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Abstract 

The complexity of flight raises the acquisition cost for aerial datasets to prototype, test or 

evaluate airborne computer vision algorithms. A possible surrogate is the usage of virtual 

environments. However, it is unclear how results acquired in such environments transfer to 

real world situations. This thesis presents a general concept to identify performance 

differences of computer vision algorithm on synthetic and natural data. Further, it correlates 

these difference to image content differences to find causal relations. Lastly, different ways to 

parametrize the virtual environment are evaluated to identify rendering and modelling 

techniques reducing the algorithms performance difference. The results are eventually 

formulated as recommendations for modelling engineers and programmers to optimize their 

simulation environment. 

Keywords: computer vision; evaluation; synthetic environment; validation; feature detector; 

repeatability; Image content difference; regression analysis; MPEG7; UAV; airborne; remote 

sensing; aerial reconnaissance; computer graphics imagery; synthetic data; design 

recommendations; 

Kurzfassung 

Die Komplexität des Fliegens erhöht die Beschaffungskosten von Bilddaten zur Untersuchung 

und Evaluierung von luftgestützten Bildverarbeitungsalgorithmen. Virtuelle Umgebungen 

können hier als möglicher Ersatz dienen. Allerdings ist nicht geklärt wie übertragbar die 

resultierenden Ergebnisse sind. Diese Doktorarbeit präsentiert ein allgemeines Konzept zur 

Ermittlung der Leistungsdifferenzen von Bildverarbeitungsalgorithmen operierend auf 

natürlichen Aufnahmen oder virtuellen Screenshots. Des Weiteren werden kausale 

Zusammenhänge zwischen diesen Differenzen und bildinhaltlichen Unterschieden gesucht. 

Zuletzt werden verschiedene Einstellungen der virtuellen Umgebung getestet um Rendering- 

und Modellierungstechniken zu ermitteln, die genannte Leistungsdifferenzen reduzieren. Die 

Ergebnisse werden schließlich genutzt um Gestaltungsrichtlinien für Programmierer und 

Ingenieure zur Optimierung ihrer Simulationsumgebung zu formulieren. 

Schlagworte: Bildverarbeitung; Auswertung; virtuelle Umgebungen; Validierung; Feature 

Detektor; Reproduzierbarkeit; bildinhaltliche Unterschiede; Regressionsanalyse; MPEG7; 

UAV; luftgestützt; Fernerkundung; Luftaufklärung; Computergraphik; Gestaltungsrichtlinien;
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1 Introduction 

Since the advent of lighter-then-air balloons in the late 17th century and heavier-then-air 

aircrafts in the early 19th century a great variety of applications for aerial platforms had been 

found. While without doubt transportation of persons and goods always played the 

predominant role, using aerial platforms for earthbound observation was always of great 

interest. New perspectives and insights were gained exploiting the unobscured view and 

enhanced visual range from higher altitudes. 

Military forces were among the first ones to utilize these new means of information gathering. 

Up to date knowledge about location, strength, armament and movement of enemy forces was 

and still is crucial to achieve specific objectives on the battlefield. With that the term of 

airborne intelligence, reconnaissance and surveillance (ISR) was founded (North Atlantic 

Treaty Organization, 2005). In parallel respective civil applications emerged either in the field 

of public security (e.g. traffic and infrastructure surveillance, search and rescue, border 

control) (Murphy & Cycon, 1999) or earth sciences such as geology, geography, ecology or 

hydrology, where respective data are acquired through remote sensing methods (Lillesand, 

Kiefer, & Chipman, 2015a). 

While in early days observations were conducted using only human eyesight, soon cameras 

were mounted on aircrafts and used to enhance and document the achieved results. Today, 

depending on the application, we see a variety of different mono-, multi- and hyperspectral-

imaging as well as range-measuring sensors being flown as payload on dedicated aircraft 

types (e.g. aircraft depicted in Figure 1-1 equipped with SAR, one IR- and two EO-cameras). 

 

Figure 1-1: Unmanned aerial reconnaissance vehicle IAI Heron. The yellow fairing hides a synthetic 

aperture radar (SAR). Under the nose, the optical reconnaissance system is located. (Source: USAF) 
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In the field of assessing the gathered information meanwhile various methods for automated 

sensor data processing are applied to handle the vast amount of data sampled with today’s 

systems. They derive results more objectively or speed up the data exploitation process as 

such. In this context and enabled through suitable processing components, we currently 

witness the migration from off-line data assessment (done after mission completion) on 

ground to highly automated (near) real-time sensor data processing on board the aircraft. This 

becomes even more important when looking at the demand for more autonomous mission 

execution in the field of unmanned aerial systems (UAS). Here, data gathered from airborne 

sensors are not only relayed to the ground but are also exploited for intelligent machine 

decision making on-board (Russ & Stütz, 2012).  

The deployment of computer vision on airborne platforms is currently emerging. Respective 

technologies can be seen in the already mentioned fields of remote sensing and ISR but also 

for guidance & control tasks. Mission related applications for ISR / remote sensing purposes 

have been demonstrated in several areas. Some example applications are disaster management 

(Quaritsch et al., 2010), landslide investigations (Niethammer, Rothmund, Schwaderer, 

Zeman, & Joswig, 2011), photogrammetry (Gini et al., 2013), fire detection (Ollero et al., 

2005) or moving target detection and tracking (Rudol & Doherty, 2008), (Nejadasl, Gorte, & 

Hoogendoorn, 2006), (Breckon, Barnes, Eichner, & Wahren, 2009), to only name a few. 

Examples for aircraft guidance are attitude computation (Demonceaux, Vasseur, & Pègard, 

2007), collision detection / estimation (B. Cohen & Byrne, 2009), road-following (Frew et al., 

2004), guidance in GPS denied environments (Granlund et al., 2000) or feature based 

guidance (Garratt & Chahl, 2008).  

In any case visual processing on board airborne platforms puts great demand on hard- and 

software and brings along specific requirements on aircraft design due to limitations on 

weight, size and power.  

1.1 Problem description 

Imaging sensors, whether operating in the visible or infrared domain still constitute the most 

wide spread airborne sensor type for ISR and remote sensing purposes. To increase the level 

of automation in airborne remote sensing systems sampled data needs to be processed with 

photogrammetric and computer vision methods. The development of respective high-level 

data processing algorithms relies heavily on the availability of considerable amounts of 
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exemplary sensor data in various forms depending on concept and development approach. In 

literature such example data are commonly referred to as datasets (Szeliski, 2011), (Daniel 

Scharstein et al., 2014): 

• Prototyping Datasets are used to test algorithms during development stage. They 

may be highly abstract to test limits of the mathematical model or contain a real 

example scene. 

• Learning Datasets provide image cuttings used to train self-learning algorithms. 

These contain the object of interest on which, the algorithm shall be trained for 

(positive samples) as well as background only examples (negative samples). 

• Noisy Datasets contain scenes of interest with increasing levels of noise to 

determine the robustness of the algorithm. 

• Test Datasets are used to test the learning quality. These datasets often are a subset 

of the used learning dataset. Therefore, the contained images have already been used 

to train the algorithm and the success rate should be close or equal to 100%.  

• Evaluation datasets are used to evaluate the performance characteristics of the 

designed algorithm. These datasets shall demonstrate real world capability and 

therefore need to be from several sources, heterogeneous in content and of high 

mount. Evaluation data should consist of similar test cases, not used in any dataset 

listed before. Alternatively, the final evaluation of algorithm can be conducted in 

conjunction with the operational sensor system on-board the target aircraft as part of 

the qualification test flights for the end-customer. 

This list underlines the need for comprehensive versatile datasets in order to produce high-

performance machine perception systems. Here, the problem arises that for airborne 

application, acquisition of such datasets is difficult due to reasons presented in the following 

subchapters. 

1.1.1 Deficiencies of existing datasets 

Generally, computer vision (CV) methods are tested against known datasets generated for 

specific application problems. A prominent example is face recognition, e.g. (P.J. Phillips, 

Hyeonjoon Moon, Rizvi, & Rauss, 2000). 
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Unfortunately, airborne image datasets for airborne applications are sparse. Currently a only 

few are available in the public domain e.g. VIVID (Collins, Zhou, & Teh, 2005), VIRAT (Oh 

et al., 2011) or CLIF (AFRL, 2007). These datasets are providing aerial images including 

persons and vehicles in a number of events or scenarios. VIVID and VIRAT additionally 

provide images in the visual (VIS) and thermal infrared (TI) spectrum. Yet, the variances of 

these datasets concerning vegetation, environment, weather, time and actors are small. Several 

papers (Thacker et al., 2008), (Bowyer & Phillips, 1998) or (Kondermann, 2013) criticize that 

evaluation against specific datasets does not indicate the generalization or universality of the 

algorithm and instead a wide range of different datasets should be used. This range of datasets 

needs to differ in their source, quality and scene content. 

Aforementioned datasets typically provide interesting problem cases for specific computer 

vision problems, but are limited in terms of optical, scenic and terrain-based effects that have 

to be regarded during real world operations. Therefore, currently the total amount of available 

data is often insufficient to claim that tested performance will come close to operational 

performance. This lack of data is becoming even more severe, when learning algorithms are 

involved. Here, data for training, testing and finally evaluation should be separated to prove a 

functional algorithm and generalization of the learned model. 

1.1.2 Constraints for the airborne acquisition of datasets 

For reasons pointed out above, algorithm developers for sensor systems deployed on flying 

platforms regularly have to resort to datasets specifically acquired for their projects. This 

leads to additional challenges: 

To begin with appropriate fixed or rotary wing aircraft have to be employed equipped with 

sensor systems similar to those intended for operational use (Hoogendoorn & Schreuder, 

2005). Dedicated workstations, high precision navigational equipment and specific IT 

components need to be installed supporting and executing the sampling process. Besides these 

fixed costs, recurring ones have to be estimated covering aircraft operation and personal costs. 

Depending on nature of data and quality requirements the resulting total cost results typically 

in a 4 digit US$ amount per flight hour (Hranac, 2004). With the advent of unmanned aerial 

systems, costs can be expected to go down. However evidence for this is currently hard to 

find, particularly as operational regulations are still limiting the usability of these platforms 

(Bundesministerium für Verkehr Bau und Stadtentwicklung, 2012). 
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Once the technical system is set up, data acquisition planning has to be performed. Such needs 

to concern the following requirements:  

Weather & atmospheric conditions: As mentioned above, robust algorithmic results demand 

considerable diversity in this respect within the datasets. So a considerable number of flights 

need to be conducted even to cover the most important situations. Specific effects of interest 

may be seasonal (e.g. snow coverage), hard to predict (e.g. haze, fog) or even contradicting to 

safe flight operations (e.g. heavy rain and hail). 

Geographical area: Sensor systems and algorithms may need to be developed and qualified 

for use in dedicated geographical regions according to customer requirements. However, 

equivalent or identical geographical settings may not be readily accessible for the test data 

provider due to distance or safety concerns e.g. in case of military activities. 

Scenario settings: Algorithms may aim to spot changes in topography and infrastructure 

(“change detection”) or detect and track static and moving objects (“target detection & 

tracking”). Such scenarios and object behaviour, if not existing per se, must be staged in 

variations, which can be complex and costly. Whenever humans are involved as actors, their 

consent must be sought and data security ensured. 

Trying to comply with all these different requirements eventually leads to considerable cost, 

extends development time and often discards specific dataset content and conditions. 

1.1.3 Synthetic datasets as possible surrogate 

Aforementioned chapters provided several reasons why test flight data available is not 

sufficient to a degree to best train or test computer vision algorithms. When searching for 

methods to compensate this shortage in suitable datasets, the interest quickly focuses on 

computer-generated imagery. In the aerospace domain, the use of virtual simulation 

techniques to render out-of-the cockpit views is very common and established for pilot 

training simulators. Here, where false decisions can quickly lead to devastating results 

simulation provides quick, relatively cheap and most importantly safe alternative to real 

flights.  

However, can this approach be expanded to the world of computer vision? Here, synthetic 

images are already used to test the underlying algorithmic paradigms and to identify their 

limitations, since its accompanied reference data allows efficient testing without error prone 
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manual image annotation. Nevertheless, when it comes to application evaluation, synthetic 

data are commonly criticized1. Arguments against these approaches are generally questioning 

the transferability of measured results to real world performance. This thesis shall investigate 

how data acquired by sensors differs from computer-generated imagery and analyses this 

disparity concerning computer vision performance. 

Sensor data or aerial imagery in the context of this thesis stands for images depicting terrain 

from an aerial viewpoint in the visual spectral range recorded using a capture device (e.g. a 

camera). These images captured in the physical world will be named photographs, real world 

images or natural images from this point onward2. 

Before diving any deeper in the subject, first the term synthetic data needs to be specified, 

(McGraw-Hill, 2002) defines synthetic data as “any production data applicable to a given 

situation that are not obtained by direct measurement”. This however could also mean 

processed data, which was originally measured directly. Therefore, in the domain of computer 

vision the term synthetic data means, a sequence of computer generated imagery for testing or 

evaluation purposes. As synonyms to synthetic data, computer-generated images or rendered 

imagery will be used from this point onward. 

Within this specification, synthetic data can have considerable differences in appearance. 

From completely abstract images to scenes of higher complexity displaying common daily 

life scenes and/or objects (McCane, Novins, Crannitch, & Galvin, 2001). Some are modelled 

to only appear realistic (Taylor, Chosak, & Brewer, 2007), while others are computed 

according to physical models (Longhurst, Ledda, & Chalmers, 2003) or (Vedaldi, Ling, & 

Soatto, 2010). 

Previous research investigating realism in rendered images (Herzog et al., 2012), (James A. 

Ferwerda, Ramanarayanan, Walter, & Bala, 2008) or (Longhurst et al., 2003) mainly focused 

on the use of physical model based rendering, such as ray-tracing for highest levels of visual 

appearance. Using best available techniques to compare captured to synthetic datasets may 

                                                 
1 Online Discussion, Stephan Irgenfried, Synthetic datasets vs . real images for computer vision algorithm 

evaluation?, ResearchGate, 
http://www.researchgate.net/post/Synthetic_datasets_vs_real_images_for_computer_vision_algorithm_evalu
ation2, [Last Accessed: 08.07.2015] 

2 Based on the definition of natural scenes in (Sheikh, Bovik, & de Veciana, 2005) 
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introduces an overhead of effort since provided level of quality may not even be needed to 

investigate CV-Algorithms. 

Therefore, this thesis deliberately selects only commercial-of-the-shelf real-time rendering 

engines, which provides a medium level of visual appearance (concerning pre-rendered, ray 

traced images) to determine the minimum level of quality necessary to serve as a synthetic 

datasets providing valid results (e.g. ARMA3 from Bohemia Interactive in Figure 1-2). Using 

these engines, it is intended to identify the specific images properties discerning natural from 

synthetic images and minimize them with the lowest necessary effort. Results acquired with 

synthetic data will only be accepted when they are demonstrated to be transferable to natural 

data. 

 

Figure 1-2: In-Game Screenshot of the military simulation game ARMA III by bohemia interactive  

However, it should not be forgotten that the general idea of using synthetic data in algorithm 

development is to reduce the necessary amount of necessary real world images and not to 

fully replace it. Recent publications indeed identified synthetic data as an efficient tool for 

validation and evaluation of new algorithms (S. N. R. Meister, 2014), (Gschwandtner, Kwitt, 

Uhl, & Pree, 2011) or (Daniel J Butler, Wulff, Stanley, & Black, 2012). This allows the 

assumption that synthetic data has its place in development of computer vision algorithms.  

So in summary, using image renderings instead of captured images in the early development 

stages should lead to a number of new possibilities and positive effects: 

• Amount of datasets: When using computer-generated imagery to compile datasets 

the largest effort needs to be committed to the generation of the terrain database 

(modelling of terrain, roads, housing and vegetation). Having accomplished this, 
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numerous datasets can be created by using scenario editors, hemispherical lighting 

models (attitude of the sun), sensor perturbation models or weather effects. The 

limiting factors then are reduced to IT-equipment and human resources. 

• Scenario diversity: As it was pointed out, diverse scenarios would enable 

developers to test the robustness of algorithms. Once the terrain database has been 

developed, depending on the rendering engine, scenarios can be put quickly together 

by scripting, editors or programming. (Hendriks, Tideman, Pelders, Bours, & Liu, 

2010) propose a respective system as a development tool for advanced driver 

assistance systems (ADAS). The effort to record datasets of varying scenarios (actors 

moving according to a storyboard) is low concerning recordings of live staged 

scenarios, where complex scenarios are usually recorded once to limit the financial 

expenses.  

• Budget: Synthetic data allows lowering the number of test flights and thus natural 

datasets, so results already achieved using synthetic data only need to be validated to 

prove the transferability. The efforts to create a realistic synthetic environment only 

need to be invested once in the beginning of the project. “Flights” in this 

environment then can be repeated efficiently and at very low cost. 

• Safety: The lowered number of actual necessary real test flights reduces the risk of 

vehicle loss and accidents. 

• Determinism: One of the major advantages in using synthetic data, is the possibility 

to conduct repetitive in-the-loop tests of a scenario, which provide deterministic 

results allowing reliable identification of errors. 

• In-the-loop simulation: The use of real-time rendering engines enable software- and 

/ or hardware-in-the-loop simulations. This allows testing of systems components, 

which shall react dynamically to simulated sensor outputs without risks for man and 

machine. The main advantages lie in the reduction of system complexity and testing 

time while increasing software quality (Nabi, Balike, Allen, & Rzemien, 2004). 

• Availability of reference data: Reference data (ground truth) allows verification of 

information acquired via sensors and the quantification of algorithmic performance. 

(Lillesand, Kiefer, & Chipman, 2015b). When setting up datasets from physical 

sensors, ground truth needs to be created either by additional different sensors 

(automatic) or via (manual/semi-automatic) annotations. Ground truth acquired by 
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sensors is expensive since it needs far higher accuracy compared to the tested system 

(usually 10x). Manual annotation is also costly due to the extensive labour involved. 

also quality tends to degrade when scenes become complex and sub-pixel accuracy is 

demanded (Kondermann, 2013). Here, synthetic environments provide a feasible 

alternative since the 3D- to 2D-transformation process is known and ground truth can 

be retrieved automatically. 

The aforementioned points highlighted the potential advantages provided by synthetic images 

to the development process of computer vision algorithms. Naturally, the usage of synthetic 

data also is accompanied by shortcomings that need to be considered: 

• Simplifications in 3D rendering: In synthetic environments the number and detail 

of 3D-objects is limited compared to their real counterparts (e.g. vehicles, houses or 

trees). Further, direction and intensity of lighting is simplified to shorten processing 

times, while maintaining high visual quality. (Daniel Scharstein & Szeliski, 2001) 

criticize the low complexity of geometries and textures in synthetic datasets. This 

statement might be outdated, since nowadays the complexity of synthetic datasets is 

scalable. For example (Martull, Peris, & Fukui, 2012) remodelled the famous Head 

and Lamp dataset from (Nakamura, Matsuura, Satoh, & Ohta, 1996) in full detail. 

• Clear image composition: According to (Vaudrey, Rabe, Klette, & Milburn, 2008) 

rendered images show more distinct outlines of objects than captured images. These 

provide high intensity gradients upon which many computer vision algorithms rely 

on. This effect could be compensated by motion blur, depth-of-field emulation or 

antialiasing. (Daniel Scharstein & Szeliski, 2001) also identified synthetic dataset as 

too “clean”, which is a texture modelling problem and has been identified and 

investigated by (Longhurst et al., 2003) in psychophysical experiments. 

• Missing optical effects: (Daniel Scharstein & Szeliski, 2001) argue that camera 

distortions are seldom modelled in synthetic environments. This fact however 

changed in the recent years (Grapinet, De Souza, Smal, & Blosseville, 2012), 

(Hummel & Stütz, 2011), (Nentwig, Miegler, & Stamminger, 2012) or (Taylor et al., 

2007). 

• Diversity of textures: Textures in captured images are often highly diverse even 

when identical objects are present in the same image. For instance, rooftop tiles of 
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old buildings are highly heterogeneous due to environmental wear. In computer 

engines, textures are reused to increase performance leading to visual repetition. 

• Modelling efforts vs. degree of realism: The effort necessary to create a virtual 

representation of a location existing in the real world depends on the requirements set 

on its realism. For example, humans can easily interpret the content of very abstract 

images. Similarly, CV-applications may not need physically realistic visual quality to 

perform successfully. However, the necessary content to provide a ‘realistic’ 

synthetic datasets is yet to be defined. Currently, modelling costs (work force, 

computation time) are the main limiting factor. Knowledge on the degree of 

modelling effort needed would help to create datasets on point, thus saving money. 

• Acceptance, Transferability: The use of synthetic data to evaluate computer vision 

algorithms is still very controversial as mentioned in (S. Meister & Kondermann, 

2011). Studies demonstrating the performance of specific algorithms on real and 

synthetic data exist, e.g. (Nentwig et al., 2012), (S. N. R. Meister, 2014) or (Wood et 

al., 2015), but yet have to identify the fundamental image properties influencing the 

performance. 

• Accurate modelling: (Ellis, 2002) states that “…accurate modelling of all the many 

factors to simulate a ‘realistic’ sequence still presents major problems in the field of 

computer graphics and animation.” This is true, but as long as the necessary factors 

and requirements to stimulate tracking algorithms are not or only fuzzy described, 

accurate modelling cannot exist. 

This chapter presented advantages and drawbacks of using synthetic data for evaluation of 

computer vision algorithms. It has been shown that identifying image properties on which 

computer vision algorithms are sensitive to, is of major importance to create synthetic test 

datasets efficiently that produce results comparable to real data.  
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1.2 Scientific question 

In the previous chapter the general need for airborne datasets, their specific requirements and 

problems with existing ones have been described and the use of synthetic datasets has been 

proposed. Therefore, this work aims to investigate on the following general question: 

How can synthetic datasets for development of computer vision algorithms  

be designed and generated to achieve performance results  

transferable to real world conditions? 

More specifically this question can be separated into three objectives. This thesis shall draft, 

implement and execute appropriate experiments to  

Objective 1) quantitatively asses performance differences of selected CV-

algorithms on synthetic and natural datasets, 

Objective 2) identify inducing image and rendering properties and eventually 

Objective 3) formulate design recommendations, which support database 

modelling engineers and simulation system manufacturers in 

providing suitable synthetic datasets. 

Each of these objectives formulate capabilities necessary to identify the underlying reasons 

for synthetic imagery to perform differently to natural imagery. If the concept presents 

methods and metrics to successfully demonstrate and / or measure these capabilities, the 

objectives are fulfilled.  
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2 State of the art and related work 

The topic of this thesis touches domains such as computer vision, computer graphics, remote 

sensing, image retrieval and aerospace engineering in an interdisciplinary way. The necessary 

background is provided in the following chapters together with the state-of-the-art analysis. 

The first subchapter presents an introduction into computer vision development and best 

practices for the evaluation of CV-algorithms. In chapter 2.2 the characteristics and 

generation methods of natural and synthetic computer vision datasets are presented. The next 

chapter presents the image acquisition pipeline and the differences of natural and artificial 

image generation. Current efforts discussing realism and fidelity in synthetic images are 

presented in chapter 2.4. The following chapter presents published image comparison metrics 

categorised into image quality-, application- and scene-based metrics. Additionally, the 

mathematical similarity and distance measures employed by these metrics are presented. Most 

researchers often do not acknowledge scientific results solely acquired using synthetic data 

due to reasons presented in chapter 1.1.3. After identifying current concerns, existing research 

addressing the transferability of synthetically acquired results on to the real world is discussed 

in chapter 2.6. The last subchapter of the state of the art analysis presents published 

procedures for performance characterization of airborne mission sensors.  

2.1 Computer vision algorithm development and evaluation 

Airborne Intelligence, Surveillance and Reconnaissance (ISR) applications address the 

detection, tracking or identification of physical objects. To automate this process Computer 

Vision (CV) methods can be used. CV as defined by (McGraw-Hill, 2002) is a technical field 

focusing on acquisition, extraction, characterization or interpretation of information in digital 

imagery of a three dimensional world. While humans are able to perform aforementioned 

tasks (e.g. detection of persons in images), performance of computer vision algorithms is not 

yet up to par. CV methods reconstruct information from images the provide insufficient 

information of the depicted 3D-world by designing explicit solutions based on probabilistic, 

physics-based or mathematical models. These models used in CV are usually developed in 

physics or computer graphics, e.g. computation of light scattering and reflection, position and 

movement of objects, or camera lens distortion (Szeliski, 2011). This inverse relationship 

between computer vision and computer graphics will be exploited in the concept of this thesis 

to evaluate CV-algorithms. (Berger, Levine, Nonato, Taubin, & Silva, 2013) for instance also 
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uses both worlds to evaluate their algorithm. Before diving into specific evaluation methods 

of algorithms the general approaches of development and evaluation are discussed. 

2.1.1 General approach 

According to (Szeliski, 2011) current CV-algorithm development processes can be 

categorized into three high level approaches: 

• The scientific approach is based on the understanding of physical principles 

necessary for image formation. These are analysed and modelled in order to invert the 

model to obtain the desired scene description from acquired pictures. 

• Within the engineering approach, the problem needs to be defined and the validity 

of basic assumptions and goals needs to be questioned. Then alternative solutions are 

implemented and tested based on defined metrics. Afterwards tests in real-world 

conditions lead to the most promising concept. This approach is focussing on testing 

during the development phase, and therefore in need of relevant test cases and large 

datasets. 

• The statistical approach uses large training datasets to learn probabilistic models 

coping the worlds and the image formation process’ uncertainty. After learning, these 

models allow estimation of results and quantification of their uncertainty. 

These approaches coexist, since depending on the problem to solve each approach has its 

advantages and disadvantages. The reference process used in this thesis has been developed 

along the engineering approach. This thesis focuses on the evaluation of the algorithms 

detection qualities. Performances such as speed or usability are not investigated, since these 

are independent to the nature of used testing data. The following chapter will discuss the 

general concepts of CV-algorithm evaluation and presents the role of synthetic data. 

2.1.2 Evaluation of CV-algorithms 

According to (Bowyer & Phillips, 1998) no methods for empirical evaluation of computer 

vision algorithms were commonly accepted until the mid-nineties. The authors’ state, 

“Evaluating algorithms lets researchers know the strengths and weaknesses of a particular 

approach and identifies aspects of a problem where further research is needed”. They divide 

possible approaches in three categories to introduce standardized evaluations allowing 

comparison of algorithms: 
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• Independently administered evaluations: Here, an external group set up test 

datasets, designed the evaluation method, and provided these to the algorithm 

developers. The measured results are then sent back to the group for evaluation. This 

approach provides objective results since dataset and methods are published and tested 

by independent persons. The drawback is the evaluation group’s high workload. 

• Externally conducted evaluations: An external evaluation group collects and 

evaluates all algorithms of interest on their own. When original implementations are 

not available, algorithms are implemented based on literature. This produces a 

baseline where state-of-the-art algorithms can be compared. Often implementations 

are not available, raising the effort for the evaluation group. 

• Evaluation concepts for non-self-evident ground truth: Here, “a major part of the 

evaluation process is to develop a method of obtaining the ground truth” (Bowyer & 

Phillips, 1998), followed by an evaluation against the newly defined metrics. 

Today, depending on the algorithm the most suitable approach is selected. For instance 

algorithms of common problems, demonstrate their increased performance against well-

known datasets as suggested in the first category. Prominent examples are the Hamburg Taxi 

Sequence (Dreschler & Nagel, 1982) for optical flow or the Middlebury datasets for stereo 

matching (D. Scharstein & Szeliski, 2003). Due to this focus on publicly available datasets, it 

may happen that algorithms are tuned towards high performance in these scenes while 

disregarding their general performance (“overfitting”). Therefore, (Szeliski, 2011) presents an 

evaluation strategy based on three levels: 

1. Evaluation on clean synthetic data with known ground truth. 

2. Evaluation on noisy synthetic data with known ground truth. 

3. Evaluation on an extensive amount of real-world images from a wide variety of 

sources (locations, cameras, lighting conditions). 

This approach specifically asks for synthetic data to enable the comparison with known 

ground truth data. The use of synthetic data is however questioned because the transferability 

to the real world is unknown (Bowyer & Phillips, 1998). Therefore level two (for robustness 

against noise) and level three (real-world transferability) complete this strategy.  

In (Barron, Fleet, & Beauchemin, 1994) the methods for optical flow estimation are evaluated 

using an externally conducted approach. Ten different techniques are compared using four 
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synthetic and four real datasets. This corresponds to level one and three of Szeliski’s 

evaluation strategy. According to the author, synthetic datasets have been used since motion 

fields and scene properties can be methodically controlled and tested. This method was 

criticized by (McCane et al., 2001) due to selection of abstract synthetic image sequences. 

Thus, the authors created synthetic datasets with several levels of complexity with ground 

truth as synthetic and real datasets. The implementations of seven tested algorithms were 

collected from prior research (Barron et al., 1994) or self-implemented. These showed 

consistent behaviour on synthetic and real datasets, leading the authors to conclude the 

validity of their test approach. Absolute results on real datasets presented low performance for 

almost every algorithm. The existing performance differences between synthetic and real data 

are not discussed. To improve the evaluation approach the authors suggest that future 

algorithm developers should publish their code, evaluate on existing standard benchmarks 

(datasets with ground truth) using standard metrics and enter their results in a public central 

database. The paper emphasizes the usefulness of synthetic datasets in evaluation due to 

available ground truth and scalability of synthetic scenes. 

The literature survey of (Thacker et al., 2008) analyses the use of evaluation and validation 

techniques in the computer vision domain. It first traces back the frustration of system 

designers about the unreliability of computer vision algorithms to deficits in evaluation. The 

authors acknowledge the efforts of the last 20 years, which improved the quality of algorithms 

by dataset sharing, code sharing and comparative testing. However, they still see potential for 

improvement by exploiting the techniques of probability theory and quantitative statistics.  

To characterize algorithm performance (P. Jonathon Phillips, Martin, Wilson, & Przybocki, 

2000) distinguish between two types of evaluation: 

• Technology evaluation regards the characteristics against changing conditions of the 

image acquisition such as noise or contrast. 

• Scenario evaluation concern the behaviour of the system with regard to specific use 

cases and application (e.g. recognition). 

The authors then review the CV-domain by selecting specific well-known topics to discuss 

current testing methods, available ground-truth datasets and suggest possibilities for 

improvement. They conclude that algorithm performance cannot be extrapolated on unseen 

datasets and scenario evaluation should be conducted to estimate the usability. They believe 

that single isolated datasets cannot provide a general means of algorithm performance 
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evaluation. Thus, simulation of imaging system and environment is proposed to identify the 

key factors of data variability and the expected response of the algorithm. This simulation can 

be conducted empirical or analytically but should be statistically calibrated using test datasets. 

(Thacker et al., 2008) provide a comprehensive view on specific computer vision domains and 

review the evaluation from a statistical point of view. They encourage computer vision 

researchers to deepen their statistical knowledge to increase objective evaluation leading to 

more stable algorithms. The authors conclude that apparently the statistical nature of vision 

problems is often unknown to the researcher and has not been considered. The more holistic 

algorithm characterization desired by the authors could be conducted by introducing a sensor 

and environment simulation when calibrated using natural test data. 

This review on algorithm evaluation paradigms show that it is still an energetically discussed, 

emerging field. Most importantly, algorithms should be considered to work only on the 

applications they have been created for until experiments or demonstrations suggest 

otherwise. In addition, the comparison of novel algorithms against existing publicly available 

evaluation datasets and the publication of the source code are considered as current best 

practices for well-known algorithm categories (e.g. stereo vision) (Thacker et al., 2008). 

Additionally, the evaluation should also include engineered dataset (real data with synthetic 

perturbations) to demonstrate its reliability against technical issues such as noise or lighting 

conditions (Szeliski, 2011). The last step is to test the method against a variety of data from 

different sources to measure its robustness against the diversity of the real world (scenario 

evaluation). Adhering to these recommendations leads to high testing efforts for developers. 

Therefore, researchers often contemplate with synthetic environments to demonstrate 

mathematical validity of the method and show its real world capability on one specific 

standardized dataset. (Thacker et al., 2008) introduced the idea of a sensor and scenario 

simulation to acquire the general performance on algorithms by varying both. The simulation 

shall be calibrated against real datasets to replicate their statistical properties. 

2.2 Datasets for CV- algorithms 

The previous chapters presented the importance of datasets for CV-algorithm development. 

This chapter discusses the characteristics of reference datasets necessary to evaluate, test or 

train CV-algorithms for desired use cases. Further methods to generate natural and synthetic 

datasets are presented. 
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According to (Kondermann, 2013) reference datasets can be categorised into: 

• Reference data without ground truth: Data without any information about results of 

interest. Performance estimation is conducted subjectively via human interpretation. 

• Reference data with weak ground truth: Data including desired results in insufficient 

accuracy (measurements accuracy is less than an order of magnitude more accurate 

than the algorithm). These results can be acquired automatically using other sensors 

(e.g. inertial measurement units) or manually via annotation. 

• Reference data with ground truth: Data and results in sufficient accuracy. These sets 

can be acquired by high precision sensors (e.g. LIDAR) or by creating a synthetic 

dataset, which allows direct extraction of the ground truth. 

The Author then discusses these categories concerning benefit, effort and quality. For 

instance, it is reasoned that reference data without ground truth can be acquired cost 

effectively; however, it cannot be used to evaluate the reliability of an algorithm. This task 

needs available ground truth, which always requires a certain amount of time and money. The 

estimated costs of (Kondermann, 2013) are subjective and provided in incomparable units, but 

still help to identify the most suitable method for individual application. The potential of 

using computer-generated graphics to create reference data is highlighted. The problem to 

transfer these results to real world is also mentioned. In (S. Meister & Kondermann, 2011) a 

comparative test conducted with a simple synthetic scene in a controllable environment using 

optical flow shows promising results. In (Baker et al., 2010) the results of the famous 

Middlebury evaluation dataset3 for optical flow algorithms are presented. The dataset consists 

of twelve sets for training and evaluation of various kinds, e.g. real images of non-rigid 

moving scenes, real images of rigid scenes, realistic synthetic imagery, etc. The results of 24 

optical flow algorithms are evaluated by using new and common error metrics. Having 

different types of datasets allows improved insights on the characteristics of algorithms. The 

provided statistics furthermore allow identification of the reasons for the resulting behaviours. 

Evaluations such as these help to identify the most suitable algorithm for specific applications 

for engineers and identify areas of potential improvement for researchers. 

In the last 20 years, many datasets emerged for most of the topics in computer vision. 

Airborne datasets have also been generated in limited amount (e.g. ISPRS Benchmark  

                                                 
3 Website providing datasets and results: http://vision.middlebury.edu/flow/ [Accessed: 07.09.2015] 
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(Nex et al., 2015)). These often cannot fulfil the best practices for evaluation as presented in 

chapter 2.1.2 (such as public availability, diversity, designed for the desired use case). For 

example, the VIRAT dataset consists of a 4h single take video stream of one location on one 

day (Oh et al., 2011). This shortage of data leads to slow research of airborne cv-algorithms 

compared to ground-based methods, since acquisition of airborne reference data is still very 

demanding and complicated. The following subchapter discusses the necessary features of a 

high quality evaluation dataset followed by subchapters about generation of airborne datasets. 

The last subchapter closes the dataset discussion with a short conclusion. 

2.2.1 Characteristics of datasets 

Certain characteristics of a dataset for evaluation purposes are fundamental for correct results. 

For instance, when a dataset with blurred edges (defocused) is used to evaluate an edge 

detector, the results will only be valid for exactly this type of images. Thus, (Thacker et al., 

2008) proposes a statistical evaluation of reference data to identify the effect the algorithm 

has by comparing the probability distribution of input and output. (Haeusler & Klette, 2010) 

analysed nine different datasets for stereo matching by using common known feature 

detection and matching algorithms to identify the difference of these datasets. Testing against 

datasets with varying complexities is interesting since it shows the algorithms performance 

behaviour (e.g. covariance between performance and complexity). (McCane et al., 2001) also 

provided datasets of different complexity (synthetic and real) to benchmark algorithms. A 

more enhanced test was introduced by (Baker et al., 2010), incorporating many of current best 

practices for CV-algorithms evaluation. Benchmarking using diverse datasets accompanied by 

evaluation statistics improves the characterization and helps to identify algorithmic 

limitations. This shows that dataset generation should not only create reference data for 

evaluation but also provide its probabilistic statistics and should be of varying complexity, 

with and without perturbations. 

2.2.2 Generation of natural datasets 

Before creating a dataset, use case and purpose of investigation need to be defined. The 

simplest type of dataset consists of images without ground truth, (Kondermann, 2013) 

suggests this type of data to be useful for a proof of concept of a novel category of algorithms. 

Datasets without ground truth can easily be created in high amounts and subjective analysis 

by the researcher then identifies whether the algorithms works or fails in the recorded 

situation. This approach should be followed by further analysis using referenced data. In 
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contrast, the generation of natural datasets with ground truth can get expensive in terms of 

time and budget. Of course, each ground truth acquisition method is strongly dependent on 

the algorithm and subsequently on the data that needs to be acquired. In the following three 

different state of the art approaches to generate natural reference data are presented using 

specific examples: 

• The Middlebury optical flow datasets (Baker et al., 2010) depict compact scenes in a 

staged laboratory environment populated with multiple objects (e.g. toy figures, 

plants). These objects are painted with ultra-violet paint and are moved by mechanical 

actuators to change the scene in small steps. The paint references the scene allowing 

the generation of ground truth in sub-pixel accuracy.  

• For stereo images of static scenes the approach of (Daniel Scharstein et al., 2014) 

allows acquisition of high resolution images with ground truth by projecting structured 

light onto the scene to label correspondences in the two views. This and the previous 

approach are limited to a laboratory environment, which cannot be used to generate 

airborne image content.  

• (Mikolajczyk et al., 2005) used an efficient method working in natural environments, 

where the datasets are recorded using a digital camera on a tripod. The (weak) ground 

truth is computed by assuming a homographic relationship between images, which 

allows depiction of plane surfaces only or limits the camera motion to rotation and 

zoom. 

Aerial imagery differs strongly in regard to perspective, distance, movement or lighting from 

ground-based datasets. These differences need to be considered in design and generation of 

test and evaluation datasets. The ISPRS Benchmark (International Society for 

Photogrammetry and Remote Sensing) of (Nex et al., 2015) has collected data for remote 

sensing applications. Two buildings have been photographed and measured with multiple 

sensors and from several perspectives. The dataset consists of professional airborne images 

shot by a manned aircraft with a highly specialized camera; UAV based aerial images using a 

small lightweight camera and terrestrial images. Terrestrial and airborne laser scanners 

together with geo-coordinate measurements of several hundred locations are used to generate 

the Reference Data. The dataset is currently only partly published and provides ground truth 

for dense image matching and image orientation. This dataset allows algorithm tests in a 

natural urban environment. Since, the purpose of the dataset is to provide evaluation means 
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for remote sensing issues all images have been recorded at sunny weather. Therefore, 

environmental effects (e.g. lighting, fog) or sensor artefacts (e.g. noise, distortion) are not 

covered in this dataset, disabling its use in measuring the robustness of algorithms. 

During the next generation simulation program (NGSIM) (Alexiadis, Colyar, Halkias, 

Hranac, & McHale, 2004) near ground aerial datasets of several highways in the United States 

have been recorded using stationary pole mounted cameras. The focus of the project is to 

acquire driver behaviour to establish and improve traffic simulation. The use of these datasets 

for evaluation of airborne computer vision algorithms is limited due to the missing ego-

motion of the sensor and its focus on streets. Moving vehicle detectors and trackers may use 

this data due to the provided vehicle trajectories. Also in this dataset, environmental 

perturbations are not considered. During the project existing means of data acquisition for 

driver models where evaluated, presenting methods and necessary financial efforts (Hranac, 

2004). For instance, the use of helicopters has been considered, but the spatio-temporal 

limitation of the platform disabled the possibility of holistic vehicle trajectory survey.  

The VIRAT Dataset4, a benchmark for object detection, object tracking and event recognition 

in surveillance videos using COTS surveillance equipment is presented in (Oh et al., 2011). 

The dataset provides terrestrial and airborne image data of several scenes depicting different 

events. The aerial dataset is a video stream of four hours length and depicts the view of an 

aerial platform circling above warehouses and military vehicles in the visible and thermal 

infrared spectrum. Ground truth is provided as manual annotation of persons, vehicles and 

events. The video stream includes also perturbations such as changing viewpoints, 

illumination and zooming and stabilization issues to test the robustness of computer vision 

algorithms. On the other hand, data was record on one day with good weather conditions 

eliminating evaluation of weather-induced perturbations. This benchmark categorizes imagery 

in training-, test- and evaluation-data, where latter consists of scenes not contained in the 

other two to reduce the possibility of overfitting. 

During the Video Verification of Identity (VIVID) program a benchmark for tracking 

algorithms was published (Collins et al., 2005). The benchmark consists of eight aerial scenes 

in the visible or thermal infrared spectrum. The datasets provide a range of images that differ 

in resolution, contrast, and occlusion. Again, weather or sensor perturbation are not 

                                                 
4 Website of the VIRAT dataset: http://www.viratdata.org/ [Last Accessed: 10.09.2015] 
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considered. The ground truth consists of bounding boxes around the objects to track and their 

detailed contours both acquired using human annotation. An evaluation program and example 

baseline algorithms accompany the referenced dataset5. 

Designing and recording data for benchmarks requires significant efforts and human labour. 

For airborne applications, this is increased by the need of an aerial sensor platform. Another 

significant component is the acquisition of reference data for evaluation purposes, which 

introduces additional efforts for natural airborne datasets where automatic annotation methods 

are difficult to apply. Numbers for complete costs of datasets are rarely presented, but 

(Kondermann, 2013) provided some estimates of known datasets (e.g. Middlebury optical 

flow dataset). Further, he estimates the costs for labelling one image from ten to forty dollars. 

In (Vondrick, Ramanan, & Patterson, 2013) the cost and quality of manual image annotation 

is also investigated. They conclude that cheap purely manual annotation is error prone and 

needs to be assisted by intelligent tools reducing the workload of the workers. Generating 

ground truth for airborne imagery is especially difficult since usual methods applied in lab 

environments cannot be deployed. 

2.2.3 Generation of synthetic datasets 

Synthetic datasets in their simplest fashion have a long-standing tradition in computer vision. 

Usually these purely abstract images are used to validate the mathematical model of 

algorithms against their mathematical concept (e.g. grayscale sinusoidal images) and test their 

limits. Later on, more realistic synthetic datasets where generated to create test data more 

closely to the desired use cases. One of the first of this kind is the Yosemite dataset produced 

by Lynn Quam at the Stanford Research Institute (SRI), which became popular due its usage 

in the paper of (Barron et al., 1994). It was produced to test optical flow algorithms and 

consisted of sixteen grayscale images with corresponding ground truth. Computer graphics 

and computer vision are inversely related. Combining these two fields provides the possibility 

to validate the implementation against a known depicted scene (ground truth available). In 

recent years computer graphics have reached the quality that allows realistic impression of 

still life scenes (Szeliski, 2011), while the representation of living beings are still perceived as 

artificial (see the uncanny valley (Mori, MacDorman, & Kageki, 2012)). 

                                                 
5 Website of the VIVID dataset: http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html [Last Accessed : 

10.09.2015] 
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One of the first airborne synthetic datasets was RADIUS (Thornton et al., 1994), which has 

not been computer rendered but consists of model-boards depicting a scaled down landscape 

for airborne 3D-reconstruction, image feature extraction and classification. These boards, 

enriched by landscape, streets and polyhedral 3D-buildings are photographed using a digital 

camera. Therefore, only the scene and not the image acquisition is synthetic. The ground truth 

consists of manual annotations classifying the objects present in the scene. Using this 

reference data, several statistics are compiled to identify and tune to be applied edge 

detectors. 

The Middlebury optical flow evaluation dataset (Baker et al., 2010) includes the Yosemite 

scene into their dataset collection, containing six more synthetic scenes. These scenes also 

depict urban environments and close ups of vegetation. According to the authors, these scenes 

are designed to provide complex test cases with significant occlusion and to have full control 

over the image generation process (e.g. lighting). The main advantage of synthetic scenes is 

obviously the simple extraction of ground truth. In this case, a custom shader extracts the 

motion between two images. Even though the authors speak of realistic synthetic datasets, the 

term realistic is neither discussed nor defined. 

The previously presented datasets are of limited size (small number of images). With the 

generation of the SINTEL dataset for optical flow (Daniel J Butler et al., 2012) an extensive 

and purely synthetic set has been published. It consists of 35 selected clips of the open source 

short film Sintel. These clips add up to 1628 referenced frames separated in test and training. 

Reference data are provided via two dimensional flow fields. The clips have been selected to 

address all major topics of optical flow and to provide a varying dataset. Therefore, scenes of 

various difficulty with a sequence length of 50 frames have been taken. The designers of this 

database compared synthetic scenes with respect to content lookalike ‘natural’ scenes from 

movies or TV shows. By using image and flow statistics as evaluation criteria, they conclude 

that their dataset is more complex and closer to reality than the aforementioned Middlebury 

dataset. Additionally, it is stated that it is “sufficiently rich to be a useful challenge for the 

community and that algorithms that are successful on Sintel are likely to be useful on a 

relatively rich class of natural movies” (Daniel J Butler et al., 2012). 

The Tool Object Video Virtual Video (OVVV) presented by (Taylor et al., 2007) is a 

simulation test bed for public surveillance scenarios. It is based on the game engine Source 

from Valve Software and is able to provide rendered imagery of stationary active Pan-Tilt-
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Zoom (PTZ)-Cameras. The imagery can be perturbed with noise, ghosting, distortion and 

camera jitter. Super sampling (SSAA) is employed to reduce aliasing. Physical cameras have 

no aliasing due to the smoothing effect of imperfect camera optics (optical resolution of 

optics; see modulation transfer function (MTF)) or optical low pass filters mounted in front of 

the image sensor. The presented framework also provides ground truth for persons in images 

in form of bounding boxes and segmented foreground images. Scenarios are created using the 

tools of the engine itself, these can be scripted or AI controlled. The authors also show the 

possibility to create natural terrains using satellite imagery and digital terrain models (DTM). 

They compare their framework against existing natural scenarios of (Toyama, Krumm, 

Brumitt, & Meyers, 1999) by loosely reconstructing the same indoor scenes. The resulting 

differences in performance between these two scenarios are justified by differences in 

implementation and image content. The authors state that “the performance of algorithms 

across different scenarios and relative performance in the same scenario is generally 

preserved using real and synthetic sequences” (Taylor et al., 2007). The possibility to 

simulate an UAV camera footage is mentioned but not detailed. Essentially the used game 

engine limits the size of scenarios, provides no dynamic flight model and restricts the 

resolution of the satellite image based ground texture. The total map size is limited to 215 

Units6 in each direction with 52.48 units being one meter7 leading to a maximum terrain size 

of 600 by 600 meters, which constrains its application for airborne scenarios. 

The Aerial Imagery Change Detection (AICD) dataset of (Bourdis, Marraud, & Sahbi, 2011) 

dataset has been created using the serious game engine Virtual Battle Space 2 (VBS2) from 

Bohemia Interactive Simulations (BISim)8. The engine allows terrain sizes of up to 20 by 20 

km. AICD has been made for evaluation of algorithms detecting local changes in the terrain 

by comparing images shot at different times. The dataset consists of one hundred scenes 

depicted in five different viewpoints with and without illumination changes. Hard shadows 

and occlusions, both prominent problems for change detection, are omitted. Ground truth is 

provided as a mask image depicting the location of the change in white on black unchanged 

background. The method to generate ground truth is not detailed, but the description suggests 

manual annotation. Even though the authors state the dataset is “realistic”, no comparisons to 
                                                 
6 As defined in forge game data (FGD) definition file base.cfg: http://therazzerapp.de/fgd/base.fgd [Last 

Accessed: 16.09.2015] 

7 1 Unit is defined as 1ft: https://developer.valvesoftware.com/wiki/Dimensions [Last Accessed: 16.09.2015] 

8 A serious game development company https://bisimulations.com/company/news [Last Accessed: 16.09.2015] 
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real data confirm this statement. The presented work produced a dataset tackling the issue of 

change detection especially focussing on parallax effects. 

2.2.4 Conclusion 

In the beginning, it was identified that reference data with ground truth is necessary to 

evaluate the performance of computer vision algorithms. This data needs to meet the 

necessary requirements of the use case, leading to the need of specific benchmarks for 

individual research problems. The reference data itself should also be analysed to identify the 

range of possible situations covered. The limiting factor for design and generation of new 

reference dataset are the involved costs in staging scenarios that provide ground truth and 

represent the actual intended use case. In case of airborne applications, the costs are amplified 

even further. Natural datasets provide photographs most closely resembling later use cases. 

Generating airborne natural datasets is expensive. Thus, usually these dataset are limited in 

amount, versatility, covered area and complexity. Additionally, complex technical solutions or 

high manual effort is necessary to generate the necessary ground truth.  

Synthetic datasets have already a long tradition of being used in computer vision. However, 

they are still mostly of abstract nature. Today’s rendering technology now allows the 

generation of sophisticated and complex scenes. Synthetic dataset are cheaper to produce 

while the versatility and amount of data is higher compared to natural data. Direct availability 

of ground truth further increase the efficiency of synthetic data. However, results acquired via 

rendered imagery may differ to those from natural data concerning absolute values. Therefore, 

even though synthetic data could be a promising means for efficient evaluation of (airborne) 

CV-algorithms, it needs to be identified whether the results can be transferred to the real word 

and which image differences exactly affect the tested algorithm. 

2.3 Photographic vs. computer graphic imagery 

After having discussed the availability and building process of natural and synthetic datasets, 

it is of interest to identify the cause of similarities and differences between these image types. 

Comparing the real world with a rendered image or a photograph is difficult due to the 

presentation systems involved. Equal comparison providing the same conditions needs to be 

conducted on the same system towards the receiver, which can be a human or a computer 

vision algorithm. Therefore, the comparison of images needs to be based on a format allowing 
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comparison of photographs and rendering engines. A possible format are 2D representations 

(images) of real world and synthetic 3D environment. The necessary toolchain to acquire 

images can be simplified to following entities: Scene, imaging system, presentation system 

and receiver as depicted in Figure 2-1. The Scene is a 3D space in which position, orientation 

and scale of all objects and the surface are defined. The imaging system converts this 3D 

space into a 2D representation from a specific point of view. The imaging system also 

digitizes the image in a rasterization process into a pixel-based matrix. This digital image 

then can be displayed using a presentation system (in this example a monitor) to convert it 

into a perceivable format. In case of a human observer, this would be radiance. While this 

explanation of the generic imaging workflow only provides a high-level idea, the whole 

process is much more complex. Each element of the flow can be different and this example is 

focussed on the first elements scene and imaging system, because here differences between 

the two image types are introduced. For instance when comparing synthetic and natural 

images the observer can be an objective evaluation method (e.g. Peak-Signal-to-Noise Ratio 

(PSNR)). The presentation system in this case is a digital image format. Thus, differences 

introduced by imaging system and scene are measured. These differences result from specific 

physical or mathematical characteristics of these two components. The imaging pipelines for 

photographic and computer graphic imagery are detailed in the following. Since the observer 

is not a part of the image generation process, it will not be considered in these descriptions. 

 

Figure 2-1: The generic imaging workflow (middle) and two examples: Digital photography (upper) and 

computer generated imagery (lower). Both examples focus on the first section of the workflow and thus 

use common a presentation system (monitor) and observer (human). 



26 State of the art and related work 

Imaging sensors are passive, capturing radiance of the ambient electromagnetic spectrum. 

Thus, lighting characteristics directly influence the resulting image. Spectrum, orientation 

(e.g. spotlight), position and intensity of all light sources within the scene establish the 

framework for the image. Every object is only presented by a reflection, diffusion, 

transmission or absorption of the light sources radiances. For instance, a green apple 

illuminated by a full spectrum light source appears green since this section of the spectrum is 

reflected while the rest is absorbed. In Figure 2-2 the first half of the imaging pipeline for 

digital photography is presented. Here, a light source illuminates a scene consisting of several 

objects. The reflection properties of each object are defined by its form, material (see bi-

directional reflectance distribution function (Nicodemus, 1965)) and size. Further, objects are 

positioned on terrain, which can be an empty field. A part of the light reflected by objects and 

terrain enters the camera systems optics, which focuses the received radiance on the imaging 

sensor. Optics define the maximum angle of light also called field of view (FOV) that can be 

redirected onto the sensor, the amount of light being transmitted to the sensor (aperture) and 

the distance where objects are sharply reprojected (focus). On the other hand, optics can also 

introduce imaging errors and side effects such as blur (scattering the light of the object too 

much), chromatic aberration (scattering the light depending on its wavelength) and optical 

distortions. 

 

Figure 2-2: Imaging pipeline for digital photography. 

The scene is projected through the optics onto the actual sensor, which transforms the 

incoming radiance into a discrete picture element (in short pixel) value. This transformation 

also introduces unwanted distortions such as noise for instance that is a statistical variation of 

intensities during the quantification process resulting from various physical effects (Farooque 

& Rohankar, 2013; STEMMER IMAGING GmbH, 2013). Another imaging error arises when 

an object within the scene has a significant speed concerning the exposure time of the camera. 

It will then appear blurred, which is called motion-blur. The last step, compression, is not 

mandatory and is used to save memory space or bandwidth. Depending on compression 

quality and method, image information gets lost and further artefacts are added. The nature of 
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such artefacts depends on the used compression method. The resulting digital image is 

eventually saved in a shareable image format. 

The workflow of the synthetic image generation process has the same structure but differs in 

terms of implementation compared to the natural image acquisition. The scene also depicts 

objects and terrain but these are modelled with 3D points (vertices), which are connected to 

two other vertices forming a triangle plane called polygon. The modelling artist uses these 

polygons to form the desired objects (wired mesh). These are then coloured and / or textured 

using UV mapping, which maps a 2D image texture on the 3D mesh to give the object more 

detail. For each surface, the light reflection is defined depending on the represented material. 

This combination of mesh (geometry), texture (colour and details) and material (reflection) 

forms an object. All objects are archived in the model database. Surrounding terrain is defined 

by a 3D mesh. Often satellite imagery is mapped on this height grid to texture the terrain. Due 

to memory limitations, the terrain texture is often limited in resolution. This leads to low 

resolution terrain textures when the camera is close to the ground. Thus, sometimes 

procedural detail textures are employed to detail the surface indicated in the satellite image 

(e.g. grass or tarmac) (Roupé & Johansson, 2009). Detail textures, satellite imagery and 

height are encoded into a terrain database, which is then populated with environmental 

objects (e.g. houses or trees). These objects are 3D models stored in the model database and 

positioned via references defining position, orientation and scale. Both databases are the 

foundation on which scenarios are defined in computer graphic engines as depicted in Figure 

2-3. 3D models are simplified representation of their natural pendants leading to differences 

in geometry, material and texture. In Figure 2-3, lightning bolts highlight possible errors that 

might be introduced during the image rendering process. For instance when recreating a 

natural scene possible sources of error are differences in scale and placement of objects. After 

defining the scene, the coordinates are transformed into the camera coordinate system. In this 

camera space, the camera location defines the origin. Thus, inaccuracies in replicating a 

referenced scene are possible errors. The scene is then lighted using a global or local 

illumination method. Global illumination methods are often based on physically correct 

illumination models (e.g. ray tracing), which can produce photorealistic images at the cost of 

increased computation efforts. A key interest of this thesis is the degree of graphical detail 

necessary to achieve functional realism for machine vision algorithm for reactive scenes, thus 

requiring real-time rendering. Therefore, the more computational efficient local illumination 

methods are of interest such as the Phong reflectance model (Phong, 1975). This model 

comprises three components: 
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• Diffusive lighting computes the reflection of light sources using the orientation of 

polygon normal vectors. 

• Ambient lighting defines a constant amount of light that is applied to all polygons 

independent to their orientation. 

• Specular highlights simulate specular highlights on surface that are computed using 

the orientation of polygons and material properties. 

 

Figure 2-3: The generic graphics-rendering pipeline using local illumination. Lightning bolts indicate 

possible sources of error. 

