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Executive Summary

This thesis proposes novel methods to use Floating Car Data (FCD) for applications in

traffic speed estimation and prediction. Three approaches are developed and evaluated

using real FCD collected by a large fleet of vehicles.

The first method targets traffic speed estimation on freeways. It describes how to process

raw and sparse trajectory data using empirical traffic features described in the Three-

Phase theory to compute a continuous traffic speed estimate in space-time. Therefore,

first the three traffic phases are reconstructed, and second, traffic velocities inside each

phase domain are estimated. In an evaluation with 101 congestion patterns the method

achieves higher accuracies than comparable state-of-the-art approaches. An efficient

implementation using the Fourier transform as well as a high degree of flexibility and

robustness contribute to its practical utilization.

The second method seeks to provide short-term congestion front forecasts. Continuous

speed information is analyzed for current hazardous congestion fronts. Flow data and

speed information in the proximity of the fronts are fused and processed with an ana-

lytical front propagation model. The results of a comparison of several variants of the

method and a naive model show that one of the proposed model variants forecasts more

accurately in a 10-minute horizon than all others.

The third method focuses congestion in urban road networks. Using one year of FCD, a

small number of subnets showing regular congestion are extracted. A statistical analysis

of the congestion level inside these subnets reveals patterns of spatio-temporal conges-

tion. Based on these patterns, a network-wide congestion forecast method is developed

and applied. Its higher accuracy compared to typical time series forecasts indicate that

these subnets serve as valuable features for prediction models to reflect the network-wide

status of congestion.
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Kurzzusammenfassung

In der vorliegenden Dissertation werden neue Verfahren für den Einsatz von FCD in

Anwendungen zur Verkehrslagenschätzung und -prognose beschrieben. Insgesamt drei

Ansätze werden entwickelt und mit den FCD einer großen Fahrzeugflotte evaluiert.

Die erste Methode zielt auf die Verkehrslageschätzung auf Autobahnen ab. Sie basiert

auf einer Verarbeitung von Rohdaten mit Hilfe von charakteristischen Verkehrseigen-

schaften in eine raumzeitlich kontinuierliche Repräsentation der durchschnittlichen Ver-

kehrsgeschwindigkeit. Dafür werden zuerst die drei Verkehrsphasen in Raum und Zeit

rekonstruiert und, in einem zweiten Schritt, die Geschwindigkeiten innerhalb der Phasen

abgeschätzt. In einer Evaluation mit über 101 historischen Stausituationen resultiert das

Verfahren in höheren Genauigkeiten als vergleichbare Methoden. Sowohl eine effiziente

Implementierung als auch ein hoher Grad an Flexibilität und Robustheit tragen zur

praktischen Anwendung des neuen Verfahrens bei.

Die zweite Methode zielt auf die Kurzfristprognose von Staufronten ab. Zuerst werden

raumzeit-kontinuierliche Geschwindigkeitsinformationen auf gefährliche Staufronten un-

tersucht. Danach werden Fluss und Geschwindigkeitsdaten in der Nähe dieser Fronten

mit einem analytischen Modell verarbeitet, um die Position der Staufronten für einen

kurzen Zeithorizont numerisch zu bestimmen. In einem Vergleich mit mehreren Vari-

anten zur Formulierung des Modells kristiallisiert sich eine Variante als vielversprechend-

ste für einen bis zu 10-minütigen Prognosehorizont heraus.

Die dritte Methode fokussiert Stau in urbanen Netzen. Zuerst werden auf Basis von

einem Jahr FCD Subnetze identifiziert, die sich regelmäßig stauen. In einer statistis-

chen Stauanalyse werden die Stauzustände innerhalb dieser Subnetze auf Beziehungen

und Muster untersucht. Basierend auf den resultierenden Muster wird ein netzweites

Prognosemodell entwickelt. Eine Evaluation zeigt, dass die Berücksichtigung des net-

zweiten Stauzustandes genauere Prognosen ermöglicht als eine rein lokale Betrachtung.

Das motiviert die Verwendung von speziellen Merkmalen, wie beispielsweise die Sub-

netze, für datengetriebene Verkehrsprognosen in urbanen Netzen.
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Chapter 1

Introduction and Motivation

Traffic congestion is a major problem for transportation networks all over the world.

The additional required travel time for road users and the need for buffer times due to

the unreliability of estimated arrival times constitute a significant waste of resources.

Moreover, due to an overall increase of travel time and acceleration processes, traffic on

severely congested roads is prone to cause higher emissions and to reduce air quality.

Therefore, it is of utmost importance to develop strategies that target the reduction

of traffic congestion. One strategy is to increase the road capacity by constructing

new roads, adding lanes to existing roads or re-designing given roads. While this is an

effective approach to relax traffic problems locally, it is costly, requires free space and

often happens at the expense of the environment. Another strategy is to use existing

roads more efficiently, i.e. to apply control measures that increase the throughput of the

traffic network. In order to do so, a variety of control tools such as Variable Speed Limits

(VSLs), dynamic traffic signal timing, dynamic shoulder use etc. are utilized. A third

promising approach is to distribute traffic demand over the network. Therefore, current

and predictive traffic state information or individual route recommendations harmonized

with the expected road utilization are delivered to the road users. Optimally, a part

of the road users reroutes, which relieves known bottlenecks. Despite its potential, the

effectiveness of this approach depends on several factors such as the driver’s willingness to

reroute, the quality of the traffic state predictions as well as the route recommendations.

These strategies face a similar fundamental problem: They require accurate information

about traffic conditions on the road in order to be effective. E.g. the construction of new

or broader roads needs to be based on the long-term analysis of traffic conditions in order

to enhance the capacity of the most severe bottleneck. Strategies that are supposed to

act in real-time require exact information about current and future traffic conditions in

order to perform well. Controlled traffic signals at intersections reduce overall waiting
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times most effectively if they know about the current queue lengths. A ramp-metering

system at freeways requires accurate short-term traffic state predictions in order to dose

the in-flow optimally. Furthermore, road users and traffic managers require traffic speed

predictions in order to estimate travel times along potential routes and determine routes

which optimize individual or collective goals.

Providing accurate traffic information is challenging. Up until the last years the most

common traffic sensors were stationary detectors such as inductive loops, which are

integrated into the road pavement. They sense passing vehicles and report high quality

data at short time intervals. Though, due to high costs of installation and maintenance

usually only main roads are equipped and distances between two sensors can exceed

several kilometers. In urban regions, the coverage with detectors and the access to data

is usually even more limited and varies from city to city. This sparsity of conventional

data and the resulting lack of accurate traffic information constitute a vast limitation

for many applications.

The development of cheap and efficient electronics during the last decades nowadays

also affects traffic engineering. New vehicles on the road are equipped with a multitude

of sensors and electronic components. They are globally connected using mobile phone

networks and, in the near future, will be connected via local data networks (Vehicle-to-

Everything (V2X)). These new technologies enable to collect sensor data, also called

FCD, from fleets of vehicles and utilize them for traffic engineering applications. Due to

ever-decreasing costs, the amount of collected and transmitted data is increasing every

year. Compared to stationary sensors such as inductive loops this new type of data has

several advantages. It is able to cover the entire road network instead of just pre-defined

locations. Furthermore, while detectors are usually configured to provide average traffic

quantities, data of individual vehicles allows to determine traffic conditions with a higher

accuracy than ever before. Therefore, the use of vehicle-generated data provides huge

potential for traffic engineering applications.

On the other hand, this type of data challenges existing advances in traffic state es-

timation and prediction. Since (for now) only data of a few vehicles is reported, the

usually considered macroscopic traffic quantities such as flow and density are not avail-

able. Moreover, the number of reporting vehicles on a road segment varies over time

and place. This demands a traffic state estimation method to be highly flexible with

respect to given sparse data.

Due to these reasons novel methods for traffic state estimation and prediction using

FCD need to be developed. Additionally, the potential of this technology for, yet,

non-monitored road networks needs to be assessed. This thesis is dedicated to these

objectives. Specifically, novel methods are presented that exploit the strengths of FCD
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Figure 1.1. Structure of this thesis

for various applications which enable traffic managers, control algorithms and travelers

to make better decisions and, finally, are supposed to contribute to the avoidance of

traffic congestion.

1.1 Research Objectives

Traffic state estimation and prediction is a broad field of research in traffic engineering

including a multitude of requirements and challenges for various scenarios. To deal with

all problems is out of scope of one dissertation. In this section three specific research

objectives are posed, which are highly relevant for traffic engineering, and which benefit

significantly from the usage of FCD (see Figure 1.1):

1. In comparison to minor roads, a congested freeway affects many travelers. Fur-

thermore, due to potentially high velocities many severe accidents occur on free-

ways. Accurate traffic information on freeways enable numerous applications such

as VSLs, ramp metering, congestion warnings and travel time estimates which

improve traffic safety, comfort and efficiency. Though, current estimation algo-

rithms are challenged by the sparsity of FCD and high dynamics of vehicle flow

in dense traffic conditions in time and space. The first objective is to develop a

practice-ready method that combines collected high-resolution FCD with current

traffic flow theory in order to estimate traffic speeds. It is supposed to be more



4 Introduction and Motivation

accurate than existing methods and consider practical issues such as efficiency,

flexibility and robustness.

2. For drivers, upcoming congestion fronts are dangerous hazards. In order to alert

the driver and increase their attention, (in-vehicle) congestion front warnings are

valuable information which enhance traffic safety and, due to fewer accidents,

improve traffic efficiency. Though, the provision of reliable warnings at the right

point in time is challenging. Reasons are the non-stationary character of congestion

fronts, the sparsity of data as well as the time that is required to acquire and process

measurements. In order to improve the position accuracy and provide warnings

ahead of time, short-term congestion front forecasts are required. Based on a

fusion of speed and flow data, the objective is to develop and evaluate a method

for short-term congestion front forecasts.

3. Due to the increasing urbanization of society the severity of traffic congestion in

urban road networks is getting increasingly relevant. Traffic flow dynamics in

urban networks differs substantially from dynamics on freeways such that many

existing methods can not be transferred. Challenging is that an urban network

consists of thousands of mutually connected (signalized) road segments, and until

recently, sensor data was vastly limited. Nowadays, with FCD, large-scale data for

urban road networks is available. The third objective is to study network-wide

congestion and to develop new tools for congestion pattern analysis and

prediction in urban networks.

1.2 Outline of the Dissertation

This work is structured in the following way. Section 2.1 presents the state of the art in

traffic flow theory on freeways and summarizes the road to modern traffic flow theory.

Next, an overview of current sensor technology including its strengths and limitations

is given in section 2.2. Section 2.3 reviews the state-of-the-art literature about traffic

speed estimation and prediction on freeways and urban networks and identifies research

gaps. Subsequently, the contributions of this dissertation are put in context with existing

works. Next, the available FCD collected from a fleet of vehicles which is used for method

development and evaluation throughout this dissertation is introduced in chapter 3.

The subsequent three chapters deal with the three research objectives. Chapter 4 de-

scribes a novel approach to combine the Three-Phase traffic theory with sparse FCD in

order to estimate freeway traffic speeds. After a summary of related approaches and

their limitations when applied to FCD (section 4.2), the solution approach is developed
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in section 4.3. Section 4.4 presents the results of an extensive evaluation that compares

the accuracy of the developed method with other state-of-the-art approaches. In ad-

dition, its computational efficiency and sensitivity to parameter changes are analyzed.

The conclusion in section 4.5 summarizes the chapter, discusses open issues and proposes

future directions.

Chapter 5 presents a model that provides short-term congestion front forecasts given

FCD and flow data. Variants of an analytical forecast model are motivated in sec-

tion 5.2 and their performance is compared in section 5.3. Section 5.4 summarizes the

contributions of the method and gives an outlook.

Next, the potential of FCD for urban traffic speed estimation and prediction is fo-

cused. Chapter 6 develops an approach that enables network-wide congestion pattern

analysis and forecast. Frequently congested regions of a network are identified using a

novel clustering approach (section 6.2). Based on these so-called congestion clusters, a

methodology to perform a data-driven network-wide congestion prediction is proposed

(section 6.3). Subsequently, the clustering approach is applied to one year of FCD col-

lected in the congestion-prone road network of Munich city. First, statistical tools are

applied in order to identify spatio-temporal congestion patterns using the clusters (sec-

tion 6.4.4). The effectiveness of the prediction method is presented in section 6.4.5.

Section 6.5 reviews the proposed and evaluated method and discusses open issues.

To conclude the thesis, chapter 7 summarizes the contributions of the dissertation to the

state of the art in traffic speed estimation and prediction using FCD. The final outlook

gives a vision of future traffic systems and describes potential ways in order to advance

to these visions.
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Chapter 2

State of the Art

This chapter first gives a short introduction to traffic flow modeling and, in particular,

the Three-Phase traffic theory. Second, an overview of current sensor technology applied

to observe traffic conditions is presented. Finally, the need for traffic state estimation and

prediction algorithms is motivated and the corresponding state of the art is elaborated.

2.1 Traffic Flow Theory

2.1.1 Introduction

The purpose of traffic flow theory is the detailed understanding of the spatio-temporal

dynamics of traffic flow. As such, it is fundamental for all types of applications in

transportation engineering. Advances in traffic flow theory enable the enhancement of

design, operation and development of Intelligent Transportation Systems (ITS).
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Figure 2.1. Fundamental diagram according to Greenshields’ studies
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Traffic engineering is said to be born with the empirical studies of Greenshields in 1935

(Greenshields, 1935). In measurements of vehicle speed and vehicle density he identi-

fied a linear relationship between these two variables. Consequently, flow and density of

traffic form a parabolic relationship (see Figure 2.1). This first type of Fundamental Dia-

gram (FD) was the beginning of 80 years of empirical and theoretical studies conducted

by a broad community of civil engineers, mathematicians, physicians and computer

scientists. (Greenberg, 1959), for example, noticed that an exponentially decreasing

function fits traffic speed and traffic density better. As a consequence, also the relation

between flow and density is an exponential function. Up to now, many more functions

have been proposed that claim to fit empirical data best.

Besides the development of FDs, space-time traffic flow models have been developed.

They consider also the temporal evolution of traffic conditions. Typically, these models

are categorized into macroscopic and microscopic ones. Macroscopic models consider

traffic as a flow of particles that can be described sufficiently well with macroscopic

variables such as flow, density and speed. Most famous is the Lighthill-Whitham-

Richards (LWR) model which applies the conservation law of fluid to traffic (Lighthill

and Whitham, 1955; Richards, 1956). It assumes a function q(k) (i.e. a FD) between

flow q and density k:
@k (t, x)

@t
+
@q (k (t, x))

@x
= 0. (2.1)

Given simple boundary conditions of a space-time domain, this model can be solved

analytically, which results in the kinematic wave equations of traffic (Richards, 1956).

