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Abstract: Various models prescribe precipitation due to phase transitions. On a macroscopic
level the well-known Lifshitz-Slyozov-Wagner (LSW) models and its discrete analogons, so-
called mean field models, prescribe the size evolution of precipitates for two-phase systems. For
industrial tasks it is desirable to control the resulting distribution of droplet volume. While there
are optimal control results for phase-field models and for nonlinear hyperbolic conservation laws,
it seems that control problems for LSW equations and mean field models, including measure-
valued solutions or switching conditions, have not been considered so far. We formulate the
model for this important new control problem and present first numerical results.
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1. MODELS FOR PHASE TRANSITIONS

Phase transitions are an important phenomenon in ma-
terial science. On the one hand phase transitions may
be exploited in order to design a requested material, on
the other hand they may destroy desirable properties of
designed materials. For example, the industrial produc-
tion process of semi-insulating gallium arsenide (GaAs)
requires at the end some additional heat treatment at
high temperatures in order to ameliorate the quality of
the semi-insulator.

One of the challenges is the necessity to guarantee a
mean mole fraction of arsenic (As) in the GaAs wafer of
X0 = 0.500082 within high accuracy, in order to have
the desired semi-insulating behaviour. During this final
heating process unwanted liquid droplets precipitate in the
solid crystal due to misfits and due to supersaturation.
These precipitates influence negatively mechanical and
semi-insulating properties of the crystal. Their elimina-
tion, if possible, is a crucial point for the production of
semi-insulators.

For the modelling of phase transitions various types of
models have been suggested. Sharp-interface models and
phase-field models, where the interface is smeared out
in the latter, capture the spatial structure of a phase
transition, while macroscopic models, like the LSW model
(Lifshitz and Slyozov (1961); Wagner (1961)) or the mean
field model, and BD models (Becker and Döring (1935))
do not. Sharp-interface models, phase-field models and
macroscopic models are continuous diffusion models while
the BD model is an atomic nucleation model. Macroscopic
models may be justified rigorously as homogenization
limits of sharp-interface models or of BD models for small
droplet volume fraction.

We consider a mathematical model that describes the
evolution of the precipitates including surface tension and
bulk stresses on a macroscopic scale. It is obtained by
homogenization of a sharp-interface model, derived from
thermodynamical principles in Kimmerle (2009). We ex-
amine the corresponding control problem. While results
exist for the optimal control of phase-field models, e.g. for
the Allen-Cahn equation (Farshbaf-Shaker (2011a,b)) or
Cahn-Hilliard equation (Hintermüller and Wegner (2011)),
the control of a macroscopic model has not been con-
sidered so far as known by the author. Instead of the
well-established LSW model our model comprises the mi-
crostructure of the crystal within the diffusion process,
mechanical deformations within linear elasticity, and the
fact that droplets with only a few atoms do not behave
like a liquid. The latter is modelled by the introduction
of a minimal droplet volume Vmin > 0. Our model is a
realistic model for phase transitions between liquid and
solid including linear elasticity and is not only restricted
in its applicability to semi-insulating GaAs.

We focus on the homogeneous version of this generalized
LSW model, corresponding to the dilute scaling of droplet
volume fraction. In the homogeneous LSW model the bulk
is in quasi-static diffusion equilibrium. Different regimes
for the motion of free boundaries, as volume-diffusion-
controlled or interface-reaction-controlled interface motion
can be considered. We assume homogeneous precipitates,
i.e. the mass density and concentrations within the precip-
itates are constant.

2. CONTROL PROBLEM

We look for regimes, where for large times either only
a few droplets, as small as possible, survive or where a
homogeneous distribution νt(V ) of the droplet volume V



may be achieved at a given final time tf . This motivates
the cost function

J(u1, νtf ) = ‖u1‖2L2(t0,tf )
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where the positive weights αk, 1 ≤ k ≤ 3, may be
chosen in principle as needed within the application. Note,
that the integral terms are evaluated at the end point
tf and only the control cost depends on the whole time
interval (t0, tf ). A natural parameter control is provided
by physical quantities like temperature u1 or pressure.
An initial control is provided by the total mass M and
the total arsenic N1 = MX0/m1, m1 the molar mass of
As, that are conserved, and, in principle, by the initial
volume distribution of droplets ν0(V ). Since the pressure
yields only a slight correction (Kimmerle (2009)), and it
is not clear whether it is technically possible to influence
precisely the initial distribution of droplets, we focus on
the total mass u0 = M and the temperature u1 as control.