Here error sources are the simulated spectrum and intensity of used light sources as well as 

their location. Additionally, reflections of the environment will be physically incorrect when 

using local illumination. Afterwards the whole scene is transformed using a camera lens 

model that determines the optics field of view (FOV). The (camera) frustum limits the space 

that will be rendered using the maximum and minimum rendering distance or the viewing 

angle defined by the focal length. Objects outside of this frustum will not be rendered to 

reduce the computation effort (clipping). This technique may lead to suddenly appearing 

objects. A similar effect called popping arises when objects are modelled in several Levels Of 

Detail (LOD). LOD are used to reduce the computation effort by reducing the fidelity of 

objects proportional to the camera distance. The transmission between LOD states can appear 

as sudden content changes depending on the implementation of the rendering engine.  

Rasterization summarizes several rendering steps (e.g. clipping, culling, viewport 

transformation, rasterization and hidden surface removal (Z-buffer)) to simplify the 

presentation of the rendering pipeline. More details on this subject can be found in (Bender & 

Brill, 2003) or (Watt, 2000). This process transforms the vector-based representation to a grid 

of quadratic picture elements called pixels. Manifold rasterization methods exist (Bender & 
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Brill, 2003). In this process, a pixel grid overlies the camera view. For example the midpoint 

algorithm (Pitteway, 1967; Van Aken & Novak, 1985) computes the mid of each grid element 

(pixel) border and if a line crosses the border before the middle of the line it is considered part 

of the line and thus coloured. The resulting rasterized edges have a width of one pixel and 

appear jagged. This aliasing effect produces unnaturally high spatial frequencies and optical 

artefacts in the image, especially when animated. Thus, this effect is a source of error and 

influences the quality of images. Another rendering based error is known as Z-fighting. Due to 

limited depth-buffer resolution and rounding effects, the order of polygons in same or similar 

distance to the camera cannot be robustly determined. These polygons then are ‘fighting’ for 

visibility resulting in flickering and alternating textures creating a noisy look (Vasilakis & 

Fudos, 2013).  

After the pixel image has been generated, post-processing effects are deployed to improve the 

visual quality. Possible examples are anti-aliasing methods or cinematic effects such as film 

grain or colour filters. Identical to the digital photography pipeline the digital image can now 

be presented or stored. Compression is not mandatory but usual when storing images or video 

introducing compression artefacts depending on the compression method.  

In summary, while the general components of image generation between digital photography 

and computer-generated imagery are similar, workflows and error sources differ significantly. 

The main errors for each pipeline can be extracted from Figure 2-4. These errors show the 

main differences between these two image types that need to be investigated in order to 

identify, which errors have an impact on the performance of computer vision algorithms. 

 

Figure 2-4: System-related and reproduction errors in digital photography and computer generated 

imagery pipelines. 
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2.4 Realism and fidelity in computer graphics 

Though synthetic datasets are often described as realistic and of high fidelity, commenters 

usually do not further explain what these buzzwords mean in the context of rendered 

computer graphics imagery as for instance can be seen in (Bourdis et al., 2011) or in chapter 

2.2.3. The term realism is often used as an equivalent of the term ‘lookalike’. When observing 

datasets called realistic, they mainly depict real-world scenes, with natural and man-made 

objects using fitted textures of suitable resolution. Light effects are added to increase the 

visual representation. Thus, in this chapter current existing definitions of realism are 

presented, followed by the selection of the most suitable category of realism for investigations 

like this. 

 

Figure 2-5: Three different courses of reception: Real world, real world via camera, virtual world. 

(Blinn, Greenberg, Hagen, Feiner, & Mackinlay, 1988) define photo-realism or photographic 

realism as the quality level where computer rendered imagery is indistinguishable to 

photographs. Since realism in fact compares the visual quality of images to the real world, the 

term describes more a subjective impression closely related to the human vision system. Thus, 

the observer (e.g. human or machine vision system) of the image and his characteristics and 

limitations need to be considered. For example, Figure 2-5 depicts the reception of a scene by 

a human via three different courses. The first course depicts the direct physical perception 

while being personally at the scene. In the second course, the scene is perceived via a 

photograph displayed on a monitor. The last course presents a computer-generated 

representation of the scene displayed on the monitor and again received by the human vision 
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system. Each step involved in the recording and display process can introduce artefact and 

thus alter the visual experience. For this thesis, the interest focuses on the first steps (scene 

and image acquisition) while the observer is being replaced by a machine vision process. 

The fuzziness in definition of the word realism is discussed in (James A. Ferwerda, 2003). 

Since realism of an image is dependent to its application, the author proposes three standards: 

• Physical Realism: “Here the criterion for realism is that the image has to provide the 

same visual stimulation as the scene. […], this means that the image has to be an 

accurate point-by-point representation of the spectral irradiance values at a particular 

viewpoint in the scene. This places strict demands on the image generation process. 

First, the model must contain accurate descriptions of the shapes, materials, and 

illumination properties of the scene. Next, the renderer must be able to accurately 

simulate the spectral and intensive properties of the light energy arriving at the 

observer’s viewpoint. Finally, the display device must be able to accurately reproduce 

these energies. Although physically-based image synthesis methods can achieve the 

first two goals, conventional displays cannot, in general, reproduce the rendered light 

energies, so creating physically realistic images, is currently impossible except under 

restricted conditions.” (James A. Ferwerda, 2003). 

Physical realistic images are generated using physical models simulating the natural 

image generation process. This degree of realism is for instance suitable for 

applications interested in the physics of light scattering and reflections. Drawbacks of 

this method are the computational demand and the deficiencies of current display 

technologies to present the results physically correctly. 

• Photo-Realism: This standard is directed to images that are indistinguishable from 

photographs of the same scene. The author defines this level of realism as “the need of 

the image to produce the same visual response as the scene even though the physical 

energy coming off the image may be different in the scene”(James A. Ferwerda, 2003). 

More simply phrased the rendered and photographed image shall be a look-a-like from 

the perspective of an observer. This kind of realism is used every day. For instance by 

exploiting the nature of the human eye, which integrates the light of small red, green 

and blue transistors to any colour in the visible spectrum. The author concludes that 

“it is unclear that photo-realism is necessary or even desirable in a wide range of 

graphics applications, and second, adopting photo-realism as a standard for visual 
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realism in computer graphics, classifies most renderings as failures, yet says nothing 

about their obvious utility in many application domains.”(James A. Ferwerda, 2003). 

• Functional Realism: The criterion for this category of realism is to provide the same 

visual information as the depicted scene (James A. Ferwerda, 2003): “Information 

here means knowledge about meaningful properties of objects in a scene, such as their 

shapes, sizes, positions, motions and materials that allows an observer [receiver] to 

make reliable visual judgments and to perform useful visual tasks”. He suggests, “if 

an image lets you do the task you need to do, and allows you to perform the task as 

well as you could in the real world, then for that task, the image is realistic” (James A. 

Ferwerda, 2003). He further provides an example about computer graphics in flight 

simulators. “Typically, they [images rendered for flight simulation] are not physically 

accurate simulations, nor are the photo-realistic renderings, but they are functionally 

realistic in that they provide the observer [receiver] with much of the same visual 

information that they would receive if they were flying a real plane. The proof of the 

realism of these images is that they allow the observer to learn skills that then transfer 

into the real world” (James A. Ferwerda, 2003). Functional realistic images provide 

the necessary information to successfully perform a task, but remove unnecessary 

details, using simpler rendering methods enabling real-time computation and 

interaction. 

(James A. Ferwerda, 2003) then introduces the metrics accuracy and fidelity as measurements 

of functional realism: 

• ”… Accuracy is the correctness of the image in respect to some physically measurable 

property of the scene such as radiance.”(James A. Ferwerda, 2003). More formally 

(Gross, 1999) describes it as “the degree to which a parameter or variable or set of 

parameters or variables within a model or simulation conform exactly to reality or to 

some chosen standard or referent.” 

• Fidelity can be measured by the degree an observer is able to perform a visual task in 

(James A. Ferwerda, 2003) and (Gross, 1999) provides the following definition: “The 

degree to which a model or simulation reproduces the state and behaviour of a real 

world object or the perception of a real world object, feature, condition, or chosen 

standard in a measurable or perceivable manner; a measure of the realism of a model 

or simulation; faithfulness.” 
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This means accuracy can be directly measured, but fidelity needs to be acquired by the 

difference of success rates in task execution with given visual cues. (James A. Ferwerda, 

2003) then presents a model based on probabilistic inference to quantify fidelity. Additionally, 

the functional difference predictor (FDP) is presented, which shall determine whether a 

rendered picture provides a functional difference to a picture rendered with physical-realism.  

Conclusion 

In this thesis, a machine vision algorithm is replacing the human observer. However, most 

definitions of realism consider the receiver to be human and thus consider and utilize the 

limitations of the human vision system. Therefore, a more generic definition of Ferwerda’s 

photo-realism is proposed: 

Perceptual Realism is a more generalized form of the standard photo-realism 

defining a look-a-like to the natural scene as perceived by the observer. The image 

shall yield an equivalent visual stimulation, while reducing the quality of visual cues 

not perceivable by the receiver. The perceptual realism is tuned towards the 

capabilities and limitations of the receiver.  

Current local illumination rendering engines may be able to provide this level of realism. 

Actually, functional realism would suite the desired rendering quality in this thesis very 

neatly, but the actual implementation of a functional realistic rendering engine is dependant of 

a-priori knowledge. This means the visual cues on which the machine vision system is 

sensitive to need to be known beforehand, in order to develop or configure a rendering system 

for the desired application. To identify the visual cues of interest a test bed rendering system 

capable of a higher level of realism is necessary. Thus, by configuring the rendering system 

the necessary visual information for functional realism can be extracted. For machine vision 

systems to be evaluated using synthetic imagery this means influencing visual cues need to be 

available in sufficient (functional) realism, while visual cues that do not affect the 

performance of visual algorithms, can be neglected. 

2.5 Image comparison 

To identify the differences between photographs and computer graphics imagery objective 

quantifiable measures are necessary. These measures need to quantify the differences based on 
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different image properties to allow identification of essential properties via empirical 

experimentation. Image properties of digital imagery can be categorized in various forms (see 

for example (Hoogs & Hackett, 1995)). In this thesis, measures of various image properties 

are grouped into their application domains, since they share similar concepts and / or goals: 

• Image quality measures originate from the desire to measure the quality difference of 

two with respect to content equal images. These are for example used to measure the 

efficiency of compression algorithms. 

• Application driven measures use the actual use case as evaluation criteria and the 

output difference due to usage of different datasets. 

• Scene driven measures extract the scene represented in an image and save it into a 

meta-format. This format is then compared to identify whether two images depict a 

similar scene.  

In the following subchapters, all measures are presented with their original purpose. 

Additionally each measure is evaluated against following questions: 

• Can the measure distinguish between natural and synthetic imagery of the same 

scene? 

• Can the measure identify the impact exchanging the type of imagery has on the 

deployed computer-vision algorithm? 

• Can the measure identify the underlying reason (structural difference) leading to its 

optical or performance difference? 

• Has it limitations (e.g. human visual system, very-specific design)? 

The last category presented in this chapter contains general similarity and distance 

measures necessary to compare arbitrary feature vectors. These are deployed to a certain 

extend in all previous mentioned categories and are thus granted a separate category for 

structural purposes. 

2.5.1 Image quality measures 

These measures are intended to compare images directly based on their pixel values (not 

considering the depicted scene). This chapter presents common image quality metrics (IQM). 

Usually these are applied to identify quality deficiencies in regard to noise, blur or 

compression artefacts to evaluate compression techniques. Prominent and simple examples 
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are mean square error (MSE) or peak-signal-to-noise ratio (PSNR). The discussed IQM 

measures are evaluated against their usability to evaluate the given scientific question (see 

Table 2-1). The overview shows that no literature could be found using these measures as an 

evaluation tool to distinguish between natural and synthetic data. Additionally, most methods 

are tuned towards the human vision system due to their main application as quality measure 

for video compression algorithms. Thus, none of the investigated IQM algorithms seem to fit 

the given task perfectly. However, they should be further investigated, since their suitability is 

still unknown. 

Table 2-1: All IQM discussed measures and their suitability to evaluate the formulated scientific question. 
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MSE described in (Horé & Ziou, 2010) Unknown Unknown No No 
PSNR described in (Horé & Ziou, 2010) Unknown Unknown No No 
SSIM (Z. Wang, Bovik, Sheikh, & Simoncelli, 2004) Unknown Unknown No Yes 
MS-SSIM (Z. Wang, Simoncelli, & Bovik, 2003) Unknown Unknown No Yes 
IW-SSIM (Z. Wang & Li, 2011) Unknown Unknown No Yes 
SR-SIM (Lin Zhang & Li, 2012) Unknown Unknown No Yes 
FSIM (Lin Zhang, Zhang, Mou, & Zhang, 2011) Unknown Unknown No Yes 
MAD (Larson & Chandler, 2010) Unknown Unknown No Yes 
Visual Difference Predictor (Daly, 1992) Unknown No No Yes 
JND (Lubin & Fibush, 1997) Unknown No No Yes 
NSS (Sheikh, Bovik, & Cormack, 2005) Unknown No No Yes 
Contrast (Ke, Tang, & Jing, 2006) Unknown No Yes Yes 
Blur (Tong, Li, Zhang, & Zhang, 2004) Unknown No Yes Yes 
Hue Count (Ke et al., 2006) Unknown No Yes Yes 
Edge Distribution (Ke et al., 2006) Unknown No Yes Yes 
Focus (Ke et al., 2006) Unknown No Yes Yes 

MSE sums the mean square distances between reference image r and test image t with a 

resolution of M by N and divides the result through the multiplication of the resolution (Horé 

& Ziou, 2010): 
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PSNR divides through MSE and adds a logarithmic scale leading to higher values indicating 

higher image quality (Horé & Ziou, 2010): 
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These metrics are simple to compute but still show good performance for measuring the 

difference to a reference. For instance according to the statistical analysis of (Avcibaş, Sankur, 

& Sayood, 2002), out of 26 evaluated image quality metrics MSE still provides the best 

measurement when assessing noise in images. However, when measuring blur or compression 

artefacts other metrics are more suitable. Further, full-reference measures (see Figure 2-6) 

such as MSE need the distortion-free reference image for comparison (Delepoulle, Bigand, & 

Renaud, 2012). Such approaches cannot be used characterize specific image properties, 

because of their holistic view of the image.  

(Oelbaum, 2008) discusses all three major visual quality measure concepts: full reference, 

reduced reference and no reference. The reduced reference measures compare distorted 

images against parameters extracted from the reference to save bandwidth. Possible 

parameters are wavelet transformation coefficients. No reference measures directly process 

the distorted image and rate to the contained distortion. The difficulty for no reference 

measures is to distinct whether specific image content is supposed to look this way or if 

distortion reduced its quality. A standard approach in using these measures is the combination 

of several parameter measurements into one rating. Generally, they try to measure which 

artefacts are usually not present in natural images. (Oelbaum, 2008) 

 

Figure 2-6: The three image quality measure concepts. Summarized from (Oelbaum, 2008). 

In (Z. Wang et al., 2004) the structural similarity (SSIM) measure is presented. (Lin Zhang, 

Zhang, Mou, & Zhang, 2012) consider this algorithm a milestone in the development of novel 
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full-reference image quality measure. Structural information in an image is defined in (Z. 

Wang et al., 2004) as “those attributes that represent the structure of objects in the scene, 

independent of the average (local) luminance and contrast.” The concept consists of three 

basic measurements of luminance, contrast and structure. The image is normalized using the 

acquired measures of luminance and contrast and the structural similarity is computed. 

Afterwards the three measurements are combined by a weighed multiplication. This measure 

shows higher performance compared to MSE or PSNR for the surveyed distortions. Further 

improved versions of this approach are multi scale-SSIM (MS-SSIM) (Z. Wang et al., 2003) 

and information content weighted-SSIM (IW-SSIM) (Z. Wang & Li, 2011). According to (Lin 

Zhang et al., 2012) IW-SSIM provides “pleasing” results while SSIM is still the fastest of all 

“modern” IQM’s. (Kundu & Evans, 2015a) recently tested all common modern metrics on 

synthetic images concerning interpolation, blur, additive noise, JPEG compression artefacts 

and fast fading. The authors identified that other modern IQM’s such as the spectral residual 

based similarity measure (SR-SIM) (Lin Zhang & Li, 2012), feature similarity index (FSIM) 

(Lin Zhang et al., 2011) or the most apparent distortion (MAD) (Larson & Chandler, 2010) 

outperform the structure based metrics on synthetic data. However, all of these metrics 

understand image quality only related to the presence of sensor or compression artefacts. 

(Kudelka, 2012) uses these IQMs to determine the quality of textures. It is commonly 

identified that the need for greyscale images as input is a major drawback of most IQMs. 

Image quality measures that consider the perceptual limitations of the observer have also been 

designed. Currently, however these are solely tuned towards the human visual system. A very 

prominent full-reference example is the visual difference predictor (VDP) (Daly, 1992). The 

threshold model marks areas where difference in quality exists and is visible to a human 

observer. The amount of difference cannot be extracted. The measure calculates a probability 

of error detection for every image pixel. The model does not consider colour. A similar 

measure providing the same output is just noticeable differences (JND) (Lubin & Fibush, 

1997), which additionally considers colour. (Boulenguez, Airieau, Larabi, & Meneveaux, 

2012) conduct a psychophysical experiment to identify significant criteria on perceived 

quality of computer graphic imagery. The investigation identified that “contrast, noise and 

shadows have a major effect on the overall [perceived] quality” in comparison to colour 

bleeding and aliasing. The conclusion of the authors applies to human observers only and 

computer vision algorithms may weigh the importance of features differently, but the general 

approach can also be applied to machine vision after the perceptual limitations of the 

investigated algorithm have been modelled or measured. 
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A no-reference metric to measure the quality of images based on natural scene statistics 

(NSS) is presented in (Sheikh, Bovik, & Cormack, 2005). These statistics are acquired by a 

wavelet (spatial frequency) based image evaluation. The resulting image decomposition is 

used to construct histograms depicting the relationship of image frequency magnitudes at 

different decomposition scales. These histograms are used to feed a normalized (mean and 

variance) probability model. (Sheikh, Bovik, & Cormack, 2005) use NSS to identify that 

increased JPEG2000 compression (which is also based on wavelets) degrade the natural 

wavelet structure of images. This finding is used to implement a measure of image quality 

assessment for compression quality. The performance of NSS based metrics on synthetic data 

is evaluated in (Kundu & Evans, 2015b) showing that distortion in synthetic images also 

change the scene statistics and are therefore detectable. Numerical results attribute NSS 

metrics better results than aforementioned full reference metrics PSNR or SSIM. However, 

most models of non-reference IQM’s need distortion less images to train their models, making 

the comparison of natural with synthetic images difficult. Additionally, only the overall 

quality difference is quantified without identifying the cause. However, specialized metrics 

exist for blur (Marziliano, Dufaux, Winkler, & Ebrahimi, 2002), noise and blocking artefacts 

(Z. Wang, Bovik, & Evan, 2000) as pointed out by (Oelbaum, 2008). 

In contrast to above image quality measures (Ke et al., 2006) present photo-quality features 

and metrics for specific image properties. The goal of the authors is to learn a classifier that 

robustly differentiates between professional photos and snapshots. In the process of this work, 

the authors formulate several interesting measures of image properties: 

• Spatial distribution of edges: The distribution of edges indicate the location of the 

subject and whether the background is cluttered. In general, this feature describes the 

spatial composition of the image. The metrics compare the frequency domain image 

against the mean spatial frequency distributions of high- and low-quality images 

derived from training datasets. 

A second metric uses edges as features to compute the area of a bounding box 

enclosing 96% of highest energy edges (sharpest). Since professional photos focus on 

the subject, a small bounding box is expected.  

• Colour distribution: A histogram for each channel is calculated to create a three 

dimensional space histogram and is compared to the closest related histograms 

computed from the training dataset. 
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• Blur: In high quality photos, at least one segment of the image should be sharp. The 

authors present a metrics based on Fast Fourier Transformation (FFT) of the image. 

• Contrast: Contrast is determined by acquiring the width of the additive grey level 

histogram of all three colours encapsulating 98% of all pixel values.  

(Ke et al., 2006) identified the blur detector to be most discriminative feature followed by 

edge spatial distribution and contrast to classify between low- and high-quality photographs. 

However, the derived features may generally help in describing the quality and structure of an 

image. Unfortunately, the presented approach depends on training data, which diminishes its 

value since the effort to produce general valid training data is high (large natural database, 

different sources, manual annotation). 

2.5.2 Application driven measures 

Measures presented in this chapter evaluate images in the context of their use case. Thus, 

images are assessed whether they provide all necessary visual information necessary to 

perform a specific task (chapter 2.4). The previously presented image quality measures 

compare images by measuring differences between pixels or by computing the detection 

probability of differences for a specific observer. (J. A. Ferwerda & Pellacini, 2003) states 

that “images are functionally equivalent with respect to a task” when the task can be 

performed while the image has visible perceptual differences. This statement is tested via a 

psychophysical experiment using humans as observers and judge. The subjects had to perform 

tasks on the presented rendered images, which also contained visible errors. The author 

concludes that “subjects are either totally affected or totally unaffected by the errors, 

depending on the type of error [distortion] introduced.” Additionally, it has been identified 

that even though the test subjects were aware of errors in the image, these did not affect their 

task execution performances. (J. A. Ferwerda & Pellacini, 2003) demonstrates a novel concept 

to base the quality of images on their influence on tasks performed by the receiver. 

Rudimentary psychophysical experiments are conducted validating aforementioned 

hypothesis. While the hypothesis itself may sound obvious, it carries the message that image 

quality needs to be set into context. Therefore, depending on the task, different kinds of errors 

affect the task performance in an image. For instance, the task of counting vehicles in an 

image may be robust to noise while the task to identify the colours of such could be affected. 
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Aforementioned investigation regards the human as image observer and thus measures the 

perceptual quality of images in respect to humans. Similarly, application driven quality 

measures are also beneficial with machine vision algorithms as observer. Advanced Driver 

Assistance Systems (ADAS) for instance use computer vision algorithms depending on sensor 

information to assist the driver in manifold ways (e.g. automatic cruise control, lane detection 

assistant, etc.). (Nentwig & Stamminger, 2011) evaluate applications for vehicle detection and 

lane detection on natural and synthetic (reconstructed scene) data to identify whether the 

provided visual information of both data types is equal for these two use cases. For vehicle 

detection, an algorithm to predict the distance of a vehicle in front is used as evaluation 

criteria and the result deviation between the two datatypes on the same scene are presented in 

percentage. The average deviation between results from natural and synthetic data is 5 to 10% 

depending on the evaluated scene. The lane detection algorithm is evaluated using lane view 

distance computations. Here depending on the evaluated scene the average deviations range 

from 3.2% to 18.8%. These deviations are attributed to inaccuracies in the simulation 

environment (e.g. weather model, scenario configuration). In this empirical evaluation, 

synthetic imagery still does not contain the same visual information (necessary for the vision 

task) compared to natural imagery. However, small average deviations show that in future this 

goal could be met after the necessary visual cues have been identified, which however is not 

possible using this approach. Comparing the method to the image quality measures (chapter 

2.5.1) it qualifies as full-reference measure (Figure 2-7). In terms of realism levels discussed 

in section 2.3, this approach identifies the functional realism of computer-generated images. 

The similarity measure quantifies the functional realism between one (full) and zero (no). 

 

Figure 2-7: The empirical application driven image quality evaluation of (Nentwig & Stamminger, 2011) 

put into the context of image quality assessment. 

In (Nentwig et al., 2012) the influence of lighting and camera model on the applications 

results is discussed. Three shadow generation techniques were evaluated against reference 

photographs by comparing the luminance and magnitude of gradients. The comparison was 



2.5 Image comparison 41 

conducted in a manual and qualitative way. The deployed rendering engine applies an 

atmospheric model (e.g. (Hoffman & Preetham, 2002)) to calculate the luminance in the 

image and different reflection values for road, vehicle or other entities using the BRDF-

function (Bidirectional reflectance and distribution function9). These parameters are manually 

calibrated to minimize the difference to the reference image in respect to structural, geometric 

and photometric difference. Additionally, physical camera effects such as depth of field, noise 

or motion blur are added to the simulation. The vehicle classifier of (Nentwig & Stamminger, 

2011) is used to evaluate the optimized synthetic imagery by computing the rates of true and 

false hypotheses and categorize them in regard to the depicted object. The results show, 

synthetic images produce a similar true to false ratio of hypotheses, however the absolute 

number differs by a factor of three. The statistical analysis identifies significant differences 

between the images depicting vegetation or vehicle. These deviances are concluded to be 

caused by differences in modelling or shading. In conclusion, the mentioned papers present 

image quality or image similarity metrics based on the performance differences and statistics 

of computer vision algorithms. Such approach can be categorized as application driven image 

quality measure, since the deviance to the reference (photograph) is caused by a different 

image structure reducing the capabilities of the computer vision algorithm. In such case, the 

synthetic image generation is not fully functional realistic, but the degree of difference can be 

calculated. 

2.5.3 Content driven measures 

This last type of measures consider the content or scene in the image. Table 2-2 provides an 

overview of all measures discusses in this chapter and their suitability to answer the scientific 

question according to the question formulated in chapter 2.5.The overview shows that all 

measures presented in this chapter have the possibility to identify a fundamental cause of 

image differences, because they are designed to evaluate very specific image properties. Most 

of the measures defined by (Tang, Luo, & Wang, 2013) are focussed towards grading the 

artistic degree of imagery which reduces their applicability as a more general quality measure. 

The measures defined by the MPEG7 standard show high potential, however their capability 

to distinguish between natural and synthetic imagery hasn’t been evaluated yet. Thus, none of 

                                                 
9 The BRDF (Bidirectional reflectance and distribution) function defined by Fred Nicodemus (Nicodemus, 
1965). This function describes the reflectance of light on solid not transparent surfaces depending on the 
incoming light direction, the normal vector of the surface, incoming radiance and outgoing radiance. Thus the 
reflection of a light by an object depending on the location of the viewer and the pose and position of the object. 
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the measure fit the given task perfectly and further investigation is necessary. The chapter 

now presents each measure in detailed. 

Table 2-2: All discussed content driven measures and their suitability to evaluate the scientific question. 
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Hue Comp (Tang et al., 2013) Unknown Unknown Yes Yes 
Scene Comp (Tang et al., 2013) Unknown Unknown Yes Yes 
Dark Channel (Tang et al., 2013) Unknown Unknown Yes No 
Complexity Feature (Tang et al., 2013) Unknown Unknown Yes Yes 
MPEG7 DCD (Ohm et al., 2002) Unknown Unknown Yes No 
MPEG7 SCD (Ohm et al., 2002) Unknown Unknown Yes No 
MPEG7 CSD (Ohm et al., 2002) Unknown Unknown Yes No 
MPEG7 CLD (Ohm et al., 2002) Unknown Unknown Yes No 
MPEG7 EHD (Choi, Won, Ro, & Manjunath, 2002) Unknown Unknown Yes No 
MPEG7 HTD (Choi et al., 2002) Unknown Unknown Yes No 

In (Luo, Wang, & Tang, 2011) and their follow-up paper (Tang et al., 2013) the authors assess 

the quality of photographs based on regional and global features estimating the images 

composition. The authors assume that for different photographic content (for example 

“landscape” or “portrait/human”) the number and type of relevant features differs vastly. They 

state “for landscape photos, well balanced spatial structure, professional hue composition, 

and proper lighting are considered as traits of professional photography” (Luo et al., 2011). 

The following features are listed: 

• Global Features use the image as a whole for computation. 

o Hue Composition measures the colour composition scheme of an image 

o Scene Composition detects long continues edges often providing semantic 

meaning and characterizes these. 

• Regional Features measure specific properties of the image subject, which is 

extracted using region detection algorithms. 

o Dark Channel measures blur, colour saturation and colour composition. 

o Complexity compares the complexity of the subject against the background.  

Specifically the results of category “landscape” are of interest for this thesis as it comes 

closest to aerial images. The dark channel feature (measuring clarity and colourfulness) 

discerns between high and low quality images, followed by the hue composition feature. The 
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features show good capabilities in describing the difference of image content instead of global 

measurements based on image distortions (e.g. IQMs). 

Other methods analysing the content of images for comparison can be found in the Content-

Based Image Retrieval (CBIR) domain, which uses the image content to find content-related 

images. Here, the image content of a “search” image is compared to prior derived and stored 

content property descriptions of available images called image description database. The 

distance between the feature descriptions of the “search” image and database are computed 

using distance and similarity measures presented in section 2.5.4 and the most similar images 

are determined. Many features to describe an image have been formulated. The most 

prominent features are colour (Swain & Ballard, 1991), (Stricker, Stricker, Orengo, & 

Orengo, 1995), texture (Manjunath, Ohm, Vasudevan, & Yamada, 2001), (Haralick, 

Shanmugan, & Dinstein, 1973) and shape features (Loncaric, 1998), (Safar, Shahabi, & Sun, 

2000). 

The motion picture expert group (MPEG) standardized in ISO/IEC 15938 “Multimedia 

content description interface” a content description scheme for video, audio and text, 

abbreviated known as MPEG7 (Sikora, 2001). The standard mainly defines interfaces, 

semantics and syntax of descriptors and the descriptions themselves in suitable ways. To keep 

the standard flexible the actual concept of“…, how similarity between images or video is 

defined is left to the specific applications requirements” (Sikora, 2001). Visual MPEG7 image 

descriptors are categorized in colour, texture, shape, human face or motion descriptors. A C-

implementation of these descriptors can be found in the experimental model (XM) (Motion 

Picture Expert Group, 2003). The concepts of the descriptors are detailed in (Cieplinski, Kim, 

Ohm, Pickering, & Yamada, 2000). The following introduction was first published in 

(Hummel & Stütz, 2014)10. 

 

Figure 2-8: The MPEG7 Colour descriptors. Image based on (Manjunath et al., 2001). 

                                                 
10 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13823-7 
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The first presented group of MPEG7 content descriptors is colour oriented (Figure 2-8). The 

Scalable Colour Descriptor (SCD) is a global 256-bin colour histogram in the HSV colour 

space. The bin values are non-uniformly quantized to reduce the size of the descriptor. Haar-

Transformation is used to reduce the amount of data even further (Manjunath et al., 2001). 

The distance between two colour histograms is calculated by matching the Haar-coefficients 

with the Manhattan distance (L1). Thus, SCD evaluates the global difference in colour 

composition between two images. The example in Figure 2-9 the colour distribution of three 

images based on this feature the left and the middle image show higher similarity. 

3  

Figure 2-9: Three example images and their colour distributions. 

The Colour Structure Descriptor (CSD) expresses the global colour features as well as the 

local colour structure by using an 8x8-pixel structure element (kernel) to count pixels of every 

present colour as depicted in Figure 2-10. The kernel is sweeping over the image describing 

the local colour structure at 64 uniformly distributed locations. For images with a resolution 

greater than 640x480 pixels, subsampling is used to cover the image uniformly (Buturovic, 

2005). This way, CSD can even discern images that globally have the same amount of (e.g. as 

depicted in colour histograms) but different spatial distribution of colour among the image. 

Thus, CSD serves as a spatial distribution measure of colour content in the image. 

 

Figure 2-10: Example for structured and unstructured colour distribution (Cieplinski et al., 2000) 
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The resolution invariant Colour Layout Descriptor (CLD) describes the spatial distribution of 

colour in the YCbCr colour space. As depicted in Figure 2-11 the descriptor separates an 

image into 64 blocks (8x8) and computes the average colour for each block as its 

representative colour. Encoding of the resulting image is performed by zigzag scanning the 

image and applying a discrete cosine transformation. (Spyrou, Tolias, Mylonas, & Avrithis, 

2009) concludes that CLD to be an especially effective descriptor for sketch-based image 

retrieval, content filtering and visualization. This descriptor allows the spatial comparison of 

dominant colours. Thus, this measure can be used to measure unneglectable misalignment of 

object or camera position or orientation between two images. 

 

Figure 2-11: Steps of the Colour layout descriptor: a) Original image (J. Z. Wang, Li, & Wiederhold, 2001) 

b) subdivided image c) compute average d) zigzag scanning. 

The Dominant Colour Descriptor (DCD) is a very compact descriptor describing up to eight 

colours dominating the images colour composition, the covered area per dominant colour in 

percentage and variance as well as the spatial coherency of dominant colours (Spyrou et al., 

2009). The distance is calculated via the colour distance measure presented in (Ma, Deng, & 

Manjunath, 1997), which computes the Euclidian distance (L2) between the colours 

identifying the closest related colour and multiplying the result with the difference in areal 

coverage for each colour. The DCD allows non-location based comparison of dominant 

colours and their amount of appearance. 

 

Figure 2-12: Texture Descriptors defined in the MPEG7 standard and their selective property 

In CBIR the term texture is defined as a visual pattern with possibly homogenous properties 

that result from multiple colours and intensities in an image (Sikora, 2001). These peculiar 

patterns provide powerful means for similarity matching. In the MPEG-7 standard three 
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texture descriptors are defined (see Figure 2-12), the Edge Histogram Descriptor (EHD), the 

Homogenous Texture Descriptor (HTD) and Texture Browsing Descriptor. The scale invariant 

Edge Histogram Descriptor also known as non-homogenous texture descriptor captures the 

spatial distribution of edges similar to the CLD. The image is divided in 16 (4x4) equal blocks 

and edge orientation is calculated for five different categories as depicted in Figure 2-13. The 

resulting 80 bins (5x16) are useful to estimate the similarity of images containing non-

homogeneous textures such as objects or non-repeating structures. This descriptor allows 

spatial comparison of contrast gradients (edges) distributed among the image. The distance 

between two EHD feature vectors is computed using the L1-Distance measure. 

 

Figure 2-13: The five types of edges extracted from the edge histogram detector (Cieplinski et al., 2000). 

The Homogenous Texture Descriptor (HTD) expresses the amount of structure inside an 

image by directionality, coarseness, regularity of patterns, etc. Since the descriptor focuses on 

image structure it is well suited for similarity matching in texture databases to identify 

corresponding repetitive patterns. The descriptor is calculated by converting the image into 

the frequency domain and filtering it by orientation and scale into 30 different channels as 

depicted in Figure 2-14. For each channel, the energy and energy deviation are calculated. The 

conversion in the frequency domain introduces the requirement of an image to have at least a 

size of 128 x 128 pixel for being able to compute the HTD. The distance between two HTD 

feature vectors is computed using the Mahalanobis distance. Further details about the 

descriptors math is detailed in (Ro & Yoo, 1999). 

The Texture Browsing Descriptor is a very compact descriptor (12Bits length) that describes 

the regularity, directionality and bumpiness of a texture. Since textures can have more than 

one dominant direction and scale (bumpiness), the specification allows a maximum of two 

different values for each property (Manjunath et al., 2001). The regularity value defines the 

degree of uniformity of a periodic pattern with zero being random and three being clear in 

direction and bumpiness. The directionality of a value provides the dominant directions in six 

values ranging from zero to 150° in 30° steps. The bumpiness is provided with four values 

ranging from zero (fine grained) to three (rough-grained). The computation of the texture 
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browsing descriptor presented in (Manjunath, Wu, Newsam, & Shin, 2000) is closely related 

to HTD. The distance between two feature vectors is computed using the Manhattan distance 

(L1) normed by the standard deviation of each feature component is used. (Manjunath et al., 

2000) 

 

Figure 2-14: Segmentation of the frequency domain according to displayed layout for feature extraction 

(Cieplinski et al., 2000) 

Another possibility to measure the similarity between images is shape extraction and 

comparison of presented objects. Out of all MPEG7 descriptors, only shape features allow 

object identification. These descriptors (see Figure 2-15) are presented in (Bober, 2001). In 

general, shape can be identified by the filled shape of the object (region based) and by their 

actual contour. Requirements to shape descriptors are compactness, fast computation and 

being invariant to scaling, rotation, translation and many shape distortions (e.g. perspective 

transform, segmentation errors). 

 

Figure 2-15: Shape descriptors as defined by the MPEG7 standard. 
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The 3D shape descriptor or shape spectrum descriptor computes the minimum and maximum 

curvatures at each vertex point of a 3D-mesh and provides it using a histogram. The 

descriptor is designed for description 3D shapes and thus has no role in 3D image description. 

More information can be found in (Bober, 2001), (Grana & Cucchiara, 2006) or (Lisha Zhang, 

da Fonseca, & Ferreira, 2007). 

The Angular Radial Transformation (ART) region based shape descriptor computes 

transformation invariant region-based moments. These are acquired through angular radial 

transformations on a unit disk in polar coordinates. This 2D descriptor is compact and robust 

to segmentation noise (Sikora, 2001).  

The 2D contour based shape descriptor describes object shapes by their contour. It uses the 

Curvature Scale-Space (CSS) contour representation and includes eccentricity and circularity 

values of original and filtered contours (Sikora, 2001). In depth knowledge to CSS can be 

acquired in (Bober, 2001). The main advantages of the descriptor is its ability to distinguish 

between shapes of similar region but varying contours. This descriptor is robust to non-rigid 

deformations and perspective transforms (Bober, 2001). 

The 2D/3D shape descriptor can use the aforementioned 2D descriptors do define a 3D-object 

using multiple 2D snapshots. This 3D shape descriptor provides good results when the camera 

is rotating around the object but for aerial images this descriptor is of lower importance. 

The MPEG7 standard also defines descriptors for motion and face identification and 

recognition. These are not addressed due to their limited benefit in the per image comparison 

of aerial images. For more information refer to (Sikora, 2001) or (Cieplinski et al., 2000).  

In conclusion, MPEG7 provides four colour, two texture and two shape descriptors that may 

help to identify the similarity or differences of images on a content-based level. Texture 

Browsing and the two 3D shape descriptors have been dropped since their intended duty 

differs strongly from the desired use case. 

In general, high-level description of properties provide a powerful tool to identify the 

similarity of images based on specific image attributes. However, it must be highlighted that 

high differences do not correlate to high quality differences. Whether these descriptors are 

helpful to identify image differences between natural and synthetic data needs to be 

investigated. 
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2.5.4 Similarity and distance measures 

To identify the similarity or difference of images they need to be compared. Chapter 2.5.1 and 

2.5.2 presented measures allowing direct comparison. The previous chapter presented 

methods to describe the appearance and content in various ways. Still all measures need the 

ability to compare some form of image description whether it be the direct image pixel or an 

abstract feature vector. This can be conducted using existing distance and similarity measures. 

The MPEG7 standard for instance provides a distance measure for each defined descriptor.  

The most common deployed distance metric is the Manhattan Distance (L1). It is derived 

from the more general Minkowski Distance Lp. The dissimilarity of feature vectors or images 

directly can be calculated using Lp, where n is the number of features, xi the feature value of 

image X, yi the feature value of image Y and p the order: 

𝐿𝐿𝑝𝑝 =  ��|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑝𝑝
𝑛𝑛

𝑖𝑖=1

�

1
𝑝𝑝

 (3) 

Another well-known derivate of this metric is the Euler Distance (𝑝𝑝 = 2). The presented 

measures are called distance measures since they indicate the dissimilarity between two 

feature vectors. The greater the value, the larger the difference of the measured features. Two 

feature vectors are completely identical when the distance zero (Backhaus, Erichson, Plinke, 

& Weiber, 2006). Similarity measures on the other hand are greater, the larger the similarity 

between feature vectors is. In (Goshtasby, 2012) it is stated that similarity/dissimilarity 

measures do not need to be metric in order to provide effective measures. Comparable values 

are of metric, nominal, binary or probabilistic scale. Metric data are scaled by intervals and 

can be compared by differences of similar structured variables and vectors. A nominal scale is 

used once two variables or vectors contain absolute frequencies of occurrences. In Figure 

2-16, a selection of measures is provided. 

A very detailed list of binary measures can be found in (Seung-Seok et al., 2010), while 

nominal measurements are further described in (Sulc, 2014), (Michel, 2000). Interval based 

measures are the most commonly known measures and are detailed in (L. Wang, Zhang, & 

Feng, 2005), (Goshtasby, 2012) and (Brosius, 2013). Probabilistic measures are less common, 

since distributions can be transformed into nominal or interval scales. More about 

probabilistic measures or transformation of such can be found in (Cha, 2007), (Goshtasby, 

2012), (Rahman, Bhattacharya, & Desai, 2005) and (Itoh & Shishido, 2008). 
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In (Goshtasby, 2012) distance metrics are evaluated regarding their performance of measuring 

the similarity of images using a template matching example. This rudimentary comparison 

presents characteristics of used metrics based on raw values, normalized values, ranks of 

values and joint probabilities of corresponding values (Goshtasby, 2012). 

 

Figure 2-16: Selection of similarity and distance measures for different variable types, based on (Backhaus 

et al., 2006), (Cha, 2007), (Seung-Seok, Sung-Hyuk, & Tappert, 2010), (Brosius, 2013) and (Michel, 2000). 

The Mahalanobis distance is a special metric that is able to compute the distance between a 

feature vector and a distribution. The distance is given in the number of standard deviations 

the vector deviates from the mean (the centre) of the distribution. A benefit of this distance is 

its ability to handle directional distributions (e.g. the Euclidean metric assumes an equal 

distribution for all given dimensions of the feature space). More about this measure can be 

found in (Mahalanobis, 1936) or (De Maesschalck, Jouan-Rimbaud, & Massart, 2000). 

In CBIR systems, the correct choice of distance measures can improve their retrieval 

capabilities. Thus, efforts to improve the metrics in the MPEG7 standard are conducted 

(Eidenberger, 2003b). Most distance measures used in MPEG7 are based on geometric 

assumption since two similar images are expected to be in the same region of the feature 

space of the descriptor. The author compares the deployed metric-based distance measures to 

binary distance measure since these fit better with human perception according to (Tversky, 

1977). It has been identified that distance measures selected in MPEG7 perform well but in 

some cases the measures Meehl index and pattern difference measure perform better. The 

reason for pattern difference better performance is that differences weight stronger than 

similarities (Eidenberger, 2003a). 
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For instance the dominant colour descriptor (DCD) was initially proposed using a quadratic 

dissimilarity measure to compute the distance between dominant colours of different images 

(Deng, Manjunath, Kenney, Moore, & Shin, 2001). In (Yang, Chang, Kuo, & Li, 2008) a 

similarity measure considering the difference of the dominant colours and the difference of 

percentages (amount the colour covers the image) is presented and experimental results show 

its improved performance on visually similar images. 

2.6 Concepts investigating transferability of synthetically acquired results 

As can been seen in chapter 2.2.3 synthetic data are already used for evaluation of  

CV-algorithms. However, these datasets are seldom investigated whether their acquired 

results can be transferred to the real world, which lead to criticism presented in chapter 1.1.3. 

This controversy presents the necessity to validate synthetic data against natural examples. 

This chapter presents approaches emerged in the last years to measure or investigate 

transferability. The metrics used for comparison are based on the questions provided in 

chapter 2.5. Table 2-3 provides a brief overview of all discussed concepts. Afterwards each 

approach is shortly discussed. 

Table 2-3: All discussed concepts and their suitability to answer the given scientific question. 
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Visual Task Performance     
Advanced Driver Assistance Systems (Nentwig et al., 2012) Yes Yes No Yes 
Object Tracker (Hummel, Kovács, Stütz, & Szirányi, 2012) Yes Yes No Yes 
Face localization (Sagonas, Tzimiropoulos, Zafeiriou, & 
Pantic, 2013) Yes Yes No Yes 
Face-recognition (P.J. Phillips et al., 2000) Yes Yes No Yes 
Eye lid localization (Wood et al., 2015) Yes Yes No Yes 
CV-Component Performance     
Optical flow estimation (S. Meister & Kondermann, 2011) Yes Yes No Yes 
Image segmentation (Irgenfried, Dittrich, & Wörn, 2014) Yes Yes No Yes 
Image Statistics     
MPI-SINTEL (Daniel J Butler et al., 2012) Yes Yes No No 
(Kundu & Evans, 2014) Yes No No No 

To successfully answer the scientific question given in chapter 1.2, it is necessary to be able to 

distinguish between natural and synthetic imagery, identify the impact synthetic or natural 

data has on the performance of computer vision algorithms and to determine the cause of this 
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resulting performance difference. Further, the approach should be generally applicable. Table 

2-3 shows that none of the discussed approaches provides these capabilities. 

Visual task performance based approaches: The most common approach is to determine 

the transferability by remodelling the scene of a natural dataset and validate the results 

concerning a specific visual task. For instance in (Nentwig et al., 2012) road vehicles had to 

be detected from the drivers perspective to prototype Advanced Driver Assistance Systems 

(ADAS). Thus, a test drive has been remodelled and restaged in a synthetic environment to 

generate a scene correlating synthetic dataset. The performance of both datasets then provided 

insight about the transferability of synthetically acquired results towards the real world for 

this exact use case and scenario. Testing different configurations of the synthetic environment 

showed that specific settings increased the correlation of synthetic and natural datasets 

leading to improved results of the tested computer vision application. Similarly (Hummel, 

Kovács, Stütz, & Szirányi, 2012) replicated an aerial record of a populated street in an 

synthetic environment to demonstrate the transferability of results. The application, an 

airborne object tracker, was evaluated and results showed that the tracker developed on 

natural data performed better on synthetic data, which was explained by the lack of simulated 

camera or environment distortions. Depending on the visual task, specialized datasets may be 

necessary. Such exist for instance for face localization (Sagonas, Tzimiropoulos, Zafeiriou, & 

Pantic, 2013) or face-recognition (P.J. Phillips et al., 2000). In these special applications, only 

the investigated subject needs to be reproduced. For example in (Wood et al., 2015) a 

synthetic dataset of images depicting a human eye has been generated and compared against 

the publicly available dataset of (Sagonas et al., 2013) for the tasks eye-lid localization and 

appearance-based gaze estimation. They identified that removing eyelid motion and using 

only one lighting condition reduced the performance of the synthetic dataset proofing these 

step important for replication. 

CV-component performance based approaches: The aforementioned papers used complex 

computer vision applications consisting of several processing steps to investigate the usability 

of synthetic data. However, performance differences on natural and synthetic data have also 

been investigated for isolated computer vision algorithms. In (S. Meister & Kondermann, 

2011) a simple engineered scene of a wooden block on a turntable was used to generate a 

natural dataset for optical flow estimation along the method of (Zach, Pock, & Bischof, 2007). 

The same scene was reproduced synthetically in different degrees of detail and the resulting 

optical flow error was measured. The synthetic dataset with least details showed the smallest 
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errors, confirming the statement that algorithms perform best on clean images due to missing 

optical effects. Adding error sources such as shadow, specularity and deploying a more 

complex shader increased the transferability of synthetic results. Still, the errors measured in 

the natural dataset are larger. The remaining differences in error are concluded to origin in 

“suboptimal reproduction of surface and material properties”. The overall optical flow on 

synthetic images is stated to be “too smooth and ‘well behaved’ as the finer structure found in 

real world images is missing”. The authors used a local illumination model to generate their 

synthetic data without using normal or specular maps to create microstructure on the surfaces 

of the wooden block. The authors conclude that geometry and texture quality are the driving 

issues of replicating real scenes since lens distortion and camera noise did result in no 

significant results.  

The effects of synthetic data on segmentation algorithms are evaluated in (Irgenfried, Dittrich, 

& Wörn, 2014). Here, an engineered scene has been replicated using the CAD models of 

objects together with their light reflection and distribution properties (BRDF (Nicodemus, 

1965)). The scene is depicted using a global-illumination rendering engine. The datasets are 

then compared by measuring the segmentation error. Resulting segmentation differences 

between the natural and synthetic dataset show great dependencies on the used segmentation 

method and scene. Segmentation differences between datasets are concluded to result mainly 

from deficiencies in the light source modelling. The results show that the error produced by 

the synthetic dataset to deviate by ~3% from the natural dataset for simple scenes and ~20% 

for complex scenes. 

Image statistics based approach: These methods investigate the transferability of synthetic 

results to the natural domain by direct comparison of image statistics computed for both 

dataset types. These statistics are formulated considering the later used cv-algorithm, but no 

algorithm applied to validate the dataset. Thus, they demonstrate similar statistical properties 

even though the appearance may differ. For example, the MPI-SINTEL dataset (Daniel J 

Butler et al., 2012) is a large scale dataset for optical flow benchmarking consisting entirely of 

extracted scenes from the animated movie SINTEL (Blender Institute, 2010). Here, 

transferability of results is demonstrated by comparing seven image and motion statistics 

against documented natural scene statistics. Additionally, the dataset is accompanied by 

similar natural image sequences extracted from movies and videos called lookalikes. The 

statistics of synthetic, lookalike and natural data are then compared, showing small statistical 

differences between the three sets. This comparison is followed by an evaluation using several 
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optical flow algorithms (equal to the CV-component based approaches above), which perform 

worse on the synthetic dataset compared to the natural datasets. The authors explain this by 

greater complexity of their synthetic dataset. 

A similar approach has been investigated in (Kundu & Evans, 2014) where the structural 

correlation between pixels and their neighbours are calculated using the luminance channel of 

the image. The results are then modelled using a distribution function and the coefficients of 

this model are then compared between natural and synthetic imagery. The author concludes 

“that in the spatial domain, for pristine images, synthetic scene statistics can also be 

modelled in a fashion similar to natural scene statistics.”(Kundu & Evans, 2014). This 

suggests that synthetic and natural images follow the same underlying statistical principles 

and thus this approach can be used to characterize their differences. 
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3 Concept 

The previous chapter presented current investigations about computer vision algorithm 

evaluation, natural and synthetic dataset comparison, computer graphic realism, image 

comparison methods and concepts measuring transferability of synthetically acquired results. 

As specified in chapter 1.2, these foundations now serve to define an experimental concept 

that allows to 

• investigate the usability of synthetic datasets for computer vision algorithm 

developments and evaluation. (Objective 1) 

• identify the underlying reasons for algorithm performance differences when being 

applied on natural and synthetic datasets by correlating them to image content 

properties. (Objective 2) 

• identify rendering techniques influencing these properties. The results shall help to 

formulate recommendations for modelling artists and computer graphics programmers. 

(Objective 3) 

Already existing approaches investigating the possibility to transfer results acquired from 

synthetic data to the real world are presented in chapter 2.6. While some show promising 

results, the scope of these approaches does not extend to the identification of underlying 

principles. For example, (Longhurst et al., 2003) investigated visual artefacts that raise the 

perceived realism for a human observer (chapter 2.4). (Nentwig et al., 2012) on the other hand 

analysed the performance of a computer vision algorithm on natural and synthetic data and 

investigated which rendering techniques positively influenced its performance. However, the 

underlying alteration in performance was not identified (chapter 2.5.2 and 2.6). Still this is of 

major importance if a synthetic environment shall be designed for benchmarking of computer 

vision algorithms. Insight, which image properties need to be modelled accurately and which 

can be neglected should not only boost the quality (transferability) of the results and increase 

the acceptance due to objective measures, but also reduce the benchmarking costs. 

Considering conventional and new emerging evaluation methods (see chapter 2.6), a generic 

concept measuring the transferability of results and pinpointing the remaining performance 

differences of an evaluated CV-algorithm to the causing image properties is presented in the 

following subchapter. 
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3.1 General concept 

The evaluation procedure of computer vision algorithms greatly depends on the type of 

algorithm, the intended visual task (e.g. vehicle detection) as well as the deployment- or test-

scenario. Similarly, concepts identifying the validity of using synthetic data for cv-algorithm 

evaluation are depending on the same factors. These factors are considered in the general 

evaluation concept, which is intended to allow investigation of essential image properties and 

influencing rendering technologies to identify a trade-off between modelling detail and 

algorithm performance in relation to natural images. Further, it is intended to provide 

recommendations towards a benchmark simulation system that indicates to what degree the 

results from synthetic data are transferable to the real world. The concept presented in this 

subchapter was first published in (Hummel & Stütz, 2014)11, refined in (Hummel & Stütz, 

2015)12 and is summarised and updated here. 

The multi-level concept consists of four layers as depicted in Figure 3-1. The first layer 

comprises of reference and test datasets. Reference data are natural images depicting a scene 

to be processed by a specified CV-algorithm type. The corresponding test data are generated 

from a synthetic environment and depicts a remodelled variant of the reference data scene. It 

is necessary to generate the test datasets in the synthetic environment using a sensor model 

representing the deployed real sensor (resolution, FOV, distortion, noise, etc.). In this 

environment, the scene is replicated within the limits imposed by hard- and software.

 

Figure 3-1: Simplified general multi-level concept. 

                                                 
11 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13823-7 

12 The final publication is available at CSREA PRESS via ISBN: 1-60132-404-9 
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A visual task here is defined as an assignment that can be fulfilled using optically acquired 

data. A simple example would be to count the number of cars in an image. This can be 

realised technically using CV-algorithms. For instance in (Nentwig & Stamminger, 2010) the 

visual task to detect preceding vehicles with a dashboard mounted camera was implemented 

using a learned classifier based on Haar-wavelets (Viola & Jones, 2001). The test object is the 

actual algorithm selected to perform the visual task. The algorithm is located in level two 

together with the image content description. 

After the test object is applied in parallel on consecutive reference and test images the 

algorithms performance on both image types is evaluated by comparing the calculated results 

to available ground truth. This is the first part of the transferability analysis and named test 

object performance difference. The performance on the reference dataset is selected as 

reference performance. If the synthetic performance is identical to the reference performance, 

then desired functional realism (see chapter 2.4) is considered to be achieved. The datasets are 

then identical for the test object in regard to the visual task and the scene. If the test object 

performs better on synthetic data, significant perturbations existing in natural images have not 

been modelled. On the other hand, if the test object performs worse on synthetic data, image 

details necessary for the test object are missing or the rendering process introduces 

perturbations not existing in natural data. In the proposed concept, the resulting performance 

difference is forwarded towards the influence factor analysis. 

In the second part of the analysis, the image comparison the properties (e.g. colour, edges, 

etc.) of each dataset image are computed and saved as image descriptions. This allows 

quantification of image content for impartial comparison of image appearances. These 

described image properties are then used to compare reference and test dataset. Thus, the 

objective difference in content between these two dataset types, the image content differences 

can be numerically acquired. The results are then also forwarded toward the last layer. 

On this last layer and part of the analysis, the influence factor analysis, the results from the 

previous steps are used to identify the individual impact investigated image properties have on 

the measured performance difference. This is achieved by analysing the behaviours of the 

algorithms performance difference concerning image content differences. Thus, revealing 

which image properties influence the test object’s performance. Further, synthetic datasets of 

varying quality or enhanced by additional effects are also investigated to identify their effect. 
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Lastly, the influence factor analysis also helps to identify image properties not or 

insufficiently available in synthetic data.  

In Figure 3-2, the general concept is further detailed. Level 1 consists of two different datasets 

and their ground truth: 

• The natural (reference) dataset contains camera captured natural images of the scene. 

It is accompanied by its ground truth, which is necessary to evaluate the performance 

of a test object. A more detailed description of ground truth can be found in chapter 

2.1.2. 

• The synthetic (test) datasets are generated using a virtual environment depicting the 

same scene as the reference dataset. These synthetic datasets differ in rendering and 

modelling quality to identify influences of the rendering configuration. Synthetic 

datasets are also accompanied by ground truth. 

The method of dataset generation is presented in chapter 4 and the resulting datasets are 

presented in detail in chapter 5.2. 

The test object consists two identical instances of a CV-algorithm working on natural and 

synthetic images. Processing results are provided to the object performance difference 

module, which hosts a generally accepted evaluation method for this class of algorithm. The 

resulting performance values of natural and synthetic data are subtracted to acquire the 

performance difference. 

Both datasets are also used by several different image comparison algorithms (each analysing 

one or more image properties) to provide a holistic quantitative description of each image. 

These descriptions are then received by a distance measure that calculates the distance 

between two images based on their quantified descriptions. While one total value is 

calculated, also the distances of each property are forwarded to the final analysis layer.  

The influence factor analysis uses a method to identify factors significantly influencing 

performance, image content properties and rendering configurations. Here, changes in 

performance differences (due to different synthetic datasets) can be correlated to differences 

in image properties, thus allowing the identification of image properties significantly 

influencing the performance of the CV-algorithm. Furthermore, identified influencing image 

properties can be correlated to configuration parameters of the graphics engine by using the 
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results of synthetic datasets of different configurations. The resulting model will lead to 

insight which elements of the render pipeline are significant to design a synthetic benchmark 

for tested task and scenario. 

 

Figure 3-2: Detailed general multi-level concept separated into methods and data flow 

This generic concept serves as a framework that can be applied to any scenario and task, 

whenever the discussed elements are filled with specific corresponding methods. The 

following chapters now describe an implementation variant derived from this concept as a 

demonstrator including scenario, task and the actual methods used for all abstract defined 

modules defined above. 

