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Abstract 

Global Navigation Satellite Systems (GNSS) like the US Global Positioning System (GPS) und the 

European Union Galileo System are the most widely used navigation systems today. GNSS receivers 

are present in nearly every smart phone, in sport watches, car navigation systems, road tolling 

systems and many other devices of daily use. While vehicle navigation systems have entered the 

market already to a large extent, pedestrian navigation gains importance continuously for many 

applications.  

GNSS are radio navigation systems which use satellite signals for positioning and depend on direct 

Line-of-Sight (LOS) to the satellites as well as sufficient signal strength. These signals are already very 

weak even without additional attenuation and under open sky conditions. Inside buildings, problems 

are encountered if: 

 the direct LOS of the satellite signals is blocked by obstacles (Signal blockage) 

 the signals are attenuated strongly, e.g. by construction elements like windows, walls and 

roof (Signal attenuation) 

 interference between the direct LOS signal and reflected signals is present (Multipath) 

 the individual satellite signals are attenuated at different levels, e.g. one direct signal through 

the open window and one strongly attenuated signal through the roof (Near-Far Problem) 

In summary the availability, but also the accuracy of the GNSS receiver’s position solution can be 

reduced strongly inside buildings. Therefore additional positioning sensors and systems are required 

to provide seamless, continuous and precise positioning capabilities to the user. They shall:  

 bridge phases when GNSS is not available (Bridging) 

 aid the GNSS receiver to enable the tracking of even very weak signals (Receiver aiding) 

In this PhD thesis several alternative positioning systems for pedestrians have been evaluated, 

developed and implemented. These systems are: 

 Pedestrian Navigation System (PNS),  a dead reckoning system based on the detection of 

steps, estimation of the step length and determination of the user heading 

 Attitude and Heading Reference System (AHRS), using a MEMS (Micro Electro-Mechanical 

System) type inertial measurement unit (IMU) 

 Magnetometer based heading determination for aiding of the dead reckoning system  

 WLAN received signal strength based proximity positioning system  

 Linearized Kalman filter for integration of all navigation systems and observations  

 Determination of the micro-trajectory, the motion of the user GNSS antenna during a two 

seconds integration interval. The algorithm uses a modified strap-down algorithm, the IMU 

inertial measurements and the a priori knowledge by the calibrated PNS system (position and 

velocity information). 

The high resolution micro-trajectory has been integrated into a flexible software GNSS receiver. The 

receiver uses the user trajectory to form an exceptionally long and precise signal replica of the 

expected GPS and Galileo signals. While conventional high sensitivity receivers often use a replica 

length of up to 20 ms, this system uses a replica length of 2000 ms. The correlation gain of the 

receiver could be increased strongly by this method in comparison to stand alone or commercial 

receivers, and it was possible to track extremely weak GNSS signals in the indoor environment. 

Hence, the integration of alternative navigation sensors and systems provides not only a backup 



solution for bridging GNSS outages, but also improves the availability and the performance of the 

GNSS receiver under (extreme) indoor conditions. 

The capabilities and the performance of the integrated navigation system have been demonstrated 

and evaluated in several test campaigns. Even under harsh indoor conditions the integrated system 

provided continuous and sufficiently precise positioning information to the user. The dead reckoning 

PNS system proved to be especially powerful under indoor conditions because of its highest 

availability and highest relative accuracy. The micro-trajectory reduces the dynamical tracking error 

strongly so that two seconds coherent integration time could be realized. Finally, even very weak 

GNSS signals could be tracked in the indoor environment. 
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2. Motivation 

It is the natural ability, but also the desire of animals and humans, to move from one location to the 

next. The knowledge about the current location, also known as position, as well as the desired 

destination and the directions to that destination determined the fate and the way of life of animals 

and humans for millenniums. Migrant birds have been flying around the globe, salmons have 

returned to their place of birth to spawn, and animals crossed the deserts searching for water and 

nutrition a long time before the human started to journey the world. Their inherited knowledge of 

orientation has been a great inspiration for generations of navigators. 

Since ancient times the number of users of navigation has increased enormously. Navigators used to 

operate with expensive, rare, large and heavy equipment; navigation required highly qualified and 

experienced operators, large data sources, and was therefore limited to a small number of specialists 

and a limited number of applications, like tall sailing ships, later also modern ships and aircrafts. It 

took a very long time to access the so called commercial market, e.g. with car navigation systems and 

hand-held navigation devices for pedestrians. The main driving force for navigation conquering the 

world of almost every individual person was the development of satellite navigation, especially the 

US Global Positioning System (GPS). There are various reasons for the continuous success of Global 

Navigation Satellite Systems (GNSS): 

 The practical need of precise positioning and guidance has never been higher in history. The 

individual mobility, the transportation business stimulated e.g. by the globalization and e-

commerce, recreational outdoor activities, automation, cell phones, and all kinds of location 

based services have raised the practical need for precise positioning, guidance and timing to 

an enormous extent never seen before.  

(GNSS-)Navigation has become widely needed. 

 Today, navigation equipment can be provided to the user, which is exceptionally convenient 

to use. It is not necessary to be an experienced and well educated navigator to use 

commercial navigation equipment. Virtually everybody can use a commercial GPS receiver, 

e.g. in a smart phone or in a handheld GNSS receiver, even without any knowledge about 

how exactly it is working. The equipment is available at a very low price without serious 

market restrictions.  

GNSS Navigation has become convenient, reasonably priced, and available. 

 The accuracy of navigation systems has increased from several nautical miles to the range of 

several meters. Therefore the number of applications has increased dramatically and is still 

enlarged by new applications every day.  

GNSS Navigation has become very accurate. 

Satellite navigation has been used for many years now and a lot of the initial problems could be 

solved. The scientific, but also the industrial focus has concentrated on only a few unresolved 

problems, based on the nature of satellite navigation. One of those unresolved problems is indoor 

navigation, as well as seamless indoor/outdoor navigation.  
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This has several reasons: 

 Attenuation: Since satellite navigation is a radio navigation system, the receiver requires to 

receive a certain signal power level. This signal power level is attenuated strongly by the 

walls, ceilings and windows of buildings. Therefore the receiver may not be sensitive enough 

to receive and process the satellite signals. Details can be found in chapter 18.1, 18.2 and 

chapter 4. 

 Attenuation is limiting the indoor use of GNSS. 

 Signal blockage: Since the satellites transmit on L-band with frequencies beyond 1 GHz, the 

signals are travelling virtually like optical waves. The reception of the primary wave requires 

direct line-of-sight (LOS) to the individual satellites. If a building blocks the signal, the 

receiver cannot receive the direct path signal. 

 GNSS is a Line-of-Sight system and buildings can block this LOS. 

 Reflections and multipath: If the direct line-of-sight (LOS) signal is reflected from solid or 

liquid surfaces, the receiver will likely produce an erroneous pseudorange. This is even more 

the case when the reflected wave interferes with the original LOS signal (multipath). Since 

the receiver is determining the current position from the measured pseudoranges, the 

determined position and its accuracy is likely to be deteriorated. 

 Multipath deteriorates GNSS positioning accuracy. 

 Near-far problem and receiver dynamics: GPS and Galileo, as well as the next generation of 

GLONASS and the Chinese Compass/Beidou system use code-division-multiple-access 

(CDMA) as multiplex algorithm. The codes used by the different satellites provide a certain 

degree of cross-correlation separation, which is sufficient for open sky operations. However, 

inside buildings, different LOS paths can result in very different attenuations of the individual 

signals. In [18] it is shown that these attenuations can reach values of 30dB and more. If one 

signal travels through a highly attenuating wall while a second one can enter through a 

window with practically no attenuation, the receiver dynamical range may be overstressed. 

In addition to that, cross-correlation becomes a serious threat since the cross-correlation 

with other satellite signals may reach the same amplitude as the auto-correlation of such 

weak signals. Separation of the individual signals as well as keeping track of them in the 

tracking loops becomes difficult. 

 Individual signal attenuation may stress the GNSS receiver's dynamic. 

 Seamless navigation capabilities: As mentioned before, indoor and outdoor scenarios are 

very different in their properties. In contrast to other navigation tasks like ship or aircraft 

navigation, pedestrian users will frequently enter and leave buildings with various degrees of 

indoor environments. Single source navigation systems might become unstable or will not 

provide positioning information under these circumstances. If GNSS cannot be used, other 

positioning techniques like e.g. WLAN or dead reckoning positioning might be by integrated 

devices like cell phones. An integrated pedestrian navigation system is supposed to work 

seamlessly indoors and outdoors. 

Seamless indoor/outdoor navigation requires a robust navigation system suite which 

provides continuous and stable positioning to the user. 
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A perfect navigation platform for pedestrian users should be able to provide position information to 

the user in all kinds of environments and at any location in the world. For the case of GNSS this 

means that a receiver should be able to acquire and track GNSS signals also under adverse indoor 

signal conditions. But there is also the possibility to use other sensors or a suite of navigation sensors 

to provide ubiquitous positioning, bridging gaps of GNSS, GNSS receiver aiding or similar assistance 

to the user and the navigation system. 

It is the goal of this thesis to provide contributions to the task of seamless indoor/outdoor 

positioning for pedestrians, evaluating and using various different navigation sensors and techno-

logies, as well as describing innovative algorithms for sensor fusion while using a sensor suite of 

several state of the art indoor positioning sensors.  
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3. Introduction 

Pedestrian users have special requirements regarding navigation and navigation systems. They 

require consistent, precise and ubiquitous positioning, no matter if positioning is performed 

outdoors or indoors, or even in mixed scenarios. Pedestrian navigation has been performed for ages, 

using the stars, the sun, the compass and most probably many other navigation aids. The user was 

required to have at least some experience in navigation and was limited by many influences, e.g. bad 

weather conditions or the availability of maps. GNSS was a quantum step in pedestrian navigation, 

since GNSS receivers allowed worldwide, precise and reliable navigation at low cost, even for users 

without experience in navigation. GNSS offers relatively high accuracy, precise positioning and 

timing, worldwide coverage and weather independent operation using an inexpensive, small size 

device. However, several aspects limit the use of GNSS, especially for pedestrians. Major limitations 

are the dependence on line-of-sight (LOS) to the satellites, and the weak signal power in combination 

with attenuations, reflections, interference, near-far problems, jamming and many more. As a result, 

a powerful pedestrian navigation system cannot rely only on GNSS. It must be noted that practically 

all other navigations systems have limitations, too. Hence, a combination of various navigation 

instruments and systems, with GNSS being the major element of it, seems most promising. 

3.1 Overview 

Pedestrian navigation is not an entirely new subject, since for centuries human beings have travelled 

and navigated “manually”. Like in other navigation applications they used dead reckoning as well as 

position fix systems to find their position relative to their target. For dead reckoning, e.g. a compass 

to derive heading, a watch to measure time and an estimated average walking speed could be used. 

For position fixing, a map comparison between an available map and the travelled trajectory, 

landmarks and geometric road comparison could be used. And, finally, local persons with knowledge 

of the area could be asked. As with every navigation application, the accuracy and the reliability of 

the navigation solution could vary strongly. Nevertheless, automatic positioning for pedestrian 

became possible only after the development and miniaturization of the US Navstar GPS system. GPS 

truly revolutionized the personal navigation and applications can be found in nearly every cell phone, 

especially the smart phones, today.  

If navigational aspects of the pedestrian user are analyzed, many aspects appear unusual in 

comparison to other navigation applications, like the low velocity, the strict ground based motion 

constraint and often unpredictable operation times. In contrast to applications like ship or aircraft 

navigation, the pedestrian user faces many situations where open sky conditions can be, but are not 

necessarily met. In contrast to applications like tunnel construction or submarine navigation, the user 

navigates in very different environments, which can change very fast and arbitrarily, the use case 

cannot be predicted in this respect. The pedestrian user can face pure open sky conditions, limited 

sky view with high walls or trees limiting the view, and indoor scenarios with totally blocked sky view 

within only seconds. This has a major impact on the usability of several navigation devices, especially 

when satellite navigation is used. 

At first it must be noted that the major parameters for pedestrian navigation systems are not 

different from other applications, and the individual performance of a pedestrian navigation system 
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varies with the environment and the situation of use. A pedestrian navigation system has generally 

the same categories of parameters to judge the quality of operation, e.g.: 

 Availability 

 Continuity 

 Accuracy 

 Integrity 

Precise definitions for the parameters above can be found in [103] and [104] for the Navstar GPS 

system. A simpler approach can be found in [81]. 

The goal for an indoor navigation system must be accurate, ubiquitous positioning with high 

reliability. 

3.2 Satellite Navigation for Pedestrians 

Global navigation satellite systems (GNSS) started with the Doppler satellite navigation systems 

TRANSIT and TSIKADA. Both systems are obsolete today. Satellite navigation using one-way-ranging 

became possible with the initial operation capability of the US Navstar GPS system being declared in 

1993, and the final operation capability being declared in 1995 ([103]). Today, additional GNSS 

systems have appeared or are announced to be operational in the near future. The globally available 

systems are the Russian GLONASS, the European Galileo, the Chinese Compass/BEIDOU system and 

several regional systems like the Japanese QZSS and the Indian IRNSS system. Therefore, the number 

of GNSS satellites in space has already increased strongly and will grow even stronger in the near 

future. GNSS is globally available on a continuous basis, every system offers an open service free of 

charge and by using similar center frequencies it is possible to construct simple RF-frontends for the 

GNSS receiver and still use nearly all available satellites for a combined navigation solution. 

Besides the undisputed great capabilities of GNSS, there are also weak sides of GNSS that limit the 

usability or performance of GNSS for pedestrian navigation, such as the fact that GNSS is in principle 

a line of sight (LOS) system. Since the satellite signals are sent on frequencies in the Giga-Hertz 

domain, they travel virtually like light in straight lines. 

As discussed in the previous chapter, GNSS is currently extensively used for personal positioning, but 

suffers strongly from the challenges of indoor or combined indoor/outdoor environments. Therefore, 

various alternative navigation techniques for indoor positioning are discussed in scientific 

publications. Indoor GNSS scenarios are characterized by strong satellite signal attenuation resulting 

in very low Signal to Noise Ratios (SNR), which makes the acquisition and tracking of those signals 

very difficult. A mathematical analysis of the tracking loop stability will be given in chapter 18.2. Since 

the satellite signal rays are not propagating along the same path for all satellites, the attenuation of 

the individual signal varies strongly, e.g. when penetrating windows and solid walls. Therefore, the 

risk of false locks due to signal cross-correlation is evident. Signal multipath is omnipresent in indoor 

scenarios and has a strong negative influence on the tracking performance of the signal tracking 

loops.  

With some exceptions like e.g. in GLONASS, most GNSS systems use code multiplex techniques 

(CDMA) and phase modulation (e.g. BPSK), where all satellites are transmitting their signals using the 

same center frequency with individual codes. By correlation of a replica signal with the received 
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signal, the weak satellite signals can be individually separated, acquired and tracked and the 

pseudoranges can be determined. From the pseudoranges, the user position can be calculated. The 

correlation is the major component of the GNSS receiver that enables the evaluation of the weak 

satellite signal while being hidden under the noise floor. It is reasonable to search for a technique to 

increase the correlation gain even further, so that even weaker signal, like the attenuated indoor 

signals, can be tracked. This increase in correlation gain can only be achieved by extending the 

correlation interval of the GNSS receiver. The correlation time is a multiple of the code length in 

CDMA systems; hence the minimum correlation time is one code length, while the maximum is 

limited by aspects like the length of the navigation data bits, as well as clock errors and dynamic 

motion of the user during the integration interval. This integration could be performed in a coherent 

and a non-coherent way. Coherent integration means that the replica is “one piece”, i.e. the replica 

carrier phase is continuously predicted for the entire integration interval without breaks in the 

carrier phase. Non-coherent integration would mean to sum up the correlation results for several 

shorter choherent integration periods until the total integration time matches again the designed 

integration time. A goal of the work described in this thesis is to provide contributions to the increase 

of the coherent signal integration time to two seconds. 

Increasing the coherent signal integration time seems to be a perfect way of dealing with the 

problems described above. Generally, the SNR of weak signals is improved proportionately to the 

coherent integration time which compensates together with further non-coherent integrations for 

the attenuation caused by walls. Additionally, a coherent integration time of several seconds would 

mitigate three important indoor positioning problems: multipath, cross-correlation false locks, and 

the squaring loss. This fact is discussed in detail in [77]. Common Commercial-Of-The-Shelf (COTS) 

receivers usually limit the coherent integration time to one GPS C/A-code length, corresponding to 

1 ms of coherent integration time. High sensitivity receivers usually extend this up to the length of 

one GPS navigation data bit, corresponding to a time of 20 ms. Therefore, a significant gain could be 

expected by applying a very long coherent integration. 

Nevertheless, several facts also prevent the use of very long coherent integration. Since data bit 

transitions can occur every 20ms, assistance data must be provided to the system and a reference 

station with open sky conditions must be available. In addition to that the internal clock is often not 

stable enough to provide sufficient accuracy for the replica construction due to oscillator jitter, if 

long replicas are formed. Therefore, a stable oscillator, e.g. an Oven Controlled Crystal Oscillator 

(OCXO), is necessary to reduce oscillator jitter to acceptable values. The most challenging part, 

however, is the reproduction of the user antenna motion with high accuracy to compensate the 

nonlinear dynamics on the pseudorange and the signal Doppler frequency. Since the antenna is 

moving with significant speed and accelerations with respect to the satellites, the user motion 

influences the pseudorange, pseudorange dynamics and the Doppler considerably, if a replica length 

in the range of several seconds is used. A common approach would be to use an inertial navigation 

system (INS) to reproduce the user motion during the integration interval. During the work described 

in this thesis it turned that current COTS Micro Electro-Mechanical System (MEMS) type inertial 

sensors do not provide the stability to fulfill this task sufficiently, especially if they are aided only by 

non-precise indoor position updates. Obviously, a difference in signal replica and received signal 

causes a significant correlation loss, which can also destroy the gain of long coherent integration if 

the difference reaches half of the signal wavelength. An integrated replica error corresponding to 1.4 
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cm length, corresponding to a loss of 1 dB, has been defined as target. Hence, an innovative 

algorithm has been developed to reproduce the user motion using a sensor suite of various different 

sensors and especially the coupling of a Pedestrian Navigation System (PNS) with a modified inertial 

navigation system, called “µ-trajectory generator”. The combination of the robust, but low frequent 

PNS with the high frequent, but only short term stable µ-trajectory generator produced promising 

results. 

 

3.3 Problem Statement 

The work performed in this thesis is a contribution to a complex navigation system, which has been 

developed by several scientists. Hence, the focus of the overall development will be described 

generally at first, while the focus of this thesis will be discussed in detail secondly. 

Overall system 

Pedestrians shall be navigated in mixed indoor/outdoor situations. One system is not able to perform 

under all conditions with acceptable performance. For that purpose a combined navigation system 

has been developed with a GNSS software receiver as main and integrating element. Due to its global 

coverage, position and time fixing capabilities and the generally good accuracy, GNSS is the main 

sensor of the system. The operation of the receiver shall be improved by the implementation of 

custom tracking algorithms and the use of aiding sensors. 

The work has been focused on the development of a GNSS software receiver using very long 

coherent integration. The main idea of the concept is the extension of the coherent signal integration 

time of the GNSS receiver to the length of several seconds which increases the correlation gain 

significantly. Since conventional high sensitivity receiver use up to 20 ms coherent integration time, 

an increase of that time by a factor of 100, i.e. 2000 ms coherent integration gain was set as a goal. 

To facilitate this goal, a very long and very precise signal replica is needed. Therefore, the system 

must reproduce the user antenna motion, the navigation message data bits and the satellite 

constellation precisely. A precise prediction of the user motion, especially the antenna phase center, 

must be provided to care for Doppler and pseudorange dynamics over such a long integration period. 

The integrating element of the system is a software receiver using Ultra-Tightly Coupling (UTC) 

implemented by vector tracking.  

Focus of the thesis 

This thesis is focused on major contributions to the integrated navigation system described above. 

The main contributions include the replication of the user antenna motion with high frequency and 

accuracy. Precise knowledge of the user antenna motion is one of the major challenges in very long 

coherent signal integration. The individual contributions are: 

 Prediction of the antenna trajectory over the integration interval of 2000 ms. 

 Provide a dead reckoning trajectory as backup and as reference for the micro-trajectory 

generation. 

 A sensor suite shall be used to exploit the best properties of all systems. 

 Position Kalman filtering for the dead reckoning system using available position updates. 
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 Implement a WLAN based position fix system based on pass by proximity warning system. 

 For project relevant reasons, AHRS was not the focus of the initial project. At first, the 

internal attitude reference of the used sensor system has been used. Since this gap in the 

implementation would affect the completeness of the thesis, the AHRS algorithms have been 

implemented outside the baseline of the project. The implementation and the results will be 

described in the thesis to give a complete picture of the subject. It will be shown that the 

custom implementation of the AHRS algorithms produces results which are fully comparable 

to the internal attitude reference system. 

 Since the navigation system was a team project, not all elements of this system have been 

researched by the author of this thesis. The research performed by the author focuses on the 

prediction of the micro-trajectory of the antenna, the PNS system, the WLAN proximity 

positioning system and the navigation Kalman filter. The integration of the micro-trajectory 

in the tracking loops of the receiver have been performed by other collegues. 

The work described in this thesis has been influenced by the results of the project INDOOR, funded 

by the German Aeronautics and Space Agency DLR (Deutsches Zentrum für Luft- und Raumfahrt), and 

of the project DINGPOS, funded by the European Space Agency ESA under supervision of ESA/ESTEC, 

and further developments of the PhD candidate. 
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3.4 Document Overview 

Many intermediate steps are necessary to implement the ability of very long coherent integration to 

a software receiver. Several sensors and algorithms are necessary to reconstruct the user antenna 

motion precisely and to enable the forming of a precise signal replica. This thesis will describe the 

fundamentals, challenges and problems of indoor navigation, and the individual steps for the 

replication of the user motion. Various sensors and algorithms for indoor navigation will be compiled, 

evaluated and selected for the purpose of user motion replication. The individual sensors demand 

special processing and algorithms, too. They will be developed or described in the following chapters. 

Finally, the individual results must be fused to determine the user antenna motion precisely. In the 

software receiver, this user antenna motion will be used to form a precise replica. Finally the 

integrated system will be tested and evaluated in a realistic environment. The thesis is closed by a 

summary and a way ahead for future research. 

In chapter 4, the fundamentals and problems of indoor navigation will be discussed. It will be 

highlighted why the indoor environment is so challenging for many navigation systems and especially 

for GNSS receivers. An overview and some definitions complete this chapter. 

Chapter 5 presents a roundup of several navigation sensors and systems with special focus on indoor 

navigation. Sensors and sensor combinations are evaluated regarding the special indoor conditions, 

and finally the focus for this thesis is narrowed to a limited suite of sensors. 

The Inertial Navigation Systems (INS) is one of the key technologies in this thesis and will be 

discussed in chapter 6. The precise replication of motion of the user antenna is mainly based on 

inertial navigation. Hence, in this chapter the basics of inertial navigation are described, as well as 

the special adjustments for the pedestrian user navigation in this thesis. The implementation and 

testing of the algorithms with the MEMS sensors used in this thesis will connect the theory behind 

the system with the practical implementation. 

Chapter 7 will introduce and describe the Pedestrian Navigation System (PNS). The PNS is a major 

component of the combined navigation system described in this thesis. The basic idea of this system 

is to perform dead reckoning by detecting steps and to propagate the user position by an estimated 

stride in the estimated direction. Since the accelerations are not integrated, the system has a much 

lower tendency to drift than standard INS processing would have. PNS is an important technique to 

limit the position error drift of the system. 

All dead reckoning navigation systems have in common a tendency for drifting position errors. The 

PNS as dead reckoning system is limiting this position error drift, but still accumulates error during 

navigation. Additionally, erroneous starting positions are maintained during normal operation. The 

PNS can be corrected by using observations of GNSS pseudoranges, WLAN or other available position 

updates. A PNS Kalman filter, integrating the PNS with GNSS and other available positioning systems 

will be developed and demonstrated in chapter 8.  

An efficient approach to WLAN positioning is described in chapter 9. WLAN is an infrastructure which 

is present in many buildings today. It has been shown in many publications that WLAN received 

signal strength of several access points can be used for user positioning. The most common 

technique is called “fingerprinting”. To reduce the efforts for calibration and to give the dead 
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reckoning system in this thesis appropriate positions updates, an alternative proximity warning 

positioning system has been developed. This system indicates if a WLAN access point is passed by in 

close distance. In this chapter the fundamentals and the algorithm of this proximity positioning 

system will be described.  

The determination of altitude using pressure sensors is a common technique, e.g. in aircrafts or in 

mountain hiking. Modern MEMS type barometers are inexpensive, very compact and lightweight 

sensors which allow the user to measure pressure and pressure changes quite precisely. In chapter 

10, the determination of height from pressure measurements, calibration of the sensor and the use 

for the user trajectory determination will be described. 

In chapter 11, receiver aiding for very long coherent integration is described. All navigation 

techniques and system studied in the course of this thesis are integrated in the GNSS software 

receiver. The main goal is to reproduce the antenna motion during the integration interval of the 

receiver. By this, the replica will match the received signal precisely and the desired integration gain 

is achieved. The construction of the antenna motion, called micro-trajectory, will be described in this 

chapter. After this, the combined system will be tested in real indoor, outdoor and mixed scenarios. 

The results will be evaluated and the performance of the system will be demonstrated. 

The thesis is summarized in chapter 12.  

Chapter 13 describes a possible way ahead for future research. The described system solves many 

problems of indoor and mixed indoor/outdoor scenarios and is therefore a very successful technical 

approach. Several aspects of the system can, nevertheless, be improved or simplified to make the 

system more user-friendly. These aspects will be described as a starting point for further research. A 

main topic is the reduction of the calibration effort for every user, especially for the PNS system. 

Modern user platforms like smart phones or tablet PCs are introduced as possible research platforms 

for future system evolution. 

In the appendix in chapter 18, additional mathematical analysis and background for individual parts 

of the thesis is given.  
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4. Navigation in the indoor environment 

Indoor navigation is a special application of general navigation. Hence, in this chapter some basics of 

navigation shall be discussed, while it is not possible to explain them in every detail in this thesis. The 

differences between indoor and general navigation applications are nevertheless important for the 

design of indoor navigation systems, which show many navigation restrictions and requirements. 

Therefore these differences and the specific problems and difficulties in indoor navigation shall be 

explained in more detail. 

4.1 Overview and definitions 

Navigation is commonly defined as the two tasks of positioning and guidance. Positioning is the task 

of determination of the current user position, often also the attitude, the velocity and the attitude 

rates. Guidance is the task of providing the directions from the current location to the desired 

destination.  

Guidance in its simplest form can be based on a purely geometric basis. It provides directions and 

distance for several navigational lines, like orthodrome, rhumb line or constant bearing angle. In 

urban applications, restrictions like one-way streets, heading and availability of streets, obstacles, 

etc. limit the application of standard geometric guidance. Map-based guidance has therefore gained 

enormous importance in mobile navigation systems and is based mainly on database systems. All 

possible combinations of path segments are evaluated and the best solution is chosen based on 

constraints and cost functions. Since guidance is not the focus of this thesis, the subject will not be 

discussed any further. It must be noted that several publications exist in which map attributes are 

used to stabilize the guidance as well as the tracking and positioning functions of indoor navigation 

systems. Nevertheless, if highly precise motion replication is desired, the constraints often limit the 

dynamic models of motion in an undesired way. The user is not supposed to walk in straight lines 

since the user can move freely, especially in large rooms, and a change of direction can happen at 

any time. Therefore, this approach has not been chosen in this thesis. 

Position is mostly expressed relative to a given reference, often by distance and angles (polar form) 

of the given object to the given reference. A set of (mostly perpendicular) axes with a common origin 

are called coordinate system. A frame is the realization of a (theoretical) coordinate system. 

"Degrees of freedom" is the number of parameters or coordinates that are required to uniquely 

define the state of an object. For a rigid body, the actual state can be described by three longitudinal 

and three rotational degrees of freedom. If an object is allowed to move, the derivatives of the 

position and orientation are also necessary, hence for describing a rigid and freely moving object in 

the three-dimensional space we need: 

 Three positions (x, y, z) 

 Three velocities (vx, vy, vz) 

 Three orientation angles (Φ, Θ,Ψ) 

 Three rotation rates (p, q, r, or ωx, ωy, ωz) 

Consequently, twelve states are required to determine the full navigational state of a rigid body in 

three-dimensional space. 
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If the object is considered to be a point mass, the attitude of the object is of no concern. In that case 

the state vector only contains six parameters: 

 Three positions (x, y, z) 

 Three velocities (vx, vy, vz) 

If navigation on the Earth is regarded, the problem of height reference must be considered. The two 

most important height references are the simplified geometric form of the Earth, as well as the 

geometric surface defined by an equal gravity potential. They are called ellipsoid and geoid. 

The reference ellipsoid is a geometric approximation of the geometric surface of the Earth as an 

ellipsoid, which is an ellipse rotated around its minor half axis. The coordinates are expressed as 

latitude, longitude, and the elevation or altitude over the ellipsoid. Therefore, elevation is also a 

relative representation of the vertical position relative to the surface of the reference ellipsoid, but 

can easily be converted to absolute coordinates when the parameters of the reference ellipsoid are 

known. The WGS 84 coordinate frame is the most prominent and most widely used Earth fixed 

reference frame. It includes a reference ellipsoid. Its importance is also accentuated by the fact that 

GPS uses WGS 84 as reference frame. The representation of coordinates in a Cartesian frame (x, y, z) 

refer to the defined Earth center, the defined reference Earth rotation axis and the zero meridian, all 

defined by the WGS 84 system. Further information on this subject can be found in [69] and [20]. 

The geoid is based on the model of an equipotential surface, which is defined by a theoretical mean 

ocean surface level for a resting Earth without tides. On all equipotential surfaces of the gravity 

potential, the partial derivatives in the local level x- and y-directions are zero. In other words, if a 

spirit level would be placed exactly on the geoid, it would indicate a zero inclination and spilled water 

would flow in each direction equally. Since the density of the Earth crust is neither constant nor 

equally distributed, the geoid is not a regular form like the ellipsoid. The geoid is the reference 

surface for most map heights, which are often indicated as above mean sea level. As global 

implementation, the Earth Gravity Model 1996 (EGM 96) is most often used. It should be noted that 

the model is an implementation of spherical harmonic functions and coefficients. By applying the 

local coefficients for the model, the local gravity undulation can be calculated. The geoid undulation 

is the height difference between the standardized ellipsoid and the geoid at the current location.  

In chapter 6.3, several navigation frames described and their relevance for indoor navigation will be 

discussed. 
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4.2 Physical aspects of Indoor Navigation 

Indoor navigation denotes especially the navigation inside of buildings. Buildings are constructed of 

walls, ceilings and roof and there might be basements where the rooms are below the Earth surface. 

Due to these constructional elements the direct line-of-sight (LOS) of signal from the outside of the 

building to the inside of the building is limited in all spectral bands, i.e. visible light, IR, UV and radio 

frequency (RF). The signals might be attenuated, reflected or totally blocked. For indoor navigation, 

the RF frequencies are of major importance, since radio navigation systems like GPS, which are 

strongly depending on the received signal power, have widely entered the market for personal 

navigation devices. 

Attenuation describes the loss of energy of a signal while passing through a specific medium. It is 

expressed as ratio between the signal power after the passing and the power before the passing. The 

attenuation is dependent on the type of material, but also on the thickness of the material in the 

LOS. In Table 4-1, the attenuation of several classic construction elements and materials is 

summarized for the frequency of 1.5 GHz, a frequency similar to the GPS L1 center frequency. 

Material Attenuation at 1500 MHz (approx. GPS L1, Galileo E1) 

[dB] scalar factor 

dry masonry wall 1 0.8 

ply wood 1..3 0.8 .. 0.5 

glass 1..4 0.8 .. 0.4 

tinted glass 10 0.1 

construction timber 2..9 0.6 .. 0.1 

steel wire fabric 2..11 0.6 .. 0.08 

roof tile, brick 5..31 0.3 .. 0.001 

concrete 12..43 0.06 .. 0.00005 

reinforced concrete 29..33 0.001 .. 0.0005 

Table 4-1: Attenuation for typical materials and construction elements made of various materials [18] 

In [19], the overall RF attenuations have been estimated for several types of buildings: 

Building type Overall attenuation at 1500 MHz (approx. GPS L1, Galileo E1) 

[dB] 

residential building 5 .. 15 

historical building 25 .. 35 

office building 30 

underground parking >30 

Table 4-2: Estimated overall RF attenuation for several types of buildings [18] 

Obviously, the attenuation is strongly depending on the material and the strength of the 

construction. The attenuation of massive and underground buildings is much higher than the light 

constructions of dry walls and woods. It is clearly discernible that the attenuation can easily reach 

values of more than 30 dB, which makes radio navigation inside buildings very difficult. In chapter 

18.1, the effect of reduced signal strength on the stability of the tracking loops of a GNSS receiver is 

analyzed. 

At high frequencies above 1 GHz, it is assumed that the waves behave “quasi-optical”. Therefore 

direct line-of-sight becomes critical for the reception of the waves. If signals are reflected from 
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elements like walls or ceilings, the signal might travel around obstacles. The available signal is then 

not the LOS signal and the calculated pseudorange consequently is not correct. Even worse effects 

can be monitored when the reflected signal interferes with the original LOS signal. The effect is called 

multipath and is a severe error source for pseudorange determination. 

Since not all satellites share the same transmission geometry, i.e. one low elevation satellite might 

transmit through an open window, while another high elevation satellite might transmit through a 

strongly shielding roof, the power of the individual signals might be very different. This effect is 

sometimes referenced as near-far-problem. In this case, the cross-correlation of a strong signal 

might be stronger than the autocorrelation of a very weak signal. The tracking of the weak signal 

would be much more difficult under those circumstances. 

For dead reckoning sensors, the indoor environment can be very hostile, too. Especially magnetic 

field sensors are highly susceptible to disturbing magnetic fields. These can be produced, e.g., by 

metal reinforcements of concrete, metallic infrastructures like radiators, pipes, cables, wires and 

banisters. Hence, the determination of heading inside of buildings can be very troublesome when 

using magnetic sensors indoors. This has been monitored in several test campaigns. Calibration and 

continuous disturbance control is therefore mandatory. 

Geodetic coordinates like latitude and longitude are helpful magnitudes if long distances are 

covered, like for ships and aircrafts. For the pedestrian user, these magnitudes often have limited 

usability. More often, local frames and local coordinates are much more helpful for pedestrians, like 

local level frame on several floors of a building, or coordinates matched to a floor plan of the 

building. The floor number might be more interesting as the geodetic height. A floor plan with 

significant landmarks like staircases, rooms, etc. can be more useful as navigation aid for indoor 

navigation than a street map. Digital maps of the required buildings are therefore most often 

necessary for practical use of indoor navigation. These maps should cover meta-information like the 

position of walls, staircases and constraints, like doors that open only to one side. Constraints can be 

effectively used to limit navigation errors, and map matching of the user trajectory with the floor 

plan can be useful as positioning technique itself. If navigation systems like GNSS and dead reckoning 

systems or WLAN positioning are combined, a frame transformation between local level frames and 

Earth fixed frames is often necessary. 

4.3 Summary 

In the last chapter, indoor navigation has been demonstrated as a special case of general navigation. 

The basic tasks of navigation, positioning and guidance, have been explained and the focus of the 

thesis has been narrowed to the positioning task. The special physical problems and challenges of 

indoor navigation have been highlighted. The most important points covered the construction of the 

building, resulting in limited line-of-sight to the outside world. This limited LOS constrains the use of 

modern positioning techniques, especially of satellite navigation. Finally the need of local coordinate 

frames and digital maps to make indoor positioning convenient to use has been expressed. 
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5. Sensors for Indoor Navigation 

Positioning can be performed by using a broad variety of special instruments and sensors. GNSS has a 

special relevance within all these sensors. Due to its global coverage and high accuracy and 

availability, GNSS has been used extensively for positioning since its initial operational capability in 

1993 ([103]). However, the indoor environment is often very challenging for GNSS applications as has 

been demonstrated in chapter 4. Therefore, additional sensors and positioning systems have been 

evaluated and are used for indoor positioning in this thesis. In the following chapter an overview of 

alternative sensors for indoor navigation, with special focus on the sensors used for this special 

application is given. These sensors cover inertial sensors, magnetic sensors, barometer, and Wireless 

LAN network adapters. The selection of sensors is explained, while some other sensors not used in 

this thesis will be commented.  

5.1 Introduction 

Navigation has been used for centuries by a wide range of users in very different environments. The 

Global Navigation Satellite Systems (GNSS), especially the US Navstar/GPS system, has become one 

of the most important and most widely used navigation systems of the 21st century. The popularity 

of GNSS can be explained by several of its outstanding features. Under open-sky conditions, it 

provides worldwide positioning with accuracies of several meters down to centimeter level 

depending on the used receiver technology and processing techniques like differential GPS. The mass 

market equipment has become very low-cost in recent years, and it can be used without dedicated 

training in classical navigation abilities. GNSS is sufficiently precise for many civil applications, even 

with low-cost receivers. Nevertheless, all these features only apply to open sky scenarios. 

Deep indoor scenarios are one of the most challenging areas of application for Global Navigation 

Satellite Systems (GNSS) in personal navigation devices. Especially severe signal attenuation and 

heavy multipath constrain the use of GNSS in this environment.  

Therefore, for unrestricted indoor-outdoor application, GNSS alone is not sufficient for providing 

ubiquitous, continuous and precise positioning. Additional alternative sensors and integration 

techniques are necessary to fulfil these requirements. Principally, the additional sensors can be 

grouped into position fix and dead reckoning sensors. They have in common that they are indepen-

dent of the weak RF signals from the outside of the building, and many of them use basic physical 

properties for producing navigational information. Others, like WLAN network adapters, use signals 

produced inside the building which are much stronger than GNSS signals and widely available. The 

scope of used sensors is limited mainly to avoid the need for custom infrastructure, to reduce 

calibration efforts, power consumptions and prices. Many excellent sensors require expensive 

infrastructure in every building and had to be abandoned therefore.  
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5.2 Inertial Sensors 

Inertial sensors are major components of the work described in this thesis. Therefore, it is important 

to describe and to analyze these sensors in the following chapter. In a short introduction, the 

historical, technical and physical backgrounds are briefly discussed. In the following subchapters, the 

different sensors will be characterized. Finally, the applicability for pedestrian navigation will be 

discussed.  

5.2.1 Principles of inertial sensors 

Inertial sensors are determining accelerations, gravity and rotation rates, most often by exploiting 

simple laws of mechanics, like Newton’s second law of motion, the impulse laws or the laws of 

inertia. The sensors measuring accelerations are called accelerometers; the sensors measuring 

rotation rates are called gyroscopes. If three perpendicular accelerometers and three perpendicular 

gyroscopes are combined in one unit, an “Inertial Measurement Unit” (IMU) is formed. 

Various sensor types based on different physical properties have been developed, while 

development and improvement are still ongoing. The development has been driven by the state of 

the art in mechanical precision fabrication, electronics and available computational power. The first 

sensors were purely mechanical sensors, like spring-mass accelerometer and mechanical gyroscopes, 

followed by electronically stabilized sensors like the Dynamically Tuned Gyroscope (DTG), the 

Electronically Suspended Gyroscope (ESG), or the electronically caged/stabilized accelerometer 

(“servo” accelerometer), which uses control systems to keep the sensor proof mass centered in the 

casing. Modern development concentrates on inexpensive manufacturing (e.g. on silicon wafers), 

mass production capabilities, miniaturization and optical or even quantum effect sensor principles. 

While the major factor and primary goal in the past has been to increase the sensor accuracy, the 

reduction of cost of procurement and ownership is prime paramount today. Accordingly, even cell 

phones, toys and gaming computers can be equipped with inertial sensors today. A good example for 

that is the Nintendo Wii, a game console which is designed to use inertial sensors as input device for 

gaming.  

5.2.2 Accelerometers 

Accelerometers are sensors measuring the acceleration of the sensing element, most often by the 

displacement of a proof mass. Since the sensor is not able to distinguish between the kinematical 

and the gravity acceleration, the vector sum of both is measured. This phenomenon is called 

“Einstein’s principle of equivalence” and is discussed in chapter 6 in detail. Most accelerometers are 

based on Newton’s second law of motion which relates force and acceleration in a linear relationship 

with the proof mass as scalar factor (chapter 6, eq. (1) and(2)). The sensors themselves differ in their 

design. 

The spring-mass system is a simple implementation of an accelerometer exploiting Newton’s second 

law of motion and Hooke’s law. In this implementation, the proof mass is suspended by two springs 

in a crank. The schematic design is shown in Figure 5-1. The sensor has one sensing axis along the 

crank; all other forces are directed into the crank. If accelerations along the sensing axis occur, the 

proof mass is shifted along the springs and this displacement can be measured by inductive or 
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capacitive pickups. The displacement is proportional to the applied acceleration according to 

Newton’s second law of motion and Hooke’s law.  

 

Figure 5-1: Schematic view of classical spring-mass accelerometer 

While simple in design, the sensor has several drawbacks. Spring mass systems tend to oscillate after 

excitation. Therefore, the Eigen-dynamics of the sensor affect the output of the sensor and internal 

attenuation, e.g. by filling the sensor with viscous fluids, is necessary. Secondly, the proof mass must 

be suspended as free of friction as possible to avoid cross-axis attenuation. Thirdly, the 

manufacturing and calibration of the sensor must be precise to achieve good performance. 

Other implementations of classical accelerometers are flex-beam accelerometers and servo-type 

accelerometers, and often combinations of both. For the flex-beam accelerometer several drawbacks 

of the classical spring-mass accelerometer are cancelled. The flex-beam accelerometer replaces the 

springs, the proof mass and the crank by a longitudinal, flexible beam of solid material. The beam is 

attached to a rigid case and has a flex point with lower stiffness at its bottom.  

 

Figure 5-2: Schematic view of flex-beam accelerometer 

If accelerations perpendicular to its flexible direction act on the sensor, the beam flexes in the 

opposite direction. The flexible hinge counteracts this deflection by its elastic force. In Figure 5-2, a 

schematic view of the flex-beam accelerometer is given. 

Servo-type sensors are additionally equipped with an electro-magnetic caging system. The case is 

equipped with permanent magnets, while the proof mass carries an electrical magnet consisting of a 

coil and a soft-iron core. If deflections are detected, the coil is supplied with voltage and produces a 
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momentum that counteracts the inertial forces which are deflecting the proof mass. The voltage and 

the current that are necessary to keep the proof mass in the center of the sensor are used as 

measured magnitude.  

