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Kurzfassung

Digitale dreidimensionale (3D) Modelle sind in vielen Anwendungsfeldern, wie Medizin,
Ingenieurswesen, Simulation und Unterhaltung von signifikantem Interesse. Eine manu-
elle Erstellung von 3D-Modellen ist dufserst zeitaufwendig und die Erfassung der Daten,
z.B. durch Lasersensoren, ist teuer. Kamerabilder ermdglichen hingegen preiswerte Auf-
nahmen und sind gut verfiighar. Der rasante Fortschritt im Forschungsfeld Computer
Vision ermoglicht bereits eine automatische 3D-Rekonstruktion aus Bilddaten. Dennoch
besteht weiterhin eine Vielzahl von Problemen, insbesondere bei der Verarbeitung von
groken Mengen hochauflosender Bilder. Zusétzlich zur komplexen Formulierung, die zur
Losung eines schlecht gestellten Problems notwendig ist, besteht die Herausforderung
darin, auflerst grofse Datenmengen zu verwalten.

Diese Arbeit befasst sich mit dem Problem der 3D-Oberflaichenrekonstruktion aus
Bilddaten, insbesondere fiir sehr grofe Modelle, aber auch Anwendungen mit hohem
Genauigkeitsanforderungen. Zu diesem Zweck wird eine Prozesskette zur dichten ska-
lierbaren 3D-Oberflachenrekonstruktion fiir groffe Bildmengen definiert, bestehend aus
Bildregistrierung, Disparitdtsschiatzung, Fusion von Disparitatskarten und Triangulati-
on von Punktwolken. Der Schwerpunkt dieser Arbeit liegt auf der Fusion und Filterung
von durch Semi-Global Matching generierten Disparitdtskarten zur Bestimmung von
genauen 3D-Punktwolken.

Fiir eine unbegrenzte Skalierbarkeit wird eine Divide and Conquer Methode vorge-
stellt, welche eine parallele Verarbeitung von Teilrdaumen des 3D-Rekonstruktionsraums
ermoglicht. Die Methode zur Fusion von Disparitiatskarten basiert auf lokaler Optimie-
rung von 3D Daten. Damit kann eine komplizierte Fusionsstrategie fiir die Unterrdume
vermieden werden. Obwohl der Fokus auf der skalierbaren Rekonstruktion liegt, wird
eine hohe Oberflichenqualitdt durch mehrere Erweiterungen von lokalen Optimierungs-
modellen erzielt, die dem Stand der Forschung entsprechen.

Dazu wird die wegweisende lokale volumetrische Optimierungsmethode von CUR-
LESS and LEVOY (1996) aus einer probabilistischen Perspektive interpretiert. Aus dieser
Perspektive wird die Methode durch eine Bayes Fusion von rdumlichen Messungen mit
Gaubscher Unsicherheit erweitert. Zuséatzlich zur Bestimmung einer optimalen Oberfla-
che ermdglicht diese probabilistische Fusion die Extraktion von Oberflichenwahrschein-
lichkeiten. Diese werden wiederum zur Filterung von Ausreiffern mittels geometrischer
Konsistenzpriifungen im 3D-Raum verwendet.

Eine weitere Verbesserung der Qualitit wird basierend auf der Analyse der Disparitéts-
unsicherheit erzielt. Dazu werden Gesamtvariation-basierte Merkmalsklassen definiert,
welche stark mit der Disparitdtsunsicherheit korrelieren. Die Korrelationsfunktion wird
aus ground-truth Daten mittels eines Expectation Maximization (EM) Ansatzes gelernt.
Aufgrund der Beriicksichtigung eines statistisch geschéatzten Disparitatsfehlers in einem
probabilistischem Grundgeriist fiir die Fusion von rdumlichen Daten, kann dies als eine
stochastische Fusion von Disparitiatskarten betrachtet werden. Aufserdem wird der Ein-
fluss der Bildregistrierung und Polygonisierung auf die volumetrische Fusion analysiert
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und verwendet, um die Methode zu erweitern.

Schlieflich wird eine Multi-Resolution Strategie prasentiert, welche die Generierung
von Oberflachen aus rdaumlichen Daten mit unterschiedlichster Qualitat ermdglicht. Diese
Methode erweitert Methoden, die den Stand der Forschung darstellen, durch die Bertick-
sichtigung der raumlichen Unsicherheit von 3D-Punkten aus Stereo Daten.

Die Evaluierung von mehreren bekannten und neuen Datensétzen zeigt das Potential
der skalierbaren stochastischen Fusionsmethode auf. Starken und Schwéachen der Metho-
de werden diskutiert und es wird eine Empfehlung fiir zukiinftige Forschung gegeben.



Abstract

Digital three-dimensional (3D) models are of significant interest to many application
fields, such as medicine, engineering, simulation, and entertainment. Manual creation
of 3D models is extremely time-consuming and data acquisition, e.g., through laser
sensors, is expensive. In contrast, images captured by cameras mean cheap acquisition
and high availability. Significant progress in the field of computer vision already allows
for automatic 3D reconstruction using images. Nevertheless, many problems still exist,
particularly for big sets of large images. In addition to the complex formulation necessary
to solve an ill-posed problem, one has to manage extremely large amounts of data.

This thesis targets 3D surface reconstruction using image sets, especially for large-
scale, but also for high-accuracy applications. To this end, a processing chain for dense
scalable 3D surface reconstruction using large image sets is defined consisting of im-
age registration, disparity estimation, disparity map fusion, and triangulation of point
clouds. The main focus of this thesis lies on the fusion and filtering of disparity maps,
obtained by Semi-Global Matching, to create accurate 3D point clouds.

For unlimited scalability, a Divide and Conquer method is presented that allows for
parallel processing of subspaces of the 3D reconstruction space. The method for fusing
disparity maps employs local optimization of spatial data. By this means, it avoids
complex fusion strategies when merging subspaces. Although the focus is on scalable
reconstruction, a high surface quality is obtained by several extensions to state-of-the-art
local optimization methods.

To this end, the seminal local volumetric optimization method by CURLESS and
LEVOY (1996) is interpreted from a probabilistic perspective. From this perspective,
the method is extended through Bayesian fusion of spatial measurements with Gaus-
sian uncertainty. Additionally to the generation of an optimal surface, this probabilistic
perspective allows for the estimation of surface probabilities. They are used for filtering
outliers in 3D space by means of geometric consistency checks.

A further improvement of the quality is obtained based on the analysis of the disparity
uncertainty. To this end, Total Variation (TV)-based feature classes are defined that are
highly correlated with the disparity uncertainty. The correlation function is learned from
ground-truth data by means of an Expectation Maximization (EM) approach. Because of
the consideration of a statistically estimated disparity error in a probabilistic framework
for fusion of spatial data, this can be regarded as a stochastic fusion of disparity maps.
In addition, the influence of image registration and polygonization for volumetric fusion
is analyzed and used to extend the method.

Finally, a multi-resolution strategy is presented that allows for the generation of sur-
faces from spatial data with a largely varying quality. This method extends state-of-the-
art methods by considering the spatial uncertainty of 3D points from stereo data.

The evaluation of several well-known and novel datasets demonstrates the potential
of the scalable stochastic fusion method. The strength and the weakness of the method
are discussed and direction for future research is given.
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Chapter 1.
Introduction

Digital three-dimensional (3D) models of the real-world can be reconstructed from mul-
tiple measurements. In general, sensors for this task produce a set of measurements
that describe the distances to a surface. The sensor techniques can be classified into two
categories: active and passive sensors.

Active sensors emit signals into the 3D space that are later detected. The resulting
signal information can be used to estimate the geometric distance. E.g., laser sensors and
time of flight sensors emit light with a specific frequency in one or multiple directions.
The time between emission and detection is used for distance estimation because they
are highly proportional. The use of phase information and triangulation can improve
the accuracy of laser measurements. Passive sensors do not emit signals and make use
of the available signal, e.g., light.

Cameras detect light from the environment. Given data from multiple positions of
the sensor, pertaining to the same environment, distances can be obtained indirectly by
triangulation in scene geometry. Active illumination, e.g., used in the Kinect sensor,
such as light stripes can improve the available information especially in weakly tex-
tured scenes. Images from camera sensors are not useful without suitable lighting and
sufficiently textured surfaces, which limits their reliability. Nonetheless, cameras have
advantages such as the cheap acquisition and the high availability.

Modeling the world in 3D based on two-dimensional (2D) images is a fascinating
field of computer vision that achieved great progress in the last decades; however many
problems remain unsolved. The challenge is to manage a set of images captured in
complex configurations to obtain 3D models with maximum accuracy and completeness.
The modeling process should also entail small memory requirement and short processing
time, as well as limit the resulting data to essential 3D structures.

The generation of a 3D surface from images can be performed in many different
ways using different types of optimization. Additional prior information can improve
the quality of 3D surfaces concerning accuracy and completeness. Priors can represent
knowledge regarding the smoothness of surfaces, or even semantic knowledge regarding
the modeling of a specific type of object. Surface shading can also provide additional
information regarding surface geometry, especially when multiple light sources exist.
In this thesis, a method is presented that allows for the reconstruction of fine surface
details, without prior semantic information, because it is not always available.

A crucial characteristic of the 3D modeling problem is that main parts are ill-posed
because the goal is to reconstruct a projection of 3D information. An infinite number
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of solutions for surface reconstruction exists using information from an image set. The
progress of recent methods is on one hand due to the vastly increased power of com-
puter systems in terms of runtime performance and memory resources. On the other
hand, machine learning approaches have improved the solution to many computer vi-
sion problems, or even made some possible for the first time. Stochastic methods in
machine learning are suitable for computer vision, because ill-posed problems can be
explained in a probabilistic and statistical way and solved by finding the most probable
solution. Nevertheless, an optimal mathematical formulation for solving the problem of
3D modeling using images is still an unsolved challenge.

Structure from Motion (SfM) methods directly estimate 3D geometry by sparse model-
ing without knowledge of the configuration. To this end, a significant amount of unknown
parameters has to be estimated simultaneously. The corresponding optimization prob-
lem cannot be formulated in a linear or convex manner without simplified assumptions.
Furthermore, variational solutions require an approximate initial solution. Fortunately,
the problem of 3D modeling from image sets can be divided into a chain of subproblems:

Image Registration is the first step in reconstructing scene geometry, often consider-
ing prior knowledge regarding a certain camera model (calibration). Matching and
tracking points in overlapping images is well studied and works well for dense con-
figurations. A 3D position can be obtained from points in multiple images using
triangulation based on knowledge regarding the scene geometry. Over a complete
set, a sparse 3D point cloud can be obtained by tracking the features. On one
hand, the sparse point cloud is useful for generating a first approximation of a 3D
model. On the other hand, the sparse point cloud allows for an accurate estimation
of camera poses using robust bundle adjustment.

Stereo Matching is concerned with the estimation of the pixelwise relative distance
to the surface (depth) regarding two images. The disparity is defined by the dis-
tance between two corresponding pixels on the epipolar line in an image pair and
has a unique relation to the corresponding depth. With knowledge regarding scene
geometry, dense disparity maps can be generated by searching for correspondence
along the epipolar line. Stereo methods obtain accurate pixelwise depth infor-
mation in stereo configurations by considering prior relationships of neighboring
pixels. The results are dense disparity maps that can be partially noisy or even
inaccurate.

Depth Fusion is the fusion and filtering of noisy and inaccurate dense disparity maps,
and it is the main focus of this thesis. Whereas sparse modeling requires a com-
plex re-optimization of the surfaces, the challenge of dense modeling is to eliminate
redundancy, outliers, and noise. In this work, a novel probabilistic approach is pre-
sented that assumes 3D points that correspond to trivariate Gaussians. The Gaus-
sian parameters are partly statistically estimated by machine learning methods and
partly probabilistically derived by geometric knowledge. This thesis combines the
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power of both assumptions, leading to a stochastic method that is highly scalable
through the local optimization of 3D points in octree data structures.

Triangulation entails the transformation of point clouds to connected sets of polygons.

It has been shown that a set of triangles is well suited for representing surfaces.
Different methods have been proposed for generating meshes of triangles from point
clouds. Among them are methods that can manage noisy data, especially when
considering the constraint of watertightness. For clean point clouds from Depth
Fusion, local methods can be used for fast and efficient processing of possibly large
amounts of surface data.

Optimization of the surfaces can be performed optionally as a postprocessing step. An

1.1.

optimization step is required for detailed surfaces when only an approximate initial
3D model is available. Re-optimization can also comprise a reduction in the number
of triangles with the least possible loss in surface quality. By reducing this amount
of 3D information, color information can possibly be lost. An optimized texturizing
of the surfaces is reasonable for many applications. Texture optimization can be
extremely complex.

Problem Statement

The basic problem considered in this thesis is the fusion of disparity maps into clean,
accurate point clouds by filtering outliers and fusing noisy data. The fusion of disparity
maps by multi-view stereo (MVS) methods is a well-known problem and has a wide range
of practical solutions. Nonetheless, the problem is still an open challenge in computer
vision. In particular, for scalable 3D modeling from noisy disparity maps, there are
several problems to manage:

1.
2.

6.

Measurement noise,

Outliers from (multi-view) stereo,
Uncertainty caused by preprocessing steps,
Multiple point redundancy;,

Hardware limitations,

Runtime performance.

This thesis provides solutions to all specified problems with a focus on scalability.

Points 1 to 3 focus on the uncertainty of the 3D points caused by noise, outliers,
and misperceptions in the preprocessing steps. First, stereo matching as an ill-posed
problem obtains a non-negligible set of outliers. Furthermore, noise caused by numerical,
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physical, or algorithmic inaccuracy is inevitable. The quality of disparities has to be
considered for 3D modeling because it can vary depending on the image configuration
and environmental influence. Multiple error models for 3D points from disparity maps
already exist, yet all models contain a constant disparity error. The uncertainty of
disparity depending on the stereo methods is unknown. Preprocessing steps, such as
image registration or stereo matching, are based on prior assumptions that lead to
further noise and errors. Hence, considering the different quality of obtained data seems
to possess a high potential to improve the fusion of disparity maps.

Points 4 to 6 describe an important, but complex, attribute of 3D modeling: scalability.
The progress of chip quality in cameras leads to high-resolution images with high quality
even in consumer cameras. Furthermore, 3D modeling can be performed by considering
a large amount of images. Image sets can provide highly redundant information, because
in dense configurations many images show the same part of a scene. Finally, even in
mobile systems, an extremely large amount of information can be stored in compressed
images. All this leads to a large amount of data that does not fit in main memory, even
in large computer systems. Sequential data processing can lead to high runtime, and
requires adapted algorithms.

In order to provide a better impression of the limitation dimensions, they are discussed
based on the example shown in Fig. 1.1. Image registration is performed for 823 images
with ten-megapixel resolution acquired from an octocopter and from the ground. The
images shown provide an impression of the detail that can be obtained through this
configuration. In addition, corresponding dense disparity maps are provided.

After registration and stereo estimation, there are over four billion valid disparities
estimated in the complete image set. Because of dense image configuration, multiple
cameras capture the same part of the scene. Considering 24 bytes per 3D point, a
memory space of approximately 90 GB is required simply to read the data. Therefore,
processing the entire data on a desktop PC seems impossible. Fortunately, hardware
exists with a hundred or even a thousand CPU cores that have the power and memory
required to process big data in parallel. Yet, parallel computing means that the data
has to be divided and merged by algorithms that process independent areas. This
thesis offers a method for processing big data in parallel through local optimization,
thus avoiding complex fusion strategies, and yet offering high quality surfaces by a novel
stochastic fusion process.

1.2. Motivation

3D modeling of the real world has many practical applications with a variety of require-
ments for data acquisition. In addition to the question of data processing, it is important
to discuss the procurement of such data.

In contrast to most alternative sensor data, such as laser data, images from cameras are
publicly available on several platforms, especially images of famous public places. This is
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Figure 1.1.: Large image set with 823 images that show a complete village with varying
detail. The upper image shows the registered image set with all camera
poses and a reference point cloud. The blue pyramids represent camera poses
captured from an unmanned aerial vehicle (UAV), whereas the green camera
poses represent images captured from the ground. The middle and bottom
images show two detailed views of the image set with the corresponding
disparity map. The complete set of disparity maps obtains billions of 3D
points.
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because of the rising numbers of mobile cameras, particularly the cameras contained in
mobile phones. It has been shown that the large amount of data available for these places
of interest can be used to model such places (POLLEFEYS et al. 2008). AGARWAL et al.
(2011) (AGARWAL et al. 2009) and FRAHM et al. (2010) published methods that work
with community photo collections from the Internet by processing millions of images on
possibly small systems within a reasonable time. The generation of 3D models using
community photo collections is well suited for applications such as digital tourism or
even cultural heritage. Two 3D models obtained from community photo collections are
shown in Fig. 1.2.

Figure 1.2.: Textured 3D models from community photo collections show the Colosseum
in Rome and the Dome in Berlin. The models were computed in less than 24
hrs from subsets of photo collections of 2.9 million and 2.8 million images.
(FRAHM et al. 2010)

Yet, most of the world is not captured by cameras at all. Methods that focus on
community photo collections usually have problems managing sparse sets of images.

For a long time, aerial imaging was the standard method for capturing coherent image
sets for modeling urban regions or landscapes. Nowadays, aerial images are captured
with digital cameras with hundreds of megapixels. In addition, satellite images are
commercially available with a maximum resolution of 0.5 meters. In both cases, large
parts can be covered simultaneously. In particular, with digital aerial cameras, dense
image sets are often acquired. The availability of Global Positioning System (GPS)
and Inertial Navigation System (INS) information make direct registration possible.
Accurate image registration allows for pixelwise depth estimation with stereo matching
methods, such as Semi-Global Matching (SGM) (HIRSCHMULLER 2005, HIRSCHMULLER
2008). Dense depth maps from aerial configurations allow for the reconstruction of 2.5-
dimensional (2.5D) models through intuitive fusion of the disparity maps.

2.5D models expand 2D planes by adding one additional information per 2D point
describing the distance from a ground plane. In aerial image configurations with nadir
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looking cameras, 2.5D modeling provides fascinating surface models of landscapes or
even complete cities (cf. Fig. 1.3).

Figure 1.3.: Shaded and textured 2.5D model from Graz. The model results from SGM
disparity maps on aerial images. (HIRSCHMULLER 2008) (© 2008 IEEE

2.5D models have an extensive range of practical applications because they comprise
important information. Next to architecture planning, nowadays numerous museums
show models of fascinating natural and urban areas. Even for navigation or agricultural
planning 2.5D models are extremely suitable.

Manually or semi-automatically reconstructed 3D models are a good basis for ap-
plications that use real-time rendering, such as web applications like Google Earth
(GOOGLE 2014). Image information can be compressed effectively and transmitted
over networks. In contrast, complex geometric surface models of significant size are
more challenging and not well studied, yet. For instance, Google Maps shows several
geometrically simplified models from urban regions with mapped texture (cf. Fig. 1.4).
The models are simplistic and even complex buildings are modeled through a limited
number of planes, which leads to possibly large incorrect areas in the visualization.

In the past decade, UAVs have become an attractive alternative for closing the gap
between aerial and terrestrial images. Multicopter systems can carry light high-quality
consumer cameras. The combination of images captured from varying perspectives offers
a wide range of novel practical applications. Complex objects can be covered from
all directions, leading to a higher completeness of the 3D model. Furthermore, the
configuration allows the capture of images from a shorter distance, which results in high
quality details in the 3D model (cf. Fig. 1.5).

The novel image configurations from UAVs are particularly suitable for applications
that require a high level of detail. Cultural heritage applications are becoming extremely
important. Examples can be found in the field of museums, churches, castles and histor-
ical artifacts. For complex and tall buildings, a combination of ground and UAV images
is extremely advantageous. Detailed scalable 3D modeling of complete urban regions is
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Figure 1.4.: Screenshot of a view in Google Earth from the opera in Munich. The simple
model of the building comprises a small set of planes. The simplicity affords
fast rendering of large scenes but discards complex geometries. Details such
as the pillars are mapped onto a plane. (©) 2014 Google, (©) 2014 DigitalGlobe

Figure 1.5.: Highly detailed images captured with an octocopter system from varying
distances. The middle (zoomed) image shows the octocopter from a height
of approximately 100 meter.

useful for municipal planning, as well as for police and military use.

These novel practical applications have requirements in 3D modeling that cannot be
fulfilled by 2.5D modeling. However, the step from 2.5 to 3D is far from trivial. The
reconstruction algorithms cannot be extended easily because the image configurations
are often much more variable and no dominant direction exists. Such challenging config-
urations lead to highly differing qualities of the spatial data that have to be considered.
The new requirements give rise to significant challenges in the fusion of disparity maps.
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1.3. Thesis Outline

This thesis focuses on the problem of fusing disparity maps into a detailed and complete
3D point cloud. The proposed solution consists of a novel stochastic framework that
extends existing geometric approaches by focusing on scalability. In Chapter 2, foun-
dations are laid in the form of relevant basics. Geometric basics comprise a processing
chain from images to 3D surface models. This thesis supplements the reconstruction
chain through a novel method for fusing disparity maps. The fusion process involves
stochastic methods, whose basics are also described in Chapter 2. Chapter 3 provides an
overview of the state of research in 3D modeling. In particular, adaptability to large sets
of images that concerns the scalability of state-of-the-art methods is discussed. Chapter
4 addresses the volumetric fusion of spatial data. To this end, a local method and an
extension to a novel probabilistic approach is presented. Chapter 5 specifies the fusion
and filtering on disparity maps. To guarantee unlimited scalable 3D reconstruction a
Divide and Conquer method is presented that allows for parallel processing. Different
types of error models are discussed that consider registration and disparity errors and
their influence on data fusion. To this end, the disparity error is analyzed and learned
from ground-truth data. Chapter 6 is devoted to the problem of multi-resolution compu-
tation, discussing data structures and the adaption to error models. Chapter 7 analyzes
the progress through the novel proposed methods concerning accuracy and complete-
ness by presenting results from a wide range of datasets. Chapter 8 summarizes and
concludes the thesis. Finally, an outlook on future work is presented.

Parts of the reconstruction chain (cf. Section 2.2), the probabilistic approach
(cf. Chapter 4), and the multi-resolution computation (cf. Chapter 6), have been previ-
ously published in:

Bartelsen, J., Mayer, H., Hirschmiiller, H., Kuhn, A. and Michelini, M. (2012): Orienta-
tion and Dense Reconstruction of Unordered Terrestrial and Aerial Wide Baseline
Image Sets, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Volume 1, 25-30.

Kuhn, A., Hirschmiiller, H. and Mayer, H. (2013): Multi-Resolution Range Data Fu-
sion for Multi-View Stereo Reconstruction, 35th German Conference on Pattern
Recognition.
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Chapter 2.
Basics

This thesis addresses the problem of scalable 3D modeling from image sets focusing
on the fusion of disparity maps to accurate point clouds. The fusion of depth maps
by limiting the optimization area allows for fast parallel processing of large datasets
(KUHN et al. 2013, STEINBRUCKER et al. 2013). Depth information can be obtained by
stereo methods or active sensors. The reconstruction of accurate surfaces by local fusion
of depth values requires comprehensive knowledge about the uncertainty of 3D points.
The error of a 3D point results from physical, algorithmic, and numeric uncertainties
that can be described in a stochastic manner.

In this chapter, an overview of a geometric reconstruction pipeline and its relationship
to the uncertainty in 3D space is given in Section 2.2. Because the 3D information is
obtained from 2D images, important basics of image processing are presented in Sec-
tion 2.1.

In the 3D space, the trivariate uncertainty is difficult to estimate because there are
multiple influences that cannot always be derived directly. A statistical machine learning
method is presented in this thesis to allow learning the disparity error. Given the
uncertainty of a 3D point there is a need in a probabilistic framework for the fusion of
several points. For these reasons, the following general stochastic basics are described
in Section 2.3: probability distributions, machine learning methods, and fusion theory.

2.1. Image Basics

For 3D surface reconstruction from 2D images, image processing methods are impor-
tant foundations. Image registration and stereo matching have a need for information
regarding corresponding points in two or more images. The estimation of corresponding
points is not unambiguous. Nonetheless, comparing pixels or pixel neighborhoods by
means of matching costs only provides assumptions for possible correspondences.

For detecting noise in images or disparity maps, the local frequency behavior of in-
tensities is important. The mathematical concept Total Variation (TV) is shown to be
suitable for such purpose and for surface reconstruction. Hence, the theoretical descrip-
tion is discussed.

10
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2.1.1. Matching Costs

A crucial task in image processing is the definition of the matching cost C' for corre-
sponding pixels. This measurement describes how strongly two pixels, or areas around
the pixels, are in correspondence, and hence, come from the same area of the scene. To
this end, the intensities I are compared using a specific scheme. The comparison area
can consist of a single pixel p or a set of neighboring pixels p; bordered by polygons,
such as the rectangle-based windows shown in Fig. 2.1.

Figure 2.1.: Cover page of a book captured from two perspectives with differing lighting
conditions. The pixel in the left image is matched to the right one by
including the neighboring pixels in the windows.

In this section, a brief introduction for the most important and popular matching
costs is provided. In addition, problems that appear when modeling the real world
are discussed. Illumination changes, lack of texture, and perspective deformation are
the most critical problems. Furthermore, correspondences are not unambiguous because
repeating structures can appear; no correspondence exists when occlusions occur. Those
problems cannot be solved based on matching costs.

Absolute Intensity Differences (SAD) (KANADE and OKUTOMI 1994) is defined by
the summed absolute differences of neighboring pixels p; of pixel p. A comparison
between individual pixels at the relative same position is performed using the L,
norm:

Csap(p) = Z 111 (pi) — La(pi +u)| (2.1)

where vector u describes the 2D transformation (shift) from the point in image I
to the corresponding point in image I,. When using the L; norm, the method is
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called Sum of Squared Differences (SSD) (MATTHIES et al. 1989):

Cssp(p) = Y _(1(p:) — L(pi +u))* . (2.2)

(2

The computationally fast methods SAD and SSD do not account for radiometric
differences. Hence, they are suited for fast processing of data captured simultane-
ously or in laboratory settings. For scenes with changing lighting conditions, SAD
is not suitable, even though the L; norm is quite robust against outliers. Because
of fixed geometry, even small changes in the perspective cause SAD and SSD to
fail.

