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Abstract 

Experimental and numerical analyses were performed to resolve the complex 3D deformation and periodic 

shape oscillations of deformable air bubbles in water (~ 4−5 mm diameter). Characterizing the temporal 

variation of the surface-to-volume ratio was the primary interest of this investigation. It is shown that the 

surface-to-volume ratio oscillates with two dominant frequencies (or modes) called fR and fS modes in the 

following. In the literature, the oscillation modes are derived from 2D data by evaluating the temporal 

variation of the elliptical axes of the deformed bubbles. Significant differences can be detected between 

the literature values and our 3D data, suggesting that, for bigger bubbles, a 3D evaluation becomes 

necessary to avoid bias errors.  

 

1 Introduction  

Gas bubbles are frequently used in industry for two reasons. First, bubbles transfer gaseous chemicals into 

a liquid medium so that the desired chemical reactions can take place. Second, they enhance the mixing by 

generating turbulence. Mixing is very important for chemical reactions, as molecules of different species 

must come into contact for the reaction to occur. In most technical applications, bubbles of diameter  

1–10 mm are used with up to 10% volume fraction. The transfer of chemicals from the bubbles into the 

liquid depends strongly on the flow state of the surrounding media (laminar/turbulent). The size of the 

bubble is also an important parameter, since larger bubbles deform in a complex manner (Clift 1978). This 

results in a variation of the surface area, which can have an effect on the transfer of chemicals through the 

interface. The wake structure of the bubbles, and thus the generated turbulence level, depends on the size, 

shape and oscillatory modes of the bubbles. In order to understand how the mass transfer depends on the 

flow state and the bubble deformation, it is necessary to investigate the details of the 3D bubble dynamics 

in a turbulent flow. 

The specific aim of this work is to experimentally and numerically determine and characterize the shape 

oscillations of large bubbles. Several previous works have been published about the studies of freely rising 

bubbles, such as Lamb (1932), Tsamopoulos (1983) and Wang (1996). However, those examinations 

mainly focus on small bubbles. In this case, the deformations are of small amplitude and the oscillations 

can be described in terms of spherical harmonics. If larger bubbles are considered, the amplitude of the 

oscillations lead to non-linear effects, as the inviscid frequency shift described by Tsamopoulos (1983), 

for instance. Hartunian and Sears (1957) studied large scale lateral motion of bubbles, following mainly 

zig-zagging and spiraling paths, and suggested that an interaction between capillary shape oscillations and 

the translation of the bubble is responsible for the behavior. Meiron (1989), on the other hand, did not find 

such interaction in his numerical results.  

It is evident that the shape of a bubble fluctuates as a result of the turbulent shear and pressure forces of 

the surrounding liquid. In addition to that, the coupled vortex shedding behind rising bubbles leads to 
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lateral motion of the bubbles, inducing drag and lift forces on the bubbles. This was also observed by Fan 

and Tsuchiya (1990), who reported a shape oscillation with a frequency of the lateral motion. To describe 

these oscillations in the literature, two different modes are discussed: the oscillations in the equivalent 

major axis, named mode 2,0; and of that in the axes ratio, as mode 2,2.  

In Lunde and Perkinson (1997), a simple model is described linking the shape oscillations to capillary 

waves travelling on the bubble surface. Meiron (1989) noted that bubble shape oscillations have the 

character of progressive waves. The 2,0 waves are moving from the front to the rear stagnation points 

(from pole the pole), and mode 2,2 waves are travelling around the equator of the bubbles. In Fig. 1 a 

sketch visualizing the two modes is shown. It is further described in Lunde and Perkinson (1997) that the 

modes correlate with the bubble volume and deformation. The frequencies of the oscillations can be 

formulated in terms of the spherical equivalent diameter 2rε and the ellipticity ε. The speed of the capillary 

wave 𝐶 can be calculated by 𝐶 =  √2𝜋𝜎 / 𝜆𝑛𝜌𝐿. In this formula, 𝜆𝑛 denotes the wavelength, with the 

mode n around the bubble circumference, 𝜎 the surface tension, and 𝜌𝐿 the density of the liquid. The mode 