In this thesis the ‘Micro Electro-Mechanical Sensor’ (MEMS) type of accelerometers will be used. 

MEMS sensors are miniaturized sensors based on silicon wafer design. The manufacturing process is 

similar to the production process of integrated circuits, i.e. the structures of the sensors are etched 

from silicon raw material called wafers. They are principally flex-beam accelerometers, but with 

sophisticated geometries and are largely reduced in size. In Figure 5-3, a schematic view of a MEMS 

accelerometer is given. 

 

Figure 5-3: Schematic view of a MEMS accelerometer 

 

The benefits of MEMS sensors are the small form factor, the low power consumption and the low 

price of the sensor due to the efficient manufacturing process and the high number of produced 

sensors. In sensors like the Memsense Nano IMU, three accelerometers and three gyroscopes are 

placed in a sensor block of less than 1 cm³ ([62]). On the other hand, the sensor performance is often 

not fully up to the standard of the mechanical sensor types described above. A short evaluation of 

the used sensors will be given in the following chapters. More information on accelerometers can be 

found e.g. in [102], [8] and [88]. 
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5.2.3 Gyroscopes 

Gyroscopes are sensors measuring applied rotation rates. In general, gyroscopes can be grouped into 

mechanical gyroscopes, optical gyroscopes, Coriolis force gyroscopes (CVG) and cold atom 

interferometer gyroscopes, while the last ones are still under research and development at this time. 

Mechanical gyroscopes use the law of conservation of angular momentum and the effects of 

precession and nutation. They consist of a spinning mass which is rotationally suspended by bearings 

(mechanical, electrostatical, fluid bearings) and rotated by electro-magnetical fields or pressurized 

air. They are not sensitive around their spinning axis, but can measure rotation rates perpendicular 

to it. Servo gyroscopes exist which use caging loops analogue to the ones described for servo-

accelerometers. 

Optical gyroscopes (ring laser gyroscopes RLG, fiber-optic gyroscopes FOG) use the Sagnac effect, 

which creates a phase shift between signals travelling in and against the direction of rotation. Optical 

gyroscopes are commonly used high accuracy devices and have replaced mechanical gyroscopes in 

various applications like missiles, aircrafts and ships. As will be shown in the following chapters, 

optical gyroscopes show excellent performance, but most often have a much larger form factor, 

heavier weight and higher price than MEMS gyroscopes. 

MEMS type CVG gyroscopes use the small Coriolis forces which can be measured when oscillating 

masses are rotated perpendicular to their oscillation axis. The principle is shown in Figure 5-4 and 

Figure 5-5. The sensor consists of two or more proof masses, which are oscillated inwards and 

outwards in counter phase, e.g. by electro-magnetical or by piezo effects. Since they resemble a 

tuning fork, they are often referred to as tuning fork gyros. This design is demonstrated here. It must 

be mentioned that the geometric form is not necessarily a tuning fork. Flat or complex formed 3D 

objects are manufactured, too. Important examples under research are the “wine-glass gyroscopes” 

using a domed shape.  

 

 

Figure 5-4: Oscillation of the Coriolis vibrating gyroscope (CVG) 

If a constant rotation rate is considered, the oscillating proof masses have the correct tangential or 

angular velocity only in the base position. When they move outside that position, their tangential 

velocity is too slow for the current radius to the rotation axis. If they move inside that position their 
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tangential velocity is too high for the current radius. The results of these velocity mismatches are 

acceleration forces, which deflect the proof masses perpendicular to the oscillation direction and the 

rotation axis. This is depicted in Figure 5-5. 

 

Figure 5-5: Basic function of the Coriolis vibrating gyroscope (CVG) 

MEMS sensors are manufactured from silicon raw material called dies. They are manufactured in an 

etching process, therefore manufacturing costs are low and the manufacturing accuracy is high. Due 

to the properties of silicon, the main error source of MEMS sensors are temperature induced errors. 

The sensor noise is considered higher than for classical or optical sensors. Also the bias variation, 

especially the turn-on-turn-on bias variation, tested in the so called “tombstone test” ([102]), is 

considered a major error source that is very hard to calibrate for. Apart from the performance, the 

form factor of the sensors, the price and, lastly, the power consumption are strong points of this 

sensor class.  

  



30 

 

5.2.4 Selection of inertial sensors 

When inertial sensors shall be used for pedestrian navigation, several properties become limiting 

factors beside the pure performance related properties. Some of these properties are: 

 Size of the sensor 

 Weight of the sensor 

 Power consumption 

 Interfaces 

 Availability 

Since there is a large variety of sensors and manufacturers available on the market, a survey of the 

instruments accessible at the Institute of Space Technology and Space Applications (ISTA) at the 

University of the Federal Armed Forces Munich has been performed. Most of the analyzed sensors 

can be seen in Figure 5-6. The sensors cover the most important sensor types and give a good 

overview of the sensors available on the market. 

  

Figure 5-6: Evolution of inertial navigation measurement units over more than five decades. Sample of units 
from around 1960 to 2010 

The following IMUs have been available for analysis:  

 The Litton/LITEF LN-3 represents the platform type class: two mechanical gyroscopes (2 DoF) 

and three accelerometers are suspended in a structure of four gimbals, which allow full 3d 

rotation of the sensors with respect to the carrier vehicle. The fourth gimbal is used to avoid 

the “gimbal lock” effect. The LN-3 uses two mechanical gyroscopes of DTG type. The unit was 

introduced in the German air force with the F-104G aircraft in 1960. 

 The Sagem Sigma 30 is a modern high performance strapdown IMU using three ring-laser 

gyroscopes (RLG) of high accuracy, often referred to as “navigation grade IMU”. The RLGs are 

optical gyroscopes. RLGs are considered as more accurate than fiber-optic gyroscopes, but 
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larger and mechanically more complex. The price range for a single unit of the RLG class must 

be considered above 100.000 €. 

 The Litton LN-200 (today Northrop Grumman LN-200) is a medium accuracy IMU using fiber-

optic gyroscopes (FOG) and silicon accelerometers. The LN-200 is part of a family of IMUs 

which has been successfully integrated, e.g. into several military missile systems ([118], [57]). 

The LN-200 has a superior form factor in its class and has a very compact, rugged design.  

The price range for a single unit of the FOG class must be considered above 25.000 €. 

 Five additionally evaluated IMUs are of MEMS type. The BEI Systron Donner MotionPak and 

the Boeing DQI (Digital Quartz IMU) are early MEMS IMUs. Characteristic is the quite large 

volume compared to modern MEMS IMUs. The Xsense MTi and MTi-G, as well as the 

Memsense NANO IMU can be considered as current units at the time of writing.  

The price range for single IMUs of the MEMS class, including development kit if available, is 

in the magnitude of less than 3000 €. OEM versions have a lower price of at least one order 

of magnitude. 

The physical properties of the units can be found in Table 5-1. 

Manufacturer Instrument Type Weight 
[kg] 

Length 
[mm] 

Width 
[mm] 

Height 
[mm] 

Litton/LITEF LN-3/P200 DTG IMU 
13.62 

(30 lbs) 363 248 ~ 240 

Sagem Sigma 30 RLG IMU 19.4 410 260 255 

Litton LN-200 FOG IMU 0.7 ø 85 ø 85 85 

Boeing Boeing DQI MEMS IMU 0.96 90 82 97 

BEI Systron Donner Motion Pak MEMS IMU 0.89 75 75 90 

Xsense MTi-G MEMS IMU 0.068 58.7 57.9 33 

Xsense MTi MEMS IMU 0.05 58.7 57.9 23 

MEMSense NANO IMU MEMS IMU 0.015 46.5 22.9 13.9 

Table 5-1: Overview of the physical properties of current inertial measurement units (IMUs) of various 
technologies 

The properties summarized in Table 5-1 show that the sensor technology has a large influence on the 

size and weight of the sensor units. Gimbaled/platform systems are very large and heavy and 

therefore not suitable for pedestrian users. The RLG based Sagem Sigma 30 is even heavier, while 

integrating computer systems, too. Due to the high system price RLG based systems cannot be 

considered suitable for mass market applications like pedestrian navigation. 

FOG based IMUs can achieve form factors which make them suitable for pedestrian navigation. 

Nevertheless, the size and weight would still be inconvenient for the average user, while the high 

power consumption of more than 15W would require heavy battery systems to achieve reasonable 

operation times. The price of FOG units, although lower than the previous high accuracy sensor 

systems, is still not adequate for pedestrian users in general use cases. Furthermore it must be noted 

that high accuracy IMUs are usually ITAR regulated goods and procurement can therefore be difficult 

and time consuming, which limits the availability of the sensor. 

The MEMS type sensors combine a very compact form factor with low sensor weight and low power 

consumption. The prices for the sensors are comparatively low and can be expected to decrease 
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even further due to high production numbers and applications in the future. OEM versions without 

casing and with custom data connections are available and the sensor can be tailored to the specific 

needs. Many MEMS sensors are available on the market and most of them are not ITAR regulated 

which increases availability. Hence, MEMS type sensors are most suitable for pedestrian navigation. 

5.2.5 Demonstration of MEMS sensor performance 

In this chapter the performance of MEMS IMUs shall be demonstrated by two simple bench tests. It 

is not the goal to perform a full sensor calibration, but to show the basic sensor behaviour and the 

range of sensor errors. Beside the positive factors like size, weight and costs, the major drawback of 

MEMS sensors is the sensor accuracy. MEMS sensors are known to have significant error budgets and 

a lack of stability. Their parameters also change significantly with the sensor temperature. For those 

reasons, quite large errors are to be expected while levelling. Gyro compassing is not applicable to 

MEMS gyroscopes due to their lack of resolution. The earth rate is approximately 7.29*10-5 rad/s and 

therefore far below the sensor resolution, the sensor biases and the sensor noise levels. A Xsens MTi 

IMU has been used for the test. 

The first test has been executed to demonstrate the temperature sensitivity and the performance of 

the internal calibration of the IMU. The unit was stored at room temperature for several hours and 

kept static during the test. Immediately after powering of the unit, the raw inertial measurements of 

the gyroscopes as well as the internally calibrated measurements were recorded and analyzed. On 

the left hand side of Figure 5-7, the uncalibrated measured rotation rates are presented. Obviously 

all three channels show a bias of up to 0.2°/s, as well as significant sensor noise. The bias is 

decreasing after several minutes of runtime. This effect is characteristic for MEMS type sensors and 

can be demonstrated with other models of MEMS sensors as well. The reason for the bias drift is the 

increasing sensor temperature after powering the unit. When the sensor temperature reaches a 

static level after several minutes of operation, the sensor bias also stabilizes.  

  
  

Figure 5-7: Comparison between calibrated and uncalibrated sensor data from MEMS IMU. The effect of 
temperature compensation is obvious. 

On the right hand side of Figure 5-7, the internally calibrated measurements are presented. The 

temperature influence is cancelled in this dataset. It is clearly discernable that the factory calibration 

of the sensor with respect to temperature improves the sensor accuracy strongly. The noise cannot 

be reduced without filtering, which would limit the sensor dynamic range. The fact that the sensor 

bias could be reduced so strongly in this test can nevertheless not be expected in general, as the bias 
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is subject to certain turn-on-turn-on variations. This phenomenon is referred to as the “tombstone 

test” in [102]. 

In the second test, the unit has been mounted on a three-axis rate table. The unit was rotated for 

each individual axis and for various angular speeds from -135°/s to +135°/s in steps of 45°/s. 

 

Figure 5-8: Rate table test of the Xsens MTi MEMS IMU gyroscopes, showing the measurement errors versus 
the applied rotation rate 

The results of this test are presented in Figure 5-8. Evidently, the measurements are subject to a 

certain bias (value at zero applied rotation rate), as well as a scale factor error. The scale factor error 

causes the measurement graphs to resemble slanted lines. While the scale factor errors stay below 

0.18 % for the range of 270°/s, the bias takes values of up to 1.6°/s and is therefore significantly 

higher than in the previous test.  

In summary, the tested MEMS showed good temperature compensation by factory calibration and 

thus eliminated one of the largest IMU errors. Classical sensor errors like bias and scale factor errors 

could be demonstrated during the rate table test. These errors also vary from mission to mission and 

hence cannot be fully calibrated in the factory. 

5.2.6 Summary 

In this subchapter, inertial sensors , i.e. gyroscopes and accelerometers, have been introduced. The 

physical principles of the sensors were presented and different types of inertial sensors have been 

introduced. Finally, MEMS sensors were selected as adequate sensors for pedestrian navigation. 

Their performance has been demonstrated and discussed using one unit (Xsens MTi) as 

representative example. 
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5.3 Pedometer and Pedestrian Navigation System 

A pedometer is a system which detects, classifies and counts steps. The pedometer is most often a 

special application of inertial sensors and exploits the kinematic properties of the walking motion to 

identify the step pattern in the inertial measurements. In contrast to INS, the accelerations and 

rotation rates do not necessarily have to be integrated. If the pedometer is combined with heading 

information, a Pedestrian Navigation System (PNS) can be formed, a dead reckoning system which 

propagates the user position by step and heading.  

While climbing, crawling, jumping and swimming are possible ways of locomotion, pedestrian users 

most often move by walking, i.e. performing of one or several consecutive steps. The steps are 

performed in a certain direction and the real user position is propagated by the step cycles in the 

desired direction. If this motion shall be exploited for navigation purposes, the applicability of 

inertial sensors is evident: Inertial sensors measure accelerations and rotation rates, which are 

important aspects of the gait cycle. Two processing schemes are mentioned in literature. One is 

based on step detection and position propagation in a step, stride and heading approach (e.g. in 

[48]). The other on is a classical INS processing using phases of the gait cycle for zero velocity 

updates. In the classical INS approach, the quality of the navigation performance is strongly 

dependent on the sensor accuracies and the processing algorithms. Often the classical mechanization 

of a strapdown Inertial Navigation System (INS) does not provide sufficient stability and accuracy for 

a PNS using low-cost sensors like MEMS type IMUs. This is mainly due to the error behaviour of low-

cost MEMS sensors (accelerometers and gyroscopes) and has also been discussed before e.g. in [21], 

[51] and [56]. The main error sources are the low-cost gyroscopes, which inhibit precise attitude 

determination and therefore precise gravity cancellation. There are applications of foot-mounted 

IMUs, which use zero-velocity updates (ZUPT) to stabilize an INS implementation ([5]). However, 

mounting on the shoe is often impractical or even inhibited by safety at work regulations, and shoe 

mounted INS can give additional problems, too, e.g. by the strong acceleration peaks. 

If mounting of the IMU on the shoe is not considered, PNS systems often do not integrate the 

measured accelerations, but detect steps, estimate step length and heading and provide dead 

reckoning by estimating the actual position on the basis of the last known position and the change by 

the steps counted. Since no integration is performed and position changes are only estimated when 

steps are determined, no time dependent error is to be expected by this. The actual heading is to be 

determined by the integration of the gyroscopes’ output or is derived by the observation of a 

magnetic compass. Thus, there can be a heading drift due to the gyro drift or heading errors due to 

magnetic disturbances. This can lead to a time dependent position error, which is, however, much 

smaller than in the classical integration. 

The PNS system consists of four major elements: 

 Step detection 

 Step classification  

 Stride estimation 

 Heading determination 

This type of navigation system will be described in detail in chapter 7. 
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5.4 Magnetometer 

The determination of heading is a crucial part of dead reckoning navigation. One important way of 

determining the heading is the evaluation of the magnetic field of the Earth. Sensors measuring 

magnetic fields are called magnetometers. If the devices are specifically designed for heading 

determination, they are referred to as compasses. While early compasses used a magnetized needle 

pivoted in its center, modern devices use electrical effects to measure the magnetic field. 

Classical instruments in aeronautics are the fluxgate and the Hall-effect sensor. In the last few years, 

a new type of sensor has been developed which has entered the low-cost market quickly. The sensor 

type is based on the Giant-Magneto-Resistance effect (GMR) and can be seen as a parallel to the 

MEMS type inertial sensors. GMR sensors use several very thin sheets of magnetized and non-

magnetized layers with a thickness of some nanometers. According to the direction of applied 

magnetic fields, the electrical resistance of the sensor packages changes strongly. This change of 

resistance is used to determine the magnitude of the magnetic field in the sensitive direction. By 

using three orthogonal sensors in a bundle, the magnetic field vector can be determined. The 

discovery of the GMR effect has been awarded with the Nobel Prize in Physics in 1998 [122]. GMR 

magnetometers are very low-cost, light-weight and small-size sensors and are integrated today in 

many low-cost MEMS IMUs, e.g. in the IMU used mainly in this thesis, the Xsens MTi ([114]). They 

seem ideal for pedestrian navigation due to their size, weight, power consumption and pricing. The 

sensor noise is apparently extremely low. 

Several error sources must be considered when using magnetometers for the determination of 

heading. Heading is defined with respect to the North-axis of the navigation or Earth fixed frame. 

Since the magnetic North Pole and the geographic North Pole do not coincide, there is an offset 

between the magnetic and the geographic North. This effect is called “variation” or “declination” 

depending on the field of application. The declination for a given location can be found in official 

geodetic tables, its magnitude varies with time and position.  

 

Figure 5-9: Declination as difference between geographic and magnetic North at the campus of the 
University of the Federal Armed Forces of Munich [123] 
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In Figure 5-9, the declination at the location of the University of the Federal Armed Forces Munich is 

shown. The compass rose shows the direction of the magnetic North. The magnitude at the time of 

calculation was about 1°56’. 

While the declination is simple to compensate, other effects on the measured magnetic field are 

much more severe and hard to correct. The distortion of the measured magnetic field by ferro-

magnetic elements or devices next to the compass is referred to as “deviation” in navigation. In 

recent publications, the terms “hard- and soft iron effects” are frequently mentioned. In modern 

applications, the influence of the carrier (vehicle) and the installation have to be calibrated in 

calibration campaigns or in-run calibration routines. While constant disturbances like the deviation 

can be corrected easily, local disturbances in the proximity of the user are hard to identify and to 

correct. If the Earth magnetic field is overlapped by local magnetic fields, the compass does not 

“point” magnetic north anymore, but the vector sum of the Earth magnetic field and the disturbance. 

The result can be large heading errors. 

Most severe error sources are magnetic fields in the navigation environment of the sensor. For 

indoor navigation these could be electrical wiring, steel reinforcements in concrete walls and ceilings, 

radiators and many more. These error sources cannot be calibrated since they are principally 

unknown at the start of navigation, but their influence is severe. To overcome these errors the 

plausibility of the measurements as well as the compass results must be checked continuously. 

Especially in the indoor domain these disturbances can be found very often. The use of 

magnetometers as sole means of heading determination must therefore be avoided. 

 

5.5 WLAN 

Wireless local area networks (WLAN) are radio networks developed to connect personal computers 

and peripheral devices without using cables as physical connection. The most common 

implementations are based on the IEEE-802.11 standard and its sub-standards (a, b, g, n, ac, ad), 

using the Ethernet technology ([125]). However, it must be noted that other standards and hardware 

implementations, e.g. ZigBee, exist, while being not as common in the commercial aspect as the IEEE 

standard. The precise specification of the standard can be found in the standard IEEE802.11. 

WLAN has been used for positioning in several applications and publications, most often for indoor 

navigation in business or office buildings. Especially modern smartphones use WLAN maps for rough 

positioning. For that reason, the available WLAN networks and hotspots have been surveyed and 

their presence gives indication about the rough user position. Since the individual networks and their 

components do not offer highly precise time synchronization, ranging like in GNSS is not adequate 

for positioning. Therefore, the received signal strength (RSS) becomes the most important 

magnitude. More precise algorithms often use a technique called “fingerprinting”. 

If the RSS is mapped for several WLAN access points (AP) in a dense net of calibration points, a WLAN 

RSS map is created. If the actually measured RSS of all APs in sight are compared to this map, the 

current position can be estimated. This procedure is called fingerprinting. Basically, the measured set 

of RSS values forms a “fingerprint”. This fingerprint is compared to a database of previously 

recorded fingerprints at surveyed locations (calibration points). If the measured fingerprint matches 
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a database point entry significantly well, the position of this database point is used as user position. 

Usually, the algorithms allow only the position fixing to the surveyed calibration points, not between 

the calibration points. Hence, the resolution of the position fixing can be limited to the density of the 

net of calibration points. Developments by ISTA also focused on positioning between the calibration 

points. Detailed information can be found in [101] and [100].  

 

Figure 5-10: Typical WLAN equipment as used in the thesis 

Two major errors of fingerprinting based positioning are: 

 the selection of the false calibration point 

 the coarse resolution due to an insufficiently dense net of calibration points 

The major drawbacks of fingerprinting are the extremely high calibration and re-calibration efforts 

and the large influence of the environmental aspects and the room geometry. To achieve a good 

resolution, many calibration points have to be surveyed, e.g. one per square meter. It is obvious that 

the costs of calibration would be immense for large buildings. Additionally, if the room geometry or 

the placement of the WLAN APs would change, e.g. due to new furniture or new WLAN equipment, 

the calibration would have to be repeated. 

Moreover, the RSS map of the building to be navigated in must show a certain degree of 

“uniqueness”, i.e. the RSS fingerprints must be significantly different for the various calibration 

points. If this is not the case, it becomes very difficult for the algorithm to find the corresponding 

fingerprint and the risk of false detection is very high. The uniqueness of the RSS map is increasing 

with the complexity of the room geometry and the number of APs in the rooms. So, for example, a 

square room with only very few symmetrically oriented APs with identical transmitted power would 

be very unfavorable for fingerprinting, while a room with complex geometry and many APs in non-

symmetrical placement would be very favorable for positioning. 

Since it is not guaranteed that the building to navigate in has been calibrated thoroughly, in this 

thesis a different approach is used. In this thesis, a RSS based proximity positioning system has been 

developed, which gives position updates if the user approaches an AP. The updates are only available 

when the user is in close proximity of the AP. Nevertheless, the calibration effort is very low, the 

algorithm is extremely robust, and the update has a very high accuracy. The algorithms will be 

described in chapter 9. 
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5.6 Barometer 

The determination of the vertical positions is a classical task of geodesy, survey and aeronautical 

navigation. When navigating in buildings, the determination of the current storey is a very important 

factor, in some applications the most important one. Besides, indoor navigation also has a strong 

need for measuring the user's absolute altitude with respect to the used frame. The determination of 

the altitude is performed by sensors called altimeters. They can use different principles of 

determining the vertical position, e.g. laser ranging, radar ranging, ultra-sonic ranging or the 

evaluation of atmospheric pressure. Basically, it must be distinguished between relative and absolute 

determination of the vertical position. The altitude reference must be considered carefully. 

Barometers are sensors measuring air pressure. If it is assumed that higher atmosphere layers press 

on lower atmosphere layers with their own weight, the relationship between pressure and altitude 

can be modeled and calculated. This relationship is the basis of barometric altimetry. A model for a 

differential element of the atmospheric layers can be seen in Figure 10-1, in which the mathematical 

model for the air pressure distribution is analyzed. Since the atmospheric air pressure is decreasing 

with increasing altitude, the air pressure can be used as an important reference for altitude.  

One problem of barometric altimetry is the fact that the air pressure is not only dependent on the 

altitude, but also the current weather situation, i.e. the pressure on sea level and the temperature. 

The pressure at certain altitudes can be modeled; the most important model is the International 

Standard Atmosphere (ISA). Since the pressure distribution is also dependent on the temperature 

profile for different altitudes, one major component of the ISA is the averaged temperature 

distribution with altitude. In aeronautics, the pressure on sea level is therefore determined and 

published in the weather report (so called QNH value). If each aircraft in a certain region uses the 

same sea level pressure on their instruments, they all have the same model based altitude errors. 

Sensor errors, nevertheless, directly transform to the altitude errors of the sensor. 

Classical barometers were manufactured by using evacuated tins of thin metal sheets in combination 

with mechanical gears. The deformation of the tins with increasing or decreasing pressure was 

transformed into the motion of the instruments needle. The gear transmission is non-linear and 

adjustable to the current pressure and weather situation. Today, MEMS technology is used for 

barometers, too. The basic concept of a low pressure cavity and deformation due to environmental 

pressure is maintained, while being strongly miniaturized. In contrast to the classical systems, the 

deformation is measured by a MEMS sensor and directly transformed to voltage, which is then A/D 

converted. By dedicated model equations, pressure can be derived from these sensors. MEMS 

barometers are extremely small, lightweight and low-cost. An example of this technology can be 

seen in Figure 10-4. MEMS barometers are well suited for pedestrian navigation. 

A detailed analysis about barometric altimetry, the MEMS pressure sensor and the use for pedestrian 

navigation will be given in chapter 10. 
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5.7 Additional indoor positioning sensors 

Several other indoor positioning sensors and techniques have been proposed in literature. Optical 

sensors or IR-beacons are mentioned in [54][49], [55], [29], [41] and [76]. The use of WLAN 

positioning is discussed in [100], [101] and [85]. Walking path detection, the use of GIS systems and 

path constraints like walls etc. are mentioned in [55], [14] and [85]. RFID systems are mentioned in 

[48] and [29]. UWB positioning is mentioned in [48]. Several of these techniques have also been 

studied at the University of the Federal Armed Forces Munich. Since the scope of the presented 

research is limited, not all kinds of sensors and positioning systems could be included. Some of them 

shall nevertheless be mentioned for sake of completeness.  

Radio frequency identification systems (RFID systems) are used for many commercial applications, 

e.g. ID cards, entry cards, theft protection systems in shops, logistics, and many more. The 

technology is mature and has fully entered the market and can be used for positioning. Generally, 

the user carries a RFID tag, which incorporates active or passive electronic components. When 

passing RFID readers, the system can identify the tag identity of the user passing by and therefore 

provide position information to the user. The technology seems very promising, but has certain 

drawbacks. First of all, the area for navigation has to be equipped with RFID readers in a reasonable 

dense network to provide a significant number of position updates. It cannot be expected that this 

infrastructure is present everywhere, and there must be a control center to register, survey and 

operate all used RFID readers. Additionally, a data link to the user is necessary to provide him with 

position data. The availability of the position information is therefore reduced and the requirements 

regarding infrastructure are high. 

Optical navigation systems cover optical beacons, camera feature detection, laser ranging and many 

more. The tracking of optical beacons and optical feature detection are passive systems. The main 

idea is to detect optical landmarks in the near environment to calculate the azimuth and elevation of 

the user relative to these landmarks. By intersection of these lines of sight, the user can calculate the 

position. Other methods cover the correlation of the captured picture with a database. Both systems 

have the drawback that the environment has to be recorded before the navigation part, and that 

changes in the optical appearance require new recording and survey. Laser ranging can be effectively 

used to locate the user within rooms. The accuracy is excellent and the sensor is additionally suited 

for simultaneous localization and mapping (SLAM) applications. In SLAM, the user is on the one hand 

side able to georeference detected features in space, which creates and continuously expands a map 

of the surrounding features. On the other hand side it is possible to analyze the user motion, i.e. 

position and attitude changes relative to the detected features. This information can then be used as 

a (relative) position update. Hence, SLAM navigation systems have a feature detection algorithm, a 

feature matching algorithm and algorithms to calculate the relative user motion with respect to the 

features. SLAM itself can be implemented e.g. as an extendend Kalman filter. The drawback of the 

laser sensor is the large size of the sensor, the weight, the power consumption and the price. Hence, 

laser ranging is not ideal with respect to calibration efforts, ubiquitous positioning and equipment 

weight and size. 

Ultra-Wideband positioning systems (UWB) are radar systems with an active user tag. The user tag 

sends very short RF pulses, which are registered by several receiver stations using Time Difference Of 

Arrival (TDOA) or Angle Of Arrival (AOA) methods or combinations of both to calculate the user 
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position. Ultra-wideband refers to the ultra high bandwidth (BW) of the RF signal, which has by 

definition a BW larger than 500 MHz or by other definition at least half of the frequency as BW. 

Often the pulse itself is extremely short. A commercial product is offered e.g. by Ekahau for 

pedestrian users. The system offers high accuracy and low drift, but requires high investments in 

infrastructure as well as an intensive calibration of the environment to achieve good performance. 

Naturally, navigation is only possible inside UWB equipped buildings.  
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5.8 Application oriented sensor suite 

As described in the previous chapters, many sensors can be used for indoor navigation and it is 

necessary to focus on a limited set of sensors for limitation of cost, energy supply, the complexity of 

algorithms and the required infrastructure in the individual scenario. Additionally it could be shown, 

that there is no single sensor that could perform positioning well in all kinds of indoor navigation 

scenarios. Therefore the choice of sensors is very important for the performance, applicability and 

cost of an indoor navigation sensor suite. 

The following points were considered for the choice of sensors: 

 Positioning shall be possible seamlessly in indoor and outdoor environments. 

 Costly infrastructure in the building shall be avoided. Only wireless network communication 

systems should be used since they are present in most buildings today. 

 High sensitivity GNSS shall be possible by precise user trajectory replication. 

 A tradeoff between system autonomy and taking advantage of additional position fixes and 

attitude reference must be found. 

Hence, the following sensors have been selected: 

 GNSS receiver: The NavX-SR GNSS receiver, a software receiver produced by IfEN GmbH is 

used as adjustable and enhanced HS-GNSS receiver. This receiver has been chosen because it 

is a real time capable software receiver which is especially flexible and can be modified for 

the individual use case. It allowes the access to the tracking algorithms using APIs which is 

necessary to integrate the replica generation described in the following chapters. By 

extension of the coherent integration time superior high sensitivity performance shall be 

realized. 

 INS: A MEMS type inertial measurement unit will be used for PNS and trajectory replications 

with high resolution and high relative accuracy. The IMU has the capability to monitor the 

antenna motion with high frequency and high short term accuracy. The Xsens MTI IMU will 

be used as sensor for several reasons. This IMU offers an internal attitude reference (AHRS) 

and offers several different options for attitude representation. The interface to the unit can 

be used easily and the provided drivers and code snippets make intergration easier. The 

temperature calibration is mandatory for the intended use and the unit offers 

magnetometers, which reduce the number of sensor systems. 

 Magnetometers: Small GMR type magnetometers will be used as heading reference, while 

sophisticated calibration and integrity checking is necessary. Magnetic heading can be used 

to initialize and stabilize the inertial heading. The magnetometers are integrated in the used 

IMU. A basic problem of using MEMS IMUs for inertial navigation is the heading 

determination since gyro compassing will in general not work with low-cost sensors. Hence, 

an additional source for heading determination is very useful. 

 Barometers: A MEMS type barometer will be used as altitude reference. Initial test were 

done with an analog sensor, which required an A/D converter. Finally, the Bosch BMP085 has 

been chosen because of the digital interface and the good temperature calibration. 

 Wireless LAN: A WLAN proximity positioning system for position updates in previously 

surveyed environments will be used based on commercial IEEE 811.11 standards consisting 
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of a rover WLAN USB stick and several WLAN access points. The system can provide position 

updates in WLAN equipped indoor environments. Although systems with external 

infrastructure demands should be avoided, an exception is made for WLAN, since it can be 

assumed to be present in most (office) buildings today and the use does not cause additional 

costs. 

 External systems: Additional position updates can be received from the INPOS positioning 

system by Telespazio Italy, working with ZigBee motes instead of WLAN access points. 

Precise timing will be available by a precise OCXO oscillator and network based time transfer. 

A general idea was to use sensors and sensor systems with high practical relevance, while the system 

cost should be limited. The used infrastructure should be common technology, that could be found 

public or office buildings. The used sensors should be commercial of the shelf technology, while low-

cost sensors were preferred. 

Radar systems like UWB are too expensive to be found in common buildings, while it must be 

admitted that the accuracy is excellent. Additionally, each used room would have to be equipped 

which causes very high cost. RFID can also not be considered to be found in a great number of 

buildings, while giving precise position updates when crossing. Optical systems will not be used due 

to the high calibration efforts and eventually high sensor cost, together with the high computer load 

of optical navigation. 

It is the goal of this sensor suite to overcome the individual drawback and weaknesses of the 

individual subsystems and to exploit the positive properties of each. The GNSS receiver will be used 

as main overall navigation sensor, while the IMU will be the main sensor for antenna “micro-

trajectory” reconstruction, and PNS dead reckoning. With PNS processing, low drift relative 

positioning can be achieved. The low data rate of the PNS will be enhanced by AHRS/INS processing 

of the IMU raw data. The magnetometer, as well as the barometer, the WLAN positioning and GNSS 

updates will be used to correct the errors of the inertial sensors and the AHRS/INS processing. 

Finally, the GNSS software receiver shall be enabled to integrate coherently GNSS signals with up to 

two seconds of coherent integration time to achieve supreme HS-GNSS capabilities. The complete 

sensor suite and the user equipment can be seen in Figure 7-6 and Figure 11-1. The system 

integrated receiver platform architecture is shown in Figure 11-2. 

5.9 Summary 

In the previous chapter, a wide range of different techniques and sensors for positioning with special 

focus on indoor positioning have been described. While each system offers different properties, it 

could be shown that no single system is capable of seamless indoor/outdoor positioning with the 

required availability and accuracy. While many sensors and techniques seem appropriate for indoor 

navigation, many sensors are too expensive, too large or otherwise not suited for pedestrian 

navigation. Others require expensive infrastructure which cannot be expected in common buildings. 

Finally, a sensor suite for the given scope has been defined. The algorithms and techniques for these 

sensors will be described in the next chapters. Generally, it is the scope to combine the positive 

properties of all sensors to achieve the required system performance. 
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6. INS 

Inertial Navigation Systems (INS) are special cases of dead reckoning navigation, using 

accelerometers and gyroscopes as ('inertial') navigation sensors. "Inertial navigation involves a blend 

of inertial instrumentation, mathematics, control system design, and geodesy. The technology is used 

in many military, civilian, engineering, and scientific activities."[11] Inertial navigation facilitates 

autonomous navigation, providing instantaneous and autonomous position, velocity and attitude 

information.  

Inertial navigation represents a crucial element of this thesis. It has been used for the precise and 

continuous reproduction of the user antenna motion, which represents the key technology for the 

implementation of very long coherent GNSS signal integration. As will be shown in this chapter, 

inertial navigation is strongly affected by sensor errors. If low cost sensors with usually high sensor 

errors are used, classical navigation algorithms fail. Thus, for the replication of user motion the 

classic INS algorithms had to be modified and the actual duration of sensor integration had to be 

shortened to few seconds.  

Due to the importance of INS for this thesis, the basics of inertial navigation will be described in the 

following chapter. Crucial elements are:  

- the physical principle of INS 

- the coordinate frames and transformations 

- the mathematical attitude representation 

Finally the processing of the transformed acceleration and the position, as well as velocity derivation 

will be discussed. Since the implemented algorithm for position and velocity derivation in the user 

motion replication differs from classic algorithms, the thesis will outline these parts only shortly. The 

different sensor types and their properties will be discussed and illustrated by measurements 

performed with the inertial measurement units (IMUs) present at the Institute of Space Technology 

and Space Applications. In addition to that, also the error propagation in inertial navigation will be 

discussed.  

6.1 Introduction 

Inertial navigation has been developed due to the need of instantaneous, autonomous, high integrity 

positioning. It is a dead reckoning system. Predecessors are instruments like the gyro compass, and 

early attitude control systems for aircraft and missile control. The development of inertial sensors is 

strongly related to the work of several outstanding developers. Some of them are: 

- Johann Gottlieb Friedrich von Bohnenberger, the inventor of the "Bohnenberger machine" 

of 1817, which is the direct predecessor of the gyroscope 

- Jean Bernard Léon Foucault and his "gyroscope" from 1852 

- Hermann Anschütz-Kaempfe and his "Gyrocompass" from 1907 

- Maximilian Schuler, an employee of Anschütz-Kaempfe and inventor of the "Schuler Tuning" 

([91]) 

- Elmar Sperry, a contemporary of Anschütz-Kaempfe, who developed gyrocompasses in the 

USA as a contemporary of Anschütz-Kaempfe and as a direct competitor.  
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Early applications of inertial instruments and navigation can already be found at the German A4/V2 

missile developed in the late 1930s. The first implementation of a fully operational inertial navigation 

system for military application was the navigation system for the USS Nautilus, a submarine using 

nuclear power. The Nautilus was able to operate submerged for significant time. This raised the need 

for autonomous navigation. The INS deployed on the Nautilus was of a gimbaled type and allowed 

even polar crossing, a problem of local level frame implementations. One of the most prominent 

representatives of INS application is the Apollo spacecraft, which used inertial navigation systems to 

navigate from Earth to the Moon. 

The basic problem of autonomous navigation systems is the fact that the position and velocity of the 

navigation unit or user usually cannot be measured autonomously by common physical 

phenomenon. Optical navigation systems, which use landmarks or stars as reference, could provide 

position information, but are not independent since the direct line of sight to the reference objects is 

needed. They cannot be used in all weather conditions and environments, especially indoors. Speed 

could be measured by odometers, logs or pitot pipes. However, odometers are not well suited for all 

kind of users, and logs as well as pitot pipes are dependent on the external information on the 

stream of the fluid they are used in, which is water or air.  

Pedestrian navigation differs significantly from the applications described above. For the pedestrian 

user, it is unpractical to carry voluminous and heavy navigation instruments. All instruments must be 

small size and lightweight, since they should not restrict the daily activities. However, the pedestrian 

user has individual requirements to its navigation system. While 1 nmi accuracy after one hour is a 

very good accuracy for an aircraft INS, this accuracy is unacceptable for a pedestrian user. On the 

other hand, the dynamics of the pedestrian user, the velocity and the covered range are strongly 

limited compared to aircraft and missiles. Hence, INS algorithms and instruments must be adapted to 

be useful for the pedestrian user. 

The development of micro electro-mechanical system (MEMS) technology reduced the size, weight, 

power consumption and the price of inertial sensors dramatically. This allows INS technology to be 

applied to the pedestrian user. The drawback of MEMS sensors is the strongly reduced accuracy 

compared to classical instruments like FOG or RLG systems. To apply INS to the pedestrian user using 

MEMS technology, a strategy to reduce the INS drift must be found. It is worth consideration to 

deviate from classical INS processing techniques, and to use motion constraints and systems like the 

step detection and PNS to reduce the INS drift and the system dynamics, while increasing the 

accuracy for this special application. This topic will be discussed in detail later in the chapters 7-11. 
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6.2 Basic properties of inertial navigation 

As mentioned before, it is difficult to measure position by autonomous means. The measurement of 

velocity can also be difficult, e.g. in the vacuum of space. But even if position and velocity are difficult 

to measure directly, the second derivative of the position, i.e. accelerations, can be measured 

according to Newton's second law by measuring the force acting on a proof mass: 

�⃗� = 𝑚�⃗� (1) 

�⃗� =
�⃗�

𝑚
 

(2) 

Symbol Explanation 

�⃗� Vector of force 

m Mass 

�⃗� Vector of kinematic acceleration 

Table 6-1: Symbols used in Newton’s second law of motion

 
Since acceleration is the derivative of velocity, and velocity is the derivative of position, the position 

can basically be calculated by double integration of the measured accelerations. Instruments 

measuring accelerations are called accelerometers. By the double integration of the acceleration, 

firstly the velocity change and secondly the position change could be calculated. An Inertial 

Navigation System (INS) is therefore formed by the combination of an inertial measurement unit 

(IMU) and a navigation computer performing the complex kinematical computations.  

Nevertheless, several aspects hamper the direct integration of measured accelerations: 

- Due to Einstein's rule of equivalence, the accelerometers cannot distinguish between 

gravitational forces and kinematic accelerations. 

- According to Newton's law of gravitation, the gravitational force decreases with increasing 

distance between the mass centers of the proof mass and the Earth. This is, in other words, 

the altitude. 

- The accelerations must be measured, or at least be transformed and expressed, in the 

desired frame of navigation to allow direct integration. 

- Therefore, the current attitude of the IMU with respect to the navigation frame of the 

system must be known. 

- If not navigating in the inertial frame only, several pseudo-forces are acting on the sensors 

and must be compensated. These forces are the Coriolis force, the centrifugal force and the 

Euler force.  

- The initial conditions of velocity and position must be known to solve the integrals, as well 

as the initial attitude. 

- Inertial instruments determine acceleration and rotation rates with respect to the inertial 

frame, but expressed in the sensor or body frame. If the navigation is performed in an 

individual navigation frame, the rotations and acceleration between the inertial and the 

navigation frame, as well as the orientation differences must be considered. 
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6.2.1 Accelerations and specific forces 

As a result of his work on the relativity theory, Albert Einstein discussed the principle of equivalence 

([15], [16], [17]). In this work, he described the equivalence of gravitation and kinematic acceleration. 

Due to Einstein's principle of equivalence, the accelerometers cannot distinguish between gravity 

and kinematic acceleration. This means that the accelerations, measured by the accelerometers in 

the body frame, must be corrected for gravity in order to result in the measured kinematic 

accelerations. 

𝑓𝑏⃗⃗ ⃗⃗⃗ = 𝑎𝑏⃗⃗ ⃗⃗⃗ + 𝑔𝑏⃗⃗ ⃗⃗ ⃗ = 𝑟𝑏⃗⃗⃗⃗⃗̈ + 𝑔𝑏⃗⃗ ⃗⃗ ⃗ 
(3) 

If the calculations are performed in the inertial frame, the system equations using a direction cosine 

matrix (DCM) implementation: 

𝑟𝑖⃗⃗⃗̈⃗ = 𝐶𝑏
𝑖𝑓𝑏⃗⃗ ⃗⃗⃗ + 𝑔𝑖⃗⃗ ⃗⃗     (4)     

𝐶𝑏
�̇� = 𝐶𝑏

𝑖Ω𝑖𝑏
𝑏     (5)     

Ω𝑖𝑏
𝑏 = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
]
 

   (6)     

 

𝐶𝑏
𝑖 = 𝐶𝑒

𝑖𝐶𝑛
𝑒𝐶𝑏

𝑛

 
(7)     

𝐶𝑏
𝑛 = [

cosΘ cosΨ −cosΦ sinΨ + sinΦ sinΘ cosΨ sinΦ sinΨ + cosΦ sinΘ cosΨ
cosΘ sinΨ cosΦ cosΨ + sinΦ sinΘ sinΨ −sinΦcosΨ + cosΦ sinΘ sinΨ

−sinΘ sinΦ cosΘ cosΦ cosΘ
]
 

(8)     

 

𝐶𝑛
𝑒 = [

− sin𝜑 cos𝜆 − sin𝜆 −cos𝜑 cos𝜆
− sin𝜑 sin𝜆 cos 𝜆 − cos𝜑 sin𝜆

cos𝜑 0 − sin𝜑
]
 

   

(9)     

𝐶𝑒
𝑖 = [

cos α sin𝛼 0
−sin𝛼 cos𝛼 0

0 0 1
]
 

   

(10)     
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The Table 6-2 gives a reference to the symbols used in the equations above. 