Census (ZABIH and WOODFILL 1994) is a simple but powerful cost term based on
binary decisions regarding illumination differences. Neighboring pixels p; bordered
by a rectangle window are transformed to a binary stream. To this end, the
intensity differences to pixel p are coded by a binary relationship:

_ )0 it I(p) < I(p)
B(pi) = {1 i I(p) > I(p) (2.3)

For the comparison of two regions, the particular binary strings, coding illumina-
tion changes in the neighborhood, are compared by the Hamming distance:

Cerns(p) = ®i[Bi(pi), Ba(pi +u)] . (2.4)

Census transform was shown to produce stable matching costs when the illumina-
tion changes (HIRSCHMULLER and SCHARSTEIN 2009). Furthermore, it is suitable
for fast processing as the Hamming distance can be coded in logic. On the negative
side, Census also has a fixed geometry of the compared pixels, leading to unstable
results concerning perspective differences.

Mutual information (MI) (KiM et al. 2003, CAMPBELL et al. 2008) is an expensive
but accurate pixelwise matching cost considering the entropy h of the intensities
in two images as well as their joint entropy:

Cu1(p) = hi, p[1(p), I(p + )] = by, [I(p)] = by [ (p + )] - (2.5)

By subtracting the entropy from the joint entropy, the significant information of
the images is compared. In general, entropy and joint entropy are obtained from
probability distributions over the intensities of both images:
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11
Hyp g, = _/ / Py, 1, (i1, 12) log Pr, 1,(i1,12) dizdiy | (2.7)
o Jo

where ¢ is an intensity from the range of the random variable I.

The calculation can be performed as a sum over pixels using a Taylor expansion
(KM et al. 2003). This leads to an entropy defined by the sum of data terms
depending on the corresponding intensities of pixel p. The data terms h; and
hi,.1, can be estimated as the logarithm of smoothed probability distributions P;
and Py, ;, with Gaussian kernels. HIRSCHMULLER (2008) gives a more detailed
account of the numerical derivation for stereo matching.

MI is powerful because it considers particularly relevant information and obtains
a pixelwise matching cost. Nevertheless, it is time consuming and requires warped
images because the entropy is calculated on the entire image. Hence, there is a need
for an initial guess of the geometric correspondence. Furthermore, normalization
of the illumination does not consider local illumination changes that appear in
complex scenes.

Normalized cross-correlation (NCC) (HANNAH 1974) is also known as normalized
sliding dot product. From the point of view of continuous functions, a cross-
correlation is similar to a convolution. For image processing, normalization is
suitable for cross-correlation because radiometry through lighting changes can vary
immensely when capturing images. For the normalization of such influences, the
mean of a neighborhood is subtracted and the term that equals the covariance is
divided by the standard deviation of illumination. For 2D images with intensities
I; and Iy, the NCC can be written as:

_ Lilh(p) —I)(bpi+u) —h)
Vi i(pi) — 1) (T (pi + u) — Ip)?

with I denoting the average intensity of the neighboring pixel intensities. NCC
has a substantially high processing time, but it can manage difficult local lighting
changes. For noisy low contrast regions, NCC can fail because the normalization
has a singularity in non-contrast areas. However, it has been shown to be suitable
for perspective differences (BARTELSEN 2012).

Cnee(p) (2.8)

2.1.2. Total Variation

In the field of computer vision, TV was first used by RUDIN et al. (1992) as a regulariza-
tion term for nonlinear image denoising. Considering a TV term, noise can be detected
and removed using specific smoothing methods. In general, TV describes a local oscil-
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lation behavior for continuous or discrete functions. For one-dimensional (1D) discrete
signals, TV is defined as:

TV(x) = Z [ (:) = I(ziga)] (2.9)

using the L; norm. An L, norm can also be employed that squares the term of the
sum. For a discrete 2D function, such as an image with intensities I, the TV that
considers an L, norm can be written as:

TV(p) = Z \/If(pm,j) =1 (pig)? + U (pijs1) — L(pig)l? (2.10)

where ¢ and j are the index for x- and y- dimension, respectively.

The choice for the norm to use depends on the application. RUDIN et al. (1992) argue
that the L; norm results appear better visually than the L, norm results for image
denoising. This can be explained by the robustness against outliers. Using optimization
methods such as variational or convex optimization, the L, norm can be more suitable
because the L; norm is nonlinear and computationally complex.

2.2. Geometric Basics

Obtaining 3D information from 2D images is a challenging task because the problem is
inverse, and hence, ill-posed. Expecting a pinhole camera model, vector triangulation
from two camera centers to the corresponding 2D points p; and ps on the image planes
allows for the estimation of an approximate 3D point (cf. Fig. 2.2).

The estimation of two corresponding points p; and py, without prior knowledge is
complex and computationally expensive because the search area is large. Yet, even if
accurate correspondences are available, two lines through the camera centers and image
points do not intersect exactly because of image noise.

3D surface reconstruction requires further parameters in addition to the image points
p1 and po. First, considering a world coordinate system, the camera positions 7} and
T5, as well as the camera rotations R; and Rs, have to be determined. The rotation
matrix and translation vector describe the transformation of a 3D point P. in camera
coordinates to the 3D point P, in world coordinates:

Py=RP.+T. (2.11)

The parameters that describe the geometry of relative camera poses are called outer
parameters of the image set.

Second, the pinhole camera model does not fit the real world because images have
radial or even tangential distortions caused by the camera lenses. Furthermore, the
physical processes cannot be modeled with simplified camera models, resulting in re-
construction noise. The equations that define the distortion models can have a variable
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R, T]

//

[R,T]

Figure 2.2.: Epipolar geometry with two pinhole cameras in a world coordinate system
with absolute pose R;,T; for camera i and transformation R,T between
the relative poses. Hence, a camera pose is defined by a rotation and a
translation. Point P is a 3D point projected on the camera plane as 2D
point p;. The right camera shows the epipolar line e with respect to the left
camera.

number of parameters. A relatively general model is given by BRADSKI and KAEHLER
(2008):

Trag = (1 + kyr? + kor* + ksr®) | (2.12)
Yraa = y(1 + kir? + kor® + k37‘6) , ‘

Ttang = T + 2Ly + lo(r? + 227)) |

2.13
Ytang = Y + (ll (72 + 2y2) + 2[21’) : ( )

where 7 is the distance of the pixel from the origin, and x and y are the coordinates on
the image plane. Eq. (2.12) defines the correction of a radial distortion parameterized
by ki, ko, and k3 whereas Eq. (2.13) defines the correction of a tangential distortion
parameterized by [; and [s.

The projection from pixel coordinates to the image plane can be defined by a 3 x 3
camera calibration matrix C' that contains a focal length f, optical center (principal
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point) ¢, and a skew of pixels s. From the camera coordinate system, the 3D point P.
can be transformed to pixel coordinates p using the calibration matrix:

fo 8 Ca
p=C'P. ,withC=10 f, ¢ | . (2.14)
0 0 1

The set of parameters defined by the camera models are called the inner parameters
of the image set.

When considering the relative orientation and relative distance R = R R; and T =
Ty, — T between two images, the search area of feature correspondence in the images can
be limited by the epipolar line e (cf. Fig. 2.2). Hence, stereo matching can be simplified
by finding the corresponding pixel only on one line when the relative pose is available.
Nonetheless, stereo estimation remains a difficult task because at least one parameter,
namely the disparity, i.e., the position on the epipolar line, has to be obtained for all
pixels.

The rotation between two coordinate systems can be defined by a quaternion with
only four parameters, or three angles instead of nine matrix elements. The number
of parameters for the quaternion can be reduced to three because the quaternion is
over-parameterized. Furthermore, multi-view reconstruction experience shows that the
distortion parameters k; and ks are representative enough to obtain the required ac-
curacy. Parameter k3 and the tangential distortion parameters [; and Iy are often not
necessary for obtaining quality in the range of a couple of the tenths of a pixel. Esti-
mating the relative poses of the cameras, for one image pair, a further parameter can
be omitted because the scale is not fixed. In summary, there have to be at least seven
parameters for all cameras and five parameters for all images to be estimated in the
image registration step, followed by a disparity estimation for all pixels on the epipolar
lines using stereo methods.

In the following sections, a possible processing pipeline is shown, describing surface
estimation from arbitrary image sets without prior information, but an approximate
calibration of the camera. A brief introduction to the 3D modeling process is provided,
excluding the fusion of disparity maps because this is the main focus of this thesis
and will be discussed in the following chapters. The remaining steps consist of image
registration, stereo estimation, and polygonization of point clouds.

2.2.1. Image Registration

Accurate image registration is an important and sufficient task for dense 3D surface
reconstruction. The registration process equals SfM because image registration involves
the simultaneous estimation of 3D geometry (structure) and relative camera poses (mo-
tion). 3D geometry is particularly important for the estimation of unknown parameters
in the image registration process. Robust bundle adjustment allows for accurate parame-
ter estimation considering the obtained 3D geometry. The input of the image registration
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usually consists of a calibrated or even an uncalibrated set of images.

A suitable model for camera calibration consists of multiple parameters such as distor-
tion, focal length, skew, and optical center (cf. Section 2.2). The number of calibration
parameters can be maximum of ten per camera, depending on the distortion model
(cf. Egs. (2.12) - (2.14)). The outer parameters count seven per image, four parameters
for the rotation quaternion and three parameters for the translation vector. As already
mentioned, the four rotation parameters overparameterize a rotation and can be reduced
to three in the process of parameter estimation.

Concerning the estimation of inner parameters, several approaches and calibration
toolkits exist. Additional information, such as calibration grids, is suitable for the es-
timation of focal length, camera center, skew, and distortion parameters, even in the
range of hundredth of a pixel. In several applications, the parameters have to be ob-
tained directly from the image set because no initial calibration is known. Based on an
initial (educated) guess, parameter optimization of inner parameters can be performed
simultaneously with the estimation of outer ones.

In the following paragraphs, an image registration process is described that does not
need prior information, besides the image set and possibly an approximate calibration.
In an initial step, the images are checked for overlap with further images of the set. The
feature points in the 2D images are matched to corresponding pixels also in challenging
configurations. There is a large amount of methods for feature extraction that detect
different types of structures (FORSTNER and GULCH 1987, HARRIS and STEPHENS
1988, LOWE 2004, FORSTNER et al. 2009, TOLA et al. 2010). By considering scale-
space properties, feature matching is becoming scale-invariant, which is a requirement
for scenes in challenging configurations. Isotropic filters allow for rotation invariant
feature descriptions, but can lead to weakness concerning perspective deformations. The
most popular and powerful feature extractor is the Scale-Invariant Feature Transform
(SIFT) (Lowk 2004). In addition to scale and rotation-invariant feature descriptions,
a matching method is presented. This method is based on the comparison of feature
vectors that represent the characteristics of a specific area around a pixel. Yet, it was
shown that other matching methods (cf. Section 2.1.1) can be more stable for perspective
deformations (BARTELSEN 2012).

The robust bundle adjustment employed obtains a locally optimal solution for un-
known parameters. Thus, an approximate solution for the inner and the outer parame-
ters is required that is close to the globally optimal set of parameters.

The image correspondences, extracted by feature matching, can be used to obtain 3D
geometry also suitable for camera calibration. Considering a camera pair whose relative
poses consist only of rotations around the viewing direction, camera calibration can be
performed as described by DE AGAPITO et al. (1998) or FRAHM and KocH (2003).
An initial estimation of the inner parameters can even be performed for general motion
(POLLEFEYS et al. 1999) when image pairs with strong 3D information covering a large
depth range are available. Whereas calibration based on image data is feasible, the as-
sumption that needs to be fulfilled often does not hold. Yet, this is mostly not a problem
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in practical applications, because in many cases, an extremely good approximation for
camera parameters is available from prior experiments with the same camera. Even if
such is not the case, one can derive a suitable approximation from information available
in the Exchangeable Image File Format (EXIF) description of the image (focal length)
and on the camera (pixel size) on the Internet.

Considering correspondences in two or multiple images that show the same region, a
relative pose can be estimated. It has been shown that only five corresponding points
are necessary to obtain the relative pose between two calibrated images (NISTER 2003).
For this five-point algorithm, no approximation of the model is necessary. The relative
pose is defined by rotation R and translation 7" between the camera coordinate systems
(cf. Fig. 2.2).

Unfortunately, stable and accurate estimation of five corresponding points in two im-
ages is not trivial because the estimation of corresponding pixels can lead to wrong
and inaccurate matches. Random algorithms, such as Random Sample Consensus
(RANSAC) (F1sCHLER and BOLLES 1981) allow the consideration of these uncertainties.
RANSAC is an iterative algorithm for the estimation of parameters by fitting a set of
measurements under uncertainties and outliers. In the case of the five-point algorithm,
the measurements used are five corresponding points, which are chosen randomly. After
estimation of the relative pose, the complete set of measurements is checked for consis-
tency with the obtained pose. The RANSAC algorithm continues considering further
five random points until a solution with probability is obtained. Experiments under-
score that randomized methods such as RANSAC can obtain correct results even for
more than 90% outliers.

Employing the relative poses of all camera pairs, the image features can be tracked
over multiple images on paths over the complete set. This is theoretically feasible;
however, in the employed approach (MAYER et al. 2011) RANSAC using two times
the five-point algorithm is employed also for triplets because it was found that this
makes the solution much more robust. For this, triplet paths are estimated through
graph algorithms that model the cameras as nodes and the overlapping images as edges
(BARTELSEN et al. 2012). Such tracking results in a set of n 3D points with information
about camera visibility (cf. Fig. 2.3).

For a globally optimal solution of the outer and inner parameters, at least one bundle
adjustment has to be conducted. In practice, many intermediate bundle adjustments
are employed to avoid the solution from drifting too far from the compact solution.
In detail, the bundle adjustment uses the n 3D points x!V in world coordinates that
appear in o images. Furthermore, the 2D coordinates on the image plane in camera j
from point ¢ are known. The tracked 3D point also can be transformed in the image
plane using Egs. (2.11) to (2.14). Unfortunately, this transformation is neither linear nor
convex. The bundle adjustment solves this complex problem by minimizing the squared

18



Chapter 2. Basics

Figure 2.3.: A Point cloud extracted by SfM. Point P, obtained by observations from
five cameras, has ten different measurements that define an uncertainty. The
uncertainty of the 3D points and the resulting uncertainties of the camera
poses can be estimated during image registration.

re-projection error:

n o

By = Z Z [di;]” (2.15)

i=1 j=1
which denotes the sum of squared Euclidean distances d between the 2D points from
feature extraction, and the re-projected optimized 3D points. To solve the nonlinear
problem, Eq. (2.15) is linearized by means of the first order Taylor expansion. It has
to be noted that this linearization violates the terms of finding a global solution. In
practice, the linearized solution obtains an optimum close to the global optimum under
the premise that the initial set of parameters is in the range of the global optimum.
The linear system of equations consists of a sparse matrix derived from the Jacobian
of the measurements with information on the cameras, 3D points, and covariances that
represent the uncertainty measurement. The resulting system can be optimized, e.g.,
using the Levenberg-Marquardt algorithm. Because there are outliers in the data even
after RANSAC filtering, a robust re-weighting that employs an M-estimator is used in
the employed approach (MAYER et al. 2011).
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The processing pipeline of the employed complex image registration process is pre-
sented in Fig. 2.4 which is a description of the method published by MAYER et al.
(2011).

Feature extraction

Matching of feature points

Estimation of camera calibration

Robust relative pose estimation for pairs
and triplets (5-point algorithm and RANSAC)

Linking of images by point tracking

Robust bundle adjustment

Figure 2.4.: Image registration process chain based on robust bundle adjustment.

2.2.2. Stereo Matching

The main tasks of (multi-view) stereo methods are the estimation and fusion of pixelwise
disparities. The MVS configuration differs from the standard stereo configuration in that
multiple images are considered instead of only one image pair. The disparity is defined
by the distance of two pixels, from two images with different camera positions, on the
corresponding epipolar lines. When the cameras are calibrated, i.e., the plane at infinity
is known, the calibration is considered to normalize the position on the epipolar lines.
The smaller the disparity, the bigger is the depth of the point that corresponds to the
distance from the pixel to the point. The relationship is an inverse ratio, i.e., twice the
disparity means half the depth. Considering fixed stereo cameras or registered image
sets, the relative camera geometry of the cameras is known. Hence, it is sufficient to find
the corresponding pixel on the epipolar line (cf. Fig. 2.2). For MVS or the combination
of multiple stereo disparity maps the disparities have to be weighted depending on the
baseline between camera pairs to achieve global consistency. An example of a disparity
map is shown in Fig. 2.5.

Considering an accurately registered image set, all outer and inner parameters of
the scene configuration are known. Image registration with subpixel accuracy allows
for pixelwise matching on the epipolar line. Unfortunately, stereo matching remains a
complex problem because it has to consider occlusions and repeating structures as well
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Figure 2.5.: An image from the Middlebury stereo benchmark (SCHARSTEIN 2014b). On
the right, the disparity ground truth is shown. The disparities are coded
from white (large disparities) to dark grey (small disparities). Missing pixels
are marked in black.

as geometric and physical deformations.

A naive method of disparity estimation for a pixel is to compare all pixels on the
epipolar line in the second image, considering a specific type of pixel matching cost
(cf. Section 2.1.1). Unfortunately, the pixel with minimum cost does not generally de-
scribe true disparity because of the ill-posedness of the problem. Nevertheless, several
approaches exist that tackle the problem by considering prior information. In addi-
tion to the step of Cost Calculation, a step of Cost Aggregation (SCHARSTEIN and
SZELISKI 2002), considering additional information, is integrated in most methods. For
an overview of the numerous methods published presently, see the Middlebury Stereo
Vision Page (SCHARSTEIN 2014b).

The stereo matching problem can be formulated as an optimization problem. Hence,
local and global stereo methods can be distinguished. Local methods operate on a limited
area in the pixel neighborhood, whereas global methods seek a globally optimal solution
over all pixels. For providing a deeper insight in the general idea, a brief introduction
to the most important local and global stereo methods is given.

Local methods aggregate the matching cost by optimization within a limited support
region. This region can be either defined only in the 2D image or in a 3D space with an
additional dimension defined by disparities (zy-d space) (SZELISKI 2011). In addition
to both image dimensions, the third dimension of the xy-d space discretely describes
the cost of pixels obtained with the Cost Calculation step. Two representative methods
for the class of local optimization are Plane Sweep (COLLINS 1996) and Patch Match
(BLEYER et al. 2011).
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Plane Sweep (COLLINS 1996) defines a virtual camera for multi-view or stereo con-
figurations. The choice of virtual camera geometry is application dependent. In
general, it should represent a basic pose for all cameras. From the view of the
virtual camera, fronto-parallel planes are evaluated along the viewing direction.
The pixel intensities from each image are projected onto the sweeping plane. Sim-
ilar intensities for different images on the sweeping plane are assumed to mean
correspondence. The matching costs are determined with methods such as SSD
(cf. Section 2.1.1). Finally, the disparity that corresponds to the plane with mini-
mum cost is chosen for the resulting disparity map. Plane Sweep obtains accurate
disparity maps fast, but only for special configurations. In particular, the use of
only one set of parallel planes can lead to inaccurate surfaces for general configu-
rations.

Patch Match (BLEYER et al. 2011) is a local method for obtaining high accuracy even
for complex configurations. Operating in the 2D image with additional plane pa-
rameters, and not in the disparity space, reduces the amount of memory required.
For all pixels, a disparity and a plane are obtained. Using one plane per point
frees Patch Match from fronto-parallel priors. Yet, considering planes leads to a
larger amount of parameters to optimize. The optimization of the disparities and
planes f at pixel p is done iteratively by minimizing a cost function:

Cou(p, f) = Y w(p,q) plg,q = lagge + brg, + ) (2.16)
qeEN

where the parameters ay, by and cy describe the 3D plane that corresponds to
pixel p. N defines the spatial neighboring points of p considering plane f. The
weight function w(p, q) is a parameterized function that exponentially penalizes
intensity differences. Function p computes the pixel dissimilarity between p and
its relationship to plane f. The iteration steps include pixelwise processing of
spatial propagation, view propagation, and plane refinement. As local method,
Plane Sweep has problems in weakly textured areas.

Global methods usually employ an aggregation step that minimizes a global cost
function. The strength of global optimization consists in the regularization prior that
allows for the finding of a surface that represents the entire data. In particular, unre-
liable regions can be accurately reconstructed by considering a reliable and accurately
determined neighborhood. Global methods can be computationally expensive and are
limited concerning parallelization.

Graph Cuts (KOLMOGOROV and ZABIH 2002) solutions are used in many successful
stereo matching methods and are representative of global methods. The xy-d
space is transformed to graphs where the nodes represent the discrete states and
the edges an estimated cost. Within an edge costs, e.g., slant surfaces are penalized

22



Chapter 2. Basics

introducing a fronto-parallel bias. The min-cut based graph cuts solution allows
for the modeling of an optimal surface between front and back in the viewing
direction. Global graph-based methods can reach accurate surface quality, but are
limited in runtime performance.

Belief Propagation (BP) (SUN et al. 2003) improves graph-based methods. It com-
bines a set of Markov Random Fields (MRFs) into a Markov network. The op-
timization is performed with a Bayesian approach. Belief Propagation methods
are among the best in stereo concerning accuracy (SCHARSTEIN 2014b). However,
concerning scalability and runtime performance, they are clearly limited.

A hybrid between the local and global methods is Semi-Global Matching (SGM)
(HIRSCHMULLER 2008) which combines the surface regularization of global methods and
the runtime performance of local methods. Dynamic programming methods are used
that optimize per line in the image. SGM uses several optimization paths with different
directions. As for the fusion presented in this thesis, disparity maps derived by SGM
are used, a more detailed description is given in Section 5.1.

More details on matching costs and stereo methods are provided, e.g., in the computer
vision textbook by SZELISKI (2011).

2.2.3. Polygonization of Point Clouds

The transformation of 3D point clouds to spatial surfaces can be defined as a geo-
metric optimization problem. Whereas point clouds convey information in three space
dimensions, connected sets of polygons provide additional information on the topological
connection. Surfaces can be represented as a set of connected polygons, e.g., triangles.
As for the stereo matching in Section 2.2.2, again, there are global and local methods
for the solution. Focusing on scalable 3D modeling, local polygonization methods are of
particular interest because they allow for parallelization. Nonetheless, global methods
have to be discussed because they obtain more accurate results.

Usually, the optimization considers the 3D points and corresponding normal vectors
because the latter is especially important for the topology. If there is no information
available on normal vectors, they can be estimated considering neighboring points. A
general method for normal estimation is based on the covariance information of point
distributions. The distribution of points that describe a surface usually spread in two
directions. Hence, the smallest axis of the covariance describes the normal direction.
The lengths of the axes correspond to the eigenvalues of the covariance matrix. A
more detailed description of the theoretical background is given in Section 2.3.2. The
covariance matrix C' of point P can be calculated by:

n

Cr= S (P~ P)(P - P)T. (217)
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where P, are the neighbors of P and P is the average point over all neighbors. The normal
vector can only be estimated if the smallest eigenvalue is considerably smaller than the
remaining two eigenvalues. If the eigenvalues are similar, the point cloud is not accurate
enough, e.g., it can be caused by noise and outliers of disparity maps. Otherwise, the
point cloud is not flat enough at this point because it is part of a 3D edge or corner.
In this thesis, a fusion process is presented that obtains extremely detailed point clouds
from disparity maps derived by means of SGM.

Global triangulation methods can manage noisy point clouds particularly well be-
cause they can consider prior information concerning the smoothness of a surface or its
topology. Poisson reconstruction (KAZHDAN et al. 2006) is a popular polygonization
method that is representative of global optimization methods. Its input is the point
cloud and an initial guess of the normal vectors. Hence, it is not feasible for point clouds
with extremely large noise or a significant amount of outliers. Poisson reconstruction
generates watertight surfaces based on the assumption of closed surfaces that define
objects. Poisson reconstruction attempts to fit an indicator function X defined as zero
outside and one inside the object. The gradient of the indicator function is zero, except
on the surface. This optimization problem is performed solving a Poisson equation:

—VX =4V, (2.18)

where vector field 7 is an initial pointcloud with normal vectors. Solving the Poisson
equation is well-known and can be approximated by a least squares solution. For discrete
realization, the point cloud is transformed to octrees that represent the volumetric units
of the 3D space with variable size. The estimated characteristic function assigns values
to the volumes. Subsequently, a discrete level set defines the surface represented by
a set of volumes. For the polygonization of voxels, the local Marching Cubes method
(LORENSEN and CLINE 1987) is used.

Local Triangulation methods consider only a limited neighborhood for surface re-
construction. Hence, the area of influence is limited for all polygons. In this thesis it is
shown that a limitation is suitable for an unlimited scalability of surface reconstruction.

A popular local triangulation method is Marching Cubes (LORENSEN and CLINE
1987). It uses spatial volumes instead of 3D point clouds as input data. In a volumetric
grid, surfaces can be represented by considering varying values assigned to the volumetric
elements. When having positive values behind and negative values in front of a surface,
the zero level set defines the surface. For spatial volumes, Marching Cubes analyzes
the eight neighboring voxels for possible level set surfaces. The analysis is based on the
assumption that a limited number of triangle configurations exists that are stored in a
look up table. The limitation allows for extremely fast and real-time applicable surface
reconstruction having volumetric data.

Several local methods that operate on 3D point clouds exist to transform the process-
ing to 2D meshing, e.g., with Delaunay triangulation. BODENMULLER (2009) proposed
an incremental triangulation method that has a limited area of influence (cf. Fig. 2.6).
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For all incrementally added points, the neighboring points and triangles are projected on
a plane defined by the normal vector. The new point is connected with all neighboring
points in a local area. If a new edge intersects an old one, the longer one is removed,
avoiding degenerated triangles.

Figure 2.6.: Local update of the meshing for a new vertex according to BODENMULLER
(2009). Left: New vertex v (red point) and projected neighboring vertices
(circle). Right: New candidate edges from vertex v to all neighboring ver-
tices. The green lines are part of the new triangulation; the red lines are
removed because they do not comply with the conditions.

Local methods have advantages in runtime performance and scalability. Global meth-
ods obtain a higher accuracy and can manage sparse point clouds. Yet, the latter also
means that they tend to produce ghost regions.

2.3. Stochastic Basics

Stochastic is the mathematical science that studies randomness, and it is a generic
term for statistics and probability theory. Probability theory is concerned with random
processes that are influenced by expected relative frequencies following a probabilistic
axiom system. In statistics, measured data can be used to derive knowledge regarding
unknown probabilities. Many problems in computer vision are ill-posed, for which no
solution can be estimated directly. A stochastic description of geometric properties is
extremely useful for obtaining the most probable solution. Hence, it is of high impor-
tance to consider the accuracy of measurements. Because image-based methods generate
depth measurements indirectly, the description is even more complex. In this thesis, a
statistical approach is presented that allows learning the disparity quality considering
ground-truth data. Furthermore, a probabilistic sound fusion method for 3D information
is proposed. This combination characterizes the method as stochastic fusion of disparity
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maps. For a better understanding of the employed stochastic methods, a brief theo-
retical overview is given. The overview focuses especially on probabilistic distributions,
statistical learning, and fusion theory.

