 sends a request to store the

instances to the Feature Provider, which is again successfully acknowledged (OK).

. In the fifth step, the Correlation Engine sends a request to retrieve the Features F-1

and F-2 to the Feature Provider. Note that only Feature identifiers are mentioned
in the request, no Feature instances. The Feature Provider processes the request

and responds with the set of Feature instances that have been measured before.

Now the Correlation Engine can evaluate the Policy. Based on the set of Feature
instances that it has received in the previous step, it checks each Rule of the Pol-
icy. That is, the Condition of each Rule is evaluated. If the Condition is true, the
corresponding Rule fires. In this example, at least one Rule fires, which leads to the
creation of a set of Features (denoted as {F-CE}).
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7. Afterwards, the Correlation Engine sends a request to store the created Features to

the Feature Provider. Again, this is successful and acknowledged by a response.

8. In step eight, the Feature Consumer requests to retrieve the Feature F-CFE from
the Feature Provider. The response contains all instances of the Feature that were

previously stored on behalf of the Correlation Engine.

9. In the last step, the Feature Consumer processes the received Features. The details
of this last step are out-of-scope for the CADS architecture. However, a common
example is to extend a flow controller with functionality to fulfill the role of a
Feature Consumer. Thus, the flow controller can adjust its configuration based on

the Features that were created by the Correlation Engine.

Note that this is an example for a communication flow. Aspects that vary depending

on the concrete implementation of CADS within an IT infrastructure include

e the number of Feature Collectors,
e the number of Features that are collected by each Feature Collector,
e the number of Feature Consumers,

e the number of Features that each Feature Consumer retrieves from the Feature

Provider,

e the number of Features that are actually used within the Policy of the Correlation

Engine,

e the number of Rules that fire and the Actions that they imply (create, update, delete

Features),

e the flow of communication may happen in a different temporal order. This means

that requests can be send in parallel to the Feature Provider.

4.3 Correlation Model

So far, two parts of the CADS approach have been described in detail: the CADS con-
ceptual model in Section 4.1 and the CADS architecture in Section 4.2. In the next step,
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the correlation model is defined. It details how the Correlation Engine evaluates its Pol-
icy based on Feature instances that are retrieved from the Feature Provider. Algorithms
are provided that specify how Signatures and Anomalies are evaluated. For the anomaly
detection, the notion of training and testing phases as well as profiles for smartphones are

introduced.

4.3.1 Policy Evaluation Overview

The general idea of the correlation model is that there is one Correlation Engine that eval-
uates one Policy. The Policy includes rules that encapsulate requirements for the secure
integration of smartphones within an IT infrastructure. With respect to the scenarios
defined in Section 2.2, these rules will enable to make smartphones visible throughout
the IT infrastructure, enable context-related service provisioning, support to detect un-
wanted and malicious software as well as enable immediate reaction on identified threats.
The same, single Policy is valid for all smartphones that are used within the respective

IT infrastructure.

In essence, evaluation of the Policy is generally necessary when the Correlation Engine
retrieves Feature instances for a smartphone from the Feature Provider. Evaluation is
performed on a per smartphone device basis. The Correlation Engine evaluates the Policy
for each smartphone separately and independently from each other. Based on the Feature
instances that have changed, the Correlation Engine determines which Rules need to
be evaluated. For each Rule, it checks whether its Condition (respectively its Signature
and Anomaly components) use Features that have changed according to the last Feature
instances retrieved from the Feature Provider. If that is true, the corresponding Rule is
evaluated (that is all of its Signatures and Anomalies are evaluated). For each Rule whose
Condition is true, the respective Actions are performed. Thus, it leads to a set of Feature
instances that will be stored or deleted in the Feature Provider. Algorithm 1 summarizes

the evaluation of the Policy.

The evaluation of a Rule’s Condition requires to evaluate the Signatures and Anomalies

that it is composed of. How these components are evaluated is detailed in the following.
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Algorithm 1: Evaluation of the Correlation Engine’s Policy
Data: Policy P, list of retrieved Feature instances featurelList
Result: Actions that have been performed
foreach Rule r : P.ruleSet do

if r.uses(featureList) then

result = r.evaluate();

if result == true then
| r.performActions();
end
end

end

Table 4.1: Exemplary Categories and Features.

Category Cardinality Features
app N Name, Rating
app.perm N Requested

4.3.2 Evaluation of Signatures

As defined in Section 4.1.3, a Signature is composed of Boolean and relational expressions
which are formulated based on Features, more precisely their identifiers. However, the
evaluation is performed against a set of Feature instances (with identifiers generated as
discussed in Section 4.1.1). In order to evaluate a Signature, all Feature instances that
match its Contexts must be considered. Depending on whether the Correlation Engine
implements some form of caching for Feature instances, this might require additional
retrieval requests that are sent to the Feature Provider. The resulting set of Feature
instances that have to be considered can be organized as a tree structure. Nodes represent
Categories, Features are represented as labels who are attached to the nodes. An example
of such a Feature instance tree is given in Figure 4.5. It includes two Categories (each
of cardinality N) with Features describing aspects of a smartphone app (name, rating,
requested permissions). They are listed in Table 4.1. The tree depicts the situation when
there are three apps, where the first one requests two permissions and the other two
request one permission each.

In the following, examples are given that emphasize the problem of a reasonable Signa-

ture evaluation. They are summarized in Table 4.2. If the Signature is only composed of
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Figure 4.5: Tree representing Feature instances. Categories are depicted as orange circles.
The text within the circles represents the identifier of the Category. Features
are depicted as blue boxes. The text within the boxes represents the Feature
identifier and the Feature’s value.

Table 4.2: Signature expressions and their respective number of matches according to the
Feature instance tree depicted in Figure 4.5.

Expression Scope Matches
app.Name = A 0 1
app.-Rating > 3 0
app.perm.Requested = INTERNET 0
app.Name = A A app.Rating > 3 0
app.Name = A V app.Rating > 3 0
0
0
1

app.Name = A A app.perm.Requested = INTERNET
app.perm.Requested = INTERNET A app.perm.Requested = CAMERA
app.perm.Requested = INTERNET A app.perm.Requested = CAMERA

— O Rk W o NN
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one relational expression, the evaluation basically requires to traverse the Feature instance
tree, searching for nodes that represent the Categories that are used by the expression.
For each matching node, it is checked whether it has a label attached that fulfills the
relational expression. For example, the relational expression app.Name = A leads to a
traversal of the tree that searches for nodes that represent an instance of the app Cate-
gory. In the example above, there are three such nodes (app-0, app-1, app-2). Then, for
each node it is checked whether it has a label that fulfills the relational expression. This
is only true for one node (app-0). Thus, the Signature matches. A Rule whose Condition

is only based on such a Signature would fire.