However, applied to real sensor data no analytical solution exists or is challenging to

determine. In this case, the usual approach is to set up a numerical simulation in

form of a Cell Transmission Model (CTM) using the Godunov discretization scheme

(Daganzo, 1994; Daganzo, 1995; Lebacque, 1996). In doing so, many models have been

developed which differ in the assumed FDs, additional (stochastic) terms, the modeling

of in- and outflows on freeways etc. Since models of this type are based only on the

continuity equation, they are also referred to as first-order models. First-order models

are limited with respect to their modeling capabilities as they do not allow to integrate

further traffic dynamics. Therefore, some higher-order models have been proposed that

pose additional equations. The first, on which many other models are based, is the

Payne model (Payne, 1971). Besides continuity, it models the influence of the vehicles’

surroundings on their velocities. Famous other higher-order models include the Kerner-

Konhäuser model (Kerner and Konhäuser, 1994), the Gas-kinetic-based model (Treiber

et al., 1999) or the model proposed by (Aw and Rascle, 2000).

On the other hand, microscopic models seek to describe the motion of each vehicle

individually depending on conditions in the proximity of the vehicle. Variables such
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Figure 2.2. Overview of traffic models (Wageningen-Kessels et al., 2015)

as the individual velocity, position and velocity difference to the preceding vehicle may

influence its acceleration. The first model was published in (Reuschel, 1950) which

assumes that a vehicle acceleration only depends on the speed difference and distance

gap. Among many others, more sophisticated models that have been developed during

the last decades are the Intelligent Driver Model (IDM) (Treiber et al., 2000), Newell’s

car-following model (Newell, 2002), the psychophysical Wiedemann model (Wiedemann,

1974) or the stochastic Gipps model (Gipps, 1981). In order to overcome computational

issues solving the equations for a huge number of vehicles, microscopic cellular automata

have been proposed that simplify the representation and simulation of traffic in greater

networks (Nagel and Schreckenberg, 1992).

Besides micro- and macroscopic formulations, some mesoscopic models were published.
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Some describe the behavior of vehicles in aggregate terms such as probability distri-

butions. For instance, (Buckley, 1968) propose a model for time headway distribu-

tions, (Mahnke and Kühne, 2007) study jam formation by modeling clusters of cars and

(Hoogendoorn and Bovy, 2001) develop a gas-kinetic traffic model. Others describe the

movement of individual vehicles based on macroscopic traffic conditions, e.g. the MAT-

sim (Horni et al., 2016) or MESO project (integrated into SUMO) (Krajzewicz et al.,

2012; Eissfeldt, 2004).

The presented approaches are a brief summary of a multitude of advances in traffic

flow modeling. Figure 2.2, published in (Wageningen-Kessels et al., 2015), gives a more

detailed overview of the variety of models developed since Greenshields (a complete

overview is published in (Wageningen-Kessels, 2013)).

2.1.2 Three-Phase Traffic Theory

Parallel to the development of more sophisticated analytical models, the increasing

amount of available traffic data was studied and lead to advances in empirical traffic

research. Phenomena such as the probabilistic nature of traffic breakdown (Elefteriadou

et al., 1995; Kühne et al., 2002; Brilon et al., 2005; Mahnke and Kühne, 2007), induced

traffic breakdowns, the wide scattering of traffic flow in congested traffic and the pinch

effect (Kerner, 2004) were observed and studied thoroughly by various researchers. A

qualitative traffic theory that presents an explanation for all of these traffic phenomena

is the Three-Phase traffic theory (Kerner et al., 2004; Kerner, 2009; Kerner, 2017). Its

development and evaluation is based on the analysis of extensive datasets of congestion

patterns on German and international freeways (Rehborn et al., 2011). In contrast to

previous traffic theories which usually distinguish between free traffic and congested

traffic, in this theory the existence of three traffic phases is postulated: The congested

state is further divided into a synchronized flow phase and a Wide Moving Jam (WMJ)

phase. In addition to that, unlike many other theories which are based on a FD describ-

ing a one-dimensional relation between flow and density, the Three-Phase traffic theory

allows a wide scattering of flow-density pairs in congested traffic. In the theory this is

referred to as the two-dimensional state of traffic flow. In Figure 2.3 the three phases

are depicted in flow-density and speed-density plane.

They can be distinguished by its characteristics (Kerner et al., 2004):

• In free traffic, vehicles move with high speed and are mainly restricted by the

free driving speed of the vehicle on that road. Vehicles can change lanes freely and

overtake slower ones, such that most of the time a vehicle’s motion is not bound by
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Figure 2.3. Schematic visualization of the Three Phases in flow-density and speed-
density plane (Kerner et al., 2004)

a preceding vehicle. Flow and density are in nearly linear relation. In this state,

the maximal capacity of the road qmax can be achieved.

• In synchronized flow and in comparison to free flow, traffic density is signifi-

cantly higher and vehicles’ speeds are significantly lower. Vehicles adapt the gap to

a preceding vehicle depending on their current speed (see Figure 2.4). In contrast

to many other microscopic models which assume a fixed time headway, the Three-

Phase traffic theory allows vehicles to maintain various speed-gap relations. This

in turn explains the potential wide scattering of traffic flow in this phase. Usually

traffic speeds among different lanes are similar, motivating the name synchronized

flow. In case traffic speeds among lanes tend to diverge and the speed is higher on

one of the lanes, vehicles switch to the faster lane. As a consequence, the system

equilibrates and recovers synchronized conditions. A commonly observable char-

acteristic of the phase region in space-time is that the downstream front sticks to

a bottleneck such as an on-ramp (Figure 2.4 right). Even if the synchronized flow

phase emerges in absence of a fixed bottleneck and the downstream front propa-

gates upstream, typically the next upstream bottleneck catches the downstream
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front (Kerner et al., 2004). Due to the wide scattering of flow-density the synchro-

nized flow phase can be stable and homogeneous, or metastable. In metastable

flow there exists a non-zero probability that a WMJ emerges.

• The WMJ phase is a phase with low vehicle velocities, which can decrease down

to 0 km/h. The main characteristic of this phase is that the downstream phase

front propagates upstream with a constant velocity (see Figure 2.4 right). This

shock wave propagates through free or congested phases as long as the upstream

front of the WMJ phase does not meet the downstream front. In that case, the

moving jam dissolves.

The transitions between the phases occur as follows:

• F!S: The F!S transition represents a classical traffic breakdown which has been

described in many publications (Daganzo, 1996; Hall and Agyemang-Duah K.,

1991; Schoenhof and Helbing, 2007; Laval, 2007). Researchers mainly agree that

this breakdown is of stochastic nature occurring due to local microscopic distur-

bances (Elefteriadou et al., 1995; Kühne et al., 2002; Brilon et al., 2005; Mahnke

and Kühne, 2007). The probability of such a breakdown is zero as long as traffic

flow is below the minimal capacity of the road (Kerner, 2017). With increasing

traffic flow, limited by the maximal capacity of the road, the probability of a traffic

breakdown increases.



12 State of the Art

• S!J: The metastable flow is defined as a state of traffic flow in which, given

a certain traffic density, the corresponding flow exceeds the ’J’ line (see Figure

2.3). This line with a gradient of vcong ⇡ �15 km/h (Treiber and Helbing, 2003;

Treiber et al., 2010b; Schoenhof and Helbing, 2007) represents the relations be-

tween flow and density which suffice to cause a WMJ. Consequently, a transition

from metastable synchronized flow to a WMJ phase causes the growth of a WMJ

phase over time. If the traffic state upstream of a WMJ phase is in homogeneous

conditions, an existing WMJ will dissolve over time. This is important in or-

der to understand the emergence of WMJs. In a microscopic view on metastable

traffic flow, time headways between vehicles are relatively low. In case of a local

disturbance, such as a vehicle changing lanes or braking abruptly, the following

vehicle tends to over-decelerate (Kerner, 2004). Similarly, following vehicles over-

decelerate as well. This results in a shock-wave that propagates upstream and

each affected vehicle tends to slow down slightly stronger. If traffic density is high,

vehicle velocities can decrease down to total stoppage. These microscopic distur-

bances can emerge in stable synchronized flow as well, though, traffic density in

this state does not suffice to develop a full WMJ.

Although the Three-Phase theory is not fully accepted in the scientific community (yet)

(Schönhof and Helbing, 2009; Treiber et al., 2010a), it achieves to explain many empir-

ically observed traffic phenomena and combines them into one theory. E.g. it explains

the probabilistic nature of traffic breakdown, induced traffic breakdowns by WMJs prop-

agating through a bottleneck, the similar catch-effect, the wide-scattering of traffic flow

in congested traffic and the pinch effect, which describes the nucleation of WMJs in con-

gested traffic (Kerner et al., 2004). Furthermore, several microscopic simulation models

have been developed that reproduce phenomena described by Kerner et. al. For in-

stance, (Kerner and Klenov, 2010) build a stochastic microscopic model based on the

assumptions of the Three-Phase theory, reproducing the phases and effects described

in the theory; (Knospe et al., 2002) develop a microscopic model focusing on smooth

and comfortable driving that reproduces three phases; (Laval, 2007) proposes a simple

microscopic model that reproduces the catch-effect described by Kerner; (Hoogendoorn

et al., 2008) construct a macroscopic model based on the LWR with a stochastic compo-

nent that generates similar congestion patterns as described in the Three-Phase traffic

theory. Additionally, (Wagner and Lubashevsky, 2003; Wagner, 2012) show that the net

time headway (and speed difference) of individual drivers to a preceding vehicle varies

over time. This finding supports the assumed microscopic model of the Three-Phase

theory (Figure 2.4) and is a possible explanation for the wide scattering of macroscopic

flow and density.
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Figure 2.5. Sketches of an inductive loop detection system, a microwave radar and
an infrared laser radar 1

2.2 Sensing Traffic Conditions

A key component of traffic systems are measurements of current traffic conditions in

a road network. Not only for real-time applications up-to-date measurements of traffic

conditions are indispensable, but also for long-term optimizations of networks rich traffic

datasets are required. In order to collect data, different sensor technologies are utilized.

Most of currently used sensors can be categorized into (stationary) spot sensors and

(stationary or mobile) section sensors. Spot sensors refer to devices installed at a fixed

position along the road measuring a traffic quantity such as vehicle speed, vehicle count

etc. on a pre-defined local (and short) road interval. Section sensors provide information

about the traffic state of a road section (or interval). Sensors may be stationary or

mobile. Table 2.1 and 2.2 provide a brief summary of current sensors, their capabilities

to measure traffic flow (q), density (k) and speed (v) as well as the main advantages and

disadvantages of each technology.

1https://www.fhwa.dot.gov

https://www.fhwa.dot.gov
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Type Principle q k v Strengths / Weaknesses
(S
ta
ti
o
n
a
ry
)
S
p
o
t
S
en

so
rs Inductive

Loops

Electric coils integrated into the road

pavement perceive passing vehicles. A

connected control unit counts the num-

ber of passing vehicles (i.e. the flow).

The commonly installed double loops

are furthermore able to deduce vehicle

speeds per lane (see Figure 2.5).

X X + Macroscopic traffic quanti-

ties per lane sampled at

constant time intervals

+ Relatively robust against

adverse weather conditions

– Costly and invasive installa-

tion as well as maintenance

Microwave

Radar

A device transmits electromagnetic

waves with a constant frequency. It

compares the frequency of reflected sig-

nals with the original frequency. The

Doppler effect allows to determine the

speed of the reflecting object.

X + Direct measurement of ve-

hicle speeds

+ Relatively cheap, robust

against adverse weather

conditions

– Does not detect standing

vehicles
Active

Infrared

Laser-

Radar

Two infrared laser positioned above the

roadway continuously sample the dis-

tance to the ground. Passing vehicles

are detected and their speeds is esti-

mated using the distance and time gap

between the two laser positions.

X X X + Accurate measurements of

position, speed, count and

class

– Installation and mainte-

nance is costly

Video

System

A camera installed with good view on

the road takes sequences of images and

extracts traffic features such as vehicle

speeds, time headways, density and flow

X X X + Accurate traffic information

for the observed road seg-

ment

– Costly installation and

maintenance

– Unfavorable weather condi-

tions such as rain, snow or

fog reduce the reliability of

the video system

Table 2.1. Overview of (stationary) spot sensor technology
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(a) Tracking system (b) Cellular phone data
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Distance 2
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Figure 2.6. Section sensor technologies. Tracking systems (Ni, 2016); Sketch of the
cells of a cellular network2; The principle of trilateration in order to determine a GNSS
position on earth given satellite signals3; and aerial photography for traffic sensing

Type Principle q k v Strengths / Weaknesses

(S
ta
ti
o
n
a
ry

a
n
d
M
o
b
il
e)

S
ec
ti
o
n
S
en

so
rs Tracking

System

Several tracking stations are positioned

along the road. A station checks pass-

ing vehicles for a unique identifier such

as the license plate, an RFID chip, a

bluetooth or wifi address etc. When

the vehicle’s identifier is detected pass-

ing another basis station, its travel time

is calculated (see Figure 2.6).

X + Cheap variants of this tech-

nology are available

+ Installation does not dis-

turb traffic

– Information is limited to

travel times

Cellular

Phone

Data

The IDs of the cells, in which a telecom-

munication device is registered, are

tracked over time. This allows to de-

duce average travel times needed to pass

through the covered region of a cell

tower (see Figure 2.6).

X + Cheap technology with high

availability

– Low accuracy due to large

cell sizes

3ttps://www.ifrahlaw.com/wp-content/
3http://www.dlg.org/

ttps://www.ifrahlaw.com/wp-content/
http://www.dlg.org/
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GNSS

Data/

FCD

A vehicle equipped with a GNSS device

samples its geolocation on a regular ba-

sis. Transmitted positions and times-

tamps allow to reconstruct the trajec-

tory and speed profile (see Figure 2.6).

X + Cheap technology with high

space-time accuracy

– Observation of one vehicle

is only a sample of the

macroscopic speed

– No lane accuracy

Aerial

Imaging

Helicopters or drones take sequences of

images of the traffic on the road net-

work. Image processing techniques re-

turn positions and speeds of all vehicles

(see Figure 2.6).

X X + Possibility to obtain com-

prehensive traffic data for a

road

– Limited continuous surveil-

lance due to high costs

– Challenging at night or at

unfavorable weather condi-

tions

Table 2.2. Overview of section sensor technology
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Figure 2.7. The flow of information in a traffic state estimation system

2.3 Traffic State Estimation and Prediction

In this section, first the motivation for traffic state estimation and prediction algorithms

is given. Subsequently, some requirements of a practically relevant algorithm are listed.

Finally, the state of the art is summarized and the research objectives are put into the

overall context.

Assume there is a freeway equipped with inductive loop sensors that report mean traffic

flows and speeds each minute. These sensors are distributed along the freeway with a

spacing of one kilometer. Thus, a traffic operator or traveler who has access to this data

could obtain accurate information about the traffic state at these locations. Further

assume, one sensor reports congested traffic and an adjacent, upstream one reports free

flow conditions. In this case, it is clear that there is (at least one) transition from free

to congested flow in-between the sensors. However, it is unclear which parts of the

road segment are truly congested. As a consequence, travelers and traffic operators lack

information for decisions on routing and traffic control. Since sensors are prone to noise

and outages, the reliability and resulting benefit of raw sensor data suffer even more.