Symbol Explanation Unit 

f Specific force [m/s²] 

ω Rotation rate [rad/s] 

Φ Roll (Euler attitude angle) [rad] 

Θ Pitch (Euler attitude angle) [rad] 

Ψ Yaw (Euler attitude angle) [rad] 

φ Geodetic latitude [rad] 

λ Geodetic longitude [rad] 

α Angle between the zero meridian and the vernal equinox (ω*t) [rad] 

F Absolute force  [N] 

G Gravitational constant [m³/(kg*s²)] 

M Mass of the Earth [kg] 

m1 Proof mass [kg] 

R0 Mean Earth radius [m] 

r Radius [m] 

ωs Schuler frequency [s-1] 

Table 6-2: Symbols used in the INS equations

 
Gravity can be derived from models and tables and must be propagated for the altitude and local 

variations. If the proof mass of the accelerometer and the Earth are modeled as point masses, and 

the geometry is reduced to a scalar case, Newton's law of gravity can be written as: 

𝐹 = −𝐺
𝑚1𝑚2

𝑟2
    (11)     

If the equation is vectorized, it can be written as: 

�⃗� = −𝐺
𝑚1𝑚2

|𝑟|3
𝑟

 
   (12)     

The force F can be reduced to the specific force f, which yields: 

𝑓 =
�⃗�

𝑚1
= −𝐺𝑀

𝑟

|𝑟|3 

   (13)     

It is also interesting to examine the change of the specific force with the increasing distance of the 

centers of gravity. For the scalar case again, the following relation can be derived: 

𝑑𝑓

𝑑𝑟
(𝑟 = 𝑅0) = 2𝐺𝑀

1

𝑅0
3 =

𝑔0

𝑅0
= 𝜔𝑠

2

 
   (14)     

Astonishingly, the derivative has the magnitude of the square of the Schuler frequency. 

If local values are used to determine the gravity with eq. (14), the resulting acceleration is slightly 

higher than the expected normalized Earth acceleration. This effect is caused by the centrifugal 

forces produced by Earth rotation, which must be considered for calculating gravity.  
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The centrifugal forces can be calculated by: 

𝑓𝑐𝑒𝑛𝑡𝑟 = 𝜔𝐸
2𝑅 

 
   (15)     

If the local latitude and the direction of the centrifugal forces are considered, the centrifugal forces 

perpendicular to the local level frame can be estimated as: 

𝑓𝑐𝑒𝑛𝑡𝑟 = 𝜔𝐸
2𝑅 cos𝜑

 
   (16)     

It is obvious that there are navigation frames which are advantageous for applying the gravity 

corrections. One of those frames is the local level navigation frame (index n). In the local level frame, 

the z-axis points to the mass center of the Earth, it is fixed on the current location of the user on the 

Earth surface and the x-axis points in the direction of the North Pole. The y-axis forms a right handed 

coordinate frame. The origin and influence of the pseudo-forces can be demonstrated if the 

kinematics in the local level frame is analyzed. If the position vector r in the form of equation (4) is 

differentiated twice to result the acceleration, the following result is obtained:  

𝑟𝑖 = 𝐶𝑛
𝑖 𝑟𝑛   (17)   

𝐶𝑛
�̇� = 𝐶𝑛

𝑖 Ω𝑖𝑛
𝑛   (18)   

𝑟 �̇� = 𝐶𝑛
𝑖 𝑟�̇� + 𝐶𝑛

�̇� 𝑟𝑛 = 𝐶𝑛
𝑖 𝑟�̇� + 𝐶𝑛

𝑖 Ω𝑖𝑛
𝑛 𝑟𝑛     (19)     

𝑟 �̈� = 𝐶𝑛
𝑖 𝑟�̈� + 𝐶𝑛

�̇� 𝑟�̇� + 𝐶𝑛
�̇� Ω𝑖𝑛

𝑛 𝑟𝑛 + 𝐶𝑛
𝑖 Ω𝑖𝑛

�̇� 𝑟𝑛 + 𝐶𝑛
𝑖 Ω𝑖𝑛

𝑛 𝑟�̇� = 

 

= 𝐶𝑛
𝑖 𝑟�̈� + 2𝐶𝑛

𝑖 Ω𝑖𝑛
𝑛 𝑟�̇� + 𝐶𝑛

𝑖 Ω𝑖𝑛
𝑛 Ω𝑖𝑛

𝑛 𝑟𝑛 + 𝐶𝑛
𝑖 Ω𝑖𝑛

�̇� 𝑟𝑛 

    

 (20)     

𝑟 �̈� = 𝐶𝑛
𝑖 (𝑟�̈� + 2Ω𝑖𝑛

𝑛 𝑟�̇� + Ω𝑖𝑛
𝑛 Ω𝑖𝑛

𝑛 𝑟𝑛 + Ω𝑖𝑛
�̇� 𝑟𝑛)     (21)     

The first term in the brackets on the right hand side of equation (21) represents the kinematic 

acceleration of the point mass expressed in the inertial frame. The second term on the right hand 

side of (21) is called Coriolis acceleration. The third term represents the centrifugal force. The fourth 

term is called Euler acceleration. These additional acceleration components are caused by the non-

static, rotating (navigation) frame. Those components must generally be considered when 

performing inertial navigation in the local-level frame. It must be noted that especially the Euler 

acceleration term is extremely small. 

As the transformation matrix 𝐶𝑛
𝑖  is calculated by integrating its own derivative, further requisites can 

be stated: 

 Gravity in the navigation frame must be known. 

 The initial condition of 𝐶𝑛
𝑖  must be known.  

The initial attitude state, represented in the transformation matrix C, is determined by an algorithm 

called alignment. The rotation rate matrix Ω must be determined continuously. The gyroscopes of 

the IMU are used to measure the rotation rates. 
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The basic steps in the standard strapdown algorithm, neglecting several others for the sake of clarity, 

are: 

 Measurement of the specific forces and rotation rates in the body frame 

 Update of the attitude angles in the navigation frame due to rotation rate measurements in 
the body frame and transport rate due to the user’s movement 

 Transformation of the measured accelerations in the navigation frame 

 Correction of the accelerations for the gravity influence 

 Correction of the accelerations for pseudo-forces 

 Double integration of the accelerations in the navigation frame 

It is obvious that errors of the measurement of the specific force will be integrated twice and thus 

will produce fast growing position errors. But even more impressive are the errors induced by 

erroneous gyroscope readings. They induce erroneous platform orientations and, as a result, 

erroneous measurements of specific forces and gravitational acceleration as well as insufficient 

gravity corrections. If the absolute value of the gravity of nearly 10 m/s² is considered, the induced 

position error can be estimated. Analysis will be given in chapter 6.8. A mathematical simulation of 

the INS errors is described in chapter 18.4. 

Before starting the strapdown algorithm, the initial attitude angles need to be initialized. In classical 

instruments this is performed by levelling and gyro-compassing. Levelling means the determination 

of the horizontal plane by observation of the gravity vector. As a result the attitude Euler angles Φ 

and θ (roll and pitch) can be estimated. Gyro compassing determines the geographic North direction 

by the observation of the measured earth rotation rate and is capable of estimating the heading 

angle Ψ. In several filter steps these estimations are refined and allow a platform orientation with 

high accuracy. The algorithms will be described in detail in chapter 6.6. 

6.3 Reference frames in Inertial Navigation 

Coordinate frames have a high importance in all kinds of inertial systems. Some reasons for this are: 

 There are frames which can exploit certain natural or mathematical properties, e.g. the 

direction of gravity or the direction and relative position to fixed points or non-holonomic 

constraints in vehicle navigation ([14]). 

 Measurements are taken in the sensor frame. 

 Measurements are related to a second frame, even if they are expressed in the sensor frame, 

e.g. rotation rate with respect to the inertial frame expressed in the body frame. 

 Gravity is by definition parallel to the z-axis in the navigation frame. Hence, deduction of the 

gravity component from the measured specific forces is very simple in the navigation frame. 

 Navigation is often performed in a local level navigation frame, even if the position is finally 

needed in a global frame. 

 Local frames allow simplifications, while the position is often useful only in global frames. 

In the following, the most important frames for inertial navigation will be discussed. The choice of 

frames for the individual application and mechanization will be discussed in the next chapter. 
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Inertial frame (I-frame) 

The inertial frame was defined by the German physicist Ludwig Lange in 1885. Basis for the definition 

was the analysis performed by Newton, Galilei, Mach and several other physicists ([53]). Therefore, 

Newton’s laws play an important role in the definition of the inertial frame and appear in the inertial 

frame in their simple form. Lange defined the inertial frame as: 

„Inertialsystem heißt ein System von der Beschaffenheit, dass mit Bezug darauf die in einem Punkt 

zusammenlaufenden, stetig beschriebenen Bahnen dreier gleichzeitig von demselben Raumpunkte 

projizierter und sofort sich überlassener Punkte (die aber nicht in einer Geraden liegen sollen) 

sämtlich geradlinig sind. “[53] (quoted in [24]). 

The definition includes the first law of Newton, that bodies remain static or move as straight lines 

with constant velocity if no accelerations act on them. In detail, the inertial frame is assumed to be 

not accelerating and not rotating. According to Paul Savage, the inertial frame is a “non-rotating 

inertial coordinate frame used as reference frame for angular rotation measurements”. [15] 

The enormous relevance of the inertial frame in inertial navigation is the fact that gyroscopes 

measure the rotation rates in the body frame with respect to the inertial frame. Therefore a gyro-

scope which is static in an Earth fixed frame would still be measuring the Earth rotation rate with 

respect to the inertial frame. Since positions are often expressed in the Earth fixed frame, the Earth 

rotation rate must be compensated, otherwise large errors would occur. 

While theoretically simple, it is difficult to find a realized frame that follows the definition of an 

inertial frame. A realization would be to place the origin of the realized inertial frame in the mass 

center of the sun while pointing one of the axes in a fixed direction in space. This realization is close 

to the definition, but is not very convenient for practical use. A more practical approach is the Earth 

Centered Space Fixed (ECSF) frame. Its origin is the mass center of the Earth. The z-axis points to the 

North Pole, while the x-axis points towards the vernal equinox, a fixed direction in space. The y-axis 

forms a right-handed frame. Therefore, the frame is moving, but not rotating with the Earth. Strictly 

speaking, it is not un-accelerated since the rotation around the sun is an accelerated movement. As 

the numerical eccentricity of the Earth orbit is only around 0.0167, the orbit can be approximated as 

circular and the acceleration is compensated by the centrifugal force. Hence the ECSF frame can be 

approximated as inertial frame. 

Earth centered Earth fixed (ECEF) frame (E-frame) 

The Earth centered Earth fixed frame is mostly used to express the user’s position on a global scale. 

Its origin is located at the geometrical center of the Earth, its z-axis points to the North Pole. The x-

axis lies in the equatorial plane and intersects the Greenwich meridian. The y-axis forms a right-

handed frame. The ECEF can be used as Cartesian and as polar coordinate frame. In the polar form, 

the position is expressed as latitude, longitude and altitude. In the ECEF frame it is possible to relate 

the actual position with global maps and global landmarks. It is most suitable for global geolocation 

and global references. The ECEF is strongly related to models of the geometric form of the Earth, as 

well as to a specific geoid model. The most widely used model and most important realization of the 

ECEF system is the World Geodetic System of 1984 (WGS 84). It contains an ellipsoid model, a geoid 

model (EGM 96), and is established and maintained by using many georeference stations around the 
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world. It has been established by the US Department of Defense and the National Geospatial-

Intelligence Agency (formerly National Imagery and Mapping Agency) ([69], [20]). The fact that WGS 

84 is the reference frame for GPS is very important for navigation. 

User positions are mostly expressed in the ECEF. Since navigation is often performed in local 

navigation frames, the transformation of coordinates, the orientation and the origin of the local 

navigation frame in the ECEF must be determined and maintained during the navigation operations. 

The ECEF rotates around its z-axis with respect to the pseudo-inertial ECSF system. The orientation 

with respect to the ECSF system is therefore determined by time and rotation rate of the Earth. To 

maintain the transformation matrix, a precise knowledge of time is crucial. This also reflects one of 

the oldest problems in ship navigation, known as “longitude problem”. 

Body or sensor frame (B-frame) 

The body frame is a frame bound to the user or, in many cases, to the vehicle of interest. In 

strapdown INS, the body frame is often realized as the coordinate system of the inertial 

measurement unit, and therefore located in the (virtual) center of the inertial sensor installation. The 

axes are defined by the axes of the sensor triad. Since navigation is usually not performed in the body 

frame, a simple, standardized transformation to the navigation or ECEF frame is used.  

Since the mechanical parts of gimbaled systems can be avoided, the strapdown approach allows very 

compact, light-weighted IMUs and is therefore especially suited for applications with strict physical 

limits (weight, size, power consumption, etc.), like in pedestrian navigation. 

Local level navigation frame (N-frame) 

The local level navigation frame has high relevance for local navigation, i.e. navigation in close 

proximity to a specified origin. It is often established at the starting point of the trajectory 

calculation. The N-frame is a frame tangential to the geoid. Therefore, the z-axis is parallel to the 

local gravity vector that points downwards to the Earth center. The x-axis usually points towards the 

geodetic North Pole, while the y-axis points east. This right-handed frame has certain advantages: 

 As the frame is tangential to the geoid, gravity can be compensated by the simple deduction 

of the local gravity of the z-axis accelerometer reading. Thus, one of the important problems 

of INS can easily be implemented by other means. 

 If 2D dead reckoning navigation is performed, the results can easily be compared with the 

INS position. This is particularly useful for PNS and combinations of PNS and INS. 

 Navigation in geometrically limited areas, like buildings and factories, can be performed by 

very simple processing.  

 The results can be interpreted easily. 

However, if large distances are covered, the N-frame must be re-initialized, i.e. the origin and 

orientation have to be adjusted to the new position and attitude. Hence, the transformation of the 

N-frame to the E-frame basically changes constantly. 
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6.4 Mechanization of sensors 

As discussed before, one of the major problems of INS is to separate gravity acceleration from 

kinematic acceleration. This separation can only be performed if the magnitude and direction of 

gravity can be predicted precisely. Gravity has been measured by geodesists for centuries and is 

modeled e.g. in the geoid model EGM 96. Since gravity acts in the z-axis of the local level navigation 

frame, the separation is very simple in the N-frame. As the accelerations are measured by the 

accelerometers and therefore in the body frame, two basic approaches exist to construct an INS: 

 The sensors are always kept oriented along the navigation frame by a mechanical gimbal 

system, which makes the B-frame orientation equal to the N-frame orientation with respect 

to the E-frame: platform system 

 The sensor readings are mathematically transformed from the B-frame to the N-frame, 

whereas the orientation of the sensor assembly must be monitored and expressed 

mathematically: strapdown system 

Since powerful computers were not available in the early years of INS (around 1950-1970), the first 

implemented INS were platform systems with three dimensional gimbal systems. After initial 

alignment, the gyroscope measurements as well as the transport rates from the navigation computer 

were used to adjust the platform orientation directly to the chosen reference frame. Accordingly, the 

attitude of the accelerometer and gyroscope assembly is maintained approximately level and can be 

retrieved by pickups at the gimbals. This approach reduces the computational load dramatically and 

could also be implemented in analog technology. The accelerations can be integrated directly after 

gravity, Coriolis and centrifugal force correction. A typical example of this technology can be seen in 

Figure 6-1. The Litton LN-3 INS uses three full gimbals and one additional limited yaw gimbal to 

prevent the gimbal lock effect. It was produced for the German air force version of the Starfighter, 

the F-104G. The unit uses mechanical two-degree-of-freedom gyroscopes of the Dynamically Tuned 

Gyroscope (DTG) type. Since the mechanical gyroscope can measure two perpendicular rotation 

rates, only two gyroscopes are needed. The upper gyroscope can easily be identified in Figure 6-1 by 

the orange heater stripes. The three accelerometers are mounted between the two gyroscopes in 

the middle of the inner gimbal assembly and are kept aligned with North and the local level plane. 

The accelerations can be measured directly in the navigation frame. Optional implementations for 

platform systems include the North-East-Down system, but also the wander-azimuth-system or a 

space-stable mechanization. 

In the strapdown system, the sensors are mounted rigidly to the rover that shall be navigated. The 

sensors are ‘strapped-down’ to the rover. Strapdown systems development started around 1970, 

when computers with acceptable computing power appeared on the market and especially in 

aircrafts. “By year 2000, virtually all inertial navigation systems had become (or were retrofitted to) 

the strapdown type (an exception being ballistic missile guidance systems which continued to use 

gimbaled technology).”[87]  
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Figure 6-1: LITEF/Litton LN-3 platform INS system used in the F-104 G ”Starfighter” 

The mechanical complexity of these systems is much lower than the platform systems, nevertheless 

the mathematical complexity is higher due to the fact, that the actual attitude between the body 

(and sensor) and the navigation frame has to be established, maintained and represented by 

geometric calculations. On the other hand, the sensors could be reduced in dimensions, weight and 

cost dramatically. An example of a medium accuracy strapdown IMU is shown in Figure 6-2. This unit 

is a LITTON LN-200 IMU (now Northrop Grumman), using three fiber-optical gyroscopes (FOG) and 

three MEMS accelerometers ([57]). The unit weights about 700 grams and has a volume of less than 

one liter. The photograph shows the size in comparison to a standard CD. The LN-200 is widely used 

in aeronautics, defense and research since 1994 and is still in production (2015). More than 20.000 

units have been produced ([118]). 

 

Figure 6-2: LITTON LN-200 strapdown IMU using Fiber-optical Gyroscopes (FOG) 

In the following the focus will predominantly be on the strapdown system. The gimbaled platform 

systems will not be discussed in detail. 
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6.5 Attitude representation 

It has already been mentioned that in strapdown systems, the attitude must be represented 

mathematically; the measurements must be transformed from the body frame to the navigation 

frame in order to be useful for navigation. In literature (e.g. [90], [8], [102], [75], [88]), several 

representations of attitude are discussed and illustrated. The representations mostly used in 

navigation applications are: 

 Euler angles 

 Direction Cosine Matrix DCM 

 Quaternions 

Moreover, the use of a representation using a rotation vector is often discussed, but not often found 

in navigation related publications. 

Euler Angles 

Euler angles represent the attitude of the body frame with respect to the local level navigation frame 

(NED) by using three angles: pitch, roll and yaw. The pitch angle θ defines the angle between the 

longitudinal axis of the body frame and the horizon. The roll angle Φ defines the angle between the 

cross axis and the horizontal plane; and the yaw angle Ψ defines the angle between the longitudinal 

axis and the North direction in the horizontal plane. Since they are so demonstrative, Euler angles are 

most often the basis for the evaluation of navigation algorithms, and also for the user interface. 

The order of rotations and also the axis definitions are critical in this case, as the orientation of the 

two frames is constructed by using three consecutive rotations. The order of rotations and axis 

definitions are bound to the definition of the angles and vice versa. Special care must be taken if 

publications and documents from different origin are used since the order of rotation used might not 

be identical. Euler angles are the most intuitive form of attitude representation. A drawback is the 

fact that without any limitation of the angle range definitions, several sets of parameters could 

describe the same attitude. Thus, the angle range has been defined as in the “Luftfahrtnorm DIN 

1300”: 

Euler angle Symbol Range definition 

Pitch φ ]-90°;90°] 

Roll θ ]-180°;180°] 

Yaw ψ ]-180°;180°] 

Table 6-3: Definition of Euler angle ranges  

The order of rotations to transform from the local level navigation frame to the body frame has been 

defined to: 

 First rotation yaw around local level perpendicular axis with magnitude Ψ 

 Second rotation pitch around cross axis with magnitude θ 

 Third rotation roll around longitudinal axis with magnitude Φ 
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DCM 

The direction cosine matrix DCM is a rotation matrix that transforms vectors from one frame to the 

other, e.g. from the body frame to the navigation frame. It is constructed by the multiplication of 

three individual rotation matrices for each rotation. The rotation angles are the Euler angles and the 

rotation order is the same as in the definition of the Euler angles. Hence, the change of 

representation is very simple. The construction of the DCM from Euler angles is described in eq. (22).  

𝐶𝑏
𝑛 = [

cosΘ cosΨ −cosΦ sinΨ + sinΦ sinΘ cosΨ sinΦ sinΨ + cosΦ sinΘ cosΨ
cosΘ sinΨ cosΦ cosΨ + sinΦ sinΘ sinΨ − sinΦcosΨ + cosΦ sinΘ sinΨ

−sinΘ sinΦ cosΘ cosΦ cosΘ
] 

   

(22)     

The great advantage is that the transformation of a vector, e.g. acceleration or velocity from the 

body frame to the navigation frame and vice versa, becomes a simple matrix-vector product. While 

very convenient to use, the DCM representation also has some disadvantages. The first disadvantage 

is the fact that the backward transformation from DCM to Euler angles has singularities. If the last 

line of the DCM in (22) is used for re-transformation, the Euler angles can be calculated as: 

𝜑 = tan−1 (
𝐶𝑏

𝑛(3,2)

𝐶𝑏
𝑛(3,3)

) 

𝜃 = sin−1(−𝐶𝑏
𝑛(3,1)) 

𝜓 = tan−1 (
𝐶𝑏

𝑛(2,1)

𝐶𝑏
𝑛(1,1)

)
 

 

 

   (23)     

Since the convention for the pitch angle is between ±90°, the third formulation in (23) could produce 

non-conformant results. Therefore another implementation must be found to avoid this problem. In 

[88], the implementation is: 

𝜃 = tan−1 (
−𝐶𝑏

𝑛(3,1)

√𝐶𝑏
𝑛(3,2)2 + 𝐶𝑏

𝑛(3,3)2
)

 

   (24)     

It is well-known that the denominator of a fraction is not supposed to become zero. Due to definition 

in (22) this would be the case for steep pitch angles of ±90°. Accordingly, workarounds must be found 

for such steep attitudes to result in acceptable pitch angle performance. 

To show this effect, an AHRS algorithm was developed in Matlab. A test cycle has been recorded with 

the Xsens MTi MEMS inertial measurements unit. For the test, the unit was rotated along the roll, 

pitch and yaw axis consecutively for plus and minus 90°. The profile was calculated with the basic 

quaternion algorithm described below as reference and the unmodified DCM implementation. The 

test profile can be seen in Figure 6-3. The three separate, consecutive rotations can be identified 

easily. The unit returns to its original attitude at the end of the run. The rotations have been applied 

manually. It is not exactly known which internal attitude algorithm is used in the MTi IMU as 

reference. However, it is assumed that a quaternion based attitude reference is used, in combination 

with initial heading determination using magnetometers and stabilization of the attitude by 

observation of the gravity vector and the magnetic field vector. A similar approach has been 

implemented in the course of this thesis. Phases of very low dynamics have been used to evaluate 
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the gravity vector in the measured accelerations, and the results are matching the internal attitude 

very well. For this evaluation, no aiding information has been used. The algorithms developed for this 

test use the rotation rates as single information for propagating the attitude. The internal attitude is 

the reference for the evaluation of the individual implementations here. 

 

Figure 6-3: Test profile of the implementation test. Reference is the internal IMU attitude reference. 

Figure 6-4 shows the attitude calculated with the simple DCM algorithm using the arcsine-

relationship described in (23). The results are comparable to the quaternion implementation with the 

exception of situations when the pitch angle reaches magnitudes close to ±90°. The difference to the 

quaternion implementation will be presented later in Figure 6-7. 

 

Figure 6-4: Attitude calculated with the DCM implementation 
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It must be noted that the calculated attitude is precise again shortly after the pitch maneuvers. This 

fact proves that the propagation of the attitude itself is not affected by this singularity. The problem 

is the re-transformation of DCM to Euler angles, which leads to the described problems. 

The results for using the more complex implementation described in (23) are as presented in Figure 

6-5, and later in Figure 6-8 versus the quaternion implementation. In the close vicinity of the 

singularity, the performance is comparable between both implementations. Only at the singularity 

itself, the more complex implementation switches the sign of the result, causing a 180° angular 

offset.  

 

Figure 6-5: Attitude calculated with the improved Theta reconstruction Euler/DCM implementation 

It must be noted that Matlab uses advanced error catching algorithms. Therefore imaginary parts of 

the re-transformation do not cause system crashes and are simply neglected when plotting the 

results. This must be considered when evaluating the results, especially those of the simple 

implementation. The results are therefore evaluated for a versatile and powerful math 

computational tool, not for general purpose programming languages like C++ or ADA, which are used 

frequently in operational applications. For Matlab, the more complex implementation does not offer 

advantages. While the results of the simple implementation are not valid at the singularity in a way 

that the pitch angle result is kept static at 90°, the results of the more complex implementation are 

not valid at the singularity due to erroneous sign of the results. The accuracy is poor for both 

implementations.  

Quaternions 

A different way of attitude representation is the use of so called quaternions. “Quaternions were 

developed [...] by W.R. Hamilton.”[11] Paul Savage describes the similarity between the quaternions 

and complex numbers ([88]). Quaternions are 4-element vectors and, as complex numbers, have an 

imaginary and a real part. In contrast to the two dimensional complex numbers, the quaternions 
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have one real type component and three imaginary components. In analogy to the “i” in complex 

numbers, the complex components are often referred to as “i”, “j”, and “k”. While the real part of 

the quaternion represents the magnitude of rotation, the imaginary part describes the axis of 

rotation. The basic construction of the attitude quaternions, as specified by [102] and [88], is defined 

as follows: 

𝑞 = [

𝑞0

𝑞1

𝑞2

𝑞3

] =

[
 
 
 
 
 
 
 
 cos (

𝜙

2
)

sin (
𝜙

2
)
𝜙𝑥

𝜙

sin (
𝜙

2
)
𝜙𝑦

𝜙

sin (
𝜙

2
)
𝜙𝑧

𝜙 ]
 
 
 
 
 
 
 
 

 

   

 

 

 (25)     

The conjugate complex of a quaternion is formed by inverting the components of the complex part. 

It must be noted that the absolute value of the quaternion vector has to equal 1. This fact becomes 

obvious if the following equation is analyzed: 

|𝑞| = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = √(cos
𝜙

2
)
2

+ (sin
𝜙

2
)
2

(
𝜙𝑥

2 + 𝜙𝑦
2 + 𝜙𝑧

2

𝜙 
2 ) = 

√(cos
𝜙

2
)
2

+ (sin
𝜙

2
)
2

= 1
 

 

 

   (26)     

During the propagation of the quaternions, it is mandatory to maintain the unity length of the 

quaternions, which can be disturbed by the limited resolution of the numerical representation in 

computer systems.  

The quaternion attitude representation and its back transformation have no singularities and thus 

offer excellent accuracy and reliability. On the other hand, quaternions cannot be easily interpreted 

and evaluated due to their complex nature. Although there are even implementations of quaternion 

based Kalman filters, the attitude will at a certain point finally be transformed back to the Euler angle 

domain. This back-transformation follows the equations: 

𝜑 = tan−1 (
2(𝑞0𝑞1 + 𝑞2𝑞3)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2) 

𝜃 = sin−1(2(𝑞0𝑞2 − 𝑞1𝑞3)) 

𝜓 = tan−1 (
2(𝑞0𝑞3 + 𝑞1𝑞2)

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) 

  

 

 

  (27)     

In Figure 6-6, the results of the quaternion implementation are shown. Despite a small drift of the 

attitude for the entire test period of 170 seconds the results match the internal attitude reference 
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very well. The kinematics could be reconstructed very precisely and no singularities could be 

identified. 

 

Figure 6-6: Attitude calculated with the Quaternion implementation 

To evaluate the performance of the quaternion implementation versus the DCM algortihms, the 

attitude difference has been calculated. The attitude difference between the implemented simple 

DCM algorithm and the quaternion implementation is shown in Figure 6-7. 

 

Figure 6-7: Difference between the resultant attitude parameters of the simple DCM and Quaternion 
implementation 
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The difference between the quaternion implementation and the DCM implementation with the more 

complex theta reconstruction is shown in Figure 6-8. Obviously the quaternion implementation 

performs much better than both DCM implementations and without singularities. 

 

Figure 6-8: Difference between the resultant attitude parameters of DCM and Quaternion implementation 
for the alternative Theta reconstruction 
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6.6 Initial Alignment 

The goal of the alignment procedure is to determine the attitude of the IMU with respect to the 

frame of choice at the beginning of the navigation period. Initial sensor error estimation may also 

take place at this stage. Basically, autonomous alignment and transfer alignment must be 

distinguished. Autonomous alignment is performed by observation of the Earth rotation rate and the 

gravity vector with the IMU. During this kind of alignment the IMU is required to stay static with 

respect to the ECEF frame. Transfer alignment is used if the unit is moving on a mobile platform, 

which itself has an already aligned IMU of mostly higher quality. The focus in this thesis will be on the 

autonomous alignment. 

The initial alignment is usually performed in several consecutive steps. Pre-filtering may be used to 

exclude sensor noise or oscillations induced by vehicle vibrations. This filtering can be simple low 

pass filtering in order to separate the vibration spectrum from the actual carrier/IMU motion. The 

precise type of filter, as well as filter coefficients, pass band parameters etc. can be determined only, 

if the spectrum of the vibrations is known. It is, however, the goal of the pre-filtering to separate the 

rover motion from the induced vibrations. The influence of the vibrations on the attitude calculation 

shall be reduced while the tracking of attitude changes shall be fully maintained. This pre-filtering, 

mostly low-pass or band-pass filtering, is often performed e.g. by averaging, sliding window 

averaging, or Butterworth low-pass filtering. The intention is to exclude certain frequency 

components of the signal, which are outside the user dynamic envelope and are caused by 

disturbances like engine vibrations, Eigen-motion of the carrier vehicle or other effects which should 

not influence the navigation task.  

 

Figure 6-9: Consecutive steps of initial alignment 
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The first alignment step is called coarse alignment and is used to provide a first estimate of the 

current attitude. The second and third steps are called fine alignment and are used to estimate the 

residual errors of the coarse alignment. While coarse alignment as first step can be performed in a 

simple one-stage procedure, the fine alignment procedures are based on Kalman filtering and 

provide a refined estimation of the attitude errors.  

Coarse Alignment 

Algorithms for coarse alignment have been proposed by several authors, including C. Jekeli, D.H. 

Titterton and J.L. Weston [102] and P. Savage [88]. All approaches consider the same baseline: 

- The algorithms use the Earth gravity vector and the Earth rotation vector as observables. 

- The East direction is formed by the cross product of gravity and rotation rate. 

- The transformation matrix b

nC is filled with the observations. 

- Euler attitude angles are calculated from the direction cosine matrix. 

In accordance to the process of aligning platform INS systems the task of coarse alignment is divided 

into the sub-processes leveling and gyrocompassing. For leveling, it is defined that the local level 

navigation frame has its z-axis parallel to the gravity vector. If the IMU is static, the true accelerations 

are the result of the gravity only, since the kinematics are zero by definition. Thus, if the unit is 

rotated in a way, that the x- and y-axis accelerations become zero, the pitch and roll angle can easily 

be determined, while the yaw angle is not yet fixed. For gyrocompassing it must be noted that in the 

NED navigation frame, the Earth rotation rate appears only in the x- and z-axis by the frame 

definition and simple vector algebra. The rotation rate does not appear in the y-axis. If the unit is 

rotated until the y-axis rotation rate becomes zero and the x-axis rotation rate is positive, the unit is 

aligned with the navigation frame and therefore pointing North and the current yaw angle is zero. In 

Figure 6-10 the relationship between the Earth rotation, the gravity vector and the navigation frame 

are visualized. 

 

Figure 6-10: Graphical representation of the Earth and navigation frames at coarse alignment 
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If this practical approach for gimbaled platform systems is transferred to strapdown systems, the 

assumptions must be defined mathematically. The Earth rotation rate vector ωie and the gravity 

vector g are crossing each other in the Earth center. The gravity vector connects the current user 

position, which is also the (initial) center point of the local level navigation frame with the Earth 

center. Therefore, the gravity vector and the Earth rotation rate span a plane, which includes the 

meridian on which the user is located. The East direction is defined as perpendicular vector to the 

meridian plane with direction to the right. Hence, the East direction can be calculated by the vector 

cross product between the gravity vector and the Earth rotation vector. This cross product 

relationship is valid in any given frame and therefore also in the body frame of the IMU. This is 

illustrated in Figure 6-11. 

 

Figure 6-11: Specific forces and rotation rates in the ECEF (green), navigation (blue) and body (red) frame at 
coarse alignment 

For all cross products, respecting the right-hand rule is crucial. The following approach has been 

described in [88]. The East direction in the body frame is formed as: 

𝐸𝑏⃗⃗ ⃗⃗ ⃗ = −𝑔𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝜔𝑖𝑒
𝑏⃗⃗ ⃗⃗⃗⃗⃗

 
   (28)     

The down direction is defined by the gravity vector, thus it can be written as follows:  

𝐷𝑏⃗⃗⃗⃗⃗⃗ = −𝑔𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
 

   (29)     

The North direction is again defined as perpendicular to the East and the down direction.  

𝑁𝑏⃗⃗ ⃗⃗ ⃗⃗ = 𝐸𝑏⃗⃗ ⃗⃗ ⃗ × −𝑔𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
 

   (30)     

The direction cosine matrix from one frame to the other is defined by expressing the unit vectors of 

one frame in the axes of the target frame. Accordingly, after normalization, the calculated axes 

North, East and Down in the body frame can be used to fill a DCM.  
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𝐸𝑛𝑜𝑟𝑚
𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝐸𝑏⃗⃗ ⃗⃗ ⃗

|𝐸𝑏⃗⃗ ⃗⃗ ⃗| 

   (31)     

𝑁𝑛𝑜𝑟𝑚
𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝑁𝑏⃗⃗ ⃗⃗ ⃗⃗

|𝑁𝑏⃗⃗ ⃗⃗ ⃗⃗ | 

   (32)     

𝐷𝑛𝑜𝑟𝑚
𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝐷𝑏⃗⃗⃗⃗⃗⃗

|𝐷𝑏⃗⃗⃗⃗⃗⃗ | 

   (33)     

The direction cosine matrix becomes then:  

𝐶𝑛
𝑏 = [𝑁𝑛𝑜𝑟𝑚

𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐸𝑛𝑜𝑟𝑚
𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐷𝑛𝑜𝑟𝑚

𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗]
 

   (34)     

The transformation matrix n

bC  can be gained by inverting the matrix, which, in case of the DCM, is 

the transpose of the matrix. The Euler angles can be retrieved from the DCM by using the equations 

in (23) and (24). 

Coarse alignment is not absolutely precise due to sensor errors. Consequently, coarse alignment is 

only a first step to allow linearization for Kalman filters. 
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Fine Alignment phase 

The coarse alignment shall provide an initial estimation of the IMU’s attitude. It is the goal of the 

initial alignment to achieve an estimation which is close enough to the real value to allow linear 

estimations for the refinement of the attitude estimation. The fine alignment is based on a two stage 

strategy: 

- observing the Earth rotation over a certain period of time to refine biased attitude 
estimation 

- integrate accelerations and rotation rates over a certain period of time during a zero 
velocity stage to refine attitude and gyroscope bias estimation 

In both stages, a Kalman filter approach is often used. During the fine alignment no external 

information is used. The only prerequisite is that the IMU is kept static during the entire alignment 

phase, which includes coarse alignment, fine alignment with acceleration observation (“stage 1”) and 

fine alignment with velocity observation (“stage 2”). The fine alignment terminates after a 

predefined time and switches over to normal AHRS processing immediately. 

In fine alignment stage 1, the state vector has the following elements: 

�⃗� = [
∆Φ
∆Θ
∆Ψ

] 
 

(35) 

Symbol Explanation 

Δφ Attitude error of the roll angle 

Δθ Attitude error of the pitch angle 

Δψ Attitude error of the yaw/heading angle 

Table 6-4: Definition of the state vector of fine alignment with observation of accelerations 

Since the IMU is required to be static, the only kinematic rotation rate is induced by the Earth 

rotation rate. If the IMU is not correctly aligned, i.e. the orientation estimation of the body frame 

with respect to the navigation frame is not accurate, the transformation of the measured quantities 

from the body frame to the navigation frame will be inaccurate. Hence the attitude in the navigation 

frame will drift due to incorrect attitude transformation and also due to sensor errors. This 

relationship is used in the prediction stage of the filter. The calculated accelerations in the navigation 

frame are used to estimate the residual attitude errors in the update stage. 
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The error propagation model is: 

𝛿

𝛿𝑡
(
∆Φ
∆Θ
∆Ψ

) = (
0 −ωe sinφ 0

ωe sinφ 0 ωe cosφ
0 −ωe cosφ 0

) [
∆Φ
∆Θ
∆Ψ

] (36)     

Symbol Explanation 

ΔΦ Attitude error of the roll angle 

Δθ Attitude error of the pitch angle 

ΔΨ Attitude error of the yaw/heading angle 

ωe Earth rotation rate 
φ Geographic latitude 

Table 6-5: Symbols used in the fine alignment system equation

 
The filter observations are the horizontal accelerations in the navigation frame. Since the IMU is 

considered to be static, for the perfectly aligned IMU the accelerations in the horizontal plane should 

be zero. Measured accelerations are therefore the result of misalignment and sensor errors. The 

sensor errors are not determined yet at this alignment stage. The observation equation is: 

(
δfN
δfE

) = (
0 g 0
−g 0 0

)(
∆Φ
∆Θ
∆Ψ

) + w (37)     

Symbol Explanation 

δfN Measured acceleration in North direction in the 
navigation frame 

ΔfE Measured acceleration in East direction in the navigation 
frame 

ΔΦ Attitude error of the roll angle 

Δθ Attitude error of the pitch angle 

ΔΨ Attitude error of the yaw/heading angle 

g Earth gravity acceleration 

w Noise component of measurements 

Table 6-6: Symbols used in the fine alignment observation equation

 In the second stage of the fine alignment procedure, the measured accelerations are integrated 

comparable to standard INS processing. In contrast to the INS processing, the interest in position 

information and vertical velocity is low. The integration is used to calculate the estimated velocity 

components in the horizontal plane as well as attitude estimations. Using velocities instead of 

accelerations as observation yields a higher grade of precision. In this stage, the gyroscope bias 

errors can also be estimated to improve the following AHRS processing. The bias error is “[...] the 

average over a specified time of gyro output measured at specified operating conditions that has no 

correlation with input rotation or acceleration. Bias is typically expressed in degrees per hour 

(°/h).”[32] Physical and mathematical definitions can be found in [39]. It has a high impact on the 

results of the INS processing. A definition and models for the bias errors can be found in [35], [37] 

and [39]. 
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The full state vector for the second stage of fine alignment is: 

 

�⃗� =

(

 
 
 
 
 

∆Φ
∆Θ
∆Ψ

∆dGN

∆dGE

∆dGD

∆VN

∆VE )

 
 
 
 
 

 (38)     

Symbol Explanation 

ΔΦ Attitude error of the roll angle 

Δθ Attitude error of the pitch angle 

ΔΨ Attitude error of the yaw/heading angle 

ΔdGN Gyroscope bias of the x-axis gyroscope 

ΔdGE Gyroscope bias of the y-axis gyroscope 

ΔdGD Gyroscope bias of the z-axis gyroscope 

ΔVN Velocity error in North direction 

ΔVE Velocity error in East direction 

Table 6-7: Symbols used in the fine alignment (2) state vector 

The system propagation is defined by the system matrix F: 

𝐹 =

(

 
 
 
 
 
 
 
 
 

0 −ωe sinφ 0 −1 0 0 0
1

r

ωe sinφ 0 ωe cosφ 0 −1 0 −
1

r
0

0 −ωe cosφ 0 0 0 −1 0 −
1

r
tanφ

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 g 0 0 0 0 0 −2ωe sinφ
−g 0 0 0 0 0 2ωe sinφ 0 )

 
 
 
 
 
 
 
 
 

 (39)     

 

Symbol Explanation 

ωe Earth rotation rate 
φ Geographic latitude 

r Earth radius 

Table 6-8: Symbols used in the fine alignment (2) system matrix 

The integrated velocity estimates are considered as velocity errors because the IMU is supposed to 

be kept static during alignment. The same principle can be applied to the azimuth. Because the IMU 

is not supposed to rotate, a change in azimuth can be considered as rotation error and therefore be 

used as additional observation to estimate sensor errors. Consequently, the total observation 

equation reads as: 
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z⃗ = (
∆VN

∆VE

∆Az
) = (

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0

)

(

 
 
 
 
 

∆Φ
∆Θ
∆Ψ

∆dGN

∆dGE

∆dGD

∆VN

∆VE )

 
 
 
 
 

+ w (40)     

Symbol Explanation 

ΔVN Velocity error in North direction 

ΔVE Velocity error in East direction 

ΔAz Attitude error of the yaw/heading angle 

ΔΦ Attitude error of the roll angle 

Δθ Attitude error of the pitch angle 

ΔΨ Attitude error of the yaw/heading angle 

ΔdGN Gyroscope drift of the x-axis gyroscope 

ΔdGE Gyroscope drift of the y-axis gyroscope 

ΔdGD Gyroscope drift of the z-axis gyroscope 

w Observation noise 

Table 6-9: Symbols used in the fine alignment (stage 2) state vector 

After successful convergence of the fine alignment second stage Kalman filter, the system can switch 

to the standard navigation Kalman filter operation, which uses e.g. position and velocity observations 

by GNSS or zero velocity observations (ZUPT) as updates for the Kalman filter. 

 

6.7 Attitude propagation for Direction Cosine Matrix and Quaternions 

After the initial alignment, the attitude of the body frame with respect to the navigation frame has 

been determined. The alignment procedure is usually performed under static conditions. One 

exception is the transfer alignment case, in which the attitude of a reference system is transferred to 

the “slave” INS. However, this procedure is not the focus of this thesis. After the alignment, the INS 

will switch to normal operation, in which the IMU is supposed to move freely. To maintain the 

attitude information between the body frame and the navigation frame, the attitude has to be 

propagated using the inertial sensor measurements. As stated before, the attitude can be expressed 

by several representations und there are individual algorithms to propagate those. In this thesis, the 

DCM and the quaternion representation are presented. 

DCM representation: 

Attitude is described in the DCM representation as a matrix, which contains the unity vectors of the 

original frame represented in the actual frame. According to [88], the matrix can be propagated by 

the following procedure: 

𝐶𝑏
�̇� = 𝐶𝑏

𝑛Ω𝑛𝑏
𝑏     (41)     



69 

 

Since the gyroscopes measure the rotation rates between the body frame and the inertial frame b

ib , 

and not between the body frame and the navigation frame b

nb , the measurements cannot be used 

directly in the update cycle. The measurements have to be corrected for the rotations between the 

navigation frame and the inertial frame. If the Earth fixed space oriented frame is used as quasi-

inertial frame, the rotation rate between navigation and inertial frame is the Earth rotation rate. 