However, the evaluation of a Signature that is composed of more than one relational
expression is more complex and introduces subtle challenges. The expression (app. Name =
AAapp.Rating > 3) should match any app whose name is A and which has a rating that is
higher than three. In the example above, there is no instance that matches this expression.
This result is basically obtained by applying multiple traversals of the Feature tree. That
is, like for the first simple expression, the tree is searched for nodes that fulfill the first
relational expression. For each of these nodes, only their subgraph is traversed again in
order to find a match for the second relational expression. This process is repeated for each
relational expression. This behavior changes if instead of a logical A the logical V is used.
In this case, there is no subgraph reduction performed between the relational expressions.
Instead, it is always traversed from the root node for each relational expression. That
is, the Signature would match three times. If logical A and V are mixed, A has a higher
precedence than V.

The algorithm presented so far introduces a problem when a Signature should match
any app that has the permissions INTERNET and CAMERA. The algorithm would
search the first matching permission node (perm-0) and consider only its subgraph for
the second relational expression. Thus, in contrast to what was expected by the Signature
definition, there would be no match. In order to circumvent this problem, the notion
of a scope for Signature evaluation is introduced. The scope defines how the evaluation
algorithm determines the subgraph that should be traversed once a matching node was
found when a logical A is used to concatenate two relational expressions. The default
behavior described above uses a scope of zero. That is, only the subgraph whose root
node is the matching node is considered. A scope that is larger than zero causes that a

larger subgraph is considered for subsequent relational expressions. More precisely, the
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scope equals the number of parent nodes that are “traced back” in order to determine
the root node of the subgraph that is traversed for the subsequent evaluation. That is a
scope of “1” causes to consider the subgraph whose root node is the parent of the node
that caused the match. A scope of “2” makes the grandparent of the matching node the
root for the subgraph traversal. Thus, the previously mentioned Signature that aims to
find apps who have both the INTERNET and the CAMERA permission can be defined
with a scope that is set to 1. After the first matching node was found (perm-0), the root
for the subgraph that is considered for the next relational expression is set to (app-0).
Thus, the Correlation Engine can find the second matching node (perm-1). In contrast,
in order to specify a Rule that fires if there is at least one app that has the INTERNET
permission and at least one app that has the CAMERA permission, two Signatures that

are each composed of one single relational expression can be used.

In general, the exact number of matches for a certain Signature is not relevant to
evaluate the Condition of a Rule. The Correlation Engine considers a Signature to be
fulfilled in terms of evaluating the Boolean expression of the Condition if there is at least
one match. However, if there is need to determine the exact number of matches for a
certain Signature for further processing, the Correlation Engine can be configured to do
so as well. This generally allows to define further expressions that also consider how often

a certain Signature was matched against a certain Feature instance tree.

With the Signature evaluation as described in this section, it is possible to define com-
plex patterns based on Features. When a logical A is used to concatenate two relational
expressions A and B within one Signature, the result of the first expression determines
the subgraphs that are considered in order to evaluate the second expression. This also
holds if there are more than two expressions. How these subgraphs are composed can be
adjusted by defining a scope parameter. The evaluation algorithm is sufficient to handle
expressions that are needed for the scenarios that are addressed in this thesis. Note that
efficiently evaluating complex Boolean expressions like those that are used within Sig-
natures is a subject of current research [162]. Algorithm 2 summarizes the evaluation of

Signatures at a high level.
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Algorithm 2: Evaluation of a Signature

Data: Signature S, Feature Instance Tree FIT
Result: true or false
relationalExpressions = S.getRelationalExpressions();
listOfNodes = FIT.getRootNode();
foreach RelationalExpression rExp : relational Expressions do
listOfMatchingNodes = evaluateExpressionForNodesInList (rExp, listOfNodes);
if S.nextBooleanOp == AND then
‘ listOfNodes = applyScopeForNodesInList(listOfMatchingNodes);

else if S.nextBooleanOp == OR then

if listOfMatchingNodes.size() > 0 then

‘ return true;

end
listOfNodes = FIT.getRootNode();
else
‘ return listOfMatchingNodes.size() > 0;
end

end

4.3.3 Evaluation of Anomalies

As defined in Section 4.1.4, an Anomaly is composed of Boolean and relational expressions
which are formulated based on Hints. Thus, its evaluation involves a two step process.
First, the Hints that are used in relational expressions by the Anomaly are evaluated.
Second, the overall Boolean expression of the Anomaly can be evaluated as well (based
on the results of the relational expressions).

The Anomaly defines which Contexts are relevant for the evaluation. That is, the same
Contexts apply for each one of the Hints. However, the Hints themselves may be defined
based on different Features and each can use a different Procedure. During the evaluation
of an Anomaly component, it is thus necessary to forward the Feature instances to the
respective Hints properly, which in turn will call their Procedure. That is, for each Hint
all Feature instances that match the Anomaly’s Contexts must be forwarded. Depending
on the implementation of the Correlation Engine, more precisely whether it supports
caching of Feature instances or not, this might require further requests for retrieval that
are send to the Feature Provider. Once all necessary Feature instances are available, the

Hint itself can be evaluated. This causes the Feature instances to be forwarded to the
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Hints Procedure. The details of how the Procedure itself handles the Feature instances is
out of scope. When the Procedure returns its scoring result, the relational expression the
respective Hint is used in can be evaluated. Once all relational expressions are evaluated,
the overall Boolean expression can be evaluated as well. Algorithm 3 summarizes the

evaluation of an Anomaly.

Algorithm 3: Evaluation of an Anomaly

Data: Anomaly A

Result: true or false

listOfContexts = A.getContexts();

listOfHints = A.getHints();

foreach Hint h : listOfHints do
featurelds = h.getFeatureSet();
featurelnstances = getFeaturesByContext(listOfContexts);
score = h.evaluate(featurelnstances, listOfContexts);
h.setScore(score);

end

return A.evaluateBooleanExpression();

4.3.4 Training and Testing Phases

The previous section described the basic evaluation of Anomalies. The details of the
anomaly detection techniques are part of the Procedure components. However, the gen-
eral concept of anomaly detection introduces another requirement that must be met by
the Correlation Engine: the ability to distinguish between training and testing phases.
Training phases are used by some anomaly detection techniques in order to learn the
normal behavior based on training data. Those are also referred to as supervised and
semi supervised anomaly detection techniques [96]. After the training is done, those tech-
niques can detect anomalies during the testing phase. In contrast to that, unsupervised
techniques do not require training at all. That is, they can be used to detect anomalies
directly during the testing phase. Nevertheless, in case training-based techniques should
be used, the Correlation Engine must be able to handle those two phases properly.