Algorithms that process sensor data in order to provide more accurate and more reliable

traffic state information are called traffic state estimation methods (see Figure 2.7).

The assumption of most traffic state estimation methods is that traffic on a road can

be described as a dynamic (deterministic) system that follows certain rules. Hence,

if the rules of the system were perfectly understood, the initial state and the input

variables would suffice to deduce the current and future state of the system. In this

case, given only few sensor data, accurate traffic state information would be available

for each position along the road and for each point in time.
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During the last decades great advances in traffic flow theory and modeling (section 2.1)

have been accomplished. Though, the perfect traffic flow model does not yet exist. In

addition, it is commonly acknowledged that the system embodies stochastic factors.

Therefore, some time after model initialization, a model tends to deviate from the real

traffic state. Current sensor data is required to update its state.

The preceding introduction focused the estimation of Real-Time Traffic Information

(RTTI) given sensor data. There are also many applications that require predictive

quantities such as traffic speeds (e.g. in order to determine travel times). Others require

traffic state estimations of historical situations. These three types of problems are closely

related. The significant difference pertains the target time for which a traffic estimate

is determined: In traffic engineering, one usually refers to traffic state reconstruction

or off-line estimation if the target time is in the past. It is called real-time or on-line

traffic state estimation if the target time is the current time and traffic state prediction

or forecast if the target time is in the future4. In all of these cases, the same sensor

setup might be available. However, for reconstruction problems all measurement data

is available at once, while on-line estimation and prediction approaches can access only

data that has been collected so far.

For practical large-scale application traffic state estimation algorithms are expected to

fulfill the following requirements:

• Accurate: Given noisy and sparse data of traffic conditions, the resulting estimate

should match the real traffic conditions for all locations on the road and all points

in time.

• Efficient: The computational resources required to perform the algorithm should

be low in order to enable a real-time application in large networks at decent costs.

• Robust: According to the IEEE, robustness is ”The degree to which a system or

component can function correctly in the presence of invalid inputs or stressful envi-

ronmental conditions”5. Noisy or erroneous traffic data or in-cautious parametriza-

tion should not cause a breakdown of a traffic state estimation method.

• General: An algorithm should be able to process heterogeneous types of traffic

data, e.g. flow, density or speed measurements with varying accuracy, resolu-

tion and spatio-temporal coverage and generate more accurate estimates if more

information is available.

4There exist several definitions of the terms forecast and prediction that seek to distinguish between
their exact meaning. In traffic engineering these terms are often used as synonyms.

51990. IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990 defines
robustness
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Traffic state estimation and prediction are broad fields of research. In order to give an

overview of state-of- the-art approaches, the following four classifications are introduced:

• Target time: As mentioned earlier, an algorithm can be designed to target dif-

ferent points in time for which accurate traffic states are determined.

• Road type: Traffic dynamics on intersection-free roads (e.g. freeways) and urban

roads differ substantially. While the first are modeled as road corridors with high

speed-limits, the latter usually have low speed-limits and intersections are con-

trolled by traffic signals. Therefore, in many publications also the applied traffic

models for estimation and prediction differ.

• Data: Section 2.2 gave an overview of traffic sensors. Since the characteristics of

available data impacts the approach to estimate traffic conditions (which is also

a motivation for this thesis), published approaches are classified according to the

main data type. Most models utilize either inductive loop data and FCD. The

remaining ones are summarized as ’other’ data sources.

• Model: The published approaches are classified with respect to the model type.

An analytical model is understood as a set of differential equations describing the

dynamics of traffic in space and time. Analytical traffic models usually relate vari-

ables such as flow, density and speed. They are discretized in time and space. To

find a solution, they are usually integrated numerically over time and assimilated

with observed data. The most common type is a CTM based on the LWR equation.

Data-driven models omit differential equations. Based on available data, they ap-

ply a variety of algorithms in order to estimate and predict traffic states from a

combination of historical and current data. Applied algorithms range from sim-

ple statistical equations over general Machine Learning (ML) models to dedicated

algorithms specialized in traffic state estimation.

Table A.1 provides an overview of current approaches with a focus on traffic speed

and/or travel time estimation and prediction. Figures 2.8 and 2.9 depict the number of

publications and give one exemplary publication for each category (For a comprehensive

overview of methods dedicated to the prediction of other quantities, especially traffic

flow, the interested reader is referred to (Vlahogianni et al., 2004; Vlahogianni et al.,

2014)). Summarizing the listed and classified publications, some observations can be

made:

1. There are significantly more publications dealing with freeway networks than with

urban networks.
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Research Objective Target time Roads Data Model

Traffic speed estimation Retrospective Freeway FCD (+ Other) Data-driven

Congestion front forecast Predictive Freeway FCD + Loop-data Analytical

Network congestion analysis Predictive Urban FCD Data-driven

Table 2.3. Categorized approaches presented in this thesis

2. For freeway approaches the loop detector is the most common source of data, while

for urban networks FCD-based approaches dominate. Other data sources such as

Bluetooth trackers, cell-phone data or camera data are relatively rarely utilized.

3. Freeway real-time traffic speed estimators usually develop first or second-order

macroscopic traffic models and data assimilation techniques such as Kalman filters.

In the past years also some FCD based analytical approaches have been studied

(e.g. (Work et al., 2010)). These make use of FDs in order to translate vehicle

speeds into densities and, subsequently, apply similar techniques.

4. In urban scenarios the existing approaches can be divided further into two cate-

gories: One deals with the accurate estimation of queue lengths at intersections.

The typical approach is to couple loop data with FCD. The other category de-

scribes approaches that estimate and analyze traffic conditions in entire networks.

The main data source for these approaches is FCD.

5. For predictive traffic state estimation most researchers apply data-driven models.

Many of the earlier publications study parametric approaches, such as variants

of the Autoregressive Integrated Moving Average (ARIMA) model. Later and

up to now, more and more non-parametric approaches are applied. These stem

from advances in the field of ML, for instance Artificial Neural Networks (ANNs).

Among them, a slight trend from univariate to multivariate approaches can be

noticed. Unlike univariate models, multivariate ones also consider the influence of

neighboring road segments for a traffic state prediction of a certain segment.

The presented results and solutions for traffic speed estimation and prediction described

in this thesis can also be categorized according to this scheme (see Table 2.3): The

approach described in chapter 4 is designed for the retrospective estimation of freeway

traffic speeds using FCD. It integrates findings of the Three-Phase traffic theory into

a data-driven approach. Due to its efficiency, it can potentially also be applied in real-

time. The evaluation is done using FCD, however, it can be applied to any type of

speed data. Based on this approach, chapter 5 describes a model that fuses FCD and

loop data in order to provide short-term congestion front forecasts on freeways. An

analytical LWR forecast model is applied. Apart from these methods which provide
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solutions for freeway traffic, the approach in chapter 6 focuses on urban networks. On

top of a general congestion pattern study, a data-driven forecast model for network-wide

congestion forecast is developed.

In the following chapters, these approaches are motivated based on a detailed analysis

of related works in the respective category. For the evaluation, real FCD collected by

a large fleet of vehicles is used. The characteristics of the data and the preprocessing

steps are described briefly in the subsequent chapter.
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Chapter 3

Data

In this chapter the FCD used throughout this work in order to evaluate estimation and

prediction methods is presented. First, the technical implementation is summarized.

Second, the so-called map-matching procedure is described, which is necessary in order

to link raw GNSS positions with a digital map. Finally, a brief statistical exploration of

the data is performed in order to provide an overview of the amount of available data.

3.1 Sampling and Collecting Data

The setup of the applied technology includes a fleet of equipped vehicles, which report

GNSS data, and a central server, which collects all data in a database. Each vehicle that

is equipped with a RTTI provider has a software system that samples the current GNSS

position in intervals of 10 s to 30 s. These positions and according timestamps are stored

in the local memory of the vehicle. After sampling a few positions, a filter mechanism

decides whether sampled GNSS positions are transmitted to the central server. This

filter continuously compares the vehicle’s velocity with the velocity given by a traffic

provider. If the velocity at one of the sampled data points deviates more than 10%

to 30% (depending on the software version of the module) from the provided velocity,

the recently sampled positions and according timestamps are transmitted to the central

server. In case only small deviations are detected, the recently sampled positions are

retained and removed from the local memory. Each transmitted position is linked to an

alias that is generated by the vehicle. The alias is random and changes over time. At

the server, single transmitted positions of the same alias can be connected in order to

reconstruct vehicle trajectories.

The motivation for the implemented filter mechanism and the alias is the protection of

drivers’ privacy: Since vehicles do not transmit continuously, and hide their vehicle ID, it



24 Data

is not possible to reconstruct complete trips or infer the driver’s identity. Furthermore,

since traffic on most roads is usually in free flow conditions, a significant amount of

bandwidth is saved. Still, if traffic conditions deviate from the expected conditions,

valuable information are gathered and reported to the server.

3.2 Preprocessing

Collected raw data comprises of GNSS positions and respective timestamps. In order to

link this data to a road, a process called map-matching needs is applied. A digital map

can be represented as a directed graph

G = (V, E) (3.1)

which is an ordered pair of a (finite) set of vertices V and a set of edges E . An edge

e 2 E comprises a pair of two vertices v1, v2 2 V . In a directed graph, this pair is

ordered such that there is a connection from vertex v1 to v2 but not necessarily from v2

to v1. In a digital map the vertices usually represent geolocations. Edges represent road

segments connecting these locations. The properties of a road segment are represented

as attributes of an edge. In this work, the length and regulatory speed-limit of a road

segment and the corresponding edge are denominated as l(e) 2 R+ and VLim(e) 2 R+,

respectively.

Given some position and time data, a map-matching algorithm returns a sorted list

of edges which are supposed to match the roads that the vehicle generating the data

originally passed. In addition to the list of edges, the functions xc(t) and vc(t) are

calculated, which represent the time-dependent position and velocity of a vehicle on the

reconstructed edges.

Map-matching can be challenging: First, the accuracy of GNSS is limited (see sec-

tion 2.2). Hence, GNSS positions do not match a road exactly, but scatter around its

the vehicle’s real location. Second, a low sampling rate results in ambiguities of roads

that a vehicle might have taken. Third, the reconstruction of a trajectory for which a

sequence of positions is available requires extensive computational resources. Several

algorithms have been proposed that accomplish map-matching which are summarized

in (Quddus et al., 2007). The data used in this work is map-matched based on enhance-

ments of the Multiple Hypothesis Technique (Schuessler and Axhausen, 2009), described

in detail in (Heidrich, 2011). It constructs a set of hypotheses of possible trajectories,

performs a mutual comparison of all hypotheses and finally selects the most probable

one.
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Figure 3.1. Map of Munich and its surrounding1

Figure 3.2. Average number of reporting vehicles and average distance covered by
the fleet with respect to the day of the week (in 2015)

3.3 Statistical Exploration of Available Data

According to the traffic provider TomTom, Munich was one of the most congested cities

in Germany in 20162. Therefore, this region (compare Figure 3.1) suits well for the

development and evaluation of algorithms that target traffic congestion. The according

digital map consists of 147,108 uni-directional edges spanning a network of 17,219 km.

Out of these, 3,186 km comprise major roads comparable to the types freeway and

arterials.

1Map data provided by Open Street Map (OSM)
2http://www.tomtom.com/en_gb/trafficindex/city/munich

http://www.tomtom.com/en_gb/trafficindex/city/munich
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Figure 3.3. Average number of reporting vehicles and average distance covered by
the fleet with respect to the hour of the day (Tuesdays-Thursdays in 2015)

Figure 3.2 depicts the average number of vehicles reporting GNSS data to a server with

respect to the weekday for the year 2015. In addition, the covered distance of the report-

ing fleet per day is given. With about 16,000 reporting vehicles, traversing altogether

90,000 km on an average weekday, a great amount of data is available. In comparison to

datasets that include vast amount of traces in free flow conditions, the present dataset

constitutes a filtered set that describes mostly congested traffic situations. As expected,

due to commonly fewer vehicles and less congestion, the amount of data on weekends

decreases significantly.

Figure 3.3 illustrates the number of vehicles and total traversed distance with respect

to the daytime of a usual working day (Tuesday - Thursday). The bars clearly show

the morning and evening peak during which significant parts of the road network are

congested. At night barely any data is received. One interesting observation is that the

ratio of distance and number of vehicles is higher during peak times than during off-peak

times. It means that during peak hours an average vehicle travels larger distances while

reporting data than during off-peak times.

Finally, Figure 3.4 illustrates exemplary the average traffic velocity at different times of

the day in a three-dimensional plot for the working days in 2015. The average traffic

velocity on the major roads in Munich are depicted on the z-axis of the plot. This

representation allows to explore the regions and times which are mostly affected by

congestion.
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Figure 3.4. Average traffic velocity as 3D plot on major roads of the Munich road
network
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Chapter 4

Phase-based Traffic Speed

Estimation with FCD

In this chapter a novel approach to traffic speed estimation utilizing FCD is presented.

The chapter is structured in the following way: First, the motivation and challenges

using FCD in traffic speed estimation are given. Second, related work is described and

evaluated with respect to their ability to handle FCD as the main data source. Moti-

vated by the strengths and weaknesses of existing approaches a solution approach based

on the Three-Phase theory is developed. The evaluation with respect to its accuracy, ef-

ficiency and robustness is presented in the section 4.4. A final discussion and conclusion

summarizes the results, discusses open issues and proposes future directions.

4.1 Motivation

To exploit the full potential of FCD algorithms are required that deal with the chal-

lenges that accompany this new source of data and its characteristics. Traffic estimation

methods furthermore need to fulfill the requirements of an accurate, efficient, robust and

general traffic estimator (section 2.3) in order to have practical relevance. Compared

to conventional fixed sensors such as loop detectors the use of FCD faces the following

challenges:

• Under-determined traffic state: In contrast to loop detectors providing at

least flow and speed of vehicles, which allow to determine the macroscopic traf-

fic state, current Floating Car (FC) technology collects only speed-related data
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such as instant velocities or travel times. Consequently, the traffic state is under-

determined. Without further assumptions it is not possible to apply analytical

traffic models relating flow, density and speed.

• Sparsity of information: While loop detectors provide data at pre-defined posi-

tions and in pre-defined time intervals, the availability of FCD depends on several

factors. Among them is the number of equipped vehicles passing an observed road

during an observed time interval. As a consequence, there are times and places for

which high densities of FCD are available, and those, for which barely any data

has been reported.

• Samples instead of averages: By definition, the macroscopic traffic speed is

the average speed of all vehicles in a region in space-time ((Treiber and Kesting,

2013) present several ways how to define the macroscopic speed in space-time).