2,0 and 2,2 frequencies can be calculated according to Lunde and Perkinson (1997) as follows: 
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The oscillation frequencies for small bubbles with a diameter up to 2–3 mm are well reported in the 

literature, but the deformation dynamics of larger bubbles is less well documented, see Lunde and 

Perkinson (1997) or de Vries (2002). Bubbles with a larger diameter become unstable and start to deform 

in such a manner that it is more difficult to measure or simulate their dynamics and surface motion. The 

aim of this work is to analyze the deformation dynamics of larger bubble with a diameter between  

4–5 mm by using a novel 3D-reconstruction technique and direct numerical flow simulation. Thanks to 

the 3D analysis approach, it becomes possible to analyze the surface-to-volume ratio of the bubbles. The 

surface-to-volume ratio covers 3D effects and is in particular relevant for the estimation of the mass 

transfer from the bubble into the liquid medium. It will be shown that the surface-to-volume ratio is a 

good measure to detect and characterize periodic bubble deformations.  

 

 

2 Experimental Setup 

The experiments were conducted in the countercurrent channel (see Fig. 2) at the Universität der 

Bundeswehr in Munich. Four LaVision Imager Pro HS cameras were used to record data at up to 0.6 kHz. 

In order to better recognize and evaluate the bubble, LED backlights were installed on the opposite side of 

the cameras. The commercial software DaVis from LaVision was used for the recording. Since the 

bubbles can move freely over the whole channel, a large measurement volume is desired. However, as a 

good reconstruction result requires a high spatial resolution, the volume has to be rather small to resolve 

 

Figure 1 Sketch to visualize the mode 2,0 and 2,2 waves. The 2,0 waves are moving from the front to the rear 

stagnation points (from pole the pole), and mode 2,2 waves are travelling around the equator of the bubbles. 
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small amplitudes of the shape oscillations. Thus, a compromise was found with a 20×20×20 mm³ volume. 

The measurement volume was located in the middle of the channel to avoid wall interactions and 

boundary layer effects.  

To keep the bubble in this measurement volume for a sufficiently long period of time, the flow speed in 

the test section was aligned with the raising speed of the bubbles by using an electronic control valve at 

the lower end of the channel. To ensure a homogeneous inflow with desired turbulent velocity 

fluctuations, a turbulence generator was installed above the measuring section. The turbulence generator 

consists of solid particles with a specific size, shape, and volume densities that were arranged in a regular 

manner by using thin yarn. Thanks to the flexibility of the yarn, the particles can oscillate around their 

equilibrium location under the action of the flow. In Haase et al. (2017), different types of particle grids 

were characterized in detail. For the experiments in this paper, a grid with 5 mm ellipses and 10% by 

volume was used. These grids can be used to create turbulences similar to bubbly swarms in the near field 

behind the particles. However, to ensure comparability with the numerical results, the measurement 

volume was placed roughly 50 mm behind the grids. Here the turbulence intensity is slightly lower and 

more homogeneous, but the statistical properties better match the conditions of the numerical flow 

simulations.  

For the oscillation measurement, 4 mm bubbles are used. The bubbles were created 0.5 m below the 

measurement volume with appropriate nozzles. The size of the bubbles is highly reproducible. For each 

measurement, several bubbles were released in the channel with at least 50 bubble diameters between 

them to avoid wake interactions. As already mentioned, to make a longer recording in the 3D-volume 

possible and to generate the turbulence with the particle grids, a counterflow was generated such that the 

velocity of the liquid is comparable with the vertical mean motion of the air bubbles. With a recording 

frequency of 600 Hz, the recording allows to resolve oscillations up to 300 Hz. 