2.1 Volume-diffusion-controlled regime

While droplets are parametrized by V , the bulk is
parametrized by a fictive volume V corresponding to the
mean field of the chemical potential. The evolution of the
time-dependent non-negative measure νt(V ), the density
of droplet volume, is prescribed by the LSW equation

∂tνt + a(V , V, u1) ∂V νt = 0 in (Vmin,∞), a.e. in [t0, tf ],(2)

while droplets smaller than Vmin do not exist, yielding

νt(V ) = 0 in [0, Vmin], in [t0, tf ]. (3)

The term a is the so-called Stefan condition, modelling the
balance of mass/substance at the interface, and reads for
the volume-diffusion-controlled regime

a(V , V, u1) = V 1/3µI(V , u1)− µI(V, u1)

X(V, u1)
(4)

with a strictly positive function X, monotone decreas-
ing in V . Here µI(V, u1) is the chemical potential of a
precipitate, strictly monotone decreasing in the volume,
with parameter u1. From a it turns out that the chemical
potential µ = µI(V , u1) is associated to the fictive volume
V and droplets with chemical potential µI(Vi, u1) smaller
as µ grow while droplets with a larger chemical potential
shrink. The function

X(V, u) =
u1
BD

[
ρS(V , u1)

ηS(V , u1)
ηL(V, u1)− ρL(V, u1)

+

(
ρS(V , u1)

ηS(V , u1)
∂V ηL(V, u1)− ∂V ρL(V, u1)

)
V

] (5)

results from the continuity of the flux of mass and sub-
stance over the interface. Note that the mass densi-
ties/concentrations ρL/ηL are evaluated on the liquid side
of the interface, while ρS and ηS are evaluated on the solid

side. BD is a positive constant related to the mobility in
the volume-diffusion-controlled regime.

The corresponding initial condition is

ν(t0, V ) = ν0(V ). (6)

This is coupled to the conservation of mass/substance
yielding an algebraic equation for V by means of the
implicit function theorem,

V = ζ

(
M −

∫∞
Vmin

ρL(V, u1)V dνt(V )

MX0 −m1

∫∞
Vmin

ηL(V, u1)V dνt(V )
, u1

)
in [t0, tf ],

(7)

with a nonlinear, strictly monotone function

ζ(·, u1) =

(
ηS(V , u1)

ρS(V , u1)

)−1
. (8)

The index of the algebraic equation (7) is 1.

Let C := C0
0 (0,∞) and C′ denote its dual space. Our

control problem is to find states

{νt, V } ∈ C0
weak([t0, tf ], C′)× C0([t0, tf ],R), (9)

an initial control parameter

u0 ∈ R+, (10)

and a control

u1 ∈ L∞([t0, tf ],R+), (11)

s.t. the cost functional J , given in (1), is minimized under
respect of the initial value problem for our DAE system
(2) – (8), the pure state constraints,

a) νt(V ) ≥ 0 ∀V ∈ R+
0 ∀t ∈ [t0, tf ],

b) V ≥ 0 ∀t ∈ [t0, tf ],
(12)

and box constraints for the controls
umin,0 ≤ u0 ≤ umax,0,
umin,1 ≤ u1(t) ≤ umax,1 ∀t ∈ [t0, tf ],

(13)

where umin,j , umax,j , j = 0, 1, are given strictly positive
bounds.

Eq. (3) together with (4) implies that we switch from an
ODE to the equation νt(V ) = 0 once a shrinking droplet
reaches Vmin.

2.2 Interface-reaction-controlled regime

In case of the interface-reaction-controlled regime we have
again (2), (3), (6) – (13). We replace (4) by

a(V , V, u1) = V 4/3µI(V , u1)− µI(V, u1)

Z(V, V , u1)
(14)

where the balance of mass and substance at the interface
between solid and a liquid droplet is encoded in the strictly
positive function

Z(V, V , u1) =
u1
BI

ρL(V , V, u1)1/2

[
(µ̃− 1)

−

(
(µ̃− 1)

∂V ρL(V , V, u1)

ρL(V , V, u1)
+ µ̃

∂V ηL(V , V, u1)

ηL(V , V, u1)

−
∂V
(
ρL(V , V, u1)−m1ηL(V , V, u1)

)
ρL(V , V, u1)−m1ηL(V , V, u1)

)
V

]
,

(15)



that is monotone decreasing in V . BI > 0 is a constant
linked to the mobility in this regime and µ̃ is the quotient
of the molar mass of gallium and arsenide.