The challenge for CADS and the scenario of smartphone security is that each smart-
phone will have its own, normal behavior. This is due to the fact that smartphones are

normally used by a single user. However, the way each of them uses their smartphone
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will vary. Thus, the training of anomaly detection techniques must be device specific.
The CADS approach to employ proper training leverages the Correlation Engine’s Policy
that was engineered by a domain expert. For a given domain, the Policy especially men-
tions relevant Signatures and Anomalies, both in conjunction with associated Contexts.
The training as employed by the Correlation Engine is based on this Policy. More pre-
cisely, for each smartphone device that has provided training data, the Policy is parsed
for Condition statements that use Anomalies. Depending on these Anomalies (which are
formulated based on Features via Hints), the training data can be searched for match-
ing Feature instances. As already stated, defined Context instances can limit the set of
Feature instances that are considered for each Anomaly (for example when only Features

should be considered that were obtained during working hours).

Once the set of Features for an Anomaly has been identified, the Procedures that
are used by the Hints can train the normal behavior (for example the number of SMS
messages that are usually sent during working hours). This is done for each Rule that
includes Anomalies within its Condition statement. Within the CADS approach, the basic
algorithm that is used for training is the same as for evaluating an Anomaly (see Algorithm
3). There are just two major differences: (1) training is performed on training data and
(2) each Hint must indicate to its Procedure that it is currently called during the training
phase (for example by passing an appropriate flag).

The result of the training is a smartphone specific profile. It has the same structure
as the Correlation Engine’s Policy (that is the same set of Rules, Signatures, Anomalies,
etc.), but references trained instances of Procedures. That is, for each smartphone exists
a profile that encapsulates its normal behavior by means of trained Procedure instances.
Procedures that do not need any sort of training are simply omitted during the training
phase. Once a profile has been trained, it is used for any further evaluation tasks. That is
when the Correlation Engine retrieves new Feature instances from the Feature Provider,
it determines to which smartphone they belong to, looks up the respective profile and
evaluates the contained rules as described in Section 4.3.1. The Correlation Engine is
able to determine which Features belong to which smartphone based on the retrieval
functionality of the Feature Provider. After training has been done for all smartphones,
the training phase is finished and the testing phase starts. Note that it is not supported
to switch between these two phases. That is, if the training should be redone (for example

when better training data is available), this requires to end the testing phase and start
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Figure 4.6: Correlation Engine State Machine (UML state machine diagram).

over again with a new training phase. Trained Procedures are reset at the end of the

testing phase. That is, they do not maintain their state for the next training phase.

4.3.5 Correlation Engine Workflow

So far, the Correlation Model introduced the basic concept of evaluating Policies, Signa-
tures and Anomalies. Furthermore, the differences between testing and training phases
were discussed. However, it has not been defined yet how the Correlation Engine works
internally and by what events the evaluation can be triggered. This is done in the fol-
lowing by providing a simplified state machine of the Correlation Engine. It is depicted
in Figure 4.6. The state machine generally is separated into three branches: one for the
training phase, one for the testing phase and one for handling so-called Triggers. When
started, the Correlation Engine enters the “Idle” state. In this state, it basically waits

for events that cause a state change. There are two types of events that can cause such
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a state change: (1) events that indicate the availability of new Features (event type is
“feature”) and (2) events that express that a Trigger has fired (event type is “trigger”).
Thus, after the Correlation Engine has received a new event, it enters the state “Event
Received”. From there on, it dispatches the further processing based on the event type it

has received.

The first type of events occur when the Correlation Engine has retrieved new Feature
instances from the Feature Provider. The details on how the new Feature instances are
obtained are specific for the communication protocol that is used in order to implement
the CADS approach. However, the Correlation Engine must be able to determine to which
smartphone the Features belong to. As already stated in Section 4.3.1, the retrieval of
new Features is the most common case that requires to evaluate the Policy. In this case,
the Correlation Engine updates its own local storage of Feature instances and enters the
state “Feature Storage Updated”. The details on how the Correlation Engine implements

its local storage are not specified.

The further processing depends on whether the current phase is training or testing. This
is set as a configuration parameter in the Correlation Engine. That is it must be defined a
priori and does not depend on the occurrence of certain events. The workflow in case the
current phase is training is highlighted in Figure 4.7. In this case, the Correlation Engine
enters the state “Training”. Afterwards, it learns the profile for the respective smartphone
device as described in Section 4.3.4. Again note that the evaluation of Policies and thus
the learning of profiles is device specific. After the profile has been learned, the Correlation

Engine enters the state “Idle” again and waits for the next event.

The workflow that takes place in case the current phase is testing is depicted in Figure
4.8. After the Correlation Engine has updated its local storage, it enters the state “Test-
ing”. After that, it evaluates the profile for the respective smartphone that was obtained
from the Policy during the training phase. The general process of evaluating a Policy (re-
spectively a profile that has been derived from it through training) was detailed in Section
4.3.1. In contrast to the training phase, this might lead to Actions that are performed
when Conditions of Rules are fulfilled. After the profile has been evaluated, the last step
is to check if so-called Triggers need to be established. Triggers are another mechanism
that can cause the evaluation of a profile (besides the retrieval of new Features either

during training or testing phase). Triggers address the fact that some rules might need
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Figure 4.7: Correlation Engine Training Phase (UML state machine diagram).
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to be reevaluated although there have been no updates of any Feature instances. This is
always the case when Signatures or Anomalies use sliding Contexts (see Section 4.1.2).

Signatures and Anomalies reference Features. At evaluation time, the necessary Feature
instances are retrieved from the Feature Provider. Contexts that are used by Signatures
and Anomalies limit the set of Feature instances that are considered for further evalua-
tion. Let F' be the set of Feature instances that have to be considered for evaluation of a
Signature or an Anomaly. If only normal Contexts are used, F' does only change in the
event that either a Feature Collector or the Correlation Engine uses the storage function-
ality of the Feature Provider. That is F' only changes if either new Feature instances are
created or existing ones are changed respectively deleted.

However, this is not true if sliding Contexts are used. Sliding Contexts are used in
order to express temporal expressions that are relative to the current moment in time.
For example, a normal Context can express that only Features who have been collected
between 8:00AM and 18:00PM are considered for evaluation purposes. In contrast, a
sliding Context can express that only Features who have been collected in the last 15
minutes should be considered. Thus, the set of Features F' that are relevant during the
evaluation of a Signature or Anomaly can change without any events that indicate the
change of the Feature instances themselves.