2.3.1. Distributions

Discrete probabilities represent relative frequencies of events and are in the range of
[0, 1] following the Kolmogorov axioms. It is important to consider probability densities
as parameterized functions. On one hand, they can represent a big set of probabilities
with a small number of parameters. On the other hand, they are suitable for obtaining
general densities. Therefore, in the n-dimensional case, the density is described by a
non-negative integrable function p with:

/p(:vl,...,:cn) dry ...dx, =1. (2.19)
R
Because function p is a probabilistic density function, a corresponding probabilistic
cumulative function P is defined as:

P(Z‘l,....,In) = / p(th,tn) dtl dt

—00

(2.20)

n *

In the following paragraphs, density and cumulative functions are discussed based on
the univariate uniform and normal (Gaussian) distribution. Both functions are impor-
tant for disparity map fusion, as shown in Section 4.

The Uniform distribution is the arrangement with density p with equal probabilities
inside the interval [a, b] and zero probability outside:

)= ifaea,b]
p(z) = {0 s : (2.21)

Hence, by integrating the density function, the cumulative function is given by:

Oifz <a
Pr) = &2ifz € [a,b] . (2.22)
litz>b

P is a linear function in the dimension of x and interval [a, b]. Fig. 2.7 (left) shows
the corresponding graphs for the density and cumulative function.
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0.5; 0.51

Figure 2.7.: Left: A uniform probability density function (blue) and the corresponding
cumulative function (red). Right: The Gaussian probability density function
(blue) and the cumulative distribution function (red).

Gaussian distribution or normal distribution N(u, o) fulfills the axioms of proba-
bilistic density functions and considers an exponential rise of the probability. A
Gaussian is parameterized by the expected value y where f(z) is maximum and o>
describes the quadratic standard deviation. The univariate Gaussian probabilistic
density (PDF) function is written as:

Nopi(a) = ﬁ exp (—%) | (2.23)

The Gaussian is widely applicable because the exponential law of errors represents
many physical and numerical assumptions in a stable way. Unfortunately, there is
no closed form of the integral, required for the Gaussian cumulative distribution
function (CDF):

f 1 (t — p)?

Nepr = /NPDF(t) dt = Om/ eXp(_?ﬂ)dt ) (2.24)
Fortunately, the Gaussian CDF can be accurately approximated by considering
numerical properties. SACHS and HEDDERICH (2006) propose the following trans-
formation for Eq. (2.23):

=7, (2.25)

where X is the random variable. By substitution of u = t_T“ and using %‘; = %, all
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Gaussians can be transformed into the standard Gaussian 6 = N(0,1) :

()T/ oo (<2) 226)

In other words, for all Gaussians, a simple transformation of the expected value
by means of Eq. (2.25) exists, transforming the Gaussian to a standard Gaussian
with 4 = 0 and ¢ = 1. The numerical values for the standard Gaussian can be
stored in a table for practical applications.

Fig. 2.7 (right) shows the corresponding graphs for the PDF and CDF.

Mixture distributions combine a set of probability functions and are suitable for ap-
plications with multiple influences on the expected value. Multiple measurements
can lead to multiple maximums of the probability function. To distinguish the
different influences, e.g., a mixture of Gaussians or even a mixture of Gaussians
with uniform distributions can be used:

p(z) = {a/\/(m) + 7= ifx € [a,b] | (2.27)

| aN(x) else

where o + § = 1 considering the probabilistic axioms. Because mixture functions
combine single functions by a scaled sum, the cumulative case can also be derived
by the sum of the individual cumulative functions:

P(z) = {QNCDF(:E) +Bs ifoeat] (228

aNepr(x) else

2.3.2. Expectation, Variance, and Entropy

The expectation and the covariance of distributions are of high importance for managing
probability distributions. The expectation E[f] describes the average value of function
f(zx) that is related to the probability distribution p(z). Considering a random variable
X with probability distribution p(x), the expectation is defined as:

E[X] = /:1: p(z) dx . (2.29)

For a discrete distribution, the integral can be replaced by the sum:

EX] =) ap(z). (2.30)
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The variance for a random variable from f(z) is defined by:
varlf] = B[(X ~ BIX)Y) = [ (o~ BLX)? pla) e 231)

providing the information on the variability of the values around the expectation E[X].
For the Gaussian from Eq. (2.23), the expectation and the variance are the parameters
w and o2 that define the infinite set of Gaussians.
For two random variables X and Y the covariance is important. It describes the
strength of the correlation of two random variables, i.e., how much they vary together.

It is defined by:

cov[X,Y] = Exy[X,Y] - E[X]|E[Y] (2.32)

The entropy H of a probability distribution is also of interest for computer vision (cf.,
e.g., Section 2.1.1). This entropy is related to probability distributions and has a similar
notation to the expectation and the covariance:

HIX] = — / (@) log p(x) da (2.33)

Entropy measures the uncertainty in values selected randomly from a distribution.

2.3.3. Machine Learning

Arguably, machine learning has become one of the most important fields in computer
vision. Many applications require a stochastic interpretation of data. For instance,
machine learning methods are suitable for the estimation of a set of parameters 6 of
a specific probability distribution by considering training samples D. In general, this
means a representation and generalization of actual measurements. Even extremely
noisy measurements with outliers can be generalized using statistical methods.

Several machine learning methods are important for data fusion. The most impor-
tant for disparity map fusion are: Maximum Likelihood (MLE), Maximum A Posterior
(MAP), Bayesian Parameter Estimation (BPE), and Expectation Maximization (EM).
Many machine learning methods for parameter estimation make use of the Bayes rule:

p(D)9) p(D)
p0)

relating posterior p(6|D), likelihood p(D|d), prior p(D) and evidence p(d). For the
remaining portions of this section, it is assumed that a set of sample data D = d, ..., d,
from n independent measurements is available. Because it is employed in this thesis,
Binary Bayes theory is discussed in Section 2.3.4.

MLE is a powerful method for learning parameters given measurements that follow
the distribution of a specific model. In general, the likelihood part from the Bayes

p(0]D) = (2.34)
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rule is optimized by MLE. The other parts of the Bayes rule are not considered, and
regarded as static. All the measurements have to result from a probability function p
with an unknown set of parameters 6. As a first step, the joint density function of the
measurement probabilities is defined as a likelihood:

p(D|h) = Hp (d;|0) . (2.35)

To estimate a global maximum of the hkehhood function, it can be useful to consider
the logarithmic likelihood function:

1(0) = log p(D|f) = Zlogpdw (2.36)

because the logarithmic function has the same global maxima and usually the deriva-
tions for the summands can be solved more easily. Hence, the optimal set of parameters
0 derived by MLE optimization can be written as:

Onr, = arg maaxp(D\H) . (2.37)

This can be obtained directly by setting the gradient VI(6) = 0.
In the case of the univariate normal distribution from Eq. (2.23), the MLE estimation
considering the log-Gaussian:

U(1,0) = log(N (1, 0)) = — log(ov/2m) — L4 (2.38)

202

leads the gradient formulation that considers #; = p and 6, = o2 into:

(z—061)

Vi(9) = 92@ e | =0 (2.39)
e

which can be solved linearly resulting in two equations for the parameters p and o:

N 1 ¢ ~2 1 ¢ A2
— =N, 62 =S (- )2 2.40
n;x 4 n;(w i) (2.40)

A more detailed derivation of ML and the Gaussian case is provided by DUDA et al.
(2000).
A class related to MLE is MAP, where the posterior is optimized instead of the
likelihood:
Oriap = arg maaxp(9|D) : (2.41)

The parameters 6 that maximize [(0)p(6) are estimated, where p(#) describes the prior
probability of the parameters. The evidence only operates as a scaling factor and can be
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ignored for maximum estimation. With good initial knowledge of the parameters, MAP
can be more accurate and stable than MLE, especially for limited training sets.

Parameter estimation by means of the Bayes Parameter Estimator (BPE) differs from
MLE and MAP because the set of parameters is not assumed to be fixed. The param-
eters f are represented as random variables considering prior distributions over these
parameters. The Bayesian estimation is defined by the expected value of the posterior
density:

Oppr = E[0|D] = / 0 p(0|D) db . (2.42)

As an example, consider the univariate Gaussian case that uses random variables for
the parameters p(f) = N (u, 0); such a case consists of the likelihood formulation:

p(DI0) = [T o) = G expl=55 3 (=) (2.43)

2

For simplicity, the variance o is supposed to be fixed. The prior of the expected value

is assumed to follow a Gaussian:

p(p) = N(plpo. o) - (2.44)

As scaled product of the prior distribution and the likelihood a Gaussian also follows
for the posterior distribution:

p(ulD) = N (ulpn, 07,) (2.45)

by manipulations that involve the completion of the square in the exponent. The mean
I, can be computed as:

2 2
o no?

. N , 2.46

. nog + o2 Ho nog + o2 parLe (2.46)

where iy, is the maximum likelihood solution for p (cf. Eq. (2.40)). For a detailed
deviation and a more general description, see the textbook of DUDA et al. (2000).

Hence, the Bayesian parameter estimation in the Gaussian case is a weighted mean
of the prior mean py and the mean ;g estimated from the measurements. The fewer
measurements are available, the more the expected value tends to the prior value.

MLE, MAP, and BPE assume that the measurement follows a specific probabilistic
distribution. For real-world data, a problem can appear where more than one source
is responsible for the measurement, e.g., caused by outliers. This can be modeled by
mixture functions that combine a set of distributions (cf. Section 2.3.1). The problem
of learning parameters from mixture functions is obvious: when data follow different
functions, the estimation of the parameters of one function can be influenced by data
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that belong to another, i.e., to the wrong function. For the estimation of parameters
from different functions, the Expectation Maximization (EM) algorithm can be used.

In case of different sources, EM follows the basic idea of iteratively estimating the log-
likelihood that considers assignment to the functions A of the data. The log-likelihood
optimizes the probability function p(D,.A|f) (DEMPSTER et al. 1977). As expectation
(E) steps the expected value of the log-likelihood, under the current optimal set 6;, is
calculated:

Q(0,0;) = Eap,logp(D, Ald)] . (2.47)

The maximization (M) step uses the probabilistic assignment of the expectation step for
further optimization of the parameter set. This can be done by MLE weighting the data
obtained by the probabilistic assignment.

The EM algorithm can be described in general as (DUDA et al. 2000):

1. Choose an initial set of the parameters 6; = 6,.

2. E step: Compute the expected influence of the data on the specific variables

Q(0;6;).

3. M step: Maximize the parameters 6 over the influencing subsets:
arg max Q(60;0,14).

4. Confirm whether the distribution fits the expectation; otherwise return to step 2
with: Oold =4.

An example is learning the sum of a uniform function and a Gaussian from Eq. (2.27)
(cf. Fig. 2.8). A first guess of the parameters 0 = {u,o,«, 3} is necessary for EM

propability
propability

— /N1 C J‘ ‘\_J_

distance distance

Figure 2.8.: One Expectation Maximization step. Left: Initial Gaussian and uniform
distribution. The points show the measurements that are weighted by the
probability distribution. Right: The Gaussian and uniform distributions
after the M-step.

32



Chapter 2. Basics

optimization. In the E step, the measurements can be weighted considering the initial
set of parameters. This assignment can also be done by a Bayesian Classifier (DUDA et
al. 2000), which assigns the measurements to the function that is more probable. After
the assignment, the M step can by performed by MLE.

A problem concerned with EM is that the initial set of parameters has to be ap-
proximately accurate. By uninformed or even random setting of the parameters, the
optimization tends to run into a local maximum.

2.3.4. Binary Bayes Theory

With a set of coherent probability distributions with known parameters, it can be of
interest to combine them. To this end, a theoretical framework of probabilistic fusion
is necessary. In general, for data fusion, such as a set of measurements from active or
passive sensors, a Bayes Filter can be employed. The Bayes Filter is based on the well-
known Bayes rule that relates conditional properties of the type p(A|B) to its inverse
p(B|A). A and B can be general events. The rule combines prior, posterior, likelihood,

and evidence:
p(B|A)p(A)

p(B)
This means that a posterior probability can be obtained by the product of likelihood
and prior probability. The evidence in the denominator is a normalizer of this function,
which is, depending on the application, more or less important. The calculation of
the evidence or the prior is not trivial and can have high computational costs. For a
continuous function, it has to be integrated over all values of A.

p(A[B) = (2.48)

o(B) = [ pBIA) pl) da (2.49)

If there is a finite number of events A; with ¢ = 1,...,n, the prior can be formulated by
the sum of all events:

p(B) = Y pBIA) p(A). 250

Proofs of the Bayes rule that are partly based on the law of total probability are well-
known. The expensive calculation of the evidence is unsuitable for practical applications.
Fortunately, in the case of surface estimation, the set of events can be restricted to the
binary case.
For events that relate to a set of other events, instead of a single event, the Bayes
Rule can be formulated as:
. p(leA, Bl, ey Bn) p(A, Bl, ceey Bn)

A|By,.... B, ..., B) = , 251
P(A|By, .. ) p(Br, - Bi s Br) (2.51)

which directly follows from the definition of the Bayes rule.
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In practice, the posterior can describe a specific state z estimated from measurements
D = dy, ..., d;. This state can be time dependent considering a recursive formulation and
might be conditioned on all past states and all measurements p(z;|20.4—1, do.¢). Because
conditional independence is assumed for the measurements, it follows:

p(Zt|20:t—1,d0:t) = p(zt|zt—17dt> . (2-52)

This recursive formulation is an important assumption for real-time applications or for
the processing of large amount of data that cannot be contained completely in memory.
Yet, the restriction of conditional independence could be a limiting factor. Applications
focused on in this thesis are discussed in Section 4.3. The time dependent formulation
of state probabilities is known as the Bayes Filter.

Using the Bayes rule, the Bayes Filter can be re-formulated as follows:

p(zi—1|2e, di)p(2e] 2e-1)
p(zt-1ldy)

Eq. 2.53 remains expensive to solve, especially considering runtime performance.

Fortunately, the volumetric reconstruction of 3D surfaces can be formulated as an
estimation considering binary states. A certain area of space can be classified either
as in front or behind a surface. Two neighboring areas that are complementary in the
binary state define a surface. Hence, the problem can be addressed by the Binary Bayes
Filter.

The Binary Bayes Filter is based on the theory of the Bayes Filter; however, according
to the binary assumption, the filter considers only two states, z and —z. The probabilistic
ratio of these two states can be written as:

p(z) _ p(z)
p(-z)  1-p(z)

For further derivation of the theory, the definition of a new expression, the log odds I,
is required (THRUN et al. 2005):

(2.53)

p(2t|2’t—1a dt) =

(2.54)

() :=log 16(—;22) : (2.55)

Returning to the problem of estimating the probability of the state given a set of
measurements, one obtains:

(dt|2’,d1:t—1)p(2\d1:t—1) B p(dt|2’)p(2|d1:t—1)

p
zldy.) = = 2.56
Peitha) P&l 1) P(ldre ) (2.56)
By applying the Bayes rule for p(d;|z) it follows:
dy)p(d dyg—
p(2|d1;t) — p(Z| t>p( t)p(Z’ 1:t 1) (257)

p(2)p(di|dye—1)
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Because there are only two states, the complementary state can be written as:

p(—z|dy)p(di)p(—2|dy-1)

—z|dy4) = 2.58
p( | 1.t) p(_‘Z)p<dt‘d1;t71) ( )
The division of Eq. (2.56) and Eq. (2.57) leads to:
p(zldie) _ p(zld) p(zldie) p(—2)
peldi) ~ P2l (i) pC) 050,

_ o pleld)  p(eldiy)  1—p(2)
1—p(zld) 1—p(zldiz-1)  p(2)

Considering Eqs. (2.59) and (2.55), Eq. 2.60 can be written as log odd in a recursive
formulation:

P(2|d1:t71)

1
+lo
1 _p(2|d1:t71)) g(

p(2) (2.60)

le(2) = 10g(m) + log(

=L(2) + lioa(2) + lo(2) .

p(z]d:)
(2]

The last summand describes the prior of the state and can be set to 0 if the binary
state is a uniformly distributed p(z) = p(—z) = 0.5. With this assumption, the recursive
update process can be defined by only one sum:

p(z|d:)
1 — p(z|dy)

For the reverse estimation of the probability from the logit state, Eq. (2.55) can be
reversed as:

l:(z)+ = log( ). (2.61)

1
p(z)=1-— T (2.62)

For a more detailed background of the BBF, see the textbook by THRUN et al. (2005).
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Chapter 3.
State of Research

There are numerous methods for MV'S reconstruction that differ in their algorithm and
in their requirements. Some methods work best, or even only, on specific datasets
that consider specific attributes. There are only a few methods that are devised for
cluttered outdoor scenes, especially for high-resolution images or a large number of
images. A detailed overview of recent 3D reconstruction methods from images that
capture cluttered outdoor scenes is provided by VU et al. (2012).

Assumptions such as having only Lambertian surfaces, or additional information such
as object silhouettes or even semantic classification, can improve the reliability and accu-
racy of the results. This thesis provides methods for general surface reconstruction under
complex configurations without limitation in scalability or a need of further information
because it is not always available.

In this chapter, an overview of the state of research for 3D reconstruction from image
sets is provided. First, in Section 3.1 a brief introduction to methods that generate
point clouds motivates further fusion to 3D models. Because this thesis is concerned
with the processing of image-based point clouds, the difference in quality and density
among stereo methods is discussed.

For surface reconstruction of large models, the state-of-the-art technology is 2.5D
modeling that is suitable especially for specific image configurations. A relationship
between 2.5D and 3D modeling is provided and discussed with respect to scalability in
Section 3.2.

In Section 3.3, important work that is concerned with unconstrained 3D modeling
is discussed differentiating local and global methods that are based on local and global
optimization. This can be crucial for the quality and adaptability to large sets of images.
Finally, an overview on those 3D modeling methods that have potential for processing
of large scenes by considering scalability is provided.

3.1. Generation of Point Clouds

There are two classes of technologies for the generation of 3D point clouds in particular:
active measurement, e.g., by laser-based distance measurements, and passive methods
based on images. Laser-based sensors achieve stable and high accuracy quality, but they
are expensive and the data acquisition is usually complex. Furthermore, the density
of the measurements can be inhomogeneous, depending on the configuration. Passive
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stereo estimation is limited because it requires lighted textured areas. Furthermore,
image-based reconstruction has a complex error behavior depending on the captured
objects. However, images are highly available, costs are low, and the density can be
controlled reasonably. This thesis focuses on image-based point clouds. Its goal is a
higher quality concerning accuracy and completeness.

There are two main quality criteria for MVS: accuracy and completeness of the dis-
parity maps. The quality of the resulting point cloud can strongly differ depending on
the stereo method used. When known, the uncertainties in the 3D point cloud can be
considered during the step of surface reconstruction by fusion of disparity maps.

A further important criterion of MVS is scalability. The requirements in scalability for
stereo estimation are not as strong as for 3D surface reconstruction. Disparity estima-
tion is independent for all images because only two images have to be considered during
the stereo process. Furthermore, image size is limited for specific cameras, whereas the
number of images can rise arbitrarily. In practice, disparity maps can be processed in
parallel using a multiplicity of CPU cores. The memory configuration and runtime per-
formance can be adapted to specific MVS methods. Nonetheless, memory requirements
can rise polynomially or even exponentially with the size of the image. In addition to
memory requirements, runtime performance can explode relative to image size. Process-
ing extremely large images such as those from aerial imaging is not necessarily feasible,
particularly on small systems.

Local methods usually do not have such problems because they only consider a small
neighborhood. Hence, the entire image is not required to be in memory at once. Yet,
local stereo methods are not suitable for general configurations. Lack of texture or
repeated textures causes missing or wrongly estimated disparity regions that global
methods can manage more effectively. An overview of local and global stereo methods
is provided in Section 2.2.2. SGM combines local and global methods, and thus presents
a trade-off in scalability and accuracy; moreover, because it is employed as the stereo
method of this thesis, it is discussed in more detail in Section 5.1.

In summary, there exist stereo methods that combine accuracy and scalability.
Nonetheless, such methods obtain a varying quality of the point cloud, unlike point
clouds from Light Detection And Ranging (LIDAR) that are characterized by more or
less constant noise. The range of error of disparity maps has to be considered in the
fusion process.

3.2. 2.5D Modeling

Digital surface models (DSMs) (cf. Fig .3.1a) have been the standard 2.5D representation
for decades. A DSM represents a 2D map with height information as attribute. DSMs
have the basic limitation of reconstruction in only one dominant direction (cf. Fig. 3.1b).
They are especially suitable for fusion of disparity maps from satellite or aerial imaging.
For those images, the viewing direction is oriented to the ground. Because for all 2D

37



Chapter 3. State of Research

points/cells only one value for 3D information (height) exists the representation cannot
model overhanging structures or multiple objects on top of another. In the case of urban
modeling, structures such as bridges, balconies, canopies, or trees cannot be represented
in 2.5D models. Nevertheless, DSMs have advantages in that no complex topology
has to be considered, thus making the reconstruction considerably easier. Furthermore,
interpolation in areas with no information allows for the modeling of watertight surfaces
with minimum complexity.

(a) Large 2.5D model obtained by aerial imag- (b) Sideview of a 2.5D model with dominant
ing. (HIRSCHMULLER 2008) (©) 2008 IEEE direction.

f\lﬂl@

) N-Layer heightmaps considering multiple
2.5D planes. (GALLUP et al. 2010Db)

(c) Model considering the Manhattan world
assumption. (FURUKAWA et al. 2009)
© 2009 IEEE

Figure 3.1.: 2.5D and N-layer models showing urban regions with varying dominant di-
rections. The modeling of all is limited to dominant directions.

By means of 2.5D models, configurations with images captured from the ground can
be managed also by considering alternative dominant directions. The method through
which specific dominant directions can be obtained in images was shown in studies by
COUGHLAN and YUILLE (1999), among others. COUGHLAN and YUILLE (1999) pro-

38



Chapter 3. State of Research

posed a constraint called the Manhattan World assumption that considers scenes that
consist of piece-wise planar surfaces with dominant directions. The Manhattan World
assumption is suitable for areas such as urban regions because symmetric buildings and
streets can define a 3D space. FURUKAWA et al. (2009) used the Manhattan World as-
sumption for stereo estimation to obtain accurate surfaces for urban and indoor modeling
(cf. Fig. 3.1c). GALLUP et al. (2010a) proposed to differ between planar and non-planar
regions by image segmentation. Nevertheless, these methods are not suitable for un-
constrained high quality 3D reconstruction because planar regions are modeled without
maintaining small details.

Expanding 2.5D modeling, that only can model one height per cell, N-Layer
heightmaps that use n instead of only one 2.5D model were proposed by GALLUP et
al. (2010b) (cf. Fig. 3.1d). The constraint of modeling in only one dominant direction
remains the same. In urban modeling, taking the vertical direction is suitable. For urban
ground images, the Manhattan World assumption is suitable. Complex configurations
that combine images from the ground, from UAVs, and from aerial images cannot be
modeled well based only on one dominant direction. Such configurations require a novel
3D surface reconstruction that considers complex topology.

3.3. 3D Surface Reconstruction

Methods for surface reconstruction without directional constraints are of main interest
in this thesis. The algorithms concerned with unconstrained 3D surface reconstruction
are often posed as variational problems that minimize an error function. In general, 3D
reconstruction methods can be differentiated into two classes: either a local cost function
that considers a limited part of the data or a global cost function over all the data can
be minimized. In this section, the two classes are discussed in detail. The reason for the
distinction between local and global methods is differences in scalability. In particular,
scalable 3D modeling is discussed at the end of this section because it is the focus of
this thesis.

3.3.1. Local Methods

Methods based on local optimization of the surface are of big interest for scalable 3D re-
construction. The main motivation for local methods is the ability for parallel processing.
3D points are optimized and connected considering only a limited neighborhood. This
restriction allows for independent processing of all points using a multi-core system, e.g.,
a Graphics Processing Unit (GPU). Parallel processing is useful for online processing on
real-time systems. Furthermore, large datasets can be processed on multi-core systems
in reasonable time. A disadvantage of local methods is that an adjustment of the global
uncertainty of 3D point clouds is not feasible. Point clouds derived from disparity maps
can have strongly differing quality depending on the camera configuration or attributes
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of the scene. Obtaining better knowledge regarding the uncertainty of disparity maps
and using it to improve the quality of 3D points is part of this thesis.

There are several methods based on local optimization of point clouds from disparity
maps (ALEXA et al. 2003, OHTAKE et al. 2003, FURUKAWA and PONCE 2010). Fu-
RUKAWA and PONCE (2010) and OHTAKE et al. (2003) used global optimization in
postprocessing after initial local optimization; thus, the methods are discussed in Sec-
tion 3.3.2. Moving Least Squares (ALEXA et al. 2003) locally fits polynomial functions
to the point cloud. To this end, a distance-weighted tangent plane is estimated for a
point p within a local neighborhood N by least-squares fitting. The used polynomial
regression considers the parameterized tangent plane. Least squares optimization gener-
ally makes use of the L, norm that is not robust to outliers. Hence, noisy and defective
disparity maps can generally not be fused without preprocessing. Furthermore, meth-
ods that work on point clouds are limited because, depending on the configuration, the
redundancy in the point cloud can be high, leading to higher densities and high memory
requirement. Redundancy can be processed efficiently through the use of volumetric
methods.

Local volumetric methods for MVS reconstruction are based on a discretization of
the 3D space to a set of neighboring spatial volume elements such as voxels. The most
promising volumetric methods are based on the fusion of cumulative distance functions
(cf. Section 2.3.1) in the volumetric space (cf. Fig. 3.2).

surface \
|~

L
;n\

Figure 3.2.: Volumetric description of the position of a 3D point P based on the pixel
coordinate z; at distance d,,. The discretized elements along the line of sight
in a specific area b are assigned a value that follows a distance function.