According to P. Savage [88], the corrections are: 

𝐶𝑏
�̇� = 𝐶𝑖

𝑛𝐶𝑏
𝑖̇ + 𝐶𝑖

�̇�𝐶𝑏
𝑖

 
   (42)     

𝐶𝑏
�̇� = 𝐶𝑏

𝑖Ω𝑖𝑏
𝑏

 
   (43)     

𝐶𝑖
�̇� = 𝐶𝑖

𝑛Ω𝑛𝑖
𝑛

 
   (44)     

A different approach is to correct the measurements directly for the Earth rotation. In this 

implementation, the rotation of the Earth with respect to the inertial frame and the rotation of the 

navigation frame with respect to the Earth fixed frame (transport rate) are transformed to the body 

frame and deducted from the gyroscope measurements. While mathematically identical, this 

approach can be implemented more easily especially for systems with low dynamics. When 

pedestrians or other slow-movers are considered, the transport rate is nearly zero. Additionally the 

total rotation of the navigation frame during the mission time is negligible in comparison to the 

sensor errors. Under these circumstances the implementation can be done as: 

𝐶𝑏
�̇� = 𝐶𝑏

𝑛Ω𝑖𝑏
𝑏 − Ω𝑒𝑖

𝑛 𝐶𝑏
𝑛

 
   (45)     

Ω𝑖𝑏
𝑏 = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
]  

   (46)     

Ω𝑒𝑖
𝑛 = [

0 −𝜔𝑒𝑖
𝑛 (3) −𝜔𝑒𝑖

𝑛 (2)

𝜔𝑒𝑖
𝑛 (3) 0 −𝜔𝑒𝑖

𝑛 (1)

−𝜔𝑒𝑖
𝑛 (2) 𝜔𝑒𝑖

𝑛 (1) 0

] 

   (47)     

𝜔𝑒𝑖
𝑛 = 𝐶𝑒

𝑛𝜔𝑒𝑖
𝑒     (48)     

𝐶𝑒
𝑛 = [

− sin𝜑 cos𝜆 − sin𝜆 −cos𝜑 cos 𝜆
− sin𝜑 sin𝜆 cos 𝜆 − cos𝜑 sin𝜆

cos𝜑 0 − sin𝜑
] 

   (49)     

𝜔𝑒𝑖
𝑒 = [

0
0

𝜔𝐸

] 
   (50)     
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Quaternion representation: 

According to [88], the quaternion attitude representation can be propagated by the following 

procedure. The derivative of the quaternion attitude representation is calculated by propagation 

using the measured rotation rates and corrected for the Earth rotation rate. 

�̇� =
1

2
�̅�𝜔𝑖𝑏

𝑏̅̅ ̅̅̅ −
1

2
𝜔𝑒𝑖

𝑛̅̅ ̅̅ 𝑞 
 

   (51)     

�̅� = [

𝑞0 −𝑞1 −𝑞2 −𝑞3

𝑞1 𝑞0 −𝑞3 𝑞2

𝑞2 𝑞3 𝑞0 −𝑞1

𝑞3 −𝑞2 𝑞1 𝑞0

]
 

   (52)     

𝜔𝑖𝑏
𝑏̅̅ ̅̅̅ = [

0
𝜔𝑥

𝜔𝑦

𝜔𝑧

]
 

   (53)     

𝜔𝑒𝑖
𝑛̅̅ ̅̅ =

[
 
 
 
 

0 −𝜔𝑒𝑖
𝑛 (1) −𝜔𝑒𝑖

𝑛 (2) −𝜔𝑒𝑖
𝑛 (3)

𝜔𝑒𝑖
𝑛 (1) 0 −𝜔𝑒𝑖

𝑛 (3) −𝜔𝑒𝑖
𝑛 (2)

𝜔𝑒𝑖
𝑛 (2) 𝜔𝑒𝑖

𝑛 (3) 0 −𝜔𝑒𝑖
𝑛 (1)

𝜔𝑒𝑖
𝑛 (3) −𝜔𝑒𝑖

𝑛 (2) 𝜔𝑒𝑖
𝑛 (1) 0 ]

 
 
 
 

 

   (54)     

The multiplication of the measured rotation rates and the quaternion, as well as the Earth rate and 

the quaternion must be performed using the quaternion multiplication. Therefore the quaternion in 

the first case, and the Earth rate in the second case, must be transformed into a 4x4 matrix according 

to eq. (52) and (54). The quaternions can then be propagated by the derivative calculated in eq. (51) 

and the time increment. The quaternion must be normalized after calculation to maintain the unity 

size. 
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6.8 Position propagation 

In the previous chapters, several aspects of attitude representation and attitude propagation have 

been discussed. The most important elements of the attitude propagation were the measured 

rotation rates. Although tremendously important, the attitude calculation is only one half of the INS 

functionality. To derive the current user position and velocity, the measured accelerations have to be 

transformed to the desired frame and integrated to gain velocity and position information. 

Inertial sensors measure accelerations and rotation rates in the body frame in relation to the inertial 

frame. The navigation itself can be performed in various different frames. In chapter 6.2.1, especially 

in the equations (17)-(21), it has been shown that additional forces have to be considered, if 

navigation is not performed in the inertial frame. These forces are the Coriolis, centrifugal and Euler 

forces. 

In this work, the user trajectory shall be calculated in the local level navigation frame to exploit 

motion constraints of the user, as well as position updates by additional systems like WLAN 

positioning. Hence, the measured quantities have to be transformed to the local level frame. By 

integration of the corrected accelerations, the user velocity and position change can be calculated. 

The derivation starts at the inertial frame and the position is in the first step transformed to the Earth 

fixed frame. 

𝑟𝑒 = 𝐶𝑖
𝑒𝑟𝑖    (55)     

Hence, by simple differentiating, the velocity and acceleration in the Earth fixed frame can be 

calculated. 

𝑟�̇� = 𝐶𝑖
𝑒𝑟 �̇� + 𝐶𝑖

𝑒Ω𝑒𝑖
𝑖 𝑟𝑖    (56)     

𝑟�̈� = 𝐶𝑖
𝑒𝑟 �̈� + 2𝐶𝑖

𝑒Ω𝑒𝑖
𝑖 𝑟 �̇� + 𝐶𝑖

𝑒Ω𝑒𝑖
�̇� 𝑟𝑖 + 𝐶𝑖

𝑒Ω𝑒𝑖
𝑖 Ω𝑒𝑖

𝑖 𝑟𝑖     (57)     

A sensor in the Earth fixed frame measures: 

𝑟�̈� = 𝐶𝑖
𝑒𝑟 �̈� + 2𝐶𝑖

𝑒Ω𝑒𝑖
𝑖 𝑟 �̇� + 𝐶𝑖

𝑒Ω𝑒𝑖
�̇� 𝑟𝑖 + 𝐶𝑖

𝑒Ω𝑒𝑖
𝑖 Ω𝑒𝑖

𝑖 𝑟𝑖 = 𝐶𝑏
𝑒𝑓𝑏 + 𝑔𝑒(𝑟𝑒)    (58)     

The terms in the middle of equation (58) are the kinematic acceleration, the Coriolis acceleration, the 

Euler acceleration, and the centrifugal acceleration. Because the Euler acceleration is so small in 

magnitude, it can be disregarded. On the right hand side of the equation, the measured forces as 

sum of kinematic forces and gravity can be found. Since gravity and centrifugal forces due to Earth 

rotation are only depending on the position, they can be combined into one force which is constant 

at constant position: 

𝑔𝑒(𝑟𝑒) − Ω𝑒𝑖
𝑒 Ω𝑒𝑖

𝑒 𝑟𝑒 = 𝑔𝑒̅̅ ̅    (59)     

To yield the closed form for the navigation frame, the following substitution can be found: 

𝑟�̇� = 𝑣𝑒 = 𝐶𝑛
𝑒𝑣𝑛    (60)     
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By derivation it is found: 

𝑟�̈� = 𝑣 �̇� = 𝐶𝑛
𝑒𝑣�̇� + 𝐶𝑛

𝑒Ω𝑒𝑛
𝑛 𝑣𝑛    (61)     

The substitutions are inserted into equation (95) with the Euler term disregarded: 

𝐶𝑛
𝑒𝑣�̇� + 𝐶𝑛

𝑒Ω𝑒𝑛
𝑛 𝑣𝑛 + 2Ω𝑒𝑖

𝑒 𝐶𝑛
𝑒𝑣𝑛 = 𝐶𝑏

𝑒𝑓𝑏 + 𝑔𝑒̅̅ ̅    (62)     

Multiplication with n

eC yields: 

𝑣�̇� + Ω𝑒𝑛
𝑛 𝑣𝑛 + 2Ω𝑒𝑖

𝑛 𝑣𝑛 = 𝐶𝑏
𝑛𝑓𝑏 + 𝑔𝑛̅̅̅̅     (63)     

With re-arrangement: 

𝑣�̇� + (Ω𝑒𝑛
𝑛 + 2Ω𝑒𝑖

𝑛 )𝑣𝑛 = 𝐶𝑏
𝑛𝑓𝑏 + 𝑔𝑛̅̅̅̅     (64)     

The first rotation rate matrix in the brackets represents the transport rate, which is the result of user 

motion on the Earth surface. The second rotation rate matrix represents the Earth rotation rate 

expressed in the navigation frame.  

For the position calculation in the navigation frame, the measured accelerations have to be 

transformed in the navigation frame and corrected for gravity. The measurements are then 

compensated with the product of the described rotation matrices and the velocity vector of the last 

instance. The result is integrated to yield the current velocity; by a second integration, the current 

position in the navigation frame is yielded. 

For the pedestrian navigation, several aspects shall be mentioned. The overall velocity of the 

pedestrian user rarely exceeds 10 km/h. Hence, the rotation correction will take only very small 

values. Because of this, the transport rate is virtually negligible. The Earth rotation rate is in the order 

of magnitude of 7.29*10-5 rad/s. If the user velocity is only 10 km/h, the resulting Coriolis 

acceleration is around 0.0002 m/s². As will be described in chapter 11, the integration time for the 

long coherent signal integration was two seconds and the used sensor was of MEMS type. Thus, the 

rotation corrections did not show any significant change in the positioning result. However, for 

general applications the correction of transport and Earth rate influences on the measured 

accelerations must be considered.  
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6.9 Error propagation 

To illustrate the basic influence of the sensor errors on the integrated position and velocity errors, 

two simulations with a one dimensional INS have been performed. The detailed model of the 

simulation is described in the appendix, chapter 18.3. Several assumptions, as well as detailed 

derivation and solving of the differential equations are explained there. Only a short description of 

the system will be given here. 

The INS shall consist of one gyroscope and one accelerometer and is only considering the alongside 

direction. The IMU is oriented to geographic North. In the first simulation, a gyroscope bias was 

simulated, while the accelerometer bias was set to zero. This setup has been inverted in the second 

simulation with a simulated accelerometer bias, while the gyroscope bias was simulated as zero. The 

sensor errors were equivalent to a position error of one nautical mile after one hour, i.e. 0.0167°/h 

and 0.0023 m/s². By this procedure, the error influences could be separated and demonstrated. The 

results of the simulation are presented in Figure 6-12. 

 

Figure 6-12: Simulated error propagation for a single axis strapdown INS 

The simulation shows clearly the connection between the attitude, velocity and position errors and 

the influence of the Schuler tuning. The gyroscope error induces a platform oscillation, which leads 

to a pulsating velocity error. The velocity error follows a sine function with a constant offset of a half 

amplitude. As a result, the position error consists of two major components: a continuously growing 

linear error and a sine wave oscillation around this linear trend. The frequency of the oscillation is 

the Schuler frequency. A full period of this oscillation is roughly 84.4 minutes or 5063 seconds. This 

period can be easily identified in the figure. 
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The accelerometer bias induces a velocity error. By feedback of the transport rate, a platform 

oscillation is induced, which corrects and over-compensates the velocity error. The velocity error is a 

sine function with zero offset, and consequently the position error is a sine function, too. Again, the 

Schuler period is clearly visible in the figure. 

This simple example illustrates the connection between the attitude, velocity and position states of 

INS. One of the main reasons for this connection is the feedback of the transport rate, which is 

known as Schuler tuning. Sensor errors of the inertial sensors, but also attitude, velocity and position 

errors excite the entire system. The periodic components have a period of 84.4 minutes. When short 

integration intervals of only few seconds are considered, this effect can, therefore, only have 

marginal impact. This will be important for the long coherent signal integration described in chapter 

11. 

If a full INS constellation is studied, other effects become obvious that produce a strong instability of 

the z-component of the INS. To illustrate the influence of the sensor errors on the integrated position 

and velocity errors of a full INS constellation, a simulation with a three dimensional INS has been 

performed. A detailed description of the simulation can be found in the appendix, chapter 18.4. As 

sensor error, an accelerometer bias of 0.1 mg has been applied to the x-axis accelerometer. The 

results are presented in Figure 6-13.  

 

Figure 6-13: Simulated error propagation for a three axes INS 

The simulation clearly shows the vertical instability of INS. The instability is caused by the fact that 

due to the principle of equivalence the INS has to deduct the gravity component of the measured 

accelerations. The gravity component is estimated in the navigation frame using a map of gravity and 

the estimated altitude. It is then transformed to the body frame and deducted from the measured 
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acceleration. Alternatively, the procedure can be performed vice versa in the navigation frame. If the 

attitude estimation is erroneous, this causes the system to estimate the gravity component in the z-

axis as too small. As a result, the system assumes a kinematic acceleration in the z-direction. If the 

altitude is estimated too high, the estimated actual gravity is too small. The measurements are not 

corrected strong enough and again a kinematic acceleration in z-direction is calculated. Both effects 

are stimulating each other. As a result, the calculated INS z-position is highly instable, which is 

impressively demonstrated in the simulation. 

It must be noted that this effect starts slowly and grows continuously over time. It has only marginal 

influence for very short integration interval like a few seconds, which will be used in the receiver 

aiding with very long coherent integration. 

 

6.10 Summary 

In the previous chapter the fundamentals of inertial navigation for strapdown systems have been 

discussed. Newton’s laws of motion were the basis for the strategy of deriving the user position 

measuring and integrating its accelerations. Einstein’s principle of equivalence gave the need for 

precise separation of gravity and the kinematic accelerations. In addition to precise determination of 

the measured accelerations, the precise attitude proved to be extremely important for inertial 

navigation. For that, the most important navigation related frames have been introduced. Several 

mathematical representations of attitude have been presented and their properties have been 

discussed, especially with respect to singularities. The initial alignment, as well as the propagation of 

the attitude representation has been illustrated. The process chain of integrating the measured 

accelerations to gain the user position and velocity has been demonstrated and special issues of 

pedestrian navigation have been mentioned. Finally, the error propagation of INS has been 

demonstrated on a simplified 1D and a 3D INS simulation.  
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7. Pedestrian Navigation Systems 

In the following chapter, an alternative inertial sensor based navigation system called “Pedestrian 

Navigation System” (PNS) will be described. PNS are dead reckoning navigation systems that exploit 

the constraints of human walking. Since the human usually moves by making steps in a certain 

direction, the position change with time is strongly constraint and, therefore, the navigation solution 

of a PNS is often less deteriorated by drift than other DR systems. The user position is propagated by 

detecting steps, determining the incremental distance travelled during this step and adding this 

position change to the last known position. Since the position is only propagated when steps are 

detected, unlimited drift is prevented. The PNS will be one of the major elements of the integrated 

navigation system and is of major importance in this thesis. This chapter will cover the biomechanical 

step aspects, the influence of the sensor placement on the body, as well as a detailed analysis of the 

sub-algorithms of the PNS. 

7.1 Introduction 

Pedestrian navigation has basically the goal of providing the user with information about his current 

position (so called positioning) and providing directions to a desired destination (guidance). The term 

"pedestrian" refers to the human user, who performs steps to move forward. This definition and 

these limitations are necessary, since apart from walking, also crawling, jumping, swimming, or other 

ways of movement would theoretically be possible.  As explained in [110], the pedestrian user moves 

in the indoor or light indoor environment for a significant period of time. In contrast to other users, 

any proposed navigation system must therefore be able to operate in environments with low or fully 

denied GNSS visibility at least for a reasonable amount of time. Since external infrastructure for 

ubiquitous position fixing cannot be provided everywhere, this requirement directly leads to dead 

reckoning systems. The classical DR system today for aircrafts, ships and submarines is inertial 

navigation. Since the IMUs have been reduced in size, price, weight and power supply during the last 

few years, IMUs have been considered for pedestrian navigation for some time now. Several samples 

for the progress in the IMU technologies are depicted in Figure 5-6. 

Inertial navigation is typically performed by the strapdown algorithm, which transforms acceleration 

measurements from the body frame into the local level navigation frame. It corrects for nominal 

gravity, centrifugal and Coriolis accelerations and double-integrates the resultant acceleration. By 

feedback of the transport rate by the Schuler loop, the dynamic error behavior could be improved. 

Sensor and alignment errors, however, produce rapidly growing navigation errors. While 

accelerometer biases result in an oscillating position and velocity error, which cannot grow over 

certain limits, the gyroscope biases produce a continuously growing position error by the integration 

of the gravity vector due to erroneous attitude solutions. Hence, the integration of measured 

accelerations is a reason for the large position drift of INS over time. 

Integration of INS with other sensors, like GNSS or LORAN, has been used for many years now and it 

has been shown that sensor error estimation, navigation error estimation and correction of both 

actually work, if sufficient aiding information of reliable quality is available. It is, however, very 

difficult to obtain this aiding information in indoor scenarios. More information about the strapdown 

INS aspects can be found in [87], [90], and [102]. 
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The described navigation system is an alternative dead reckoning system. Comparable, but not 

identical IMU-based PNS are described in several publications like [48], [54], or [63]. The main 

elements of the PNS are the following subsystems: 

 step detection 

 step classification 

 stride estimation 

By adding 

 heading determination  

 dead reckoning position propagation  

a dead reckoning navigation system is formed. 

Like odometric systems in vehicles the proposed navigation system offers autonomous navigation 

with limited error growth. In cooperation with magnetic sensors, gyroscopes and error estimation by 

position updates, the position drift can be reduced additionally. The functional organization and the 

data flow of the core elements are presented in Figure 7-1. 

 

Figure 7-1: Signal flow chart of the pedestrian navigation system 

As in the case of other dead reckoning systems, the positioning error grows with distance traveled 

and elapsed time. Error sources are the erroneous heading estimation, stride estimation errors and 

errors in the step detection, i.e. lost steps or false detections. The following reasons illustrate the 

limited error growth of the system: 

- The PNS solution is drift-free, if no steps occur. This situation happens frequently and can be 
used, e.g. for zero velocity updates. 

- The average step length can be estimated in general to about 0.7 m. Individual walking 
behavior, especially the individual stride relation can be determined and modeled, which is 
an equivalent to a personal calibration. Only step length variations and calibration errors are 
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present. Hence, the positioning error due to the stride errors is not time dependent but 
dependent on the distance traveled and is relatively small. 

- If no continuous and significant magnetic disturbances are present, the attitude with 
emphasis on the heading can be stabilized by magnetic sensors. Thus, the heading drift is at 
least partially compensated and the heading error significantly reduced. 

Figure 7-2 gives an impression of the reduced drift and high positioning accuracy of the PNS. The 

green spot marks the starting point of the walk; blue dots mark the registered steps. The walk 

stopped at the starting point, which can be monitored in the results. The red silhouette shows the 

parking lot, which was used as test area. The test was performed using the MTi IMU on an 

experimental mounting to prove the usability of the unit and the sensor placement on the belt. The 

test was intended to show the function of the algorithms with this sensor placement. The figure also 

depicts the discrete nature of PNS: position updates are only available at the instant of a detected 

step. 

 

Figure 7-2: Test run on parking lot, using PNS only with Xsens MTi IMU internal attitude 

Calibration was not performed for the individual user, but a generic parameter set from an initial 

calibration campaign has been used. It must further be noted, that only the accurate dimensions of 

the parking lot were measured, the initial azimuth orientation was fitted to the measured walking 

path. It is evident that the measured profile follows the ground reference very well. Scale factor 

errors are low and due to non-individual calibration. Sophisticated calibration as shown in chapter 

7.5.2 and 7.5.3 can improve the navigation accuracy. 
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7.2 Sensor placement on the human body 

In the following subchapter, the biomechanical step aspects, i.e. kinematics, accelerations and rota-

tion rates, are analyzed. It will be shown that the placement of the inertial sensor on the user’s body 

has large influence on the measured quantities and on the applicability of various algorithms.  

7.2.1 Biomechanical step aspects of walking 

Walking is a complex form of movement and consists of several phases. The body’s weight is shifted 

to one leg, while the other leg is lifted, swung forward and set on the ground again with the heel 

first. Then the foot rolls from heel to toe while the body’s weight is shifted to this leg and the circle 

continues. This movement has been discussed in various medical, physiological and also technical 

papers; technical descriptions can be found e.g. in [48], [54], and [7]. The publications mostly cover 

mechanical models of the legs, represented by two levers connected with hinges to the hips and the 

feet. This model has certain advantages, however, it is neither complete nor does it explain all 

aspects of walking; especially all the movements of the hips and the rest of the body as well as the 

interaction between the legs are neglected. Hence for analysis, an experimental approach was 

chosen and will be discussed here. For this, a BEI Systron Donner MMQ-50 MEMS-type inertial 

measurement unit was mounted on a belt holder device and attached to the waist of the individual 

test person. The IMU measured rotation rates and acceleration in the three orthogonal axes north, 

east and down. The test persons walked a straight test range of 38.5 m length on a rigid, tiled floor. 

This test range has also been used for the stride evaluation campaign, which is described in chapter 

7.5.2. The distance in the case shown in the following figures was crossed in 36 seconds and with 56 

counted steps.  

Analysis shows that all registered movements of the body during walking have a cyclic form. As can 

be seen in Figure 7-3, all the acceleration patterns measured at the test walker’s belt repeat with 

every step. They all have a nearly constant mean value caused by the gravity accelerations, the 

attitude angles with respect to the local horizontal plane and the sensor biases and scale factor 

errors incorporated in the measurements. The amplitudes vary slightly. While, obviously, not every 

step has an absolutely identical shape and intensity, the discrete data sampling even with high 

frequency does not always catch the absolute peak of the signal. The signal slope is relatively high in 

the context and even the maximum delay of half the sample period, in this case 25 ms, can attenuate 

the absolute maximal values by a significant amount. Despite these variances, every step causes a 

noticeable cyclic acceleration pattern in all three body-mounted sensor axes. It is obvious that factors 

like different leg length, body weight, shoe type or rigidness of the underground will cause different 

amplitudes of the measured accelerations for different users and test persons. However, the pattern 

form stays the same if the basic walking cycle does, too. 
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Figure 7-3: Acceleration patterns for walking 

As can be seen in Figure 7-3 and Figure 7-4, the accelerometers and also the gyroscopes measure a 

cyclic signal in all three orthogonal axes. Furthermore, the amplitudes of the measured rotation rates 

have a similar order of magnitude. Thus, during walking the waist is not rigid but flexible and shows 

significant rotation in the heading, the roll and even the pitch axis. The stride is elongated by the yaw 

rotations, i.e. during swing phase not only the leg swings forward but also the waist. And during the 

shifting of the weight from one leg to the other, a noticeable roll rotation can be noticed. The pitch 

rotation shows the smallest amplitude which can be explained by the reduced flexibility of the pelvis 

on the spinal column around this axis as well as balance aspects. 

 

Figure 7-4: Rotation rate pattern for walking 
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This short analysis shows the limitation of the simple walking models, because it demonstrates that 

even straight walking is a three-dimensional movement with a lot of body motion involved, which is 

only weakly represented by the simple mechanical model. On the other hand it shows that, if other 

moving states can be neglected, nearly all sensor axis measurements are adequate to indicate steps. 

The phase relationship between the signals of the different IMU axes can be valuable information for 

the determination of the kind of step, which is necessary to estimate the stride correctly. 

7.2.2 Sensor placement on the body 

The placement of the sensors on the body is of special interest for the development of algorithms as 

well as the design of sensors for practical implementation. Obviously, several positions on the body 

are possible and will show very different results for the same movement. Besides, several 

operational and ergonomic aspects have to be considered for the decision where to place the 

sensors. In literature most of the authors use belt mounting of the sensors to the waist of the test 

persons (e.g. [54], [55], [63]), sometimes also on the lower back (e.g. [21], [41], [51]). Mounting of 

the sensor on the shoe is also proposed and tested (e.g. in [42], [76], [5], [86]). Multiple sensor suites 

with sensors e.g. on the thighs, shanks, breast, etc. have been described in [56], [21] and [84]. 

Overhead placement, like e.g. helmet or head mountings or mounting on the arm of the test person 

could not be found in the available literature. Generally, the body does not only move while walking, 

but also while standing, if any kind of activity is performed. If body motion is used to detect steps, 

the algorithms shall not be negatively influenced by other activities. Sensor placement can play an 

important role in this respect. When working with the computer, mainly fingers, hands, forearms and 

the head are moving, while the rest of the body is approximately at rest. When bending the whole 

upper body, possibly the legs are moving to stabilize the body, shift the center of gravity or bring 

maximum force behind the torso. Drinking a cup of coffee would only require the movement of the 

whole arm with the rest of the body staying rigid. These examples show that the measurement of 

other body movements is dependent on the placement of the sensor. Consequently, positioning the 

sensor at unfavorable locations can disturb the step detection by measurement of accelerations 

which are not corresponding to steps. 

On the other hand, the body does not only induce accelerations by movement but also attenuates 

accelerations caused by walking. A hard “heel down” would have much bigger acceleration 

amplitude but also a shorter impact time when measured at the sole of the shoe than it would have 

when measured on the head, because the spinal column and the skeleton, the muscles and the 

liquids in the body damp these peaks significantly. In addition to that, the geometrical amplitudes of 

the feet are higher than those of the body resulting in bigger accelerations in the longitudinal axis. It 

has been experienced that the phase relationship between the individual acceleration axes for 

individual step types, especially the step type ‘down’, is very significant with belt mounting, but lost 

when using overhead mounting. This is especially interesting for the step classification. 

Mounting the sensors on the shoe has both advantages and disadvantages. On the one hand, the 

bigger amplitudes of acceleration allow a better signal to noise ratio for sensors with strong sensor 

noise. The kinematic acceleration is significantly higher and allows simple step detection algorithms. 

On the other hand the strong shocks at the feet strongly influence the inertial sensors. Especially 

cross-coupling and linear force errors on the MEMS gyroscopes due to the high g-loads seem not 

optimal for navigation. Furthermore, there is a significant rotation of the feet in multiple axes. These 
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high amplitudes of motion are generally disadvantageous, since proportional errors like scale factor 

errors, but also non-linear errors due to shock loads, result in steadily growing attitude errors. On the 

other hand, the inertial solution can be stabilized using zero velocity updates (ZUPT) during the heel 

down phase. IMUs with only one gyroscope have to be considered because they offer a significant 

cost benefit in comparison to full 3D packages. Because they cannot follow the roll and pitch 

attitude, a mounting as horizontal as possible should be used to avoid misalignment errors. 

Therefore, mounting the sensor on the shoe is challenging for the inertial sensors and their 

processing, at least for dead reckoning over longer periods. Practical considerations of the power 

supply, the data readout, wiring, and not least the protection of the sensors also speak against shoe 

mounting. For professional use it is critical to modify safety certified shoes e.g. for fire fighters’ 

application. The sensor placement has been studied for belt mounting (Figure 7-5), as well as 

mounting the sensor overhead (Figure 7-6).  

  

Figure 7-5: Sensor placement on the belt of the test person 
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Figure 7-6: Sensor placed overhead of the test person [72] 

In both cases the step detection algorithm described in chapter 7.3 does perform well, but with 

slightly adjusted thresholds. The parameters of the algorithms have to be calibrated according to the 

sensor mounting to optimize the detection and false alarm rates. 

7.3 Step detection 

When using PNS, dead reckoning for a pedestrian user is performed by detecting steps, estimating 

their length (stride) and heading and propagating the next position. By doing so, the step detection 

has a high priority. Without a correct step detection, the navigation solution will not propagate 

correctly. If actual steps were not detected, the calculated DR position solution would not propagate 

at all. False alarms, i.e. step detections without actual steps made, would propagate the DR solution 

incorrectly. Hence, the step detection algorithms must work with a high detection probability and a 

low false alarm rate.  

Step detection intervals and step classification will have a special application in the stride 

determination. Since the evaluation of the step type must be applied on the actual data set of the 

analyzed step, the step detection algorithm gains additional importance for the determination of the 

step interval time data window. 

In the following chapter, several strategies and techniques for step detections will be presented. 

Some of them were influenced by literature, e.g. in [48], [54], [55], [63] and [56], others were found 

by principal data analysis and combinations of various techniques. Finally, a combined step detection 

algorithm will be presented, which will be further used for the operating PNS. 

7.3.1 Overview  

Many different step detection approaches exist in literature. In most cases the accelerometer 

outputs, especially that of the z-accelerometer, are used to detect steps. The signal offers several 

parameters which can be used for step detection. Some of the used signal parameters are: 

 the amplitude around the mean value (for the z-axis, the mean acceleration is around 

standard Earth gravity acceleration) 
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 signal form 

 variance/standard deviation around the mean value 

 cross-correlation between the different signal axes 

 the frequency spectrum of the sampled data. 

Some of these strategies will be discussed in the following chapters of this thesis, before the finally 

used strategy will be developed. In addition to the detection of actual individual steps, the detection 

of the principal states of movement, standing still or moving, is sometimes necessary, too. There also 

exist strategies for this application. 

Besides the step detection, the inertial signals of the IMU can also be used for the step classification. 

Basically the same parameters apply for step classification as well as for step detection beside the 

fact that the step window between the last step und the actual step is known by the step detection 

algorithm. Hence, the length of the data sample set to be analyzed can be reduced and the algorithm 

can work more effectively. There are also solutions described in literature which perform both tasks 

with only one strategy ([48]). However, the detection as well as the classification need to have a high 

level of reliability. 

The inertial measurements can be evaluated in different domains:  

 the time domain 

 the frequency domain  

 the statistical domain 

All of these domains will be evaluated in the following chapters. While the signal time domain deals 

with the acceleration and rotation rate measurements related to the time of measurement, the 

frequency domain and the statistical domain use transformed signals. Thus, new information can be 

gained while on the other hand the original signal is usually lost. 

The most important statistical parameters are the mean and the standard deviation (or variance) of 

the evaluated signals. In inertial measurements, there mostly are problems with biases or misalign-

ments, which deteriorate the time domain signals, especially if no redundant information for error 

estimation and calibration is available. If the sensor noise is reasonably low, the variances of the 

inertial signals can deliver good information about movements for detection as well as classification. 

Thus, e.g. standing still is easy to determine by an evaluation of the acceleration variances. On the 

other hand, other activities also induce acceleration signals and thus statistical information by itself is 

not sufficient. 

In literature, smoothing of the signal e.g. by band pass filtering to ease step detection and 

classification is discussed, e.g. in [55], [21], and [51]. Smoothing usually creates significant time lags 

and attenuates also the original signal, which shall be avoided in this work to keep the system as 

close to real-time as possible. Consequently, no signal filtering has been used and the developed 

algorithms must be capable of tolerating the signal noise. 
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7.3.2 Step detection by Fourier transformation of the acceleration signal 

As shown in chapter 7.2.1 the pedestrian movement appears in the IMU measurements as cyclic 

acceleration and rotation rate patterns. This can be observed in Figure 7-3 and Figure 7-4. Thus, it 

seems straight forward to analyze these patterns in the frequency domain to determine the step 

frequency from the inertial data. The integration of the step frequency over time would then yield 

the actual number of steps traveled, and multiplied with the stride also the traveled distance. 

The transformation from the time domain to the frequency domain is usually performed using the 

Fourier transformation. In the continuous form, the Fourier transformation performs a 

decomposition of periodic signals (not necessarily pure sine signals) into a set of sine and cosine 

functions [59]:  

𝑓(𝑡) = 𝑓(𝑡 + 𝑙𝑇0) 

𝑙 = 0,1,2,… 

   (65)     

𝑓(𝑡) =
𝐴0

2
+ ∑ 𝐴𝑘 cos(𝑘𝜔0𝑡)

∞

𝑘=1

+ ∑ 𝐵𝑘 cos(𝑘𝜔0𝑡)

∞

𝑘=1

 
   (66)     

Symbol Explanation 

f(t) Base function 

A Scalar constant 

B Scalar constant 

C Scalar constant 

ω0 Base frequency of the Fourier transformation 

t Time 

k,l Integer numbers 

φ Angle shift 

Table 7-1: Symbols used in the Fourier equations

 
According to [59], the right side of the equation is called Fourier-series, and the coefficients Ak and Bk 

can be calculated using the following integrals: 

𝐴𝑘 =
2

𝑇0
∫ 𝑓(𝑡)𝑑𝑡

𝑇0

0

=
𝐴0

2
+ ∑ 𝐴𝑘 cos(𝑘𝜔0𝑡)

∞

𝑘=1

 

𝐵𝑘 =
2

𝑇0
∫ 𝑓(𝑡)𝑑𝑡

𝑇0

0

=
𝐴0

2
+ ∑ 𝐴𝑘 sin(𝑘𝜔0𝑡)

∞

𝑘=1

 

    

 

 

(67)     

By using addition theorems one yields: 

𝑓(𝑡) =
𝐴0

2
+ ∑ 𝐶𝑘 sin(𝑘𝜔0𝑡 + 𝜙𝑘)

∞

𝑘=1

 

𝐶0 =
𝐴0

2
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𝐶𝑘 = √𝐴𝑘
2 + 𝐵𝑘

2 

𝜙𝑘 = tan−1
𝐴𝑘

𝐵𝑘
 

𝑘 = 0,1,2,… 

 (68)     

If the input signal is not continuous, but discrete, a discrete form of the Fourier transformation exists 

that combines the row of measurements x(n) with complex roots of unity W [82]. By this, the 

discrete measurements are connected to continuous periodic function. For a vector of 

measurements x of the length N this Discrete Fourier Transformation (DFT) is defined in [82] as: 

𝑋(𝜇) =
1

𝑁
∑ 𝑥(𝑛)𝑊−𝜇𝑛

𝑁−1

𝑛=0

 

𝜇 ∈ 𝑍 

𝑊 = 𝑒2𝑖
𝜋
𝑁 

 

 

 

   (69)     

Symbol Explanation 

X Fourier transform of the measurements vector 

x Measurement vector 

N Length of measurement vector 

W Complex root of unity 

Table 7-2: Symbols used in the discrete Fourier equations

 
Further analysis on the DSP in the context of GNSS can be found in [64]. The Fast Fourier 

Transformation (FFT) is an efficient implementation of the DFT. It reduces the number of operations 

of the DFT strongly, if the length of the sample is a power of 2 [82]. For this analysis, the software 

Matlab and its implementation of the FFT function have been used to analyze the frequency content 

of the measured z-axis acceleration. Detailed information about the implementation can be found in 

the Matlab help documentation. The FFT function yields as result of the transformation complex 

numbers for each (discrete) frequency step. By analysis of the length of these vectors, the power 

content in this frequency setpoint can be derived. 

The measured acceleration does not only consist of the step movements, but also of other disturbing 

motions, e.g. the sensor errors, noise, sampling frequency effects and constant gravity acceleration. 

The Fast Fourier Transformation (FFT) of the z-acceleration measured by the IMU described above 

yielded the spectrum shown in  

Figure 7-7. 
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Figure 7-7: Frequency analysis by FFT analysis of the measured z-acceleration  

As can be seen clearly the biggest amplitudes of this spectrum are below 0.5 Hz, which is below the 

expected step frequencies. The main peak results from the large constant gravity acceleration. Step 

frequencies between 0.5 and 5 Hz have been evaluated as most significant in the walking trials. The 

result for this frequency window is shown in Figure 7-8.  

 

Figure 7-8: Close-up look on the focused frequency spectrum of Figure 7-7 

Clearly, a simple peak detection algorithm can find the step frequency in this frequency window 

(marked with red circle). But also harmonic multiples and other smaller amplitudes remain in the 

spectrum. The walking trials showed that step frequencies above 5 Hz cannot be achieved by the 
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common test persons. Even for athletes this high frequency is challenging and hence not the focus of 

a PNS. On the other hand steps below 0.5 Hz (step period >2 s) are not standard walking behavior 

either. Thus, the reduction of the frequency window can be made and does not restrict the PNS 

significantly. 

The frequency analysis of the measured accelerations can be performed easily, but has several 

severe disadvantages. 

As it will be shown in the stride estimation chapter, the step frequency must be known with high 

precision of at least 0.1 Hz. The resolution of the FFT on the other hand is dependent on the length of 

the used data sample. To achieve the stated resolution of 0.1 Hz, a sample of ten seconds length has 

to be used. Because no future data is available, this leads to a time delay of the calculated step 

frequency to the actual step frequency of at least five seconds. This delay is not acceptable for many 

applications and, as a result, there is a trade off between time delay and frequency resolution when 

using the FFT for a PNS. 

Another issue is the decision about the actual motion state. It is necessary to determine, if the user is 

actually walking or not. Even if the person is not walking, there will be measured accelerations, like 

gravity, body motion different from walking, sensor noise, sensor sampling rate effects and many 

more. Consequently, the FFT would show some peaks in the spectrum. The biggest peak in the 

proposed frequency window would be detected as walking frequency and the navigation solution 

would be updated without any steps made. For that reason it is necessary to determine thresholds to 

identify the walking. Peaks below these thresholds are interpreted as no walking; peaks above enable 

the navigation processing. However, the threshold magnitude is not easy to determine because of 

the different walking behaviors of different users, different walking speeds which must be covered by 

this threshold(s), different undergrounds and so on. This leads to an experimental and not 

deterministic strategy of threshold determination and is not the most effective one. Additionally, the 

usage of amplitude thresholds also corrupts the proposed principle of the frequency analysis, which 

is performed by the transformation of the standard accelerometer outputs in the time domain to 

their transformed form in the frequency domain. 

In addition to that, a lot of information is lost by the transformation of the signals in the frequency 

domain. One of the main problems is the loss of the phase relation between the detected steps and 

the heading angle determined at the time of the step. Thus, it becomes difficult to propagate the 

position in the correct direction. It has been shown in chapter 7.2.1 that significant yaw rotation 

rates exist during one step cycle. It is important to catch the correct heading angle at the step epoch. 

For example, a low pass filtered average heading over several epochs will not catch this angle and 

therefore induce a position error growth. 

Parallel to the FFT processing, the usage of the wavelet transformation has also been evaluated. 

While the wavelets have interesting features e.g. for signal de-noising, the principal problems of the 

time lag, the resolution problems and the loss of phase relation between the different axes could not 

be overcome only by this technique.  

In summary, the transformation of the IMU signals in the frequency domain showed interesting 

features, but also the deficiencies of the transformed signal. Although undesired, thresholds need to 
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be used to distinguish between walking and standing. It has been shown that it is challenging to 

maintain the relation between the steps and their heading. The frequency resolution, necessary for 

stride determination, could only be gained by accepting a significant time lag of the data. 

Consequently, the FFT strategy seems not promising as a step detection strategy. 

7.3.3 Step detection by evaluation of stochastical signal parameters 

Using stochastical parameters of measured signals can be a powerful strategy because it shows 

additional properties of the same signal source. Similar to the Fast Fourier Transformation (FFT), the 

evaluation of a signal’s mean and variance transforms the signal to another domain. Additional 

observations can be produced, but the original signal in the time domain is lost, as well as phase 

relations to other measurements in the time domain. When using a sliding window, there is 

obviously a phase relation between the variances, which can be seen in Figure 7-9. For the evaluation 

of mean and variance, the observed interval or sample time is also of importance. For that reason, a 

certain time lag, comparable to that of the FFT before, can also be noticed. 

Figure 7-9 illustrates the calculated variances of the three orthogonal accelerations measured by an 

IMU during a test walk and calculated in a sliding window over 10 epochs (0.5 s). Until epoch 160 the 

test person is standing, then the test walk starts. The variance level at “standing” is extremely low. At 

the beginning of the walk the variances grow immensely and show a cyclic behavior, while the 

variance in the y-axis is lower than on the x- and z-axis. It is interesting that, although the original 

signals are lost, the variances still show the same cyclic form and indicate that the movement in each 

axis has phases of high and low dynamics. By peak detection, individual steps can be found in the 

variance pattern. This algorithm is strongly influenced by other sources of signal variance. 

 

Figure 7-9: Variances of the 3D-acceleration during a test walk (sliding window, 10 samples)  

It is obvious that the variances can be used to detect walking, but with certain restrictions. As stated 

in [54] and [56], the phase correlation between the signal variances can also be used to determine 

the kind of steps (up, down, level).  



90 

 

The cross-correlation function can be used to determine the degree of similarity between two 

signals. This similarity is calculated as function of the time shift between the two signals. According to 

[82], the continuous form of the cross-correlation function is given as: 

𝑅𝑋,𝑌(𝑡) = lim𝑇→∞
1

2𝑇
∫ 𝑋(𝑢)

𝑇

−𝑇
𝑌(𝑢 + 𝑡)𝑑𝑢     (70)     

Symbol Explanation 

 tR YX ,  Cross-correlation of functions X and Y for the time shift t 

X First correlated function 

Y Second correlated function 

t Time shift of both functions 

T Limit of integration interval 

u Integration variable 

Table 7-3: Symbols used in the cross-correlation function

 
According to [64], the discrete form of the cross-correlation function for samples of limited length 

can be written as:  

𝑅𝑋,𝑌(𝑛) =
1

𝑁
∑ 𝑋(𝑖)𝑌(𝑖 + 𝑛)𝑁

𝑖=0      (71)     

Symbol Explanation 

 nR YX ,  Cross-correlation of the discrete functions X and Y for the time shift n 

X First correlated function 

Y Second correlated function 

n Time shift of n samples of the functions 

i Number of individual sample 

N Length of samples 

Table 7-4: Symbols used in the discrete cross-correlation function

 
Figure 7-10 shows the cross-correlation of the variances of the x- and the z-axis, calculated for 56 

consecutive steps, using Matlab and the function xcov. The interval ranges from one step detection 

to the next and the steps have been detected by the algorithm described in chapter 7.3.4. Hence, it is 

possible to determine the correct intervals of observation for the actual measurements and calculate 

the correct variances. In addition to that, unusual motions and non-walking motion can also result in 

acceleration signal variations. This is the main reason for not using the variations for step detection. 