Assume that a Signature or Anomaly which uses such a sliding Context was evaluated
at time %y, leading to the result r,,. At that time, the set of Feature instances that
had to be considered is denoted as Fj,. Further assume that an event that indicates a
change of Feature instances does not occur before t,, with At, o = ¢, — ty. Then, the
result of the evaluation of the respective Signature or Anomaly can nevertheless change
in the time between t; and t, as the set of Feature instances that match the sliding
Context can change. That is, at any time ¢; with Aty = ¢, — ¢ and Aty < At,,
evaluating the respective Signature or Anomaly can yield different results depending on
the definition of the sliding Context. The question that arises is at which moments in time
the Correlation Engine should reevaluate a certain Policy (respectively profile), although
there have been no events that indicate the change of any Feature instances. Simply
refusing to do additional evaluations and solely relying on the events of type “feature”
is not sufficient. In this case, the results of the last evaluation might contradict the real
situation. On the other hand, simply evaluating all profiles for all smartphones in an

infinite loop would minimize the delay between a change of the Feature instance set and
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the next evaluation process. However, this brute force approach is not practical as it
will exhaust the resources available on the system that fulfills the role of the Correlation
Engine.

The approach taken by CADS is a compromise of the two alternatives described above
and relies on the use of so-called Triggers. After a profile has been evaluated, the Corre-
lation Engine checks whether Signatures and Anomalies that use sliding Contexts were
involved. For each such Signature or Anomaly, a Trigger is created. This Trigger basi-
cally renders the moment in time when the respective Signature or Anomaly (and thus
the Rules that they are used in) should be reevaluated again. The exact amount of time
that should pass before a Trigger fires can be configured at will. However, it should be
taken into account that the lower this amount of time is, the more resources need to be
available for the Correlation Engine. Coming back to Figure 4.8, if sliding Contexts were
used, the necessary Triggers are created. After that, the Correlation Engine has reached
the “Triggers Created” state. From there on, it enters the “Idle” state again and waits for
the next event.

The last branch that is discussed here addresses the handling of Triggers that have fired
(depicted in Figure 4.9). In this case, the Correlation Engine receives an event of type
“trigger”. Thus, it enters the state “Trigger Event Received”. This causes the Correlation
Engine to evaluate the respective profile. The evaluation basically works similar to the one
that is carried out when an event of type “feature” would have been received. There are
only two major differences: (1) the evaluation does only evaluate one single Rule (the one
that initially caused the corresponding Trigger to be created) and (2) the evaluation does
not lead to the creation of new Triggers. Instead, the existing Triggers remain valid and
will fire again once the respective amount of time has passed again. Note that Triggers

are only created if the Correlation Engine is working in the testing phase.

4.4 Domain-specific Mapping

The previous sections introduced the generic parts of the CADS approach: its conceptual
model, its architecture and the correlation model. However, in order to actually use CADS
within an I'T infrastructure, a crucial part is still missing: the domain-specific mapping.
That is, for any IT infrastructure that aims to secure their integration of smartphones

based on the CADS approach, a specific domain instance of the generic parts must be
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Figure 4.8: Correlation Engine Testing Phase Feature Event (UML state machine
diagram).
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Figure 4.9: Correlation Engine Testing Phase Trigger Event (UML state machine
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derived. The generic questions that need to be addressed in order to derive such a do-
main instance are detailed in Section 4.4.1 by defining a process model. Afterwards, a
domain instance is derived for the reference I'T infrastructure and the scenarios described
in Chapter 2.

4.4.1 Process Model to Derive Domain Instances

Any domain instance generally addresses the following questions:

e What Features should be collected? That is, what is the basis for any Signature and

Anomaly components that are used within the Policy of the Correlation Engine?

e How does the Correlation Engine react on Rules that have fired? That is, what

Features are created by the Correlation Engine itself?

e What Context Parameters that are relevant for the target domain need to be con-
sidered?

e How are the logical roles of the CADS approach mapped to the target I'T infras-
tructure? Especially Feature Collectors and Feature Consumers should be deployed

in such a way that they can leverage the capabilities of existing services if possible.

e How does the Policy look like that is evaluated by the Correlation Engine? That is,
encapsulating the demands that the maintainer of an IT infrastructure has regarding

the secure integration of smartphones in appropriate Rules.

In order to answer these questions properly, a generic process model is specified that
defines how domain instances for the CADS approach should be derived (depicted in
Figure 4.10):

1. Definition of Features. In the first step, Features that are relevant for the specific
domain are defined. As mentioned in Section 4.1.1, the Feature space is hierarchically
structured by means of Categories. Since each domain will have its own specific
Policy regarding the secure integration of smartphones, it is not possible to provide a
single set of Features that is generally accepted. Instead, what Features are necessary

depends on the scenarios and use cases that are addressed. However, two types of
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Process Model for Domain Instance Derivation
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Figure 4.10: Process Model for deriving domain instances.

Features can generally be distinguished: (1) those that are collected by arbitrary
Feature Collectors and (2) those that are created by the Correlation Engine when

a Rule of its Policy fires.

Definition of Context Parameters. A set of relevant Context Parameters needs
to be defined. Similar to the definition of Features in step 1, it cannot be assumed
that there is a generally accepted way that defines which context information should
be encapsulated by which Context Parameters. However, it is assumed that the
set of reasonable Context Parameters will be less diverse among different domains

compared to the set of Features.

Mapping of logical roles. In this step, the logical roles defined in Section 4.2
need to be mapped to the target IT infrastructure. It is expected that the Fea-
ture Provider and Correlation Engine roles will demand for new systems that are
deployed. However, existing systems are expected to fulfill the role of a Feature
Collector or a Feature Consumer. Based on this mapping, a gap analysis can be
performed in order to detect Features that have been defined in step 1 but that
cannot be collected in the absence of appropriate Feature Collectors. If there is a
gap, new systems need to be added to the target IT infrastructure that work as
Feature Collectors in order to collect the missing Features. If that is not possible,
the definition of Features needs to be revised. Note that multiple Feature Collectors

can be deployed in order to collect the same Feature.

Definition of a Policy. In the last step, the Policy that should be evaluated by the

Correlation Engine is defined. This basically requires to define Signature, Anomaly
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and Context components, make use of them as part of Rules and define appropriate
Actions for Rules that fire. Note that although the notion of the abnormal behavior
is mentioned in the Policy as part of the Anomaly definition, the concrete technique
that is used depends on the implementation of the approach. For example, where
the Policy states that an abnormal use of a smartphone’s sensors should be detected,
various methods (even combined ones) may be used within an implementation in
order to detect this.

