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Kurzfassung

Elektroautomobile bieten eine Vielzahl an Vorteilen gegeniiber konventionellen, mit fossilen
Brennstoffen betriebenen Kraftfahrzeugen. Insbesondere die Mdoglichkeit, lokale Schadstoffe-
missionen zu vermeiden, wird oftmals als ihr groBter Vorteil angesehen. Nichtsdestotrotz sind
die Verkaufszahlen in vielen Landern duBerst gering. Hohe Anschaffungskosten und eine typi-
scherweise geringe Reichweite werden hiufig als die Kernursachen hierfiir angesehen. Geringe
Reichweiten fiihren zur sogenannten ,,Reichweitenangst. Dieser Begriff beschreibt die Angst
davor, dass wihrend der Fahrt die in der Batterie gespeicherte Energie vollstiindig aufgebraucht
wird und das Fahrzeug stehen bleibt. Die vorliegende Doktorarbeit wurde durch die Annah-
me motiviert, dass Fahrern von Elektroautomobilen ihre Reichweitenangst genommen werden
kann, indem ihnen prézise und zuverldssige Navigationsinformationen zur Verfiigung gestellt
werden. Solche Navigationsinformationen beschreiben hierbei nicht nur Routen, sondern auch,
an welchen Ladesdulen und bis zu welchem Ladezustand das Elektroautomobil wieder aufgela-
den werden soll. Diese Art der Information wird hier als ,,Ladestrategie* bezeichnet und kann
als eine Art Boxenstopp-Strategie fiir Elektroautomobile interpretiert werden. Dabei ist ent-
scheidend, dass die Anweisungen, aus denen eine solche Ladestrategie besteht, ein Erreichen
des Ziels sicherstellen, was bedeutet, das Risiko stehen zu bleiben muss sehr gering gehalten

werden. Zugleich sollen aber auch unnétige und unnétig lange Ladestopps vermieden werden.

Um solche Ladestrategien berechnen zu kdnnen, wird innerhalb der ersten Kapitel der Arbeit
ein geeignetes mathematisches Optimierungsmodell entwickelt. Zunédchst werden zu diesem
Zweck bereits existierende wissenschaftliche Arbeiten im Bereich der Navigationsanwendun-
gen fiir Elektroautomobile niher beleuchtet. Dabei stellt sich heraus, dass das Problem des Fin-
dens optimaler Ladestrategien zwar bereits einige Male untersucht wurde, dass aber die vorge-
schlagenen Problemformulierungen hiufig starke Vereinfachungen realer Situationen darstell-
ten. Insbesondere wird die Existenz von Unsicherheiten innerhalb der fiir die Berechnungen
notwendigen Prognosen (z.B. hinsichtlich des fiir den Fahrtvorgang notwendigen Energiever-
brauchs) nicht oder nur unzureichend beriicksichtigt. Um diese Forschungsliicke zu schliefen,
wird eine generische Formulierung als sogenanntes Multistage Decision Problem vorgeschla-
gen. Diese Formulierung ist sehr flexibel und erlaubt das Miteinbeziehen praktisch beliebiger

Faktoren. Allerdings ist das Finden einer Losung auf numerischem Wege kaum mehr moglich.
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Daher wird, basierend auf diesem ersten Vorschlag, eine zweite, deutlich anwendungsorientier-
tere Problemformulierung vorgeschlagen. Hierbei wird das Problem, optimale Ladestrategien
zu finden, als deterministisches kiirzeste Wege Problem modelliert. Ladestrategien werden in
diesem Zuge hinsichtlich der erwarteten Reisezeit optimiert. Das vollstindige Entleeren der
Batterie wird iiber eine Nebenbedingung verhindert. Diese Formulierung als kiirzeste Wege
Problem stellt einen Kompromiss zwischen der notwendigen Realitdtsnihe und numerischer
Losbarkeit dar. Eine Analyse der Eigenschaften dieser Problemformulierung weist nach, dass
das Berechnen einer Losung trotz der erheblichen Vereinfachungen im Vergleich zur ersten
Formulierung immer noch sehr aufwéndig ist. Es werden zwei auf Dijkstra’s Algorithmus ba-
sierende Optimierungsansitze vorgestellt. Der erste erlaubt es, optimale Losungen fiir das ent-
wickelte Modell zu berechnen. Der zweite Algorithmus kann dies nicht mehr garantieren, aber
er ermoglicht es, Berechnungszeiten auf ein fiir praktische Anwendungen realistisches MaB3 zu

reduzieren.

Auch diese zweite Formulierung als deterministisches kiirzeste Wege Problem stellt nur einen
weiteren Zwischenschritt dar. Thre zentrale Schwiche ist, dass es — wie bereits in fritheren
wissenschaftlichen Arbeiten — nicht moglich ist, Unsicherheiten explizit zu beriicksichtigen.
Liegen namlich prognostizierte Energieverbriuche unter den real auftretenden, so kann es pas-
sieren, dass ein Fahrzeug, welches einer auf diesem Modell basierenden Ladestrategie folgt,
mangels Energie auf der Strecke liegen bleibt. Um derartige Situationen zu vermeiden, wird
die zuvor erwihnte Nebenbedingung erweitert. Nun werden nicht nur solche Ladestrategien in
der Betrachtung ausgeschlossen, fiir die prognostiziert wird, dass der Ladezustand wihrend der
Fahrt auf null sinkt, sondern es wird dariiber hinaus ein Teil der Batteriekapazitit als Energie-
Puffer reserviert. Dieser dient ausschlieBlich dazu, unerwartet hohe Energieverbrduche kom-
pensieren zu kénnen. Das bedeutet, dass eine Ladestrategie nur dann empfohlen wird, wenn
diese ohne den als Puffer definierten Teil der Batterie auskommt. Entscheidend ist in diesem
Zusammenhang, dass kein zu grofer Teil der Batteriekapazitit als Puffer veranschlagt wird, da
man durch diesen letztendlich die fiir die Ladestrategieoptimierung verfiigbare Energie redu-
ziert. GroBle Energie-Puffer machen es daher notwendig, haufiger zu laden, beziehungsweise
es kann vermehrt zu Situationen kommen, in denen iiberhaupt keine Ladestrategie, die einen
solchen Puffer unberiihrt 1dsst, empfohlen werden kann. Anderseits darf der Puffer auch nicht
zu klein gewdhlt werden, da er sonst nicht ausreicht, um die auftretenden Unterschiede zwi-
schen realem und prognostiziertem Energieverbrauch zu kompensieren. Im Rahmen dieser Ar-
beit werden verschiedene Ansitze zur Bestimmung der Grofle des Energie-Puffers vorgestellt.
Ihnen allen ist gemein, dass sich die vorgeschlagene Groéfe des Puffers im Laufe einer Fahrt
stdndig verindert. So wichst der Puffer beispielsweise fiir Streckenabschnitte, die besonders
hohe Unsicherheitsfaktoren aufweisen, und er schrumpft, falls es unwahrscheinlich ist, dass der

reale Energieverbrauch deutlich iiber den prognostizierten steigt. Das so resultierende kiirzeste
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Wege Problem erlaubt es, mit Unsicherheiten umzugehen, und kann weiterhin durch die zuvor
erwihnten Modifikationen von Dijkstra’s Algorithmus geldst werden. Hierdurch wird ein wei-

teres Anwachsen von Rechenzeiten bei der Problemlosung verhindert.

In einem néchsten Schritt wird mittels Simulation getestet, inwieweit das Konzept des Energie-
Puffers tatsdchlich fihig ist, mit auftretenden Unsicherheiten umzugehen. Zu diesem Zweck
wird das bisher noch weitestgehend abstrakte Modell dahingehend konkretisiert, dass der Ein-
fluss von Verkehrszustdnden entlang der Streckenabschnitte einer Route auf Energieverbrauch
und Reisezeit abgebildet wird. Dariiber hinaus wird im Rahmen der Simulation davon ausge-
gangen, dass zu dem Zeitpunkt, zu welchem eine Ladestrategie berechnet und empfohlen wird,
lediglich fehlerbehaftete Verkehrsprognosen zur Verfiigung stehen. Ein einzelner Simulations-
lauf ist dann wie folgt aufgebaut: Grundsitzlich soll die Fahrt eines Elektroautomobils entlang
einer langen Strecke simuliert werden. Zunichst wird eine Ladestrategie fiir ein gegebenes Sze-
nario an dieser Strecke berechnet. Ein solches Szenario ist definiert durch die sich entlang der
betrachteten Strecken befindende Ladeinfrastruktur, den Ladezustand des Elektroautomobils zu
Beginn der Fahrt sowie durch weitere Aspekte, die im Kontext der Ladestrategieoptimierung
von Relevanz sind. Wihrend des eigentlichen Simulationslaufes folgt das Elektroautomobil der
berechneten Ladestrategie. Dabei trifft es, wie bereits angedeutet, auf Verkehrssituationen, die
teilweise von der fiir die Berechnung der Ladestrategie prognostizierten Verkehrssituation ab-
weichen. Entsprechend weichen auch Fahrgeschwindigkeiten, Reisezeiten, Energieverbrauche
und die Entwicklung des Ladezustands von der Prognose ab. Allerdings wird das Elektroauto-
mobil wihrend der Fahrt stdndig mit neuen Ladestrategien versorgt. Diese Updates beziehen
die bis zum Zeitpunkt der Berechnung tatséchlich eingetretenen Energieverbriauche und Reise-
zeiten mit ein und basieren zudem auf aktualisierten Verkehrsprognosen. Falls nun, im Rahmen
der Simulation, das Elektroautomobil in der Lage ist, das Ende des vorgegebenen Streckenab-
schnitts zu erreichen, so wird der Simulationslauf als Erfolg gewertet. Falls die Abweichungen
zwischen Realitidt und Prognose dazu fiihren, dass das Fahrzeug mangels Energie auf der Stre-
cke liegen bleibt, wird der Simulationslauf als Versagen gewertet.

Um nun den Einfluss unterschiedlicher Arten von Verkehrsprognosen (z.B. das Verwenden von
auf historischen Daten basierender Durchschnittsgeschwindigkeiten oder die Anwendung so-
genannter instantaner Fahrgeschwindigkeiten) und unterschiedlicher Ansitze zur Bestimmung
der GroBe des Energie-Puffers auf die Qualitit der resultierenden Ladestrategien zu bestim-
men, wird eine Vielzahl von Simulationsldufen durchgefiihrt. Dabei werden unterschiedlichste
Szenarien betrachtet, um moglichst robuste, das heifit allgemeingiiltige Ergebnisse zu erhalten.
Folglich ist es notwendig, die Rechenzeiten fiir einen einzelnen Simulationslauf sehr kurz zu
halten. Dies wird dadurch erreicht, dass — wie bereits zuvor erwihnt — lediglich eine einzelne,

lange Strecke (ca. 360 Kilometer) betrachtet wird statt eines gesamten Verkehrsnetzes, welches
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dann auch eine Alternativroutenwahl erlauben wiirde. Durchschnittliche Reisezeiten und Er-
folgsraten werden verwendet, um die Qualitit der berechneten Ladestrategien in Abhiingigkeit
der verwendeten Verkehrsprognose und der angewandten Methode zur Bestimmung der Grof3e
des Energie-Puffers zu bestimmen.

Eine Analyse der Simulationsergebnisse zeigt, dass sowohl die Art der Verkehrsprognose als
auch die Methode zur Bestimmung der Grofe des Energie-Puffers erheblichen Einfluss auf die
Erfolgsrate haben. Allerdings stellt sich deren Einfluss auf Reisezeiten als eher gering heraus.
Dariiber hinaus zeigt sich ebenfalls, dass die Beziehung zwischen der Qualitét der Ladestrategi-
en und der Giite der Verkehrsprognosen duferst komplex ist. Die Ergebnisse belegen, dass die
Wahrscheinlichkeit, auf der Strecke liegen zu bleiben, nicht nur davon abhingt, wie zutreffend
die Verkehrsprognose, auf der die verwendete Ladestrategie basierte, war — obwohl der Unter-
schied zwischen Verkehrsprognose und realer Verkehrssituation die einzige Unsicherheitsquel-
le innerhalb der Simulation darstellt. Zudem wird durch die Simulationsergebnisse deutlich,
dass akkuratere Verkehrsprognosen nicht zwingend zu besseren Ladestrategien filhren. Am
wichtigsten ist aber die Beobachtung, dass die Wahl eines geeigneten Energie-Puffers stets ein
Qualititslevel der Ladestrategien sicherstellt, welches auch eine Anwendung in der Realitit er-
lauben sollte. So kann ein Liegenbleiben in praktisch allen simulierten Situationen verhindert
werden. Zugleich wird aber auch ein {ibervorsichtiges Verhalten in der Regel vermieden, das

heil3t es ist (fast immer) moglich, eine Ladestrategieempfehlung abzugeben.

Im letzten inhaltlichen Kapitel der Arbeit werden reale Testlaufe auf Basis des entwickelten
Modells durchgefiihrt. Ein Elektroautomobil mit einer offiziellen Reichweite von 170 Kilome-
tern wird hierbei dazu genutzt, eine mit ausreichend Ladeinfrastruktur ausgestattete Strecke
von liber 400 Kilometern zuriickzulegen. Den Testfahrern wird eine prototypische Softwa-
re zur Verfligung gestellt, die diesen wihrend der Fahrt — auf Basis des aktuellen Ladezu-
stands, der aktuellen Position sowie aktueller Verkehrsinformationen — optimierte Ladestrate-
gien empfiehlt. Eine Auswertung der resultierenden Fahrtverldufe ergibt, dass Energie-Puffer
grundsitzlich auch fiir reale Anwendungen geeignet sind. Allerdings zeigen die Testfahrten
auch einen Schwachpunkt der vorgeschlagenen Modellierung auf: Ausfélle von Ladeinfra-
struktur sind zum Zeitpunkt der Testfahrten vergleichsweise hdufig aufgetreten. Das entwi-
ckelte Modell erlaubt es aber nicht, diese Art von Unsicherheiten zu beriicksichtigen. Ent-
sprechend muss fiir eine Anwendung der entwickelten Konzepte entweder solange gewartet
werden, bis Fehlfunktionen von Ladestationen weitestgehend ausgeschlossen werden kénnen,

oder das Modell muss noch einmal grundlegend angepasst werden.
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Executive Summary

Battery electric vehicles (BEVs) provide many advantages in comparison to conventional, in-
ternal combustion engine vehicles. Especially their ability to avoid local exhaust emissions is
often understood as a possible solution for cities which suffer from air pollution. Still, in many
countries BEV selling numbers are low. It is assumed that this is primarily caused by high ac-
quisition costs and their limited driving range. The latter leads to the so-called ,,range anxiety*,
i.e., the fear of running out of energy during a trip. This limits application possibilities. For
instance, it seems to be commonly accepted that BEVs cannot be used for long-distance trips.
The main motivation of this thesis is to reduce or, in the best case, to eliminate range anxiety
(particularly for long-distance trips) by providing accurate and reliable navigation information
to BEV drivers. In this context, a navigation system is not only intended to recommend routes,
but also to suggest where the BEV should be charged and how much energy should be charged.
This kind of information is here denoted as ,,charging strategy“. A charging strategy can be
understood similarly to a pit strategy in Formula One. For its construction, basically two ob-
jectives are pursued: First and foremost, the given instructions have to ensure a reliable arrival,
i.e., the risk of running out of energy has to be kept very low. Second, the total travel time and

along with it the number and duration of charging stops has to be kept low.

To be able to compute such charging strategies, a suitable mathematical framework is devel-
oped in the first chapters of the thesis. A literature review, where the focus is set on prior
works about navigation applications that are primarily intended for BEVs, forms the funda-
ment. It turns out that the problem of finding ,,optimal* (different interpretations of optimality
exist) charging strategies has already been addressed several times. However, the correspond-
ing problem formulations lack realism, since several potentially relevant aspects are not taken
into account or not considered in a realistic way. To fill this research gap, a generic formulation
as a multistage decision problem is suggested. This formulation surpasses prior approaches in
terms of generality and flexibility. On the other hand, this optimization problem can hardly be
handled numerically. Hence, a second, more practical problem formulation is provided, where
the problem of finding optimal charging strategies is interpreted as a deterministic shortest path

problem (SPP). This reformulation is intended as a compromise between ensuring realism and
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achieving numerical computability. Minimizing total travel times is applied as the optimiza-
tion criterion and avoiding empty batteries is ensured via a side constraint. An analysis of the
properties of this SPP is conducted. It shows that, despite the simplifications that result from re-
ducing the originally suggested multistage decision problem to a deterministic SPP, computing
optimal solutions is still quite expensive. Two different modifications of Dijkstra’s algorithm
are introduced to solve the problem efficiently. The first one is able to compute optimal charg-
ing strategies for the described setting. The second one leads to in general very good, though
suboptimal solutions. At the same time, the second approach is able to reduce computation

times down to a level which should be sufficient for practical applications.

Also this formulation as a deterministic SPP is just another intermediate step. The issue is
that charging strategies, particularly if they are intended for long-distance trips, need to take
information about future events into account to achieve a high level of quality. Such predic-
tions, on the other hand, are often not absolutely correct. The suggested deterministic SPP is
at this point of the thesis unable to handle uncertainties caused by imperfect predictions about,
for instance, energy consumption. The consequence is that following recommended charging
strategies would often lead to an empty battery, at least under realistic conditions. To solve this
issue, the side constraint which is intended to ensure that running out of energy is avoided is
adjusted. Instead of only demanding that the battery’s state of charge has to always be above
zero during a trip, a certain percentage of the battery’s maximal energy capacity is reserved to
compensate for unexpectedly high energy consumption. Such ,,energy buffers* need to be kept
as small as possible. Otherwise significant parts of the battery capacity would remain unused.
This would cause additional charging stops and, along with that, increased travel times. On the
other hand, the buffers need to be big enough to be able to compensate for prediction errors.
Several different approaches for quantifying the size of this energy buffer are introduced. The
motivation for all of these approaches is to adjust the size of the energy buffer dynamically
during a trip depending on the level of uncertainty which exits in the respective situation. The
resulting problem formulation is more robust against uncertainties and can again be solved
by the aforementioned modifications of Dijkstra’s algorithm. Thus, no significant increase of

computation times needs to be expected.

In a next step, it is tested via simulation how well the concept of energy buffers allows handling
uncertainties. For this purpose, some preparatory steps are necessary. The yet very general
problem formulation is concretized in such a way that the impact of traffic conditions on en-
ergy consumption and travel times is included into the problem formulation. Furthermore, it is
assumed that at the time at which a charging strategy is requested, computed and recommended,
only imperfect information about the future development of traffic is available. Based on these

preparatory steps, a single simulation run is structured as follows: First, a charging strategy is
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computed for a given scenario. A scenario is defined by the available charging infrastructure,
the state of charge at the beginning of the trip, and by other aspects which are of relevance
in the context of charging strategy optimization. Then, a simulated BEV starts following the
recommended charging strategy while facing a traffic situation that is possibly different to the
one which was presumed during the computation of the charging strategy. Hence, experienced
driving speeds and states of charge differ from the predicted values. During the simulated trip,
steadily new charging strategies are computed. These computations take updated traffic pre-
dictions and updated information about the BEV’s state of charge into account and provide
guidance for the remaining part of the trip. The BEV always follows the latest charging strat-
egy. If the simulated BEV is finally able to reach the destination, it is counted as a success. If
the experienced situation makes it run out of energy, then the simulation run is counted as a
failure.

To test the influence of different traffic prediction methods (for example, using average driv-
ing speeds based on historical data or applying instantaneous driving speeds as a best guess
for the future) and different approaches for quantifying the size of the applied energy buffers,
many simulation runs are carried out. Robustness of the results is ensured by considering many
different scenarios. This makes it necessary to keep the computation time which is necessary
for a single simulation run reasonably low. For this purpose, charging strategies are always
computed for a single, predetermined (long-distance) route, i.e., the simulated BEV is unable
to take alternative routes to reach its destination. Success rates and total travel times are used to
measure the quality of charging strategies in dependency of traffic prediction approaches and
energy buffer methods.

An analysis of the simulation results shows that both traffic prediction approaches and energy
buffer methods have significant influence on success rates. Their impact on travel times, how-
ever, is comparably small. It can also be observed that the relation between traffic prediction
quality and charging strategy quality is not trivial. The findings prove that the risk of running
out of energy does not only depend on the traffic prediction quality, even though it represents
the only source of uncertainty. Furthermore, it turns out that better traffic predictions not nec-
essarily lead to better charging strategies. On the other hand, it can at least be stated that
sufficiently accurate traffic predictions ensure charging strategies of high quality. Moreover,
the results of the simulation study also indicate that the concept of energy buffers is well-suited
to handle uncertainties, at least if these uncertainties are caused by error-prone traffic predic-
tions. For most of the tested scenarios, the risk to run out of energy can almost be eliminated.

At the same time, an over-cautious behavior can be avoided.

Finally, in order to gain a different and more practical perspective on the problem of finding

optimal charging strategies, a few field tests are conducted. An electric vehicle with an official
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electrical driving range of 170 kilometers is used to cover a distance of more than 400 kilo-
meters. A prototypic implementation of a software tool for computing charging strategies is
provided to the test drivers in order to support them during their trips. The gathered experi-
ences indicate that the proposed framework is basically suited to provide reasonable charging
strategies also for practical applications. However, the gathered experiences also show that,
currently, one cannot rely on the existing charging infrastructure. This is a major thread to
the proposed framework, since the concept of energy buffers, the way it is described in this
thesis, is hardly able to compensate charging station failures. Hence, either the reliability of

the charging stations has to be improved or the developed framework needs further adjustments.

In conclusion, there are two main contributions of this research: The first one is the formulation

of the problem of finding optimal charging strategies as an optimization problem which

e provides the possibility to take those aspects in realistic way into account which show

the highest influence on charging strategies
e optimizes charging strategies with regard to reliability and total travel time
e is able to handle the existence of uncertainties
e can be solved rather efficiently.

Particularly the ability to handle uncertainties represents a significant enhancement in compar-
ison to existing approaches for charging strategy optimization. Moreover, a detailed analysis of
the properties of the developed problem formulation as a deterministic SPP is conducted and,
based on the findings of this analysis, two solution algorithms are suggested.

The second important contribution of this work is the intensive analysis of the ability of the de-
veloped problem formulation to handle uncertainties. The simulation study provides detailed
insights into the complex relation between existing uncertainties and the quality of charging
strategies. Moreover, the findings of this study show that the concept of energy buffers allows
handling uncertainties for a huge variety of scenarios. The conducted field tests complement
the simulation study and indicate that, even though some issues need to be solved before, the

developed framework can also be applied in practice.
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Chapter 1

Introduction

In this chapter, the conducted research is motivated, followed by an introduction of desired

research objectives. At the end, an outline of the thesis is provided.

1.1 Research Context

In 2011, the German government stated the goal of bringing one million battery electric vehi-
cles (BEV) onto the roads by the year 2020. This goal is motivated by a variety of advantages
that BEV's show in comparison to internal combustion engine vehicles (ICEV): No local emis-
sion of pollutants, less noise emissions, less dependency on oil imports, and even the possibility
to use car batteries as a dynamic energy storage to compensate for irregular electricity supply
caused by renewable energies (6). Unfortunately, with each passing day, it becomes more ob-
vious that this goal won’t be reached. High acquisition costs and the deeply rooted fear of
potential customers to run out of energy while driving a BEV, the so-called ,range-anxiety*,
are often assumed to be the main reasons for the limited demand for BEVs (see p. 10 in (/04)).
To counter the former, the German government recently followed the example of other coun-
tries, such as Norway, and started offering monetary incentives to people who buy a BEV (24).

To counter the latter, a closer look at the topic of BEVs is necessary.

The maximum driving range of BEVs, i.e., the distance that can be covered without recharging,
is very small compared to ICEVs. At the moment, the official maximal driving range lies only
for a few models above 250 kilometers (98) (/55). Furthermore, low outdoor temperatures or
high driving speeds may reduce this in most cases too optimistic estimation drastically (66).
ICEVs, by contrast, achieve driving ranges of several hundred and some even of more than one
thousand kilometers. Thus, thinking about driving ranges usually has not been necessary. An-
other relevant aspect is that the publicly accessible charging infrastructure is in many countries,
including Germany, sparsely distributed over the road network, at least when being compared
to the coverage with gas stations. According to (27), currently there exist about 4,800 charging

stations in Germany. The number of gas stations is three times as high (3) and due to charging
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durations of up to several hours, a charging station is not able to serve the same number of
vehicles that can be served by a gas station. The comparably low number of publicly available
charging infrastructure along with the significantly lower driving ranges are the main reasons
for the fear that driving BEVs leads to situations in which it is impossible to reach the next

charging station (/20).

Based on these considerations, two obvious approaches to counter range-anxiety can be de-
rived: Additional charging stations could be built or the driving range of BEVs could be in-
creased. Currently, both approaches are realized. Between July 2015 and June 2016 alone,
the number of charging stations was raised by 1,200 in Germany (27). Furthermore, many
car manufacturers launched improved versions of their first generation BEVs, which provide
enhanced battery capacities (98). Unfortunately, both approaches lead to drawbacks. Infras-
tructure measures, for instance, are expensive. According to (/04), average costs for building a
publicly accessible charging station ranged in 2013, depending on the energy throughput of the
charging station, between 10,000 and 27,000 Euros. Operating costs between 1,700 and 3,000
Euros per year and charging station need to be added. The critical point is that these costs are
too high. Making profit by selling electricity is, at least at the moment, not realistic (p. 35 in
(106)). Hence, often the public is left with building up or subsidizing charging infrastructure.

Increasing battery capacities, unfortunately, also hides some drawbacks. Costs for research in
the area of battery technologies are included into the acquisition costs of BEVs and keep them
high. A side-effect of this is that low-budget BEVs will be offered in the near future, which
ensure lower acquisition costs by using less-efficient or comparably small batteries (40). The
possibility to make trade-offs between acquisition costs and battery capacity already exists to-
day, since for more and more BEV models the option of including an enlarged (/6) (or reduced
(144), respectively) battery is available. Hence, the topic of limited driving ranges probably

remains relevant during the next years, even though ranges of BEVs in general will improve.

In this thesis, a third approach to tackle range-anxiety is pursued. The central goal is to re-
duce range-anxiety via advanced navigation applications which are particularly developed for
BEVs. This is motivated by the fact that a well-informed driver, i.e., a driver who is aware
that she/he receives reliable information about remaining driving ranges and trustworthy in-
structions concerning future charging processes, is less vulnerable to range-anxiety (/20). To
illustrate the idea, let the situation that is described in the left part of Figure 1.1 be considered:
A person wants to use a BEV to drive from her/his current location to a certain destination.
The battery’s state of charge (SOC) is at about 50 percent, which is not enough to reach the
destination. There exist several different routes leading from the BEV’s current position to the
destination. Along each route several charging stations can be found. The driver wants to reach

the destination reliably, i.e., she/he has to prevent the BEV from running out of energy during
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Figure 1.1: The problem of finding charging strategies.
the trip. At the same time, the trip should be conducted efficiently, i.e., the number of charging
stops and their duration should be kept low. The following questions arise in this context:
e Which route should be taken?
e At which charging stations along this route should be charged?
e How much energy should be charged?

First experience reports about people using BEVs for trips of several hundred kilometers show
that answers to these questions are very important for drivers (2) (39). The main problem is
that there are many aspects which have influence on energy consumption and thus should be

taken into account. Some of these potentially relevant aspects are indicated in Figure 1.1, such
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as outdoor temperature, traffic conditions, charging durations, and road steepness. For a single
person, however, it is hard to gather and consider all this information. Hence, it seems reason-
able to let these questions be answered by the navigation system of the BEV. This means that,
similar to current navigation systems, the driver requests a route describing the way from his
current position to a certain destination. The navigation system, on the other hand, not only
provides route guidance, but also information defining at which charging stations the BEV has
to be recharged and up to which state of charge it has to be recharged. Such a type of informa-
tion, which consists of route and charging instructions, is from here on denoted as charging
strategy. Note that a necessary condition for the existence of reasonable charging strategies
is the availability of fast-charging stations. Such stations allow recharging large parts of the
battery of current BEVs in less than half an hour (/7). This represents a huge improvement in
comparison to ,,conventional* charging which causes, depending on the charging technology,
charging durations of up to several hours. Without the possibility to quickly charge energy,

recharging during a trip was not practicable.

Three examples of charging strategies are shown in the right part of Figure 1.1. They refer to
the situation in the left part of Figure 1.1. The conditions at the start of the trip are the same
for all three charging strategies: The state of charge is equal to about 40 percent and the trip
is started at 15:00. All three strategies suggest taking the gray route, i.e., charging stations
one, three and six can be visited during the trip. A BEV following the first strategy, which
is denoted as strategy A, drives to charging station one and then completely recharges its bat-
tery. This consumes lots of time and thus it is already 16:15 when the BEV again proceeds
with driving. The BEV experiences a traffic jam shortly before reaching charging station three.
This causes some delay. At charging station three, it is again fully recharged until 18:10. As
a consequence, the BEV has enough energy stored to get over the mountains, which can be
found shortly before charging station six, and to skip charging at station six. It arrives at the
destination at 19:10 with a very low state of charge. Charging strategy B represents an ex-
treme case. To avoid the rush hour traffic between charging stations one and three, which is
for the sake of the example assumed to emerge at around 16:30, no charging at station one
is suggested. Unfortunately, the available energy is not enough to reach station three and the
BEV runs out of energy shortly after passing charging station one. The last charging strategy
suggests charging up to a state of charge of about 80 percent at charging station one. This
allows leaving station one twenty minutes earlier than when following charging strategy A, but
the charged energy is still enough to reach station three. Hence, the rush hour traffic between
stations one and three can be avoided as the corresponding road stretch is passed earlier. Anal-
ogously to strategy A, strategy C also specifies to fully recharge the battery at station three.

In contrast to strategy A, however, an additional charging process is suggested at station six.
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The consequence is that the destination is reached with a higher state of charge than when fol-
lowing strategy A. Additionally, the destination is even reached earlier. In conclusion, it can
be assumed that strategy C takes a prediction about a probably occurring congestion into ac-
count to keep travel times low. This travel time reduction is afterwards used to avoid low states

of charge, which are critical if the real energy consumption exceeds the predicted consumption.

It is important to mention that the example which is described by Figure 1.1 is artificially
generated and not based on real data. Nevertheless, the example and the described charging
strategies express the idea to achieve reliable and efficient trips through a smart planning of
charging stops. For the purpose of reducing range-anxiety, a navigation system which is able
to provide such high quality instructions represents an attractive supplement to the aforemen-
tioned approaches (more charging infrastructure and bigger batteries). It is attractive, because
it can be expected that developing a charging strategy optimization (CSO) functionality and
implementing it into existing navigation devices is significantly cheaper than expensive in-
frastructure measures. Moreover, long-distance trips with BEVs would become much more
convenient, since no trip planning was necessary. Hence, it would also be more likely that
long-distance trips are conducted with BEVs. Furthermore, CSO should be able to ensure that
unnecessary charging stops, which are often the consequence of an over-cautious charging be-
havior due to range anxiety (50), are avoided. Along with this, an efficient usage of available
battery capacities could be encouraged. In the long run, this may even allow reducing battery

capacities, which again could lead to lower acquisition costs and less weight of BEVs.

1.2 Research Objectives

The primary intention of the described research is providing a first basis for a later inclusion of
CSO functionalities into real world navigation systems. Achieving this objective requires the
development of a mathematical framework which allows deriving practicable charging strate-

gies. This leads to the first central research objective (RO) of this work:

RO 1: Formulate a mathematical optimization problem that allows computing reliable and ef-

ficient charging strategies.

Note that several such ROs are stated in the following. This will make it easier to motivate and

explain the structure of the thesis.

The formulation of the first RO is not very specific. To make the idea of RO 1 more concrete,
three additional and more specific subobjectives regarding the problem formulation are intro-

duced. The first of these subobjectives, denoted by RO 1a, can be found below:
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RO la: The suggested problem formulation has to be able to realistically represent those as-

pects which are relevant for a practical application of CSO.

All kinds of factors that have influence on the energy consumption of the BEV or on travel time
may be understood as relevant aspects, such as traffic conditions or vehicle specific parameters.
Also the driver’s level of risk aversion may be seen as a relevant aspect. However, it is very
likely that a unique list of aspects that have to be included into the problem formulation does
not exist. This is also a consequence of an often limited data availability. For example, the
driver’s mood may have influence on his driving style and, along with that, on the energy that
the BEV consumes when passing a certain road segment. Thus, the driver’s mood also impacts
the amount of energy that is necessary to be able to pass a certain road segment. If no infor-
mation about her/his mood (or about the influence it has on her/his driving style) is available,
then this aspect can hardly be taken into account within the formulation of a mathematical op-
timization problem. In order to make it possible to flexibly integrate different sets of aspects
into the developed model, it should be formulated generically.

A further important component of RO 1a is the requirement of realism. Those aspects which
are represented within the optimization model need to be represented in a realistic way. Oth-
erwise, computed solutions may not be applicable in reality. Realism can easily be lost during
the construction of optimization problems. One of the main reasons for this is that often sim-
plifications are necessary for the formulation of certain types of optimization problems. An
example of such simplifications are discretizations of decision variables whenever a problem
is modeled as an integer program. Another widely applied simplification is the deterministic

representation of in fact stochastic problem components.

To introduce the second subobjective, RO 1b, it is necessary to describe how ,efficiency and
reliability* are interpreted in the context of charging strategies (these interpretations have been
mentioned in section 1.1): A charging strategy is denoted as efficient if the number and dura-
tion of charging stops is kept low. A charging strategy is denoted as reliable if the probability
that a BEV which follows this charging strategy runs out of energy is very low'. These in-
terpretations are again not very concrete. Finding adequate mathematical definitions for both
terms is understood here as a part of the model development process and thus will be done later
on. Though, already these vague interpretations show the contrast between both criteria. This
makes it clear that it won’t be possible to construct charging strategies which are optimal with
regard to both criteria. At the same time, it is not reasonable to compute charging strategies

which are only efficient or only reliable. The result would be that either no charging stops are

!The interpretations of the terms ,efficiency* and ,reliability* which exist in literature differ significantly —
even if only contributions in the area of routing are considered: Efficiency often refers to travel time or fuel/energy
consumption minimization (/25) (/28). A whole set of possibilities to define and measure reliability in the context
of routing can be found in (77). The fundamental idea of both terms, however, remains basically the same in all of
these works.
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suggested or that charging stops are recommended whenever a charging station is passed. The
former leads to a high risk of being stranded, the latter to unbearably long travel times. These

considerations lead directly to RO 1b:

RO 1b: The suggested problem formulation has to ensure that charging strategies are opti-

mized with regard to both efficiency and reliability.

Note that the described interpretation of reliability is particularly intended for situations in
which uncertainty exists. If any current and future aspect which has influence on the BEV’s
condition (state of charge, arrival times, etc.) was known with absolute precision at the time
at which a charging strategy is computed, then it actually would not be necessary to speak of
reliability. The reason for this is that it could be decided with absolute certainty whether a
specific charging strategy leads to an empty battery or not. As a consequence, it would be more
reasonable to speak of ,feasible* charging strategies instead of ,reliable* charging strategies.
However, presuming absolute certainty lacks realism in the context of CSO. Future energy
consumption or arrival times can solely be estimated. Note that imperfect predictions represent
not the only source of uncertainty. Missing data (recall the aforementioned example about the

unknown mood of the driver), incorrect data, or inappropriate models may lead to issues, too.

The third subobjective concerns the solution process and not, which is the case for ROs 1a and

1b, the problem formulation itself:

RO Ic: The suggested problem formulation has to make a practical computation of solutions

possible.

Here, practicability primarily means that computing problem solutions must be possible in rea-
sonable time. In the context of navigation applications, computation times of a few seconds or,
at most, of half a minute can be understood to be reasonable. Computation times depend on
the computational effort and the available hardware. The computational effort that is necessary
to solve a mathematical optimization problem depends again on the problem itself, i.e., on the
problem structure and the amount of input data, and on the applied optimization algorithm,
i.e., on the applied method and its implementation. Trade-offs between computational effort
and solution qualities are usually possible. In the end, the suggested problem formulation is
intended to make the computation of near-optimal solutions, within a few seconds, on the basis

of the hardware limitations of navigation systems possible.

In the following, RO 2 is formulated. The motivation for RO 2 is the assumption that it is not

sufficient, which is postulated by RO 1b, to simply consider efficiency and reliability in parallel
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when computing charging strategies. Instead, charging strategies need to show a certain level
of efficiency and reliability. Otherwise, an application in practice is not reasonable. This means
particularly that a high level of reliability has to be achieved without causing unbearable travel
times. As a consequence, it appears to be reasonable to demand within the second RO that it
has to be shown that the developed framework leads to charging strategies which show a level
of reliability and efficiency that makes an application in practice possible. Unfortunately, the
quality of charging strategies is not only a consequence of the applied optimization framework.
In some situations, a reliable charging strategy does not even exist. This is the case, for in-
stance, if a trip is started with a state of charge that is not sufficient to reach the next charging

station. Due to these considerations, RO 2 is formulated less strongly:

RO 2: Test the suggested problem formulation under the existence of uncertainties and evalu-

ate its ability to ensure charging strategies of practicable quality.

The ,,quality* of charging strategies is here understood to describe both their level of efficiency
and their level of reliability. RO 2 basically consists of two tasks: First, a framework which
allows conducting adequate tests has to be developed. Second, the corresponding results have
to be evaluated in order to decide whether the achieved charging strategy qualities can be said
to be practicable. Note that RO 2 can be interpreted as a preliminary step. Eventually, the goal
has to be to identify the conditions under which a specific framework is able to ensure practi-

cable charging strategies. However, this will not be in the scope of the described research.

1.3 Outline of the Dissertation

The design of the described research and, along with it, the structure of the thesis are the result
of the attempt to achieve the introduced ROs. An overview of the chapters and their content
can be found in Figure 1.2. The thesis starts with a description of the state of the art in chapter
2. It forms the basis of all further considerations. Its purpose is to gain an overview of work
in potentially relevant areas of research, such as estimating energy consumption of BEVs or
modeling uncertainty within routing applications. The focus of the review, however, is set on
existing studies concerning CSO. It is discussed up to which degree these prior works allow
achieving the stated ROs.

This discussion reveals several aspects which are particularly necessary for RO 1a and RO 1b,
but have not been addressed sufficiently by existing models. To make up for these shortcom-
ings, the problem of finding optimal charging strategies is formulated as a multistage decision
problem in chapter 3. This initial model marks the start of an iterative process, which is il-
lustrated in Figure 1.3. During this process, a potential problem formulation is analyzed with
regard to its ability to fulfill ROs 1a, 1b and 1c. Depending on whether a considered problem

formulation satisfies these requirements, it is either extended, simplified or, at the end of the
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Figure 1.2: Structure of thesis.

whole process, accepted. During this iterative process, the initial formulation as a multistage
decision problem is at first reduced in chapter 4 to a deterministic shortest path problem (SPP)
and afterwards, in chapter 5, extended again. The reduction is necessary for the development of
optimization algorithms which allow computing solutions in reasonable time, the extension in
order to address the potential existence of uncertainties. The final result, at the end of chapter 5,

is a problem formulation that fulfills all criteria defined by the subobjectives belonging to RO 1.

In order to achieve the second RO, an extensive simulation study is conducted. For this pur-
pose, some preparations are necessary to be able to provide charging strategies to simulated

BEVs. During these preparations, it is defined which input data (weather, steepness, etc.) are
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considered and how they affect energy consumption and arrival times. Moreover, error-prone
traffic information is introduced as source of uncertainty, i.e., the traffic information that is
considered during the computation of charging strategies may not mirror the simulated reality
perfectly. These preparatory steps are primarily conducted in chapter 6. The simulation itself
is described in chapter 7. A BEV driving from its starting location to a destination is simulated.
During this trip, the BEV follows charging strategies which are provided to it. These charg-
ing strategies are based on partly incorrect information about current and future traffic states.
Thus, the BEV may face a simulated reality that differs from the situation which was presumed
during the computation of the charging strategy it follows. The quality of charging strategies
resulting from different types of traffic prediction approaches, which show different levels of
similarity to the simulated reality, is analyzed. These analyses allow drawing conclusions on
the ability of the suggested mathematical framework to handle uncertainty, at least for the case
of error-prone traffic information.

As a supplement to the simulation study, the execution of a small number of field tests is fi-
nally described in chapter 8. An electric vehicle is used to cover a distance of several hundred
kilometers. To support the test drivers, a prototypic implementation of a software tool for
computing charging strategies is provided to them. The purpose of the field tests is to test the
developed framework under realistic conditions. Moreover, it allows identifying aspects which
may be relevant from a practical perspective, but which have not been considered up to this

point.



Chapter 2

State of the Art

The purpose of the following chapter is to provide an overview of prior works in areas that are
related to the problem of finding optimal charging strategies. At the beginning, in section 2.1,
the estimation of the energy consumption of BEVs is thematized. Based on this, different types
of navigation services for BEVs are considered. The focus is set on literature about CSO. It is
discussed up to which degree existing models are able to fulfill the requirements defined by the
stated ROs. The result of this discussion is that particularly the topic of handling uncertainty is
not addressed sufficiently. Due to this, the focus of the literature review is shifted in section 2.2
from CSO to modeling uncertainty in routing problems. Finally, in section 2.3, an overview
of existing studies on traffic information services that are used in practice is provided. This
excursus is motivated by the fact that, as mentioned in the outline of the thesis in section 1.3,
imperfect traffic information represents the only source of uncertainty within the simulation
study in chapter 7. In order to be able to ensure a high level of realism of the simulation runs in
chapter 7, it seems helpful to gain an understanding of the features of traffic information which

is provided by professional traffic content providers.

2.1 Battery Electric Vehicles

The main objective of the described research is to provide a basis for an inclusion of CSO func-
tionalities into navigation systems. This makes it necessary to be able to estimate the amount
of energy a BEV consumes when passing a certain road segment. Section 2.1.2 addresses
this topic. In section 2.1.3, prior works regarding navigation services which are particularly
intended for BEVs are considered. But at first, a general introduction to electric vehicles is

given.

2.1.1 Introduction to Battery Electric Vehicles

In the context of cars, electric engines are used for propulsion in various ways. Besides purely

electrically driven vehicles (which are denoted as BEVs), also so-called hybrid electric vehicles

11
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(HEV) exist. This type of electric cars combine electric with combustion engines®. Depending
on the architecture of the power train, it can be differentiated between three different types of
HEVs (96): Serial, parallel, and combined HEV's>.

Serial HEVs The internal combustion engine of a serial HEV does not work as a propul-
sion device. It is just used to generate electricity, which is either used to recharge the battery
or directly for propulsion. In contrast to parallel or combined HEVs, serial HEVs show the
advantage that the size of the internal combustion engine typically can be kept rather small.
Furthermore, the complexity of the whole power train is comparably low. It is also simpler
than the power train of a conventional ICEYV, since, for instance, only a simplified gearbox
needs to be integrated. On the downside, the serial structure of the power train tends to reduce

energy efficiency (26).

Parallel HEVs For parallel HEVs, the internal combustion engine is no longer used as a
generator for electricity (see Figure 2 in (26)). Instead, both the internal combustion engine
and the electric motor have the possibility to propel the vehicle. It is possible that both engines
work in parallel, but also that only the internal combustion engine or only the electric motor
is activated. It depends on the driving situation, which of these possibilities is applied. The
most important advantage of parallel HEVs is that the torque generated by the electric engine
and the torque generated by the combustion engine add up. Hence, in comparison to the serial
HEVs, a smaller electric motor can be used without loosing performance. On the contrary, the

whole system becomes more complex. See (5/) for more detailed explanations.

Combined HEVs For combined HEVs, the internal combustion engine can work as a gen-
erator, but it is in addition able to directly propel the vehicle. This allows combining the the
advantages of the serial and the parallel HEVs — up to some degree. On the other hand, the
power train of combined HEVs are even more complex than those of parallel HEVs and, along
with this, also their costs tend to be higher (26).

In general, there exist three ways for recharging the battery of an HEV (or BEV, respectively):
First, the battery can be charged via ,recuperation or ,regenerative braking®, respectively.
This is a mechanism that allows converting kinetic energy into electricity. To achieve this, the

electric motor is used in reverse function, i.e., it is used as a generator. Electricity is generated

The term ,hybrid electric vehicle“ basically refers to a car which has (at least) a second type of energy storage
— besides its battery. In this work, the term solely refers to cars which are equipped with an internal combustion
engine and an electric engine.