HILTON et al. (1996) first proposed the fusion of linear signed distance functions for
implicit surface representation. The idea is to fuse functions that result from depth val-
ues with negative values in front and positive values behind the surface measurements.
Combining several functions from the same direction, the optimized position can be de-
rived as the zero-set of the resulting discrete function. The zero-set is defined by the set of
two neighboring elements that have positive and negative values. CURLESS and LEVOY
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(1996) extended to volumetric fusion for a set of range images from laser data. They
added the direction of sensor uncertainty, an incremental update scheme, space efficiency
and postprocessing for hole filling. In addition, CURLESS and LEVOY (1996) introduced
a weighting function that allows for the penalization of 3D points with lower quality,
e.g., depending on the slant of the surface or missing measurements. The distance and
weighting function are shown in Fig. 3.3. The zero level set of volumetric space can be
transformed to a set of polygons using the Marching Cubes method (LORENSEN and
CLINE 1987). Marching cubes extracts a polygonal mesh of triangles from the iso-surface
of numerical voxels (cf. Section 2.2.3). GOESELE et al. (2006) showed the adaptability
of volumetric fusion for disparity maps instead of range images from laser data.

/ L v

D(x) «*°

Figure 3.3.: Signed distance and weight functions. The distance functions d have neg-
ative values in front and positive values behind the surface measurements
r. The weighting functions w penalize values behind the surface measure-
ments. The right image shows the weighted combination of the two functions
presented in the left image. (CURLESS and LEVOY 1996)

Volumetric methods for 3D surface reconstruction can have a high computational cost
and large memory requirements, especially for large scenes, because the number of ele-
ments rises with the third power. Furthermore, the constant size of volume elements pre-
cludes the efficient processing of points with varying quality. HILTON and ILLINGWORTH
(1997) proposed the use of efficient data structures for reducing memory consumption
and showed that volumetric methods are suitable for large scenes by using octrees at
different levels. In particular, the octree level of occupied voxels is adapted to the surface
curvature that bounds the approximation error. FUHRMANN and GOESELE (2011) ex-
panded the use of octrees by considering the geometric uncertainty of 3D points enabling
the scalability of the method towards large scenes (cf. Fig. 3.4a). Finally, KUHN et al.
(2013) showed that local volumetric methods are not limited concerning scalability when
dividing the reconstruction space in independent subsets (cf. Fig. 3.4b). This work is
also part of this thesis. Furthermore, in order to process online the fusion of depth data
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such as RGB-D images, volumetric methods were shown to be suitable (NEWCOMBE et
al. 2011, STURM et al. 2013) (cf. Fig. 3.4d). The method by CURLESS and LEVOY (1996)
was demonstrated to be able to fuse Kinect data even in real-time (STEINBRUCKER et
al. 2013).

P

T

(a) Colored and shaded highly detailed sur- (b) Shaded highly detailed surface from the
face. (FUHRMANN and GOESELE 2011) Herzjesu25 dataset. (KUHN et al. 2013)

o

(c) Colored outdoor surface model from a
building captured by a camera from
the street. (MERRELL et al. 2007)
© 2007 IEEE

(d) Shaded surface from indoor reconstruc-
tion using the active Kinect sensor.
(NEWCOMBE et al. 2011) © 2011 IEEE

Figure 3.4.: Colored and shaded results for 3D surface reconstruction from local state-
of-the-art methods.

Local fusion can also be done by comparing the quality of triangles that were directly
derived from depth maps (TURK and LEVOY 1994, PiTo 1996). TURK and LEVOY
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(1994) proposed the first method that extracts polygon meshes from the range image.
After an alignment over all images, the triangle meshes are fused in a local area. First,
redundant triangles are removed from an overlapping region. Second, the remaining
triangles are mutually clipped, resulting in new triangles that are partly removed con-
sidering topological constraints. P1TO (1996) proposed an advanced classification of the
polygon quality considering the geometric configuration of the sensors. In summary,
these methods are fast and intuitive, but cannot manage noisy data and disparity maps
in general configurations.

Direct optimization on the depth map (MERRELL et al. 2007, BAILER et al. 2012) is
another means for local fusion of disparity maps (cf. Fig. 3.4¢). Individually filtering and
optimizing single disparities over all disparity maps is not local. However, local regions
of other disparity maps can be considered iteratively. Hence, only two disparity maps,
or their regions, are compared at one time. It has to be mentioned that the complete
3D modeling process proposed by BAILER et al. (2012) contains global estimation steps.
Furthermore, disparity map filtering does not solve the problem of unlimited scalability
because the possible reduction is limited.

3.3.2. Global Methods

Surface reconstruction by global methods guarantees a global optimum over all in-
put data. Global methods are well established; therefore numerous approaches ex-
ist.  Optimization can be performed using variational methods (LHUILLIER and
QUAN 2005, PoNs et al. 2007, CREMERS and KOLEV 2011), volumetric methods
(OHTAKE et al. 2003, KAZHDAN et al. 2006, ZACH et al. 2007), and graph-based meth-
ods (KOLMOGOROV and ZABIH 2002, BOYKOV and KOLMOGOROV 2004, VOGIATZIS et
al. 2005, HORNUNG and KOBBELT 2006, VOGIATZIS et al. 2007, MUCKE et al. 2011).
In general, global methods obtain high quality, but are limited concerning memory and
runtime performance.

Variational methods are based on the minimization of a global error function. For
specific functions, such as the Euler-Lagrange equation (LHUILLIER and QUAN 2005) or
the Poisson equation (KAZHDAN et al. 2006), mathematical solutions are well studied.
Unfortunately, there is no practical solution for directly solving those equations. Simpli-
fications or iterative optimization strategies exist that avoid extremely high processing
costs even for small datasets. Unfortunately, simplifications cause variational methods
to fall into the local minimum of cost functions. Based on an accurate initial guess of
the solution, globally optimal results can be obtained. Nevertheless, it can be expensive
to obtain a good initial guess. A convex formulation of the error function can be feasible
for specific formulations of the cost function, and has become important over the last
decade.

Convex optimization expands classic variational optimization by more efficient and
stable strategies for finding global maxima. Methods of convex optimization have become
suitable for surface reconstruction and powerful solutions are proposed (ZACH et al. 2007)
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(cf. Fig. 3.6¢). Nonetheless, 3D surface reconstruction from images remains a non-convex
problem, and convex formulation is either simplistic or additional prior information is
necessary. Methods were proposed that consider the visual hull of objects (LAURENTINI
1993) for an initial solution (CREMERS and KOLEV 2011). For real world data the use
of a visual hull is not yet possible because an automatic segmentation is not possible in
a stable way.

Similar to local volumetric methods (cf. Section 3.3.1), global volumetric methods
are based on the decomposition of the reconstruction space. The idea is to label the
set of volumetric elements as either not occupied or occupied, and hence, define a sur-
face. This can be mathematically described, for instance, by solving a Poisson equation
(KAZHDAN et al. 2006). ZACH et al. (2007) used an initial solution from a volumetric
evaluation (CURLESS and LEVOY 1996). In their method, global optimal solution of a
surface is obtained by convex optimization considering a regularization term. Through
TV of the 3D surface (cf. Section 2.1.2), the latter has been shown to improve the 3D sur-
face quality concerning accuracy and completeness. The formulation of a regularization
term for local processing is arranged differently and is discussed in Section 6.3.

Graph Cut-based surface reconstruction was formulated by KOLMOGOROV and
ZABIH (2002). It is based on a max-flow/min-cut solution on a graph modeling spatial
information (cf. Fig. 3.5). Point clouds from disparity maps can be transformed to a

source

source

Figure 3.5.: A graph for global surface reconstruction. The edge costs are visualized
as arrow thickness. A surface is reconstructed by cutting the graph in
front /back (source/sink) using a max-flow /min-cut optimization. The right
image shows the cut on the graph that separates the front and back of a sur-
face, resulting in an optimal surface. (BOYKOV and KOLMOGOROV 2004)
(© 2004 IEEE

3D grid in which the occupied cells contain one or multiple 3D points (HORNUNG and
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KOBBELT 2006) (cf. Fig. 3.6d). VOGIATZIS et al. (2007) proposed to connect the cells of
the corresponding points that have a high photo-consistency (VOGIATZIS et al. 2005, VO-
GIATZIS et al. 2007). The minimum cut of the graph consists of a set of connections that
define a manifold surface that separate the inside and outside of an object. MUCKE et
al. (2011) expanded the method by considering different surface levels that allow for the
reconstruction of surfaces with varying quality.

(a) Colored and shaded surface with fine (b) Ettlingen30 results by a semantic ap-

details obtained by complex refine- proach labeling ground (grey) and
ment. (VU et al. 2012) © 2012 IEEE building (red).  (HANE et al. 2013)
© 2013 IEEE

(d) Shaded and colored surface of a

(c) Terrestrial city modeling by a convex op- statue by a graph-cut based ap-
timization approach. (ZACH et al. 2007) proach. (HORNUNG and KOBBELT 2006)
(© 2007 IEEE (© 2006 IEEE

Figure 3.6.: 3D models generated by global surface reconstruction methods showing real
world objects.

Further methods extend global optimization through semantic information. BAO et
al. (2013) devised a method that learns priors for semantic categories that control the
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regularization of the object shape. To this end, geometric information from the SfM
process is also considered. The manner in which learning priors for real world data can
improve model quality was recently demonstrated by HANE et al. (2013) (cf. Fig. 3.6b).
They use a joint image segmentation and semantic classification for a specific regulariza-
tion of classes, such as vegetation and ground. In this thesis, a novel prior for local 3D
reconstruction is presented based only the disparity map information because reliable
semantic information can be difficult to obtain.

TYLECEK and SARA (2010) presented 3D models reconstructed from real world data
(TYLECEK and SARA 2009). Their method can manage inaccurate camera calibration
by adjusting camera parameters. To this end, the camera parameters were adjusted in a
global SFM problem. Surface reconstruction and optimization is performed by a varia-
tional method that minimizes a global error function, including photo-consistency. The
minimization is performed with a gradient-based approach that obtains high accuracy,
but demonstrated limited completeness.

Arguably, the best results for surface reconstruction from real world images are cur-
rently obtained by VU et al. (2012) (cf. Fig. 3.6a). They defined a complete reconstruc-
tion pipeline that generates a sparse or semi-dense point cloud that is transformed into
a set of tetrahedron by means of Delaunay triangulation. The tetrahedra are exam-
ined concerning global visibility consistency. Neighboring tetrahedra labeled as inside
or outside lead to triangles. The initial model is refined by photo-consistency optimiza-
tion. The variational optimization is performed based on a global image-based matching
score (PONS et al. 2007). Nevertheless, this approach follows complex strategies that are
difficult to implement and are limited in scalability concerning runtime performance.

3.3.3. Scalable 3D Modeling

Because this thesis is concerned with scalable 3D reconstruction, those methods that
have potential for surface reconstruction from large real world datasets have to be
discussed in particular. Published scalable methods for 3D surface reconstruction
follow different ideas: camera clustering (ZAHARESCU et al. 2008, JANCOSEK et
al. 2009, MAURO et al. 2013) and Divide and Conquer (VU 2011) (cf. Fig. 3.7). To
this end, volumetric fusion can be feasible (FUHRMANN and GOESELE 2011, KUHN et
al. 2013).

By means of camera clustering, redundant information is removed during the pre-
processing step. Clustering prevents all images from being considered simultaneously.
HORNUNG et al. (2008) proposed an image selection scheme that relies on coverage
and visibility cues. Critical regions are detected by an estimation of the local photo-
consistency and are re-optimized by optionally adding more pictures. Methods that focus
on Internet Community Photo Collection often use camera clustering because they have
a significant amount of redundant data. FURUKAWA et al. (2010) built a graph from
filtered cameras. The graph is subsequently clustered through a normalized-cut. Finally,
scene coverage is considered by overlapping the clusters.
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Figure 3.7.: Two general strategies for scalable 3D modeling. Left: Camera clustering
for filtering unimportant data. Right: Divide and Conquer for dividing the
space into smaller subspaces.

A graph-based method was also described by PAVAN and PELILLO (2007). They
searched for dominant sets that generalize maximum complete subgraphs to edge-
weighted graphs. The assumption is that similarity among internal nodes is higher than
between external and internal nodes. Dominant sets can be found through simple algo-
rithms, such as replicator equations (WEIBULL 1997). MAURO et al. (2013) expanded
the method for finding clusters of images using sparse point clouds from the image reg-
istration. In general, the camera clustering step can be performed using disparity maps
or sparse 3D feature information. Camera clustering is useful for scalable 3D reconstruc-
tion because it reduces the amount of data by a particular factor. MAURO et al. (2013)
described an increase of six because the amount of data was reduced approximately by
this factor. Using high frequency rates for image capturing, e.g., as is performed with
a video camera, the factor can be much higher, but it will always be limited for larger
scenes.

JANCOSEK et al. (2009) proposed a method similar to camera clustering (cf. Fig. 3.8a).
This method works as a filter on a limited number of images at a time. However, camera
clustering does not solve the problem of scalability because image sets are not limited
concerning their number.

Divide and Conquer methods operate on a subset of the reconstruction space.
The 3D space can be divided into subspaces such as those shown in Fig. 3.7 (right).
The individual parts can be reconstructed independently assuming that they are not
correlated. Unlike local processing, global methods can produce varying surfaces when
not considering all data. Hence, for scalable 3D modeling that uses global optimization,
a complex merging postprocessing is required. VU (2011) proposed a merging strategy
for divided surfaces from global reconstruction based on Delaunay tetrahedralization
and graph cuts (VU et al. 2012) (cf. Fig. 3.8b).

Local optimization methods allow for parallel processing. FUHRMANN and GOESELE
(2011) showed that reconstruction can be made scalable using octrees (cf. Fig. 3.8¢). Yet,
their method employs a global tetrahedralization for surface reconstruction that restricts

47



Chapter 3. State of Research

(a) Model based on camera clustering with
disparity regions colored according to
clusters. (JANCOSEK et al. 2009)
(© 2009 IEEE

(b) Village with varying detail by global Di-
vide and Conquer. (VU 2011)

(¢) Building by local fusion of disparity maps. (d) Village from aerial images by local Divide
(FUHRMANN and GOESELE 2011) and Conquer. (KUHN et al. 2013)

Figure 3.8.: Large 3D models obtained by scalable surface reconstruction.

the scalability. For Divide and Conquer methods, complex fusion can be avoided using
local volumetric optimization (KUHN et al. 2013) (cf. Fig. 3.8d). This is because the
divided subvoxel of the reconstruction space can be defined with overlap of the neigh-
boring subvoxels. It can be guaranteed that in neighboring spaces, the reconstructed
surface is equal. This will be discussed in Section 5.2 because it is part of this thesis.

FURUKAWA and PONCE (2010) published one of the first methods with the potential
to process large scenes (FURUKAWA and PONCE 2007, FURUKAWA and PONCE 2010).
For this a semi-dense set of patches is generated. The patches describe a point cloud
with normal vectors and density information, which is filtered and optimized based on
photometric consistency. This method is global because no local surface reconstruction
is proposed, but Poisson reconstruction (KAZHDAN et al. 2006) is used.
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Probabilistic Framework

In this chapter, a framework is described that is based on the volumetric fusion of spatial
data. The fusion is described in general because the specific adaption to disparity map
fusion is discussed in Chapter 5. Volumetric methods discretize the 3D space to a set of
voxels (cf. Section 3.3). The algorithm and data structure for efficiently handling a set
of volumes are discussed in Chapter 6.

After an introduction to general volumetric fusion in Section 4.1, the seminal method
for volumetric fusion of spatial data, proposed by CURLESS and LEVOY (1996), is dis-
cussed and a novel probabilistic interpretation is introduced in Section 4.2. Finally, in
Section 4.3 the probabilistic perspective is the basis to improve the method by means of
a Bayesian fusion of Gaussian distributions.

The probabilistic reinterpretation of volumetric approaches opens new perspectives for
3D modeling. In addition to an optimal surface obtained from multiple measurements,
a probability for their validity can be derived. In turn, this information can be used for
filtering outliers and for surface quality assurance.

4.1. Volumetric Fusion of Spatial Data

Fusion of measurements in 3D space is a significant challenge, especially when consider-
ing a large amount of data. A standard way for local volumetric surface reconstruction
is based on the fusion of cumulative distance functions. There are three main problems
for this type of fusion considering spatial measurements: 1. Continuous representa-
tion of data, 2. Discretization of the continuous function, and 3. Fusion of multiple
measurements.

The idea of implicit surface reconstruction combining signed distance functions was
first mentioned by HOPPE et al. (1992). CURLESS and LEVOY (1996) expanded the
method by introducing a sound theoretical framework for range images from laser mea-
surements. The adaptability for considering disparity maps from stereo images was
shown by GOESELE et al. (2006). KUHN et al. (2013) expanded the method by intro-
ducing a probabilistic framework allowing for further filtering. This expansion is part of
this thesis.

In general, the position of depth measurements can be represented by distance func-
tions and optional additional weight functions. For simplification, these functions are
usually considered as univariate. An extension to trivariate distance functions is feasi-
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ble, but computationally and algorithmically expensive. For the univariate function, a
line through the 3D space has to be defined on which the function is propagated. To
this end, the line of sight (GOESELE et al. 2006) or the normal vector (SCHROERS et
al. 2012), estimated from the depth map, is appropriate. The intersection of this line
with the discretized volumetric space defines a set of voxels (cf. Fig. 4.1).

surface

||

e

|

Figure 4.1.: Volumetric description of the position of a 3D point seen from two cameras.
The surface is measured differently from different camera positions. The
volumetric description allows for the fusion of multiple measurements. For
a more detailed explanation that considers individual measurements, see
Fig. 3.2.

Discretized values from the distance and weight function are assigned to intersected
voxels. In general, a negative value is assigned to those voxels in front of a measured
distance, whereas a positive value is assigned to those voxels behind. By this means,
the processing of only one measurement at a time is possible, thus allowing limited
memory resources. Considering multiple measurements, the values have to be fused. To
allow for an incremental processing of the images, a recursive formulation of the fusion
process is advantageous. Depending on the distribution used, this can be performed by
probabilistic or analytic fusion.

By assigning negative values in front and positive values behind the surface, the zero
crossings of neighboring negative and positive values define a possible surface. This set
of neighboring voxels is called the zero level set. As shown in Fig. 4.1, the surface is
measured differently from all images, because of measurement noise. Hence, values have
to be fused to obtain a combined zero crossing in order to achieve an optimized surface
according to the measurements.

4.2. Linear Fusion

The linear framework for fusion is based on the method presented by CURLESS and
LEVOY (1996) named Volumetric Range Image Processing (VRIP). It employs a contin-
uous implicit function d on the line of sight considering the measured depth z. While
VRIP was described for the fusion of laser data, GOESELE et al. (2006) showed that the
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approach is also suitable for (multi-view) stereo data. The function used defines values
with linear increase that are negative in the range of | — 0o, z[ and positive in the range
of [z, 00[. In addition, a second function w is proposed to weight the values of the signed
distance function.

The choice of weight function depends on the sensor technique. CURLESS and LEVOY
(1996) proposed to decimate the weight of a measured depth value behind the measured
distance. This is appropriate because the sensors used do not obtain information behind
a surface. The distance and weight function are shown in Fig. 4.2.

z

Figure 4.2.: Graphs of the linear cumulative distance function (solid-red) and the weight
function (dashed-blue). The weight function penalizes values behind the
estimated surface at depth z.

The update process has to employ a recursive scheme to render possible an incremental
processing of the disparity maps (cf. Section 4.1). The volumetric update process for
voxels on the line of sight with the linear cumulative functions follows two incremental
equations (CURLESS and LEVOY 1996):

Wit1(v) = Wilv) + wira(v) (4.1)

Wi(v) + Di(v) + wit1(v)dis1 (v)

Diyq(v) Wi (o) : (4.2)

The discretized values d;(v) and w;(v) are calculated for voxel v at time i from the
distance and weight functions. To this end, the value of the functions at the position
that corresponds to the distance between the relevant voxel and the measured depth
is assigned. The time 7 is increased per measurement. The resulting values D;(v) and
W;(v) characterize the current discrete representation of the fused functions at voxel
v. From Egs. (4.1) and (4.2), it follows that the values are limited in the range of
[—1,1]. CURLESS and LEVOY (1996) propose to adapt the scaling of the weight function
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depending on the angle between the line of sight and the normal vector of the surface, as
well as depending on the distance to the next missing measurements in the depth map.

CURLESS (1997) showed that under a certain set of assumptions, the proposed fusion
is optimal in the least squares sense. The assumptions comprise a Gaussian distribution
and independently distributed range images. The estimated surface is derived as optimal
in terms of a Maximum Likelihood minimization.

In the following paragraphs, a new perspective of the linear fusion is obtained by con-
sidering a novel probabilistic point of view. The probabilistic interpretation is theoreti-
cally sound, but contradictory to the original formulation. In Chapter 2 the probabilistic
theory of the uniform distribution is given. Fig. 2.7 (left) shows the probability density
function p and the corresponding cumulative distribution function P. When comparing
the cumulative distance function from Fig. 4.2, it is obvious that both functions are
equal besides the range of P. It can be shown that the range of the linear fusion can
also be defined in a way that maintains the range [0, 1] and considers the 0.5 level set
by a scaled sum:

1
2

As proof, the non-incremental equations that correspond to Egs. (4.1) and (4.2) can
be obtained (CURLESS and LEVOY 1996):

xmeE:M@, (4.4)

& ==(d; +1) . (4.3)

D) = S ). (45)

The function D can be propagated considering d*:

Doy — S ) _ Swo)(di(e) +1)
= (o) > wi(v)
_ 1Y wv)di(v) + Y ui(v) (16)

2 2 wi(v)
:2w@y—§:D@y

Hence, by transformation from Eq. (4.6), a level set of 0.5 instead of zero follows.
The values are scaled by a factor of 2, which has no influence on the level set or on the
corresponding estimated surface. The fusion scheme remains the same considering the
interval [0, 1].

With the motivation of reconstructing surfaces from level sets, the voxel assignment
can be interpreted as modeling the probability that the voxel lies behind the surface.
Thus, the 0.5 level set exactly defines the area where neighboring voxels separate into
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outer and inner regions. In this probabilistic sense, the linear function from VRIP cor-
responds to a uniform cumulative distribution function. According to the probabilistic
density function, this implies a uniform distribution of the measurement.

The interpretation of the fusion process from Eq. (4.2) in a probabilistic way cor-
responds to a weighted sum over all surface probabilities. From the weighted sum, it
follows that all probabilities are averaged, which is not a probabilistic fusion in the
usual sense. Nonetheless, an averaging can be reasonable because measurement data are
usually correlated.

It is important to discuss the weight function, penalizing values behind the estimated
depth, in a probabilistic fusion. Decreasing the influence of probabilities behind the
measurement is meaningful to reduce the influence on possible neighboring surfaces.
Nevertheless, the values in front of the measured depth should be decreased also to
consider outliers. Furthermore, favoring values measured in front of the surface can
theoretically lead to a shift of the surface in the viewing direction. Specifically, these
types of configurations could lead to a shrinking of the reconstructed objects.

As already mentioned, CURLESS (1997) showed that the linear fusion is optimal in the
least squares sense when considering uncorrelated data and Gaussian uncertainty. This
section has shown that following the novel probabilistic interpretation, data are fused
under the assumption that depth values are uniformly distributed. The fusion process
is maintained as averaging of the values, which is meaningful for highly correlated data.
The probabilistic interpretation is contradictory to the original one; however, this does
not imply that either interpretation is wrong because the perspective has changed from
least squares to probabilistic optimization. Considering Gaussian uncertainty and un-
correlated measurements a reinterpretation from a probabilistic perspective is important
and is discussed in the following section.

4.3. Bayesian Fusion of Gaussians

The preceding section has shown that the original volumetric approach by CURLESS and
LEVOY (1996) propagates uniform distributions with correlated fusion as seen from the
novel probabilistic perspective. In the following paragraphs, a probabilistic reinterpreta-
tion is provided that considers uncorrelated fusion of Gaussians within the probabilistic
perspective.

As for the linear approach, a value is allocated to those voxels that lie on the line
of sight to the measured depth z. Hence, instead of a linear cumulative function that
corresponds to a uniform distribution, a Gaussian distribution is considered. To this end,
the uncertainty of the point that corresponds to the measured depth z on the line of
sight is assumed to follow a Gaussian distribution with the measured depth as expected
value and uncertainty o

p(2:) = Nppr(z,0) . (4.7)
The uncertainty o for MVS is discussed in Section 5.3.
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Within the probabilistic view, a weight function that reduces the weight behind the
measurement is not suitable. Therefore, a novel binary weight function is introduced. It
can be seen as an indicator function that limits the area of influence. On one hand, this
avoids the influence of outliers, and memory requirements are preserved because a smaller
number of voxels is involved. On the other hand, limiting the area can lead to multiple
surfaces that have to be considered for reconstructing a surface. It has to be mentioned
that without limitation of the area also multiple surfaces appear, but in decimated
number. An unambiguous level set is theoretically feasible by fusion of cumulative
distance functions, but not guaranteed by MVS reconstruction, because disparity maps
generally are incomplete.

For volumetric propagation, a probability p(v;) has to be assigned that models the
voxel v; to lie behind a surface. To this end, the probabilities of the Gaussian PDF
have to be integrated, which can be done by using the Gaussian CDF. Unfortunately,
there is no closed form of the Gaussian integral. Hence, the CDF has to be estimated
numerically. The graphs of the probabilistic distance and weight function are shown in
Fig. 4.3.
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Figure 4.3.: Visualization of the Gaussian cumulative distance function (solid-red) of
an estimated depth z. The weight function (dashed-blue) represents an
indicator function limiting the area of influence.

In Section 2.3.1, it is shown that the Gaussian CDF can be numerically estimated
considering the standard Gaussian with 4 = 0 and ¢ = 1. For the transformation, the
Gaussian parameters have to be shifted and scaled. In practice, this can be performed
with use of the Gaussian error function that is available, e.g., in Matlab or the C++
standard library:

2 [
erf(x) =1 — ﬁ\/x e dr. (4.8)

A numerical lookup table is used to provide values for the Gaussian CDF with standard
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deviation of one. With the scaling parameters p and o, the infinite set of Gaussian CDFs
can be written as:

Nepr(u.0)(a) = (1 +ef(==E) (49)

Hence, as in the linear framework, the probability distribution from one 3D point can
be propagated directly and assigned to the voxels:

p(v})(d) = Nopr(z,0)(d) (4.10)

where d is the distance between the measured depth and voxel v;.

Probabilities obtained from different images or pixels that fall into the same voxel
are averaged by the VRIP method. Opposed to this, a probabilistically sound solution
would include a probabilistic fusion, especially for uncorrelated data. In addition, it
is important to repeat that a recursive formulation of the update process is extremely
suitable in scalable MVS reconstruction.