3. NUMERICAL SOLUTION

3.1 Mean field model

Numerically, we solve our problem by the method of lines.
We consider a special case of our control problem, the so-
called mean field model, where we assume a special initial
condition

ν0(V ) =
1

N0

N0∑
i=1

δV 0
i

(V ), (16)

i.e. we have initially a discrete finite number N0 of distinct
volumes

Vi(t0) = V 0
i ∀i ∈ {1; ...;N0}. (17)

The discrete mean field model amounts to solving our
original LSW equation for a finite number N0 of char-
acteristics.

We introduce another unknown N (t) encoding the number
of droplets at time t with V > Vmin. Precipitates below
Vmin vanish. We introduce tj as the first time when
Vj ≤ Vmin. If a precipitate never disappears, i.e. Vj > Vmin

for all times, then we set tj =∞. For ease of notation we
assume w.l.o.g. V1 ≥ V2 ≥ .. ≥ VN0−1 > VN0

, thus it turns
out that VN0

vanishes first and V1 remains as last droplet.

In this situation our control problem simplifies for both
regimes to the following evolution of precipitates

∂tVi = a(V , Vi, u) in [t0, tf ] \ ∪1≤j≤N0
{tj},

Vi(t+) = Vi(t−) in (∪1≤j≤N0
{tj}) ∩ [t0, tf ],

(18)

for Vi > Vmin, while

Vi = 0 in [t0, tf ], (19)

for Vi ≤ Vmin. Here we keep record of droplets below Vmin,
contrary to our original model, in order not to change
the number of states with time what turns out to be
more suitable for numerics. The ODE system is completed
by the initial condition (17) and the conservation of
mass/substance

V = ζ

(
M − 1

N0

∑N (t)
i=1 ρL(Vi, u1)Vi

MX0 −m1
1
N0

∑N (t)
i=1 ηL(Vi, u1)Vi

, u1

)
in [t0, tf ],

(20)

the so-called mean field formula. The state constraints
read

{Vi}1≤i≤N , V ≥ 0 (21)

and we have the constraints (13) for the controls.

The system (17) - (21), (13) is called mean field model.
Under reasonable assumptions on the data X or Z, and
µI , ζ, ρL, ηL, umin,·, and umax,· we may solve the result-
ing discretized control problem with jumps in the states
and its derivatives, both occurring whenever a droplet
disappears. The numerical results rely on data for GaAs,

Fig. 1. Evolution of 5 droplet radii with initial radii 50
(yellow), 220 (cyan), 320 (magenta), 520 (blue), 590
(green), together with the bulk mean field radius
(red) [10−9 m] vs. time [1 s]. Upper figure: short-
time behaviour (up to 150 s), lower figure: long-time
behaviour (up to 1500 s).

summarized in Dreyer and Kimmerle (2009). Note that the
main influence of the control enters within (5) or (15). We
study in the following the numerical solution in case of the
volume-diffusion-controlled regime.

3.2 Numerical methods

We follow a direct method, meaning optimization of the
discretized control problem corresponding to (17) – (21)
and (13). For the update of the states we use central dif-
ferences. Our optimization algorithm follows a sensitivity-
based approach. This has been implemented in OCODE
1.5, a software code developed by Gerdts (2010).

Eq. (20) has index 1 and if we suppose a suitable initial
condition

V (t = t0) = V 0, (22)

s.t. V 0 fulfils (20), then we may replace the algebraic
equation by an ODE. This explicit ODE for V is obtained
by differentiation of (7) w.r.t. time, and reads

∂tV =
− 1
N0

∑N
i=1 V

1/3
i (µI(V , u1)− µI(Vi, u1))

X (V , u1)(MX0 −m1
1
N0

∑N (t)
i=1 ηL(Vi, u1)Vi)

in [t0, tf ] \ ∪1≤j≤N0
{tj},

(23)



Fig. 2. Control by temperature [102 K] vs. time [1 s]

where

X (V , u1) =
1

ηS(V , u1)

×
(
ρS(V , u1)

ηS(V , u1)
∂V ηS(V , u1)− ∂V ρS(V , u1)

)
.

