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Abstract

The application of momentum balance over a planar control volume is ubiquitous in experimental fluid
mechanics. The classical formulation relies on an assumption of two-dimensional flow which is routinely
violated in turbulent or transitional flows. The additional terms required for an exact momentum balance
are evaluated herein. It is shown that the divergence-free condition on the velocity field in incompressible
flow may be invoked to account for a subset of the additional three-dimensional terms, enabling an increase
in accuracy. The derived formulation is verified using instantaneous and mean planar control volume load
estimations on direct numerical simulation and experimental particle image velocimetry data for flow over
a cylinder in a turbulent wake regime. The main result is the demonstration of the significance of the area
integrals involving out-of-plane velocity and gradients on the instantaneous load estimates. The findings
highlight a possible cause of difficulties in obtaining consistent estimates of instantaneous sectional loads
for three-dimensional flows using control volume methods, and provide guidelines for minimizing method-
ological or user dependant errors in experiment.

1 Introduction

The measurements of flow-induced loading is a fundamental component of aerodynamic testing, as the re-
liable estimation of structural loads is of primary interest for engineering design. There are three common
approaches to measuring loads, namely, (i) full-body, direct measurements with a force balance, (ii) integra-
tion of surface stresses (i.e., pressure and/or wall shear stress), and (iii) analysis of field measurements, e.g.,
control volume (CV)-based methods, (Unal et al., 1997a; van Dam, 1999; Rival and van Oudheusden, 2017).
Each approach can offer an advantage in simplicity or accuracy depending on the experimental context, and
each poses specific challenges and limitations. The present study is focused on load estimation from CV
analysis.

A large number of formulations are possible based on classical CV analysis. For instantaneous loading
estimates, time-resolved velocimetry is generally required in order to evaluated the unsteady terms within the
volume. Analytically, the simplest method is the classical integral momentum balance, (Unal et al., 1997a),
where the pressure term is typically estimated from pressure fields obtained using measured velocity fields
(e.g.,(Unal et al., 1997a; van Oudheusden, 2013)). If near-wall velocity data is missing or significantly
erroneous and the flow is incompressible, a derivative-moment transform may be applied to the unsteady
volume integral term to transform it into a contour integral (Wu et al., 2005); however, the resulting unsteady
term demands increased spatial resolution to maintain accuracy (Mohebbian and Rival, 2012). These two
formulations for instantaneous load estimation may be widely grouped as integral momentum equation
approaches, and have been applied in numerous studies (Unal et al., 1997b; van Oudheusden et al., 2006,
2007; Kurtulus et al., 2007; Spedding and Hedenstrom, 2009; David et al., 2009; Ragni et al., 2012; Kotsonis
et al., 2011; Tronchin et al., 2015; Villegas and Diez, 2014; Gharali and Johnson, 2014). Alternatively,
loading estimates may be derived from the concept of hydrodynamic impulse (Lin and Rockwell, 1996;
Poelma et al., 2006), which eliminates the need for pressure field estimates at the expense of vorticity field
estimates (Saffman, 1992; Noca et al., 1999a; Wu et al., 2006; Kriegseis and Rival, 2014; DeVoria et al.,
2013; Rival and van Oudheusden, 2017; Guissart et al., 2017; Graham and Babinsky, 2017; Limacher et al.,
2018). Recently, another alternative to the classical integral momentum balance has been developed which
utilizes the concept of the Lagrangian drift volume to estimate unsteady loads for added mass dominated
flows (McPhaden and Rival, 2018).

Despite the wide-spread use of CV-based methods for load estimation, concrete experimental method-
ology guidelines remain largely unresolved. As a consequence, the source of bias and random errors in load
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estimations is not always clear (van Dam, 1999; Bohl and Koochesfahani, 2009; Kurtulus et al., 2007; van
Oudheusden et al., 2007). In contrast, verification studies for CV-based instantaneous and mean load esti-
mations from two-dimensional direct numerical simulations (DNS) give close agreement with solver values
(David et al., 2009; Noca et al., 1999b; Mohebbian and Rival, 2012). In the present study, a general CV
formulation for three-dimensional flows is considered and the effect of flow three-dimensionality is investi-
gated. The exact formulation for sectional load estimation on a planar CV is derived, and the dependency
of the associated instantaneous and mean load estimates on flow three-dimensionality is deduced for a syn-
thetic PIV data set sampled from DNS data and a matching experimental PIV experiment for cross-flow
over a circular cylinder.