*Depending on the literature which is considered, several different classification schemes can be found. These
schemes in most cases distinguish between three (5/) (96) or four (26) (85) types of HEVs. Furthermore, also the
way the classification is done varies.
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and stored in the vehicle’s battery while the vehicle’s speed is reduced. Using the internal com-
bustion engine as an electricity generator represents the second possibility to charge the battery
of an HEV. This is not possible for parallel HEVs and obviously not for BEVs. The third
method is to make use of an external source of electric power. At the moment, the transmission
of energy from an external source to the battery of a BEV or an HEV is usually done via a cable
and a plug. Corresponding HEVs are denoted as plug-in hybrid electric vehicle (PHEV) (85)
(/63). Depending on the available charging technology, the energy throughput varies between
3.7 kilowatt and almost 50 kilowatt (56). Assuming typical battery capacities (see Table 2.1),
these values lead to charging durations between less than one hour and almost a whole day.
The highest charging throughput is at the moment achieved via direct current (DC) charging.
However, building up infrastructure which enables DC charging is expensive. Moreover, it

Table 2.1: Most sold electric vehicles in Germany in 2015

Battery | Pure Electrical | DC-Charging
Model Type Capacity | Range (NEDC) Standard
Kia Soul EV (54) BEV 27 kWh 212 km CHAdeMO
. , 19.8 kWh 190 km
BMW i3 (/8) BEV (27.2kWh) (300 km) CCS
Mitsubishi
Outlander PHEV (55) PHEV 12 kWh 52 km CHAdeMO
Volkswagen
Golf GTE (/50) PHEV | 8.7 kWh 50 km -
Audi A3 e-tron (4) PHEV | 8.8 kWh 48 km -
22 kWh 240 km
Renault Zoe (/24) BEV (41 KWh) (400 km) -
o 70 kWh 442 km
Tesla Model S (83) (/42) | BEV (85 KWh) (502 km) Supercharger

should be mentioned that a further drawback of DC charging is the fact that several different
standards were established. The CHAdeMo standard (derived from ,,CHArge de MOve*), the
combined charging system (CCS), and Tesla Motor’s ,,supercharger. These standards are not

compatible.

Besides the approach to directly connect to the electricity grid, there exist two alternative ap-
proaches which allow making use of external power sources: It is possible to completely switch
the battery or to transfer electric energy wirelessly via electromagnetic induction. Switching
batteries can be done rather quickly and thus saves time, but it also requires a high level of
standardization and such systems show currently no relevant market share (56). Recharging
car batteries via electromagnetic induction possibly will be of importance in the future, but at

the moment it is realized only on a prototypic level, mainly within research projects (56) (/58).
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Until today, a huge variety of electric vehicles (BEVs and HEVs) has been released. See (//4)
or (/55) for corresponding lists of vehicle models. Table 2.1 provides a tiny excerpt from these
lists. It shows the seven electric vehicles which were sold most often in Germany in 2015
(23). This short list is intended to give an idea of currently achieved driving ranges. It is worth
mentioning in this context that the driving ranges which the BEVs that can be found in Table
2.1 achieve are upon the highest of all available BEVs. Furthermore, note that the driving
ranges are based on the ,,New European Driving Cycle* (NEDC). These official driving ranges
tend to lie significantly above the driving ranges which can be experienced in practice (66).
If two different values for battery capacity or driving range are stated in Table 2.1, then this
means that the vehicle can be equipped with batteries of different size. The two given values

represent the lowest and the highest (in brackets) of all possible battery capacities.

2.1.2 Energy Consumption of Battery Electric Vehicles

First, factors influencing the energy consumption of BEVs are considered. Second, it is sketched

how energy consumption estimations are typically conducted.

Factors Influencing Energy Consumption of BEVs The comparably small amount of en-
ergy currently available car batteries are able to provide leads to the need of highly accurate
energy consumption models. To achieve such a high level of precision, all factors which signif-
icantly influence the energy consumption of BEVs have to be identified. In literature, factors
known to influence the fuel consumption of ICEVs, such as driving behavior (44), traffic con-
ditions (/48) (164) and vehicle parameters (49), are often initially considered. For BEVs, the
importance of traffic conditions on energy consumption is confirmed in (86) and (/23). The
dependency of energy consumption on the characteristics of the considered BEV is empha-
sized in (57) and (/23) and the impact of individual driving style is included in the energy
consumption model in (57). However, in recent studies, it has been shown that road steepness
(92) and weather conditions (66) also have significant impact on the range of BEVs. Note that
road steepness (due to increased driving resistance) and weather conditions (primarily if the air
conditioning or the heating are activated) influence the fuel consumption of ICEVs, too. The
difference is, as mentioned, that the battery of BEVs in most cases cannot provide the same
amount of energy which the fuel in the tank of an ICEV provides. Thus, more detailed models
are applied to get a more precise estimation of the remaining driving range. Another reason
for the consideration of road steepness in the context of BEVs is their ability of regaining en-
ergy via recuperation. This implies that by driving downhill, the BEV’s battery may even be
recharged. Furthermore, the effect of weather conditions is stronger on BEVs than on ICEVs:
Battery capacity reduces at low temperatures (66). This effect does not increase energy con-
sumption, but achievable driving ranges still get reduced. Furthermore, ICEVs automatically
generate a lot of warmth while driving. This warmth can be used for heating. BEVs, on the

other hand, have to operate an electric heating and thus need additional energy for heating.
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Energy Consumption Estimation To get from factors influencing energy consumption to
specific energy consumption values, energy consumption models are necessary. In principle,
energy consumption models for BEVs are based on the same ideas as fuel consumption models
for ICEVs. In (/617), for example, a regression model is suggested to estimate energy con-
sumption. This model describes the dependency of energy consumption on a set of explanatory
variables which are primarily based on instantaneous driving speeds and instantaneous accel-
erations. Alternatively, physical consumption models are applied (86). Such models include
a variety of vehicle parameters (frontal area, vehicle mass, etc.) to determine driving resis-
tance* in dependency of driving speed, acceleration and road steepness. Based on the driving
resistance, the BEV’s mass, and the energy conversion efficiency of the electric motor, the en-
ergy which is necessary to move and accelerate the BEV can be derived. Besides the energy
consumption caused by movement, which is also denoted as primary energy consumption, ad-
ditional energy is necessary for operating the so-called secondary consumers, such as the radio

or the air conditioning system.

To predict the energy or fuel that is necessary to pass a certain road segment, typically a two-
step proceeding is executed in literature: First, a speed profile is estimated, i.e., the temporal
development of the speed with which the considered vehicle passes the relevant road segment
is estimated. These estimations are usually based on historical traffic data, current traffic infor-
mation or road categories (highway, freeway, etc.). In a second step, an energy consumption
model is applied to the estimated speed profile. In (57), for instance, real speed profiles were
recorded. Then, these profiles are used to predict driving characteristics (such as the num-
ber of stops, average speeds along road segments, etc.) depending on road class. The energy
consumption model is afterwards fed with these characteristics to estimate energy consumption
necessary for passing road segments. In (/23), recent information on the current (macroscopic)
traffic state is taken into account for simulating potential future speed profiles. These profiles
are again used as input for energy consumption models and the resulting energy consumption
values are applied to find routes that keep energy consumption as low as possible. Such routes
are denoted as energy efficient routes. Comparable approaches can also be found in (74), (86)

or (90). This already leads to the topic of navigation services for BEVs.

2.1.3 Navigation Services for Battery Electric Vehicles

Scientific work on three different types of navigation services, which are relevant for BEVs,
are considered in the following: The provision of energy efficient routes, the recommendation
of refueling or recharging stops, and the coordination of fleets of BEVs. In order to be able to

follow the subsequent statements, it is important to know that, within optimization problems in

“Driving resistance consists of rolling resistance, climbing resistance, aerodynamic resistance, and inertial re-
sistance.
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the context of navigation applications, road networks are usually represented by mathematical
graphs. The edges of the graph represent road segments and the nodes represent intersections.
Furthermore, costs are assigned to edges. These costs can be interpreted, for instance, as the
time that is necessary for passing the road segment which is represented by the edge to which
the costs are assigned. Alternatively, these costs can also be interpreted as the length of the

corresponding road segment or as the fuel/energy that is necessary to pass it.

Energy Efficient Routing In literature, the problem of finding energy efficient routes (i.e.,
to minimize energy consumption) is typically modeled as an SPP. In this context, some of the
characteristics of BEVs need to be explicitly taken into account. In (7), (/2) and (42), for
instance, it is shown how it can be included into the formulation of SPPs that the battery of
a BEV is not charged up to more than 100 percent due to recuperation. Moreover, routing
algorithms known from travel time and travel distance minimization are modified in such a
way that paths leading to an empty battery are not considered within the route search process.
Another frequently discussed issue is the possible existence of negative edge costs (/2) (42)
(74) (128), which is also caused by the recuperation ability of BEVs. This has significant
influence on the applicability of many established routing algorithms. A detailed discussion on

the topic of negative edge costs will be provided later on in section 4.2.

Vehicle Refueling Problem Charging strategies consist of two components: Route recom-
mendations and charging recommendations. Route recommendations are important for both
BEVs and ICEVs. Instructions where a vehicle has to be recharged or refueled, respectively,
and how much energy/fuel has to be charged/fueled appear to be less important for ICEVs than
for BEVs. Nevertheless, there exist some articles about the so-called vehicle refueling prob-
lem: Let it be assumed that a road network and a set of gas stations spread across this network
are given. Furthermore, the ICEV’s current position and a destination are specified. Moreover,
the prices for fuel differ between the gas stations. The goal is to provide a refueling strategy
which minimizes fuel costs and assures a reliable arrival at the destination. This problem was
discussed for the first time in (93). In this study, it is assumed for simplicity that the considered
ICEV can only take a single, pre-determined route. In (/40), the vehicle refueling problem
is extended to the network level, i.e., alternative routes are possible. Furthermore, long de-
tours, which are a possible result when minimizing total fuel costs, are penalized to achieve
more practicable route recommendations. In (/27), a real-world case study is described. The
money savings, which a trucking company obtained after introducing a software-tool for refu-
eling optimization, are analyzed. In (82), refueling issues are even included into the context of
traveling salesman problems. In this work also a fuel-buffer, i.e., a minimal amount of fuel that
has to remain in the tank to be able to compensate for unexpectedly high fuel consumption, is

suggested to keep the risk of running out of fuel low.
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Charging Strategy Optimization for Single Vehicles During the last years, along with an
increasing interest in BEVs, the basic idea of the refueling problem has been transferred to
BEVs, i.e., the task of finding optimal charging strategies emerged. Probably one of the first
publications about charging strategies for BEVs is (87) (published in 2011). There, a formu-
lation as an SPP is proposed. A graph is considered which represents a road network and a
few nodes are selected which mark the positions of charging stations. A shortest path between
a start node and a destination node has to be computed. Shortest paths are associated with
charging strategies by assuming that a BEV following such a path is fully recharged at each
visited node that marks the position of a charging station. The paths or charging strategies,
respectively, are optimized in (87) either with regard to the total distance traveled or the total
travel time. ,,Total* travel time refers to the time for driving plus the time for charging. Fur-
thermore, it is assumed that the energy consumption of a BEV solely depends on the traveled
distance. This implies that energy consumption costs are assumed to be static, i.e., the energy
consumption costs for passing an edge remain the same under all circumstances. Also time
costs are assumed to be static in (§7). For travel times and energy consumption, this represents
a significant simplification, since dynamic impacts, such as changing traffic conditions, cannot
be taken into account. On the other hand, presuming static edge costs facilitates the application
of so-called preprocessing methods. Such approaches are applied a priori, i.e., before the first
route search is carried out, to generate auxiliary data for a given graph and given edge cost
functions. These data are afterwards taken into account by (conventional) route search algo-
rithms to prune their search space.

In (87), such additional data are generated a priori. Time and distance costs between pairs
of charging stations are calculated. Based on this information, an additional graph consisting
only of those nodes which represent charging stations and edges between pairs of charging
stations is constructed. The edges, however, are left out if the distance between a pair of charg-
ing stations is very high. Let this graph be denoted as auxiliary graph. The route search is
then conducted as follows: First, the set of all nodes which can be reached from the start node
based on the currently available energy is computed. Dijkstra’s algorithm (36) is used for this
purpose. Second, all nodes are identified from which the destination can be reached under the
assumption of a fully recharged battery. This is again done via Dijkstra. It is checked whether
in both nodes sets at least one charging station is available. If this is not the case and if the des-
tination cannot be reached directly from the start node, then no appropriate charging strategy
exists. Otherwise, all routes from charging stations, which can be reached from the start node,
to charging stations, which allow reaching the destination, are computed. This route search is
done on the auxiliary graph (again by applying Dijkstra’s algorithm). The result of this pro-

ceeding are three types of routes or paths, respectively: The first type leads from the start node

SPPs are typically interpreted as dynamic programs, even though there exist also formulations of SPP as, for
example, integer linear programs. If not stated differently, SPPs are in this work always interpreted as dynamic
programs.
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Figure 2.1: Computation of charging strategies according to the methodology described in (57).

to a nearby charging station on the original graph, paths of the second type are part of the aux-
iliary graph and describe a sequence of charging stations leading from a possible first charging
station (near the start) to a possible last charging station (near the destination), and paths of the
third type describe routes on the original graph from one of the possible last charging stations
to the destination. To receive a complete charging strategy, the concatenation of paths needs
to be found which leads from the start to the destination and, in parallel, minimizes the overall
travel time or traveled distance, respectively. This is again achieved on the basis of Dijkstra’s
algorithm.

Besides the described preprocessing, another speed-up technique is applied in (§7) in order to
reduce computation times. At the time at which a request for a charging strategy is stated, a set
of relevant charging stations is identified in a first step. For this purpose, an approach is pro-

posed in (87) which selects only charging stations (from the set of all charging stations) which
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are located (more or less) between the start and the destination. No detailed description of
this approach is provided here. Then, the auxiliary graph is reduced correspondingly, i.e., only
those nodes and edges remain in the auxiliary graph, which represent either one of the selected
charging stations or a route between two of these charging stations. In total, it is proceeded as
follows (compare also Figure 2.1): A priori, costs to get from one charging station to another
are calculated. As soon as a charging strategy is requested, a set of reasonable charging sta-
tions is selected. An auxiliary graph consisting of the corresponding set of nodes is generated.
Edge costs for this graph are based on the preprocessed data. Finally, the route search is first
conducted on the original graph to identify reachable charging stations, then on the auxiliary
graph in order to get close to the destination, and finally again on the original graph to reach
the destination. Note that the preprocessing step and the two-steps process (identify reasonable
charging stations, afterwards compute a charging strategy by considering only these charging
stations) during the route search are explained here in detail, since several studies concerning

CSO propose similar approaches.

In (/38), a mathematical framework is described that allows deciding whether a certain desti-
nation can be reached without charging (given a starting location and a starting state of charge),
whether it is possible to reach this destination on the basis of the existing charging infrastruc-
ture, and how the number of necessary charging stops can be minimized. All these problems
are formulated as SPPs and modified versions of Dijkstra’s algorithm are used for the compu-
tation of solutions®. In contrast to (87), energy consumption costs are the only type of edge
costs which are considered in (/38). These costs are again assumed to be static. Furthermore,
a preprocessing step is conducted in (/38), too. However, not only costs to get from one charg-
ing station to another are computed. Instead, the amount of energy that is necessary to get
from one node to another is calculated and stored for pairs of nodes where at least one of both
nodes represents a charging station. It is shown how these additional data can be exploited
by dynamic programming approaches. A conducted case study confirmed that the suggested
procedure allows solving the described problems very quickly, even for huge road networks
consisting of millions of road segments and intersections. Another relevant aspect is the fact
that the described framework is developed for so-called battery switch stations. This means
that the considered BEVs are actually not assumed to charge energy. Instead, the whole battery
is switched. As a consequence, similar to (87), a state of charge of 100 percent is obtained
after each ,,charging® process. Hence, a driver cannot decide how much energy she/he wants
to recharge. Charging strategies as, for example, strategy 3 from Figure 1.1, where the BEV is
charged up to a state of charge less than 100 percent, cannot be represented.

In (/37), the framework from (/38) is extended. Now, multicriteria SPPs related to BEVs are

investigated. The considered problem formulations are intended to represent the wish to find

®The original version of Dijkstra’s algorithm cannot be applied here, since it is taken into account that energy
consumption costs may be negative.
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compromises between consumed energy, travel time, and traveled distance. This is motivated
by the conjecture that even very eco-friendly drivers are not willing to accept extremely long
detours or drastically increased travel times just to save some energy. Similar to (/38), the need
to recharge and, along with that, times for charging processes are taken into account. Problem
formulations, such as ,,Find the fastest path with at most two charging stops* are investigated.
All problems are formulated as SPPs and modified versions of Dijkstra’s algorithm are applied
for the computation of solutions. Again, all edge cost functions (energy consumption, distance,
travel time) are assumed to be static, which allows keeping computation times low. Further-

more, it is again solely possible to fully recharge the battery.

In (/41), the problem of finding optimal charging strategies is modeled as a dynamic program,
where total travel time is minimized. For the proposed optimization framework, some sim-
plifying assumptions are made: First, it is assumed that a possibility to charge exists at each
node of the graph. Second, time and energy costs are again assumed to be static. Third, energy
consumption for passing edges is assumed to be non-negative, i.e., the possibility of BEVs to
recuperate energy is up to some degree ignored. In contrast to these simplifications, the set of
possible charging actions is modeled flexibly. Instead of providing solely the option to fully
recharge the battery whenever a charging process is started (compare the aforementioned pa-
pers (/37) and (/38)), any state of charge between the BEVs initial state of charge and a fully
recharged battery can be obtained within the proposed formulation as a dynamic program.
Such a continuous set of decision possibilities is very uncommon for dynamic programming
approaches. Usually, all aspects of a dynamic program need to be discretized. Otherwise,
typical solutions approaches for dynamic programs are unable to guarantee optimality of the
computed solutions. In (/4/), however, a backward recursion algorithm is suggested, which is
able to ensure optimality of the calculated solutions under some mild assumptions. Besides the
backward recursion algorithm, an approximate dynamic programming algorithm is described,
which is able to find at least good solutions even if these mild conditions are not fulfilled.
However, this second algorithm discretizes the set of possible charging actions. Discretizing
the set of possible charging actions means that the recommended state of charge, i.e., the state
of charge which has to be reached at the end of a charging process, can solely be equal to one
of a few, a priori defined values. For example, all suggested charging processes end with a
state of charge that is a multiple of five percent (5%, 10%, ..., 95%, 100%). Since not all pos-
sible charging options are considered by the approximate dynamic programming algorithm,
optimization potential is lost up to some degree and consequently, optimality of computed so-
lutions cannot be guaranteed.

The most remarkable aspect of (/4/) is that the condition that ensures that a suggested charg-
ing strategy does not lead to an empty battery is designed in a more flexible way than in other

contributions about CSO. A (static) positive value is defined as the minimal necessary state of
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charge. If a charging strategy leads to a state of charge during the trip which is lower than the
minimal state of charge, then the corresponding charging strategy is not accepted. The idea is
the same as for the case of the vehicle refueling problem in (82), where a fuel buffer is sug-

gested to be able to compensate for unexpectedly high fuel consumption.

In (/52), the problem of finding optimal charging strategies is again modeled as an SPP. In
contrast to previously mentioned studies, energy consumption costs are here interpreted as
time-dependent quantities and thus are no longer static. Furthermore, similar to (/4/) for the
case of the approximate dynamic programming approach, the set of possible charging actions
is discretized. Charging strategies are optimized with regard to two different objectives: Travel
time minimization and, as an alternative, a combination of travel time and energy consumption
minimization. In addition, two different solution approaches are suggested. The first one is a
modified version of the so-called A*-algorithm (62) (63). The A*-algorithm can be interpreted
as an extension of Dijkstra’s algorithm. It uses additional information, for instance informa-
tion about geographical coordinates, to direct the route search to the destination. The second
approach is an approximate dynamic programming approach. It uses basically again the A*-
algorithm to compute routes. The difference to the first approach is that a heuristic is applied
to determine the sequence of charging stations that are visited. This means that the heuristic
proposes which charging station has to be visited next and then a route to this charging station
is computed. If this is not possible, then the corresponding charging station is excluded from
further consideration and another charging station is selected. One proceeds until either the
destination is reached or no more charging stations are left. A traffic simulation tool is used at
the end of (/52) to compare the two solution approaches with regard to the total travel time and

the total energy consumption that result from the corresponding charging strategies.

In (/0), a similar approach as in (87), (/37) and (/38) is pursued. A formulation of the problem
of finding optimal charging strategies as an SPP is suggested. Again, a preprocessing step is
executed, in which the energy consumption that is necessary to get from one charging station to
another is computed for any pair of charging stations. The corresponding energy consumption
values are computed using the dynamic programming approach which is applied in (7) for the
generation of energy efficient routes for BEVs. Though, in (7) the possibility to recharge is
not considered. Note that again static edge costs are presumed in (/0). The route search itself
is executed analogously to (§7), but no pre-selection of charging stations is proposed. Opti-
mality is interpreted as a combination of minimizing total travel time and minimizing energy
consumption. Even though it is not explicitly stated, it seems that the described framework al-
lows only full rechargings. At the end of (/0), a case study is mentioned shortly, which showed

that low computation times (less than one second on average) are achieved on rather big graphs.
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In (25) and (/57)7, a mixed integer nonlinear program is formulated to compute optimal charg-
ing strategies for single BEVs. Total travel times are considered as the optimization criterion
and a constraint is added to the problem formulation in order to avoid an empty battery. En-
ergy consumption and travel time costs are again modeled as static quantities. Analogously to
(/41), solutions of the described optimization problem may recommend arbitrary recharging
amounts. To solve the mixed integer nonlinear program, it is separated into two subproblems.
Both of these are linear programs. Solving the first subproblem leads to a route. Based on
this route, the second subproblem is formulated. Solving the second problem leads to recom-
mendations concerning the amount of energy that has to be charged at the charging stations
which are available along the already computed route. It is shown that the separation into two
subproblems still ensures optimality of the computed solution for the described setting. Fur-
thermore, because both subproblems are linear programs, low computation times even for big

problem instances can be expected.
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Figure 2.2: Screenshot taken from www.erouting.net (45). The output information of an exist-
ing web-service for charging strategy computation is shown.

First approaches to provide charging strategies also emerged in practice. The eridea AG, a
small engineering company, launched a non-profit project allowing users to request charging

strategies via a website (45). It is possible to choose from a range of BEV models and to define

7(25) is a more detailed, but unpublished version of (/57).
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at which charging stations the customer who requests the charging strategy is able to charge®.
After a, compared to typical routing applications, long computation time, the user receives a
route, a list of charging recommendations, and information about the time at which the charg-
ing stations are reached and with which state of charge they are reached (see Figure 2.2). A
similar web-service can be found in (60). In 2015, with Tesla Motors, the first car manufac-
turer started providing charging strategies (/43). The corresponding tool is denoted as ,, Trip

Planner* and it is embedded in the in-dash navigation system.

Table 2.2 summarizes the central aspects of the above described literature about CSO. Note
that no contributions from practice are listed here, since not much information concerning the
underlying optimization problems and algorithms is available. It is remarkable that almost all
listed contributions suffer from two significant simplifications: First, except for (/52), edge
costs are always modeled as static values. This makes it impossible to take the influence of
dynamic aspects into account. For example, the impact of changing traffic situations on energy
consumption or travel time cannot be represented. As a consequence, the accuracy of the whole
model and, along with this, the quality of the resulting charging strategies is limited. Second,
the topic of reliability is only addressed in a very basic form. A constraint which ensures that
the considered BEV does not run out of energy is part of each of the listed problem formu-
lations. However, the possibility that energy consumption values that are considered within
the models may not mirror real energy consumption absolutely correctly cannot be taken into
account by the suggested problem formulations. This is extremely critical, since without the
ability to handle unexpected developments, reliability cannot be ensured in practice. The only
exception is the model described in (/4/), where a static part of the battery capacity can be
used as an energy buffer. This concept is rather simple. Its main limitation is that the minimal
state of charge remains the same, independently of the intended trip. If five percent of the
battery capacity are reserved to account for unexpectedly high energy consumption, then this
is probably a rather big buffer if the destination is one kilometer away. On the other hand, the
buffer may be too small if the destination is 100 kilometers away. Considering the importance
of reliability for drivers, it is surprising that not more attention is drawn to this topic. On the
other hand, keeping the models simpler reduces the computational effort which is necessary

for solving the corresponding optimization problems. Some of the listed studies prove this (/0)

(137) (138) .

81t is not possible to charge BEVs at arbitrary charging stations. It was already mentioned that different technical
standards exist. Furthermore, specific user accounts are often necessary. These accounts allow recharging BEVs at
charging stations of a certain charging station operator and only of this operator.



Table 2.2: Existing studies on CSO for single BEVs

Study Problem Optimization Criteria  Solution Approach Model Characteristics
Reference Formulation

Kobayashi & et ~ SPP (dynamic - minimize trip distance - Dijkstra’s algorithm - only full recharging possible
al. (87) program) - minimize total travel - preprocessing costs between - static edge costs

Storandt (/38)

Storandt &
Funke (/37)

Sweda (/41)

SPP (dynamic

program)

SPP (dynamic

program)

dynamic

program

time

- minimize number of

rechargings

- different compromises
between consumed
energy, travel time and

traveled distance

minimize total travel

time

charging stations
- ex ante reduction of

considered charging stations

- modified Dijkstra
- preprocessing costs between

charging stations and nodes

- modified Dijkstra

- backward recursion
- approximate dynamic

programmig approach

- energy costs assumed to be directly

proportional to distance traveled

- only full recharging possible
- static edge costs
- case study proved low computation times

for huge graphs
- only full recharging possible

- static edge costs
- case study proved low computation times

for huge graphs

- arbitrary recharging amounts possible
- static edge costs
- recharging possible at each node

- energy buffer to account for uncertainty

Table continuation on next page
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Table 2.2 — Existing studies on CSO for single BEVs continued

Study Problem Optimization Criteria  Solution Approach Model Characteristics
Reference Formulation
Wang & et al. SPP (dynamic minimize energy costs - modified A*-algorithm - discretized set of possible recharging
(152) program) along total travel time - heuristic selection of amounts
charging station order for - time-dependent edge costs
speed-up
Baouche, etal. ~ SPP (dynamic minimize energy costs - dynamic programming - static edge costs
(10) program) along total travel time approach from (7) - (probably) only full recharging possible

Wang &
Cassandras (25)
(I151)

mixed integer
nonlinear

program

minimize total travel

time

- preprocessing costs between
charging stations
- linear programming

approaches

- case study showed reasonably low

computation times

- arbitrary recharging amounts possible
- static edge costs
- reduction to linear programs ensures low

computation times
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In conclusion, it seems that most existing models for CSO were primarily developed to achieve
good computation times. If necessary, unrealistic simplifications were accepted. Hence, the
requirements which are defined by ROs 1a and 1b cannot be fulfilled on the basis of prior work.
Especially the question of how uncertainty can be handled is not or not sufficiently answered.
To construct a problem formulation for CSO that is able to adequately include the possible
existence of uncertainties, it seems reasonable to shift the focus of the literature review. In the
following, scientific works about taking uncertainty within routing applications into account is
considered. But before this is done, existing work about providing charging strategies to whole
fleets of BEVs is described.

Coordination of Electric Fleets Besides situations in which solely one BEV has to be led to
a destination, situations in which a whole fleet of BEVs needs to be managed are also treated
in research. Given a road network and limited charging infrastructure, the goal for this type
of problem is to provide route guidance to each of the BEVs of the considered fleet. For this
purpose, charging processes need to be scheduled to ensure that each BEV can reach its desti-
nation. There exist many different formulations of this type of problem, each of them focusing
on different aspects: In (/0/), a rather simple approach is described. A framework is sketched
in which for each BEV the route which leads to the lowest energy consumption is computed.
The BEVs are routed to free charging stations during their trips if this is necessary to reach the
destination. In (/26), BEVs are modeled as agents intending to minimize their travel times and
monetary costs for charging energy. One of the goals of this research is to achieve an equal
distribution of charging demand over the available charging stations and over time. For this
purpose, several pricing strategies, which define the price of electricity in dependency of, for
example, the expected utilization of the corresponding charging stations, are suggested. The
effects of the described pricing strategies are compared via simulation. In (//) and (/3/) , a
fleet of BEVs is assumed to visit a set of customers. It is assumed that each customer can
only be visited during a limited time period. The problem is formulated as a so-called vehicle
routing problem with time-windows, which is a frequently studied type of a (mixed) integer
linear program. The route planning includes an assignment of customers to vehicles to ensure
that each customer is visited at least once. In (73), an approach to manage a fleet of electric
taxis is described. In contrast to the approaches which were mentioned up to this point, the
problem formulation which is suggested in (73) also includes the possibility that charging sta-
tions are occupied by ,.external“ BEVs, i.e., by BEVs which are not part of the managed fleet.
The charging demand caused by these BEVs is modeled as a random variable. Recently, also
contributions considering the management of fleets of autonomous BEVs appeared (29) (76).
The most significant difference to managing fleets of conventional BEVs is the ability of the
vehicles to drive on their own. This can be used to conduct necessary charging processes with-

out any human intervention.
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Providing charging strategies to a single BEV is obviously easier than managing a whole fleet
of BEVs. This fact has influence on the structure and complexity of the resulting optimization
problems and, along with this, also on the applied solution approaches. If fleets are coordi-
nated, then quickly rising computation times often make it impossible to apply optimization
algorithms to big problem instances or necessitate keeping problem formulations very simple,
which in most cases leads to unrealistic assumptions. These drawbacks represent a contrast to
ROs 1a to 1c. Hence, the focus for the described research is set on the single-vehicle case. The
fundamental idea is that as long as this situation cannot be handled in such a way that ROs 1a

to 1c are achieved, it is not reasonable to attempt more complex scenarios.

2.2 Routing under Uncertainty

In this thesis, uncertainty refers to situations in which a decision has to be made or a compu-
tation has to be carried out, but there exists no or possibly incorrect information about one or
several aspects that are relevant for the decision or computation, respectively. Within mathe-
matical models, uncertain aspects (predictions are a typical source of uncertainty) are in most
cases represented via random variables — if uncertainty is represented at all. In the context of
traffic and especially in the context of navigation applications, a wide range of literature about

uncertainty exists, particularly about uncertainty of travel time predictions.

Travel Times and Uncertainty Initial research showed that trip travel times are not static and
usually follow a skewed distribution with a long tail (/53). The consequence is that predicting
travel times is not trivial. Hence, real travel times often differ from predicted travel times. In
(/12), it is distinguished between two reasons for potentially incorrect travel time predictions:
Forecasting errors of (macroscopic) traffic state predictions and uncertainty due to individual
driving style. Other studies attempt to disaggregate the random aspects of travel time into reg-
ular components (depends primarily on demand), irregular components (depends primarily on
capacity), and real random aspects (/57). In (9/) and (/2/), based on conducted surveys, it is
concluded that not only expected or mean travel times, but also travel time uncertainty has sig-
nificant influence on route choice and thus is important for drivers. These findings motivated
further, more application related contributions. In (/5), for instance, it is argued that traffic
management operations need to improve travel time reliability. Building on these considera-
tions, a methodology for rating managed lane operations based on their influence on travel time
reliability is suggested. In the context of routing applications, so-called risk-averse or robust
routing approaches are often thematized when it comes to taking uncertainty into account. In
(80) and (87) a neural networks approach for predicting travel times is described which fore-
casts lower and upper travel time bounds instead of specific values. Most important for the
described research, however, are studies describing how uncertainty of travel time predictions
can be integrated into problem formulations that are related to navigation applications, such as
SPPs.
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Modelling Uncertainty in Shortest Path Problems Uncertainty is typically addressed in
SPPs by considering random instead of deterministic edge costs. From literature, basically two
different types of SPPs resulting from this are known (77): Stochastic SPPs and robust SPPs.
For stochastic SPPs, it is necessary to know for each edge of the considered graph the proba-
bility distribution of the corresponding edge costs. Based on this information, different types
of optimality criteria can be considered. The most common criterion is to minimize expected
paths costs (53) (/60). Other approaches suggest maximizing the probability that the costs for
reaching the destination do not exceed a certain, a priori given cost budget (/29) (/36). Alter-
natively, the goal is to determine a cost budget, which is, on the one hand, as small as possible,
on the other hand, it needs to be big enough to ensure that the probability that this budget is
exceeded is not higher than a given maximal probability (285) (/59).

Similar to stochastic SPPs, it is additionally assumed for robust SPPs that edge costs are ran-
domly distributed. The main difference to stochastic SPP is that not the probability distributions
are known, but only a continuous interval in which possible realizations of the random edge
costs must lie, i.e., a lower and an upper bound are known for each edge. The path is denoted
as optimal which fulfills the ,,minmax regret criterion* (also denoted as ,,minmax robust de-
viation criterion* (77)). This means that the path has to be found which is able to keep the
maximal difference to the best solution as small as possible, independently of the realizations
of the random edge costs (§9). This can be interpreted in the context of game theory: Player A
intends to choose a path that leads to costs that are not much higher than the costs of the best
possible path. It is important in this context that player A does not know the realizations of the
random edge costs. After player A has selected a path, player B, who is the opponent of player
A, constructs a scenario, i.e., a combination of realizations of random edge costs, which makes
the selected path as expensive as possible and, at the same time, generates another, extremely
cheap path. The goal of the opponent is to achieve a large difference between the costs of the
selected path and the costs of the path which leads for the constructed scenario to the lowest

possible costs. Solving a robust SPP is the same as finding an optimal solution for player A.

Solving both stochastic SPPs and robust SPPs is computationally expensive (/02) (/65). In
order to reduce computational effort, some works propose deterministic frameworks. In (30)
and (78), for example, travel times are considered to be the optimization criterion. The goal is to
compute paths which lead to low travel times and, simultaneously, achieve a high level of travel
time reliability. This means that edges which often lead to significantly higher travel times
than the expected travel time® should be avoided. However, instead of explicitly considering
travel time distributions on an edge level, unreliable edges are simply penalized by increasing
their deterministic edge costs in dependency of the variability of the corresponding travel time

distribution. Hence, unreliable edges can be avoided, even though edge costs are modeled in a

The travel time distributions of such edges show long tails.
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deterministic way. Note that the already mentioned idea of applying fuel/energy buffers in the
context of vehicle refueling problems (82) or CSO (/4/) can also be understood as a possibility

to handle uncertainty of edge costs within a deterministic framework.

Energy Consumption and Uncertainty There are probably some parallels between energy
consumption uncertainty and travel time uncertainty. The dependency of energy consumption
on driving speeds and accelerations, for example, indicates that forecasting errors of traffic
state predictions and uncertainty due to individual driving style are likely to cause not only
uncertainty of travel time predictions (//2), but are a potential reason for uncertainty of en-
ergy consumption predictions, too. However, only few scientific contributions seem to exist
which address the uncertainty of energy consumption predictions. This is surprising, since it
can be expected that it is more important for a driver of a BEV to take the uncertainty of en-
ergy consumption predictions into account than it is important for a driver of an ICEV to take
uncertainty of travel time predictions into account. An example of such a contribution is (47).
There, a robust optimization approach is described that allows computing solutions for SPPs
where stochastic energy consumption costs have to be minimized. In (/07), a framework to
interpret remaining driving ranges for BEVs as stochastic variables is explained. Uncertainty

of future driving profiles is modeled via a discrete-time Markov chain.

2.3 Real-time Traffic Information

As mentioned, the simulation study in chapter 7, where the impact of uncertainty on the qual-
ity of charging strategies'® is analyzed, takes imperfect traffic information as the only source
of uncertainty into account. Note that in this thesis, a differentiation is made between traf-
fic information, traffic state estimations, and traffic predictions. Traffic state estimations are
intended to describe the current traffic situation, traffic predictions try to describe the future
development of traffic conditions, and traffic information denotes both traffic state estimations
and traffic predictions. In order to gain a comprehensive understanding of the dependency
of charging strategy quality on the quality of the available traffic information, different ap-
proaches to generate traffic information are considered during the simulation study. Depending
on the generation approach, the resulting traffic information shows different levels of quality''.
It is important that, besides artificially produced traffic information, actual traffic information
which is used within market-ready tools, such as navigation devices, is also considered. Oth-
erwise, the risk exists that some aspects, which are relevant for bringing CSO into practice, are
ignored within the simulation study. These considerations motivate taking a closer look into

commercially provided traffic information.

10Recall that the quality of charging strategies consists of reliability and efficiency.
" Quality in the context of traffic information is in this work interpreted as the level of similarity between the
considered traffic information and the real traffic situation.
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Introduction to Traffic Information in Practice Modern navigation systems, but also other
types of traffic related services that can be found in practice, typically base their route recom-
mendations on so-called real-time traffic information (RTTI). For the remainder of this work,

RTTI denotes information which fulfills the following properties:
1. The information is primarily based on recently collected, traffic related data.
2. The information is frequently updated.

3. The information either intends to describe current traffic states or to predict future traffic

states.

Thus, such navigation systems not only suggest routes which depend on static factors like his-

torical speed averages or the road network, but also include recent incidents. In practice, the
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Figure 2.3: Map of Portland (United States of America) visualizing real-time traffic informa-
tion (//5)

considered RTTI is usually not generated by the manufacturers of the navigation systems them-
selves. Instead, traffic predictions and traffic state estimations are received from private traffic
content providers, such as TomTom or INRIX. These companies have access to a wide range
of traffic related data, for example, speed and flow data gathered by inductive loop detectors or
so-called journalistic data (information about road works, events, etc.; see (7/) for an overview
of data sources). Their main data source, however, are probe data. This kind of data is gathered
via mobile devices that are located within vehicles, for example navigation systems or smart

phones. These devices regularly report their current location and possibly further information.
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All available data are fused by the traffic content providers. The primarily purpose is to es-
timate the current traffic situation. Recently, traffic content providers also started to compute
and broadcast traffic predictions in real-time.

In many cases, average driving speeds are used to describe traffic situations, i.e., RTTI is infor-
mation about speeds. If nothing else is stated, in this work RTTI is considered to be information
about speeds, too. To be able to associate speed information with specific locations, usually
standardized digital maps are applied. These maps separate the road network into road seg-
ments and denote each road segment with a unique identification key. Traffic content providers
regularly send speed information along with an identification key to their customers, who use
this information for the provision of their own traffic related services. Examples for such ser-
vices are routing apps or illustrations of road networks, where each road segment is colored
according to the estimated current average driving speed. An example of such a map is dis-
played in Figure 2.3'2. Note that the identification key is necessary in order to be able to

associate a broadcasted speed value with a road segment.

RTTI provided by professional traffic content providers shows some important features. This
type of information covers road networks comprehensively. For the case of CSO, which is
particularly relevant if longer distances have to be covered with BEVs, the availability of reg-
ularly updated traffic information along the whole distance is essential, at least if one intends
to take the impact of traffic on energy consumption and travel times into account. Commercial
RTTI is probably the only possibility to ensure this. Another benefit is that professional traffic
content providers have lots of data available. It was impossible for most companies to gain and
handle comparably huge amounts of traffic related data. More data provides, in principle, the
possibility to obtain more accurate estimations of current and future traffic states. Though, it
cannot be expected that recent data are always (24 hours a day, seven days a week) available
for each part of the whole road network. To detect congestion, for instance, there needs to
be either some kind of stationary detector at the corresponding position or a vehicle equipped
with a mobile device which experiences the congestion. Hence, the detection of traffic related
incidents may take some time or is not achieved at all. Moreover, gathered data need to be
aggregated, interpreted, and a corresponding traffic information has to be broadcasted. Each of
these steps consumes time and may cause errors (misinterpretations, transmission errors, etc.).
The consequence is that even traffic state estimations provided by professional traffic content
providers often are unable to mirror the real traffic situation accurately (/9) (2/). This raises

the question about the quality of RTTI and how it can be measured.

Assessment of Real-time Traffic Information An important task, which is frequently ad-

dressed in literature, is the assessment of the quality of commercial RTTI. For the intended

"2The dashed rectangle in Figure 2.3 will be relevant later on.
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simulation study in chapter 7, where the dependency of the quality of charging strategies on
the quality of the available traffic information is analyzed, it is also important to be able to mea-
sure the quality of RTTI quantitatively. Before this can be done, however, the term ,,quality*
needs to be defined in the context of RTTI.

There exist very detailed considerations about the definition of information quality in general.
In (/56), for instance, seven different facets of information quality are listed (accuracy, consis-
tency, completeness, availability, recentness, metric precision and semantic precision). Even
though this contribution has a traffic related background, the suggested concept for defining
information quality differs significantly from the interpretation of quality which can be found
in studies that particularly deal with the assessment of commercial RTTI'3. In these studies, it
is always proposed to generate at first a numerical representation of the real traffic situation,
and then define quality as the level of similarity between broadcasted RTTI and the generated

representation.

Basically, it can be distinguished between two different types of methods for generating numer-
ical representations of traffic situations (2/). One possibility is the execution of test drivings
where the global positioning system (GPS)-traces of the test vehicles are recorded. Such traces
consist of data about the vehicle’s position in dependency of time. This makes it possible to
derive driving speeds, which again allows drawing conclusions on prevailing traffic conditions.
Methods for rating the quality of RTTI compare the trace-data or probe-data, respectively, with
the RTTL. In (20), for example, road segments where congestion was experienced by the drivers
during the tests drive are identified based on the probe-data. For this purpose, a speed threshold
is defined. If the average driving speed along a road segments fell below this threshold, it is as-
sumed that the considered vehicle encountered congestion. Afterwards, the times and segments
for which congestion was experienced during the test drivings are compared to the times and
segments for which congestion should have been experienced according to the analyzed RTTL
A false alarm rate and a hit rate are derived to assess the quality of the RTTL. In (95), a simi-
lar procedure is suggested. However, the RTTI is rated according to the amount of additional
travel time which a routing recommendation on the basis of the broadcasted RTTI may cause
in comparison to the situation of having perfect RTTI available. The term ,,perfect™ means in
this context that RTTI meets exactly the situation described by the recorded GPS-traces.

The other possibility for generating numerical representations of traffic situations is the con-
struction of spatio-temporal descriptions of the development of traffic. Such descriptions show,
for example, average driving speeds in dependency of space and time (usually for a certain
road corridor during a specific time period). Methods for generating such spatio-temporal traf-
fic state reconstructions are the ASDA/FOTO (automatische Staudynamikanalyse/forecasting

of traffic objects) models, which are based on Kerner’s three phase traffic theory (chapters 2

3Whenever rating commercial RTTI is addressed in studies, then solely traffic state estimations and no traffic
predictions are considered. The described ideas, certainly, can in most cases be directly transferred to the latter, too.
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and 9 in (79)), and the adaptive smoothing method (ASM) proposed in (/46). More details
about macroscopic traffic state reconstructions will be provided later on in section 6.2. Meth-
ods for rating the quality of RTTI compare the spatio-temporal traffic state reconstructions
with the RTTI. In (/9), spatio-temporal regions of congestion are identified on the basis of a
traffic state reconstruction which is computed according to the ASM. These regions are com-
pared to broadcasted congestion warnings (according to the analyzed RTTI) and, similar to
(20), a false alarm rate and a hit rate are derived to assess the quality of the RTTL In (/22),
the ASDA/FOTO-models are used to produce spatio-temporal traffic state reconstructions for
a certain road corridor. Then, (instantaneous) travel times resulting from this reconstruction
are compared to (instantaneous) travel times resulting from the considered RTTI. The RTTI is

rated depending on the differences between both types of travel times.