Loop detectors and other spot sensors usually determine average traffic quantities

at one location from all passing vehicles. FCD stems from individual vehicles and

provides information about the traffic state in space and time. Reported speeds

can be interpreted as random samples drawn from the distribution of all vehicle

speeds in a space-time region. In congested traffic conditions, where speeds among

different lanes are synchronized, this distribution is narrow, such that a sample

will deviate only slightly from the mean of the distribution. In contrast, in free

flow conditions where vehicles can overtake each other, their velocities may vary

greatly. To summarize, FCD needs to be interpreted differently than data collected

by conventional sensors such as loop detectors.

• Inaccuracy of lane positioning: On roads without merging or diverging lanes

the traffic state is usually similar among all lanes. The reason is that drivers

expecting a personal benefit will usually change from a congested to a free lane

and equilibrate the traffic state. However, if e.g. a great part of drivers desires to

leave a freeway on the same off-ramp, the traffic state on the diverging lanes might

be congested while the main lanes are free. The accuracy of common positioning

systems such as GNSS does not always suffice to determine the exact lane a vehicle

is driving on. Therefore, using FCD, it is challenging to distinguish heterogeneous

traffic conditions on several lanes.

4.2 Related Work

As outlined in section 2.3 the method to be presented here targets retrospective traffic

speed estimation on freeways. Most published approaches for this type of problem can be
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classified into two categories. The first category comprises analytical flow models coupled

with data assimilation techniques. First-order models are usually based on the LWR

model (Lighthill and Whitham, 1955; Richards, 1956) and use Kalman filters in order to

match model expectation and observation (van Lint and Djukic, 2014). One of the first

approaches is published in (Szeto and Gazis, 1972), where the authors assimilate data

with a conservation model on a short freeway stretch to estimate traffic density. More

recently, in (Suzuki et al., 2003) a Kalman filter is applied in order to estimate traffic

conditions based on a mix of loop detector and FCD. Also, results published in (Yuan et

al., 2012) present the benefits of a Lagrangian model compared to Eulerian approaches

when applied to detector and FCD. In addition, higher order models have been proposed

that account for more sophisticated traffic dynamics in (Aw and Rascle, 2000). First

approaches are described in (Cremer and Papageorgiou, 1981) who adapt the Payne’s

model in order to estimate the traffic state on a freeway more accurately. (Wang and

Papageorgiou, 2005) describe a second-order model that estimates traffic conditions on

a freeway in real-time. Computational issues are addressed by (van Hinsbergen et al.,

2012), where the authors demonstrate the development of a localized filter that performs

real-time computations.

Though, all of these models rely strongly on flow and density data collected by loop

detectors. In contrast, (Herrera et al., 2010; Work et al., 2009; Work et al., 2010; Work

et al., 2008) focus on probe data and develop models using a fundamental diagram that

estimate densities from probe velocities. Furthermore, (Bekiaris-Liberis et al., 2016)

propose a macroscopic model for traffic density estimation using a linear parameter-

varying system that relies mainly on probe velocity measurements. Although in the

latter mentioned approaches most of the information is obtained from probe data, the

proposed models still require flow or density measurements at the boundaries. In practi-

cal applications, the need for additional flow or density information drastically limits the

applicability of an approach on a large scale since it adds further effort and complexity

to data acquisition.

The second category of algorithms comprises of estimation methods that are based on

empirical traffic theory. First, in (Kerner, 2004) a model called ASDA/FOTO is intro-

duced. The model assimilates flow, density and velocity data reported by loop detectors

with the findings of the Three-Phase traffic theory and provides current and predictive

traffic information (Kerner et al., 2004; Kerner, 2009; Kerner, 2017). Therefore, it re-

constructs spatio-temporal regions of free flow, synchronized flow and WMJs and tracks

phase fronts. While that approach is completely based on loop detector data, (Palmer,

2011; Palmer et al., 2011) study the reconstruction of phase regions with trajectory data

exclusively. The phase transitions in space-time of individual vehicles are identified by
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means of velocity and time conditions and aggregated into phase objects using a clus-

tering approach. The advantages of this approach include the exclusive use of FCD in

order to estimate velocities and phases. Nonetheless, velocities inside a traffic phase

are estimated to a constant over space and time, which in turn limits the accuracy of

an estimation. Additionally, the trajectories without phase transitions are discarded,

which subsequently results in a loss of valuable information. For example, a trajectory

in free flow state that passes through an estimated synchronized flow region will not

influence the phase estimate since it does not contain phase transitions. Another well-

known method is the Generalized Adaptive Smoothing Method (GASM). It is based

on the observation that shock waves in congested traffic propagate upstream and shock

waves in free traffic propagate downstream (Treiber and Helbing, 2003; Treiber et al.,

2010b; Treiber and Kesting, 2013). Using two characteristic convolution processes, traf-

fic data is smoothed and aggregated adaptively. The advantages of the GASM are that

it can be applied to velocity data of different sources (Treiber et al., 2010b; van Lint and

Hoogendoorn, 2009), that it allows for an efficient implementation (Schreiter et al., 2010)

and that it proved to be significantly more accurate than isotropic smoothing (Treiber

and Helbing, 2003; Rempe et al., 2016b; van Lint, 2010). On the other hand, it tends

to propagate low velocities up- and downstream unconditionally although they might

be part of stationary congestion upstream a bottleneck (Treiber et al., 2010b). Thus,

when it is applied to sparse probe data the estimated velocities in stationary congestion

patterns lack accuracy.

4.3 Solution Approach

Inspired by the GASM and the Three-Phase traffic theory, the present algorithm called

Phase-based Smoothing Method (PSM) is developed (published as (Rempe et al., 2017)).

The key idea is to divide the estimation process into two steps: The first step aims at

the identification of phases in space and time. This is done in accordance to typical

characteristics of phases: synchronized flow phases usually stick to bottlenecks and have

a stationary character. WMJs are shock waves in traffic with low average vehicle speeds

and an approximately constant downstream front speed (Kerner et al., 2004; Kerner,

2009). Their width in time is limited to several minutes and, when full developed, they

have been observed to travel upstream for tens of kilometers (Kerner and Rehborn, 1996).

In the second step raw data is assigned to the identified phases and traffic speeds for each

position and point in time are computed separately for each phase. By assigning traffic

data to identified phase regions, it is assured that velocity measurements of one phase

do not influence the velocity estimation in adjacent traffic phases. Furthermore, given

the phase regions in time and space in the first step, in the second step the estimation
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quality can be refined using a local estimator. Thus, effects such as narrow moving jams

that emerge in synchronized flow can be reconstructed more accurately (Kerner, 2009).

In order to identify the three traffic phases in space and time, a related approach de-

scribed in (Palmer et al., 2011) applies a clustering technique that connects estimated

phase transitions from individual vehicles. The results are phase regions with sharp

phase fronts. However, there are several aspects of this approach that provide poten-

tial for further improvements. One is that, although most of the time traffic can be

classified clearly into one of the three phases, there exist transitions which take some

time to take effect (see section 2.1). E.g. in the pinch region of a congestion pattern

narrow moving jams inside a synchronized flow phase may develop into full WMJs over

time while propagating upstream (Kerner, 2009). Accordingly, there is no clear front

between the synchronized traffic phase and the WMJ front. Another aspect concerns the

characteristics that real traffic data such as FCD accompany (see chapter 4). Since data

consists of noisy measurements that may deviate from the macroscopic traffic speed, it

is important to consider average vehicle speeds and not individual speeds. Otherwise,

a single outlier may influence the outcome of the reconstruction vastly. Moreover, data

is sparse in space and time. In regions with few data, the reliability of a traffic speed

estimate is decreased. Depending on the application the reliability of an estimate may

be crucial. For example, a traffic control measure based on wrong traffic information

might lead to a significant loss of traffic efficiency or safety. Published approaches with

deterministic phase regions such as (Palmer et al., 2011; Kerner et al., 2004) do not

provide information about the reliability of the estimated phase regions.

Due to these reasons, the presented approach models phase probabilities instead of

deterministic phase regions. Let Ω = {F, S, J} be a set of the phases free flow (F),

synchronized flow (S) and WMJ (J). Then, Pp(t, x) 2 [0, 1] with p 2 Ω denotes the

probability that the traffic state at time t 2 [T0 ,T1 ] and at position x 2 [0, L] is in

phase p. This probabilistic model allows to consider the aforementioned issues: A narrow

moving jam that develops into a WMJ can be handled as a smooth transitions of phase

probabilities between the S and the J phase. Furthermore, if only few (potentially noisy)

measurements are available, the belief for a specific phase estimate can be expressed with

a phase probability below one. This belief can also be interpreted as the quality of an

estimate which is a valuable information for practitioners.

Figure 4.1 summarizes the work flow for processing raw trajectory data into a continu-

ous velocity estimate VE(t, x). As first step, raw data is convolved with different phase-

characteristic smoothing kernels. Several fuzzy phase criteria are defined and applied to

resulting values. Respective criteria probabilities P i
p denote their degree of fulfillment.

Next, for each phase, the criteria probabilities are aggregated into preliminary phase
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Figure 4.1. Flow diagram of steps taken in order to process raw FCD into a continuous
velocity estimate VE

probabilities P 0
p. The probability PU 2 [0, 1] is estimated to establish the level of uncer-

tainty in assigning (t, x) to any of the phases. The relations between phases are modeled

in the following step, which results in the final phase probabilities Pp. Based on these

and raw trajectory data, for each phase and each point in space-time, a velocity estimate

V H
p (t, x) is computed. Additionally, a fall-back velocity VU (t, x) is assumed that serves

as a best-guess velocity in case the uncertainty PU (t, x) is high. Finally, the resulting

estimate VE(t, x) is determined by aggregating the probabilities Pp(t, x), PU (t, x) and

their respective velocity estimates V H
p and VU .

In the following sections each taken step will be explained in detail. Before doing so,

two preliminary concepts are introduced that are fundamental for the PSM. The first

is the representation of trajectory data in time and space. The second is the concept of

continuous convolution that is applied multiple times for smoothing purposes.

4.3.1 Representation of FCD in Space-Time

Goal of this section is to develop a general concept for the representation of velocity

data collected by individual vehicles that matches best the characteristics of the data

while serving as an input for further processing steps, i.e. especially the continuous

convolution process. Further benefits of a general concept are discussed in section 4.4.2.
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Figure 4.2. Illustration of the space-time region Ψ(t, x) of a vehicle with velocity vc(t)
and length x0

The trajectory of a vehicle c = 1, ..., Nc can be described as a function xc(t) 2 [0, L]

denoting the position of that vehicle along a road segment with length L 2 R+. Ac-

cordingly, vehicle velocity vc(t) denotes the derivative of xc(t). Each vehicle that passes

through space-time domain [T0 ,T1 ]⇥ [0, L] of a road with length L, observed for time

period T1 �T0 , provides partial information about the domain. In order to model the

space-times for which information is available, a simple car-following model with param-

eters vehicle length and time headway is assumed. x0 denotes the length of the vehicle

c and the minimal distance to the preceding vehicle in queuing traffic. TH denotes the

time headway to a preceding vehicle. Therefore, at time t, vehicle c occupies the space

interval [xc(t), xc(t) + x0 + THvc(t)] (see Fig. 4.2). Occupying a region in space-time

means that in the interval only one vehicle can exist and, furthermore, it is assumed that

in this interval, the vehicle’s velocity is a representation of the traffic velocity. Note that

this holds only for single-lane roads. Let Ψ(t, x) be a function that indicates whether

time t and position x is occupied by any observed vehicle:

Ψ(t, x) =

8

<

:

1 if 9c : xc(t) < x < xc(t) + x0 + THvc(t)

0 otherwise.
(4.1)

Ψ describes a binary system which has the following properties: If Ψ(t, x) = 18t 2

[T0 ,T1 ], x 2 [0, L] then traffic density is high, all vehicles maintain a time headway of

TH to their preceding vehicles and all vehicle positions as well as velocities are known.

Otherwise, there are space-times for which no velocity information is available. The

reason can be that traffic density is low such that there are gaps between vehicles, or

for a part of the vehicles no position and velocity data is given.

Accordingly, VFCD 2 R+ denotes the velocity information reported by all vehicles,
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Figure 4.3. Illustration of the convolution process of VFCD and Ψ with kernel Φ

combined into a single two-dimensional function. This velocity is only valid in space-

time (t,x) which is occupied by any vehicle c⇤, i.e. Ψ(t, x) = 1, and is set to the velocity

of the closest vehicle upstream of (t, x):

VFCD(t, x) =

8

>

<

>

:

vc∗ if Ψ(t, x) = 1, c⇤ = argmin
8c:x�xc(t)�0

(x� xc(t))

0 otherwise.

(4.2)

4.3.2 Traffic-Motivated Data Smoothing

Due to the sparsity and noise in real data smoothing and interpolation is a necessary step

in order to filter outliers and fill gaps between samples. Filtering data in two dimensions

with a filter function constitutes a convolution process. The function

ΓV (w,Φ, t, x) =

Z T1

T0

Z L

0
Φ(t� t̂, x� x̂) · w(t̂, x̂) · V (t̂, x̂) ·Ψ(t̂, x̂)dx̂dt̂ (4.3)

represents a weighted continuous convolution. Φ(t, x) 2 R denotes the kernel function

that is applied to the input data V (t, x). w(t, x) 2 R is a space-time dependent weight of

this input data. Definitions of traffic-motivated kernel functions are given in eq. (4.7).

In order to use the convolution equation for smoothing operations, the results of Γ

need to be normalized. The normalization term D(t, x) is similar to the aforementioned

convolution but omits velocity input V :

D(w,Φ, t, x) =

Z T1

T0

Z L

0
Φ(t� t̂, x� x̂) · w(t̂, x̂) ·Ψ(t̂, x̂)dx̂dt̂. (4.4)

Furthermore, the kernel Φ and weighting w are chosen in such a way thatD represents an

estimate of the local data density. The local density quantifies the amount of information



36 Phase-based Traffic Speed Estimation with FCD

available for the velocity estimation in (t, x). The normalized convolution of weighted

velocity function V (t, x) and according occupation Ψ with kernel Φ is given by:

ΛV (w,Φ, t, x) =
ΓV (w,Φ, t, x)

D(w,Φ, t, x)
. (4.5)

Given for example a kernel function that returns values greater or equal to zero with

its maximum in (0, 0) and whose values are monotonically decreasing with increasing

distance to the origin in space-time, eq. (4.5) describes a common smoothing process

(see Figure 4.3). Then, for space-time (t, x) a weighted average velocity of all nearby

velocities valid in their respective occupied regions Ψ(t, x) is computed. The weights

depend on the kernel function Φ(t, x), distance to (t, x), sampled data as well as the

weighting function w(t, x).

Generally, modifying the applied kernel Φ enables a great variety of operations that are

often used in the fields of computational image processing (Shapiro and Stockman, 2001).