If the step has been detected by other means, it is helpful to also evaluate the variances of the signal 

from step to step. 
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Figure 7-10: Cross-correlation of the variances between x- and z-axis (level walking)  

As can be seen in Figure 7-11 the rotation rates also show the same significant signal variances as the 

acceleration. In Figure 7-12 the first step has been magnified. 

 

Figure 7-11: Variances of the 3D rotation rates during a test walk (sliding window, 10 samples)  
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Figure 7-12: Variances of the 3D rotation rates (zoomed)  

The evaluation shows that the variances in the inertial measurements can be used for step detection, 

but with certain restrictions in the reliability and the processing. First of all, high variances show high 

activity, but not necessarily steps. It is possible to induce high variances in the acceleration axes 

without walking and, therefore, misinterpretations are possible. Since the variances are not crossing 

zero, it is difficult to reject false peaks and keep the peaks correlated to the steps. Hence, thresholds 

had to be used which are again very specific for each individual pedestrian. There is no information 

about the direction of the activity available from the variance observations, only the magnitude. 

Finally the phase relation between the individual axes is changing for different step types, which 

makes it harder to determine the correct heading at the step detection event. Consequently, 

although it could be used with limitations, the stochastic evaluation of the inertial measurements will 

not be used for step detection in this thesis. It is more advantageous to detect the steps by observing 

the continuous signals and then determining the kind of steps using their variances. 

 

7.3.4 Step detection with amplitude and constraints evaluation 

Influenced by the results of the first walking test campaign an optimized step detection algorithm 

was developed. This algorithm takes advantage of the basic walking motion and determines the steps 

on the accelerations level (time domain signal) instead of using a signal transformed to the frequency 

domain. The step frequency is then determined by the inverse of the smoothed step period between 

several following step detections. The absolute values of the extremes in the acceleration profile can 

sometimes be misleading for interpretation. Due to the shock effects during the feet down phases 

and its very sharp slopes. This is increased by the discrete sampling interval which does not secure 

the catch of the absolute maximum. For that reason the interpretation of absolute extremes must be 

handled with care. 
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Several requests on the algorithm have been formulated before the development: 

 Reliable step detection, i.e. high detection and low false alarm probability 

 Minimum time lag between step and step detection 

 High resolution step frequency determination 

 Minimum customizing for different users 

The demand of minimum time lag does not only exclude the frequency domain transformation, as it 

has been demonstrated in chapter 7.3.2, but also the extensive smoothing of the measured signal. 

The step detection would otherwise show a certain time lag to the actual position. But even more 

disadvantageous is the loss of phase relation especially to the yaw gyro and the heading state. 

Therefore, heading errors and heading error induced position errors could occur, which should be 

limited by the algorithm design. The step detection algorithm has been designed to work with the 

raw acceleration signal, not with a smoothed or low-pass filtered signal. To avoid problems with 

misalignment, the total acceleration has been used as main source for step detection.  

The step detection works in four steps continuously with every new acceleration measurement. The 

four steps are: 

 Detection of local extremes 

 Application of the amplitude criterion of extremes 

 Application of the motion constraint of extremes 

 Application of the frequency criterion of step motion 

While the first algorithm will give many indications of possible steps, the following three stages will 

filter out the actual steps for detection.  

Since the step starts and ends with a foot touching the ground, in the first step the acceleration 

signal is searched for a local extreme. The local extreme is defined by a change of the slope 

(negative-positive or positive-negative) at the point of the extreme. In order to determine the slope 

immediately after the point of interest, the next data point must be known. As a result, a time lag of 

at least one epoch (in this case 50 ms/10 ms, depending on the used IMU data rate) cannot be 

avoided.  

Figure 7-13 shows an idealized walking acceleration profile. It has been modeled for the z-axis, 

assuming a lifting and lowering motion during each step. The vertical velocity and acceleration are 

produced by derivation of the z-axis position. For the acceleration, gravity is also added to simulate 

the sensor output. 
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Figure 7-13: Idealized model of walking kinematics in the vertical domain 

In contrast to the simple theoretical model, the measured acceleration during normal and level 

walking has been analyzed. As can be seen in Figure 7-14, many local extremes exist in the measured 

acceleration. The total acceleration, the absolute value of the total acceleration, has been used here. 

The algorithm, however, would work for the z-acceleration as well. Local maxima are marked with 

purple circles, local minima with green circles. It is obvious, that any kind of noise like signal 

distortion can cause additional extremes other than steps and therefore step detection only on a 

basis of local extremes cannot work sufficiently. Hence, an additional screening of the found 

extremes must be performed, which is the main purpose of the following three steps. 

 

Figure 7-14: Result of the local extremes search in the total acceleration signal  

As can be seen on the left hand side of Figure 7-14, there are many extremes detected in the range 

before sample number 50. They are caused by sensor noise as well as by small body movements 
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different from steps. And also after start of walking, after around 40-50 samples there can be 

extremes detected near the mean gravity value. These disturbing local extremes shall be removed by 

the amplitude criterion for local extremes. For this criterion, a region around the normal mean 

gravity value is established in which no steps are expected (“dead zone”). The test walking trials 

showed significant amplitudes for the lift as well as for the touch phase of the steps. These 

amplitudes are supposed to lie far out of the dead zone around the mean measured gravity. The 

dead zone was defined in the test campaigns between ±1.1 and ±1.5 m/s² around the standard 

gravity value. The basic idea behind this region is to filter out small peaks, which arise from sensor 

noise, body motions other than steps and other error sources. The step acceleration extremes are 

supposed to lie far outside this region, even for slow walking, and are for that reason not affected by 

this “rake” screening.  

 

Figure 7-15: Local extremes after “amplitude criterion” screening step  

Figure 7-15 shows the effect of the dead region screening. As a result all the local extremes at the 

beginning of the sampling have disappeared; besides, many local extremes around the mean gravity 

acceleration have been removed. These local extremes can result from the weight shifting process, 

but are reliably filtered out here. However, there are still several local extremes which do not 

indicate steps. They have to be removed by the remaining filter steps. 

As a constraint of the walking motion a minimum of acceleration has to follow a maximum and vice 

versa. Due to the cyclic motion of walking, a step cannot consist of a maximum without a minimum. 

Consequently, multiple minima or maxima following each other cannot be part of several steps. 

Additionally, maxima have to lie above the dead zone around the local gravity acceleration and 

minima have to lie below the local gravity acceleration. Therefore, extremes not following these rules 

can be neglected and are not considered for the step detection. In summary, the motion constraint 

filters out consecutive maxima and minima, as well as extremes on the wrong side of the dead zone. 

The final constraint is the step frequency constraint. The step frequency cannot take on unlimited 

values. As described in several publications (e.g. [63], [81]), step frequencies above 5 Hz are unlikely. 
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The test campaigns performed at ISTA gave the same indications. If the elapsed time since the last 

detected step is less than 0.2 seconds, the new step detection is neglected. Hence, detections 

impossible due to frequency limits are rejected reliably. 

The result of the algorithm using all four constraint categories is shown in Figure 7-16. The detected 

steps are marked with a red “x” in the green circle of the local minimum. Obviously, peaks inside the 

dead zone are not registered. All steps consist of one maximum and one corresponding minimum. 

Several peaks are disabled by the last three constraints. It is possible that, e.g. by noise effects, the 

step is declared on a secondary peak which appears slightly before the primary one, but by 

smoothing of the step periods over three epochs this error is minimized. The step frequency as 

inverse of the step period will have a strong influence on the stride estimation models.  

 

Figure 7-16: Step detection by amplitude and constraint evaluation  

The algorithm proved to be reliable and tolerant on raw data. No smoothing or low-pass filtering has 

been applied to the sensor data. This results in a very low time lag of the step detection with respect 

to the actual step. 

7.3.5 Practical implementation of step detection 

The practical application of the algorithms described above includes changes in data handling, buffer 

operations and triggering of the algorithms, since the sensor is streaming the measurements 

continuously, while the search algorithm is bound to the available data windows. For practical 

application, the algorithms described in the previous chapter were implemented in C++ and compiled 

as a DLL. The DLL was triggered by the software receiver. IMU data is passed to the DLL from the 

SwRx by a sensor API.  

Figure 7-17 shows a functional flow chart for the step detection algorithm, as it was implemented in 

the described DLL. In contrast to the experimental implementation, the data has not been read from 

a file and evaluated a posteriori, but passed to a ring buffer as soon as the measurements were 
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available. The step parameters, like the thresholds for the dead zone, as well as the maximum and 

minimum step frequencies, have been stored in a filter parameters’ file and are read by the program 

at start-up. The ring buffer is continuously filled and overwritten by the sensor data. Two pointers 

are established, pointing to the beginning and the end of the detected step. The search for the new 

step starts at the detected end of the last step and ends with the step detection. The pointers are 

reset after the step detection; special procedures apply if no step is detected for the entire ring 

buffer length. 

 

Figure 7-17: Step detect algorithm flowchart 

After data update of the ring buffer by the API, the algorithm searches in the current part of the ring 

buffer for extremes. This is performed by calculating the total acceleration of the IMU and a search 

for points, in which the derivative of the total acceleration changes is sign (peak detection). 

The extremes are categorized as maxima and minima, while an area around zero (“dead zone”) is 

assumed to be forbidden for extremes (amplitude criterion). Maxima are only allowed in the region 

above the dead region, minima only below the dead region. Experiments proved that a dead zone of 

+-1.1 m/s² filters the body motion noise effectively for most users. A step is finally detected if the 

motion constraint and the frequency constraint are fulfilled. The step interval is than passed to the 

step classification algorithm to free the ring buffer data. 

7.3.6 Summary 

In this chapter one of the major parts of the pedestrian navigation system, the step detection 

algorithms have been addressed. At first the biomechanical aspects of walking have been evaluated. 

Then the placement of the sensor suite on the test person’s body has been discussed. Several step 

detection algorithms have been found in literature and have been tested and discussed. Finally a step 

detection algorithm based on several criteria has been developed and described. The algorithm has 

been implemented finally into a software receiver as part of an operational PNS system.  
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7.4 Step classification 

Step classification is the second core element of a PNS. As mentioned before, not only the detection 

of steps but also the classification of the step type is important to propagate the user position 

correctly. Step classification is important because different kinds of steps exist which demand 

different processing. Running, normal walking and slow walking are among those step types. But 

even more important are steps with vertical components like climbing stairs. It is obvious that 

climbing stairs does not only change the horizontal position, but also the vertical position. Since the 

position solution has to cover the floor number, too, the vertical position must also be tracked. For 

that reason the step types “up” and “down” must be covered. Without step classification, PNS is 

usually only a two dimensional system. Therefore user motion with significant height components, 

e.g. on stairs, could not be followed correctly by the navigation system. In the following chapter, 

several types of steps are discussed and parameters for the identification of the step type are 

discussed. Then several techniques of step classification are introduced and evaluated. Finally, a 

fuzzy logic based step classification system is introduced, which has been implemented in the 

prototype system. 

7.4.1 Types of steps and parameters for classification 

Several types of steps can be distinguished, demanding special treatment during navigation 

processing. These types could be for example: 

 Inclination types: 
o Level step 
o Step down (e.g. on stairs) 
o Step up (e.g. on stairs) 

 Velocity types 
o Running 
o Normal walking 
o Slow walking 

The inclination types are especially important, because inclined steps do not only change the current 

height of the pedestrian and for that reason are an important indicator for floor transitions, but also 

shorten the horizontal length of the stride and so the estimated stride must be adjusted. An average 

change of height of approximately 0.17 m could be measured in several test campaigns in different 

stairways, while the average horizontal distance has been around 0.25-0.3 m on the stairs. 

The velocity kinds are interesting for improvement of the stride estimation. As can be seen in Figure 

7-28 for step frequencies above 2.7 Hz the curvature of the stride-step frequency relation changes its 

properties. This is due to the change of the motion type from “walking” to “running”. Consequently, 

another adjustment of the estimation function could result in a better convergence and therefore 

improve the distance estimation; the step estimation only based on the step frequency had to be 

overridden or assisted by the step classification. On the other hand a transition from a closed 

algebraic relationship to look up tables or other customization could also replace the velocity states 

by customizing to individual pedestrians. 
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Several observations exist to support the decision between the different walking states. These are 

basically the same as for the step detection, but possibly with different data processing: 

 Acceleration amplitudes (x, y, z) 

 Rotation rate amplitudes (x, y, z) 

 Means and variances of the data in the individual sensors 

 Phase relationship between the inertial measurements (cross-correlation) 

 Step frequency determined by the step detection algorithm 

Since walking states are to be determined and multidimensional observations are to be used for the 

detection of the state, fuzzy logic systems seem especially suited for this task. For definition of the 

individual membership functions of such a fuzzy logic system often calibration data has to be 

collected and evaluated to gain individual set points. It must be pointed out that the measured 

quantities and the statistical, as well as phase relation properties change with placement of the 

sensor on the body. The fuzzy setpoints, as well as other criteria are specific for the individual 

placement of the sensor, may it be overhead, on the belt, or on the shoe. 

7.4.2 Step classification by signal cross-correlation 

As shown in chapter 7.2.1, walking consists of several cyclic movements. The phase relationship 

between these signals seems relevant for decisions about the walking behavior. Thus, in literature, 

algorithms have been developed to determine the cross-correlation between the inertial measure-

ments ([48], [54], [55]). To analyze the reliability of these cross-correlations, the cross-correlation 

was determined for several signal combinations between each of the consecutive steps. In an 

evaluation campaign most of these relations did not prove to be significant enough for step 

classification. However, one combination showed significant results, i.e. the cross-correlation 

between the x-acceleration and the z-acceleration signals. It is important to mention that this is true 

especially for belt mounting of the sensor. It is not reliable for overhead mounting. 

For the evaluation the acceleration data was sampled and separated in the individual step intervals. 

The sensor has been placed on the belt of the user. Then for each step (period approximately 13 

epochs = 0.65 s) the cross-correlation for ±20 epochs time shift has been calculated and plotted. 

Since the sample length is shorter than the maximum time shift, the cross-correlation at the edges 

reaches exactly zero and the integral over the whole range results in zero.  

In the first test the test user performed only level steps. Figure 7-18 shows the signal cross-

correlation for level walking. Is it obvious that the shape of the curvatures is approximately 

symmetrical, with the symmetric axis slightly in the positive; the curves consist of a sharp maximum 

in the center, two minor maxima on the outside and two minima of approximately the same size. 
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Figure 7-18: Cross-correlation of x- and z-axis acceleration signals for level walking 

Then a test campaign on a staircase has been performed. The test path is shown in Figure 7-19. The 

path consisted of 3 steps run-up, followed by 11 stairs up, 1 level step, followed by 10 stairs up. The 

run was finished by 3 level steps. 

 

Figure 7-19: Schematic plot of the staircase used for development and testing 

Figure 7-20 shows the same data for the described stairs with a small platform in the middle. While 

the plots seem slightly distorted, the basic form is constant. There is a difference in the amplitude for 

level and up walking in this case, as well as a slight time lag of the maximum for the level steps in 

comparison to the up-steps. Nevertheless, this is extremely user dependent and is not specific 

enough for a general rule. 
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Figure 7-20: Cross-correlation of x- and z-axis acceleration signals for up and level walking (21 up / 7 level) 

Figure 7-21 on the other hand shows an exemplary cross-correlation of a downward step and was 

measured in one of the walking trials. There is significant difference in the shape of the cross-

correlation function in comparison to the level and upward steps. The attributes of the shape are 

very significant and can be found very reliably at downward steps. 

 

Figure 7-21: Cross-correlation of x- and z-axis acceleration signals for down walking 

The test campaigns showed that while the level and upward steps have a cross-correlation function 

in the form of a double-S-curve, the downward steps have a cross-correlation function in the form of 

a “W”. To use this difference in the shape of the cross-correlation function between x- and z-axis 

acceleration a mathematical or numerical representation for the function was developed. The basic 

idea behind this algorithm is to divide the data in two half intervals, which are separately integrated. 



102 

 

As was stated earlier, the integral over the complete time lag range results in zero for time shifts 

larger than the step interval. This is true for the whole integral, therefore it is also true for the sum of 

two splitted integrals, dividing the integration time in the middle or in other words, integrating the 

negative time lag and the positive time lag separately. It is not true for the difference between these 

separate integrals, which is the major criterion in this algorithm. The cross-correlation is integrated 

for the positive and negative time lags separately. The result of the sum and difference of the two 

sub-intervals is used to determine downward steps from level and upward steps. This relationship is 

formulated as:  

𝑅𝑋,𝑍(𝑛) =
1

2𝑁
∑ 𝑋(𝑖)𝑍(𝑖 + 𝑛)𝑁

𝑖=−𝑁   

𝑅𝑋,𝑍,1 =
1

𝑁
∑ 𝑅𝑋,𝑍(𝑛)

0

𝑖=−𝑁/2

 

𝑅𝑋,𝑍,2 =
1

𝑁
∑𝑅𝑋,𝑍(𝑛)

𝑁/2

𝑖=0

 

∆𝑅𝑋,𝑍,1,2(𝑛) = 𝑅𝑋,𝑍,1(𝑛) − 𝑅𝑋,𝑍,2(𝑛) 

   

 

 

       (72)     

Symbol Explanation 

 nR ZX ,  
Cross-correlation of the measured accelerations X and Y for the time 
shift n 

𝑅𝑋,𝑍,1(𝑛) 
Sum of the cross-correlation values of the measured accelerations X 
and Y for negative time shifts 

𝑅𝑋,𝑍,2(𝑛) 
Sum of the cross-correlation values of the measured accelerations X 
and Y for positive time shifts 

N Number of samples during the step interval 

X Measurement vector of the x acceleration 

Z Measurement vector of the z acceleration 

i Number of individual sample 

∆𝑅𝑋,𝑍,1,2(𝑛) Metric of the step classification by cross-correlation 

Table 7-5: Symbols used in the step classification cross-correlation function
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To prove the concept, a test walk and experimental implementation of the algorithm has been 

performed. In Figure 7-22, a test walk on the same stairs as in Figure 7-19 is evaluated. The walk 

consisted of the following sections: 

 3 level steps run-up 

 11 stairs upward steps 

 1 level step on a stairs plateau 

 10 stairs upward steps 

 3 level steps run-out 

 turn around/standing still 

 3 level steps run-up 

 10 stairs downward steps 

 2 level step on a stairs plateau 

 11 stairs downward steps 

 3 level steps run-out 

The figure shows the measures explained above. The cross-correlation function is calculated for 

every step period after the step detection. It is parted for positive and negative time lags and the two 

intervals are integrated separately. 

 

Figure 7-22: Evaluation of integrated cross-correlation of x- and z-axis acceleration signals 

The separate integrals are represented by the blue and the red solid lines. The metric, the difference 

is plotted green. The metric shows the distinction of downward steps to the other step types: for 

level and upward steps it shows positive values, for downward steps negative values. As can be 

seen in the right part of the figure even the level steps on the plateau on the walk downwards are 

clearly detected. Hence the difference of the partly integrated cross-correlation function of the x- 

and z-axis acceleration is an excellent indicator for downward steps. 

The distinction between the level walking and the upward stairs walking is more difficult, since the 

cross-correlation is not specific enough to distinguish between upward and level steps. As it has been 
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shown in Figure 7-18 and Figure 7-20, the signal pattern does not change significantly between level 

and upward walking. The integral difference does not offer a significant and reliable criterion to 

distinguish between these walking states. As it was stated earlier signal amplitudes in the time 

domain are also not applicable, because the mounting of the platform on the body as well as the 

body pitch during walking is neither constant nor generally predictable. 

7.4.3 Step classification by Fuzzy Logic 

Since the measured accelerations and rotation rates for the individual walking states are highly user 

dependent, a step classification algorithm based on fuzzy logic will be presented in this chapter. 

Detailed information on the principles and capabilities of the fuzzy logic approach can be found in 

[117] and [116].  

Several information sources have been evaluated for the step classification besides the already 

mentioned measures. These included: 

 Signal amplitudes 

 Signal variances 

 Signal means 

 Other cross-correlations than x/z-acceleration 

 Time dependencies of amplitudes 

Single observations cannot offer a clear, unambiguous measure to determine the type of step (up, 

level). In addition to that, the measures vary between individual test persons. No common method or 

dataset could be found to perform general walking classification for all possible users with high 

probability of correct step classification. For step classification, an approach including several 

independent measurements and the option of calibration to individual users has been chosen. A 

combination of several criteria offers the chance of reliable and customizable step classification. 

An example for this is the mean x-axis acceleration in the body frame. It can be an indicator for 

upward steps, but is not absolutely reliable and can therefore only be one element of several criteria. 

It is mentioned in several publications, and has also been experienced during the test walks, that the 

body leans forward during climbing of stairs, inducing the gravity vector to appear as negative 

acceleration in the x-axis accelerometer outputs. This fact can generally be observed, but the extent 

is user and use case specific. Negative x-acceleration does not automatically indicate forward 

movement, but the measurements would show significant lower values compared to level walking. 

Figure 7-23 shows the mean x-axis acceleration during the walk already described for Figure 7-22. It 

can be noted that the mean x-axis acceleration is significantly lower for level and downward walking, 

than it is for upward walking, which is the result of the body pitch.  
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Figure 7-23: Mean x-axis acceleration during up and down walking of a staircase 

Fuzzy logic is a strategy to estimate the current system status by using various “fuzzy” input 

variables. Fuzzy logic systems determine states by evaluating multiple observations to form a 

decision value. Based on this decision value the current state is estimated. The basis of fuzzy logic is 

the principle of fuzzy “memberships”. In contrast to common set theory, fuzzy logic allows degrees 

of membership of elements to sets. The membership is expressed by the magnitude μ, which can 

vary between 0 and 100%. So called “fuzzy rules” are used to map these memberships to decisions 

about the actual state. 

In practice, a walking state shows certain attributes in measured data, e.g. the variance of the x-axis 

acceleration or the amplitude of the z-acceleration during one step. Set points can be modeled for 

each attribute which represent e.g. the average value of this measurement for a specific walking 

situation and a specific pedestrian. A measurement matching this set point exactly would mean 100% 

membership to the set defined for this attribute, walking state and person. On the other hand, with 

increasing difference of the measurement to the set point the degree of membership must decrease 

as well. The relation between difference from the set point and degree of membership is called 

“membership function”. 

Several possibilities exist to model the membership functions. Some possibilities are linear functions 

(triangle, square, straight lines, etc.), continuous functions, exponential functions and many more. 

The integral over the full input range does not have to equal any specific value, but the membership 

function’s result must fall between 0 and 1. Although the modeling of the membership function can 

be accomplished freely, the modeling must optimize the result in any way; therefore deterministic 

development is to be preferred. 

To visualize the statements above some examples for exponential membership functions of Gaussian 

type are shown in the following. They have been used in the developed fuzzy logic approach, too, 

because the measurements performed for individual test persons can easily be taken into this model 

by evaluation of means and standard deviations of the calibration measurements. 
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Figure 7-24: Fuzzy membership functions nearly without ambiguities 

Figure 7-24 presents two membership functions for an observed variable (“Value”). The membership 

functions show quite significant separation of their means (blue function approximately ‘2’, red 

function approximately ‘8’) and different, but both small standard deviations. If the blue function 

represented the membership function of “level walking”, and the red function represented the 

membership function of “upward walking”, a measurement of e.g. 3 would result in a higher 

membership to “level” than to “up”. On the other hand measurements between 4 and 6 would not 

result in significant degrees of membership to any of the functions. Consequently, regions exist, 

where the placement into one set is rather unambiguous, while regions exist where no significant 

membership can be determined. 

 

Figure 7-25: Fuzzy membership functions with moderate ambiguities 
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Figure 7-25 shows moderate ambiguities by crossing of the curvatures at a degree of membership of 

around 46%. This results in a larger area of ambiguity and a higher risk of false detections around the 

crossing point. Additionally, even for high degrees of membership to one function, the other function 

will also result in a degree of membership noticeable larger than zero. On the other hand there is no 

area between the two functions without significantly high memberships. Memberships near zero are 

obtained only far outside of both function center points.  

 

Figure 7-26: Useless fuzzy membership functions because of extremely high ambiguities 

Figure 7-26 shows a set of memberships which is particularly misleading in practice. Both functions 

show basically the same set point with only different width of the membership function (standard 

deviation). Therefore, the standard deviation estimated in the calibration phase is the only 

information used for the determination of the membership. Because the calibration has only a 

limited extent, big errors can be induced here. Extremely high ambiguities are induced in a modeling 

like this. On the other hand, measurements near the set point would not reveal any information. 

Since the standard deviation in this case is extremely small, resulting in extremely steep membership 

functions, even small deviations from the set point can result in big differences of the calculated 

memberships. 

It is obvious that measurements and quantities to be used as membership functions have to be 

evaluated carefully before usage to avoid misleading modeling and wrong interpretations. 

Additionally, if using multiple arguments for several membership functions a weighting of these 

memberships need to be applied for optimization. The influence of function sets with little 

significance can be reduced by appropriate weighting of the fuzzy membership results, while the 

influence of highly significant sets can be increased. On the other hand, the input measurement can 

vary significantly and the walking is not consistent mandatorily. Thus also the case, in which even 

usually highly significant function sets do not reveal a great deal of information must be covered. 

Automatized evaluation and weighting reduces manual efforts for practical application. 
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7.4.4 Implementation of step classification 

In the previous sub-chapters, two techniques for step classification have been described. The 

complete algorithm is a combination of both strategies. In the first step it is evaluated, if a downward 

step is present. This is done in the way described in chapter 7.4.2. As described, the cross covariance 

criterion is critical here. If this is not the case, level and upward steps are evaluated. The individual 

weighted memberships are therefore summed up and compared. The walking type with the highest 

sum of membership values is selected. 

For this use case a modeling of a fuzzy set consisting of the following variables has been constructed: 

 Rotation rate amplitude around x-axis (during one step period) 

 Acceleration amplitude along the z-axis (during one step period) 

 Variance of measured accelerations along the x-axis (during one step period) 

 Variance of measured accelerations along the z-axis (during one step period) 

 Variance of measured rotation rates around the z-axis (during one step period) 

 Mean acceleration along the x-axis (during one step period) 

 Integrated height change by barometer 

 Sub-integrals analogue to cross-correlation method 

Several parameters are included for measurements in the body and in the navigation frame. 

The differences of the calculated memberships for up, level and down have been used as main 

weighting parameter. The weighting is followed by summation and a decision based on majority can 

be seen as special form of fuzzy rules. As described before the step classification is important for the 

PNS. While the step detection gives information about the walking state, the kind of motion, the 

direction and the covered distance cannot be determined by the step detection algorithm. Therefore, 

the kind of step has to be categorized in an additional algorithm. The main categories for the steps 

are:  

 Up 

 down 

 level  

The membership functions are of Gaussian design. 

𝜇 = 𝑒
−(

𝑢−𝑚
𝑠

)
2

   (73) 

Parameter Explanation 

μ Degree of membership 

u Measurement 

m Mean, set point of membership function 

s 
Standard deviation, “width” of membership 
function 

Table 7-6: Parameters of the Gaussian membership functions for step classification 
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The set points for the membership function are read from a data file and are the result of a 

calibration campaign. For each of the mentioned parameters the memberships are calculated. The 

individual results of the fuzzy system are combined by a set of gains. These gains are determined by 

significance of the measurement in comparison to the membership function. If the significance is 

low, also the gains are adjusted to weight this information lower than memberships with higher 

significance. 

𝑔 = |𝜇𝑝_𝑠1 − 𝜇𝑝_𝑠2|   (74) 

Parameter Explanation 

g Gain for membership function 

μ  Degree of membership 

p individual parameter 

s state of motion: level, up, down 

Table 7-7: Parameters of membership weighting algorithm 

The memberships for up level and down walking are summed up, using the weights defined in (74).  

𝜇𝑡𝑜𝑡𝑎𝑙,𝑡𝑦𝑝𝑒 = ∑𝜇𝑖,𝑡𝑦𝑝𝑒 ∙ 𝑔𝑖,𝑡𝑦𝑝𝑒

𝑁

𝑖=1

   (75) 

Parameter Explanation 

𝜇𝑡𝑜𝑡𝑎𝑙,𝑡𝑦𝑝𝑒 Total degree of membership of step to a type 

𝜇𝑖,𝑡𝑦𝑝𝑒  
Individual degree of membership of step to a 

step type 

𝑔𝑖,𝑡𝑦𝑝𝑒 Gain for individual membership function 

type Type of motion: level, up, down 

N 
Total number of membership functions per 

type of step 

Table 7-8: Parameters of membership weighting algorithm 

The step type with the highest total membership value is selected. The total degree of membership is 

not normalized; hence values above 100% are possible. 

Since the walking behavior of each human being is specific, there is the need for individual 

calibration. The calibration can be performed by a short test campaign, during which parameters for 

the individual step types are evaluated. For example a level walk on the floor, a down-walk on stairs, 

etc. can be used and evaluated statistically. By evaluation over several steps the individual walking 

behavior can be estimated and new set points for the fuzzy system can be determined.  
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7.5 Stride estimation 

Besides detecting the actual step, like demonstrated in the previous chapter, also accurate 

estimation of the step length (“stride”) is important for precise pedestrian dead reckoning. 

Unfortunately, the stride is usually not observable by MEMS type IMUs mounted on the belt or 

overhead of the user. Thus the stride must be estimated by observable measures, which requires a 

mathematical model to relate the stride with observable parameters, e.g. the step frequency. For 

this reason, a calibration campaign has been performed with several test participants to identify 

parameters for the stride model. The test campaign was also used to evaluate the need of a flexible 

stride model in comparison to a fixed stride model. For applications with limited calibration time the 

model was additionally generalized to be used as default model without the necessity to calibrate for 

each person. Finally, the model has been integrated with the step detection algorithm to be executed 

together with collected data.  

7.5.1 General aspects of stride estimation 

The stride is defined as the range which is covered during one step in longitudinal direction. This 

definition is sufficient in two dimensional movement, e.g. without changing the floor. The stride is 

sometimes assumed as constantly around 0.7 m in literature (e.g.[63]), several sources describe the 

stride as within a certain interval around 0.7 m (e.g. [48]), and several attempts to measure the stride 

directly could be found. Often special sensors were used which are not part of the scope of this 

thesis. Publications describe the mounting of the IMU directly on the shoe to take advantage of the 

zero velocity phases during the heel down phase. For the given scope in this thesis, direct 

measurement of the stride was impractical.  

During the test campaign, which was held during the progress of this thesis, the amplitude of the 

stride varied from 0.5 to 2.0 m depending on several parameters (Figure 7-28). While for standard 

walking with an average walking speed the fixed estimation of 0.7 m fits roughly, significant 

deviations can be detected if the walking speed changes, or if other factors influence the result. The 

difference to the fixed estimation of 0.7 m nevertheless is too big as to keep the fixed stride model 

for navigational purposes. A deviation over 1 m per step is not acceptable for indoor applications. 

Hence, the need for a user specific stride model is evident and could be shown in the test campaign. 

Using a constant stride for DR is not precise enough for the given task. 

Stride changes also for vertical and horizontal walking. If vertical movement e.g. on stairs has to be 

considered, too, standard stride estimation is not sufficient. On stairs the motion is constraint to the 

stair height and stair depth, and possibly multiples of them if more than one step is climbed at once. 

The motion pattern changes significantly in comparison to level walking. Hence, a strong relation 

between the step classification and the stride estimation exists in non level walking. For vertical 

movement the position propagation must be modified to keep track of the actual altitude, not only 

the horizontal position. 

It should be noted that even for the same person step length can vary significantly, e.g. if heavy loads 

are carried. For a test person equipped with a backpack and approximately 6 kg load on the back, the 

step size on the described test range shortened by 15%. 
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7.5.2 Data basis and test campaign 

Like mentioned in the previous chapter, a test campaign has been performed to acquire field test 

data for stride estimation. A test range consisting of a straight, 38.5 m long and tiled floor has been 

used for the first walking test campaigns and also for the stride evaluation trials. Several test persons 

tried to walk this range several times with different walking speeds. The individual number of steps 

as well as the individual walking time as a measure of the walking speed have been recorded and 

evaluated. The test persons included female and male test persons of different size and weight as 

well as different age. The test runs were repeated several times to gain information about the 

repeatability of the results. 

Intentionally, during the individual test runs the walking speed should remain approximately 

constant. To assure that, the test track was shortened for the “high speed” runs for the sake of 

acceleration and safe deceleration run-outs. The test track was shortened to 35 and 30 m depending 

on the speed to be reached and the data has been corrected for the different track lengths. The test 

walk trajectory should stay close to a straight line and the walking motion should stay as normal as 

possible. The number of steps as well as the time needed to cover the distance of the test track has 

been registered. The runs showed a good repeatability for the individual test persons.  

Figure 7-27 shows some result of the test walking campaign. It has not been possible to direct a 

certain walking speed to the test participants. Instead of this, the participants were asked to walk at 

a constant speed and then directed by “faster”, “slower” or “same speed again”. As a result the step 

frequencies of the participants can only be compared by evaluating the whole dataset. It is obvious 

that a direct relation between the number of steps and the time of travel exists and follows the same 

rules for all participants.  

 

Figure 7-27: Number of steps versus time of travel on the test track for several test persons 

This becomes even clearer when the data is modified to show the stride versus the step frequency. 

This is visualized in Figure 7-28. The data shows an exponential curve which is flattened when 

reaching extreme high step frequencies. The test campaign showed that stride as well as step 
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frequency is individually limited. This means that at reaching a certain stride the velocity can only be 

increased by increased step frequency.  

 

Figure 7-28: Stride versus step frequency for several test persons 

7.5.3 Parameter identification for the stride model 

Several approaches for stride estimation with several strategies and parameters exist in literature. 

While some authors use complex fuzzy logic systems and multiple parameters (e.g. [55]), others use 

geometric properties of the user’s legs and measured thighs and shanks angles ([84]), direct 

measurement of stride ([5][2]), or look up tables and look up functions for estimation of the stride 

(e.g. in [48], [54]). Some authors model the stride as constant value and model and estimate the 

stride variation as noise process (e.g. [63]). In principle it must be distinguished between adaptively 

trained systems and systems which use a common database for all users. 

Adaptive systems can be adjusted for each user individually. They use a set of parameters as well as a 

mathematical system to estimate stride by observation of the parameters and individual reference 

data gained in a training or calibration phase. 

Several systems use a common database which is gained by observing many test participants (e.g. in 

[51]). In parameter identification phase this data is analyzed to gain a model which defines a relation 

between the analyzed parameters and the stride measured for the test persons. In practical use the 

PNS stimulates the general model derived from the test campaign with the measured parameters 

and estimates the stride. 

For this thesis, a least squares adjustment of several recorded test cases has been performed to gain 

a closed steady formulation instead of look up tables. Several parameters have been evaluated, e.g. 

signal amplitudes, step frequency, body height, etc. For the most robust solution, the step frequency 

was identified as most crucial parameter for stride estimation. It was recognized that for different 

walking behaviors like “walking”, “running” or possibly “jumping” the solution can even be improved, 

while the individual strides vary more significantly with increasing step frequency. Signal amplitude is 
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a critical parameter, because the measurement of the acceleration peaks has a high uncertainty due 

to the discrete sample time of the IMU and the short time effects of shocks.  

The solution can also be improved by choosing an appropriate subgroup of the database, e.g. based 

on gender, body height or weight. However, the developed general estimation approximation shows 

good results for a general modeling as well, as can be seen in Figure 7-29. Individual fine tuning or 

customizing can be applied to increase the accuracy.  

 

Figure 7-29: Generalized stride/step frequency model 

The stride can be approximated by an individual stride function and reflects the walking behavior of a  

person. Main identified parameter is the step frequency. While a standard function has been derived 

that is usable with reduced accuracy for most adults, individual calibration results in additional 

accuracy. The stride model equation is: 

𝑠 = 𝑎𝑒𝑏𝑓   (76) 

Parameter Explanation 

s Stride estimation 

a  Linear individual parameter of stride function 

b Exponential individual parameter of stride function 

f Step frequency [Hz] 

Table 7-9: Parameters of stride estimation function 

For the calibration, the measured parameters, average stride and step frequency are used as 

observations in a linear adjustment of the parameters a and b. During the setpoint calibration 

campaign for the step classification system, also the parameters a and b are calibrated for each 

individual user. 
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7.6 Dead Reckoning 

Dead reckoning is performed by propagating the user position triggered by the step detection 

algorithm. Assuming that the step is in the level plane, the distance traveled in the two coordinate 

directions can be assumed as: 

𝑑𝑥 = 𝑠 cosΨ   (77) 

Parameter Explanation 

dx 
x-axis position increment in local level Cartesian 

coordinate frame 

s  Stride estimate 

 Heading estimate 

Table 7-10: Parameters of dead reckoning x-axis increments 

and respectively: 

𝑑𝑦 = 𝑠 sinΨ   (78) 

Parameter Explanation 

dy 
y-axis position increment in local level Cartesian 

coordinate frame 

s  Stride estimate 

 Heading estimate 

Table 7-11: Parameters of dead reckoning y-axis increments 

For non-level steps the stride model must be adjusted. On stairs a normative length of around 0.3 m 

is adequate in most cases. Additionally, a lift or drop of the step of 0.17 m can be assumed for single 

stairs. For this case the third dimension has to be considered as: 

𝑑𝑧 = 𝑛 ∗ 𝑑𝐴𝑙𝑡   (79) 

Parameter Explanation 

dz 
z-axis position increment in local level Cartesian 

coordinate frame 

n type of step: (0: level, 1: up, -1: down) 

dAlt Step lift or drop 

Table 7-12: Parameters of dead reckoning z-axis increments 

The heading information can be derived from the AHRS algorithm described in chapter 6, or from an 

internal attitude reference, if the IMU system, like the Xsens MTi, offers this feature. The MTi 

provides the current attitude with 100 Hz rate and configurable as quaternions, Euler angles or 

direction cosine matrix (DCM). For the real-time implementations, quaternions have been chosen 







115 

 

and are configured by the used SwRx. The heading has to be determined between the consecutive 

steps, as the hip follows the leg in the swing phase. The actual heading of walking can therefore be 

determined best in the neutral phase between two steps. 

The conversion from the local level coordinate frame to the WGS 84 Earth-Centered-Earth-Fixed 

frame is performed by a standard coordinate transformation: 

𝑃𝑜𝑠𝑊𝐺𝑆84 = 𝑃𝑜𝑠𝑊𝐺𝑆84,0 + 𝐶𝑛
𝑒𝑃𝑜𝑠𝑛,𝑙𝑜𝑐𝑎𝑙𝑙𝑒𝑣𝑒𝑙 

𝑟𝑒 = 𝑟0
𝑒 + 𝐶𝑛

𝑒𝑟𝑛 

𝐶𝑛
𝑒 = [

− sin𝜑 cos 𝜆 − sin 𝜆 −cos𝜑 cos 𝜆
− sin𝜑 sin 𝜆 cos 𝜆 − cos𝜑 sin 𝜆

cos𝜑 0 − sin𝜑
];𝐶𝑒

𝑛 = 𝐶𝑛
𝑒𝑇

 

  (80) 

Parameter Explanation 

λ Longitude 

φ Latitude 

e

nC  Transformation matrix from n-frame to e-frame 

Posn,locallevel Linearization point of local level navigation frame 

Table 7-13: Parameters of the transformation of n-frame dead reckoning results to Earth frame coordinates 

 

7.7 Summary 

In the previous chapter, an alternative dead reckoning system for pedestrian users, the PNS, has 

been introduced and described. The PNS performs the basic tasks of step detection, step 

classification, stride estimation, heading determination and position propagation. Heading 

determination has been described in chapter 6. A MEMS type IMU has been used as main sensor. 

The trials and implementations have been performed with a BEI Systron Donner MMQ50 as well as 

an Xsens MTi IMU, both of MEMS type. It was shown that the placement of the sensor on the body 

has large influence on the measured quantities and influences the application of several algorithms. 

The placement therefore is a compromise between mechanical properties and user requirements. 

The individual algorithms have been explained in detail, with focus on step detection and step 

classification techniques. Several alternatives were discussed and the final algorithms were adapted 

to the use case in this thesis.   
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8. PNS Kalman filtering 

Kalman filters are common tools for sensor fusion. If receiver aiding is performed, in this case ultra-

tightly coupling, often centralized Kalman filter approaches are used to avoid cascaded filter 

architectures with their cross-coupling problems. In this application, the deep indoor GNSS position 

has often a low accuracy due to the low signal to noise ratios, even if the receiver is aided by a DR 

position. To maintain basic navigation capabilities under all circumstances, and to provide stable 

inputs to the receiver aiding, a separated filter approach has been studied and implemented.  

Since the basic functions of the Kalman filter are widely known, the Kalman filter itself will only be 

described shortly in this chapter. Detailed information can be found in [23], [44] and [61], practical 

aspects are discussed in [27]. Following the introduction, a dead reckoning navigation Kalman filter is 

described, which is used to limit and correct the PNS position drift. The filter is designed as tightly 

coupled error state Kalman filter and uses mainly GNSS pseudorange and magnetometer heading 

updates (chapter 5.4), but can use all available position updates when available, e.g. WLAN based 

position updates as described in chapter 9. The filter will be evaluated in a simulation. The field test 

evaluating the entire navigation system will be described in chapter 11 and will include the 

performance of the implemented PNS filter. 

8.1 Introduction 

According to M. Grewal and A. Andrews, “[…] the Kalman Filter is an estimator for what is called the 

linear-quadratic problem, which is the problem of estimating the instantaneous “state” […] of a linear 

dynamic system perturbed by white noise – by using measurements linearly related to the state but 

corrupted by white noise. The resulting estimator is statistically optimal with respect to any quadratic 

function of estimation error.” [27]  

In this short quotation, many of the properties of the Kalman filter are summarized. The Kalman filter 

is an estimator, not a time series filter. It combines magnitudes, which are perturbed by (white) noise 

in a statistically optimal way. Good explanation for the functions of the Kalman filter can be found in 

[61]. In the Kalman filter, the magnitudes, which are to be estimated, are called “states”. The filter 

has a two stage design: prediction and update. The states are predicted using a system model, and 

corrected by combination with (external) measurements in a way that the combined result has the 

lowest possible uncertainty, expressed by its covariance matrix. In the quotation, this fact is referred 

to as “the linear-quadratic problem”. This design, using a prediction and an update stage, enables 

the filter to give estimations of its state magnitudes at any required epoch, even if no actual 

observation by measurements is available.  

The filter process or system is mathematically modeled by a state vector (X) and a system matrix F. 