Based on the domain instance, the CADS approach can be implemented for a target

IT infrastructure.

4.4.2 An Example for a Domain Instance Derivation

The process model described above is now applied to derive a domain instance for the
reference I'T infrastructure and the scenarios defined in Chapter 2. Concerning the different

available smartphone platforms, the domain instance focuses on Google Android.

Definition of Features

The difficulty to define a set of reasonable Features is closely related to the scenarios
that should be addressed within a certain domain. For example, in order to come up with
Features for the scenarios “Smartphone Visibility”, “Context-related Service Provisioning”
and “Policy-based Enforcement” is pretty straight forward. However, to tackle scenario
“Detection of Malicious and Unwanted Apps” is more challenging as will be shown later
in this section. In the following, a brief overview of some Features and the respective
Categories is given. The hierarchy of the Categories is depicted in Figure 4.11, starting
from a virtual root Category. The sub Category relationship is denoted by directed arrows.
A full list of all defined Features for the domain is given in Table A.2.

In the scenario “Smartphone Visibility”, it is required that certain services are not
allowed to be accessed by a smartphone. Thus, the service itself must be able to determine
whether a certain request was issued from a smartphone or not. Rendering this fact as
a Feature is trivial. It simply requires one single Feature acting like a flag to indicate
that a certain device is a smartphone. For this domain mapping, the Feature is defined

as correlationresult.smartphonevisibility. [sASmartphone whose value can either be “true”
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Figure 4.11: Categories of the exemplary domain instance.
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or “false”. The Correlation Engine is responsible for creating this Feature based on other
Features that indicate the respective device is a smartphone, such as the presence of an
IMSI or IMEI number. The mapping which Features need to be present in order to flag
the respective device as a smartphone is defined in the Policy of the Correlation Engine
by defining appropriate Rules.

Scenario “Context-related Service Provisioning” is similar to the first one. However, in
this case a service that is accessed must consider the Context of the requesting smartphone.
In order to provide the latest values for the defined Context Parameters, a dedicated
“dummy” Feature is defined. That is, the value of this Feature is generally irrelevant, it is
only used in order to communicate updated values for Context Parameters from a Feature
Collector to the Feature Provider. Thus, it is referred to as smartphone.ContextPing.
The Correlation Engine can retrieve this Feature in order to check if defined Contexts
are fulfilled or not. It does so by defining Signatures that make use of the Context Ping
Feature and exactly one Context that is of interest. Depending on whether the Signa-
ture matches, the respective Context is fulfilled or not. By creating appropriate Rules
that use the Signature, the Correlation Engine can create new Features that render the
outcome of the respective Rule checks. For this purpose, two Features are defined: correla-
tionresult.context. [sFulfilled and correlationresult.context.IsNotFulfilled. The values of the
Features encapsulate the identifier for the respective Context. A service that also fulfills
the role of a Feature Consumer can retrieve these Features in order to reason about the
Context of the requesting smartphone.

In fact, both of the two described scenarios could also be realized without the partici-
pation of the Correlation Engine at all. As there are no complex Signatures required or
anomaly detection techniques involved, a Feature Consumer could easily implement logic
that allows to reason about whether a device is a smartphone or not and what Context it
is currently in on his own. However, involving the Correlation Engine provides the benefit
that the knowledge about what Features identify a smartphone and what Contexts are
relevant is maintained in one single Policy.

The scenario “Policy-based Enforcement” generally requires that an enforcement can
take place upon the detection of a threat. In terms of CADS, that means that appro-
priate Features that render the desired enforcement action need to be created when
Rules that encapsulate threats fire. In order to address this, a Feature called enforce-

ment. EnforcementAction is defined. Its value encapsulates the type of enforcement that
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should be employed. This value must be set in such a way that the receiving Feature
Consumer is able to interpret it correctly. For the given scenario, it is assumed that the
enforcement is done by a packet filter like iptables. Thus, the value to the Feature is set
to the command line string that should be executed. For example, it could trigger the
execution of a shell script that blocks traffic for the IP address that is currently used
by the smartphone. Of course, this requires that the Correlation Engine knows the IP
address of the smartphone, and thus an appropriate Feature for it is necessary as well. If
only alert messages should be distributed to Feature Consumers, Features of the Category

correlationresult.alert can be used.

Clearly, the most challenging scenario to address is “Detection of Malicious and Un-
wanted Apps”. As pointed out in Section 3, various approaches exist that aim to detect
malicious apps. However, the set of features! that have been used for detection tasks
is diverse. As the scenario aims to primarily detect the presence of sensory malware,
Features that encapsulate information about installed apps and the status of the smart-
phone’s built-in sensors are primarily necessary. In general, Features are included that (1)
are obtained on the smartphone itself and (2) Features that originate from security and

management services that are present in the reference IT infrastructure.

Some of the presented Features are specific for the Android platform (such as those
to encapsulate an app’s requested permissions). However, the notion of those Features
can generally be adapted to other platforms as long as they provide a similar, permission
based access control model. The chosen Features are motivated by previous work that
has been published recently, primarily inspired by Enck etal. [129, 14], Barrera etal.
[87] and Shabtai et al. [18] for Android specific Features and Schmidt etal. [147] for user
specific and general platform features. The integration of events originated from network-
based monitoring systems (like an IDS), results of vulnerability scanners (like OpenVAS)
and Features obtained from app stores like Google Play is a contribution of this thesis.
Although the general idea to integrate both host-based and network-based approaches for
smartphone malware detection has already been proposed by Miettinen et al. [95], their
work does not provide any detailed concepts, especially no holistic model to capture both

smartphone and network-based Features as this thesis does.

IThis refers to the general meaning of the term feature, not to the Feature defined as part of the
conceptual model.
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In order to benefit from Features that can be contributed by intrusion detection systems
(IDS) and vulnerability scanner, two dedicated categories are defined. Both have cardinal-
ity N and include Features that describe events generated by IDS respectively informa-
tion about vulnerability reports generated by vulnerability scanners. The most complex
category tree is started by the Category smartphone. It includes various sub-categories
to describe various Features of a smartphone. This especially includes basic informa-
tion about the smartphone (smartphone.system), its sensors (smartphone.sensor), its
communication capabilities (smartphone.communication) and the installed apps (smart-
phone.android.app).

Note that in general there is no “right or wrong” regarding the definition of Features
and Categories. That is, there will always be multiple possibilities to address a specific
scenario. However, the way the Features are defined and organized by means of Categories
affects the definition of the Policy.

Definition of Context Parameters

For the exemplary domain instance, there are only three Context Parameters defined:
o Timestamp: The moment in time when the respective Feature was measured.
e Longitude: The longitude coordinate from GPS position.
e Latitude: The latitude coordinate from GPS position.