 

 

 

The 3D-surface of the bubble was reconstructed based on the shadow images of four high speed cameras 

with a MLOS algorithm, as it is implemented in the commercial software DaVis. The MLOS algorithm 

multiplies the line of sights of each individual camera view to project the surface of the bubble onto the 

3D space. With a Matlab-Code, ellipses were fitted to the data to measure the shape and calculate the 

surface area. In Fig. 3 (left) an example of a reconstructed bubble is shown.  

To obtain a comprehensive picture of the complex phenomenon, the extensive experimental study is 

complemented by Direct Numerical Simulations (DNS), resolving the full spectrum of turbulent scales. 

This facilitates a direct comparison with experimental data, but also assists the physical interpretation. The 

 

 
 

 
Figure 2 Schematic diagram of the countercurrent channel (left). The flow velocity is regulated by an electric valve 

at the end of the measuring section. In order to generate a continuous flow, the fluid is pumped back into the water 

basin. The turbulence generators are located between the measuring section and the nozzle. Schematic representation 

of the camera setup (right) with controlled background lighting. White LEDs are used as backlight for better contrast 

in the shadows. 
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state-of-the-art two-phase flow solver PARIS (PArallel Robust Interface Simulator), described by Ling et 

al. (2017) and Tryggvason et al. (2011), implements the one-fluid formulation of the unsteady 

incompressible Navier-Stokes equations including gravitational and capillary forces. Two immiscible 

fluids are represented by a jump in density and viscosity. Propagation of the phase interface is implicitly 

calculated by an advection equation for the cell-based volume fraction of one of the phases. Cell-averaged 

fluid properties are then obtained from an arithmetic mean for density, and a harmonic mean for dynamic 

viscosity. In terms of in-cell interface treatment, advanced numerical techniques are applied: a geometrical 

Volume-Of-Fluid method including piece-wise linear interface reconstruction and a height function 

method combined with continuous surface force balancing for interface curvature determination. 

 

  
 

Figure 3 Highly deformable bubble in both experiment (left) and numerical simulation (right). In the simulation the 

coherent structures in the bubble wake are also visualized by using the Q-criterion. 

 

 

3 Results and Discussion 

Since the tomographic measurement technique allows only for a small field of view due to the spatial 

resolution constrains outlined above, the rising path itself cannot be fully resolved in this experiment. 

However, at least half of the spiraling motion can be seen in the recorded data. Nevertheless, in this 

analysis only the deformation is considered and compared with the numerical results from the simulation.  

According to Lunde and Perkins (1997) it is expected that bubbles with a radius of 4 mm exhibit 

frequencies in the range of 41 Hz for the f2,0 (oscillation of the major axis) and 28 Hz for the f2,2 

(oscillation in the axis ratio). The f2,2 frequency from the shadow images used for the 3D reconstruction 

was evaluated for comparison. The result is f2,2 ~ 25 Hz, which is in acceptable agreement with the 

literature value taking the differences of the boundary conditions into account. Thanks to the 3D 

reconstruction and the simulation, it is possible to investigate the surface-to-volume ratio in order to gain a 

better understanding of the complexity of the 3D deformation.  

Figure 4 shows the surface-to-volume ratio calculated from the 3D measurement (left image) and the 

numerical simulation (center image) for comparison. Two dominant frequencies can be clearly seen in the 

measured data, called fR and fS. fR describes the frequency of the superimposed oscillation (mean value of 

the individual frequencies), and fs the frequency of the envelope. By considering the specific frequencies 

of the bubble deformation modes that describe the lateral f2,0 and axial deformation f2,2 oscillations, we can 

write fR = (f2,0 + f2,2)/2 and fS = |f2,0 – f2,2|/2. A summary of all frequencies for the measured bubble 

diameters is given in Tab. 1.  