3.2 Applied concept 

In this section, the constraints of this work put on the general concept and the resulting 

applied concept are presented. 

Constraints 

A major motivation (see chapter 1.1) is to reduce the number of test flights necessary to 

prototype computer vision algorithms for airborne reconnaissance applications. Thus, the 

concept will be demonstrated in the airborne domain, while in general it is not limited to this 

domain. The natural and synthetic images will depict aerial photographs showing terrain 
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underneath the aircraft in flight. To reduce the complexity of the investigation the following 

constraints shall be observed: 

• Platform: The camera is mounted to an aerial platform in a body fixed configuration, 

so that only the movement of the aircraft changes position and orientation of the 

camera. 

• Optical spectrum: Camera images and synthetic images depict exclusively only the 

electromagnetic range visible to the visible eye (380nm – 780 nm (Schröder & Treiber, 

2002)). This spectral range will be called electro-optical (EO) in the further course of 

this thesis. All images described are colour images, if not indicated otherwise. 

• Performance Measures: All measures investigated in this work are related to quality, 

robustness or accuracy of the test object. Timely constraints are not considered, since 

these do not influence image quality (e.g. computational speed). 

• Real-time simulation engine: Only real-time virtual simulation engines are 

considered for synthetic image generation. Such engines employ simple local 

illumination and show significant differences to the real-world allowing investigation 

of functional realism. Furthermore, these are usually used in the domain of flight 

simulators or tactical mission simulators, presenting the state of the art in the training 

& simulation industry. 

• Environmental Conditions: All natural datasets used in this thesis are acquired 

during the day at sunny weather and acceptable wind speeds. This allows safe 

acquisition of image data without additional perturbations for a first proof of concept. 

Further investigations should address the impact of different weather conditions on the 

performance and its transferability to these real world conditions. 

• Scenario: To demonstrate the proof of concept all objects except the airborne sensor 

platform and its camera are static to reduce the complexity of the experiments. Future 

work could investigate for instance vehicle trackers or other algorithms depending on 

object movement. 
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Resulting applied concept 

After having the general concept outlined in section 3.1, its building blocks now have to be 

instantiated and detailed along the previously provided application constrains. The following 

table as well as Figure 3-3 summarize the results of this step. Readers interested in the 

rationales why certain methods have been chosen, will find this information in the next 

chapters. 

Test Object The CV-algorithms selected for evaluation are the commonly known and 

used feature detectors SIFT (Lowe, 2004), SURF (Bay, Tuytelaars, & Van 

Gool, 2006) and MSER (Matas, Chum, Urban, & Pajdla, 2002). Feature 

detectors are widely used to extract distinctive image features on which 

subsequent processing are based on. Therefore, these algorithms are often 

the first step in complex algorithms and are thus well suited for this 

evaluation. More details can be found in section 3.3. 

Evaluation 

Method 

With respect to the selected test object (Mikolajczyk & Schmid, 2002) and 

(Mikolajczyk et al., 2005) presented a feature detector evaluation method 

based on computed ground truth. This effective method allows to measure 

the relative and absolute repeatability of interest point detectors and has 

been used to describe the performance of the most known feature detectors 

(Lowe, 2004), (Bay et al., 2006). The workings of this method are presented 

in section 3.4. 

Image 

Content 

Descriptors 

A subset from the image comparison methods presented in chapter 2.5 has 

been selected in section 3.5. 

Well-known image quality assessment methods (MSE, PSNR) shall be 

applied to evaluate their ability to discern image properties. 

Further, the image content descriptors proposed in the MPEG7 standard 

(Sikora, 2001) are used to describe the image with simplified feature 

vectors. These descriptors are then tested against synthetic and natural 

datasets concerning their ability to discriminate image properties. The most 

promising will be used in the influence factor analysis (level four) 
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Figure 3-3: Applied concept used in this thesis to investigate the transferability of synthetically acquired 

algorithm performance results to the real world environment. 

Distance 

Measures 

While the MPEG7 descriptors come along with well-defined distances 

measures (chapter 2.5.4), measures without explicitly defined distance 

measures will employ the most suitable distance measures. The reason for 

selecting specific measures and their working principles are outlined in 

section 3.6. 

Influence 

Factor 

Analyses 

The relationship of performance differences and image content differences 

will be elaborated in layer four based upon a multiple regression analysis 

(explained in 3.7). This method reveals the effect of relationships (between 

performance and specific image properties) and their significance. 

Specifically, the backward stepwise multiple regression analysis variant is 

used, where all variables (image properties) are initially fed into the model 

and the least significant are stepwise removed from the regression model 

until only significant relations remain. The resulting model allows 

identification of the image properties the CV-algorithm is sensitive to, 

together with their amount of influence. It should be noted that this method 

allows the identification of multiple influencing image properties 

simultaneously and their degree of effect. 
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3.3 Test object 

The selection of an appropriate test object is crucial to provide comprehensible test results to 

the reader. 

Most CV-algorithms on application level consist of several basic methods chained together. 

Testing these chains would produce non-generalizable results only valid for this specific 

algorithm composition. Thus, each fundamental CV-algorithm should be tested separately. 

Typical airborne remote sensing applications (e.g. object detection, image registration or 

mapping) are based on detected image features. For instance the visual detection and tracking 

system of moving targets presented in (Siam & ElHelw, 2012) uses Harris corner features to 

identify possible foreground objects. While the analysis of density and motion of crowds in 

(Sirmacek & Reinartz, 2011) is based on FAST features. In (Brook & Ben-Dor, 2011) an 

image registration method is presented that uses features based on SURF as landmarks. In 

these examples, the extracted features are used for further processing making them the 

interface between the image (domain) and the subsequent processing components. Therefore, 

the performance of all following components can be assumed to depend on the behaviour of 

the feature detector. This makes them the ideal test object for a proof of concept. Ideally, a 

relevant test object should be common, well understood and publicly available to allow the 

reader insight into the evaluation process and results (not obscuring the results by using 

complex proprietary unknown algorithms). 

Many algorithms have been developed in the past to detect image features. Commonly known 

representatives are SIFT (Lowe, 2004), SURF (Bay et al., 2006), FAST (Rosten & Drummond, 

2005) or Harris Corners (Harris & Stephens, 1988).  

The general idea of feature detectors is to identify easily detectable local gradient extremes 

that can be recovered in a subsequent image. These features are in general points due to the 

aperture problem, which describes that all pixels of an edge have similar properties and thus 

the actual location of an edge pixel cannot be recovered. Points on the other hand produce 

unique stand-alone gradients more robustly detectable in subsequent images. The Harris 

corner detector is a common feature detector, which uses the eigenvalues of a covariance 

matrix calculated from the spatial derivations of a local window in all directions (Harris & 

Stephens, 1988). This method is rotation- but not scale-invariant, which limits its use on 

airborne imagery with varying altitude or zoom. 
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Thus (Lowe, 2004) came up with the scale invariant feature transform (SIFT) detector. In this 

approach the goal is to detect distinctive key features in an image invariant to scale and 

orientation and robust to noise, affine distortions and change in illumination. This was 

achieved by using a three-step approach for local extremes detection. Step one uses pyramidal 

scaling of the image by factor two to determine extremes at different scales. This technique is 

called scale space and was first introduced by (Witkin, 1983). In each scale step (octave), the 

image is blurred in three intensities (different sizes of the Gaussian function) and the resulting 

images are subtracted from the first image of the scale. This approach helps in identification 

of stable local extremes robust to noise at multiple scale levels. The extremes are found by 

comparing the resulting difference of Gaussian value of the pixel against its spatial 

neighbours of the current and neighbouring scale within an octave and the highest ranked 

extreme is selected for further examination. Now, if the contrast to neighbouring pixels is too 

low the feature point is discarded. The location of the remaining points is now accurately 

pinpointed by interpolating derivatives of the neighbouring pixels, thus identifying the pixel 

closest to the local extreme. Since edges which are weak feature points, will also be detected 

by this approach the ratio of eigenvalues of the covariance is determined as in (Harris & 

Stephens, 1988) enabling the removal of features along edges, because they have large 

eigenvalue perpendicular and low eigenvalue horizontal to the edge. In a last step, the 

Gaussian smoothed images from the first step are used to determine the orientation of the 

feature point, thus a feature points is given by its location, scale and orientation. (Lowe, 2004) 

demonstrates the robustness to noise and their distinctive repeatability in a use case of object 

detection. This approach has been parametrized to be a trade-off between the number of 

possible key points and speed to allow near-real time computation as explained by the author. 

 

Figure 3-4: Visualization from (Bay et al., 2006) presenting Gaussian second order partial derivatives in y- 

and xy-direction as used by SIFT (Lowe, 2004) on the left and box-filter approximations as used in SURF 

in same dimension and direction on the right. 

The speeded up robust feature (SURF) detector of (Bay et al., 2006) provides a simplified and 

thus faster feature detection method in regard to (Lowe, 2004). The author states that the 

importance of Gaussians in scale-space analysis has been overrated and thus provides a 
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simplified solution. Similar to SIFT it uses a Hessian matrix to identify feature points, which 

are invariant to scale and orientation. The scale space of SURF was highly simplified and thus 

speeded up. A combination of box filters (see Figure 3-4) and integral images replaces the 

Gaussian second order derivatives. Integral images I∑(p) are images where the pixel value of 

p(x,y) is the sum of all pixels between the origin p(0,0) and p(x,y): 

𝐼𝐼∑(𝑝𝑝) =  ��𝐼𝐼(𝑖𝑖, 𝑗𝑗)
𝑗𝑗≤𝑦𝑦

𝑗𝑗=0

𝑖𝑖≤𝑥𝑥

𝑖𝑖=0

 (4) 

The lowest level box filter (with a dimension of 9x9 pixel) approximates to Gaussian with a 

standard deviation of ϭ=1.2. The different scales are then achieved by applying box filters in 

various sizes (9x9, 15x15, 21x21, etc.). From here on the maximum is roughly located by 

searching the neighbouring pixels and neighbouring scales and the accurate maximum is then 

localized by applying the hessian matrix similar to SIFT. The author’s state that this method 

outperforms SIFT in accuracy and speed. 

The final feature detector algorithm considered in this thesis is maximally stable extremal 

regions (MSER) (Matas et al., 2002). Here, an extremal is a region of highest or lowest 

luminance intensity in relation to its surrounding pixels. These regions can be detected by 

thresholding the image at multiple different intensity values. Maximally stable refers to 

regions with minimal areal changes during the thresholding sweep of the image. Since this 

method is not location-based, small and large regions can be detected. However, limits for the 

maximum and minimum size of a region are set as well as limits for unstable regions (area 

changes too much). The method showed stability to scale-, viewpoint- and illumination-

changes and was originally developed to identify wide-baseline correspondences using epi-

polar geometry. In the study of (Mikolajczyk et al., 2005) the repeatability of MSER among 

other Harris- and Hessian-based approaches was evaluated. Presenting MSER and Hessian-

Affine detectors with the best repeatability score followed by the Harris-based detector on 

most cases. However, the authors’ state that the performance of the detectors is highly 

dependent on the scene and no single detector exists that outperforms others. Still years after 

this investigation, MSER is often used in today’s computer vision applications. Especially in 

images depicting homogenous areas with clearly visible boundaries MSER outperforms other 

detectors. (Matas et al., 2002) state that Hessian-Affine and MSER define different areas as 

relevant features, thus the combination of both would provide best results at the expense of 

computation power. 
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Other feature detectors not evaluated in (Mikolajczyk et al., 2005) are rising in popularity due 

to their efficiency (e.g. FAST (Rosten & Drummond, 2005, 2006)) or performance in specific 

applications (e.g. STAR (Agrawal, Konolige, & Blas, 2008) for image registration). Still, even 

today SIFT, FAST and MSER are commonly used and remain popular and therefore shall serve 

as test objects in this study. This will help readers to more generally interpret the results and 

identify the chances and drawbacks when applying CV-algorithms on computer graphics 

imagery. 

3.4 Object performance evaluation 

The object performance evaluation is closely related to the selected test object, since the 

evaluation method is dependent of the algorithms output type and its fundamental purpose. In 

the survey of performance characterization in computer vision of (Thacker et al., 2008) the 

practices of evaluating feature detectors have been discussed. The first developed feature 

detectors such as (Harris & Stephens, 1988) demonstrated their functionality on a small set of 

images and by integration into robotic applications. The authors then discuss current methods 

and propose a probability based approach similar to (Ramesh, 1995). As described there, this 

approach assumes that ideal input data leads to ideal output data otherwise the algorithm is 

flawed. This input data is then modified using a probability based perturbation model, which 

is modelled for both error types, false positives and false negatives. The approach proposed in 

(Ramesh, 1995) however only considers noise as perturbation using a mean zero additive 

Gaussian as model. When considering a complex scene multiple disturbance source exist, 

which increases the complexity of the model and reduces the efficiency of the approach. 

Additionally, all existing perturbations need to be known before the performance of an 

algorithm can be evaluated. (Thacker et al., 2008) also discusses the work of (Mikolajczyk & 

Schmid, 2002), (Mikolajczyk et al., 2005), (Mikolajczyk & Schmid, 2005) who proposed the 

evaluation of feature detectors and descriptors based on geometric correlations. For instance, 

if a feature in image A is present in image B and both images depict the same static scene 

from different viewing angles, then the feature can be described by fB = M * fA with M being 

the geometric transformation from view A to B. Now, if the transformation M between A and 

B is known the location of the feature is known, M becomes the ground truth. (Mikolajczyk et 

al., 2005) used this principle to evaluate performance characteristics of interest point detectors 

using natural imagery. The authors depicted only planar surfaces in their viewpoint 

evaluations enabling the use of homography as geometric transformation. In this respect, if 
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any of the following conditions are met, the geometric difference between two images can be 

described: 

• Both images depict the same plane from a different viewpoint. Detected feature 

regions need to reside on this plane. 

• Both images are taken from the same position at different viewing angles (e.g. image 

stitching). 

Since this approach provides the possibility to (semi-)automatically produce ground truth 

when the location of the camera is known for every image, the approach of (Mikolajczyk et 

al., 2005) has been selected as object performance evaluation method. However, homography 

can only be used under the assumption that all detected features reside on a plane when the 

camera is moving. Due to a high enough altitude of the aircraft, the top-down perspective of 

the mounted camera and a suitable selection of the test area (only small objects present) this 

condition is adhered (and thoroughly evaluated in chapter 5.1.2). The used geometric 

transformation handles scaling, rotation and additionally translation when the depicted scene 

is planar. Features in (Mikolajczyk et al., 2005) are described as regions R on the image 

described by location and radius. The homography matrix HIJ describes the geometric 

transformation from Image J to Image I and thus allows reprojection of the features R: 

𝑅𝑅𝐽𝐽𝐼𝐼 = (𝐻𝐻𝐼𝐼𝐼𝐼)𝑇𝑇 𝑅𝑅𝐽𝐽
𝐽𝐽   (5) 

The notation IRJ indicates regions detected in reference image J have been transformed into 

the image coordinate system of image I. The reprojected feature regions IRJ can then be 

compared against feature regions IRI detected in image I (see Figure 3-5). 

 

Figure 3-5: Feature regions of image J projected into image I using the homography matrix as geometric 

transformation. 
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The process to compute the ground truth (Homography Matrix HIJ) is presented later in this 

chapter. Concerning measures of performance for feature detectors (Mikolajczyk et al., 2005) 

suggests to use: 

“Repeatability, i.e., the average number of corresponding regions detected in images 

under different geometric and photometric transformations, both in absolute and relative 

terms (i.e., percentage-wise).” 

In this context, relative repeatability measures the amount of visible features that will be 

repeatedly detected in subsequent images and thus represents a measure of robustness. The 

authors introduced such repeatability measure based on the overlap of detected and 

transformed feature region: 

1 −  
𝑅𝑅𝐼𝐼 ∩ 𝑅𝑅𝐽𝐽𝐼𝐼𝐼𝐼

𝑅𝑅𝐼𝐼 ∪ 𝑅𝑅𝐽𝐽𝐼𝐼𝐼𝐼 < 𝜖𝜖𝑂𝑂 (6) 

This means that a feature pair is corresponding when the overlap error threshold ϵO is bigger 

than the intersection of IRI and IRJ divided by its union. The whole measure is subtracted from 

one to create an error or distance measure. The authors set the error threshold to 0.4 ≙ 40%. 

Only features present in both pictures are used to compute the relative repeatability. This 

performance measure is scale and orientation variant. The total number of valid corresponding 

pairs against the number of possible corresponding pairs (present in both images) is known as 

the relative repeatability measure, while the absolute repeatability measure simply counts the 

number of valid corresponding pairs. The latter is of importance since most applications need 

a minimum amount of feature pairs to perform correctly. On the other hand, too many feature 

pairs can result in long computation times and reduced repeatability due to detection of less 

robust interest points (Lowe, 2004). Therefore, most feature detectors have a configuration 

parameter to allow the user to configure the algorithm towards his needs. (Bay et al., 2006) 

also estimate relative repeatability as the most valuable property of a feature detector and 

therefore use it to demonstrate the performance of their SURF detector. Further (Lowe, 2004) 

in his work presenting the SIFT detector also applies relative and absolute repeatability as 

performance measure. 

In Figure 3-6, two performance characterization examples for feature detectors are presented. 

In general, the relative repeatability is compared to the parameter that shall be evaluated. For 

instance, the left image displays the rank and performance differences of detectors concerning 
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the viewpoint angle of dataset “Graffiti”. The right image compares the relative repeatability 

of a detector with its absolute repeatability (number of detected corresponding regions) to 

show their characteristics in regard to the density of features. 

  

Figure 3-6: Example performance characterization of feature detectors using dataset Graffiti. Left: Rel. 

repeatability vs. viewpoint angle. Right: Rel. repeatability vs. abs. repeatability. (Mikolajczyk et al., 2005) 

Ground Truth 

The computation of bot metrics, relative and absolute repeatability, depend on the availability 

and accuracy of ground truth. For this thesis, the most relevant idea of Mikolajczyk’s 

performance evaluation is the computation of ground truth based on a reference image using 

the geometric correlation between the images (homography). In the authors two step approach 

they first compute an approximate homography is computed by using a small number of 

manually selected correspondences between reference image I and sequential image J. J is 

then warped using the acquired homography matrix to roughly align with image I. In a next 

step an automatic feature detection and matching mechanism (brute force sum of squared 

distance (SSD) matching) is used to find hundreds of correspondence pairs which are fed into 

the RANSAC algorithm (Fischler & Bolles, 1981) to compute the remaining homography 

(called residual). This algorithm iterates (up to 2000 times) to best fit the detected 

correspondence pairs into a plane, while identifying and excluding possible outliers. 

Afterwards the resulting residual (using RANSAC) and the approximate homography (using 

manually selected features) are combined to the final homography matrix. The resulting 

ground truth is then used to compare the detection performance of six affine region detectors 

under changes of viewpoint, zoom, rotation, image blur, JPEG compression and luminance. 

The results demonstrate in general that all detection algorithms perform similar to introduced 
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changes but with varying magnitudes, thus showing more robustness to perturbations then 

others.  

Thus, in this thesis the ground truth computation is based on the just presented approach of 

(Mikolajczyk et al., 2005). However, the approximate homography is directly computed by 

finding correspondences using SURF feature detection and description (Bay et al., 2006). 

Finally the SSD brute force matching finds corresponding image pairs and the best fitting ones 

are used to initiate the RANSAC algorithm, which optimizes the homography based on the 

detected feature points. In this work, the manual process will be replaced by an automatic 

matching, to increase the number of images available for this evaluation. The impact of this 

modification is investigated in chapter 5.1.3. 

Experimental Design 

To test the effect of the rendering engines configuration several different datasets are used in 

which all configuration parameters are kept static except for one (one-factor-at-a-time). Other 

experimental designs such as full factorial or fractional factorial, which allow less test runs 

and knowledge about the relationship between parameters have been investigated (Box, 

Hunter, & Hunter, 2005). However, these demand the general behaviour of the system and the 

influence order of variables to be known. Since this is not the case, the more standard one-

factor-at-a-time design is employed. However, these techniques are of high interest for further 

studies after the general order of variables has been identified. The performance relationship 

between real and synthetic imagery is measured in two steps as follows: 

In step one, the feature detectors are employed on the natural dataset (reference) photo and the 

synthetic dataset “baseline” both depicting same scene and terrain. The performance 

difference is the acquired by simply subtracting the relative repeatability values of both 

datasets. The absolute repeatability results are normed before subtraction to improve the 

comparability among different feature detectors. This resulting performance difference 

Δ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 provides insight on the performance difference between the two datasets and 

which dataset produces higher repeatability values (when synthetic datasets perform higher 

the value is negative). 

In the second step, the performance of the selected feature detector is measured for different 

rendering pipeline configurations by changing parameter x. For each pipeline configuration, a 

new synthetic dataset is generated and performance results are compared to the natural dataset 
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performance of the algorithm. The result Δ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.𝑥𝑥 is given in percentage. 

Performance is a placeholder for the employed performance measures relative and absolute 

repeatability, thus it is computed for both measures. The wildcard x will be replaced by the 

respective configuration parameters of the rendering engine. 

This approach shall identify parameters, which increase the usability of synthetic datasets by 

behaving more closely to their natural counterpart. On the other hand, this test will also 

identify database or rendering parameters having no observable influence. 

3.5 Image comparison algorithms 

Image comparison as described in chapter 2.5 shall be used to identify image characteristics 

relevant to the test objects performance. Therefore, in this chapter the rational to short-list 

promising candidates is given. Working principles of candidates are presented in chapter 2.5. 

To select a suitable comparison metric it is helpful to discuss the nature of image content first. 

Thus, it is suggested to differentiate in content and appearance. While content actually 

describes what is depicted, appearance refers to how it is depicted. An image thus can depict 

the same scene but due to different sensors or simply a different camera configuration, 

appearance of the scene can be quite different. On the other hand, images can have similar 

appearance but depict different scenes. Both, appearance and content need to be compared to 

measure the difference between to images. Appearance measures are global (they evaluate 

pixels independent to their neighbours), while content measures are local (evaluate local 

changes considering the values of neighbouring pixels). 

Further, in this chapter, image properties are grouped in the categories frame and data 

properties. Frame properties describe technical properties usually kept constant during the 

evaluation (e.g. resolution, bit depth, colour channels) and thus are not investigated. Data 

properties describe image appearance and content (e.g. brightness, contrast, frequency, colour, 

etc.). Such data properties are the subject of interest for image comparison. Roughly, with 

regard to digital images data properties can be categorized in the following groups: 

• Luminance is the brightness value of a pixel strongly correlated to the irradiance 

received by the sensor at that pixels location.  
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• Colour stands for information present in the three colour channels. It describes 

globally and locally objects or other content. Often specific colour spaces are used to 

extract the hue value and saturation information. 

• Frequency stands for gradients present in the image, typically extracted using Fourier 

or wavelet transformation. 

• Shape stands for vector-based descriptions of shapes that can be numerically extracted 

and put into semantic context. However, shapes are not directly relevant to feature 

detectors and will not be considered further in this work. 

The data properties categorization scheme is used to correlate these to the common camera 

distortions and effects (image characteristics) presented in chapter 2.3. Afterwards the image 

comparison methods presented in chapter 2.5 are also flagged when they affect the given data 

properties. The main goal is to combine these to results, to acquire possible relationships 

between image comparison methods and image characteristics. This allows identification, 

whether these are not covered by given methods, redundant methods and subjective 

usefulness of these methods when deployed. This procedure is a tool to reduce the number of 

image comparison algorithms while still covering all image property categories. 

Table 3-1: Image characteristics (see chapter 2.3) vs. data property categories. X marks a properties fitting 

to the specific property category. 
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Blur (1/Clarity) X   X       
Noise X X X       
Chromatic Aberration   X X       
Motion Blur       X   X 
Compression Artefacts X   X       
Geometric Lens Distortion X  X    
Modelling Detail       X X X 
Modelling Errors       X X X 
Aliasing     X     X 
Aperture X X      
Light Effects (e.g. HDR, Bloom) X X         
Texture Quality     X     X 
Positional Accuracy (Location, Orientation, 
Scale) of Objects and Camera       X X   
Colour Distribution X X         
Shadow    X X X 
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Beginning with the common distortions, their subjective disaggregation shows that these 

affect at least one of the groups resulting from the categorization of image properties. In Table 

3-1, an X marks image characteristics fitting to the previously mentioned categories. This 

grouping shall help to identify, which image characteristics influence specific data 

properties.  

Image comparison measures introduced in chapter 2.5 can now be correlated to the proposed 

data property groups in Table 3-2. The goal is to select a range of image property measures to 

cover all local and global data property categories. 

Table 3-2: Common image descriptors vs. data property categories. Descriptors sensitive to specific 

property categories are marked (x). Yellow highlighting indicates selection for further use in this thesis. 

Dark grey highlighting indicates interesting candidates for further investigations. 
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MSE described in (Horé & Ziou, 2010) X   X       
PSNR described in (Horé & Ziou, 2010) X   X       
SSIM (Z. Wang et al., 2004)     X       
MS-SSIM (Z. Wang et al., 2003)     X       
IW-SSIM (Z. Wang & Li, 2011)     X       
SR-SIM (Lin Zhang & Li, 2012) X   X X   X 
FSIM (Lin Zhang et al., 2011) X X X       
MAD (Larson & Chandler, 2010) X   X       
Visual Difference Predictor (Daly, 1992) X   X       
JND (Lubin & Fibush, 1997)   X X       
NSS (Sheikh, Bovik, & Cormack, 2005)     X X   X 
NIQE (Mittal, Soundararajan, & Bovik, 2013) X X X    
Contrast (Ke et al., 2006) X           
Brightness (Ke et al., 2006) X           
Blur (Tong et al., 2004) X  X    
Hue Count (Ke et al., 2006)   X         
Edge Distribution (Ke et al., 2006)           X 
Focus (Ke et al., 2006)           X 

Hue Comp (Tang et al., 2013)   X X       
Scene Comp (Tang et al., 2013)     X       
Dark Channel (Tang et al., 2013)         X X 
Complexity Feature (Tang et al., 2013)       X   X 
MPEG7 DCD (Ohm et al., 2002)   X     X   
MPEG7 SCD (Ohm et al., 2002)   X         
MPEG7 CSD (Ohm et al., 2002)       

 
X X 

MPEG7 CLD (Ohm et al., 2002)       X X 
 MPEG7 EHD (Choi et al., 2002)     X     X 

MPEG7 HTD (Choi et al., 2002)     X       
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Image quality measures 

Though algorithms based on full-reference image comparison are expected to be less suitable, 

as they grade the image quality independent to the type of perturbation, this hypothesis needs 

to be confirmed. Thus, the common the quality measures mean square error (MSE), peak-

signal noise ratio (PSNR) and the structural similarity index (SSIM) have been selected to 

represent the classical full-reference image quality measures.  

(Sheikh, Bovik, & Cormack, 2005) introduced a quality measure based on common statistics 

available in natural images, the natural scene statistics (NSS). This algorithm needs reference 

images to learn the NSS model. The measure natural image quality evaluator (NIQE) (Mittal 

et al., 2013) is based on a “quality aware” collection of statistical features based on NSS and 

is distortion and opinion unaware. Therefore, the measure was selected to represent no-

reference quality measures and NSS-based quality measures. 

Application driven measures 

These measures have been excluded from this selection, since these demand full applications 

proprietary to the use case. The most closely related evaluation to this category is the 

performance evaluation (part one of the analysis concept). 

Content driven measures 

The image descriptors defined in the MPEG7 standard cover almost the whole range of image 

data property categories. Due to their abstract description of images, they provide a good 

basis to measure the distance or similarity of synthetic and photographic images. Thus, all 

colour descriptors (DCD, SCD, CSD and CLD) and all edge descriptors (EHD and HTD) 

have been selected. Algorithms based on shape description are not used, since feature 

detectors do net benefit from shapes. 

Possible relationships between image characteristics and image descriptors 

The previous tables (Table 3-1 and Table 3-2) are used to correlate image characteristics with 

image descriptors in Table 3-3. Whenever a certain characteristic affects the same data 

property category as an image descriptor, it is potentially described by the descriptor (marked 

with X). The correlation aids the selection of image descriptors, by removing those not 

assigned to any image characteristic. Further, if a characteristic is not assigned to any 



3.6 Image content distance measures 75 

descriptor, it is potentially not covered by the evaluation and should not be further 

investigated. Thus, this step shall help to reduce the evaluation complexity and show, the 

range of characteristics covered by the selected image descriptors. The later presented 

experiments shall identify the actual relationships that are currently just assumed in Table 3-3. 

Table 3-3: Image characteristics related to image descriptors based on image data property categories. 
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Image Characteristics   
Blur (1/Clarity) X X X X         X X 
Noise   X X X X   X X X X X 
Motion Blur   X X X X         X X 
Geom. Lens Distortion X X X X     X X 
Modelling Detail         X   X X X   
Modelling Errors          X   X X X   
Aliasing   X X X X     X X 
Aperture   X X 

 
X X X     

Light Effects X X 
 

X X X 
  

    
Texture Quality X X X X     X 

 
X X 

Positional Accuracy         X   X X     
Colour Distribution       X X X   X     
Shadow     X  X X X  

3.6 Image content distance measures 

Distance or similarity measure are methods to quantify the difference or similarity between 

two values or descriptions. In the applied concept (chapter 3.2), the need for distance 

measures has been formulated to compare the given content descriptions of images. The 

content descriptors are given in chapter 2.5.3. While comparing single values is simple, the 

topic becomes more demanding when multi-dimensional image content descriptions need to 

be compared. In this chapter, for each selected image descriptor a fitting distance measure is 

added. For more detail please refer to chapter 2.5.4, where most measures have already been 

introduced. 

The appropriate distance measure for image descriptors defined in the MPEG7 standard have 

been defined already in most cases. In literature, often deviates (weighted, normalized) of 

Manhattan- (L1) or Euler-Distance (L2) have been used. In (Eidenberger, 2003b) the 

performance of image retrieval based MPEG7 visual descriptors with various distance 



76 Concept 

measures has been evaluated showing that the most appropriate distance measure for EHD, 

HTD and SCD is the Pattern Difference (Eidenberger, 2003b) after (Sint, 1975), for CLD the 

Meehl Index (Meehl, 1997) and for DCD the Divergence Coefficient (Clark, 1952). However, 

for all descriptors the measures originally defined in the standard also perform sufficiently. 

Thus, in this thesis those standard measures are employed, since they are more widely used 

and last level optimization is no focus of this thesis. Such investigation could be conducted in 

future to evaluate the influence of different distance measures on the correlation of these 

coefficients to the synthetic configuration parameters or test object performance. The 

following paragraphs present the selected distance measure for each employed image 

descriptor. 

EHD: In (Choi et al., 2002) the matching method for the edge histogram descriptor is 

presented. The 80 bins of the local-edge histogram are used to compute a 5-bin global edge 

histogram and a 65-bin (13 ∗ 5 bins) semi-global edge histogram. The distance 

𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴,𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵) between the EHD descriptors of image A and image B is then computed 

using equation (7) by adding up the Manhattan-Distance (L1) of each histogram. 

𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴,𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵) =  �|ℎ𝐴𝐴(𝑖𝑖) − ℎ𝐵𝐵(𝑖𝑖)|
79

𝑖𝑖=0

+ 5 × ��ℎ𝐴𝐴𝐺𝐺(𝑖𝑖) − ℎ𝐵𝐵𝐺𝐺(𝑖𝑖)�
4

𝑖𝑖=0

 

+ ��ℎ𝐴𝐴𝑆𝑆(𝑖𝑖) − ℎ𝐵𝐵𝑆𝑆(𝑖𝑖)�
64

𝑖𝑖=0

 

(7) 

Where ℎ𝐴𝐴(𝑖𝑖) and ℎ𝐵𝐵(𝑖𝑖) are the individual bin values of the normalised local edge histogram 

of image A and image B. Correspondingly the bin values of the global edge histogram are 

represented by ℎ𝐴𝐴𝐺𝐺(𝑖𝑖) and ℎ𝐵𝐵𝐺𝐺(𝑖𝑖) and the semi-global histogram values by ℎ𝐴𝐴𝑆𝑆(𝑖𝑖) and ℎ𝐵𝐵𝑆𝑆(𝑖𝑖). To 

compensate the small values of the global histogram are small in comparison to the other two 

a weighting factor of 5 is introduced (Choi et al., 2002). 

HTD: The distance measure 𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻(𝐴𝐴,𝐵𝐵) of the homogenous texture descriptor is also based 

on the L1-measure. The HTD-descriptor contains the mean 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and standard deviation 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of the images frequencies and the mean energy 𝑒𝑒𝑖𝑖 and energy deviation 𝑑𝑑𝑖𝑖 for each of 

the 30 image frequency channels presented in Figure 2-14. 

𝐻𝐻𝐻𝐻𝐻𝐻 =  [𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑒𝑒1,⋯ , 𝑒𝑒30,𝑑𝑑1,⋯ ,𝑑𝑑30] (8) 

𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻(𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵) =  ��
𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴(𝑖𝑖) − 𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵(𝑖𝑖)

𝛼𝛼(𝑖𝑖)
�
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 (9) 
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Equation (9) shows the distance measure 𝐷𝐷𝐻𝐻𝐻𝐻𝐻𝐻(𝐴𝐴,𝐵𝐵) as defined by (Choi et al., 2002) and the 

MPEG7 standard. The measure is normalized by the weighting variable 𝛼𝛼(𝑖𝑖) which should be 

the standard deviation of 𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵(𝑖𝑖). In the experimental model of the MPEG7 standard 

(Yamada et al., 2001) fixed values between 0.22 and 1 have been used. 

DCD: The dominant colour descriptor reasons for up to seven dominant colours (RGB) 

together with their areal presence. The original distance measure presented in (Ohm et al., 

2002) and implemented in the experimental model (XM) of the MPEG7 standard (Yamada et 

al., 2001) uses a deviation of the Euler distance L2 enhanced by the similarity coefficient 

𝑎𝑎𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵. 𝑝𝑝𝐴𝐴𝐴𝐴 and 𝑝𝑝𝐵𝐵𝐵𝐵 represent the areal presence of a dominant colour in image A and B. The 

similarity coefficient 𝑎𝑎𝑘𝑘,𝑙𝑙 adds a colour based similarity measure to the distances measure to 

only measure the distance between two closely corresponding dominant colours. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑂𝑂𝑂𝑂𝑂𝑂
2 (𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴,𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵) =  �𝑝𝑝𝐴𝐴𝐴𝐴2

𝑁𝑁𝐴𝐴

𝑖𝑖=1

+ �𝑝𝑝𝐵𝐵𝐵𝐵2
𝑁𝑁𝐵𝐵

𝑗𝑗=1

−��2𝑎𝑎𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝑝𝑝𝐴𝐴𝑖𝑖𝑝𝑝𝐵𝐵𝐵𝐵

𝑁𝑁𝐵𝐵

𝑗𝑗=1

𝑁𝑁𝐴𝐴

𝑖𝑖=1

 (10) 

This measure is criticized by (Yang et al., 2008) because it may lead to incorrect ranks for 

images with similar colour distribution. Therefore, they propose their own distance measure 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌
2 (𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴,𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵) = 1 −  ��𝑎𝑎𝑖𝑖,𝑗𝑗𝑆𝑆𝑖𝑖,𝑗𝑗

𝑁𝑁𝐵𝐵

𝑗𝑗=1

𝑁𝑁𝐴𝐴

𝑖𝑖=1

  (11) 

where 𝑎𝑎𝑖𝑖,𝑗𝑗 is the colour similarity coefficient based on the L2-measure 

𝑎𝑎𝑖𝑖,𝑗𝑗 = ��𝑟𝑟𝐴𝐴𝐴𝐴 − 𝑟𝑟𝐵𝐵𝐵𝐵�
2

+ �𝑔𝑔𝐴𝐴𝐴𝐴 − 𝑔𝑔𝐵𝐵𝐵𝐵�
2

+ �𝑏𝑏𝐴𝐴𝐴𝐴 − 𝑏𝑏𝐵𝐵𝐵𝐵�
2
 (12) 

and 𝑆𝑆𝑖𝑖,𝑗𝑗 the similarity score between two areal percentages of dominant colours 

𝑆𝑆𝑖𝑖,𝑗𝑗 =  �1 − �𝑝𝑝𝐴𝐴𝐴𝐴 − 𝑝𝑝𝐵𝐵𝐵𝐵�� × 𝑚𝑚𝑖𝑖𝑖𝑖�𝑝𝑝𝐴𝐴𝐴𝐴,𝑝𝑝𝐵𝐵𝐵𝐵� (13) 

This distance measure copes with the drawbacks of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑂𝑂𝑂𝑂𝑂𝑂
2 (𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴,𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵) and puts more 

emphasis on the colour similarity. Therefore 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌
2 (𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴,𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵) is selected as distance 

measure for DCD in this thesis. 

SCD: The scalable colour descriptor is in general a colour histogram in the HSV colour 

space, encoded using Haar-transform and linear / non-linear quantization (Ohm et al., 2002). 
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The distance 𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴, 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵) between two descriptors is computed using the Manhattan 

distance of each Haar-coefficient 𝑐𝑐𝑋𝑋  

𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴,𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵) = ��𝑐𝑐𝐴𝐴 (𝑖𝑖) − 𝑐𝑐𝐵𝐵 (𝑖𝑖)�
𝑖𝑖

  (14) 

CSD: The colour structure descriptor is a colour histogram where each bin represents the 

normalized number of appearance of a colour in an 8x8 search window. The colours are 

described in the HMMD colour space defined in the MPEG7 standard (Ohm et al., 2002). The 

distance 𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵) between two resulting encoded histograms (colour structure 

descriptors) is computed using the L1-measure. 

𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵) = ��ℎ𝐴𝐴 (𝑖𝑖) − ℎ𝐵𝐵 (𝑖𝑖)�
𝑖𝑖

  (15) 

CLD: The colour layout descriptor describes the spatial distribution of colours. The extracted 

spatial colour information is encoded using discrete cosine transformation (DCT) to 64 

coefficients for each channel of the YCbCr colour space. The distance 𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵) is 

calculated by summing the weighted Euler distances (L2) for all colour channel coefficients 

𝑦𝑦𝑥𝑥, 𝑐𝑐𝑐𝑐𝑥𝑥, 𝑐𝑐𝑐𝑐𝑥𝑥 of image A and B. Each coefficient is weighted individually. Lower frequency 

components are given larger weights 𝑤𝑤𝑥𝑥 (Ohm et al., 2002). 

𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵) = ��𝑤𝑤𝑦𝑦𝑦𝑦(𝑦𝑦𝐴𝐴𝐴𝐴 − 𝑦𝑦𝐵𝐵𝐵𝐵)2
63

𝑖𝑖=0

+ ��𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 − 𝑐𝑐𝑐𝑐𝐵𝐵𝐵𝐵)2
63

𝑖𝑖=0

 

+��𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴 − 𝑐𝑐𝑐𝑐𝐵𝐵𝐵𝐵)2
63

𝑖𝑖=0

  

(16) 

MSE: The mean square error measure introduced in chapter 2.5.1 combines description and 

distance calculation in one measure, calculating the normalized L2-distance of luminance 

pixel values for image A and B (Horé & Ziou, 2010) The Eq. (1) is presented on page 35. 

PSNR: The peak signal to noise ratio is in fact a derivation of MSE on a logarithmic scale. 

Equation (2) describes the measure mathematically on page 36. 

MSSIM: The Structural Similarity Index (SSIM) (Z. Wang et al., 2004) detailed in chapter 

2.5.1 is a combination of contrast, luminance and structure. Each property is compared using 
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the harmonic mean measure (Cha, 2007). The resulting three values are then multiplied 

leading to the final form of the SSIM quality difference measure(Z. Wang et al., 2004): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴,𝐵𝐵) =
(2𝜇𝜇𝐴𝐴𝜇𝜇𝐵𝐵 + 𝐶𝐶1)(2𝜎𝜎𝐴𝐴𝐴𝐴 + 𝐶𝐶2)

(𝜇𝜇𝐴𝐴2 + 𝜇𝜇𝐵𝐵2 + 𝐶𝐶1)(𝜎𝜎𝐴𝐴2 + 𝜎𝜎𝐵𝐵2 + 𝐶𝐶2) (17) 

Where 𝜇𝜇𝐴𝐴 and 𝜇𝜇𝐵𝐵 (measure for global luminance) are the mean intensities 𝜇𝜇𝑋𝑋 for each image 

and 𝜎𝜎𝐴𝐴 and 𝜎𝜎𝐵𝐵 their standard deviations 𝜎𝜎𝑋𝑋 (estimate of signal contrast). They are defined as 

following (N is the number of pixels) (Z. Wang et al., 2004): 

𝜇𝜇𝑋𝑋 =
1
𝑁𝑁𝑋𝑋

�𝑝𝑝𝑖𝑖

𝑁𝑁𝑋𝑋

𝑖𝑖=1

 𝜎𝜎𝑋𝑋 = �
1

𝑁𝑁𝑋𝑋 − 1
�(𝑝𝑝𝑖𝑖 − 𝜇𝜇𝑥𝑥)2
𝑁𝑁𝑋𝑋

𝑖𝑖=1

�

1/2

 (18) 

Here, 𝑝𝑝𝑖𝑖 represents the luminance value of a single pixel (grey value). The author states that 

this measure is best applied locally rather than globally, meaning that the local statistics of 

𝜇𝜇𝑋𝑋 ,𝜎𝜎𝑋𝑋, are computed using a local search window also called kernel, which is i.e. an 8x8 pixel 

sized 2D-filter that is convoluted with the image (calculating the result for each pixel 

location). This local measure is then combined to the final global measure called mean-SSIM 

or MSSIM by computing the mean result of all local measures. 

NIQE: In (Mittal et al., 2013) the no-reference measure natural image quality evaluator 

(NIQE) is presented, which compares extracted statistical features of an image against a 

natural scene statistic (NSS) model: 

“Our new NR OU-DU IQA [no-reference opinion-unaware distortion-unaware image quality 

assessment] model is based on constructing a collection of ‘quality aware’ features and fitting 

them to a multivariate Gaussian (MVG) model. The quality aware features are derived from a 

simple but highly regular natural scene statistic (NSS) model. The quality of a given test 

image is then expressed as the distance between a multivariate Gaussian (MVG) fit of the NSS 

features extracted from the test image, and a MVG model of the quality aware features 

extracted from the corpus of natural images.” (Mittal et al., 2013) 

The coefficients of the model are stated to follow a Gaussian distribution when computing 

natural images of low distortion. Is distortion added or are images synthetically generated the 

trend of the distribution changes. Thus, as a distance measure the mean vectors 𝜈𝜈𝐴𝐴 and 𝜈𝜈𝑀𝑀 (of 

image A and MVG model M) and covariance matrices of the natural image based MVG model 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 and the computed test image MVG model 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 are compared using 𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. The 

distance between two NIQE measurements is then computed using the Euler distance. 

𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜈𝜈𝐴𝐴, 𝜈𝜈𝑀𝑀,𝐶𝐶𝑜𝑜𝑜𝑜𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀) = ��(𝜈𝜈𝐴𝐴 − 𝜈𝜈𝑀𝑀)𝑇𝑇 �
𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀

2
�
−1

(𝜈𝜈𝐴𝐴 − 𝜈𝜈𝑀𝑀)� (19) 

The aforementioned paragraphs listed all distance measures used to compute the difference of 

two images based on the image content descriptors selected in chapter 3.5. When no distance 

measure is specifically defined by the author of the descriptor a derivate of the Minkowski 

distance is employed in this thesis. 

Before the actual experiments, the individual measures are validated for their capability to 

determine image content differences. Here unsuitable descriptors are ruled out. The validation 

is presented in chapter 5.1.4. The actual experiment is structured in two parts: 

The first test computes the distance 𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 between the default synthetic dataset 

baseline and the natural dataset photo for each image descriptor to identify the differing 

image properties between these two image types. 

The second test computes the distances 𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 between a synthetic dataset with 

modified environment parameters and the natural dataset photo for each image descriptor to 

identify settings reducing the distance between these two image types. 

3.7 Influence factor analysis method 

The influence factor analysis shall relate the results acquired in the object performance 

evaluation (chapter 3.4) and image content comparison (chapter 3.5 and 3.6). As laid out 

before, the object performance evaluation provides the performance of the test object in 

regard to the (graphical) configuration of the rendering engine. These configuration settings 

affect appearance and content of the images, which is demonstrated by the image content 

comparison. Thus, combining these two evaluations based on the configuration of the 

synthetic environment allows isolating specific image properties influencing the performance 

of the test object and quantifying the amount of influence. This connection provides a 

fundamental understanding for the synthetic image composition and thus characterize 

synthetic data and its difference to natural data. 



3.7 Influence factor analysis method 81 

Studies investigating similar topics 

In chapter 2.6, several approaches of other authors characterizing the difference between 

synthetic and natural data are presented. For example, (D. J. Butler, Wulff, Stanley, & Black, 

2012) used image statistics based on histograms for luminance, spatial and temporal 

derivatives, gradient magnitude and the power spectra, which are averaged over a number of 

images to present the statistical difference of synthetic images to lookalike (“similar scene”) 

screenshots taken from cinema and television movies. A measure to quantify the distance 

between luminance histograms is the Kullback-Leibler divergence: 

𝐷𝐷𝐾𝐾𝐾𝐾(𝐻𝐻𝐴𝐴,𝐻𝐻𝐵𝐵) =  �𝐻𝐻𝐴𝐴(𝑥𝑥) ⋅ log
𝐻𝐻𝐴𝐴(𝑥𝑥)
𝐻𝐻𝐵𝐵(𝑥𝑥)

255

𝑥𝑥=0

 (20) 

The numeric value to describe the derivate-based measures is simply the kurtosis of the 

(assumed) normal distribution. The power spectrum measure compares the slope of power to 

the image frequency. For this thesis, the presented approach is not sufficient because the 

originating source causing the algorithms performance difference cannot be extracted. 

In (Avcibaş et al., 2002) image quality measures are evaluated in regard to four different 

image distortions using an ANOVA (Analysis of variance) test. This test considers variances of 

a dependent (output) variable to estimate whether the observed difference (of introduced 

changes) is due to chance or systematic. ANOVA can evaluate several different independent 

variables (groups) towards a specific hypothesis. The null hypothesis is valid when the mean 

values of all variables are equal (no influence of manipulated values) and thus shows that no 

effect has been found. The alternative hypothesis is becoming probable as soon as one group 

is significantly different from all the other means. This indicates that even though the result 

shows the alternative hypothesis to be significant, it is unknown which group is responsible 

for this difference. (Avcibaş et al., 2002) combined only different magnitudes of image 

distortions of the same kind within one ANOVA test, which allows them to detect whether an 

enlarged distortion has an effect on the tested measure. The authors used the F-ratio as 

measure for the variance explained by the ANOVA results against the remaining unexplained 

variance. The ratio is also a measure for the likelihood that such value is possible while the 

null hypothesis is valid. In this case, lower value yields a higher possibility. Therefore, the 

employed method can be considered suitable for the performed study. However, two 

drawbacks exist when this method is to be used for the influence factor analysis: Firstly, in the 

concept of this theses each synthetic environment parameter is represented by only one 
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dataset (not multiple increasing magnitudes), which means the variable responsible for failing 

the null hypothesis cannot be identified and further analysis would be necessary. Secondly, it 

is difficult to rank the input variables according to their weight on the output variable. 

Though, according to (Field, 2009) t-test and ANOVA are typical tests for experimental 

research (manipulation of one dataset and comparison to a reference, baseline or control 

dataset), the author also indicates that regression can be used to acquire cause-and-effect 

results (solving the rank problematic). 

(Oelbaum, 2008) for instance uses regression in a two-step approach to measure the influence 

added image distortions have on image quality measures. First, the author describes the 

variance of all distortions performing a principle component analysis (PCA). This step 

strongly reduces the computational effort while retaining all effects, but the relationship to the 

original variables (before grouping) is lost. Then the resulting principle component variables 

are analysed using the partial least square regression. While regression itself is a powerful 

method to identify the influence of multiple input variables on the outcome, a method without 

PCA is needed to allow identification of relevant input variables. 

Selection of analysis method 

The aforementioned studies support the idea that multiple regression analysis (several input 

variables, one output variable) is most suitable to evaluate the effect of image properties on 

CV-algorithm performance. Essentially, in regression analysis the output (outcome, 

dependent) variable and the input (predictor, independent) variables are used to fit a linear 

model describing the relationship predictors have on the outcome variable. This means 

regression estimates the amount of variance in the outcome caused by a specific predictor 

variable and its weight (compared to other predictors). If the resulting model is generally 

valid, it could be used to predict outcomes solely based on predictor values. The model is 

fitted by applying the method of least squares to identify the regression coefficients 𝑏𝑏𝑛𝑛 of the 

model equation 𝑌𝑌𝑖𝑖 (Field, 2009): 

𝑌𝑌𝑖𝑖 = (𝑏𝑏0 + 𝑏𝑏1𝑋𝑋𝑖𝑖1 + 𝑏𝑏2𝑋𝑋𝑖𝑖2 + ⋯+ 𝑏𝑏𝑛𝑛𝑋𝑋𝑛𝑛) + 𝜀𝜀𝑖𝑖 𝑖𝑖 = {1, 2, … ,𝑁𝑁} (21) 

where 𝑖𝑖 is the current sample, N the number of samples, 𝑛𝑛 the number of predictor variables 

(input), 𝑋𝑋𝑖𝑖𝑖𝑖 the value of these variables and 𝜀𝜀𝑖𝑖 the remaining difference between model value 

and the outcome 𝑌𝑌𝑖𝑖. The regression coefficient 𝑏𝑏0 is the static offset also called intercept of 

the regression model and can be deduced from the diagram of Figure 3-7 where the predictors 
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cross the vertical axis (all predictors = 0). This parameter allows the model to be different 

from zero in case all x values are zero. The orange and blue line stand for predictor examples. 

In this example 𝑏𝑏1 is indicated by the orange line showing a strictly monotonic decreasing 

relationship with the outcome variable (𝑏𝑏2, the blue line is strictly monotonic increasing). The 

coefficients 𝑏𝑏1 and 𝑏𝑏2 describe the gradient of the lines depicted. The sum of predictor values 

is the result of the regression model and 𝜀𝜀𝑖𝑖 indicates the differences to the actual value of 𝑌𝑌𝑖𝑖. 

 

Figure 3-7: Example of the relationship of two predictors and the outcome variable. (Field, 2009) 

Different regression methods exist, which vary by the concept on how variables are entered 

into the model. In general the most important or effective predictor should be added first into 

the model. In hierarchical regression, the predictors are selected based on findings in previous 

research, while forced entry regression adds all variables simultaneously at no specific order. 

In this thesis, stepwise regression is used because it allows adding predictors gradually and 

displays the benefit of the added predictor. More specifically the backward stepwise 

regression analysis is selected for this thesis. This methods starts with all predictors added to 

the model (just like forced entry regression), but then calculates the benefit of each predictor 

and removes the least contributing from the model until only significantly contributing 

predictors remain (Field, 2009). 

Assumptions to be checked before analysis 

Before performing regression analysis the image properties need to be analysed for 

relationships between these assumingly independent variables. If two or more predictors 

(these are the image descriptors my case) are correlating highly with each other, the resulting 

coefficient estimates will be inaccurate. This makes it difficult to assess the importance of a 

predictor. A well-known diagnostic measure for this effect called multicollinearity is the 

condition index (CI). This measure is acquired by dividing the largest eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 of the 
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predictor matrix (measurements by descriptors) by the eigenvalue of the current dimension 𝜆𝜆𝑥𝑥 

(Belsley, 1991): 

𝐶𝐶𝐼𝐼𝑥𝑥 =  
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑥𝑥

 (22) 

The higher the value, the more collinearity exists. During the analysis, a CI value for each 

dimension of the matrix is computed. The main interest is directed towards the dimension 

with the largest CI values. A value of ten to 30 is considered small and might be further 

investigated. Is 30<CI<100 then there are collinearity issues that should be investigated. 

When CI>100 the effect is severe and is sure to influence the regression analysis. The results 

of the investigation are best presented by table or table plot (Friendly & Kwan, 2009) (see 

chapter 6.1.3). If collinear variables are detected several possibilities exist depending on the 

goal of the analysis. For instance the model fit is unaffected by these effects and in this case 

the results can be neglected. If the contributions of the predictor variables are of interest as in 

this case, the effects of multicollinearity needs to be reduced by removing one of the 

responsible predictors (image measures). Removing an image measure sounds severe, 

however remember that a very similar image measure remains and thus only a repetitive 

measure is removed. For example, PSNR and MSE have the same measurement principle 

except that PSNR is of logarithmic scale. The intercept, included into the model to allow 

outcome values different from zero when all predictors are zero is not considered during 

multicollinearity evaluation as it is not an investigated parameter and does not hold 

interpretable meaning (Freund & Littell, 2000). This could be changed by centring the data 

(subtract the mean) but is advised against by (Belsley, 1991) and thus not conducted in this 

concept. 

Execution of Analysis 

After having identified the proper analysis method, now relative- and absolute-repeatability 

(chapter 3.4) and the image content distances (chapter 3.5 and 3.6) shall be used to populate 

the regression model. Since the goal is to explain the feature detector performance differences 

on natural and synthetic imagery through image content differences, the regression outcome 

variable y is defined by 

y ≡ Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (23) 
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where y is a vector of size (N-1) with N being the number of images in a dataset. The 

predictors are populated by the corresponding image content description distances. In Figure 

3-8, the correlated measures are depicted. Repeatability is computed using two consecutive 

images of one configuration (image type) until the end of the dataset is reached  

(N-1 measurements). When the repeatability measures of two configurations are subtracted, 

four images are used to compute the dependent variable y. Thus, the same images need to be 

applied for the image content distance computation. This is achieved by computing the mean 

of two consecutive image distance results. The descriptors measure the image content 

distances 𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖 (1 × 𝑝𝑝 -vector with p being the number of image descriptors) between 

the photograph and synthetic image depicting the same view for 𝑖𝑖 = 1, … ,𝑁𝑁. To ensure 

comparability the mean results of each descriptor d𝑗𝑗  (for 𝑗𝑗 ∈ ) for 𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖 and 𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖+1 

are computed: 

𝑋𝑋 ∶=
(𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖 + 𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖+1)𝑖𝑖=1,…,𝑁𝑁

2
≙
�𝑑𝑑1𝑖𝑖𝑖𝑖 + 𝑑𝑑2𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑁𝑁;𝑗𝑗=1,…,𝑝𝑝

2
 (24) 

The resulting matrix 𝑋𝑋 of size (𝑘𝑘 × 𝑝𝑝) matrix with 𝑘𝑘 = 𝑁𝑁 − 1 is now directly comparable to 

the performance difference y as it is based on the same data. 

 

Figure 3-8: Evaluation principle of the influence factor analysis. Repeatability measures y and image 

content distance measures X are combined to populate the linear regression model. 

After removing highly correlating image content descriptors due to multicollinearity, the 

regression fit can be conducted and the resulting model evaluated. There are several measures 
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to identify the fitting quality of the model. R² computes the amount of variation covered by 

the model. Thus if R² = 0.80, 80% of existing variation is covered by the resulting model. 

According to (Field, 2009) It is computed as follows: 

𝑅𝑅2 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑆𝑆𝑆𝑆𝑀𝑀
𝑆𝑆𝑆𝑆𝑇𝑇

 (25) 

Where 𝑆𝑆𝑆𝑆𝑀𝑀 is the squared sum of residuals for the found model and 𝑆𝑆𝑆𝑆𝑇𝑇 is the squared sum of 

residuals using the mean 𝑦𝑦� as model.  