Since it is assumed that the process is linear, the dynamics of the process can be modeled by a 

Jacobian matrix, which relates the derivative of the state with the state itself. Perturbations from 

outside are included. If the system equations are non-linear, they have to be linearized around the 

current magnitudes of the state (extended or linearized Kalman filter). The linearization is only valid 

in close proximity of the linearization points, which is one of the major drawbacks of the linearized 

Kalman filter. 
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The Jacobian matrix is called system matrix (F). If the propagation of the state is performed in a 

discrete instead of a continuous form, the system matrix transforms into a transition matrix (Φ). The 

transition matrix can be constructed with: 

Φk = I + F∆t   (81) 

Parameter Explanation 

Φk Transition matrix at epoch k 

I Identity matrix 

F System matrix 

Δt Prediction time increment 

Table 8-1: Parameters of the transition matrix calculation 

The propagation of the state vector and the state covariance matrix (P) form the prediction stage of 

the Kalman filter. Therefore, the basic equation for the prediction stage of the Kalman filter is for the 

state vector: 

�̃�𝑘+1 = Φk�̃�𝑘 + 𝑤   (82) 

Parameter Explanation 

x State vector 

φ Transition matrix 

w White noise 

k Current epoch of the estimation 

k+1 Next epoch of the estimation 

Table 8-2: Parameters of the state prediction stage of the Kalman filter 

For the system covariance matrix, the prediction equation is: 

�̃�𝑘+1 = Φ�̃�𝑘ΦT + Q   (83) 

Parameter Explanation 

P State vector covariance matrix 

Φ Transition matrix 

Q System noise matrix 

k Epoch of the estimation 

Table 8-3: Parameters of the state covariance prediction stage of the Kalman filter 

The tilde “~” symbol is used to indicate the predicted values, the roof symbol “^” will be used to 

indicate updated magnitudes. In literature, other nomenclature like “+” and “-“ and other similar 

indicators can be found. 
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The system noise matrix Q can be constructed by mapping the sensor or process noise vector (q) to 

the state vector covariance matrix using a noise inference matrix (G). 

𝑄 = Gq⃗⃗   (84) 

Parameter Explanation 

Q System noise matrix 

G Noise inference matric 

q⃗⃗ Sensor or process noise vector 

Table 8-4: Components of the system noise estimation 

The estimated states can be corrected by using external measurements (z). If a process noise 

covariance matrix is used, eq. (84) becomes: 

𝑄 = G�̅�𝐺𝑇   (85) 

Parameter Explanation 

Q System noise matrix 

G Noise inference matric 

q⃗⃗ Sensor or process noise covariance matrix 

Table 8-5: Components of the system noise estimation 

Measurements are usually produced by additional sensors or other external information. Hence, 

information about the state vector from at least two sources can be compared and combined. It 

must be noted that only measurements, which are linearly related to the state, or can be expressed 

using a linearization, can be used as updates. If they are linearly related to the state vector, i.e. the 

measurements are linear combinations of the state variables, they can be predicted by multiplying 

the estimated state vector with an observation matrix (H).  

𝑧𝑘 = Hx̃k + v   (86) 

Parameter Explanation 

zk  Predicted observation at epoch k 

H  Observation matrix 

�̃�𝑘 Predicted state vector at epoch k 

v Sensor noise 

Table 8-6: Parameters of the measurement prediction 

The sensor noise can be described in the measurement noise covariance matrix (R). If the individual 

sensors are independent of each other, only the main diagonal of the matrix is filled with elements 

other than zero. It is important to model the sensor noise properties correctly in R, since it is used as 

direct input to the calculation of the combination weight (Kalman gain). 
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The difference between predicted and actual measures is directly related to the state vector. If this 

difference is combined with the state vector using optimal weights, the variance of the state 

estimation becomes minimal and thus optimal in statistical respect. This weight is called Kalman gain 

matrix. It is the optimal combination of the variance of the state vector and the variance of the 

innovation. A helpful description for this process is given in [106]. The Kalman gain is combining the 

predicted state vector and the observations in a way that the combined covariance is minimal in 

statistical respect. 

𝐾𝑘+1 = P̃k+1𝐻𝑘+1
𝑇 (𝐻𝑘P̃k+1𝐻𝑘+1

𝑇 + 𝑅)
−1

   (87) 

Parameter Explanation 

Kk+1 Kalman gain matrix at epoch k+1 

H k+1 
Observation matrix for the epoch k+1 

P̃k+1 Predicted state covariance matrix at epoch k+1 

R  Sensor noise covariance matrix 

Table 8-7: Parameters of the Kalman gain calculation 

For that, the state covariance matrix is mapped to the observation space and added to the sensor 

covariance matrix. The term within the brackets is called “covariance of the innovation” and 

describes the covariance of the difference between predicted measurements and real 

measurements.  

The updated state vector is calculated by: 

𝑥𝑘+1 = �̃�𝑘+1 + 𝐾𝑘+1(𝑙 − 𝐻𝑘+1�̃�𝑘+1)   (88) 

Parameter Explanation 

𝑥𝑘+1 Updated state vector at epoch k+1 

�̃�𝑘+1 Predicted state vector at epoch k+1 

Kk+1 Kalman gain matrix at epoch k+1 

H k+1 Observation matrix for the epoch k+1 

l Measurements vector 

Table 8-8: Parameters of the state update equation 
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The updated state covariance matrix is calculated by: 

�̂�𝑘+1 = 𝐻𝑘+1
𝑇 (𝐼 − 𝐾𝑘+1𝐻𝑘+1)�̃�𝑘+1   (89) 

Parameter Explanation 

�̂�𝑘+1 Updated state covariance matrix at epoch k+1 

H k+1 Observation matrix for the epoch k+1 

I Identity matrix 

Kk+1 Kalman gain matrix at epoch k+1 

�̃�𝑘+1 Predicted state covariance matrix at epoch k+1 

Table 8-9: Parameters of the state covariance update equation 

At least one prediction is needed before every update, but also several predictions can occur 

between individual updates. The ratios are not necessarily fixed by the algorithm. Due to the simple 

standardized structure the Kalman filter is especially suited for use in computer systems. Besides, 

even if the basic structure is simple, the design and the tuning of a Kalman filter are not. The major 

challenges in Kalman filter design are: 

 Advantageous and robust design of state vector and system model 

 Precise modeling of the covariance matrices R and Q, as well as the initial values for matrix P 

 Design that ensures the observability of the system 

 Exclusion of measurement outliers 

The design of the state vector and the system model has to take account for numerical stability. If 

e.g. a GPS/INS close integration is performed, a modeling of the clock errors in seconds would result 

in badly conditioned matrices and thus numerical instabilities. A modeling of the clock errors as 

distance errors reduces this numerical problem significantly. Additionally, it is possible, that the 

number and kind of observables, in combination with a weak transition matrix, are not sufficient to 

observe all state variables. In this case the filter is not able to correctly estimate the state vector and 

the results are not fully reliable. Hence, observability analysis is necessary and the design must 

reflect this criterion. The filter tuning is especially conducted by modeling the process and sensor 

noise. Modifications especially change the dynamic properties of the filter, as well as the 

convergence of the filter. Outlier exclusion is a critical point in the design of a Kalman filter. On the 

one hand, the outliers of measurements occur naturally and are part of the statistical distribution. 

Excluding the outliers from updates violates the mathematical formulation of the filter and the filter 

is not optimal with respect to statistics in this epoch. On the other hand, the absolute results of the 

filter are often improved significantly, if presumably erroneous measurements are excluded from the 

update process. In [106], the covariance of the innovation is used to exclude outliers. If the residual is 

bigger than three times the covariance, the measurement is excluded. 
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8.2 Kalman filter application for PNS dead reckoning 

Dead reckoning is an integrating navigation method, which propagates the last user position by using 

the distance travelled and the direction of travel. In this thesis, a pedestrian navigation system is 

used for DR. Hence, the distance travelled is calculated by counting steps, classify the step as up, 

level or down, estimate the stride and apply the travelled distance using the calculated heading. 

Errors can occur due to heading errors, misdetection of steps, and erroneous estimation of the 

stride.  

The main reasons for heading errors are erroneous initial alignment, as well as gyroscope errors, 

especially of the yaw axis gyroscope. The pitch and roll axes are stabilized using the measured 

accelerations during static phases in the AHRS algorithm described in chapter 6. Therefore pitch and 

roll errors are limited strongly and they contribute only marginally to the heading error of the PNS. 

The longitudinal errors by missed or misdetected steps, errors in step classification and stride 

estimation, are very hard to separate from each other and therefore the correction of the stride 

model is not as easy as described in some publications. This is the major limiting factor for online 

user calibration and stride model improvements. Estimated errors for the stride must not be applied 

directly to the stride model, if misdetections and misclassifications cannot be excluded. Hence, the 

main focus of this filter is the improvement of the user position, using all possible navigation 

information. It will be shown in chapter 11 that this approach proved very effective and valuable, 

even if it is not totally straight forward scientifically. 

For correction of the residual errors of dead reckoning additional observations can be used. This 

information can be the output of the magnetometers (electronic compass), the measured 

pseudoranges from a GNSS receiver, position information by the WLAN positioning engine and 

various other inputs. An error state Kalman filter will be used, its error states are: 

�⃗� =

[
 
 
 
 
 
 
 
∆𝑥
∆𝑦
∆𝑧
∆Ψ
∆Ψ̇
Δ𝑆
∆𝑇𝑐

∆𝑇�̇�]
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Parameter Explanation 

Δx Position error x-coordinate [m] (WGS 84) 

Δy Position error y-coordinate [m] (WGS 84) 

Δz Position error z-coordinate [m] (WGS 84) 

Δ𝜓 Heading error [rad] 

Δ�̇� Heading error rate [rad/s] 

ΔS Stride error [m] 

ΔTc Receiver clock error [m] 

Δ𝑇�̇�  Receiver clock error drift [m/s] 

Table 8-10: Elements of the Kalman filter state vector 
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The error states are propagated during prediction state of the filter by the system matrix Φ. The 

matrix for level walking is defined by the following equations. For non-level walking the propagation 

is enhanced by the step lift and also the expected variations of the step lift, as well as reduced stride 

for non-level steps. 

Φ =

[
 
 
 
 
 
 
 
1 0 0 Φ(1,4) 0 Φ(1,6) 0 0
0 1 0 Φ(2,4) 0 Φ(2,6) 0 0
0 0 1 Φ(3,4) 0 Φ(3,6) 0 0
0 0 0 1 Δ𝑡 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 Δ𝑡
0 0 0 0 0 0 0 1 ]
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Parameter Explanation 

S Estimated stride [m]  

𝜑 Latitude [rad] 

𝜆 Longitude [rad] 

𝜓 Estimated heading [rad] 

Δ𝑡 Prediction interval [s] 

Table 8-11: Parameters of the transition matrix 

Since dead reckoning is performed in the local level navigation frame, but the observations are made 

in the WGS84 frame, a frame transformation is necessary. Hence, more complex elements of the 

transition matrix are: 

Parameter Explanation 

Φ(1,4) 𝑆(𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜆)𝑠𝑖𝑛(𝜓) − 𝑠𝑖𝑛(𝜆)𝑐𝑜𝑠(𝜓)) 

Φ(2,4) 𝑆(𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜆)𝑠𝑖𝑛(𝜓) + 𝑐𝑜𝑠(𝜆)𝑐𝑜𝑠(𝜓)) 

Φ(3,4) 𝑆𝑐𝑜𝑠(𝜆)𝑠𝑖𝑛(𝜓) 

Φ(1,6) −𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜆)𝑐𝑜𝑠(𝜓) − 𝑠𝑖𝑛(𝜆)𝑠𝑖𝑛(𝜓) 

Φ(2,6) −𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜆)𝑐𝑜𝑠(𝜓) + 𝑐𝑜𝑠(𝜆)𝑠𝑖𝑛(𝜓) 

Φ(3,6) 𝑆(𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜆)𝑠𝑖𝑛(𝜓) − 𝑠𝑖𝑛(𝜆)𝑐𝑜𝑠(𝜓)) 

Table 8-12: Elements of the transition matrix 

The coefficients described above result from the basic DR equations for level walking in the local 

level frame. The DR equations are driven by the stride and the heading only. The partial derivatives 

for each axis must be transformed to the Earth fixed frame. For this, the transition matrix  

𝐶𝑛
𝑒 is used. The results are given above in the elements Φ(1,4) to Φ(3,6). 
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The design or observation matrix, relating the observations to the state vector, is: 

H =

[
 
 
 
 
 
 −(𝑋𝑒𝑠𝑡 − 𝑋𝑆𝑎𝑡,1)/𝑅 1 −(𝑌𝑒𝑠𝑡 − 𝑌𝑆𝑎𝑡,1)/𝑅 1 −(𝑍𝑒𝑠𝑡 − 𝑍𝑆𝑎𝑡,1)/𝑅 1 0 0 0 1

1

2
Δ𝑡2

−(𝑋𝑒𝑠𝑡 − 𝑋𝑆𝑎𝑡,2)/𝑅 2 −(𝑌𝑒𝑠𝑡 − 𝑌𝑆𝑎𝑡,2)/𝑅 2 −(𝑍𝑒𝑠𝑡 − 𝑍𝑆𝑎𝑡,2)/𝑅 2 0 0 0 1
1

2
Δ𝑡2

⋮
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 ]
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Parameter Explanation 

(X,Y, Z)est Estimated user position, WGS 84 [m]  

(X,Y, Z)Sat,n Estimated position of satellite n, WGS 84 [m] 

Rn Estimated distance between user and satellite n [m] 

Δ𝑡 Prediction interval [s] 

Table 8-13: Elements of the observation matrix 

The first lines of the matrix describe the reconstruction of the differences in the measured 

pseudoranges, the final two lines the reconstruction of the heading and heading drift, which are 

observed by the difference between the magnetic and inertial heading, as well as their derivative. If 

position updates from WLAN or ZigBee positioning become available, the H matrix can be 

complemented by additional lines. Since the position updates are in WGS 84 coordinates, the matrix 

is complemented by lines with single ones at the Δ(x,y,z) positions.  
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8.3 Simulation of the filter 

The PNS Kalman filter is an integral part of the full navigation system. Therefore a simulation for the 

full system is possible, but the results are then difficult to evaluate individually. Hence, an individual 

simulation for the PNS Kalman filter has been developed to demonstrate basic properties and 

capabilities of the filter. Several simulations of the filter have been executed in the Matlab 

environment to evaluate the filter properties and capabilities. The basic parameters for the 

simulations are presented in Table 8-14. 

Parameter Value 

Simulation time 2000 steps 

Step frequency 1.3 Hz 

Start position 
48.0778°N, 11.6287 E, 594 m (University location) 

4182047 m, 860632 m, 4723101 m (WGS 84) 

Update interval 2..20 steps 

Average stride 0.73 m 

Heading 35° 

Initial heading error 2° 

Gyroscope bias 0.1°/s (360°/h) 

UERE 1.1 .. 7.1 m 

Nb. of satellites 8 

σcompass 10° 

σstride 0.05 m 

Table 8-14: Simulation parameters for evaluation of the PNS Kalman filter

 As observations, pseudoranges from 8 satellites, as well as magnetometer heading and the heading 

drift since the last observation were used. The satellite positions were a snapshot of a real satellite 

constellation at the starting point of the simulation. Thus the satellite configuration is realistic. In the 

evaluation, various setups using pseudoranges only, pseudoranges with magnetometer heading, 

pseudoranges with magnetometer heading and heading change observations, etc. were tested. 

Various pseudorange qualities (UERE) and update rates were tested. 

The results of a simulation using an update rate of 20 steps and a UERE of 3 m is shown in Figure 8-1 

and Figure 8-2. The figures show three individual aspects of the simulation: 

 Simulated reference user trajectory (red line) 

 Biased DR trajectory using erroneous gyroscope heading, initial position offset and stride 
errors (blue line) 

 Kalman filter corrected DR trajectory (green line, markers show individual steps) 
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Figure 8-1: Simulation of the PNS Kalman filter simulating 200 steps with pseudorange updates 

As can be seen in the figures the filter is able to adjust the DR position to the position calculated by 

GNSS observations. While the PNS solution would drift to a circular shape due to the gyroscope bias, 

the adjusted trajectory matches the real trajectory very well.  

 

 

Figure 8-2: Close-up of the PNS Kalman filter simulation result 
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In the close-up (Figure 8-2), the filter convergence can be observed, too. Prior to the first 

observation, the combined user position follows the DR stand-alone trajectory. After the first 

observation, the initial position errors are corrected and the user position is reset almost to the true 

user position. Heading and heading rate error are correctly estimated after some update steps. The 

simulation shows the influence of the noisy pseudorange measurements, too. Even if the DR 

positions during the prediction phase are close to the true trajectory, the pseudorange updates can 

set the user position estimation slightly off track. The same effect applies to the user heading. 

Variation of the update intervals and the simulated UERE shows that the short-term stability of the 

PNS can be much higher than the measurement updates by noise pseudoranges. In the evaluation of 

the complete system in chapter 11.5, this fact will be demonstrated. The distance traveled between 

the updates can be very short, i.e. only a few meters or even less. The step frequency has been 

simulated with 1.3 Hz. If high update rates are used, the GNSS positions have a higher uncertainty as 

the distance traveled. This fact makes stride estimation very difficult when the UERE is large and the 

update rate is high. Neglecting stride as state variable on the other hand is not a practical approach 

and results are not acceptable. 

The same observations apply to the user heading error and heading error rate for simulations when 

the magnetometer heading and heading rate is not used as observation. It is not practical to use 

realistic, noisy pseudorange observations to correct the user heading errors and heading error rate. 

For useful heading corrections, a heading reference like the magnetometer is necessary. This is 

especially true for slow user dynamics and short traveled distances between updates.  

Even if the filter is optimal with respect to statistics, the individual corrections might give larger 

errors for the individual epoch. Direct application of stride estimations is not very stable and accurate 

in the short term evaluation. To use the stride estimation, longer smoothing is necessary. This limits 

the stability of online-calibration, too. Heading stabilization by external heading updates is necessary. 

Position updates are not sufficient for heading correction of pedestrian users, if the pseudoranges do 

not have uncommonly high accuracies.  

8.4 Implementation of the PNS Kalman Filter 

As described in chapter 8.1, the Kalman filter is a two stage process of prediction and update. Since 

the update stage is a comparison between predicted observations on basis of the system states and 

measured observations, it is mandatory that the prediction and the update process refer to the same 

epoch, i.e. both processes need to be synchronized. Sensor fusion in practical implementations is 

often limited by sensor synchronization. Several sensor outputs can only be combined to a 

consolidated navigation solution, if they refer to the same epoch.  

On the hardware side, synchronization could be realized by triggering all sensors in a centralized way 

using a common timing machine. This approach is often not practical, especially if the individual 

sensors have different sampling frequencies, different trigger delays, or transmission delays. The 

filter has to delay its operation for an optimized period to be sure that all available measurements 

have been received. 

Another approach is to determine the precise time of sampling (time-tagging) of each measurement 

and each sensor in a common time frame. Since the measurements are not expected to occur at the 

same instant, one of both data streams has to be interpolated or extrapolated. The filter states have 
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to be predicted to the instant of the measurement observation, or the magnitudes derived from the 

measurements have to be extrapolated to the prediction epoch. It is advantageous to use the data 

stream with lower data rate for updates since it reduces to number of interpolation operations and 

increases the interpolation accuracy. It is useful to operate the filter some seconds in the past to wait 

for delayed measurements. If the state vector is not changing rapidly, the application of slightly 

delayed error estimations to the observed process is still possible. 

This approach has been realized in the integrated system studied in this thesis. All sensor 

measurements are time-tagged on hardware basis and time stamps are applied using the system 

time of a precise OCXO oscillator. PNS is used for the prediction stage. Since the GNSS observations 

are essential for positioning, but are delayed strongly due to the long replica length, the classical 

procedure of performing an update of the states cannot be used. Hence, the following processing 

chain is proposed. The filter will always wait for a GNSS update to perform operations. PNS data, 

WLAN observations and DR observations are stored for later use as long as no GNSS updates are 

available. When a new set of pseudoranges is delivered to the Kalman filter, it will first perform 

predictions to the point of time of the next pending observation, e.g. WLAN, using the stored PNS 

data at that point of time and then doing an observation update. The procedure is repeated until the 

prediction and the GNSS observation update is performed. Then the filter is pausing until the next 

available GNSS update. The resulting states like position, heading errors and sensor errors are 

provided to the respective subsequent DR procedures. The principle of the timeline of events and 

measurements is shown in Figure 8-3. DR, WLAN and GNSS measurements are registered and stored. 

The measurements have a timestamp (t1, t2, …), but are delayed by different delay periods. Here, the 

GNSS observation is delayed for three seconds, while the other measurements are less delayed. The 

WLAN measurement of t6 has already been received, as well as DR measurements of t4 and t5 have 

been registered and stored, when the GNSS measurement of t3 is registered.  

 

Figure 8-3: IKF situation at t=6 [92] 

In Figure 8-4, the processing of the stored measurements is presented. After receiving the GNSS 

update, the measurements and events are brought in the correct order and the filter performs the 

prediction operations first to the WLAN positioning update event at t2 and then to the GNSS update 

event at t3. The later events (t4, t5, t6) are stored until the next GNSS update becomes available. 

Hence, the filter has a latency of three seconds in this case. Since the PNS error dynamics are very 

low, i.e. the position error accumulated in three seconds is nearly negligible, this delay is not critical 

and the corrections calculated by the filter can be used to correct the DR position solution. To avoid 

DR (t1) 

(stored) 

DR (t4) 

(stored) 

 

DR (t5) 

(stored) 

 

WLAN (t6) 

(stored) 

 Time 

Trajectory 

GNSS (t3) 
WLAN (t2) 

(stored) 

 



128 

 

very long delay times, a maximum delay time has been defined, after which the filter will definitely 

propagate its estimation. GNSS updates received after this maximum delay will be disregarded. 

 

Figure 8-4: IKF situation at t=6 after update to t=3 [92] 

 

8.5 Summary 

In the previous chapter the design, simulation and implementation of a PNS Kalman filter has been 

described. The need for this filter is based on the fact that DR systems like the PNS accumulate 

position errors during progress and the DR position has to be corrected after some time to increase 

the long term stability and accuracy of the PNS. A linearized Kalman filter has been proposed that 

propagates the navigation errors based on the walking model of the PNS. The major influences are 

the stride error and the heading error, as well as the heading error drift. Since GNSS pseudoranges 

shall be used as input, the error states of the receiver clock error and the receiver clock drift had to 

be added. This eight state filter has been implemented in Matlab and tested in a simulation which 

showed basic capabilities of the filter, but also showed the influences of low pseudorange accuracy 

and low user velocity. Finally aspects of the implementation on the final platform have been 

discussed and especially the aspect of different data delays for predictions and updates has been 

presented. A timing scheme for data handling has been demonstrated which tries to maximize the 

use of GNSS updates while limiting the overall filter delay. 
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9. Wireless LAN Positioning 

WLAN is a communication system widely used today for mobile and stationary wireless network 

communication. It is present in nearly all public locations today. Several navigation applications have 

been proposed, using networks and access point mapping, fingerprinting and several other principles 

(e.g. in [59], [100] and [101]), since due to lack of precise synchronization a ranging application like in 

GNSS has not been possible so far. In the integrated navigation system described in chapter 11 of this 

thesis, wireless network navigation has been provided by “INPOS”, a system of Telespazio Italy, using 

ZigBee motes instead of WLAN access points ([66], [110], [78]). This system uses fingerprinting 

techniques, too.  

Since ZigBee infrastructure is not as widely available as WLAN, it has been desirable to have basic 

WLAN positioning capabilities, while the calibration and technological burden of WLAN fingerprinting 

techniques should have been avoided. Hence, an alternative, basic WLAN positioning system has 

been developed. This system provides a positing alert system, which gives position updates when 

registered WLAN access points are passed by in close proximity. With this technique, relatively 

precise position updates become available without the heavy burden of a full and precise calibration 

campaign, as e.g. in WLAN fingerprinting. In the following chapter, the principles and implementation 

of this alternative positioning system are described. 

9.1 RSS based proximity positioning 

Wireless local area networks (WLAN) are infrastructures which can be found in most urban places. 

They are used in most office environments and have been standardized by the IEEE 802.11 standard. 

The system consists of several so called access points (AP), which represent the bridge from a 

stationary cable-based network to the WLAN. Several mobile or stationary computers can be 

connected to the network via WLAN cards or WLAN-USB-sticks. 

WLAN can be used for positioning inside buildings basically by measurement of the received signal 

strength (RSS). Often the RSS is expressed by a quality indicator called Received Signal Strength 

Indicator (RSSI). The unit of the RSSI is not Watt or dBW/dBm, but an internally defined reference 

value (maximum 100). Ranging of several APs like in the GNSS systems is not feasible today, since the 

precise time synchronization of the APs, like it is standard for the satellites in the GNSS systems, is 

not implemented so far. This may change in the future. If several WLAN access points are visible for 

the rover, “fingerprinting” is a technique often used for wireless network based positioning inside 

buildings. If patterns of several RSS values of different APs are compared to a database, a position of 

maximum likelihood can be determined. This requires a database of calibration points at which the 

RSS values are measured in a calibration campaign and referenced to their geometric position. The 

calibration point with the best match to the actually measured signal pattern is selected as position 

update. Since WLAN is used in the integrated navigation system to provide the assisted GNSS 

information, it shall also be used for deriving positioning information, too. For redundancy reasons, 

the INPOS system present on the navigation platform shall not simply be doubled on another 

standard, but a different solution had to be found. For that reason a WLAN proximity positioning 

system had to be developed. In contrast to the INPOS fingerprinting system, the WLAN proximity 

positioning system is supposed to provide a position information if the user gets close to a registered 

access point. The registered position of the AP is then used as position update to the IKF. This 
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algorithm acts in the manner of a proximity warning or local marker system, since it provides the 

update information only in proximity to the AP. The APs act as local markers. 

9.2 Algorithm outline 

For the development of the algorithm a simple test scenario was generated, which is presented in 

Figure 9-1. On a straight office floor two access points called AP_1 and AP_2 have been placed at the 

beginning and at the end of the floor. A laptop has been equipped with a USB-WLAN-stick to act as 

rover, and moved from the eastern end of the floor to the western end and back again. The floor has 

a length of approximately 30m. The closest distance between rover and the respective access point is 

about 1.5m. The RSSI values were extracted and recorded. 

 

Figure 9-1: Test scenario for WLAN proximity positioning 

The results of the test run are demonstrated in Figure 9-2. 

 

Figure 9-2: RSSI of two WLAN access points during test run 

AP 2 AP 2 

AP 1 

Geometric 

crossing 
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The modeling of the signal propagation in an office environment is specific for each environment. 

This fact limits the usability of the RSS of one AP for stand alone range estimation and for continuous 

distance to AP evaluation, too. The individual signal power of a WLAN access point is usually between 

20-40 mW, corresponding to 13-16 dBm. However, the true signal strength is again dependent on 

several factors including the antenna, the placement of the AP, the environmental conditions and 

many more. Hence, an algorithm using the evaluation of specific patterns in the received signal 

quality instead of pure power levels has been chosen. 

An evaluation of the RSSI has been conducted for each received access point. As already mentioned, 

the RSSI is an internal quality indicator for the received signal strength. It cannot be directly 

interpreted as absolute signal power like e.g. “dBm”. RSSI is used in relation to an arbitrary, receiver 

manufacturer dependent reference value. However, the maximum RSSI for each AP is a magnitude 

which can be easily evaluated in very simple measurement campaign and can be stored in a database 

together with the AP location.  

In this case, the maximum registered RSSI in proximity of the APs is 98, mostly values between 95 

and 98 are expected. On close approach to or at the passing of the respective access point the signal 

strength is increasing strongly, usually by 3-4 units, while due to interference the RSSI of the other AP 

decreases significantly. 

The difference in the RSSI is depicted as yellow graph in Figure 9-2. The green lines give the start of 

run, the red lines the end of run. The geometric crossings of the access points are indicated by the 

ellipses for AP1 and AP2. As can easily be seen, the extrema of the differential processing of both 

RSSI values give good indication for the direct passing of the waypoints in short distance. This 

phenomenon can be exploited for the WLAN proximity positioning system. The absolute value of the 

distance to the access point at detection can be adjusted. A value of 2 m has been achieved in the 

test campaigns. 

For the final algorithm, several features and aspects can be listed: 

- The position is not constantly calculated and estimated, but provided in a proximity 
warning manner at discrete events. 

- The proximity position has a high accuracy due to the sensitive algorithm. 

- WLAN Access points act as local markers, giving their own position as position 
updates for the rover. 

- To derive a position by the system, the positions of the access points must be 
registered in a data file. 

- Unregistered APs cannot contribute to the position evaluation, since their position 
is not known. 

- If proximity to an access point is determined, the position of the access point is 
evaluated and passed to the IKF together with the accuracy estimate. This estimate 
is equal to the detection distance of the algorithm. 

- Basis of the proximity detection algorithm is an evaluation of the received signal 
strength (RSSI) of various access points. At least two access points are needed. 

- At crossing of the AP the difference of the signals reaches characteristic peaks at 
the crossing of the AP, which is between 4 and 8 units. These peaks are used as 
detection event.  
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9.3 Implementation 

The RSSI measurements for each visible access point are provided to the algorithm with an update 

rate of 1 Hz by the sensor API. In principle, the data is derived from the WLAN controller of the used 

laptop platform. The dataset shall contain the access point’s name or MAC address as well as the 

RSSI value and the time stamp. Figure 9-3 gives a schematic overview over the data flow and 

functional flow inside the WLAN proximity positioning module. 

The WLAN proximity positioning module is embedded in a DLL. Via the sensor API, the respective 

datasets of measurements are passed to the DLL and to the WLAN positioning module. For the 

algorithm it is necessary to have the latest measurements of all access points available, so that 

derivatives and differences can be built. Therefore a stack buffer is filled with the latest (actual) RSSI 

measurements for each access point, while the oldest measurement is skipped. Then the algorithm 

tries to detect a close proximity to each AP, based on the algorithm and rules described in chapter 

9.2. If positive detection is declared, the routine return a positive flag and hands over the registered 

position to the positioning Kalman filter (IKF), together with a position accuracy estimate, which is set 

to the trigger sensitivity of the algorithm. 

 

Figure 9-3: Flowchart of WLAN positioning processing 

It is possible to run APs in an automatic power adjustment mode. In this mode, the transmission 

power is adjusted automatically to the estimated distance of the user. This feature must be disabled 

to allow the algorithm to work correctly. The received power level should only be influenced by the 

distance and geometry of the user antenna to the AP antennas. In other words, the transmitted EIRP 

of the AP must be constant. The maximum RSSI is measured in a simple calibration campaign and is 

stored in the database together with the AP position and MAC address. 
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Figure 9-2 shows the received signal strength of two APs on an office floor, as well as the differenced 

signals. The passing of the access points is clearly visible in the differential processing. Additional test 

in two additional full test campaigns in other premises showed similar results and the algorithm 

proved its functionality with high reliability. 

 

9.4 Summary 

In the previous chapter, the development, implementation and testing of an alternative WLAN based 

positioning system has been described. In contrast to fingerprinting algorithms and database 

operated positioning systems, the developed approach offers proximity warnings when WLAN access 

points are passed by. The only needed calibration is the registration of the used APs, the position 

determination of the AP in the building coordinate frame and the measurement of the maximum 

RSSI of the AP, which can be performed by the same hardware, which is used for user positioning. 

Therefore, the calibration effort for operating this positioning system is very low in comparison to 

other systems. The system offers not continuous positioning, but singular position updates when 

passing registered APs. The chapter gave insights in the implementation of the algorithm and some 

test results from an office building.  
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10. Barometric altitude determination 

In pedestrian navigation, often the horizontal coordinates are of major importance and several 

navigation systems focus only on these parameters. For aiding the GNSS receiver, the vertical 

component is of major importance due to geometric reasons. The influence of altitude changes on 

the LOS vector is often significantly larger than the horizontal components. On the other hand it is 

difficult to provide a stable absolute altitude reference. The air pressure can be used as physical 

altitude reference by using sensors called barometers.  

The atmosphere consists of compressible gases, which can be modeled as layers around the Earth. 

Since the weight of the higher layers presses on the lower layers, the pressure of the atmosphere 

increases with decreasing altitude und decreases with increasing altitudes. This phenomenon has 

been used for vertical navigation in the aeronautical domain for decades. Due to new MEMS based 

sensors, also miniaturized pedestrian application is possible today. For this thesis, the MEMS type 

barometer Bosch BMP085 has been used.  

In this chapter, the physical relationship between pressure and altitude will be presented. The 

pressure sensor used in this thesis will be introduced and measurement data as well as calibration of 

the sensor will be presented. 

10.1 Physical model of the atmosphere 

The properties of atmospheric pressure can be evaluated by dividing the atmosphere in differential 

volume elements and analyzing the forces on the vertical axis. The forces acting on a theoretical 

differential volume element are shown in Figure 10-1. If only forces in vertical direction are 

evaluated, the element is compressed by the pressure on the upper boundary (p+dp) and the 

pressure on the lower boundary (p). The pressure is always defined as perpendicular to the surface it 

is acting on. Additionally, its own weight acts on the element, which is mass multiplied by gravity. 

 

Figure 10-1: Forces acting on a differential volume element 
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If a stable vertical layering is assumed, the following equations can be derived: 

𝑝 𝑑𝐴 − (𝑝 + 𝑑𝑝)𝑑𝐴 − 𝜌𝑑ℎ𝑑𝐴𝑔 = 0 

𝑑𝑝 = −𝜌𝑑ℎ𝑔 

𝜌 =
𝑝

𝑅𝑇
 

𝑑𝑝

𝑝
= −

𝑔

𝑅

𝑑ℎ

𝑇
 

   (93)     

Parameter Explanation 

p pressure [Pa] 

dA differential area [m²] 

dp differential increase of static pressure [Pa] 

dh differential increase of altitude [m] 

ρ density [kg/m³] 

T absolute temperature [k] 

R specific gas constant of air, 287.058 [J/(kg*K)] 

g Gravity  [m/s²] 

Table 10-1: Parameters of the atmospheric pressure model 

Obviously, the temperature of the atmosphere, or its temperature profile with height, has enormous 

influence on the atmospheric layers. In the International Standard Atmosphere (ISA), the 

temperature progression with altitude has been modeled considering averaged statistical 

meteorological data. Up to an altitude of 11 km, the temperature progression is modeled linear with 

a decrease of -6.5 K/km. 

𝑇ℎ = 𝑇0 + 𝑘ℎ  

𝑘 = −6.5 ∙ 10−3
𝐾

𝑚
 

𝑑𝑝

𝑝
= −

𝑔

𝑅

𝑑ℎ

𝑇0 + 𝑘ℎ
= −

𝑔

𝑅

𝑑ℎ

𝑘ℎ+𝑇0
 

   (94)     

Parameter Explanation 

Th temperature in altitude h [K] 

T0 temperature in altitude 0 m [K] 

k height coefficient with altitude [K/m] 

Table 10-2: Parameters of the atmospheric temperature model 
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Integrating both sides yields: 

[ln(𝑝)]0
ℎ = −

𝑔

𝑅𝑘
[ln(|𝑘ℎ + 𝑇0|)]0

ℎ 

ln (
𝑝(ℎ)

𝑝(0)
) = −

𝑔

𝑅𝑘
ln (

𝑘ℎ + 𝑇0

𝑇0
) 

𝑝(ℎ)

𝑝(0)
= (1 +

𝑘ℎ

𝑇0
)
−

𝑔
𝑅𝑘

 

𝑝(ℎ) = 𝑝(0) (1 +
𝑘ℎ

𝑇0
)
−

𝑔
𝑅𝑘
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Parameter Explanation 

p(h) pressure in altitude h [Pa] 

p(0) pressure at sea level [Pa] 

Table 10-3: Parameters of the pressure integration 

The ISA gives the following standard values for the meteorological magnitudes on sea level: 

𝑇0 = 288.15 𝐾  

𝑝(0) = 𝑃0 = 101300 𝑃𝑎 

𝜌0 = 1.225
𝐾𝑔

𝑚3
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Parameter Explanation 

T0 Average temperature on sea level [K] 

P0 Average pressure on sea level [Pa] 

ρ0 Average air density on sea level [Kg/m³] 

Table 10-4: Standard sea level conditions of ISA 

Figure 10-2 gives a graphical representation of the equations given above. As can be seen the 

pressure decreases non-linearly with increasing height, while the slope is highest at zero height. This 

effect is plausible, since the air column with all its weight above the reference point is highest there, 

hence the pressure, and also the density, is highest there. Due to the second equation of (93), the 

differential pressure is proportional to the density of the fluid. 
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Figure 10-2: Air pressure as function of height in accordance to ISA 

If the height range is limited, the pressure progression becomes nearly linear. This is shown in Figure 

10-3. In this graph, the range of height is limited to 0-2000 m. The graph is only slightly curved and 

can be approximated as linear in the vicinity of the linearization point. This vicinity can be more than 

hundred meters with good approximation. 

 

Figure 10-3: Close-up of the ISA air pressure in low heights 
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In this simplified model, an increment of height is linearly equivalent to a certain increment of 

pressure. If the conditions at Neubiberg, Germany, are considered, the following approximations can 

be used: 

𝐻0 = 547𝑚 

𝑇 = 293.15𝐾  

𝑃0,𝑡𝑦𝑝 = 95000𝑃𝑎 

𝜌0,𝑡𝑦𝑝 = 1.12915
𝐾𝑔

𝑚3
 

(
∆𝑝

∆ℎ
)
𝐻0

≅ −11.077
𝑃𝑎

𝑚
 

(
∆𝑝

∆ℎ
)
𝐼𝑆𝐴

≅ −11.065
𝑃𝑎

𝑚
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Parameter Explanation 

H0 Reference altitude at university campus (above sea level, geoid) [m] 

T Typical temperature in office building [K] 

P0,typical Typical pressure at reference position [Pa] 

ρtypical Typical air density at reference position [Kg/m³] 

0H
h

p











  
Typical pressure increment per meter height at reference location [Pa/m] 

ISAh

p











  
ISA model pressure increment per meter height at reference location [Pa/m] 

Table 10-5: Parameters for the estimation of pressure change per meter altitude change 

As can be seen, the difference in the pressure increment per meter height at the reference location 

between model and typical values from measurements is nearly identical, the difference is 

neglectable for pedestrian navigation and MEMS type sensors. 

The calculations and statements above are valid only for static and low dynamical application. If the 

user is moving with reasonable speed, the properties of pressure can change significantly. In subsonic 

conditions this behavior is described by the laws of Bernoulli and the Navier-Stokes-equation: 

𝜌

2
𝑣2 + 𝑝 = 𝑐𝑜𝑛𝑠𝑡 

𝑝 = 𝑝0 −
𝜌

2
𝑣2 

   (98)     
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Parameter Explanation 

ρ Air density  [Kg/m³] 

v Velocity of air flow [m/s²] 

p Static air pressure [Pa] 

p0 Total pressure (static and dynamic) [Pa]  

2

2
v

  Dynamic pressure [Pa] 

Table 10-6: Parameters of the Bernoulli and Navier-Stokes equations 

Equation (98) shows, that moving the sensor with high velocity can cause the measured pressure to 

decrease in comparison to static measurements. Therefore highly dynamic velocities can cause 

misinterpretation of altitude information, if not considered properly. 

10.2 Sensor description 

The sensor used in this thesis is the MEMS-type Bosch Sensortec BMP085 digital pressure sensor. Its 

footprint is 5 mmx5 mm, with a height of only 1.2 mm. The sensor offers internal A/D conversion and 

a digital communication I²C-interface. This is favorable in many respects. First of all there is no loss of 

analog data (e.g. in the cables, the amplifiers or attenuation circuits), since the data is transmitted in 

digital format. Secondly the I²C interface allows sending commands to the unit, e.g. to retrieve the 

factory calibration values, or to manually retrieve the basic measurements sensor temperature and 

measured pressure. Thirdly the integration of the sensor is much easier, since no analog components 

have to be integrated and many required elements are already integrated on the chip. 

 

Figure 10-4: Bosch BMP085 sensor package on a dot matrix board (hole spacing 0.1 inch) 

Most positive is the fact that temperature control is enabled by the manufacturer and the product, 

since the sensor temperature can be read out of the sensor by its API. The calibration model is 

supplied by the manufacturer and does not have to be developed by the customer. 

To exemplify this feature, Figure 10-5 shows the measurements taken from the sensor. After 

warming up by idle operation of the sensor indoor for around 10 minutes the barometer was placed 

outside on a day with temperatures below 20°C. Therefore the sensor cooled down to around 19°C 

during operation. After it has been taken indoors the sensor temperature reached relatively stable 

24°C. This is illustrated by the blue curve in the figure and quantized by the right hand side bar. The 
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saw tooth pattern on the right half of the graph can be explained by the limited resolution of the 

temperature output of 0.1°C. This is nevertheless more than adequate for the calculations. 

 

Figure 10-5: Relationship between calibrated sensor temperature and raw pressure readings 

The magenta curve shows the response of the temperature raw data, which was recorded during the 

test run. As already mentioned for the MEMS IMU, MEMS sensors react very sensitive on 

temperature stress. At constant pressure and only influenced by a temperature shift of less than 5°C, 

the measurements drifted of more than 400 units, which corresponds to some 900 Pa in measured 

pressure. It is obvious that temperature compensation is crucial for the operation. 
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Figure 10-6: Results of temperature compensation of BMP085 pressure sensor 

Figure 10-6 shows the results of the temperature compensation with the algorithm proposed by the 

manufacturer and the provided factory calibration parameters. It is obvious that the strong thermal 

drifts are cancelled by the temperature compensation. The measurement noise of the MEMS sensor 

can be clearly observed, too. It can be clearly identified that the sensor noise has a range of nearly 50 

Pa, corresponding to several meters of altitude. Hence, centimeter accuracy cannot be expected by 

short term observations. This fact influences the usability of the pressure sensor for direct altitude 

aiding as well as direct step classification. 
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10.3 Barometer for 3D pedestrian navigation 

Since the PNS based navigation system described in the previous chapters provides a 3D navigation 

solution, the barometric height determination shall be integrated in the navigation processing. 

Barometric sensors have dissimilar error propagation as inertial navigation systems, GNSS or 

WLAN/INPOS positioning systems, therefore it seems very promising to use barometric height as 

update in a Kalman filter. However, the barometric height determination has several flaws, which 

inhibit the direct use of the barometric height. First the weather conditions are not always in 

accordance with the standard atmosphere. Due to meteorological high and low pressure zones the 

calculated absolute height might be misleading or have a high bias. Secondly the remaining sensor 

bias cannot be determined easily during operation, which can also cause a bias in the absolute height 

calculation. The sensor noise must be considered. Finally, dynamic air flow due to rapid movement 

can cause pressure measurement deviations as described above. Hence, the direct usage of 

barometric altitude is not favorable. The results of a test run in the staircase of a six storey office 

building are visualized in Figure 10-7. The sensor has been carried by a pedestrian climbing the stairs 

from ground level up to the sixth storey. 