For traffic speed estimation the process of convolution is mainly used for smoothing

operations. The basic desired properties of a smoothing kernel are the following:

1. Measurements that are closer in time and space are supposed to influence the final

result stronger than more distant measurements.

2. The influence of the distance in time and space shall be controllable using param-

eters.

(Treiber and Helbing, 2003) propose the following simple and effective smoothing kernel:

Φvdir,τ,σ(t, x) = exp
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. (4.6)

Its maximal value is located at (0, 0) and values decrease exponentially with increas-

ing distance to the origin, controlled by parameters ⌧ and �. Another feature is the

subtraction of x
vdir

in the nominator of the first term. This relation between space and

time results in an anisotropy which grants that one of the main kernel axis (compare

Figure 4.3) is rotated into the direction of vdir. Consequently, measurements that are

located in direction of vdir relative to (t, x) are weighted stronger. Applied to smoothing

of traffic data this preference direction accounts for the propagation of shock waves in

traffic dynamics (see (Treiber and Helbing, 2003; van Lint and Hoogendoorn, 2009) for

more details).
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During the following operations this kernel is applied multiple times. For completeness,

the definition is extended in case the shock wave velocity is zero:

Φvdir,τ,σ (t, x) =

8

>

>

<

>

>

:

exp
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otherwise.

(4.7)

Notice that eq. (4.5) implies that the speeds of those vehicles which occupy more space-

time (either because they are longer, or they driver at higher speeds) are weighted

stronger than the speeds of those which occupy less space-time. This pertains the

interpretation of the resulting macroscopic traffic speed. As explained thoroughly in

(Treiber and Kesting, 2013), there exist several ways to aggregate individual vehicle

speeds over time and space such as the (arithmetic or harmonic) time mean space,

the space mean speed or other methods such as Edie’s (Edie, 1963) . The average

that the PSM resembles has similarities with all of these definitions, but differs in one

important aspect: Individual vehicles are converted into homogeneous regions in space-

time for which a velocity is available. During that process the information whether a

region was occupied by one or several vehicles may get lost: the region may emerge

from several short vehicles following each other with time headways TH , or one long

truck. Consequently, the smoothed resulting velocity does not correspond to the mean

vehicle speed averaged over all reported vehicles but to the mean speed averaged over

all occupied regions in space-time. In that sense, the presented way to average is just

another (slightly different) way to define a macroscopic traffic speed. It is motivated by

the representation of vehicle speed’s with validities Ψ, which can be seen as an approach

to advance from a macroscopic to a mesoscopic data representation in time and space.

4.3.3 Modeling Phase Probabilities

This section describes the assignment of space-time (t, x) to the three traffic phases

free flow, synchronized flow and WMJ. If an assignment is vague, (t, x) can also be in

uncertain state U .

As described in section 2.1 each traffic phase has different characteristics. These empir-

ical characteristics can be used to identify the most likely traffic phase p in space-time

(t, x). Let P 1
p (t, x), P

2
p (t, x), ..., P

Nk
p (t, x), P i

p(t, x) 2 [0, 1] be a number of Nk 2 N \{0}

criteria that (t, x) needs to fulfill in order to belong to phase p. Each criterion is modeled

as a fuzzy decider P i
p. The combination of several fuzzy decider can be done by applying

fuzzy logic. E.g. the ’AND’ relation of two fuzzy variables a, b 2 [0, 1] is the product of

both values: a AND b = ab. The logical ’OR’ is defined as: a OR b = 1�(1�a)(1�b) =
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a+ b� ab (Zadeh, 1965). In this case, all criteria are expected to be fulfilled in order to

assign (t, x) to one of the phases, which corresponds to an ’AND’ relation. Effectively,

the independent and preliminary phase probability P ’p is determined as the product of

all fuzzy decider:

P ’p(t, x) =

Nk
Y

i

P i
p (t, x) . (4.8)

Consequently, P ’p is always lower or equal to the lowest criteria probability P i
p. In

applications where several phase criteria are proposed it might be desired to accumulate

criteria of the less rigid probabilities such that the failure of one or more criteria will

be tolerated. This would require eq. (4.8) to be adapted. An extension with further

logical expressions, e.g. ’OR’, ’XOR’, ’NOT’ would allow to define more complex rules.

Other possibilities constitute methods that are applied frequently in related problems

which require the fusion of different classifiers into a final decision. Potential candidates

are ’opinion pools’ (Jacobs, 1995), where each classifier contributes to the final decision

depending on its trustworthiness or the Dempster-Shafer theory (Shafer, 1976), which

is commonly applied in sensor fusion where estimations of heterogeneous sensors are

combined.

For now, two classes of criteria are presented and later applied. The first is the velocity

criterion P1
p that uses velocity information of smoothed data for determining the phase

probability. The second, density criterion P2
p , is applied ensuring that a phase hypothesis

is supported by nearby data. Table 4.1 gives an overview of all probabilities and will be

explained thoroughly in the following sections.

Note that the previous description does not adhere to classical probability axioms since,

in this context, it causes a contradiction. E.g. if one considers a hypothesis H with a

probability of P (H) that it is true, then the hypothesis being false will have probability

1 � P (H). Now, assume for each phase p there is at least one fuzzy decider P i
p that

is zero. This in turn causes all preliminary phase probabilities P ’p to be also zero. In

a classical interpretation of probabilities it would follow that traffic does not appear in

one of the phases. This naturally contradicts the theory model since traffic must always

be in one of the three phases. Therefore, with respect to the evidence theory (Shafer,

1976), the modeled phase probabilities P ’p need to be interpreted as independent beliefs

that a phase hypothesis is correct. Thus, each probability represents an estimate of a

probability. On the other hand, the probability 1 � P ’p needs to be interpreted as the

probability that traffic is in any one of the three phases. The higher 1� P ’p , the more

uncertain is a classification as phase p. That principle of uncertainty is important to

fuse data and provide a quality estimate of reconstructed velocities. As a consequence,

probabilities in Table 4.1 do not sum up to one.
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Free Flow Sync. Flow WMJ

Velocity criterion P1
p P 1

F P 1
S P 1

J

Density criterion P2
p P 2

F P 2
S P 2

J

Prelim. Phase Prob. P ’p P 0
F = P 1

F · P 2
F P 0

S = P 1
S · P 2

S P 0
J = P 1

J · P 2
J

Final Phase Prob. Pp PF = P 0
F (1� P 0

J) PS = P 0
S(1� P 0

J) PJ = P 0
J

Uncertainty PU PU = (1� P 0
F ) · (1� P 0

S) · (1� P 0
J)

Quality Q Q = 1� PU

Table 4.1. Overview of probabilities computed during phase identification using a
velocity and a density criterion

The probabilistic approach allows a simple extension with further criteria that improve

the accuracy in distinguishing between phases. Section 4.3.3.3 proposes further criteria

that can be integrated into the PSM given other potentially heterogeneous data sources.

4.3.3.1 Velocity Criterion

Traffic velocity is an essential information in order to determine the traffic phase in (t, x)

(Kerner et al., 2004; Kerner, 2009; Kerner et al., 2013; Palmer, 2011). Modern traffic

theories state that traffic breakdown, which is the transition from free to congested flow,

is a probabilistic event triggered by perturbations (Schoenhof and Helbing, 2007; Kerner,

2009). A traffic breakdown is usually connected to a capacity drop (Schoenhof and

Helbing, 2007; Laval, 2007; Treiber and Kesting, 2013) and a significant drop in average

vehicle velocities (Kerner et al., 2004; Schoenhof and Helbing, 2007) (see section 2.1).

Due to this drop, traffic velocity is a good feature to distinguish between free flow and

congested flow. Here, the fuzzy thresholds vthresF and vthresS are applied differentiating

between these two flow regimes. The distinction between WMJs and synchronized flow,

which are both congested states, is less obvious. In fact, the upper velocity of the

WMJ is significantly lower than the velocity threshold that separates synchronized and

free flow (Kerner et al., 2004). vthresJ denominates this threshold. Also, velocities in this

particular phase can decrease down to 0 km/h, therefore in such regions, no lower velocity

bound is required. Lastly, the lower velocity bound of the synchronized flow phase is

discussed. Kerner suggests that low velocities should be assigned to the WMJ phase.
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Figure 4.4. Velocity criterion for each phase with respect to traffic velocity

He argues that, with stronger bottlenecks, the type of congestion pattern changes from

synchronized pattern, over general pattern to mega-jams (Kerner et al., 2004; Kerner,

2009). According to his definition, mega-jams are WMJs with a great width, which

have a very low average speed. In two-phase theories these patterns are usually called

Homogeneous Congested Traffic (HCT) (Schoenhof and Helbing, 2007). In contrast to

the ASDA/FOTO model (Kerner et al., 2004) which applies a lower velocity threshold

for the synchronized flow, in this approach no threshold is set. Instead, a dominance

of the WMJ phase is modeled which assures that in the presence of low velocities the

probability of a WMJ is increased (see section 4.3.3.5). This turned out to be more

robust than the definition of a lower threshold.

As fuzzy decider function �v(v, v
thres,�) (standard sigmoid function) is applied that

translates a velocity v into probability P1
p (t, x) 2 [0, 1]. The parameter vthres constitutes

the inflexion point of the curve, parameter � the strictness of the threshold, i.e. it

controls the gradient of the transition region (the higher � the higher the gradient):

�v(v, v
thres,�) = 1�

1

1 + exp (�� (v � vthres))
. (4.9)

Function 4.9 is close to one for low velocities and converges towards zero for velocities

that exceed the applied threshold. This is the desired behavior for the probability

estimation in congested flow. For free flow, the complementary function is applied:

�v(v, v
thres,�) =

1

1 + exp(��(v � vthres))
. (4.10)

Figure 4.4 illustrates exemplary the sigmoid functions for the three phases, using the

thresholds vthresF = 55 km/h, vthresS = 65 km/h and vthresJ = 30 km/h and a common
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strictness of � = 0.5 h/km.

Phases Free and Synchronized Flow Due to the sparsity of data in space and

time it is not meaningful to apply the velocity criterion to raw data directly. Instead,

smoothed velocities are considered. In order to do so, the previously described two-

dimensional smoothing process (section 4.3.2) is applied.

Probabilities P 1
F (t, x) and P 1

S(t, x) are computed as:

P 1
F (t, x) = 1� �v

�

VF (t, x) , vthresF ,�F
�

(4.11)

P 1
S(t, x) = 1� �v

�

VS (t, x) , vthresS ,�S
�

(4.12)

where vthresF and vthresS denote the parameters of the decider function with respect to

the characteristic velocity of phase p. The velocity estimates VF and VS are computed

according to the normalized convolution process ( eq. (4.5)) as:

VF (t, x) = ΛVFCD
(w0,ΦF , t, x) (4.13)

VS(t, x) = ΛVFCD
(w0,ΦS , t, x) (4.14)

with ΦF (t, x) and ΦS(t, x) denoting phase specific smoothing kernels with threshold

velocities vthresp and parameters ⌧p and �p. For the construction of these kernels the

parameters vdirp , ⌧p and �p are applied (eq. (4.7)):

ΦF := Φvdir
F

,τF ,σF
(4.15)

ΦS := Φvdir
S

,τS ,σS
. (4.16)

At this stage, the data is weighted equally using the weight function w0(t, x) = 1 8 (t, x) 2

[T0 ,T1 ]⇥[0, L]. The standard weighting implies that all smoothed raw data has an equal

significance for the determination of the phases.

Phase WMJ The velocity criterion for the J is more distinct. It is postulated that

(t, x) can only be assigned to the J phase if, both, up- and downstream of (t, x) low

velocities are observed. This ensures that WMJs are not extrapolated far beyond mea-

surements in order to be able to reduce wrongly estimated congested regions. The trick

in order to compute this condition efficiently, is to check for measurements up- and

downstream of (t, x) smoothing data with differing kernels and to calculate the proba-

bilities independently. Then, the product of both probabilities represents the need to
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fulfill both requirements. P 1
J (t, x) is computed as as:

P 1
J (t, x) = �v

⇣

V d
J (t, x) , vthresJ ,�J

⌘

· �v
⇣

V u
J (t, x) , vthresS ,�J

⌘

(4.17)

where V d
J (t, x) and V u

J (t, x) denote the velocity estimates computed by smoothing data

with characteristic kernels Φd
J(t, x) and Φ

u
J(t, x):

V d
J (t, x) = ΛVFCD

(w0,Φd
J , t, x) (4.18)

V u
J (t, x) = ΛVFCD

(w0,Φu
J , t, x). (4.19)

Respective kernels functions are defined as :

Φ
d
J(t, x) =

8

<

:

ΦJ(t, x) if x � 0

0 otherwise
(4.20)

Φ
u
J(t, x) =

8

<

:

ΦJ(t, x) if x  0

0 otherwise
(4.21)

ΦJ := Φvdir
J

,τJ ,σJ
. (4.22)

Φ
u
J is shaped in such a way that it considers upstream data of (t, x), Φd

J only considers

downstream data. In that way, the data is smoothed in different directions. The com-

bination of the sigmoid functions of the velocities V d
J and V u

J ensures that space-time

(t, x) is only estimated as a WMJ if upstream and downstream data supports the phase

hypothesis. Note that eq. (4.17) uses different velocity thresholds vthresJ and vthresS as

parameters for the sigmoid function. The difference stems from the expectation that a

WMJ, which is detected by downstream velocities below vthresJ , will propagate upstream

as long as the upstream traffic is in a state of critical flow-density (Kerner, 2004). Since

no density or flow data is available, this state is assumed to be the congested region with

the velocity threshold vthresS .

By requiring both criteria to be fulfilled it is assured that the J is only reconstructed for

low velocity measurements but never extrapolated. It is quite possible that the moving

jam emerged earlier than the time from when the first equipped vehicle perceived it

and propagated further upstream than the last equipped vehicle passing through the

WMJ. Unfortunately, sparse data does not allow one to recognize exactly when a WMJ

emerged and when it dissolved. Extrapolating a shock wave upstream or downstream

means to risk overestimating. Thus, this approach can be described as the cautious way

aimed at minimizing wrongly estimated low velocities.
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Figure 4.5. Density criterion to translate data density D into phase probability P2
p

4.3.3.2 Density Criterion

The second criterion, called density criterion P2
p (t, x) uses data density D (eq. (4.4))

in order to quantify how well a phase hypothesis is supported by nearby data. The

necessity of this criterion stems from the varying density the comes along with FCD.