The square root of R² reveals the Pearson Correlation Coefficient (PLCC) r between model 

and data, the higher the value the better the fit. The coefficient can be described by the 

covariance 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥 of two variables divided by the multiplication of their standard deviations 

𝑠𝑠𝑥𝑥 and 𝑠𝑠𝑦𝑦: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦

=  
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1

(𝑁𝑁 − 1)𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦
 (26) 

Applied to our problem the PLCC sums the difference for each result 𝑖𝑖 and the mean of each 

dataset (𝑥𝑥, 𝑦𝑦). The sum is then normed by their standard deviations. Thus, when the residuals 

of the different datasets behave similar a high correlation is measured. The significances of 

the correlations are calculated using Student's t-distribution. The measure 𝑝𝑝 indicates the 

probability that the null hypothesis (the assumption the correlation is zero) is true. There are 

several threshold used in statistics with 5% probability being the most common one, meaning 

when the probability of the result being part of the population (null hypothesis being true) is 

greater than 5% the result is not significant. Other common thresholds are 𝑝𝑝 < .01  

(99% confidence) and 𝑝𝑝 < .001 (99.9% confidence). When the resulting probability is less 

than the mentioned thresholds the alternative hypothesis is significant (the assumption a 

correlation exists). Thus, while PLCC presents the amount of correlation between 𝑥𝑥 and 𝑦𝑦, 𝑝𝑝 

indicates the chance that the found correlation does not exist even though it is measured due 

to unfortunate sampling. It is important to mention that the identified correlation may be 

dependent on a third undiscovered variable. To measure the amount of shared variance, the 

coefficient of determination 𝑅𝑅2 = 𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶2 can be used. Additionally, a correlation test cannot 

identify the variable causing the correlation.  
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Another existing measure is the F-Ratio, which describes “how much the model has improved 

the prediction [in regard to the mean (null hypothesis)] of the outcome compared to the level 

of inaccuracy of the model” (Field, 2009). Thus, it can be used as a measure to rate the quality 

of the model. This measure results from dividing the mean squares of the model by the mean 

squares of the remaining differences (Field, 2009): 

𝐹𝐹 =  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

=
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
=
𝑀𝑀𝑆𝑆𝑀𝑀
𝑀𝑀𝑆𝑆𝑅𝑅

 (27) 

This measure presents the prediction quality of the model against its inaccuracy. Thus a large 

F-ratio (F<1) indicates a good fit. p indicates the probability of the computed F-ratio being a 

result of chance (see chapter 3.4 for more detail). A value of 0.05 for p means the probability 

of this F-ratio happening by chance is 5%. The F-Ratio can also be computed from the R² 

with the number of samples and the number of predictors (input variables): 

𝐹𝐹 =  
(𝑁𝑁 − 𝑘𝑘 − 1)𝑅𝑅2

𝑘𝑘(1 − 𝑅𝑅2)
 (28) 

In reverse, the number of necessary samples is dependent on the size of the effect that shall be 

detected. The expected 𝑅𝑅 can be calculated as follows: 

𝑁𝑁 =  
𝑘𝑘
𝑅𝑅

+ 1 (29) 

Thus for the three different effect sizes of R according to (Jacob Cohen, 1992) and 10 

predictors the resulting minimum number of necessary samples is presented in Table 3-4.  

Table 3-4: Sample numbers necessary to detected specific effect classes. 

 

The individual assessment of predictor variables is conducted using t-tests since regression 

coefficients close to zero can be interpreted as having no effect, therefore being equivalent to 

the null hypothesis of the t-test. The result of the test is computed by dividing the acquired 

regression coefficient 𝑏𝑏 by the standard error of possible regression coefficients 𝑆𝑆𝐸𝐸𝑏𝑏  

(by sampling the data multiple times and compute the resulting b values): 
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𝑡𝑡 =  
𝑏𝑏
𝑆𝑆𝐸𝐸𝑏𝑏

 (30) 

After acquiring the degree of freedom (𝑑𝑑𝑑𝑑 = 𝑁𝑁 − 𝑘𝑘 − 1) the significance of the result can be 

computed, with 0.05 indicating that computed regression coefficient 𝑏𝑏 is significantly 

different from zero (Field, 2009). 

When incorporating the performances of feature detectors on different settings of the 

synthetic environment an additional categorical predictor needs to be added to the model. 

This is explained in appendix C.1 and in depth theoretical background can be found in (Field, 

2009). 
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4 Implementation 

This chapter describes the implementation of the applied concept presented previously. 

Specifically implementation aspects of following three components necessary to demonstrate 

the concept will be explained: 

• Unmanned aerial system 

• Synthetic environment 

• Concept demonstrator 

An unmanned aerial platform was deployed to capture natural imagery used to create the 

reference dataset photo. Then, the positional information of the recorded flight trajectory was 

fed into the synthetic environment to generate multiple synthetic datasets with varying 

parametrization. Lastly, the concept demonstrator to perform the comparison and evaluation 

steps explained in the concept chapter above was applied to the acquired datasets. 

Before going into detail the procedure to achieve synchronized datasets depicted in Figure 4-1 

needs to be presented. 

 
Figure 4-1: Dataset acquisition and generation approach 

First, the test flight was conducted, where an aerial platform equipped with mission sensors 

(electro-optical camera and inertial measurement unit) flew above the target area and recorded 

natural images as well as telemetry data. This data contained all information necessary to 

monitor the current flight status of an aircraft (e.g. position, altitude, attitude and speed), the 

term itself origins from the wireless transmission necessary to deliver the data to the ground 

control station (monitoring and commanding system of the aircraft). It was provided among 

other sensors by an inertial measurement unit (AHRS) on-board the aircraft and was directly 

recorded on the aircraft. Telemetry data provided all data necessary to pinpoint the three 
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dimensional position and orientation of the aircraft at any time during the test flight, needed to 

reconstruct the actual viewpoint of the sensor for every recorded image During the test flight, 

telemetry and natural images were recorded together with their data acquisition timestamp, 

allowing the test flight to be replayed and used to feed the synthetic environment. The 

telemetry data was replayed to position the camera in the 3D virtual world. Each time a 

natural image has been captured a synthetic sensor image was recorded with the identical 

frame number. 

4.1 Unmanned aerial system 

 

Figure 4-2: Campus of the University of the Bundeswehr Munich (yellow) and test flight area (red). 

The natural image dataset was acquired by flying over the testing area and capture the 

necessary data. All aerial test flights conducted during this research were performed on the 

test flight area (highlighted in red in Figure 4-2) of the University of the Bundeswehr Munich 

(yellow). The area has been selected as it was easy to access, secured from unauthorized 

access, allowed small aircraft operation and had varying terrain surface (e.g. fields, forest, 

buildings, roads, etc.). To control the deployed unmanned aircraft a set of technical 

components was necessary. Usually grouped under the term Unmanned Aerial System (UAS), 

it is “ considered to be the system, whose components comprise the necessary equipment, 

network, and personnel to control an unmanned aircraft [vehicle] (UA[V])” according to 

(Plöger, 2010) and comprises besides the airborne platform the control equipment on ground 
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(Ground Control Station, GCS) as well as the wireless telecommand and telemetry data link 

in between. 

To capture the sensor image stream in sync with the current flight status (orientation, position, 

altitude of the aircraft) to geo-reference every image the experimental UAV Okto XL of the 

Institute of Flight Systems had been selected. This aircraft provided the necessary 

adaptability, while being compact, fulfilled all given requirements and was readily available 

to the institute. The aircraft is detailed further in chapter 4.1.1. 

 

Figure 4-3: Left: The interior (left) and exterior (right) of the deployed ground control station. Note the 

antenna array located on the roof. 

The UAV was controlled via the ground control station (GCS) depicted in Figure 4-3, 

consisting of four COTS 19” rack computers mounted into a box-type van hosting a human 

machine interface to control and monitor the unmanned aircraft. Connection to the UAV was 

established via a WLAN access point with multiple antennas for near field (omnidirectional) 

and more distant (two orientable directional antennas) WIFI reception. The antennas were 

automatically aligned towards the aircraft by computing the relative direction between 

location of the GCS and Aircraft (acquired from telemetry data). This, solution enabled the 

system to maintain WIFI connection throughout the test-area. 

Further, as depicted in Figure 4-4 a safety pilot monitored the aircraft during the experiment 

to take control in case of unexpected aircraft behaviour via regular TC communication link. 
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Figure 4-4: The Unmanned aerial system used to capture the natural image data. 

In the following sections, hard- and software of the components used in this investigation are 

presented. A more detailed view about the general toolset, which is used to conduct flight 

experiments at the IFS is presented in (Schmitt, Rudnick, Stütz, & Schulte, 2015). 

4.1.1 Unmanned aerial vehicle / sensor platform 

 

Figure 4-5: The unmanned Aerial Vehicle Octo XL used in the experiments for this thesis. In this image, a 

fully equipped payload can be seen (Russ, Schmitt, Hellert, & Stuetz, 2013). 

The Octo XL Multicopter has been developed as an experimental aircraft at the institute of 

flight systems. It is based on the assembly kit MK Okto XL from HiSystems13; however, the 

                                                 
13 Website of manufacturer: http://www.mikrokopter.de/de/startseite [Last Accessed: 2016-01-11] 
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airframe has been specifically redesigned (Figure 4-5). The aircraft has been used previously 

in other experiments as an airborne sensor platform (Russ et al., 2013) and proved to be a 

stable platform also for this investigation. 

The UAV is equipped with eight brushless electric motors MK3638 each generating a 

maximum thrust of 2.2 kg and consuming up to 350W. The motors drive eight 13” propellers. 

The necessary power is supplied by four Lithium-Polymer (LiPo) accumulators each 

providing 7Ah with a maximum voltage of 7.4V. The Multicopter has about a diameter of 1m 

and a height of 40cm. The MTOW is 6kg, allowing the payload to weigh up to 2.2kg. The 

aircraft can achieve speeds up to 60km/h and yields a flight endurance of about 15 minutes 

when fully equipped (MTOW). 

A custom payload bay had been designed for the Octo XL Multicopter (Rönnfeldt, 2013). This 

experimental mission payload system depicted in Figure 4-6 has an adjustable centre plate 

that can be positioned as necessary depending on the spatial requirements payload. 

 

Figure 4-6: Experimental mission payload system. In this configuration, it is equipped with one camera 

and two processing boards. 

The outside of the payload system has been designed to fit two 3.5”embedded mainboards 

providing the UAV the computational power to perform on-board data processing. The 

deployed configuration consisted of two processing boards, one image sensor and one attitude 

and heading reference system (AHRS). The installed COMMELL LS-37B processing boards 

are equipped with 9GB of RAM and i7-3840QM processors (2.8 GHz). As storage solid-state 

disks with capacities of 256GB and 480GB. As wireless interface, the SR-71 adapter from 
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Ubiquiti supporting the 802.11n standard in 2x2 MiMo antenna configuration is deployed and 

configured to 5GHz. The boards are connect with each other via wired Ethernet. The 

MQ042CG-CM from XIMEA has been chosen as camera system. This camera provides 

images with a resolution of 2048 by 2048 pixel at a maximum framerate of 90Hz via USB 3.0 

to one of the processing boards. It was selected due to its performance at the provided form 

factor (2.6cm x 2.6cm x 3cm), weight of 32g and the possibility to directly access the camera 

via the provided C++ API. 

For this investigation, a Myutron HS2514V lens with a focal length of 25mm (equal to 26.9° 

FOV) and manually configurable focus and aperture was attached to the camera. A MTi-G 

700 from XSENS was used as GPS enhanced AHRS, providing position (usually 4-6Hz) and 

velocity to the 3D orientation at the sampling rate of the Kalman filter (configured to 400Hz) 

as listed in Table 4-1. This, sensor delivered the necessary telemetry data for every recorded 

image. For roll and pitch axis, the dynamic error of 1ϭ RMS is 0.3°, for yaw it is 1.0°. The 

positional accuracy has standard deviation of 1.0m in horizontal direction and 2.0m in vertical 

direction. The MTi-G 700 was interfaced through its USB 2.0 interface using a C++ API. 

Table 4-1: Accuracy of AHRS according to the manufacturer (Xsens Technologies B.V., 2014) 

 

In Figure 4-7, the configured experimental mission payload system is shown. Below the red 

camera mount, camera and Myutron lens are visible. The camera system is mounted 

decentralized on the centre plate to provide vision unobscured from the landing gear. On this 

centre plate (hidden behind the blue cables), the AHRS is attached. The centre plate has been 

lowered to distance the AHRS from the magnetic field of the power controllers cooling fan. 

Both sensors (camera and AHRS) have been connected to the processing boards, which are 

also connected to the navigation control of the UAV to allow remote route transmission. 
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Figure 4-7: Experimental mission payload system as used for the test flights of this thesis. 

4.1.2 Software implementation 

All software components of the UAS have been implemented in C++ using the Qt application 

framework and boost C++ libraries as an extension to the basic functions provided by 

standard libraries. The computing hardware of UAV and GCS are using Ubuntu 14.04 LTS 

(64 bit) as operating system. All SW applications communicate using the AnyCom inter-

process communication toolkit presented in chapter 0. 

The Flowchart diagram in Figure 4-8 according to DIN 66001 details the functional steps of 

the four necessary logical components to record the natural image datasets. These components 

are ground control station (GCS), UAV flight management system (FMS), UAV Sensors and 

UAV Recording. 

The GCS provides all necessary means to control the aircraft and its payload. The UAV FMS 

wraps the system specific communication interface of the autopilot to provide simplified 

means to communicate with the flight controls of the UAV (Clauss & Schulte, 2014). 

Additionally, it connects the flight controls to the inter-process communication. The UAV 

Sensors module similarly connects the specific interfaces of the sensors to the inter-process 

communication and provides sensor data and sensor control capabilities. Further, the UAV 

Recording module records the information of interest (image and telemetry data) in their 

original sample-rate to file. 
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Figure 4-8: Flowchart diagram of the natural data capture system implementation. 
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As the flowchart in Figure 4-8 depicts, the ground control stations is the main control module 

triggering the start of the experiment and forwarding the planned route of flight to the FMS 

and activates the sensors and data recording. Thus, sensors provide their data to the inter-

process communication framework where recording is subscribed to image and telemetry 

data, saving it to file. This continues until the end of the commanded route has been reached. 

When the end of route signal is provided to the GCS, it triggers the deactivation commands 

for the sensor and recording modules. The landing of the aircraft then concludes the 

experiment and the data acquisition. 

The information flow and the distribution of processes between UAV and GCS are depicted in 

Figure 4-9. All arrows indicate communication between processes. The arrows with 

description indicate inter-process communication while blank arrows indicate specific 

proprietary communication interfaces.  

 

Figure 4-9: Distribution and communication of processes among the physical components. All labelled 

connections are inter-process communications. Others are communicated via C++ interfaces. 

After the experiment, raw data images and telemetry were fused on ground to provide sensor 

and telemetry in one data container to ensure synchronisation and simplify replay and 

handling. Therefore, each image (10Hz) was combined with the last received telemetry data 

package (400Hz) and saved into a stream container format. Thus, the image was provided 

with telemetry data with a maximum time difference error of 2.5ms. 
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4.2 Synthetic environment 

To prepare the experimental setup, first the synthetic environment used to produce synthetic 

(or computer graphic) imagery had to be selected. Before listing the requirements for this 

selection a short background is given that helps to curtail available choices. The Institute of 

Flight Systems investigates new concepts of guidance and automation for unmanned aerial 

vehicles. These concepts contain also paradigms for sensor guidance, sensor management and 

perception management where automation should adapt during the mission to the current 

tactical situation and environmental conditions. These paradigms include automatic image 

processing of mission sensor information and semantic data extraction of the depicted scene. 

However, due to the complexity of these investigations on mission level, staging complex 

operational conditions in real live environments becomes hardly achievable and regularly 

include experiments conducted in synthetic simulation environments including the simulation 

of coherent sensor data14. Specifically the presence of human-in-the-loop elements in such 

investigations bring along the necessity of (soft) real-time performance. This requirement  

a-priori removes high quality rendering engines such as the Octane15 or Indigo Renderer16 

based on global-illumination (e.g. path-tracing) as a possibility. 

Another possibility is the use of low-level graphic toolkits such as OpenSceneGraph17 (OSG). 

While OSG is versatile and allows direct access to the rendering pipeline, this low-level 

access also increases the efforts to create a synthetic simulation environment for geo-

referenced test flights and the main benefit of reducing the costs by simulation is diminished 

or even lost. Therefore, commercial of the shelf (COTS) products providing the complete 

toolchain for simulation, modelling of terrain, scenario staging and a model database are of 

greater interest and to be considered in the following. During the initial phase of this work 

three products where considered: 

                                                 
14 More about the research conducted at the Institute of Flight Systems can be found on 

https://www.unibw.de/lrt13 [Last Accessed: 04.05.2016] 

15 According to the manufacturer, Octane is an unbiased, physically based renderer for photo-realistic results: 
https://home.otoy.com/render/octane-render/ [Last Accessed: 29.12.2015] 

16 According to the manufacturer, Indigo Renderer is an unbiased, physically based and photo-realistic renderer: 
http://indigorenderer.com/ [Last Accessed: 29.12.2015] 

17 According to the manufacturer, OpenSceneGraph is an open-source real-time graphics toolkit based on C++. 
http://www.openscenegraph.org/ [Last Accessed: 29.12.2015] 
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• CryEngine 2 SDK (Crytek) provides the highest near-ground image-quality of the 

three selected engines and includes a physics engine, AI, Scenario Scripting, a C++ 

interface and a sandbox editor. 3D-models have to be created using external tools (e.g. 

3DS Max) and are afterwards converted using the CryExporter. A medium amount of 

objects (from the Game Crysis) is already provided with the SDK. The game engine 

has been designed and optimized for ground entities leading to drawbacks when 

simulating aerial vehicles (e.g. small terrain size, no geo-referencing, import of GIS 

data, etc.) 

• The Modelling & Simulation Toolchain from Presagis is targeted at developers for 

professional training simulators and covers most tools necessary for their 

development. For instance, the rendering engine Vega Prime allows considerable 

terrain sizes and high view distances but also provided less detailed terrain surfaces 

compared to its competitors at the time of selection. For scenario scripting and 

simulation multiple tools are available. An AI is also provided via AI.Implant. The 

necessary tools to create new 3D-models or terrain databases are also available. 

Unfortunately, the complete toolkit is quite expensive and the provided 3D-model 

database is small. Needed 3D-models can either be modelled or bought additionally 

increasing the financial effort. 

• Virtual Battlespace 3 (VBS3) from Bohemia Simulations is a modified game engine 

(from ARMA) and recently gained popularity in the professional simulation market 

due to its holistic toolchain, modern computer graphics and attractive pricing. The 

provided complete toolchain consisting of rendering engine from, scripting language, 

dynamic simulation models, AI, large object database and tools to generate new 

content. The graphical quality provided can be ranked between CryEngine 2 and 

Presagis’ Vega Prime. The high level of integration between renderer, scenario Editor 

and simulation allows quick scenario generation with the drawback that access to 

single components is highly limited. For external interaction with the engine, a C++ 

interface exists. 

Selection 

Out of these three COTS software kits, VBS3 has been selected as rendering engine for the 

experiments (see Table 4-2). The main points where the possibility to create geo-referenced 

terrain and quickly generate small scenarios while limiting the necessary financial efforts. 
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Additionally, the results of this thesis may help a larger community when using VBS3 due to 

current wide spread use in the industry. Further, the provided large repository of 3D-models 

and content development tools provided all means to generate the terrain database (more in 

chapter 4.2.2). Lastly, the modern computer graphics imagery also tuned for aerial vehicles 

confirmed the decision to use VBS3. 

Table 4-2: Comparison between VBS3, CryEngine 2 and Presagis’ Modelling and Simulation Toolkit. A 

higher value means better performance (5 = highest value, 1 = lowest value, 0 = not available). 

Criteria CryEngine 2 VBS3 
Presagis 
M&S Toolkit 

Graphical Quality 5 3 1 
Model DB Size 2 5 0 
Terrain Size 2 4 5 
Visual Quality of Terrain 4 3 2 
Geo-referenced Terrain creation 0 4 5 
Geo-referenced Scenario creation 0 5 5 
Price 1 5 3 
    
Resulting Scores: 2,00 4,14 3,00 

 

4.2.1 Software implementation 

The synthetic environment was used to generate synthetic image datasets in sync to 

previously acquired natural datasets. The flowchart in Figure 4-10 details the functional steps 

necessary to achieve this goal. Processing blocks with by parallel lines mark features that are 

more deeply explained later on. 

 

Figure 4-10: Flowchart diagram of the synthetic dataset generation implementation. 
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To acquire synchronous synthetic and natural datasets, the identical position and pose of the 

camera needed to be extracted from the actual test flight. A replay mechanism pushed 

telemetry data frame-by-frame to the synthetic environment. Newly received data was then 

used to update the position and orientation of the virtual camera. The rendered image was 

then copied and forwarded to the mission sensor simulation to add sensor effects (e.g. noise or 

distortion). Finally the image was stored on the hard drive and labelled with the same frame 

number as the corresponding natural image. The following paragraphs now detail the 

implementation of Replay Test Flight, Update Camera and Add Sensor Effects (Mission 

Sensor Simulation). 

The replay was conducted by using the network based group communication middleware 

AnyCom Toolkit developed at the Institute of Flight Systems for inter-process communication. 

The toolkit concept is based on the data distribution service (DDS) standard defined by the 

Object Management Group (OMG) and is detailed in (F Boehm & Schulte, 2012), (Böhm & 

Schulte, 2012) and (Florian Boehm & Schulte, 2013). The Toolkit provides tools for real-time 

recording, monitoring and replay of sensor data. Thus, telemetry and sensor data were 

transmitted via AnyCom to the virtual environment. The synthetic environment VBS3.4 was 

connected to AnyCom via an Telemetry Plugin as depicted in Figure 4-11. 

The Telemetry Plugin (using the Application Scripting Interface (ASI) C++ API) checked for 

new telemetry data prior to every rendering (40-50 fps or Hz), which was sent from the replay 

application at 10Hz. When new data was received, the camera was oriented and positioned.  

 

Figure 4-11: SW-setup used to generate synthetic datasets. The plugins are used to position the camera 

and store rendered image data. All other necessary configurations are performed from within the engine. 
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When a telemetry message has been received and after the camera is positioned the Image 

Plugin is executed. Here, a modification of the Integrated Test bed for Experimentation on 

Mission Sensors (ITEM) architecture (Hummel & Stütz, 2011) using VBSFusion C++ API18 

from SimCentric Technologies was used to save rendered imagery as depicted in Figure 4-12. 

In ITEM the Virtual Sensor Layer accesses the rendered image right before the buffer swap 

and forwards this image data to a MSID (multiple instruction, single data) architecture 

(Downton & Crookes, 1998) based Filter Module. This module handles post-processing filters 

and data distribution. In this work, a stochastic noise filter and a lens distortion filter based on 

the distortion model of (Z. Zhang, 1999) are deployed. The noise filter allows simulating 

temporal and spatial noise on all three colour channels. The distortion filter applies the same 

radial lens distortion to the rendered images as measured during the calibration process of the 

deployed UAV camera. Afterwards, the result is stored using the Communication Module. 

The visual configuration was accessed within VBS3 via GUI, since the one-factor-at-a-time 

experimental setup only needed one parameter changed between the creating of different 

datasets. The scenario was created with the VBS Offline Mission Editor (OME), which 

provides a top-down view on the loaded terrain and allows adding of objects and definition of 

their interactions. Complex scenario elements were scripted via the provided scripting 

language. The most complex components in test flight recreation were the design of the 

terrain database, the design and placement of 3D-buildings as well as their surrounding 

vegetation in the terrain map. This step is detailed in the next section. 

 

Figure 4-12: Modified ITEM Architecture adapted and streamlined to the needs of the synthetic image 

generation. 

                                                 
18 Fusion is a C++ API for VBS developed by SimCentric Technologies https://www.simct.com/?page_id=712 

[Last Accessed: 05.01.2016] 
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4.2.2 Generation of terrain database 

To simulate the scene captured in the natural dataset the actual terrain environment of the 

natural test flight (depicted in Figure 4-2) had to be reproduced for the synthetic environment 

in a geo-referenced way. Since the terrain database had been mainly but not exclusively 

generated for this investigation all major buildings of the university had been modelled as 

well. While for roads and trees existing models provided by the model database of the 

synthetic environment were used, each building of the university was manually designed. 

When all desired objects have been placed in the terrain map, the result was compiled to 

create the terrain database (see Figure 4-13). This database then directly was loaded in the 

synthetic environment for rendering. Simplified spoken, the terrain map is a coloured ground 

texture mapped onto a 3D elevation grid; a more detailed explanation follows in the next 

chapter. 

 

Figure 4-13: Terrain database consisting of terrain map and positional references to 3D-objects. 

Terrain map 

In general, a terrain map for 3D rendering applications comprises a height mesh with mapped 

textures. For this work, three types of geo-referenced terrain data had been accessed to 

generate the terrain maps for VBS3 (see Figure 4-14): 

• Rasterized aerial images are oblique, orthographic aerial images made by aircrafts or 

satellites. This investigation uses aerial imagery of the Bavarian office of Land-

Surveying and Geo-Information provided by the Bundeswehr Geoinformation Service. 

Since, the aerial imagery was taken in summer 2014 with a resolution of 0.2 meters 



104 Implementation 

per pixel (mpp) some infrastructural modifications in the test flight area had been 

conducted until the actual date of the test flights. 

• Elevation data describes the altitude of geolocations at a specific area and is captured 

via aircrafts or satellites with stereo-cameras, light detection and ranging (LIDAR) or 

synthetic aperture radar (SAR) sensors. The resulting point cloud typically is geo-

referenced and converted to a rasterized digital elevation model (DEM) image, where 

values represent the altitude above mean sea level (MSL). Digital elevation models are 

categorized into digitized surface model (DSM) or digitized terrain model (DTM). 

While the DSM provides the measured altitudes of the surface including man-made 

structures, the DTM has been filtered for these structures to provide only the bare 

ground altitudes. Since buildings are modelled separately for this investigation a DTM 

was used. Again, the data used has been provided by the Bundeswehr Geoinformation 

Service. The resolution of the rasterized DTM is 15mpp, which is sufficient due to the 

limitations of the virtual engine and the general flatness of the modelled region. 

 

 

Figure 4-14: Source data used to generate the terrain database for VBS3 and their engine compatible 

conversions. 
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• Vector Data contain geo-spatial descriptions of geographical features (e.g. rivers, 

roads, lakes, etc.) in vectorised form (e.g. points, lines, shapes). Common formats are 

ESRI Shapefile19 or Simple Features standardized by the Open Geospatial Consortium 

(OGC) in ISO 1912520. The data used for this work was acquired from 

OpenStreetMap, a project providing open-source geo-data21. Here, geographical 

features are categorized into natural, land use, waterways, buildings, railways, roads 

and are provided with a single Shapefile for each class. 

The process and related toolchain to create VBS3 terrain maps is pictured in Figure 4-15. 

Global mapper is used to convert the provided geographic data into formats supported by 

landscape development tool Visitor4. In this step, the actual geographical location and size of 

the map are defined. The aerial image and elevation data are transformed to a fitting 

resolution. A surface mask is generated using vector data, which enables the blending of 

satellite image texture used as ground texture with detail textures of the grounds surface (e.g. 

asphalt for roads). This technique called Layered Terrain Surface Representation22 

(introduced by Bohemia Interactive 2006) raises the visual detail of the landscape in close 

ground camera views, independently (Roupé & Johansson, 2009) present a very similar 

method. The actual texture seen in the engine is the ground detail texture blended with the 

satellite texture. With the advent of VBS3, the blending method has been reworked. Now, at a 

distance of 50 meters the defined detail texture is (as the distance increases) slow replaced by 

a generic detail texture, which completely replaces the user specified detail textures at 100 

meters distance from the ground. This boosts the image quality of ground views between 100 

and 300 meters since the generic detail texture is of higher scale and reduces the tile-like 

repetitive pattern (which appears when small texture patches are repeated). 

                                                 
19 The data format ESRI Shapefile is described in the Whitepaper of 1998: 

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf [Last Accessed: 03.01.2016] 

20 Simple Featues is a data format after the standard ISO 19125 of 2004: 
http://www.iso.org/iso/catalogue_detail.htm?csnumber=40114 [Last Accessed: 03.01.2016] 

21 The download area of OpenStreetMap to acquire the shapefiles fo Upper Bavaria: 
http://download.geofabrik.de/europe/germany/bayern/oberbayern.html [Last Accessed: 06.01.2016] 

22 The Description of the Layered Terrain Surface Representation: 
https://community.bistudio.com/wiki/Layered_Terrain_Surface_Representation [Last Accessed 07.01.2015] 
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Figure 4-15: Toolchain to create VBS terrain databases. 

In the surface mask, areas with man-made structures (e.g. roads, buildings) are coloured in 

red, rivers and lakes in blue, forests in green while default is yellow. The result is then 

converted to a rasterized image with the same size and resolution as the aerial texture. In 

Visitor4, the colours are then mapped to the respective textures (Figure 4-16). 

 

Figure 4-16: The Surface mask is generated based on GIS vector data. Additionally, colour mapping and 

detail textures are presented. 

After all data was inputted into Visitor 4, the geographical details as well as terrain and 

satellite data resolution was set and the surface texture to colour mapping has been performed; 

the terrain was built and converted into a Packed Bohemia Object (PBO). This file was then 

added to VBS for rendering. 

 

Figure 4-17: A synthetic view of a scene displayed for each different terrain database. 
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This step in the modelling process determines the quality of the satellite and ground detail 

texture. To analyse design variants of synthetic image quality in respect to performance of 

computer vision algorithms, three different terrain maps with different qualities were 

modelled. Figure 4-17 highlights differences of these terrain databases. The terrain database 

LQ (Low Quality) and HQ (High Quality) had been modelled with different resolution for 

satellite image texture and respective surface mask (see Table 4-3). In database HQ_NB,  

3D-objects have been omitted to additionally identify their influence. The optional placement 

of these objects is addressed in section 0. 

Table 4-3: Configuration of the three terrain databases produced. 

 

3D-objects 

Up to now, the terrain database comprises just the terrain contour colorized by several layers 

of textures. However, scenes in the natural world rarely can be reduced to such simplified 

view (e.g. deserts). Therefore, terrain databases typically are “populated” with various types 

of static objects. Concerning the test area to be modelled, such objects are mainly roads, 

fences, vegetation and buildings. 

Not only to reduce the effort necessary to create the terrain model but also to emulate the 

classical industry approach for database modelling all objects except for buildings were taken 

from the VBS model library. All these object types there are specified as geo-typical that 

means being typical for a certain geographical region to be modelled. For example, types of 

trees that appear in the middle European region are used even though they are only similar but 

not identical to the specimens found in the test area. Due to their size and recognize-ability, 

buildings are modelled in geo-specific quality. This indicates that the models of buildings 

have same dimensions and locations (with an accuracy of 0.5 meters) as their real 

counterparts and photographs had been used to texture their surfaces when possible. The 

information necessary to create a geo-specific model of a building is depicted in Figure 4-18. 

The building’s dimensions were read from its blueprints. Since photographing rooftops was 
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difficult, the type of roof and its form have been visually identified and then modelled using 

freely available textures from texture databases23. 

 

Figure 4-18: Information necessary to create the exterior of a geo-referenced Building. 

In VBS3, the relatively simple Phong local illumination model (Phong, 1975) is used (see 

appendix A). To enhance the visual quality of buildings, VBS3 allows the deployment of 

multi-layered shaders. In this work, the NormalMapSpecularMap24 shader employing normal 

mapping and specular mapping was used. Normal mapping preserves the appearance of an 

object even though the polygon mesh is of low detail (Jonathan Cohen, Olano, & Manocha, 

1998). Similarly, the specular map as implemented in VBS325 preserves the local reflection 

information of an object and its reflective power (an example is shown in Figure 4-19). 

 

Figure 4-19 The components of a 3D model as used in this work to model geo-specific buildings. 
                                                 
23 Two Example free texture databases are http://texturelib.com/ [Last Accessed 07.01.2016] or 

http://www.textures.com/ [Last Accessed 07.01.2016]. 

24 More detail on VBS shaders can be found at https://resources.bisimulations.com/w/index.php?title=RVMAT 
[Last Accessed: 08.01.2016] 

25 Documentation of Normal Maps and Specular Maps in VBS: 
https://resources.bisimulations.com/wiki/HQ_Normal_Maps [Last Accessed: 08.01.2016] 
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Object placement 

Eventually the terrain map had to be populated with 3D-objects to generate a 3D 

representation of the test area in the synthetic environment. Figure 4-20 presents the objects 

placed into the terrain database. 

 

Figure 4-20: Objects placed in the terrain map. 

The placement of objects on the terrain map was performed with the tool VB-Edit from 

Eurosimtec26. The resulting terrain database HQ is depicted in Figure 4-21. In the lower left 

corner of the image the test flight aerial can be seen. A direct comparison between an aerial 

image of the University of the Bundeswehr and the same scene depicted in the synthetic 

environment using database HQ is presented in Figure 4-22.  

 

Figure 4-21: Terrain database HQ viewed from within the synthetic engine. 

                                                 
26 Product Webiste of VB-Edit: http://www.eurosimtec.de/products/vb-edit/ [Last Accessed: 08.01.2016] 
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Figure 4-22: University of the Bundeswehr Munich (UNIBWM) depicted as aerial photograph (right) and 

as synthetic rendering using terrain database HQ from same viewing position and angle (left). 

4.3 Concept demonstrator 

In this chapter, the software implementation of the concept demonstrator discussed in chapter 

3.2 is presented. The logical software architecture of the concept demonstrator (see Figure 

3-3) is again described as flowchart in Figure 4-23. The three presented threads were executed 

independently. Executed initially, the Feature Detector Performance Evaluation read an 

image pair from a dataset to detect SIFT, SURF and MSER features. These resulting features 

were compared to the ground truth to measure the detectors performance. Computed 

performance results were then saved to the hard drive. The process iterated until the last 

image pair was encountered. The next thread, the Image Content Distance Computation also 

read images pairwise from the dataset and then computed image descriptors for each image. 

These descriptors were then used to compute the image pair distances and results were saved. 

Lastly, the Influence Factor Analysis loaded the results gained in performance evaluation and 

the distance results to compute regression models identifying image distances the feature 

detectors are sensitive to. 



4.3 Concept demonstrator 111 

 

Figure 4-23: Flowchart diagrams of the concept demonstrators three components. 

The ground truth generation of the feature detector performance evaluation (presented in 

chapter 3.4) was implemented in C++ and used the SURF, brute force matching and 

RANSAC implementation of OpenCV27. The feature detection performance evaluation itself 

was implemented in MATLAB and based on the framework VLBenchmarks (Lenc, Gulshan, 

& Vedaldi, 2012), which implemented the evaluation concept of (Mikolajczyk & Schmid, 

2005; Mikolajczyk et al., 2005). This framework computes the absolute and relative 

repeatability of feature detectors on datasets used in (Mikolajczyk & Schmid, 2005). The 

framework was modified to fit the concept of this investigation. VLBenchmarks provides 

several feature detectors out-of-the-box. Thus, the implementation of SIFT and MSER as 

provided by the framework were deployed. As third feature detector, SURF had been added to 

the framework using the implementation provided by MATLAB. 

The image content distance computation has been separated into image descriptors (see 

chapter 3.5) and distance measures (see chapter 3.6). Both utilized the C++ mpeg7FexLib 

library of (Bastan, Cam, Gudukbay, & Ulusoy, 2010) providing visual descriptors of the 

                                                 
27 An open-source computer vision library. http://opencv.org/ [Last Accessed: 10.05.2016] 
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MPEG7 experimental model (XM) (Motion Picture Expert Group, 2003; Yamada et al., 2001) 

in a simple object oriented architecture. In a separate step, the descriptions of the added image 

quality descriptors were computed using MATLAB. For SSIM and MSE / PSNR the 

implementations of (Z. Wang et al., 2004) have been used28. In case of the NIQE descriptor 

(Mittal et al., 2013), the original MATLAB implementation of the author has been used29. The 

image descriptor comparator in Figure 4-24 read the image description XML files using 

again the mpeg7FexLib library, which provided the distance measures for all deployed 

MPEG7 descriptors except for DCD. For DCD the distance measure presented in (Ma et al., 

1997) has been used. The comparison results were then saved to a CSV-file for further 

processing. The distance measures of non-MPEG7 descriptors were computed in MATLAB 

and appended to the existing CSV file. 

 

Figure 4-24: Image Content Distance Implementation 

The result files acquired in the previous two steps were then loaded by the influence factor 

analysis implemented in MATLAB, which performed a backward stepwise regression 

analysis (see chapter 3.7). 

                                                 
28 https://ece.uwaterloo.ca/~z70wang/research/ssim/ssim_index.m and 

https://ece.uwaterloo.ca/~z70wang/research/iwssim/psnr_mse.m [Last Accessed 10.05.2016] 

29 http://live.ece.utexas.edu/research/quality/niqe_release.zip [Last Accessed 10.05.2016]  
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5 Preliminary experiments and experimental datasets 

This chapter first presents the preliminary experiments conducted to verify the necessary 

accuracy of used geographical data (synthetic environment) and employed methods 

(automatic ground truth generation) needed for further investigations. Thereafter, the datasets 

designed for the principle experiments are presented in detail. 

5.1 Preliminary experiments 

This chapter provides the necessary foundation for the principle experiments. First, the 

geographical accuracy of the modelled terrain database was investigated. Due to the 

considerable amount of test data, an automatic ground truth annotation has been implemented, 

which was based on the concept of homographic correlation (plane surface relation) between 

two views as explained in chapter 3.4. This approach is assumed valid due to the top-down 

perspective with negligible height differences concerning the altitude of the aircraft. This 

assumption was experimentally evaluated using three different samples from the dataset. In 

the last subchapter, the results of the ground truth acquisition used here are compared to 

published results of another implementation using well-known datasets. 

5.1.1 Validation of database accuracy 

Here, the positional accuracy of terrain maps was checked considering potential errors already 

present in source data (terrain textures) or introduced during the database modelling 

procedure. Validation was conducted by measuring the geo-position at six geographical 

locations distributed among the test area as depicted in Figure 5-1. These points were 

selected, because they were simple to identify and provided sharp edges for accurate selection 

in the terrain databases. The natural geo-position was acquired by measuring the location with 

a NAVILOCK 602U GPS mouse connected to a notebook. The software Visual GPSXP was 

used to measure the location of each geo-feature 100 times. The mean average of these 

samples was computed and defined as the reference geo-coordinate of that location (M). 



114 Preliminary experiments and experimental datasets 

 

Figure 5-1: Locations of measured geographical features. 

Respective geo-coordinates of the corresponding features were manually extracted based on 

their visual appearance from the two databases of the virtual environment (HQ and LQ, see 

chapter 4.2.2). As comparison, the same features were also measured in Google Earth (GE) 

and the source (Src) texture data used to create the databases (chapter 0). Before computing 

the difference in distance from the measured reference (M), all coordinates were transformed 

from latitude / longitude using the WGS84 ellipsoid reference into Universal Mercator 

Transformation (UTM). The distance between the measurement (used as reference) and the 

specific dataset was computed using the Euler distance L2. For all terrain datasets, the median, 

the 25th percentile, and the 75th percentile of the distances to the measured reference positions 

were computed and provided in Figure 5-2. 

 

Figure 5-2: Euler Distance measures of the terrain databases, google earth and the source GIS geo-

coordinates against the measured coordinates M. 

The results show that the accuracy of all terrain databases are close to the accuracies of GIS 

data, demonstrating good positional accuracy of both databases. For the following 

investigations, this accuracy is sufficient. The higher precision of GIS data (depicted by a 

smaller box size) results from inaccuracies in visually identifying the exact geographical 
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features, which becomes more difficult with lower visual quality of the satellite texture. 

Overall, the results show an average error of 1.5m ± 1.2m. This amount of error is close to the 

error of the source data and thus demonstrates the high accuracy of the generated terrain 

databases. 

5.1.2 Validation of auto-generated ground truth concept 

 

Figure 5-3: Image pair example (Frame 7869, left; Frame 7884, right) with annotated ground truth (black 

crosshairs). 

Ground truth necessary for the main experiments (chapter 6) was auto-generated using the 

approach proposed in (Mikolajczyk et al., 2005) (chapter 3.4). It is based on a homographic 

correlation between these two views, which can be achieved by either having no translational 

movement between the images (which is not valid in this case) or by displaying a 

homogenous scene (flat-earth model). All following experiments were based on image data 

recorded from a camera, mounted perpendicular to the airframe of the Multicopter. The 

camera was equipped with a perspective lens (FOV = 25° in horizontal and vertical angle), 

flying at a constant altitude of 70m above ground level. The experiment was conducted on the 

01.10.2015 at 11:15 a.m. with sunny weather conditions. Due to the field of view, the flight 

altitude and the levelled terrain, a flat-earth (scene) is assumed. In this chapter, manually 

annotated ground truth is used to evaluate the accuracy of automatic ground-truth generation. 

In Figure 5-3, an example is presented demonstrating the result from the manual annotation 

process. All pixel pairs between the two views have been numbered and their coordinates 

(with full-pixel accuracy) logged into text files. In each view, ten easily detectable features 

distributed on the region covered by both views have been selected. 



116 Preliminary experiments and experimental datasets 

Since manual ground truth annotation is expensive, three typical example image pairs have 

been selected representing the variants of scenes during the test flights. The image pair in 

Figure 5-4a street depicts a flat structured scene containing no objects of height > 0.1m. This 

image pair shows a completely homogenous flat surface that is expected to work well with 

homography-based ground truth methods. The image pair in Figure 5-4b forest contains a 

natural scenery of trees with an altitude between five and ten meters. Additionally, the ground 

surface itself is only partially visible. This pair shall help to evaluate the accuracy of ground 

truth in sceneries with large natural objects. In Figure 5-4c, hangar a complex scene depicting 

numerous man-made objects including a large hangar and its shadow challenge the automatic 

ground truth methods due to the difference in altitude (the building is 6m high at the highest 

point) and the repetitive texture of the roof. 

(a) street (b) forest (c) hangar 

Figure 5-4: The three sample pairs to measure the accuracy of automatically generated ground truth. 

Each sample consists of an image pair with synchronized telemetry data. 

The resulting manually acquired image pair coordinates have been used as reference for the 

automatic ground-truth generation methods: Image based homography estimation (further 

called IHE) and Telemetry-based homography estimation (THE). Additionally, a third 

homography matrix was computed using the manually annotated points as inputs to evaluate 

the maximum possible accuracy possible with the homography approach for the specific 
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samples. The IHE extracted feature points using the SURF detector and matched them with 

brute-force matching based on their SURF descriptions. These points were used as inputs for 

an initial homography estimation. A RANSAC algorithm then used all found feature pairs to 

fit the homography plane optimally (see chapter 3.4 for more details). 

In contrast, THE used position and attitude information of the aircraft acquired through the 

aircraft sensors presented in chapter 4.1.1 to calculate the geographic outline the camera 

depicted on the ground (sensor footprint). The method to compute the homography matrix for 

THE is detailed in appendix B. 

After having defined the image-based 𝐻𝐻10𝐼𝐼𝐼𝐼𝐼𝐼  and telemetry-based homography 𝐻𝐻10𝑇𝑇𝑇𝑇𝑇𝑇 , for 

comparison a third homographic relation 𝐻𝐻10𝑀𝑀𝑀𝑀𝑀𝑀  using the manually annotated ground truth 

points (𝑝𝑝0,𝑝𝑝1) was generated. For each of the three image pairs presented in Figure 5-4 all 

three homography matrices were computed and the ground truth was used to evaluate their 

accuracy by measuring the deviance of point 𝑝𝑝1′ = 𝐻𝐻10 ∗ 𝑝𝑝0 and 𝑝𝑝1 .The absolute deviance d 

was acquired by computing the Euclidean distance of the 𝑥𝑥 and 𝑦𝑦 components of 𝑝𝑝: 

𝑑𝑑 =  ‖𝑝𝑝1 − (𝐻𝐻10 ∗ 𝑝𝑝0)‖2 (31) 

Table 5-1: Deviations of estimated and actual points using homography on image pair street. 

 

The image pair evaluated first was street. The results are depicted in Table 5-1 as mean and 

standard deviation over all ground truth features, both in pixel and meter. The root-mean-

square error (RMS) serves to simplify the comparison to ground truth accuracies by 

(Mikolajczyk et al., 2005), where the resulting RMS deviance was less than 1 pixel. Using the 

points acquired by annotation the RMS value of 0.62 pixel deviance between projected and 

actual position, correlates with (Mikolajczyk et al., 2005) even though the scene street and the 

experiment in general were much more complex than Mikolajczyk’s datasets. Compared to 

manual annotation (MGT) the automatically acquired homography IHE cannot achieve the 

same accuracy, however because the accuracy is still below one pixel it is acceptable. 

Telemetry-based homography estimation (THE) on the other hand shows the problem of 

accumulated error resulting from the need to combine sequential AHRS measurements 
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(forward and backward computation). Interestingly the standard deviation of THE results is 

only about one pixel higher than that of other homography matrices suggesting that the 

orientation measurements have been precise. The lateral positioning has been identified as the 

main source of error of which hints to insufficient accuracy of the position measurement  

(GPS (4Hz) enhanced with Kalman filtering). Standard deviations of MGT and IHE are 

higher than the actual measurement values indicating different accuracies of the selected 

points showing the limit of manual image annotation (selecting the exact pixel in both 

images). When considering the actual deviance in meters, a mean accuracy of 5cm using 

image based homography presents a good result taking into regard the complexity of the 

experiment. Even the mean deviation of 7.45 meters of the telemetry approach is not too bad, 

considering that the positional error of the GPS is rated at 2m CEP. However, the telemetry-

based approach does not provide the accuracy necessary to conduct the planned experiment. 

Thus, image based homography estimation is used in the main experiments of this thesis as 

automatic ground truth generation method. 

 

Figure 5-5: 3D and 2D visualization of image pair street (0 = magenta, 1= green) depicting aircraft and 

sensor footprint on the left and sensor footprint with ground truth points on the right. 

In Figure 5-5, the left diagram shows the 3D representation of the street image pair with the 

sensor footprint of image 0 coloured in magenta and image 1 in green. Position and 

orientation of the aircraft during the image acquisitions is indicated by simplified 

representation in the same colours in metric Cartesian coordinates. The right diagram shows 

the sensor footprints in a 2D top-down view together with ten ground truth pixel coordinates 

converted into world space for both images (s0.6 = intersection point of ground truth point 6 
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with the world surface in image 0). Thus, the resulting deviation (distance between s0.x and 

s1.x points) between the two views can be derived. 

Scene hangar introduces an occluded scene with several objects of different height (hangar = 

7m height). Table 5-2 displays the rise of deviance in MGT data, which can be directly 

correlated to the flat earth condition of the homography (annotation accuracy is assumed to be 

similar to image pair street). For MGT and IHE the deviation mean and the standard deviation 

rise. The standard deviation of IHE is lower than MGT since the optimization algorithm 

reduced the deviation by determining a plane that fits most points. In this case, the pixels on 

the right are on higher ground than pixels on the left of the image leading to a shifted 

homography. THE’s standard deviation is about two times higher than of IHE or MGT and the 

deviation mean is even 36 times higher. This underlines the previously made assumption that 

the GPS localization is the main source of error for THE. When displaying the results in 

meters the differences between the actual points as identified by manual annotation and the 

projected point using the estimated or calculated homography is 0.09m for IHE and 3.33m for 

THE in average. While this example demonstrated the introduction of noticeable errors for 

cluttered scenes, the concept of using homography as automatic ground truth is not 

compromised. However, the standard deviation of the experiments needs to be monitored in 

order to react in case the deviations reach critical levels. 

Table 5-2: Deviations of estimated and actual points using homography on image pair hangar. 

 

Image pair forest has been selected for a worst-case evaluation. It presents a scene with many 

occluded trees of varying height and many natural features, which do not provide clear edges 

or corners. Surprisingly the evaluation results in Table 5-3 can be ranked between street and 

hangar for MGT, meaning the ground truth points can be represented quite well with a 

homography. IHE is still equal to values from hangar, even providing lower standard 

deviation indicating good representability using homography. In addition, the telemetry 

homography estimation presented its lowest results, due to high overlap between the images 

(see Figure 5-6) and the low velocity of the aircraft compared to other scenes. Still, the 

measured errors are far above the limit disabling this method as a valid option. 
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Table 5-3: Deviations of estimated and actual points using homography on image pair forest. 

 

The results present IHE as a valid option, while THE has been identified as too inaccurate. 

The resulting standard deviation errors now need to be set in to perspective to identify their 

impact on used performance criteria (see chapter 3.4). Currently the size of an (non-projected) 

region is normalized to 30 pixels. Assuming no deviation in scale, the distance at which the 

overlap error 𝜖𝜖𝑂𝑂 (see equation (6)) is higher than 40% is six pixel. Thus, if mean deviation of 

the ground truth is larger than six pixel repeatability cannot be measured. This limit defines 

the necessary accuracy of the ground truth homography.  

 

Figure 5-6: 3D and 2D visualization of image pair forest (0 = magenta, 1= green) depicting aircraft and 

sensor footprint on the left and sensor footprint with ground truth points on the right. 

5.1.3 Validation of automatic ground truth computation implementation 

The computation method of ground truth homography matrices has been implemented in C++ 

similar to (Mikolajczyk et al., 2005) using OpenCV. A detailed description of this approach 

can be found in chapter 3.4. This approach differs from (Mikolajczyk et al., 2005) by 

removing the manual feature selection step to identify the approximate homography matrix 

and the warping of the test image using this matrix to then compute the residual homography 

using RANSAC. Here, the SURF-algorithm was used to automatically detect and describe 

features, which were then matched using a brute force method. The resulting approximate 
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homography was used as initial value for the RANSAC-based optimization, which optimized 

the results by reducing the error and identifying outliers. In this chapter, this implemented 

method is compared to the resulting homography matrices of Mikolaczyk, which are provided 

together with the image datasets on the website of the visual geometry group of the University 

of Oxford30. The dataset graffiti used in this evaluation consisted of six images showing a 

graffiti on a wall at increasing viewing angles (examples presented in Figure 5-7). 

(a) (b) (c) 

Figure 5-7: Example images of dataset graffiti used in (Mikolajczyk et al., 2005) at increasing viewing 

angles from 0° (a) over 20° (b) to 30° (c). 

Seven points in the reference image of “graffiti” have been selected as reference points and 

were manually annotated for every image. Using these points, the manually annotated ground 

truth homography 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀  (in chapter 5.1.2) was computed. Mikolajczyk’s homography 

estimation matrices 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀  were provided in the dataset. These were used as references for the 

image-based homography matrices 𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼  computed using the aforementioned implementation. 

The comparison was performed by projecting manually annotated points 𝑝𝑝𝑥𝑥 of an image to 

reference image 0 using the homography matrix and the projection error was computed using 

the Euclidean distance 𝐿𝐿2 of 𝑝𝑝 (Equation (31)). The distance measurement statistics of all 

points are then provided using  RMS and standard deviation in Table 5-4. These show in 

general that projections using 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀  perform best, which is not surprising because the 

homography has been computed with the reference points used in this evaluation. This 

indicates whether the datasets can be represented with a homography and demonstrates the 

lowest possible error. The homography matrices of Mikolaczyk are very close to MGT at all 

viewing angles only rising above one pixel RMS at 40°. The implementation IHE provides 

also results below or equal one pixel RMS for viewing angles up to 30° but then leads to high 

                                                 
30 http://www.robots.ox.ac.uk/~vgg/research/affine/index.html [Last Accessed: 19.01.2016] 
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error rates. Similarly, the standard deviation for all the types of homography acquisition are 

similar up to a viewing angle of 40°. 

Table 5-4: Evaluation of the ground truth implementation IHE used in this thesis against manually 

annotated ground truth MGT and ground truth used in (Mikolajczyk et al., 2005) MHE. 

 

The high values at wider viewing angles result from the strong distortion of features, which 

reduces their recognisability for the automatic acquisition method used in the IHE approach. 

However, as depicted in Figure 5-8 the errors of IHE are very close to MHE and MGT for 

viewing angles smaller than 30° and due to the fact that the experiments use a fixed camera a 

viewing angle difference larger than 30° will not appear in the experiments. Thus, the 

implementation is providing good results as long as the viewing angle difference is not above 

30° and will be used further in this work. 

 

Figure 5-8: Reprojection Error in RMS (left) and Standard Deviation (right) for all tested homography 

estimation implementations on the dataset “graffiti”. 
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5.1.4 Validation of image content distance measures 

The image descriptors have been designed for use cases such as image quality assessment 

presented in chapter 2.5.1 (PSNR, MSE, MSSIM and NIQE) or image retrieval (CSD, CLD, 

SCD, DCD, HTD, EHD) presented in chapter 2.5.3. Their functionality as image content 

distance measure had to be validated in order to use them in further investigations. 

A capable measure needs to able to identify whether two images are from different datasets or 

from the same dataset (all depicting the same scene). Thus, the distances were measured 

within a dataset (by comparing two subsequent images and iterating through the dataset) and 

had been compared to the distances that arised between the two dataset types. 

The resulting distances within each dataset are 𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑛𝑛𝑏𝑏 for baseline and 𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑛𝑛𝑝𝑝 for photo. 

The image content distance results between the two datasets are denoted 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝑏𝑏𝑏𝑏. The 

deployed distance measures for each descriptor were detailed in chapter 3.6. 

The boxplots in Figure 5-9 depicts the within and between results of each image content 

descriptor on scene concrete. Each box statistically summarizes the results of all images in a 

scene. The red line is the median, the upper and lower outline of the blue box the 25th and 75th 

percentile of all measurements. Whiskers define the maximum and minimum value within a 

standard deviation of 3σ. Outliers are depicted with a red plus. 

As depicted in Figure 5-9 the descriptors NIQE, MSE, CSD, CLD, SCD, DCD, HTD and 

EHD can clearly separate the different image types. The measures PSNR, MSSIM and DCD 

are unable to do this in this scene. To evaluate their capabilities objectively their 

discriminative power was statistically analysed for all scenes. 
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Figure 5-9: Descriptor distances for scene concrete. Betweenbp presents the distance between photo and 

baseline, Withinb the distances within baseline and Withinp the distances within photo. 

Statistical analysis 

To identify the sensitivity and thus the usability of a measure the results have been statistically 

analysed. Therefore, the mean distance 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏 was compared against the mean distance 

between two subsequent images of the reference (photo) dataset. The probability whether a 

measure can differentiate between the two was evaluated using the independent t-test 

measure, where 𝐷𝐷�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the mean distance of all images between the two configurations, 
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𝐷𝐷�𝑟𝑟𝑟𝑟𝑟𝑟 the mean distance within the reference, 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 the number of images used in the 

between evaluation and 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 the number of ‘inner’ images: 

𝑡𝑡 =
𝐷𝐷�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐷𝐷�𝑟𝑟𝑟𝑟𝑓𝑓

� 𝑠𝑠𝑝𝑝2
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+
𝑠𝑠𝑝𝑝2
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟

 
(32) 

The number of samples differs since the sequential evaluation always needs two images for 

each measurement. Thus its number of evaluations is 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1. Due to the 

varying sample size, the standard deviation 𝑠𝑠𝑝𝑝  had to be calculated accordingly: 

𝑠𝑠𝑝𝑝2 =
(𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1)𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 + �𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 − 1�𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟2

𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 − 2
 (33) 

With 𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2  being the standard deviation of the between dataset measures and 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟2  the 

standard deviation of the within reference dataset measures. The significance is given by the 

probability 𝑝𝑝 (read from the cumulative distribution function of Students t-distribution using 

the acquired 𝑡𝑡-value (Student & Gosset, 1908)). The effect size r is given using the Pearson 

linear correlation coefficient (PLCC), which can be computed using the t-value: 

𝑟𝑟 = �
𝑡𝑡2

𝑡𝑡2 + 𝑑𝑑𝑑𝑑
 (34) 

Where 𝑑𝑑𝑑𝑑 is the degree of freedom that is: 

𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 − 2 (35) 

This evaluation will identify measures more sensitive to changes between natural and 

synthetic images and insensitive measures. In case 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛𝑏𝑏𝑏𝑏 values differ significantly 

from the 𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑛𝑛𝑝𝑝 results, the measure can identify the differences between two different 

image content types. If the deviation is non-significantly different, the measure shows no 

ability to distinguish both image types. 

In Table 5-5 the resulting effect sizes r for all measures and scenes are presented together with 

their probability-value p. If 𝑝𝑝 < .05 the resulting effect size is statistically significant. PSNR 

and MSSIM cannot provide significant results, which means these measures cannot 

distinguish between natural and synthetic imagery. All other measures show large effect sizes 
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in high significance indicating a strong capability to distinguish synthetic images from 

photographs. 

Table 5-5 Effect sizes r and their probability value p encoded using asterisks presenting, which measures 

are able to distinguish images of different content. Large results are bold. 