 

Figure 10-7: Measured pressure during a walk over 6 floors 

The figure shows the temperature compensated pressure measured during the test run. The stairs, 

as well as level platforms between the stairs can be identified easily. Nevertheless, the present 

sensor noise is easily recognizable, too. Therefore, direct use of the pressure and the derived altitude 

is not advantageous for altitude updates. The noise reduction by low-pass filtering is shown in Figure 

10-8. Averaging or low-pass filtering can reduce the sensor noise strongly, but could erase the 

original altitude dynamics, too, or at least add a time lag of the measurements to the system. In the 

step detection chapter, the reduced time lag has been a major development prerequisite. Therefore, 
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neither direct processing of the altitude updates of the barometer, nor low-pass filtered data shall be 

used in this thesis. An alternative implementation has to be considered. 

 

Figure 10-8: Low pass filtered barometer measurements 

The basic idea of this alternative algorithm is to use the barometric information as input source for 

the fuzzy logic system, which determines the step type in the PNS navigation algorithm. The PNS is an 

extremely low noise and low drift system. Therefore the measured pressure is integrated over each 

step period and compared to the last integrated value. The integration reduces the noise of the 

pressure measurement additionally by: 

𝜎𝑏𝑎𝑟𝑜,𝑠𝑡𝑒𝑝 = 𝜎𝑏𝑎𝑟𝑜

1

√𝑛
 

𝑛 = 𝑓𝑏𝑎𝑟𝑜∆𝑡𝑠𝑡𝑒𝑝 

   (99)     

Parameter Explanation 

stepbaro,  standard deviation of integrated pressure [Pa] 

baro  standard deviation of single pressure measurement [Pa] 

n number of averaged samples 

barof  sample frequency of barometer [Hz] 

stept  step interval from PNS [s] 

Table 10-7: Parameters of the barometer inputs to the fuzzy logic system 
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If a sample frequency of 20 Hz, a sensor noise of 4 Pa and a step interval of 0.66 s (1.5 Hz) is 

considered, the standard deviation of integrated pressure shall reduce to 1.095 Pa. This related to a 

height standard deviation of 9.8 cm at the Neubiberg university premises, which is around a half step 

height. 

The biases are compensated by the differencing between two consecutive steps. Additionally 

consecutive steps with high velocity changes (accelerations) shall be dismissed from the calculation 

to avoid problems with the dynamic pressure influence. 

In the fuzzy logic system a new set of Fuzzy membership functions is implemented for the states Up-

Level-Down. As mean setpoints, the model step height is assumed which relates to: 

Fuzzy parameter Values 

level  0m => 0Pa 

up  0.17m => -1.8819 Pa (at base level) 

down  -0.17m => 1.8819 Pa (at base level) 

downlevelup ,,  
values for single measurements: ~0.25 m  

integrated measurements: ~6.85 cm 

Table 10-8: Barometer model set points for the fuzzy logic step detection system 

 

10.4 Summary 

In the previous chapter, the use of a low-cost, MEMS based barometric sensor for indoor positioning 

has been discussed. The physical principles of barometric altitude determination have been 

discussed and the relations for the International Standard Atmosphere (ISA) have been 

demonstrated. The used sensor has been introduced and characterized. Especially the temperature 

compensation has been demonstrated. Finally real test data for a staircase walk of a six storey 

building has been analyzed and an alternative integration in the PNS implementation has been 

introduced. 

The sensor noise and the small pressure changes for single steps on a staircase showed that direct 

use of the measured pressure and its derivative was not possible. An alternative strategy for the use 

of barometric altitude determination had to be found. The core strategy was to integrate the noisy 

pressure readings over the step interval to reduce the measurement noise, and to differentiate the 

altitude change with respect to the last step. The determined height difference was used as input 

parameter of the fuzzy logic step classification system. By this procedure, no additional time lag for 

the dead reckoning system is introduced and the sensor is integrated in the existing step 

classification system.  
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11. Receiver Integration 

In this chapter, the integration of the techniques described in the previous chapters in a software 

GNSS-receiver and an innovative receiver aiding technique is described and evaluated. The technique 

is called “ultra-tightly coupling” and uses, besides other important elements, all navigation 

techniques described in this thesis. The main element of the algorithm is very long coherent 

correlation of the received satellite signals with a respectively long internal replica signal. The 

integration time for dynamic use cases is up to 2 seconds and therefore one hundred times the GPS 

navigation data bit length, while common high sensitivity GPS receivers usually only use up to 20 ms. 

As will be demonstrated, the additional correlation gain together with other receiver techniques, 

especially vector tracking loops, allows the receiver to track very weak indoor GNSS signals. 

Several inputs are needed to form replicas of a length of several seconds. The focus in this thesis is 

on the user motion. Although the highest Doppler components of the received signals are caused by 

the satellites’ motion, the Doppler variations are caused mostly by the user or antenna motion. The 

antenna motion is estimated for the integration interval by using all navigation techniques described 

in this thesis. The so called “micro-trajectory” will be used as major input for the replica construction. 

The author’s contribution to the described system is formed by the dead reckoning PNS including 

barometer and magnetometer processing, the WLAN proximity positioning, the design of the PNS 

Kalman filter, and the micro-trajectory generation based on all these subsystems. The used GNSS 

software receiver has been developed by other contributors ([110], [6]). Since the authors 

contribution can only be evaluated in the context and integration with all other contributions, the 

entire system will be described and evaluated. The key enabling technology is a fully adjustable and 

software GNSS receiver that can be modified to the user’s needs. The receiver used for this thesis is 

the NavX-NSR by IfEN GmbH. 

In this chapter, the basic technique of receiver aiding will be presented. The system components will 

be described and several implementation aspects will be shown. Finally, the performance of the 

system will be evaluated by analysis of data produced in several test campaigns. 

11.1 Introduction 

GNSS receivers acquire and track satellite signals transmitted by GNSS satellites. These GNSS signals 

are transmitted with a very low EIRP. Because of the long distance between the satellites and the 

receivers on the Earth surface, the received signal strength is very low. Even under open sky 

conditions, the signals are below the average noise level. A description and exemplary calculation of 

the GNSS link budget can be found in chapter 18.1. The signals can only be evaluated by correlation 

of the signals with an internal signal replica. This process yields the pseudoranges to the satellites, 

but also the relative velocity derived from the signal Doppler frequency.  

In the acquisition process, the signal processing unit has to check for the presence of the desired 

satellite signal by trying replicas with various time/range and Doppler shifts. These search points are 

referenced as “range bins” and “Doppler bins”. The more bins there are to be searched, the more 

effort and time is needed to acquire the signal. If the receiver is moved very dynamically, it is 

possible that the receiver tracking loops are not able to follow the signal dynamics. Additionally, if 

the signals are attenuated strongly, the receiver might not by sensitive enough to find the signal in 
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the noise floor. In all of these cases, receiver aiding, in which additional sensors are used to provide 

trajectory information, is a promising option. Most often INS is used to provide this dynamical 

information, since INS and GNSS are complementary in the position and velocity domain. While 

several different types of receiver aiding algorithms exist, in this thesis the receiver aiding method 

“Ultra-Tightly Coupling” will be described. A mathematical analysis on the tracking loop stability, 

dynamical tracking error and receiver aiding is given in chapter 18.2. 

If the signal is attenuated strongly inside a building, many commercial receivers cannot acquire and 

track the signals anymore. The main technique of the developed algorithm is to increase the 

correlation gain of the receiver by forming a longer signal replica. The internal replicas used for 

correlation are constructed based on the knowledge of the signal frequencies and codes, but the 

time delay and the Doppler shift of the signal are also important inputs for the replica generation. 

Only if the replica matches the original signal very well, the correlation results in a significant value. 

In the tracking process, replicas are built with modified time delay (early, punctual, late as expected 

before correlation), for the Doppler tracking the replica phase is modified (in-phase and quadra-

phase). The longer the correlated signals are, the more correlation gain can be achieved. High 

correlation gain allows the acquisition and tracking of weak signals like the GNSS signals inside 

buildings. A good description of the fundamentals can be found in [77], [112], [110] and [79]. 

Main limiting factors for long coherent integration are: 

Limiting factor Explanation Solution 

Oscillator 
stability 

The replica is formed by signal processing 
using an internal oscillator as frequency 
reference. Oscillator drift and noise produce 
errors in the replica forming. 

High quality internal 
crystal oscillator 
(OCXO or miniature 
atomic clock) 

User antenna 
motion 

The antenna motion causes range and 
Doppler shifts which cannot be resolved by a 
static or first order dynamic signal replica. 

Precise reproduction 
of user motion 
(micro-trajectory) 

Navigation data 
bit transition 

The navigation message is modulated on the 
GNSS signal with a binary phase shift keying 
(BPSK) modulation. If the navigation bit switch 
is not anticipated, a correlation loss is 
induced. 

Use of external 
almanac/ assistance 
data (assisted GNSS) 
for the navigation 
message 

Satellite motion 

The satellite orbit has to be predicted as 
precise as possible to predict precise 
pseudoranges and Doppler variations for the 
internal signal replica. 

Use of external 
almanac/assistance 
data (assisted GNSS) 
and orbit prediction 
for precise satellite 
orbits 

Table 11-1: Limiting factors and technical solutions
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11.2 Overview of various types of GNSS INS integration 

Classical GNSS-INS integration has often been categorized into loose, tight, ultra-tight or deep 

coupling. Customized filters are used to combine GNSS and other sensors and to estimate the 

individual system errors. Very often, the filter is realized as error state Kalman filter, being 

propagated by INS and corrected by GNSS observations. Various levels of coupling exist and are 

sometimes hard to identify or distinguish. Especially in the field of deep or ultra-tight integration, 

often the wording is not very precise, and various subtle differences between the implementations 

can be observed. On first sight the level of coupling can be determined by evaluating the kind of data 

used as observation. If the GNSS receiver position and velocity information is used as update, loose 

coupling is most certainly used. If pseudorange and Doppler information is used as observations, 

most certainly tight coupling is used. If the observations are correlator outputs, e.g. early, punctual, 

late or differences of them, as well as in-phase and quadra-phase values are used, most certainly 

ultra-tight or deep coupling is used. While the filters have often similar state vectors, the observation 

or design matrix is different for all kinds of implementations. 

Loose and close coupling are not affecting the receiver itself, both GNSS receiver and INS processing 

chain maintain operation independently of each other. The results are then used to estimate 

navigation errors of the INS and to correct the INS navigation solution of position, velocity and 

attitude, most often using an extended Kalman filter (EKF). While in loose coupling the GNSS 

receiver’s position and velocity solution are used, in tight coupling the raw results pseudoranges and 

Doppler values are used as update measurements. The receiver itself is not affected; therefore, the 

performance of the GNSS receiver is not improved. 

In this thesis the goal is to track and acquire very weak GNSS signals, down to the range of 0 dB-Hz 

C/N0, thus receiver aiding is necessary. Several kinds of implementations are possible. It is possible 

to reduce only the receiver search space by using the INS PVA (position, velocity, and attitude) 

solution to predict PR and Doppler values. This already increases the chance of finding weak signals 

strongly and reduces the chance of tracking the wrong signal or correlation peaks. It is furthermore 

possible to directly steer the tracking loops. This technique requires a very precise secondary 

navigation solution, while especially the Doppler and acceleration are critical. Finally, the replica 

generation itself can be influenced by the INS solution to adjust the trajectory correction during the 

coherent integration interval. Especially this technique, beside others, has been used.  
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11.3 System design of ultra-tightly coupled integration 

Several components are needed to realize an ultra-tightly coupled GNSS/INS system. In Figure 11-1, 

the top-level hardware architecture of the realized system is presented. All elements are mounted on 

a heavy duty backpack to make the system useable for pedestrians. The backpack carries a GNSS 

antenna on top to provide best satellite visibility. Next to the antenna, a XSENS MTi inertial 

measurement unit is placed to monitor the antenna motion. The lever arm between the IMU and the 

antenna could be reduced to few centimeters. Additionally, the backpack carries a small size MEMS 

Bosch BMP085 digital barometric sensor. The antenna, IMU signals and barometer data are sampled 

by the NavX NAVport II RF-front-end. For additional indoor positioning capabilities, a ZigBee based 

INPOS positioning system is mounted on the backpack and transmits position updates to the laptop. 

A commercial GPS/Galileo receiver is carried as reference receiver. All data streams are sent to a 

laptop computer via USB. The laptop communicates to an assisted GNSS server via WLAN. The WLAN 

transmitter is used for the WLAN proximity positioning system, too. 

 

Figure 11-1: Hardware Architecture of the integrated navigation system [72] 

From the hardware side, mostly standard interfaces could be used, which reduces the hardware 

development efforts strongly. The backpack is supplied with power from a battery pack at the 

bottom of the backpack. The backpack is fixed to the user by a strap system. Additionally, the laptop 

is held by a strap system like a vendor’s tray, giving the user free hands for using the laptop or 

handling other equipment or activities. The complete unit with the user can be seen in Figure 7-6. 

A more detailed view in the hardware architecture of the system can be seen in Figure 11-2. This 

scheme includes all surrounding infrastructure like GNSS constellation simulators, GNSS test areas 

like the Galileo test environment GATE and the Italian Galileo Test Range GTR, the ZigBee nodes used 

for the INPOS positioning system, WLAN nodes for WLAN proximity positioning, and finally an 
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assisted GNSS server. The RF-frontend is displayed in more detail, revealing an OCXO precise 

oscillator as time reference, as well as a FPGA as data handling module and two ASICS for the RF 

signal handling. 
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Figure 11-2: Integrated Receiver Platform Architecture, [110] 

Even more complex than the hardware side is the organization of the data flow and the cooperation 

of different contributing algorithms. They are presented in Figure 11-3. 

The red blocks in Figure 11-3 show the PNS/Dead reckoning (DR) as well as the strapdown INS part of 

the system. The data from IMU, magnetometer and barometer is used in the DR system to derive the 

macroscopic user trajectory. As described in the PNS chapter, the trajectory is called “macroscopic” 

because it has a low data rate, which is caused by the step detection algorithm. The macro-trajectory 

is corrected by an integrating Kalman filter, using updates from the WLAN proximity positioning 

system, as well as GNSS pseudoranges and the external INPOS positioning system. The macro-

trajectory has a high relevance for the user. It provides continuous positioning with high availability 

and relatively low drift even under worst indoor conditions. Additionally, the DR trajectory, 

corrections from the Kalman filter and, most importantly, the IMU data are used to calculate the 

micro(µ)-trajectory (green block). The micro-trajectory is produced by a strongly modified strapdown 

calculation. The micro-trajectory has a data rate of 100 Hz and is stabilized by the PNS dead 

reckoning solution. It provides the antenna motion with low drift, high data rate and high accuracy, 

especially in the velocity (relevant for the Doppler) and acceleration (Doppler rate) domain. The 

algorithms for the trajectory calculation will be described in chapter 11.4. 

The yellow blocks indicate all signal acquisition and tracking elements. The micro-trajectory is used in 

the line-of-sight projection, calculating the line-of-sight (LOS) dynamics of the user antenna with 

respect to the individual satellites. The results are essential in the tracking and acquisition 

algorithms, especially in the replica forming algorithms and tracking loop filters. Since the micro-

trajectory is especially precise in the velocity and acceleration domain, the signal processing unit is 

assisted in the coherent integration by precise Doppler and Doppler rate estimations.  
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As can be seen in the lower part of Figure 11-3, the dead reckoning as well as the strapdown parts 

can be simulated, too, to test the system without the need for a test range or test walk.  
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Figure 11-3: Data Flow of the high sensitivity GNSS receiver system [93] 
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11.4 Reproduction of User Motion 

One of the essential elements for realizing very long coherent integration is the precise reproduction 

of the user antenna motion. The antenna motion, i.e. the antenna velocity, is quite small in 

comparison to the satellite motion, which can reach more than 3800 m/s. On the other hand, the 

satellite LOS velocity is changing very slowly, while the antenna velocity is changing very fast. 

Therefore, while the large part of the GNSS signal Doppler frequency might be the result of the 

satellite velocity, the Doppler derivative, i.e. the change of the Doppler frequency with time, is 

caused mainly by the user dynamics, projected on the LOS to the satellites. For very long coherent 

integration, the GNSS signal replica must match the received signal with an accuracy of only a few 

centimeters. The maximum tolerance is between 2.5 cm and 5 cm. Hence, the antenna dynamics 

must be tracked very precisely. The velocity domain becomes important, since a replica length of up 

to two seconds is required. 

INS, as described in chapter 6, is a technology which is able to precisely track the motion of an IMU in 

3D with a high update rate. It can provide a PVA solution (Position, Velocity and Attitude). These 

magnitudes are the required inputs for the user motion reproduction. On the other hand, INS shows 

significant drift due to sensor errors, misalignment, and position errors. It could be verified in 

laboratory tests that, especially when using MEMS type IMUs, the accuracy of the user position is not 

acceptable for replica generation of two seconds or more. Additionally, external updates are not 

frequent and accurate enough to fully stabilize the IMU sensor errors, as well as the INS PVA errors. 

The PNS dead reckoning system presented in chapter 7 provides the pedestrian position with very 

low drift and good overall accuracy. Nevertheless, the position is only provided with an update rate 

equally to the user’s step rate. Additionally, the provided position does not consider the antenna 

motion, but propagates the IMU position according to a pedestrian walking model. 

To overcome the described problems, both technologies have been integrated to use the high data 

rate and 3D PVA solution of the INS and the stability and long term accuracy of the PNS. The basic 

design of this integrated system algorithm is presented in Figure 11-4. 

 

Figure 11-4: Overview of the user motion reproduction in DINGPOS [72] 
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As a baseline, the IMU raw data is used to calculate a PNS trajectory. The algorithms have already 

been described in detail in chapter 7. The PNS system is stabilized by a PNS Kalman filter. The filter 

uses a design analogue to the filter described in chapter 8 and uses external position updates, e.g. 

WLAN proximity positions (see chapter 9), INPOS position updates, magnetometer measurements, 

and GNSS updates.  

The result is a trajectory of consecutive points which are updated at every step detection event. This 

trajectory is called “macro trajectory”. Additionally, the user position is interpolated to the epochs 

that limit the integration intervals of the very long coherent integration. As a result, the user 

positions at the beginning and at the end of the individual integration interval is known from the 

dead reckoning system. This is demonstrated in Figure 11-5. The DR positions are presented as 

circles; the interpolated positions at the ends of the integration interval are presented as crosses. 

 

Figure 11-5: Principle of interaction between macro and micro trajectory [72] 

INS is used to calculate the “micro-trajectory”, a high frequent 3D position and velocity solution that 

fits the DR positions and velocity at the ends of the integration interval. The initial conditions are 

provided by the AHRS of the MTi system, the PNS positions and the Kalman filter corrections. The INS 

processing as described in chapter 6 is performed for the integration interval. At the end of the 

interval, the position and velocity difference between the between the PNS and the INS trajectory is 

determined. Since the reference positions are known a priori, it is possible to calculate bias 

corrections to the IMU raw data, so that the micro-trajectory is forced to match the macro-trajectory 

at step detection. In Figure 11-5, the principle is illustrated. While the micro trajectory has a much 

finer granularity, it is only bound to the macro-trajectory at the end points. Between them, the user 

dynamics are represented only by the INS algorithms. The matching can be based on position or 

velocity level, matching the user velocity during the integration interval, or matching the user 

position at the end of the interval. Only the corrections are adapted while the rest of the algorithms 

remain unchanged. Extensive testing showed that the velocity matching already gives sufficiently 

accurate results for the coherent integration.  

The INS modifications include simplifications which ensure stable operations. First of all, a total 

operation period of the length of the integration interval (two seconds) is used, which by itself 

reduces the drift strongly. The INS is set up at the beginning of each interval with starting values from 

the PNS and the AHRS. Secondly, the Schuler tuning feedback is disabled. Hence, the attitude 

solution is much more stable, since the dynamics of the system are broken. The transport rate and 

attitude correction are extremely low for pedestrians, especially for these short intervals, so the 

negative influence on the position solution is minimal. The attitude and the position engine are 

separated by this. When the end of an integration interval is reached, the PNS positions are 
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interpolated to the epochs of the start and end point of the integration interval. In a first step, a 

modified INS algorithm calculates a raw micro trajectory, starting at the interpolated PNS start 

position. The INS based user velocity/position at the end of the interval is compared to the 

interpolated PNS velocity/position solution at the end of the interval. From this, corrections 

comparable to a “sensor bias” in the navigation frame are calculated. These corrections are inferred 

into the modified INS algorithm. As a result, the trajectories match at the beginning and at the end of 

the integration intervals. 

In Figure 11-6, the result of the micro trajectory generator is shown for ten consecutive steps. It can 

be seen that the actual stride was roughly between 0.7 and 0.8 meters (blue curves). The step 

interval was between 500 and 600 ms; the red curve shows impressively the lift and drop of the IMU 

during each step. The green lines show the cross-axis movement caused by the body leaning to the 

left and to the right. In contrast to the macro trajectory, the micro trajectory has a data rate of 100 

Hz and covers all movements within the step interval. 

 

Figure 11-6: Calculated user motion along the walking path for several consecutive steps [72] 

To predict the pseudorange and the pseudorange rate correctly, the user dynamics must be 

projected on the satellites’ LOS. The predicted satellite orbit must be added to the user motion. 

Finally, using the geometry and dynamics, the replica generation can be performed. 
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11.5 Field test results 

In the previous chapter the development of a high sensitivity GNSS receiver using very long coherent 

integration, with special focus on the user trajectory replication, has been described. The system 

integrates several different positioning and user tracking subsystems, and tracks GPS as well as 

Galileo signals. Galileo offers advanced signals in several frequency bands which are advantageous 

especially for the indoor or urban use case. Additionally it must be assumed that most future (and 

already many current) receivers will use all available satellite systems. Hence, it was mandatory to 

test the system with Galileo signals, too. Since the Galileo space segment had not been implemented 

yet at the time of development, only few ground based Galileo test areas were available to test the 

system capabilities. Two test sites have been chosen, the Germany based GATE and the Italian based 

GTR test sites. The tests described in the following have been performed at the Galileo test 

environment (GATE) at Berchtesgaden, Germany. The GATE environment offers several ground based 

pseudolite transmitters, transmitting simulated Galileo signals. The transmitters are located at the 

summits of several surrounding mountains and offer low elevations, which are, nevertheless, larger 

than zero. In [126], the HDOP is stated as less than 2, while a VDOP of 6-20 is specified. 

 
Figure 11-7: Setup for the test campaign in the GATE test area Berchtesgaden [72] 

The test setup for the field tests is shown in Figure 11-7. Basically four major components can be 

identified: 

 the GPS space segment 

 the GATE ground based pseudolite transmitter stations 

 a reference receiver for the assisted GNSS data, placed at the GATE office in Berchtesgaden 

 the DINGPOS mobile platform as described above 
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The test strategy includes outdoor tests in urban-like scenarios as well as indoor tests in a building 

which is representative for a commercial application. Therefore, a laboratory environment is not 

suitable, although the available test infrastructure would potentially be more advantageous than in a 

realistic building. The indoor test building was a hotel complex in the GATE area. For the indoor tests, 

additionally several WLAN access points were available in the indoor test environment. The WLAN 

access points were used for the WLAN proximity positioning system. Although a laboratory 

environment would have had benefits especially regarding the repeatability of tests at any time, 

weather conditions etc., and especially regarding the ground truth data evaluation, the value of real 

world data gained during test in a realistic and not artificially modified environment is significantly 

more valuable. 

For the evaluation of the system, outdoor tests with significant multipath and signal blockage have 

been performed, as well as indoor tests in a hotel building in the GATE test area. Reference data 

from local survey authorities were available for both tests. A COTS GPS receiver has been used as 

reference instrument. The goals of the tests have been to prove the seamless indoor/outdoor 

positioning capabilities of the integrated platform, as well as to prove the supremely high sensitivity 

of the GNSS receiver using very long coherent integration. The PNS system has been calibrated to the 

user in a calibration campaign one week before the test campaign. No additional specific calibration 

has been performed for test. 

A basic problem of the test performance evaluation is the lack of precise ground truth data. There 

has not been any user positioning system available which would have been more accurate in 

determination of the user’s position than the systems already integrated in the platform. Several 

reasons for this are: 

 The test runs are performed in situations with strongly challenged GNSS environment. This 

causes fast changing satellite constellations as well as blocked line of sights, heavy multipath 

or even total loss of signals. Using standard GNSS receivers, including RTK, would not be very 

beneficial in these situations. 

 The test runs cover large distance and space. The installation and calibration of reference 

systems like optical/camera based systems, ultra-wideband, RFID or other techniques would 

have been by far too expensive and complex. 

 Permanent installations in the hotel as well as on the streets were not allowed. 

Hence, a different approach has been selected. For the buildings in the test area, official survey data 

from the local survey authority has been procured. By combining aerial survey photos from the local 

survey department, the coordinates of the buildings and the trajectories determined by a 

commercial of the shelf (COTS) GPS receiver, as well as the calculated trajectory by the integrated 

navigation platform, the accuracy and the plausibility of the positioning solution can be evaluated. 

The effects of multipath or signal blockage are clearly observable in this projection. For the tracking, 

the internal C/N0 estimation of the software receiver will be evaluated. The reason for this is the fact 

that the signal power can only be evaluated after correlation. No commercial reference receiver with 

comparable sensitivity was available for the test. 
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11.5.1 Outdoor scenario test and results 

The outdoor test runs have been performed in the area around the GATE office in Berchtesgaden, 

Germany. The area has been selected due to the need for assisted GNSS data. The test site is shown 

in the aerial photo in Figure 11-8.  

 

Figure 11-8: Outdoor test environment in the GATE test area around the GATE office [127] 

The assistance data was generated at a reference station inside of the GATE office and then 

transmitted to the rover by WLAN. The precise location of the GNSS antenna of the reference station, 

as well as the calculated trajectories from the COTS reference GNSS receiver (red line) and the 

DINGPOS integrated platform (blue line) can be seen in Figure 11-9. In this figure, the precise survey 

data of the buildings, provided by the local survey authorities, are integrated as overlays. For the 

test, the user started the run at the front of the GATE office and walked the same closed path around 

the neighboring four houses five times.  

GATE office 
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Figure 11-9: Results of the GATE outdoor test: red line shows reference receiver trajectory, blue line shows 
DINGPOS platform positioning results [72] 

In this scenario, the GATE transmitter constellation emulates so called “urban canyons”. In this 

constellation, the LOS between receiver antenna and the satellites is blocked by high buildings. 

Additionally, the signal is often reflected by the front surfaces of the buildings, causing strong 

multipath effects. Since the GATE transmitters have a very low elevation, even the lower buildings at 

the test area show similar effects as skyscrapers in metropoles. The integrated system is physically 

affected by this effect more strongly, since the reference receiver uses only GPS satellites, while the 

DINGPOS platform uses GPS and GATE Galileo signals. Since the GPS satellites have most of the time 

a much higher elevation than the pseudolites, the multipath and signal blocking effect is much less 

on the reference receiver. As can be seen in Figure 11-9, the DINGPOS platform shows significant 

position errors at the startup of the system and the beginning of the test run. At the beginning, the 

filters of the system need time to correctly estimate the error states and to fully synchronize to all 

signals. But already after circulating the first house, the platform is able to precisely track the user’s 

position. The system filters have converged. The effects of multipath and signal blockage are not 

visible from that point on. As can be seen in Figure 11-10, the platform is able to track between 

eleven and twenty satellite signals. Hence, the system looses and acquires satellites regularly without 

noticeable loss of accuracy.  

Start-up of 

DINGPOS platform 

Direction of run 

 

COTS reference Rx 

DINGPOS integrated platform 



158 

 

 

Figure 11-10: Dynamic outdoor test run: Number of tracked signals [72] 

In areas, where signal blockage and reflections are present from buildings in the South-West of the 

trajectory, the performance appears to be even more consistent than the trajectory of the COTS 

reference receiver. These areas have been marked with white ellipses in Figure 11-9. Obviously, the 

vector DLL and the long coherent integration also improve the multipath resistance of the software 

receiver. 
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11.5.2 Indoor scenario test and results 

The dynamic indoor test run has been performed at a hotel premises in the GATE area. The hotel has 

been chosen as test building for several reasons: 

 the building is quite large, consisting of several individual, but linked sections 

 the building has several floors connected by staircases (3D navigation) 

 the building offers many different room layouts, e.g. corridors, guest rooms, restaurant, spa 

area, front and backyard, etc. 

 the building is located in the GATE test area where Galileo signals are available 

 the base layout of the building, as well as the coordinates could be provided by national 

survey authorities 

 a WLAN infrastructure is present and can be used for WLAN positioning 

 the building is a natural, not an artificial test environment, thus increasing the authenticity of 

the test 

The test site can be seen in Figure 11-11. The large size of the building, as well as the different 

sections, which have been constructed after each other, can be noticed. 

 

Figure 11-11: Test location for the indoor test scenario: hotel premises in Berchtesgaden, Germany [127] 

Five WLAN access points were available for WLAN positioning. Four of the access points were located 

in corridors, placed in the walls under small lids. As an unusual feature, the access point AP2 was 

mounted outside of the main building on the outer wall of a garage. This AP is considered to provide 

WLAN access at the outside spa area. The APs have been surveyed before the test campaign for 



160 

 

precise position updates. In Figure 11-12, the survey coordinates of the buildings, the positions of the 

WLAN APs and the navigation results of the COTS reference (red) and the DINGPOS platform (blue) 

can be seen. 

 

Figure 11-12: Navigation results for the dynamic indoor test run in hotel premises (GATE area): COTS 
reference receiver (red line) versus DINGPOS integrated platform (blue line) 

The test run started in the lobby of the main building. The user performed the initialization, then left 

the building in southern direction walking to the garage, where AP2 is mounted. The user turned and 

entered the building again. The test run covered four sections and three floors of the building. The 

third section was reached by crossing the backyard. The run stopped at the start position in the lobby 

again. Hence, the test run covers a combined indoor/outdoor scenario, a 3D trajectory over several 

stories and GNSS conditions from outdoor to extremely deep indoor scenarios. All available 

positioning techniques and sensors were used in the integrated navigation platform excluding the 

INPOS positioning system due to the lack of ZigBee nodes infrastructure. These are the HS-GNSS 

receiver, the IMU, the PNS, WLAN proximity positioning system, magnetometer, barometer, micro-

trajectory generation and PNS Kalman filter. 

As it turned out during the test run, this hotel provides a very tough indoor environment. The GNSS 

signal strength inside the building varies strongly due to strong signal attenuation and limited LOS. 

Additionally, the building showed very strong magnetic interference, disturbing the magnetometer 

operation. 

The reference receiver provides its position estimation after initial acquisition of the satellite signals. 

The outdoor performance is precise and continuous. In contrast to the integrated platform there is 

COTS reference Rx 

DINGPOS integrated platform 

Start of run 
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no noticeable filter convergence time. Extreme position outliers are often present when the 

reference receiver is used in the indoor environment. Also loss of track and large jumps in 

determined position can be observed. These interruptions can be identified in Figure 11-12 and even 

more clearly in Figure 11-16, when the trajectory is distorted by position results far outside of the 

test area. The deep indoor user trajectory is often not usable, although the reference receiver is a HS 

receiver. The deep indoor environment inside the hotel has a large impact on the performance of a 

conventional standalone hardware GNSS receiver. 

The integrated navigation platform provides continuous and seamless indoor/outdoor positions. The 

system needs time and several observations for initialization and Kalman filter convergence. In Figure 

11-12, the platform shows a small, nearly constant position offset, from the initialization until end of 

run. The trajectory is very smooth in comparison to the reference receiver. All building features, like 

e.g. staircases and corridors, are clearly visible. The PNS and the receiver aiding are stabilizing the 

signal tracking as well as the overall position solution. It must be noted that pseudoranges with such 

very low C/N0 have limited range accuracy. This fact limits the accuracy of the Kalman filter updates 

and increases the influence of the PNS. The number of the signals in track is shown in Figure 11-13. 

The number of tracked satellites varies from 2 to 15 satellites. Two examples for the achieved 

tracking performance can be seen in Figure 11-14, where the tracking of two individual signal 

channels is shown. While the coloured line shows the instant C/N0 estimation, the black line shows a 

smoothed estimation. 

 

Figure 11-13: Number of tracked signals for the dynamic indoor test run 
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Figure 11-14: Examples of tracked signal C/N0 for the dynamic indoor test run (GATE test signals) 

The evaluation of the overall tracking and acquisition performance showed that a signal tracking 

down to -1.5 dBHz could be achieved. Even with this high sensitivity, no continuous tracking of all 

satellites could be secured. The environment proved to have extremely hard indoor conditions. 

11.5.3 PNS and dead reckoning performance evaluation 

The integrated system trajectory is a product of all available sensors and especially the received 

GNSS signals. The subsystems like HS-GNSS receiver, IMU, PNS etc. contribute to the overall system 

performance. If the integrated system performance is evaluated, the individual contribution of a 

subsystem can usually not be identified anymore. However, one essential part of this thesis is the 

PNS dead reckoning system. To evaluate the individual contribution of the PNS, which is an 

important part of this thesis, it is worth comparing the “standalone” performance of the PNS with 

the overall system performance.  

The PNS is a dead reckoning system; therefore the initial position of the PNS must be set by external 

information. Additionally, the initial heading must be determined for dead reckoning. Since the low-

cost MEMS sensors are usually not accurate enough for gyro-compassing, the initial heading must be 

generated by an external source. In this evaluation, the initial PNS position was determined at the 

first WLAN position fix. The initial heading was derived from the magnetometer after executing the 

magnetometer calibration routine. After this initialization, the PNS was running freely using dead 

reckoning. As a reference, the integrated navigation system was used. If this comparison is extended 

by using the building coordiates as overlay, the performance of the integrated system and the PNS 

dead reckoning system can be compared. 

This comparison can be seen in Figure 11-15. The PNS trajectory is initialized by WLAN proximity 

positioning for the position and the calibrated magnetometer measurements for heading 

determination. Initial errors arise from the real distance of the user from the WLAN AP at proximity 

declaration, as well as heading errors by magnetic disturbance. From this moment on, the IMU is the 

main sensor for the PNS. It is obvious that the position errors will therefore be induced by erroneous 

step detection, step classification and stride estimation, as well as heading drift due to inertial sensor 

errors. 
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Figure 11-15: Comparison between integrated navigation results and PNS navigation results 

Several aspects of the PNS system are important for evaluation: 

 Absolute and relative position accuracy, including stride estimation 

 Reliability of the step classification and height determination 

 Accuracy of the heading determination 

Accuracy 

In the birds’ view of Figure 11-15 it becomes obvious that the PNS is one of the most precise and 

stable positioning system on the integrated platform, at least if runs of several minutes duration are 

considered. The trajectory is smooth and plausible, and compared to the building plan very 

consistent. For the given test case, 618 steps have been detected in 442 seconds, giving an average 

step rate of 1.4 Hz. The barometer data has been used in the step classification system of the 

DINGPOS platform. The magnetometer data has been used in the heading and heading error 

estimation algorithm. 

Absolute accuracy is difficult to evaluate since precise ground truth data is not available. Due to 

algorithmic points of view and the results analysis with projection into aerial pictures, the overall 

position accuracy is supposed to stay below the size of the building, which is 30 m. In the Figure 

11-16, several different data sources give their estimation of the user trajectory. It can be seen that a 

commercial GNSS receiver (blue) is overstressed in this deep indoor scenario. Many outliers and loss 

of track events can be recognized. The trajectory looks torn and unsteady. Often the accuracy of the 

trajectory is obviously low.  

PNS trajectory 

DINGPOS integrated platform 
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The difference between the PNS only solution, the platform integrated solution and the WLAN fixes 

(red stars) is very small, maximum deviation is around 5m. This is due to the fact that the access 

points are not always accessible and therefore the AP coordinates may not match the walking path of 

the user precisely. In those harsh indoor scenarios, it is often more advantageous to lower the 

detection threshold of WLAN positioning to increase the number of position fixes. As mentioned in 

chapter 9, the absolute positioning error can be larger in this case. However, even lower quality 

updates for the Kalman filter contribute to the stabilization of the calculated user position.  

 

Figure 11-16: Comparison between Dead Reckoning (PNS), commercial GPS receiver and DINGPOS platform 
integrated result; red stars mark WLAN proximity positioning fixes 

The PNS is a dead reckoning system and therefore dependent on the initial position information. If 

this initial position is erroneous, this error will stay present until the end of the trajectory. 

Nevertheless, the DR system can be very accurate while still showing this constant offset. Since no 

precise position reference is available, the absolute accuracy cannot be evaluated precisely and 

would not be of additional value. The relative accuracy, i.e. the position errors within the walked 

trajectory are much easier to evaluate, and the evaluation will show effectively the performance of 

the system. 

For assessing the relative accuracy, it is of great advantage that the trajectory starts and ends at the 

same location in the lobby of the hotel. The ends of the trajectory meet by a distance of 6.64 m for a 

distance travelled of 308 m, determined from the PNS. This relates to an error of 2.16%. In this total 

error budget, all DR errors like step detection, classification, stride determination and also the 

heading errors are represented. The trajectory and the position offset between start and end can be 

seen in Figure 11-17. 
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Figure 11-17: Dead reckoning trajectory of indoor scenario in GATE; The 308m trajectory matches beginning 
and end point to 6.65m, which is an error distance to distance travelled of 2.16% 

Step classification and height determination 

Figure 11-18 shows a section of the DR derived trajectory inside the hotel. It is clearly indicated by 

the graph that the PNS is able to classify steps mostly correctly under standard conditions, since on 

constant level the height is not jumping significantly and same levels are repeated correctly, which is 

expressed by the dashed lines. It can be seen that the difference in determined heights on the 

(logically) same level is much lower than 1 m in general. 

 

Figure 11-18: Dead reckoning height determination in the indoor scenario (hotel complex) 

However, it must be noted that conditions exist under which the step classification can be disturbed 

by the environment or the user. These conditions are e.g. inclined surfaces without stairs or very 
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rough ground material like cobble stone pavement. Those conditions are found in the backyard of 

the hotel. The results during these conditions are highlighted in Figure 11-19. 

 

Figure 11-19: Critical use cases of step classification system for non-standard environments (here inclined 
surfaces and cobble stone pavement outdoors) 

As a result of these conditions, a drift of some meters has occurred especially during the outdoor 

part of the trajectory. This is the main reason why the end part of the trajectory does not match the 

beginning exactly. These errors are not typical for the indoor domain, and in outdoor scenarios the 

availability of GNSS is high and would correct the height errors in the PNS Kalman filter.  

Heading determination 

Heading is one of the most important magnitudes in navigation, and most often incorrect heading 

produces the largest position errors. Thus, the evaluation of the heading determination errors is a 

crucial part of the performance evaluation. The evaluation is very difficult due to lack of reliable 

ground truth data. Since the floors have a width of several meters, it cannot be assumed that the 

user would only walk a strictly straight trajectory. Therefore, the repeatability is very hard to 

evaluate. For this reason two straight line segments were chosen. The first one is the most western 

part of the trajectory with a U-turn at its end. Its mean heading is -105.08°. The second sub-trajectory 

is located exactly opposite, at the south-eastern edge of the trajectory. The mean heading is  

-108.35°. From map data, the orientation of the building was calculated to -103.7°. Therefore both 

trajectories give a difference below 5°. The trajectories are presented in Figure 11-20. 
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Figure 11-20: Red markings show the test trajectories for the heading accuracy evaluation 

WLAN positioning updates 

WLAN position updates are important sources of information in GNSS denied environments. Since 

the GNSS positions are either not available, or have a poor accuracy at very low signal strength, the 

dead reckoning navigation system can be stabilized, if additional positioning information can be 

acquired by WLAN position updates. 

The WLAN access points AP1-AP5, as well as the walking path of the user during the test run have 

been presented in Figure 11-15 and Figure 11-16. The user walking path crosses all five access points 

in close distance. The user starts inside the building near AP1, and then leaves the house heading for 

the garage in front of the building. At leaving, the AP1 is passed by in close distance at the garage the 

user comes into close distance of AP2. When re-entering the house, the APs 1 and 4 are passed by. 

AP3 and AP5 are passed two times after each other, since the floors in which they are located are 

dead ends. The user has to turn around and leave the floor the same way as it has been entered. At 

the end of the run the user approaches again the starting point in close proximity of AP1. Hence, the 

logical order of detections, defined by the walking path, should be: 

 AP 1 – 2 – 1 - 4 – 3 – 3 – 5 – 5 – 1  

The position fixes of the WLAN proximity positioning system are summarized in Table 11-2. In the 

first column the timestamps of the proximity position detection is given in the GPS time frame. The 

coordinates of the detected access point in the WGS 84 frame are given in the next three columns. 

The different APs are identified by their MAC address, which is unique for each AP. In the last 

column, the name of the AP is given in clear text.  
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GPS Timestamp 

[s] 

x coordinate 

[m] 

y coordinate 

[m] 

z coordinate 

[m] 

MAC address AP nr. 

224004.46937 4197843.347 967325.085 4688642.377 00-0F-34-ED-EE-27 AP1 

224013.56031 4197843.347 967325.085 4688642.377 00-0F-34-ED-EE-27 AP1 

224065.01680 4197868.708 967335.576 4688622.061 00-15-62-CD-A1-9D AP2 

224098.31782 4197843.347 967325.085 4688642.377 00-0F-34-ED-EE-27 AP1 

224140.71233 4197835.082 967331.578 4688651.098 00-0F-34-89-27-2E AP4 

224227.37877 4197821.296 967337.771 4688664.458 00-0F-34-ED-EE-25 AP3 

224239.50441 4197821.296 967337.771 4688664.458 00-0F-34-ED-EE-25 AP3 

224372.77347 4197853.470 967291.913 4688646.060 00-0D-ED-4D-00-98 AP5 

224390.96016 4197853.470 967291.913 4688646.060 00-0D-ED-4D-00-98 AP5 

224454.55105 4197843.347 967325.085 4688642.377 00-0F-34-ED-EE-27 AP1 

Table 11-2: Detection results of the WLAN proximity positioning system during the indoor test runs in the 
GATE area 

The detections follow the detection order as it has been predicted theoretically above. All access 

points have been identified correctly by their MAC address. The individual AP location could be 

successfully read from the AP database. The AP1 is detected twice at the beginning of the test run. 

The first detection has been indicated during a more or less static phase before the start of the walk; 

the second detection happened and at the beginning of the test run when crossing the AP with the 

user trajectory. The system does generally not show any double detection. Double detection 

describes the case that the same access point is detected several times after each other without user 

movement. This could influence the user navigation, since the Kalman filter would place the user 

gradually to the AP location, even if the user is passing by in a certain distance. The data shows that 

the algorithms effectively suppress double detections. Between consequent fixes, several seconds, in 

case of AP1 more than nine seconds, pass between individual position fixes. The detection logic 

works robust and as expected. 