An incremental update process can be defined by employing conditional probabilities
p(v}|vt_;, D). To this end, the probability at time ¢ for voxel v to lie behind the surface
is derived based on the probability at time ¢ — 1 and all measurements D assigned to this
voxel. The fusion of conditional probabilities can be performed using the Bayes rule.
In particular for the binary case with only two states, Bayes fusion can be efficiently
solved by a recursive formulation (cf. Section 2.3.4). Hence, the Binary Bayes Theory,
which is well-known in the robotics community, e.g., employed by KONOLIGE (1997) for
building a map of a robot’s environment, is the suitable framework for volumetric fusion
of surface probabilities. A voxel can be labeled as behind the surface or not behind the
surface. This binary assumption makes the Binary Bayes fusion feasible.

The Bayes theorem that assumes independent measurements can be written as:

p('|D=d) xp@") [[ p(D;=d;v"). (4.11)

JEL,...,n

As described in Section 2.3.4, the logit formulation follows:

p(v') p(v') p(v;)
I(v) =lo =log————— = log——— . 4.12
() = log iy = 9T =y = 210970 412
The logit can be formulated recursively:
p(v'|dy)
[ =1 log(——————~ 4.1
t(v) t 1<U) + Og(l _ p(Ul|dt) ( 3)
and back-projected to surface probabilities after the fusion process:
W) —1-— " (4.14)
p(v; o - .
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Chapter 4. Probabilistic Framework

The novel probabilistic fusion extends the linear fusion concerning two basic assump-
tions: The depth uncertainty is assumed to be Gaussian instead of uniform and the
probabilistic fusion assumes uncorrelated measurements. For multiple measurements,
the fusion leads to a coherent surface from neighboring voxels (cf. Fig. 4.4).

SEue
= | [l
ﬁ£§< e
\*

Figure 4.4.: Volumetric propagation of surface probabilities. The black points represent
measurements from three cameras. In the left image, one point from one
camera is propagated to the volumes. The right image shows the volumes
after propagation of all points from all cameras defining a probable surface.

For surface generation from volumetric representation, CURLESS and LEVOY (1996)
propose the use of Marching Cubes (cf. Section 2.2.3). This is adequate when there
are sufficient measurements and the zero level set is unambiguous. In particular, in
complex image configurations multiple surfaces can appear because disparity maps can
have holes. For this, a filtering step is necessary to consider surface probabilities.

In the probabilistic space, the surface is obtained from neighboring voxels for which the
probability that one is in front of the surface and the other is behind the surface is high.
In addition to polygonization, the probabilistic space can be used for the optimization of
the surface based on information from the disparity maps. A volumetric representation
of the optimized point cloud is advantageous because filtering on triangle meshes is not
as efficient as filtering on volumes (cf. Section 5.4.2). The volumetric representation of
triangle meshes is also feasible; yet, Marching Cubes only work on regular voxels, and
thus, is not feasible for the multi-resolution setup presented in Chapter 6.

(FUHRMANN and GOESELE 2011) proposed the transformation to a volumetric rep-
resentation of the surface voxels, which can indeed be used for surface reconstruction.
Their multi-resolution solution is based on global tetrahedralization. Yet, this does not
comply with a method that guarantees unlimited scalability (cf. Section 5.2). Nonethe-
less, a transformation in a volumetric point space is proposed that is suitable for local
triangulation either.

For the transformation in this thesis, the estimated 3D point from disparity is shifted
along the line of sight, e.g., in a limited area in both directions. Subsequently, all voxels
I in the area are examined and two neighbors are taken with a maximum product of
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Chapter 4. Probabilistic Framework

probabilities that one is in front of the surface and the other is behind:

arg max(p(vy) p(viy1)) - (4.15)

This optimization is advantageous as for complex configurations the 3D probabilistic
space can consist of multiple level set surfaces due to the measurement noise.

To obtain the optimized position with subvoxel accuracy, a Gaussian is fitted to the
neighboring voxels of v; and v; ;. For this Gaussian regression, a Maximum Likelihood
estimation is employed considering four voxels:

1 &2 eli
dy=-S d—— 4.16
4 j;l "1 +el ( )

The result of an optimized 3D point can be supplemented by the surface probability
that one is in front and the other is not:

Py = p(vzo) P(Uz‘l+1) ‘ (4.17)

This probability can be used again when determining the voxel to be filtered, thus
leading to a more robust filtering.
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Chapter 5.
Fusion and Filtering of Disparity Maps

In this chapter, the probabilistic framework presented in Chapter 4 is adapted to the
specific case of fusing disparity maps. The quality of disparity maps depends on the
stereo method used. In this thesis, SGM is used for MVS reconstruction because it
allows for fast processing of large images while maintaining small details. Hence, a brief
introduction to SGM is given in Section 5.1.

In addition to the processing of high-resolution images, this thesis focuses on image
sets that can be extremely large concerning the number of images. To deal with this, a
Divide and Conquer approach is introduced in Section 5.2 that allows for an unlimited
3D surface reconstruction.

In Section 5.3, the influence of uncertainties from image registration and stereo match-
ing on the uncertainty of the 3D points is discussed. In particular, an error model for
stereo estimation is extended to a variable disparity error that is statistically learned
from ground-truth data.

Finally, the filtering and fusion of noisy 3D points is presented in Section 5.4. For
this, the surface probabilities obtained by the probabilistic fusion are used.

5.1. Semi-Global Matching

In this thesis, SGM is used for the estimation of disparity maps from (multiple) im-
age pairs. In Section 2.2.2, a comparison of stereo methods classified into local and
global methods is provided. In summary, SGM combines into a semi-global method
the advantages from local and global methods because it maintains small details due
to pixelwise matching, and has low processing time and memory requirements even for
high-resolution images. Because this thesis is concerned with scalable 3D modeling,
including the processing of high-resolution images, SGM is an extremely suitable basis
and is used for the experiments. For SGM, GPU (ERNST and HIRSCHMULLER 2008)
and Field Programmable Gate Array (FPGA) (HIRSCHMULLER 2011) implementations
exist that have real-time potential and low cost, even for large datasets.

Similar to most stereo methods, SGM consists of two steps: cost calculation and cost
aggregation. In cost calculation, a discrete 3D space with z-, y- and d-dimensions that
represent pixel coordinates and disparity is built. For all pixels in the reference image, the
possible corresponding pixels on the epipolar line in the second image are compared using
matching costs C, such as MI or census (cf. Section 2.1.1). Cost calculation generates
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Chapter 5. Fusion and Filtering of Disparity Maps

a noisy 3D space that defines multiple pixelwise surfaces because wrong matches on
the epipolar line can easily have a lower cost than correct ones (cf. Section 2.2.2). By
considering prior information it is possible to obtain clean surfaces by means of cost
aggregation.

SGM considers a constraint that supports the smoothness of surfaces. Within this
constraint, changes of neighboring disparities are penalized. This is defined by an energy
function, which is minimized:

E(D) =) (Cp,Dy)+ > P T[|D, — Dy =1]
P qEN,
+ZP2 THD:D_Dq| >1]) )
qEN,

(5.1)

with the operator T', which results in one if the argument is true; otherwise, the result
is zero. The energy function combines three cost terms that penalize different classes
of errors. The first term is the sum of matching costs over all pixels p considering the
disparity D,. The second term counts all pixels in the neighborhood N, for which the
disparities have small differences of one pixel. The third term counts neighboring pixels
that have larger differences in the disparities. The second and third term are scaled by
the parameters P, and P,. P, has to be larger than P; because large differences in the
disparities are to be penalized. In the experiments of this thesis, the parameters were
fixed to P, = 28 and P, = 30. HIRSCHMULLER (2008) proposed to adapt P, depending
on the intensity contrast of the neighboring pixels Py = Ifflq for neighboring pixels
p and ¢q. This is also employed in this thesis. In general, the cost terms represent a
fronto-parallel bias that favors surfaces parallel to the image plane.

The global minimization of an error function similar to Eq. (5.1) is NP-hard for 2D
images (BOYKOV et al. 2001). In contrast, the minimization along single 1D rows or
columns of the image can be solved in polynomial time using Dynamic Programming
(MEERBERGEN et al. 2002). The optimization in only one direction leads to the problem
of having to fuse individual lines that were estimated independently. In SGM, this fusion
is solved using multiple paths in different directions and aggregating the cost as a sum
of the individual paths. Fig. 5.1 shows an example with 16 paths and the calculation of
the minimum cost path. The paths through the disparity space correspond to straight
lines in the base image, but in general to non-straight lines in the second image. The
cost along a path in the direction r can be recursively formulated:

L,(p,d) = C(p,d) + min(L,(p — r,d),
Lip—rd—1)+P,

L.(p—r,d+1)+ P,

miinLT(p — i)+ P) — mkin L.(p—rk).

(5.2)
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Chapter 5. Fusion and Filtering of Disparity Maps

Minimum Cost Path L (p, d) 16 Paths from all Directions r
ﬁ |

Figure 5.1.: Aggregation of costs in disparity space. Left: The minimum cost
path. Right: Example with 16 individual paths through the image.
(HIRSCHMULLER 2008) (©) 2008 IEEE

/M
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Hence, only the cost of the path is required, and not the path itself.

After cost aggregation, the maximum for all pixels can be calculated independently.
For this, the pixelwise minimum cost in the disparity dimension is chosen. To obtain
subpixel accuracy, the two neighboring disparity values are considered also for the regres-
sion of a parabola. The minimum of the quadratic function corresponds to the subpixel
value for the estimated disparity.

Subsequently, a left right check is performed to filter outliers. To this end, for both
images of the stereo pair, the disparity map is calculated and compared. If there is a
disparity difference in corresponding pixels that exceed a threshold (e.g., of one pixel),
the disparity is removed from the disparity map.

SGM processes only image pairs, instead of n-images. The algorithm can be extended
to matching n-pairs by calculating a pixelwise matching cost that considers multiple
images. However, the problem of occlusions in image configurations would have to be
solved on the pixel level that was found to be extremely unstable. Hence, for MVS by
SGM, it seems advantageous to fuse disparity maps considering n-pairs after a pairwise
filtering of occluded areas by the left right check.

Let the disparity Dy result from matching the reference image and image k. The
disparity images are scaled differently because they can have different baselines that
influence the depth from disparity. In a registered image set, the differences of the relative
baselines are known. Hence, the disparities can be re-scaled by a factor ¢ that has linear
correspondence with the baseline and possible differences in the camera constants. The
disparities have to be normalized by lz—i”. This normalized disparity is not per definition
a disparity that defines the pixel distance

The fused disparity is calculated by a weighted mean of the n disparities. The estima-
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Chapter 5. Fusion and Filtering of Disparity Maps

tion of a specific representative value, such as the median of all disparities, results in the
filtering of outliers. The disparity D, is calculated by the weighted mean considering
the factor ¢:

B Zkevp Dy
Zkevp 12

Median based filtering of disparities that have a larger error than one pixel can be
written as:

D, (5.3)

D D;
%:kw7@—mm¢ﬁ
k 7

1
< = (5.4)
172

The expansion of 2.5D filtering of disparity maps to more than the n images of the set
would be advantageous. Particularly, the filtering of outliers could become more stable,
especially when considering varying disparity qualities (cf. Section 5.3.3). Unfortunately,
filtering requires the comparison of all disparity maps to all other disparity maps, leading
to a quadratic processing time in terms of the number of images. This is unsuitable
for the modeling of extremely large scenes, even with parallel processing on GPUs.
Limitations of the image sets would be helpful, e.g., by camera clustering or Divide and
Conquer methods; however, this is beyond the scope of this thesis.

5.2. Unlimited Scalability

SGM renders the processing of high-resolution images feasible. The key question for a
scalable 3D surface reconstruction, which is the main goal of this thesis, is how to fuse a
non-limited number of possibly high-resolution disparity maps. There are ways to reduce
the amount of data for scalable 3D modeling by camera clustering (cf. Section 3.3.3).
In general, those approaches do not solve the problem of unlimited scalability because
they reduce data, but cannot manage extremely large reconstruction spaces.

A feasible way to guarantee unlimited scalability is to divide the reconstruction space
in subareas that limit the size of data to be processed. In addition to limiting the amount
of data, the division in subspaces allows for parallel computing of the subareas, assuming
independence in the optimization of the subareas.

A Divide and Conquer strategy was already proposed by VU (2011) with a result of
impressive 3D surface models. In this method, the 3D space is divided in subareas that
are reconstructed by means of global optimization and are fused afterwards. The fusion
obtains triangle meshes that follow a complex fusion strategy employing graph cuts. The
global optimization in the subareas leads to two further problems: ambiguous surfaces
and restricted parallelization. Furthermore, the complex fusion strategy is expensive to
compute, and the results can differ depending on the subdivision position.

In this thesis, the Divide and Conquer strategy is combined with local optimization of
the subareas. By means of local optimization, complex fusion strategies can be avoided.
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Chapter 5. Fusion and Filtering of Disparity Maps

This is guaranteed by defining an overlap between neighboring subareas, with the size
of the overlap being at least twice the size of the largest local optimization area of the
surface parts. Complex fusion is avoided because the resulting point cloud in neigh-
boring subareas is guaranteed to be equal inside the border region of half the overlap
(cf. Fig. 5.2). This border can simply be cut off when fusing or visualizing the data,
because in the critical region of the subarea the points are guaranteed to be equal.
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Figure 5.2.: 2D representation of space division by Divide and Conquer. Left: The
reconstruction space is divided in four (3D: eight) neighboring subspaces
represented by the colored continuous squares. The subspaces have an over-
lap that defines a larger subspace represented by the dashed squares. Right:
Two zoomed neighboring subspaces. Because the overlap is twice the max-
imum local optimization area, the critical area at the border is guaranteed
to be equal. The hatched fields show the incorrect areas.

In addition to point clouds, the unlimited scalability is valid for triangle meshes if they
are optimized only in a limited local area. In this thesis, a local method for triangulation
of point clouds is adapted to this requirement (cf. Section 6.4). A disadvantage of this
strategy is that multiple equal triangles appear in the overlap area. Fortunately, the
problem of removing equal triangles is not difficult to solve because the corresponding
points can be filtered based on equal coordinates.

In summary, by local optimization, it can be guaranteed that the 3D points or triangles
in neighboring areas that are equal inside the border areas can simply be cut. This allows
for fast parallel processing of the surface.

A subdivision of the reconstruction space in subareas with similar size is adequate
only for spatial data with constant density. Complex scenes and camera configurations
with different distances to the scene cause varying densities of the point clouds. A
regular decomposition of the reconstruction space would lead to possibly large varying
computational efforts for the subspaces. For a dynamic allocation of the subarea size,
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sparse point clouds from the registration step can be employed. Alternatively, the space
can be iteratively split by counting the points in the current area. If the number of
points exceeds a threshold, the reconstruction space is split in 3D into eight neighboring
subspaces (cf. Fig. 5.3). Through an iterative algorithm, the space can be split at runtime
when the memory resources are not sufficient. The sum of the points in the subareas is
scaled by the expected redundancy. This is because multiple points can be fused in the
same voxels if they represent the same surface. This information can be derived from
the disparity map by the number of matching images per reference image.

o
i:;: . {:: . {:.:: . ‘::.
oAl B o Bl B

Figure 5.3.: Dynamic iterative division of the reconstruction space (2D). Individual sub-
spaces contain a large amount of data and are split depending on the density.
The entire space is split in ten subareas that can be processed in parallel.

The subspace overlap leads to a multiple processing of small parts. In addition, the
fact that the overlap has to be twice the maximum local optimization area can lead to
problems when having points with strongly varying quality. For dense parts of the point
cloud, the algorithm divides the reconstruction space into small areas. If these areas
contain points with low quality, the overlap can be larger than the reconstruction space
itself. Because this is not meaningful, the low quality data has to be discarded. On one
hand this can theoretically lead to the elimination of important data; on the other hand,
in practical application, the low quality data are mostly not of interest.

5.3. Error Models

Methods based on local 3D reconstruction do not yet reach the quality of global methods
(SCHARSTEIN 2014a). In addition to unsolved difficulties in the complex formulation,
the influence of stereo uncertainties on disparity maps is not well studied. The contin-
uous formulation of measurements in the local volumetric fusion method described in
Section 4.3 considers an uncertainty of the measurements that has to be provided. In
the following sections, three main influences on the 3D uncertainty are discussed. First,
a derivation of an ellipsoidal error model of 3D space based on the stereo configuration
is presented. Second, a derivation and an analysis of the registration error influence on
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the ellipsoidal error model are given. Third, the uncertainty of disparities is discussed
and a statistical learning scheme is presented that allows for uncertainty-classification,
depending on the local oscillation behavior of the disparity map.

5.3.1. Stereo Error Model

Disparity maps from a registered image set allow for the reconstruction of 3D point
clouds. Errors of the disparities result in 3D reconstruction errors. In the following
paragraphs, an ellipsoidal model is discussed that propagates the influence of the dis-
parity uncertainty to the uncertainty of the 3D point.

The basics for the transformation of a 3D point P in camera coordinates onto the
image plane are given in Section 2.2. Assuming fixed parameters for camera calibra-
tion, the transformation can be reduced by accounting radial distortion in the images.
Furthermore, the equations can be further simplified by moving the origin of the im-
age coordinate center to the center of the image (HIRSCHMULLER 2003). Considering
equally oriented cameras that only differ in the baseline, the following equations can be
obtained:

I
Pz = fFZ : (5.5)
P, —t
P =f B (5.6)
P
Py = D2y = fFZ . (57)

where ¢ is the length of the baseline between two images, f is the focal length, and p;
and py are the image coordinates (cf. Fig. 5.4).

The assumption of equally oriented cameras is a simplification that is not generally
valid. Nevertheless, it is essential because the general case leads to large equation systems
in error propagation that cannot be solved directly, and all practically important stereo
configurations can be reduced to this case.

By inversion of the linear system of Egs. (5.5) to (5.7) and further substitutions, the
final result is (HIRSCHMULLER 2003):

t prx
p=_ Pl (5.8)
Piz — P2z
(p1y +p2y) t
p=PutPyt 5.9
Y 2(p1x - p2x> ( )
t
po_Jt (5.10)
Pixz — P2x
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Figure 5.4.: An equally oriented camera pair. The uncertainty of the disparities Ap in
the image leads to an ellipsoidal uncertainty of the 3D point.

The linear equation system of Egs. (5.8) to (5.10) is important for error propagation
because it describes the 3D point depending on the corresponding 2D image points of
both images. For this, the partial derivatives from Table 5.1 have to be considered.

— _ _lpie _ (prytpoy) ¢ _ _ It
f(plamplgwp?amp?y) B T Plz—P2z Py T2 (Pla;—PZE) z Plz —P2x

of —t pow _ _ P(t—P%) —tpy _ —P:Py —ft _ =P?
Op1e (plz_p2z)2 ft (plz_pQZ)Q ft (plz_p2z)2 ft
of t _ P,

éply - 0 2(plz_p2a:) 2f 0

Sof tple _ PPy try _ PPy [t _ P
6p2z (pla:fp2:t)2 ft (plzfp29:)2 ft (plzfp21)2 f t
of t _ P,

5p2y - 0 2(p1z7p21') 2f O

Table 5.1.: Jacobian with partial derivatives from Egs. (5.8) to (5.10)

Considering a Gaussian error Ap with the same standard deviation o, in all coordi-
nates pig, D1y, P2z, and po, and the partial derivatives, the propagated error is obtained,
e.g., in the x- direction:

AP, =

\/ QL ape v (g 1 (e npye g (. (5a1)

5p1:c 6p1y 5p2z 5p2y

Substituting the derivatives from Table 5.1 for AP,, AP,, and AP, results in Egs.
(5.12) to (5.14). In addition to (HIRSCHMULLER 2003), the error propagation was
reported by numerous Photogrammetric textbooks, MOLTON and BRADY (2000), and
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MATTHIES (1992), who used AP, ~ Ap%, which is an approximation.

AP, = Ap%\/(t — P,)? + P2 (5.12)
P 2
AP, = 7283 + % (5.13)
P2
AP, = Apf—;\/i (5.14)

An important aspect to consider the error in 3D is the quadratic increase in the
z-direction. This is discussed for scalable disparity map fusion in Section 6.2.

5.3.2. Registration Error

In the preceding section, a stereo error model is given for equally oriented cameras
and constant disparity error in all directions. In addition to disparity errors, the 3D
point depends on the errors in the camera parameters (cf. Fig. 5.5). In the following
paragraphs, a joint consideration of the registration and the disparity error is discussed.

Figure 5.5.: The uncertainty of three camera poses influences the uncertainty of the 3D
point. In addition to the disparity uncertainty shown in Fig. 5.4, six further
parameters per camera that describe the pose and possibly additional inner
parameters for the cameras and their covariance information have to be
considered.

As described in Section 2.2.1, image registration corresponds to the estimation of the
set of camera parameters. Both the inner camera parameters that describe calibration
and distortion, and the rotation matrices or quaternions and translation vectors for all
images are obtained by a robust bundle adjustment.
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As described in Section 2.2.1, image registration estimated the 3D points from the
complete set of images. Hence, for a 3D point, multiple measurements from n cameras
exist. From those, variances and covariances of all inner and outer parameters are
obtained. For simplification, only the covariances of the outer parameters are considered
for error propagation represented by a 6 x 6 matrix that contains the variances and
covariances of three rotation and three translation parameters.

Similar to the stereo case presented in Section 5.3.1, the first step is the generation
of an equation system that describes the 3D points depending on all the geometric
parameters of all cameras. By obtaining quaternions ¢ with parameters ¢, ¢, g3, g4
instead of rotation matrices, the equation system from Eq. (2.11) for camera ¢ can be
written as:

Unfortunately, in contrast to the simplified Egs. (5.8) to (5.10), a joint analytical
formulation that considers a set of cameras is difficult to derive, it is complex, and thus,
even if available, it is difficult to analyze.

Fortunately, a numerical propagation by infinitesimal changes of the values can simu-
late a model that assumes linear error propagation. Yet, the propagation of the param-
eter uncertainty is expensive for multiple camera pairs. Nevertheless, it seems feasible
for parallel systems.

For all 3D points from n images, a numerical propagation has to be done considering
partial derivations. To this end, the Jacobian matrix J, has to be calculated containing
the partial derivation of the camera parameters and the disparity d:

0Py 6Py 6Py 0P 6Py 0P 6P
5q1  0q2  oqs Oty oty ot od
gi | 2B 0B, Py oB, 8P, 9B, 4B, 516
6q1 7 dqs ot ot Ot od ) ( . )
6P, 8P, &P, 4&P. &P. 6P. OP.
6q1 7 dq3 Ot Oty Ot od

For the quaternion, the largest value of the normalized quaternion is maintained fixed,
and thus, covariance information is only estimated for the remaining three parameters.

Disparity maps are obtained by MVS considering n images. Hence, an overall Jacobian
has to be defined:

Jp=(Jp ... Jp). (5.17)

In practice, Jacobians can be derived from Eq. (5.15) by infinitesimal change of the
parameters and evaluation of the corresponding changes of the 3D point P. The addi-
tional disparity uncertainty has a direct influence on the depth p, in camera coordinates.
It can be considered, e.g., as half a pixel and transformed to the uncertainty of P by
Eq. (5.14). The uncertainty of the disparity is discussed in detail in Section 5.3.3.

From the image registration for all cameras, 6 x 6 covariance matrices C; are obtained
that contain the uncertainty of rotation R and translation T parameters. For relative
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pose estimation, one camera pair obtains only a 5x 5 covariance matrix (cf. Section 2.2.1).
The covariance matrices can be extended by a further dimension adding the disparity
error. For further simplification, the disparity error is assumed to be uncorrelated with
the error of the camera parameters:

0r2  Orirg Orirg Oty Oritg Ority
Oragry Or2 Orary Orgty Orgta Oraty
Orgri Orgra Or2  Orsty Orsta Orsts
(5.18)

Ci: Otir1 Otiry Otirs O—tf Ottty Otyts

Otar1 Otary Otars Ototy 012 Otats

o OO O o o

Otsr1 Otgra Otgrs Otgty Otgty O¢2

O 0 0 0 0 0 Ap?

The covariance matrix C of point P can be derived by multiplying the numerical
Jacobian Jp from Eq. (5.17) and the covariance matrices C; from Eq. (5.18) as:
Cy 0
Co=Jp| . | J}. (5.19)
0 C,

The probabilistic framework presented in Section 4.3 allows for the fusion of spatial
data. Yet, it only considers the uncertainty of the 3D point in one direction. The error
propagation that considers registration and disparity uncertainty leads to a trivariate
uncertainty of the spatial measurement. Nevertheless, the univariate fusion is feasible
because uncertainties in stereo configurations mostly have one dominant direction. This
direction can be obtained from the covariance matrix C, in terms of the maximum eigen-
value as the uncertainty, and the corresponding eigenvector as the dominant direction

(cf. Fig. 5.6).

i

. gaasan
t.;;% N @‘ — =
<l

1S

Figure 5.6.: The uncertainty of a 3D point can be estimated considering the covariance
matrices from all the cameras that describe the uncertainty of inner and
outer parameters. Left: Propagation along the line of sight. Right: The
eigenvector with the largest eigenvalue describes a dominant direction that
can be used for propagation of the univariate uncertainty.
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Image registration is based on the processing of sparse visually salient data. Depend-
ing on the images, this and the overlap between images can lead to strongly varying
densities of 3D points. In turn, this leads to differing uncertainties in different regions.
Furthermore, the numerical error propagation is time-consuming when considering large
sets of images. For practical applications, the numerical error propagation is discussed
in Section 7.6.

5.3.3. Disparity Error

The stereo error models from Sections 5.3.1 and 5.3.2 allow for an error propagation that
considers a disparity error Ap. The suitable ellipsoidal error model with a simplification
in one direction described by Eq. (5.14) assumes an equal disparity error in the z- and
y- direction of both images. The generalization of a constant disparity error, e.g., half a
pixel, can be a suitable assumption when having simple image configurations and well-
textured objects. Nevertheless, there are various configurations and scenes that lead
to varying disparity errors. In the following paragraphs, the disparity uncertainty is
analyzed and a feature is presented that is highly correlated with the disparity error. For
the estimation of a function that describes the correlation, a machine learning approach
is presented.

Learning quality functions for disparities entails much effort and is difficult because it
requires ground-truth data, a stable feature that correlates highly with the uncertainty,
and machine learning methods that can manage noisy data with outliers. The disparity
quality depends on multiple features, such as the texture strength or the surface slant.
The latter results from foreshortening and from prior assumptions in stereo methods
that often have a fronto-parallel bias. In this thesis, SGM is used as stereo method. It
penalizes neighboring disparity changes, generating fine reconstruction of fronto-parallel
surfaces (cf. Section 5.1). SGM is a semi-global method that allows for the estima-
tion of disparities in untextured regions also by considering the textured neighborhood.
This leads to dense disparity maps, yet with extremely varying quality of individual
disparities. An example for the slant is given in Fig. 5.7.