Effect Size r  PSNR MSE  MSSIM  NIQE CSD CLD SCD DCD HTD EHD 

concrete .043 Ns .241* .162 Ns .538*** .949*** .929*** .899*** .272* .566*** .471*** 

forest .595 Ns .847*** .008 Ns .717*** .977*** .977*** .948*** .701*** .547*** .513*** 

hangar .311 Ns .506*** .216 Ns .764*** .964*** .992*** .928*** .730*** .896*** .638*** 

heath .602 Ns .761*** .077 Ns .919*** .983*** .889*** .957*** .500*** .904*** .650*** 

house .525 Ns .725*** .022 Ns .863*** .976*** .946*** .906*** .599*** .734*** .476*** 

junkyard .479 Ns .753*** .107 Ns .903*** .920*** .969*** .971*** .704*** .743*** .841*** 

sport .733 Ns .931*** .418 Ns .768*** .992*** .913*** .980*** .747*** .904*** .878*** 

street .569 Ns .829*** .274 Ns .604*** .982*** .760*** .978*** .662*** .896*** .468*** 
Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001       

Thus, Table 5-5 shows that except for PSNR and MSSIM all investigated descriptors are able 

to distinguish image of two different types. Consequently, the two unable descriptors won’t be 

used in further investigations. The image descriptors MSE and NIQE can differentiate very 

well, however due to their original purpose and concept to detect any kind of image error, 

they cannot be used to pinpoint on a specific causing property. Thus, these measures allow no 

conclusion on which image property needs to be adapted in order to reduce the visual 

difference of natural and synthetic data. It can be summarized that some image quality 

assessment measures have the ability to discern natural and synthetic data, however cannot 

present the reason of difference. Thus, in further investigations the measures CSD, CLD, 

SCD, DCD, HTD and EHD are deployed. In future investigations, current IQA measure such 

as MSSIM could be separated in measures determining only structure, brightness or contrast 

between two images. 

5.2 Experimental datasets 

The core interest of this evaluation lies in the performance difference of computer vision 

algorithms on natural images (photographs) and synthetic images (computer-generated 

imagery). In chapter 4.1 and 4.2, the implementation to generate images of both kinds had 

been presented. In the context of this investigation, a dataset is defined as a group of 

sequential images of one scene and one configuration. A scene presents a specific geographic 

location, at a specific time in a defined camera position and angle. The next subchapter details 

this explanation. The configuration specifies the changed parameter in the rendering of the 
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synthetic environment in reference to the standard configuration baseline. All configurations 

are presented in chapter 5.2.2. Each dataset is represented by 35 images, since according to 

Table 3-4, at least 35 samples are necessary to enable statistical measurements of medium 

correlation effects (r = 0.3). For correct comparison between datasets, images need to be of 

equal resolution. The camera used during the flight experiment provides a native resolution of 

2048x2048 pixel with an aspect ratio of 1:1. The resolution for dataset images has been fixed 

to 1024x768, since the synthetic environment supported it, and it allowed resizing of natural 

images without interpolation while additionally most of the image content could be retained 

(aspect ratio). The natural images were converted into this resolution by resizing the image to 

1024x1024 followed by cropping the lower and upper 128 rows. This allowed recording in the 

natural resolution of the camera and keeping the horizontal field of view due to vertical 

cropping. The resulting images therefore were depicting roughly the same scene (limited by 

accuracy of the UAV’s AHRS system) with the same field of view in the same resolution. 

Thus, the difference of image content is limited to the different representation of a scene in 

natural and rendered imagery. In summary, each dataset depicts a specific scene with 35 

sequential pictures with a resolution of 1024x768. The interval between dataset images was 

constant within a scene, but differed for each scene due to varying lengths of shots. The 

following chapter describes the captured scenes in detail. 

5.2.1 Description of scenes 

The test flight (chapter 4.1) had been categorized in eight scene types (Figure 5-10) to provide 

different challenges for the tested feature detectors, and thus vary in number and type of 

natural and man-made objects, terrain surface and presence of shadows. Telemetry (necessary 

to create synthetic datasets) and imagery (for natural datasets) data were recorded during a 

flight experiment on the 01.10.2015 at 11:15am with sunny cloudless weather. The UAS 

(chapter 4.1) was preprogramed with the flight path as depicted in Figure 5-10 to ensure exact 

route following. The altitude had been fixed to 70m above ground level. Take-off and landing 

was performed by a safety-pilot. 
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Figure 5-10: Part of the test flight area used to generate synthetic and natural datasets, together with 

aircraft route of the test flight and defined scene types. 

For each scene of the reference dataset photo, several corresponding datasets were generated 

in the virtual environment (one for each configuration). In Figure 5-11 and Figure 5-12, 

samples present each scene for photo and baseline. Please note that synthetic scenes always 

differ to some extend to natural scenes since they are limited by the appearance of the 

aerial image used as ground texture (e.g. daytime, season, weather or current situation). 

    

    

Figure 5-11: The eight scenes in reference dataset photo. From upper left to lower right: Street, sport, 

forest, junkyard, heath, house, concrete and hangar. 
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Figure 5-12: The eight scenes in synthetic dataset baseline. From upper left to lower right: Street, sport, 

forest, junkyard, heath, house, concrete and hangar. 

The scene street is of simple complexity, depicting a paved street, a concrete field and 

meadow. The richly textured surface is free from any objects or bushes. The terrain itself is 

extremely flat, making this scene the most planar out of all tested. 

Scene sport contains a tartan track, meadow and shadows of trees. The scene itself is also flat 

except for the obstacles on the track. Further, trees outside of the images cast shadows on the 

track making this dataset preferable for testing the effect of shadows on (almost) planar 

surfaces. 

Scene forest puts great demands on the homography condition since it consist almost 

exclusively of various densely put trees in different sizes. This dataset is useful to analyse the 

test objects performance on scenes with occluded natural objects. 

Junkyard is the first scene containing a larger building. Furthermore, the scene depicts 

meadow, trees, concrete surface, several small man-made structures, trash container and small 

objects. Due to the low height of most objects, shadows are rare. This scene is preferable 

when effects on a high number of small man-made objects and homogenous industrial 

textures shall be tested. 

In scene heath, a meadow with several sparsely placed trees of medium height (2-4m) and 

bushes is depicted. A gravel road separates the meadow. The scene is preferable when in the 

influence of natural textures; shadows and vegetation shall be tested. 

The second scene containing a building is house. This house is roofed with corrugated metal. 

In the scene there are also trees, meadow, a concrete surface, two vehicles, a pile of earth and 
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two people depicted making it the most versatile dataset. These persons are moving and have 

been modelled in the synthetic scenes. 

In scene concrete, several man-made structures and objects can be seen on a concrete surface. 

The structures are heterogeneous in colour, form and height making this dataset interesting for 

analysing textures and lighting. 

The last scene hangar depicts the largest and tallest building in the dataset together with a 

shipping container, a garage, two cars and two trailers. Additionally, trees occlude the scene. 

The surface is switching between freshly mowed grass and concrete. Both, trees and the 

hangar cast large shadows on the surface. The high amount of man-made objects, the large 

building with the homogenous texture, large shadows and how occlusion make this scene 

probably the most demanding for database modelling. Additionally, the behaviour of the 

aircraft differs between the different scenes as presented in Table 5-6. 

Table 5-6: Duration and aircraft movement description of scenes. 

 

5.2.2 Synthetic environment configurations of test datasets 

After having acquired the reference natural dataset through UAV test flights, the synthetic 

datasets had to be prepared to allow comparison of the test algorithm performances on both 

types of datasets. To investigate the effect of technical parameters (of database generation and 

rendering) of the synthetic environment a considerable number of synthetic test datasets was 

generated. To support a systematic approach, related parameters of potential influence were 

grouped in five sets (configuration sets): illumination, texture, edge, 3D-objects and camera 

model. Starting from a baseline configuration (default parameter set), variations of these 

parameters resulted in a specific configuration for each investigated parameter. In the 

following chapters configuration sets and contained configurations are explained. For each 

scene (eight in total) and configuration (21 in total) a synthetic test dataset was generated 
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leading to 168 investigated datasets. In every configuration set, the synthetic configurations 

have been compared to the reference natural dataset photo and the default synthetic 

configuration baseline. 

5.2.2.1 Configuration set “Illumination” 

In configuration set “Illumination”, all parameters modifying illumination properties are 

grouped. It needs to be mentioned that VBS3 (the used rendering engine) provides a 

hemispherical lighting model that computes brightness, direction and colour tone of sunlight 

considering the date, time of day, weather and the geolocation of the depicted scene. These 

have been set to coincide with the actual recorded imagery of the flight experiment for all 

evaluations. 

The investigated parameters are Shadow Detail, Shadow Filtering and Screen Space Ambient 

Occlusion (SSAO). In configuration baseline configuration all mentioned parameters are 

disabled, thus resulting in images without shadows and SSAO. The configurations and their 

parameter settings are presented in Table 5-7. Example images can be found in Figure 5-13. 

Table 5-7: Configuration set “Illumination” with parameter settings. 

 

In configuration shadow the shadow detail is set to high, which activates the shadow buffer 

techniques (cascaded shadow maps (CSM) (Dimitrov, 2007) and variance shadow maps 

(VSM) (Donnelly & Lauritzen, 2006); see appendix A). The shadow is generated by creating 

a depth-view from the light sources viewpoint and declaring non-visible pixels as shadow. 

Since depth computation is applied after rasterization, shadows may appear aliased. This 

configuration shall investigate the influence of shadows on the test algorithms performance. 

Configuration shadow filter additionally filters the shadows of the previous configuration 

using percentage closer filtering (PCF) (Bunnell & Pelacini, 2004). This filter reduces the 

aliasing of shadows. 
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Figure 5-13: Examples of set Illumination on concrete (image 35). Upper left to lower right: photo, baseline, 

SSAO, shadow and shadow filter. 

The last configuration of this set SSAO, activates the computation of screen space ambient 

occlusion (SSAO) (Bavoil & Sainz, 2008) in its highest fidelity as implemented in VBS3. 

This technique darkens image pixels that acquire less ambient light due to occlusion. Such 

occlusion can originate from other objects or complex geometries. This effect exclusively 

concurs on objects. Since ambient occlusion most prominently appears in dim lit complex 

indoors environments, the influence this technique has on outdoor top-down imagery is 

investigated. 

5.2.2.2 Configuration set “Texture” 

Texturing is an essential part of database generation since it improves the visual appearance of 

3D-objects, terrain surface and vegetation (3D-object and 2D-sprite representation) while 

keeping the object complexity (wire mesh) simple (for real-time applications. The ground 

surface is modelled in VBS3 as a layered terrain surface representation (see chapter 0) where 

the satellite image of the location is combined with a procedural detail map to improve the 

visual quality near ground. The parameters grouped in texture are Texture Detail, Satellite 

image texture resolution and Anisotropic Filtering (AF). Configuration baseline sets texture 

detail to very high, image resolution to 0.2mpp and disables AF. The parameter Texture Detail 
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(see Table 5-8) reduces the resolution and therefore the detail of all textures used in the 

engine. 

Table 5-8: Configuration set “Texture” with parameter settings. 

 

As depicted in Figure 5-14 this results in a reduced prominence of the detail map and creates 

aliasing artefacts in the satellite imagery. The respective configuration is named texture low. 

In configuration surface low the satellite image texture resolution is lowered to 5mpp, which 

greatly hides ambient geo-specific details. In AF, the anisotropic filter is set to maximum. This 

improves the quality of textures at oblique viewing angles in reference to the camera. In a top-

down view, this mainly affects the sides of 3D-objects. 

   

  

 

Figure 5-14: Examples of set Texture on scene concrete (image 35). Upper left to lower right: photo, 

baseline, anisotropic filtering (AF), Texture low and Surface low. 
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5.2.2.3 Configuration set “Edge” 

Configurations in this set consider the activation of four different anti-aliasing techniques, 

namely Multi Sampling (MSAA), Fast Approximate (FXAA), Subpixel Morphological (SMAA) 

and Super Sampling (SSAA). These techniques all aim to reduce the jagged nature of sharp 

edges or lines, which are introduced during rasterization. They mainly differ in image quality 

and required computation effort. As a side note, aliasing could also appear in natural images 

since the imaging sensor also performs rasterization, however in general the deployed optics 

produce enough natural blur to remove any antialiasing artefact. The methods can be roughly 

categorized in methods incrementing the sampling rate (SSAA & MSAA) or post-processing 

methods blurring the rendered image (FXAA & SMAA). As depicted in Table 5-9 in baseline 

no anti-aliasing method is enabled. 

Table 5-9: Configuration set “Edge” and their parameter settings. 

 

The configuration SSAA (super sampling anti-aliasing) simply renders the view in the doubled 

output resolution and later resizes it to its original resolution. This method usually produces 

the best antialiasing results but is also the most demanding. The more efficient MSAA 

selectively samples based on polygon-pixel coverage, thus simple sprites (e.g. tree leaves) are 

omitted. Sprites are 2D textures that represent complex objects to reduce the otherwise 

necessary computational effort (a nice introduction is given in (Szijártó & Koloszár, 2003)). 

To allow MSAA to operate on sprites (trees and grass) the alpha channel of the texture is used 

as aliasing mask telling MSAA to operate on these pixels. This technique is called Alpha-To-

Coverage (AToC) and is the last parameter evaluated in this group. In MSAA, antialiasing is 

set to eight. FXAA is a post-processing antialiasing method using a high pass filter to detect 

edges followed by a blur. SMAA (Jimenez, Echevarria, Sousa, & Gutierrez, 2012) is another 

morphological post-processing antialiasing method enhancing the edge detection by using 

multi-sampling instead of blurring. Concerning computational efficiency SMAA ranks 

between MSAA and FXAA. Both post-processing methods are set to the highest possible 
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setting for their respective configurations. Since AToC needs MSAA activated, it is set to eight, 

while alpha-to-coverage is set to Grass & Trees, enabling the multi-sampling of these sprite 

based objects. Examples can be seen in Figure 5-15. Especially the horizontal beams on the 

container show enhanced image quality when using antialiasing. Since post-process methods 

cannot extract the underlying edge information, the actual edge information cannot be 

restored. Additionally, the wooden board on top of the container clearly demonstrated the 

effects of the different employed methods. 

   

   

Figure 5-15: Configuration examples of set Edge on image 35 of scene concrete. Upper left to lower right: 

photo, baseline, SSAA, MSAA, SMAA and FXAA. 

As no foliage is visible in dataset concrete, the effect of AToC is depicted on a detail view of 

scene forest in Figure 5-16. Here it can be seen that the influence of AToC is subtle and mainly 

blurs the edges of the sprite. 

  

Figure 5-16: AToC example on a detail view of scene forest image 20. Left to Right: baseline and AToC.  
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5.2.2.4 Configuration set “3D-Objects” 

This set embraces configurations objects high, no objects and modelling errors. These 

increase the quality of the objects wire mesh or modify their appearance. In baseline the 

object detail is set to very low, objects are visible and correctly textured (see Table 5-10). 

Table 5-10: Configuration set “3D-Objects” with parameter settings. 

 

Figure 5-17 presents the impact of mentioned parameters on the image appearance for scene 

house. The parameter objects detail sets the distance thresholds where the engine switches to 

lower levels of detail (LOD). In VBS3 the same object can be represented by several meshes 

of different detail, each called a LOD. This shall boost the real-time performance by reducing 

the detail of distant objects. In configuration objects high the objects detail is set to the highest 

setting, thus displaying the highest quality LODs. The geo-specific buildings modelled for 

this thesis have a very simple wire mesh and thus only one LOD. 

   

  

 

Figure 5-17: Configuration examples of set 3D-Objects on scene house (image 4). Upper left to lower right: 

objects high, no objects and modelling errors. 

Therefore, effects of this parameter can only be identified on trees and stock 3D models of 

VBS3. For configuration no objects, all 3D entities have been removed from the map leaving 

only the terrain texture mapped on the terrain mesh to evaluate the effect of 3D-objects. To 
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investigate the importance of correctly applied geo-specific textures three buildings in scenes 

house, hangar and junkyard are provided with modified roof textures for the configuration 

modelling errors.  

5.2.2.5 Configuration set “Camera Model” 

The most prominent specifications (e.g. field of view, resolution) of the camera are fixed to 

the specifications of the camera used during the test flight (see chapter 4.1) to recreate the 

same scene accurately. However, the camera model can still be modified by the parameters 

Noise Filter, Distortion Filter, Camera aperture, HDR Quality, Bloom and Blur. In baseline, 

all parameters are disabled or set to their default values as listed in Table 5-11. 

Table 5-11: configuration set “Camera model” with parameter settings. 

 

The noise filter introduces Gaussian colour noise to the image. The employed normal 

distribution is centred on the original colour value of the pixel and the spread is defined by 

standard deviation σ, which is set to 3.0 for configuration noise. The distortion filter has been 

implemented by warping the image using the first radial distortion coefficient of the Zhang 

camera calibration model (Z. Zhang, 1999). The natural images of configuration photo are not 

calibrated. The distortion coefficients have been computed by using a set of natural images of 

the calibration pattern acquired directly before the flight experiment. In configuration 

distortion, the synthetic image is now warped using the negated first distortion coefficient. 

Configuration aperture closes the simulated aperture reducing the amount of light reaching 

the sensor. This shall help to identify the influence brightness and contrast changes have on 

the test object performance. VBS3 is based on DirectX9, which has high dynamic range 

lighting implemented to enhance the contrast in rendered scenes. The parameter HDR quality 

is set to very high in configuration HDR, which raising the light computation precision to 

24bit (16.7 million levels of brightness) instead to the common 8bit (256 levels). This 

rendering method mainly affects the contrast. Configuration bloom simulates oversaturation 

of an imaging sensor, where an overexposed region overflows in the neighbouring pixels 
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creating a glowing effect around the region. In blur the whole image is low pass filtered using 

a 3x3 kernel. Examples demonstrating the usage of this and the other discussed parameters 

can be seen in Figure 5-18. 

    

    

Figure 5-18: Configuration examples of set Camera Model on a snippet of image 35 of scene concrete. 

Upper left to lower right: photo, baseline, noise, distortion, aperture, HDR, bloom and blur. 
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6 Principle experiments and results 

This chapter deals with the experiments conducted to prove the concept presented in chapter 3 

and provides respective results. During the principle experiments, natural and synthetic 

datasets were subjected to the three-step investigation: 

• First, the test algorithms performance differences on photographs and rendered 

images were determined. 

• In a next step, the image content differences between the two datasets were 

measured. 

• Eventually the both results were combined to identify the image content actually 

causing the algorithm performance differences. 

Each investigation is followed by a summary chapter clearly presenting the acquired results. 

A reader mainly interested in results should read can skip the in depth discussion of the 

three steps and only read the summaries. The following experiments have been separated 

into two parts: 

• Baseline experiments: In the first part (chapter 6.1) the evaluation scheme is only 

applied on natural data and synthetic in their baseline configuration (see also chapter 

5.2.2), which results from selecting the baseline setting for each parameter of the 

synthetic environment. 

• Configuration set experiments: In the second part (chapter 6.2), the evaluation 

scheme is applied using synthetic data generated with varying configurations of the 

synthetic environment to identify rendering methods or modelling issues that influence 

the performance of the CV-algorithm. 

6.1 Baseline experiments 

The baseline experiments compared the performance of feature detector SIFT, MSER and 

SURF on the configuration baseline and natural reference photo. In baseline, all parameters of 

the synthetic environment except high-resolution textures had been disabled as depicted in 

Table 6-1 (more details can be found in chapter 5.2.2.). 
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Table 6-1: Baseline Configuration of the synthetic environment 

 

The baseline experiments were performed for several reasons: 

1. to present the results for the baseline configuration, which is used in all configuration 

set experiments for comparison, thus removing the need to present it repeatedly 

2. to demonstrate the actual investigation approach in full detail (statistical evaluation) 

for one specific example 

3. to question and validate the presented approach on this example 

4. to select most suitable formats and representation of results 

5. to select feature detectors for further experimentation 

6.1.1 Object performance 

Object performance was evaluated by measuring the relative and absolute repeatability of 

three feature detectors on specific scenes for different image types (photo and baseline). The 

result graphs are explained together with the presentation of results. 

Result representations and illustrations 

The timeline plot in Figure 6-1 allows detailed evaluation; here of scene concrete. Each 

diagram column presents the performance results of a dedicated feature detector. The upper 

row shows the relative repeatability between 0% and 100% while the lower row provides the 

absolute repeatability (see chapter 3.4). The performance is acquired by finding features 

detected in image n again in image n+1 for the complete dataset (35 images). 

The percentage of recovered features is called relative repeatability while the total number of 

recovered feature pairs is called absolute repeatability. It needs to be highlighted that absolute 

repeatability is not normed and thus results between feature detectors can differ greatly. 

Therefore, the vertical axis of the absolute repeatability graphs is adapted for each graph. The 
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horizontal axis gives the sequence number of dataset images. The relative repeatability graphs 

show fairly similar performance of all feature detectors on photo and baseline with MSER 

differing most. This already shows a surprisingly high compatibility of feature detectors with 

synthetic data. The SIFT feature detector performs better on synthetic data than on natural 

images, which means more features pairs have been recovered. In contrast, SURF and MSER 

perform better on natural images. 

A performance oscillation of SURF and MSER appears prominently between image 20 and 24 

on the synthetic dataset. For MSER also photo’s performance is affected. This variation is 

also visible, though in minor magnitude in the SIFT diagram. During this period, the aircraft 

changed directions resulting change of pitch and roll angle by 10° and 5° that induced a strong 

camera movement reducing the overlap of the images. Regarding absolute repeatability, the 

drop of detected feature pairs is clearly visible. While SIFT features drop to 1000 detected 

feature pairs during this period, SURF and MSER practically detect no feature pairs. This 

suggests that relative repeatability always needs to be considered together with the absolute 

measure. For example, a relative repeatability of 100% measured for SURF at image 20 and 

21 of baseline is relativized as in total only one feature pair per image had been found. 

 

Figure 6-1: Timeline plot: Relative and absolute repeatability of SIFT, SURF and MSER on scene concrete. 



142 Principle experiments and results 

While relative repeatability between photo and synthetic baseline datasets shows small 

differences, the absolute repeatability differs considerably. The graph trends seem to correlate 

for both datasets. The above presented timeline plot is useful to detect anomalies as discussed 

above to identify potential measurement errors. However, such plots do not allow easy 

comparison between datasets or detectors. Thus, a more condensed comparable form of 

presentation is needed for such tasks. 

Therefore, the matrix diagrams in Figure 6-2 have been generated. Here, the x-axis presents 

the results for each scene, while the y-axis lists the configuration. All measures are relative to 

the reference photo, meaning a result of zero demonstrates the most optimal result, which is 

equal algorithm performance on synthetic and natural datasets. The relative repeatability is 

evaluated by computing the median deviance over all images of one scene to compress results 

and to reduce the effect of outliers: 

A positive Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 indicates the feature detector performing better on 

synthetic data than on natural images. Since relative repeatability is already given in 

percentage, the results are simply subtracted. Absolute repeatability is additionally normalised 

by 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜 to provide these results in percentage: 

In this evaluation, photo and its results are always the reference. The measures 

Δ𝑅𝑅𝑅𝑅𝑅𝑅.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and Δ𝐴𝐴𝐴𝐴𝐴𝐴.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 provide the information on 

how a feature detector behaves on baseline compared to photo. 

   

Figure 6-2: Colour coded matrices presenting the performance deviances of the specified feature detector 

for each scene and parameter in regard to natural data. 

Δ𝑅𝑅𝑅𝑅𝑅𝑅.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅𝑅𝑅.𝑅𝑅𝑅𝑅𝑅𝑅.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝− 𝑅𝑅𝑅𝑅𝑅𝑅.𝑅𝑅𝑅𝑅𝑝𝑝.𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ) (36) 
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Results are given in percent and provided using colour coded lookup tables (see Figure 6-2), 

which present the results for each scene, parameter and metric in a condensed form. In this 

diagram, each column presents the results of a dedicated feature detector. The upper row 

presents Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑡𝑡𝑡𝑡 and the lower Δ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 for each scene 

and configuration (only baseline in this case). A value zero indicates equal performance on 

the synthetic dataset and photo. If given values are negative the algorithm performs better on 

natural data and vice versa.  

Starting with Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 baseline deviates between ±4% to ±18% from the 

performance of photo using detector SIFT. This deviance indicates that SIFT can work with 

synthetic data similar to real images within an interval of ±18%. The highest difference is 

measured for scene sport. A possible reason is the presence of low contrast textures in this 

scene due to texture blending. SURF behaves more sensitive to SIFT, deviating more in scene 

sport but less on hangar, heath and house. Feature detector MSER also performs closely to 

photo for all scenes, except sport. Relative repeatability of scene heath and junkyard are 

almost equal to photo. This shows that all used detectors can identify previously detected 

features in synthetic images, in qualities close to natural data. Only scene sport, deviates 

assumingly due to the contained low contrast textures (will be determined later on). 

The absolute repeatability, the actual number of found corresponding feature pairs in 

subsequent images of a dataset, deviate much more between the two dataset types. All feature 

detectors detected more features on natural images, indicating more local gradients are 

present. However, highly cluttered scenes such as hangar and forest show that this is content 

related and more accurate modelling can compensate these effects. For instance in scene 

hangar the contrast rich synthetic images lead to the doubled number of detected feature pairs 

by MSER. Here, reflections in photo reduce the visibility and contrast of the hangar roof, 

while synthetic images provide it in full quality. SIFT is the least affected detector with 

deviation ranging from ±11% to ±43%. While using baseline on SURF performs similar to 

photo for the scenes forest, hangar and heath (<19%) all other scenes show larger differences. 

To investigate the difference between scenes further, the results of each separate scene are 

depicted in the bar plots of Figure 6-3. The coloured bars show the relative repeatability in 

percentage while the grey bars show the absolute repeatability (Hint: not to be confused with 

𝛥𝛥abs. repeatability). Here, absolute repeatability is not normed and the vertical axis intervals 

differ between the different plots and measures. 



144 Principle experiments and results 

  

  

  

  

Figure 6-3: Relative and Absolute Repeatability for all scenes and all evaluated Detectors on photo and 

baseline. 
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SURF is detecting the least amount of feature pairs (absolute repeatability) regardless of the 

scene. For texture heavy scenes such as sport and street the amount of feature pairs is 

extremely low resulting in a drastic collapse off the overall feature detection rate as can be 

seen by the (almost) non-existent grey bars in these two diagrams. This is strange, considering 

the performance of the methodically quite similar feature detector SIFT. After investigation, it 

was identified that the MATLAB implementation uses an unusual default configuration of 

SURF (1000 as determinant threshold of the Hessian matrix, instead of 600 as used in the 

original paper (Bay et al., 2006)) that early omits features. Since the idea was to compare 

detectors in their default configuration and the used SURF detector deviates from this 

configuration, its results should be considered with care. SURF will be omitted in the 

following experiments in chapter 6.2, due to timely limitations and its close relation to SIFT. 

Testing the performance of other feature detectors including SURF can be of interest in future 

investigations. 

When comparing the detectors performances, SIFT is the most robust followed by MSER. 

SURF works considerably well whenever it detects enough feature pairs, which is 

unfortunately often not the case. 

Sometimes MSER also detects only a small number of feature pairs, due to its design. In 

general, the number of found feature pairs is sufficient. MSER has trouble with scenes mainly 

depicting textures such as sport, street and heath. 

Overall, the best correlation on relative repeatability for all detectors is achieved on scene 

hangar and concrete. Absolute repeatability on the other hand is very scene specific, 

performing close to photo for scene hangar, forest or street depending on the used detector. 

Especially interesting findings in scenes forest, hangar and sport are now discussed in detail 

using timeline plots. 

Detailed Analysis of scene forest 

In Figure 6-4 the line plot of scene forest is given. All detectors perform lower on synthetic 

data for the first 17 to 20 images and then close in on equal performance.  

The first half of the dataset shows images only depicting treetops, while the later also depicts 

some ground texture. Since this effect can be seen with all detectors, it can be concluded that 

the synthetic dataset violates the plane surface condition of the homography-based ground 
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truth generation. The detectors are also reacting more drastically to changes in synthetic 

images. Interestingly, when reviewing the absolute repeatability of SURF and MSER a high 

correlation between photo and baseline can be seen (trend and absolute numbers). 

 

Figure 6-4: Relative and absolute repeatability of SIFT, SURF and MSER on scene forest. 

Detailed analysis of scene hangar 

In scene hangar SURF performs almost equally on baseline and photo according to relative 

repeatability (see Figure 6-5). In addition, absolute repeatability runs close though more 

reactive to changes in the images. When looking at the relative repeatability of SIFT, it starts 

equally at 70% but then reacts inversely on images of photo and baseline. The absolute 

repeatability is similar in numbers but the trends found in photo are not replicated in baseline. 

MSER achieves the lowest relative repeatability for natural and synthetic imagery. However, 

it also detects the most features of all detectors as can be seen in the diagram. 
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Figure 6-5: Relative and absolute repeatability of SIFT, SURF and MSER on scene hangar. 

Detailed analysis of scene sport 

In scene sport results for SIFT are most robust, while MSER and SURF are unable to process 

the synthetic imagery as depicted in Figure 6-6. This scene is mostly based on textures (no 

3D-objects), which are of low contrast due to the texture blending mechanism of VBS3. This 

seems to be the reason for MSER to perform worse on the synthetic data. SURF and MSER 

have trouble detecting features at all. Thus, relative performance do not present the detection 

robustness in this case (relative repeatability jumps between 100% and no detection 0%). 

While SURF and MSER hardly detected features on synthetic images, SIFT performs about 

20% better. This shows that detection algorithms can react very differently to the same data 

solely based on the inherent principle on how to detect features. Since the contrast of textures 

in the synthetic dataset is low, the feature detection approach of MSER cannot detect the 

necessary robust features. The low detection rate of SURF on low contrast synthetic data can 

be read clearly from its absolute repeatability diagram. 
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Figure 6-6: Relative and absolute repeatability of SIFT, SURF and MSER on scene sport. 

Summary 

This chapter presented three illustrations to depict object performance results, where timeline 

plots are used for detailed analysis and matrix diagrams for result overviews and comparison 

purposes. Further only matrix diagrams are used to present these results, while timeline plots 

were used during data acquisition validate the data. 

This step of the concept presented that it is a valid method to evaluate CV-algorithm 

performance. SIFT, SURF and MSER show similar relative repeatability trends for all 

detectors on natural and synthetic images for most Scenes. Scenes depicting mainly low 

contrast textures in the synthetic dataset, such as sport, lead to poor detector performances for 

SURF and MSER. Absolute repeatability can differ quite strongly due to more details in 

natural images.  

SURF is not used for further investigation due to its parametrization and close relation to 

SIFT. 
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6.1.2 Image content distances 

This evaluation measures the visual differences in image content based on the image 

descriptors presented in chapter 2.5. After their validation in chapter 5.1.4 the image content 

measures CLD, CSD, DCD, SCD, HTD and EHD presented themselves as capable measures. 

The previous chapter identified the varying performance of feature detectors on the datasets 

photo and baseline. Afterwards, to quantify the differing image properties between the two 

data types, the image content difference was objectively measured. In Figure 6-7, the 

statistically summarized distance measures of all image descriptors for all scenes are 

provided. The results vary strongly for each descriptor, indicating their sensitivity to different 

content. In addition, the measures vary for each scene indicating that content differences are 

mostly scene dependent. Scene street has the highest similarity between natural and rendered 

images according to the descriptors CSD, CLD, SCD and EHD. The most differing scene is 

hangar as depicted by CLD, SCD and HTD. 

 

Figure 6-7: Boxplots for each image content measure presenting the varying distances between 

photographs and rendered imagery for each scene. 

Colour structure (CSD) is highly similar for concrete, sport and street and most different for 

forest, hangar and house. This implicates modelling errors in regard to dominant colour tones 

or placement errors in these last named scenes.  
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The colour layout (CLD; spread of colour among the image) is changing marginal between 

most scenes when also including the variance. Only forest, hangar and street show large 

deviations from the other scenes. In forest, the colour distribution in the synthetic images is 

larger due to the placement of generic trees (some had bright green and yellow leaves) while 

the trees in natural images had a quite homogenous lush green. Similar, the roof in hangar is a 

dense colour patch that is not as present in the natural image due to sunlight reflections. Since 

street is dominated by the blend of satellite image and detail texture, the differences here are 

especially low for the descriptor CLD. 

When reviewing the results of SCD for hangar, heath and house the colour histogram of 

synthetic images differs strongly from natural images. Indicating modelling errors in selection 

of the correct colour tones. 

The dominant colour descriptor (DCD) provides the distance between the five most dominant 

colours and their percentages. Here, sport varies strongly, most probably due to the texture of 

the tartan track (wrong colour tone). In addition, the use of multi-coloured trees in scene 

forest increased the DCD distance. 

The HTD descriptor segments the spatial frequency image into 30 segments and describes 

them by the amount of signal presence. Thus, measured frequencies appear repeatedly in the 

image. Forest achieved the lowest HTD distance showing that the geo-typical trees replicate 

the “busy” appearance of dense leave trees well. In hangar, heath, house and junkyard the 

homogenous frequencies differ more strongly. A possible reason may be the prominently 

visible roofs in scenes hangar, house and junkyard. These may have not the same spatial 

texture (e.g. tiling density) according to these measurements. A basic distance in HTD is 

always given due to the reoccurring detail texture not present in natural images.  

The EHD distances are similar for almost all scenes; only sport and street are closer to their 

natural counterpart. This can be explained by the existence of edges in the satellite image that 

are very similar to the natural images despite blending and the missing objects which would 

naturally lead to sharp edges in synthetic data.  

Thus, feature detectors might perform different on specific scenes due to their differences in 

specific image content. The following analysis will now try to combine these findings to 

identify possible relations between performance changes and image appearances. 
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6.1.3 Influence factor analysis 

The influence factor analysis (chapter 3.7) aims to estimate the effect of image content 

distances on the algorithm performance differences by computing and interpreting a stepwise 

backward multiple regression analysis. Thus, this analysis shall identify image content 

causing performance shifts of the tested algorithm. Thus as outcome variable is the Δrelative 

or Δabsolute repeatability of the tested feature detector (chapter 6.1.1) is used and MPEG7 

image content descriptor distances (chapter 6.1.2) as predictors to fit the regression model. 

The experiment is based on the datasets photo (natural reference dataset) and baseline 

(synthetic default dataset). 

The iterative approach reveals image content differences affecting the performance of the 

tested feature detector as these explain remaining performance differences using photo and 

baseline (and remain within the model). 

For each repeatability measure, feature detector and scene, a regression model is generated 

(16 models). Additionally, all investigated configurations of the synthetic environment are 

considered during the fitting of each model. However, to ease the explanation of regression 

analysis only the results of photo and baseline are presented in this chapter. The discussion 

of rendering parameters can be found in chapter 6.2. Now, all steps performed for every 

regression analysis in this thesis are detailed on the example of scene concrete. 

Regression analysis in detail on scene concrete 

Because high collinearity among predictors may to unreliable determination of predictor 

coefficients, this needs to be excluded first. 

Handling multicollinearity 

The analysis has been performed in MATLAB. If collinearity is detected, one (causing) 

measure was removed. This could be tolerated since a similar behaving measure remains. 

Multicollinearity between image content distance measures was analysed by combining the 

𝑥𝑥1, … , 𝑥𝑥𝑝𝑝 measures of all predictors on all images of a scene in a Matrix X of dimension (𝑁𝑁 −

1) × 𝑃𝑃 with N being the number of images and P the number of image descriptors. The 

condition index (CI; detailed in chapter 3.7) expresses the amount of collinearity. It was 

obtained by performing a singular value decomposition (SVD) of matrix X (for more detail 
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see (Belsley, 1991)). A condition index of 100 has been selected as threshold to represent 

problematic high collinearity. Additionally, the variance decomposition proportions (VDP) 

are provided. These indicate the proportion of variance shared between descriptors and the 

decomposition component, which is one matrix dimension (described by the CI). 

Figure 6-8 presents the results of the multicollinearity evaluation using a tableplot (Friendly 

& Kwan, 2009). In this diagram, the vertical axis presents the decomposition components and 

sorts them according to the condition index (most critical component is in the upmost row). 

 
Figure 6-8: Tableplot presenting collinearity of image content descriptor distances between photo and 

baseline acquired for scene concrete combined. 

The severity levels of the condition index are colour coded. Strong collinearity is indicated in 

red (CI>100), followed by moderate in orange (CI>30), light in yellow (CI>10) and very light 

to none in green. Additionally, the CI is also provided by the size of the white rectangle in the 

colour coded boxes. For each decomposition component, the VDP for every descriptor are 

provided in white boxes named after the represented image descriptor. The closer the number 

is to one the more collinearity is shared between the descriptor and the decomposition 

component. Thus, a conflict only occurs when at least two descriptors correlate with more 

than 50% of their variance (0.50) with the component. The descriptors are sorted from the 

highest shared variance on the left to the lowest on the right. The VDP of each descriptor is 

provided as numerical value and the radius of the circle. The criticality threshold are provided 

by the intensity of the circles colour fill (VDP>0.5 = full pink, VDP>0.3 = light pink and 

white for values below). Thus, a tableplot is best read row by row from top to bottom starting 

on the upper left corner. The example in Figure 6-8 shows two moderate condition indexes, 

one between SCD and CSD and one on HTD only. The second decomposition component 
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(row) simply shows strong relation between HTD and the component and no collinearity. The 

first row shows a relation (collinearity) between SCD and CSD of moderate level. Since the 

Condition Indexes are below 100 there is no need to act, otherwise it would have been 

necessary to remove one of the (redundant) measures. 

Analysing the fitting quality 

After assuring that collinearity lies within acceptable limits, the regression analysis was 

performed. In a next step, the fitting quality was investigated by analysing the data for 

existing outliers using the Cook’s distance, which is the originally measured value minus the 

model predicted result (Cook & Weisberg, 1982). Figure 6-9 shows the Cook’s distance of 

SIFT’s Δrelative repeatability on scene concrete for each image (displayed as row number) as 

a red x. The dotted line presents the recommended threshold value (three times the mean 

distance). However, according to (Field, 2009) a data point should only be considered an 

outlier if the Cook’s distance is equal or larger than one. In this case, all measures were within 

this boundary, otherwise data points exceeding this value would have to be removed from the 

data and the model fit recomputed. 

 
Figure 6-9: Cook’s distance of the Regression model of SIFT’s Δrelative repeatability on scene concrete. 

Recommend threshold is given as dotted line. However, only data points exceeding value 1 are outliers. 

Thereafter, the residuals (differences between measured and via model predicted y-values) 

were investigated in to discover whether the model can be generalized or not. If not the 

regression model only would be valid for the used scene and results cannot be transferred to 

similar scenes. 
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The histogram of residuals in Figure 6-10 shows their quantified distributions as bars and a 

normal distribution function with the same variance in black as comparison. The figure shows 

that the data points follow a normal distribution, which is a necessary condition to allow 

generalization of the regression model.  

The next plot is the normal probability plot of residuals or P-P plot, which presents deviations 

from normality (Field, 2009). The diagonal line represents the normal distribution; each x 

presents one measurement (image). The plot shows a strong correlation to normality with 

slight deviations on both ends. These minor alignments however do not violate the condition 

for residuals to be normally distributed. 

 

Figure 6-10: Residual plots to identify errors, outliers and correlations in model or data on scene concrete 

for Δrelative repeatability of SIFT. 

The plot of residuals vs. lagged residuals is a scatter plot that investigates whether errors are 

independent or correlated. In this plot, the residual of the current data point is the vertical 
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coordinate while the horizontal axis describes the residual of the previous data point. If there 

is no correlation, the crosses are randomly distributed. In case correlation exists, a dominant 

direction could be seen. The plot shows that residuals are dominantly positive, but no 

correlation between subsequent data points exists.  

The plot of residuals vs. fitted values displays the fitted values (the y-values; the possible 

range of y) on the horizontal-axis and appearing residuals on the vertical-axis. Now, when 

residuals are scattered non-uniformly along y the assumption of constant standard deviation of 

random errors is not given. The plot presents that most residuals are fitted to values of y 

around 0.05 with the distribution showing no correlation to the fitted values. The relative 

repeatability results of photo have been subtracted from baseline results to compute Δrelative 

repeatability. Therefore, a negative fitted value indicate the relative repeatability on synthetic 

imagery was higher than on natural imagery. Thus, constant standard deviation is given and 

the conditions for generalization of the model are met. The mentioned evaluations are 

performed for all measurements but will further not be presented. Scenes violating the named 

conditions will not be considered in the following chapters. In summary, the generalization of 

the model is possible while considering limitations for large residuals (results that do not fit 

well). 

Δrelative repeatability regression models 

Finally, after excluding outliers and validating that generalization of the resulting models is 

possible, the regression models can be discussed. In Table 6-2 the two regression models of 

Δrelative repeatability for feature detector SIFT and MSER on scene concrete are presented 

(SURF has been dropped due to reasons explained in chapter 6.1.1). To be remembered, these 

regression models describes the relationship between image differences identified using 

image content descriptors and the difference of repeatability (repeated detection of same 

features) of a specific feature detector compared between photographs and computer 

generated imagery of the same scene. First, the model quality is presented by the measures 

𝑅𝑅², 𝐴𝐴𝐴𝐴𝐴𝐴-𝑅𝑅² and F-ratio (explained in chapter 3.7). 

Now, the model for SIFT can be discussed. The 𝑅𝑅² value explains that the model represents 

48% of the total variance of Δrelative repeatability. Thus, the remaining 52% variance are 

dependent to causes not covered by the predictors used in this evaluation. The 𝐹𝐹-ratio 

expresses how much variance is explained be the model divided by how much remains in the 
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residuals. A value of four shows a good fit and that it is significantly different compared to 

mean. The regression model of MSER fits the data better with an 𝐹𝐹-ratio of six and a 𝑅𝑅² of 

56%. In this case, the model explains almost 60% of all existing variance. 

Table 6-2: Regression models of Δrelative repeatability for SIFT and MSER on scene concrete. 

Model Model Fit   Coefficients Value SE β 
Δrel. Repeatability R² 48% Intercept 0.241 Ns 0.308 0.00 

SIFT Adj-R² 37% HTD -0.034 Ns 0.092 -0.08 
concrete F-Ratio 4*** EHD -0.065 Ns 0.182 -0.07 

 
  SCD -0.050 Ns 0.191 -0.07 

      DCD 0.002 Ns 0.053 0.01 
      CLD -0.004 Ns 0.489 -0.00 

Model Model Fit   Coefficients Value SE β 
Δrel. Repeatability R² 56% Intercept -1.162 Ns 0.640 0.00 

MSER Adj-R² 47% SCD 0.257 Ns 0.242 0.26 
concrete F-Ratio 6*** HTD 0.138 Ns 0.140 0.22 

    CSD 0.486 Ns 0.834 0.15 
    CLD 0.244 Ns 0.619 0.06 
      EHD 0.031 Ns 0.232 0.02 

Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001 

The right half of Table 6-2 lists the statistics of the coefficients populating the model. Most 

image content differences influence the outcome, however not to a significant measureable 

degree. Putting these into the linear regression equation together with the coefficient values 

results in following equation: 

Δ𝑟𝑟𝑟𝑟𝑟𝑟.  𝑟𝑟𝑟𝑟𝑟𝑟. = 0.241 − 0.034 𝐻𝐻𝐻𝐻𝐻𝐻 − 0.065 𝐸𝐸𝐸𝐸𝐸𝐸 − 0.05 𝑆𝑆𝑆𝑆𝑆𝑆 + 0.002 𝐷𝐷𝐷𝐷𝐷𝐷
− 0.004 𝐶𝐶𝐶𝐶𝐶𝐶 (38) 

The Intercept of both models is considerably large pointing towards additional non-identified 

influences. The standard error (SE) indicates how much the coefficient can change with 

different samples of the population. The most interesting measure β is computed by 

multiplying the normed coefficient value with the standard deviation of the predictor 

measurements σ(x) and divided by the standard deviation of the outcome measurements σ(y): 

𝛽𝛽𝑥𝑥 =
‖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑥𝑥‖ ∗ 𝜎𝜎(𝑥𝑥)

𝜎𝜎(𝑦𝑦)
 (39) 

The β-values are given in standard deviation units making them directly comparable. It 

provides the amount the outcome will change (in standard deviations of the outcome) when 

the currently discussed predictor changes by one standard deviation. Thus, it indicates the 
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predictors influence on the outcome. The standardization makes these values comparable 

with coefficients of other models.  

In Table 6-2, the coefficients are sorted by their 𝛽𝛽-values from top to bottom (except for the 

intercept, which is always the first). In model SIFT Δrelative repeatability, the homogenous 

texture distances (HTD) influence the outcome by -0.08σ when changed by 1σ. In MSER’s 

Δrelative repeatability, the colour distribution (SCD) is most influential with -0.26σ followed 

by homogeneous textures (HTD) with -0.22σ. The coefficients sign indicates on which 

dataset type the feature detector is performing better. A positive coefficient shows the 

descriptor to performs better on the synthetic dataset. 

The regression analysis ranks predictors by their effect on the outcome. It should be noted that 

a predictor is significant when the behaviour of its values is well represented by the model 

(small residuals). Thus, a non-significant predictor can be influential but its behaviour 

could not be fitted to the linear model. 

Further, it can be extracted from the results on which datatype the feature detector performs 

better and which image property (measured by an image content descriptor) is causing the 

remaining performance difference. For scene concrete mainly the differences in dominant 

colours are responsible for the remaining difference in algorithm performance (only positive 

coefficient). 

Δabsolute repeatability regression models 

The models fitted for Δabsolute repeatability of SIFT and MSER on scene concrete are 

presented in Table 6-3. To be remembered, the relative measure shows the performance of the 

feature detector to detect the same features repeatedly, while the absolute measure presents 

the ability of the feature detector to find a certain amount of valid feature pairs. Therefore, the 

Δabsolute repeatability model should explains why the detector detects more (or less) features 

on each of the two dataset types.  

The SIFT model covers 75% of all variance in the images used and 70% of all variance for 

the population. The F-ratio of 14 shows that the model improves the prediction in comparison 

to the remaining residuals and that the chance of the null hypothesis being true is slim  

(𝑝𝑝 < .001). The regression model uses all descriptors with CLD, SCD and DCD being the 

most influential followed by EHD, CSD and HTD. Coefficients of 𝛽𝛽 < .1 are considered as 
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not influential. Interestingly only CLD, DCD and CSD are significant and thus well 

represented by the linear model. In case the distance of all predictors would be zero (natural 

and synthetic images are identical in the eyes of the descriptors) the intercept of -204 feature 

pairs points towards a static difference not covered by any image content descriptor. With 

increasing distance of predictor CLD, more feature pairs are found in natural images 

compared to synthetic ones. On the other hand, expanding SCD distances lead to more 

detected features in synthetic images compared to their natural counterparts. CLD is the most 

influential image descriptor with 0.39σ followed by SCD and DCD. As can be seen in chapter 

6.1.1 SIFT finds less features on synthetic data than on natural data. According to the model, 

the best way to increase the feature detection is to lower the colour layout descriptor distance, 

which means to review the dataset for local areas of differing colour and to remodelling them 

(e.g. by adding an additional 3D-object of specific colour to the scene). 

Table 6-3: Regression Model of Δabsolute repeatability for SIFT and MSER on scene concrete. 

Model Model Fit   Coefficients Value SE β 
Δabs. Repeatability R² 75% Intercept -204 Ns 776 -0.00 

SIFT Adj-R² 70% CLD -4315*** 1183 -0.39 
concrete F-Ratio 14*** SCD 714 Ns 461 0.28 
      DCD -257* 129 -0.28 
      EHD -417 Ns 448 -0.13 
      CSD -820* 343 -0.10 

      HTD 94 Ns 224 0.06 
Model Model Fit   Coefficients Value SE Β 

Δabs. Repeatability R² 75% Intercept -534 Ns 1084 0.00 
MSER Adj-R² 70% CLD -6032*** 1099 -0.56 

concrete F-Ratio 17*** EHD -1141** 406 -0.36 
      SCD 573 Ns 414 0.23 
      DCD 180*** 25 0.20 
      CSD 880 Ns 1285 0.11 

Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001 

The R² and F-ratios of the regression model for MSER shows a good and highly significant fit 

with 75% covered outcome variance using the five predictors CLD, EHD, SCD, DCD and 

CSD (in their order of influence). Only CLD, EHD and DCD distances are of significant 

nature. Since MSER also detects less features on synthetic data, it is necessary to increase this 

amount to minify the performance difference. This can be achieved by reducing local colour 

differences and improving the edge representation to align more closely with the real scene. 

While SCD and DCD are influential, a reduction in distance would lead to less detected 

features on synthetic data and a non-desired increase in performance differences. 
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This concludes the detailed example discussion of the regression analysis results for one 

scene. The remaining scenes will now be presented with less detail. 

Presentation of all other regression models 

After presenting the detailed result discussion and the steps necessary to acquire valid results, 

now the other scenes are discussed in a more compacts form, which will be used for the 

remaining experiments. 

Measuring multicollinearity for all scenes 

Again, collinearity was measured using the condition index. Detail views of all tableplots are 

depicted in Figure 6-11 to display possible collinearity in each individual scene.  

 
(a) concrete 

 
 (b) forest 

 
(c) hangar 

 
(d) heath 

 
(e) house 

 
(f) junkyard 

 
(g) sport 

 
(h) street 

Figure 6-11: Detail view of tableplots measuring collinearity for each scene. 
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All scenes show collinearity of medium severity, which is considered acceptable. The CI of 98 

for scene heath is close to the threshold of 100 and may lead to untrustworthy predictor 

coefficients when fitting the regression model. Therefore, results of heath should be observed 

carefully. 

For each combination of scene, repeatability measure and feature detector a regression model 

has been fitted, leading to 16 regression models. Again, data was tested for outliers using 

Cook’s distance. Further, the normal distribution of residuals was checked via the earlier 

presented residual histograms and P-P plots.  

Δrelative repeatability regression models for SIFT 

Each model fit including coefficients and probabilities is summarized in Table 6-4 for 

Δrelative repeatability and in Table 6-5 for Δabsolute repeatability of SIFT. To conserve space 

the full model descriptions are presented in appendix C.3. 

Each row presents a fitted model for the specific scene. The first six columns give the 

standardized coefficients β of each descriptor in the model, followed by the general model 

statistics R² and F-ratio. As the absolute goal is to measure equal performance on both dataset 

types, the measured performance of the feature detector is of importance and given in the last 

row (for details see chapter 6.1.1). The colour code indicates on which dataset the detector 

performs higher (orange = synthetic data; blue = natural data). As explained, a positive 

Δrelative repeatability (or Δabsolute repeatability) exhibits a feature detector to perform 

better on synthetic data compared to photo. To reduce this difference the image content 

distance between the two dataset types for a specific should only be decreased. Otherwise, 

increasing a content distance to gain a smaller performance difference would suggest that the 

current level of similarity is too good for the feature detector. Thus,  

• when lowering a distance measure attributed with a positive standardized β-coefficient 

the performance of SIFT on synthetic data is lowered (compared to photo). 

• when lowering a distance measure attributed with a negative standardized  

β-coefficient the feature detector performance on synthetic data is increased. 

In conclusion, the influence of a predictor 𝛽𝛽 given by the model allows the determination of  

• predictors affecting the algorithms performance (𝛽𝛽 > .1). 
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• image content distances that should be lowered to gain equal performance (sign of 𝛽𝛽). 

• their order of effect (size of 𝛽𝛽). 

• whether the model represents the behaviour of the predictor (𝑝𝑝 < .05)). 

Now each model except concrete (already presented above) can be discussed. All scenes 

could be fitted while covering medium (~40-50%) to high variance (>70%) of the outcome. 

Scene forest is affected by CSD, EHD, CLD and SCD distances. EHD and SCD measures are 

contained in the model even though they are non-significant because the presented models are 

the default for the following configuration set experiments. Whenever any configuration 

significantly affects the influence of an image property on algorithms performance, it is listed 

in the baseline model as well (because it is the default model). Here, the coefficients of the 

baseline models are discussed whenever they are significant or their effect is notable. 

According to Δrel. Repeatability (-13%) SIFT performs worse on synthetic data in this scene, 

which could be corrected by reducing the CSD, CLD, EHD and SCD distances (coefficients 

with negative sign) and be achieved by adaptation of image colours, contrast and remodelling 

of 3D-models for trees. 

Table 6-4: Regression models of Δrelative repeatability SIFT. Each row presents a model. Last column 

depicts Δrel. repeatability (orange = higher on synth. data; blue = higher on photo). Grey values are non-

significant. Green background presents coefficients affecting performance difference positively, if reduced. 

Terrain CSD CLD SCD DCD HTD EHD R² F-Ratio Δrel. Rep. 
concrete   -0.07 Ns 0.01 Ns -0.08 Ns -0.07 Ns 48% 4*** 7% 
forest -0.52* -0.19*** -0.05 Ns   -0.23 Ns 68% 16*** -13% 
hangar  -0.15** 0.47*** -0.20***  0.20 Ns 36% 9*** 11% 
heath 0.21 Ns -0.09 Ns -0.29 Ns -0.11 Ns  -0.11* 49% 6*** 11% 
house -0.37 Ns  0.21 Ns -0.12 Ns  0.28 Ns 55% 6*** 4% 
junkyard  -0.38*  -0.11 Ns -0.35*** 0.15 Ns 49% 7*** 6% 
sport 0.10 Ns 0.01 Ns -0.01 Ns 0.03 Ns 0.05 Ns 0.03 Ns 87% 31*** 18% 
street -0.08 Ns 0.08 Ns* -0.02 Ns    66% 15*** 15% 
Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001 

  
 

Hangar is affected by differences in SCD, DCD, EHD and CLD. To decrease Δrel. 

Repeatability the edges appearing in the image should match the natural dataset more closely. 

For scene heath, SCD and CSD measures reveal to be most influential but non-significant 

image content differences, which indicates poor representation of their behaviour by the linear 

model. EHD is the only significant variable. Only the colour structure distance is eligible to 

reduce performance differences. Here, a remodelling of the detail texture would be beneficial. 
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Δrel. Repeatability for SIFT in scene house is only 4%. The remaining difference is mainly 

caused by colour distribution (SCD) and edge representation (EHD). 

In scene junkyard, the model determined CLD and HTD as the most influential coefficients. 

However, the model indicates that lowering the edge distance could mainly reduce the 

remaining performance difference of 6%. Possibly the aliased edges are the causing factor. 

The large performance difference in scene sport can be shortened by adapting the textures to 

decrease the colour structure distance (all others are smaller than .1). 

In scene street, no notable influence of measured image content differences on the 

performance were determined. 

Δabsolute repeatability regression models for SIFT 

The Δabs. Repeatability model for SIFT (see Table 6-5) generally fits the outcome variance 

better (75% - 88%) compared to their Δrel. Repeatability counterparts. CSD, CLD, SCD, 

DCD and EHD distances measurably affect the performance in scene forest. Trimming colour 

structure, dominant colour and edge differences should lead to a lower performance 

difference. 

Table 6-5: Regression models of Δabsolute repeatability SIFT. Each row presents a model. Last column 

depicts Δabs. repeatability (orange = higher on synth. data; blue = higher on photo). Grey values are non-

significant. Green background presents coefficients affecting performance difference positively, if reduced. 

Terrain CSD CLD SCD DCD HTD EHD R² F-Ratio Δabs. Rep. 
concrete -0.10* -0.39*** 0.28 Ns -0.28* 0.06 Ns -0.13* 75% 14*** -25% 
forest -0.86*** 0.25*** 0.41*** -0.26* 0.02 Ns -0.23 Ns 66% 14*** -43% 
hangar 0.49**  0.51*** -0.21 Ns 0.17** -0.08* 88% 53*** 11% 
heath 0.41*** -0.26* -0.30***   -0.12** 62% 24*** -15% 
house -0.43 Ns 0.05 Ns -0.31*** -0.21 Ns 0.22*** 0.81*** 66% 11*** -33% 
junkyard -0.30 Ns 0.04 Ns 0.13** -0.14 Ns -0.10** 0.04 Ns 79% 17*** -36% 
sport  -0.05 Ns 0.05 Ns 0.06 Ns 0.06 Ns 0.18 Ns 85% 26*** 37% 
street -0.23 Ns 0.14*** 0.27*   -0.09* 76% 31*** 16% 
Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001 

  
 

SIFT performs best on hangar. The remaining difference (11%) can be minified by lowering 

the content distance in colour (SCD and CSD, e.g. hangar roof) and texture (HTD). 