Data Availability and Real-time Traffic Information Quality Instead of assessing traffic
information quality, it is often analyzed in literature which level of quality can be achieved
given a certain level of data availability. In (22), a pure statistical analysis is carried out to de-
rive a relation between traffic volume, percentage of vehicles that constantly send their driving
speeds to a traffic content provider, and the time that is necessary to detect congestion after its
occurrence. Another approach for analyzing the relation between data availability and the pos-
sible traffic information quality is stated in (//0). In this study, a freeway corridor is simulated
using a microscopic traffic simulation tool. Hence, the movements of all vehicles and along
with them the ,real” (real refers to the reality within the simulation) traffic situation are fully
available. In a next step, a certain percentage of the vehicles is randomly selected and, based on
the data belonging to the selected vehicles, a traffic state reconstruction is executed. This traffic
state reconstruction resulting from considering only a reduced data set is compared to the real
traffic situation. This allows deriving a relation between penetration rate (number of tracked
vehicles divided by the number of total vehicles) and achievable traffic estimation accuracy. In
(105) the procedure is almost the same. Other works do not rely on traffic simulation to get
a close idea of the real traffic situation. In (65) and (/00), the traffic situation on a freeway
corridor during a period of a few hours was comprehensively captured by organizing hundreds
of test drives. Each of the corresponding vehicles sent its current position and driving speed
every few seconds. With having a set of traces that is big enough to describe the real traffic
situation adequately, the procedure itself is then the same as in (//0). In (5), so-called next
generation simulation (NGSIM) data are analyzed in an urban scenario. For the generation
of the NGSIM data, the movement of all vehicles within a small part of a road network was
fully recorded via cameras for a short time period. Based on the resulting videos, the exact
movement of each vehicle is derived, providing an almost perfect picture of the whole traffic
situation. Again, data from different percentages of randomly selected vehicles are used for
traffic state estimations and the result is compared to the real traffic states, i.e., to traffic state

reconstructions that are based on the whole data set.
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2.4 Summary

In chapter 2, literature in areas that are related to the problem of finding optimal charging
strategies has been described. It started in section 2.1 with a general introduction to the topic
of electric vehicles. Studies were discussed, which describe which factors have influence on
the energy consumption of BEVs and how energy consumption can be estimated or predicted,
respectively. Next, different topics in the context of navigation applications for BEVs were
considered. Besides contributions about energy efficient routing, the vehicle refueling prob-
lem, and fleet management approaches for BEVs, also prior works on CSO were described. It
turned out that existing problem formulations are too simple as if they were able to fulfill the
requirements defined by ROs 1a and 1b. Particularly the uncertainty of future energy consump-
tion has not yet been addressed sufficiently. As a consequence, the focus was shifted in section
2.2 to modeling uncertainty within routing applications. Finally, in section 2.3, traffic infor-
mation which is available in practice was described. It was sketched how traffic information
is generated and why errors occur. Moreover, an overview of existing approaches to measure
the quality of such information was provided. Section 2.3 was intended as a preparation for
the simulation study in chapter 7, where error-prone traffic information is considered to be the

only source of uncertainty.



Chapter 3

Charging Strategy Optimization as a
Multistage Decision Problem

From the literature review in chapter 2, it can be observed that prior work on CSO primarily fo-
cuses on achieving low computation times. To obtain this, the suggested models are kept rather
simple. It is assumed, for example, that all charging stops lead to a fully recharged battery or
that time and energy necessary for passing road segments are static values. The most crucial
simplification, however, is that the possibility of incorrectly predicted energy consumption is
not taken into account at all. Due to this, it is concluded in chapter 2 that existing approaches
are inappropriate for achieving ROs 1a and 1b. The goal of chapter 3 is to start closing exist-
ing research gaps. For this purpose, the problem of finding optimal charging strategies will be
modeled as a multistage decision problem (MDP). This problem formulation will be primarily
designed to lead to a realistic modeling and to be able to include all relevant problem aspects.
This will ensure that particularly RO 1a can be achieved. Moreover, the formulation as an MDP
will form the basis for further models, which will finally be able to fulfill all subobjectives of
RO 1.

Chapter 3 is structured as follows: At the beginning, fundamentals in decision theory are ex-
plained and the essential components of sequential MDPs are described. In a next step, it is
motivated why the problem of finding optimal charging strategies is formulated as an MDP.
The meaning of each of the components of MDPs in the context of CSO is discussed and ap-
propriate adjustments of their definitions are provided. It is finally analyzed up to which degree

the resulting problem formulation as an MDP is sufficient to achieve RO 1a to RO Ic.

3.1 Fundamentals of Decision Theory
Consider the following situation: With her/his actions a decision maker has the possibility to

influence the behavior of a (probabilistic) system as it evolves through time. She/he can only
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act at specific points in time (so-called decision stages) and there exists a number of action
possibilities from which she/he can choose at each of these points in time. Her/his goal is to
influence the system in such a way that it behaves optimally with regard to some criteria. Then,
an MDP can be formulated in a non-formal way as follows: Find a sequence of actions (one
action at each decision stage) which optimizes the system’s development with respect to the

given criteria (formulation is taken from p. 17 in (//7)).

For a mathematical formulation of MDPs, the subsequent notations are used. Similar defini-

tions can be found in section 2.3 in (54):

1. A finite set of decision stages t1, t2, ..., tx with K € N, a starting time ¢ and an ending

time tx41.
2. A set of decision spaces U, with k € {1,2,..., K'}.

3. A sequence of real-valued random variables & with & € {0, 1,..., K + 1}. The corre-
sponding realizations are denoted by &, € R™ with m € N\ {0}.

4. A real-valued performance measure f.
5. A decision policy 7 consisting of decision rules 75 with k € {1,2, ..., K'}.

Decision stages t1,t9, ..., tx represent points in time at which the decision maker is able to
act. Decision spaces U describe the set of feasible actions at time ¢, from which the deci-
sion maker can choose. The development of the system over time is represented by random
variables £, and performance measure f represents the criteria according to which the system
behavior shall be optimized. Performance measure f returns a penalty (or revenue, respec-
tively) depending on the chosen decisions u; € Uj, and the system’s development & (recall
that &, € R™ forall k € {0,1,..., K + 1}):

FoREFDI o s Uy x . x U — R, (3.1)

Finally, a decision rule 7y describes which decision is recommended at decision stage tj ac-

cording to decision policy 7.

Figure 3.1 illustrates a sequential multistage decision process. In this context ,sequential®
means that the decision stages are ordered, i.e., t; < tx41 Vk € {0,1,..., K}, and that when
reaching decision stage tj, all previous decision stages tx- with £* < k have been visited be-
fore. The whole process starts at time #y. &, represents the system’s initial state!*. Variable

&o (and all further &) usually consists not only of one single number, but of a whole vector of

!4The initial state is usually understood as a given set of values and not as a random variable. Nevertheless, it is
distinguished between the vector {; € R™ and the deterministic variable &g
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| Former Actions uy, ..., uy_q | Realizations &, ..., § Possible Current Actions
~ Prior Distributions: P(Egsq, .1 €x+1 | &gy - » &0 Ug, e g, W) ~
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Figure 3.1: Overview of information which is available at the time at which an action needs to
be chosen (for the case of a sequential MDP).

quantities which are relevant for the decision maker. Quantities are relevant if they are consid-
ered directly by the performance measure f, if they have influence on the available actions or if
they allow deriving a more accurate prediction of the future development of relevant quantities.
After the start, the system evolves between times ¢y and ¢;. The results of this development
(and possibly also the development itself) are represented by &;. Then, the decision maker is
allowed to choose her/his first action from decision space U, since the first decision stage is
reached at time ¢;. All information that is available at time ¢; can be taken into account for this
first decision. As shown in Figure 3.1, it is assumed that the realized system states £, and &; are
known at that time. For all following decision stages t; with k € {2, 3, ..., K}, all former deci-
sions u1, ..., ux—1 are assumed to be known, too. However, it is also assumed that some kind of
knowledge about the system’s future behavior is given. This is an essential assumption in deci-
sion theory. It means that some information about random variables & for k € {2,3,..., K+1}
and about their dependency on the current action has to be available. If this was not the case,
then the future impact of current actions could not be estimated. At decision stage tj, this
knowledge of the system’s future behavior typically is represented by conditional probability
distributions. These distributions depend on former realizations, on former decisions, and on

the action that will be executed at the current decision stage:

P(ki1, Ekr2y ooos Ek+1 | €0y €1y veey Epy UL, Uy woy Upe—1, U ). (3.2)

These distributions are often referred to as prior probability distributions or priors. In equa-
tion 3.2, variables uy, us, ..., ux—1 denote actions which have already been executed at previ-
ously reached decisions stages. The -symbol, on the other hand, is intended to emphasize that

the corresponding action 4y is now (i.e., at time ¢;) available, but it has not been executed yet.
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This means that, depending on the current decision, the probabilities of future system devel-
opments change. Now, return to the situation where decision stage 1 has just been reached.
The decision maker selects one feasible action from decision space {/; based on her/his current
knowledge. It is assumed that for any feasible actions 4, € U; the corresponding prior dis-
tribution is known. The procedure or methodology according to which the action is selected
by the decision maker at a specific decision stage t; is denoted as decision rule 7. 7 is a
function which returns, depending on former actions and realizations of random variables, an

action from the current decision space:

mn c R™EHD o < ox U — U
% 1 -1 e (3.3)

ﬂ—k(g(% "'7§_k>u1> '-'7uk—l) = Uk

Here, it is used that each random variable &}, obtains values in R"™. Any function of the form
described by equation 3.3 can be applied as a decision rule. Certainly, solving a decision
problem means to find a decision policy m = (1, ..., Tx ), which optimizes the value that is
returned by f. For formulating a decision problem mathematically, it is important to stress that
7y, can solely depend on information that is available at time f;. A decision policy consisting
only of decision rules which fulfill this property is denoted as non-anticipative (p. 11 in (34)).

This notion allows giving a general formulation of (sequential) MDPs:

minimize E[f (£, 7(£))]
subject to ;€ F(R™FHD 1y x .. x Up_q,Uy,) (3.4)

7 non-anticipative

Here, variable ¢ is defined as the vector (&, ..., {x+1) and furthermore
FR™ 2 s vty x o x Up—1, Uy) (3.5)

as the space of all functions mapping from R™* k1) s Uy % ... X Up_1 to Uy,. So far, a general
mathematical formulation of decision problems is derived, but it seems necessary to state some

additional remarks:

Even though &, is considered to be a random variable, the processes which are described by &,
not necessarily need to be understood to be random processes. The randomness may just be a

way to represent uncertainty or missing knowledge.

Formulating the optimization problem as a minimization problem does not limit its generality,
since (in the case of maximization problems, i.e., if f is a utility function and not a penalty func-

tion) there is no difference between maximizing E[f (£, 7(£))] or minimizing E[— f(&, 7(€))].
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Optimizing the expected value E[f (£, 7(£))], on the other hand, can be understood as a mi-
nor limitation of generality (see p. 11 in (34)). Nevertheless, it is the typical way of han-
dling random variables within objective functions of optimization problems. In this context,
E[f(&,m(€))] is from here on denoted as objective function, whereas f is denoted as perfor-

mance measure. This distinction will keep further statements clearer.

In the formulation of problem 3.4, it could be expected that the decision policy 7 within the ob-
jective function does not only depend on £. It should also depend on chosen actions uy, ..., ux,
since the decision rules 75 depend on them (see equation 3.3). However, it is not necessary
to explicitly state this within the problem formulation, since all made decisions directly result

from the decision policy itself and the realizations of random variables &j.

The suggested formulation of the decision problem can be generalized further, for instance, by
making random variables ¢, actions spaces Uy, or decision stages ¢, dependent on previously

made decisions and realizations. For this purpose, it can be written

fk(é(), vy Ek—lv ULy eny uk_l) instead of {k, (36)
U (€, ooy s UL, ..., up—1) instead of Uy, (3.7)
tr(€0y oo Epy UL, .., U1 ) instead of ty. (3.8)

Some of these additional dependencies are necessary to adequately formulate the problem of
finding optimal charging strategies as an MDP. In order to reduce notational complexity, it
is still written & — even though these realizations may also depend on former actions or the
system’s former development. For any other component of the decision model, i.e., for de-
cision stages, decision policies and rules, decision spaces and the performance measure, all

dependencies are explicitly formulated.

3.2 Decision Problem Components for Charging Strategies

There are three main reasons suggesting to formulate the problem of finding optimal charging
strategies as an MDP: First, a person who wants to use a BEV to reach a specific destination
needs to make decisions: Should she/he turn left or stay on the current road, should she/he
charge at the next charging station up to 40 or 50 percent? Consequently, applying considera-
tions from decision theory to compute charging strategies appears to be reasonable. A further
important aspect is that the driver of the BEV can only take actions when certain locations
are reached, such as intersections and charging stations. Many other real world problems, for
instance problems known from control theory, usually allow taking actions continuously. This
suggests to model the problem of finding optimal charging strategies as a ,,multistage* decision
problem, since this special version of decision problems represents the idea of having solely

a limited number of stages at which the considered system can be influenced. To explain the
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third reason for favoring a formulation as an MDP, let it be considered that different types of
mathematical optimization problems (linear programs, dynamic programs, etc.) typically lead
to different types of restrictions during the modeling process. For instance, linear programs, as
the name implies, allow only representing relations which can be described by linear models.
Integer programs make the discretization of problem components necessary. Such restrictions
are in most cases intended to enable an efficient computation of solutions, but they are not nec-
essary to represent the properties of the considered real world problem. The main restriction
caused by formulating a problem as an MDP is the aforementioned limitation to be only able
to take action when a decision stage is reached. However, it has already been explained that
this is actually no restriction in the context of CSO. Later on, other potential formulations of
the problem of finding optimal charging strategies will be discussed, which do, in contrast to

the formulation as an MDP, lead to unnatural model properties and limitations, respectively.

To formulate the problem of finding optimal charging strategies as an MDP, the meaning of all
components of MDPs (decision stages, actions spaces, the system’s development, performance
measure, and decision policy) needs to be explained for this specific context. Partly, the def-
initions of these components are also adjusted. Two preparatory steps are necessary for this
purpose.

First, basic notions in the context of graph theory have to be introduced: A directed graph G
is a tuple of nodes V' and edges E,ie., G = (V, E) Each edge is a directed connection be-
tween two nodes, i.e., E C V x V. Here, only finite graphs, i.e., |V| < oo, are considered.
A path P on a graph G is defined as a finite sequence of nodes P = [v1, vy, ..., vg], with Q
€ N\ {0} and (v;,vi41) € Eforalll <i < Q. The subpath of P which consists only of
nodes [vj, V41, ...,v;] with 1 <4 < j < @ is denoted by P;.;. Given two nodes s, d € V, any
path starting at s and ending at d is called an s-d-path and the corresponding set of all paths on
G leading from s to d is denoted by P(C_j ,S,d). A cycle is an s-d-path with s = d.

The second preparatory step is the construction of a graph representing the spatial situation,
i.e., the graph has to represent the starting location of the driver, her/his destination location,
the relevant parts of the road network, and the available charging stations. This can be achieved
by using a graph representing the considered part of the road network and adding one additional
node for each location at which a charging station is available. Moreover, one further node is
added for the starting location. The resulting graph is from here on denoted as decision graph
Gp = (Vp, E p). Figure 3.2 visualizes an example. Here, it is assumed that a person located
at node vy wants to use a BEV to get to node v; when starting at a specific starting time tg
with a specific starting state of charge SOCg. Charging stations can be found between nodes
v1 and vs, nodes v; and vs, and nodes vs and v7. Note that nodes vy, v2, v4 and vg possibly

are not part of the original graph, which just represents the road network. Moreover, it can be
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assumed that vg and v; are located at the same spatial position, i.e., the driver actually starts at

node v;. Node vg is just added as a dummy node. In the following, this allows avoiding that

Figure 3.2: Example of a graph used to model the problem of finding optimal charging strate-
gies as a non-sequential MDP.

already at the starting node a decision has to be made. Otherwise, it would not be possible to

keep notation consistent with section 3.1. There, no decision can be made at starting time ?g.

Decision Stages According to section 3.1, decision stages are points in time at which a choice
has to be made by the decision maker. In the situation described by Figure 3.2, the decision
maker has the possibility to choose from two different routes at nodes v; and v3. At nodes vs,
vy and vg, she/he can decide whether to charge at the corresponding charging station or not and,
in the case that her/his decision is positive, she/he additionally has to decide how much energy
she/he wants to charge. Therefore, decision stage ¢, is defined as the the time at which node vy,
is reached by the BEV. To keep notation consistent with section 3.1, there is one decision stage
for each node of the graph, except for the starting node and for the destination node'>. Thus,
there is also a decision stage t5 when reaching node vs in the graph of Figure 3.2, although

there exists neither a routing nor a charging choice at this location.

The central difference between the situation in Figure 3.2 and the decision model described in
section 3.1 is the fact that the sequential structure of the decision problem is lost. This means
that the sequence of decision stages is not fixed. It depends on the executed actions. Some

of the decision stages may not even be reached before the destination node. Consequently,

15 According to section 3.1, to and tx 11 are no decision stages!
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they are actually not part of the decision process. The sequential structure is lost as soon as
route choices can be made. For the example in Figure 3.2, node v4 (and along with it decision
stage t4) cannot be reached if the driver decides at stage ¢ to take the road segment leading to
node vo. Note that, for the sake of simplicity, it is assumed that decision graphs do not include
cycles. Otherwise, it would be possible to visit nodes multiple times, which again would make
notational adjustments necessary. From a practical perspective, this is actually no significant
restriction, since visiting a location twice is not meaningful when trying to get from a location

A to a location B.

Decision Spaces For each decision stage ¢z, a decision space Uj, has to exist. Here, the
definition of {;, depends on the type of node vy,. If v represents a charging possibility, then U
is defined as the set of all possible states of charge that can be obtained. As the state of charge

is measured in percent, it holds:
Uy, = [0%,100%] = [0.0,1.0] Vv, € VS, (3.9)

where V5* denotes the set of all nodes which represent locations of charging stations. It is
important in this context that the decision model is able to handle infeasible charging actions.
For example, if a vehicle arrives at a certain node with a state of charge of 80 percent, then it
makes no sense that the driver decides to recharge the battery up to a state of charge less than
80 percent. Later on in this section, it will be shown how the model can be adjusted to avoid
such decisions.

If v, does not indicate the position of a charging station (for example, if v, embodies an inter-

section), then U, is defined as the set of all edges leaving this node:

Uy = {(vi,vj) € ED |vi=vp} Vop € Vp\{V5 U{vo,vki1}}- (3.10)

The System’s Development Random variable & represents the development of the ,,system
until time ¢;. Keep in mind that each random variable &, actually is a vector of random vari-
ables and thus can theoretically store an arbitrary amount of information. Any aspect which
has a direct or indirect influence on the planned trip may be part of . In this context, ,,indi-
rect means that some quantities may only be considered as they allow making more precise
predictions of other (directly influencing) aspects which are considered by performance mea-
sure f, i.e., they contribute solely to prior distributions. Here, the description of & is kept very
general. The intention is to keep also the resulting decision model general, despite the fact that
the problem of finding optimal charging strategies is modeled. However, it is assumed that &
contains at least two specific quantities, namely the arrival time t,f > 0 of the considered ve-
hicle at node vy, and the vehicle’s state of charge SOC}, € [0.0,1.0] when arriving at node vy,
ie,. & = (tA, SOCY, ...). The dots indicate that £, may contain additional random variables.
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Correspondingly, tg‘ is equal to the starting time ¢g and SOC) is equal to the state of charge at
the beginning, which is denoted by SOC.

Information about the state of charge of the vehicle is crucial for estimating whether or not a
sequence of actions leads to an empty battery. Furthermore, SOC), allows adjusting decision
space Uy, to avoid the aforementioned infeasible charging actions. This is done by making the
definition of decision spaces which represent charging possibilities (compare definition 3.9)

dependent on the realized state of charge:

Uk(SOCk) = [SOCk, 1.0] Yo, € VBS 3.11)

The realizations of ¢, i.e., the actual arrival times, are necessary in order to be able to define

decision stages ¢ mathematically:
(&) =t (A —FA
k(&) = ti(t, SOCy, ...) := T (3.12)

Here, t_f denotes the realized'® arrival time at node vy, and is set equal to oo if vy, is not reached
during the decision process. If tf was not part of &, there would be no part of the decision
model which provides the possibility to compute arrival times. This would make adjustments
of the definition of decision stages necessary, since they could no longer be understood to be
points in time. Furthermore, knowing realized and estimating future arrival times is essential to
predict the influence of dynamic factors (such as traffic or outdoor temperature) on the BEV’s

future experiences (such as energy consumption).

Performance Measure There are many reasonable ways for defining the performance mea-
sure f in the area of CSO. Measures which are typically applied within routing applications,
such as the total travel time or the total energy consumption, could be used. According to the
described formulation of general decision problems, f depends on the realizations of ¢ and
on the executed actions. Since the decision model for the case of CSO is, in general, not se-
quential and thus not all decision stages may be reached, the performance measure may simply
ignore the corresponding &; and uy. To emphasize that f does not depend on any decision
model component belonging to such decision stages, it is written f(é< 11, (< 11)) instead
of f(&,7(€)) (compare the definition of general MDPs in equation 3.4). The vector <k 11
consists of all Sk with f? < f‘;} 11 i.e., of all realizations of random variables which belong to
decision stages that are visited until the destination is reached. The corresponding sequence of

decisions is represented by 7(£<x 11).

!*Random variable i is part of random process . Its realizations are denoted by 7, even though the arrival
time typically depends on former decisions. It has already been mentioned that this is done to reduce notational
complexity.
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Another aspect which can be handled by f is the penalization of executed sequences of actions
(& <Kk +1) that lead to an empty battery. If the available energy, which results from the executed
decision policy and the realizations of the random variables, at some point is not enough to pass
a certain road segment, then none of the following decision stages can be reached anymore.
Consequently, destination v 1 is also never reached. The realized arrival time t_ﬁ 41 issetto
infinity according to equation 3.12. To penalize such situations, any performance measure f

could be modified as stated below:

FE,m(E) =00 if ti =00 (3.13)

Alternatively, instead of using f to exclude unreliable sequences of actions from consideration,
the definition of decision spaces could be adjusted. However, no details are shown here. It is
worth mentioning that assigning a value of oo to certain sequences of actions is problematic
for computing the expected value E[f (£, 7(£))], since it is possibly not well-defined. To avoid
this, the infinity sign in equation 3.13 could be replaced with a large positive number M € R+ .

Decision Policy According to section 3.1, a decision policy 7 consists of decision rules 7.
These decision rules 7, are functions mapping from the space of all possible system develop-
ments and all possible combinations of former actions to the set of available actions U);. This
implies that in the context of CSO, a decision rule 7, for v, ¢ V5’ suggests which road seg-
ment should be taken next. If v € V5%, then the decision rule states whether the BEV should
be charged at the charging station represented by node vy and, if this statement is positive, up

to which state of charge it should be charged.

In section 2.1.5 in (//7), it is mentioned that in decision theory often the term ,strategy* is
used as a synonym for the term ,,policy”. For the described research, it is distinguished be-
tween these two terms to be notationally consistent with the idea of charging strategies which

was mentioned in chapter 1:

A decision strategy is defined as the sequence of actions 7(£) (or (€< 1), respectively),
which results from the applied decision policy and the realizations of the random variables

which describe the system’s development.

In contrast to a decision policy, a decision strategy consists of actions or instructions, respec-
tively, and not of decision rules, which themselves return instructions. This means that a de-
cision policy 7 can be interpreted as a function which returns, depending on the considered
system’s development &, a specific decision strategy 7(&). Table 3.1 lists the differences be-
tween a decision strategy and a decision policy. An interesting aspect is that, even though

7 itself is a deterministic function, 7(§) (or m({<x+1), respectively) can be interpreted as a
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Table 3.1: Difference between decision policy and charging strategy.

Mathematical | Verbal Explanation | Verbal Term Mathematical
Formula Interpretation
(&) sequence of decision realizations of
actions/instructions strategy random variable 7(§)
(deterministic) scheme decision deterministic function
s defining how to react policy
to realizations of &

random variable. The reason for this is that deterministic functions applied to random vari-
ables again can be interpreted as random variables. Note that in the context of CSO, the terms
,charging policies* and ,,charging strategies are used as alternatives for ,,decision policies*

and ,,decision strategies®.

To clarify the difference between charging strategies and charging policies and to illustrate the
meaning of some of the components of the suggested multistage decision model in the context
of CSO, an example based on the graph displayed in Figure 3.3 is discussed in the following.
This graph is basically the same as shown in Figure 3.2. For the moment, let it be assumed
that a driver located at node vy wants to drive (now, at time tg = %) to node v; with a BEV.
Furthermore, the performance measure f is defined as the total travel time, i.e., the goal is to
minimize the expected travel time E[t4 — tg] for the given starting time t5. Moreover, it is

V4 >® \ Vg

4

(w0 )(n () () (o

Edge Costs [min] | Probability | (v2,v3) | (vs,v7) | other edges
Scenario 1 90% 1 1 1
Scenario 2 10% 2 11 1

Figure 3.3: Example Graph: Difference between charging policies and charging strategies.

assumed that the initial state of charge SOC(g, for any realization of ¢ and independently of the
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chosen route, is sufficient to reliably reach v;. Correspondingly, it is not necessary to consider
any charging stops in this example. The travel time for any of the edges of the graph is equal
to one minute, except for the edges (va,v3) and (v3,v7). For them, random travel times are
assumed: With a probability of ten percent, the travel time for passing edge (v2, v3) is equal to

two minutes, with a probability of ninety percent, it is also equal to one minute:

cr(ve,v3) 1= t? — t‘gl

P(cp(va,v3) = 1 minute) = 0.9 (3.14)

P(cr(ve,v3) = 2 minutes) = 0.1

In equation 3.14, cp(vg, v3) denotes the travel time necessary for passing edge (v2,vs3). The

travel times for edge (vs3, v7) are distributed as follows:

cr(vs, v7) ==t — 14
P(cr(vs,v7) = 1 minute) = 0.9 (3.15)

P(cr(vs, v7) = 11 minutes) = 0.1

Finally, it is assumed that if ¢ (v2, v3) is equal to two minutes, then cp(vs, v7) is always equal
to eleven minutes. Consequently, if ¢y (v2, v3) is equal to one minute, then the probability that
cr(vs, v7) is equal to eleven minutes is zero. All resulting conditional prior distributions can

be found below:

P (cr(vs,v7) = 1 minute | ép(vg,v3) = 1 minute

P (¢r(vs,v7) = 11 minutes | ér(vg, v3) = 1 minute

(3.16)

)=1.0
)=0
P (¢r(vs,v7) = 1 minute | ép(vg,v3) = 2 minutes) = 0
)=1.0

P (ep(vs,v7) = 11 minutes | ¢p(ve, v3) = 2 minutes

Random variable cp(v2, v3) is here interpreted as a part of &3 and ér(v2, v3) denotes the corre-
sponding realization. To simplify the following explanations concerning charging policies and

charging strategies, the subsequently described notations are introduced:

Route A := [vg, v1, v2, v3, V7]
Route B := [vg, v1, v4, U5, Vg, V7] (3.17)

Route C := [vg, v1, v2, v3, U5, Vg, V7]
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The distributions of travel times resulting from following these routes are stated below:

)=0
)=0
er(B) =5 (3.18)
) =0
) =0

Eler(B)] = 5 (3.19)

Based on the stated travel time expectations, it seems reasonable to assume that an optimal
charging policy recommends taking route B. However, this is not the case. It can be verified
easily that the best policy is to follow paths A and C at decision stage ¢; and to make the
decision at stage t3 dependent on the realization of ¢z (v2, v3). Formally, this can be expressed

by defining the sequence of decision rules as subsequently described:

71 = (v1,v2) (3.20)
m2(SOC%) := SOCy (3.21)

_ (03, U5> if ET('UQ, ?}3) = 2 minutes
7T3(CT(1)2, 1)3)) = (3.22)
(vs,v7) else

m4(S0Cy) := SOC, (3.23)
75 = (vs, V) (3.24)
m6(S0Cs) := SOC (3.25)

Decision rule 74 is never applied, since node v4 cannot be reached when following the recom-
mendations of charging policy m. Decision rules 72, m4 and 7g are a consequence of the fact
that the BEV does not need to be recharged. The expected travel time resulting from this charg-
ing policy is equal to 4.3 minutes, since for the case of increased travel time at edge (e2, e3)
route C is chosen, otherwise route A (90 percent probability to choose path A with costs of 4
minutes, 10 percent probability to choose path C with costs of 7 minutes). This means that the
suggested charging policy leads to one of two possible charging strategies. The first charging
strategy consists of instructions that can be represented by route A, the second one of instruc-
tions leading to route C. Note that, independently of the system’s development, the charging

policy 7 itself does not change during the trip. Only the resulting charging strategies change.
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Model Extension: Decisions during Charging Processes The suggested definitions of the
components of an MDP in the context of CSO hide one minor restriction: In the current version
of the model, the state of charge that needs to be reached at the end of a charging process is
determined when the BEV arrives at the corresponding decision stage, i.e., it is determined at
the beginning of the charging process. Instead, it could be suggested to simply start charging
and then it could continuously be asked whether or not the charging process has to be continued.
The advantage of this idea is that the charging policy could react to changes of the system that
occur during the charging process. Let it be assumed, for example, that a BEV is currently
charged at a charging station. Furthermore, it is assumed that a traffic accident causes the
blockage of one lane of a two-lane freeway a few kilometers downstream of the BEV’s current
position. In this case, it may be beneficial to stop charging and continue the trip in order to
pass the accident before a long queue is formed. In order to allow charging policies considering
such options, adjustments concerning the definition of decision stages and decision spaces are
necessary. Decision stages ¢, for nodes vy, € V5° need to be understood as time periods and
not as points in time, i.e.:

ty i= [t5tert ¢574] © Rsg (3.26)

Here, t;'"* simply represents the arrival time at the charging station and tz"d the end of the
charging process. Decision spaces belonging to charging stations, on the other hand, are no

longer defined as continuous intervals, but as a discrete set of options:

{0,1} if SOC; < 100%
{0} else

U;(SOC,) := Yo € VB, Vit > titert (3.27)

Variable SOC describes the state of charge at time ¢. Moreover, let u; denote the action that
is executed at time ¢. If decision u; € U; (Wt) is set equal to zero, then it means that the
charging process is stopped at time ¢. Setting u; = 1 means that the process is continued at
time ¢. If Upstart = 0, then it is decided that the BEV is not charged when it arrives at the
charging station. Based on these considerations, the end of the charging process tznd is a result

of a continuous sequence of decisions u;:
t9 = min{t > 519 | uy = 0} (3.28)

Besides the definition of decision stages and decision spaces, some further modifications of the
formulation as an MDP are necessary when it is allowed to make decisions during charging
processes. For instance, due to a possibly infinite number of decision stages, the set of random
variables & may no longer be finite. However, these modifications primarily a question of
notation and do not affect the underlying ideas. Thus, no further details are mentioned — except
for one aspect: The new problem formulation should no longer be denoted as a ,,multistage*

decision problem, since the concept of discrete stages represents the essential feature of MDPs.
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For the remainder of this work, the basic MDP is considered and not its extended version. The
main reason for this is that, when returning to a practical perspective, it seems unrealistic that
a driver constantly waits during charging processes for new instructions of her/his navigation
device. Furthermore, it will turn out that the original formulation can be used as the fundament
for an adjusted model formulation for the problem of finding optimal charging strategies. This

will be relevant in chapter 4.

3.3 Model Assessment with Regard to Research Objectives

In the following, based on the considerations made in chapter 3, the suggested formulation of
the problem of finding optimal charging strategies as an MDP is analyzed with regard to ROs
lato Ic.

RO 1a: This RO consists of two main parts: The developed problem formulation has to be
able to include all relevant aspects (whatever aspects are considered to be relevant) and the

problem formulation needs to achieve a high level of realism.

The generic form of the introduced MDP (recall the problem formulation in equation 3.4) pro-
vides lots of flexibility. This is especially a consequence of the fact that random variables &
and performance measure f have not been concretized. Thus, it can be expected that almost

any factor which is considered to be relevant can be represented.

Regarding the topic of realism, it needs to be considered if the applied type of optimization
problem shows unnatural model properties. In this context, it has already been argued that
MDPs are particularly suitable to model the problem of finding optimal charging strategies.
The main limitation, to which MDPs are bound, is the idea of discrete decision stages. It was
argued at the beginning of section 3.2 that this represents no significant restriction in the context
of CSO, since decisions primarily can be made when the BEV reaches certain locations (inter-
sections or charging stations). The only restriction is that the option to adjust recommended
instructions during charging processes is not given. As a consequence, some optimization po-
tential is lost. From a practical perspective, however, being unable to adjust recommended
instructions while charging seems irrelevant.

When considering prior models for CSO, it has already been mentioned that several unrealistic
assumptions are made in order to simplify the resulting optimization problem. Particularly the
missing possibility to represent uncertainty and the interpretation of travel times and energy
consumption as static factors appear to be critical. The suggested MDP does not suffer from
these limitations. The possible dependency of random variables &, on former system develop-

ments (compare equation 3.6) provides the possibility to model the energy consumption and
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the travel times which are necessary for passing road segments dynamically. Moreover, ran-
dom variables &, are, due to their random nature, able to represent randomness or uncertainty,
respectively. However, as long as no concrete definitions for performance measure f and ran-
dom variables &, are made, it is not possible to decide whether or not the suggested problem
formulation obtains a high level of realism. On the other hand, it can at least be stated that it

provides the possibilities to ensure this.

RO 1b: For RO 1b, the same holds as for RO 1a: Up to which degree RO 1b can be achieved
on the basis of the suggested MDP depends on how the problem components are specified.
The model basically provides enough flexibility to ensure that resulting charging strategies (or
charging policies, respectively) are efficient and reliable. In the end, performance measure
f needs to be defined appropriately. Note in this context that f already penalizes charging

policies that are likely to lead to an empty battery (compare equation 3.13).

RO 1c: Considering RO 1c, one pays for setting the focus on constructing a formulation that
shows almost no unnatural properties and does not suffer from model inherent restrictions. Nu-
merical optimization methods cannot directly handle the suggested MDP, since its formulation
in equation 3.4 can hardly be specified with a finite number of optimization variables and con-
straints (p. 12 in (34)). The critical aspect is the space of functions F, which is in general
an infinite-dimensional space. As a consequence, the suggested problem formulation does not

allow achieving RO lc.

Conclusions: Summarizing the findings of section 3.3, it can be stated that the introduced
MDP offers enough freedom to fulfill the requirements described by ROs 1a and 1b. On the
other hand, RO 1c cannot be achieved. An adjustment of the model is necessary, primarily to
make a numerically treatable representation of the function space F possible!”. Such adjust-
ments are typically based on some kind of discretization. For instance, discretizing the space
of possible realizations of any random aspect of the MDP allows interpreting MDPs as stochas-
tic programs (p. 12 in (54)). Hence, algorithms which are able to solve stochastic programs
become applicable. If all decision spaces are discretized, then MDPs can be transformed into
dynamic programs, for which again various numerical solution approaches exist. Developing
an appropriate adjustment of the suggested MDP represents the main purpose of the following
chapters. The MDP will in this context not only be used as a theoretical fundament, on which
further problem formulations can be based. It will also be considered as a reference model.
Other problem formulations, which are intended to fulfill the requirements of all subobjectives

of RO 1, will be compared to it in order to identify model immanent restrictions.

"MDPs offer lots of flexibility, but it is often necessary to adjust them in such a way that they fit into a numeri-
cally treatable framework. (34)
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3.4 Summary

This chapter provided a framework for modeling the problem of finding optimal charging
strategies as an MDP. For this purpose, in section 3.1, a short description of the five compo-
nents (decision stages, decision spaces, system development, performance measure, charging
policy) of a sequential MDP was given. In section 3.2, these components and their meaning
were interpreted in the context of CSO. The descriptions of the adjusted components were kept
on a rather abstract level to achieve a very general and flexible problem formulation. The re-
sulting problem formulation differed structurally from the original MDP from section 3.1, as
the sequential nature of traditional MDPs is lost. This is a consequence of representing the
possibility to make route choices, which causes the order according to which decision stages
are reached to be dependent on previously chosen actions. Finally, in section 3.3, the developed
MDP is analyzed with regard to ROs 1a to 1c. It turns out, as already expected, that the generic
formulation allows achieving RO 1a and RO 1b. On the other hand, the problem cannot be

addressed numerically. Thus, an alternative formulation needs to be found.



Chapter 4

Charging Strategy Optimization as a
Shortest Path Problem under
Deterministic Conditions

In chapter 3, the problem of finding optimal charging strategies was modeled as a multistage
decision problem. This allowed representing the problem’s characteristics in a very natural and
generic way, but leads to issues concerning numerical solvability. Now, in chapter 4, the goal is
to derive, based on these former considerations, an alternative problem formulation, which al-
lows applying efficient (numerical) optimization algorithms and, along with that, to achieve RO
1c. For this purpose, the introduced formulation as an MDP is reduced to a deterministic SPP.
Several simplifications come along with this reduction. Moreover, some of the components of
the described deterministic SPP are concretized causing a less generic problem formulation.
The concretization is necessary, since for the design of efficient shortest path algorithms, spe-
cific information about certain components of the considered SPP is required. The resulting
problem formulation, however, again forms just an intermediate step towards the final problem

formulation provided in chapter 5.

Chapter 4 is structured as follows: In section 4.1, reasons for reducing the MDP to an SPP
are stated. Next, an intuitive scheme for constructing graphs representing road networks and
charging stations is presented, which allows associating paths with charging strategies. Af-
terwards, two deterministic edge cost functions are derived, which are assumed to be relevant
in the context of CSO. These cost functions are used as ingredients for the definition of the
performance measure f and eventually for providing the final problem formulation as a de-
terministic SPP. In section 4.2, properties of the two considered edge cost functions and their
influence on the solvability of the SPP are analyzed. Based on these considerations, in section

4.3, two different shortest path algorithms are described. One guarantees optimal solutions, the

52



4.1. REPRESENTATION AS A DETERMINISTIC SHORTEST PATH PROBLEM 53

other one promises improved computation times. The chapter finishes with a comparison of
the deterministic SPP and the MDP, and a discussion concerning the SPP’s abilities to satisfy

the requirements postulated by ROs 1a to 1c.

4.1 Representation as a Deterministic Shortest Path Problem

The formulation of the problem of finding optimal charging strategies as an MDP, which was
introduced in chapter 3, can hardly be solved numerically. This is, in fact, not uncommon
for MDPs. Usually, they are modified in such a way that they fit into an optimization frame-
work which allows applying efficient optimization algorithms. Among others, the most popular
ideas are the reformulation as a linear program (64) or their interpretation as a dynamic pro-
gram (section 4.2 in (//7)). Which approaches work well and which do not depend on the
problem’s structure and often it is hardly possible to find out which approaches work best with-
out testing them. However, all of them lead in some sense to inaccuracies during the solution
process. For example, to transform a problem like problem 3.4 into a linear program, it is
necessary to postulate that the number of possible realizations of ¢ is finite. Otherwise, the
linear programming reformulation of problem 3.4 can not be specified by a finite number of
optimization variables and constraints (section 2.5 in (34)). From a practical perspective, the
impact of this postulation on the resulting solutions might not be critical. Nevertheless, such

adjustments lead to problem and solution properties which are, in fact, unnatural.

For the remainder of this work, the problem of finding optimal charging strategies is tackled
via dynamic programming approaches. This also leads to some drawbacks, which will be dis-
cussed later on in this chapter. On the other hand, there are also some reasons for favoring
using ideas from dynamic programming. For example, within navigation applications, in most
cases optimal routes are computed via algorithms known from dynamic programming — often
variations of Dijkstra’s algorithm. Hence, to reduce potential barriers for a future implementa-
tion into market-ready navigation tools, it seems reasonable to rely on optimization approaches
which are widely applied in this area. This may even allow making use of existing software in-
frastructure. Moreover, considering the literature review in chapter 2, there exists lots of work
about dynamic programming approaches in the context of navigation applications for BEVs.
Especially dynamic programming approaches for solving SPPs are well studied. This makes it
possible to build on a broad fundament of existing knowledge. Note that in a preparatory step,
the problem of finding optimal charging strategies will also here be reformulated to an SPP in

order to make dynamic programming approaches applicable.

4.1.1 Graph Construction
One central component of an SPP is the graph on which shortest paths are computed. Here,
the decision graph Gp is used as template. Road segments are again represented by edges,

intersections by nodes. The only thing missing in Gp is the explicit representation of charging
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stations via nodes and edges. In general, it holds that graphs are discrete objects. Hence, it is
hardly possible to represent continuous decision spaces like those which have been introduced
in section 3.2. This makes it necessary to discretize the decision spaces U}, with v, € V5 (V5
is the set of nodes which represent locations of charging stations). This can be achieved by
letting the charging strategies solely suggest states of charges which are a multiple of, for in-
stance, five or ten percent. This has already been proposed in (/4/) and (/52). From a practical
perspective, this reduction appears to be insignificant. A driver at a charging station probably
won’t concentrate on charging exactly up to a state of charge of ’86.45” percent. Supposedly,
an instruction “Please charge up to 90 percent.” is sufficient for him. Correspondingly, the
decision space L{kA for some node v, € V5’ and a step length A € R can be defined for a

given realized state of charge SOC'; as shown below:
UP(SOC}) = {x € [SOC},1.0] | 3l € Nwithz =1-A} (4.1)

To give an example, let it be considered that A is equal to 0.05 (i.e., five percent) and that
SOCY is equal to 68 percent, i.e., the BEV arrives at the considered charging station with a

state of charge of 68 percent. This results in the subsequently described decision space:

U °(0.68) == {0.7,0.75,0.8,0.85,0.9,0.95,1.0} (4.2)

The described discretization of the decision spaces can be represented by an appropriate ad-
justment of the decision graph. For the decision graph G p which is illustrated in Figure 3.2,
the resulting adjusted decision graph GA = (VDA, E’S), which represents discretized decision
stages, can be found in Figure 4.1. Basically, the new graph consists of the same parts as the
original one. The only difference is that each node representing the location of a charging sta-
tion is now replaced by a whole set of nodes and edges (compare those graph components in
Figure 3.2 and 4.1 which are bordered by dashed rectangles). This replacement is achieved as
follows: First of all, it is considered that charging stations may not be located directly at the
considered part of the road network. This assumption makes it possible that not each tiny back
road that may be used to get to one of the charging stations has to be represented explicitly.
Instead, is can be assumed that the original graph Gp represents only major roads, i.e., roads
which are typically used for covering longer distances. The set of these major roads is from
now on denoted as , main road network®. The idea is to introduce for each node v € V5,
which is part of the original graph Gp. a new node vg marking the position at which the major
road network can be left in order to get to the corresponding charging station. Analogously, a
node v? is introduced at which one can return to the main road network. Hence, v¢ and v? can
be understood as the positions of exit and entrance ramps. The charging station itself and all
possible charging actions are represented by nodes v, v¢, v> and edges (vi, vE2), (vE2, v9)
with A <-A < 100% and [ € N. Furthermore, an edge (v,‘;, vi) is used to embody the way
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from the main road network to the charging station and an edge (vy, v,l;) for the way back.

charging station 4 charging station 6

charging station 2

—> road segment ~ c-eeeees » part of charging process

Figure 4.1: Graph-based model of charging possibilities

The goal is to associate charging policies with vg-vx41-paths on G, i.e., with paths leading
from the starting position to the destination. In this context, a node UL’A represents a charging

process leading to a state of charge of [ - A, i.e., any vp-vk+1-path on é% which covers the
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node vfﬁ'A can be associated with a charging policy that suggests charging at charging station

k up to a state of charge of [ - A. By allowing a whole set of different target states at each
charging station, various charging policies can be represented by paths on C_j%. In Figure 4.1,
steps of ten percent between the different charging states are used, i.e., A := 10% = 0.1.
Clearly, a smaller step length allows considering a wider range of charging policies. Edges
(vi,vEA) and (vh2, v?) are parts of the charging process itself and are not used to model road
segments. More details on these edges will be given later on. To support understanding, with
path [vg, v1, v, v5, v3, v, v3, v, v, v2, v8, v7], an example path is visualized in Figure 4.1
(bold nodes and edges). The corresponding charging policy suggests at decision stage t1, i.e.,
at node vy, to follow edge (v1,v§). Then, charging station 2 is ignored and at node vs, it is
recommended to drive to node vs. From there on, no more ,real route choices are possible.
It is worth mentioning that in this context decisions, including charging decisions, are reduced
to a route choice on C_}%. For example, at charging station 6, charging is recommended as at
node v¢ the edge (vg,v}) is selected and not edge (vZ, v%). The suggested target state of charge
is defined by node v¢?, i.e., charging up to a state of charge of 100 percent is recommended

before proceeding with the travel to destination node v7.