Data density D(w0,Φp, t, x) is computed for each phase p using the respective kernel

Φp. Since weighting w0 and the applied kernels are greater than zero, D(w0,Φp, t, x) is

always greater or equal to zero. Note that D is not normalized such that its values often

exceed the value one. In order to translate density into the probabilities P2
p , its values

are converted into phase probabilities by applying conversion function �d 2 [0, 1]:

P2
p (t, x) = �d

�

D
�

w0,Φp, t, x
��

. (4.23)

As a simple variant, the minimum function is chosen here:

�d(x) = min (1, x) . (4.24)

This forces the density criteria P2
p to equal one if data is nearby, and otherwise converge

to zero when the distance between (t, x) and the measurements grows larger (see Figure

4.5). The validity of a measurement in time and space can be parametrized by adapting

the kernel function or by modifying the weighting w0. Note that the applied minimum

operator is one way to do the translation, which is chosen due to its simplicity. Other

operators with smoother properties, e.g. sigmoid functions, may also be applied.
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4.3.3.3 Further Applicable Criteria

This section provides exemplary a two further criteria that may be adopted in specific

applications where other types of data are available. This list is not complete and may

be extended.

Traffic Density Criterion There are several types of sensors that are able to measure

the macroscopic traffic density (section 2.2). Traffic density is a valuable information

in order to distinguish between free flow and congested flow. It is clear that low traffic

densities indicate free flow states while high traffic densities indicate congested flow. A

criterion that could be added to the PSM may model such information using a sigmoid

function:

P ⇤
F (t, x) = �v

�

k (t, x) , kcrit +∆k,�k
�

(4.25)

P ⇤
S,J(t, x) = 1� �v

�

k (t, x) , kcrit �∆k,�k
�

(4.26)

where k(t, x) is the prevailing traffic density and kcrit the threshold between free and

congested flow, as well as a shift of ∆k. Classical traffic flow theories assume a trian-

gular fundamental diagram where threshold kcrit is the density with maximal flow (see

section 2.1). Recent flow theories recognize that there exists a range of traffic densities

where traffic can be both, in free and in congested flow (Kerner et al., 2004). If in

free flow, this traffic condition is usually unstable and may lead to a spontaneous traffic

breakdown. The resulting congested traffic maintains a similar traffic density, though, a

lower velocity. Modeling this criterion as a fuzzy decider with overlapping probabilities

accounts well for this characteristic.

While currently mostly stationary sensors provide density data, which limits the large-

scale application of a traffic estimator, the equipment of vehicles with powerful sensors

is advancing. As a result, future FCs will provide not only speed information, but

also distance measurements to nearby vehicles as well as their speeds. First promising

results are described in (Seo and Kusakabe, 2015), where the spacing information of an

Adaptive Cruise Control (ACC) system is compared to loop detector data. Therefore,

this type data will play an increasing role in the future.

Car-following Criterion Current vehicle technology includes a great variety of Ad-

vanced Driver Assistance Systems (ADASs). One of them is the ACC which measures

position and speed differences to a preceding vehicle and adapts the vehicle’s speed ac-

cording to these differences in order to provide comfort and safety to the driver. In

traffic flow theory, many microscopic driver models differentiate between the state in
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which the driver adapts his speed to one or more preceding vehicles and the state in

which they can drive freely (explicitly, or by evaluating the distance to a preceding vehi-

cle) (Kerner and Klenov, 2010; Treiber et al., 2000; Gipps, 1981; Kendziorra et al., 2016).

These microscopic models are usually tuned to reconstruct empirically observed macro-

scopic congestion patterns (Kesting and Treiber, 2008; Brockfeld et al., 2004; Kerner

and Klenov, 2010). Consequently, evaluating the state of the ACC system provides in-

formation about prevailing traffic states. In accordance to the microscopic model of the

Three-Phase theory (see section 2.1), a simple criterion could be that traffic can only be

in congested state if a vehicle’s time gap is bounded by a preceding vehicle.

4.3.3.4 Probability of Uncertain State

After computing the aforementioned probabilities P i
p as the product of all phase criteria,

uncertainty PU (t, x) is determined. PU models the degree of uncertainty in assigning

(t, x) to any of the phases:

PU (t, x) = Πp2Ω (1� P ’p (t, x)) . (4.27)

In case given data does not allow a classification into one of the phases PU is high.

Consequently also the reliability or trustworthiness of a phase or subsequent velocity

estimation is lower than for space-times where the reliability is high. That allows to

inherently define a quality estimate enhancing the interpretation of resulting velocities.

Probability Q is defined as the complementary probability to PU :

Q(t, x) = 1� PU (t, x). (4.28)

4.3.3.5 Phase Interactions

Up until now, the independent phase probabilities P ’p have been determined. Since

P ’p are computed independently with differing smoothing kernels, particular region

characteristics could occur, especially in the presence of shock waves, where more than

one of the probabilities P 0
F , P

0
S or P 0

J is estimated to a high value. This is due to the

different shapes of the convolution kernels and according velocities that are considered

for the determination of the phase.

According to the Three-Phase theory WMJs can propagate through other phases without

interruption (Kerner et al., 2004). Therefore, it is reasonable to assume that space-time

regions with high probabilities of a J phase and another phase rather belong to the J .

This dominance of the J phase over the other phases is modeled (comparable to the
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GASM where smoothed low velocities are given a higher weight than high velocities

(Treiber and Helbing, 2003)). Final phase probabilities Pp are set as:

PJ(t, x) = P 0
J(t, x) (4.29)

PS(t, x) = P 0
S(t, x) · (1� PJ (t, x)) (4.30)

PF (t, x) = P 0
F (t, x) · (1� PJ (t, x)) . (4.31)

4.3.4 Estimating Phase Velocities

Up to this step, raw data has been used in order to reconstruct the traffic phases in time

and space using characteristic smoothing kernels and several criteria that allow one to

distinguish between them. Phase information are helpful in order to understand traffic

conditions, but most applications require velocity estimates. Though, for estimating

traffic speeds it is advantageous to know about the location of these phases. They

provide the information about the space and time for which velocity measurements are

valid. For example, assume a low velocity measurements that is estimated as part of

a WMJ. In this case, the velocity measurement can be used to estimate the average

traffic velocity of the WMJ. However, it does not provide information about the traffic

velocity in an adjacent free or synchronized flow phase.

In order to estimate traffic speeds, raw data is smoothed a second time for each phase.

This time, the estimated phase probabilities Pp are applied as weights in order to assign

each measurement a validity:

Vp(t, x) = ΛVFCD
(Pp,Φp, t, x). (4.32)

Before aggregating the phase velocities Vp(t, x) into a final traffic speed, two ideas are

discussed that enhance the accuracy of the estimate.

First, in eq. (4.32) the same smoothing kernels Φp as in the phase estimation process are

applied. Those kernels are designed to model the characteristic propagation of phase

fronts. For speed estimation, the characteristic propagation velocities are different. In

free flow, shock waves propagate downstream with approximately vfree (Treiber and

Kesting, 2013; Kerner et al., 2004) as can be derived intuitively from a triangular FD (van

Lint and Hoogendoorn, 2009). Therefore, it is reasonable to construct the smoothing

kernel Φ0
F section 4.3.2 using that velocity. The shock wave propagation in congested

flow is vcong (Treiber and Kesting, 2013; Kerner et al., 2004). Note that in Three-Phase

traffic theory the FD such that the reasoning for a characteristic shock wave velocity in

congested flow is different: Inside the synchronized flow phase so-called narrow moving

jams can emerge spontaneously that can develop into WMJs (section 2.1). Similar to
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WMJ fronts, these moving jams propagate upstream with a speed of approximately

vcong. For the reconstruction of traffic dynamics inside the congested phases respective

kernels Φ0
S and Φ

0
J with a shock wave velocity of vcong are applied.

The second concept addresses the smoothing process in eq. (4.32) itself. It resembles an

arithmetic mean of raw data weighted with phase probabilities and a kernel function.

Applying the arithmetic mean means to interpret all values equally important for the

description of the center of a data set (Triola, 2014). In most cases that is the desired

result. Nonetheless, traffic speed estimates are mainly required for determining accurate

travel times. For instance, assume a road with two intervals of lengths s1 = 500m and

s2 = 500m and speed-limits v1 = 20 km/h and v2 = 50 km/h. Then, the total travel

time would be t = s1/v1 + s2/v2 = 90 s + 36 s = 126 s. The desired average velocity vavg

for the entire road would be the one that fulfills t = (s1+s2)/vavg. The arithmetic mean

of v1 and v2 underestimates the required travel time. The harmonic mean

vHavg =
n

Pn
i

1
vi

(4.33)

accounts for this bias and preserves the travel times. In general, the harmonic mean

”is often used as a measure of center for data sets consisting of rates of change, such

as speeds” (Triola, 2014). The original proposal of the GASM also faced this bias.

Therefore, (van Lint, 2010) proposed the application of a harmonic smoothing process

in order to reproduce traffic speed estimations that allow more accurate reconstructions

of travel times. Since the PSM is based on similar smoothing processes the previous

arithmetic mean is replaced by a harmonic mean, indicated by the superscript ’H’:

1

V H
p (t, x)

= Λ
V −1

FCD
(Pp,Φ

H
p , t, x) (4.34)

where V �1
FCD denote the reciprocal velocities:

V �1
FCD(t, x) =

1

VFCD(t, x)
(4.35)

Note that real data may contain velocity measurements of 0 km/h which would result

in a division by zero. Therefore, a lower velocity limit of 3 km/h is set.

4.3.5 Aggregating Probabilities and Velocities

At this stage all phase probabilities Pp and respective velocities V H
p are determined.

Additionally, PU is computed and a best-guess velocity VU is assumed. In order to

aggregate all information into a final traffic speed estimate VE a weighted average is



48 Phase-based Traffic Speed Estimation with FCD

applied that fuses the phase velocity estimates weighted by the degree of belief into the

respective phase:

VE =
PFV

H
F + PSV

H
S + PJV

H
J + PUVU

PF + PS + PJ + PU

. (4.36)

The weighted arithmetic average is adopted due to its simplicity. Other variants of

aggregation such as maximal values or harmonic average etc. may also be applied here.

Though, since most of the time the phase assignment is unambiguous and one phase

probabilities exceeds the other ones significantly, a specialized aggregation method is

not expected to influence the estimation accuracy noticeably.

4.4 Evaluation

In this chapter the results of an extensive evaluation of the PSM with real data are

presented. Specifically, it is analyzed whether the PSM fulfills the four most impor-

tant requirements of a traffic estimation algorithm: accuracy, efficiency, robustness and

generality (see section 2.3).

The evaluation is structured in the following way: First, the parameters of the PSM

method are motivated and set with respect to related methods. Second, the discretiza-

tion of the method in space and time is explained. Third, using the data of an exemplary

congestion on German freeway A99 the PSM and two state-of-the-art algorithms are ap-

plied and compared qualitatively. In a subsequent quantitative comparison the accuracy

of the PSM with respect to the other two methods is assessed. Therefore, all congestion

patterns that occurred in the freeway network around Munich during July 7th,2014 and

August 8th, 2014 are considered. One special congestion pattern called ’mega-jam’ is

afterwards analyzed in detail. A sensitivity analysis in section 4.4.6 identifies the most

relevant parameters with respect to the estimation accuracy. In a subsequent run-time

analysis the efficiency of the PSM is analyzed. The other two requirements, robustness

and generality, constitute qualitative requirements and are included in the conclusion

and outlook given in section 4.5.

4.4.1 Setting Parameters

The PSM defines several parameters that have to be set. This section gives an overview

of involved parameters and motivates a reasonable setup with respect to traffic theory

and related approaches.

Table 4.2 lists all parameters, which are discussed one by one in the following paragraphs.
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F S J

vthres 55 km/h 65 km/h 30 km/h

� 0.5

vdirp 0 km/h -18 km/h

⌧p 250 s 30 s

�p 150m 500m

vdir,Hp 70 km/h -18 km/h

⌧Hp 100 s 30 s

�Hp 100m 200m

Table 4.2. Parameters of the PSM

The setting of velocity thresholds vthresp between phases is done according to (Kerner,

2004; Kerner et al., 2013; Palmer et al., 2011). Strictnesses �p are set to 0.5 h/km such

that the resulting sigmoid function �v drops from a value of 92.5% to 7.5% in an interval

of ±10 km/h, where vthres denotes the turning point of the function (compare Figure

4.4).

The kernels Φp applied for phase estimation involve ⌧p,�p and vdirp . vdirp can be approx-

imated well based on empirical traffic characteristics. As described in section 2.1, the

downstream phase fronts of WMJs propagate upstream with an almost constant velocity

of -18 km/h. The downstream phase fronts of synchronized flow phases typically stick to

bottlenecks, which corresponds to a velocity of 0 km/h (Kerner et al., 2004; Palmer et al.,

2011). Since the downstream front of a synchronized flow phase is the upstream front

of a free flow phase, that propagation speed is approximated similarly. Note that not

all phase fronts follow propagate with the assumed velocities. Rather, the assignment

of a fixed propagation velocity is a heuristic which works well for common congestion

patterns (compare (Treiber and Helbing, 2003; van Lint and Hoogendoorn, 2009)).

Parameters ⌧ and � influence the decay of the kernel function in time and space. The

greater the value the lower the absolute gradient of the kernel. In effect, more distant

measurements influence the estimation of a velocity estimate at space-time (t, x). In

related work from which the kernel definition has been adopted, different parameter sets

have been applied. (Treiber and Helbing, 2003) set (�, ⌧) := (1.1min, 600m) and in a

later publication propose to use half of the distance of the detectors in time and space
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Figure 4.6. Visualization of resulting kernel functions ΦS,F and ΦJ (up) as well as
Φ

H
F and Φ

H
S,J (bottom)

(Treiber et al., 2010b). (Schoenhof and Helbing, 2007) apply similar values: (�, ⌧) :=

(1.2min, 600m). (van Lint and Hoogendoorn, 2009) use (�, ⌧) := (0.5min, 300m) and

acknowledge the need of further work on parametrization of the GASM. (Rempe et al.,

2016b) study a range of parameter sets in order to estimate traffic speeds from sparse

FCD in an online system. In this case, the kernels Φp are parametrized in similar ranges

of values but with respect to typically observed properties of traffic phases: WMJs often

have a high spatial extent but their width in time is limited (Kerner and Rehborn, 1996).

Therefore, �J is chosen relatively high and ⌧J relatively low. Due to the stationary

character of the synchronized flow phase and the adjacent free flow phase, ⌧S,F is set

significantly greater than ⌧J and �S,F significantly lower than �J .

For traffic speed estimation, three different kernels ΦH
p need to be parametrized. Since

WMJs and synchronized flow phases belong to the congested traffic phases its parameter

sets are merged. The first parameter, vdir,Hp , corresponds to the propagation speed of

shock waves in traffic. These are well-understood phenomena (Richards, 1956; Newell,

1993; Mika et al., 1969). In free flow shock waves propagate downstream (Treiber and

Helbing, 2003; Kerner et al., 2004). Approximations range from 70 km/h (Treiber et al.,
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2010b) to 80 km/h (van Lint and Hoogendoorn, 2009; Schoenhof and Helbing, 2007;

Treiber and Helbing, 2003). In congested flow (synchronized flow or WMJ phases)

shock waves propagate upstream (Kerner et al., 2004). For the propagation velocity of

congested velocities GASM applications apply values that range from -15 km/h (Treiber

and Helbing, 2003; Treiber et al., 2010b; Schoenhof and Helbing, 2007) to -25 km/h

(van Lint and Hoogendoorn, 2009). Other empirical studies find propagation values of

disturbances in congested traffic of about �15 km/h (Newell, 1993; Kerner, 2009). To

conclude, velocities of disturbances in free flow and congested traffic are similar in many

publications, which allows to set vdir,Hp on a strong background..