2 Conservation of linear momentum for a planar CV

The conservation of linear momentum over V C IR? for a stationary, non-deforming CV in a single-phase
flow with velocity u(x,7) = (u(x,t),v(x,t),w(x,t)), density p(x,¢) and pressure p(x,7) fields is:

Y Fev = % <//Vpudv> +/qu(u.dA) (1)

where V denotes the fluid volume and  denotes the boundaries of V. For the case of a single stationary
body inside the CV, the force vector F = (F(t),F,(t),F.(t)) acting on the body is:

_% (//Vpudv>—//Spu(u-n)dA—//SpndA+//S('c-n)dA—///fodV @

where f denotes an arbitrary body force, T denotes the viscous stress tensor field, and S now denotes the
outer boundary of the doubly-connected domain, V.

For the momentum balance on a two-dimensional plane, it does not suffice to only evaluate equation 2
with the projected two-dimensional flow. Instead, area integrals of the three-dimensional terms are necessary
for momentum conservation. This implies that volumetric measurements surrounding an immersed body
are required for sectional load estimation (Equation 3), which may not be feasible in practice. However,
for planar, two-component measurement configurations in incompressible flow, the three-dimensional terms
can be made partially tractable through the application of the divergence-free constraint on the velocity field
(Equation 4). To benchmark the accuracy of different possible measurement methodologies, the following
three formulations are compared in the present study.

= (//PudA) fpu u-n dl—// <pw +pu> dA—jl{pnler//Su(aa?;ﬂwV <aav;>)dA G
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Equations (3) and (4) are referred to as the exact and approximate formulations, respectively, and represent
volumetric measurement and planar measurement in incompressible flow. Equation (5) is representative of
the classical planar CV formulation.

3 Test Cases

Two data-sets were employed of flow over a circular cylinder in a turbulent vortex shedding regime, namely,
three-dimensional DNS results at Re = 1575, and experimental, planar, two-component data for Re = 1900.
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Figure 1: (a) DNS computational mesh configuration and (b) experimental PIV measurement configuration.

Details of the DNS are included in McClure and Yarusevych (2017b) and the computational mesh is
shown in Figure 1a. The DNS data were sampled in two ways to facilitate the analysis. First, a fully
three-dimensional data set was sampled, where both pressure and velocity fields from the DNS results were
directly interpolated onto a three-dimensional Cartesian grid with spatial resolution Ax/D = 0.01 and tempo-
ral resolution f,.,/ fs = 217.4, where D and f; are the cylinder diameter and the vortex shedding frequency,
respectively. Second, a noisy planar data set was constructed, where the velocity data were interpolated
onto a two-dimensional grid with spatial resolution Ax/D = 0.03 and temporal resolution f,.,/fs = 27.3,
and synthetic errors were added to the interpolated velocity fields according to the two parameter model
presented in McClure and Yarusevych (2017a). The model prescribed error proportional to the local norm
of the velocity gradient tensor, up to a maximum standard deviation of 0.25U,, along with flow independent
error, with a standard deviation of 0.036U,. The errors were generated to be correlated locally in space,
modelling the effect of PIV interrogation window overlap of 75% (Azijli and Dwight, 2015).

The experimental PIV measurements were obtained in the water flume facility at the University of Water-
loo (figure 1b) on a 25.4mm inch diameter acrylic cylinder model at Re = 1900. The PIV system comprised
of a single 1024 x 1024 px Photron SA4 camera, equipped with a 50mm Nikkor lens with the numerical
aperture set to f/5.6, and a Photonics high repetition rate Nd:YLF laser. The flow was seeded with 10um
diameter hollow glass spheres, with specific gravity of 1.05. The particle images were acquired in single-
frame mode at f,., = 100Hz (147 f5), and were processed in DaVis 8.4 using an iterative, multi-grid cross-
correlation algorithm with window deformation. The final interrogation window size was 16 x 16 pixels,
overlapped by 75%, and yielded a vector pitch of approximately Ax/D = 0.03.

The Poisson equation (6) was employed to estimate the pressure fields (e.g., Gurka et al., 1999) from
both the PIV and simulated planar velocity fields with noise extracted from the DNS data set.

D
Vzp:V.<pDI:+yV2u> in S,

D
Vp-n:<—le:+,uV2u>-n on I3 (6)
1 1
pzipUg—ip(ﬁ-ﬁ—i—u'-u') on T,

The source terms and pressure gradients in equation 6 were evaluated with a central difference approxima-
tion. Neumann-type boundary conditions were prescribed at the outflow domain boundary and the cylinder
surface, and an extended form of Bernoulli’s equation (de Kat and van Oudheusden, 2012) was used on the
inflow and top/bottom side boundaries, where flow was approximately steady and irrotational. The relative
spatial resolution of the PIV data is Ax/A, = 13.6 where A, is twice the shear layer thickness, and the PIV
data were down sampled to a relative temporal resolution of f,.,/ fs = 13.4. These resolutions coincide with
optimal ranges identified in McClure and Yarusevych (2017b) that minimize the propagation of random and
truncation errors to the pressure solution without the use of low-pass filtering techniques.