According to the construction of graph G4, all decision spaces can be understood as sets of

edges, since charging decisions are also modeled via route choices:
Uy = {(vi,v;) € Ep|vi=u} Vor € VH\ {vo,vm41}- (4.3)

Nodes vy and vg 41 are again excluded here to maintain consistency with section 3.1, i.e.,
top and tx 1 are not considered to be decision stages. Note that graph (_}% is static, i.e., it
is defined independently from the realizations of £&. Hence, this graph still represents non-
reasonable charging possibilities, i.e., target states of charge which are lower than the current
state of charge. In contrast to section 3.2, where an adaption of the definition of decision
spaces has been introduced in equation 3.11 to exclude such non-reasonable charging pos-
sibilities, here performance measure f is modified to handle such issues. For this purpose,
performance measure f, independently of its concrete definition, assigns a value of infinity to
any charging policy which is represented by a vg-vk +1-path P on C_}% that contains such edges,
ie. f(P,€) = oo if path P contains at least one edge (v, vi) which violates the following
condition:

I-A>50C() (4.4)

Here, variable S OC(v,i) denotes the state of charge which is realized when reaching node v,i.
Algorithmically, this adjustment of f can be handled very efficiently. Edges with a value of
infinity can be ignored, i.e., as soon as such an edge is reached during the route search, it is

simply not considered.
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To define point-to-point!® SPPs uniquely, a graph, a starting node, a destination node, and an
objective function have to be specified. Depending on the properties of the objective function,
further information may be necessary. If, for instance, the objective function is time-dependent,
then a starting time needs to be known in addition. All paths leading from the start to the
destination node are potential solutions for this type of problem. For the case of CSO, the
considered graph is already given by C_j%. Also vg as starting node and v as destination
node are defined. The objective function E[¢, f(£)] is not yet specified. Nevertheless, a generic

version of an SPP for the case of CSO can already be formulated:

min  E[f(E, P(f_o))]

. ' . (4.5)
subjectto P is a vg-vx+1-path on G

When comparing the original multistage decision problem 3.4 and the SPP 4.5, two main dif-
ferences can be observed: First, the set of possible charging policies is now represented by
the set of vg-v 1-paths on éﬁ. The idea is to associate a path, which solves the SPP, with
a charging policy. It has already been shown how this can be done. Unfortunately, a path
P* which solves the stated SPP remains the same independently of the system’s development
€1, ...,Ex 1. This means that the route and charging instructions which are associated with
path P* stay the same, too. Therefore, it can be concluded that paths on é% can be associated
with charging strategies, i.e., with sequences of charging and route instructions. They cannot
be associated with arbitrary charging policies. Charging policies which recommend different
actions depending on the realizations of random variables &1, ..., £k +1, like the one that was
described in chapter 3 for the problem illustrated in Figure 3.3, cannot be represented by a
path on graph G_%. To emphasize this restriction, the objective function E[f (&, 7(§))] is now
replaced by E[f (£, P(&))]. This is the second difference between the suggested MDP and the
SPP in its current form. Information that is available at the time when the SPP is solved!?, i.e.,
prior distributions or the system’s initial state &, can be taken into account for the computation

of P*. This does not hold for realizations of random variables &1, ..., x41.

In the following, these considerations are illustrated on the basis of the aforementioned example
from chapter 3. Figure 4.2 shows the same graph as Figure 3.3. It is again assumed that all
edges, except for (v, v3) and (vs, v7), lead to time costs of one minute. Furthermore, it is again
assumed that the state of charge at the start (at node vg) is high enough to reach destination node

vy without any charging stop and the goal is to minimize the total travel time. Since no charging

18 A point-to-point SPP is a problem where the shortest path between a single starting point and a single destina-
tion needs to be found. Its counterparts are one-to-many, many-to-one or many-to-many SPPs.

In chapter 3, the time at which the decision process starts is denoted with to. The start of the decision process
typically also marks the time at which computations are started. Now, in chapter 4, the time at which the BEV starts
to get from vo to v 41 is typically denoted with ts. In general, it does not hold that ¢ty = ¢5. For instance, if the
introduced SPP is solved at time ¢ to prepare a trip with a planned start at ts > to.
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(] \®

I 4

Vg

(P () ()——()

Edge Costs [min] | Probability | (ve,vs3) | (vs,v7) | other edges
Scenario 1 90% 1 1 1
Scenario 2 10% 2 11 1

Figure 4.2: Example Graph: Difference between charging policies and charging strategies.

stations have to be considered, graph é% is equal to graph Gp. Thus, the best charging policy
is the same as in chapter 3: Drive to node v2 and make the route decision at node vs dependent
on the experienced travel time for passing edge (ve,v3). The issue is that there exist exactly

three different vg-v g 1-paths on (_j%:

Path A := [vg, v1, ve, v3, V7]
Path B := [vg, v1, v4, V5, Vg, V7] (4.6)

Path C := [vg, v1, v2, V3, Vs, Us, V7]

The optimal solution of the SPP that results from the situation in Figure 4.2 is equal to one of
these three paths. As a consequence, the charging policy that is received by solving the SPP is
associated with one of these paths. However, none of these paths is able to represent the opti-
mal charging policy. They are solely able to describe one of three different routes or charging

strategies, respectively.

4.1.2 Derivation of Edge Cost Functions

In the context of SPPs, the considered objective function is typically based on edge cost func-
tions, i.e., on functions that assign costs to edges of a graph. To be able to derive efficient
shortest path algorithms, the properties of the objective function and thus of the considered
edge cost functions are essential. This makes it necessary to state which edge cost functions
are taken into account in this work and also to concretize them up to some degree. Otherwise,

no statements on the properties of the objective function are possible.
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In section 3.2, the meanings of the components of an MDP in the context of CSO have been dis-
cussed. It was postulated that at least information about arrival times and energy consumption
has to be taken into account to handle CSO reasonably. Correspondingly, edge cost function
cr, describing time costs, and edge cost function cg, describing energy costs, are considered
in the following. It is again distinguished between edges representing road segments and edges
representing parts of the charging process. In either case, travel times and energy consump-
tion depend on various factors, such as traffic conditions, the state of charge when arriving
at a charging station, vehicle parameters or individual driving style. As already discussed in
chapter 2, some of these factors are hardly predictable. Consequently, in order to mirror the
resulting uncertainty, it is probably more realistic to assume randomly distributed travel times
and energy consumption than to assume deterministic values. However, for the moment cp
and cg are assumed to be deterministic. Later on, in chapter 5, the non-deterministic case will
be discussed. Besides a simplified notation, deterministic edge costs allow computing shortest
paths on larger graphs than non-deterministic edge costs, since non-deterministic edge costs
typically increase computation times for SPPs drastically (see also section 5.2). Unfortunately,
it will turn out that even for deterministic edge costs, solving the resulting SPP becomes com-

putationally very expensive.

Edge Costs for Road Segments In this section, it is not explained how cost functions cp and
¢2°, which assign time and energy costs, respectively, to edges representing road segments,
can be constructed. It is simply assumed that such cost functions are given. They may depend
on many factors, such as prevailing traffic conditions, the driver’s mood, outdoor temperature,
and so on. One possible way to represent these dependencies is to introduce objects wr and
wg. Variable wr is intended to abstractly describe all available information about factors which
influence travel time, wg correspondingly all information which is relevant for computing en-
ergy consumption. Based on these considerations, cp(e,wr) describes the travel time which
is necessary for passing edge e under the conditions defined by wy. Analogously, ¢g(e,wg)
describes the energy consumption which is necessary for passing edge e under the conditions
defined by wg. To simplify the following notations, objects wr and wg are left out in most
situations. Instead, only those parts of wr and wg, which are explicitly relevant in the corre-
sponding context, are listed. The most important example of such a quantity is arrival time. It
depends directly on cost function ¢ and typically has influence on ¢y and ¢g. In the following,

it will turn out to be expedient to explicitly list arrival time ¢ € R>(?!, whenever edge costs are

*The reasons for writing ¢ instead of ¢z will be explained later on.
2!n order to associate arrival times with real-valued numbers, an arrival time ¢ could be defined as the number
of seconds which elapsed since tg, i.e., since the time at which the charging strategy was requested.
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considered. This leads to the following terms for edge cost functions ¢y and ¢p:

cT Eg \ ECAS X RZO — RZO 4.7)

tg: ES\ESxRsg — R (4.8)

Here, ECAS denotes the set of all edges in Eﬁ which represent parts of a charging process.
Cost functions cr(e, t) and ¢g(e,t) describe the travel time or energy, respectively, which is
necessary for passing edge e = (v;, v;), when starting at time ¢ at node v;. Energy consumption
is here measured in percent with regard to the maximal energy capacity of the BEV’s battery.
The idea is to compute the state of charge after passing an edge e at time ¢ by subtracting
¢g(e,t) from the original state of charge. One problem which occurs in this context is that
either states of charge below zero percent or above 100 percent may be reached. The first case
results if energy consumption exceeds the available energy, the latter may result if passing an
edge leads to a gain of energy due to recuperation. To counter this issue, modified edge costs

cg are introduced. This cost function is based on ¢g, but depends on three quantities:

ce: Ep\EqxRsox[0,1] — [-1,1] (4.9)
S0C -1  ifSOC —¢p(e,t) > 1
ce(e, t,S0C) := ¢ SOC if SOC — ¢p(e,t) <0 (4.10)

cg(e,t) else

This ensures that for any e € Eﬁ, any t > 0 and any SOC € [0, 1], the following condition
holds:
0<S0C —cg(e, t,50C) <1 (4.11)

Condition 4.11 guarantees that neither recuperation nor charging can lead to a state of charge
above 100 percent. Furthermore, if more energy than the battery can provide is necessary to
pass a specific edge, then the resulting state of charge does not become negative, but simply
is set to zero. This definition of cg allows computing energy consumption costs for paths by
summing up the costs of the corresponding edges and it allows representing the case of run-
ning out of energy. Similar proceedings for achieving reasonable states of charge have been
suggested in (/2), (42) and (74).

To illustrate the definitions of ¢y and cp and especially the dependency of cg on ¢g, con-
sider the example shown in Figure 4.3. Here, the costs for all edges but for (b, c¢) are time-
independent. If the trip is started with a starting state of charge of 0.5 from node a to node
¢, then the energy costs ¢ for edge (a, ¢) are equal to 0.4. However, starting with a state of
charge of 0.3 leads to energy consumption costs cg(a, ¢) of 0.3 according to the definition in
equation 4.10.
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Figure 4.3: Edge costs depending on time and the current state of charge

Now, consider a starting time ¢ which is equal to zero and a starting state of charge SOCg of
0.9. Then the costs for the path [a, ¢, d] can be computed as the sum of the costs of its edges.
Here, the so-called frozen link model (/08) is used to describe the dependency of costs on time
and the current state of charge. According to this very intuitive model, the computation of
time-dependent costs for a specific edge is done on the basis of the time at which the edge is
reached. For the case of path [a, ¢, d], for example, time costs for (¢, d) can be calculated as
soon as the arrival time at node c is known. This arrival time is the sum of starting time ¢g and
the time costs for passing edge (a, ¢). It can be proceeded similarly to take the dependency of
cr and cg on the current state of charge into account, i.e., the state of charge when arriving
at node c is given as the starting state of charge SOCs minus the energy consumption costs
assigned to edge (a, ¢). Consequently, in order to be able to compute the costs of a path, it has

to be started with computing the costs of its first edge:

CT((G,C),ts) = CT((G, C),O) =1 4.12)
ce((a,c),ts,SOCs) = cg((a,c),0,0.9) = 0.4 (4.13)

Hence, the time when reaching (c,d) along path [a,c,d] is given by tg + 1 = 1 and the
corresponding state of charge by SOCg — 0.4 = 0.5. This leads to costs for edge (c,d) as

subsequently shown:

cr((e,d), ts + er((a, c), ts)) = 4 (4.14)
ce((c,d),ts + cr((a,c),ts), SOCs — cg((a,c),ts, SOCg)) = 0.5 (4.15)

Finally, time costs of five and consumption costs of 0.9 result for path [a, ¢, d].
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Edge Costs for Charging Processes Up to this point, only the case of edges representing
road segments has been discussed. In the following, the focus is set on edges representing
parts of charging processes. Considering the graph-based model described in section 4.1.1
vb A v9).

Variable k is the index referring to the visited charging station and [ - A denotes the state of

(see Figure 4.1), charging processes are represented by edges (vi,vt?) and edges (

charge up to which the vehicle is charged at station k according to a strategy which is associated
with a path that covers node v}'2. The sum of the time costs of edges (v, vi2) and (vi2, v?)
has to represent the time which is needed for the whole charging process. Analogously, the sum
of the energy consumption ,,costs® of these two edges has to be equal to ,,minus one multiplied
by the amount of gained energy“?.

Anything that happens at the charging station is understood to be part of the charging process.
This may imply waiting times c:,W caused by an occupied charging station, time c% (,A* for
-additional) which is necessary, for example, to leave and get back into the car and for paying,
the time cg for charging the car, and the resulting energy gain represented by C%. To predict
waiting times, the time of arrival at the charging station, i.e., the time at which node v}, is
reached, is essential, since charging demand typically changes throughout the day (9). Thus,
predicted waiting times should be assigned to edges (v, vi®) and not to (vi2, v¢). The time
which is necessary for paying, leaving the car, and getting back into the car is throughout this
work assumed to be independent of time and independent of the charging station. Due to this,
it can be assigned to any of the two possible types of charging process edges. Assuming time
independence is also reasonable for costs c% and cg, since charging durations and the amount
of charged energy should not depend on the time at which the actual recharging is started.
Based on these considerations, cost functions cr and cg for edges (v, vL2) and (vi2,v?) can

be defined as follows:

cr: ES xRsg x [0,1] — Rxg (4.16)
cg:  E% xRsox[0,1] — [~1,0] (4.17)
er((v, vk2),t, SOC) = ¥ ((vi, vh2), 1) + & ((ig, vi2), SOC) (4.18)
er((WE2,00),t, SOC) == ¢ (4.19)
cp((vi,vb?),t,500) := & ((vh, vi?), SOC) (4.20)
cp((WhA,09),t,50C) := 0 4.21)

it is written cg(e, t, SOC)

instead of cg(e, SOC). This is done to keep the notation consistent with the definition of cg

Note that, even though cg is not time-dependent for edges in EA

cs?

for edges representing road segments.

The energy consumption ,,costs* (actually energy is gained and thus the costs are negative) for

22Gaining energy is here represented by assigning negative edge costs to the corresponding edges
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edges (v};, ng), i.e., for an intended target state of charge [ - A, are given as follows:

o SOC—1-A  ifl-A>SOC
CE((UIC?vk ),SOC) = (422)
SOoC else

The formula is rather intuitive as long as [ - A > SOC' It is just the difference between the
current state of charge and the target state of charge. If [ - A is not bigger than SOC, then
the corresponding charging process is not meaningful, since the state of charge when arriving
at the charging station would be at least as high as the one after charging. To guarantee that
such edges are not considered by any route search algorithm, energy costs leading to an empty
battery are assigned to them. The computation of time costs for charging, i.e., the duration
which is necessary to achieve a state of charge equal to [ - A, is more complicated. A model
describing the relation between charging duration and the resulting energy gain is necessary.

Here, a rather simple model is applied. It is assumed that a function S is available with
S : RZO — [O, 1] (423)

S returns for a specific charging duration d > 0 the resulting state of charge if an initial state
of charge of zero is assumed. Such functions clearly vary depending on the technical features
of the vehicle battery and the charging station. However, their shapes are always similar: The
longer the charging process, the more energy is gained in total. Thus, S is strictly monotoni-
cally increasing up to a state of charge of 1.0 and a maximal charging duration d,,q, > 0, i.e.,
dmaz 1 equal to the time that is necessary to fully recharge a completely empty vehicle battery.

This property allows inverting .S on [0, d;,q.], leading to
S71:[0,1] — [0, dinaa)- (4.24)

The inverse function returns for a given state of charge SOC the duration that is required to
charge an empty battery up to this state of charge. For all durations higher than d,,,,, the

battery is already completely recharged and consequently
S(d)=1 Vd > dnaa- (4.25)

It is worth mentioning that if a battery is almost fully recharged, the energy throughput is usu-
ally reduced to prolong the battery’s lifespan. Due to this nonlinear charging behavior, S is
concave. Figure 4.4 exemplarily illustrates how a function S could look like. Moreover, for
a given initial state of charge SOC;,;; (the state of charge at the beginning of the charging
process), a given process starting time %;,;;, and a target state of charge [ - A, the cost compu-
tation for (vi,v!?) is displayed. The energy consumption costs c%((vi, vL2), SOC;,;) are
calculated according to equation 4.22. The time costs c%((v,i, U,lC'A), SOC;pit) are assumed to
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Figure 4.4: Relation between charging duration and state of charge.

result from the difference between the charging duration which is required to charge an empty

battery up to [ - A and the charging duration which is necessary to charge up to SOC},;+:
& ((vk, vk, SOCini) == 8711 - A) — STHSOCinar). (4.26)

4.1.3 Definition of Shortest Path Problems

Having described graph and edge cost functions, performance measure f is defined next. This
is the only missing part to fully describe the problem of finding optimal charging strategies
as an SPP. The performance measure is intended to rate and thus compare different paths on
graph C_J% and it eventually defines what an ,,optimal* charging strategy is. For the introduced
setting, there are two criteria according to which this can be done: Charging strategies could
be rated on the basis of energy consumption costs cg, as shown in (/4/), or on the basis of the
time costs ¢, as proposed in (/57). In the case of considering cg as rating criterion, as a first
approach, it could simply be stated for two given paths P, P, € P(é%, V0, VK +1), @ given
starting state of charge SOCY, and a given starting time tg that P; is ,better” than P, if and
only if

ce(Py,tg, SOCs) < CE(PQ, ts, SOCS> 4.27)

Note that it is assumed that the costs assigned to a path result from the sum of the costs of all
edges of which this path consists. However, the rating criterion described by inequality 4.27
leads to a non-intuitive rating behavior, since cg also includes negative energy consumption
costs caused by charging. Thus, fully recharging the vehicle battery at each charging station

represents a possible way to construct an optimal charging strategy. To avoid this, charging
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strategies could be rated depending on the energy consumption without considering the energy

gain due to charging, i.e., P is superior to P, if and only if
ce(Pi,ts,SOCs) — ¢5(P1,ts,SOCs) < cg(Py,ts, SOCs) — c5(Py, ts, SOCs). (4.28)

Here, cg denotes the cumulative negative energy consumption costs caused by all charging
processes which are represented by a path (see also equation 4.22). Correspondingly, charging
strategies are characterized as good charging strategies if the resulting energy consumption
caused by driving is low. Also this idea leads to an issue: Approaching charging stations, i.e.,
leaving the main road network to get to the charging station (and vice versa), leads to energy
consumption costs. Consequently, by following solely the idea of inequality 4.28, charging
strategies which suggest no stops for charging would receive comparably good ratings. On
the other hand, it would not be considered whether the suggested charging strategy leads to an
empty battery or not. Since leaving the main road network causes additional travel time, the
same issue occurs if charging strategies are solely rated according to the resulting total travel

time, i.e., if a path P is superior to P if and only if
CT(Pl,ts,SOCS> < CT(PQ,tS,SOCS). (4.29)

Certainly, the minimum requirement for a charging strategy has to be that the destination is
reached. Other charging strategies should not be considered or should be rated very badly. The
subsequent definition is motivated by this consideration:

Letapath P = [vf v ..., vg] on é% be given. Furthermore, let a starting time ¢g, a starting
state of charge SOC'g, and deterministic edge cost functions ¢y and cg (as described before)

be given. Then, path P is called feasible if and only if
SOCg — cp(Pr.i,ts,SOCs) >0 Vi € {2,3,...,Q} (4.30)

This means that a path is feasible unless there exists at least one edge along this path, for which
the energy costs for passing this edge are equal to or higher than the energy which is available
when reaching the start of this edge. A similar definition of feasibility in the context of CSO

can be found, for instance, in (/37).

Finally, based on the definition of feasibility, the following definition of a performance measure
is suggested:

P,tg, SOC if P is feasible
F(P,ts, SOCs) = er(B,ts, 50Cs) 431)

00 else

Time costs cr are used as the primary rating criterion. In contrast to minimizing the energy
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consumption costs, which would still be a reasonable optimization criterion??

, minimizing time
costs has the advantage that optimized charging strategies avoid congestion. If cp was used
instead of ¢z and if it is assumed that high driving speeds cause high energy consumption®,
then free-flow traffic conditions could be less desirable than, for example, minor congestion.
Hence, a charging strategy leading a car driver into minor congestion could be rated better
than a charging strategy which allows avoiding any kind of traffic jam. This probably does not
mirror the will of drivers. By using performance measure f as the objective function®®, the

corresponding SPP results directly:

min P tg, SOCyg
I ) A (4.32)
subjectto P is a vg-vi +1-path on G5

Alternatively, by replacing performance measure f with cost function cr, the feasibility condi-
tion can be removed from the objective function and, instead, be represented by an additional
constraint:
min cp(P,tg,SOCys)
subjectto P is a vg-vk1-path on C% (4.33)
P is feasible

Such types of SPPs are denoted as constrained shortest path problem (7) (47). During the next
sections, problem formulation 4.33 is usually preferred.

4.2 Analysis of Cost Function Properties

Up to this point, the problem of finding optimal charging strategies is formulated as an SPP. As
a next step, it is necessary to identify existing or develop new algorithms that can be used to
find optimal or at least good solutions for problem 4.33 in reasonable time. For this purpose,
the problem’s properties are analyzed, allowing an evaluation of the applicability of known

optimization algorithms and concepts.

There exists already a huge number of optimization algorithms for solving a variety of different
types of SPPs in literature (overviews can be found for example in (33), (/09) or (/39)). In
this section, the focus is set on modifications of Dijkstra’s algorithm (36). Problem 4.33 will

be solved by an algorithm which is an extended version of Dijkstra’s algorithm. In Figure 4.5,

21t would also be reasonable to consider travel times and energy consumption simultaneously within the objec-
tive function as done in (/37).

2In section 7.1, recorded consumption data of real BEVs confirm that BEV's show such an energy consumption
behavior.

ZNote that in a deterministic context, i.e., if f represents a deterministic function, it is not necessary to differ-
entiate between the notion ,,performance measure* and the notion ,,objective function®, since the expected value
operator E[] applied to a deterministic function f does not show any impact.
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Dijkstra’s Algorithm
Input: A directed graph G = (V, E) a starting node v, a destination node vy and a
non-negative cost function ¢ which assigns costs to edges
Initialization: ~Create label L = (0, §), vg) for node vg. Define the set of temporal
labels Ltemp := {L} and the set of permanent labels Lpepp, := 0
1 | While Lieimp # () and no label belonging to vy 1 was added to Lyperm, do:
2 L = (e, vPTe, v") = the label in L4y, with the lowest cost value.
3 Remove L from Liemy, and add it to Lyeyp,.
4 For all v"* € V such that e := (v, v"%) € E do:
5 Compute ¢V := " + ¢(e)
6 Create Lnew = (CTLEUJ’ ,UC’LLT'7 Unew)
7 If there is no label in L, that belongs to node v""
8 If there is no label belonging to v"** in L;e;, then:
9 Add L™ to Liemp.
10 Else (i.e., it already exists a label L4 = (c°ld, o777 0% € Lyemy):
11 If cold > cnew
12 Delete L from Liemp and add L™ instead.
13 End if.
14 End if.
15 End if.
16 End for.
17 | End while.
18 | If possible, return the label Le Lyperm that belongs to node vx 41,
19 | otherwise return ,,No feasible solution found*.

Figure 4.5: Pseudo-code of Dijkstra’s algorithm for solving point-to-point SPPs.

a possible pseudo-code for implementing Dijkstra’s algorithm can be found. The reader is as-
sumed to be familiar with Dijkstra’s algorithm. Hence, no explanations on the procedure itself
are provided here, but one difference between the pseudo-code in Figure 4.5 and the original
version of Dijkstra’s algorithm from (36) shall be pointed out: In line 1 of the pseudo-code,
it is postulated that the algorithm leaves the while-loop (and hence terminates) as soon as a
label belonging to the destination node is found. The original version of Dijkstra’s algorithm
did not have this condition. However, the possibility of including this additional condition
into the shortest path algorithm is one reason for favoring algorithms which are derived from
Dijkstra’s algorithm in the context of CSO: Problem 4.33 is a so-called point-to-point SPP,
i.e., the shortest path from one starting node to one destination node has to be computed. For
such problems, so-called label-setting algorithms, like Dijkstra’s algorithm, in most cases out-
perform other types of shortest path algorithms. Label-setting algorithms typically start their
route-search at the starting node and expand from there on (more or less) circularly into all
directions, while steadily assigning costs to the considered nodes. Such a behavior can also be

observed for the pseudo-code in Figure 4.5. Examples of how the resulting search spaces look
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Figure 4.6: Visualization of typical search spaces of label-setting algorithms in Google Earth.

like can be found in Figure 4.6. There, the starting point is shown in blue, the destination in red
and all edges which were added to the set of temporal labels L;c,y,, or to the set of permanent
labels Lperm during the route search are marked green®. On the left, Dijkstra’s algorithm is
applied and on the right, a version of the A*-algorithm (62) (63) is used. The latter approach
can be assigned to the family of the label-setting approaches, too. The graphics are taken
from (67). If the considered cost function obtains no negative values, the circular expansion of
label-setting approaches makes it possible to guarantee optimality of the computed path even
if the route search is stopped as soon as a label belonging to the destination node is added to
Lperm- Other types of shortest path algorithms, like for example label-correcting algorithms?’,
which are the most common algorithms for solving SPPs besides label-setting algorithms, do
not show this advantage. If a label-correcting algorithm is terminated prematurely, i.e., before
each edge of the whole graph has been considered during the route search, then optimality of
the computed solution cannot be guaranteed (52). Thus, at least for point-to-point SPPs, label-
correcting algorithms typically suffer from higher running time complexities and consequently

also from higher computation times than label-setting algorithms (7) (42).

Unfortunately, there are several aspects of the suggested deterministic SPP?®, which the de-
scribed version of Dijkstra’s algorithm cannot handle: Two different cost functions have to be
considered in parallel. Both of them depend on time and on the state of charge. The energy
consumption costs even assume negative values. Any of these aspects not only impedes the

applicability of Dijkstra’s algorithm, but of most shortest path algorithms. In the following,

%%In the context of dynamic SPP algorithms, the sets of temporal and permanent labels are often also denoted as
the sets of opened and closed nodes.

2"Both label-setting and label-correcting algorithms are types of dynamic programming approaches.

21 one speaks of problem properties in the context of routing algorithms, then one typically refers to the prop-
erties of the considered edge cost functions.
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each of the mentioned cost function properties and its impact on potential solution approaches
are analyzed in detail. Afterwards, these analyzes are used to derive appropriate optimization

algorithms.

4.2.1 Negative Edge Costs

When optimizing paths with regard to a cost function which can attain negative values, the crit-
ical scenario for label-setting algorithms is that the optimal path P* = [v},v3, ..., v},] is very
expensive at the beginning, i.e., the costs ¢(P;’,,) for m < M are huge, but its last edges lead to
negative costs, i.e., (P 1.,,) < 0. If a suboptimal solution P with ¢(P*) < ¢(P) < ¢(Pf.,,)
exists, then a label-setting algorithm typically terminates with returning P before finding P*. In
contrast, label-correcting algorithms, like the Moore-Bellman-Ford algorithm (/4) (48) (103)
or the algorithm of Floyd and Warshall (46), ensure optimality of their solutions even under the

presence negative edge costs.

Nevertheless, in order to reduce computation times, label-setting algorithms are often applied
even if negative edge costs exist. This can be done, for example, by following the method of
Johnson (72). For this approach, so-called potential functions are computed to transform within
a pre-processing step the relevant edge cost function in such a way that negative edge costs no
longer occur. The essential property of such potential functions is that the shortest paths be-
tween any pair of nodes remain the same, even though the edge costs are changed. In (74),
a potential function is generated on the basis of elevation data. In (/2) and (42), preliminary
route computations are carried out during the pre-processing step to construct an adequate po-
tential function. The only restriction to Johnson’s method is that no cycles leading to negative
edge costs are allowed to exist in the given graph. Due to the law of conservation of energy,
this is always fulfilled for traditional energy-efficient routing (7) — at least as long as charging

stops are not considered?’.

An alternative to Johnson’s method, which is frequently used in the context of energy-efficient
routing, is to exclude energy consumption costs from the objective function and optimize ac-
cording to another rating criterion (//6) (/37). To still be able to ensure feasibility of the
computed paths, an additional constraint can be introduced as has been done for the formu-
lation of problem 4.33 (which is the formulation as a constrained SPP). Hence, the potential

negativity of cg is no knock-out criterion for applying label-setting algorithms for CSO.

The law of conservation of energy implies that, despite recuperation, driving in a circle can never lead to an
increase of the state of charge.
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4.2.2 Multicriteria Shortest Path Problems
Multicriteria SPPs for Z € N+ different criteria ¢y, co, ..., ¢z, a starting node s, a destination

node d, and a directed graph G can be formulated as subsequently stated:

min (cl(P)702(P),...,cZ(P)>

. (4.34)
subjectto P is an s-d-path on G

If several objective functions are considered in parallel, then it is in general not trivial to com-
pare different solutions and decide which one is the best. An example illustrating this statement
can be found in Figure 4.7. Here, a shortest path from node a to node e has to be computed by
minimizing the two criteria c; and ¢y at the same time. With P4, Pg, P and Pp, one of four
different paths can be chosen. Obviously, it can be concluded that P4 is better than Pp (and
also better than P), since it is in both criteria at least as good as Pp and if ¢; is considered,

it is even superior to Pp. Such a trivial statement is not possible when comparing P4 to Pp.
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Figure 4.7: Multicriteria SPP and resulting objective function values

Fortunately, the so-called Pareto optimality (///) provides a clear interpretation of optimality
for multicriteria optimization problems: A solution is called Pareto optimal if there exists no
other feasible solution which is for all considered criteria at least as good as the original solu-
tion and additionally for at least one criterion better than the original solution. All solutions
that are not Pareto optimal are denoted as dominated solutions. This means that P4 and Pp
are Pareto optimal solutions for the optimization problem described by Figure 4.7. Verbally,
this is expressed by stating that ,,paths Po and Pp are dominated by P4*.



4.2. ANALYSIS OF COST FUNCTION PROPERTIES 71

In literature, many different algorithms for solving multicriteria SPPs are suggested (see (3/)
(35) (99) (119) (134); for an overview, see section 9.1 in (4/)). In most cases, these algo-
rithms are intended to generate the whole set of Pareto optimal paths. However, computing
the whole set of Pareto optimal solutions is, from a practical perspective, often not necessary.
For the case of CSO, for instance, suggesting a low number of charging strategy recommen-
dations seems sufficient. This is particularly important since the number of Pareto optimal
solutions for multicriteria SPPs can grow exponentially with the number of nodes of the con-
sidered graph (6/). Thus, simply listing up all solutions can lead to high computational efforts.
In terms of complexity theory, multicriteria SPPs are proven to be NP-complete (/33), i.e.,
the computational effort for solving such a problem typically rise very quickly with the size of
the graph. When applying dynamic programming approaches to multicriteria SPPs, all Pareto
optimal paths from the starting node to any node which is visited during the route search are
computed. Typically, this cannot be avoided even if it is not intended to compute the whole set
of Pareto optimal paths. As label-setting (as well as label-correcting) algorithms encode paths
via labels, dynamic programming algorithms applied to multicriteria SPPs have to be able to
assign several labels to the same node. Otherwise, the parallel existence of several Pareto opti-
mal paths leading from the starting node to another node could not be represented. This makes
it necessary to generate and manage a huge number of labels. High computation times are the

result. More details will be provided later on.

Clearly, the problem of finding optimal charging strategies, the way it is formulated in 4.33,
differs from traditional multicriteria SPP. The main difference is that the energy consumption
costs are (at least in the version stated in 4.33) removed from the objective function and, instead,
represented within an additional constraint. Unfortunately, this does not simplify the problem.
The resulting constrained SPPs is, in fact, a special version of a multicriteria SPP, since still
both cost functions need to be considered simultaneously. As a consequence, the problem’s

complexity remains high.

4.2.3 Time Dependency of Edge Costs

To model time-dependent edge costs, the possibility to compute the time at which an edge is
reached has to be given. Hence, a starting time and a function assigning time costs to edges are
necessary. Furthermore, it has to be distinguished between minimizing time-costs, i.e., find a
»fastest* path, and minimizing general time-dependent costs, such as the energy consumption
costs cp which have been introduced in section 4.1.2. For the case of finding fastest paths,
which was considered for the first time in (32), time dependency not necessarily increases
the SPP’s complexity. If the so-called FIFO-property (first-in first-out) holds, even an almost
unchanged version of Dijktra’s algorithm can be applied for finding fastest paths (38). A (di-
rected) network G= (v, E) (or a directed graph, respectively) is denoted as a FIFO-network

*Constrained SPPs are N'P-complete according to section 3.1 in (47).
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if and only if the time-costs, which are here again denoted with cr, fulfill the following condi-

tion for arbitrary times ¢ < ta:
t1 + CT(e,tl) <ty + CT(e,tg) Ve € E (4.35)

This can be understood as ,,overtaking is not allowed®. If a vehicle starts passing an edge before
another vehicle, then it will also arrive at the end of this edge before the other one. In the con-
text of routing, it is common to assume the FIFO-property to be true, even though overtaking
is actually possible in reality. The same is assumed for CSO. Be aware that the FIFO-property
may be violated if the time-dependent costs CIVY for waiting at a highly frequented charging sta-
tion are modeled inappropriately, i.e., if situations within the model exist in which a car driver
is able to finish her/his charging process earlier if she/he arrives later at the charging station.
This is not reasonable from a practical perspective, nor is it reasonable according to queuing
theory. Note that a car driver facing such a situation would achieve a time-advantage if she/he

simply waits at the charging station for an appropriate time period before she/he starts charging.

For the case of minimizing general time-dependent path costs, the situation becomes more com-
plicated. The problem is that Bellman’s optimality principle may no longer hold. In the con-
text of SPPs, i.e., for finding a shortest path between two nodes vy and vx 41, this principle pos-
tulates that any subpath P . of an optimal path P* = [vg, ....,vx 1] with0 < m <n < K+1
again is an optimal solution for the problem of finding a shortest path between v,,, and v,, (/3).
General optimization problems which fulfill Bellman’s optimality principle have the property
that optimal solutions can always be constructed by stringing together solutions of subprob-

lems.

Bellman’s optimality principle represents the fundamental idea of any dynamic programming
approach and ensures an efficient implementation of corresponding algorithms. For example,
when applying Dijkstra’s algorithm (or a modified version of it), then labels are constructed
during the route search and assigned to nodes. These labels contain three types of information
(see also the pseudo-code of Figure 4.5): First, the costs of a path which leads from the starting
node to the node to which the considered label belongs. Actually, this path is the shortest path
to this node which Dijkstra’s algorithm has found up to the time at which the label is generated.
Second, the preceding node on this path. The third information stored within labels is the node
to which the label belongs. This is necessary to have a link between labels and nodes. The
information about the preceding node is used to reconstruct the path which leads to the cost
value stored by the label by successively following the predecessors until the starting node is
reached. Thus, each label encodes a path from the starting node to the node to which the label

belongs. The information about the costs is used to eliminate ,,bad* subpaths. This is the point
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where dynamic programming approaches, such as Dijkstra’s algorithm, exploit Bellman’s op-
timality principle: Let it be assumed that a path has been found during the route search leading
from the starting node to another node. Furthermore, assume that, as the dynamic program-
ming algorithm proceeds, a second path leading to this node is found. Dynamic programming
algorithms check whether the new path leads to lower costs than the old one. If this is the case,
then the old label is overwritten with a new one that encodes the new path. If the old label leads
to lower costs, then it remains and the new label is dropped. This means for the multicriteria
case, that labels or paths, respectively, are deleted as soon as they are identified to be domi-
nated. Unfortunately, for time-dependent edge costs, this is no longer possible. In (59), it has
been shown that even under strong assumptions concerning the properties of the considered
time-dependent cost function, subpaths of optimal paths can be suboptimal. This is a contra-
diction to Bellman’s optimality principle and makes it impossible to delete ,,bad* subpaths if
general time-dependent edge cost function are considered and if optimality of the computed
solutions has to be guaranteed. This is an important observation. It shows that during a route
search, the search space cannot be pruned for the case of general time-dependent edge costs
unless possibly suboptimal solutions are accepted. Instead, any possible sequence of edges has
to be considered until the destination is reached. A side-effect of this is that, similar to the
multicriteria case, applied algorithms need to be able to maintain several labels belonging to

the same node during the route search?!.

Now, when returning to CSO, it is assumed that the FIFO-property holds for c7. Furthermore,
not general time-dependent costs, but time costs have to be optimized. Thus, it could be ex-
pected that Bellman’s optimality principle still holds. Unfortunately, the example displayed in
Figure 4.8 proves that this is not the case. Here, a time optimal route from vy to vg has to be
found. It is assumed that there are altogether five charging stations along a fixed route, i.e., no
route choices can be made. To keep the graphic clear, the first part of the graph between nodes
vp and vg is reduced to two edges. These edges represent alternative paths P4 and Pp between
vo and vg and the displayed costs are equal to the accumulated costs of these paths. The start-
ing state of charge and the starting time are provided in the table below the figure. Because
of edge (vg, vg), cost functions ¢ and ¢g are time-dependent. Edge costs for charging can be
computed according to section 4.1. Target states of charge are given in steps of one percent,
i.e., A = 0.01. Furthermore, it can be observed that path Pp is dominated by P4 since it
leads to higher time and higher energy consumption costs. To get from vg to v on path P4y, it

is necessary to charge at charging station 5. Otherwise, consumption costs would exceed the

31For the multicriteria case, this is necessary, since several non-dominated paths leading from the starting node
to the currently considered node may exist in parallel (see, for instance, the example in Figure 4.7).
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(er,CE)

(50,0.26), if £ < 100
(50,0.23), if ¢ > 100

100,0.11 —

path Pp

starting node | destination | SOCyg | tg
40% 0

U

S

Figure 4.8: Example showing that subpaths of time optimal paths may be dominated for the
problem of finding time optimal and feasible charging strategies

starting state of charge before node vg is reached:

a ,b b _
SOCs — (P4, 0,0.4) = e (08, 08),99,0.3) — e ( (15, v5),100,0.25) = w6
—0.4—0.1-0.05—0.26 = —0.01

The state of charge when reaching the charging station is equal to 25 percent. For the remaining
route, i.e., for returning to the main route and finally getting to vg, the state of charge is reduced
by 28 percent, since node vg cannot be reached before time ¢ = 101. Therefore, the fastest
possible and feasible charging strategy which is based on path P4 is to charge up to state of
charge of 29 percent. Assuming that the charging duration for this charging process is given
by a parameter d > 0, the resulting total travel time is equal to 151 + d and vg is reached with
a state of charge of one percent. On the other hand, when using path Pp to get to v, then it
is not necessary to charge at station 5, since node vg is reached at time ¢ = 101 with a state of
charge of 24 percent. A total travel time of 151 and a final state of charge of one percent are the
result. Hence, this second strategy is optimal for the described setting, even though its subpath

Pp is dominated by another subpath.
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Note that Bellman’s optimality principle for CSO, under the assumption that travel times are
minimized, could have been obtained if the energy consumption costs satisfied the so-called
cost consistency assumption (/09). The cost-consistency assumption is a generalization of
the FIFO-property from time-dependent time costs to arbitrary time-dependent edge costs. A
time-dependent cost function c fulfills the cost consistency assumption if leaving a node earlier
does not lead to higher costs than leaving it later, i.e., it has to hold for arbitrary times ¢t; < ¢
that:

cle,t1) < cle,ty) Ve € E. (4.37)

In Figure 4.8, condition 4.37 is violated by edge (v2, vg), since arriving later at v reduces the
energy consumption costs from 26 to 23 percent. It has to be remarked that the cost consistency
assumption does not make sense if the energy consumption of a BEV is considered, since
passing a road segment earlier not necessarily reduces the expected energy consumption. This

implies that it cannot be expected that cg fulfills the cost consistency condition.

4.2.4 Dependency of Edge Costs on the State of Charge

According to section 4.1.2, time costs ¢y and energy consumption costs cg depend for the case
of CSO (at least according to the way the problem is modeled here) not only on time, but on
the state of charge, too. For the dependency of the two considered cost functions ¢y and cg on
the state of charge, similar statements as given in section 4.2.3 for their dependency on arrival
times can be made. A generalization of the cost consistency assumption could be applied in
this context. However, such a generalization would lead to unrealistic assumptions such as ,,If
one car starts passing an edge with a lower state of charge than another car, then it also reaches
the end of the edge with a lower state of charge.* Another issue is that, besides the dependency
on the state of charge, the dependency on time still remains for both cost functions cg and cr.
According to the author’s knowledge, there exists no literature treating comparable scenarios.
However, for problem 4.33, it has already been reasoned that even without considering the
dependency on the state of charge, Bellman’s optimality principle does not hold. Thus, it could
be stated that, at least from an algorithmic perspective, anything one could make use of is
already lost. Hence, it seems to be a reasonable assumption that the dependency of edge cost
functions cg and cr on the state of charge won’t complicate the optimization problem. Later
on, this conjecture will be confirmed implicitly in theorem 1. This theorem will actually prove
the correctness of a shortest path algorithm proposed for solving the problem of finding optimal

charging strategies.

4.3 Solution Approaches
Figure 4.9 summarizes the findings of section 4.2. Several different cost function properties,
which are relevant in the context of shortest path computations, were discussed: The existence

of negative edge costs, the coexistence of several optimization criteria, and the dependency of



76 CHAPTER 4. CSO AS AN SPP UNDER DETERMINISTIC CONDITIONS

these criteria on time and the state of charge. By removing energy consumption costs from the
objective function, their potential negativity is supposed to have minor influence on potential
solution approaches. Furthermore, the non-negativity of ¢y ensures that applied label-setting
algorithms can be stopped as soon as the destination node is reached. Taking two criteria into
account, on the other hand, makes it necessary to consider not only time optimal subpaths dur-
ing the route search. Thus, several labels belonging to the same node may exist in parallel. The
time dependency of ¢ has no influence, since ¢ is assumed to fulfill the FIFO-property. In
contrast, the time dependency of cost function cg, along with its missing cost consistency, even
destroys Bellman’s optimality principle. Due to this, dominated subpaths cannot be ignored.
With losing Bellman’s optimality principle, any existing sequence of edges has to be pursued
during the route search, i.e., any possible charging strategy has to be tested to guarantee opti-

mality. This is the most intuitive and, at the same time, the most trivial approach that can be

Potential Coexistence of Time-dependency of Time Dependency of Dependency of Cost
Negativity of Energy and Time Costs along with Energy Costs without Function on State of
Energy Costs Time Costs FIFO-Property Cost Consistency Charge

{} {}

ggn‘:g);g?rs;; Several Labels No Impact Loss of Bellman No further
P Principle Impact

Objective Function per Node

Premature Stop Problem .
K Dominated Labels
of Route Search Complexity no
. f Cannot Be Deleted
Possible longer Polynomial

Figure 4.9: Cost function properties and their influence on solution approaches

applied. In this section, it will be argued that the resulting computational effort is extremely
high, but also that this approach allows handling the dependency of functions ¢ and cg on the

state of charge.

As shown in the previous section, approaches for handling most of the cost function properties
can be found in literature, at least for handling them separately. Recent works also concerns
combinations of the listed aspects. In (88) and (37), for example, algorithms for solving time-
dependent multicriteria SPPs are provided. In (59), additionally the potential negativity of edge
costs is addressed. Though, it seems that none of the existing shortest path algorithm is suit-
able for handling problem 4.33 with all its characteristics. As a consequence, an appropriate

algorithm has to be derived. Here, this is done based on analyses conducted in section 4.2.
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Algorithm A: Finding Optimal Charging Strategies
Input: A directed graph GA = (VDA, E}%), a starting node v, a destination node vy 41,
a starting time tg := 0, cost functions ¢y and ¢g as described above, a starting state of
charge SOCyg
Initialization: ~ Create label L = (0,0%, 0, 0, v, 1) for node vg. Define set of temporal
labels Ltemp := {L} and set of permanent labels Lperp, 1= 0;
define the for each node the highest existing index: n™%*(vg) := 1,
n™**(v) =0 Vv # v
1 | While Lieimp # () and no label belonging to vy 1 was added to Lyperm, do:
2 LT = (e, ¢B7, oPTe nPTe v n®T) = the lexicographically
3 smallest label in Lyepp.
4 Remove L from Liemp and add it to Lyerp,.
5 For all v"¢ € V such that e := (v°*", v"¢?) € E do:
6 Compute SOC" := SOCg — c3"
7 Compute ¢ := ¢§" + cr(e, ts + 3, SOC")
8 Compute cg(e, ts + 3", SOC") according to equation 4.10
9 Compute ¢ := 3" + cp(e, tg + G, SOC)
10 Compute n™** (W) 1= pMaT(ynew) + 1
11 Compute n"¢" := pMaE(y"ew)
12 Create "V = (cr%ew7 c’rlzcew7 vcur’ ncu’r’ Unew’ nnew)
13 If SOCs — ¢ > 0, then:
14 add L™ to Liemyp
15 End if.
16 End for.
17 | End while.
18 | If possible, return a label L € Ly, that belongs to node v 41,
19 | otherwise return ,,No feasible solution found*.