11.6 Summary 

The previous chapter described the technique of receiver aiding by using all techniques described in 

the previous chapters, and by forming so called “micro-trajectories”, which resemble the antenna 

motion during the long coherent integration interval. The principles of this receiver aiding have been 

demonstrated. The data flow, hardware and algorithms for very long coherent integration have been 

presented. Finally two test scenarios have been presented, which have been performed in the Galileo 

Test Environment (GATE) in Berchtesgaden, Germany. For this test, GPS satellites as well as Galileo 

pseudolites have been used. The two scenarios included an outdoor scenario with high multipath 

effects and signal blocking, and a combined indoor/outdoor scenario with a very tough indoor 

environment. 
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The outdoor scenario did not show strong signal attenuation, therefore the integrated platform was 

not tested in a high sensitivity operation. Nevertheless, the scenario showed very strong multipath 

and signal blockage for the GATE Galileo signals, which have a low elevation. Hence, the navigation 

platform, using GATE and GPS signals, was challenged more strongly in this respect to the reference 

GPS receiver. The test run covered five rounds of a closed trajectory between several houses around 

the GATE office building. It took some seconds for the platform to fully synchronize and allow the 

internal filters to converge. After some second the platform showed fully comparable results to the 

COTS GPS reference receiver. At two locations with strong reflections and multipath, the platform 

even showed better performance than the commercial receiver. 

In the indoor scenario, the integrated system experienced outdoor, mixed indoor/outdoor and deep 

indoor environments. The test building had a very complex footprint, offering several floors, 

corridors, guest rooms, lobby and backyards. The test trajectory had a length of more than 300m. 

The test run took 450s and covered three stories. The full sensor suite, excluding the INPOS 

positioning subsystem, was available. WLAN proximity positioning was enabled by the presence of 

five WLAN access points. 

The platform showed superior tracking sensitivity down to -1.5 dB-Hz. The system was able to 

provide continuous positioning to the user with relatively low positioning errors. Indoor and 

combined indoor/ outdoor navigation could be performed seamlessly. 

Special focus of the evaluation was placed on the PNS system. The PNS was the most precise 

positioning system in the indoor environment. Unusual surfaces like cobble stone pavement or 

inclined surfaces showed some influence on the step classification algorithm. The availability and the 

overall accuracy of the system were high. 
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12. Thesis summary 

GNSS has developed into the most versatile and widely used commercial navigation system. The 

thesis presented the benefits of GNSS and pedestrian navigation, but also raised the problems of 

indoor navigation using GNSS. The need for a precise and reliable indoor/outdoor pedestrian 

navigation system with GNSS as main sensor was stated and a fully customizable software-based 

GNSS receiver was selected as main sensor. The main innovative idea for indoor navigation was the 

increase of the coherent signal integration time of the receiver to two seconds. For that, the precise 

replication of the user antenna motion with high accuracy and update frequency became the key 

problem. Major parts of this thesis are dealing with this problem. A combination of Pedestrian 

Navigation System (PNS), customized strapdown INS and Kalman filter has been proposed as a micro-

trajectory generator. The micro-trajectory was used to form the signal replica, which was used for 

long coherent signal integration. The increased sensitivity was demonstrated successfully in several 

test campaigns. 

The thesis presented the problems resulting from the harsh GNSS environment and the need for 

additional autonomous positioning techniques. Various sensors and their properties have been 

analyzed and a set of sensors and positioning systems have been chosen for the task of monitoring 

the GNSS antenna motion. The main cornerstones have been INS/AHRS, IMU-based pedestrian 

navigation system (PNS), WLAN proximity positioning system, integrating PNS Kalman filter and the 

generation of a so-called micro-trajectory as heart piece for the GNSS receiver signal replica 

generation.  

The development, implementation and test of contributions to an integrated pedestrian navigation 

system for seamless indoor and outdoor navigation have been described. The main goal has been to 

increase the coherent integration time of a software based GPS/Galileo receiver to up to two 

seconds. As result, highly attenuated signals with signal strength down to -1.5 dB-Hz could be 

successfully tracked inside and outside buildings. For this goal, the dynamic motion of the GNSS 

antenna had to be determined very precisely by means other than GNSS.  

The individual challenges and aspects will be described in the following passages. 

INS/AHRS 

In the original work, time and budget concerns limited the implementation of a custom AHRS system 

based on the used Xsens MTi IMU. Therefore the internal attitude reference of the IMU was used. 

Since the thesis would be incomplete in this respect, the theory of INS and AHRS have been analyzed 

and presented. Then the quaternion attitude representation has been selected, implemented and 

tested with real measurements from the MTi. It could be shown that the custom implementation 

yields comparable accuracy and functionality as the commercial internal attitude reference. Hence, 

the subject of INS based attitude determination could be demonstrated completely. 

The INS based attitude determination using the strapdown and quaternion algorithms has been 

augmented using magnetometer measurements in the heading domain and accelerometer 

measurements in the pitch and roll domain. By this, the drift of the attitude could be limited and the 

navigation accuracy could be stabilized. For the use of the magnetometer a calibration algorithm had 
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to be developed and tested to account for internal and external disturbance. For the pitch and roll 

stabilization an algorithm for re-alignment has been demonstrated. 

PNS 

The second major element of the integrated navigation system has been the pedestrian navigation 

system (PNS). Although the PNS is using the IMU measurements like the INS/AHRS system, the 

navigation system shows extremely limited position drift due to the fact that no accelerations are 

integrated. Therefore, small misalignments and sensor errors could not destroy the navigation 

performance. For the PNS, the position has been propagated only at step detections in the 

determined direction of walking. The position error has been introduced therefore by misdetections 

of steps, misclassification of step types, erroneous stride estimation and erroneous heading 

determination. Several algorithms for step detection have been studied; finally a custom approach 

has been developed, tested and demonstrated. It could be demonstrated that the step detection 

algorithm works with a very high reliability and robustness by evaluating the total acceleration and a 

set of logical rules. The step classification showed good reliability, but required a high effort of 

calibration and the performance could be deteriorated by extraordinary surfaces, e.g. like cobble 

stones. Also inclined surfaces caused some erroneous classifications.  

Stride estimation has been performed by a model using the step frequency as main parameter. The 

model parameters have been derived by a calibration campaign and it could be demonstrated that 

generic stride models can also be used with reduced accuracy. 

WLAN proximity positioning system 

An approach to use WLAN access points for positioning applications has been developed, 

implemented and tested. The goal has been to avoid the huge calibration efforts needed to perform 

WLAN fingerprinting, but to take advantage of the presence of the WLAN infrastructure at low 

implementation and sensor cost. For this reason a proximity alert system has been developed which 

gives indication when WLAN access points are passed by. While no continuous position update has 

been produced, the system showed very high ruggedness, reliability and very low calibration efforts. 

The position updates were extremely helpful for long term navigation in harsh GNSS environments, 

as it has been found in a hotel in the Bavarian Alps.  

PNS integrating Kalman filter 

The PNS integrating Kalman filter has been designed to improve the PNS positioning accuracy, using 

all available observations, e.g. magnetometer, WLAN, or GNSS pseudoranges. Since the PNS is the 

main sensor of the filter, the state vector has a different, simpler shape as in classical GNSS/INS 

applications. The filter estimates the receiver clock error and clock error drift, position errors, 

heading and heading drift errors and the average stride error. It provides corrections to the PNS as 

well as to the software receiver itself. It uses all available position updates, including WLAN proximity 

position messages, ZigBee based INPOS fingerprint positioning and GNSS pseudoranges. The filter 

performance could be demonstrated in the test campaigns and simulations. 
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Micro-trajectory generator 

The micro-trajectory generator has been a major step to fuse all efforts of the dead reckoning 

systems to provide the antenna dynamics to the software receiver. The micro-trajectory generator 

used all inputs of the dead reckoning systems and the PNS Kalman filter, as well as the unprocessed 

IMU measurements to reproduce a high-frequent, limited drift sub-trajectory. It represented the 

major connection between the dead reckoning systems and the receiver tracking loops. The main 

strategy behind the micro-trajectory generator is to combine the properties of the MEMS-based INS, 

with its high frequency but also high drift, with the solution of the PNS, with its low drift but also low 

update rate. The result is a high precision, high frequency motion replication of the user GNSS 

antenna. It could be shown that the generator works well and enables antenna tracking during the 

integration intervals with high precision, resulting in high quality replicas and high integration gain. 

GNSS receiver aiding 

Although the development of the software receiver algorithms have not been the task of this thesis, 

the effects of the contribution have been demonstrated. The dead reckoning algorithms have been 

implemented in the software receiver using API interfaces and were executed by the receiver. In 

simulations as well as real life test campaigns the system has been tested and demonstrated superior 

performance in high sensitivity GNSS. In this thesis, especially the results of the test campaigns in the 

Galileo Test Environment GATE in Berchtesgaden/Germany have been demonstrated and analyzed. 
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13. Way ahead 

This thesis contributed to the task of seamless indoor/outdoor navigation with several algorithms, 

combinations of sensors and practical implementations, as well as proof of concept of the integration 

strategies. As a result, a working prototype could be implemented and the system was tested in a 

realistic environment. The results showed that the concept of very long coherent integration gives 

excellent performance for seamless indoor and outdoor positioning. However, the development is 

ongoing, and research and application will be driven mostly by the used hardware in the future. 

The hardware used in this thesis was highly specialized equipment and not intended for mass market 

application. For commercial applications, the hardware is too expensive and the volume and weight 

of the system is still too high for the mass market. On the other hand, smart phones and tablet pc 

have rushed on the market and they can be considered as common devices nowadays. Hence, high 

computing power and outstanding capabilities for visualization are widely available at low 

procurement cost, and it is very likely that the installed computer power will increase dramatically in 

the next years. If smart phones and tablet pc shall be used for seamless indoor/outdoor positioning 

in the future, the algorithms and the strategies will have to be adjusted to the available hardware, as 

well as accuracy and signal strength concerns. 

The PNS proved to be a powerful tool to provide pedestrian dead reckoning with low drift and very 

high availability. However, the calibrations efforts of the PNS are high and the standalone 

performance of the step detection, classification and stride estimation are critical to the system 

performance. A possible strategy to improve this situation is the use of additional sensors. It has 

been shown in other publications (e.g. [5], [86]) that direct stride calculation with shoe mounted 

IMUs is possible using zero velocity phases during walking as error limiting techniques. While not 

particularly helpful in determining the antenna motion, this technique could be very helpful to 

reduce the calibration efforts for the PNS. The stride length calibration could be replaced by a second 

IMU mounted on the shoe of the user. This unit could perform INS processing with zero-velocity 

updates during the stride phases and pass the result to the PNS as stride length information. 

Secondly, this system could be extended for the step classification algorithm. If the z-axis 

performance was better than 8 cm per step, the step classification (level, up or down) could be 

replaced by such a system as major information source for the fuzzy logic step classification system. 

This could reduce the calibration efforts again. 

Heading determination is the most demanding part of the DR navigation, especially with inertial 

sensors. This fact has also been proved in the present thesis. Gyroscopes are liable to drift and other 

sensor errors, and this is especially true for MEMS type sensors. To assist the gyroscopes, 

magnetometers have been used for independent and drift free heading determination. 

Magnetometers can be disturbed when facing reinforcements, wiring or other magnetic field sources 

in the building, which disturb the magnetic field significantly. The Kalman filter heading corrections 

are dependent on the quality of position and velocity outputs, hence erroneous magnetometer 

readings do influence the estimated heading, too. In comprehension, heading determination inside 

building over periods longer than several minutes is critical and can only be stabilized with 

observations of position and velocity with good accuracy, and heading observations with acceptable 

accuracy. In general, the use of map matching techniques and optical navigation for reducing 
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gyroscope drift could be helpful in future research. Map matching could be exploited for heading 

stabilization, while free user movement must be guaranteed. Simple assumptions, e.g. that the user 

is only allowed to walk in the middle of the floor, or only in straight lines is not sufficient for precise 

antenna motion replication. 

The main navigation system used in thesis was GNSS, especially GPS and the simulated Galileo 

system in the GATE test area. By replication of user motion, the coherent integration time was raised 

to two seconds, resulting in superior sensitivity of the receiver. Since GNSS is the main sensor, the 

evolution of GNSS systems directly influences further research in the receiver development. New 

GNSS system like Galileo and Compass Beidou are appearing, and several upgrade and evolution 

programs for all GNSS systems are planned. The new signals will offer advanced indoor capabilities, 

e.g. the pilot channels of the Galileo signal. Since no navigation data is transmitted on the pilot 

channels, there is no need for assistance data or data bit change control. Additionally, the number of 

visible satellites will increase strongly, which increases the chance of receiving more satellites with 

acceptable signal power.  
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18. Appendix 

In the previous chapters, on several locations the detailed derivation or analysis of results and 

assumptions could not be given since it would have required too much space at the individual 

locations. In this appendix, a more detailed description of mathematical models, simulations and 

physical relationships will be given. 

18.1 GNSS link budget 

Global navigation satellite systems (GNSS) are radio navigation systems, which operate in a “one-

way-ranging” mode. The user receiver is receiving the weak signals transmitted by the GNSS satellites 

from a distant medium Earth orbit (MEO) and is able to calculate the ranges to the individual 

satellites, and by this its own position. 

In this chapter of the appendix, the basic GNSS link budget shall be presented and the range of 

magnitudes of the carrier-to-noise ration C/N0, as well as the signal-to-noise ration SNR, shall be 

given. In the next chapter, the influence of the C/N0 to the tracking loop performance will be 

analyzed and the strategy of the replication of user motion, very long coherent integration and ultra-

tight coupling will be given. More detailed information on the link budget and tracking loop stability 

can be found in [64] and [45]. 

The link budget summarizes all magnitudes contributing to the ratio of the received satellite signal 

strength and the receiver noise corresponding to a normalized bandwidth of 1 Hz. This link budget is 

shown in equation (100). 

(
𝐶

𝑁0
)
𝑑𝐵−𝐻𝑧

= 𝑃𝑇 + 𝐺𝑇 + 𝐴𝑇 + 𝐴𝐷 + 𝐺𝑅 + 𝐴𝑅 + 𝐴𝑆 + 𝐴𝑎𝑡𝑚𝑜𝑠 − 𝑇𝑠𝑦𝑠−𝑑𝐵 − 𝑘𝑑𝐵 
   (100)     

Symbol Explanation 
Expected values 
outdoor (GPS L1) 

C Received carrier signal strength -147..-155 dB-W 

N0 System noise figure -200 dB-Ws 

C/N0 Carrier-to-noise ratio corresponding to a bandwidth of 1 Hz 37..45 dB-Hz 

PT Satellite signal transmitted power 14..17 dB-W 

GT Satellite antenna gain 13 dB 

AT Transmitter antenna attenuation 0 dB 

AD Free space Loss 157..159 dB 

GR Receiver antenna gain 5 dB 

AR Receiver antenna attenuation -0.2..7 dB 

AS System losses 7 dB 

Aatmos Atmospheric attenuation 2 dB 

TSYS System noise temperature 600 K 

k Boltzmann constant 1.38065*10-23 J/K 

Table 18-1: Symbols used in the GNSS Link-Budget equation

 
Indoor signal attenuation additionally reduces the received satellite signal strength and influences 

the operation and performance of GNSS receivers strongly. If the free line-of-sight to the satellites is 

obstructed by the components of a building, like the ceiling, walls, windows etc., an additional 
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attenuation component is added to the link budget and the C/N0 is reduced accordingly. If the 

attenuations from table 4-1 and 4-2 are analyzed it becomes obvious that the indoor signal can be 

orders of magnitude smaller than the outdoor signal. The received C/N0 can drop down below 15 dB-

Hz. The relation between the C/N0 and the signal-to-noise ratio (SNR) is given in equation (101). 

𝑆𝑁𝑅 =
𝐶

𝑁0
− 𝐵𝑊 

   (101)     

Symbol Explanation 

SNR Signal to Noise ratio 

BW Noise bandwidth of system 

C/N0 Carrier-to-noise ratio corresponding to a bandwidth of 1 Hz 

Table 18-2: Symbols used in the SNR/CN0 relation 

If GPS L1 is analyzed, a signal bandwidth of the receiver front-end between minimum 2 MHz and 

4 MHz can be expected. Hence, the SNR at the front-end can be expected to range between -18 dB 

and -29 dB. 

18.2 Influence of the carrier-to-noise ratio on the tracking loop stability 

The magnitude C/N0 has a direct influence on the tracking loop accuracy and stability of a GNSS 

receiver. Reduced C/N0 reduces the tracking loop stability and also its accuracy. For indoor scenarios, 

the signal attenuation can cause severe problems for the GNSS receive. This fact can be analyzed by 

analysis of the delay-lock-loop (DLL) and phase-lock loop (PLL) stability equations. Thorough 

derivation of the relationships used in this chapter can be found especially in [45], and also [64]. It 

will be shown that receiver aiding and very long coherent integration are strategies to acquire and 

track even very weak signals. 

In the following, the equation for the phase-lock loop (PLL) is analyzed. The stability of the PLL is 

influenced by several different noise components: 

𝜎𝑃𝐿𝐿 = √𝜎𝑇
2 + 𝜎𝐴

2 + 𝜎𝑉
2 +

𝑒(𝑡)

3
≤ 15° ≈ 0.008𝑚 (GPS L1)    (102)     

Symbol Explanation 

σPLL Thermal noise of the PLL tracking loop 

σT
2 Thermal noise of the system 

σA
2 Allan variance of the local oscillator 

σV
2 Vibration induced oscillator jitter variance 

e(t) Dynamical tracking error 

Table 18-3: Symbols used in the PLL stability equation

 
The thermal noise of the tracking loop can be calculated by: 

𝜎𝑇
2 =

𝐵𝐿

𝐶
𝑁0

⁄
(1 +

1

2𝑇 𝐶
𝑁0

⁄
)(

𝜆

2𝜋
)
2

 

   (103)     
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Symbol Explanation 

σT Thermal noise component of the tracking loop stability 

BL Bandwidth of the PLL loop filter 

T Pre-integration time of the GNSS signal 

C/N0 Carrier to noise ratio (1Hz bandwidth) 

λ Wavelength of the carrier frequency (GPS L1: ~0.1905 m) 

Table 18-4: Symbols used in the thermal noise component equation

 
The influence of the Allan variance of the local oscillator can be calculated by: 

𝜎𝐴 =
𝑐

2𝜔𝐿

√
1

2
ℎ−1 

   (104)     

Symbol Explanation 

σA Square root of Allan variance of the local oscillator 

ωL Un-attenuated Eigen-frequency of the PLL loop filter 

c Speed of light 

h-1 Local oscillator flicker noise  

Table 18-5: Symbols used in the thermal noise component equation

 
For second order loop filters, the tracking loop Eigen-frequency can be approximated as  

𝜔𝐿 = 1.89𝐵𝐿    (105)     

The vibration induced oscillator variance can be calculated by: 

𝜎𝑉
2 =

𝑐2𝑘𝑔
2𝐺𝑔

4√2𝜋𝜔𝐿

[tan−1 (
√2𝜔𝐿𝜔2

ω𝐿
2 − ω2

2) −
1

2
ln |

ω2
2 + √2𝜔𝐿𝜔2 + ω𝐿

2

ω2
2 − √2𝜔𝐿𝜔2 + ω𝐿

2
|] 

   (106)     

Symbol Explanation 

σV
2 Vibration induced local oscillator variance 

kg g-Sensitivity of the oscillator 

Gg Spectral power density of the vibrations [g²/Hz] 

ω2 Upper frequency limit of the vibrations 

Table 18-6: Symbols used in the vibration induced component equation 

The influence of the vibrations can obviously be manipulated by modification of the loop filter 

frequency, the choice of an oscillator with different properties and by isolating the oscillator from the 

vibrations, e.g. by shock mounts. Since the loop filter design is a trade-off between several 

properties, it seems more appropriate to use a different oscillator or alternatively shock mounts. 

The dynamical tracking error can be calculated by: 

𝑒(𝑡) =
1

𝜔𝐿
2 𝑥0̈  

   (107)     
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Symbol Explanation 

e(t) 
Tracking error induced by user antenna motion during 
signal correlation 

ωL Frequency of the PLL loop filter 

�̈� User antenna acceleration, projected on the signal LOS 

Table 18-7: Symbols used in the dynamical tracking error component equation

 
It becomes obvious that the loop filter frequency is a trade-off between different influences and is a 

subject of optimization. However, the C/N0 is directly influencing the thermal noise of the tracking 

loop. Hence, high indoor attenuation can reduce the tracking loop stability and accuracy. This can 

make the tracking loop loosing lock, and also reduce the tracking accuracy. Hence, the receiver can 

become instable and imprecise. If the receiver integration time is increased, the loop filter bandwidth 

is naturally decreased. By this, the thermal noise component can be reduced. On the other hand, the 

dynamical tracking error is strongly increased. Increasing the coherent integration time can therefore 

only be used as a means for the stabilization of the tracking loops, if the dynamical tracking error is 

reduced by actually tracking the user motion. Then, the dynamical tracking error becomes: 

𝑒(𝑡) =
1

𝜔𝐿
2 Δ𝑥0

̈  
   (108)     

Symbol Explanation 

0x  Error of the determined user antenna acceleration 

Table 18-8: Symbols used in the dynamical tracking error component equation

 
This result is the basic idea and justification behind the integration method described in chapter 11. 

Increasing the coherent integration time strongly reduces the thermal noise in the tracking loops. 

The determination of the user micro-trajectory and ultra-tight coupling replaces the dynamical 

tracking error with the errors in the determined user acceleration. The user trajectory is replicated by 

the system described in chapter 11.4. By using the PNS to stabilize the macro-trajectory, the user 

Doppler estimation can be improved and the user acceleration error can be reduced strongly. 

18.3 Error propagation of the single-axis INS  

In chapter 6.9, the error propagation of a one-dimensional and of a three-dimensional INS system 

has been demonstrated. The physical and mathematical background of these simulations shall be 

presented in this and the next chapter. 

To illustrate the basic influence of the sensor errors on the integrated position and velocity errors, 

two simulations with a one dimensional INS have been performed. The INS consists of one gyroscope 

and one accelerometer and is only considering the alongside direction. The IMU is oriented to 

geographic North. In the first simulation, a gyroscope bias was simulated, while the accelerometer 

bias was set to zero. This setup has been inverted in the second simulation with a simulated 

accelerometer bias while the gyroscope bias was simulated as zero. The sensor errors were 

equivalent to position error of one nautical mile after one hour, i.e. 0.0167°/h and 0.0023 m/s². By 

this procedure the error influences could be separated. The results of the simulation have been 

presented in Figure 6-12. 
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In a 1-dimensional INS, the IMU consists of only one accelerometer in the longitudinal or x-axis, as 

well as one gyroscope in y- or pitch axis. The IMU is considered to move only in a linear direction. For 

this analysis it is assumed that the IMU is oriented alongside a meridian, i.e. the x-axis is pointing to 

the North Pole, and is only moving along the meridian. By these assumptions the kinematics and the 

sensor measurements can be described easily as: 

𝑓𝑥 = 𝑣�̇� cos 휀 − 𝑔 sin 휀    (109)     

By re-arrangement this yields:  

𝑣�̇� =
𝑓𝑥

cos 휀
+ 𝑔 tan 휀 

   (110)     

휀̇ = 𝜔 −
𝑣𝑥

𝑅
    (111)     

�̇� =
𝑑𝑥

𝑑𝑡
= 𝑣𝑥  

   (112)     

Symbol Explanation 

x Longitudinal coordinate 

vx Longitudinal velocity 

휀 Pitch angle of the IMU, angle between the longitudinal 
axis of the IMU and the horizon 

fx Acceleration sensed by the accelerometer 

𝜔 Rotation rate along the pitch axis 

R Earth radius 

g Gravity acceleration 
𝑣𝑥

𝑅
 

“Transport rate“ between local level navigation frame 
and Earth fixed frame 

Table 18-9: Symbols used in the kinematical equation

 
The sensors are assumed to have a measurement bias. Hence, the measured quantities for the 

accelerometer and the gyroscope are: 

𝜔𝑚 = 휀̇ + 𝑏𝑔 = 𝜔 −
𝑣�̇�

𝑅
+ 𝑏𝑔 

   (113)     

𝑓𝑚 = 𝑣�̇� + 𝑏𝑎 =
𝑓𝑥

cos 휀
+ 𝑔 tan 휀 + 𝑏𝑎  

   (114)     

Symbol Explanation 

ωm Measured rotation rate 

fm Measured acceleration 

bg Gyroscope bias 

ba Accelerometer bias 

Table 18-10: Symbols used in the measurement equation

 
 

By linearization and arranging the equations in a state space notation, the following relationship is 

yielded: 
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[
∆휀̇
∆𝑣𝑥

̇

∆�̇�

] = [
0 −

1

𝑅
0

𝑔 0 0
0 1 0

] [
∆휀
∆𝑣𝑥

∆𝑥
] + [

1 0
0 1
0 0

] [
𝑏𝑔

𝑏𝑎
] 

   (115)     

This system can be solved using mathematical software like Matlab automatically. In this case, the 

system can be solved analytically by using the approach: 

∆𝑣𝑥 = 𝑎 + 𝑏 sin(𝜔𝑡) + 𝑐 cos(𝜔𝑡) 

∆𝑣𝑥
̇ = 𝜔𝑏 cos(𝜔𝑡) − 𝜔𝑐 sin(𝜔𝑡) 

∆𝑣𝑥
̈ = −𝜔2𝑏 sin(𝜔𝑡) − 𝜔2𝑐 cos(𝜔𝑡) 

∆𝑣𝑥
̈ = −𝜔2(∆𝑣𝑥 − 𝑎) 

   (116)     

The state space equations can be separated to: 

Δ휀̇ = −
1

𝑅
∆𝑣𝑥 + 𝑏𝑔 

∆𝑣𝑥
̇ = 𝑔Δ휀 + 𝑏𝑎 

∆𝑣𝑥
̈ = 𝑔Δ휀̇ = −

𝑔

𝑅
∆𝑣𝑥 + 𝑏𝑔𝑔 

 

   (117)     

If both sets of equations are combined, the following relationship is yielded: 

∆𝑣𝑥
̈ = 𝑔Δ휀̇ = −

𝑔

𝑅
∆𝑣𝑥 + 𝑏𝑔𝑔 = −𝜔2(∆𝑣𝑥 − 𝑎) 

−
𝑔

𝑅
∆𝑣𝑥 + 𝑏𝑔𝑔 = −𝜔2∆𝑣𝑥 + 𝜔2𝑎 

   (118)     

This relationship holds for all velocities xv . By variation of xv , linear combinations of this 

relationship allow solving for all unknowns. 

𝑏𝑔𝑔 = 𝜔2𝑎 ⟺ ∆𝑣𝑥 = 0 

−
𝑔

𝑅
+ 𝑏𝑔𝑔 = −𝜔2 + 𝜔2𝑎 ⟺ ∆𝑣𝑥 = 1 

−
𝑔

𝑅
= −𝜔2 

𝜔 = √
𝑔

𝑅
 

   

 

 

 (119)     
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The resultant frequency ω is called the Schuler-frequency. The polynomial coefficients are: 

𝑎 =
𝑏𝑔𝑔
𝑔
𝑅

= 𝑏𝑔𝑅 

0 = 𝑎 + 𝑐 ⟺ 𝑡 = 0, ∆𝑣𝑥 = 0 

𝑐 = −𝑎 = −𝑏𝑔𝑅 

   (120)     

If it is assumed that the initial attitude error was zero, the last unsolved coefficient can be calculated 

as: 

∆𝑣𝑥
̇ = 𝜔𝑏 cos(𝜔𝑡) − 𝜔𝑐 sin(𝜔𝑡) = 𝑔Δ휀 + 𝑏𝑎 

𝜔𝑏 = 𝑏𝑎 ⟺ 𝑡 = 0, ∆휀(𝑡 = 0) = 0 

𝑏 =
𝑏𝑎

𝜔
 

   (121)     

By integration, the following result is produced. To avoid confusion, the symbol of the Schuler 

frequency has been changed from ω to ωs. 

∆𝑣𝑥 = 𝑏𝑔𝑅(1 − cos(𝜔𝑠𝑡)) + 𝑏𝑎

sin(𝜔𝑠𝑡)

𝜔𝑠
 

Δ𝑥 = 𝑏𝑔𝑅 (𝑡 −
sin(𝜔𝑠𝑡)

𝜔𝑠
) − 𝑏𝑎

cos(𝜔𝑠𝑡)

𝜔𝑠
2  

   (122)     

The results of the simulation of the equations above are presented in Figure 6-12. 

18.4 Error propagation of the three-axis INS 

In chapter 6.9, the influence of sensor errors on a three-axis INS have been shown. The simulation 

has been performed using a 9-state error mechanization, including attitude, velocity and position 

errors. While the system matrix models the inherent instability of the INS mechanization, the 

disturbance vector contains the sensor bias errors and introduces errors caused by imperfectly 

calibrated sensors. The simulation has been set up in Matlab and integrated using the Runge-Kutta-

method implemented in the function “ode45”.  

 The system equation for the simulation is: 

�̇� = 𝐹𝑋 + 𝐺𝑞    (123)     

Symbol Explanation 

X State Vector 

F System matrix 

G Disturbance matrix 

q Disturbance vector 

Table 18-11: Symbols used in the system equation of the INS simulation
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The state vector is defined as: 

𝑋 =

[
 
 
 
 
 
 
 
 
 
∆𝜑
∆𝜃
∆𝜓

∆�̇�

∆Λ̇
∆ℎ̇
∆ϕ
∆Λ
∆ℎ]

 
 
 
 
 
 
 
 
 

 

   (124)     

Symbol Explanation 

X State Vector 

Δφ Error of the roll angle (attitude error) 

Δθ Error of the pitch attitude attitude angle (attitude error) 

Δψ Error of the yaw attitude angle (attitude error) 

∆Φ̇ Error of the latitude rate (velocity error) 

∆Λ̇ Error of the longitude rate (velocity error) 

∆ḣ Error of the altitude rate (velocity error) 

ΔΦ Error of the latitude (position error) 

ΔΛ Error of the longitude (position error) 

Δh Altitude error (position error) 

Table 18-12: Symbols used in the system equation of the INS simulation

 
Hence, the state vector contains the attitude, velocity and position errors in the Earth fixed frame. 

The state is disturbed by the sensor errors of the inertial measurement unit. In this case, only bias 

errors for the gyroscopes and accelerometers have been considered. 

The disturbance matrix G models the influence of the disturbance on the state vector derivative. It is 

given by: 

𝐺 =

[
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0
1

𝑅𝐸

0 0

0 0 0 0
1

𝑅𝐸𝑐𝑜𝑠Φ
0

0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ]
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Symbol Explanation 

G Disturbance matrix 

Φ Latitude 

RE Earth radius [m] 

Table 18-13: Symbols used in the disturbance matrix
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The sensor errors are modeled as: 

𝑞 =

[
 
 
 
 
 
 
𝑏𝑎𝑥

𝑏𝑎𝑦

𝑏𝑎𝑧

𝑑𝑔𝑥

𝑑𝑔𝑦

𝑑𝑔𝑧]
 
 
 
 
 
 

 

   (126)     

Symbol Explanation 

q Sensor error vector 

𝑏𝑎𝑥 Bias error of the x-axis accelerometer 
𝑏𝑎𝑦  Bias error of the y-axis accelerometer 

𝑏𝑎𝑧 Bias error of the z-axis accelerometer 
𝑑𝑔𝑥 Bias error of the x-axis gyroscope 
𝑑𝑔𝑦 Bias error of the y-axis gyroscope 
𝑑𝑔𝑧 Bias error of the z-axis gyroscope 

Table 18-14: Symbols used in the sensor error vector

 
In this case, q is the vector of sensor errors (deterministic). The F-matrix is modeling the system 

dynamics as can be seen in equation (127). 

In the simulation it was assumed that an airplane is located at a latitude of 45° north and is moving 

with 300 m/s in East direction. Only single sensor bias was modelled to show the individual influence. 

This basic analysis is not easily possible if combinations of different sensor biases are used. 
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𝐹 =

(

 
 
 
 
 
 
 
 
 

0 −(ωe + �̇�) sinφ �̇� 0 cosφ 0 −(ωe + �̇�) sinφ 0 0

(ωe + �̇�) sinφ 0 (ωe + �̇�) cosφ −1 0 0 0 0 0

−�̇� −(ωe + �̇�) cosφ 0 0 −sinφ 0 −(ωe + �̇�) cosφ 0 0

0 −f𝐷/𝑅𝐸 f𝐸/𝑅𝐸 −2ℎ̇/𝑅𝐸 −(ωe + �̇�) sin(2φ) −2�̇�/𝑅𝐸 −�̇�(2ωe + �̇�) cos(2φ) 0 0

f𝐷/(𝑅𝐸𝑐𝑜𝑠φ) 0 −f𝑁/(𝑅𝐸𝑐𝑜𝑠φ) 2(ωe + �̇�)𝑡𝑎𝑛φ
−2ℎ̇

𝑅𝐸

+ 2�̇�𝑡𝑎𝑛φ −2(ωe + �̇�)/𝑅𝐸 (�̈� + 2ℎ̇
𝑅𝐸

⁄ (ωe + �̇�)) 𝑡𝑎𝑛φ + 2(ωe + �̇�)�̇� 0 −(�̈� − 2�̇�(ωe + �̇�))
𝑡𝑎𝑛φ

𝑅𝐸

f𝐸 −f𝑁 0 2𝑅𝐸�̇� 2𝑅𝐸(ωe + �̇�)(cosφ)2 0 −𝑅𝐸�̇�(ωe + �̇�) sin(2φ) 0 �̇�2 + �̇�(ωe + �̇�)(cosφ)2 + 2𝜔𝑆
2

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 )

 
 
 
 
 
 
 
 
 

 (127)     
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18.5 Error propagation of the magnetometer 

Magnetic heading can be derived by analysis of the measured magnetic field in the navigation frame. 

Since the magnetic field vector is not pointing geographic North, but magnetic North, the heading 

must be corrected by the horizontal angle between the local magnetic field vector and the 

geographic North direction. This correction angle is called “declination”. The magnetic field vector is 

not necessarily pointing in the horizontal plane. The angle between the horizon and the field vector is 

called “inclination”. 

For the analysis, a local level frame is defined which is local level, but the x-axis is pointing magnetic 

North. This frame is denoted “m” for magnetic. The only difference to the local level navigation 

frame (“n”) is a rotation around the local vertical (z-axis) with the magnitude of the declination. 

Then, the magnetic field vector can be written as: 

𝑚𝑚 = [
𝐴 cos(𝐼)

0
𝐴 sin(𝐼)

] 
   (128)     

The field vector in the local level frame can be derived by: 

𝑚𝑛 = 𝐶𝑚
𝑛 𝑚𝑚 

𝐶𝑚
𝑛 = [

cos(𝐷) −sin(𝐷) 0
sin(𝐷) cos(𝐷) 0

0 0 1

] 

   (129)     

An additional local level frame for the magnetometer platform can be defined. This “LL” frame is 

local level, the x-axis is the projection of the IMU x-axis to the horizontal plane. This frame is denoted 

“LL”. The magnetic heading in the m-frame can be derived by: 

𝜓𝑛 = tan−1 (
−𝑚𝑦

𝐿𝐿

𝑚𝑥
𝐿𝐿 ) 

   (130)     

Symbol Explanation 

m Magnetic field vector 

D Local declination 

Index ‘LL’ Local level frame pointing geodetic North 

Index ‘m’ Local level frame pointing magnetic North 

Index ‘n’ Navigation frame, local level frame pointing geodetic 
North 

I Inclination of the field vector with respect to horizon 

Ψ Heading 
k

am  Magnetic field strength m in direction a of frame k 

b

am  
Error of magnetic field strength m in direction a of the 
body frame b (e.g. sensor bias) 

LL

am  
Error of magnetic field strength m in direction a of the 
LL frame b (e.g. hard iron effect) 

a

bC  Transformation matrix from frame b to frame a 

  Roll angle 
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  Pitch angle 

  Yaw angle 

Table 18-15: Symbols used in the magnetometer error discussion

 
The magnetic field measurements in the body frame can be rotated in the LL frame by: 

𝑚𝐿𝐿 = 𝐶𝑏
𝐿𝐿𝑚𝑏 

𝐶𝑏
𝐿𝐿 = [

cos(𝜃) sin(𝜙) sin(𝜃) cos(𝜙) sin(𝜃)

0 cos(𝜙) − sin(𝜙)

− sin(𝜃) sin(𝜙) cos(𝜃) cos(𝜙) cos(𝜃)
] 

   (131)     

The magnetic heading in the n-frame can be defined as: 

𝜓𝑛 = 𝜓𝑚 + 𝐷     (132)     

To derive magnetic heading, the following procedure is followed: 

 Rotate the IMU magnetic measurements in the LL-frame 

 Calculate heading in the m-frame using the relationship in (132) 

 Calculate the heading in the n-frame by applying the local declination 

For the error propagation, several error sources for the magnetic heading error can be found: 

 Magnetometer bias in the three axes 

 Levelling errors (determined pitch and roll angles) 

 Magnetic disturbance (“hard iron effects”) 

 Error in the determination of the local declination 

Errors in the local declination are directly mapped to the heading error. 

𝑑𝜓𝑛

𝑑𝐷
= 1 

   (133)     

The declination is well mapped for nearly all locations in the world. If specific local field disturbance is 

caused, e.g. by ferromagnetic minerals, this error directly influences the heading determination. If 

magnetic disturbance is encountered, the mapping of the field disturbance to the heading 

determination can be calculated using: 

 

𝑑𝜓𝑛

𝑑Δ𝑚𝑥
𝐿𝐿 =

1

1 + (
−𝑚𝑦

𝐿𝐿

𝑚𝑥
𝐿𝐿 )

𝑚𝑦
𝐿𝐿

𝑚𝑥
𝐿𝐿2 

𝑑𝜓𝑛

𝑑Δ𝑚𝑥
𝐿𝐿 =

1

1 + (
−𝑚𝑦

𝐿𝐿

𝑚𝑥
𝐿𝐿 )

−1

𝑚𝑥
𝐿𝐿 

  

 

 

  (134)     

The magnetic measurements in the body frame, but also the sensor bias is mapped to the heading by 

a transformation to the local level plane. Hence, the current attitude of the magnetometer or the 
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IMU/magnetometer combination defines the mapping of sensor readings in the body frame to the 

heading in the navigation frame. For measurements in the local level plane, the error propagation by 

erroneous levelling can be described as: 

𝑑Δ𝑚𝑥
𝐿𝐿

𝑑Δ𝜑
= cos(𝜙) sin(𝜃) (𝑚𝑥

𝑏 + Δ𝑚𝑥
𝑏) − sin(𝜙) sin(𝜃) (𝑚𝑧

𝑏 + Δ𝑚𝑧
𝑏) 

𝑑Δ𝑚𝑥
𝐿𝐿

𝑑Δ𝜃
= −sin(𝜃)(𝑚𝑥

𝑏 + Δ𝑚𝑥
𝑏)

+ sin(𝜙) cos(𝜙)(𝑚𝑦
𝑏 + Δ𝑚𝑦

𝑏)+ cos(𝜙) cos(𝜃) (𝑚𝑧
𝑏 + Δ𝑚𝑧

𝑏) 

𝑑Δ𝑚𝑦
𝐿𝐿

𝑑Δ𝜑
= −sin(𝜃) (𝑚𝑦

𝑏 + Δ𝑚𝑦
𝑏) − cos(𝜙) (𝑚𝑧

𝑏 + Δ𝑚𝑧
𝑏) 

𝑑Δ𝑚𝑦
𝐿𝐿

𝑑Δ𝜃
= 0 

 

 

 

 

   (135)     

The error of the magnetic measurements in the local level frame caused by the sensor errors in the 

body frame can be described as: 

 

𝑑Δ𝑚𝑥
𝐿𝐿

𝑑Δ𝑚𝑥
𝑏

= cos(𝜃) 

𝑑Δ𝑚𝑥
𝐿𝐿

𝑑Δ𝑚𝑦
𝑏

= sin(𝜑) sin(𝜃) 

𝑑Δ𝑚𝑥
𝐿𝐿

𝑑Δ𝑚𝑧
𝑏

= cos(𝜑) sin(𝜃) 

𝑑Δ𝑚𝑦
𝐿𝐿

𝑑Δ𝑚𝑥
𝑏

= 0 

𝑑Δ𝑚𝑦
𝐿𝐿

𝑑Δ𝑚𝑦
𝑏

= cos(𝜃) 

𝑑Δ𝑚𝑦
𝐿𝐿

𝑑Δ𝑚𝑧
𝑏

= −sin(𝜑) 
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The error propagation of the alignment errors in pitch and roll to the heading error can be derived as:
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𝑑𝜓

𝑑𝜑
=

cos(𝜑)𝑚𝑧
𝑏 + sin(𝜑)𝑚𝑦

𝑏

cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏 −

(sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)(cos(𝜑) sin(𝜃)𝑚𝑦
𝑏 − sin(𝜑) sin(𝜃)𝑚𝑧

𝑏)

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2

(sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)
2

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2 + 1
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𝑑𝜓

𝑑𝜃
=

(sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)(cos(𝜑) cos(𝜃)𝑚𝑧
𝑏 + sin(𝜑) cos(𝜃)𝑚𝑦

𝑏 − sin(𝜃)𝑚𝑥
𝑏)

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2
(

(sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)
2

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2 + 1)
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The error propagation of the sensor errors to the heading error can be derived as: 

𝑑𝜓

𝑑Δ𝑚𝑥
𝑏

=
cos(𝜑) (sin(𝜑)𝑚𝑧

𝑏 − cos(𝜑)𝑚𝑦
𝑏)

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2
(

(sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)
2

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2 + 1)

 
     (139) 

𝑑𝜓

𝑑Δ𝑚𝑦
𝑏

=

−
cos(𝜑)

cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏 −

sin(𝜑) sin(𝜃) (sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2

(sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)
2

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2 + 1
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𝑑𝜓

𝑑Δ𝑚𝑧
𝑏

=

sin(𝜑)

cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏 −

cos(𝜑) sin(𝜃) (sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2

(sin(𝜑)𝑚𝑧
𝑏 − cos(𝜑)𝑚𝑦

𝑏)
2

(cos(𝜑) sin(𝜃)𝑚𝑧
𝑏 + sin(𝜑) sin(𝜃)𝑚𝑦

𝑏 + cos(𝜃)𝑚𝑥
𝑏)

2 + 1
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