Most stereo methods obtain subpixel accuracy by considering the matching costs of
the neighboring pixels. SGM uses quadratic regression that fits a parabola through the
neighboring pixel costs. Depending on the slant, the accuracy of the subpixel estimation
can vary as the disparity changes differ in neighborhoods, particularly for non-fronto-
parallel regions.

The disparity quality is influenced by many other factors. The registration error and
its influence on the 3D geometry have been discussed in Section 5.3.2. There, disparity
error and registration error are assumed to be uncorrelated. However, image registration
can actually influence the quadratic regression for obtaining subpixel accuracy because
its accuracy can lead to varying subpixel uncertainty.

Furthermore, the uncertainty can be influenced by the cameras used. Low quality
cameras have a restricted quality because they use small chips and low quality lenses.
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Figure 5.7.: Left: (Zoomed) image of the Ettlingen30 sequence (STRECHA et al. 2008).
Right: Coded image that shows the slant to the surfaces estimated from
the depth map that considers 48 neighboring values. The coding ranges
from 0°(white) to 90°(black). In this image, the slant provides a reasonable
impression of the reconstruction quality of the surfaces. Untextured and
non-fronto-parallel regions are mostly not precisely reconstructed.

Yet, even high quality cameras cannot completely avoid motion blur or out of focus
areas.

Naive learning of the disparity quality could consist in the definition of a multivariate
space with feature dimensions that cover the uncertainties. Features such as texture
strength or surface slant influence the quality and could be used for learning. Yet, the
quality also depends on the camera type, especially on the chip and lens employed.
Learning the quality for specific cameras is expensive because ground-truth data is nec-
essary.

The classification of uncertainties in disparity maps that depend on slant and texture
could be inexpertly performed by the estimation of a pixelwise normal vector and an
image gradient. However, for disparity maps, this is usually unstable because they show
an oscillation with unknown frequency, as presented in Fig. 5.8. Therefore, the normal
estimation window used could oversmooth the normal; however, it could also obtain
wrong measurements by undersampling. Fig. 5.7 shows a slant map that uses a constant
neighborhood that considers 48 neighbors. It is obvious that some normal vectors are
wrongly oriented in weakly textured regions or areas with large slant. Furthermore,
learning multivariate systems is difficult because wrong correlations tend to be estimated
when not enough data is available.

Using a single feature that covers both, and possibly more, uncertainties seems a more
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Figure 5.8.: Left: Half-resolution image from the Middlebury stereo data (SCHARSTEIN
2014b). Right: Difference between ground truth and disparity map from
SGM coded from zero error (white) to half pixel error (dark grey). The
surface quality has varying frequencies depending on the slant.

promising way to pursue learning the correlation function. Thus, a TV-based feature is
proposed that implicitly covers important aspects of the uncertainty. The TV feature
represents the local oscillation behavior of the disparity map and covers uncertainties
depending on slant and texture (cf. Section 2.1.2). The Ly norm was chosen as its norm.
In the past, methods that use global optimization were published that also use TV for the
regularization of 3D surface reconstruction (ZACH et al. 2007, KOLEV et al. 2012). They
use TV-Ly in 3D space to regularize surfaces considering outliers. In this thesis, the TV-
Ly norm is used that is not robust against outliers. The TV is estimated from disparity
maps, instead of 3D surfaces, with the motivation of separating accurate surfaces from
noisy surfaces. Noisy surfaces and outliers cause high TV terms, making the TV-L,
norm feasible for terms of quality estimation on disparity maps. Because the method
works on disparity maps, the original formulation on 2D signals from RUDIN et al. (1992)
is used (cf. Section 2.1.2).

The simple use of a TV term does not automatically solve the problems of over-
smoothing and undersampling. In addition to different frequencies, the TV term should
be discretized because for discretization levels, the uncertainty of disparities can be
learned directly. A reasonable way to define discretization levels is to determine the TV
of varying neighboring pixel sets. To this end, a threshold 6 is used that limits the value
of the TV sum:

1
arg mgx(z 8_m Z \/|di+1,j - di,j’2 + |di,j+1 - di,j|2 < (9) y (520)
m=1

1,JET;
where disparity d and |x;| = 8m. At first, the eight directly neighboring pixels are

considered. The resulting sum of the TV-Ls norm is compared with the threshold. If the
sum exceeds the threshold, the discretized value n = 1 defines the TV class. Otherwise,
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TV is calculated considering the next 16 (8m, m = 2) pixels and added to the sum.
When not exceeding the threshold, this is iterated until a maximum n = 20 is reached.
The calculation is performed in linear time because for ¢ = 20, a maximum of 361 pixels
are considered. For pixels in the disparity map that do not have valid disparity, a value
of 0o is used for the TV.

The number of pixels considered for level m rises with 8m (cf. Eq. (5.20)). Hence,
the TV overall sum increases with the level size. This is normalized by a division of
the sum by 8m. In the experiments shown in Section 7.5, this normalization leads to
better results. For 6, a value of one is empirically found to be suitable, leading to an
oscillation of a maximum of one disparity on average for all directions. Fig. 5.9 provides
two examples.

Figure 5.9.: Quality voting for all pixels assigned a disparity. The left images are two
images from the Ettlingen30 dataset. The middle images show the surface
slant that provides a reasonable impression of the quality. The right images
show the quality class based on TV from zero (black) to 20 (white). Fronto-
parallel and fine textured regions result in high digit classes.

The discretized TV classes n = [1,20] can be used for the learning of error functions
that describe the uncertainty. For this, it is assumed that the individual error follows a
set of Gaussians N, (i, 0,) with parameters 6,, = p,, oy,.

Ground-truth data is necessary for learning the function parameters. In this thesis,
the Middlebury Stereo datasets (SCHARSTEIN and SZELISKI 2002, SCHARSTEIN and
SZELISKI 2003, SCHARSTEIN and PAL 2007) are used because, for some images, the
ground-truth data is made publicly available (SCHARSTEIN 2014b). As the ground-
truth contains discrete disparity values, the unsigned accuracy is limited to 0.5 pixels.
Thus, only the half-sized images were used, allowing for an accuracy of 0.25 pixels.

The TV class can be determined for a set of disparity maps from the valid pixels.
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The corresponding Gaussian can be estimated for all classes 0 < n < 20 by an EM
method that maximizes the probability of the parameters arg maxg, p(6,|D,,). The data
D,, describes the set of differences between the ground truth and the value based on the
SGM results assigned to class n. A description of the machine learning methods used
here is given in Section 2.3.3.

The reason for using EM instead of a ML or MAP estimation is that mixture functions
are considered. For modeling the error from disparity maps, a combination between a
Gaussian and a uniform function is a suitable approximation for the error distributions
(VoaGiatrzis and HERNANDEZ 2011). A Gaussian represents the disparity uncertainty,
whereas a uniform function represents the outliers. Unfortunately, the EM learning
method has a need for an initial estimate that is close to the optimum. A modified
MAP estimation obtains an initial set of parameters that are suitable for EM. As prior
information p(#) for MAP, u = 0 (p(x = 0) = 1) is used, because the estimated value
should be the most probable. The calculation of the variance with standard MAP
estimation is:

1 n
= = g;)? 21
o n;:1(dz 9i)” (5.21)

with disparity d and ground truth ¢ for ¢ measurements.

This function is extremely sensitive concerning outliers because the Ly norm is used.
In disparity maps, multiple outliers can occur. Therefore, a better estimation is provided
by the L; norm. This modified MAP* formulation leads to an uncertainty of:

1 n
o= 52|di—gi\. (5.22)
=1

With this function, an adequate initial approximation of the Gaussians that represent
the disparity uncertainty is obtained for the TV classes.

To obtain a probability for the outliers, represented as uniform distribution, an addi-
tional step is conducted after the MAP* step. There, those measurements are detected
which are not in an area of five o, and hence classified as outliers. The ratio between the
number of outliers and the number of all measurements describes the outlier probability.

The estimated Gaussian and uniform distribution are used as initial state for EM. In
the E step, only the data assigned to the Gaussian are considered (cf. Section 2.3.3 and
Fig. 2.8). Measurements assigned to the uniform distribution are regarded as outliers
and are not considered in the E step. For filtered data, the classical MAP function from
Eq. (5.21) is used for the M step. Afterwards, a new probability is calculated for the
uniform distribution as done after the MAP* step.

The EM process is iterated only one time because experience shows that one step is
enough. The resulting standard deviations for the MAP and the optimized EM estima-
tion for the 20 classes are shown in the table in Fig. 5.10.

Obviously, the error rises exponentially for small TV classes. Higher number of TV
classes converges to a quarter pixel because this is the best value the estimation can
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8
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Figure 5.10.: Learned standard deviations in pixels for the 20 TV classes. The green
graph shows the initial estimation using MAP. The red graph shows the
optimized function estimated using EM.

achieve, given the quantization effects of the ground truth.

5.4. Consistency Checks

The probabilistic framework presented in Section 4.3 in combination with error models
from Section 5.3 allows for the fusion of noisy spatial data. Nevertheless, outliers can ap-
pear, but in reduced numbers. In addition to filtering the depth maps, like in SGM, the
novel volumetric fusion allows for further consistency checks in the 3D space. These con-
sistency checks are inevitable for obtaining accurate results for difficult configurations.
Methods already exist that consider image consistency (VU et al. 2012) or geometric
consistency (MERRELL et al. 2007, HU and MORDOHAI 2012) for the optimization and
filtering of 3D surface models. In the following two sections, the two types of consistency
checks are discussed, considering scalable disparity map fusion. Finally, an extension to
volumetric probabilistic consistency checking is introduced.

5.4.1. Image Consistency

For consistency checks in the image space, the colored 3D point cloud or a resulting
triangle mesh is optimized in a specific area by checking the consistency in the respective
images. To this end, the initial surfaces can be reduced also by triangle merging or
increased by a tessellation of the triangle mesh. For the optimization, the geometric
parameters in 3D are optimized, e.g., with variational approaches (PONS et al. 2007).
Comparing surface and image space, a cost function can be built with costs such as NCC
(cf. Section 2.1.1). For the comparison, the surface has to be re-projected to the images.
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To avoid variational optimization, local approaches are feasible with an independent
processing of the parameters.

In any case, the transformation to the image space is expensive because possibly many
images have to be considered simultaneously. Hence, for image consistency checks, it is
difficult to guarantee scalability. The direct modeling of locally optimized point clouds
with a recursive Bayesian formulation enables a modeling that only considers one image
at a time (cf. Section 4.3). By this means, small memory requirements are guaranteed,
thus making image consistency checks in general unfeasible.

5.4.2. Geometrical Consistency

Assuming opaque surfaces and by being able to see a 3D point from an image, it follows
that the space between a point and the camera center has to be empty. This geometric
prior knowledge can also be used for consistency checks on the disparity map or in 3D
space.

MERRELL et al. (2007) proposed geometric consistency checks on depth maps. In
this 2.5D filtering step, depth maps are re-projected to other depth maps considering
geometric attributes. Geometric consistency checks can be computationally expensive
for large amounts of data. Nevertheless, they are suitable for hardware-accelerated
implementations.

For 3D consistency, the point cloud can be represented by a set of ellipsoids esti-
mated based on the uncertainty. Geometric consistency can be achieved by intersection
checks between all lines of sight between points and cameras and all ellipsoids (HU and
MORDOHAI 2012). The size of the ellipsoids can be used again as filter criterion by
observing conflicts. Unfortunately, a continuous filtering in 3D is computationally ex-
pensive because it rises quadratically with the number of 3D points.

Volumetric methods are more suitable for scalable 3D modeling. Elements of the
discretized space are empty or contain information from one or multiple 3D points.
Checking for intersections on the line of sight beginning at a 3D point, the intersection
of the voxels can be used to calculate the exact set of involved volumes efficiently. The
volumetric intersection can even be managed more efficiently considering specific spatial
data structures (cf. Section 6.1).

Counting the number of points that fall into the same volume element can help for
choosing the correct voxel in case of conflicts by filtering the volume element that con-
tains the smaller number of points. The novel probabilistic fusion presented in Sec-
tion 4.3 allows for the estimation of surface probabilities. Therefore, the more robust
probabilistic background should be considered in the filtering decision.

For unlimited scalability, 3D geometric consistency checks are not intuitively suitable.
Ray tracing methods are global because they cast rays from 3D points to cameras.
The divided reconstruction spaces described in Section 5.2 do not imply complete rays.
Nevertheless, local optimization makes ray tracing feasible because the rays can be
limited in a local area. Hence, the 3D outliers that cause reconstruction errors can be
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filtered. Outliers appear alone or in separate clusters that can be classified, e.g., in the
meshing step. Global filtering is not possible and should be performed in 2.5D as a
preprocessing step.

5.4.3. Probabilistic Consistency

In Section 4.3, a probabilistic approach is proposed that allows for 3D reconstruction in a
volumetric probabilistic space. In this space, the surface is characterized by neighboring
voxels for which the probability that one is in front of the surface and the other is behind
the surface is high. The probabilistic space is used to generate volumetric surfaces that
contain probabilistic information of surface description.

For geometric consistency checks, it is helpful to consider probabilistic information.
As shown in Fig. 5.11, it is not obvious which voxel contains only outliers, and hence has
to be filtered when detecting one or multiple conflicts. In addition, by casting another
ray, the voxel itself could be filtered by another point.

Hence, the filtering decision has to be made only after casting all rays. To this end,
rays are cast from all occupied voxels to all cameras from where the voxel was seen. For
detected conflicts, the probability of the conflicting voxel is assigned to another voxel.
All voxels retain only the maximum of the conflicting surface probabilities. Then, those
voxels are filtered whose surface probability is less than the maximum surface probability
from conflicting voxels. The filtering criterion can be written as:

Puy S MAX Dy, Sere, (5.23)

where s is a binary predicate that voxel v., was occupied by camera c;. The predicate
avoids the influence of quantization effects of the voxel space. p,,, is the probability of
the voxels intersected by the ray from voxel v; to camera c;.
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Figure 5.11.: Geometric consistency checks that consider surface probabilities. Left: The
second point from the left is cast to the upper camera, resulting in a conflict
with the leftmost point. It is not obvious which point has to be filtered.
Right: After considering multiple points with surface probabilities, which
are all in conflict, only the point with the highest surface probability is
maintained.
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In Chapter 4, a probabilistic fusion method was presented that allows for the fusion of
noisy spatial data with similar quality. This chapter focuses on the handling of data
with strongly varying quality. The error model presented in Section 5.3.1 describes
the uncertainty of the 3D points that can be derived considering camera and disparity
parameters as well as their uncertainties. The uncertainty depends on the baseline
between the camera positions, the focal length, the disparity error, and the distance to
the surface, among other factors. The distance to the surface influences the errors in
3D points even quadratically in a single direction. Having a 20-times larger distance, as
shown in the images in Fig. 6.1, an uncertainty difference with a factor of 400 follows.
The simple fusion of data without considering the uncertainty will be useless as the
low-resolution information disturbs the high-resolution information.

Figure 6.1.: Two images showing partially the same scene. The right image was captured
at 20-times the distance to the object than the left image. The difference in
quality has to be considered in the fusion process.

In Chapter 3, octrees were brought up as a means for volumetric fusion. In Sections 6.1
and 6.2, data structures and their use in the volumetric fusion of similar and differing
disparity quality are discussed and adapted to (multi-view) stereo error models. The
use of hierarchical spatial data structures enables a consideration of quality on varying
levels. In Section 6.3, a brief analysis of the applicability of scale-space techniques is
given. Additionally, for optimizing the point clouds, the method described in this thesis
is concerned with the reconstruction of 3D surface models. In Section 6.4, the adaption
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of a known triangulation method for the processing of spatial data with varying quality
is presented.

6.1. Data Structures

Spatial data structures are of high importance in the fields of computer vision and
computer graphics. The key idea of the spatial data structures employed herein lies in
the division of the 3D space into finite subsets. The subsets are arranged into efficient
structures enabling rapid access and manipulation of the elements with small memory
requirements. The division can be conducted depending on the density of the point
clouds by means of kd-trees (BENTLEY 1975). Spatial data structures can be used to
quickly obtain the relationships among points, e.g., for an efficient estimation of normal
vectors from a point cloud considering a fixed number of neighbors. For fusing point
clouds, discretization through a space division is suitable because redundant data are to
be merged. Octrees allow for the fusion and filtering of points, also with varying quality,
and are thus discussed in more detail.

An octree is a hierarchical data structure based on a uniform regular decomposition
into single cubic elements, called voxels. Octrees can be used for merging redundant
data, such as multiple 3D points from MVS, in the same octree elements. In contrast
to kd-trees, the space is divided with respect to the point quality instead of the point
density. The transformation of a 3D point into an octree space corresponds to the update
in the octree. The basic idea of a point representation in an octree is given in Fig. 6.2.

Beginning with a root node representing the initial reconstruction space, an octree
usually has eight children per node, which divides the space into eight subspaces whose
center points have equal distances to the center point of the parent node. This subdi-
vision is iterated to a specific point-dependent level. For a new 3D point, a voxel-wise
subdivision is conducted until the specific level is reached. This level has to be specified
and can be adapted, e.g., depending on the quality of the 3D point. Octrees are partic-
ularly suitable for merging redundant 3D points to reduce the memory consumption in
dense configurations. Points being assigned to the same voxel can be merged. For this
reason, discretization effects should not be neglected.

Standard volumetric methods regularly discretize the complete reconstruction space.
In contrast, octrees represent empty areas with large voxels. Furthermore, octrees have
a short access time that is logarithmic in complexity. The complexity can even be
optimized, e.g., by employing multiple octrees organized in binary trees (BODENMULLER
2009). When inserting a 3D point into a voxel at a specific level, the voxel is assigned a
binary state coding the occupancy. In practical applications, the voxels represented by
the nodes of the octree can be given attribute information such as the center coordinate,
color, surface probability, or camera information.

Octrees with varying voxel size allow for the efficient processing of operations such as
ray tracing (AMANATIDES and Wo0O 1987). In ray tracing, a line is cast through the

78



Chapter 6. Multi-Resolution Computation

Ay Ay

Figure 6.2.: Update of an octree when inserting a spatial point. From the initial node,
the space is incrementally divided into eight subspaces modeled by eight
children. The space is divided until the given level is reached (e.g., level
three). The black nodes are marked as occupied.

3D space determining the intersecting volumetric subspaces. In the case of MVS, ray
tracing methods are suitable for fast geometric consistency checks (cf. Section 5.4.2). On
the line of sight, intersecting points with the subvolumes are calculated incrementally
by considering the topology of the data structure.

6.2. Adaptation to Error Models

Octrees allow for an efficient handling of spatial data on varying levels. This is very
suitable for processing point clouds from MVS configurations because they can have
highly differing qualities depending on the image configuration. In Section 5.3.1, an
ellipsoidal error model is presented, which can be reduced to a dominant uncertainty
o, of a 3D point in one dimension (cf. Eq. (5.14)). The uncertainty depends, e.g., on
the disparity error, focal length, baseline, or distance to the surface. For a calibrated
image set, all values other than the disparity error are known. In Section 5.3.3, a feature
that allows for an estimation of the disparity error depending on the local oscillation
behavior of the disparity map is presented. Considering all available information, a
fixed scalar value parameterizing the 3D uncertainty can be derived by representing a
Gaussian uncertainty on the line of sight.
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An important step for an efficient handling of point clouds with varying density in the
octree data structures is the individual choice of the octree level that corresponds to the
voxel size v,. It is intuitive to define a linear correspondence between the voxel size and
spatial uncertainty of the 3D point.

A similar approach proposed by FUHRMANN and GOESELE (2011) is based on the
linear fusion presented by CURLESS and LEVOY (1996) (cf. Section 3.3.1). The choice of
voxel size is dependent on the logarithmic relationship between the triangle size and the
size of the root node. The triangle is obtained from a single disparity map. Making the
choice dependent on an error model is more sound, especially for complex configurations.

For the fusion of point clouds, it is important to merge similar data. For data with
strongly varying quality, data with lower quality should be considered for filtering. Oc-
trees are suitable for such fusion and filtering, because algorithms run through the octree
from low-resolution to high-resolution voxels (cf. Fig. 6.2). This allows the filtering of
low-quality data by setting the nodes with further children to an unoccupied state.

For the fusion of spatial data, only those data that correspond to the same octree
level should be considered. Even better is fusion at two neighboring levels for all points
to avoid the quantization effects. Hence, spatial data that have at minimum half the
quality, and at maximum twice the quality, are fused.

It is suitable to choose the voxel size for individual points with linear dependency on
the point uncertainty o, :

op < avs < 20, , (6.1)

where a is a regularization parameter and was empirically found to be suitable in the
range of [3,6]. For this, the runtime and memory consumption have to be considered.
For uncorrelated data, e.g., from multiple sensors or when many images are taken with
different cameras, it can be suitable to raise the value of a. For the evaluation of the
experiments described in Chapter 7, a = 6 is used. For very large models that can
disregard the smallest details, a = 3 is used for a high runtime performance.

In Section 4.3, two kinds of volumetric processing are presented: the reconstruction
of a probabilistic space, for data fusion and the reconstruction of a space of optimized
points. The optimized point cloud space renders volumetric consistency checks feasible.
Direct triangulation of the probabilistic space with Marching Cubes is unfeasible in
data structures with dynamic voxel size (FUHRMANN and GOESELE 2011). Therefore,
a transformation to a volumetric point cloud is suitable. For the probabilistic and the
point space, the same octree depth is used, particularly because 3D points in the point
space are optimized and fused by the probabilistic space. For smoothing the optimized
point cloud, increasing the voxel size of the point space relative to the probabilistic space
may be a suitable method.

When fusing in a probabilistic space, those voxels that are intersected by the line of
sight in a specific area are considered (cf. Section 4.1). Such voxels can be efficiently
accessed through ray tracing. To this end, a 3D point is integrated into the octree space,
and the line of sight through the voxel space is traced in a specific area depending on
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the uncertainty. Octrees are suitable for ray tracing because only two cubic intersection
points have to be calculated. The neighboring voxel assumption follows from the exit
point of the ray intersection. The voxels considered are additionally given to their binary
occupied state, a probability of being assigned to lie behind the surface, as described in
Section 4.3.

In the point space, the points are optimized considering the voxels of the probabilistic
space. Though a Gaussian regression, a new optimized point is calculated including
the surface probability (cf. Section 4.3). This point is then propagated to the point
space octree. Hence, the voxels are given additional information regarding the surface
probability and indices for the cameras located at the position where the point was seen.
The latter information allows for a probabilistic filtering of the occupied voxels. An
example for both spaces on two different levels is presented in Fig. 6.3.

<t

</

AT

1]

|

/

Figure 6.3.: The upper rows show a probabilistic octree space. The left and right images
show the fusion for the same octree on different levels. The level of the
octree depends on the quality of the 3D point. The lower row presents the
point space whose points were fused in the probabilistic space. Using the
high-resolution points shown in the right image, the low-resolution points
shown in the left image are filtered.

Filtering in terms of the geometric consistency is discussed in Section 5.4 and an
adaption, taking into account the surface probability, is also given. Checks through the
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use of ray tracing can be efficiently handled using an octree. The surface probability
obtained using the method proposed in Section 4.3 is crucial for filtering the outliers.

Multi-resolution integration becomes more complex as additional varying surface prob-
ability points appear in different solutions. It is hard to determine whether low-resolution
points with a higher surface probability can provide important information. In general,
an octree is visited through the low-resolution to high-resolution filtering the low res-
olution points. Hence, for both probabilistic and point spaces, only high-quality data
from a high-resolution area remain unfiltered. In Fig. 6.4, ray tracing is shown for the
filtering of low-resolution areas.

R e e e B

Figure 6.4.: Filtering using ray tracing. The points from the occupied voxels are cast
to the cameras. When detecting conflicts with the occupied voxels, the
low-resolution points are filtered (red).

For filtering spatial data, the important question regarding multi-resolution integra-
tion is whether low-resolution areas can contain more accurate information than high-
resolution areas. This has to be discussed in more detail, leading to a consideration of
the scale-space aspects.

6.3. Scale Space Analysis

Scale space theory is concerned with multi-scale signals, e.g., for handling image struc-
tures of different sizes, i.e., at different scales. Point clouds at different levels of a spatial
data structure offer information from varying 3D scales (cf. Fig. 6.5).

There has been a lot of work on scale space theory considering 2D images or 1D signals.
Such signals are mainly convoluted with specific kernels in varying configurations leading
to artificial scale space representations. Images, e.g., can be smoothed using a Gaussian
filter with varying variance leading to a Gaussian-scale space that can be used for feature
extraction (LINDEBERG 1993).

For surface modeling, regularization in a 3D space leading to a four-dimensional (4D)
regularization problem is worth considering. In Section 6.2, an approach for filtering data
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Figure 6.5.: Three 3D points with different quality on three different octree levels. It is
important to consider whether low-resolution points should influence the 3D
information of high-quality points. This can be seen as a 4D regularization
problem.

on different levels is described. Low-resolution points are filtered given high-resolution
points. Considering the scale space, the surface probability should also be considered.

The regularization of 3D surfaces from multi-resolution octrees was previously men-
tioned by FUHRMANN and GOESELE (2011). As described in Section 6.2, their method is
based on a linear fusion and a volumetric representation of point clouds. For the weight
and distance functions from Egs. (4.1) and (4.2), the weighting is defined considering
octree level [ and the coarser level [ — 1:

(Jl _ dywy + di—1 (19 — wl).min(wll’_li_;l) ’ (6.2)
w; + (7o — wy) min(l, ==+)

wl—l

W, = w; + (7 —w;) min(1, ), (6.3)

where 79 is a saturation threshold avoiding oversmoothing (MITCHELL 1987). Addi-
tionally, a second confidence threshold 7 is used that allows voxels to be filtered where
71 < 719. The proposed regularization may also be suitable for probabilistic fusion, but
further analysis of the probabilistic aspects is needed.

In the probabilistic framework proposed in Section 4.3, the regularization of Eq. (6.2)
has to be adapted. The regularization of the weight function is not important because
binary weighting is used (cf. Fig. 4.3). The voxel probabilities p; on level [ should be
fused with the neighboring levels. The probability votes for the voxel to be completely
behind a surface. If a voxel at level [ lies completely behind the surface, it does not
necessarily imply that the voxel at the coarser level [ — 1 also lies completely behind the
surface. Nonetheless, the probabilities are correlated, and it could be advantageous to

To
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determine whether both voxels tend to lie behind the surface:

PL=Di D1 - (6.4)

Results of experiments regarding this first intuitive probabilistic idea of a 3D scale-
space evaluation are described at the end of Section 7.7. An accurate framework needs
further theoretical work for a 3D scale space. This is an open problem that is beyond
the scope of this thesis.