The performance difference of SIFT in scene heath can be lessened by a better match of 

colour layout, colour distribution and edge appearance. 
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The model for scene house is described by EHD, CSD, SCD, HTD and DCD distances (in 

order of effect). A better harmonisation of colour structure, distribution and dominance would 

be beneficial for this scene. This can be performed by heightening the resolution of tree 

textures and by remodelling their colour spectrum. 

Reduced content differences CSD, DCD and HTD in scene junkyard would decrease the 

current performance difference. 

SIFT performs better on synthetic data in sport. The model exhibits EHD as the most 

influential image property. All other influencing predictors have been identified to be non-

significant and of small influence. Thus, edges in the synthetic data should be revisited. 

Similarly, SIFT performs better on synthetic data for scene street. Here, lowering the 

difference in CLD and SCD will lead to a better representation of the natural performance. 

Δrelative repeatability regression for MSER 

The regression models of MSER Δrelative repeatability are presented in Table 6-6. R² ranges 

from 39% to 66% showing that not all effects on the performance have been revealed. On 

almost all scenes, MSER performs better on natural data, except for hangar. MSER even 

performs equal in heath. Results on scene concrete are displayed in the previous presentation 

of regression analysis. 

Table 6-6: Regression models of Δrelative repeatability MSER. Each row presents a model. Last column 

depicts Δrel. repeatability (orange = higher on synth. data; blue = higher on photo). Grey values are non-

significant. Green background presents coefficients affecting performance difference positively, if reduced. 

Terrain CSD CLD SCD DCD HTD EHD R² F-Ratio Δrel. Rep. 
concrete 0.15 Ns -0.06 Ns 0.26 Ns 

 
0.22 Ns -0.02 Ns 56% 6*** -13% 

forest -0.60*** -0.12 Ns -0.12 Ns 0.09** -0.31 Ns 
 

48% 7*** -15% 
hangar 0.25** -0.42* 0.27 Ns -0.11 Ns 0.35*** -0.06 Ns 61% 16*** 13% 
heath -0.80*** 0.13 Ns 0.38 Ns  -0.22* 0.20*** 39% 6*** 0% 
house 0.23** 0.40*  -0.22 Ns 0.39* 0.36 Ns 52% 6*** -7% 
junkyard -0.45 Ns -0.13 Ns 0.56* -0.16 Ns -0.14**  55% 7*** -1% 
sport -0.75* 0.04 Ns 0.12 Ns  0.17 Ns 0.03 Ns 66% 9*** -41% 
street 0.27 Ns -0.26*** 0.51 Ns 0.22*** -0.11 Ns -0.21*** 55% 9*** -11% 
Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001 

  
 

The model of scene forest explains 48% variance of Δrel. Repeatability. A reduction of CSD, 

CLD, SCD and HTD differences is advised to close the performance gap between the dataset 

types. 
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Scene hangar performs better on synthetic data. Here, the performance difference can be 

lowered by shorten the CSD, SCD and HTD distance (by tuning colour; scattering of colour 

or texture). 

Scene heath is performing equally well on both dataset types. The algorithms performance is 

affected by colour structure and homogeneous textures. The dataset does not need to be 

adjusted, since the goal of equal performance is adequately achieved. 

The image content difference dominantly affecting the MSER’s performance on scene house 

is CLD (β=0.40). Making the dominant colours more similar to photo will equalize the 

algorithms performance on both dataset types. 

Junkyard is performing almost equal on both dataset types, according to the regression model 

adjusting CSD, DCD, HTD and CLD distances can help to achieve equal performance.  

In scene sport, MSER is performing much better on natural data due to significant differences 

in colour structure. 

Scene street is influenced by all described differences. Adjusting edge differences (HTD and 

EHD) as well as the colour layout of the scene should help to increase its performance on 

synthetic data. 

Δabsolute repeatability regression for MSER 

The Δabsolute repeatability measures of MSER are highly scene dependant (-91% to 115%). 

The models cover the outcome variance between 22% to 93%. MSER’s remaining 

performance difference in scene forest can be reduced by adjusting the colour layout (CSD) 

and the edge appearance (HTD and EHD) of the synthetic dataset (see Table 6-7). 

Scene hangar performs immensely better on synthetic data due to CSD, SCD and HTD 

differences according to the fitted model. 

In heath, MSER performs much better on natural data, which can be adjusted by looking into 

appearance difference of colour layout, homogenous edges and dominant colours. Here, 

probably the surface detail texture is causing these appearance disparity (different seasons).  

According to the model, minifying the distance of CSD and DCD could lower Δabsolute 

repeatability of MSER in scene house. 
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Table 6-7: Regression models of Δabsolute repeatability MSER. Each row presents a model. Last column 

depicts Δabs. repeatability (orange = higher on synth. data; blue = higher on photo). Grey values are non-

significant. Green background presents coefficients affecting performance difference positively, if reduced. 

Terrain CSD CLD SCD DCD HTD EHD R² F-Ratio Δabs. Rep. 

concrete 0.11 Ns -0.56*** 0.23 Ns 0.20***  -0.36** 74% 17*** -58% 
forest 0.55*** -0.15**  0.1*** -0.08 Ns -0.24 Ns 59% 14*** -7% 
hangar 0.45*** -0.18 Ns 0.26* -0.08** 0.34*** -0.02 Ns 93% 81*** 115% 
heath 0.33 Ns -0.81***  -0.12*** -0.50 Ns 0.36* 78% 17*** -80% 
house -0.23*** 0.91*** 0.19 Ns -0.21* 0.70*** 0.48* 88% 55*** -29% 
junkyard -0.26 Ns -0.16** -0.14***  -0.49*** -0.20 Ns 76% 24*** -31% 
sport 0.01 Ns 0.03 Ns -0.69**  0.25 Ns -0.40*** 80% 24*** -91% 
street  -0.21*** 0.05 Ns 0.07 Ns 

 
0.20*** 22% 4*** 14% 

Ns = not significant (p > .05), *p < .05, ** p < .01, *** p < .001 
  

 

Junkyard on the other hand is fitted to differences of HTD, CSD, EHD, CLD and SCD. All of 

them should be minified to achieve equal performance. 

In scene sport, shortened colour and non-homogenous edge differences would improve the 

performance of synthetic data, according to the model. 

In street, MSER performs better on synthetic data. The edge differences could be adjusted for 

mitigation. 

6.1.4 Summary of baseline experiment results 

The presented investigation compared measured image content differences against 

performance differences of feature detectors applied to photographs and rendered imagery (in 

baseline configuration) to identify the reasons for existing performance differences. The 

results can be summed and discussed as follows: 

Object (feature detector) performance 

Performance of feature detectors was measured in relative and absolute repeatability. The 

performance of the feature detectors SIFT, SURF and MSER was determined on all scenes. 

• The absolute repeatability measure is more scene specific. 

• SIFT is the best performing algorithm, achieving the highest relative and absolute 

repeatability measures. It yields constantly good performances over the course of a 

scene with slightly better results on synthetic data for Δrelative repeatability.  
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• Additionally, the performance differences of SIFT for Δrelative (-13% to 18%) and 

Δabsolute repeatability (-43% to 37%) are generally smaller than those of MSER 

(Δrelative: -41% to 13%; Δabsolute: -91% to 115%).  

• MSER achieves the lowest performance. It is more sensitive to changes during the 

scenes. In general, it performs better on photographs with few exceptions. 

• SURF generally performs similar to SIFT on real and synthetic data, but in some 

cases fails completely due to a deviating default configuration (hessian determinant 

set to 1000 instead of 600; leading to lower absolute detection rate and unreliable 

behaviour). Thus, the acquired results do not reflect SURF’s default performance. This 

circumstance and its close relation to SIFT lead to an exclusion of SURF in the 

following configuration set evaluations (chapter 6.2).  

Image content distance 

In the next evaluation step (chapter 6.1.2), the datasets photo and baseline had been compared 

using six different image descriptors (which showed the necessary capabilities in chapter 

5.1.4). The evaluation showed distinctively that image content distances varied for each scene 

and content descriptor. 

Influence factor analysis 

Eventually the results have been fitted to models designed to explain the influence of specific 

image content descriptors on the performance of a feature detector. 

The presence of collinearity between descriptors was analysed. The models and associated 

input data were also analysed for several assumptions necessary to allow generalization of 

the model. The investigation revealed the compliance of these assumptions. 

For each combination of scene, repeatability measure and feature detector one regression 

model was fitted. The resulting standardized regression coefficients β where analysed for their 

size (amount of effect) and sign (direction of effect). In most cases, individual scenes were 

described best by a combination of descriptors. Further, only coefficients promising a more 

balanced feature detector performance on synthetic and natural data when reducing the 

content distance have been discussed, since increasing the difference between the dataset 

types to achieve identical performance is not desired. 
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Δrelative repeatability of SIFT can be lowered by minifying the edge differences (for all 

scenes except concrete and heath). Generally, each scene was affected by varyingly 

combinations of image attributes. For all scenes, at least one image attribute was identified to 

reduce the performance gap notably. Colour structure (CSD) and colour layout (CLD) have 

been identified affecting SIFT’s performance on several scenes. 

For Δabsolute repeatability, downsizing colour structure, colour distribution and dominant 

colour distance positively affect the performance gap on five scenes. In scene concrete, heath 

and street a lowered colour layout distance (CLD) was identified in having a positive effect. 

The appearance of edges (EHD) in concrete, forest, heath and sport has a detrimental effect. 

Repeating homogeneous edges have been identified in hangar, junkyard and sport to 

influence SIFT. 

The Δrelative repeatability of MSER is positively affected by a trimmed colour structure 

(CSD) for scene forest, hangar, junkyard and sport and colour layout (CLD) for scene forest, 

junkyard and street. Differences in repeating edges (HTD) affect MSER also in four scenes 

(forest, hangar, junkyard and street). For house, the dominant colour distance (DCD) should 

be lowered. The model coefficients for scene concrete indicate two distances (CLD and EHD) 

of low impact (𝛽𝛽 < .1) reducing the performance. Colour distribution (SCD) distances 

explain existing performance differences in forest and hangar. EHD differs significantly in 

scene street (and should be lowered, more in chapter 6.2). 

The Δabsolute repeatability of MSER can be lessened by lowering colour layout (for scene 

concrete, forest, heath and junkyard), colour structure (hangar, house and junkyard), colour 

distribution (hangar, junkyard and sport), homogeneous edge (hangar, heath and junkyard) 

and non-homogeneous edge (for all scenes except hangar, house and heath) distances. 

Further, heath and house are positively affected whenever dominant colour differences are 

lessened. As can be seen, the type of image content is highly dependent on the scene (and how 

it is modelled in the synthetic environment) and the feature detector. Still, edge differences 

(EHD) appear more often in models than other distances, demonstrating their effect on the 

performance on feature detectors. 

Conclusions for next test steps 

The regression analysis has been identified as a valid tool to identify the relations between 

image content distances and performance differences. The following configuration set 
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experiments (evaluating several rendering engine parameters) were conducted using only the 

feature detectors SIFT and MSER. Due to its non-standard parametrization, its similarity to 

SIFT and the necessity to delimit the amounts of test data SURF has been discarded. 

6.2 Configuration set experiments 

In the following experiments, the configuration of the rendering engine was changed one-

parameter at a time to investigate whether it replicates the behaviour of CV-algorithms on 

natural data better compared to baseline. The same three-step analysis concept with slight 

modifications was applied here: 

• The Object performance evaluation is identical to the previous chapter (6.1.1). 

• Image content distances in these experiments are presented only in a bar plot depicting 

the median of each dataset to compress the results. The regression models (32 in total; 

one for each scene, metric and feature detector) are the same as used in chapter 6.1. 

This time the various parameters of the synthetic environment and their influence on 

image content appearance and test object performance are evaluated.  

The various parameters have been incorporated into the regression model using a 

categorical predictor. A detailed description on how to read the models can be found in 

appendix C.1. For more theoretical background on this topic see (Field, 2009). 

• The previous chapter presented the baseline results using standardized β-coefficients. 

Here, the non-standardized b-coefficients are used as these values can be directly 

substituted into the model equation and the capability to compare between various 

models is not necessary here. 

• These b-coefficients are multiplied by the image content distance to acquire the 

influence of each image content descriptor in object performance units and to ease 

comprehension of the results. (Δrepeatability). 

Before, the specific configuration sets are discussed, a short introduction on how to read the 

influence factor analysis results.   
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How to read the influence analysis results 

The approach to identify interesting results in these experiments is following (per feature 

detector): 

• Is a rendering engine parameter affecting ∆𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓? 

• If yes, is it also lowering the content distances? 

• Which predictors (large b*distance values) are dominantly influencing the 

performance difference positively (per configuration)?  

o If ∆𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 > 𝟎𝟎 then positive terms (b-value*distance) indicate 

distances allowing reduction of the remaining difference (positive influence) 

o If ∆𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 < 𝟎𝟎 then negative terms (b-value*distance) indicate 

distances allowing reduction of the remaining difference (positive influence) 

• Is it scene dependent or a general effect? 

This approach is now conducted on the Δrelative repeatability SIFT forest regression model 

using configuration set “Illumination” as an example. In Figure 6-12, the object performance 

results are given on the left and the 𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 terms are given on the right. 

 

 
 

Figure 6-12: Object performance results (left) and regression coefficients b*distance results (right) of the 

model Δrelative repeatability SIFT on scene forest for configuration set “Illumination”. 

First, the object performance results are reviewed whether any parameter has an effect on the 

feature detectors performance. Small deviations of ~1% are considered measurement errors, 

when they do not appear on more than two scenes. The results depict that in scene forest all 

three tested parameters reduce the performance deviance. 
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The second step is to check, which content distances are actually diminished by these 

parameters, since the target is to identify beneficial parameters that close the performance and 

appearance gap to natural imagery. Here the information that all content distances except 

EHD (which increases for shadow and shadow filtering) are lowered by the parameters (a 

more detailed discussion can be found in 6.2.1.2 and Figure 6-15). 

In the next step, first the 𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 terms of baseline results are reviewed (blue bars). 

Here, it can be seen that colour structure differences are responsible for -7% of the total 

performance deviation, colour layout for -6%, EHD for-2% and SCD for -1%. Resulting in  

-16% when summed up. This misalignment to the actual performance of -13% is compensated 

by the intercept. This component is simply the offset of the regression model. An offset of 

zero would indicate that the behaviour of SIFT is fully described by the model. The intercept 

is not displayed as it has no interpretable meaning (Freund & Littell, 2000). Interested readers 

can find the full models in appendix C.3. 

Generally, a bar indicates the impact a specific image content difference has on the 

performance (bigger bar, bigger influence). The sign indicates, which dataset performs higher 

(negative = natural data; positive = synthetic data). In this example ∆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0, 

which means the performance deviance is reduced when negative effects (bars) are getting 

smaller and positive impacts (bars) are rising (the detector performs better on natural data). 

Now, the impact of a parameter setting can be read as the induced differences in bar sizes. 

Thus, adding shadows lowers the influence of colour structure and colour distribution (SCD) 

to having no further impact on the performance anymore. The colour layout on the other hand 

is only slightly minified. Thus, the content differences between the two datasets still affect 

SIFT’s performance. Now the performance explained by the content descriptors adds up to  

-8%. This shows that the behaviour of SIFT is almost fully explained by the used image 

content descriptors. In total, the reduction of performance difference when shadows are 

enabled is caused by the closer relation of the two image types in colour structure, colour 

distribution and a little bit in colour layout. 

This similarly can be said for shadow filtering. The only difference here is that the remaining 

CLD effect is compensated by the impact of CSD and SCD distances, which now positively 

influence SIFT’s performance on synthetic data. SSAO affects the actual image content 

distances only slightly, but has a strong impact on the SCD coefficient. The constant effect of 

CLD distances on the performance indicate that local colour deviations (e.g. specific trees) 
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need to be focused to make the performance of SIFT more similar to natural images. Thus, 

careful remodelling of trees and their colours should be conducted. 

As the performance results depict, the previous effect are only surveyed on scene forest. Thus, 

the given recommendations are scene dependent. 

In the following chapters, only scenes with noticeable differences (in performance difference, 

image content distance AND compared to baseline) in repeatability performance are discussed 

(for each feature detector and performance metric). 

The 𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 terms have been normed (after equation (37)) for Δabsolute repeatability to 

ease comparison with the object performance results. However, since b-values are constant 

over a scene and norming of the object performance is conducted frame by frame the results 

can slightly differ. Still, portraying the results in Δabsolute repeatability should allow the 

reader to better identify the causing image content. 

6.2.1 Configuration set “Illumination” 

In this chapter, the configuration set “Illumination” consisting of parameters shadow, shadow 

filter and SSAO is examined (for more detail see chapter 5.2.2.1). In configuration baseline, 

all parameters have been disabled. Only datasets with prominent shadows are evaluated. Each 

of the following chapters shows the results in a condensed format, for details on the 

evaluation process the reader is referred to chapter 6.1. 

6.2.1.1 Object performance 

SIFT’s performance results 

The test objects performance was measured identically to chapter 6.1.1. In Figure 6-13, the 

performance of feature detector SIFT on the synthetic datasets baseline, shadow, shadow 

filter and SSAO is depicted. It should be recalled that the goal is to aim for equal performance 

for synthetic datasets and the natural dataset photo, which would be achieved when Δrelative 

and Δabsolute repeatability become zero. This is highlighted by the appended colour code 

with green indicating good results and red undesired results. Details on plots and metrics can 

be found in chapter 6.1.1. 
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Figure 6-13: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of SIFT on 

selected scenes and illumination parameters. 

Marginal positive differences concerning baseline are measured for all parameters. For 

instance activating shadows in scene forest lowered the Δrelative repeatability by 4%. Only 

forest and concrete benefited from adding shadows to the scene. In summary, SIFT’s relative 

repeatability is mostly independent to the parameters shadow, shadow filtering and SSAO.  

Scene hangar yields the closest results to the photo reference on Δabsolute repeatability using 

SIFT with +9 to +11% performance difference. All parameter positively influence the 

performance of SIFT concerning baseline albeit marginally. Forest, sport and house exhibit 

the largest differences (31% to 54%). As pointed out, absolute repeatability measures the 

absolute amount of correlating features pairs detected between two images. Again, forest 

benefits the most by adding shadows to the scenes, due to densely placed trees casting 

shadows on each other. In scene sport, adding shadows increases the amount of features and 

thus the difference to natural images due to artificial edges originating from aliased shadows. 

Thus, when activating shadow filtering, the scene profits from adding shadows. 

In general, only forest benefits noticeable from activating shadow and shadow filter. The 

almost equal results of SSAO compared to baseline indicate it has no notable impact on SIFT. 

MSER’s performance results 

The Δrelative repeatability of MSER performs closely to photo for all scenes, except for sport 

as shown in Figure 6-14. Relative repeatability of scene heath is even equal to photo. The 

performance on MSER on sport can be attributed to the high amount of blended textures in 

this scene. Improvements when applying shadow or shadow filter are existent but low. In 

scene heath, the deviance to natural images even extends when shadows were activated. This 
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effect is nullified by additionally applying shadow filtering. Only scene sport benefits 

strongly from shadows. SSAO shows no effect on relative repeatability for feature detector 

MSER. In case of Δrelative repeatability, the parameters shadow and shadow filter strongly 

improve the number of detected features for heath, house and sport only. The edgy shadows 

of parameter shadow heighten the detection of robust features even more in sport and heath. 

SSAO has no impact. 

 

Figure 6-14: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of MSER for 

selected scenes and parameters. 

In summary SSAO has no visible influence on the performance of any tested feature detector. 

For SIFT the same applies to shadow. MSER profits from shadows (although from edgy and 

therefore more artificial shadows). 

6.2.1.2 Image content distances 

This chapter provides results on the degree and type of changes that are introduced by the 

parameters on the image content (see Figure 6-15). The distance D between two images (for 

the used descriptors) is always positive and is zero in case the images are identical for the 

specific image property. These distances are measured between images of the current 

parameter and the actual photographs. Compared to the baseline experiment the boxplot 

(Figure 6-7) has been compressed to a bar plot presenting only the median of each dataset. 

This way the influence of a parameter can be read in absolute figures and can be compared to 

the baseline value for each content descriptor. The lower the value the closer is the similarity 

to the photo reference. 
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Figure 6-15: Median image content distances between synthetic imagery and photo for all used content 

descriptors and examined configuration set parameters.  

The distances of CSD and SCD are lessened compared to baseline when shadow or shadow 

filtering is activated. HTD distances remain mostly unchanged. Only scene hangar is 

positively affected by shadows, due to the large shadow areas visible in the dataset. Shadow 

also positively affects the distance of CLD for all scenes except house and concrete. SSAO has 

no notable influence on CSD, SCD, HTD, CLD and EHD. 

DCD distances are very scene dependent. The activation of shadows in the synthetic 

environment leads to a reduction of dominant colour distances in forest, concrete and hangar 

due to the presence of shadows in the natural imagery. SSAO only affects scene forest. EHD 

describes the spatial distribution of edges. Shadow enlarges the distance to photo for all 

scenes except house. Depending on the scene, shadow filtering can increase or decrease this 
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effect slightly. Only house benefits by introducing shadows making it the best modelled scene 

for EHD after street. Even though shadows occupy a considerable part of each image in 

dataset sport, EHD is not affected by their presence. 

6.2.1.3 Influence factor analysis 

Now, the influence factor analysis presents the influence of image content differences on the 

performance of the feature detectors. How these results are interpret is presented in chapter 

6.2. More information on the used regression models can be found in appendix C. 

SIFT model coefficients 

The example in chapter 6.2 explains the procedure on how to read these results on scene 

forest using SIFT’s Δrelative repeatability. Since this was the only scene not failing the pre-

selection steps presented in chapter 6.2, no further scenes are discussed here. 

SIFT’s Δabsolute repeatability on forest (Figure 6-16) was strongly impacted by enabled 

shadows and shadow filtering. The performance mainly influenced by differences in edge 

appearance (HTD and EHD). It is also benefits from diminished distances in CSD and DCD 

but is negatively affected by shortened distances in CLD and SCD (though minor). SSAO 

obviously changes edge appearance (HTD and EHD). 

 
 

Figure 6-16: Influence of image content on SIFT Δabsolute repeatability and their behaviour when 

“illumination” parameters are applied. 

The large effect results show the remarkable effect of image content differences on the 

absolute repeatability performance of a feature detector. However, the resulting performance 

cannot be computed without the intercept given in appendix C.3. Still due to the normalisation 
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differences will remain. However, the actual goal of this investigation is to identify image 

content influencing an algorithms performance not the deployment of a predicting model. 

MSER model coefficients 

Δrelative repeatability of MSER is robust to “illumination” parameter variation for most 

scenes. Only concrete, forest and sport presented in Figure 6-17 show responses. 

     

 
 

Figure 6-17: Influence of image content on MSER Δrelative repeatability and its variation over parameter 

change. 

Their performance difference is reduced when shadows or shadow filtering is activated 

(chapter 6.2.1.1). In concrete this is caused by the gained influence of CLD (shadow) and 

SCD (shadow filtering), while in scene forest CSD, CLD, SCD and HTD distances are 

beneficial to the performance. The strong effects on scene sport can be attributed to a change 

in CSD and CLD distance. The distributed colour (SCD) affects MSER positively, when 

shadow filtering is activated. SSAO only causes performance differences in forest with MSER 

being affect by distributed colour and colour layout differences. 

Beware, since absolute repeatability is normed by the number of image pairs detected in the 

natural reference, large deviations in performance leads to large coefficient values. As 

identified in the object performance evaluation in chapter 6.2.1.1 the absolute repeatability of 

MSER is lowered on heath, house and sport when shadow and shadow filtering is activated. 
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As depicted in Figure 6-18, the performance changes of MSER in scene heath can be 

attributed to differences in homogeneous texture (with activated shadow). MSER’s 

performance with shadow filtering is however not explained by the model. 

Colour layout and distributed colours are responsible for the performance gain on synthetic 

data in scene house for both shadow configurations. SSAO marginally increases the weight of 

HTD and EHD compared to baseline. 

     

 

 

Figure 6-18: Influence of image content on MSER Δabs. repeatability using parameter set “Illumination”. 

Adding shadows in scene sport lowers MSER’s Δabsolute repeatability strongly, due to the 

impact gain of texture differences on the outcome. The change in colour layout is also 

beneficial. Shadow filtering also minifies the performance difference though less drastically 

thanks to the lowered image content differences in SCD, CLD and HTD. Thus, unfiltered 

shadows decrease the performance difference to natural photos the most out of these three 

tested parameters by increasing the effect of repeating frequencies and colour layout. SSAO 

decreases the Δabs. repeatability of sport by only 1% reducing the influence of SCD, CSD 

and EHD differences compared to baseline. 
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6.2.1.4 Summary of configuration set results 

In this configuration set the three parameters SSAO, shadow and shadow filtering were tested. 

Generally, the introduction of shadows and shadow filtering reduces the relative repeatability 

difference to natural images mainly for scenes with many objects. The performance of other 

scenes is not as affected because the satellite image used as ground texture contains the 

shadows present during image capturing. 

In summary, activating shadows has a positive effect on Δabsolute and Δrelative repeatability 

for both feature detectors, with the absolute measure being more affected. The benefit of 

shadows and shadow filtering depends on the scene, in some the performance difference is not 

affected, in others it is positively affected. All in all the shadow parameters affect mainly the 

colour histogram (SCD), colour layout (CLD), colour structure (CSD) and gradients (HTD 

and EHD). Thus, the usage of shadows and shadow filtering is recommended for both feature 

detectors. Further, both feature detectors benefit more from filtered shadows, since it filters 

the aliased shadow edges (which would introduce unnaturally large gradients and high 

frequencies in the synthetic images). The evaluation identified that SSAO can marginally 

decrease performance difference of tested feature detectors in scenes containing densely 

placed trees (e.g. forest or house) due to the slight reduction of gradient distances (HTD and 

EHD).  

6.2.2 Configuration set “Texture” 

In this experiment the parameters texture low, surface low and anisotropic filtering (AF) were 

tested. See chapter 5.2.2.2 for more details on these parameters. The baseline setting is 

presented in Table 6-1 on page 140. 

6.2.2.1 Object performance 

SIFT’s performance results 

The performance of SIFT with all “Texture” parameters is depicted in Figure 6-19 and can be 

compared to baseline. The Δrelative repeatability of SIFT is only marginally affected by AF 

and low textures. In case of anisotropic filtering only in scene forest the performance 

difference to photo is increased by 5%. In Texture low the resolution of all textures in the 

scene (object textures, sprites, and detail texture on ground) are quartered. This affects mainly 
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scene heath by lowering the performance difference by 4%. In surface low only the resolution 

of the satellite image (unchanged in texture low) is downscaled, which decreases the amount 

of geo-referenced features. Δrelative repeatability is reduced in almost all scenes for surface 

low. Scene heath benefits the most performing now equal to dataset photo, while for forest the 

performance detoriates by 5%. 

When evaluating Δabsolute repeatability of SIFT, texture low boosts the number of detected 

features by about 1000 for all scenes. Depending on the number of features found in baseline 

and the differences to photo this change is reflected either positively or negatively. It should 

be noted that with downsized texture the number of outliers increases. Downscaling the 

satellite image (surface low) lowers the number of features in all scenes by 300 to 500 feature 

pairs per image. This change is mostly not beneficial. Only sport profits from this 

development since even less feature pairs are found in natural images. Anisotropic filtering 

also slightly reduces the amount of images pairs for all scenes, therefore the same scenes are 

benefitting as for surface low. For hangar, this leads to equal performance with the reference. 

 

Figure 6-19 Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of SIFT on 

selected scenes and texture parameters. 

MSER’s performance results 

Analysing the results of MSER’s Δrelative repeatability (see Figure 6-20) the baseline dataset 

performs higher than photo on all scenes except for heath and junkyard (where it is almost 

equal). Scaling down textures (texture low), increases its performance but also lessens the 

robustness of measurements strongly (fast switches between high and low measurements 

within a dataset). Parameter surface low diminishes Δrelative repeatability compared to 
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baseline and is only beneficial in scene forest. The appliance of anisotropic filtering (AF) 

enlarges the performance difference for all scenes by 1 to 3 percentage points. 

Δabsolute repeatability of MSER is very content specific (different for each scene) with forest 

comparing best to its natural counterpart. Texture low also cuts down on the number of 

detected feature pairs, which enlarges Δabsolute repeatability for all scenes except hangar. 

Here, MSER detects less features on synthetic data, gradients in texture are heavily blurred. 

Downscaling the satellite texture resolution (surface low) also diminishes the number of 

found feature pairs but less drastic than texture low. Thus, the detector reacts similar on all 

scenes, detecting less features in synthetic data when the resolution of textures is reduced. 

Parameter AF has a positive influence, enabling MSER to detect more features. 

 

Figure 6-20: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of MSER on 

selected scenes and texture parameters. 

6.2.2.2 Image content distances 

In this configuration set the impact of different texture resolutions and effects are tested. 

When textures are manipulated, so are the image frequencies. Figure 6-21 shows the mean 

frequencies of scene sport on configuration set “Texture”. Since frequencies can only be half 

the size of the image (Nyquist-Theorem), the maximum frequency is 512Hz (@ 1024x768). 

The vertical axis indicates the logarithmic amount of frequencies present in each 

configuration type. Compared to photo, all synthetic image sets lack lower frequencies, while 

having a surplus in higher frequencies. The break-even point is at 200-255 Hz depending on 

the parameter. AF increases the presence of frequencies above 200 Hz. Downscaling the 

satellite texture mainly affects the low frequency components in the band of 10-100 Hz, 
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which indicates the loss of low resolution texture information. Changing the texture resolution 

of all textures (except satellite) reduces the presence of frequencies above 70Hz massively. 

 

Figure 6-21: Mean frequency distribution of scene sport for all parameters tested in set “Texture”. 

 

Thus, scaling down the resolution of textures leads to a larger distance to photo in HTD and 

EHD (see Figure 6-22). Only completely texture based scenes such as sport or street benefit 

from texture low because the impact of the detail texture is diminished while the satellite 

image remains untouched. Therefore, the difference to the actual photograph is lessened. 

Further distances of SCD and CSD are lowered due to less cluttered colour distributions. The 

effect of down scaling textures affects CLD only slightly, whether the distance is increased or 

decreased depends on the specific scene setup, since it depends on the loss of spatial colour 

information. 

Surface low lowers the resolution of the satellite image while retaining the resolution of the 

detail textures. The configuration leads to strong reductions in distance for descriptors CSD, 

CLD and SCD on all scenes. This trend indicates that the image composition of baseline is 

too cluttered (in texture and colour compared to photo) and scaling down the satellite image 

resolution cuts this effect. Normally the difference to photo should rise, due to the blurring 

and thus disguising of geo-features. This contradiction shows the current surface texture 

generation (blending with detail texture) creates results worse than the pure usage of either 

texture. For HTD, only the two texture heavy scenes (sport and street) benefit from this 

configuration. 
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Figure 6-22: Median image content distances between synthetic imagery and photo for all used content 

descriptors and examined parameters. 

Anisotropic Filtering affects the distances of all descriptors only slightly. SCD, CSD and CLD 

measurements are marginally reduced on almost all scenes. DCD also changes only to a small 

degree for AF, except for the scenes forest and sport. Further AF leads to a rise in distance of 

content descriptor EHD. 
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6.2.2.3 Influence factor analysis 

Again, image content distance measurements and performance differences have been used to 

compute the regression models. The variance covered by these models can be found in 

appendix C.2 (Figure C-3). In this chapter, the model coefficients b multiplied by the 

measured distance are used to present the causing image content differences. 

SIFT model coefficients 

Figure 6-23 presents the results of each “Texture” parameter on the scenes forest, hangar and 

heath. The resulting terms (𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) are given in the same unit as object performance 

results (see chapter 6.2.2.1). In scene forest, the improved performance on texture low can be 

explained by the reduction of colour structure (less scattering) and high frequency edge 

gradients (EHD). Surface low and AF slightly enlarge the performance difference of SIFT. 

          

 
 

Figure 6-23: Influence of image content on SIFT Δrelative repeatability and their behaviour when 

“Texture” parameters are applied. 

Configuration texture low raises the performance difference in hangar by 2%, which can be 

correlated to an increased distance in colour layout. Changes in Colour layout and edge 

appearance explain the lowered performance difference when downscaling the surface 

texture. In the case of AF, the lower influence of edge appearance on the outcome leads to a 

smaller performance difference.  
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In Scene heath, the model cannot explain the smaller performance gap for configuration 

texture low. Equal performance is measured with configuration surface low due to colour 

layout and colour distribution. This suggests that satellite images from a different season used 

as ground texture caused the colour differences. 

Texture low strongly boosts the absolute repeatability of SIFT on synthetic imagery on all 

scenes. Surface low on the other hand lessens SIFT’s absolute repeatability on synthetic data 

in all scenes. Scenes hangar, heath and sport are presented in Figure 6-24 representing all 

scenes. 

In scene hangar, the CLD, SCD, DCD and HTD terms explain the further upturned 

performance difference with texture low. The slightly negative performance of surface low is 

caused by the distances of CSD, SCD and DCD. AF actually leads to equal performance due 

to slight changes in the SCD, CSD and CLD terms. 

          

 
 

Figure 6-24: Influence of image content on SIFT Δabsolute *repeatability and their behaviour when 

“Texture” parameters are applied. 

In case of heath, texture low lowers the performance difference to 3%. According to the 

model, the change in colour layout is responsible. Surface low leads to a strongly reduced 

number of image features in synthetic images of scene heath. Colour structure and layout are 

identified as the main cause. 
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In scene sport the already strong performance of SIFT on synthetic data is further enlarged in 

configuration texture low by the drastic effect of the heightened EHD distance. This change in 

texture quality leads to much more feature pairs detected by SIFT due to the blurring of edges. 

Surface low is beneficial to the scene by lowering colour layout, homogeneous texture (HTD) 

and thus the amount of detected features in synthetic images. 

MSER model coefficients 

The Δrelative repeatability of MSER is affected by texture low and surface low, while 

remaining relatively robust to AF (see Figure 6-25). Therefore, AF results will not be 

discussed in detail. Texture low diminished the performance difference of MSER in scene 

concrete to only 5% mainly due to the change in CLD followed by SCD and EHD, which all 

raised their content distance compared to photo. The rise in repeatability when surface low is 

active can be traced to the changes in CSD and SCD distances. 

          

 
 

Figure 6-25: Influence of image content on MSER Δrelative repeatability and their behaviour when 

“Texture” parameters are applied. 

Configuration texture low minifies the performance difference in scene forest to -4%. This is 

caused by the lowered impact of HTD distances. In case of surface low, the performance 

reduction results from a smaller influence of the SCD and EHD terms. 
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MSER’s performance on junkyard is explained by five descriptors. Both measures texture low 

and surface low heighten the performance difference to photo. A loss in colour distribution 

(SCD) causes a performance shift when the textures are scaled down. Surface low diminishes 

the performance on synthetic data leading to -9% performance difference caused by changes 

in colour structure and colour layout. 

Evaluation of MSER’s Δabsolute repeatability revealed a general increase of performance 

difference to photo for all configuration on all scenes with the exception of texture low on 

hangar and AF on heath. Thus, only these two are presented in Figure 6-26 and discussed in 

the following. 

The performance lowering effect of texture low on synthetic data results in a remaining 

performance difference of 12% for scene hangar. This is caused by higher distance in CSD 

and EHD and a higher similarity in CLD and SCD. 

 
 

Figure 6-26: Influence of image content on MSER Δabsolute repeatability and their behaviour when 

“Texture” parameters are applied. 

Heath mainly benefited only from configuration AF. Anisotropic filtering blurs step surfaces 

to pare down aliasing effects in texture. The closer performance to photo is induced by the 

change in colour distribution (SCD). Surface low only slightly improves the performance of 

MSER on heath. Here, the downscale of the satellite texture shortens the distance in CLD, 

thus allowing the dataset to perform more similar to photo. 

6.2.2.4 Summary of configuration set results 

The Δrelative repeatability of SIFT and MSER is affected by the parameters texture low and 

surface low. AF has either no or negative influence on the performance difference. Changing 

the texture parameters mainly affects the Δabsolute repeatability of both feature detectors 
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negatively (with some exceptions). Thus, the reduction of texture resolution (texture low) or 

satellite image resolution (surface low) is not recommended. Further, AF does not lead to a 

closer performance of synthetic data in regard to photo, except for Δabsolute repeatability on 

heath and house using SIFT and hangar and street using MSER. Compared to baseline AF 

affects the performance of both feature detectors slightly negatively and thus should not be 

used in this case. 

When a lower performance difference was measured it was generally caused by shortened 

distance in colour layout and colour distribution (for both feature detectors) indicating that a 

high-resolution surface may lead to an enlarged difference when the actual colours do not 

align (possibly due to construction of buildings or seasonal colour changes). 

Texture low strongly increases the absolute repeatability of SIFT on synthetic imagery on all 

scenes. Surface low on the other hand reduces SIFT’s absolute repeatability on synthetic data 

in all scenes. 

In some cases, Δrelative repeatability of MSER can benefit from downscaled textures (texture 

low). Surface low and AF are never beneficial. According to prior investigation, all 

configurations generally expand the Δabsolute repeatability of MSER. 

In general, down scaling textures affects the number of detected feature pairs (Δabsolute 

repeatability) strongly. Whether it also effects the Δrelative repeatability, depends on the 

detector and type of change. The detectors are mainly affected by spatial and global colour 

distribution (CLD, SCD). Anisotropic filtering has marginal impact on feature detector 

performance. 

6.2.3 Configuration set “Edge” 

In this configuration set the different antialiasing techniques SSAA, MSAA, FXAA, SMAA and 

AToC are evaluated. AToC is an aliasing technique for sprites only, which can be found on 

grass and tree models of VBS3 (for more detail see chapter 5.2.2.3). 
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6.2.3.1 Object performance 

SIFT’s performance results 

Δrelative repeatability of SIFT is affected only to a minor degree by methods AA method 

tested as can be seen in Figure 6-27. Forest benefits the most getting 4% closer to the 

performance of photo. In general, the methods FXAA and SMAA robustly decrease the 

distance to photo. Since the effect of AToC can only be seen on trees and bushes its relevant 

scenes are limited to forest, heath and junkyard. 

 

Figure 6-27: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of SIFT on 

selected scenes and edge parameters. 

Antialiasing methods affect SIFT’s Δabsolute repeatability also only slightly. Here, scene 

forest and hangar profit most while street, house and heath generally are not affected. The 

technique improving most of the scenes is FXAA followed by SMAA and SSAA. It can be 

assumed that AToC and MSAA are not affecting the number of corresponding feature pairs. 

MSER’s performance results 

Aliasing occurs on edges of objects, thus scenes devoid us such as forest, heath and street 

benefit from least antialiasing techniques (except for AToC) when evaluating the Δrelative 

repeatability of MSER. When excluding these scenes MSER benefits to a certain degree from 

SSAA, MSAA, FXAA and SMAA depending on the scene (see Figure 6-28). The equal 

performance of SMAA to photo on hangar is due to strong outliers and therefore is not 

considered in the discussion. FXAA leads to increased relative repeatability on synthetic data 

but also instability leading to a wide spread of results. MSER benefits only in scenes with 

many objects (which induce strong edge features) from antialiasing such as concrete. AToC 
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works on trees, bushes and grass present in scenes forest and heath. However, it marginally 

reduces Δrelative repeatability for all scenes except these two. Thus, in this case AToC can be 

neglected. In general, MSER benefits only slightly from antialiasing methods when analysing 

Δrelative repeatability with SSAA having the overall best results. 

 

Figure 6-28: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of MSER for 

selected scenes on edge parameters. 

When considering absolute repeatability of MSER the relation to photo is very scene 

dependent. SSAA and MSAA boost the number of detected feature pairs on synthetic data. 

Again, the result of hangar with SMAA is due to outliers and cannot be considered. In hangar 

and street, the number of features on synthetic images is already larger than that on natural 

images (leading to negative trends). FXAA raises the performance gap to photo for every 

scene revealing an incompatibility with MSER. Depending on the Scene SSAA, SMAA and 

MSAA can slightly cut down the performance difference. AToC fits the number of detected 

features in each frame best to the reference making it the best AA method to use. Remember, 

AToC only works in combination with MSAA. 

6.2.3.2 Image content distances 

All antialiasing methods are used to smooth jagged edges resulting from the rendering 

process. These edges induce a spectrum of unnatural high frequencies in the image as 

depicted in Figure 6-29. Here, FXAA filters the number of high frequencies most successfully 

compared to all other methods. MSAA and the related AToC affect the image frequencies only 

slightly as presented here on the example of scene forest. 



190 Principle experiments and results 

 
Figure 6-29: Mean frequency distribution of scene forest for all parameters tested in set “Edge”. 

SSAA cuts down the distance to natural images for CSD, CLD, SCD, DCD and EHD as 

depicted in Figure 6-30. Since AA methods blur strong gradients the colours fade as well 

leading to less dominance of the dominant colours especially in scene concrete.  

 

Figure 6-30: Median image content distances between synthetic imagery and photo for all used content 

descriptors and examined parameters. 
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FXAA shortens the distances of CSD, EHD and slightly SCD. As expected the edge histogram 

(EHD) is the most affected descriptor with FXAA lowering the distance to photo the most. 

FXAA detects edges in an image after rendering and blurs these. A drop in distance indicates 

that aliased edges in rendered images have unnatural large gradients. The application of 

MSAA and AToC does not affect the image descriptors used in this evaluation. SMAA slightly 

reduces the distance of CSD, SCD and EHD. The effect on other descriptors is depending on 

the scene. SMAA is considered to outperform FXAA (Jimenez et al., 2012), but its effect on 

image content is lower. The graphs indicate that street and concrete are especially influenced 

by all AA-methods. 

6.2.3.3 Influence factor analysis 

Each combination of metric, feature detector, scene is fit to a regression model using the 

results from the image content analysis and the different configuration set parameters as 

predictors. The quality of fit together with the significance have been presented in appendix 

C.2. 

SIFT model coefficients 

The regression model explaining Δrelative repeatability of SIFT on scene forest is sensitive to 

image properties measured by CSD, CLD, EHD and SCD (see Figure 6-31). Adding SSAA 

raises the similarity to photo by 4% and enlarges the weight of edge appearance (EHD) 

strongly, while its actual distance is shortened. It was expected that edge AA methods mostly 

affect edge based measures (EHD or HTD), but it seems SCD is far more impacted. In case of 

SSAA changes in colour distribution and colour layout lead to the observed performance shift. 

 
 

Figure 6-31: Influence of image content on SIFT Δrelative repeatability and their behaviour when “Edge” 

parameters are applied. 
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The high effect of other descriptors indicate that SIFT’s performance is mainly not controlled 

by the appearance of edges. When adding FXAA the Δrelative repeatability is lowered by 5% 

while the impact of edges is pared down to being negligible, suggesting that the remaining 

edge difference is irrelevant to the performance of SIFT in forest . The usage of SMAA lessens  

Δrepeatability by 3% caused by its influences on colour distribution. Adding AToC (together 

with MSAA) lessens the distance to photo by 3% and slightly heightens the effect of edge 

appearance. All other scenes where only influenced by a maximum of 2% when using AA-

methods, showing the benefit of using them is marginal when the scene is not heavily 

populated by environmental objects. 

In Figure 6-32 it is shown that the regression model of SIFT Δabsolute repeatability is slightly 

more sensitive to antialiasing. In scene forest, FXAA lowers the performance by 9% and 

SMAA by 5% compared to baseline. The coefficients of the models remained mostly static for 

most tested techniques. In case of forest SIFT is by all measured image contents. The model 

shows that the effect of colour differences on the detection of SIFT features outweighs the 

influence of edge differences. This is also applies for hangar and street.  

      

 
 

Figure 6-32: Influence of image content on SIFT Δabsolute repeatability and their behaviour when “Edge” 

parameters are applied. 

Hangar benefits in case of SSAA and SMAA from antialiasing. Both lower the colour 

distribution when activated. Street is presented as a negative case where the scenes absolute 
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distance to the reference actually rises by 5% when method FXAA is applied. The model 

indicates this is also caused by changes in SCD. 

MSER model coefficients 

The effect of antialiasing methods on Δrelative repeatability of MSER is small. In fact, an 

effect on MSER’s performance can only be observed in scene concrete (changes in heath and 

hangar were identified as outliers). Especially MSAA changes Δrel. repeatability caused by an 

increased impact of edge appearance (EHD) as shown in Figure 6-33. 

 
 

Figure 6-33: Influence of image content on MSER Δrelative repeatability and their behaviour when “Edge” 

parameters are applied. 

The reduction of performance difference by 2% using FXAA is correlated with changes in 

CSD, CLD and SCD according to model. The shortened difference in EHD would actually 

enlarge the deviation. Enabling AToC positively influences colour structure, distribution and 

layout as well as edge appearance. 

Analysing the regression models for Δabsolute repeatability of MSER (Figure 6-34) the effect 

of edge-based image properties (EHD; HTD) is apparent, except for scene street. Still, these 

image properties are less influential as colour based properties most notably colour layout. 

The large values in given in the graphs for MSER Δabsolute repeatability exhibit the large 

impact a small deviation in distance can have on the result.  

Scene hangar benefits from FXAA (SMAA is not considered due to outliers), which means it 

decreases the number of detected features in synthetic imagery. MSER’s performance also 

benefits from MSAA and AToC, while SSAA increases the difference to photo. The interaction 

terms of the model present CLD as the most influential descriptor followed by HTD, SCD, 
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EHD and CSD. FXAA has mainly an impact on colour layout, while MSAA and AToC mainly 

influence edge appearance (though to a small degree). 

      
 

Figure 6-34: Influence of image content on MSER Δabsolute repeatability and their behaviour when 

“Edge” parameters are applied. 

SSAA leads to a higher weight of CSD and CLD terms, while their distances remain constant. 

All other methods only slightly change the coefficient values. 

In scene heath, all AA-methods except FXAA lower Δabsolute repeatability due to their 

impact on colour layout and homogeneous textures. SSAA mainly affects colour structure and 

layout. In addition, MSAA benefits mostly from non-edge-based distances demonstrating the 

large effect colour-based measures have on the performance. AToC lowers the influence of 

homogeneous textures similar to SMAA, which closes the remaining performance gap. 

In scene junkyard, all model coefficients have a negative effect on the performance difference 

meaning a larger distance lowers the performance on synthetic data. The scene only benefits 

from enabled AToC, with a reduction of 7% in performance difference. This is caused changes 

in colour structure and repeating frequencies (HTD). 
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6.2.3.4 Summary of configuration set results 

In the previous chapters, the benefit of antialiasing methods on synthetic data towards the 

performance of feature detectors compared to natural images was investigated. The edge 

difference is just one small component out of all deviations between synthetic and natural 

imagery. This is also true for the performance of feature detectors as the influence factor 

analysis revealed. Spatial colour layout or global colour histogram deviates impact the 

performance of both tested feature detectors more than edge differences (homogeneous and 

non-homogeneous). At first glance, this seems unintuitive, since feature detectors grey scale 

images before actual processing them. However, even after fusion of colour channels the 

distribution, layout and structure of their values still exist in the values of the grey scale 

images. 

Feature detector SIFT profits from applying FXAA or SMAA using both performance metrics. 

In general, SSAA can slightly lower the Δrelative repeatability of MSER. However, MSAA 

should be preferred for urban scenes (many man-made objects) and AToC for rural scenes 

(mostly depicting trees and vegetation). Δabsolute repeatability on the other hand generally 

benefits slightly from MSAA and AToC. 

When analysing image frequencies, FXAA lowers high image frequencies the most 

minimizing the frequency distribution differences of image types. SMAA slightly decreases 

the higher frequencies while MSAA and AToC show almost no effect. Out of all tested AA-

methods, SSAA lowers the content distances to natural images the most (on CSD, CLD, SCD, 

DCD and EHD). FXAA robustly shortens the distances of CSD, CLD and EHD. AToC 

robustly lowers the colour distribution distance, in all other measures its effect is mostly small 

and scene dependent. 

The last evaluation step correlates the performance changes between images to the image 

content changes to identify the causing image properties. The reduction of Δrelative and 

Δabsolute repeatability for SIFT when applying FXAA is mainly impacted by image content 

distances of SCD and EHD. When activating SMAA the performance of SIFT is affected by 

colour distribution and structure. SSAA additionally influences the colour layout of synthetic 

data. MSER only reacts to MSAA and AToC in some scenes when observing Δrelative 

repeatability. Here, the AA-methods force distance changes mainly in colour layout, structure 

and distribution. MSER’s Δabsolute repeatability is reactive to changes in colour layout, 

homogeneous textures, edge appearance and colour structure. 
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6.2.4 Configuration set “3D-Objects” 

Now the influence of 3D models on the terrain map is investigated. The three parameters are 

objects high, no objects and modelling errors. Objects high increases the polygon count and 

detail of geo-typical 3D-models. The geo-referenced models are modelled at only one level of 

detail. No objects removes all 3D-objects, leaving only the terrain map in the camera view. 

Modelling errors, changes the texture colour, scale or material of three geo-referenced 

buildings in scenes hangar, house and junkyard. 

6.2.4.1 Object performance 

SIFT’s performance results 

Increasing the object polygon count obviously has no effect on SIFT for both performance 

measures as depicted in Figure 6-35. Eliminating objects from the scene has only a slight 

negative impact on the relative measure. Even though removing 3D-objects affects the rel. 

repeatability of scene forest strongly (a change of +28%) the deviance to photo remains 

similar at 15%. Modelling errors only affect scene hangar by raising Δrelative repeatability. 

No objects lowers Δabsolute repeatability in scene forest, due to the larger count of detected 

feature pairs. After removal of 3D-objects in scene concrete the number of detected features 

drops. In this case, SIFT still detects more feature pairs in natural images. For scene hangar, 

heath and house the removal of objects is also non-beneficial.  

 

Figure 6-35: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of SIFT on 

selected scenes and 3d object parameters. 
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The variation of textures to simulate modelling errors all increase the number of features 

detected in synthetic imagery. For example, the applied texture in hangar only was scaled to 

ensure a visual difference between synthetic and natural images. However, this already 

strongly affects the absolute repeatability of SIFT on synthetic data. In other scenes (house 

and junkyard), modification of roof textures consistently improves Δabsolute repeatability. 

MSER’s performance results 

Evaluating Δrelative repeatability of MSER shows object high to have no notable effect as 

can be seen in Figure 6-36. It lowers the relative performance of MSER only slightly through 

all scenes. The modelling errors in hangar and house slightly affect the measure while 

remaining the same in junkyard. 

 

Figure 6-36: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of MSER on 

selected scenes and 3d object parameters. 

Increasing the objects detail of natural objects (found in forest, heath and junkyard) raises the 

absolute repeatability of MSER. Adding modelling errors leads to an almost identical 

performance of scene hangar compared to the reference. In junkyard, there is no difference 

and in house the number of features dropped during the period where the house is visible. 

In general, increasing the detail of objects has no beneficial effect on the performance 

difference to the reference for any detector. SIFT’s Δrelative repeatability is not affected by 

removal of 3D-objects. The absolute repeatability of SIFT and MSER’s performance in 

general strongly deviate from their results on natural data. The parameter modelling error 

shows the influence textures have on the performance of feature detectors. Depending on the 

type of modification, the effect can be massively positive or negative. Thus, texturing needs to 

be conducted carefully. 
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6.2.4.2 Image content distances 

Image content distances for the different parameters are displayed in Figure 6-37. 

 
Figure 6-37: Median image content distances between synthetic imagery and photo for all used content 

descriptors and examined parameters. 

Raising the polygon count of objects (object high) has a marginal effect on DCD and EHD 

distances depending on the scene. For example, in forest the dominant colour distance 

enlarge, while in scene hangar HTD the distance increases. Other content descriptors show no 

reaction. Now, removing all objects strongly reduces the distances of CSD, CLD and SCD. 

This shows that the colour palette of the satellite image fits the natural images better than the 

colours of used objects. On the other hand, the distance of DCD, HTD and EHD indicates that 

the most prominent colours and edge information relies on the presence of 3D-objects. 

Modelling errors lead to slight changes in HTD, DCD, SCD and CSD. This drastically 

demonstrates the influence a slightly modified roof texture can have on the image content of a 

scene. 
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6.2.4.3 Influence factor analysis 

SIFT model coefficients 

The model of SIFT Δrel. repeatability on forest is sensitive to CSD, CLD, EHD and SCD 

distances (Figure 6-38).  

      

 
 

Figure 6-38: Influence of image content on SIFT Δrelative repeatability for scenes forest, hangar and house 

and their behaviour when “3D-Objects” parameters are applied. 

Objects high marginally affects the terms of CSD, CLD and SCD leading to a performance 

difference reduction of 2%. Removing 3D-objects strongly enlarges the weight of CSD and 

EHD. The effects of modelling errors are marginal. The variation of the roof texture in scene 

hangar widens the existing performance gap to photo by 3% caused by slight changes in 

colour layout and dominant colours. In scene house, the Δrel. repeatability of SIFT is affected 

by no objects because of distance changes in colour structure (CSD), colour distribution 

(SCD) and homogeneous textures (HTD). 

When measuring SIFT with Δabsolute repeatability, objects high notably affects no scene. 

This can be seen in Figure 6-35 presenting its same performance. In contrast, all scenes are 

affected by parameter no objects (Figure 6-39). Here, e.g. Δabsolute repeatability of forest is 

decreased by 13% due to the influence of CSD and DCD distances. Scene hangar on the other 

hand negatively affected (9% higher performance difference) by the large change in colour 

information (SCD). The absolute performance difference in scene house is only slightly 
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changed by parameter no objects (3% higher) as well as modelling errors (4% lower). 

Removing the objects diminishes the colour layout of the scene, which SIFT is very sensitive 

to as can be seen in Figure 6-39. The enlarged distance in edge appearance, affect SIFT 

marginally in scene house, thus reducing the effect of EHD. Adding modelling errors to house 

affects the distances of CSD, CLD, EHD, DCD and lowers the performance difference.  

     

 
 

Figure 6-39: Influence of image content on SIFT Δabsolute repeatability for scenes forest, hangar and house 

and their behaviour when “3D-Objects” parameters are applied. 

MSER model coefficients 

Δrelative repeatability of MSER is insensitive to distance changes in EHD in scene forest 

since it was not fitted to the model as can be seen in Figure 6-40. Removing the trees in forest 

influences mainly colour layout and repetitive textures (HTD) and enlarges Δrelative 

repeatability of MSER by 16%. Here, the model actually indicates all changes would lead to a 

decrease in difference; however, MSER cannot perform robustly on the ground surface texture 

of forest. Thus, even though both measures show more similarity to natural images the new 

impact of the detail texture leads to low performance values.  

On hangar, modelling errors lower Δrelative performance to only 5% induced by a smaller 

colour layout distance. Interestingly removing the objects affects the performance and the 

model coefficients only marginally. MSER’s Δrelative performance on scene house is 
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enlarged by no objects (9% higher) and modelling errors (4% higher). Both are caused by 

distance changes in edge appearance (EHD and HTD), colour structure and colour layout. 

     

 
 

Figure 6-40: Influence of image content on MSER Δrelative repeatability for scenes forest, hangar and 

house and their behaviour when “3D-Objects” parameters are applied. 

MSER’s Δabsolute repeatability on hangar is explained by all descriptors (see Figure 6-41). 

Parameter no objects decreases the performance distance to photo by 39%, which results from 

changes in colour structure and distribution. The performance shift of parameter modelling 

error is additionally affected by edge appearance. 

      
 

Figure 6-41: Influence of image content on MSER Δabsolute repeatability for scenes forest, hangar, house 

and junkyard and their behaviour when “3D-Objects” parameters are applied. 

Removing objects in house enlarges Δabsolute repeatability to -93% caused by colour layout, 

colour distribution and edge appearance (HTD and EHD). A different roof texture raises the 
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performance difference to -47% due to changes in colour layout, repetitive texture and edge 

appearance. 

6.2.4.4 Summary of configuration set results 

In the previous chapters, the influence of “3D model” parameters on the performance of 

feature detectors and image content is analysed. The Δrelative repeatability of SIFT is 

marginally affected by removal of all objects, thus accepting a small reduction of similarity to 

photo allows very simple scene replications. However. The Δabsolute repeatability SIFT and 

MSER in general are measurably affected negatively by removing objects. 