Shock waves in congested traffic phases have relatively short temporal widths and pos-

sibly shorter spatial extent than fully developed WMJs. Therefore, ⌧HS,J is set similar to

⌧J and �HS,J is set smaller than �J . The kernel parameters ⌧HF and �HF are set to average

values compared to all other parameters. Varying these two parameters appeared to

influence the estimation accuracy only slightly (see section section 4.4.6). Figure 4.6

illustrates the resulting four kernels with the parameters summarized in Table 4.2.

Two other parameters that stem from the assumed car-following model in section 4.3.1

are time headway TH and average vehicle length x0. They are assumed to be constant

for all vehicles. With respect to (Brackstone et al., 2002; Krbalek et al., 2001) the time

headway is set to one second and vehicle length to 6m.

4.4.2 Implementation

In order to apply the PSM to real data, the most simple and efficient way is to discretize

time and space into homogeneous segments. The time interval [T0 ,T1 ] is discretized

into Nt intervals of duration ∆T = 10 s and the road of length L into Nx segments of

length ∆X = 50m. The resulting domain can be represented as a matrix of quantities

such as velocities vi,j where i = 1, ...,Nt and j = 1, ...,Nt . Due to the regular structure

the discretized domain is denominated as grid ; one element of the grid as a grid cell.

In order to inscribe the trajectory data of vehicle c into the grid, reported GNSS positions

and respective timestamps of one vehicle (see chapter 3) are interpolated linearly (see

Figure 4.7). Effectively, xc(t) is a piecewise linear function and vc(t) a piecewise constant

function. Next, the average velocities of the vehicle while in grid cell i, j are computed as

the quotient of driven distance inside the cell (max. ∆X) and time inside the cell (max.

∆T ). These average velocities are used to compute the occupation Ψc of the vehicle

(see section 4.3.1). For each valid point in time of the trajectory, the vehicle occupation

overlaps with one or more cells. For instance, due to the time headway TH a fast vehicle

occupies more space than a queuing vehicle. Thus, due to larger gaps between fast
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Figure 4.7. Discretization of trajectories and assignment of velocities to grid cells;
dotted parallelograms describe the occupation of a trajectory resulting in the cell-wise

occupation  . Transparent colors indicate low occupation values.

vehicles a vehicle may occupy several cells at the same. In dense and slow traffic, a

vehicle may occupy only part of a cell. It follows that each trajectory tr is represented

as a set of tuples tr = {(i, j, v, )k} where i, j refers to a grid cell in which the vehicle

had velocity v.  2 [0, 1] is the cell-wise occupation defined as the ratio between the

occupied part of a cell by a vehicle and the cell size.  can be interpreted as an estimate

of the measurement quality: If a vehicle barely occupies a cell then its velocity is less

representative for traffic velocity in the respective cell. If a vehicle occupies an entire

cell, then it is probably the only vehicle in this cell its reported velocity equals to the

traffic speed in the cell.

The definition of the cell-wise occupation provides two benefits. It allows one to decouple

the data from the chosen grid size. If the grid cells are larger in time and/or space,

passing vehicles occupy smaller parts of a cell and the weighting  decreases. Similarly,

if for instance ∆X is smaller than the occupied space of a vehicle, the vehicle occupies

more than one cell at the same time. Thus, convolution operations (see section 4.3.2)

return the same results irrespective of the chosen grid resolution. Second, this concept

allows to place other data sources into the grid, to assign these measurements a level

of reliability and to fuse them with FCD. For instance, velocity data obtained from a

camera observing a road segment can be mapped to a spatial interval instead of just

to one point in space as it is usually done. Since all vehicles and their speeds are

observed continuously, the cell-wise occupation would resemble the density of traffic and

implicitly quantify the high reliability of the velocity data. In another scenario where

GNSS data with large sampling times are given, the cell-wise occupation can be used to

model the uncertainty of the speed data: One way to do so is to determine all physically

possible trajectories that a real vehicle could have taken in order to travel between two

GNSS positions. From the superposition of all trajectories a position density and speed
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density function can be derived. The average speed values can be inscribed into the

grid cells, while the position density is used as the cell-wise occupation quantifying the

reliability of a speed measurement. In this way, the uncertainty that results from large

sampling times is considered for fusing heterogeneous data. In order to account for the

characteristic of each type of data, further concepts need to be developed in future work.

Besides the trajectories, the continuous 2D convolution (eq. (4.3)) needs to be dis-

cretized. A straight-forward implementation using loop-structures is rather in-efficient

as shown in (Schreiter et al., 2010). Instead, an implementation using the Fourier-

transform is proposed. The idea is to apply the convolution theorem, which states that

the convolution of two functions f and g is equivalent to the point-wise product of the

Fourier transforms F{f} and F{g}:

F{f ~ g} = F{f} · F{g} (4.37)

This requires to apply the forward and backwards transform of the involved matrices.

The Fast Fourier Transform (FFT) (Cooley and Tukey, 1965) is an algorithm that

achieves to perform the transforms very efficiently. (Schreiter et al., 2010) show that an

implementation using the FFT allows for significant speed-ups. A run-time analysis of

the PSM utilizing the FFT is conducted in section 4.4.7. Note that

• the FFT requires the number of elements in each dimension equals 2n with n 2 N

and

• due to a limited floating point accuracy that current computer systems use, this ap-

proach is prone to numerical errors. Especially if a matrix contains both, very large

and very small (non-zero) numbers (absolute values), the forward and backward

transform likely results in large absolute errors. A simple and effective strategy is

to pre-process the matrices and set very small (absolute) values to zero.

Figures 4.8 and 4.9 visualize the flow of data to process discretized raw data into phase

probabilities, and subsequently into a velocity estimate and an according quality matrix.

For reasons of clarity the Fourier-transforms are not depicted in the chart.
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Figure 4.8. Flow of data from raw (discretized) data into phase probabilities.



Evaluation 55

!"#$

Λ&
Φ(
)

Inversion: * → *,-

Inversion: * → *,-

Aggregate: (/(, !(
) , … ) → !3

!(
) /4

Estimate!3 Quality5

!4

/(

Quality: /4 → 5

Figure 4.9. Flow of data from phase probabilities to the final velocity estimate.
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Figure 4.10. Raw trajectory data of a congestion on A99 in eastbound direction (up).
Occupation of trajectories in time and space (bottom).

4.4.3 Qualitative Evaluation

Figure 4.10 depicts the trajectories and occupations collected by vehicles during a con-

gestion on A99 in north-bound direction on July 15th 2014. The pattern shows different

characteristics often occurring in congested motorway traffic (compare to traffic pat-

terns described in (Kerner, 2009; Helbing et al., 2009; Schoenhof and Helbing, 2007)).

At around 7:45am a moving jam emerged that evolved into a WMJ and induced a traffic

breakdown at the on-ramp at kilometer 10. The WMJ propagated further upstream and

induced another traffic breakdown at the neighboring bottleneck. The pattern evolves

into a General Pattern (GP) expanding over two bottlenecks. The downstream fronts

of synchronized flow phases are fixed slightly downstream the on-ramp positions. In
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(a) Phase: Free flow
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(b) Phase: Synchronized flow
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(c) Phase: WMJ
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(d) Result: Quality and velocity estimate
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Figure 4.11. Phase probabilities Pp and phase velocities V H
p for free flow (a), syn-

chronized flow (b) and WMJ (c). The final quality Q and velocity estimate VE in (d).
Note that velocities with phase probabilities below 5% are colored gray.



58 Phase-based Traffic Speed Estimation with FCD

the pinch region of the downstream synchronized flow phase a few WMJs originate and

propagate upstream.

Applying the PSM results in the phase probabilities Pp and phase-dependent velocities

V H
p illustrated in Figure 4.11. The aggregation of phase probabilities and velocities

results in the quality estimate Q and the final velocity estimate VE depicted contour

plots depicted in the last row.

Varying number of available trajectories The amount of data available for re-

construction is an essential influence on the estimation accuracy. In order to give an

intuition how the PSM reconstructs this scenario if fewer trajectories are collected, Fig-

ure 4.12 illustrates the estimates, assuming that only 10�70% of the original traces are

available. The first three contour plots look similar, with small artifacts at the bound-

aries and less accurate WMJ reconstructions. With 10% more estimation errors become

visible. For instance, the WMJs are not reconstructed completely and there are several

space-time regions where a congested part is over- or underestimated.

Comparison with other algorithms In the following the PSM is compared to other

state-of-the-art approaches. In order to highlight potential estimation errors, the algo-

rithms are applied to a reduced set of trajectories. A subset of all trajectories is extracted

and each algorithm computes a VE . These estimates are subsequently compared to an

estimated Ground Truth (GT) using all trajectory data.

Figure 4.13 illustrates the considered GT. It is the mean of all reported trajectories

in a grid of 60 s ⇥ 100m. Note that this is an estimate of the GT since not all vehicle

trajectories are known. However, due to the high data density the deviation to the

real GT is expected to be low. In comparison to usual GT data that stems from loop

detectors, the spatio-temporal resolution of this estimated GT is significantly higher.

Figure 4.13 right illustrates the set of trajectories that are used as input for different

traffic speed estimation algorithms.

In Fig. 4.13 the velocity estimate VE(t, x) computed with the PSM and the absolute

error |VE(t, x) � VGT (t, x)| to the GT are depicted. The error plot reveals that most

regions of the estimation match well with the GT. Both, the stationary congestion at

the bottlenecks at kilometers 8 and 11 as well as the WMJs are accurately reconstructed.

Significant differences are marked in the plot: For instances, at (a) the moving jam is

reconstructed inaccurately. At (b) the stationary congestion at kilometer 2 starts earlier

than estimated and is therefore underestimated. At (c), the PSM overestimates the

extent of the congestion at the upstream front for a short range in time.



Evaluation 59

(a) 70% of all available trajectories
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(b) 50% of all available trajectories
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(c) 30% of all available trajectories
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(d) 10% of all available trajectories
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Figure 4.12. Velocity estimates generated by the PSM depending on a varying amount
of trajectories used for reconstruction.
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Figure 4.13. Estimated GT constructed using all trajectory data (left) and sparse set
of trajectories used as data input for traffic speed estimation (right)

For comparison, the GASM as state-of-the-art traffic speed estimator with sparse data

and an isotropic smoothing method are chosen. The GASM is applied as described in

(Treiber and Helbing, 2003) and (van Lint and Hoogendoorn, 2009) with an adaption to

sparse FCD as presented in (Rempe et al., 2016a). The adaption describes how sparse

FCD and a fall-back speed can be fused in order to provide a continuous speed estimate

if no data is nearby. The weighting ratio of FCD to the speed fall-back is set as 1000:1.

In order to account for travel time accuracy the smoothing processes are applied to

the inverted velocities as described in (van Lint, 2010). The parametrization is chosen

according to (Treiber et al., 2010a). The isotropic smoothing method is a generalized
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Figure 4.14. Velocity estimate using an isotropic smoothing method and the GASM.
Difference of both results to the Ground Truth (mid) and difference of error plots of

both methods compared to the PSM
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approach that can resemble several ways to average data in space and time. Here, in

order to model a standard temporal smoothing of velocity data as it is done in many

systems an isotropic smoothing kernel with a small spatial and high temporal width is

applied (see eq. (4.7)).

In Fig. 4.14 the velocity estimates computed with the isotropic smoothing method

(upper left) and the GASM (upper right) are illustrated. These estimates are compared

to the GT and its difference plots are visualized in the second row. In order to compare

the reconstruction accuracy of the PSM and these algorithms directly, the differences of

the estimation errors are considered:

V∆ = |VE,1 � VGT |� |VE,2 � VGT |. (4.38)

This error term returns positive values if the error of the first velocity estimate VE,1

dominates, and negative ones, if the second velocity estimate is less accurate. In the

following comparison, blue colored regions indicate that the PSM reconstructed the

velocity more accurately than the comparison method.

In Figure 4.14 (left) the isotropic smoothing method and the PSM are compared. At (a),

(b), (c) the isotropic smoothing results in large errors as it does not account for moving

traffic patterns. Though, at (d) this method estimates the stationary traffic slightly

better than the PSM. The results of the GASM compared to the PSM as depicted in

Figure 4.14 (right) show that the GASM manages to estimate the dissolving jam at

(a) better than the PSM. On the other hand, it does not reconstruct the stationary

traffic patterns at (b), (c), (d), but estimates it as free flow instead. Furthermore, the

moving jam at (e) is extrapolated too far in upstream direction. Overall, the difference

plots reveal that both algorithms result in larger erroneous regions than the PSM, which

combines the strengths of both comparative algorithms: To reconstruct stationary as

well as moving traffic patterns.

4.4.4 Quantitative Assessment of Estimation Accuracy

This section focuses the overall estimation accuracy of the PSM compared to the other

two aforementioned methods. In order to assess the estimation accuracy of an algo-

rithm and compare it to another method, several aspects need to be considered. The

first aspect concerns the procedure how to split given data into a training and a test

set (section 4.4.4.1). Second is the set of scenarios that are used for evaluation. Sec-

tion 4.4.4.2 describes an excerpt of the freeway network on which a multitude of conges-

tion patterns are observed and used for comparison. Another aspect is that the amount

of available data used for estimation influences the achievable accuracy significantly.
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In section 4.4.4.3 this aspect is elaborated and a novel concept called data coverage is

developed in order to quantify this factor. Fourth, there are several metrics that can

be applied in order to compare estimated speeds and the GT. Section 4.4.4.4 gives an

overview of potential quality metrics and selects the one that meets best the requirements

for the assessment of a traffic speed estimator

Subsequently, the proposed methodology is applied exemplary to the congestion pattern

described in section 4.4.3 and results are presented in section 4.4.4.5. Finally, the esti-

mation results of the three algorithms with different parametrizations applied to all 101

congestion patterns are presented in section 4.4.4.6.

4.4.4.1 Split of Data

In order to assess the quality, i.e. the similarity between an estimated traffic state and

the GT the data used for estimation and for evaluation must not be the same. Otherwise,

the best algorithm would be the one, that simply reproduces the data. Therefore, the

set of all Nc trajectories reported for the space-time domain [T0, T1] ⇥ [0, L] is divided

into a training and a test set. The training set is used to estimate velocities VE , and

the test set is used to evaluate the accuracy of that estimate. The size of test set

ST = {tr1, tr2, ..., trNT
} relates to the total number of trajectories as:

NT = ↵Nc (4.39)

with 0 < ↵ < 1. The training (estimation) set SE of size NE is the (1 � ↵) part of all

trajectories. Additionally, that part is varied with another factor 0 < � < 1 that is used

to simulate different data coverages:

NE = �(1� ↵)Nc. (4.40)

4.4.4.2 Scenarios

A great part of publications that propose models for traffic estimation and prediction

consider only one scenario or one road for model evaluation. This allows to optimize the

model and its parameters to this example. Naturally, this pre-selection and optimization

increases the chance that a proposed model performs well; especially better than others

developed and optimized for other scenarios. In order to overcome this issue, a model

needs to be tested on scenarios that did not influence the development and optimization.