Another alternative way to consider multiple scales without a complex 3D scale space
theory would be to estimate disparity maps from images of varying scale (cf. Fig. 6.6).
In Section 5.3.3, it was shown that the disparity quality varies from the subpixel level to
multiple pixels. Downscaled images can lead to smoother depth maps that tend to have
a higher quality. The method presented in this thesis allows for the input of multiple
disparity maps from a single image. The algorithm automatically chooses the pixelwise
voxel depending on the camera and disparity parameters. The experiments are described
in Section 7.7.

o)

Figure 6.6.: Three disparity maps obtained by images downscaled with factor 1, 2 and
4. In the upper left the original image from the Ettlingen30 sequence is
shown. Low resolution image lead to higher densities and can even have
better accuracy.
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6.4. Meshing

This thesis provides a scalable method resulting in accurate point clouds. For complete
3D modeling, the transformation into connected polygons defining a 3D surface is of
high importance.

To guarantee a scalable 3D reconstruction, a local meshing method has to be devised.
Additionally, the meshing method has to be fast, but there is no need to optimize the
point cloud because this has been previously conducted during the fusion. Local meshing
described in Section 2.2.3 is suitable for these conditions. CURLESS and LEVOY (1996)
use Marching Cubes for fast polygonization of volumetric spaces. Yet, this does not
allow for multi-resolution processing. Therefore, the propagation to a volumetric point
cloud space is presented in Section 4.3 that allows for directly processing point clouds.

FUHRMANN and GOESELE (2011) proposed a global tetrahedralization for polygo-
nization of volumetric point clouds that is clearly limited in scalability. It is particularly
important not to violate the core idea of local processing in combination with the Divide
and Conquer assumption (cf. Section 5.2). For this, the locality of the processing has to
be limited, i.e., the overlap between subspaces has to be twice the maximum size of the
optimization area.

In particular, the incremental algorithm by BODENMULLER (2009) can be adapted
considering a varying neighborhood size. Such adaption of the varying distances is part
of this thesis, and is shown in Fig. 6.7. The optimized point cloud allows for an accurate
estimation of normal vectors from the neighboring points. Considering point P, an
incrementally built mesh is projected onto the local plane perpendicular to the normal
vector. Only those triangles made up of points lying in a spatial neighborhood defined
by a factorized voxelsize av, from the voxel space are connected. In the experiments,
a = 5 is used for limiting the neighborhood.
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Figure 6.7.: Meshing considering the variable resolutions of points from the octrees. The
green point is added incrementally to the initial mesh. The point is con-
nected to all points within the red circle, as described in Section 2.2.3 and
shown in Fig. 2.6. The size of the circle is adapted to the factorized voxel
size considering the density at the respective resolution.
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Chapter 7.
Evaluation and Validation

After presenting the methods for 3D surface reconstruction in Chapters 4, 5, and 6, an
evaluation of the results from various datasets is described in this chapter. Additionally,
for a qualitative visual comparison of the resulting 3D surface models, a numerical
quantitative evaluation has become a necessity. To this end, datasets with ground-truth
3D surfaces are needed. Unfortunately, for large-area 3D surface reconstruction, no
datasets with ground truth are available. Nevertheless, there are sets of images with
ground-truth surfaces that have either small numbers of images (STRECHA et al. 2008)
or low-resolution images (SEITZ et al. 2006), which is discussed in Section 7.1.

This thesis has a practical goal: the scalable fusion of disparity maps to 3D surface
models. Therefore, the number of possible disparity maps is not limited, and the resolu-
tion of the disparity maps can be extremely high. In Section 5.2, a Divide and Conquer
method was presented that allows for the reconstruction of surfaces without limits to the
scalability. The processing of large datasets using the method presented in this thesis,
and an evaluation of the results, are presented in Section 7.2.

A multi-resolution computation, as described in Section 6, allows for the fusion of
spatial data with varying quality. The evaluation and validation of this extension is
discussed in Section 7.3. To this end, multiple 3D surface models resulting from complex
real-world image configurations are shown.

Chapter 4 introduces a novel probabilistic framework for the fusion of noisy disparity
maps. This allows for an optimization of the point clouds from the disparity maps, and
the extraction of surface probabilities. This surface quality again allows for the proba-
bilistic filtering of outliers, thereby avoiding multiple surfaces. An evaluation of these
extensions is described in Section 7.4. Additionally, a numerical and visual comparison
with the method by FUHRMANN and GOESELE (2011) who proposed a similar multi-
resolution approach without a probabilistic framework or consideration of a principled
error model, is provided.

In Section 5.3.3, a statistical learning scheme allowing for an estimation of the disparity
error was presented. This is based on a feature extracted from disparity maps that
describes the local oscillation behavior. The improvement in 3D surface reconstruction
considering the estimated disparity errors is given in Section 7.5.

In general, for the generation of 3D surface models, the process chain described in
Section 2.2, along with the extensions presented in this thesis, is used. The disparity
maps are estimated using SGM with Census matching costs and constant parameters.
The images are downscaled by a factor of 2, as most of the images are taken by con-
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sumer cameras and do not have pixelwise uncorrelated values, e.g., caused by a small
pixelsize and a Bayer Pattern in the cameras. How downscaling influences the quality,
and whether the loss in quality can be used for scale-space modeling, is discussed in
Section 7.7.

For fusion of the disparity maps, the probabilistic framework presented in Section 4,
along with the multi-resolution adaptation described in Section 6, is used, taking into
account the filtering step presented in Section 5.4. For the error model, the stereo error
model with dynamic disparity error is used (cf. Sections 5.3.1 and 5.3.3).

Only the image registration uncertainty (cf. Section 5.3.2) and scale space aspects
(cf. Section 6.3) are not considered, which are discussed in Sections 7.6 and 7.7 as final
points of this chapter.

7.1. Datasets

It is important to evaluate the quality of the surfaces in terms of the accuracy and com-
pleteness. Because humans can use additional semantic information, a visual inspection
can help assess the accuracy, and even further, the completeness. Nonetheless, a numer-
ical comparison considering ground-truth data is essential because a visual comparison
has a limited guarantee particularly concerning the minor differences. The Middlebury
multi-view challenge (SCHARSTEIN 2014a) has been quite beneficial for the develop-
ment of 3D surface reconstruction methods by providing MVS data from laboratory
configurations that can be numerically evaluated against ground-truth data. SEITZ et
al. (2006) introduced multi-view image datasets registered with a laser-scanned surface
model. For each of the two models shown in Fig. 7.1, three sets containing a varying
number of images are provided.

By experiments in this thesis, it was found that the provided calibration data are not
accurate. However, a re-registration leads to an inconsistency of the coordinate systems.
Furthermore, a laboratory configuration is unique as the images do not have varying
quality typical for real-world data. Nonetheless, an evaluation is important, and the
scalable method presented in this thesis has been evaluated on the Temple and Dino
datasets (cf. Section 7.5).

STRECHA et al. (2008) provided the first numerical evaluation on real-world data for
small image sets. The images were registered with LIDAR data, and the accuracy was
evaluated relative to the uncertainty of the LIDAR measurements. Unfortunately, the
evaluation is no longer provided (STRECHA 2014). Nonetheless, for two small sequences,
the ground truth is available and can be used for an evaluation of the 3D surface models.

The first dataset, called EttlingenFountain, consists of eleven images showing a foun-
tain, a stone wall, and the ground from a short distance. The second dataset, called
Herzjesu8, consists of eight images showing a building from the front. Screenshots of
both ground-truth surfaces and example images are given in Fig. 7.2.

The objects visible in these images have similar distances to the camera and are well
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Figure 7.1.: Top: Ground-truth data for the Middlebury Temple and Dino from laser
measurements. Bottom: Five images from the complete sets. The six image
sets provided contain varying numbers of images with a resolution of 640 x
480: TempleSparseRing (16 images), TempleRing (47 images), Temple (312
images), DinoSparseRing (16 images), DinoRing (48 images), and Dino (363
images)

Figure 7.2.: Ground truth for real-world data. Left: Herzjesu8 ground truth. Right:
EttlingenFountain ground truth. Bottom row: three of the original eight
and eleven images.

textured. The configuration includes varying perspectives, but from similar directions.
By showing that it can model very large scenes in terms of the completeness of the
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surfaces, the scalability of 3D surface reconstruction is visually demonstrated. To this
end, some large datasets were obtained that also partly consider high-resolution images.
The datasets are shown in the following sections and Appendix A.

7.2. Large Models and Large Scenes

The main focus of this thesis is the 3D surface reconstruction from large image sets
that may contain high-resolution images. A suitable way to evaluate the results is to
analyze the completeness of the 3D surface models. This must be done visually because
no ground truth is available and is very hard to obtain. For the evaluation, two different
types of large-scale datasets were obtained and processed using the pipeline described
in Section 2.2.

The camera configuration of the first dataset is shown in Fig. 1.1. The resulting
colored and shaded 3D surface of this complete model is provided in Fig. 7.3. The image
set consists of 823 images captured from the ground and from a UAV. The problems
and potential in reconstructing such complex configurations are presented in Figs. 7.4
and 7.5.

Figure 7.3.: Half-shaded and half-textured 3D model from the Bonnland dataset. The
model is based on 823 images captured from the ground and a UAV. The
surface consists of one billion triangles. The complete model was processed
in a couple of hours using hundreds of CPU cores. The completeness of the
model demonstrates the suitability of the method presented in this thesis.
The zoomed-in parts of the model are shown in Figs. 7.4 and 7.5.
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Figure 7.4.: The upper part shows some poorly reconstructed parts of the large Bonn-
land model (cf. Fig. 7.3). It is clear that parts of the roofs and the walls
are missing. For the lower-left image, the corresponding disparity map is
shown in the lower-middle. The disparity map has holes because of slanted
surfaces. The surface modeling of the roof shown in the middle of the up-
per image has an offset. The area on the ground next to the building also
shows reconstruction errors in the pitted surfaces. This is due to registra-
tion uncertainties because, for this part of the scene, strong differences in
perspective exist, as demonstrated in the lower-right image. The red arrows
represent the viewing direction of the upper and lower cameras, and hence,
the strong differences in perspective.

The images show various details of the scene. The registration takes about two hours
on a system with 24 CPU cores. The disparity map estimation and fusion of the 823
disparity maps were computed on a cluster with about 100 cores in less than six hours.
In particular, 3D surface reconstruction by local fusion of the disparity maps presented in
this thesis takes about three hours. For this, the reconstruction space was automatically
split into thousands of subspaces with varying size, which were processed in parallel. The
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Figure 7.5.: Shaded and textured zoomed-in parts from the Bonnland model
(cf. Fig. 7.3). The combination of images from the air and the ground show
fine details without a dominant direction. The images captured from the
ground even allow for the reconstruction of the overlap from the windows
and roofs.

runtime can be further reduced using more cores because the 823 images and thousands
of submodels had to be sequentially processed on 100 cores. The final surface consists
of almost one-billion triangles.

Visualization of the large models is not possible on standard graphic cards. To visu-
alize the complete model in Fig. 7.3, the model was processed at a quarter-resolution
of the images instead of a half-resolution. In this case, the runtime for disparity map
fusion falls to about a one-quarter of the runtime given above.

In general, the surface of the 3D model is complete for all areas captured by two images
at minimum, in addition to some smaller regions. The missing regions are generally not
available in the disparity maps (cf. Fig. 7.4). This incompleteness is due to highly non-
fronto-parallel areas or non-static objects such as vegetation. The image configuration
is quite dense in general. Nonetheless, because the cameras partly capture the scene
from a small distance from the objects, large-perspective deformations may appear in
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the image pairs, which cannot be handled by SGM.

Fig. 7.4 also shows parts of the model that are not smoothly reconstructed. This is
caused by uncertainties in the image registration, which are not considered here, but are
discussed in Section 7.6. The lower-right part of Fig. 7.4 shows the image configuration of
the specific area. The cameras were partly oriented with large differences in perspective,
leading to a large uncertainty in the camera parameters.

The specific characteristic of this image set is the combination of images captured from
a UAV and from the ground. This leads to a strongly varying level of detail depending
on the local camera configuration. Fig. 7.3 shows an overview of the complete model.
In particular, the images from the ground allow for the reconstruction of small details
in the 3D surface, as demonstrated in Fig. 7.5. While the reconstruction of the ground
and the roofs can also be achieved through 2.5D modeling, the 3D surface modeling
presented in this thesis allows for the reconstruction of small details independently from
a dominant camera direction.

The overall dataset was processed at one-quarter image resolution to be able to vi-
sualize it. When processing the half-resolution images, which is usually conducted,
even more details are produced (cf. Fig. 7.6). The visualization of smaller parts of the
complete high-resolution model can be achieved using standard graphic cards. Fig. 7.6

Figure 7.6.: Part of the model shown in Figs. 7.3 and 7.5 with a higher resolution. This
small part of the model alone consists of about 15-million triangles. Even
small details such as the hinges in the windows are clearly maintained on the
surface. The bottom image shows part of an image from the set, illustrating
the details of the hinges at a minimum distance. The size of the image space
is only a couple of pixels.
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shows the building from Fig. 7.5 at a higher resolution. In a 3D model, small details are
maintained that correspond to only a couple of pixels in the image space.

The second large dataset (cf. Fig. 7.7) consists of 235 images from three different
cameras: two with 10 MP resolution, and one with 36 MP resolution.

\"Q«v’ A AL 1" ;v P'y <"1 4

Figure 7.7.: Unikirche dataset. This image set consists of 235 images. Some images were
captured from a UAV (blue), and some from the ground (green), using 10
MP cameras. Additionally, images of the door of the building were acquired
from a 36 MP camera (red). The sets show strongly varying perspectives
and distances to the object. In addition, the lighting conditions changed
and some of the images are blurred.

The successful processing of this dataset shows that, along with the ability to deal with
large scenes, the proposed method produces, an accurate reconstruction of the surfaces
from high-resolution images in possibly difficult configurations. The configuration of the
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Figure 7.8.: Shaded and textured parts of the 3D surface model obtained from the image
set shown in Fig. 7.7. The surfaces were obtained from 10 MP images taken
from the air and on the ground. Moving objects such as vegetation were
only partly reconstructed.

cameras and resulting parts of the 3D model are shown in Figs. 7.7, 7.8, and 7.9.

The complete image set contains over six-billion pixels. The processing of the 3D
modeling was conducted similarly as the Bonnland dataset from Fig. 7.3. The complete
process takes about 10 hours.

The resulting surface contains over four-billion triangles representing varying resolu-
tions. The reconstruction space was automatically split into subspaces that differ in their
relative size by up to a factor of 128. All parts were processed in parallel on a cluster
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Figure 7.9.: Shaded and textured high- and low-resolution parts of the Unikirche model.
The area shown in the upper images combines high-resolution parts with
low-resolution parts captured from a larger distance with a lower image
resolution. The difference in the texture results from radiometric differences
because the images were captured by different cameras under very different
lighting conditions. The area shown in the bottom images was acquired
with a high-resolution camera. Small details such as the doorknob were
reconstructed.

with about 100 CPU cores. When binary coded, the overall model has a size of more
than 5 GB. Fig. 7.8 shows the larger parts of the model to illustrate its completeness.
The level of detail obtained depends on the individual surface parts. In particular,
the distances to the cameras and the image resolutions have an effect on the surface
quality. The details at the front of the building show the general power of image-
based 3D modeling (cf. Fig. 7.9). It is clear that the quality strongly differs as parts
are captured from lower-resolution cameras at a larger distance. Despite the strong
radiometric differences, which are clear from Fig. 7.9, the surface is complete, and even

95



Chapter 7. Evaluation and Validation

very small details were obtained.

A typical problem for this kind of configuration arises from images from the ground
with an untextured background from the sky. On the border of the sky, ghost surfaces,
which are very smooth and hence not classified as outliers, can appear in the disparity
map. This problem is discussed further in Section 8.3.

7.3. Multi-Resolution

The multi-resolution method described in Section 6.2 allows for an efficient fusion of
spatial data with varying quality (KUHN et al. 2013). Additional to the fusion of noisy
data, it is important to filter data with a lower quality. Octrees allow for the process-
ing and representation of spatial data on different levels depending on the quality of
the measurement. A multi-resolution representation is also suitable for 3D consistency
checks. The results provided in Section 7.2 already show the successful processing of
data with varying spatial quality. Nonetheless, it is useful to discuss a multi-resolution
fusion in more detail.

A characteristic image configuration leading to highly differing qualities contains vary-
ing distances to the object (cf. Fig. 7.10 (left)). The error model from Eq. (5.14) shows
that the error increases quadratically with the distance. The images are acquired from
the same object as the Unikirche dataset, but in a different configuration. The 54 images
show only the front of the building at varying distances. During the multi-resolution
reconstruction, only the highest-quality data in the specific areas is considered. The
surface maintains small details such as the hinges and the hook.

Figure 7.10.: Textured and shaded 3D model reconstructed from 54 images (left col-
umn). The images were captured at varying distances to the object. The
multi-resolution method retains only the best qualities during the 3D sur-
face reconstruction. The largest voxel is about 200 times larger than the
smallest.
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For a further visual inspection, the Ettlingen data from STRECHA et al. (2008) were
all processed into a single model. It consists of the Ettlingen10, Ettlingen30 and Et-
tlingenFountain datasets. To this end, the images from Ettlingen10, Ettlingen30, and
EttlingenFountain were all registered using the method presented in Section 2.2.1. The
resulting configuration consists of qualitatively varying data, as the distance to the ob-
jects differs by a factor of around 20. The resulting 3D model is shown in Fig. 7.11. The
surface area above the fountain (left-redbox) combines high-quality parts derived from
the fountain sequence and lower-quality parts generated from the Ettlingen30 sequence.
The method described in this thesis also allows for a complete and consistent modeling
in the border area at different resolutions.

Figure 7.11.: Result from the Ettlingen datasets. The image shows a combination of
the Ettlingenl0, Ettlingen30, and EttlingenFountain images in a single
model. The region to the right of the fountain shows a transition between
very different resolutions (cf. also zoomed-in in the right — top: low versus
bottom: high).

Another multi-resolution approach was presented by FUHRMANN and GOESELE
(2011). As with the fusion method, one particular difference between their method
and the method presented in this thesis is the choice of the octree depth for fusing sim-
ilar data (cf. Section 6.2). Fortunately, an implementation of this method is available
for a direct comparison. Experiments show, that this implementation does not allow
data to be processed with extremely varying distances, e.g., the image set shown in the
Results chapter (cf. Fig. A.3). For the model given in Fig. 7.11, the results look rather
similar. Hence, the extension of the probabilistic fusion method introduced in this thesis
has to be discussed in further detail.
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7.4. Probabilistic Fusion

In Section 4.3, a novel probabilistic framework for the fusion of spatial data is presented.
This framework allows for a derivation of surface probabilities also for the case of dis-
parity map fusion (cf. Section 5.3). To this end, the framework from CURLESS and
LEVOY (1996) for the linear fusion of cumulative distance functions is probabilistically
interpreted to derive surface probabilities. Furthermore, a novel Bayesian fusion method
considering Gaussian uncertainty is devised. The derived surface probabilities can be
used for filtering local outliers by means of geometric consistency checks.

CURLESS and LEVOY (1996) proposed a linear weighting function that penalizes sur-
faces lying behind the measurement, i.e., the estimated disparity (cf. Fig. 4.2). In this
thesis, a binary weighting is used, which only considers values near the measurement.
This is probabilistically sound and reduces the memory requirements because less voxels
have to be processed.

The probabilistic fusion is modified in two ways: a Gaussian uncertainty is assumed
instead of uniform uncertainty and a Bayesian fusion of surface probabilities is used
instead of a weighted sum. In this section, the extensions are qualitatively evaluated
on several datasets through a visual comparison. The EttlingenFountain and Herzjesu8
datasets are not really suitable at all, because they consist of rather simple image con-
figurations capturing well-textured surfaces. Nonetheless, for these datasets a numerical
evaluation is feasible and small parts of the scene are captured from difficult perspectives.

One crucial improvement, rendered possible by obtaining surface probabilities, is the
potential to filter outliers in 3D space. In Section 5.4, a ray tracing based filtering
method is presented, which has been extended for local filtering. This prohibits outliers
disturbing the surface, which is necessary because a large amount of outliers tends to
appear near the surface. Single outliers, or small clusters of outliers, can be disregarded
later in the meshing. In all experiments, small islands of less than 100 triangles were
filtered.

To compare the competing methods, it is important to make use of sound imple-
mentations. The implementation from FUHRMANN and GOESELE (2011) is used for
the evaluation of the probabilistic filtering method. FUHRMANN and GOESELE (2011)
extend the method by CURLESS and LEVOY (1996) by a multi-resolution approach.

For complex camera configurations, such as shown in Fig. 7.12, multiple outliers ap-
pear in the 3D point cloud derived from the disparity maps generated by SGM. For the
evaluation, the images had to be downscaled by a factor of 4 because the implementa-
tion from FUHRMANN and GOESELE (2011) is very memory intensive, and even 180 GB
was insufficient for half-resolution images. Furthermore, this implementation does not
allow for sequential or parallel processing. A comparison of the two 3D surface models
generated from the same image size shows the progress made by probabilistic filtering in
3D space (cf. Fig. 7.12). The ghost surfaces, e.g., on the roof and around the balconies,
were successfully filtered through probabilistic geometric consistency checks.

The same tendency is evident when comparing the results for the Middlebury data
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Figure 7.12.: Top: The registration (left) and four of 112 images with 10 MP reso-
lution capturing a building (right) are shown. The building is acquired
from strongly varying perspectives leading to outliers, particularly near
surfaces. Bottom-left: 3D surface model resulting from the method by
FUHRMANN and GOESELE (2011). Bottom-right: Probabilistically filtered
3D surface model as presented in this thesis.

(SEITZ et al. 2006). The image configurations of Temple and Dino are to that effect
complex because the objects are captured from varying perspectives. In particular, the
sparse and ring image sets create ambiguous surfaces (cf. Fig. 7.13).

Looking at Figs. 7.12 and 7.13, it is clear that probabilistic filtering is very suitable for
3D surface modeling from complex configurations. Nonetheless, in addition to outlier
elimination, the fusion of noisy data considering the quality of the surfaces has also to

99



Chapter 7. Evaluation and Validation

Figure 7.13.: Top: Results of the method presented in this thesis. Bottom: Results of the
method by FUHRMANN and GOESELE (2011) based in the same disparity
maps. From left to right: DinoSparseRing, DinoRing, TempleSparseRing,
and TempleRing.

be discussed in terms of accuracy and completeness.

It is of particular importance to evaluate the reinterpretation of error modeling and
fusion theory. CURLESS and LEVOY (1996) showed that a weighted mean fusion of linear
cumulative distance functions is optimal in the sense of least squares. For this, Gaussian
uncertainty and uncorrelated data are assumed. In Section 4.2, it is shown from a
probabilistic perspective that the fusion can be interpreted as a fusion of correlated data
that are uniformly distributed. From a probabilistic perspective, a novel framework was
presented that fuses uncorrelated Gaussians by means of the Binary Bayes Theory.

For a numerical evaluation, the EttlingenFountain and Herzjesu8 sequences are suit-
able because ground-truth data from LIDAR measurements are available (cf. Sec-
tion 7.1). However, for a special configuration with locally similar camera poses and
well-textured objects, only a small increase in quality can be shown. As done by the
evaluation by STRECHA et al. (2008), which is unfortunately no longer available, for all
image pixels, the depth derived from the obtained 3D model is compared against the
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ground truth. To this end, rays are cast from the images to the model and the ground
truth. The distance between the intersecting points corresponds to the absolute error
of the surface. In the areas where ground truth is available, the unsigned distance is
measured and presented as cumulative functions. An analysis of the signed distance
function is not meaningful because all rays are cast from the sensor leading to negative
error distances only for multiple surfaces.

In the original evaluation, the absolute error is compared considering the estimated
uncertainty of the LIDAR data. Because this information is not publicly available,
the absolute error in meters is evaluated in this thesis. To avoid the consideration of
incorrect laser data, a template is provided to filter poor correspondences. The templates
and error maps for one view for both datasets are shown in Fig. 7.15.

First, the method presented in this thesis is numerically evaluated against the method
by FUHRMANN and GOESELE (2011). The resulting 3D surface models for the Ettlin-
genFountain and Herzjesu8 datasets are given in Fig. 7.14. The EttlingenFountain and
Herzjesu8 datasets are not very suitable for showing the improvements obtained by the
method presented in this thesis. Nevertheless, it is evident that difficult areas are more
completely reconstructed. This holds, e.g., for the side of the fountain and the walls to
the left, above, and right, because these areas are only captured in a non-fronto-parallel
manner. The right wall area is not considered in the numerical evaluation because no
ground-truth data are available (cf. Fig. 7.15). In addition, difficult areas on the side
from the Herzjesu8 dataset are reconstructed well using the method proposed in this
thesis.

One advantage of the method proposed in this thesis is that the 3D surface of the
EttlingenFountain consists of only 17 Million triangles, whereas the 3D surface of the
competing method is made up of 51.8 Million triangles. For the Herzjesu8 models, the
difference in size of the data is even larger as it differs by a factor of 10 (3.5 Million - 33.1
Million triangles). Nonetheless, the larger model visually does not give the impression
of being more detailed. Hence, the voxel size chosen based on the error model seems to
be more suitable.

To compare the qualities statistically, the unsigned cumulative errors of both models
are shown in Fig. 7.16. It is clear that the method presented in this thesis is more
complete in the low-quality areas, because the unsigned distance function reaches a con-
sistently higher value. In the high-quality area, both methods show virtually the same
results. However, this may be due to the ground-truth quality, which is unavailable, not
taken into account. It also has to be considered that the EttlingenFountain and Herz-
jesu8 datasets are not really complex. Furthermore, the method from FUHRMANN and
GOESELE (2011) takes also global tetrahedralization into account that limits the scala-
bility.