Figure 4.10: Pseudo-code of algorithm A

The result of these considerations is described by the pseudo-code which can be found in Fig-
ure 4.10. Algorithm A is based on ,algorithm 1* from (99), which can be understood as the
straight-forward extension of Dijkstra’s algorithm for the time-independent multicriteria case.
From here on, this original algorithm is denoted as ,Martins’ algorithm* (named after its in-
ventor). The essential idea taken from Martins’ algorithm is to use an extended type of labels.
When applying Dijkstra’s algorithm, labels contain information about the node to which they
belong, the preceding node, and the costs for reaching the node to which the label belongs. At
most one label is assigned to each node. It was stated in section 4.2 that for multicriteria SPPs,
any non-dominated path can be a subpath of a time optimal path. Hence, several paths leading
to the same node (which is not the destination node) may be relevant for finding eventually a
time optimal solution. As each label can only encode one path, it is necessary to have the pos-

sibility to maintain several labels for each node. Martins’ algorithm achieves this by assigning
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indices to labels. All labels belonging to the same node are numbered consecutively by these
indices (,,index 1% is assigned to the first label, ,,index 2* to the second, and so on). However,
the existence of several labels per node and, along with that, the existence of several relevant
paths leading to the same node, makes it insufficient to save only the information about the pre-
ceding node. It is inevitable to know which of the paths leading to the previous node causes the
costs which are stored in the currently considered label. Thus, besides the preceding node, the
index of the preceding label is also stored in each label. For the case of CSO, i.e., for the case

of cost functions cr and cg, labels are defined as a 6-tuple, i.e., an ordered set consisting of six

cur cur

entries. A label L := (cr, cg, vP"¢, nP™ v n") belonging to a node v“"" contains infor-
mation about the time and energy-consumption costs that arise from the starting node to node
v°“" on the path that is encoded by L. Moreover, it stores information which allows identifying
the preceding label uniquely, i.e., the node vP"¢ to which the preceding label belongs and the
corresponding label-index nP"¢. Finally, due to notational reasons, information for describing

the label itself, i.e., the node v““" and the label index n““", are stored.

Now, algorithm A is applied to the small graph shown in Figure 4.3 in order to explain how it
works and simultaneously to illustrate the idea of extended labels. Analogously to Dijkstra’s
algorithm, there is a set of labels Ly, and a set of labels Ly, used as storage for permanent

and temporal labels, respectively. Table 4.1 displays the proceeding of algorithm A. As a is the

Algorithm A

Iteration Liemp Lperm

Ll :=(0,0%,0,0,a,1)
It. 1 L} = (1,20%,a,1,b,1), L}

Ll = (1,40%,a,1,c,1)
It. 2 L, L2 :=(2,50%,b,1,¢,2) | LL, L}
It. 3 L, L} = (5,90%,¢,1,d,1) | LL, L}, L}
It. 4 L%:=(4,70%,¢,2,d,3), L} | L, L}, LL, L?
It. 5 L} L, L}, L}, L2 L2

Table 4.1: Proceeding of algorithm A for the example from Fig. 4.3

starting node, the first label which is created during the initialization is L. := (0,0%, 0,0, a, 1).
The first two entries, which encode the cumulated costs, clearly have to be equal to zero. Since
there is no preceding node, entries three and four are filled with dummy-values. The last two
entries are a consequence of the fact that this first label belongs to node a and that it is the first
label assigned to node a. Node a is not the destination and with L}l € Liemp, the set of temporal

labels isn’t empty. Thus, algorithm A enters the while-loop. Label L} is taken from the set of
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temporal labels, defined as the currently considered label L°“" in line 2, and afterwards added
to the set of permanent labels. Note that always the lexicographically smallest label is taken

from Liemp:

For two n-dimensional vectors § := (91,92, -, Un)> ¥ := (Y1, Y2, ---, Yn) € R™, vector ¢ is de-
noted as lexicographically smaller than ¢ if one of the following two conditions hold: Either
g =gory; <y;with j :=min{i: §; # g;, ¢ € {1,...,n}}. This means that the first entries
of a vector are most important for comparison. The definition is taken from section 5.1 in (4/).
One also writes § <je 4.

For algorithm A, alabel L := (&7, é5, 0P™, APTe, (CUT | feur

) is called lexicographically smaller
than a label L := (er,cg, vPTe, AP, v R if the accumulated costs encoded by L are

lexicographically smaller®” than the accumulated costs encoded by L, i.e., if

(ér,¢E) <iex (Cr,CE). (4.38)

uT are considered and labels for these nodes

In line 5 of algorithm A, all neighbours of node v
are created in lines 6 to 12 by adding the costs for the corresponding edges to the accumulated
costs and by using label L*" as predecessor. At this point, algorithm A differs significantly
from Martins’ algorithm. In contrast to Martins’ algorithm, dominated labels are also added to
Liemp- It is worth mentioning that ™% (v) denotes the highest index that has been assigned to
a label which belongs to node v. Whenever a new label that belongs to n"%*(v) is generated,
this number is increased by one (see line 10). By doing this, it can be ensured that each gener-
ated label can be uniquely identified by the node to which it belongs and by the index which is
assigned to it. A further difference to Martins’ algorithm is that algorithm A includes the path

feasibility condition in line 13.

Note that the development of sets Lperrm and Liey,p, Which result when applying algorithm A
to the graph from Figure 4.3, is shown in Table 4.1. The i-th row shows the situation after the
while-loop has been executed the i-th time. Here, two iterations are remarkable: During the
second iteration, i.e., when the label Lll) is added to the set of permanent labels, a second label
belonging to node c is added to Lyc,y,,. By following the preceding labels it can be seen that L}
encodes path [a, ], whereas L? encodes path [a, b, c]. The second interesting iteration is the last
one, when the first label belonging to the destination node d is made permanent and algorithm
A returns the time optimal and feasible path [a, b, ¢, d]. Then, according to line 1 of algorithm
A, no more iterations are started and the algorithm terminates. This is also a difference to Mar-

tins’ algorithm, which computes the whole set of Pareto optimal solutions by maintaining the

32 According to the defintion taken from (4/), a vector z is denoted as lexicographically smaller than a vector ,
even if x = y. This also explains writing <;c,, and not <;., in equation 4.38.
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while-loop in any case until set L, is empty. However, it is used that Martin’s algorithm is
a label-setting algorithm and that, due to this, the route search can be stopped as soon as the

destination is reached, since computing one solution is assumed to be sufficient here.

On the basis of the pseudo-code of algorithm A, the following theorem can be shown (a corre-

sponding proof can be found in appendix A):

Theorem 1. Let a finite and directed graph G= (V, E) a starting node s, a destination node
d, cost functions cp and cg (as described in section 4.1.2), and a starting state of charge SOC's
be given. Furthermore, let there be no cycle on G that leads to time costs of zero and let at least
one path from s to d on G exist which is feasible under the given conditions. Then, algorithm

A terminates with finding a label that encodes a time optimal and feasible s-d-path.

According to Theorem 1, algorithm A is able to ensure feasible and time optimal solutions in
a very general setting. Neither the FIFO-property for cr, nor the cost consistency for cg are
required during the proof. Also the conditions concerning the graph are very weak, since the
existence of an optimal solution, as well as the absence of zero-time cycles are, from a practical
perspective, negligible restrictions. However, this flexibility causes high computational effort:
With Martins’ algorithm, algorithm A is based on a rather slow approach. Moreover, it even
leaves out the deletion of dominated subpaths, a fact that raises computation times even more.
On the other hand, it can be expected that, besides the premature termination of algorithm A
when reaching the destination node, especially the feasibility condition in line 13 prunes the
search space significantly. This is because the lexicographic selection of candidate labels in
lines 2 to 3 ensures that algorithm A primarily constructs time minimal charging strategies.
Such strategies naturally tend to suggest few and short charging processes and thus often vio-
late the feasibility condition. As a result, many labels can be discarded early during the route
search process. Still, even though it will not be explicitly tested within this thesis, the analyses
of the properties of the considered cost functions in section 4.2 prompt that computation time

does not allow applying algorithm A on large graphs.

Algorithm B: Modification of Algorithm A for Accelerated Computation

13 If L™ is not dominated by another label in L¢p,p or Lperm, that belongs
14 to v and if SOCs — ¢ > 0, then:

15 add L™ to Liemp and delete all labels belonging to v““" in L, that
16 are dominated by L™,

17 End if.

Figure 4.11: Pseudo-code of algorithm B as an extension of algorithm A
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One possibility to counter this problem is to include the deletion of labels which encode dom-
inated subpaths. The corresponding algorithm is here denoted with algorithm B. It results by
replacing lines 13 to 15 in algorithm A by the pseudo-code stated in Figure 4.11. In this con-
text, it has to be considered that new labels are not added to the set of temporary labels Liepy, if
they are dominated. Moreover, existing labels, i.e., labels which were already added to Liepp
during previous iterations of the while-loop, are also deleted if they are dominated by a recently

constructed label. Despite this modification, algorithm B proceeds analogously to algorithm

Algorithm B
Iteration Liemp Lperm
Ll :=(0,0%,0,0,a,1)
It. 1 L} = (1,20%,a,1,b,1), L! := (1,40%, a,1,¢,1) | L}
It. 2 L! L, L}
It. 3 LY :=(590%,¢c,1,d,1) L, L}, L}
It. 4 0 Lg, Ly, Le, L

Table 4.2: Proceeding of algorithm B for the example from Fig. 4.3

A. To illustrate this, Table 4.2, analogously to Table 4.1 for algorithm A, provides an overview
of the iterations of algorithm B if it is applied to the example depicted in Figure 4.3. When
comparing both tables, the first difference can be observed during the second iteration, where
algorithm B, in contrast to algorithm A, does not add the dominated label Lg to0 Liemp. This
fact eventually explains that label L?l is not constructed. Hence, the optimal solution to the
stated problem, which is encoded by L2, is not computed. Even though deleting dominated
labels during the route search leads to the already discussed loss of optimality for solutions
generated by algorithm B, this proceeding still seems to be reasonable. If some strategy 1 leads
to a certain location in less time and with a higher state of charge than a strategy 2, it appears to
be reasonable to assume that strategy 1 is at least not much worse than strategy 2. Correspond-
ingly, it can be expected that algorithm B in most cases computes the same or a comparably
good solution as algorithm A. This conjecture is confirmed in (69). In this work, the author
describes a case study, where both algorithms were compared with regard to computational
effort and achieved solution qualities. The findings indicate that algorithm B leads in almost
all cases to the same solution as algorithm A. A further clear advantage of algorithm B can be
observed in Table 4.2: The number of iterations and of constructed labels is already lower for
this very small example than for algorithm A. In (69), this observation is confirmed, too. The
effect becomes even more significant with increasing graph size. Nevertheless, algorithm B

is also not expected to be applicable for graphs of sizes which occur in practical applications.
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However, algorithm B at least offers a perspective. One could, for instance, think of combin-
ing algorithm B with established speed-up methods for shortest path algorithms. More details

about this will be given later on in chapter 9.

4.4 Model Assessment with Regard to Research Objectives

As mentioned, the introduced MDP is used as reference model in order to assess the formu-
lation of the problem of finding optimal charging strategies as an SPP. It particularly allows
identifying restrictions of other models with regard to RO 1a. Now, when comparing the MDP
formulation from chapter 3 to the formulation as a deterministic SPP from chapter 4, then three
major differences can be named: The first difference is that the set of possible charging deci-
sions is no longer continuous. The original decision spaces U, with k € V5’ (i.e., the decision
spaces which refer to charging decisions) are replaced by a finite set of decision possibilities
Z/{kA. The second one is that there exist charging policies that cannot be represented by solutions
of the deterministic SPP. The last difference is that, for the MDP, a generic description of per-
formance measure f is given. For the SPP, on the contrary, f is specified rather concretely as a
function depending on deterministic edge cost functions cr and cg. Each of these differences
influence up to which degree the requirements defined by ROs 1a to 1c can be fulfilled by the

new problem formulation.

RO 1a: The MDP allowed modelling the problem of finding optimal charging strategies re-
alistically and very generally. The above mentioned differences between the MDP and the
deterministic SPP, however, have some influence on the SPP’s ability to achieve the same. In
this context, it can be expected that the influence of discretized decision stages is rather small.
Reasons for this assumption have been provided in section 4.1.1. The author also assumes
that the SPP’s missing ability to represent all possible charging policies via paths is not very
relevant, at least from a practical point of view. The main reason for this conjecture is that in
practice, a navigation system can be expected to recompute charging strategies during trips.
Therefore, the driver is not bound to the initially recommended sequence of route and charging
instructions. If necessary, these recommendations can be adjusted to react to recent incidents.
A regular updating of charging strategies gets very close to the idea of charging policies. There
may still be some situations in which such an on-trip recomputation of charging strategies does
not achieve the same results as a charging policy, but the author assumes this to be very unlikely

in reality.

In contrast to discretized decision spaces and the restriction to compute charging strategies in-
stead of charging policies, the suggested concretizations are assessed to be very critical with
regard to RO 1a. The main issue is the assumption of deterministic travel times and energy con-
sumption. Due to individual driving style and the influence of non-recurrent traffic incidents,

such as accidents, it is not realistic to expect travel time and energy consumption predictions
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to be absolutely correct. Particularly if the realized energy consumption only slightly exceeds
the energy consumption which is presumed according to ¢, i.e., according to the deterministic
model, BEVs may run out of energy even though following charging strategies which are as-
sumed to be feasible. The deterministic SPP does correspondingly not satisfy the requirements

that need to be fulfilled for an implementation in practice.

RO 1b: The definition of f which is suggested in section 4.1.3 basically includes both ef-
ficiency and, up to some degree, reliability. Efficiency is achieved by penalizing charging
strategies which cause high travel times, reliability by penalizing charging strategies that lead
to an empty battery. On the other hand, the suggested framework has no possibility to handle
uncertainties. It suffers in this context from the same problems as former models for CSO
(compare the literature review in section 2.1.3). Thus, the achieved level of reliability is unable

to mirror the original intention of RO 1b.

RO 1c: The discretization of the decision spaces makes it possible to transform the MDP to
an SPP, which again makes it possible to handle the problem numerically. The reduction to
a deterministic framework reduces the expected computational effort for solving the problem.
The analyzes conducted in section 4.2, on the other hand, suggest that solving the introduced
deterministic SPP is still expensive. Nevertheless, the developed algorithm B probably offers,
in combination with additional speed-up techniques, a possibility to compute near optimal
charging strategies even on graphs that are large enough to represent the road networks of

whole regions or countries.

Conclusions: In conclusion, the introduced deterministic SPP is not able to achieve RO 1a.
Correspondingly, an adjustment of this model has to be developed. This reformulation has to
allow taking uncertainty into account. It is, furthermore, important to ensure that the adjusted

problem formulation does not cause a significant increase of computation times.

4.5 Summary

The suggested interpretation of CSO as an MDP, which was described in chapter 3, is generic,
but can hardly be addressed numerically. Hence, an alternative formulation as an SPP was
introduced in chapter 4. SPPs consist of two main components: A graph and an objective func-
tion. The construction of graph G, which is based on the decision graph Gp from chapter
3, was carried out in section 4.1.1. In this context, a discretization of the originally continu-
ous decision spaces U}, became necessary. Moreover, it turned out that G’% allows associating
paths with charging strategies, but not with arbitrary charging policies. To be able to rate, com-

pare and hence optimize such strategies, a rating criterion was introduced. For this purpose,
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two deterministic edge cost functions, assigning energy consumption costs and time costs, re-
spectively, to edges, were described in section 4.1.2. Energy consumption costs were used to
introduce the notion of feasible charging strategies. These are strategies which allow reaching
the destination without running out of energy. Time costs were used to actually rate charging
strategies. For the final formulation of the problem of finding optimal charging strategies as
a deterministic SPP, both aspects (travel time and feasibility) were taken into account: Charg-
ing strategies leading to low travel times are preferred, but infeasible charging strategies are
directly excluded from consideration. The resulting problem formulation can be interpreted as

a (deterministic) constrained SPP.

The properties of the derived SPP were analyzed in section 4.2. This was necessary to under-
stand how shortest path algorithms behave when being applied to the problem. Based on this
analysis, it turned out that the described SPP is at least N'P—complete. Moreover, Bellman’s
optimality principle does not hold. As a consequence, the time necessary for computing op-
timal solutions is expected to rise very quickly with the size of graph éﬁ. Nevertheless, two
algorithms for solving the problem were suggested and discussed in section 4.3. The first one
guarantees optimality of generated paths. The other one ignores the absence of Bellman’s op-
timality principle. This allows improving computation times at the cost of risking suboptimal
solutions. Finally, in section 4.4, the developed SPP was analyzed with regard to ROs 1a to
1c. In contrast to the MDP from chapter 3, achieving RO 1a was identified to be critical. The
main issue is the missing possibility to take the existence of uncertainties into account. Thus,

it was concluded that the proposed formulation as a constrained SPP needs further adjustments.



Chapter 5

Charging Strategy Optimization as a
Shortest Path Problem under
Uncertainty

The formulation of CSO as a deterministic SPP significantly simplifies the former formulation
as a sequential MDP. The discretization of the decision spaces, as well as the missing possi-
bility to represent decision policies were mentioned. However, the suggested reduction from
a stochastic to a deterministic system is most critical. If realized energy consumption only
slightly exceeds the consumption which is presumed within the model, then following feasible
charging strategies may still lead to an empty battery. As a consequence, an adjusted problem
formulation is necessary, which achieves robustness against uncertainties, especially uncertain-
ties of energy consumption predictions. Such a reformulation is provided in the following. In
this context, over-cautious strategies also need to be avoided. Otherwise, too many and too
long rechargings are suggested or it is stated in situations, in which the considered BEV could

be used safely for the intended trip, that a reliable arrival cannot be guaranteed.

Chapter 5 is structured as follows: In section 5.1, edge costs are modeled as random variables
and notations are adjusted correspondingly. Based on this, an exemplary formulation of the
problem of finding optimal charging strategies as a stochastic SPP is stated in section 5.2. It
is argued that this formulation allows handling uncertainty adequately, but at the same time
causes a significant increase of computation times. Since solving the suggested deterministic
problem is already expected to cause high computational effort, any further negative impact
on computation times has to be avoided. Consequently, an alternative problem formulation
is proposed in section 5.3. The original deterministic framework is maintained, but an ex-

tended interpretation of the feasibility probability is introduced, where charging strategies are
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excluded from consideration as soon as states of charge fall below a certain threshold. Dif-
ferent approaches for defining this threshold dynamically along paths are suggested and their

algorithmic implementation are discussed.

5.1 Non-deterministic Edge Costs

First, the problem of finding optimal charging strategies is reformulated in such a way that
non-deterministic edge costs can be represented. For this purpose, let it be assumed that two
probability density functions gr(e,t,wr) and gg(e,t,wg) are given. Function gr(e,t, wr)
describes the distribution of the travel time which is necessary for passing an edge e = (v;, v;),
when starting at time ¢ at node v;. Analogously to chapter 4.1.2, wr is again interpreted as an
object which describes the available information about factors which influence travel time, such
as traffic conditions or driving behavior. Also information which allows describing correlations
to other edges may now be included in wy. Function g (e, t,wg) represents the distribution of
the energy consumption which is necessary for passing edge e, when starting at time ¢ at node
v;. Object wg describes factors that influence energy consumption, such as the current state
of charge, vehicle specific parameters (57), traffic conditions (86) (/23), driving behavior (57),
weather conditions (66), and road steepness (92). Note that graph G% can remain the same as

for the deterministic setting from chapter 4.

In the following, a function Cr representing energy consumption and a function Cr repre-
senting time consumption are defined. Their dependency on objects wr and wg is again not
explicitly considered within the notation to keep the notation simpler. Functions Cg and Cp

assign random variables to edges>?:

Cr(e, t,SOC) ~ gr(e, t, SOC) (5.1)
Crle,t) ~ yple,t) (5.2)

It is worth mentioning that C(e, t, SOC) and C'(e, t) are random variables, whereas C and
Cg are functions assigning random variables to edges in dependency of time or the state of
charge. In a next step, analogously to chapter 4, energy consumption distributions are adjusted

in such a way that unrealistic states of charge are avoided (compare equation 4.10):

SOC -1 if SOC — Cgle,t) > 1
Cgl(e,t,SOC) := ¢ SOC if SOC — Cg(e,t) <0 (5.3)
Crle,t) else

337X ~ ¢” means that random variable X is distributed according to the probability density function g or
cumulative distribution function g, respectively.
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Note that typically significant spatial correlations exist between the cost distributions of differ-
ent edges (/36). Hence, the assumption that accurate probability distributions of edge travel
times and edge energy consumption are known for all relevant edges of a graph which repre-

sents a realistic road network is a very strong requirement (//2).

5.2 Rating Paths under Random Edge Costs

Having defined edge costs as random variables, some resulting issues shall be described within
the current section. To achieve this, the following formulation of a stochastic SPP in the context

of charging strategies is considered:

min  E[Fy (P, ts, SOCs)] 5.4)
subjectto P is a vg-vx+1-path on @% '

Variables ts and SOC's again denote the starting time and starting state of charge, respectively.
Performance measure Fs is understood to penalize situations in which the BEV runs out of

energy:

Cr(P,tg, SOC if P does not lead to an empty batte
Fu(P.ts, 50Cs) — 4 (T 1s:50Cs) PYDAELY  (5.5)
M else

The cumulated time costs of a path P are denoted by Cr(P,tg, SOCys), which is again a ran-
dom variable. Note that M is a large positive number. This ensures that the expected time costs
of any path are well-defined, which may not be the case if M was replaced by co. Applying
the expected value operator, i.e., to consider E[F}] instead of F); as the objective function, is

necessary to ensure that the objective function returns values in R.

It has already been stated in the state of the art in chapter 2 that computing shortest paths on the
basis of randomly distributed edge costs leads to an increase of computation times in compari-
son to problem formulations where deterministic edge costs are presumed. Two main reasons
for this are typically mentioned in literature: First, for many stochastic SPPs, again Bellman’s
optimality principle does not hold. This is the case, as soon as the objective function value
which is assigned to a path cannot be expressed as the sum of the ratings of its edges. This
can happen if, for instance, edge costs are correlated (/36). The consequence of the absence
of Bellman’s optimality principle is that, as mentioned in section 4.2.3 when considering gen-
eral time dependent edge cost functions, many labels need to be created and managed during
the route search. However, for CSO, Bellman’s optimality principle has already been lost in

the deterministic case. Due to this, it could be expected that considering randomly distributed
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edge costs do not lead to a significant increase of computation times in comparison to the de-
terministic case. To explain this conjecture more clearly: When applying algorithm A to the
deterministic SPP 4.32, then in fact all available decision possibilities are considered during
the route search as long as the feasibility condition holds. There is no intelligence included in
algorithm A that would allow reducing the search space. Thus, since the considered graph C?IA)
and along with it the set of possible decisions remains the same for the suggested stochastic
SPP, the search space is not enlarged. Actually, only the rating scheme is different. Conse-
quently, algorithm A (and algorithm B, too) probably does not need much more time to find
solutions for the stochastic SPP than for the deterministic SPP.

The second source of increased computational effort occurs whenever cost-dependent edge
costs are considered. A typical example of cost-dependent costs are time costs that depend on
arrival times. The critical aspect is that for general edge cost distributions, it is not possible
to derive a closed form probability distribution of path costs (/36). This means, for exam-
ple, that it is in general not possible to analytically derive a distribution gr(P,tg,wr) with
P = [v1, ...,vq), even if the edge cost distributions g7((v;, vi41), t,wr) are known for all pos-
sible arrival times ¢ and all relevant edges (v;, v;+1). Instead, path cost probability distributions
typically need to be estimated numerically by solving a sequence of recursively defined inte-
grals. For the example of time-dependent travel time costs, recursively defined integrals are
caused by the need to compute arrival time distributions based on travel time distributions of
previously passed edges. The consequence is that simply rating single paths can lead to huge
computational effort. An example illustrating this fact can be found in appendix B. This ex-
ample actually shows that even in a very simple setting, in which the random edge costs Cr
and C'g do neither depend on arrival times, nor on the state of charge, the effort for computing
the costs of a path rises quickly with the number of edges of the path. Therefore, the already
high computational effort for solving the deterministic SPP from chapter 4 would be increased
even further if edge costs are considered as random variables. This considerations suggest that
the problem of finding optimal charging strategies should not be modeled as a stochastic SPP.
Instead, it is probably more meaningful to adjust the (up to this point) risky deterministic SPP

in such a way that uncertainties can be handled.

5.3 The Concept of Energy Buffers

According to section 4.2, the interpretation of CSO as a deterministic SPP already leads to
significant computational effort. Hence, despite the goal to achieve robustness against uncer-
tainties (especially against the uncertainty of energy consumption predictions), computational
effort should not be increased any more — or at least not significantly. At the same time, the
current version of the feasibility condition is considered to be very risky. Issues may occur
whenever states of charge only slightly higher than zero are expected, i.e., whenever for some
path P = [v1,...,vg] the accumulated energy consumption costs cg(Pi.i,ts, SOCs) from

node v; to node v; almost reach the starting state of charge SOCs. In such situations, the
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corresponding path is considered to be feasible, but if realized energy consumption exceeds the
predicted energy consumption only marginally, then the BEV may run out of energy. Due to

this, a modified version of feasibility is suggested to reduce this risk:

A strategy associated with a path P = [v1, ..., vg] is denoted as energy secure with respect to
(w.rt) SOCn if

SOCs — cp(Pry, ts, SOCs) > SOCmin(w) Vi € {2,3,...Q}. (5.6)

In this context, SOC),;, is a real-valued function. It is from here on denoted as energy buffer
function and the values it returns as minimal energy buffers. Function SOC,,;, depends
on a set of (not yet specified) variables and parameters w. Condition 5.6 means that a strat-
egy is denoted as energy secure as long as the predicted state of charge never falls below the
lower bound defined by SOC},,;,. It is important to mention that whenever it is referred to the
»predicted” state of charge or the ,predicted” energy consumption, the values resulting from
considering edge cost functions ¢ and cr are meant, i.e., the values resulting according to the
framework from chapter 4. The bigger the value SOC},,;,(w) is, the lower the risk of running
out of energy becomes for charging strategies which are energy secure w.r.t. SOC),in(w). As-
suming that SOC),;, returns independently of w a static value of, for example, five percent
ensures that the destination is reached as long as the realized accumulated energy consumption
never exceeds the predicted accumulated energy consumption by more than five percent of the
capacity of the battery. Note that the idea of energy- or fuel-buffers, respectively, has already
been considered in (82) and (/4/). However, only static buffers have been suggested in these
prior works. For the described research, the size of the energy buffer is intended to be only
as big as necessary. This means, for instance, that the size of the energy buffer is rather big
in situations in which energy consumption predictions are expected to be less reliable. On the
other hand, in situations in which it is very unlikely that energy consumption is underestimated
significantly, the buffer should be chosen smaller. The ability of an energy buffer function to

adequately adjust the size of the minimal energy buffer is from here on denoted as adaptivity.

Replacing the feasibility condition with the energy security condition can be expected to cause
not much additional computational effort when solving the corresponding SPP. In fact, addi-
tional computation times result primarily from computing SOC},,;,. If evaluating this function
does not become too expensive, the corresponding effects should be negligible. A clear draw-
back of the suggested adjustment, particularly in comparison to the formulation as a stochastic
SPP in section 5.2, is that uncertainties of travel time predictions and, along with this, their

impact on energy consumption are not considered at all.

In the following, possible definitions of function SOC),;, and parameter set w are introduced



90 CHAPTER 5. CSO AS AN SPP UNDER UNCERTAINTY

and discussed to illustrate this yet rather abstract concept. However, before this is done, one
property is postulated, which any function SOC,;,, is assumed to fulfill: SOC,,;,, is intended
to avoid that incorrectly predicted energy consumption causes an empty battery. As soon as the
BEV reaches a charging station, this cannot happen until the BEV again leaves the charging
station. Thus, SOC,,,;,, is set equal to zero for edges which represent parts of a charging pro-

CeESs.

5.3.1 Relative Energy Buffer

One of the most intuitive ideas for defining an energy buffer function is to use a certain per-
centage of the predicted energy consumption for buffering. This type of function is from here
on denoted with SOC]” (w) (’r” for relative”). Parameter z > 0 defines the percentage ac-
cording to which the size of the energy buffer is quantified. In Figure 5.1, the pseudo-code of

a corresponding algorithm for computing SOC| "> along a path can be found. Based on this

Algorithm for Computing Relative Energy Buffers along a Path
Input: A directed graph G5, a path P = [vf, vl ...,v}] on G& with N € N, a node
UJI\D,* for which the minimal energy buffer has to be computed, a starting time g, costs
functions ¢y and ¢g as described before, a starting state of charge SOCyg, a positive
number z
Initialization: SOCfnlfn =0,n:=2
1|1 =tg
2 | SOC™!:=50Cs
3 | Whilen < N*:
4 If edge e, := (vl |, vD) represents a road segment:
5 SOC,, (en, "1, SOCH : 2) = SOCP, + 2 | tp(en, t" 1) |
6 else (i.e., if e,, is part of the charging process):
7 S0C% (en, t"1 , 500 - 2) =0
8 End if.
9 SOCod = SOC;;n(en, tn=1,.580C2  2)
10 Compute cg(e,, "1, SOC™™ 1) according to equation 4.10
11 SOC™ := SOC™ ! — cp(en, t" 1, SOC™1)
12 t" = 1"+ cr(en, "1, SOC)
13 n:=n+1
14 | End while.
15 | SOC’” = SOCY .
16 | Return SOC)” .
Figure 5.1: Pseudo-code to compute energy buffer SOC]”" along a path.
pseudo-code, the set w consists of the currently considered edge e, = (vfzD 1,vF), the time

t"~! and the state of charge SOC™~! when reaching the start of this edge, and the energy
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buffer S OCfrfgin that is assumed to be necessary until node 1’571 (which is the start of edge e;,)
is reached. It can be observed that SOC"> grows along sequences of edges which represent
road segments. For each road segment e,, which is passed, a certain percentage of the corre-
sponding predicted energy consumption ¢z (e,,, 1" 1) is added to the energy buffer (see line 6
in 5.1). The minimal energy buffer is set back to zero whenever an edge representing a part
of a charging process is passed. Note that taking the absolute value of the predicted energy
costs (in line 6) ensures that negative edge costs do not reduce the size of the buffer. Instead
it grows also if energy gains are predicted due to recuperation. This is done to compensate for

unexpectedly low energy gains.

@

)

nodes

0 vf v} V] v§ vy
SOC %] 70 40 10 40 40 10

edge leading to node (vo, v8) | (W, v}) | i, P | 9% 09) | (vg,0?)
SOCTZ (%] for z = 1/6 5 10 0 0 5

Figure 5.2: Development of the expected state of charge and the relative energy buffer for
z = 1/6 along an exemplary path.

To explain how SOC"*

min

works, Figure 5.2 shows the development of SOC"”*

in, along an ex-
1]

ample path P := [vg, v§, i, v+ v¢, 0%, i.e., for a charging strategy which suggests charging
at charging station 1 up to a state of charge of 40 percent. For simplicity, it is assumed that
energy consumption ¢g(e, t) is equal to 30 percent for any edge which embodies a road seg-
ment, independently of the arrival state of charge or the arrival time. Furthermore, a z-value of
1/6 is considered and a starting state of charge of 70 percent. The table shown at the bottom of
Figure 5.2 provides information about the development of the predicted state of charge SOC
(when arriving at the corresponding nodes) and about the minimal energy buffer SOC)"”> .
which describes the state of charge which has to remain after passing the corresponding edge.
The SOC-values after passing edges representing road segments result directly by subtracting
30 percent from the state of charge at the start of the edge. The SOC—-values at nodes v{-* and
v{ are computed according to section 4.1.2 and simply show a recharging up to 40 percent. The

values of SOC"”*

'in, are computed according to the pseudo-code given in Figure 5.1. Based on
the stated values of z and ¢g(e, t), the minimal energy buffer increases with each passed road
segment by five percent (= z- | ¢g(e,t) |). However, it is instantly reduced to zero percent
as soon as an edge that represents a part of a charging process is passed. As a consequence,
it can be observed that the energy buffer increases until a charging process is conducted at a

charging station. Afterwards, the buffer starts increasing again. The idea behind this is that
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between two successive charging processes, uncertainty can be assumed to increase along with
the covered distance®*. However, as soon as a charging process is completed, the resulting
state of charge is known. It is defined by the considered path, i.e., by the considered charging
strategy itself, and it is independent of previous energy consumption — always assuming that
the charging station can at least be reached. Consequently, the energy buffer can be reset to
zero at charging stations. This also avoids that energy buffers become extremely big if paths
are very long and several charging stops are necessary. If the energy buffer were not regu-
larly reset to zero, relative energy buffers would increase further and further. Consequently, in
many cases no energy secure charging strategy could be provided for long-distance trips due

to the high requirements concerning the size of the energy buffer. This would not be reasonable.

Note that if the energy consumption for driving from the lastly visited charging station to the
currently visited charging station has been underestimated, then the time consumption caused
by the suggested charging process increases. If it has been overestimated, then charging times
are lower than expected. Since energy consumption is assumed to be time-dependent, this may
also have impact on the accuracy of energy consumption estimations for the following edges.
However, as already mentioned, the effect of incorrectly predicted arrival times on the uncer-
tainty of energy consumption predictions won’t be taken into account by any of the suggested

energy buffer functions.

Its growth along edges leads to the fact that SOC* | in contrast to energy or time consump-
tion, does not only depend on the currently considered edge e,,, the time t"~!, and the state
of charge SOC™~! when reaching the start of this edge. Moreover, also the old energy buffer
S OCfrfgln needs to be included. This means that SOC]”> always has to be computed along
whole paths and not for each edge separately. Hence, in order to adjust algorithms A and B
in such a way that the concept of energy buffers is applied, it is not sufficient to replace the
feasibility condition by the energy security condition. Moreover, the definition of labels has to
be extended again. The pseudo-code in Figure 5.3 shows how this can be done. The suggested
algorithm is denoted as algorithm A-2. It is a modified version of algorithm A. Instead of the
feasibility condition, now the energy security condition can be found (see line 14). A further
difference to the original version of algorithm A in Figure 4.10 is that each label contains seven
instead of six values. The size of the ,,0ld*“ energy buffer is additionally stored. Otherwise, the
computation of SOC]** in line 10 of algorithm A-2 could not be executed. The computational
effort for applying algorithm A-2 instead of A remains almost unaltered. Additional effort is
solely caused by evaluating the minimal energy buffer function. For the case of SOC”* | this

is not expensive.

3*Here, increasing uncertainty means that a deviation from the deterministic energy consumption costs of (for
instance) five percent of the maximal battery capacity is more likely to happen on a 100 kilometer trip than on a 10
kilometer trip.
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Algorithm A-2: Finding Optimal Charging Strategies
Input: A directed graph GA = (VDA, E}%), a starting node v, a destination node vy 41,
a starting time tg := 0, cost functions ¢y and ¢g as described above, a starting state of
charge SOC', a positive number z
Initialization: ~ Create label L = (0,0%, 0, 0, v, 1) for node vg. Define set of temporal
labels Liemp := {L} and set of permanent labels Lperp, := 0;
define for each node the highest existing index: n™%*(vg) := 1,
n™*(v) =0 Vv # v
1 | While Lieimp # () and no label belonging to vy 1 was added to Lyperm, do:
2 LY = (e, cHr, S OC;’rffn, VPTE pPTE U U = the lexicographically
3 smallest label in Lyepp.
4 Remove L from Liemp and add it to Lyerp,.
5 For all v"¢ € V such that e := (v°*", v"*?) € E do:
6 Compute SOC" := SOCg — c3"
7 Compute ¢ := c*" + cr(e, ts + ¢, 500
8 Compute cg(e, ts + ¢, SOC") according to equation 4.10
9 Compute ¢ := 3" + cp(e, tg + ¢§7, SOC)
10 Compute SOC%}‘{ = SOCT (e tg + ¢, SOCM : 2)
11 Compute n™* (y"eW) 1= M (y"eW) + 1
12 Compute n"e" := nMmaT (y"eW)
13 Create Lnew = (C%ew Cnew SOC:;S?;L)’ C’U/f’7 ncur7 ,Unew, nnew)
14 If SOCs — g > SOC}}%, then:
15 add L™ to Liemyp
16 End if.
17 End for.
18 | End while.
19 | If possible, return a label Le Lperm that belongs to node vg 1,
20 | otherwise return "No feasible solution found”.

Figure 5.3: Pseudo-code of algorithm A-2

Note that algorithm B can be modified analogously, leading to algorithm B-2. Moreover, func-
tion SOC,”" inline 10 can be replaced by other energy buffer functions. Further examples for
such functions will be given in the following sections. For some of these functions, even more

information will be necessary, making further extensions of the definition of labels necessary.
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5.3.2 Quantile-based Approach

Let it be assumed that besides predicted edge costs ¢g(e,t), also energy consumption dis-
tributions §z (e, t) of variables Cp(e, t) are known. Then, function SOC%® (w) (.q* for

min
,quantile®) is defined for some « € [0, 1] as the sum of the differences between the c-quantiles

of the random edge costs, and the predicted edge costs. Function SOCL is from here on de-

noted as quantile-buffer function. The set of input quantities w remains the same as for relative
energy buffers (location, arrival time, state of charge, former energy buffer). The pseudo-code

for computing SOC®? results if line 5 of the pseudo-code in Figure 5.1 is replaced by lines 5

min

to 7 from Figure 5.4 (and z is replaced by « for the remaining lines). Analogously to SOC* |
function SOCT2  grows along edges representing road segments and is set equal to zero as
soon as a charging station is reached. Note that in the right-hand side of the assignment in
line 7, the energy buffer does not get reduced if g, is smaller than the corresponding predicted

edge costs. Besides replacing SOC”> by SOC?? in algorithm A.2, no more adjustments

min min
are necessary for using algorithm A-2 to compute charging strategies which are energy secure
w.rt. to SOCH?

min’

Algorithm for Computing Quantile-based Energy Buffers

Compute ¢ = ¢g(en, " 1)
Compute g, := a-quantile of random variable C'g (e, t" 1)
SOCE (e, 1" SOC - a) := SOCY + max{0,qs — %}

min min? min

0NN L

Figure 5.4: Pseudo-code to compute minimal energy buffer for an edge.

Parameter « allows adjusting the sizes of the energy buffers resulting from functions SOC>% .
Obviously, higher values of « lead to bigger energy buffers and thus to more reliability. In this
context, it has to be mentioned that 1 — « does not describe the probability of running out of
energy for a charging strategy which is energy secure w.r.t. SOC'"® . This is a consequence
of the occurring differences between realized energy consumption and the predicted energy
consumption. Hence, the real state of charge may not develop as predicted. The consequence
is that following a charging strategy and charging up to a certain recommended state of charge
may take more or less time than originally expected. Along with that, the time at which fur-
ther edges are reached change. Therefore, possibly not the correct probability density function
gg (e, t), which depends on this arrival time, is considered when computing SOC? . Along

with this, even setting o equal to 1.0 does not ensure an absolutely save arrival.

3The predicted values ¢z (e, t) are typically assumed to be equal to the expected value of C'r (e, t).



5.3. THE CONCEPT OF ENERGY BUFFERS 95

5.3.3 Trajectory Buffer

In literature, predicting the energy consumption a BEV needs to pass a specific road segment
is typically done in two steps (74) (86) (90) (/23): First, one or more potential driving tra-

jectories’®

are predicted based on available information about, for instance, prevailing traffic
conditions or historical traffic data. Second, a microscopic energy consumption model is ap-
plied to these driving trajectories to receive energy consumption values. Within a deterministic
framework — and the SPP that results from including the energy security condition remains
a deterministic SPP, even though uncertainties can be handled up to some degree — it is of-
ten assumed that one unique driving trajectory exists and that it can be predicted precisely.
This is a strong presumption. Driving trajectories depend on some highly dynamic and hardly
measurable factors, such as traffic conditions and the driver’s driving style. Hence, instead
of predicting solely one trajectory and hoping that it will mirror the future reality perfectly, it
seems more expedient to generate a whole set of reasonable driving trajectories. Such a set of
trajectories can then be applied to produce a set of corresponding energy consumption values.
In the following, this set of energy consumption values is considered to estimate the maximal
possible energy consumption. The difference between this estimated maximal possible energy

consumption and the predicted energy consumption is then used as the energy buffer.

Before such an energy buffer function can be defined, some preparatory notation concerning
trajectories is introduced. Let from here on be assumed that for any edge e and any time %, a set
of N'T'+ 1 auxiliary trajectories can be computed. NI is a natural number and the correspond-
ing driving trajectories are denoted by 7™ (e, t) with nt € {0, 1,..., NT'}. It is assumed that al-
ways the same nt auxiliary trajectories are assigned to a tuple (e, t). The travel time that results
from a trajectory 7™ (e, t) is denoted by c7(T™ (e, t)). Analogously, it is assumed that for any
path P = [vf, - UJI\D,] with N € N, a set of auxiliary trajectories {T™ (P, ts)}ni=o....NT can
be computed. For the proceeding, it is not important how these trajectories are generated>’, but
it is essential that for all nt € {0,1, ..., NT'}, trajectory T™ (P, tg) is equal to the concatena-
tion of the trajectories 7™ (e, ts + c7(T™(P1.,—1,ts))). These are the trajectories belonging
to edges e, = (vf;l, vP’) of path P. This postulation allows computing auxiliary trajectories
T™ (P, tg) step-wise along the edges of path P, which is of relevance when computing trajec-
tories along paths during route search. Besides the possibility to compute sets of reasonable
trajectories, it is assumed that a microscopic version of energy consumption model ¢g is given.

It assigns energy consumption values to edges in dependency of driving trajectories:

te(e t, T (e,t),wg) Ve € E5, Vt > tg. (5.7)

38 A driving trajectory describes the location of a vehicle depending on time. Typically, a driving trajectory is
given as a sequence of points {(tk, mk)}k:m ,,,,, » where z* refers to a location and t* refers to a point in time.

37 A possible procedure for the generation of such sets of driving trajectories will be discussed in chapter 6 in
detail.
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Here, wg again abstractly denotes a set of additional factors (for instance, outdoor tempera-

38 As was done in

ture), which are considered for the computation of energy consumption

previous chapters and sections, wg is left out in the following.

Algorithm for Computing Relative Energy Buffers along a Path
Input: A directed graph G5, a path P = [vf, vl ...,v] on G§ with N € N, a node
UJI\D,* for which the minimal energy buffer has to be computed, a starting time g, costs
functions ¢, ¢g and cg as described before, a starting state of charge SOC'g, a number
NT e N >2
Initialization: n = 2
1|t =tg, t0 " i=ts Vnte{0,1,..,NT}
2 AS?OCZ?T_E1 .= SOCs, SOC"; ! .= SOCs Vnt € {0,1,...,NT}
3 | Whilen < N*:
4 If edge e, := (v’ |, vD) represents a road segment:
5 Compute ¢f. := cr(en, thr')
6 Compute ¢}y := ¢g(en, th')
7 Compute c, based on ¢, and S OCg;el
8 Compute SOCY,, = SOC;}T_QI —ch
9 Compute ¢, := t;j,,_el +cp
10 Fornt =0to NT'
11 Generate driving trajectory 7™ (e,,, t7; 1)
12 Compute travel time ¢ from T™ (e,,, 1", 1)
13 Compute &5 := ¢p(en, iy, T™ (en, 17 1))
14 Compute " based on &%™ and SOC™,™!
15 Compute SOC?, := SOCT, ' — ™
16 Compute 7, := ¢ 4 2"
17 socyt, .= maz{SOCy, — SOCy..,0}
18 End for.
19 SOCHNT (e,) == maz{SOC™ | nt € {0,..., NT}}
20 else (i.e., if e, is part of the charging process):
NT —
21 S0CH ! (e,) :==0
22 try =t =t ep(en, tht, SOCH ) Vnt € {0, 1, ..., NT}
23 SOCy, =500}, = SOC’I’}T;1 —cp(en, SOC’;’;el) Vnte {0,1,..,NT}
24 End if.
25 n:=n+1
26 | End while.
27 | Return SOCENT (¢ ).

Figure 5.5: Pseudo-code to compute energy buffer SO

t,NT
C7

min

along a path.