SIFT is generally negatively affected also by the introduced modelling errors. This highlights 

the impact textures have on the performance of feature detectors in synthetic data. Thus, 

reproductions of real world scenes need to focus on careful and correct texturing. Raising the 

polygon count of objects has generally no effect on SIFT’s performance. 

Additionally, the Δabsolute repeatability of MSER can also be impacted by the representation 

quality of objects (objects high), though of negligible magnitude. The effect of modelling 

errors is scene dependant, but can be of large magnitude. 

When analysing the image content, the changes introduced by object high and modelling 

errors are small. Increasing the polygon count of objects marginally affects the image 

distance of SCD, HTD and DCD. Modelling errors affect CSD, SCD, HTD and DCD 

measures depending on the type of error applied (rescaling, material change, colour change). 

Removing all objects reduces the distances of colour-based descriptors such as CSD, CLD 

and SCD while it boosts the distance of edge based descriptors such as HTD and EHD 

(additionally the DCD distance is raised in some cases). 

The regression models identify majorly content distances in CSD, SCD, CLD and HTD as the 

cause explaining the drop in performance when objects are removed (no objects) for all 

detectors and metrics. However, edge appearance and dominant colours are also influencing 

the performance of feature detectors. Adding texture errors affects the absolute performance 

of SIFT due to distance changes in CSD, CLD, EHD and DCD. This differs for MSER only in 

the last distance descriptor, which is exchanged by HTD. The CSD and HTD differences 

explain the influence of objects high on MSER. 
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6.2.5 Configuration set “Camera model” 

In this experiment the “Camera model” parameters influence is investigated. In detail the 

manipulation or addition of noise, lens distortion, aperture, HDR, bloom and blur are 

analysed. For more detail on these parameters, please refer to chapter 5.2.2.5. 

Noise adds probabilistic colour noise using a Gaussian function with a std. deviation of 3σ to 

manipulate the original pixel value. Lens distortion adds the radial distortion of camera used 

in flight experiments to the image (only the first coefficient). Aperture simply closes the 

synthetic aperture, which results in darker images. HDR rearranges the existing colour depth 

to simulate HDR content, resulting in images that are more greyish. Bloom adds light bleeding 

effects existing on sensors to the synthetic image. Blur simply blurs the image (see chapter 

5.2.2.5 for more details).  

The properties are evaluated only on the four scenes concrete, heath, house and street 

representing for types of scenes to pare down the amount of results and redundancy. Concrete 

represents scenes populated with dense man-made objects; Heath natural objects (covering for 

forest) and house a mixture of both (covering for hangar and junkyard). Scene street 

represents a mostly texture based scene (almost no 3D-objects present; covering for sport). 

6.2.5.1 Object performance 

SIFT’s performance results 

The Δrelative repeatability of SIFT is not affected by HDR and bloom as depicted in Figure 

6-42. Aperture, distortion and noise slightly lessen the performance difference to photo. 

Adding blur expands the Δrelative performance on all scenes, which leads to lower similarity 

compared to the photo reference. 

The Δabsolute repeatability of SIFT is not influenced by HDR, bloom and lens distortion. 

Changing the aperture leads to scene dependent results. While street profits, all other scenes 

are either not or negatively affected. Blur heightens the number of detected features on 

synthetic data for all scenes. While SIFT performs in baseline lower than the reference for the 

scenes concrete, heath and house, it already detects more features in synthetic data for scene 

street. Thus, except for street, which massively boosts the performance distance, all other 

scenes benefit from adding blur. 
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Figure 6-42: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of SIFT on 

selected scenes and camera model parameters. 

MSER’s performance results 

In Figure 6-43, the effect of camera model parameters on the performance of MSER is 

presented. Δrelative performance is negatively affected by noise (although only slightly). 

HDR does not seem to have an effect. All other parameters produce strongly scene-dependent 

results. For instance, street is negatively affected by aperture, bloom and blur, which all lower 

the contrast and thus the gradients in the image. The performance similarity of heath is 

dwindled when blur, aperture and distortion are applied, while being unaffected by HDR and 

bloom. Scene house is actually unaffected by all parameters. The very edge heavy scene 

concrete benefits from all parameters except noise. 

 

Figure 6-43: Colour coded lookup tables presenting Δrelative and Δabsolute repeatability of MSER on 

selected scenes and camera model parameters. 

The Δabsolute repeatability of MSER in most cases is enlarged by all parameters with blur 

having the largest effect. Only scenes heath, house and street benefit from noise. Thus, noise 
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can boost the number of detected features for MSER at the cost of Δrelative performance. 

Showing the non-reliability of additionally detected features due to noise. 

6.2.5.2 Image content distances 

As shown in Figure 6-44 no image descriptor reacts to the introduction of noise. This is not 

surprising, because MPEG7 descriptors have been developed to find images of same content 

regardless of image quality differences. This could be considered in future investigations. 

Distortion slightly shortens the distances in colour (SCD, CSD and DCD) while raising 

location based measures such as EHD and CLD. A smaller aperture (darker image) lowers the 

distances of CSD, DCD and SCD indicating that the baseline images are too bright.  

 

Figure 6-44: Median image content distances between synthetic imagery and photo for all used content 

descriptors and examined parameters. 
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In general, EHD distances rise, because darkening the image lessens the contrast of edges. 

Activating HDR increases the similarity of colour presentation (CSD, SCD and DCD), while 

edges remain mostly constant (HTD and EHD). Bloom also raises the colour similarity to 

photo but with less magnitude (CSD, SCD and DCD). Blurring the image weakens the 

gradients, which enlarges the distance of edge-based descriptors EHD and HTD but also 

influences the colour structure (CSD). 

6.2.5.3 Influence factor analysis 

SIFT model coefficients 

The Δrelative repeatability of SIFT in scene concrete is explained by all image content 

measures except CSD (see Figure 6-45). The effect of the EHD distance is strongly raised by 

adding noise, aperture or HDR and beneficial to the performance similarity to photo. Adding 

bloom and blur lowers the impact of edges. The change in SCD distance is also causing 

reduction of performance difference for noise and aperture. HTD positively affects the 

performance of SIFT using configuration aperture and bloom. 

     

 
 

Figure 6-45: Influence of image content on SIFT Δrelative repeatability and their behaviour when “camera 

model” parameters are applied. 

In scene heath, the performance change with added noise is induced by differences in CSD 

and CLD. Performance variations using distortion on the other hand are caused by colour 
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layout and edge appearance. The performance boost using noise on street stems from colour 

layout differences. 

      
 

Figure 6-46: Influence of image content on SIFT Δabsolute repeatability and their behaviour when 

“camera model” parameters are applied. 

The Δabsolute repeatability of SIFT (presented in Figure 6-46) in scene concrete improves for 

blur due to changes in edge presentation and distortion due to changes colour layout and 

distribution. HDR lowers the effect of all colour distance measures and trims the performance 

difference by 2%. The impact of blurring on edges lowers the difference to photo to 16%. 

Noise reduces Δabsolute repeatability to -1% in scene street, which can be accredited to 

changes in colour structure, layout and distribution. In case of aperture, the influence of 

colour distribution on the performance indicate that images in baseline are brighter than the 

reference photo. Adding blur heightens SIFT’s Δabs. repeatability due to its negative effect on 

colour layout (CLD). 

MSER model coefficients 

The Δrelative repeatability of MSER is presented in Figure 6-47. The performance of scene 

concrete is reduced by the parameters distortion, aperture, HDR and blur due to distance 

changes in CSD, CLD, HTD, and EHD. For instance, distortion profits from its effect on 

colour layout and repetitive textures. In scene heath, the performance is explained by the 

descriptors except for DCD. The baseline dataset of heath is actually performing equal to 

photo, which obviously cannot be improved by any parameter. Scene street is described by all 

six image content descriptors. Only HDR lowers the performance difference to photo, which 

is caused by raised influence on repetitive textures (HTD). 
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Figure 6-47: Influence of image content on MSER Δrelative repeatability and their behaviour when 

“camera model” parameters are applied. 

 
 

Figure 6-48: Influence of image content on MSER Δabsolute repeatability and their behaviour when 

“camera model” parameters are applied. 

Δabsolute repeatability of MSER is described by all image content predictors (see Figure 

6-48). Blur drastically expands Δabsolute repeatability and affects edge appearance, colour 

distribution and colour layout. Also aperture affects the performance of MSER negatively and 

causes changes in colour structure and layout as well as edge presentation (EHD; HTD). 
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Adding distortion affects the distances of SCD and EHD when analysed over all scenes. HDR 

has an impact on the SCD and CLD terms. Bloom mainly affects EHD, SCD and HTD 

distances. Overall, only noise reduces Δabsolute repeatability in house, heath and street 

stemming from its influence on colour layout, colour distribution and edge appearance. 

6.2.5.4 Summary of configuration set results 

In the previous chapters, the effect of camera model parameters on the performance of feature 

detectors was investigated.  

The relative performance of SIFT is benefiting from enabling noise, lens distortion and 

aperture (smaller aperture). Adding blur negatively affects SIFT’s performance. When 

analysing Δabsolute repeatability of SIFT, scenes with many environmental objects benefit 

from image blurring, while in texture-based scenes the performance heavily deteriorates. On 

the other hand, noise and aperture lower the performance of SIFT in object-heavy scenes. All 

others profit from these two configurations. 

Δrelative repeatability MSER is independent to noise but reactive to HDR and lens distortion. 

Only scene concrete profits additionally aperture and blur. In case of Δabsolute repeatability, 

MSER benefits only from noise. 

Afterwards, the image content changes introduced by these parameters were measured using 

image content descriptors. These reveal that lens distortion affects edges (HTD, EHD), colour 

layout (CLD) and colour composition (SCD). Darkening the image by reducing the size of the 

aperture affects the same image components as well as colour structure (CSD) and 

dominantly present colours (DCD). HDR lowers the distances to natural images for all colour-

based content measures, while the distance of non-homogenous edges is increased. Bloom 

shortens the distances in colour structure and colour composition. Depending on the scene, it 

can also affect dominant colours. Blur drastically enlarges the edge and location based 

distances (EHD, HTD and CLD), while lowering the colour structure. This indicates that the 

colour structure of synthetic images is more spread than in natural images, most probably due 

to the influence of the detail texture. The Effect noise has on the image content is not 

sufficiently covered by the deployed descriptors, which indicates that additional descriptors 

would be beneficial. 



210 Principle experiments and results 

The influence factor analysis combines the above investigation to identify, which of the 

observed image content differences is actually causing the performance difference of a feature 

detector. In general, the colour layout (CLD) is the most influential descriptor independent to 

parameter, metric or feature detector. Noise affects the performance of SIFT and MSER, 

however it is not sufficiently measured. Possible causes are its influence on CLD, SCD and 

EHD distances. SIFT and MSER are sensitive to changes in colour layout and edges (HTD 

and EHD). Thus, blur negatively affects the performance difference to natural images for all 

feature detectors. Introducing lens distortion, noise and aperture impacted SIFT positively in 

both performance measures, due to their effects on colour layout, colour structure and edge 

appearance. The camera model parameters mainly affected MSER by their induced changes in 

colour layout and homogeneous edges. Thus depending on the scene, HDR improve the 

Δrelative repeatability of MSER. The Δabsolute repeatability of MSER can be boosted by 

noise. The benefit of tested parameters is largely depending on the tested scenes and feature 

detector no parameter in this configuration set showed universal abilities to close the 

performance gap between synthetic and natural images. 
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7 Discussion and design recommendations 

In chapter 1.2, the scientific question was decomposed into several objectives. This chapter 

mainly discusses whether this thesis was able to meet the three formulated objectives. To 

investigate them, the general concept was proposed as a framework in chapter 3.1. To prove 

the concept, it was applied to a specific use case (chapter 3.2-3.7) and implemented (chapter 

4). This applied concept introduced some constraints. Their consequences will be discussed in 

chapter 7.1 together with the experiment results from chapter 6. Consequently, design 

recommendations based on these results are presented in chapter 7.2.  

7.1 Discussion 

The scientific question (chapter 1.2), whether “testing CV-algorithms with synthetic data 

generates results transferable to real world conditions” shall be answered using the concept 

proposed in chapter 3.1. It was designed to measure the performance on both image types, 

whether equal results have been achieved (Objective 1) and to identify their cause of 

difference (Objective 2). Before discussing the experiment results, the applied concept and its 

constraints are examined. 

Applied concept 

The applied concept (chapter 3.2) is used to validate the general approach (chapter 3.1). The 

constraints of the applied concept and its ability to answer the scientific question are 

discussed below (more detail can be found in chapter 3.2-3.7 and chapter 4). 

Scenario: The concept demands synthetic and natural data depicting the same scene. Natural 

data was recorded using an available unmanned aerial aircraft, which set constraints on the 

scenario (environmental, e.g. daytime, sunny weather, acceptable wind speeds or location-

based). The scenario was further simplified by deploying a perpendicular mounted camera 

(VIS-spectrum). The scenario had no moving entities. In this regard more complex scenes and 

differing environmental conditions are to be considered in future work. 

Consequently, the acquired results are currently limited to the given constraints, but can be 

generalised for similar appearing scenes. The quality of the synthetic terrain database 
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modelling of the flight test area has been evaluated in chapter 5.1.1, which showed sufficient 

accuracy (close to the satellite imagery source). 

Test object: The selected feature detectors (e.g. SIFT, MSER) were a valid choice for first 

experiments. Further evaluations need to investigate subsequent algorithms (descriptors and 

matching algorithms) to evaluate a full feature matching chain. 

Performance measure: Similar to the test object, the well-known measures relative and 

absolute repeatability have been selected (Mikolajczyk et al., 2005). These measures demand 

the availability of ground truth, which is usually produced semi-automatically by assuming a 

homographic relationship between two measured subsequent images. This assumption limits 

the direction of the deployed camera to a top-down view to lower the influence of height. This 

is a clear limitation in the applied concept. 

Datasets had been tested for violations of the homography assumption in chapter 5.1.2. The 

result was below 1px RMS in deviation, which according to (Mikolajczyk & Schmid, 2005) 

indicates no violation. Further, their original ground truth acquisition approach required an 

initial manual step. To allow larger datasets, a full automatic approach was proposed and 

implemented. Its evaluation in chapter 5.1.2 revealed an error of <1px RMS, which is 

definitely acceptable. The effect of the automatic approach was additionally evaluated against 

a dataset of (Mikolajczyk et al., 2005) in chapter 5.1.3. Here, a reduction of accuracy 

compared to the original semi-automatic approach was identified; however, the error 

remained below the threshold. Thus, the fully-automatically computed ground truth provided 

acceptable accuracy and was further used in the concept. 

Image comparison: In chapter 3.5 ten methods have been selected to measure the difference 

between synthetic and natural data. A preliminary experiment evaluated their ability as image 

content measures (chapter 5.1.4). This experiment showed that MSE and PSNR prioritise 

spatial over content-related differences and thus have been excluded from the selection. NIQE 

and MSSIM on the other hand exhibited promising capabilities. However, these measures 

represent the full image and thus cannot fulfil the goal to identify specific image properties as 

the cause of performance differences. Therefore, these two were also excluded. The remaining 

capable measures were SCD, DCD, CLD, CSD, HTD and EHD. 

Influence factor analysis: The algorithm performance results have been related to the image 

content differences using the statistical method backward stepwise multiple linear regression 
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analysis (see chapter 3.7). In this first evaluation, the nature of relation between predictors 

and outcome were unknown, therefore all relations have been assumed linear. This can be 

criticised as it might lead to poorly fitted models. Future experiments should expand the 

model or use a different method such as fractional factorial design of experiments (Box et al., 

2005) to identify and measure interdependencies between predictors. 

In summary, the concept in general proved to be valid and applicable. However, certain 

shortcomings exist (as described above) and need to be eliminated in future work. 

Baseline experiment results 

The baseline experiment (chapter 6.1) was used to validate the general concept. The synthetic 

imagery was captured with the virtual environment in its default configuration. The derived 

results are limited to the tested or similar operating feature detectors. Similarly, the gained 

content differences refer to synthetic images acquired using VBS3 (or similar local 

illumination engines). Still, the fundamental goal to validate the concept was achieved. 

Test object performance results 

This evaluation demonstrated that the concept successfully allowed quantification of 

performance differences between synthetic and natural data (chapter 6.1.1). It even has been 

shown that transferability (equal performance on both image types) is given in some explicit 

cases. This step was able to sufficiently determine the performance difference of a CV-

algorithm between both image types, hence fulfilling the Objective 1 (chapter 1.2). 

Generally, feature detector SIFT achieved higher relative repeatability on synthetic images, 

while MSER’s is higher on natural data. Both mostly deviate within a range of ±15% between 

both data types. The much more scene dependent absolute repeatability differs more strongly 

for both feature detectors (SIFT ±43%; MSER ±115%). Note that absolute repeatability is 

normed by number of detected feature pairs in natural images and thus can exceed 100%. 

Image content difference results 

The results in 6.1.2 show the successful quantification of appearance differences between 

synthetic and natural imagery. Results showed that in most scenes general colour distribution, 

dominant colours and homogeneous textures had the largest deviances.  
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Influence factor analysis results 

Afterwards, the influence of these deviances on the performance of feature detectors has been 

computed. The results in 6.1.3 revealed the image content influencing the performance of 

tested feature detectors. In general, the performance is affected by image content differences 

in colour structure, colour layout and edge appearance (homogenous and arbitrary). The actual 

rank and amount of influence depends on the tested feature detector, the employed 

performance measure and the depicted scene. For instance differences in the edge histogram 

(EHD) highly affect the performance of SIFT, while MSER is only affected mildly.  

Thus, the presented concept allowed the determination of image attributes influencing the 

performance of tested CV-algorithms (Objective 2). Adapting the respective image content 

enables the developer or programmer to improve the transferability of results efficiently by 

adjusting the image appearance of synthetic data. 

Configuration set experiment results 

The experiments described in chapter 6.2 were conducted to reason for rendering techniques 

capable to lower the remaining performance difference. The results of each chapter in 6.2 

revealed the effect of techniques (beneficial, neutral or detrimental). These findings have been 

formulated into recommendations given in chapter 7.2.  

In chapter 3 a set of image content measures were preselected for testing (Table 3-3). After the 

actual experiment in chapter 6.2 some assumptions on the sensitivity of image descriptors 

towards image characteristics could be confirmed, others were refuted (Table 7-1). 

Table 7-1: Sensitivity of image descriptors towards image characteristics. (X = previous assumption) 

  
Image 
Descriptors 

DCD SCD CSD CLD EHD HTD Image Characteristics   
Blur (1/Clarity)     X X 
Noise    X X X X X 
Geom. Lens Distortion     X X 
Modelling Detail X  X X X  
Modelling Errors  X  X X X  
Aliasing       X X 
Aperture   X X     
Texture Quality   X  X X 
Shadow X  X X X  
 

Legend High effect Medium effect Low effect No effect 
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7.2 Design recommendations 

Even though the results in chapter 6 are limited to the VBS3 rendering engine, they allowed 

the extraction of more general design recommendations (independent to a specific synthetic 

environment). This fulfils the last objective (Objective 3) given by chapter 1.2, showing that 

the presented approach is fully capable to answer, how synthetic datasets need to be designed 

and generated for development of computer vision algorithms to achieve performance results 

transferable to real world conditions?, within the discussed limitations. 

The recommendations are sorted into fields of interest each directed towards a specific user. 

The given suggestions mainly apply to scenarios of airborne birds-eye view CV-applications 

using feature detectors, but engineers can also use them to extract requirements for their own 

virtual environment (having their use case in mind). 

General recommendations for terrain generation and synthetic engine parametrisation 

These suggestions are directed towards the modelling artist, database modeller or engine 

programmer designing the terrain database or configuring the rendering engine. 

a) Carefully design textures 

Rational: Slightly wrong coloured or scaled textures and false materials applied to  

3D-models in scenes can influence large performance changes as the results show in 

chapter 6.2.4. Therefore, prominently visible textures (e.g. roofs) should be carefully 

designed to replicate colour tone, frequency and material of the target scene. 

b) Focus on texturing over (exact) 3D-modelling 

Rational: The results in chapter 6.2.2 and 6.2.4 reveal the heavy influence of textures 

deviating in colour or frequency. The effects of 3D-mesh (chapter 6.2.4) and edge 

appearance (chapter 6.2.3) are much lower. 

c) Use multiplication based texture blending 

Rational: Image frequencies describe the steepness of gradients in the image (sharp edges 

= high image frequencies). To achieve similarity, the ground sample distance (GSD) of 

synthetic images needs to coincide with the natural images as has been shown in chapter 
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6.2.2. Since available satellite images are commonly of lower resolution as needed (here: 

0.2mpp instead of 0.03mpp) high image frequencies are missing. Thus, virtual 

environments use procedural detail textures (e.g. concrete texture) and blend those with 

the ground texture to provide the needed detail (and image frequencies). However, 

texture-blending techniques needs to conserve the contrast of the satellite image. Thus, 

blending textures by multiplication is suggested. 

d) Use antialiasing methods 

Rational: Natural images are slightly blurred making high image frequencies less 

common. In synthetic images, the rendering process produces by default high gradients 

on edges as has been measured in chapter 6.2.3. These can be decreased using 

antialiasing methods. Out of all methods tested in the configuration set “edge”, fast 

approximate antialiasing (FXAA) reduces this effect most robust and effectively. 

However, depending on the feature detector the most preferable antialiasing technique 

can vary (see list item j)). 

e) Use shadow drawing and filtering 

Rational: Activating shadow drawing in the virtual environment trims the local colour 

and edge differences and the performance differences of feature detectors between both 

image types as the results show in chapter 6.2.1. Shadow filtering (PCF) further cuts the 

performance differences, due to antialiasing of edges induced by shadow drawing. 

f) Negligible rendering techniques 

Rational: Chapter 6.2 revealed that several rendering methods did generally not affect the 

performance of feature detectors: 

• Screen Space Ambient Occlusion (SSAO) as implemented in VBS3. 

• Anisotropic filtering (AF) as implemented in VBS3. 

• Enabling the HDR effect (rise of colour depth during rendering followed by rescaling 

to screen capabilities) reduced the colour content distances, but did not affect the 

performance differences (chapter 6.2.5).  

• Adding a bloom effect (oversaturation of bright image areas) does not affect SIFT.  

g) Avoid detrimental rendering techniques 
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Rational: The experiments showed that some techniques these enlarge the performance 

difference in most cases (obviously, some exceptions exist): 

• Blurring of the synthetic image (see chapter 6.2.5). 

• Lowering the texture resolution (procedural or detailed) in synthetic images (starting 

with Equal GSD on natural and synthetic data; see chapter 6.2.2). 

• Removal of 3D-objects (see chapter 6.2.4). 

h) Adapt the terrain database to the capabilities of the sensor 

Rational: Reducing the texture quality or the aperture (darkening of the image) are steps 

depending on the current modelling state of the synthetic scene and setting of the sensor 

(chapter 6.2.2 or 6.2.5). In these cases, the developer is advised to adjust the resolution of 

textures or the brightness of the synthetic images in compliance with natural data. 

Detector-based recommendations 

These recommendations shall help algorithm developers in selecting the most suitable feature 

detector whenever synthetic datasets shall be used. This chapter also provides hints towards 

optimizing the rendering engine, which depend on the deployed CV-algorithm. 

i) Preferably use SIFT (over MSER) when possible 

Rational: The results in chapter 6.1 show that SIFT is in general the better performing 

feature detector for both measured metrics and on both image data types. In general, 

MSER usually performs low on synthetic data and is very scene dependent. Influencing 

the colour structure or colour layout might improves these facts. Thus, MSER is biased 

towards natural data, while SIFT slightly overperforms on synthetic data. Consequently, 

general performance and lower performance difference of SIFT make it the 

recommended feature detector (of the two tested) for airborne CV-applications and 

deployment on synthetic data. 

j) Use feature detector dependent rendering techniques 

Rational: As can be seen in chapter 6.2 the two tested feature detectors can react very 

differently on different rendering techniques. 
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When SIFT is given as detector the application of antialiasing (FXAA or SMAA), lens 

distortion, slight noise, slight blur, smaller aperture, changing the texture blending and 

adding filtered shadows lowers the difference to natural images in the given experiments. 

These indicate that SIFT benefits from deploying a camera model. 

When MSER is given as detector the application of antialiasing (MSAA or AToC) and 

filtered shadows are beneficial to lower its performance difference. Further, the influence 

of the detail texture should be cut down by changing the texture blending method. 

k) Removal of 3D-objects does not (majorly) influence the relative repeatability of SIFT 

Rational: In specific circumstances (see chapter 6.2.4) the performance of SIFT is almost 

robust (~3% deviance) to the removal of all 3D-objects in the scene. If this reduction of 

comparability to natural data is acceptable, the effort to model the environment decreases 

massively. This result is limited to similar airborne scenarios using relative repeatability 

as performance metric and SIFT as feature detector. All other tested combinations are 

negatively affected by the removal of 3D-objects. 

l) Use high contrast textures 

Rational: The synthetic images in this evaluation were low in contrast due to the texture 

blending method employed in the synthetic environment. Generally, all feature detectors 

are depending on strong gradients inside an image. Therefore, low contrast images 

naturally lead to lower performances. This affects MSER more heavily than SIFT as can 

be seen in scene sport (chapter 6.1.1 and 6.2.2). On the other hand, natural and synthetic 

images of cluttered scenes such as heath or junkyard MSER performs more equally on 

compared to SIFT (albeit lower). 

Scenario-based recommendations 

All scenes in this work are limited to the use case of birds-eye view aerial photography. In this 

work, the following scene types have been considered: 

• Urban: 3D-objects and edge heavy scenes (concrete and hangar) 

• Infrastructure: Mainly background with one dominating entity such as street or sport 

• Forest: Dense placement of trees or vegetation 
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• Rural: Mainly background with occasionally placed trees, houses and other man-made 

objects (house, heath and junkyard) 

Whenever high performance of feature detectors is important (and the performance deviance 

is of lower importance), SIFT is the better choice for any type of scene. 

m) For urban scenes use SIFT 

Rational: In urban scenes SIFT has already low performance differences between both 

image types. Here, additionally to the above mentioned parameters SSAA and HDR 

should be enabled. 

n) For infrastructure scenes use MSER 

Rational: When scenes mainly comprise infrastructure then MSER achieves smaller 

performance differences, closely followed by SIFT. When using MSER shadow drawing 

should be enabled. On the other hand, SIFT benefits from activating anisotropic filtering 

and lowering the satellite image resolution. In general, the overall poor performance of 

scene sport indicates modelling problems (low contrast and resolution of running track). 

o) In forest-like scenes it depends 

Rational: The investigation showed that on scenes of type forest the smallest Δrelative 

repeatability is achieved by SIFT. Activating shadows and shadow filtering closes the 

relative performance difference for both feature detectors. Using Δabsolute repeatability 

MSER is the closest performing detector. The similarity of the datasets can be raised for 

SIFT by activating SSAA, HDR, Objects high, and texture low. MSER benefits from 

activating texture low and noise. Due to the high density of natural objects the actual 

ground texture is not visible, thus setting texture quality to low affects only tree textures. 

Reducing these makes them more similar to their natural counterparts.  

p) For rural scenes it does not matter 

Rational: In rural scenes, the performance differences between the image types are equal 

for both feature detectors. When deploying SIFT, the similarity between datatypes is 

increased by downscaling the texture quality. When MSER is used anisotropic filtering 

and SSAA can help to lower existing performance differences. 
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8 Summary 

Prototyping of airborne CV-algorithms poses problems due to limited availability of test data. 

Using synthetic environments to generate the necessary data may mitigate this issue. 

However, the question arises how results derived on such datasets can be transferred to the 

natural environment.  

The current state-of-the-art of using computer generated imagery with computer vision and 

related transferability considerations have been presented. In this regard, a procedural concept 

has been developed which allows comparing rendered images and photographs based on 

algorithm performance and image content. It further identifies the sensitivity of the algorithm 

towards specific image content. The concept characterizes the CV-algorithm of interest and 

identifies deficiencies and abundances existing in synthetic images compared to their natural 

equal. Its applicability has been investigated in an airborne remote sensing example testing 

three different feature detectors. This investigation validated the capabilities of the concept 

and allowed the derivation of design recommendations. 

SIFT, SURF and MSER have been selected as example test algorithm as they are well 

understood, used in many applications and regularly constitute the first step in a  

CV-processing-chain interfacing signal and feature domain. The necessary natural image 

content was then sampled during test flights. After modelling the equivalent geographical 

setting in a synthetic environment, the flight was replicated and the corresponding synthetic 

image data were acquired. After that, the performance differences between synthetic and 

natural images have been measured using the well-known performance measures for feature 

detectors relative and absolute repeatability. The image content distances between rendered 

images and photographs were evaluated afterwards using MPEG7 image descriptors. Since 

image content distances may lead to performance differences, both have been used to fit 

regression models. The resulting standardized coefficients then provided information about 

the influence of specific image content on the performance of the tested algorithm. The results 

derived from the test datasets show in general that the synthetic images yield a performance 

within a range of 15% equal to natural scenes when evaluating the relative performance of 

feature detectors. The absolute number of features detected thereby differs up to 115%.  

After having identified the basic differences, the rendering pipeline and the content of the 

synthetic environment has been varied to isolate the impact of specific rendering methods. 
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The results show that synthetic data can profit greatly from adding filtered shadows and 

specific antialiasing methods. The application of techniques such as SSAO, AF, HDR or 

bloom did not affect the results and thus can be neglected. Further textures applied to the 

virtual scene contribute clearly the performance as a result it is deemed necessary to render at 

the same ground sample distance. In addition brightness, contrast, colour tone, frequency and 

material of prominent textures need to be modelled closely to their natural equivalent. To 

obtain the necessary ground sample distance at low altitude high-resolution satellite textures 

(0.2mpp) had to be blended with (procedural) detail textures. The blending of such textures 

should be conducted by multiplication, thereby preserving the contrast of the satellite texture. 

Respective findings providing hints for database modellers or rendering engine programmers 

have been formulated and derived. For instance, it has been derived that changes in textures 

present in the synthetic environment influence the performance of the algorithms much higher 

than changes in the 3D-mesh of entities and thus these textures need to be carefully designed. 

Further, the use of antialiasing (smoothing of edges) is encouraged as it allows edges to 

appear more natural. However, the specific method to be deployed depends on the used test 

algorithm.
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9 Prospects 

This thesis provides a novel concept to measure the differences between natural and synthetic 

images and their impact on the performance of tested CV-algorithms objectively. A long-term 

goal is identifying specifications for synthetic environments based on underlying principles 

defining image qualities that produce functional realism for computer vision methods at low 

implementation and modelling effort. In this respect, several extensions to the demonstrated 

paradigm can be proposed. 

As has been explained, the current ground truth method cannot be used for perspective scene 

due to the homography-constraint. Creating performance measures and ground truth based on 

multi-view geometry may allow evaluations of perspective scenarios to enhance the range of 

the concept. 

This work focused on evaluating the performance differences of feature d on natural and 

synthetic images. However, the concept also allows the analysis of more complex algorithms 

such as object detectors, trackers or image registration whether they are provided as closed- or 

open-source. However, it is important to apply performance criteria appropriate for the tested 

algorithm. 

The current image content evaluation should be extended by additional very specific image 

quality measures for noise, contrast or brightness to enhance the characterization of content 

and CV-algorithms.  

The influence factor analysis applied relies on linear regression models to relate content 

differences to CV-algorithm performance. Using non-linear regression models may 

characterizes such better. Also currently, inter-dependencies between parameters (e.g. texture 

resolution and antialiasing) are not considered. Now after having identified basic relations, 

switching to a fractional factorial design of experiments approach could help to unravel inter-

dependencies. 
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Appendix 

A First questionnaire on computer graphic engines 

In order to identify the rendering techniques used in VBS3 a questionnaire was sent to 

Bohemia Simulations. The lead programmer has filled the following questionnaire: 
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B Telemetry-based homography estimation 

Here, the computational method to acquire the homographic relation between two aerial 

images is detailed. World coordinates 𝑝𝑝𝑤𝑤0 = (𝑋𝑋,𝑌𝑌,𝑍𝑍, 1) can be derived from screen 

coordinates 𝑝𝑝0 = (𝑥𝑥𝑝𝑝,𝑦𝑦𝑃𝑃, 1, 1) using the intrinsic camera matrix 𝐾𝐾 and the 3D Euclidean 

rigid-body transformation 𝐸𝐸 (Szeliski, 2011): 

𝑝𝑝𝑤𝑤0 = 𝐸𝐸0−1𝐾𝐾0−1𝑝𝑝0 (40) 

The intrinsic camera matrix K describes the conversion from metric sensor coordinates to the 

raster image coordinates and considers the focal length in horizontal and vertical directions 𝑓𝑓𝑥𝑥 

and 𝑓𝑓𝑦𝑦 as well as the optical centre 𝐶𝐶 = (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐). The Euclidian transformation matrix 𝐸𝐸 

consists of the Euclidian rotation matrix 𝑅𝑅 and translation vector t, describing the location of 

the aircraft in UTM coordinates and altitude above ground level. Choosing the Universal 

Transverse Mercator (UTM) coordinate system allows description of world positions in a 

Cartesian metric coordinate system. 

𝐾𝐾 = �

𝑓𝑓𝑥𝑥 0 𝑥𝑥𝑐𝑐 0
0 𝑓𝑓𝑦𝑦 𝑥𝑥𝑦𝑦 0
0 0 1 0
0 0 0 1

� 𝐸𝐸 = � 𝑅𝑅 𝑡𝑡
0𝑇𝑇 1� 𝑡𝑡 = �

𝑈𝑈𝑈𝑈𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑈𝑈𝑈𝑈𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴

� (41) 

The rotation matrix 𝑅𝑅 ≙ 𝑅𝑅𝐸𝐸𝐸𝐸  describes the rotation from the camera coordinate system to the 

earth coordinate system. It consists of four separate rotation matrices: 

𝑅𝑅 ≙ 𝑅𝑅𝐸𝐸𝐸𝐸 = 𝑅𝑅𝐶𝐶𝑆𝑆𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅𝐶𝐶𝑆𝑆𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴  (42) 

The rotation matrix 𝑅𝑅𝐴𝐴𝐴𝐴 describes the rotation of camera coordinate system to the aircraft 

coordinate system defined as depicted in Figure B-1 models a camera that can be rotated 

around x-axis (elevation, in short 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) and y-axis (Azimuth in short 𝑎𝑎𝑎𝑎𝑎𝑎). Both angles are 

defined relative to the aircraft body. The notation has been shortened for the following 

equation, s stands for sine and c for cosine: 

𝑅𝑅𝐴𝐴𝐴𝐴 = �
𝑐𝑐(𝑎𝑎𝑎𝑎𝑎𝑎) 𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎) 0
−𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎) 𝑐𝑐(𝑎𝑎𝑎𝑎𝑎𝑎) 0

0 0 1
� �

1 0 0
0 𝑐𝑐(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) −𝑠𝑠(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
0 𝑠𝑠(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 𝑐𝑐(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

� (43) 

Rotation matrix 𝑅𝑅𝐸𝐸𝐸𝐸 describes the rotation of aircraft coordinate system to the earth 

coordinate system as depicted in Figure B-1. The coordinate system has been modelled as 

specified by DIN 9300 (Institut für Normung, 1990). The following equation describes the 

three rotations in Euler angles (roll Φ around x-axis; pitch Θ around y-axis; yaw Ψ around z-

axis): 
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𝑅𝑅𝐸𝐸𝐸𝐸 = �
c(Ψ) −𝑠𝑠(Ψ) 0
𝑠𝑠(Ψ) 𝑐𝑐(Ψ) 0

0 0 1
� �

c(Θ) 0 𝑠𝑠(Θ)
0 1 0

−𝑠𝑠(Θ) 0 c(Θ)
� �

1 0 0
0 𝑐𝑐(Φ) −𝑠𝑠(Φ)
0 𝑠𝑠(Φ) 𝑐𝑐(Φ)

� (44) 

 
Figure B-1: Rotation matrices and their variables to rotate points defined in one coordinate system into 

the other. 

Since the initial definitions (when all variables are zero) of used rotation matrices differs as 

depicted in Figure B-2, two auxiliary rotation matrices 𝑅𝑅𝐶𝐶𝑆𝑆𝐸𝐸𝐸𝐸  and 𝑅𝑅𝐶𝐶𝑆𝑆𝐴𝐴𝐴𝐴 (CS stands for 

coordinate system) are introduced to apply the necessary conversion to 𝑅𝑅: 

𝑅𝑅𝐶𝐶𝑆𝑆𝐸𝐸𝐸𝐸 = �
0 1 0
1 0 0
0 0 −1

� 𝑅𝑅𝐶𝐶𝑆𝑆𝐴𝐴𝐴𝐴 = �
0 0 1
1 0 0
0 1 0

� (45) 

 
Figure B-2: Initial starting positions of all coordinate systems and their correlation to geographical north 

and east.  

THE now uses telemetry information only to acquire the correlation between the two images. 

The homographic correlation of two images can be computed using following equation 

(Szeliski, 2011): 

𝑝𝑝1 = 𝐾𝐾1𝐸𝐸1𝐸𝐸0−1𝐾𝐾0−1𝑝𝑝0 = 𝑀𝑀10𝑝𝑝0 (46) 

The matrices are given in homogenous coordinates as 4x4 matrices, where the last row saves 

the depth information. Without the last column and row 𝑀𝑀10 equals the homography matrix 

𝐻𝐻10.Thus, homography can be computed using the previously defined mathematic 

transformations 𝐾𝐾 and 𝐸𝐸, since the necessary information about pose and position of the 

aircraft and camera are known. 
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C Regression models 

C.1 Regression models with categorical predictor 

For the configuration set experiments the categorical predictor Config was introduced. It was 

not discussed in the baseline experiments due to its irrelevance in that specific experiment. 

The regression model had been fitted using six image content distance measures and Config 

as predictors and the performance metric as outcome variable. The predictor Config contains 

the rendering engine parameters labels (see Table 6-1 for the baseline setting and IDs) that 

cannot be ranked, e.g. gender or religion. See (Field, 2009) for theoretical background on 

categorical variables in multiple regression. 

In our application, Config represents all rendering parameter sets (21 in total with baseline 

being the default). Thus, in case of baseline predictor Config can be removed from the 

equation (as done in chapter 6.2). This approach reveals the influence of parameters and 

whether it is of significant magnitude. Additionally, it increased the number of samples by the 

number of parameters (sample size 35 times 21 groups = 735), since the data of all parameters 

is used to fit the model.  

As regression can only handle interval or nominal variables, the categorical variable is split 

into several ‘dummy’ nominal variables (0/1 being their only states). Thus, for instance 

Config_20 represents the differences in the model when shadow filtering is enabled. If all 

dummy variables are zero the overall model defaults to the baseline model equation. 

For illustration, a reduced model for forest, Δrelative repeatability, SIFT is given in Table 0-1 

with parameter 20 (shadow filtering) being set. In the coefficients column first the image 

content distances used as predictors and their intercept are presented (cf. chapter 6.1.3). The 

specific parameter is represented by the name of the predictor (Config) and the index number 

of the parameter, which is consequently the name of the dummy variable. Thus, Config_20 

presents the change of the intercept when shadow filtering is enabled. The following so called 

interaction terms (e.g. CLD:Config_20) represent the introduced change of effect on colour 

layout when shadow filtering (Config_20) is enabled and is expressed as 𝑏𝑏 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 ∗

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_20 in the linear equation. The asterisks in the table present the significance. Thus a 

regression model can consist at max of 147 terms of sum (6 image descriptors + intercepts 

times 21 configurations = 147). 
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Table 0-1: Example regression model with Config variable to investigate the differences between 

parameters (using the Wilkinson Notation (Wilkinson & Rogers, 1973)). 

Model Model Fit   Coefficients b-Value SE β 
Δrel. Repeatability R² 68% Intercept 0.658 Ns 0.602 0.00 

SIFT Adj-R² 64% CSD -1.668* 0.843 -0.52 
forest F-Ratio 16*** EHD -0.648 Ns 0.493 -0.23 

 
  

 
CLD -1.611*** 0.413 -0.19 

 
  

 
SCD -0.237 Ns 1.519 -0.05 

   
Config_20 -0.844 Ns 0.776 0.00 

   
EHD:Config_20 0.293 Ns 1.351 0.11 

   
CSD:Config_20 2.090 Ns 0.288 0.65 

   
SCD:Config_20 1.233 Ns 1.912 0.29 

Ns = not significant (p > .05). *p < .05. ** p < .01. *** p < .001 

The model equation for baseline (already shown for this example in chapter 6.1.3) can be 

derived by ignoring all terms containing the Config predictor (for the sake of the example 

non-significant coefficients are included): 

Δ𝑟𝑟𝑟𝑟𝑟𝑟.  𝑅𝑅𝑅𝑅𝑅𝑅. = 0.66 − 1.67𝐶𝐶𝐶𝐶𝐶𝐶 − 0.65𝐸𝐸𝐸𝐸𝐸𝐸 − 1.61𝐶𝐶𝐶𝐶𝐶𝐶 − 0.24𝑆𝑆𝑆𝑆𝑆𝑆 (47) 

As mentioned before, whenever the feature detector performs better on synthetic data 

Δrelative repeatability becomes positive. Zero indicates an equal detection rate, which would 

be the optimal result. The equation of shadow filtering can be extracted by considering all 

coefficients containing “Config_20” and adding them to the baseline measures. The value of 

Config_20 is added to the intercept: 

Δ𝑟𝑟𝑟𝑟𝑟𝑟.  𝑅𝑅𝑅𝑅𝑅𝑅. = (0.66 − 0.84) + (−1.67 + 2.09)𝐶𝐶𝐶𝐶𝐶𝐶 + (−0.65 + 0.29)𝐸𝐸𝐸𝐸𝐸𝐸
− 1.61𝐶𝐶𝐶𝐶𝐶𝐶 + (−0.24 + 1.23)𝑆𝑆𝑆𝑆𝑆𝑆 (48) 

Neither Config_20 nor any interaction term shows significant difference (due to the high 

standard error). The equation now explains the performance difference between synthetic 

images with shadow filtering and natural images. The complete model covers 68% variance 

of the outcome variable as presented by R². This example shows that shadow filtering lessens 

the impact of colour structure (CSD) and edge appearance (EHD) on the outcome Δrelative 

repeatability, while the influence of the colour distribution is enlarged (SCD). Interestingly, 

the coefficients of CSD and SCD changed the sign; this means a lowered distance compared 

to baseline would now raise the performance on synthetic data. Since the actual change in 

distance is known from the previous step (chapter 6.2.1.2), the terms 𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are 

presented to simplify the discussion (chapter 6.2.1.3). 



Appendix C.2 General model fitting quality R² 249 

C.2 General model fitting quality R² 

In Figure C-3, an overview over the degree of fitting for each model is given accompanied by 

its significance value p. All models are significant as depicted by the asterisks. R² describes 

the amount of outcome variance explained by the model. Low values indicate that the selected 

predictors do not cover all factors affecting the feature detector performance. The colour 

scheme was selected purposely, since low fits do not necessary express bad results. Generally, 

Δabsolute repeatability models for fit better than their relative comparisons. The fitting proves 

to be scene dependent, e.g. forest or sport.  

 

Figure C-3: R² for all models together with their significance encoded by asterisk. 
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C.3 Regression model coefficients 

SIFT Δrelative Repeatability 

 
Figure C-4: Δrelative repeatability regression model for SIFT on scene concrete. 

 

Figure C-5: Δrelative repeatability regression model for SIFT on scene forest. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.241 0.308 -0.009 1.129 -0.332 1.272 0.009 0.223 -0.240 0.649 -0.219 0.612
noise -0.181 0.442 0.760 1.579 -0.127 1.810 0.038 0.311 0.334 0.954 -0.337 0.828
distortion -0.085 0.435 0.153 1.652 0.015 1.977 -0.089 0.277 0.178 1.006 0.017 0.787
aperture -0.099 0.364 2.693 2.566 -0.031 1.337 -0.106 0.262 -0.084 0.781 -0.867 0.868
HDR -0.092 0.350 1.188 2.056 0.291 1.500 -0.112 0.277 0.200 0.823 -1.269 0.924
bloom -0.328 0.371 1.834 1.699 0.112 1.600 0.328 0.339 -0.039 0.912 0.879 0.919
blur -0.267 0.431 2.115 1.862 0.898 1.811 0.015 0.298 -0.638 0.910 0.291 0.736
SSAA 0.011 0.435 -0.653 1.547 0.226 1.836 -0.006 0.317 -0.005 0.927 -0.027 0.882
MSAA -0.026 0.435 -0.034 1.575 0.001 1.900 -0.021 0.318 0.135 0.957 0.073 0.841
FXAA -2.490 0.438 3.453 1.624 6.789 1.817 0.613 0.283 1.533 0.886 -0.973 0.953
SMAA -0.052 0.446 0.126 1.557 -0.216 1.868 0.015 0.316 0.316 0.941 0.118 0.863
AToC -0.138 0.424 0.783 1.564 0.088 1.767 0.054 0.318 0.084 0.943 0.252 0.873
objects high -0.026 0.435 -0.241 1.584 -0.018 1.829 0.031 0.308 0.146 0.950 0.077 0.835
no objects 0.081 0.377 3.573 1.952 1.138 1.335 -0.675 0.299 -1.501 0.756 0.128 0.836
modelling errors -0.205 0.433 1.011 1.616 0.251 1.847 0.087 0.311 0.071 0.984 0.151 0.846
texture low -0.968 0.460 6.816 1.794 1.001 1.769 -0.159 0.276 -1.230 0.877 3.044 0.830
surface low -0.925 0.396 8.004 1.675 -1.329 1.624 0.787 0.309 -0.015 0.798 3.027 1.366
AF -0.041 0.432 3.072 1.569 -4.983 1.825 1.144 0.322 2.347 0.946 2.233 0.828
shadow -0.177 0.422 2.014 1.626 -0.114 1.826 -0.041 0.288 0.247 0.898 -0.402 0.760
shadow filter 0.029 0.440 -0.833 1.577 -0.079 1.808 -0.047 0.280 0.207 0.870 0.062 0.757
SSAO -0.046 0.426 -0.051 1.585 0.043 1.772 0.017 0.313 0.138 0.922 0.018 0.849
Legend: p < .05 p < .01 p < .001Not-significant

 Δrelative repeatability, SIFT, concrete
Linear regression model: RelRepeatability ~ 1 + CLD*Config + SCD*Config + DCD*Config + HTD*Config + EHD*Config

EHDIntercept CSD CLD SCD DCD HTD

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.658 0.602 -1.668 0.843 -1.611 0.413 -0.237 1.519 -0.648 0.493
noise -1.007 0.861 1.469 1.150 2.079 2.212 -0.102 0.683
distortion 0.455 0.943 -1.103 1.183 -0.787 2.462 0.190 0.688
aperture -0.092 0.781 -1.233 1.333 0.635 2.133 -0.487 0.924
HDR -0.279 0.751 -0.087 0.995 0.996 2.111 -0.066 0.679
bloom 1.148 0.907 -0.128 1.167 -3.931 2.326 0.151 0.682
blur -3.175 0.812 0.055 1.233 7.622 2.340 3.407 1.028
SSAA -0.215 0.802 -0.598 1.095 1.069 2.174 -0.143 0.737
MSAA -0.467 0.845 0.094 1.127 1.369 2.189 0.420 0.692
FXAA -0.791 0.857 0.148 1.166 2.232 2.179 0.757 0.696
SMAA -0.383 0.818 0.333 1.120 0.971 2.098 -0.009 0.694
AToC -0.130 0.863 -0.011 1.149 0.473 2.201 -0.096 0.679
objects high -0.131 0.873 0.260 1.140 0.264 2.241 -0.198 0.674
no objects -0.628 0.633 8.743 1.408 -1.291 1.617 -1.778 0.642
modelling errors 0.334 0.828 -0.910 1.135 -0.494 2.104 0.517 0.697
texture low -0.135 0.931 0.268 1.280 0.193 2.295 0.507 0.717
surface low -1.428 0.895 0.848 1.140 3.810 2.375 0.622 0.701
AF -0.245 0.874 -0.421 1.159 1.034 2.230 0.361 0.684
shadow -0.449 0.790 1.425 1.360 0.281 1.967 0.059 0.706
shadow filter -0.844 0.776 2.090 1.351 1.233 1.912 0.293 0.697
SSAO -0.609 0.842 0.614 1.199 1.480 2.113 0.365 0.688
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

 Δrelative repeatability, SIFT, forest
Linear regression model: RelRepeatability ~ 1 + CLD + CSD*Config + SCD*Config + EHD*Config
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Figure C-6: Δrelative repeatability regression model for SIFT on scene hangar. 

 

Figure C-7: Δrelative repeatability regression model for SIFT on scene heath. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -0.079 0.063 -0.786 0.291 0.725 0.069 -0.140 0.030 0.300 0.419
noise -0.028 0.072 -0.313 0.621
distortion -0.008 0.064 -0.064 0.533
aperture 0.005 0.059 -0.019 0.477
HDR 0.023 0.068 -0.152 0.583
bloom -0.175 0.069 1.403 0.593
blur 0.110 0.064 -0.825 0.459
SSAA 0.021 0.065 0.012 0.559
MSAA 0.037 0.069 -0.255 0.585
FXAA 0.004 0.059 -0.137 0.508
SMAA 0.173 0.066 -1.792 0.566
AToC 0.026 0.069 -0.166 0.591
objects high 0.021 0.068 -0.133 0.577
no objects 0.017 0.055 0.081 0.439
modelling errors 0.055 0.069 -0.256 0.592
texture low 0.042 0.054 -0.219 0.444
surface low -0.040 0.060 -0.080 0.482
AF 0.030 0.073 -0.258 0.621
shadow 0.038 0.067 -0.288 0.555
shadow filter 0.047 0.069 -0.348 0.577
SSAO 0.013 0.067 -0.069 0.571
Legend: p < .05 p < .01 p < .001Not-significant

 Δrelative repeatability, SIFT, hangar
Linear regression model: RelRepeatability ~ 1 + CLD + SCD + DCD + EHD*Config

EHDIntercept CSD CLD SCD DCD HTD

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.212 0.152 0.432 1.126 -0.200 0.522 -0.410 0.738 -0.053 0.128 -0.101 0.048
noise -0.107 0.197 -0.002 1.383 -0.045 0.654 0.054 0.919 0.051 0.144
distortion -0.044 0.208 -0.234 1.468 0.057 0.705 0.140 0.981 0.021 0.166
aperture -0.104 0.177 -0.861 1.456 0.561 1.269 0.447 0.840 0.102 0.187
HDR -0.011 0.198 -0.551 1.407 0.092 0.881 0.207 0.863 0.032 0.209
bloom -0.006 0.190 -0.616 1.385 0.083 0.639 0.286 0.902 0.054 0.142
blur -0.040 0.214 0.312 1.919 -0.122 0.932 0.056 1.160 0.074 0.161
SSAA -0.022 0.203 -0.813 1.357 0.113 0.651 0.441 0.919 0.037 0.201
MSAA -0.025 0.193 -0.933 1.386 0.108 0.648 0.489 0.904 0.081 0.144
FXAA 0.086 0.210 0.108 1.518 -0.182 0.711 -0.314 1.014 -0.009 0.164
SMAA 0.003 0.220 -0.380 1.437 -0.030 0.705 0.159 1.005 0.025 0.176
AToC -0.056 0.194 -0.614 1.387 0.163 0.648 0.413 0.911 0.061 0.143
objects high -0.031 0.191 -0.993 1.377 0.163 0.639 0.527 0.893 0.074 0.143
no objects 0.188 0.172 -0.854 1.493 1.497 1.153 -0.923 0.831 -0.025 0.164
modelling errors 0.027 0.219 -0.092 1.595 0.008 0.710 -0.068 1.087 0.020 0.180
texture low -0.385 0.190 0.332 1.384 0.275 0.708 0.716 0.841 0.116 0.142
surface low 0.114 0.198 1.270 1.819 -2.449 1.599 -0.844 0.972 -0.140 0.145
AF -0.019 0.195 -0.726 1.407 0.104 0.645 0.354 0.930 0.062 0.144
shadow 0.028 0.181 -5.707 1.536 2.753 0.690 1.729 0.869 0.521 0.186
shadow filter -0.033 0.178 -0.686 1.445 0.157 0.627 0.374 0.827 0.065 0.144
SSAO 0.382 0.211 4.582 1.449 -2.959 0.708 -2.524 0.977 -0.641 0.178
Legend: p < .05 p < .01 p < .001Not-significant

 Δrelative repeatability, SIFT, heath
Linear regression model: RelRepeatability ~ 1 + EHD + CSD*Config + CLD*Config + SCD*Config + DCD*Config

EHDIntercept CSD CLD SCD DCD HTD
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Figure C-8: Δrelative repeatability regression model for SIFT on scene house. 

 

Figure C-9: Δrelative repeatability regression model for SIFT on scene junkyard. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.066 0.409 -0.876 0.670 0.390 0.475 -0.095 0.139 -0.002 0.562 0.520 0.653
noise -0.068 0.598 0.239 0.901 -0.095 0.734 -0.013 0.195 -0.099 0.784 0.131 1.135
distortion -0.106 0.534 0.494 0.879 -0.197 0.656 0.153 0.216 0.015 0.780 -0.034 0.884
aperture 0.124 0.434 0.688 0.754 -0.775 0.794 0.054 0.267 -0.345 0.682 -0.159 0.783
HDR 0.193 0.503 -0.022 0.828 -0.490 0.944 -0.182 0.286 -0.232 0.796 0.022 0.970
bloom 0.125 0.469 0.280 0.775 -0.516 0.881 -0.112 0.225 -0.150 0.716 -0.086 0.831
blur -0.012 0.505 0.729 0.936 -0.062 0.626 0.062 0.183 -0.062 0.717 -0.634 0.709
SSAA -0.238 0.554 0.331 0.878 0.250 0.689 -0.026 0.195 0.267 0.787 0.202 0.890
MSAA 1.216 0.577 -1.844 0.907 0.016 0.689 0.885 0.193 -3.382 0.794 -1.352 0.958
FXAA 0.915 0.557 -1.831 0.946 -0.031 0.683 0.183 0.198 -1.767 0.755 -1.182 0.814
SMAA -0.086 0.539 0.143 0.881 -0.045 0.651 -0.006 0.192 0.169 0.794 0.232 0.907
AToC -0.029 0.601 -0.005 0.934 0.130 0.713 0.015 0.199 -0.049 0.811 -0.009 1.012
objects high -0.033 0.575 -0.012 0.904 0.080 0.690 -0.007 0.201 0.005 0.810 0.055 0.943
no objects -0.436 0.468 1.593 1.071 0.822 1.303 -0.048 0.200 0.666 0.840 -0.854 0.757
modelling errors -0.301 0.529 0.769 0.827 -0.009 0.671 -0.064 0.227 0.362 0.761 0.706 1.150
texture low 0.978 0.559 -0.287 0.834 -0.871 0.623 -0.566 0.198 -1.366 0.914 -1.746 0.733
surface low -2.014 0.534 3.476 0.820 2.738 0.644 -0.665 0.278 1.067 0.824 1.945 0.917
AF 0.013 0.569 0.054 0.891 -0.030 0.680 0.019 0.194 -0.131 0.767 0.134 1.198
shadow 0.039 0.567 0.170 0.986 -0.074 0.693 0.068 0.231 -0.134 0.719 -0.330 0.847
shadow filter -0.041 0.548 0.309 0.932 -0.002 0.669 0.074 0.218 -0.068 0.720 -0.225 0.883
SSAO 0.174 0.554 -0.103 0.928 -0.186 0.665 0.016 0.198 -0.293 0.792 -0.131 0.950
Legend: p < .05 p < .01 p < .001Not-significant

 Δrelative repeatability, SIFT, house
Linear regression model: RelRepeatability ~ 1 + CSD*Config + SCD*Config + DCD*Config + HTD*Config + EHD*Config

EHDIntercept CSD CLD SCD DCD HTD

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.602 0.200 -3.681 1.759 -0.183 0.283 -0.845 0.116 0.543 0.698
noise -0.322 0.294 2.699 2.451 0.133 0.434 -0.535 0.973
distortion -0.032 0.426 0.014 2.642 -0.195 0.497 0.186 1.234
aperture -0.215 0.248 2.405 2.145 0.274 0.416 -0.596 0.879
HDR -0.354 0.254 3.100 2.194 1.137 0.511 -1.120 0.908
bloom 0.017 0.301 0.161 2.643 -0.017 0.430 -0.175 0.947
blur -0.607 0.473 6.496 3.855 0.712 0.635 -1.031 0.815
SSAA -0.181 0.279 2.200 2.434 0.037 0.483 -0.325 0.947
MSAA -0.313 0.289 8.285 2.458 -1.693 0.404 -3.244 0.954
FXAA -0.243 0.308 2.554 2.525 0.031 0.452 -0.199 0.965
SMAA -0.127 0.289 1.801 2.420 0.022 0.402 -0.411 0.984
AToC -0.183 0.289 3.095 2.448 0.104 0.409 -1.206 0.948
objects high 0.934 0.298 -6.930 2.594 -1.501 0.415 -0.276 0.965
no objects -0.571 0.278 6.554 2.763 0.061 0.315 -0.177 0.769
modelling errors -0.287 0.299 2.993 2.513 0.183 0.433 -0.322 0.937
texture low -0.632 0.445 6.125 3.590 0.848 0.747 -0.593 0.872
surface low -0.229 0.252 3.998 2.537 0.441 0.587 -2.252 0.944
AF 0.013 0.281 0.210 2.473 -0.122 0.412 -0.184 0.975
shadow 0.263 0.325 -3.234 3.096 -1.048 0.511 1.050 0.969
shadow filter -0.543 0.333 6.381 3.243 0.663 0.456 -1.692 0.983
SSAO -1.383 0.283 10.344 2.358 1.986 0.412 -1.683 0.979
Legend: p < .05 p < .01 p < .001Not-significant

 Δrelative repeatability, SIFT, junkyard
Linear regression model: RelRepeatability ~ 1 + HTD + CLD*Config + DCD*Config + EHD*Config

EHDIntercept CSD CLD SCD DCD HTD



Appendix C.3 Regression model coefficients 253 

 

Figure C-10: Δrelative repeatability regression model for SIFT on scene sport. 