These Context Parameters are sufficient in order to select Feature based on two aspects:
when they were measured and where they were measured. This only requires to specify
appropriate Context instances. The timestamp parameter is expected to be available at
any Feature Collector. However, the GPS coordinates will likely be only available for

Features that are measured on a smartphone.

Mapping of Logical Roles

In this step, the logical roles are mapped to the reference I'T infrastructure described in
Section 2.1. The same infrastructure is depicted in Figure 4.12, with the logical roles of
the CADS approach added to it.
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Feature Collectors are mapped to services that can contribute Features that were de-
fined in the first step. This especially includes security services like the IDS and the
vulnerability scanner (which are responsible to collect the Features of the Categories ids
and vulnerability). Smartphones themselves are responsible for collecting Features of the
Category smartphone. However, not all of these defined Features can directly be collected
on a smartphone. For example, the Features smartphone.android.app. Rating and smart-
phone.android.app. Downloads are not directly available on a smartphone. Instead, it is
necessary to query the Google play app store to obtain up-to-date values for the respec-
tive Features. Thus, a new system that hosts a service to crawl the Google Play app store
was added to the reference IT infrastructure. The Correlation Engine and the Feature
Provider were added as new systems as well as none of the existing services is expected
to be able to fulfill these roles.

Feature Consumers are mapped to two types of services: (1) application services that
need to process results of the Correlation Engine in order to determine if a certain request
originated from a smartphone and in what Context the smartphone is currently operat-
ing in. (2) Services that can employ enforcement actions. Besides the Firewall, these also
includes the NAC and Remote Access services (as they can choose to interrupt the con-
nection of a smartphone). Note that NAC and Remote Access Services are also expected
to work as Feature Collectors as they can obtain Features like the current IP address of a
smartphone. This leads to a situation where the same Feature can generally be collected

by numerous Feature Collectors. There are generally three options to solve this issues:

1. Choose only one Feature Collector that is responsible to collect the respective Fea-

ture.

2. Allow multiple Feature Collectors to collect the same Feature. That is, Feature
Collector A can update the Feature that was collected by Feature Collector B and
vice versa. However, this approach will lead to a higher rate of Feature updates, and
thus to a higher amount of processing that must be done by the Feature Provider
and the Correlation Engine. As a consequence, this option should be omitted if

possible.

3. Refactor the modeling of Features and Categories so that there is no collision any-
more. This can for example be achieved by introducing sub Categories for each

Feature Collector.
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In general, the question whether a certain service should act as Feature Collector and/or
Feature Consumer can only be answered for a concrete domain. For example, the applica-
tion services themselves could generally also act as Feature Collectors if there is a scenario
in the concrete domain that demands it. For example, the scenario “Smartphone Visibil-
ity” states that some services are not allowed to be accessed by smartphones, requiring
them to fulfill the role of a Feature Consumer. However, building on top of that, another
scenario might require that smartphones who frequently try to access services they are
not allowed to access are identified. In this case, the respective services can also act as
Feature Collectors in order to collect Features that render unsuccessful access requests

performed by smartphones.

Definition of a Policy

The last step is to define a Policy that makes use of the previously defined Features,
Categories and Context Parameters. The following example will focus on the detection of
one type of sensory malware as described in Section 2.2.3. That is, an app aims to capture
sensor data and tries to sent this data to a remote destination under the control of the
attacker. The Policy depicted in listing 4.1 is formulated in pseudocode. A grammar for

the Policy language is defined as part of the prototype implementation in Chapter 5.

// define a context for working hours
context.WorkingHours := Timestamp > "08:00" and Timestamp < "20:00";
// define an anomaly to capture excessive outgoing traffic within working hours
ano. HighTraffic := hint.HighTrafficWifi > "0.5" OR
hint . HighTraffic3g > "0.5", context.WorkingHours;
hint . HighTrafficWifi := "smartphone.communication.ip.TxOther" <procedure a>;
hint . HighTraffic3g := "smartphone.communication.ip.Tx3g" <procedure a>;
// define some signatures
// is the camera currently used
sig .Camera := "smartphone.sensor.camera.lsUsed" = "true", context.WorkingHours;
// 1is there an app with suspicious permissions that can leak sensor data

sig . SuspiciousApp (scope=1) :=

"smartphone.android.app.permission.Requested" = "RECEIVE BOOT COMPLETED" AND
"smartphone.android.app. permission.Requested" = "CAMERA" AND
"smartphone.android .app.permission.Requested" = "INTERNET", context.WorkingHours;

// open port detected
sig .OpenPortDetected := "vulnerability .Name" = "Open Port", context.WorkingHours;
// define a condition that uses the signatures and anomalies
condition .SensorLeakage := ano.HighTraffic AND sig.Camera AND
sig.SuspiciousApp AND sig.OpenPortDetected;
// define an enforcement action

action.DropClient :=

136




23

4.4 Domain-specific Mapping

create "correlationresult.enforcement.EnforcementAction" = "./drop—client.sh";

24| // define a rule that puts all things together

51 if (condition.SensorLeakage) do action.DropClient;

Listing 4.1: Example Policy to detect one kind of sensory malware (pseudocode).

For this domain example, only violations that happen during working hours are assumed
to be relevant. Thus, an appropriate Context is defined (line 2). Any other Anomaly and
Signature definitions make use of this Context. Afterwards, an Anomaly is defined in
order to detect excessive outgoing traffic originating from a smartphone (lines 4 to 5).
The assumption here is that captured sensor data needs to be transmitted to a remote
server, and thus will increase the outgoing traffic in an abnormal manner. The Anomaly
is formulated by using two Hints (lines 6 to 7), each one referring to a specific Feature
that encapsulates outgoing traffic. Note that each of the Hints makes use of the same
Procedure for detecting the abnormal behavior. However, this is not a must. A concrete
anomaly detection technique is not specified at this point. Chapter 5 will demonstrate
how abnormal traffic can be detected by means of statistical methods. The Anomaly is
defined in such a way that if one of the two Hints returns a score that is above 0.5, the

behavior is considered to be abnormal.

Abnormal traffic is not the only indicator that is used to identify a sensory malware. In
addition, a couple of Signatures are defined. They check if the camera of the smartphone
is currently in use (line 10), if an app is installed that has a suspicious set of permissions
(lines 12 to 15) and if the smartphone has an open port on which it accepts incoming
connections (line 17). For this Signature, the scope is adjusted (set from 0 to 1) in order

to match any app that has all of the permissions requested (as defined in Section 4.3.2).