4 Results

Figures 2(a) presents instantaneous snapshots of the pressure field obtained directly from DNS (figure 2a),
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Figure 2: (a) Instantaneous pressure fields p = 2p/pUg for direct interpolation of the DNS solver pressure,
Poisson solution on the down sampled DNS velocity fields with synthetic noise, and Poisson solution on the
PIV velocity fields. Transverse profiles of (b) mean pressure, and (c) RMS of the pressure fluctuations at
multiple streamwise locations.

the Poisson solution on the noisy planar DNS (figure 2b), and the Poisson solution on the experimental
planar PIV data (figure 2¢). The instantaneous fields indicate qualitative similarity between the cases, and
highlight that the synthetic noisy DNS data serves as a reasonable approximation of experiment. Figures
2(b) and 2(c) plot transverse profiles of the mean and RMS pressure at several streamwise locations. The
results show a good agreement between the three cases, indicating the minor Re difference does not have a
significant effect on the comparison between the DNS and experimental data. Deviations in the estimated
pressure relative to the DNS solver pressure are attributed primarily to omitted three-dimensional terms in
the Poisson source term (Violato et al., 2011; Ghaemi et al., 2012; McClure and Yarusevych, 2017b), in
regions of pronounced three-dimensional flow (£ = x/D > 1.5). As well, random errors inflate the pressure
RMS statistic near the cylinder wall boundary, due to the sensitivity of the Neumann boundary condition.
The errors in the estimated pressure field are higher near the cylinder wall boundary for the noisy planar
DNS data than the errors encountered in experiment (figure 2b). This is due to the synthetic error model,
which concentrates the synthetic PIV errors in high gradient near-wall regions. The prescribed maximum
standard deviation of the errors of 0.25U in the near-wall region over predict the error actually realized in
the current experiment.

Equations (3)-(5) predict the sensitivity of the approximate (4) and classical (5) momentum equation to
flow three-dimensionality. Analysis of the three-dimensional velocity statistics from DNS indicates the onset
of significant three-dimensionality beyond £ > 1.5. Hence, to clearly demonstrate the three-dimensional
effect on instantaneous loading estimates, figure 3 presents the time history of the sectional drag and lift
coefficients obtained by applying the exact (3), approximate (4), and classical (5) formulations to the direct
DNS data set for two different CV sizes. The first CV (figure 3a, Lcy = 4.0), includes regions of significant
three-dimensional flow, in contrast to the second CV (figure 3b, Lcy = 1.9), which includes only regions of
predominantly two-dimensional flow. Here, L¢y is the side length of the square CV, which is centred at the
cylinder centre. The results demonstrate that the exact CV formulation (3) is the correct linear momentum
conservation law for the planar CV, with force estimates matching the surface integrated results from the
DNS solver for both CVs. On the other hand, when three-dimensional flow regions are present within the CV
(figure 3a), simplified formulations (4) and (5) can lead to significant errors in instantaneous force estimates.
Specifically, the classical formulation (5) yields significantly erroneous instantaneous results for both the lift
and drag forces, and while the use of the approximate form (4) yields some improvement over the classical
formulation, significant instantaneous deviations remain. As expected, when the CV is constructed to bound
minimal flow three-dimensionality (figure 3b), the approximate and classical formulations approach the
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Figure 3: Time evolution of CV sectional drag coefficient Cp(t) = 2F,(t)/pU3D and sectional lift coeffi-

cient C;, = 2F,(t)/pUZD estimates using equations (3), (4), and (5) on the DNS data compared to surface
integrated loads from the DNS solver: (a) corresponds to Ley = 1.9, and (b) corresponds to Ly = 4.0.
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Figure 4. RMS lift forces evaluated using equations (3), (4), and (5) for variable CV size (L¢y) for (a) direct
DNS and noisy, planar DNS at Re = 1575 and (b) PIV experiment at Re = 1900.

DNS reference data as well. Note that the pressure term for the direct data set used in figure 3 remains
sampled from the exact DNS solver pressure, such that all deviations present are solely due to the three-
dimensional momentum flux terms in equation (3) in this case.

To more comprehensively characterize and quantify the accuracy of the CV formulations in the presence
of three-dimensional flow and experimental errors, the CV size (L¢y) is systematically varied, and loading
estimates obtained by applying the different formulations to the test data sets are compiled. All estimates
from DNS are compared to the surface integrated forces from the DNS solver, while all estimates from the
PIV experiment are compared to sectional forces derived from force balance measurements and spanwise
correlation measurements in the same facility (McClure and Yarusevych, 2016).