38 Actually, trajectory 7™ (e, t) can be understood as a part of object wg. Here, both inputs are listed separately

to emphasize the relevance of 77 (e, t) .
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Given a microscopic energy consumption model ¢g and the possibility to compute driving
trajectories 7™, the energy buffer function S OCZ’I%T can be introduced in the following. It is
defined as the maximum over all differences between the states of charge which result when
applying &g to trajectories 7™ (e, t), and the predicted state of charge. In Figure 5.5, the
pseudo-code of an algorithm for computing SOC;;%T along a path P = [vf ..., vﬁ] can
be found. The algorithm can be separated into two parts: In the first part, it computes the
predicted arrival times and the predicted states of charge analogously to algorithms A and B
from chapter 4. For edges representing road segments, this happens in lines 5 to 9 of the code.
Value ¢, (,pre* for ,predicted”) describes the predicted arrival time at node vP and SOCy,..
describes correspondingly the predicted state of charge when reaching node v2’. Note that it is
not uncommon that the predicted energy consumption ¢z(ey,, tg,?el) is computed on the basis

of a trajectory, too. This means that for an edge e,, and a starting time "'

pre » @ unique trajectory

TP (ey,, tg;el) is generated for which the following equation holds:

ep(en, thre') = Cu(en, the s TP (en, thre!))- (5.8)

It is from here on assumed that predicted arrival times and energy consumption values are based
on trajectories.

For edges representing parts of charging processes, predicted arrival times and predicted states
of charge are computed in lines 22 and 23 in the algorithm from Figure 5.5. There is no differ-

ence to former chapters.

In the second part, the algorithm does basically the same as in the first part, but now auxil-
iary trajectories 7™ are used as basis. Assuming that trajectory T"(P.,,ts) describes the
movement of the BEV, variable ", denotes the time at which node v’ is reached and SOC?,
denotes the corresponding state of charge. For edges representing road segments, the compu-
tation of states of charge and arrival times is done in lines 11 to 16. Otherwise, in lines 22 and
23. In this context, it is remarkable that as soon as a charging station is reached, all trajectories
are assumed to leave the charging station at the same time. Let this proceeding be explained
considering Figure 5.6. This figure visualizes for an exemplary graph the proceeding of the
algorithm described by the pseudo-code in Figure 5.6. A path P = [vf ..., véj | consisting of
six nodes and five edges is illustrated at the left the figure. Edges e4 and es represent parts

of a charging process, the remaining edges represent road segments. All trajectories which
are necessary for the computation of SOC;%T (with NT' = 1) are displayed. Trajectories
TPre are represented by black arrows, auxiliary trajectories T™ by gray arrows. Within the
described example, the BEV starts driving along path P at time tg. To compute the size of
the energy buffer at node vf , altogether three driving trajectories are generated: The predicted
trajectory T7"¢(e,ts) and NT + 1 auxiliary trajectories (T°(ez,ts) and T (ea, ts)). Based

on these three trajectories, arrival times ¢2, and tgre, and states of charge SOC?, and S OC’f,Te
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Figure 5.6: Trajectory generation scheme for energy buffer quantification.

are computed for nt € {0, ..., NT'} (see lines 5 to 9 and 12 to 16 in Figure 5.6). The size of the
energy buffer at node v2” results as the maximum difference between the states of charge result-
ing from the auxiliary trajectories and the state of charge resulting from the predicted driving
trajectory® (see line 19). To compute the size of the energy buffer for node vg , all three tra-
jectories are extended up to node vf’, i.e., trajectories T%™(e3, t2,.), T%(es, t3) and T (e, 1)
are generated and corresponding arrival times and states of charge are derived. The buffer itself
is computed analogously as for node v4". The most interesting aspect can then be observed for
the next edge, which represents a part of a charging process. Instead of maintaining NT" + 2
separate trajectories and, along with that, computing NT'+ 2 different arrival times and N1+ 2
different states of charge for node vf , all arrival times and all states of charge are set equal to
the predicted arrival time and the predicted state of charge, respectively (lines 22 and 23). This

is done for each edge belonging to a charging process. The consequence is that the resulting

3The energy buffer function is modified within the given pseudo-code in such a way that negative energy buffers
are avoided.
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buffer size (which is defined as the maximal difference between the states of charge result-
ing from auxiliary trajectories 7™, and the predicted state of charge) is equal to zero in such a

case*®?. As soon as a road segment needs to be passed again, separate trajectories are computed.

Note that the pseudo-code stated in Figure 5.5 can be included into algorithms A-2 and B-2 sim-
ilarly to the codes for relative and quantile buffers. Though, it is necessary to further extend the
definition of labels for this purpose. Here, all values ¢, and SOC}, for nt € {0,1,..., NT'}
need to be stored, leading to 2 - (NT + 1) additional entries for each label. In contrast to
soc’:

min’

it is not necessary to store the size of the energy buffer of previous edges. Note also
that the usefulness of .S OC:;L]ZXLT depends on the considered set of auxiliary trajectories 7™, If
this set is able to represent the set of all possible driving trajectories adequately, then it can
be expected that using S ochHNT

min for CSO works well. An adequate representation means two
things in this context: First, it needs to be probable for any edge e and any arrival time tg that
the real future driving trajectory looks similar to at least one of the generated auxiliary trajec-
tories 7™ (e, t5). Otherwise, the corresponding buffer may be too small. Second, any auxiliary
trajectory T™ (e, t5) has to be reasonable. Unrealistic trajectories may cause the buffer to be-

come too big.

5.3.4 Comparison of Energy Buffer Types

Table 5.1: Comparison of energy buffer concepts.

Relative Buffer | Quantile-based Buffer | Trajectory Buffer
Notation soc’: socte SOCHNT
Reliability
z>0 a € 0,1] NT eN
Parameter
Computational
++ ++ —(=)
Effort
Requirements ++ —— O
Adaptivity O ++ +(+)

Three energy buffer functions have been suggested. In the following, they are assessed with
regard to the additional computational effort they cause, to the requirements that need to be
fulfilled to be able to apply these functions, and with regard to their adaptivity. Recall that
adaptivity describes in this context the ability of an energy buffer function to adequately adjust
the size of an energy buffer in dependency of the reliability of the predicted energy consump-

tion. Table 5.1 provides a short overview of the advantages (indicated by plus signs) and

“ORecall that keeping energy buffer sizes equal to zero when passing edges belonging to charging processes was
postulated for all energy buffer functions.



100 CHAPTER 5. CSO AS AN SPP UNDER UNCERTAINTY

drawbacks (indicated by minus signs) of the introduced approaches with regard to these three
criteria. Circles indicate that no clear statement is possible. Additionally, the parameters (z,
« and NT) which are part of the three introduced energy buffer functions are listed. Since
these parameters have influence on the size of the resulting energy buffers and, along with this,
on the reliability of the corresponding charging strategies, they are denoted from here on as

reliability parameters.

Relative Buffer: The relative energy buffer function SOC,’> can be computed easily and,
moreover, needs no additional information in comparison to the original formulation of the
deterministic SPP from chapter 4, in which the feasibility condition was applied as a constraint
instead of the energy security condition. At the same time, a certain level of adaptivity is
achieved, since the size of this buffer increases along with the predicted energy consumption.
The idea is that if a long distance has to be covered to reach the next charging station, then
this tends to cause a rather high level of uncertainty and consequently a rather large amount
of energy should be reserved. A critical situation for relative buffers occurs if a sequence of
edges represents a long road corridor, but the sum of the corresponding predicted energy costs
is close to zero. This can happen, for instance, if significant energy gains are expected due
to recuperation. In such a case, the size of a relative energy buffer does not grow much, even
though significant uncertainties probably still exist. The energy gain due to recuperation may
be lower than expected or energy consumption may be higher than expected. To reduce the risk
resulting from this issue, a static component could be added to SOC,”" . However, no details

are considered here*!.

Quantile Buffer: The quantile-based approach causes high requirements concerning the avail-
ability of information, since the distribution of energy consumption needs to be known for all
possible combinations of arrival times and locations. Furthermore, correlations of these dis-
tributions are also relevant. On the other hand, computing quantiles (under the assumption
of given probability distributions) should not increase computation times significantly. More-
over, a high level of adaptivity can be expected for function SOC:> | as this buffer type is
explicitly constructed on the basis of the probability distributions of energy consumption. This
means that SOC'? leads particularly in situations in which real energy consumption is very
likely to exceed predicted values to big buffers. This is also an advantage in comparison to
relative energy buffers: The size of a relative energy buffer solely depends on the predicted
energy consumption. It is not taken into account how reliable this prediction is. Therefore,
the quantile-buffer function does not lead to the same issue for situations in which, due to

recuperation, the predicted energy consumption is close to zero.

*0ne could think of a variety of different energy functions which combine static components, components grow-
ing linearly with the predicted energy consumption or components that grow nonlinearly (exponential functions,
higher order polynomials) with the predicted energy consumption.
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Trajectory Buffer: For the last method, which is based on computing a range of possible
driving trajectories, computational effort definitely increases. How big this increase is depends
on how expensive the generation of the sets of trajectories is. This again depends on the ap-
plied trajectory generation method and on the number of generated trajectories. Also the level
of adaptivity and the requirements, which have to be fulfilled to allow deriving the trajectories,
primarily depend on the trajectory generation method. It can be expected that some additional
information is necessary, but that this information can be obtained easier than the information
which is needed for the quantile-based approach. If the considered sets of trajectories are able
to represent the sets of all possible trajectories adequately, then a rather high level of adaptivity

can be expected, too.

In conclusion, all three energy buffer approaches appear to be reasonable. Relative buffers
are simple and the mentioned issue concerning close-to-zero energy consumption predictions
won’t be too relevant in practice, since it can be expected that many kilometers lie between
two consecutive charging stops. Thus, it is very unlikely that it is predicted that recupera-
tion keeps energy consumption close to zero. The quantile buffer function probably has the
potential to achieve the best results of the three suggested types of buffer functions, i.e., the
highest efficiency along with the highest reliability. Its main drawback is the requirement that
energy consumption probability distributions need to be known. If the available probability
distributions are unable to mirror reality accurately, then the resulting charging strategies are
also of low quality. Since, from a practical perspective, it seems hardly possible to identify
for all edges and arbitrary arrival times the corresponding probability distributions of energy
consumption, quantile-buffer functions will not be considered in the following chapters. The
description of the last type of energy buffer function, the trajectory buffer function, is quite
generic in its current form. It has not been specified yet, how the necessary trajectories are
generated. The benefits and drawbacks of the trajectory buffer function can be expected to
depend significantly on the applied trajectory construction algorithm. Until such an algorithm

Cfn]xLT is hardly possible.

has not been stated, a reasonable evaluation of SO
5.4 Model Assessment with Regard to Research Objectives

Even though the replacement of the feasibility condition by the energy security condition is the
only difference between the deterministic SPPs from chapters 4 and 5, the degree up to which

the new problem formulation is able to fulfill ROs 1a to 1c changes significantly:

RO 1a: The problem formulation from chapters 4 and 5 are based on the same graph C_j%.
Hence, some model limitations, such as discretized decision stages and the fact that solutions
of the optimization problem cannot represent arbitrary charging policies, are maintained. The
huge difference is the ability of the new problem formulation to handle uncertainty. Hence,

presuming that an appropriate energy buffer function is applied, resulting charging strategies
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can be expected to ensure a reliable arrival also if they are applied in practice. Nevertheless,
some restrictions still exist in this context. The most important one is that the concept of
energy buffers does not allow taking uncertainties of travel time predictions explicitly into
account. Along with this, also the influence of unexpected arrival times on energy consumption

predictions cannot be considered explicitly*>.

RO 1b: The definition of f is the same as in chapter 4. Consequently, efficiency is achieved
by penalizing charging strategies which cause high travel times, reliability by penalizing risky
charging strategies. ,,Risky‘ denotes in this context charging strategies which do not fulfill the
energy security conditions. Excluding not only infeasible, but also risky strategies from con-
sideration offers some additional modeling opportunities. The understanding of risky strategies
is represented the applied energy buffer function. This function allows making trade-offs be-
tween reliability and efficiency. In theory, it can be designed in such a way that the driver’s
level of risk-aversion is mirrored. In conclusion, the new deterministic SPP from chapter 5 is
able to take both reliability and efficiency into account and even provides lots of flexibility for

defining a compromise between these two criteria.

RO 1c: IfS OC’;;%T is applied as the energy buffer function, then computation times could
rise in comparison to the problem formulation from chapter 4. This increase depends on the
applied method for generating driving trajectories and on the number of generated trajectories
NT. If relative or quantile buffers are applied, then replacing the feasibility condition by the
energy security condition should not cause a significant increase of the computational effort.
Hence, the concept of energy buffers offers the possibility to keep computation times on the

same level, which the optimization problem from chapter 4 achieved.

Conclusions: The modified version of the deterministic SPP, which is described in chapter
5, cannot represent occurring uncertainties perfectly. To obtain this, the influence of incor-
rectly predicted travel times on energy consumption had to be considered. However, ignoring
this aspect allows preventing a further increase of computational effort (in comparison to the
originally suggested SPP from chapter 4). Moreover, the introduction of energy buffers makes
it possible to handle uncertainties of energy consumption predictions. It can be ensured that
charging strategies become robust against underestimated energy consumption values and, at
the same time, are still efficient. In sum, the suggested reformulation of the deterministic SPP
fulfills the requirements defined by ROs 1a to 1c rather well. Therefore, from a theoretical
perspective, there remains no critical issue preventing an implementation of the corresponding
model in reality. Still, it is not yet absolutely certain whether computation times can be kept
low enough and whether the suggested idea of finding a compromise between reliability and

efficiency is really practicable.

#2Recall in this context that energy consumption values are assumed to depend on arrival times.
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5.5 Summary

In the introduction of chapter 5, it was stated that under realistic conditions, in which en-
ergy and time consumption typically cannot be precisely predicted, the feasibility condition is
not enough to achieve charging strategies which can be expected to ensure a reliable arrival.
Motivated by these considerations, a potential formulation of the problem of finding optimal
charging strategies as stochastic SPP has been suggested and analyzed in section 5.2. It turned
out that even under simplest assumptions, this reformulation causes a significant increase of
the already high computation times for solving the corresponding optimization problem. To be
able to avoid a further increment of computational effort, the deterministic SPP from chapter
4 is considered again. In order to be able to handle inaccuracies of energy consumption pre-
dictions, the feasibility condition is replaced with the so-called energy security condition. A
charging strategy is denoted as energy secure if the states of charge which are expected never
get too close to zero. This means that some part of the battery is used as an energy buffer to
compensate for unexpectedly high energy consumption. Essential in this context is that the size
of the energy buffer varies along the considered path. Three different concepts for defining the
size of the energy buffer have been introduced and compared in section 5.3. Chapter 5 ends
with an assessment of the reformulated deterministic SPP. The central result of this evaluation
is that, on the basis of the new model, all three subobjectives of RO 1 can be achieved simul-

taneously — at least up to a degree that should make a practical implementation of CSO possible.



Chapter 6

Using Error-prone Traffic Information
for Charging Strategy Optimization

Chapters 3 to 5 focused on RO 1, i.e., on developing an appropriate mathematical formulation
for the problem of finding optimal charging strategies. The motivation for chapter 6 — and later
on for chapter 7 — is to achieve RO 2, i.e., to test the developed formulation as a deterministic
SPP and to assess its ability to handle uncertainties in such a way that charging strategies of
practicable” quality can be ensured. The testing is done via a simulation study. This appears
to be reasonable, since making robust statements about reliability probably makes lots of tests
under various conditions necessary. In order to be able to conduct simulation runs, the still
abstract problem formulation as a deterministic SPP has to be concretized. This means partic-
ularly that specific models that enable a numerical computation of (in the best case) realistic
travel times and energy consumption values have to be provided. Moreover, a source of uncer-
tainty has to be included into the simulation.

Chapter 6 is intended as a preparation for the description of the simulation study, which takes
place afterwards in chapter 7. Three preparatory steps are conducted in chapter 6. To motivate
these steps, at first the structure of a single simulation run of the executed simulation study is
explained: A single simulation run represents the trip of a BEV along a very long road corri-
dor under various conditions. Several charging stations can be found along this road corridor.
Furthermore, it is assumed that the BEV is equipped with a navigation system which provides
charging strategies as an on-trip information, i.e., these charging strategies are updated fre-
quently during the trip. The computation of the charging strategies is based on a set of input
data, such as data on the available charging infrastructure, the BEV’s current state of charge,
and data on outdoor temperature. Furthermore, also different types of simulated real-time traf-
fic information (RTTI) are taken into account for the computation of the charging strategies.
The RTTI is used to predict the BEV’s future driving trajectories, which are again used to
predict travel times and energy consumption values. Note that the simulated RTTI is not ab-

solutely correct — in contrast to all other types of input data. Due to this, the simulated BEV

104
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partly experiences traffic situations during a simulation run that differ from the situations which
were presumed for the computation of the charging strategy it follows. The magnitude of these
differences depends on the type of RTTI, i.e., these types show different levels of similarity
to the real traffic situation. The described simulation approach allows analyzing the ability of
the concept of energy buffers to handle uncertainties, at least for the case of uncertainty that is

caused by error-prone RTTIL.

The first of the aforementioned three preparatory steps takes place in section 6.1. There, the
proposed formulation of the problem of finding optimal charging strategies as a deterministic
SPP is concretized by introducing a model which allows computing energy consumption and
travel times based on RTTI*3. In section 6.2, a method to quantitatively measure the quality of
RTTTI is described. This allows analyzing the dependency of charging strategy quality on the
quality of the simulated RTTI and, along with that, the dependency of charging strategy quality
on the level of uncertainty. Additionally, the proposed measure is of relevance in section 6.3,
where the yet abstract concept of trajectory buffers is specified by describing an approach for
computing sets of auxiliary trajectories on the basis of available RTTI. Consequently, it is not
only possible to test relative buffers within the simulation study, but also to test trajectory
buffers.

6.1 Considering Imperfect Real-time Traffic Information

Up to this point, the proposed optimization problems are formulated in a quite generic way. To
conduct simulation runs, however, concrete models are necessary, which make it possible to
explicitly compute energy consumption values and travel times. Moreover, it is necessary to
include some source of uncertainty into the simulation. For the remainder of the described re-
search, the subsequently described setting is presumed in order to achieve both concrete models

and the inclusion of uncertainty.

First and foremost, it is expected from here on that energy consumption is predicted on the
basis of driving trajectories, which again are derived solely from RTTI. In order to estimate
energy consumption on the basis of driving trajectories, it is assumed that a corresponding en-
ergy consumption model ¢g (see equation 5.7 in section 5.3.3) is available. Note that travel
times result directly from driving trajectories, since they describe location in dependency of
time. Moreover, it is assumed that at time tg, which is the time at which a charging strategy
recommendation is requested, a function VE%T 7» which represents RTTI, is available for all
relevant locations and times. The value t5 € R>( denotes in this context the time at which the

RTTI is broadcasted. Since function V}%}T ; needs to be available at time ¢, the corresponding

#Recall that RTTI refers to both traffic state estimations and traffic predictions (see the beginning of section 2.3),
i.e., it describes current and predicts future traffic states.
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RTTI cannot be broadcasted after time %o, i.e., tg < to**. Function VI?}T 7 1s given as a spatio-
temporal speed function, i.e., it assigns a speed value to any pair (z,t), where z is a location
along an edge of the considered graph GA = (Vﬁ, E%) and ¢ a point in time with ¢t > .

In this work, driving trajectories are derived from spatio-temporal speed functions (this topic
has been intensively discussed in (/49)). For this purpose, let e € Eﬁ be an edge that represents
aroad segment and let ¢ g be the time at which a vehicle starts passing this edge®. The (spatial)
start of e is denoted with e and its end with €. Furthermore, let V' be a spatio-temporal function
describing the development of driving speeds along e for any time ¢ > tg. If a vehicle starts
passing edge e at time tg while facing traffic conditions described by V, then a unique driving

trajectory T'(e, ts, V') can be derived by solving the ordinary differential equation

dx

— =V (x(t),t 6.1
= Vi), ) 6.1)
with initial condition x(tg) = e. The computation is terminated as soon as € is reached. It is

worth mentioning that x is interpreted in equation 6.1 as a function of time.

Available RTTI is not expected to mirror future traffic situations perfectly. To account for this,
it is differentiated between the real (current and future) macroscopic driving speeds Vg, and
the RTTI speeds VE%T ;- The real traffic situation Vg itself is unknown at time ¢ and it is
interpreted from here on as a random variable, i.e., Vgeq(z,t) denotes a real-valued random
variable instead of an explicit speed value. The function returning realizations of Vg, for any
point (x,t) is denoted by Vgeq . This means that Vgeq(z,t) € R is equal to the speed with
which cars are driven at a specific location x at a specific time ¢*6. The higher the similarity
between functions V}t%?pT ; and VReal i, the higher the quality of the RTTI is rated. Note that
with increasing similarity between VEJ%T ; and VReat» also the similarity between the predicted
driving trajectory T'(e, tg, VI’%?T ;) and the real driving trajectory 7'(e, tg, Vgeq) and hence be-

tween predicted and real energy consumption tends to improve.

For the simulation and for the further considerations in chapter 6, predicted time costs cp

and predicted energy consumption costs ¢z are computed on the basis of the available RTTI

#tp < to means that a charging strategy computation can be based on traffic prediction which have been made
previously. Usually, it is reasonable to assume that tp = %o.

“Here, distinctions are made between three different times: The planned start of the trip ts, the time at which a
charging strategy is requested ¢, and the time at which the RTTI is broadcasted ¢ 5.

46Speed value Vigeal (z,t) is here interpreted in a macroscopic sense, i.e., it is intended to describe macroscopic
average driving speeds.
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: tp f A
function V7, 1.€.

p(e,t) :=eple,t, T e, ts, Vitor)) (6.2)
cr(et) == cr(T(e,ts, Vi) (6.3)

Note that the resulting energy consumption and time costs can only be understood as a ,,best
guess® of the yet unknown real future energy consumption and the yet unknown time costs
that result from trajectory 7T'(e, tg, VReal). The issue is that Vg is not known at time ¢, at
which the charging strategy is requested. In contrast, the typically imperfect function Vé’%T 718
available at that time. For the simulation study, different types of (partly artificially generated)
RTTI, which show different levels of similarity to Vgeq, are applied for CSO. The simulated
vehicles are assumed to follow the recommended strategies while facing the real traffic situa-
tion and, along with that, energy consumption and time costs which differ from those which
were presumed during the optimization. It is analyzed up to which degree different energy

buffer functions are able to handle the resulting uncertainties.

Various reasons for incorrectly predicted energy consumption values and travel times exist.
Though, RTTI* shows some properties which make it particularly interesting to consider
RTTI as a source of uncertainty: First of all, traffic conditions have significant influence on
both energy consumption (86) (/23) and travel times (/48) (/64). This leads, in comparison
to uncertainty that solely affects one of both costs functions, to additional dynamics during the
simulation runs, since energy buffers are not able to handle travel time uncertainty (and its in-
fluence on energy consumption) directly. Another reason for considering error-prone RTTI as
a source of uncertainty is that the driver does not have much influence on prevailing traffic con-
ditions. Admittedly, she/he is in most cases able to adjust her/his route to avoid certain traffic
conditions, but this is not always possible or reasonable. This powerlessness, which is proba-
bly one of the main reasons for range-anxiety, represents a contrast to other aspects that could
also be considered to be sources of uncertainty for energy consumption or travel time predic-
tions. The driver has, for example, significant influence on her/his driving style, which again
has influence on travel times and energy consumption (57). In situations, in which it is unclear
whether the next charging station or the destination, respectively, can be reached, she/he can
adjust her/his driving behavior in order to extend the remaining driving range. However, it is
(usually) not possible to adjust prevailing traffic conditions. The third reason for concentrating
on imperfect RTTI as a source of uncertainty is that traffic, in contrast to most other factors
on which the driver has no influence (such as weather conditions, the road network or road
steepness), is highly dynamic and hardly predictable even for comparably short prediction pe-

riods. As a consequence, it is very likely that RTTI is prone to errors in reality. This has been

“IThe considerations of chapter 6 are not restricted to the case of ,real-time* traffic information. In most cases,
they are also applicable for other kinds of traffic information. Still, it will usually be spoken of RTTI.
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confirmed in prior studies (/9) (84).

These reasons make the influence of RTTI quality on travel times, on energy consumption pre-
diction, and, along with this, on charging strategy quality very interesting — from a scientific,
as well as from a practical point of view. In order to simplify considerations, RTTI errors are
assumed to be the only source of uncertainty in the following. This does not mean that other
potential sources of uncertainty are not relevant. Instead, the suggested procedure can be un-
derstood as a first step, where the focus is set on the probably most crucial aspect. Future work
can then build upon this fundament and extend the stated considerations by including other

sources of uncertainty.

6.2 Measuring Errors of Real-time Traffic Information

Within the simulation study in chapter 7, different types of artificially generated RTTI are ap-
plied for the computation of charging strategies. These types of RTTI show different levels of
similarity to the simulated reality and are used to analyze the dependency of charging strategy
quality on the quality of the available traffic information. The idea is to find a relation between
the level of uncertainty, which is represented by the quality of the error-prone RTTI, and the
quality of the resulting charging strategies. The findings of the conducted analyses allow draw-
ing conclusions on the developed framework’s ability to achieve RO 2. In order to be able to
analyze the relation between charging strategy quality and RTTI quality, a framework for mea-
suring RTTI quality has to be introduced. The proposed approach, which is described in the
following, shows similarities to prior works about RTTI quality: First, a traffic state reconstruc-
tion is carried out on the basis of inductive loop detector data. This traffic state reconstruction
is then used as the reference, to which the RTTI being assessed is compared. Quality is in this
context interpreted as the level of similarity between the RTTI and the traffic state reconstruc-
tion. But before a method for assessing the quality of RTTI can be described, a methodology
for bringing RTTI into a reasonable and numerically treatable form is explained. Furthermore,

a detailed discussion about reasons leading to imperfect RTTI is provided.

6.2.1 Numerical Representation of Real-time Traffic Information

RTTTI is assumed to be information about macroscopic driving speeds. In practice, a provider
of commercial RTTI updates this information regularly, i.e., the period between an provision
of information and the following update is constant. For the remainder of this work, this time
period is denoted with At#TTT ¢ R . Nowadays, At/TT7 is often equal to one minute. Each
speed value that is part of the broadcasted RTTI is sent along with an identification key. This
key can be associated with road segments and thus allows assigning broadcasted speed values
to locations. As mentioned in section 2.3, the keys and the set of possible road segments are
defined by standardized digital maps, which are typically available for both the traffic content
provider and the receiver of the RTTI. In order to represent RTTI in a numerically treatable

form, let a single road corridor in one driving direction be considered. This road corridor is
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represented by an interval X = [X| Y[C R>o. Here, X € R>( denotes the start of the road
corridor and X € R>q denotes its end*®. Road corridor X is partitioned into the aforemen-
tioned RTTI induced road segments {SﬁTTI}i:Lg,_,,J, i.e.,:

X — U SRITI
i=1,....I (6.4)
SETTI A SETTI = ¢ Wiy, iy €{1,2,..,1}.

It is assumed that these road segments are arranged along road corridor X, i.e., the first road
segment is ST the second SIT77 and so on. Furthermore, let this road corridor be con-
sidered during a time period T = [T, T[C R>o. T and T define the start and the end of
this time period. It is also assumed that this time period is partitioned into time intervals
{T]-RTTI }iz12.... At the beginning of each of these time intervals, the RTTI is updated.
Therefore, the length of these time intervals is equal to At®*77!, Based on these notations, a

spatio-temporal speed function Vi is introduced with
VRTTI X xT — Rzo. (65)

This function is not intended to represent traffic predictions, but solely to represent estimations
of current traffic states. It returns for any location € X and any time ¢ € T, the driving speed
which has been estimated most recently by the considered traffic content provider. Recall that
RTTI is updated at the beginning of each time interval @RTTI . Given a time ¢ € T, the time
tp(t) € T (,B“ for ,broadcasted”) denotes the latest point in time at which RTTI has been
provided:

tp(t) ::jggﬁ{zf”f (TR < 1} (6.6)

Time IfTTI € T denotes the start of interval TjRTT] . Due to the way RTTI is provided,
function Vgpry returns the same speed value for all points (x, ¢) which are part of the same
spatio-temporal cell SZRTTI X TjRTTI C X x T. This means that V7 is piecewise constant
on the spatio-temporal plane. The result is that V7 shows a grid structure as visualized
exemplarily in Figure 6.1 for the time period between 16:25 and 17:05 for the part of the road
network in Figure 2.3 which is marked by the dashed rectangle. The situation at 16:45 is dis-
played. The considered road corridor (driving from south to north) is separated into seven road
segments SZRTT[ with i € {1,2, ..., 7} and an update rate At"TT7 of five minutes is assumed.
The grid resulting from road segments SZRTTI and time intervals T]»RTTI is from here on de-
noted as RTTI induced grid.

8 Any interval that is considered within this work does not contain its upper border. This ensures that any point
within the original interval can be assigned uniquely to one of the smaller intervals if an interval is partitioned
further.
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If traffic state estimations are considered together with traffic predictions, then the correspond-

ing spatio-temporal speed function is denoted with VI%%T e
VJ?%TI : X x [tg, T[— Rxo (6.7)

The value V}gﬁiT ;(x,t) for some ¢t > tp describes the speed value which the traffic content
provider predicts at time ¢ for time ¢. In contrast to Vrrrr (compare equation 6.6), there is
no direct relation between the time ¢, at which the RTTI is broadcasted, and the time ¢, for
which the speed value is predicted. Hence, it is written V;;’%T ;(x,t) instead of Vrrrr(z,t).

The relation between Vg7 and Vé%T ; can be described as follows:
Virri(e,t) = Viiyy (@, 0) 6.8)

Note that there exists only one function Vrpry for time period 7" and this function cannot be

provided until the last time information is broadcasted during period 7, i.e., until T — At*TT1

On the contrary, there exists a separate function VE%T ; for each ip € {IfTTI }j:17_._7 7. For
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Figure 6.1: Grid structure resulting from an ex post arrangement of real-time traffic state esti-
mations.
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simplicity, it is assumed in this research that function é’%T ; shows the same temporal dis-

cretization as function Vrrry, i.e., speed predictions remain the same during intervals TJRTTI :
te(t te(t
Vi (w,t) = Vi) (o, t5(8) ¥ (2,1) € X x T 6.9)

Correspondingly, V5., is also piecewise constant within cells SF771 x TjRTTI .

6.2.2 Reasons for Imperfect Real-time Traffic Information

In practice, the lengths of single segments S#*777 can be huge. For so-called traffic message
channel (TMC) messages, segment lengths of more than ten kilometers occur. TMC messages
are probably the most widely applied type of commercial RTTI. TMC is a standard (/) which
defines how traffic messages can be delivered via radio (or to be more precise: via the radio
data system). To broadcast a traffic message according to TMC, the location of a traffic related
incident, as well as the type of this incident have to be encoded in a specific way. The encoding
of the location is done according to the so-called TMC location code list, which is an example
of a standardized digital map®. It allows differentiating between 64000 different locations per
country. This number is typically too low to allow the representation of all parts of the road
network of a country. Figure 6.2 shows exemplarily the part of the road network around Mu-
nich that can be represented via TMC (upper part) and the network coverage which is achieved
by a digital map provided by TomTom (lower part). It can be observed that TMC is restricted
to freeways, federal roads, and urban arterials. The TomTom map, which is intended for usage
within navigation devices, offers much more details. Note that not only TMC messages refer to
the TMC location code list, but also other types of traffic information. However, the relevance
of TMC is diminishing. The TMC standard has been developed during the late eighties. Due to
the limited technical possibilities in terms of data transmission at that time, TMC was designed
in such a way that the amount of data that are necessary for encoding traffic related information
is kept as low as possible. To achieve this, limitations, such as the already mentioned limited
spatial coverage and resolution, were accepted. During the last years, more sophisticated loca-
tion referencing methods were developed. These methods do not assign spatial information to
spatial objects (road segments, spatial areas, etc.) which are parts of standardized digital maps.
Instead, an abstract description of the spatial extent of a traffic related incident (or any other
spatial information) based on GPS data and possibly also on further information is used to lo-
cate this incident on arbitrary digital maps. As a consequence, limited resolution or coverage
are no longer a problem. An example of such an advanced geo-coding approach is OpenLLR
(75) (145).

#Recall from section 2.3 that the idea of such standardized maps is that both the provider of RTTI and the receiver
have the same map. Any kind of information is sent from the provider to the receiver along with a identification
key, which refers to a specific part of this map, such as a road segment or a spatial area. This makes it possible for
the receiver to locate the information.
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S O

(b) Routing-ready road network

Figure 6.2: Comparing the TMC-coverage of Munich with the coverage provided by TomTom
routing devices

Prior studies have indicated that commercial RTTI sometimes does not mirror the real traffic
situation adequately (/9) (84). In these studies, primarily traffic state estimations have been
analyzed, i.e., potential prediction errors have not even been considered. However, even for
the — in comparison to predictions — simple case of traffic state estimations, there exist many

reasons which may lead to inaccuracies. The most important among them are
1. Provision limitations, for instance, a limited spatial resolution
2. Delays caused by detection, data preparation or transmission processes
3. Missing, insufficient, contradictory or misinterpreted data

4. System stability



6.2. MEASURING ERRORS OF REAL-TIME TRAFFIC INFORMATION 113

The problems resulting from provision limitations, especially a restricted spatial resolution,
have already been discussed. Another issue is that traffic content providers can solely broadcast
information about a change of prevailing traffic conditions if they know about it. If the traffic
content provider primarily uses probe data to estimate traffic states, then at least a few vehicles
from which the RTTI provider receives information need to have experienced such a change
before a corresponding information can be broadcasted. If the traffic content provider relies
primarily on stationary detector data, then changes are not detected unless they reach locations
which are covered by these detectors. Either way leads to detection delays. Unfortunately,
detection delays are not the only consequence of the limited availability of traffic data. Some
incidents may not even be detected at all or the available data may lead to misinterpretations.
This can be the case if vehicles show a non-representative driving behavior, for instance, if
data from vehicles searching for parking spots or data from trucks on freeways are received.
Besides gathering data, traffic content providers have to aggregate, process, and interpret data.
Afterwards, the resulting information is broadcasted and received by the customer of the RTTI
service, who possibly again needs some time to process the received RTTI and include it in
her/his own traffic related service. Most of these steps can reduce data accuracy (/9) and
each of these steps consumes time. Analyses of different types of RTTI proved that delay
is still an issue in practice: In (//3), empirical tests that were executed in 2011 in Germany
showed a maximal duration of three minutes between the time at which a TMC-message has
been broadcasted and the time of its visual provision by typical navigation devices. In the same
year, the whole process of gathering traffic data, generating a TMC-message and visualizing the
information on the display of a navigation device took, in Austria, on average 10 minutes (//8).
Another study, in which RTTI provided by INRIX (a professional traffic content provider)
is analyzed, indicate that the average period between a change within the prevailing traffic
conditions and the time at which the corresponding information is received by customers was
equal to six minutes in 2014 (84).

A further issue is that RTTI has to be provided continuously, i.e., 24 hours a day, seven days a
week. Even if no or only sparse traffic data are available on certain parts of the road network,
traffic data providers are still supposed to broadcast RTTI. Historical traffic data are typically
applied in such cases as a supplement, but they limit the maximal possible information quality.
Furthermore, no system works perfectly. If the system is operating in real-time, such as RTTI

services do, detecting and correcting errors can lead to interruptions and breakdowns.

6.2.3 Traffic State Reconstruction

To be able to measure differences between RTTI and reality, a reference to which the RTTI can
be compared, is usually applied. This reference, which is typically denoted as the ground truth
(GT), has to represent the ,real traffic situation adequately and it must be in a form that can be
handled numerically. There exist different ideas for the construction of the ground truth. Basic

information concerning this topic was provided in section 2.3. For the remainder of this work,
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a spatio-temporal speed function showing average driving speeds in dependency of time and
location is used as reference. The corresponding speed functions are constructed according
to the method described in (/46). Speed data gathered by inductive loop detectors form the

basis®. Due to the high costs for inductive loop detectors, often only small parts of the entire
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Figure 6.3: Difference between isotropic and anisotropic interpolation

road network are equipped with them. Moreover, distances between successive detectors of
several kilometers occur frequently, at least in Germany. As a consequence, the detectors can-
not observe the real traffic situation continuously. To fill (spatial, but also temporal) detection
gaps and thus to portray the traffic situation for a road corridor during a certain time period
comprehensively, a spatio-temporal interpolation is carried out. There are different ways for
realizing this. The most intuitive approach is to do a simple isotropic interpolation, i.e., the
influence of measured speed values on the speed estimation for a point on the spatio-temporal
plane for which no measurement is available is inversely proportional to the distance (on the
spatio-temporal plane) between the point of measurement and the point for which the speeds
have to be estimated. The left part of Figure 6.3 visualizes such a traffic state reconstruction
resulting from an isotropic interpolation®!. It shows a 16 kilometers long road corridor on the
German autobahn A99, between the interchange Munich north and the interchange Munich
east, on November 3rd, 2003 between 7:30 and 9:30, southbound. Fourteen inductive loop
detectors are located along the illustrated corridor. Red areas indicate spatio-temporal regions

at which only low driving speeds were realized, green areas indicate free-flow. Note that three

The inductive loop detector data which are considered in this work provide information about traffic related
quantities at one-minute resolution. All detector data are gathered on freeways. The delivered data are only available
per direction, i.e., the data are averaged over all lanes. The averaging is done according to the procedure described
in (154).

STA detailed description of the isotropic interpolation approach that has been applied for the generation of this
picture can be found in (65).
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different jam waves can be identified. However, these waves seem to be interrupted, an ob-
servation that cannot be made in reality, where jam waves typically propagate steadily against
the driving direction. Such unrealistic observations can be the result when applying isotropic
interpolation schemes.

In order to avoid such behavior, in (/46), an adaptive interpolation scheme is proposed. The
corresponding approach is usually denoted as adaptive smoothing method (ASM). The ASM
takes the typical propagation speeds of information in freeway traffic into account. These
speeds are assumed to be very similar all over the world: In congestion, information is trans-
mitted with roughly 18 kilometers per hour in upstream direction. In free-flowing traffic con-
ditions, it moves with about 80 kilometers per hour downstream. The result of applying the
ASM to inductive loop detector data is a spatio-temporal speed function, which is from here
on denoted by V72, If detector data for a road corridor X during a time period 7" are avail-
able, then Vg1 returns for any location x € X and any time ¢ € T the corresponding ,real*
macroscopic driving speed Vgr(x,t). The right part of Figure 6.3 visualizes Vg for the same
situation as considered in the left part. Each of the aforementioned jam waves is now repre-
sented by a connected red area. The slope of the jam waves mirrors the presumed upstream

propagation speed of 18 kilometers per hour.

Note that the contour plot on the right side of Figure 6.3 was not generated by applying the
original version of the ASM from (/46). Instead, a speed-up version of the ASM, as stated in
(/32), was executed. This modified method makes use of fast Fourier transforms. Accelerations
in computation time up to a factor of 100 are achieved. At the same time, quality reductions
remain negligible. The parameters that were used for generating Vg7 in Figure 6.3 are oriented
towards those of (/32). The corresponding list of values can be found in appendix C. There,
besides presumed propagation speeds, further parameters are listed. Among these parameters,
the most important for the following sections are Az“T = 40 meters and At“T = 20 seconds.
They describe the spatial and the temporal resolution of V7. The implementation of the ASM
which is applied throughout this work returns a set of triples. Each triple consists of a specific
location x;, a specific point in time ¢;, and the corresponding speed values Vg (x;,t;). The in
fact continuous function V7 is described by these triples. The set of points (z;, ¢;) form a grid
on the spatio-temporal plane. The spatial and the temporal distance between successive points
are denoted by Az“T and At“T. From here on, V7 is interpreted as a piecewise constant
speed function, which returns for any (z,t) the speed value Vg (x;, t;) which is assigned to
the point (x;, t;) that lies closest to (z, t):

Ver(z,t) = Ver(zi, i) 6.10)
V(z,t) € [z — 0.5 A2xCT 2, + 0.5 AzCT[x[t; — 0.5 - AtST ¢, + 0.5 AtCT[

The relation between Ver and Virea: will be explained later on.
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Figure 6.4: Construction of ASM-grid.

Similarlarly to the case of RTTI, the road segments and time intervals that are defined by this
grid are denoted by S,?T and TZGT, respectively. The interpretation as a piecewise constant
function will later on allow deriving a rather simple quantification of differences between Vg
and broadcasted driving speeds, which are, as already described, also interpreted as piecewise
constant speed functions. In Figure 6.4, the idea of interpreting the available set of triples

(24, t;, Var (s, t;)) (left side) as a spatio-temporal speed function (right side) is illustrated.

It is worth mentioning that a traffic state reconstruction is already done by the traffic content
providers to generate the broadcasted RTTI. This raises the question why function Vg7, which
is intended to be used to assess the quality of RTTI, should mirror reality more accurately than
the RTTI itself. Actually, there are several reasons for this: Vg7 is typically constructed ex
post, i.e., ,,at the end of the day*“. Hence, there is no time pressure. The problem of latencies
caused, for instance, by data transmission vanishes. Another aspect is that if during a specific
time period not enough or (for some reason) only data that seem to be unreliable are available
for the construction of Vg7, then the possibility exists to ignore this time period during the
assessment process. An RTTI provider does not have this option as RTTI in most cases has to
be provided continuously (24 hours a day, 7 days a week). Moreover, if the traffic situation for
a specific time ¢ is estimated and if this estimation is done ex post, then not only data gathered

before or at time ¢ are available. Also ,future data, i.e., data that were collected after ¢, can
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be taken into account. There exists methods for traffic state reconstruction, for instance the
ASM, which make use of future data to achieve a more accurate traffic state reconstruction.
An online-traffic state estimation, which has to be carried out by traffic content providers, can
obviously not include such future data. Finally, traffic state reconstructions are in general not
bound to standards that limit the amount of detail that can be represented, which may be the
case for RTTI. Bringing all this together, it can be concluded that a posterior traffic state recon-
struction is much simpler and in general has the potential to be more accurate than an online
traffic state estimation. Note that even if the same data basis is used for both, it is very likely

that differences occur.

One final remark shall be given at this point: Besides Vg7, which is a piecewise constant speed
function that is reconstructed ex post on the basis of inductive loop detector data, function Vi,
has been introduced, too. Vg, returns, depending on location and time, random variables
VReat(,t). These random variables are solely relevant from a modeling point of view. In fact,
under the assumption that Vz.,; describes the real average driving speeds, function Vg7 can
be interpreted as an approximation of Vgeq. Whenever an ex post analysis of RTTI quality is

carried out during the remainder of the described research, Vg7 is applied as reference.

6.2.4 Error Measurement

In the following, the differences between broadcasted RTTI and the constructed ground truth
are quantified for some road corridor X C R>( during a time period 7' C R>(. Both func-
tions Vg and V}?%T ; are constant in each cell of a grid on the spatio-temporal plane. For
Vi, the corresponding grid is described by a set of spatial segments {Sk.GT} k=1,...,k and a set
of time intervals {TZGT}ZZL,,,, 1, with K and L € N. Analogously, a set of spatial segments
{SﬁTTI}i:LmJ and a set of time intervals {ERTTI}j:Lm’J, with I and J € N, describe the
grid for VI?%T ; (or Vrrry, respectively). Both sets of segments are supposed to be partition-
ings of X and both sets of time intervals to be partitionings of 7', i.e., each point in X x 7' can

be assigned to exactly one cell in both grids.