In order to actually evaluate the Signature and the Anomaly, an appropriate rule is
defined (line 25). Its Condition (line 19 to 20) makes use of the previously defined Signa-
tures and the Anomaly. The associated Action that should be performed if the rule fires
is defined in line 22 and 23. It causes the creation of a new Feature which is stored in the
Feature Provider and retrieved by a Feature Consumer in order to drop the respective
smartphone from the network. In this example, this is done by encapsulating a command

that should be executed by the Feature Consumer (in this case a shell script).
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4.5 Assessment

In the following, an assessment of the CADS approach is performed. The purpose of this

assessment is twofold:

1. First, the CADS approach is compared to the requirements defined in Section 2.5.
It is shown that CADS fulfills these requirements better than any other related
approach.

2. Second, the inherent drawbacks of the CADS approach are discussed.

It is important to note that the assessment does not cover any benefits or drawbacks of

CADS that are related to implementation details.

4.5.1 Fulfillment of Requirements

R-01 Detection of unwanted and malicious configurations of smartphones The
CADS approach explicitly addresses this requirement by means of the Signature Com-
ponents defined within the conceptual model (see Section 4.1.3). Signatures are patterns
based on Features. When the Correlation Engine evaluates a Signature, the pattern is
searched in the set of relevant Feature instances as described in Section 4.3.2. In order
to detect a certain configuration (whether it is malicious or unwanted) with CADS, two
aspects need to be met: (1) Features that are suitable to express the configuration must
be available and (2) an appropriate Signature must be defined as part of the Correlation
Engine’s Policy. Since Features can be added transparently to the CADS approach, vir-
tually any configuration can be detected. However, Feature Collectors must be available

that collect the respective Features. Thus, the requirement is fulfilled.

R-02 Detection of abnormal smartphone behavior Abnormal behavior of smart-
phones can be detected by means of the CADS Anomaly Detection Components (defined
in Section 4.1.4). The normal behavior can be flexibly defined by composing an Anomaly
of several Hints, that in turn define which Features should be analyzed by which Proce-
dure. The Correlation Engine supports to process Features both for training and testing.
Training is performed based on the Correlation Engine’s Policy in order to derive device-

specific profiles. Again, Features need to be available that can be used for a reasonable
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anomaly detection. Furthermore, an implementation of the CADS approach must provide

concrete anomaly detection techniques. Thus, the requirement is fulfilled as well.

R-03 Consideration of context information for detection This requirement is ad-
dressed by the Context-related Components of the CADS conceptual model (see Section
4.1.2). In essence, Features are “tagged” with Context Parameters. Contexts can be spec-
ified based on these Context Parameters. This allows to (1) easily derive the Contexts
a smartphone is currently in and (2) limit the set of Feature instances that are consid-
ered during the evaluation of the Correlation Engine’s Policy based on the Context they
were obtained in. The variety of Contexts is only limited by the set of available Context
Parameters. CADS is the first approach that enables both context-related signature and
anomaly detection for smartphones. However, as Context Parameters are set by Feature
Collectors during the measurement of a Feature, some of them might not be reasonably
set by all of the Feature Collectors (like GPS coordinates). Nevertheless, the requirement

can generally be considered as fulfilled.

R-04 Policy-based reaction on detection results This requirement is primarily ad-
dressed by the Policy Components of the CADS conceptual model (see Section 4.1.5). It
allows to use Signature and Anomaly components to specify simple IF-THEN Rules. For
each Rule that fires, the associated Action is performed. This allows to flexibly react on
any detected configuration or abnormal behavior. The design of the Action component
allows to create, update or delete Features for the respective smartphone. This “feedback”
provides two main benefits: (1) it allows to disseminate detection results and thus requests
to employ an enforcement action to virtually any Feature Consumer, (2) it allows to define
Signatures and Anomalies that work based on Features which are created by the Correla-
tion Engine as part of performed Actions. The first benefit was used in order to address
the scenario “Policy-based Enforcement” in the exemplary domain-specific mapping. The
second benefit was not used yet. However, the general requirement to allow policy-based

reactions is fulfilled.
R-05 Dynamic analysis at runtime This requirement is primarily addressed by the

CADS architecture (Section 4.2) and the Correlation Model (Section 4.3). Feature Collec-

tors collect Features at runtime and store them in the Feature Provider. The Correlation
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Engine can retrieve the stored Features for each smartphone, evaluate the Policy and
create new Features if necessary. These Features are again stored properly in the Feature
Provider. Feature Consumers can retrieve those Features and react accordingly. Thus,
the requirement is generally met. However, a training phase should be performed before
the testing phase (and thus the dynamic analysis) starts. Furthermore, although the ap-
proach allows dynamic analysis on a conceptual level, the real latency between Feature
measurement, Policy evaluation and the reaction that is employed by a Feature Consumer
depends on the concrete implementation, especially on the communication protocol that

is used.

R-06 Extensibility of processed data and used methods A major drawback of ex-
isting approaches was the lack of extensibility, both in terms of data that is processed
and methods that are used for processing. In contrast, the CADS approach only names
generic concepts both for defining the structure of data that is processed and the methods
employed for anomaly detection. Data is expressed by means of Features, Categories and
Context Parameters. Techniques for anomaly detection are encapsulated as Procedures.
The only part of the Correlation Model that specifies a concrete algorithm for detection

purposes is the evaluation of Signatures (Section 4.3.2). Thus, the requirement is fulfilled.

R-07 Ability to integrate the approach in existing environments This requirement is
primarily addressed by the distributed CADS architecture. The logical roles define func-
tionality that must be present in any I'T infrastructure that aims to implement the CADS
approach. The goal is to benefit from existing services by adding additional functionality
to them so that they can fulfill the role of a Feature Collector or a Feature Consumer.
Since CADS is a network-oriented approach and thus does not rely on extensive changes
to the smartphones themselves, this requirement is generally fulfilled on the conceptual
level. However, it depends on the concrete implementation how easy an integration into
a real IT infrastructure really is. Even more, a concrete implementation can cause the
CADS approach to fail this requirement. For example, if Features should be collected on
smartphones that require customized versions of the smartphone platform. In this case,
it is a domain-specific design decision to include such Features while sacrificing an easy

integration. Thus, the requirement is fulfilled as well on the conceptual level.
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4.5 Assessment

4.5.2 Drawbacks

Despite the fact that the presented CADS approach fulfills all necessary requirements
at the conceptual level, there are also some inherent drawbacks that should be briefly

mentioned here.

Complexity of architecture integration The CADS architecture is composed of four log-
ical roles. Two of them are expected to be fulfilled by new systems that are added to
an IT infrastructure (Feature Provider and Correlation Engine). Feature Collectors
and Consumers on the other hand should be realized by extending existing systems
and services. Depending on the target IT infrastructure, the integration of these

roles can become a complex task.