The measurement clearly shows that two frequencies dominate the deformation dynamics for 4 mm 

bubbles: a low one with fS =13 Hz, and a high one with fR = 48 Hz. The high frequency is possibly 

induced by capillary waves, while the low frequency seems to correlate with the periodic motion of the 

bubble. The simulation for 5 mm bubbles shows a dominant frequency around 25−30 Hz, which matches 

nicely the theoretical fR value. A dominant frequency of lower value is difficult to estimate from Fig. 4 

(center). However, in the right graph the components of the trajectory of the bubble are displayed and it is 

visible that the bubble performes a zigzag-like motion with a frequncy of around 5 Hz. This frequency 

agrees well with the theoretical fS value, but it has to be mentioned that the cause of this oscillation is not 
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the capilary wave considered in the theory. The problem is that the deformation induced by the capillary 

wave and the deformation induced by the periodic bubble path (zigzag, or spiral motion) cannot be 

distinguished from one another.  

Another interesting observation is that a correlation exists between the shape deformation due to the 

capillary waves and the path oscillations. This is indicated by Rꞌ in Fig. 4 (right), which fluctuates with a 

frequency of around 30 Hz. The high frequency oscillation of Rꞌ, which is superimposed on the low 

frequency path oscillation of the bubble, is possibly a result of the varying aerodynamic forces on the 

bubble due to high frequency geometry changes induced by the capillary waves. The analysis shows the 

potential of the combined experimental and numerical analysis. However, to confirm the physical 

interpretations, more measurements and simulations are required to resolve the physical interactions in 

detail.  

 

   
 

Figure 4 Surface-to-volume ratio measured from the 3D reconstruction (left) and the simulation (center). On the right 

side the path oscillations of the bubble split in its components derived from the simulations. While X, Y, Z are the 

coordinates bubbles center of mass (right) in space, 𝑅 = √𝑋2 + 𝑌2 + 𝑍2 and 𝑅′ = 𝑅 − 𝑅filtered. 
 

 

 

4 Conclusions 

With the introduced method for a 3D-shape reconstruction and numerical simulations, it was possible to 

resolve the complex deformation dynamics of bubbles with a diameter of 4 and 5 mm due to capillary 

waves and aerodynamic forces.  

From our experiments and simulations, it is possible to conclude that, for highly deformable bubbles, two 

dominant frequencies exist (fR and fS), which interact with each other in a complex manner. The 

decomposition of the modes yield two frequencies f2,0 and f2,2, which can be associated with capillary 

waves. Moreover, it can be concluded from the numerical results that the capillary waves induce 

Deq (mm) f2,0 (Hz) f2,2 (Hz) fR (Hz) fS (Hz) 

literature/theoretical     

4.0 41 28 34.5 6.5 

5.0 29 20 24.5 4.5 

experimental     

4.0 61 35 48 13 

 

Table 1 Comparison of the different frequencies from the reconstruction (exp.), and theoretical calculation taken 

form literature. For the first literature/theoretical values  fR  and fS are calculated from f2,0, f2,2 (f2,0, f2,2  are  calculated 

with eqn. 1 for the specific diameter). The experimental f2,0 and f2,2 values are calculated from fR and fS (fR and fS are 

derived from the measurment, see Fig. 4 left). 
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aerodynamic forces as they alter the shape of the bubble and thus the aerodynamic loads. This in turn 

alters the bubble path with high frequency. The high frequency path oscillations caused by the capillary 

waves are superimposed on the low frequency motion (zigzag or spiral) of the bubble.  

The analysis shows that the presented 3D approaches are capable of resolving the 3D bubble deformations 

with high spatial and temporal resolution. The experimental results agree fairly well with direct numerical 

simulations, taking the different bubble size into account.  

In the future, this experimental approach will allow for investigating the complex interaction between the 

bubble path, the vortex shedding, and the shape oscillation in a turbulent flow field in more detail, so that 

a deeper understanding of the physical phenomena can be obtained. In combination with the direct 

numerical simulations, the small details can also be resolved, which are not accessible with experimental 

techniques, or quantities which cannot be measured. 
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