The measurement of the differences is done in three steps: First, based on the two already
existing grids, a third grid, which is described by sets {S%}mzlw, v (U for ,,union‘) and
{TY},—1.. N with M and N € N, is generated. It is essential that each cell S5, x T is
completely covered by a single cell S,?T X TIGT and by a single cell SZRTTI X TjRTTI . This
means that for all m € {1,...., M} and foralln € {1,...., N'}, there exists exactly one index k*
€ {1,.., K}, oneindex I* € {1, ..., L}, oneindex i* € {1, ..., I} and one index j* € {1, ..., J},
such that the subsequent conditions holds

SU s TV € ST x TG (6.11)

So x T €SI T (6.12)
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This ensures that Vo7 and VE%T ; (and Vrrrr) are constant within each cell of the new, dense
grid. During the second step, the values both functions return are compared for each cell of the
new grid separately. For this purpose, let VGT(S%, T ,E/ ) denote the speed value that is returned
by Vi for any point (z, t) which is located in cell SY, x Y. Value V2., (SY, TV ) is defined
analogously. Furthermore, let a function d (for instance, this can be a metric) be considered
that measures the difference between two values. The rating for a cell S5, x TV is thus denoted
by

d(Ver (S, TV, Vigr (SU, TY)). (6.13)

my)—n

During the third step, the computed difference ratings for all cells are aggregated to one single

number by weighting them according to the spatio-temporal extent of the corresponding cell:

wmn:—/ / 1dtde = ( fSU) (7 — 1Y)
Sy JTY

W .= //ldtdw— Zwmn

m=1n=1

M N

1

D(Var, Vihrr X x T, d) Z Zwm,n - A(Var(Sp T ) Vi (Sims TY))
m=1n=1

(6.14)
The spatio-temporal extent of each cell is denoted with w,, , and the size of the area X x T’
with . Dividing by W in equation 6.14 is necessary for normalization, i.e., to ensure that the

computed difference value D does not depend on the size of X x T.

Figure 6.5 is intended to illustrate the suggested approach for quantifying differences between
ground truth and RTTIL. Three contour plots are shown, all of them for a 34 kilometers long
road corridor on the German autobahn A99 (southbound, starting about nine kilometers west
of the interchange Munich north and ending roughly eight kilometers south of the interchange
Munich east) for the time period between 16:30 and 20:00 on April 19th, 2012. The first one
describes the ground truth, which is generated by applying the ASM on inductive loop detector
data collected by 25 detectors along the road. Three jam waves between 17:45 and 18:45 can be
observed. The second contour plot is based on commercial RTTI (only traffic state estimations,
i.e., Vrrrr) received from a traffic content provider for the corresponding time and location.
Traffic state estimations were updated at one-minute resolution and the TMC location code list
is used for location referencing. This leads in total to 12 TMC road segments for the considered
road corridor. Note that the dashed horizontal black lines in Figure 6.5 mark the spatial extent
of the longest of these segments>>, which has a length of almost 5.6 kilometers. Based on the
broadcasted RTTI, it is not possible to identify three separate jam waves. Solely a reduction

of speed is indicated at the corresponding area on the spatio-temporal plane. The last contour

3Just as a remark: The corresponding TMC location code is ,,D01+12980%.
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Figure 6.5: Visualization of ground truth, recorded RTTI, and the resulting relative errors for a
corridor on a German freeway.

plot visualizes the resulting error ratings for each cell of the grid (spatial resolution AzET of
the ground truth grid is equal to 40 meters, temporal resolution At“7 is equal to 20 seconds).
The absolute percentage error (APE) was applied for their computation, i.e., a measure d 4pg

is used with:

b—a
dAPE(a, b) = % (615)
The maximum of all occurring values dapr(Vor (SY, TV), Verrr (SS, TY)) is equal to 0.746.

The resulting overall rating D(Var, Vrrrr, X X T,dapg), where X describes the road cor-
ridor and 7' the time period between 16:30 and 20:00 on April 19th, 2012, is equal to 0.083.
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This means that the averag654 relative deviation between Vg and Viprr is at about eight
percent. It can be seen that errors occurred especially around congested areas. Unfortunately,
adequate RTTI is most valuable in congested situations. One potential reason for these er-
rors is the limited spatial resolution of the considered RTTI. For any TMC segment, the traffic
content provider can only broadcast one speed value to describe the traffic situation along the
whole segment. Particularly for the case of the TMC segment which is bordered by the dashed
lines in Figure 6.5, the traffic content provider would have been unable to broadcast detailed
information concerning the jam waves, even if the traffic content provider had been aware of
them. These considerations motivate the generation of an alternative traffic state reconstruc-
tion, which takes a limited spatial, but also a limited temporal resolution of RTTI into account.

This is considered in the following section.

6.2.5 Considering Restrictions of Resolution

For measuring the quality of RTTI, the applied reference is typically intended to approximate
the real traffic situation as closely as possible. This proceeding seems to be reasonable since
car drivers, who eventually use RTTI-based traffic services, compare the RTTI they receive to
the real traffic situation — or at least to their perception of the real traffic situation. The left part
of Figure 6.6 illustrates this idea. On the other hand, it has already been discussed that RTTI,
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Figure 6.6: Scheme describing the idea of considering technical restrictions during the quality
assessment process.

such as TMC-messages, often suffer from certain, primarily technical restrictions that limit the

>*Due to the definition of D, ,,average“ is interpreted here in a spatio-temporal sense.
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maximal possible quality that can be obtained. This aspect is especially important if compa-
nies, like car manufacturers, purchase commercial traffic data: The traffic content providers
take lots of money for the supplied information. Accordingly, their industrial customers want
certain quality standards to be fulfilled. If a costumer postulates that the spatial referencing
of the broadcasted (commercial) RTTI needs to be based on the TMC location code list, then
it seems unfair to make the provider responsible for inaccuracies caused by the technical lim-
itations of TMC. However, this is exactly what traditional quality measurement methods do,
since the best possible traffic state reconstructions are applied as reference, to which the RTTI
is compared. Here, an alternative reconstruction scheme, denoted as technical ground truth
(TGT), is suggested.

The central issue is that, even if a traffic content provider generated, based on the data that are
available, the same ground truth which is later on used during the assessment, she/he still would
not be able to broadcast it with all its details if the RTTI is bound to, for instance, the TMC
location code list. In order to be able to mirror the perspective of the traffic content provider,
the function Vg7 is discretized according to the spatio-temporal grid defined by the RTTTI that
has to be assessed, i.e., according to road segments S,LRTTI and time intervals TjRTTI . For this

purpose, a harmonic mean speed is computed for each cell SlRTTI X T]RTTI :

Ai7j = / / 1dx dt
TjRTTI SiRTTI

-1
1
RTTI RTTI
RTTI pRTTIY ._ A Vo da dt
'Uharm(Sz g ) ] (/TJ_RTTI /SZRTTI VgT(-T,t) ! )

In traffic, the harmonic mean is typically used to aggregate speed values. The arithmetic mean

(6.16)

would lead to systematic bias when computing trajectory-based travel times on the basis of
the corresponding spatio-temporal speed function. The harmonic mean avoids this effect (see

Figure 4.10 in (/47)). The discretized ground truth speed function is then defined by:

Viar : X x T — Rsg (6.17)

Vrar(2,t) = Onarm (ST T V(2 t) € ST T (6.18)

)

Obviously, Vg is constant within each cell SZ-RTT] X T]RTTI . Recalling that Vg7 is assumed
to represent the real traffic situation, then Vrgr can be understood as the best possible ap-
proximation of the real traffic situation that can be achieved if one is bound to the grid that
is induced by the spatial and temporal resolution of the considered RTTI. Note that function
Vrar is introduced here, since it will be used later on in section 6.3.2 for the derivation of

auxiliary trajectories.
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Figure 6.7: Spatio-temporal visualization of differences between RTTI and the technical
ground truth. Measure d 4 pg is applied here.

Figure 6.7 continues the example from Figure 6.5. The contour plot on the left shows Vrgr,
the right contour plot the resulting differences to Vr7;. It can be observed that the differences
between Vg and Vrrrr are less significant than the differences between Vg and Virry.
The main reason for this is that the three jam waves also vanish for Vygr. Furthermore, the
right part of Figure 6.7 indicates that real quality problems occur especially between kilome-
ters 23 and 26. The considered RTTI overestimates average driving speeds there. In contrast,
the situation for TMC segment D01+12980 (between the two dashed horizontal lines) is repre-
sented rather well, at least under the restriction that only one speed value can be broadcasted for
the whole segment. Consequently, the quality deficiencies that can be observed in the error plot
of Figure 6.5 for TMC segment D01+12980 (between the dashed lines) seem to be primarily
caused by the limited spatial resolution of the considered RTTI>.

6.3 Trajectory Buffer for Error-prone Traffic Information

One of the three tasks that has to be carried out in chapter 6 is the provision of a concrete
formulation of the trajectory buffer function S OC;%T in order to test it within the simulation
study in chapter 7. The motivation for this is that, otherwise, after excluding quantile-based en-
ergy buffers from further consideration, solely relative buffers could be tested. Relative buffers
show some advantageous properties, but the level of adaptivity which can be achieved by rel-

ative buffers is limited (see Table 5.1, where the three proposed energy buffer functions were

3 SActually, these deviations between Vg7 and Vrrrr could also be caused by the limited temporal resolution of
Vrrri. Here, this is not the case due to the RTTI’s high update rate of one minute.
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compared). This is because function SOC > only depends on the predicted energy consump-
tion costs. As long as these costs remain the same, also the size of the relative energy buffer
does not change — independently of how reliable the available RTTI or other relevant quantities
are expected to be. Trajectory buffers, on the contrary, may be able to ensure a high level of
adaptivity, but their ability to achieve this depends heavily on the applied method for generating
sets of auxiliary trajectories. Up to this point, it has not been explained how sets of reasonable
driving trajectories can be generated. Actually, this had been hardly possible due to the rather
abstract problem formulation stated in chapter 5, where energy and time edge costs were sim-
ply assumed to be given. In the following, under the presumption that RTTI can be used to
derive driving trajectories, a corresponding approach is described. Two goals are relevant in
this context: First, the computational effort for generating sets of auxiliary driving trajectories
has to be kept low in order to avoid any negative impact with regard to RO 1c. Second, a cer-
tain level of adaptivity shall be obtained, i.e., the resulting energy buffer function should take

varying reliability of RTTI into account.

The proceeding in section 6.3 is the following: In section 6.3.1, the description of a method for
generating sets of auxiliary trajectories is stated. The fundament of this method is a prediction
of lower and upper bounds for (macroscopic) average driving speeds. This means that instead
of one spatio-temporal speed function VE%T 7> Which returns a single speed value in dependency
of location and time, two spatio-temporal speed functions are applied, which return lower and
upper speed bounds. These bounds have to be defined in such a way that it is very likelty that
the real future driving speeds lie between these bounds. An approach to derive such speed
bounds based on commercial RTTI is described in section 6.3.2. Finally, in section 6.3.3, some
issues resulting from deriving driving trajectories (which actually are a microscopic type of

data) from RTTI (which is typically interpreted as a macroscopic kind of data) are discussed.

6.3.1 Trajectory Buffer on the Basis of Speed Bounds
Figure 6.8 schematically illustrates the approach that is described subsequently. First, given a
time ¢ at which RTTI is broadcasted®, it is intended to compute two spatio-temporal speed

functions Vlto‘fv and VJI?, which represent lower and upper bounds for random variable Vigeq;:

Vis

low

(7,1) < VRear(z,t) < qu;f (x,t) Vz €e, t>1tp. (6.19)

In literature, it is not uncommon for traffic prediction methods to return ranges instead of
specific values (80) (87). As Vgeqr describes driving speeds, such bounds naturally exist. For
instance, a speed of zero can be applied as a lower bound and the considered vehicle’s maximal

driving speed as an upper bound. However, to keep these ranges tight and thus interesting for

%To reduce notational complexity, it is from here on assumed that the time to, at which a charging strategy is
requested, is equal to the time ¢z, at which the RTTI is broadcasted. All approaches would work similarly if it was
differentiated between these times.
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applications, outliers are typically excluded from consideration by postulating bounds that hold
solely with a certain probability « € [0, 1]:

P(V,2 % (2,t) < VRear(2,1)) = a (6.20)

ow

P(ViP(2,t) > VRea(2,1)) = « 6.21)

In section 6.3.2, an approach for deriving such probabilistic speed bounds will be explained.
For the moment, spatio-temporal speed functions Vlf)ﬁ)’a and szﬁ *“, which fulfill the conditions
defined in equations 6.20 and 6.21, can simply be assumed to be given. Note that the proposed
definition of speed bounds provides a possibility to interpret reliability in the context of RTTI:
It can be said that reliable RTTI allows deriving speed bound functions Vfoﬁj’a and Vjﬁ *“ which
show small differences to each other even for high values of .. This means that that function

VEJ%T ; 1s ,reliable® if the probability that big errors occur is low.
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Figure 6.8: Generation of a trajectory set on the basis of speed bound functions.
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In a second step, for some time tg > ¢ 5" and a specific road segment e, where e denotes its
start and € denotes its end, speed functions Vltoi)’a and qup *“ are applied to construct ,bound-
ary* trajectories 1'(e, tg, liﬁ}’a) and T'(e, tg, Vad™®). To receive these trajectories, differential
equation 6.1 has to be solved after replacing its right-hand side either by function W;fu’a or by
function VJZ?’O‘. These two trajectories form a shape on the spatio-temporal plane that looks
similar to a cone, where the vertex of the cone is given by (e, tg). This is illustrated by the
two gray trajectories which are placed in the contour plot under point three in Figure 6.8. If
« is set equal to 1.0, then any possible driving trajectory T'(e, ts, Virea), independently of the
realization Vg.q, is located between these boundary trajectories due to inequalities 6.20 and
6.21. If « is set close to 1.0, then at least most possible driving trajectories can be assumed to

be located within the cone.

During the third step, a set of reasonable trajectories is generated which covers this cone com-
prehensively. This set is afterwards used to compute the size of the buffer according to the
methodology described in section 5.3.3 (see also the fourth step in Figure 6.8). The idea is
that at least one of the generated trajectories looks similar to the real, not yet known driving
trajectory T'(e, ts, Vgeat). To generate auxiliary trajectories which cover the cone comprehen-
sively, the following procedure is executed: Construct for each index nt € {0, 1, ..., NT'} with
NT € Ny a spatio-temporal speed function Vth’a as described below (this could be done
tg,a

analogously if Vlf)ﬁ) and Vut;f , and not Vl';i}’a and V,;; " were considered):

NT —nt nt
Vol (a,t) = T ViiBO (2, t) + ~T Vin®(x,t). (6.22)

It holds that Vy®* = V/'2:“. With increasing nt, these functions turn from V;'’2'* to Vyi5*

with V]ff}’o‘ = Vi For each of these functions, one auxiliary trajectory T (e, tg) :=

T(e,ts, rftB’a) is computed. These trajectories cover the aforementioned cone equally (in a
spatio-temporal sense).

If the reliability of V]%T ; 18 low, then the range between Vlfﬁ)’a and Vip *“ is comparably big
even for small values of «. Along with this, the cone which is defined by the two boundary tra-
jectories becomes wide. This leads to a set of trajectories {77 (e, tg) }nt=o,... N7 Which show
more diversity, i.e., the differences between the auxiliary trajectories rise. It will turn out that
under realistic conditions, particularly those driving trajectories that show very low or very high
speeds cause high energy consumption. As a consequence, in most cases one of both border
trajectories leads to the highest energy consumption values. A further consequence is that the
size of the trajectory energy buffer tends to rise with the width of the cone, since wide cones

lead to very low and very high speeds at its borders. If Vlté’}% is expected to be reliable, it is

5TRecall that ¢ denotes the planned start of the trip and that this is not necessarily the time at which the charging
strategy computation takes place.
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the other way around and the energy buffer’s size gets small. Consequently, the suggested tra-

N

jectory generation method should be able, up to some degree, to achieve that S OC’;;L T returns

in
high values in situations in which RTTI tends to be less reliable, and low values in situations in
which RTTTI is reliable. Note that the size of the trajectory energy buffer also tends to become
bigger if higher values of « are used, since the cone again becomes wider. Increasing the num-
ber of trajectories NT' may also have some influence, but the proposed method for trajectory
generation makes it, as already mentioned, unlikely that the highest energy consumption values
result from non-border trajectories. Due to this, increasing the number of trajectories has only

little influence on the resulting energy buffer.

It is worth mentioning that the suggested approach for generating a set of trajectories is com-
putationally not too expensive. This allows including it into algorithms for computing optimal
charging strategies. On the other hand, there is no guarantee that the real driving trajectory

T(e,ts, Vreal) (or T(e,ts, Var), respectively) looks similar to one of the constructed trajec-

tp,a

tories. Furthermore, it is up to this point not clear how speed bounds VlZB and Vutg (or Vi 5o

w
and Vlf,?’a, respectively) can be derived. However, a corresponding approach will be described

during the next sections.

6.3.2 Prediction of Speed Bounds for Real-time Traffic Information

In this section, an approach to derive lower and upper speed bounds Wiﬁ)a and quﬁ’a is ex-
plained. For this purpose, it is assumed that commercial RTTI is received and represented by
a spatio-temporal speed function VE{’FT ;- The section can be separated into three parts. During
the first part, a random variable Y is introduced, which describes, depending on location and
time, deviations between the RTTI and a reconstructed ground truth. It is conjectured that a re-
lation exists between the distribution of Y and several, not yet identified explanatory variables®
Eq, By, ..., Eg with () € N. In the second part of this section, a set of potential explanatory
variables is proposed. Finally, in the third part, a training set {y™, e[, e, ..., eg}m:w’m’ M
consisting of M € N realizations ™ of random variable Y and the corresponding observations
eq" of the explanatory variables, is used to derive probabilistic bounds for Y in dependency of
the observations belonging to the explanatory variables. The idea is that at time g, at which
the charging strategy is requested and, due to this, at which the speed bounds have to be con-
structed, the realizations of the set of explanatory variables are already available. The realiza-
tions of Y, on the contrary, are unknown. The derived bounds for Y are afterwards applied
to generate functions Vlii)’a and VJI’? . It is worth mentioning that the proposed approach
can basically be used to generate speed bounds for any kind of spatio-temporal speed function
and not only for the case of a function representing commercial RTTI. Though, some of the

suggested explanatory variables explicitly refer to the case of commercial RTTI.

S8Explanatory variables are often also denoted as predictors or independent variables.
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Definition of the Dependent Variable The dependent variable Y is defined depending on
location and time as the relative difference between ground truth driving speeds and the RTTI:

(SRTTI X TRTTI) (VTGTa VRTTI; SRTTI X TRTTI dP ) (623)

Function D is here defined as stated in equation 6.14 and the difference measure d pr denotes

the relative difference between the first and the second input (,,PE* for ,,percentage error*):

V1 — V2
() '

dpg(vi,v2) = (6.24)
Note that the technical ground truth Vg7 is used as the reference® to which Vé‘%T 7 1s com-
pared in equation 6.23. This is because V}tﬁT 7 1s constant in each cell SZRTT] X TRTTI . Most
of the explanatory variables which will be considered later on are based on V o and hence

they are also constant in each cell SZRTT[ X T]RTTI .

Due to this, the suggested approach
hardly allows making distinctions between locations and points in time that are part of the
same cell. This suggests discretizing Vg7 to Vrgr. Furthermore, the discretization simpli-
fies further notation, as solely one grid needs to be considered, and reduces computation times

since the resolution of the RTTI-based grid is lower than the resolution of the ground truth grid.

For generating the set {3y },;,=1.2,... a, it solely remains to specify road segments anTTI , time

intervals Z}ffnTTI , and times ¢} at which the RTTI is requested®. The realizations y™ of the

dependent variable Y are then defined as stated below:
Y™ = (8 SRTTI TRTTI ) := D(Vrer, VRTTI7 SRTTI % TRTTI dpr) (6.25)

.. tm o
Due to the definition of D and the fact that Vrgr and V7., are constant within each cell

SZ-RTTI X Z}ffnTTI , this can also be written as:

RTTI RTTI Uy RTTI RTTI
w =y, sprrs prreny V6T, LTy ) = Verri, T ) g5

VR?“TI (SRTTI TRTTI)

In equation 6.26, VR’?}T I(SRTTI TRTTI ) denotes the speed value that V;%:T ; obtains in cell

SRITI Tj]iTTI . Analogously, VTGT(SZ.ELTTI , Tj]iTTI ) denotes the corresponding speed value

im

for function Vrgr. The realizations of the dependent variable Y describe the deviations be-

tween RTTI and ground truth for the corresponding location and time. Usually, it is written y™

SRTTI TRTTI)

instead of y (5 to shorten notation.

$Usually, the denominator refers to the quantity which is used as the reference if percentage errors are computed.
Here, it is the other way around. This will be of relevance later on.

%Here, it is written SRTTI and TRTTI instead of SFTT! and TRTTI to emphasize that possibly not all road
segments and time 1ntervals are 1ncluded into the generation of the training set. This means that i, € {1,...,I}
and j., € {1,...,J} forallm € {1,..., M}.
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Identify Potential Explanatory Variables Now, a set of explanatory variables E1, ..., Fg
has to be identified which allows drawing conclusions on the distribution of the dependent
variable Y. The goal is to make predictions about the reliability of the considered commercial
RTTI. In this context, a critical aspect of working with commercial RTTI is that the receiver
typically does not know how much and which types of raw traffic data (data from detectors,
probe data, etc.) were used for the generation of the RTTI, nor does she/he know how the data
were processed. Moreover, for the case of traffic predictions, the applied prediction procedure
is usually unknown, too. Therefore, the set of potential explanatory variables is limited. In the
following, an exemplary selection of five potential explanatory variables is discussed: Predic-
tion horizon, historical relative speed averages, estimations of current relative driving speeds,
the time of day, and so-called confidence values that are broadcasted along with the RTTI. For
this purpose, it is assumed that, besides function Vé%T 7> Spatio-temporal speed functions Vi
and Vy; are available. Function Vi describes historical driving speed averages depending
on location and time. For simplicity, it is assumed that V7,4 is also piecewise constant within
the cells SZ-RTTI X TJRTTI of the spatio-temporal grid which is induced by the RTTI. It contains
no information about recent incidents and is solely based on historical traffic data. Function
V¢ is independent of time. It assigns, probably also based on historical traffic data, estimated
free-flow driving speeds to road segments SZ-RTTI . Function Vy; is used to compute relative
driving speeds. Relative speeds means here that speeds are given in percent of free-flow speed.
Furthermore, the availability of a function C ftB (,,Cf* for ,confidence*) is expected. Nowa-
days, private traffic content providers typically deliver such confidence values to give their
customers an idea of how much recently collected probe data were available for generating the
broadcasted RTTI. Intuitively, it could be expected that with an increasing amount of available

and recently collected traffic data, also the reliability of the RTTI increases.

The first and maybe most intuitive potential explanatory variable for the quality of RTTI is the
prediction horizon, i.e., the time span between the time at which the information is received and
the time for which speeds are predicted. Mathematically, the realizations of the corresponding

predictor E; can be defined as follows:
el i= ey (ty, SEITT TR o= THTTT 4 ym € {1,2,...,M}. (6.27)

In equation 6.27, the starting time of interval T]iTTI is denoted by Iﬁ?ﬂ . The idea for analyz-
ing prediction horizons as potential predictors for RTTI quality is that the further one intends

to look into the future, the less reliable traffic predictions probably become (//2).

Congestion and along with it changing traffic conditions usually do not appear unless a certain
level of road utilization is reached. If there are almost no cars on the road, then it is very un-

likely that a change from free-flow to congestion (or the other way around) occurs. Due to this,
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in situations in which road utilization can be expected to be extremely low, RTTI should be
quite reliable, simply because there is nothing to report or broadcast, respectively. In order to
determine road utilization, traffic volume needs to be known. Private traffic content providers,
since they rely primarily on probe data and usually collect traffic data from only a few percent
of all driving vehicles, probably cannot estimate traffic volume reliably. Stationary detectors,
which are usually capable of measuring flows, cover the road network only sparsely. Conse-
quently, it may be hard to achieve a comprehensive coverage of the entire road network with
real-time flow data. As an alternative, the utilization can be estimated indirectly based on rel-
ative driving speeds. This is what is done in the following. For this purpose, it is used that
low relative speeds indicate high utilization according to the fundamental diagram. Consider-
ing the available data, two types of speed information can be applied in order to achieve this,
namely historical speeds and RTTI. Based on them, the realizations of two potential predictors

are defined as subsequently described:

VHist(Si]?nTT[ TRTTI)

N RTTI RTTIN .__ T Im
ey’ = eo(ty, SEIT! THTTT) = v, (5T vm € {1,2,...,M} (6.28)
tm,
VB S TT[,tm
e = eg(ty, ST TR = wrril e 5) vm € {1,2,..,M} (6.29)
Vip(Si )

Here, E» denotes historical relative speed averages and E3 denotes the estimation of current

relative driving speeds. VHiSt(szLTTI , T]{%’LTTI )

for any point (x,t) € ST THTTL Vi ((SETTT) denotes the speed value which Vy returns

denotes the speed values which Vi;s: returns

for any location x € SffnTTI ,and V}?’TlT I(SimTTI ,t%) denotes the speed value which VI;HB;T 7 Te-
turns for any point (z, ty) with z € SETTT,

The historical speed data provide historical speed averages depending on location and time.
If on a certain road segment during a certain time interval congestion occurs frequently, then
these average driving speeds also lie significantly below the corresponding free-flow speed.
Conversely, if historical speed profiles show no reduction of average driving speeds, then this
is interpreted as an indicator that congestion occurs only rarely. Under such typically stable
conditions, there is (in most cases) not much which can be predicted incorrectly. As a conse-
quence, it is concluded that RTTI quality is probably comparably high.

The same way as predictor Es is intended to characterize typical traffic conditions, predictor
I3 is intended to characterize current traffic conditions. If low relative speeds are broadcasted
at time t g, then it is likely that the corresponding road segment is congested at time ¢ 5, which
again possibly makes predicting the future evolution of traffic for this location harder than for
the low-utilization case. Whether this suspicion is true or not depends on the prediction algo-
rithms that are applied by the traffic content provider.

Note that besides characterizing regular or current traffic conditions, considering E5 and E3

in parallel may also be interesting: Huge differences between the currently estimated relative
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driving speeds and the historical relative speed averages may indicate a very uncommon traffic
situation. Hence, traffic prediction may not be able to describe future traffic situations as accu-

rately as in other situations which show a more regular behavior.

The fourth of the suggested potential predictors is the time of day for which the traffic situation
is predicted:

ef' = eq(ty, SEIT TR .= TRTTT Y € {1,2,..., M}. (6.30)

The idea for explanatory variable FEy is, similar to F5 and Fs, that it is easy to predict traf-
fic if nothing is happening. During nights, traffic volume typically is very low. Along with
that, congestion occurs very rarely. Therefore, it can be expected that there is free-flow dur-
ing nights if the traffic content provider states free-flow. Admittedly, historical relative speed
averages should be able to represent the in most cases stable traffic situations during nights,
too. However, it could be imagined that congestion is in general less probable during nights
than during off-peak periods (which also exist during the day), where historical data may show
very high relative speed averages, too®!. This could be an advantage of E in comparison to
E5. Another important aspect is that roads exist, on which congestion occurs regularly during
nights. This can be the case, for instance, if shift operations are typical for the local industry.

As a consequence, predictor /4 may not work well for all road segments.

Function C f'5 forms the basis for the last of the suggested predictors:
e == es(tig, SETTT T = C f'E (ST (6.31)

Whenever RTTI is broadcasted for a road segment, customers of traffic content providers usu-
ally receive a confidence value for this road segment, too. Confidence values are intended to
represent, as already mentioned, the amount of recently collected data which are used to gener-
ate the broadcasted RTTI. Intuitively, it could be expected that high confidence values go hand
in hand with better RTTI.

Derivation of Probabilistic Bounds Up to this point, it has been described how the train-
ing set {y™, e, ..., 68}m:1,2,..., M is generated. Based on the training set, a regression equa-
tion is formed. The relation between the dependent variable Y and the explanatory variables

Eq, ..., Eq is expressed by a function R : R? — R and a noise term € : RY — R, which

®1For clarification: Measuring average driving speeds during nights is sensitive to outliers due to the low traffic
flow. Data delivered by trucks, for instance, may decrease historical relative speed averages significantly - even if
always free-flow conditions prevail. This has influence on the explanatory power of E>.
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accounts for random scatter and the influence of unobserved explanatory variables:

Y = R(e1,...,eq) +€(e1, ..., eqQ). (6.32)
If RTTI perfectly mirrored real driving speeds, then it would hold that

R(e1,....,eq) = €(e1, ...,eq) = 0. (6.33)

An important difference to linear regression models, which is probably one of the most com-
mon approaches to derive relations between a dependent variable and a set of explanatory
variables, is that no homoscedasticity is expected (see page 90 in (8)), i.e., the variance of the
residuals € is not expected to be constant. This is expressed by writing €(e1, ..., eq) instead
of € in equation 6.32. Actually, since it is intended to derive probabilistic bounds for Y de-
pending on the realizations of F1, ..., E5, heteroscedasticity is implicitly conjectured. If Y was
homoscedastic, the bounds could be chosen independently of these realizations of E1, ..., Eg,

which would mean that the reliability of the considered RTTI depended not on F1, ..., Eq.

Another difference to typical regression approaches is that the goal is to estimate probabilistic
bounds for Y. Correspondingly, it is not the goal to find a good regression function R, but to

identify a quantile function R,,, which fulfills for o €]0, 1] the following property:
Ry(e1,....eq) =inf{y" eR|PY >y")<1-a} (6.34)

Function R,, returns for a given vector of observations (e, ..., eqQ) the a-quantile of random
variable Y. Based on the definition of R,, speed bounds thgw’a and V?;p ® which fulfill the
probabilistic boundary properties stated in inequalities 6.20 and 6.21, can be constructed as

described below (see the definition of 4™ in equation 6.26):

Wg’w’a(x, t) = (1+ Ri-ale1, . eqQ)) - V}%“Tl(xvt) 6.35)
Vi (x,t) := (14 Raler, ... eq)) - VJ?%TI(%t) (6.36)

It is worth mentioning that the probability that Vgt is located between %lgw’a and V;" is

only equal to 1 — 2 - o, since both boundaries are violated with a probability of «.

-----

the realizations {e’", ..., 68}m21,27,,.7 M are separated into categories. Then, for each of these
categories, the a-quantile over all corresponding realizations ™ is computed.

In a first step, the lowest and the biggest of all occurring realizations for each explanatory
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variable E; are calculated:

E;”m = min {ezn |m €{1,2, ,M}} Vg €{1,..,Q} (6.37)
B = mazx {e;" +d|m € {1,2,...,M}} Vg €{1,...,Q}. (6.38)

A small positive value § € R~ is used to ensure that all realizations of explanatory variable

E, lie within the interval [E]"", E7"**[. In a second step, each interval [E["", E/**[ is sep-
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Figure 6.9: Illustration of notation which is relevant for the categorization of the training dataset
according to realizations of the explanatory variables.

arated into a set of B, € N categories [b},b;"![ with i € {1,2,..., B;}. The borders b}, of
these categories have to be chosen in such a way that they fulfill the subsequently described
conditions:
; B Bg+1
Bl =bh < b2 < .. <bg" <bg' = BT (6.39)
These categories can be used to partition the set of indices {1, 2, ..., M } into sets M (i1, ...,i¢)
(with iy € {1, ..., B1}, i2 € {1, ..., Ba}, and so on) with:

M (i1, ooyiq) = {m* € {1,2,... M} | ™ € b, b¢ [ Vg €{1,..,Q}}  (6.40)

The result are B; - By - ... - Bg different index sets M (i1, ...,ig) C {1,2,...,M}. Most of
the introduced variables are exemparily illustrated for the case of two explanatory variables in

Figure 6.9. The black points represent an artificially generated set {e]”, €5"},,,. In a third step,
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for each of these index sets, the a-quantile over all corresponding realizations 3™ is computed:
ra(i1, ..., iQ) = a-quantile of {y™ | m € M (i1,...,iQ)} (6.41)

Finally, these quantiles 7., are applied in order to define the value which function R, assigns

to a vector (eg, ez, ..., eQ):

R (e1,€2,....,eqQ) := 1q(i1, ..., ig), Where indices i1, ..., i are defined as follows: (6.42)
ig:=1{i €1,2,...,B, | e, € bL, 0} Vg €{1,2,..,Q} (6.43)

q’7q

For the case of one explanatory variable, an idea of the shape of such quantile functions is pro-

o
° [ ] ° ....o
Toe e '::.-.o":_._lR095

1 1
1 1

| Pe o o | |

1 % . 18 o o0 o 1 1 o

[T T J|°-.' "t I 1,

1 o0 %l _o o | 1 .

¢ eee, e I 1° e

P | | .

o 1 I —

| | | | 1710.05

| | o | | . |

| o | | | | Eq
bl=Ep" b bl bt bI=Ep™

Figure 6.10: Illustration of the shape of quantile functions for .

vided by Figure 6.10. There, the black points represent an artificially generated set {y™, €7 },,,
i.e., only one explanatory variable is considered. Note that functions R, are constant within
each of the defined categories. Furthermore, it can be seen that whenever the scatter of the
points within one cell is small, the difference between the two displayed quantile functions is
small, too.

In the following, in order to reduce the computational effort for constructing functions R,
typically not all explanatory variables F1, ..., Eg are taken into account simultaneously. To ac-
count for this, it is, for instance, written R, (e1, e3) instead of R, (eq, ..., eq) if solely the first
(prediction horizon) and the third (current relative speed estimations) explanatory variables are

considered.

The suggested construction of R,, is intended to fulfill the idea of equation 6.34, i.e., that R,
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is intended to return for any realization (eq, ..., eQ) the a-quantile of random variable Y. Cer-

tainly, this is a purely statistical and not an analytical approach. If the amount of available data

tp,a

is high and if a relation as described by equation 6.32 exists, then it can be expected that V>

and VJE *® fulfill the probabilistic boundary properties of inequalities 6.20 and 6.21 rather well.
Note that also other, more sophisticated approaches for generating functions R, could be ap-
plied, such as machine learning techniques. Typical regression approaches, on the other hand,
are less suited. It will turn out that the relation between Y and the proposed explanatory
variables E1, ..., E’5 is neither linear, nor monotone. This, alongside the aforementioned het-

eroscedasticity of Y, makes them hardly applicable.

6.3.3 Individuality and Macroscopic Traffic Information

Function Vé?T ; provides information on a macroscopic scale. As a consequence, trajectory
T(e,ts, VéﬁiT ;) has to be understood as a ,,macroscopic driving trajectory”. According to the
author’s experience, such trajectories do typically not have the same properties as microscopi-
cally recorded®? trajectories. Due to data aggregation during the generation of V}%}T 7 or due to
a limited spatial resolution of }if}T 7> macroscopic trajectories tend to show less oscillation of
speeds than microscopic trajectories do. Figure 6.11 illustrates this statement exemplarily for
a recorded test drive on the German freeway A9, between the interchange Munich north and
the exit ramp Pfaffenhofen. The recording started at 17:37 on November 6th, 2014. Location
can be found on the x-axis and speed on the y-axis. The blue line describes microscopically
recorded driving speeds®. The gray line describes speeds which result when deriving a corre-
sponding macroscopic driving trajectory from RTTI®* which has been broadcasted by a private
traffic content provider for the corresponding time period and road corridor. The starting time
and starting location of the microscopically recorded test drive is also used for the generation
of the macroscopic trajectory on the basis of differential equation 6.1. The broadcasted RTTI is
updated at one-minute resolution. The vertical red lines indicate the spatial resolution accord-
ing to which the traffic content provider broadcasts speed information. Here, the TMC location
code list defines the spatial resolution. The most important observation is that the blue line,
even though the course of both lines is quite similar along the considered road corridor, shows
much more fluctuations than the gray line. These fluctuations cannot solely be explained by
noise caused by the recording process. Instead, it can be concluded that the microscopically
recorded data provide more details. The critical aspect is that microscopic energy consumption
models are intended to estimate energy consumption for single drives and usually need precise
information about instantaneous accelerations (86) (/48). The microscopically recorded speed

profile indicates that accelerations which are derived from macroscopic trajectories cannot be

62 Microscopically recorded means in this context that a mobile device, which is put into the vehicle, is used
for recording the vehicle’s driving trajectories (for instance via GPS).

% For the described example, speeds were measured via the GPS signal of a cell phone

The displayed macroscopic driving trajectory results from traffic state estimations of a traffic content provider,
which the author recorded, i.e., Vrr77 is considered here.
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Figure 6.11: Tracked vehicle trajectory compared to RTTI-based macroscopic driving trajec-
tory.

expected to be realistic. Thus, applying traditional microscopic energy consumption models to
such macroscopically generated trajectories probably leads to unrealistic energy consumption
values. These considerations suggest that ¢ should not be based on a traditional microscopic

energy consumption model. More about this topic will be provided later on in section 7.1.5.

Figure 6.11 shows another potential problem, which can be caused when considering solely
macroscopic traffic information in the context of CSO: During the first seven kilometers, an
average difference of about 25 kilometers per hour can be observed when comparing the gray
line to the blue one. Intuitively, it could be assumed that the broadcasted driving speeds did
not mirror the real traffic situation correctly, but this was not the case. The driver simply drove
slower than most of the other drivers. The possibilities of macroscopic traffic information to
represent such a level of individuality are limited. Typically, macroscopic traffic information
is intended to represent an ,,average driver”. In the context of CSO, this leads especially in
free-flow conditions to some issues. If traffic volume is low, it is up to the driver to decide how
fast she/he drives. CSO is primarily intended for long distance trips. For such trips, typically
freeways are used. Particularly on German freeways, where no general speed limit exists, driv-
ing speeds vary drastically under free-flow conditions. The energy consumption of BEVs, on
the other hand, rises quickly if high driving speeds are increased further (this will be confirmed

later on in section 7.1.5). The reason for this is that at high speeds, most energy consumption
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results from overcoming air resistance, which grows quadratically with speed. Consequently,
the energy consumption which is necessary to pass a certain road corridor significantly depends
on the driver’s preferred driving speed. If her/his preferences are unknown, then it is hardly
possible to provide an adequate charging strategy. Due to this, it is from here on presumed
that the driver’s preferred driving speed v, € R is known whenever a charging strategy is
requested. Besides, it is assumed that the vehicle never reaches speeds above v, — even if
the macroscopic traffic state allowed this. Moreover, it is assumed that the driver is able to
drive with her/his preferred driving speed whenever free-flow traffic conditions prevail. For
any location x and any time ¢, the corresponding macroscopic traffic situations are interpreted
as free-flow traffic condition if the real macroscopic driving speeds VReal(m, t) are at least as

high as the corresponding free-flow speeds V¢ (), i.e., if the following condition holds:
Vieat(z,t) > V(). (6.44)

Note that similar assumptions concerning the definition of free-flow traffic conditions and the
behavior of drivers in free-flow traffic conditions are suggested by Kerner (compare page 13
in (79)). Given the real macroscopic driving speeds Vz.q;, the presumed free-flow speeds Vi,
and a preferred driving speed v,, these considerations lead to a trajectory 7'(e, tg, VReals vp) as

stated below:

_ v if Vieat(2,t) > min{v,, Vi¢(x
Vi@, t) =14 " ol 0) 2 minlep Vs sy
Vieat(z,t)  else
T(e,ts,VReal,Up) = T(e,ts, Vggal) (6.46)

Other spatio-temporal speed functions, such as V}%}TI, can be modified analogously. It is
worth mentioning that the proposed method for considering individuality of drivers within
CSO is rather intuitive, but also a clear simplification of reality. Drivers cannot be expected
to strictly drive with the same speed in free-flow traffic conditions. Moreover, the driver’s
preferred driving speed probably varies during a trip. Also the assumption of time independent
free-flow speeds seems to be unrealistic, since reduced speed limits during nights with the
purpose of limiting noise emissions represent a counterexample. Note that uncertainty due
to individual driving style is still not considered — even though the proposed approach for
modeling driving behavior under free-flow traffic conditions is able to represent individuality
up to some degree. Hence, imperfect traffic information or RTTI, respectively, remains the

only source of uncertainty.

6.4 Summary

Chapter 6 can be divided into three parts according to the three tasks mentioned at the start of

it: In the first part, in section 6.1, the formulation of the problem of finding optimal charging
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strategies as a deterministic SPP was concretized. It was assumed that RTTI is available for the
computation of charging strategies and that RTTI is applied to derive driving trajectories, which
are again used to compute travel times and energy consumption values necessary for passing
road segments. The most important aspects that were mentioned in this context are that RTTI
was assumed to be error-prone, i.e., RTTI does not mirror the real traffic situation perfectly,
and that RTTI represents the only source of uncertainty. This means that all other data which
are relevant for CSO are expected to represent the real situation correctly. The proposed con-
cretizations are essential for the simulation study in chapter 7 for two reasons: First, they allow
bringing uncertainty into the simulation. Second, they form the basis for a realistic modeling
of edge costs. In the second part, in section 6.2, a framework for assessing the quality of RTTI
was developed. It was shown how RTTI can be brought into a numerically treatable form and
reasons for the imperfection of RTTI in practice were discussed. Next, an approach to gen-
erate adequate representations of real traffic situations was described. These representations
were intended to be applied as the references to which the available RTTI is compared. It was
proposed to interpret the quality of the considered RTTI as the level of similarity between the
RTTTI and the corresponding traffic state reconstruction. The described framework for measur-
ing the quality of RTTI is important to analyze the impact of imperfect input data on charging
strategy quality. This is done in chapter 7. Finally, in section 6.3, the yet abstract concept
of trajectory buffers was concretized by describing a method for generating sets of reasonable
driving trajectories. A requirement for this method is the availability of two spatio-temporal
speed functions. The first of these speed functions represents lower bounds for average driving
speeds, the second one represents upper bounds. These boundary speeds are applied to esti-
mate boundary trajectories, which are able to describe a region on the spatio-temporal plane,
in which any reasonable driving trajectory is assumed to reside. It was suggested to generate a
set of reasonable driving trajectories by covering this region equally with trajectories. Besides
the method for generating sets of reasonable driving trajectories, also an approach to derive
lower and upper speed bounds on the basis of (commercial) RTTI was proposed. Section 6.3
ended with a discussion about the consequences of deriving driving trajectories from macro-
scopic traffic state estimations. The main issues addressed in this discussion were the probably
unnatural smoothness of such driving trajectories and the challenge to adequately model the

behavior of drivers under free-flow traffic conditions.



Chapter 7

Simulation

In chapter 7, a simulation study is described and the results of the simulation runs are ana-
lyzed. The aspects which were described in chapter 6 form the fundament for this study, in
which trips of BEVs under various conditions are simulated. The charging strategies that are
provided to the BEVs are based on different types of artificially generated error-prone RTTI.
The central motivation for the simulation study is, as already mentioned, to test the concept of
energy buffers under the existence of uncertainties and to evaluate whether the resulting charg-
ing strategies show a quality that can be said to be practicable.

Chapter 7 is structured as follows: First, in section 7.1, the simulation environment itself is
described. This description contains information about the simulated test site, the scheme for
constructing different types of artificial RTTI is explained, the considered energy consump-
tion model is introduced, and also information about the optimization framework, i.e., about
the parameters concerning the problem formulation and the applied optimization algorithm, is
provided. The main part of chapter 7, i.e., the analysis of the simulation results, is stated in
sections 7.2 and 7.3. In section 7.2, the influence of the quality of different types of RTTI on
the quality of the resulting charging strategies is analyzed in detail. The focus is set on relative
energy buffers. The motivation for this analysis is to achieve a comprehensive understanding
of the effects of applying error-prone RTTI for charging strategy computation. Furthermore,
the analysis allows gaining an impression of the charging strategy qualities that can already
be achieved by using a comparably simple type of energy buffer function. In section 7.3, two
versions of trajectory buffers are considered in addition to relative buffers. The first of these
trajectory buffer functions is based on the ideas of chapter 6, the second one represents a sim-
pler alternative. The comparison of the results that can be achieved by either of the three energy
buffer functions provides an idea of the charging strategy quality that can be achieved on the
basis of the proposed optimization framework. This is finally used in section 7.4 to assess
whether or not the developed framework is able to handle uncertainties in such a way that

practicable charging strategy qualities can be ensured.

138
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7.1 Simulation Environment

The simulation environment is implemented in Matlab. It allows simulating BEVs along a 362
kilometers long road corridor while facing traffic situations described by an artificial ground
truth Vgr. These BEVs are guided during their trips by charging strategies. ,,During® the
trip means that the recommended strategies are regularly updated, i.e., the charging strategies
are provided as an on-trip information. Moreover, the computation of the charging strategies is
based on different types of artificially generated RTTI. Each of them shows, up to some degree,
similarities to the ground truth, but typically does not mirror Vg perfectly. Due to this, the
simulated BEVs face traffic situations which differ from the traffic predictions on which the
charging strategies are based. Different types of energy buffer functions can be applied to
compensate for the resulting uncertainties.

The simulation study itself is structured as follows: It is differentiated between two types of
parameters: Setting parameters and scenario parameters. Setting parameters describe the

quantities which are actually of importance. For the described research, these parameters are
1. the method according to which the simulated RTTI is generated,
2. the function that is applied for quantifying the size of the energy buffer,
3. and the corresponding reliability parameter®.