Necessity of domain knowledge In order to detect unwanted configurations and abnor-
mal behavior with the CADS approach, knowledge about the domain CADS is
used in is required. In this respect, the term knowledge refers to the fact that the
domain-specific mapping as described in Section 4.4 basically requires to specify two

aspects:

1. What data is relevant and should be collected and processed. This is done by

defining Features and Categories.

2. How should the collected data be processed. This is done by defining a Policy
with Rules whose Conditions are formulated based on Signatures and Anoma-

lies.

The capability of CADS to enable a secure integration of smartphones into existing
IT infrastructures relies on the definition of an adequate Policy that renders the
domain knowledge. At the moment, there is no way to automatically generate a

Policy.

Further drawbacks and limitations which are related to implementation details are dis-

cussed in Chapter 5.
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4 A Network-based Approach for Smartphone Security

4.6 Summary

This chapter presented a novel, network-oriented approach for smartphone security. The

approach is referred to as CADS: Context-related Signature and Anomaly Detec-

tion for Smartphones. It is composed of four main parts.

1. The CADS conceptual model was presented in Section 4.1. It defines the main

building blocks and the relationships between them, especially the notion of Features

and Categories and how they are used to express Signatures and Anomalies.

The CADS architecture was detailed in Section 4.2. It is mainly composed of logical
roles and their responsibilities. Components that fulfill these logical roles need to

be present in an IT infrastructure in order to implement the CADS approach.

The CADS correlation model that defines the general processing of collected data
was presented in Section 4.3. This part primarily defines the internal mechanisms
and algorithms that are used by the Correlation Engine to evaluate Signatures and

Anomalies.

Finally, a process model that defines how the first three parts of the CADS approach

can be mapped to a specific problem domain was presented in Section 4.4.

An assessment of the CADS approach was presented in Section 4.5. The results show

that CADS fulfills the requirements that were identified in Chapter 2 at a conceptual level.

The feasibility of the CADS approach will be demonstrated by presenting a prototype

implementation in Chapter 5, followed by an evaluation in Chapter 6.
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5 Implementation

“Beware of bugs in the above
code; | have only proved it

correct, not tried it.”

(Donald Ervin Knuth)
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5 Implementation

In the following, a proof of concept implementation of the CADS approach is presented.
The prototype uses IF-MAP (introduced in Section 3.4) as communication protocol. First,
Section 5.1 details how the generic CADS approach presented in Chapter 4 can be realized
based on IF-MAP. Afterwards, Section 5.2 describes the software components that were
developed for the prototype implementation. In the end, Section 5.3 mentions existing

drawbacks and limitations of the prototype.

5.1 IF-MAP as Communication Protocol

The IF-MAP protocol for network security was chosen as communication protocol for the
CADS prototype implementation. It meets all requirements that were identified in Section
4.2.2. Furthermore, its original purpose is to enhance network security by enabling existing
systems and services to share data at runtime. Thus, it matches the general idea of the
CADS approach which aims to improve smartphone security in enterprise environments
by leveraging existing systems and services.

Section 5.1.1 details why IF-MAP meets the requirements demanded by a communi-
cation protocol that is used for realizing the CADS approach. Section 5.1.2 explains how
Features are mapped to the IF-MAP data model. Section 5.1.3 elaborates how the CADS
logical roles are mapped to those defined as part of the IF-MAP specification. For the
prototype implementation, version 2.0 of the IF-MAP protocol is used [163]. An update of
the core protocol to version 2.1 [20] published in May 2012 introduced some improvements

that are considered in Section 5.1.5.

5.1.1 Fulfillment of Requirements

As already stated, the IF-MAP protocol fulfills all requirements that were mentioned in
Section 4.2.2. This is detailed in the following.

Request-Response Interaction IF-MAP uses SOAP via HTTPS and thus follows the

request-response paradigm.

Proper Transmission of Features TF-MAP is based on XML [164]. Thus, it allows proper

encapsulation of Features as long as they are represented as XML documents. In
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5.1 IF-MAP as Communication Protocol

order to distinguish Features for numerous smartphones, IF-MAP identifiers can be
used (as detailed in Section 5.1.2).

Support for Remote Procedure Calls IF-MAP is based on remote procedure calls. Its

publish-search-subscribe operations can be used to store, retrieve or delete Features.

Secure As the use of HTTPS is mandatory for any IF-MAP communication, the pro-
tocol is sufficiently secure regarding the integrity and confidentiality of Features in
transit. However, the level of security varies depending on which method is used to
authenticate MAP clients to the MAP server (HTTP basic authentication versus

certificate-based authentication).

Efficient and Scalable The protocol is intended to be used in large IT infrastructures to
enable communication of thousands of network devices, with thousands of messages
communicated per second. Thus, it is designed to be able to scale in such environ-
ments. However, the actual performance depends on the concrete implementation

of the protocol.

It is important to note that other protocols and techniques could have been used to
build the prototype of CADS as well. This includes complex event processing Engines
like Esper! or message oriented middlewares based on the Advanced Message Queuing
Protocol (AMQP)?.

5.1.2 Encapsulation of Features within IF-MAP

In order to transmit Features via the IF-MAP protocol, they need to be properly mapped
to the IF-MAP data model. That is, the core components Category and Feature as well
Context Parameters must be expressed as IF-MAP data types. As the other components
of the CADS conceptual model are only used locally by the Correlation Engine, they do
not need to be expressed by means of [F-MAP. As explained in Section 3.4, the IF-MAP
data model is composed of identifiers, links and metadata® objects that are organized as
a graph structure. The structure of identifiers and metadata is specified via XML Schema
documents [165].

http://esper.codehaus.org/
’http://www.amqp.org/
3The meaning of the term metadata with respect to IF-MAP was explained in Section 3.4.
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5 Implementation

General Extensibility of IF-MAP

IF-MAP provides several mechanisms to extend and customize both the base protocol and
the metadata types that are transmitted. However, changes to the base protocol should
be omitted by third parties in order to ensure interoperability among arbitrary IF-MAP
implementations. Basically, there are two ways that can be used to map the components
of the CADS conceptual model to IF-MAP:

1. identity identifiers of type “other”. IF-MAP version 2.0 supports five distinct types
of identifiers. One of them is the identity identifier that is primarily used to rep-
resent users who are connected to a network. However, its XML Schema definition
(depicted in Listing 5.1) includes two attributes that can be leveraged to encapsu-
late arbitrary data within such an identifier: type and other-type-definition.
The type attri