(24)

After the times tj when droplets vanish we use (20) in

order to determine V (tj+).

We solve our problem by means of

(i) a Runge-Kutta integrator with fixed but suitably
small time step size, where the algebraic equation (7)
has been replaced by an ODE for V ,

(ii) using the DASSL solver, see Brenan et al. (1996),
a) keeping the algebraic equation,
b) replacing the algebraic equation (20) by the ODE

∂tVi = 0 for Vi ≤ Vmin with the initial condition
Vj(tj+) = 0.

The algorithms (i), (ii)a) and (ii)b) solve the original
problem. However, the algorithms (i) and (ii)b) turn out
to run more reliably for large set of initial conditions,
while (ii)a) exhibits occasionally problems determining the
control at switching points. A critical point with (i) is, that
the time step has to be chosen very small for certain data,
since the times, when droplets vanish, have to be located
as precisely as possible in order to avoid propagated errors.
The algorithms based on DASSL turn out to be even
more sensitive to the choice of too large time steps. Hence
we present our results obtained by algorithm (i) in the
following.

3.3 Numerical results

We examine the different contributions to the cost function
and the two controls and discuss their impact on the
solution. For better illustration, we present our results for

radii ri = 3/(4π)V
1/3
i , corresponding to the special case

of spherical precipitates. Fig. 1 shows the time evolution
for 5 droplet radii, together with the fictive bulk radius

r = 3/(4π)V
1/3

, and Fig. 2 presents the corresponding
control. The initial control parameter turns out to be
u0 = umin,0. In Fig. 3 we give the evolution of the volume
fraction, that enters into the α2-term of the cost function,
but at the final time.

Fig. 3. Volume fraction of precipitates 1
N0

∑N0

i=1 Vi(t)

[10−18 m3] vs. time t [1 s]

Our numerics suggest a control of bang-bang type for u1
and that the α3-term, representing the deviation from the
mean droplet volume within the cost functional, has no
impact for large times tf since the mean field V represents
an unstable stationary point for the Vi. We conjecture that
the α2-term is the most controllable contribution within
the cost functional. Furthermore, for sufficiently small time
steps our numerical results seem to be mesh independent.

4. THEORETICAL ASPECTS AND OPEN
QUESTIONS

Besides further numerical tasks, like more efficient algo-
rithms for long-time behaviour e.g. by a suitable finite-
volume discretization for LSW as in Carillo and Goudon
(2001), also from a theoretical point of view the above
stated optimal control problem exhibits very interesting
aspects. The analysis of the classical LSW model with-
out control has been treated in Niethammer and Pego
(2000, 2001). Testing the LSW equation (2) yields a non-
local hyperbolic conservation law in the dual space C.
Within optimal control theory there are several results
(e.g. Colombo et al. (2011); Coron et al. (2010); Shang and
Wang (2011); Gugat et al. (2006); Jacquet et al. (2006)),
for a hyperbolic first-order equation, but as far as known
by the author neither non-local conservation laws involving
measures as states nor systems with switching between an
ODE and an algebraic equation have been considered so
far.

We summarize the main distinct features of our problem.
We have a measure-valued solution (LSW) or switching
conditions (Mean field model), the droplet volume is not
bounded from above, but we do not observe shocks as
they might occur typically due to nonlinearities of the flux
function.

An issue for our optimal control problem is that it de-
pends on the control, how many droplets vanish within a
prescribed final time tf . An adjoint based approach for this
hybrid optimal control is an open question where the dif-
ficulty is due to the switching conditions. Finally, it would
be interesting to consider the control of the inhomogeneous
LSW equation where the equation depends weakly on the
spatial structure, too.



The theoretical issues of the optimal control of LSW-
type models are an important question and are work in
progress. Problems of this type have applications also
within a wider frame, e.g. highly re-entrant manufacturing
systems (Coron et al. (2010)), traffic flow (Benzoni-Gavage
et al. (2006)), two phase flow, gas dynamics, or aerospace
dynamics.
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