 

Figure C-11: Δrelative repeatability regression model for SIFT on scene street. 

 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -0.119 0.409 1.450 0.772 0.054 1.305 -0.075 1.117 0.032 0.119 0.417 1.503 0.249 1.378
noise -0.953 0.563 9.072 1.851 -0.521 1.701 0.750 0.207 -0.532 2.080 -3.489 2.229
distortion -1.301 0.658 3.943 1.883 -0.829 1.500 0.338 0.166 1.072 2.098 4.083 2.263
aperture -0.252 0.429 -1.334 1.924 -5.961 1.732 -0.173 0.151 6.681 1.922 -8.829 2.618
HDR 0.060 0.560 0.015 2.022 -0.179 1.622 0.014 0.192 0.045 2.216 -0.304 2.022
bloom 0.081 0.509 -0.078 1.820 -0.053 1.458 0.043 0.169 -0.161 1.997 -0.502 1.895
blur 1.020 0.507 -2.623 2.049 -4.852 1.861 0.245 0.175 4.268 1.903 -5.939 2.799
SSAA 1.802 0.566 -12.810 1.756 -2.166 1.555 -0.415 0.168 -2.351 2.047 6.621 2.146
MSAA 0.024 0.564 0.235 1.811 -0.732 1.600 0.049 0.173 0.488 2.046 0.685 1.923
FXAA 2.637 0.518 -10.359 1.849 -3.496 1.639 -0.426 0.174 -4.105 2.112 3.538 2.573
SMAA 2.505 0.556 -10.566 1.914 -3.026 1.597 -0.643 0.170 -4.003 2.263 4.185 1.952
AToC 0.114 0.556 0.123 1.868 -0.091 1.720 0.008 0.189 -0.384 2.063 -0.210 2.020
objects high 0.062 0.564 0.063 1.819 -0.219 1.603 0.009 0.190 0.051 2.001 -0.170 2.034
no objects 0.498 0.461 -1.637 1.976 0.990 1.551 0.123 0.247 -1.992 2.183 -3.686 2.684
modelling errors 0.010 0.562 -0.272 1.852 0.004 1.610 -0.006 0.172 -0.019 2.145 0.248 2.039
texture low 0.562 0.534 1.857 2.426 0.395 2.079 0.211 0.203 0.120 1.757 -7.891 3.645
surface low 0.156 0.476 -0.105 2.034 -0.046 1.389 0.062 0.224 -0.729 1.690 -0.112 2.844
AF 0.016 0.560 -0.089 1.884 0.078 1.512 0.016 0.182 -0.129 2.083 -0.146 1.963
shadow -0.043 0.481 0.638 2.093 -0.080 1.635 0.027 0.194 0.109 1.847 0.267 1.970
shadow filter -0.387 0.496 2.288 2.211 1.497 1.809 -0.226 0.196 0.081 1.921 -1.282 1.993
SSAO 0.642 0.561 3.841 1.933 -0.693 1.586 0.227 0.173 -2.898 2.109 -4.468 2.042
Legend: p < .05 p < .01 p < .001Not-significant

 Δrelative repeatability, SIFT, sport
Linear regression model: RelRepeatability ~ 1 + CSD + CLD*Config + SCD*Config + DCD*Config + HTD*Config + EHD*Config

EHDIntercept CSD CLD SCD DCD HTD

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.223 0.332 -0.647 2.074 1.421 2.724 -0.156 1.001
noise -0.070 0.460 0.274 2.952 -0.305 3.898 -0.246 1.396
distortion -0.066 0.450 -0.009 2.929 -0.017 4.285 0.063 1.412
aperture -1.004 0.365 3.465 3.128 9.893 5.092 0.051 1.478
HDR -0.009 0.451 0.076 2.941 -0.493 3.923 0.060 1.399
bloom -0.083 0.412 -0.017 3.253 -0.403 4.332 0.386 1.456
blur 0.307 0.422 3.548 3.286 -6.298 3.997 -2.168 1.447
SSAA -0.012 0.452 0.182 2.908 -0.541 3.983 0.062 1.387
MSAA 0.019 0.450 -0.293 2.928 0.007 3.936 0.082 1.395
FXAA -0.039 0.448 -0.128 3.031 -0.304 3.900 0.187 1.413
SMAA -0.084 0.458 1.825 3.023 -0.987 3.968 -0.633 1.413
AToC 0.009 0.451 -0.153 2.922 -0.330 3.898 0.088 1.386
objects high 0.009 0.453 0.065 2.943 -0.585 3.907 0.012 1.390
no objects 0.385 0.447 11.512 3.746 -4.565 5.161 -6.413 1.787
modelling errors 1.087 0.455 -7.581 2.956 3.284 3.917 -1.395 1.400
texture low 0.437 0.432 1.288 3.169 1.369 3.740 -3.183 1.499
surface low 0.315 0.400 -3.773 3.107 2.507 3.530 -0.923 1.455
AF 0.030 0.457 -0.054 2.838 -0.360 3.937 -0.054 1.392
shadow 1.516 0.469 -1.515 2.964 -8.913 3.948 -5.114 1.409
shadow filter 0.003 0.451 -0.139 2.950 -0.249 3.944 0.102 1.395
SSAO -0.783 0.453 14.266 2.954 -7.163 3.930 -3.998 1.395
Legend: p < .05 p < .01 p < .001Not-significant

 Δrelative repeatability, SIFT, street
Linear regression model: RelRepeatability ~ 1 + CSD*Config + CLD*Config + SCD*Config

EHDIntercept CSD CLD SCD DCD HTD
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Figure C-12: Δabsolute repeatability regression model for SIFT on scene concrete. 

 

Figure C-13: Δabsolute repeatability regression model for SIFT on scene forest. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -204 776 -3268 1368 -9967 2733 4765 3076 -1076 542 663 1585 -1403 1508
noise -207 1069 2362 3817 -163 4376 295 751 -589 2306 -415 2001
distortion -89 1054 1059 4006 1742 4779 185 672 -791 2432 -582 1910
aperture 80 897 6082 6271 -3441 3255 1049 639 125 1889 717 2109
HDR 290 860 1949 5008 -2552 3631 1106 679 401 1990 -422 2273
bloom -516 909 826 4108 2048 3901 1103 821 -1679 2205 1931 2222
blur 2646 1043 -4476 4568 -2018 4378 -255 723 -3505 2204 748 1795
SSAA 259 1052 -205 3743 516 4439 98 768 -1335 2242 -258 2132
MSAA 217 1052 1187 3809 -1006 4594 174 769 -166 2313 -41 2033
FXAA -6899 1060 4985 3930 19244 4393 2179 684 4526 2146 988 2305
SMAA -17 1078 1869 3766 -963 4517 343 765 147 2274 302 2086
AToC 3 1026 2627 3783 -763 4272 479 769 -350 2279 289 2112
objects high 182 1051 610 3830 -1066 4422 539 745 -194 2296 232 2018
no objects -163 946 13617 5082 -3387 3239 992 733 -2439 1828 2388 2031
modelling errors -90 1046 1939 3906 -211 4464 349 751 -420 2378 231 2045
texture low -1787 1121 31163 4365 3886 4295 726 668 -8828 2128 11090 2049
surface low -43 963 16353 4082 -8613 3934 871 747 -1652 1931 5118 3302
AF -26 1044 5471 3796 -7319 4414 1896 780 2736 2289 3309 2003
shadow -212 1021 1896 3937 1138 4422 456 698 -1690 2181 690 1849
shadow filter -169 1065 -393 3819 1226 4377 578 678 -1533 2112 1435 1844
SSAO 124 1031 300 3832 154 4287 115 757 -680 2230 -229 2053
Legend: Not-significant p < .05 p < .01 p < .001

Δabsolute repeatability, SIFT, concrete
Linear regression model: AbsRepeatability ~ 1 + CSD + CLD*Config + SCD*Config + DCD*Config + HTD*Config + EHD*Config

Intercept CSD CLD SCD DCD HTD EHD

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -631 1068 -8892 875 6716 1351 5717 1013 -1061 466 334 4384 -2075 1361
noise -1224 1358 194 745 4979 5798 1740 1793
distortion -1866 1366 476 725 7541 5818 1291 1876
aperture -232 1152 2802 1684 -2100 5011 -2533 2649
HDR -1124 1378 164 693 5440 6227 -236 1717
bloom 914 1401 1044 658 -7544 6226 2019 1790
blur -6771 1236 4099 803 13872 5599 11755 2664
SSAA 631 1281 -767 807 -2430 5546 -2148 1948
MSAA -236 1341 154 650 414 5981 1178 1787
FXAA -206 1287 -91 709 328 5612 1784 1843
SMAA 25 1388 -9 702 -363 6064 444 1791
AToC -589 1385 80 641 2462 6189 520 1780
objects high -693 1382 295 683 2982 6024 79 1782
no objects -20 1229 3004 690 -1151 5014 -897 1961
modelling errors -392 1351 336 654 915 6034 928 1739
texture low 170 1170 183 652 680 4866 1271 2052
surface low -494 1123 623 601 -257 4548 1874 2218
AF -795 1480 14 648 3117 6567 728 1797
shadow -892 1308 532 690 3178 5667 3367 1900
shadow filter -1509 1320 560 699 5539 5725 4302 1950
SSAO -568 1404 -109 710 2001 6205 2263 1910
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

Δabsolute repeatability, SIFT, forest
Linear regression model: AbsRepeatability ~ 1 + CSD + CLD + SCD + DCD*Config + HTD*Config + EHD*Config



Appendix C.3 Regression model coefficients 255 

 

Figure C-14: Δabsolute repeatability regression model for SIFT on scene hangar. 

 

Figure C-15: Δabsolute repeatability regression model for SIFT on scene heath. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -3626 481 6254 1965 -3453 1748 6694 1289 -1300 785 1448 464
noise -232 629 -266 2764 275 1829 630 1093
distortion 163 670 -516 2994 156 1822 220 1253
aperture 1211 541 -1353 2737 -1050 1714 -843 1056
HDR 125 703 -1012 2981 275 1759 660 1181
bloom 269 642 -1332 2817 -415 1791 1112 1145
blur -1196 777 24179 3415 -7185 1784 -8210 1346
SSAA 526 616 554 2871 -1944 1817 -102 1151
MSAA 325 619 -222 2730 -817 1828 406 1073
FXAA 546 644 560 3110 -1354 1793 -260 1345
SMAA 212 624 4076 2761 -2974 1807 -725 1109
AToC 253 623 96 2853 -806 1839 335 1100
objects high 402 626 -1303 2955 -526 1818 913 1145
no objects 1420 561 3723 3148 -7135 1857 2984 1021
modelling errors -1681 659 3895 3022 2985 1848 1089 1138
texture low 1551 689 -3150 3458 594 1870 623 1518
surface low -280 598 80 2645 -90 1591 -189 1383
AF 471 621 -653 2857 -1480 1822 426 1165
shadow 1726 578 -4747 2792 -1674 1722 1301 1422
shadow filter 1283 573 -4155 2807 -607 1806 643 1332
SSAO 421 692 -1940 2962 -296 1737 1163 1199
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: AbsRepeatability ~ 1 + CLD + HTD + CSD*Config + SCD*Config + DCD*Config
Intercept CSD CLD SCD DCD HTD EHD

Δabsolute repeatability, SIFT, hangar

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -35 177 4386 668 -2849 1221 -2231 442 -573 178
noise -219 152 -64 1678
distortion 30 154 205 1670
aperture 465 180 -4794 1917
HDR 335 165 -3384 1813
bloom -1 151 -125 1663
blur 393 155 1133 1684
SSAA -47 154 346 1706
MSAA -5 152 -45 1672
FXAA 129 152 -621 1674
SMAA -18 151 -14 1667
AToC -31 151 342 1663
objects high -13 152 151 1670
no objects 43 171 -1096 1879
modelling errors -27 151 128 1659
texture low 85 157 3468 1690
surface low -662 168 -2679 2124
AF -192 154 914 1691
shadow -64 150 1333 1671
shadow filter 101 150 -524 1671
SSAO 238 151 -4141 1660
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

Δabsolute repeatability, SIFT, heath
Linear regression model: AbsRepeatability ~ 1 + CSD + SCD + EHD + CLD*Config



256 Appendix C Regression models 

 

Figure C-16: Δabsolute repeatability regression model for SIFT on scene house. 

 

Figure C-17: Δabsolute repeatability regression model for SIFT on scene junkyard. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -71 721 -4450 3979 788 3659 -2439 437 -749 502 2163 469 6521 1856
noise -363 897 1356 5282 -1017 4981 -62 690 760 3211
distortion -263 840 -1639 5267 4580 5611 357 779 -717 2668
aperture -1571 723 7459 4282 -4284 4813 1960 920 -1185 2357
HDR -1211 774 5030 5182 -3115 5438 658 986 813 2941
bloom -1378 753 4934 4757 -451 5279 952 831 -427 2559
blur -337 948 3648 5859 6299 5927 789 674 -6715 2248
SSAA -383 878 1183 5322 -23 5116 166 680 691 2524
MSAA -676 884 6322 5331 -10731 4956 1218 688 1355 2587
FXAA -234 913 3126 5359 -2634 4895 562 720 -1723 2371
SMAA -130 861 250 5261 -10 5034 167 676 448 2560
AToC -130 908 348 5478 -473 5069 144 714 716 2714
objects high -139 891 225 5291 81 4962 122 688 209 2599
no objects -1519 710 955 4585 16652 5584 1892 752 -7658 2087
modelling errors -1620 864 5473 5118 3192 5478 342 732 2103 3101
texture low 2065 758 2921 4719 -5413 5263 -2218 689 -10822 2129
surface low -2626 786 10701 4459 -1175 5072 -719 912 71 2737
AF -404 904 -352 5429 154 5102 26 686 3392 3569
shadow -468 880 2535 5429 869 5342 115 823 -1733 2506
shadow filter -362 871 1458 5268 1180 5228 189 779 -1208 2636
SSAO 303 904 -2382 5608 1191 5165 -136 697 848 2688
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: AbsRepeatability ~ 1 + SCD + HTD + CSD*Config + CLD*Config + DCD*Config + EHD*Config
Intercept CSD CLD SCD DCD HTD EHD

Δabsolute repeatability, SIFT, house

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -845 664 -2841 2612 1446 8275 2792 921 -841 884 -875 1824 463 2157
noise -146 923 3899 3650 -5396 11538 441 1285 -1441 2597 587 2912
distortion -953 1300 -1116 3460 3395 12074 -92 1422 448 2352 3986 3235
aperture 1106 834 8490 4051 -12266 11753 730 1363 -4267 2732 -1114 2531
HDR -1013 1003 -1641 4305 9682 12429 1057 1632 2108 3066 -3956 2709
bloom -74 945 -40 3563 1081 12448 -11 1261 291 2356 -653 2830
blur 1862 1390 14815 3555 -21497 13954 5584 1640 -6669 2319 -837 2567
SSAA 564 1068 2995 3979 -8115 13792 -1110 1435 -307 2527 -145 2798
MSAA 286 952 3188 3735 1681 12365 -3557 1281 216 2544 -5984 2924
FXAA 253 1030 3248 3991 -5379 13104 -401 1386 -640 2594 144 3089
SMAA 70 910 1788 3605 -2586 11804 -222 1211 148 2472 -939 2998
AToC 98 918 1845 3648 -1151 11880 -193 1278 -316 2576 -1520 2949
objects high 2371 943 4965 3552 -23375 12156 -2038 1312 -3726 2528 2513 2975
no objects -1163 791 6420 3682 -5980 12509 1069 953 1842 2362 -348 2435
modelling errors -525 900 2252 4021 -1696 12079 -208 1307 1420 2605 116 3044
texture low 293 1261 13610 3063 -21876 12491 5699 1843 -1410 2465 2087 2504
surface low -430 800 3505 3707 1663 12101 1256 1610 -1505 2328 -1705 2702
AF 199 914 871 3671 -3396 12437 -535 1291 306 2504 -591 3004
shadow 2126 1065 7740 3663 -34646 13536 -4393 1672 187 2483 3782 2720
shadow filter 906 1094 10003 3599 -18665 14025 -214 1495 -2202 2631 -1563 2770
SSAO -3009 937 -2245 4035 23893 12647 4595 1304 277 2553 -2072 2998
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

Δabsolute repeatability, SIFT, junkyard
Linear regression model: AbsRepeatability ~ 1 + SCD + CSD*Config + CLD*Config + DCD*Config + HTD*Config + EHD*Config



Appendix C.3 Regression model coefficients 257 

 

Figure C-18: Δrelative repeatability regression model for SIFT on scene sport. 

 

Figure C-19: Δrelative repeatability regression model for SIFT on scene street. 

 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -230 1097 -1294 3543 649 3010 169 319 1332 4082 3495 3707
noise -1505 1529 17958 5026 -1987 4619 1536 563 -1178 5650 -9161 6040
distortion -2733 1786 9365 5107 -2503 4074 791 450 1839 5699 8504 6144
aperture -44 1157 -4480 5119 -11248 4701 -657 407 13347 5207 -22869 7089
HDR 188 1523 -755 5494 -1118 4406 46 521 1320 6020 -1293 5490
bloom 283 1380 -1019 4943 -1011 3959 108 459 861 5424 -1512 5143
blur 4960 1375 -8691 5483 -14321 5052 727 474 14871 5168 -29451 7534
SSAA 4015 1537 -27933 4771 -4248 4223 -1006 456 -5359 5559 13219 5819
MSAA 10 1533 283 4919 -2452 4346 84 469 2448 5554 2076 5223
FXAA 6732 1407 -24422 5019 -9526 4448 -1027 473 -9130 5735 7648 6986
SMAA 5442 1510 -23477 5198 -7003 4339 -1465 461 -7161 6146 7802 5303
AToC 446 1509 719 5075 -1349 4670 95 512 -327 5603 -1065 5483
objects high 251 1532 -105 4942 -1439 4355 37 515 1031 5435 -558 5522
no objects 1330 1236 -916 5243 -482 4194 398 671 -5391 5858 -8173 7198
modelling errors 175 1525 -750 5029 -508 4374 -27 467 173 5828 149 5537
texture low 3848 1445 8312 6515 3855 5642 797 552 -303 4766 -40000 9796
surface low 324 1280 -582 5432 -116 3772 277 609 -2345 4584 -262 7725
AF 208 1520 -1387 5117 -490 4107 15 495 184 5659 -708 5330
shadow -915 1307 6009 5676 1772 4441 146 526 1235 5018 -955 5350
shadow filter -1587 1345 7827 5982 5559 4913 -265 532 -121 5216 -3759 5412
SSAO 1139 1524 6821 5251 -1446 4309 574 469 -4961 5730 -8578 5541
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: AbsRepeatability ~ 1 + CLD*Config + SCD*Config + DCD*Config + HTD*Config + EHD*Config
Intercept CSD CLD SCD DCD HTD EHD

Δabsolute repeatability, SIFT, sport

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -769 882 -5666 4949 8688 1844 6201 2795 -1430 664
noise 68 1217 -1310 6575 -549 3725
distortion 155 1196 -3074 6782 1246 3776
aperture 372 950 17572 6848 -12306 4019
HDR 277 1194 -3229 6532 586 3733
bloom 252 1066 -4801 7106 1479 3391
blur 2071 1125 -9574 7310 -101 4243
SSAA 164 1196 -3293 6361 1066 3705
MSAA 279 1193 -3048 6496 496 3719
FXAA 237 1187 -4868 6764 1808 3779
SMAA 149 1208 -696 6664 -500 3776
AToC 345 1196 -3276 6544 312 3698
objects high 446 1201 -3808 6572 158 3707
no objects 1841 1099 19812 7089 -21385 4701
modelling errors 3656 1205 -23698 6579 -4008 3732
texture low 3849 1143 4301 7397 -14546 4322
surface low 866 1067 -6257 7519 -4010 3888
AF 350 1207 -3547 6256 114 3724
shadow 3248 1243 -9922 6723 -10184 3754
shadow filter 359 1195 -3123 6545 210 3716
SSAO -1235 1198 26720 6557 -10875 3725
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

Δabsolute repeatability, SIFT, street
Linear regression model: RelRepeatability ~ 1 + CSD*Config + CLD*Config + SCD*Config
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Figure C-20: Δrelative repeatability regression model for MSER on scene concrete. 

 

Figure C-21: Δrelative repeatability regression model for MSER on scene forest. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -1.162 0.640 1.939 3.326 0.564 1.430 1.716 1.614 0.976 0.987 0.103 0.780
noise -0.299 0.896 0.866 4.449 1.392 2.038 0.106 2.313 -0.187 1.404 0.317 1.030
distortion -0.130 0.808 -0.211 4.197 0.970 2.112 0.054 2.486 0.599 1.419 -0.468 1.019
aperture 0.538 0.688 -0.558 3.993 3.499 3.380 -2.728 1.744 1.232 1.150 -2.819 1.097
HDR 0.543 0.681 0.210 3.973 -3.152 2.707 -0.013 1.859 0.523 1.190 -2.938 1.181
bloom 0.630 0.699 -4.488 4.413 3.064 2.177 -0.871 2.230 0.124 1.370 -0.279 1.106
blur -0.321 0.841 -0.444 4.957 9.893 2.897 0.916 2.234 -2.405 1.273 -0.260 0.899
SSAA -0.215 0.876 0.939 4.503 0.280 1.954 0.358 2.322 -0.112 1.348 0.209 1.117
MSAA -0.490 0.922 1.406 4.703 2.004 1.991 0.651 2.441 -0.467 1.467 0.757 1.091
FXAA -0.170 0.917 2.427 4.565 2.074 2.049 2.653 2.318 -2.051 1.277 -6.099 1.268
SMAA -0.083 0.890 -0.126 4.510 0.091 1.969 -0.116 2.369 0.517 1.394 0.051 1.108
AToC -0.356 0.849 0.944 4.403 0.595 1.976 0.640 2.230 -0.191 1.364 0.684 1.076
objects high -0.193 0.848 -0.136 4.535 1.531 2.004 0.644 2.311 -0.368 1.369 0.089 1.058
no objects 0.820 0.698 -9.038 4.133 12.623 4.198 -1.528 1.733 -0.594 1.148 -0.487 1.027
modelling errors 0.222 0.874 -2.179 4.694 0.966 2.068 -0.363 2.332 0.543 1.486 -0.280 1.065
texture low -0.505 0.776 -8.061 4.088 9.258 2.177 3.908 2.254 -1.149 1.219 2.012 0.997
surface low 0.865 0.749 -7.321 4.738 5.481 2.493 -2.088 2.093 0.351 1.139 -0.753 1.632
AF 1.214 0.868 -7.182 4.598 1.841 1.980 -3.892 2.285 2.700 1.368 -0.411 1.030
shadow 0.078 0.826 -1.580 4.612 2.097 2.213 0.092 2.350 0.237 1.260 -0.564 0.909
shadow filter -0.412 0.834 0.289 4.613 0.092 2.146 1.775 2.310 0.024 1.232 -0.307 0.910
SSAO -0.022 0.840 -0.569 4.488 0.137 2.013 0.712 2.232 -0.387 1.349 0.053 1.057
Legend: Not-significant p < .05 p < .01 p < .001

 Δrelative repeatability, MSER, concrete
Linear regression model: RelRepeatability ~ 1 + CSD*Config + CLD*Config + SCD*Config + HTD*Config + EHD*Config

Intercept CSD CLD SCD DCD HTD EHD

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.752 0.602 -1.661 0.263 -0.817 1.411 -0.441 1.502 0.097 0.037 -1.243 1.448
noise -0.447 0.803 1.268 1.809 0.316 2.160 1.105 1.810
distortion -0.410 0.876 -0.668 1.933 0.527 2.337 1.536 1.924
aperture -0.991 0.753 2.576 2.141 2.539 2.010 -0.042 1.653
HDR -0.135 0.835 -0.027 1.678 1.945 2.181 -2.195 2.077
bloom 0.403 0.918 -0.260 1.995 -1.306 2.221 0.100 2.198
blur -3.837 0.785 -2.316 2.025 12.677 2.191 1.397 1.869
SSAA -0.712 0.757 0.580 1.764 2.303 2.069 -0.142 1.833
MSAA -0.818 0.802 1.561 1.826 1.716 2.266 0.600 2.047
FXAA -0.872 0.813 0.295 1.857 3.124 2.177 -0.429 1.875
SMAA 0.058 0.807 -0.057 1.806 0.686 2.059 -1.311 1.903
AToC -1.265 0.837 2.414 1.905 0.869 2.196 3.438 2.127
objects high -0.338 0.829 1.279 1.849 -0.380 2.117 1.387 1.915
no objects -1.731 0.666 4.580 1.708 0.118 1.665 3.782 1.664
modelling errors -0.104 0.833 0.189 1.900 -0.126 2.014 0.517 1.981
texture low 0.758 0.867 -3.365 2.342 -1.537 2.118 1.050 1.671
surface low -0.128 0.822 -1.524 2.014 0.337 2.253 1.049 1.540
AF 0.037 0.885 0.586 1.880 -0.172 2.125 -0.476 2.073
shadow -0.819 0.803 2.081 2.188 1.314 1.970 1.011 1.899
shadow filter -0.932 0.770 2.750 2.236 0.812 2.017 1.912 1.975
SSAO -0.251 0.781 0.762 1.954 0.793 1.950 -0.241 2.056
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

 Δrelative repeatability, MSER, forest
Linear regression model: RelRepeatability ~ 1 + CSD + DCD + CLD*Config + SCD*Config + HTD*Config
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Figure C-22: Δrelative repeatability regression model for MSER on scene hangar. 

 

Figure C-23: Δrelative repeatability regression model for MSER on scene heath. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.315 0.261 0.757 0.253 -4.518 1.843 -0.156 0.089 0.740 0.143 -0.192 0.709
noise -0.046 0.349 0.560 2.433 -0.427 1.044
distortion 0.278 0.413 -1.858 2.867 0.038 0.916
aperture 0.047 0.409 -2.093 3.164 0.254 0.879
HDR 0.076 0.389 -0.393 2.690 -0.253 1.005
bloom -0.190 0.360 1.266 2.453 0.074 1.016
blur -0.396 0.486 3.042 3.468 0.356 0.790
SSAA 0.034 0.378 0.082 2.620 -0.329 0.966
MSAA 0.039 0.374 -0.106 2.563 -0.262 1.005
FXAA -0.163 0.443 0.291 3.093 1.034 0.931
SMAA -1.487 0.362 14.376 2.515 -5.172 0.963
AToC -0.060 0.361 0.550 2.480 -0.084 1.007
objects high -0.028 0.364 0.318 2.503 -0.118 0.987
no objects -0.175 0.362 -1.649 3.194 0.428 0.747
modelling errors 0.028 0.367 -0.747 2.532 -0.062 1.013
texture low 0.407 0.397 -3.018 2.808 -0.310 0.786
surface low -0.731 0.358 4.330 2.383 0.910 0.874
AF 0.089 0.359 -0.474 2.552 -0.437 1.041
shadow 0.110 0.320 -0.994 2.372 -0.403 0.931
shadow filter 0.127 0.324 -1.140 2.373 -0.361 0.970
SSAO -0.011 0.367 0.285 2.530 -0.183 0.976
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: RelRepeatability ~ 1 + CSD + DCD + HTD + CLD*Config + EHD*Config
Intercept CSD CLD SCD DCD HTD EHD

 Δrelative repeatability, MSER, hangar

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.310 0.269 -3.525 0.368 0.600 0.763 1.136 0.730 -0.619 0.274 0.413 0.103
noise -0.136 0.376 0.309 1.058 0.300 0.985
distortion 0.038 0.362 0.077 1.040 -0.095 0.953
aperture 0.152 0.310 4.162 1.102 -2.775 0.994
HDR 0.036 0.336 2.861 1.033 -1.458 1.009
bloom -0.222 0.363 0.412 1.030 0.599 0.954
blur -0.029 0.367 1.941 1.049 -0.040 0.963
SSAA -0.191 0.353 1.100 1.038 0.277 0.954
MSAA -0.128 0.367 0.190 1.048 0.366 0.961
FXAA 0.092 0.365 0.234 1.033 -0.244 0.960
SMAA -0.039 0.384 0.338 1.048 0.015 1.019
AToC 0.010 0.367 -0.173 1.039 0.037 0.964
objects high -0.068 0.362 0.076 1.034 0.184 0.950
no objects 0.214 0.321 5.759 1.081 -3.738 1.048
modelling errors -0.069 0.376 0.177 1.043 0.184 0.992
texture low 0.380 0.373 1.344 1.046 -1.403 0.995
surface low 0.410 0.419 3.320 1.392 -2.187 1.139
AF -0.128 0.370 -0.054 1.054 0.392 0.972
shadow 0.116 0.324 -1.794 0.985 0.219 0.879
shadow filter 0.146 0.327 -0.633 0.984 -0.330 0.888
SSAO -0.343 0.359 -1.078 1.038 1.257 0.942
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

 Δrelative repeatability, MSER, heath
Linear regression model: RelRepeatability ~ 1 + CSD + HTD + EHD + CLD*Config + SCD*Config



260 Appendix C Regression models 

 

Figure C-24: Δrelative repeatability regression model for MSER on scene house. 

 

Figure C-25: Δrelative repeatability regression model for MSER on scene junkyard. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -0.938 0.250 0.844 0.324 2.329 0.995 -0.270 0.207 1.411 0.705 1.038 0.893
noise -0.088 0.328 0.496 1.347 -0.039 0.288 -0.313 0.941 1.230 1.460
distortion -0.258 0.434 0.373 1.399 -0.127 0.326 0.601 1.028 0.626 1.314
aperture 0.415 0.307 0.149 1.305 0.322 0.396 -1.049 0.976 -1.031 1.078
HDR 0.093 0.369 0.024 1.452 0.371 0.390 -0.715 1.225 0.689 1.454
bloom 0.306 0.333 0.340 1.315 0.494 0.326 -1.199 1.029 -0.527 1.206
blur 1.515 0.301 -4.342 1.422 -0.471 0.265 -2.511 0.952 -1.000 1.012
SSAA -0.187 0.328 0.850 1.382 0.054 0.287 0.091 0.977 0.703 1.219
MSAA 1.038 0.338 -3.305 1.342 0.895 0.290 -2.980 0.995 -0.914 1.269
FXAA 0.822 0.315 -1.314 1.381 0.524 0.291 -2.384 0.955 -1.077 1.131
SMAA -0.064 0.346 0.030 1.385 -0.064 0.289 0.107 1.051 0.408 1.273
AToC -0.091 0.343 -0.268 1.367 -0.053 0.295 0.232 0.985 0.827 1.343
objects high 0.040 0.338 -0.166 1.361 -0.057 0.302 -0.087 1.003 0.157 1.254
no objects 0.044 0.344 1.127 1.445 0.221 0.309 -0.120 1.057 -1.003 0.975
modelling errors 0.421 0.337 -2.631 1.490 0.183 0.344 -0.819 1.035 0.141 1.541
texture low 1.239 0.423 -4.606 1.394 -0.345 0.300 -1.813 1.196 -1.660 1.024
surface low -0.503 0.644 1.297 1.804 -0.341 0.440 0.213 1.359 1.709 1.336
AF -0.167 0.363 0.086 1.345 -0.033 0.287 -0.090 0.978 1.726 1.665
shadow 0.273 0.332 -0.222 1.369 -0.445 0.348 -0.414 0.885 -0.072 1.153
shadow filter 0.146 0.331 -0.623 1.371 -0.447 0.334 0.027 0.896 0.559 1.208
SSAO -0.032 0.345 -0.399 1.411 -0.069 0.295 0.194 1.051 0.438 1.336
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: RelRepeatability ~ 1 + CSD + CLD*Config + DCD*Config + HTD*Config + EHD*Config
Intercept CSD CLD SCD DCD HTD EHD

 Δrelative repeatability, MSER, house

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -0.510 0.569 -1.416 0.879 -1.435 3.522 3.858 1.877 -0.332 0.398 -0.408 0.156
noise -0.108 0.791 0.417 1.160 -1.577 4.939 0.655 2.566 0.006 0.607
distortion 0.531 0.848 -0.363 1.174 -0.781 5.113 -0.980 2.767 -0.531 0.666
aperture 1.889 0.655 5.089 1.553 -9.714 5.281 -7.082 2.343 0.572 0.688
HDR 1.244 0.751 1.559 1.351 0.111 5.053 -5.672 2.550 -0.676 0.658
bloom 0.202 0.815 -0.011 1.220 0.085 5.086 -0.732 2.513 -0.070 0.596
blur 0.541 0.998 1.938 1.249 -1.546 5.678 -1.877 2.933 0.210 0.766
SSAA 0.422 0.763 1.038 1.262 -4.525 5.447 0.158 2.514 -0.807 0.650
MSAA 0.182 0.813 1.245 1.301 -4.690 5.413 0.452 2.566 -0.192 0.595
FXAA 0.165 0.816 0.803 1.290 -3.579 5.544 0.593 2.565 -0.400 0.640
SMAA -0.176 0.795 0.573 1.220 -2.058 5.038 1.020 2.563 0.000 0.579
AToC -0.171 0.783 0.784 1.256 -2.333 5.195 1.007 2.503 -0.003 0.585
objects high 1.457 0.834 1.516 1.229 -10.564 5.207 -1.459 2.597 -1.742 0.608
no objects -0.365 0.685 3.860 1.263 4.066 4.433 -2.748 2.215 0.133 0.425
modelling errors 0.477 0.853 1.212 1.370 -3.895 5.209 -0.758 2.679 -0.445 0.611
texture low 0.738 1.047 -0.762 1.209 -5.213 5.742 0.651 2.951 -0.598 0.921
surface low 0.759 0.656 2.453 1.318 2.295 4.757 -5.401 2.630 -0.547 0.850
AF 0.118 0.838 0.648 1.277 -2.867 5.127 0.211 2.623 -0.153 0.622
shadow -1.021 1.098 2.956 1.251 -5.923 5.367 3.907 3.138 -0.125 0.919
shadow filter 1.170 1.158 4.940 1.245 -15.180 5.703 -1.442 3.200 -1.014 0.833
SSAO -1.407 0.838 1.339 1.343 9.300 5.382 -1.159 2.637 2.106 0.624
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

 Δrelative repeatability, MSER, junkyard
Linear regression model: RelRepeatability ~ 1 + HTD + CSD*Config + CLD*Config + SCD*Config + DCD*Config
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Figure C-26: Δrelative repeatability regression model for MSER on scene sport. 

 

Figure C-27: Δrelative repeatability regression model for MSER on scene street. 

  

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 0.338 0.510 -8.176 3.218 0.319 1.204 0.471 1.438 1.052 1.742 -0.190 1.680
noise 0.281 0.709 0.697 4.615 -1.121 1.650 -0.893 2.101 0.259 2.415 -1.231 2.415
distortion -0.358 0.773 -10.931 5.344 -0.866 1.925 -1.433 1.982 4.474 2.446 7.417 3.127
aperture -1.069 0.534 8.350 4.696 -0.797 2.446 -7.127 2.087 8.233 2.266 -7.472 3.083
HDR 0.234 0.719 -0.192 4.574 0.046 1.827 -0.722 2.085 0.054 2.571 -0.274 2.369
bloom 0.169 0.609 -1.627 4.354 0.204 1.817 0.576 1.968 -0.639 2.318 -0.396 2.402
blur 1.029 0.637 14.343 5.596 -9.015 2.819 -8.082 2.464 6.404 2.176 -5.695 3.403
SSAA 0.523 0.710 4.649 4.461 -2.499 1.729 -3.250 1.990 -0.304 2.381 0.805 2.516
MSAA 0.066 0.703 -0.285 4.733 -0.730 1.745 -0.115 2.139 0.164 2.425 0.270 2.387
FXAA 1.472 0.670 -7.491 4.824 -1.981 1.769 -2.104 2.048 -0.581 2.456 7.629 3.189
SMAA 0.297 0.698 3.608 4.658 -3.545 1.864 -3.197 2.090 1.866 2.648 0.469 2.434
AToC 0.321 0.698 -0.361 4.645 -0.066 1.688 -0.597 2.243 -0.229 2.421 -0.795 2.388
objects high 0.145 0.702 -0.214 4.572 -0.585 1.668 0.071 2.064 -0.298 2.323 -0.466 2.417
no objects -0.152 0.556 6.568 4.565 1.953 2.595 -4.577 1.900 -0.451 2.638 2.823 3.195
modelling errors 0.126 0.707 -2.311 4.512 -0.354 1.807 0.839 2.069 -0.241 2.491 0.236 2.393
texture low -0.608 0.632 -7.788 5.909 7.582 3.298 5.345 2.920 1.829 2.073 -9.567 4.761
surface low -1.393 0.583 9.576 6.042 1.079 3.116 0.205 1.992 0.405 2.013 -0.980 2.868
AF -0.117 0.719 1.698 4.500 -0.118 1.817 -0.213 1.934 0.078 2.422 -0.976 2.248
shadow -0.330 0.679 2.067 5.477 1.943 2.203 -1.932 2.090 2.234 2.168 0.846 2.474
shadow filter -0.627 0.656 0.081 5.406 5.706 2.372 2.037 2.364 -0.430 2.282 -3.263 2.491
SSAO 0.494 0.706 -2.274 4.583 -0.725 1.931 -0.810 2.040 0.762 2.452 -0.862 2.412
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: RelRepeatability ~ 1 + CSD*Config + CLD*Config + SCD*Config + HTD*Config + EHD*Config
Intercept CSD CLD SCD DCD HTD EHD

 Δrelative repeatability, MSER, sport

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -0.785 0.609 1.536 2.035 -3.638 0.656 2.713 1.928 0.175 0.028 -0.341 1.098 -0.757 0.216
noise 0.034 0.804 0.203 2.726 -0.200 2.536 -0.151 1.498
distortion -0.056 0.791 1.199 2.766 0.096 2.505 0.143 1.444
aperture 0.936 0.618 -0.616 3.076 -6.070 2.141 2.254 1.513
HDR 0.442 0.777 -0.355 2.694 -0.886 2.465 -0.613 1.432
bloom -0.437 0.750 -1.332 2.744 0.726 2.241 1.945 1.607
blur -0.714 0.704 5.871 3.077 -1.464 2.454 2.090 1.343
SSAA 0.349 0.816 -0.266 2.720 -0.981 2.580 -0.214 1.537
MSAA 0.026 0.790 -1.308 2.737 0.277 2.522 0.348 1.464
FXAA -0.007 0.780 -0.366 2.833 -0.068 2.551 0.349 1.431
SMAA -0.100 0.758 -0.107 2.757 0.139 2.455 0.292 1.378
AToC 0.594 0.820 0.612 2.734 -1.972 2.597 -0.759 1.519
objects high 0.344 0.744 -0.697 2.691 -0.751 2.356 -0.255 1.379
no objects 1.666 0.676 3.420 2.930 -7.898 2.281 -0.516 1.488
modelling errors 1.444 0.808 0.178 2.720 -3.860 2.556 -2.208 1.492
texture low -1.000 0.716 0.038 3.359 2.112 2.740 2.058 1.313
surface low -0.592 0.738 -2.360 2.714 2.388 2.366 2.307 1.336
AF 0.210 0.793 0.411 2.735 -0.679 2.529 -0.405 1.503
shadow 0.341 0.819 -7.905 2.679 1.093 2.552 1.513 1.460
shadow filter 0.538 0.753 -0.694 2.692 -1.319 2.397 -0.482 1.391
SSAO -0.239 0.786 2.780 2.776 -0.670 2.520 0.059 1.466
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

 Δrelative repeatability, MSER, street
Linear regression model: RelRepeatability ~ 1 + CLD + DCD + EHD + CSD*Config + SCD*Config + HTD*Config
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Figure C-28: Δabsolute repeatability regression model for MSER on scene concrete. 

 

Figure 0-29: Δabsolute repeatability regression model for MSER on scene forest. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -534 1084 3509 5123 -13934 2539 3824 2760 753 107 -3841 1365
noise 592 1537 -3399 7003 -587 3574 90 3902 -464 1811
distortion -1338 1415 2753 6778 -2695 3837 5393 4291 298 1806
aperture 2162 1180 -12353 6334 1452 6238 -4995 3009 3842 1930
HDR 1843 1164 -1558 6382 812 4951 -8907 3225 2006 2129
bloom -145 1198 -1317 6839 -3231 3895 2817 3968 -1124 1880
blur -607 1474 -10516 8307 2863 5309 2273 3781 7502 1616
SSAA -378 1506 619 7216 211 3533 1396 3898 -471 1959
MSAA 16 1524 -878 7160 1099 3598 494 3943 -300 1873
FXAA 3065 1607 -3042 7449 -4645 3687 -6066 4031 -7730 2251
SMAA 169 1511 -2259 7086 -996 3541 1299 3967 -579 1885
AToC 276 1472 -1308 7044 1052 3566 -207 3800 -552 1878
objects high 748 1471 -2620 7307 549 3617 -1161 3963 -744 1855
no objects 260 1152 -21274 6398 34060 6646 -4763 2981 7245 1853
modelling errors 660 1480 -2923 7237 384 3634 -676 3969 -704 1846
texture low -2744 1352 -1765 6691 -2612 3981 8538 4002 7750 1815
surface low 2419 1298 -18196 7893 3503 4553 -991 3693 -608 2973
AF 1412 1506 -4221 7408 1007 3562 -2850 3921 -951 1802
shadow 267 1449 -4984 7808 -408 4029 1212 4074 1891 1599
shadow filter 115 1465 -5123 7770 -1664 3884 2334 4093 1658 1599
SSAO 698 1456 -3337 7157 -26 3598 -430 3885 -692 1845
Legend: Not-significant p < .05 p < .01 p < .001

Δabsolute repeatability, MSER, concrete
Linear regression model: AbsRepeatability ~ 1 + DCD + CSD*Config + CLD*Config + SCD*Config + EHD*Config

Intercept CSD CLD SCD DCD HTD EHD

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -1510 1801 10195 1620 -7127 2569 719 217 -2192 8294 -3891 2444
noise -622 2221 1647 10460 4130 3174
distortion -1888 2309 9991 10652 -1853 3424
aperture 303 2086 -210 9460 -2141 4996
HDR 1733 2461 -9452 11807 422 3138
bloom -2761 2530 10645 11892 6264 3227
blur -4581 2186 5490 10543 11836 5070
SSAA 385 2296 -1006 10586 -1335 3584
MSAA -2779 2370 10631 11297 7333 3223
FXAA 856 2256 -5648 10564 1111 3384
SMAA 2073 2312 -9682 10966 -83 3250
AToC -5558 2538 23986 11884 5580 3281
objects high -3743 2329 16931 11024 2501 3182
no objects -63 2121 -2683 9327 3163 3662
modelling errors -1981 2361 8027 11299 2475 3167
texture low -566 2113 457 9272 3056 3796
surface low -1760 2019 4441 8625 5493 4121
AF 659 2593 -5459 12252 3757 3266
shadow 2462 2288 -13091 10699 7443 3237
shadow filter -392 2330 -1003 10853 12294 3367
SSAO 584 2495 -4504 11721 5194 3470
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

Δabsolute repeatability, MSER, forest
Linear regression model: AbsRepeatability ~ 1 + CSD + CLD + DCD + HTD*Config + EHD*Config
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Figure C-30: Δabsolute repeatability regression model for MSER on scene hangar. 

 

Figure C-31: Δabsolute repeatability regression model for MSER on scene heath. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -4589 1432 13985 2741 -19426 10431 8466 2686 -1161 448 7303 883 -588 3356
noise -533 2051 -3018 3625 10279 14132 -441 3843 -583 4931
distortion 2830 2410 3059 3696 -21497 17144 -2719 4112 -50 4608
aperture 4213 2126 -12502 4449 1629 16521 -10030 3832 1184 4131
HDR 369 2115 -3041 3628 849 15398 798 3689 -917 4755
bloom 651 2027 2213 3514 -4564 14363 -2107 3670 394 4756
blur 8088 2388 -24470 3716 -4535 20351 -13808 3743 835 3770
SSAA -89 2059 6483 3700 -9175 14898 521 4015 -682 4930
MSAA 425 2037 -836 3507 186 14767 188 3659 -3289 4757
FXAA 2127 2209 186 3739 -5428 16193 -7289 4207 4751 4816
SMAA -10185 2023 -14271 3612 127449 15059 -2725 3703 -27343 4628
AToC -203 2001 -894 3671 3544 14834 155 3749 -1143 4851
objects high 645 1980 -607 3524 -2014 14384 -155 3646 -1721 4687
no objects 2606 1899 -23173 5446 19636 15933 -8579 3532 1680 3560
modelling errors 7452 1979 -17432 3632 6065 13972 -15374 3836 -2291 4871
texture low 3711 2082 -7839 3385 -9348 16541 -5578 4736 -2380 4177
surface low -2965 2217 -705 6683 16762 21934 404 3770 2370 4623
AF 1424 2044 6137 3694 -18623 14857 -884 3746 2986 4982
shadow 2501 1767 -5391 3527 -5040 13905 -2440 3420 1848 4271
shadow filter 2345 1764 -7103 3579 -4815 13474 -653 3576 887 4439
SSAO 677 2052 934 3592 -4265 14908 -831 3701 -518 4679
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: AbsRepeatability ~ 1 + DCD + HTD + CSD*Config + CLD*Config + SCD*Config + EHD*Config
Intercept CSD CLD SCD DCD HTD EHD

Δabsolute repeatability, MSER, hangar

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 983 981 4992 3617 -12499 2695 42 3210 -425 99 -4858 3136 2479 1195
noise -1308 1410 -583 4841 1973 3698 1274 4667 2472 4105 1011 1708
distortion -872 1462 94 5660 2262 4020 -5913 5407 8554 4831 22 2507
aperture 321 1273 -17618 6703 17987 6752 -2461 3802 3327 4458 -2738 1691
HDR 1127 1323 -10933 5405 6082 4405 -782 3686 -35 4480 -254 1625
bloom -203 1356 -115 4877 573 3609 2659 4674 -2960 4663 1209 1685
blur 573 1410 -1368 8137 -3177 4561 -3048 5257 3734 4383 -2678 1547
SSAA 563 1322 3022 4912 1089 3416 -3351 4010 -273 4738 -44 1631
MSAA -62 1404 306 4846 702 3764 1500 4507 -1907 4278 205 1640
FXAA 1052 1290 350 5574 -1065 3655 -1444 5171 -2381 4952 693 1829
SMAA 52 1342 1480 5299 -158 3716 -6235 5317 6389 4686 -1082 1790
AToC -444 1432 77 4912 696 3692 -1084 4615 2391 4632 414 1690
objects high -815 1360 -1535 4841 2024 3598 2343 4489 166 4221 936 1654
no objects -1930 1236 -21232 6196 15932 6508 6911 3724 6213 4212 -3074 1423
modelling errors -290 1368 265 5141 583 3729 -1298 5713 2124 5304 -38 1841
texture low 765 1708 -727 5923 1742 4281 -4646 3751 2031 4295 1 1411
surface low 3768 1693 -15769 7938 21325 7985 -3809 4391 -3271 3415 322 1508
AF -324 1408 -2616 5041 -427 3620 4865 5076 -2782 4745 1069 1725
shadow 2118 1318 -3386 5301 -5235 3519 -7133 4574 6059 5462 -3844 1655
shadow filter 1398 1360 -2973 5180 -1764 3388 55 4161 -2414 4763 -623 1600
SSAO -949 1309 3119 4901 -1653 3629 -1527 4701 3692 4368 -503 1731
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

Δabsolute repeatability, MSER, heath
Linear regression model: AbsRepeatability ~ 1 + DCD + CSD*Config + CLD*Config + SCD*Config + HTD*Config + EHD*Config
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Figure C-32: Δabsolute repeatability regression model for MSER on scene house. 

 

Figure C-33: Δabsolute repeatability regression model for MSER on scene junkyard. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -10259 2495 -6123 1501 38401 5054 4031 3531 -1967 930 18430 3819 10199 4562
noise -1235 3843 2288 6994 2550 5575 -158 1309 -427 5334 4085 8172
distortion 1572 3345 -3050 6878 -1830 4882 66 1489 -1668 5210 -6865 6264
aperture 3135 2706 -15329 6725 4819 5378 160 1918 -5635 4965 -10194 5410
HDR 723 3229 -13016 6902 1691 6742 -284 1749 333 5938 1109 6849
bloom 153 2988 -8352 6460 6475 6098 862 1462 -1840 5148 -4734 5819
blur 11149 3042 -38378 7305 -11470 4677 1836 1188 -15319 4903 -7101 5050
SSAA -4550 3484 7991 6849 5875 5108 -746 1312 6139 5427 2614 6227
MSAA 11417 3581 -22133 6861 -8274 5145 5190 1303 -22574 5407 -14126 6709
FXAA -3490 3300 6150 6900 10434 4991 2288 1312 -2836 5131 -4728 5644
SMAA 524 3390 -3149 6911 -2528 4856 -390 1291 1898 5526 1380 6366
AToC -3266 3710 3190 7016 4350 5314 -390 1328 4035 5489 5050 7075
objects high -263 3629 -464 6956 432 5198 -980 1369 1255 5534 479 6645
no objects 7072 2988 -27458 8355 -2750 7774 884 1430 -12126 5456 -9341 5136
modelling errors 5720 3382 -20330 7131 -3087 4909 1786 1553 -9672 5408 -4404 8101
texture low 8347 3537 -24477 7257 -11365 4679 154 1352 -8797 6077 -6965 5206
surface low 9080 4495 -11221 9569 -11359 5058 -334 2037 -16007 6837 -5431 7136
AF -2106 3634 2174 6855 1954 5131 -691 1294 2736 5271 7082 8511
shadow 271 3359 5420 7500 1780 5116 -989 1608 -2737 4712 -2907 5881
shadow filter 558 3294 3037 7239 555 4936 -595 1529 -2381 4773 -241 6140
SSAO 448 3452 -4986 7142 -882 4971 -634 1321 1642 5522 841 6671
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: AbsRepeatability ~ 1 + CSD + CLD*Config + SCD*Config + DCD*Config + HTD*Config + EHD*Config
Intercept CSD CLD SCD DCD HTD EHD

Δabsolute repeatability, MSER, house

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 4666 513 -3981 2051 -8909 2810 -4543 1257 -6596 1921 -4033 2672
noise 33 557 901 2656 -101 2810 -1466 3712
distortion -1365 871 -1091 2673 -851 2720 10153 4361
aperture -1836 634 -1185 3184 3397 3193 3313 3395
HDR -1164 575 -767 2801 1457 2997 2069 3573
bloom -93 553 -1294 2595 950 2670 385 3553
blur -444 571 -2392 2805 770 2670 203 3274
SSAA -1562 572 6492 2663 -113 2832 1410 3557
MSAA -268 551 2460 2659 148 2743 -1408 3695
FXAA -1232 565 4214 2840 -83 2887 2017 4035
SMAA -634 572 3363 2577 92 2700 -467 3790
AToC -446 552 2366 2649 1034 2795 -1862 3703
objects high 803 548 -588 2641 -4112 2712 1827 3677
no objects 195 804 3838 2868 -6916 2710 4743 3034
modelling errors -89 569 104 2907 1697 2921 -2612 3979
texture low 353 874 -2046 2483 798 3284 -2710 3137
surface low -4755 873 7141 2683 10709 2565 -5563 3713
AF 210 559 -137 2656 346 2779 -1203 3587
shadow -777 555 2149 3029 -163 2792 1406 3349
shadow filter -955 565 8754 3059 -2120 3025 -1105 3423
SSAO -1100 564 967 2771 2656 2802 -1029 3774
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

Δabsolute repeatability, MSER, junkyard
Linear regression model: AbsRepeatability ~ 1 + CLD + SCD + CSD*Config + HTD*Config + EHD*Config
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Figure C-34: Δabsolute repeatability regression model for MSER on scene sport. 

 

Figure C-35: Δabsolute repeatability regression model for MSER on scene street. 

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline 6 217 83 1362 136 530 -1698 602 971 790 -1399 192
noise 119 296 -687 1917 -34 729 273 887 -490 1076
distortion -21 306 -1098 2056 163 816 623 833 186 1110
aperture -362 228 -6223 2069 3984 1104 1380 907 961 968
HDR 199 307 -1060 1915 720 801 646 869 -1480 1168
bloom -83 257 -285 1784 530 800 905 817 -971 1053
blur 0 275 -6373 2380 2505 1111 2008 909 91 987
SSAA -121 303 426 1878 -409 761 310 850 -73 1075
MSAA 46 298 -430 1983 85 754 401 882 -577 1102
FXAA -47 293 -2282 2022 531 779 1080 897 -310 1115
SMAA 118 297 -478 1940 -54 812 262 853 -662 1203
AToC 102 295 -976 1935 397 726 771 918 -1138 1099
objects high 83 297 -843 1907 160 726 507 855 -650 1055
no objects -379 236 -5426 1948 3102 1172 1676 784 645 1100
modelling errors 30 299 -735 1895 -241 795 186 861 155 1131
texture low -396 275 -8091 2385 4819 1085 3383 887 -380 940
surface low -393 230 -8455 2623 6050 1356 3069 815 -145 914
AF 14 303 -212 1913 -37 806 328 806 -294 1094
shadow 423 295 -3478 2257 970 980 -2505 908 3227 963
shadow filter 185 285 -2978 2248 668 1065 95 1039 290 1023
SSAO -40 300 372 1902 -630 857 401 844 -296 1112
Legend: Not-significant p < .05 p < .01 p < .001

Linear regression model: AbsRepeatability ~ 1 + EHD + CSD*Config + CLD*Config + SCD*Config + HTD*Config
Intercept CSD CLD SCD DCD HTD EHD

Δabsolute repeatability, MSER, sport

Configuration b SE b SE b SE b SE b SE b SE b SE
baseline -27 299 -3239 646 305 1213 62 35 768 209
noise -144 397 551 1648
distortion -434 394 1627 1663
aperture 224 335 -1328 1478
HDR -50 397 196 1650
bloom -237 345 936 1468
blur -593 409 1933 1715
SSAA 189 395 -760 1639
MSAA -79 396 315 1644
FXAA -472 400 1762 1662
SMAA -456 402 2211 1669
AToC -23 394 77 1635
objects high -57 395 215 1640
no objects 322 343 -1824 1456
modelling errors -129 397 571 1651
texture low -733 412 2591 1744
surface low -392 369 1831 1679
AF 409 396 -1571 1645
shadow 65 402 -146 1660
shadow filter -30 395 99 1643
SSAO -968 397 4572 1647
Legend:

EHD

Not-significant p < .05 p < .01 p < .001

Intercept CSD CLD SCD DCD HTD

Δabsolute repeatability, MSER, street
Linear regression model: AbsRepeatability ~ 1 + CLD + DCD + EHD + SCD*Config
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