It is important to evaluate the reinterpretation of the fusion method in detail, because
the results from Fig. 7.16 may also depend on the implementation and further extensions
developed in this thesis, e.g., the TV based disparity error classification. To this end, the
EttlingenFountain and Herzjesu8 datasets are again numerically evaluated against the
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Figure 7.14.: 3D models from the EttlingenFountain (top) and Herzjesu8 (bottom)
datasets. Left: 3D surface obtained by the method proposed in this thesis.
Right: 3D surface generated using the method by FUHRMANN and GOE-
SELE (2011) based on the same disparity maps. The quality looks similar
besides in difficult areas such as at the marked side (red box) of the foun-
tain. Because the method proposed in this thesis takes into account the
quality of non-fronto-parallel planes, difficult areas can be reconstructed.
The surfaces contain varying numbers of triangles: 16990310 (left) and
51796108 (right) for EttlingenFountain and 3462399 (left) and 33067030
(right) for Herzjesu8. In spite of the large number of triangles, the surfaces
on the right do not appear to be more detailed.

ground-truth data, but this time using the same implementation described in this thesis.
Three surface models were generated based on the linear function and the mean fusion,
as proposed by CURLESS and LEVOY (1996), a Gaussian function with mean fusion,
and a Gaussian function with Bayes fusion. The uncertainty of the linear function is

102



Chapter 7. Evaluation and Validation

Figure 7.15.: Coded errors of the EttlingenFountain (top) and Herzjesu8 (bottom) sur-
faces from Fig. 7.14 (left, this thesis; right, (FUHRMANN and GOESELE
2011)). The white pixels correspond to more accurate surfaces than black
pixels. The red pixels were not reconstructed, and no ground truth is
available for green pixels.

considered as 20, i.e., p(—20) = 0 and p(20) = 1 (cf. Fig. 2.7). The unsigned cumulative
distance functions are shown in Fig. 7.17.

For both datasets, the Bayesian Fusion assuming Gaussian measurements provides the
best results in terms of the accuracy and completeness. The assumption of a Gaussian
instead of a uniform distribution and Bayes fusion instead of a weighted mean, lead
to small but significant improvement. To obtain a consistent spatial fusion of multiple
disparity maps, the correlated and uncorrelated data should be distinguished. Com-
paring the evaluation to the implementation from FUHRMANN and GOESELE (2011)
(cf. Fig. 7.16) the graphs in Fig. 7.17 confirm the results. The further progress shown in
Fig. 7.16 is due to further extensions presented in this thesis concerning the error model
and dynamic disparity error.
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Figure 7.16.: Unsigned error graph for the EttlingenFountain (left) and Herzjesu8 (right)

completeness

datasets obtained from Fig. 7.15. The method proposed in this thesis
(blue) shows higher completeness than the method by FUHRMANN and
GOESELE (2011) (green), which results from the former method’s recon-
struction of difficult areas.

0.75¢ 0.75¢
8 ~
2 ,
o
[0}
0.5¢ @ 0.5
Q.
—Gaussian + Bayes g
Gaussian o i
—Linear —Gaussian + Bayes
0.25F 0.25- Gaussian
—Linear
% 0025 005 0.075 0.1 % 0025 005 0.075 0.1
distance [m] distance [m]

Figure 7.17.: Unsigned error graph considering linear, Gaussian, and combined Bayes

Gaussian fusion. The novel fusion method obtains the best quality in
terms of the accuracy and completeness. The stepwise improvements when
considering Gaussians and Bayes fusion are small but significant. The
linear fusion results in the worst level of accuracy. Left, HerzjesuS8; Right:
EttlingenFountain.

7.5. Disparity Uncertainty

For the estimation of the disparity maps from multiple image pairs, SGM is used in
this thesis (cf. Section 5.1). In spite of the term "semi-global", SGM is considered
a global estimation method, because the disparities are optimized on paths over the
complete image. Global stereo methods allow for disparity estimation in weakly textured
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regions as prior information from the neighborhood are considered. For the cost, the
intensity gradient in the images is considered. Furthermore, SGM has a fronto-parallel
bias because differences between neighboring disparities are penalized. The quality of the
disparity can thus be very different, and has to be considered in the fusion of disparity
maps.

In this thesis, a feature that is highly correlated with the disparity error is provided.
This feature is defined based on the local oscillation behavior and leads to 20 classes.
Considering a varying disparity quality allows for an improved local depth fusion, e.g., for
the varying perspective and strength of the texture. The relationship between the quality
classes and the disparity error is learned using ground-truth data (cf. Section 5.3.3).

The error per class is described by the standard deviation of the disparity error ranging
from a one-quarter pixel to several pixels. This uncertainty is then considered based on
the mean of the error propagation for the stereo model (cf. Section. 5.3.1).

In the following paragraphs, a dynamic disparity error is evaluated against the fusion
using a static disparity error with an assumed standard deviation between 0.5 and 4
pixels. The Ettlingen30 dataset is well suited for visually demonstrating a dynamic
disparity error because the images have a varying perspective and texture with different
strengths. There are two main problems in particular concerning the disparity in quality:
a lack of texture owing to the white walls, and a slant to the surface producing increased
uncertainties because of the fronto-parallel bias of SGM. In both cases, the TV prior
weights the textured and fronto-parallel planes highly. From Fig. 7.18, it is clear, that
the TV-derived standard deviation leads to the best quality. This is true for areas
with many details, comparable to those areas with a standard deviation 0.5 or 1, and
concerning completeness, it is similar to the model with a standard deviation of 4.

The runtime of the fusion process is about 10 minutes. Together with the depth
estimation (20 minutes) and meshing (5 minutes), the overall runtime is 35 minutes.
The reconstruction space was split into hundreds of subspaces that were computed in
parallel on a cluster with about 100 cores.

The dynamic disparity error based on TV is especially suitable for complex image
configurations with varying perspectives of the cameras and a lack of texture in the
images. Unfortunately, the image sets available for a numerical evaluation do not show
these difficulties at all. In spite of this, for the sake of completeness, the dynamic
disparity error classification is numerically compared to static disparity errors based
on the Herzjesu8 and EttlingenFountain datasets. A statistical evaluation of the five
differing models with an assumed error between 0.5 and 4 pixels and the T'V based error
is shown in Fig. 7.19.

As expected, the TV-based disparity error is best in terms of the overall completeness
for both datasets. For the Herzjesu8 dataset, the TV-based disparity error also leads to
the highest accuracy. For the TV-based solution, the EttlingenFountain dataset shows a
small loss in accuracy compared to a constant uncertainty of ¢ = 2 and ¢ = 4. However,
although it cannot be proved, it is thought that the evaluation results would differ in
the high-resolution parts, as evaluated based on the sensor noise from the ground truth,
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Figure 7.18.: The three boxes show parts of the model derived from the Ettlingen30
dataset. From left to right and top to bottom of each box: models con-
sidering assumed standard deviation of: 0.5, 1, 2, and 4, and the TV and
textured TV models. The TV solution is best in both completeness and
accuracy.
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Figure 7.19.: Unsigned error graphs for the EttlingenFountain (left) and Herzjesu8
(right) dataset. The five graphs show the errors for the models when as-
suming a constant uncertainty in the disparity error (0.5 to 4 pixels) and
TV-based variable disparity error.

which is unfortunately not publicly available.

For the sake of completeness, an evaluation on the Middlebury multi-view benchmark
is also conducted. The datasets are not suitable for showing the strength when con-
sidering different disparity qualities because the objects do not have a variable texture
and the perspective is simple. However, the evaluation (cf. Table 7.1) confirms the idea,
derived from the visual results, that the TV results are the best in terms of accuracy,
and are generally the best in terms of the completeness. The models with a TV prior
therefore combine the details with completeness.

Temple TempleRing TempleSparse
acc. | 0.55/0.54/0.57/0.73/0.51 | 0.62/0.6/0.79/1.86/0.6 | 0.6/0.59/0.76/1.75/0.56
compl. | 85.1/95.6/97.5/95.7/97.4 | 92.9/96.3/92.9/69.4/95.5 | 79.0/84.7/86.3/68.9/84.8
Dino DinoRing DinoSparse
acc. | 0.45/0.43/0.41/0.46/0.42 | 0.52/0.47/0.49/0.77/0.42 | 0.57/0.52/0.48/0.75/0.42
compl. | 61.4/94.8/97.6/98.7/97.3 | 89.4/94.9/97.1/94.2/94.4 | 80.9/89.6,/93.0/91.1/88.9

Table 7.1.: Evaluation of Dino and Temple with o = 0.5/1/2/4/TV concerning accuracy
and completeness. The best value of the individual dataset is marked in bold.
In general, the TV results are the best in accuracy and close to the best in
terms of the completeness.
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7.6. Registration Uncertainty

The image registration method presented in Section 2.2.1 allows for an estimation of
the variances and covariances of the camera parameters. When ignoring the inner pa-
rameters, the influence of the registration uncertainty on the uncertainty of a 3D point
can be described using a non linear equation system. Unfortunately, there is no simpli-
fied description of the influence of n cameras on a 3D point available. Nonetheless, the
covariance information for the registration can be considered as error propagation can
be solved numerically for all pixels. As shown in Section 5.3.2; this is computationally
complex, because large matrices have to multiplied. Furthermore, the Jacobian has to
be estimated numerically for all 3D points based on the error propagation depending on
the image configuration.

The error propagation described in Section 5.3.2 considers covariance matrices for all
cameras employed in the stereo matching. The covariance matrices are used to describe
the uncertainty of the absolute camera pose in a global coordinate system. Yet, the
3D points obtained by SGM from only a small part of the image set can have a high
relative but a low absolute accuracy. Nonetheless, error propagation of the 3D points
considering absolute registration uncertainty can be suitable for quality assurance. E.g.,
for applications like navigation global uncertainty information for surfaces is of high
importance. Considering the covariance matrices for relative poses of camera pairs would
also be suitable even for improving the disparity quality, but is beyond the work of this
thesis.

The runtime increases considerably, to about ten-times the runtime without consid-
ering the registration uncertainty. Considering, i.e., five cameras that influence a single
3D point a 30 x 30 overall covariance matrix is used for the propagation by Eq. (5.19).
Because the calculation of the uncertainty is pixelwise independent and mainly consists
of matrix operations, it is also suitable for a multi-core implementation on a GPU. The
propagation of points can even be substituted by the more efficient propagation of point
clusters with similar parameters.

In Fig. 7.4 areas are shown with inconsistencies of the surfaces caused by the reg-
istration errors. The corresponding image set was also processed by propagating the
registration uncertainty. The univariate error as described in Section 5.3.2 (cf. Fig. 5.6)
has been employed and the resulting error is used for the choice of the voxel size as
described in Section 6.2.

Fig. 7.20 shows the same part of the scene as Fig. 7.4 but with consideration of regis-
tration uncertainty. The inconsistent areas are regularized by means of the registration
uncertainty leading to smooth and consistent surfaces. However, because the images are
from various perspectives and there is a corresponding highly propagated uncertainty,
the small details are lost, i.e., it is not suitable for high-quality surface reconstruction.
Nonetheless, the processing is interesting to obtain a global consistent surface.

Hence, it is not recommended to use the registration uncertainty in the 3D fusion
process directly. For large uncertainties that exceed one pixel, the disparities will be
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Figure 7.20.: This image shows the same part of the model shown in Fig. 7.4. The
registration error was successfully used for regularization because the roof
is not hard-edged any more. In addition, the ground is smoothly recon-
structed. Because of the large number of images, the resolution is much
lower, creating a high loss of accuracy.

filtered out in the fusion of the disparity maps for a single camera. It may be more
suitable to consider the information in the stereo matching. This is especially true for
relative uncertainties of camera pairs. Nonetheless, application dependent it can be
important to obtain global consistent information for all surface parts.

7.7. Scale Space

Scale Space theory (cf. Section 6.3) is not the focus of this thesis. Nevertheless, it is
important because the multi-resolution approach deals with data with varying quality
at different levels. The adaption of scale space methods is described in Section 6.3
proposing two ideas: the propagation of multiple scale disparity maps, and a simple
probability regularization of neighboring octree levels.

Propagation of disparity maps from multiple scales is advantageous, because by mak-
ing use of that a surface might be textured differently well at different scales can lead
to a more complete disparity map, particularly due to the disparity maps from lower
resolutions. For a numerical evaluation of the possible quality improvement, the datasets
EttlingenFountain and Herzjesu8 were again used. In contrast to the standard fusion, in
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addition to the disparity map derived from images downscaled by a factor of 2, disparity
maps derived from images of the original size and downscaled by a factor of 4 were
propagated.

It is important to note that SGM filters disparities that do not comply with the left
right check: these disparities were filtered, which have a difference of one pixel or more.
Hence, the disparity maps are generally more dense in the downscaled disparity maps.

Fig. 7.21 shows an unsigned graph describing the errors for the individual disparity
maps, and the results, considering all disparity maps, in a single fusion process. Using
the disparity maps with a downscaling factor the surface quality is best in terms of com-
pleteness, but worst in terms of accuracy. The disparity maps of the original size should
be the best when concerning the accuracy. Unfortunately, this cannot be evaluated using
the given ground truth because the accuracy for the most detailed area is below lem
and there is no uncertainty information for the ground truth. The multiscale approach
reached the best quality in terms of completeness, and most likely the best quality in
terms of accuracy (cf. Fig. 7.22).
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Figure 7.21.: Unsigned error graphs for the Herzjesu8 (left) and EttlingenFountain
(right) dataset. The graphs show the errors in the models obtained from
the disparity maps from downscaled images, and the model considering
all scales. The combination shows a similar level of quality as the best in
terms of accuracy and completeness, but is slightly more complex compu-
tationally.

Scale space processing can improve both the resulting accuracy and the completeness.
Such improvements are usually not very high, but the runtime falls quadratically for
each level of resolution. Half the resolution leads to one-quarter of the time required
for disparity map estimation. Depending on the application, this overhead may be
acceptable.

For the probability regularization of the neighboring octree levels, considering
Eq. (6.4), it was found to neither improve nor decline the numerical evaluation of the
EttlingenFountain and Herzjesu8 datasets. In addition, only marginal differences were

110



Chapter 7. Evaluation and Validation

7
|

4

Figure 7.22.: Left two columns: shaded and textured surfaces from multiple disparity
maps. Right two columns: shaded and textured surfaces from disparity
maps derived from images downscaled by a factor of 2. Top: Small area of
the Herzjesu8 surface model. Bottom: Small area of the EttlingenFountain
surface model. The left surface shows finer details in certain areas.

detected through a visual comparison. Scale space approaches considering multiple scale
measurements will be suitable during the filtering steps. Although, the progress seems
to be slight and the theory is complex. Nonetheless, further research would be suitable
to guarantee a better stability.
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Chapter 8.
Summary, Conclusion, and Future Work

The ultimate goal of this thesis is scalable high-quality 3D surface reconstruction from
large image sets. Towards a solution for this goal, five extensions of existing state-of-
the-art methods have been presented:

1. A local Divide and Conquer procedure for unlimited scalable 3D reconstruction,
2. Probabilistic interpretation and extension of a volumetric fusion,

3. Statistical estimation of the disparity uncertainty;,

4. Probabilistic filtering of spatial data,

5. Multi-resolution scheme considering sound error models.

In this chapter, an overview, a summary, and some concluding remarks of the thesis
are given. In Section 8.1, an overview of the 3D reconstruction pipeline is presented
emphasizing the contributions of this thesis. In section 8.2, the five main extensions
presented in this thesis are summarized and some concluding remarks are given. Finally,
in Section 8.3, a look into possible future work for the 3D reconstruction pipeline is
provided.

8.1. Processing Chain

For the development and evaluation of the methods presented in this thesis, a processing
chain was defined for 3D surface reconstruction from image sets. This chain is illustrated
in Fig. 8.1, and a brief description is given below. In particular, the contributions of this
thesis in terms of its individual steps are emphasized.

1. Image Registration is concerned with an estimation of the camera poses and
possible inner parameters (cf. Section 2.2.1). It was used in some of the experiments
described in Section 7, and numerical error propagation considering the parameter un-
certainty has been derived in Section 5.3.2.

2. Stereo Matching is about the estimation of pixelwise disparities considering
the known camera poses. SGM was used for the experiments and quality estimation
derivation described in this thesis (cf. Section 5.1).

3. Quality estimation for the disparities is an important novelty of the method
described in this thesis. Feature classes based on the TV were defined in Section 5.3.3,
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Figure 8.1.: Process chain of the 3D reconstruction method described in this thesis:
1) Image registration, 2) Stereo Matching using SGM, 3) quality estimation
for disparities, 4) generation of a probabilistic space !, 5) point optimization
considering the probabilistic space, 6) filtering of the outliers in the point
cloud, 7) triangulation of the point cloud. Steps 3 through 6 are the main
focus of this thesis.

which are highly correlated with the disparity uncertainty. The correlation function
was statistically learned from the ground-truth data by the means of machine learning
(cf. Section 5.3.3).

The generated 4. probabilistic space is used for the 5. optimization of the point
cloud. To this end, a novel probabilistic interpretation for the seminal volumetric fusion
method by CURLESS and LEVOY (1996) is given in Section 4.2. The interpretation has
then been used in Section 4.3 to derive a novel Bayes fusion method for spatial data
considering Gaussian uncertainty.

In addition to an optimization of the point clouds, the novel probabilistic fusion allows
for the extraction of surface probabilities. The latter are used for the 6. filtering of
outliers by means of the volumetric ray tracing approach presented in Section 5.4.3.

For the 7. triangulation of the point cloud, a fast local triangulation method was
adapted for connecting points with varying densities, as derived from the volumetric
information (cf. Section 6.4).

In summary, steps 3 through 6 are the main focus and comprise the novelty of this
thesis. To guarantee unlimited scalability, these steps, along with triangulation in step

IThe image of step 4 shows the probabilistic space modeling the ground surface. Blue areas have high
probabilities to be above and red areas to be below the ground.
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7, are conducted on subsets of the reconstruction space. To this end, a Divide and
Conquer strategy was presented in Section 5.2. Because the processing of the subspaces
only employs local optimization for the fusion and triangulation, a simple merging of
the subspaces is possible. For this, the overlap has to be twice the area of the maximum
local optimization area.

8.2. Summary and Conclusion

This thesis presented a Divide and Conquer strategy allowing for unlimited scalabil-
ity and high runtime performance because solutions for subspaces of the reconstruction
space can be computed in a highly parallel manner. The strategy extends state-of-the-
art Divide and Conquer strategies because a purely local optimization is used, allowing
for a simple fusion of the subspaces. Validation on several challenging datasets shows the
potential of this novel approach. In general, local optimization for 3D surface reconstruc-
tion does not produce a surface quality as high as by global optimization. Therefore, in
this thesis, the local optimization was improved through a further deepened analysis of
the spatial error.

The seminal method for volumetric fusion of noisy data from disparity maps by CUR-
LESS and LEVOY (1996) was reinterpreted from a probabilistic perspective. This novel
perspective allows for a derivation of the surface probabilities, which in turn are used
for the filtering of outliers in 3D space considering the geometric consistency. From the
probabilistic perspective, the assumption of Gaussian noise in the depth data was found
to be violated in the original formulation. Hence, the probabilistic fusion of spatial
data requires a novel probabilistic fusion theory. The extended probabilistic framework
considers the propagation of spatial points with Gaussian uncertainty. For the fusion
of uncorrelated data, a Bayes framework was devised, which is particularly suitable for
scalable surface reconstruction because a recursive fusion is possible. This extension was
demonstrated to improve the results in terms of both accuracy and completeness. The
presented framework assumes the existence of uncorrelated data for the fusion, which is
not generally valid for multi-view stereo (MVS) data.

By considering a varying disparity quality that depends on the local oscillation be-
havior in the disparity maps, this thesis provides another means for an improvement of
both the accuracy and completeness of the local methods. To this end, the local oscilla-
tion behavior is measured by estimating Total Variation (TV) classes. The correlation
function between a disparity error and the TV classes was learned from ground-truth
data by means of an Expectation Maximization (EM) approach. In particular, weakly
textured and non-fronto-parallel areas are classified as being of low quality. Considering
the varying quality of the disparities and propagating them into a 3D space employing
sound error models was shown to improve the results on several datasets. The classifica-
tion is especially important for regularization, leading to complete and accurate surfaces
for challenging configurations.
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Furthermore, this thesis extends existing state-of-the-art methods by means of con-
sistency checks in 3D space. The surface probabilities propagated by the probabilistic
framework are used for the filtering of outliers in 3D space. These geometric consistency
checks are particularly suitable to filter outliers close to the surface where they mainly
appear. Filtering outliers far from the surfaces does not comply with an unlimited scal-
ability. These outliers are usually a minority, and can be filtered during the meshing
step by disregarding surfaces with a small number of triangles.

In the fusion, it is important to account for largely varying qualities of spatial measure-
ments, because low-quality points can disturb high-quality points. This thesis provides
a multi-resolution approach for fusing data on different levels employing efficient data
structures. To this end, it extends the state-of-the-art methods by means of a sound
3D error model. Furthermore, error models considering uncertainties of the camera
parameters and aspects of the scale were discussed.

In summary, this novel method is not limited to scalability. The extensions introduced
in the local methods considerably reduce the loss of accuracy. Multiple subareas can be
processed in parallel. It even has high potential for massive parallelization, e.g., using
GPUs. However, this is beyond the scope of this thesis.

8.3. Future Work

There are multiple issues for further improving the quality towards an optimal solution
to scalable 3D modeling.

The assumption of accurately registered images is not always fulfilled. Image registra-
tion leads to uncertainties that are hard to model because error propagation cannot be
described linearly. Considering the covariances of the global camera poses is insufficient
and not directly suitable for high-resolution 3D surface reconstruction. In the stereo
estimation, varying relative uncertainty should be considered because subpixel accuracy
cannot be guaranteed for all regions. As described in Section 5.1, the disparity estimation
by SGM from n image pairs filters and fuses the disparities from the individual image
pairs. Hence, not all covariance information from all cameras influences the individual
disparities. However, experiments have shown that considering only stereo pairs in 3D
also does not improve the quality because the disparity fusion from multiple images is of
high importance for the accuracy of the disparity maps. A possibly promising direction
for further research may be to consider relative covariances of camera pairs in the step
of stereo estimation and disparity fusion.

An extension of the disparity estimation should also scrutinize the fronto-parallel bias.
There are several challenging image configurations with highly slanted surfaces leading
to no or inaccurate surfaces. An adaption of the fronto-parallel bias can improve the
disparity quality. The learning scheme presented in Section 7.5 allows for a classification
of the uncertainty of non-fronto-parallel planes. However, such classification is not used
for the improvement of the quality of the disparity maps. As the quality drops, especially
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for slanted surfaces, it may be helpful to consider a bias for multiple planes with different
directions instead of only the fronto-parallel plane.

The classification of the disparity quality is derived from a variable pixel neighbor-
hood. However, whether the disparities really describe the same surface has yet to be
considered. In certain configurations, stereo matching can obtain spurious results in
border areas of the surfaces (cf. Fig. 8.2) that are not guaranteed to be classified as
low quality. A combined classification of the disparity maps and segmented images may
alleviate this problem. First, progress has been achieved by filtering large segments that
have a sparse disparity density. However, this was not considered in the experiments
conducted for this thesis.

Figure 8.2.: Left: Image from the Unikirche dataset. Middle: Corresponding disparity
map. Right: By means of watershed transform segmented image (MEYER
1992). The outliers of the disparity map at the top of the roof can be
classified based on information from the segmented image.

Within the Bayesian fusion theory for the propagation of disparity maps to accurate
point clouds a very basic assumption are uncorrelated measurements. This is an impor-
tant source of uncertainty because especially MVS data are usually highly correlated.
This is, e.g., due to the use of the same sensor and from deriving the disparity maps from
at least two images. For an algorithmic de-correlation, the cameras can be clustered and
computed independently. Fusing clusters of disparity maps may lead to more accurate
results and at the same time lower runtime because only important spatial data are
propagated in 3D.

The Divide and Conquer approach allows for parallel processing of the model parts,
e.g., on a cluster system with multiple cores. The local optimization of all point clouds
in turn renders parallel processing strategies of the subareas possible. This can even be
done on multi-core units such as GPUs. Owing to the difficult implementation, especially
of the data structures, this was not realized for this thesis, but is regarded as a promising
direction for further research.

Beyond the topic of this thesis there are further 3D modeling problems to be solved.
When allowing for an unlimited number of images, the resulting surfaces can become
extremely large. For mostly smooth objects, the surfaces can be described using a small
fraction of the given amount of triangles. Because this thesis avoids complex fusion
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strategies and employs parallel processing, a reduction of the polygon set should also
employ a local strategy.

This thesis does not deal with the texturization of the surface. Only one color is
assigned to each point and resulting triangle. Particularly after a triangle reduction,
the texturization is of high importance. Due to the possible radiometric and physical
differences within the camera configuration, optimization of the textures can be very
complex. Additionally to the use of different cameras, the images might have been
captured at different times and under varying lighting conditions, the surfaces might
have perspective deformations and the assumption of Lambertian surfaces is often not
fulfilled.
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Results

Figure A.1.: Hall dataset (FURUKAWA and PONCE 2010). The 61 images from a se-
quence were registered and the surface was reconstructed by the method
presented in this thesis. Even small details like the rubbish are maintained
in the 3D surface model. The upper left shows the camera poses and a
sparse point cloud. On the upper right one image of the sequence is shown.
Bottom: The shaded and the textured 3D surface model.
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Figure A.2.: Haus51 model obtained from 112 images with a resolution of 10 MP. 48
images were captured from the ground and 64 from the air by a camera on
a UAV. In contrast to the models shown in Fig. 7.12 this model considers
multiple resolutions of the images as described in Section. 6.3.
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Figure A.3.: Seefeldkirche dataset. 60 images were captured by a camera on a
UAV from varying perspectives focusing on the object. (© DLR Insti-
tute of Robotics and Mechatronics
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Y

Figure A.4.: Partly shaded and partly textured 3D surface model obtained from the
Herzjesu25 sequence. The markers were not taken into account. The 3D
surface model contains small details like the stair railings or the metal bars.
It consists of 32-million connected triangles.
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Figure A.5.: Haus35 Model obtained from 150 images from the ground and an UAV.
The surface is visualized partly textured and shaded. The front areas are

automatically modeled with higher detail depending on the error model.
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Ettlingen30 and EttlingenFountain.

Y

: Combination of Ettlingen10

Figure A.6.

123



Abbreviations for frequently cited conferences and journals

3DV : International Conference on 3D Vision (formerly: 3DIMPVT)

BMVC : British Machine Vision Conference

CVPR : IEEE Conference on Computer Vision and Pattern Recognition

ECCV : European Conference on Computer Vision

EUROGRAPHICS : Conference of the European Association for Computer Graphics
GCPR : German Conference on Pattern Recognition (formerly: DAGM)

ICCV : IEEE International Conference on Computer Vision

IJCV : International Journal of Computer Vision

PAMI : IEEE Transactions on Pattern Analysis and Machine Intelligence
SIGGRAPH : International Conference and Exhibition on Computer Graphics and
Interactive Techniques
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