The scenario parameters, on the other hand, are intended to vary the conditions under which
the setting parameters are tested. The motivation for this is to derive robust and generally valid
conclusions. This means that one specific setting, i.e., one specific combination of values for
the setting parameters, is tested for many different combinations of scenario parameters. For

the described research, the setting parameters are
1. the starting time of the virtual trip,
2. the BEV’s state of charge at the beginning of the trip,
3. parameters describing the charging infrastructure that is available along the route,
4. parameters describing the properties of the considered virtual BEV,
5. and the presumed outdoor temperature.
Detailed explanations concerning either type of parameter will be given later on.
Section 7.1 is structured as follows: First, in section 7.1.1, the general structure of the simu-

lation study is described in detail. In section 7.1.2, an overview of the available traffic data is

provided. These data form the basis for the construction of the simulated reality Vg7, which

%5See Table 5.1 for an overview of the reliability parameters belonging to the different energy buffer functions.
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is described in section 7.1.3, and for the generation of different types of artificial RTTI. These
types of RTTTI are introduced, alongside all other setting parameters, in section 7.1.4. The set
of scenario parameters is described in section 7.1.5. In section 7.1.6, some remarks concerning
further parameters that are relevant for the simulation study are given. Section 7.1 ends, in sec-
tion 7.1.7, with a discussion about the different types of failures that can occur when providing

charging strategies as an on-trip information.

7.1.1 Test Site and Structure of the Simulation

A schematic picture of the test site is displayed in the left side of Figure 7.1. Several charg-
ing stations can be found along a road corridor that starts at a charging station (denoted with
charging station 1) and ends at a destination. No alternative routes are possible and the only
available road corridor is from here on denoted as the ,,main road. The location of charging
stations and their number varies among the scenarios, but there is always a charging station at
the start. The black arrows in Figure 7.1 mark decision stages and ,target™ stages along the
main road. The notion of target stages is relevant for describing the simulation environment in
the following. More details will be given later on. Decision stages are locations at which the
BEV’s driver has to make decisions®®. Correspondingly, new charging strategies are computed
whenever the simulated BEV passes one of the decision stages. The decision stages can be
found at the start, at the destination, and shortly before off-ramps allow leaving the main road
in order to get to a charging station.

The flowchart on the right side of Figure 7.1 illustrates the structure of the simulation. A
setting is defined by specifying the aforementioned setting parameters (type of energy buffer
function, reliability parameter, type of RTTI). For each tested setting, it is iterated over a set
of 1440 different scenarios. The proceeding in each simulation run is as follows: First, a sce-
nario is selected. Then, an initial charging strategy computation is carried out, which takes
scenario and setting parameters into account. The ground truth V7 is typically assumed to be
unknown. If this computation does not lead to a charging strategy, i.e., if no reliable charging
strategy for the whole road corridor can be computed based on the given setting and scenario
parameters, then the next scenario is considered. Otherwise, it is assumed that the BEV fol-
lows the recommended charging strategy. If charging is suggested at charging station 1, then
the BEV’s state of charge is increased correspondingly. Moreover, the time at which the BEV
leaves charging station 1 is also adjusted. Next, a virtual driving trajectory leading to the first
target stage is computed on the basis of V7. An energy consumption model, which is specified
by the scenario parameters, is applied to this trajectory. Travel time and energy consumption
are computed. If the simulated energy consumption which is based on Vg exceeds at any time
the energy which is available, then the BEV runs out of energy within the simulation. This is

the worst-case scenario. Otherwise, the BEV successfully reaches the first target stage and

% According to chapter 3, decision stages are points in time and not locations. This was stated due to notational
reasons. Here, instead the more intuitive idea of interpreting decision stages as locations is considered.
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Figure 7.1: Structure of simulation.

a new charging strategy based on the BEV’s current position, its current state of charge, the
current time, and updated RTTI is computed. From here on, the proceeding remains the same.
If a reliable strategy is found, the BEV’s further trip is simulated on the basis of Vg7 until it
either reaches the destination, runs out of energy along the route or a reliable charging strategy
can no longer be provided. Afterwards, the next scenario is considered until all 1440 scenarios

have been simulated.

Note that the number of scenarios which are tested for each setting is rather high. This is im-
portant for two reasons: First, it ensures (up to some degree) robustness of the findings, i.e.,
the corresponding results are probably valid for a broad variety of situations a BEV might face.

Second, it is extremely important for tools that provide charging strategies to achieve a high
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level of reliability. Ensuring an arrival probability of 95 percent, which is a number that is of-
ten used in the context of robust travel time predictions, is not enough in this context. It would
mean that the BEV does not reach its destination in one of 20 cases. To be able to analyze and
compare the aforementioned settings at reliability levels close to 100 percent, a high number
of tested scenarios is inevitable.

Testing many scenarios, on the other hand, makes it necessary to keep computation times rea-
sonably low. For this purpose, algorithm B is used within the simulation. A detailed compari-
son between algorithms A and B with regard to computational effort and solution quality can
be found in (69). The results show that algorithm B in almost all cases finds an optimal solution
and, at the same time, can be computed much faster than algorithm A. Furthermore, allowing
no route choices leads to a small graph é% and consequently further reduces the computational
effort.

7.1.2 Available Traffic Data

Traffic related data from four different corridors on German freeways are relevant for the sim-
ulation runs: The first of these corridors is a stretch on the autobahn A9 at its southern end,
near Munich, southbound (i.e., leading to Munich). To be more precise, a 26 kilometers long
corridor between exit ramp Allershausen and interchange Munich north. The second road cor-
ridor is a part of the A9 between the interchange Munich north and exit ramp Geisenhausen,
northbound (i.e., leading to Niirnberg). The third on is a part of the autobahn A99 leading to
Salzburg, between exit ramp Ludwigsburg and exit ramp Hohenbrunn. Finally, the last of the
relevant road corridors is a stretch of the A99 leading to Stuttgart, between exit ramp Ottobrunn
and the freeway junction Munich — Feldmoching. Further information about these sites is given
in Table 7.1, such as their lengths or the number of lanes. Note that the number of lanes varies
for all of these freeways and thus the maximal and minimal number of lanes are stated in Table
7.1.

Table 7.1: Information on test sites.

corridor length of number | number number of number of
corridor [km] | of lanes | detectors | TMC segments | datasets

A9 Niirnberg 39 34 27 12 31 (27 +4)

A9 Munich 26 34 22 10 24 (18 + 6)

A99 Salzburg 33 2-5 26 13 26 (22 +4)

A99 Stuttgart 35 2-5 29 14 27 (19 + 8)

Three types of traffic related data are available for each of these freeway corridors for a two
and a half months period between April 11th and June 30th, 2015: Inductive loop detector
data supplied by the South Bavarian Autobahn Authority, recorded commercial RTTI, and
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historical average driving speeds. The recorded RTTI was broadcasted by a well-known private
traffic content provider. The historical average driving speeds were generated by the same
provider and are primarily used for long-term traffic predictions. The detector data form the
basis for computing traffic state reconstructions. A more detailed description of the data can be
found below. Before that, however, it is important to mention that some of the data that were
gathered during the aforementioned period will not be considered. On some days, significant
loop detector failures occurred. On others, either the RTTI recording procedure partly failed
or RTTI was not provided continuously due to, for example, maintenance works on the data
provider’s servers. Only those days for which RTTI and detector data are comprehensively
available (i.e., throughout the whole day) are taken into account within the following analyzes.
The total number of analyzed days for each road corridor can be found in the last column of
Table 7.1 outside the brackets. The meaning of the numbers in brackets will be explained later

on.

Inductive Loop Detector Data The inductive loop detector data are given at one-minute res-
olution. They contain several types of traffic information, but for the following investigations,
only recorded driving speeds are used. The available data are aggregated over all lanes and
thus show no lane specific information. The number of detectors for each considered freeway
corridor can be found in Table 7.1. The distances between two consecutive detectors range
between a few hundred meters and more than three kilometers. Traffic state reconstructions are

carried out based on these data as it has been described in section 6.2.

Historical Average Driving Speeds The available historical speed data were delivered by
a professional traffic content provider. Unfortunately, no details concerning their generation
process are available. These data represent historical average driving speeds in dependency of
time (time of day and day of week) and location. A spatio-temporal speed function Vi, is
derived from these data. Function Vi;5; shows a temporal resolution of one minute and uses

the TMC location code list for spatial referencing.

Recorded Real-time Traffic Information The considered RTTI was broadcasted with an
update rate of one minute (i.e., At*I71 = 1 minute) by the same traffic content provider from
whom also the historical speed averages were received. The RTTI refers spatially to the TMC
location code list®’. Hence, the spatial resolution is not very high. The numbers of TMC seg-
ments that (partly or completely) cover the four considered road corridors can be found in Table

7.1. Some of these segments span lengths of almost six kilometers. For each TMC segment

71t is worth mentioning that the originally provided historical speed data did not refer to the TMC location
code list. These original data were aggregated according to the methodology that was described in section 6.2.5
to transform function Vg7 to function Vrgr. This was done to avoid that, besides the spatio-temporal grids that
are induced by Vg7 and by the recorded commercial RTTI, a third grid has to be considered during the simulation
runs.
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Figure 7.2: Visualization of technical ground truth, recorded RTTI and the resulting relative
errors on the freeway corridor A99, leading to Stuttgart, for April, 28th 2015.

and each minute, four different speed values were broadcasted: The first one is the estimated
current driving speed v Est(SlRTTI ,tp). Variable ¢ g denotes the time at which the information
is broadcasted. For simplicity, it is still assumed that ¢p is equal to the time ¢y, at which the
optimization is computed. The other three speed values, here denoted with vShO(SZ-RTTI ,tB),
Vmid(SFTTT t5) and vy, (SFIT! t5), are intended to predict the future evolution of driving
speeds for different prediction horizons. More information concerning the procedure for traffic
state prediction on the basis of the recorded RTTI will be given later on.

The recorded RTTI shows some special properties: The traffic content provider defines for each
TMC segment SiRTTI , a free-flow driving speed V f(SiRTTI ). This free-flow speed is constant



7.1. SIMULATION ENVIRONMENT 145

over time. The broadcasted speed values are never higher than V¢, independently of the raw
traffic data the content provider receives. Furthermore, a speed reduction is solely broadcasted
if at most 80 percent of the corresponding free-flow speeds are obtained. Thus, minor speed
reductions are not represented by the RTTI. These properties can be seen in Figure 7.2. There,
for April 10th, 2015, four contour plots for the aforementioned freeway corridor on the freeway
A99, leading to Stuttgart, are displayed: Figure 7.2(a) shows Vg7 based on inductive loop de-
tector data, Figure 7.2(b) refers to vgg (Which is in fact function Vzrry, i.e., the function that
shows solely traffic state estimations), Figure 7.2(c) to Vg7, and the last contour plot illus-
trates absolute percentage errors that result when comparing vgs: to Vrgr. Figures 7.2(b) to
7.2(d) show the expected low spatial resolution. Furthermore, when looking at vgg in Figure
7.2(b), broadcasted speeds remain the same over large parts of the day. This is a consequence
of ignoring minor speed reductions.

Besides speed values, the already mentioned confidence values C f'5 ( are also avail-

SRTTI)
(2

able. They are intended to rate the trustworthiness of the provided RTTI. The idea is that the
more data are collected, the more reliable the corresponding traffic state estimation is. The

confidence values range between 50 and 99, where 50 indicates a low confidence rating.

7.1.3 Construction of an Artificial Ground Truth

CSO is primarily intended for BEVs on long-distance trips. Hence, it seems expedient to con-
sider a long road corridor within the simulation. ,,Long* means here that a BEV needs to charge
at least once to be able to pass the whole corridor. In order to simulate virtual BEVs and the
influence traffic has on their trips, a ground truth Vg representing the real traffic situation has
to be provided for the considered road corridor. One of the best possibilities to ensure that
Ve shows realistic properties is to apply a traffic state reconstruction method to stationary
detector data which are gathered on a real road corridor. Considering the traffic data which
are available for the simulation (compare section 7.1.2), the corresponding road corridors are
by far not long enough to reasonably test CSO. As a consequence, an artificial spatio-temporal
speed function Vg7 is constructed on the basis of the available inductive loop detector data.
These data are separated into two parts. One dataset is intended later on for generating speed
bounds as described in section 6.3.2, and the other one for testing, i.e., for the construction of
Ver. The test set consists of four days of data for the previously described road corridor on
the autobahn A9 leading to Niirnberg, six days of data for the A9 leading to Munich, four days
of data for the A99 leading to Salzburg, and eight days of data for the A99 leading to Stuttgart
(see also the second of the two numbers in brackets in the last column of Table 7.1). These
days are selected randomly from the set of all days for which traffic data are comprehensively
available. Traffic state reconstructions are carried out by applying the ASM on each of these 22
datasets separately. As a result, one receives 22 spatio-temporal speed functions, each of them

describing the traffic situation for one day and one of the four road corridors for which traffic
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Location
A
Salzburg 13.06.2015 27.06.2015 13.06.2015
Munich 20.05.2015 22.05.2015 20.05.2015
Stuttgart 23.05.2015 25.06.2015 23.05.2015
Stuttgart 30.04.2015 16.05.2015 30.04.2015
Niirnberg 23.05.2015 26.06.2015 23.05.2015
Stuttgart 25.04.2015 29.04.2015 25.04.2015
Munich 17.04.2015 17.05.2015 17.04.2015
Stuttgart 13.04.2015 15.04.2015 13.04.2015
Munich 13.04.2015 15.04.2015 13.04.2015
Niirnberg 15.04.2015 13.05.2015 15.04.2015
Salzburg 29.04.2015 12.05.2015 29.04.2015
\ L J\ J
Y Y Y
Day 1 Day 2 Day3=Day1
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(b) Function Vg which is used in simulation.

Figure 7.3: Construction of the ground truth which is used for the simulation runs.

data are available. These 22 speed functions are arranged as shown in Figure 7.3(a). There,
the positions of these 22 datasets on the spatio-temporal plane can be seen. This arrangement



7.1. SIMULATION ENVIRONMENT 147

leads to an artificial ground truth Vg7 for a three day period for a 362 kilometers long road

corridor (see Figure 7.3(b)). The ground truth construction is carried out with At¢T

equal
to one minute and hence, as the RTTI is assumed to be updated every minute, it holds that
AtFTTI — AtGT = 1 minute. Note that the first day is copied and used additionally as the
third day. Generating a third is necessary, since the starting times of the simulated BEVs are
distributed between the start of the first and the end of the second day®®. Without the extension
from two to three days, simulated BEVs that start their trip at the end of the second day would
leave the spatio-temporal area for which macroscopic speed averages are available. The 362
kilometers long road corridor is denoted with X, the two days time period with T5; C R>,
and the three day time period with 7' C R>(. Note that the available RTTI and historical aver-

age driving speeds are also arranged as shown in Figure 7.3(a).

The suggested arrangement of traffic state reconstructions has one significant drawback: Even
though each of the applied spatio-temporal speed functions represents realistic traffic situations,
the resulting arrangement of all speed functions cannot achieve that. Discontinuities occur at
the spatial borders between these functions®. Such phenomena cannot be observed in reality.
Consequently, computed driving trajectories show unrealistic speed drops and increases, since
any simulated trajectory is in fact only a concatenation of realistic trajectories. This would be
critical if the applied primary energy consumption models depended on accelerations which
are derived from these trajectories. However, the consumption models, which will be proposed
later on, solely depends on driving speeds. This allows interpreting the energy consumption
which results from passing a section of the simulated road corridor that contains such a dis-
continuity as the sum of the energy consumption which results for passing the first part of this
section, i.e., until the first discontinuity is reached, and the energy consumption that results for

passing the remaining part of the section.

7.1.4 Setting Parameters
Recall that three types of setting parameters exist: The available RTTI, the applied energy

buffer function, and the corresponding reliability parameter.

Types of imperfect traffic information For the computation of charging strategies, function
Ve, which is assumed to represent the real traffic situation within the simulation, is not known.
Solely RTTI, which is assumed to approximate Vg7 up to some degree, is available. Travel time

and energy consumption predictions are based on driving trajectories that are derived from the

Unfortunately, it was not possible to include further data into the testing dataset, since tests showed that the
method for computing speed bounds, which was proposed in section 6.3.2, needs a lot of data in order to achieve
reasonably good results.

®“There are also discontinuities at the temporal borders. However, these discontinuities are very weak, since
free-flow traffic conditions typically can be found on both sides of these borders, where speed values describing
traffic situations at 00:00 am and at 12:00 pm meet.
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available RTTI. The level of uncertainty that is caused by considering error-prone RTTI when
computing optimal charging strategies depends on the similarity between V7 and RTTL, i.e.,
it depends on the quality of the RTTI. In order to obtain a comprehensive understanding of the
relation between RTTI quality and charging strategy quality, six different types of RTTI are

considered during the simulation runs:
1. The real traffic situation (assumption of perfect information)
2. Free-flow driving speeds (assumption of no information)
3. Historical average driving speeds
4. Instantaneous travel times

5. Information based on recorded commercial RTTI which was broadcasted by a profes-

sional traffic content provider
6. An artificially generated spatio-temporal speed function which shows phantom jams

The first type of RTTI results when computing charging strategies on the basis of function Vgr.
This means that perfect knowledge about current traffic states and the future development of
traffic is presumed. Since incorrect RTTI represents the only source of uncertainty within
the simulation, no energy buffer is necessary in this situation. The resulting charging strategies
ensure minimal travel times — except for cases where algorithm B returns a suboptimal solution.
Thus, the setting, where Vi is available for CSO and where the size of energy buffers is
constantly set equal to zero, is from here on considered as reference setting. All other types
of RTTI are compared to this setting. In order to be able to differentiate formally between
the function describing the ground truth and the function representing perfect RTTI, a function

VI?ST f is introduced to denote the latter:
Vil s (@, 1) = Vor(z,t) (7.1)

Note that tp is the time at which the charging strategy is computed and it is the time at which

the RTTI, which is used for the charging strategy computation, is requested.

The second type of RTTI results by presuming free-flow speeds for all locations and times. This
can be understood as a situation in which no information about the real traffic situation is avail-
able. Thus, it forms the counterpart to settings in which Vﬁgr f is available. The spatio-temporal

speed function which represents this type of RTTI is defined as subsequently described:

ViE (2, t) = Vi (ST va e ST (7.2)
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Recall that, based on the considerations of section 6.3.3, a driver is assumed to be able to drive

constantly with her/his preferred driving speed v, in free-flow. Hence, it can also be written:

V;]? (x,t) ==y (7.3)

The third idea is to generate RTTI solely on the basis of historical speed averages:
Vfﬁst(:ﬁ, t) := Vigist (SETTL ) Vo € SETTT (7.4)

Note that Vg, and V;}B do not contain any recent traffic information, i.e., in fact, they are
no ,real-time* traffic information. Though, both functions will allow analyzing the benefits of

RTTTI in comparison to such types of information.

Instantaneous traffic predictions represent the fourth method for generating RTTI which is
considered in the following. The fundamental idea is to assume that the current traffic situation

is known and that it won’t change in the future:
Vi (2,t) == Var(z,tg) fort>tp. (7.5)

This approach is often applied in literature in order to artificially generate RTTI which behaves
realistically (43) (58) (97). Note that also many navigation applications base their route com-

putations on instantaneous travel times.

In (53), it is stated that former studies, which intended to analyze the influence that imperfect
RTTTI has on traffic related services, typically had to simulate the RTTIL, i.e., to generate it
artificially. This is in most cases, as already mentioned, done by using instantaneous travel
times (43) (58) (97) or by adding random noise to the (reconstructed or simulated) real traffic
situation (94) (/62). Furthermore, it is emphasized in (55) that artificially generated RTTI
lacks up to some degree realism. Some of the properties of real RTTI, such as a limited spatial
resolution, are often not represented. Another important aspect that has to be considered in this
context is that traffic content providers start going beyond simply using instantaneous travel

times for traffic prediction purposes’®

. Correspondingly, a significant benefit compared to
former studies is that in the following not only the impact of artificially constructed RTTI is
analyzed, but also real commercial RTTI is considered. As mentioned before, the recorded

RTTI contains four types of speed values vgs¢, Vshos Umid and vy, These four values are used

"The recorded RTTI which is described within in this chapter is an example of RTTI including predictions.
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Figure 7.4: Generating a real-time traffic state prediction based on RTTI and historical speed

profiles.

for traffic prediction purposes as stated below:

)
vpsa(SFTT tp)  ifz € SFTT andtp <t < tp + 10min

vShO(SlRTTI, tp) ifze SZ-RTTI and tg + 10min < t < tg + 25min

Véﬁm(x, t) = Q Vpia(SFTTT tp) ifx € SETTT and tp + 25min < ¢ < t + 40min

vlon(SZ-RTTI, tg) ifze SzRTTI and tg + 40min < ¢ < ¢t + 55min

Virist(SETTT 4)  else

(7.6)
Value vgs; is used for short-term prediction for the first ten minutes, vgp, for the period be-
tween minute ten and minute 25, v,,;4 for the period between minute 25 and 40, and v;,,, for
the period between minute 40 and 55. From minute 55 onward, historical traffic data are used
to predict driving speeds. Figure 7.4 illustrates the construction of Vé’gm (,Com* stands for
,commercial®). On the left side, the broadcasted RTTI can be found. As already mentioned,
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four speed values are broadcasted for each road segment and each minute. These speed values
are applied to predict driving speeds for the next 55 minutes. The result is that Véﬁm forms
again a grid on the spatio-temporal plane, but this grid shows a very low temporal resolution.
This changes as soon as prediction horizons of more than 55 minutes are considered. There,

historical average driving speeds are applied as a supplement to the real-time information.

The sixth and last considered type of traffic information is generated as follows:

Vliﬁ (2.1) = min{Vgr(z,t), Vor(z,t + 1 day)} if ¢ is part of first or second day
¢ min{Vgr(z,t), Var(z,t — 1 day)}  if ¢ is part of third day

(7.7)
Recall that, in the simulation, Vg represents a three day period, where the speeds belonging
to first day are copied and also used for the third day. Function Vlgﬁ ., Teturns for any point
(x,t) either the real driving speed Vg7 (z, t), or, if it is lower, the driving speed that is returned
by Va1 on one of the neighbouring days for the corresponding location and time of day. Due
to this, function Vli’za is either equal to the simulated reality or underestimates driving speeds.
The motivation for the construction of Vlifl ., 18 that traffic congestion is reported in situations in
which no congestion can be found in reality and that this traffic congestion shows a reasonable
spatio-temporal extent’!. Function V;_f,ﬁ ., represents in some sense also a counterpart to Vi,
which reports no congestion, even if congestion can be found in reality for the corresponding

time and location.

Three remarks concerning the way the different types of RTTI are included into the simula-
tion have to be made: First, during the simulation, predicted driving trajectories are based on
RTTIL, ,real” driving trajectories are based on the ground truth V7. In either case, the applied
speed function is adjusted with regard to the driver’s presumed preferred driving speed vj,.
This means that all generated trajectories show a speed of v, whenever the considered spatio-
temporal speed function exceeds the free-flow speed defined by Vi or the preferred driving
speed v,. The formal description of this adjustment was provided in equation 6.45. Second,
all considered speed functions refer to grids. The set of cells for which functions Vl?fst, V;}B
and Véﬁm are piecewise constant is denoted by {SZRTT[ X TjRTTI }i5» the set of cells for which

tp

functions Vo, V2, £ VB

7B and V52 are piecewise constant is denoted by {SE7 x TjGT}i,j.

Due to this, the RTTI induced grid and the ground truth grid are the same if functions ]i’;, f,
vis , and V;,?L ., are used as RTTIL. Third, if it is written VI?%T ;- then not a specific type of RTTI

Ins

function is considered. Instead, ViﬁT ; can be interpreted as a placeholder, i.e., V];BEFT ; may

7! Pha“ stands for »phantom“. The idea behind this notation is that V;ﬁa shows ,,phantom traffic jams®, i.e.,
traffic jams that cannot be found in reality.
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represent any of the described RTTI functions:
t t t t t t t
Verrr € { Vioerts Vinsts Veha Virise Vit Vclgm} (7.8)

Energy buffer function and reliability parameter Three different approaches for quantify-
ing the size of the energy buffer are considered. Relative energy buffer function SOC]”" are
used during the analysis of the dependency of the quality of recommended charging strategies
on the quality of the available RTTI. Afterwards, in section 7.3, relative buffers are compared
to two different types of trajectory buffers. The sets of auxiliary trajectories are derived as
described in section 6.3.1 for both trajectory buffer functions. They solely differ with regard
to the method according to which lower and upper speed bounds are generated. More details

about this will be given later on in section 7.3.

7.1.5 Scenario Parameters

Each scenario is described as a 6-tuple consisting of the starting time of the trip tg, the state
of charge at the start SOCjg, the infrastructure setting, vehicle related parameters such as the
consumption model describing the BEV’s energy consumption, the driver’s preferred driving
speed vy, and the outdoor temperature 1'p. The sequence of scenarios which are tested in each
simulation run remains the same — independently of the setting parameters. Starting times are
chosen in steps of two minutes, starting at 00:00 in the morning of the first day and ending at
23:58 at the end of the second day for which Vg7 is constructed. This leads in total to 1440
scenarios. For each starting time, SOCs and T'p are chosen randomly between zero and 100
percent, and —10°C and +35°C, respectively. A uniform distribution is applied in both cases
for the generation of the random numbers. Moreover, four different infrastructure scenarios are
considered. The first infrastructure scenario is assigned to the first scenario (assuming that the
scenarios are ordered according to their starting times), the second infrastructure scenario to the
second scenario and so forth. When reaching the fifth scenario, the first infrastructure scenario
is used again. Afterwards, one proceeds analogously (i.e., second infrastructure scenario is
assigned to the sixth scenario, ...) until all scenarios have received an infrastructure scenario.
The same procedure is applied to assign one of three possible vehicle models and one of five

possible preferred driving speeds to each scenario (see Table 7.2 for illustration).

Infrastructure Scenarios The infrastructure scenarios differ particularly in terms of the
number of charging stations: The first scenario provides seven, the second one nine, the third
one eleven, and the last one thirteen charging stations. Considering the current situation along
most German freeways (compare for instance the freeway A9 between Munich and Leipzig,
which will be considered in chapter 8 for real world test drives), an average distance between
two successive fast-charging stations of 40 kilometers and more can be found. Thus, the first

and second infrastructure scenarios can be understood as examples representing the current
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Table 7.2: Description of scenarios

Scenario BEV

Number ts SOCg Tp Infrastructure Up Model

1 00:00 1 g7 105 | 420c | SOl T gg i | standard
day 1 (7 stations)
00:02 o scenario 2 .

2 day 1 173 % | 22.6°C (9 stations) 100 km/h city
00:04 o scenario 3 .

3 day 1 172 % | 8.7°C (11 stations) 110 km/h | high-range
00:06 o scenario 4

4 day 1 372 % | -4.5°C (13 stations) 120 km/h | standard
23:58 o scneario 4 .

1440 day 2 91.1 % | 22.0°C (13 stations) 130 km/h | high-range

situation. The third and the fourth scenarios can be understood as a vision of a future situation,
for which a higher density of charging infrastructure is probable. In each of the four scenar-
ios, one charging station can be found at the starting location. The other charging stations are
distributed randomly along the main road. To be more precise, one random vector is gener-
ated for each of the four infrastructure scenarios. A uniform distribution between zero and
362 kilometers is applied. The entries of the vector are used to mark the locations of the exit
ramps which lead to the charging stations. To ensure that a reliable charging strategy exists, at
least for most of the considered scenarios, new random vectors are generated until the maximal
distance between two successive charging stations and the distance between the last charging
station and the destination are, at most, equal to 80 kilometers. Moreover, new random vectors
are also generated until the smallest of the occurring distances between two successive charging
stations and between the last charging station and the destination is bigger than three kilome-
ters’2. The second condition is intended to achieve a realistic distribution of exit ramps, as a
situation where several exit ramps are located at almost the same position cannot be observed

very often in reality (at least not in Germany).

Preferred Driving Speeds Five different possible preferred driving speeds v, are assumed:
90, 100, 110, 120 and 130 kilometers per hour. These speeds seem to be chosen rather low
considering that there is no general speed limit on German freeways. On the other hand, initial
simulation runs showed that (for the presumed BEV models) the lowest total travel times can
be achieved for speeds slightly above 100 kilometers per hour. The main reason for this is that
energy consumption becomes extremely high for high driving speeds. Moreover, high preferred

driving speeds lead frequently to situations in which no reliable charging strategy exists, even

"The method of generating random vectors until they fulfill a set of additional constraints is often denoted as
,rejection sampling*.
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if perfect knowledge of the future development of traffic is presumed. In order to avoid such
special situations and, along with this, to guarantee that for each scenario a charging strategy
exists which allows reaching the destination, the maximal possible preferred driving speed is

kept low.

Vehicle Parameters There are three different features of BEVs which are varied among the
scenarios: The energy consumption model, the capacity of the battery, and the charging dura-

tions. It is started with describing the different energy consumption models.

Derivation of Trajectories based Derivation of Piecewise Constant
on Macroscopic Driving Speeds Speed Profiles from Trajectories

Space S|
| g G T

(¢, x) I

(%, x%)

(1, x1) |: >

B Ti -V Macroscopic Speed
ime { %
N\ N

Estimate Secondary Consumption Apply Speed Dependent Primary

from Travel Time and Temperature Consumption Model
Consumption Consumption
A per Time per Distance
> 1 .
Temperature Macroscopic Speeds

Figure 7.5: Computing energy consumption based on macroscopic driving trajectories.

Energy consumption of BEVs consists of two components, namely the primary energy con-
sumption ¢ py,, and the secondary energy consumption ¢g... The primary energy consumption
results from driving itself, i.e., from acceleration, deceleration, overcoming air resistance, re-

cuperating energy and so on. The secondary energy consumption refers to energy consumption
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which does not result directly from driving, such as energy consumption caused by the automo-
tive electronics or air-conditioning. Figure 7.5 illustrates the methodology according to which
primary and secondary energy consumption are derived from virtual (macroscopic) driving
trajectories within the simulation study. Based on given traffic information VE%T 7» @ virtual
driving trajectory 1'(e, t, VEL%TI) is derived for some road segment e and some time ¢. This
driving trajectory is defined as a sequence of points {(t*,2*)};_1 2 on the spatio-temporal
plane:

T(e,t, VE%TI) = [(tl =tg,zt =), (1%, 22), ..., (t5, 2% = e)]. (7.9)

Variable e marks the start of edge e. A small excerpt of an exemplary contour plot showing a
piecewise constant speed function and a resulting driving trajectory can be found in the upper
left part of Figure 7.5. From such a trajectory, a piecewise constant speed profile S P is derived,
which describes driving speeds along the road corridor. This speed profile can be understood

as a function of space:
SP (2, T(e,t, Vifiry)) i= Vigip (2515 Vo € [aF, b+ (7.10)

A corresponding illustration can be found in the right upper part of Figure 7.5. Speed profiles
are used to estimate primary consumption and travel times ¢ — ¢! to estimate secondary con-
sumption.

To get from speed profiles to energy consumption, a function ECp,;,, (,EC* for ,,energy con-
sumption‘) will be derived later on. This function returns, given a macroscopic driving speed
v, an average energy consumption per distance traveled. This value can be measured, for exam-
ple, in joules per meter. The primary energy consumption resulting from a whole speed profile
is then computed by multiplying traveled distances with the corresponding speed dependent

energy consumption per distance:
N t . t
cprim(e,t, T (e, t, VR%T[)) = ¢prim(et, VR]%TI) =

K-1
= Z (.%']H_l - xk) - ECprim (SP (:Ckv T(€7 t, V];?“TI))> ’
k=1
(7.11)

Note that ¢ppim (e, t, T (e, t, VE?TI)) is replaced by ¢ppim (e, t, V]’%%TI) in equation 7.11, since
the driving trajectory is a direct result of e, ¢t and Vlg‘%T ;- To compute secondary energy con-
sumption, a function ECjge, is applied which returns, depending on outdoor temperature 1'p,
an average energy consumption per time. This value can be measured, for example, in joules
per second. The secondary energy consumption resulting from a trajectory 7'(e, t, VI%’FT ) is

then derived as subsequently described:

Esec(e,t, T(e,t, ViBr,), Tp) == Csecles t, Vb, Tp) i= (t5 — 1) - ECsee(Tp). (7.12)
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The focus is set on the dependency of secondary consumption on 7'p, since energy necessary
for air conditioning contributes most to secondary consumption for BEVs (66). The amount
of energy which is typically necessary for air conditioning again depends significantly on the
outdoor temperature. Finally, energy consumption costs are defined as the sum of primary and

secondary consumption:
éE<67 t, V]?’%T]u Tp) = ép”‘m(e, t, V;{J’%T[) + é5(26(67 t, V];?‘T[7 Tp) (713)

To achieve reasonable results in the context of CSO, it is important to derive realistic energy
consumption models FCp;;,,, and ECg,.. For this purpose, a primary energy consumption
model is derived which is based on a dataset containing information about almost eleven thou-
sand trips of altogether 23 BEVs’3. The 23 vehicles, each of them was a BMW i3 (without
range extender), were either privately owned or part of company fleets. The vehicles were
equipped with sensors for measuring quantities, such as driving speeds and (instantaneous)
primary energy consumption. The data were recorded with a frequency of ten hertz. Informa-

tion on location or road steepness was not gathered.

Since the derivation of vehicle trajectories during the simulation is based on macroscopic traffic
state estimations and predictions, respectively, it cannot be expected that corresponding accel-
erations are realistic. This has already been discussed in section 6.3.3. This fact, together with
the missing possibility to locate the equipped vehicles’ driving paths’* prevents constructing
a precise physical energy consumption model as it is done, for instance, in (/48). Still, the
available energy consumption data are applied to derive a realistic relation £Cp,;,, between
macroscopic driving speeds and energy consumption. A detailed description of the derivation

of this model can be found in the appendix, in chapter D.2.

Due to a nondisclosure agreement with BMW, the author is not allowed to provide specific in-
formation on the derived relation between energy consumption per distance and driving speed.
However, an idea of the shape of ECp,.;y, is sketched in the lower right part of Figure 7.5. It
can be stated that FCp,;,, is a convex function which shows lowest consumption values for
speeds between 40 and 50 kilometers per hour. Significant increases of consumption can be
observed for low and high speeds. Function ECp,;,, is steeper for low speeds than for high
speeds (i.e., the derivative of ECp,;y, is very negative for low speeds and, in comparison, less

positive for high speeds).

"The recording of the data took place in the project ,,PREMIUM® and was funded by the (German) Federal
Ministry for the Environment, Nature Conservation, Building and Nuclear Safety.

"The absence of information on location makes it hardly possible to gain information about road steepness or
road classes. Moreover, it is also hardly possible to reliably decide whether the recorded data refer to urban or
non-urban traffic.
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The function which is applied within the simulation to describe secondary energy consumption
ECj.. depending on temperature T'p is provided by BMW’>. Again, no details can be shown,
but the shape of this function shows no surprises (see lower left part in Figure 7.5): Low tem-
peratures lead to the highest possible energy consumption, but secondary consumption is also
significantly increased at high temperatures. Note that primary consumption is typically the
dominating factor, i.e., driving contributes more to the total energy consumption than the sec-

ondary consumers do (ECp iy > ECgee).

Concerning the charging behavior, a time period of 60 minutes is used as the maximal charging
duration d;4,. The function .S, which describes the charging behavior of a BEV (compare

equation 4.23), is defined as follows:

Somimes * 50% if d < 30 minutes
S(d) := { 80% + d=30minutes . 50%  if 30 minutes < d < dmaz (7.14)
100% else

Function S returns for a given duration d € R the state of charge which is reached when
recharging a completely empty battery during this duration. This means that a recharging pro-
cess from zero to 80 percent takes 30 minutes, recharging the remaining 20 percent consumes
the same amount of time. Function S is based on the charging behavior of a BMW i3 (/7).
Also the battery capacity of a BMW i3 of 67,680,000 joules is used within the simulation (/8).

The described energy consumption model ¢g (see equation 7.13) is from here on denoted as
the ,,standard*“ model. As already mentioned, two further consumption models are introduced:
The ,city” model and the ,high-range* model. The idea of the city model is to suit the needs
of urban traffic. Therefore, its primary energy consumption is, in comparison to the standard
model, reduced for low speeds and increased for high speeds. This could be the case for
vehicles which are equipped with a very efficient system for recuperation and which show
a comparably high air resistance. Furthermore, the battery capacity of the city model and,
along with this, the durations for charging are reduced by ten percent. This leads to a capacity
of 60,912,000 joules and to a maximal charging duration of 54 minutes, whereby recharging
from zero to 80 percent is done in 27 minutes. Secondary consumption is assumed to be
slightly smaller than for the standard model. The high-range model is understood as a premium
version of a BEV. Its battery capacity is increased by 40 percent. Charging durations are
correspondingly increased by 40 percent. Also primary and secondary energy consumption are
higher than for the standard model. Especially for low driving speeds, a significant increase of

primary consumption is presumed.

>The provision of this function took place in the project ,,DC-Ladestation am Olympiapark®, which was funded
by the (German) Federal Ministry of Transport and Digital Infrastructure.
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7.1.6 Further Parameters

Time and energy costs for driving along the main road are based on driving trajectories, which
are derived from spatio-temporal speed functions. For leaving the main road and getting to a
charging station, a reduction of the state of charge of two percent is assumed, independently of
the leaving time or the applied energy consumption model. The time costs for leaving the main
road and approaching one of the charging stations are set equal to three minutes. Acceleration
or deceleration processes are not considered. Since it is assumed that the BEV starts at charging
station 1, no additional time or energy costs result for approaching this station. The costs for
returning from station 1 to the main road, however, are defined analogously to other stations.
Note that any energy which is necessary for leaving or returning to the main road is not taken
into account by any of the applied energy buffer functions. This means that trajectories for
the trajectory buffer are solely computed for the main road and relative energy buffers do not
take the aforementioned costs of two percent into account. This simplification allows avoiding
the need to find a reasonable approach to generate border trajectories for the way from and to
the charging stations. Relative buffers ignore the energy costs to conserve consistency of all
applied energy buffer functions. Concerning waiting times, it is assumed that no waiting times
occur at charging stations, i.e., waiting time cjw is set equal to zero. Time costs c% are set equal
to three minutes (see section 4.1.2 for the interpretation of c%). The charging step length A is

set equal to five percent.

7.1.7 Types of Failures

As mentioned before, different settings are tested by simulating virtual BEVs facing various
scenarios. The quality of charging strategies is measured with regard to realized travel times,
i.e., the average time needed by a BEV within the simulation to reach the destination, and fail-
ure probabilities. Different settings can be compared with each other on the basis of computed
average travel times and failure probabilities. Concerning the latter, a BEV following a naviga-
tion system which provides charging strategies as an on-trip information (i.e. regular updates
during the trip based on recent information), as it is assumed for the described simulation, can

basically experience four different situations:
1. The BEV reaches the destination.

2. The navigation system is at the beginning of the trip not able to provide a charging

strategy which fulfills the energy security condition.

3. A decision stage is reached during the trip and the navigation system is not able to pro-
vide for the remaining part of the route a charging strategy which fulfills the energy

security condition.

4. The BEV runs out of energy during the trip while following the instructions of the navi-

gation system.
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Scenarios that lead to the first situation are counted as a success, scenarios leading to the last
situation are counted as failures. For the second situation, it is not that simple. As already men-
tioned, the setting where perfect traffic information V]f,’gr f is available and the energy buffer is
set constantly equal to zero, is considered as the reference setting to which all other settings
are compared. However, even though perfect information is presumed for the reference setting,
it is still possible that scenarios exist for which no charging strategy recommendation can be
made. This means that there exists no strategy which would allow reaching the destination.
This could be the case, for instance, if a very long distance between two successive charging
stations occurs. It would not be counted as a failure if a setting leads for such a scenario to the
second situation. In fact, the best a navigation system can do in this case is to tell the driver
that she/he cannot reach the destination reliably. On the other hand, if under perfect informa-
tion a charging strategy can be provided, but the currently considered setting does not lead to
a recommendation, then it is indeed counted as a failure. Since this failure occurs before the
driver starts her/his trip, it is from here on denoted as pre-trip failure. Note that for all of
the 1440 considered scenarios, the destination can be reached if perfect traffic information is
available. The third situation is counted as a failure, too. Compared to the second situation,
the third situation is less desirable as the driver has already started the trip at the time when the
navigation system informs her/him that an arrival at the destination cannot be ensured anymore.
Nevertheless, some options remain under such circumstances. For instance, the navigation sys-
tem could suggest to the driver to reduce her/his driving speed below her/his preferred driving
speed to reduce future energy consumption. Another possibility is to adjust the reliability pa-
rameter in such a way that more risky strategies are still considered to be reliable enough. Both
approaches could also be combined. Unfortunately, both approaches either change scenario or
setting parameters and are thus not considered within the simulation. All failures which occur

during the trip are denoted as on-trip failures.

7.2 The Impact of Real-time Traffic Information Quality

The structure of the simulation study has been explained in detail in section 7.1. Based on these
explanations, analyses concerning the dependency of charging strategy quality on the quality
of the applied RTTI are conducted in the following. Recall that the central motivation for the
simulation study is to achieve RO 2, i.e., to test the suggested problem formulation (i.e., the
formulation of the problem of finding optimal charging strategies as a deterministic SPP in
combination with the idea of using energy buffers to compensate for uncertainty) under the
existence of uncertainties and to assess its ability to handle these uncertainties in such a way
that charging strategies of practicable quality can be obtained. This means that particularly a
high level of reliability of the resulting charging strategies has to be ensured.

In section 7.2, the quality of charging strategies resulting from applying relative energy buffers

to compensate for the uncertainty caused by various types of RTTI is analyzed. This makes
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it possible to understand the dependecy of charging strategy quality on the magnitude of the
existing uncertainties. Furthermore, it is possible to gain an idea of the charging strategy qual-
ities that can already be achieved by relying on a comparably simple method for energy buffer
quantification. This knowledge will be particularly relevant when discussing up to which de-

gree RO 2 can be fulfilled on the basis of the developed framework.

Section 7.2 is structured as follows: At the beginning, in section 7.2.1, the qualities which
different types of RTTI achieve are analyzed in detailed. In section 7.2.2, a list of the simu-
lated settings is provided and the resulting charging strategy qualities are illustrated. Based on
this, several conclusions concerning the relation between charging strategy quality and RTTI
quality are drawn. Finally, in section 7.2.3, additional simulation runs are considered in order
to explicitly test the impact of two of the scenario parameters on the relation between RTTI

quality and charging strategy quality.

7.2.1 Analysis of Real-time Traffic Information Quality

RTTI quality is again understood as the level of similarity between the RTTI and the ground
truth, which is constructed according to section 7.1.3. The quality of the following functions
is analyzed: Vlﬁgr f (knowledge of ground truth), V;}B (free-flow assumption), V}f]’fst (historical
average driving speeds), Wfst (instantaneous travel times), Véﬁm (recorded commercial RTTI),
and V]ifl ., (phantom traffic jams). The level of similarity is, in principle, measured according
to the ideas of section 6.2. However, to achieve a detailed understanding of the quality of the
considered types of RTTI, the measurement is done in dependency of the prediction horizon.
The prediction horizon t;, € R> is defined as the temporal difference between the time ¢, at

which the prediction is made, and the time ¢, for which the prediction is made:
th =1t —tp. (7.15)

In order to measure RTTI quality in dependency of the prediction horizon, the real driving
speeds Var(z,t) are compared to the driving speeds V}tﬁT ;(x,t) with t = tp + t;,. For this
purpose, let the following function be introduced:

T3ty := [Taq + th, Taa + th
Varris, : Toli — Rsg (7.16)
VRrrre, (.t +th) == Virr (@t +t,)  V(z,t) € X x Ty
This function returns for a time ¢ 4- ¢}, the speed value which has been predicted ¢;, minutes ear-

lier. Due to its construction, function Vg1, is defined for the two day period Tég, which is

the same as the two day period 754, but shifted by ;. The construction idea for this function is
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Figure 7.6: Ex post construction of function Vg7, for t;, = 2 minutes.

illustrated in Figure 7.6 for an exemplary prediction horizon of ¢, = 2 minutes. For the follow-
ing analyses, the average difference D(t;,) € R>o between ground truth driving speeds and pre-
dicted driving speeds is computed for each prediction horizon ¢;, € {0 min,1 min,..., 180 min}

according to the following rule:
D(ty) :== D(Var, Varri,, X x Ty, d) (7.17)

The absolute percentage error d4pg is applied as the distance measure and errors are solely

measured for the two day period thg, since otherwise some errors would be counted twice’®.
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