Figures 4(a) and 4(b) compare the results for the RMS lift statistics (C;) for DNS and experimental
data, respectively. The results from the exact formulation based on three-dimensional DNS data match
the direct force results. Furthermore, all formulations using the exact data exhibit close agreement to the
DNS solver RMS lift if the CV size is small (figure 4a), but the approximate and classical formulations yield
progressively increasing deviations in the RMS lift statistic when L¢y starts to encompass three-dimensional
flow regions, with errors reaching up to 1000% for the largest CVs. In the cases of the planar DNS and PIV
data, which include errors in the velocity fields, the propagation of random error from the velocity fields
through the CV formulation is also significant, even for small CV sizes. The influence of the random error
on the instantaneous force estimates motivates the use of zero-phase temporal low-pass filtering for each
term in the formulation for the estimations from the PIV data set (figure 4b). Here, a low-pass, equiripple
finite-impulse response filter with a pass band at 1.5 fg and a 60dB stop band at 15 f5 is employed, and the
results in figure 4(b) show the improved accuracy of the estimates once the fluctuation energy at the vortex
shedding frequency is isolated. Note that the high errors displayed here are due in part to the relatively
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Figure 5: Mean drag forces evaluated using equations (3), (4), and (5) for variable CV size (Lcy) for (a)
direct DNS and noisy, planar DNS at Re = 1575, and (b) PIV experiment at Re = 1900.

low magnitude of the fluctuating lift coefficient, where the lift force is determined through a cancellation of
much larger magnitude transverse momentum terms and unsteady momentum terms for large CVs. Hence,
for different flow cases, the three-dimensional terms may appear less significant simply due to their relative
magnitude, such as in the case of moving bodies, where lift coefficients commonly reach up to 1.0-2.0.

Figure 5(a) plots estimates of mean drag for the three-dimensional and planar DNS data sets, while
figure 5(b) plots mean drag estimates from the PIV experiment. In both the numerical and experimental data
sets (figures 5a,b), the classical and approximate CV formulations show dependency of the mean drag on
the CV size, while the exact formulation is insensitive to CV size and exhibits universal agreement with the
DNS solver drag (figure 5a). The disagreement of the approximate and classical formulations with the DNS
solver drag is primarily a matter of statistical convergence. In particular, the random errors induced by the
three-dimensional terms are so significant relative to the mean drag (> 100%C)p), that the estimate of the
mean does not achieve a sufficient convergence over the time sample of DNS data, which is accounted for
in the estimated error bars. For the noisy planar DNS data, the mean drag is underpredicted compared to the
exact DNS data set, even for small CV sizes (figure 5a). This is ascribed to truncation error accumulation
due to the lower spatial resolution employed. A similar trend is seen for the experimental case (figure 5b);
however, the disparity between the mean drag estimates becomes more pronounced with increasing CV size
compared to the numerical case. In the experimental case, the means are better converged due to a longer
time sample compared to the DNS. Here, the disagreement with the force balance data suggests a high
sensitivity of the CV force estimates to slight flow three-dimensionalities present in experiment.

5 Conclusion

Loading estimates based on the integral momentum equation over a planar CV are tested for their sensi-
tivity to three-dimensional flow conditions for a cylinder wake flow. In comparison to the classical, two-
dimensional formulation (5), the full three-dimensional formulation (3) includes area integrals involving the
out-of-plane velocities and gradients associated with the out-of-plane momentum flux and viscous forces.
The formulation is validated on a prototypical cylinder wake flow in a turbulent shedding regime using a
combined analysis of DNS and experimental PIV data. The results reveal the significant implications flow
three-dimensionality has on both instantaneous and mean sectional load estimation methodologies common
in aerodynamic testing. Failure to account for the three-dimensional terms leads to instantaneous and mean
errors on the order of 50%, and are shown to be the cause of loading estimates sensitivity to CV location.
Invoking a divergence-free condition for incompressible flow allows the estimation of a subset of the ex-
panded three-dimensional terms, yielding a minor increase in accuracy over the classical two-dimensional
formulation for the test case considered. The cumulative results suggest that, when only planar velocity
measurements are possible, it is best to strategically select a CV to avoid encompassing three-dimensional
flow regions, employ temporal filtering to mitigate random error propagation, and use the approximate CV
formulation (4) to enable instantaneous loading estimates with the highest precision. Regions of three-
dimensional flow can be identified in planar measurement, for example, through a comparative analysis of
the planar divergence statistics over the domain.
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