In the best and most general case, congestion patterns from all roads over the world

collected over many years are taken into consideration. Unfortunately, data availability
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Figure 4.15. Overview of all freeways around Munich where relevant congestion
occurred between July 7th, 2014 and August 7th, 2014 1

and computational resources are limited. Therefore, a subset of all congestion patterns

with a low bias needs to be chosen for evaluation.

In this case, the set of evaluation scenarios comprises all traffic congestion patterns that

occurred during July 7th, 2014 and August 7th, 2014 in the freeway network surround-

ing Munich (see Figure 4.15 and A.1). A congestion pattern is defined as the occurrence

of a region in space-time with congested traffic speeds below 60 km/h, a temporal width

of at least one hour and a spatial width of at least 2 km. This set consists of in total 101

congestion patterns. Hence, congestion patterns occurring on different road infrastruc-

tures at different times and due to several reasons are considered. Although the set of

patterns is obviously biased due to the preselected location (Munich road network), the

time interval (July and August 2014) and the minimal size of congestion, one important

aspect is that patterns itself are not pre-selected. Thus, it is assumed that this set of

patterns constitutes a reasonably representative set of congestion patterns for traffic

patterns in South Bavaria. Since the Three-Phase traffic theory has been validated on

traffic patterns observed on international freeways (Rehborn et al., 2011), it is expected

that results can be transferred to roads apart from the presented ones as well.

1Map data provided by OSM
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4.4.4.3 Definition of Data Coverage

Since the amount of available data is an important influence on the estimation accuracy,

it is crucial to consider this factor in order to obtain representative results (Palmer, 2011;

Rempe et al., 2016b; Bekiaris-Liberis et al., 2016). The term ’data coverage’ refers to

the overall amount of data that is available for estimation (In comparison: data density

is defined as a phase criterion in the context of this thesis). An accurate estimator

outperforms other approaches for low as well as high data coverages.

Given loop detector data a common approach is to consider the average detector spacing

as data coverage (Treiber and Helbing, 2003; Treiber et al., 2010a). With simulated FCD

often the penetration rate of reporting vehicles is considered (Palmer et al., 2011). In

the context of real FCD and mixes of several data sources both concepts are unfeasible:

First, since the total number of vehicles is usually unknown the equipment rate is difficult

to approximate. Second, during the observation of a certain road segment the number

of reported trajectories usually varies over time. A resulting average equipment rate is a

rough simplification. Third, in applications where FCD and other data sources are fused,

both concepts fail to account for the level of information that mixes of heterogeneous

sensors provide.

Due to these reasons a novel definition of data coverage is proposed that considers

incomplete data, local variations of data densities and mixes of different data sources.

As described in section 4.3.1 the velocities provided by probes (or by other sensors)

occupy space-times Ψ(t, x). For the estimation of the traffic state at (t, x) a traffic state

estimator usually considers data in the surrounding of this point. For instance, the PSM

combines the results of local smoothing operations. Therefore, in order to approximate

the amount of data that is available for the estimation of VE(t, x), the occupation in the

proximity of (t, x) is most relevant. With respect to the definition of the data density

at (t, x) (eq. (4.4)), a standard weighting w0(t, x) = 1 and kernel function Φ(t, x), the

normalized local data coverage DE is defined as the result of smoothing the Ψ(t, x) of

all occupation data:

DE(t, x) =
D(w0,ΦD, t, x)

R T1

T0

R L

0 ΦD(t� t̂, x� x̂)dx̂dt̂
. (4.41)

By definition of the occupation Ψ it holds that 0 < DE < 1. For the following studies,

a medium-sized kernel ΦD with vdir = 0km/h, ⌧ = 200 s and � = 300m using kernel

definition (eq. (4.7)) is applied. Figure 4.16 depicts exemplary the resulting local data

coverage DE(t, x) of the scenario in section 4.4.3.
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Figure 4.16. Local data coverage DE based on the occupation of the vehicle data
shown in Fig. 4.10

As visible, there are spatio-temporal regions with increased data coverage, and regions

where no information is available at all. In the hypothetical case where all trajectories of

all vehicles are known, and traffic density is high, it would hold that DE(t, x) = 1 8(t, x).

In comparison to the occupation Ψ(t, x) the data coverage is a smoothed quantity in

space and time. This allows for a fusion of several sources and models the exponential

decay of measurement information in space and time.

4.4.4.4 Quality Metrics

A quantitative assessment of the estimation accuracy requires to apply an error metric

that compares a traffic speed estimate VE and a GT VGT . In order to select the most

appropriate metric, it is necessary to understand what exactly an error metric is sup-

posed to penalize. In this section first an overview of possible quality metrics for the

evaluation of traffic speed estimates is given and, subsequently, one of them is selected.

In literature a multitude of quality metrics have been proposed. These metrics can be

classified according to the quantity that is evaluated: The traffic speed at space-time

(t, x), the slowness or the Travel Time (TT) that a vehicle needs to pass a certain road

segment. Moreover, the formulations can be ’absolute’ or ’relative’. The latter relate an

error term to the GT. Table 4.3 provides an overview of quality metrics that have been

proposed for the assessment of traffic speed information (compare to (Bogenberger and

Weikl, 2012; Huber et al., 2014)).

The quality metrics Q-FCD and QKZ are designed in order to evaluate the quality

of traffic messages. They compare traffic information gathered by probes or detectors
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Table 4.3. Overview of quality metrics for traffic information assessment

with traffic messages published by e.g. road authorities. A speed threshold is defined

that determines whether traffic at (t, x) is congested or not. Two errors are calculated:

The first describes the correctly identified congested space-time regions. The second

measures the region of ’false positives’, which is falsely assumed congested traffic. These

metrics allow to evaluate the spatio-temporal description of congestion. Though, since

measured speeds are turned into a binary signal, real travel times are neglected. Since

the PSM is meant to provide accurate traffic speed estimates for all types of traffic

applications, wrongly estimated congested speeds are supposed to be penalized. As a

consequence, Q-FCD and QKZ do not meet the requirements of a quality metric.

In order to consider real travel times, there are metrics that evaluate the TT a vehicle

requires to pass pre-defined road segments. Besides simple ones such as the MAETT or

MAPETT, another procedure is the Q-BENCH metric (Bogenberger and Weikl, 2012;

Lotz and Luks, 2011). These metrics compare estimated TTs with real measurements

obtained from probe data. In practical application these error metrics are often applied
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on road road segments that exceed several hundreds of meters in order to optimize

routing systems. However, the goal of the PSM is to accurately reconstruct the spatio-

temporal traffic speed of congestion patterns. Therefore, TT-based metrics are not the

appropriate choice for this evaluation.

Velocity-based metrics such as the MAE or RMSE constitute continuous metrics that

penalize velocity differences. Since accurate spatio-temporal traffic speed estimates au-

tomatically result in accurate travel time estimates, these metrics consider important

aspects of an appropriate quality metric. However, the error in MAE and RMSE does not

meet all requirements: These metrics consider absolute speed errors, although the travel

time of a vehicle is inversely proportional to traffic speed. Hence, at low traffic speeds

errors are small, although even small differences impact real travel time significantly.

Vice versa, velocity differences at high velocities result in large errors, but actually in-

fluence the travel time only slightly. In addition, in free flow conditions vehicles’ driving

speeds tend to diverge (Kerner et al., 2004) which contributes to the conclusion that

these error metrics are not sufficiently sensitive to congested conditions in order to be

applied for traffic speed evaluation.

The MAPE is an approach to overcome this issue. It relates absolute speed errors to the

GT. In this way errors at low GT speeds are weighted stronger, which is consistent with

travel time errors. Though, using the GT in order to normalize the deviation causes an

antisymmetry: While ’true negatives’ (congested conditions which are estimated as free

flow) are penalized strongly, ’false positives’ are barely penalized since the denominator is

large. This also applies to the metrics IMPE and SIMPE, but conversely, since reciprocal

speeds are considered. Effectively, these metrics only penalize congestion that is under-

estimated (or over-estimated respectively). This antisymmetry is a major drawback.

The IMAE is symmetric, sensitive to spatio-temporal traffic speed dynamics and con-

tinuous. Furthermore, the consideration of reciprocal velocities neglects velocity errors

in free flow conditions and is in accordance with travel time calculations. Therefore,

it is selected as the most appropriate quality metric in order to assess the estimation

accuracy of the PSM.

Accordingly, using test set ST in order to evaluate estimate VE(t, x) yields the error:

IMAE =
1

Ntup

X

tr2ST

X

(t,x,v)2ST

�

�

�

�

1

v
�

1

VE(t, x)

�

�

�

�

(4.42)

with Ntup the total number of (t, x, v)- tuples of all trajectories in the test set ST . With

respect to the data coverage defined in section 4.4.4.3, the mean data coverage MD of
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all evaluated tuples is:

MD =
1

Ntup

X

tr2ST

X

(t,x)2ST

DE(t, x). (4.43)

4.4.4.5 Accuracy Assessment of Sample Scenario

This section presents the accuracy of the isotropic smoothing method, the GASM and

the PSM in estimating traffic velocities of the test scenario presented in section 4.4.3.

Furthermore, a generalized error estimator is motivated, which is applied in the subse-

quent extensive study.

Since the parametrization of an algorithm is the basis for a fair comparison, two pa-

rameters sets are considered for each algorithm in order to understand better the in-

fluence of its parameters on the estimation accuracy. The isotropic smoothing uses

⌧ = {150 s, 300 s} and � = {100m, 200m}. The most influential parameters of the

GASM are set according to the publications by (van Lint and Hoogendoorn, 2009;

Treiber and Helbing, 2003) as ⌧ = {30 s, 70 s} and � = {300m, 700m}. The param-

eters of the PSM are chosen as listed in Table 4.2. According to the sensitivity analysis

presented in section 4.4.6 the two most influential parameters, ⌧F,S and ⌧HS,J , are set to

⌧F,S = {300 s, 400 s} and ⌧HS,J = {20 s, 30 s}.

The ratio between train and test set is chosen as 60:40 (i.e. ↵ = 0.4). � is varied between

5� 100%. All trajectories of the scenario depicted in Figure 4.10 are divided randomly

into test and training set according to eq. (4.40). Subsequently, a traffic speed estimate

is computed and the IMAE is determined. In order to achieve a robustness of the result,

this procedure is iterated 50 times for each considered value of � and mean IMAE values

are calculated.

Figure 4.17 depicts the mean IMAE and 80%-quantile with respect to the MD in a

logarithmic scale. Several observations can be made:

1. As expected, all estimators reconstruct traffic speeds more accurately with an

increasing data coverage. Though, the traffic-motivated smoothing algorithms

GASM and PSM achieve higher gains and lower absolute errors than the isotropic

smoothing.

2. Depending on the parametrization, the GASM achieves either accurate estimations

at low data coverages or at high data coverage. This compromise is also described

in (Rempe et al., 2016a).
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Figure 4.17. Mean IMAE and 80% quantile of two variants of the isotropic smoothing,
the GASM and the PSM with respect to the mean data coverage

3. One variant of the PSM achieves the most accurate results for all coverages. The

mean errors difference between that PSM variant and one GASM variant is low

for some coverages, though the 80%-quantile is significantly more accurate at all

coverages.

4. Also for the PSM the parametrization is relevant. In this case the estimation

accuracy for low data coverages is higher using a greater value of ⌧F,S . Though,

both variants produce similar results with greater data coverages.

Note that, alike the mean, a quantile is another characteristic of the error distribution

of an algorithm at a certain data coverage. In this case it is displayed in addition to the

mean in order to provide more insights into the distribution of errors. A lower 80%-

quantile does not necessarily mean that an algorithm is more accurate than another

one. Rather, its distribution of errors is different. The mean error is the quantity that

indicates more intuitively if, ’in average, one algorithm is more accurate than another’.

The IMAE(MD) allows to analyze one scenario and determine which algorithm out-

performs others at a certain data coverage. For instance, if the data coverage is low,

the isotropic smoothing yields more accurate results than some variants of the GASM

and PSM. However, it lacks accuracy at higher data coverages. In order to identify the

most accurate algorithm in the general case, one needs to describe which errors at which

data coverages need to be compared. This motivates the definition of an error term
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Isotropic GASM PSM

30x150 50x300 30x300 70x600 300x20 400x30

IMAE [min/km] 0.4342 0.4871 0.3109 0.3733 0.2881 0.2868

Q80 [min/km] 0.6508 0.7452 0.4244 0.5310 0.3638 0.3599

Table 4.4. Mean aggregated estimation errors and error quantiles of the isotropic
method, the GASM and the PSM for the scenario depicted in Figure 4.10

that balances the errors for low and high data coverages, and aggregates the IMAEs

into one quantity. Assume the data coverage for a given scenario varies depending on

several factors such as the penetration rate of equipped vehicles etc. Then, MD can be

modeled as a random variable where MD 2 [0, 1] and P (MD) as the according proba-

bility density function. As a result, the expected error of a situation with random data

coverage is:

E(IMAE) =

Z 1

0
P (MD) · IMAE(MD) · dMD. (4.44)

The goal is to identify the algorithm that performs best, averaged over all data coverages.

Therefore, one needs to determine a probability density P (MD) of data coverages in

order to aggregate the error function IMAE(MD). The estimation of this probability

density for a given fleet is out of scope of this work but may be elaborated in future works.

For simplicity, in the following it is assumed that P (MD) has a uniform distribution

(i.e. P (MD) = const). The aggregated error term IMAE simplifies into:

IMAE =
1

MDmax �MDmin

Z MDmax

MDmin

IMAE(MD)dMD (4.45)

with MDmax and MDmin the maximal/minimal data coverage that is available for

reconstruction. In the following, MDmin is set to 5% of MDmax in order to eliminate

exceptionally high errors due to extremely low data coverages. Function IMAE(MD) is

approximated with a piecewise-linear function between sampled pairs of IMAE(MD)

resulting from different values of � and eq. (4.43). For the presented scenario the

resulting error values are listed in Table 4.4. These errors reflect well the previous

observations: The PSM has the lowest overall error and lowest quantile, followed by the

GASM and finally the isotropic method.

4.4.4.6 Comparative Results

This section presents the results of the accuracy assessment of the three algorithms

applied to all 101 scenarios. Therefore, first the definition of relative error bounds of
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two algorithms which may have several variants are introduced. Next, the isotropic

smoothing method and the GASM are compared to the PSM. Therefore, for each

pair first the resulting accuracy values are presented and, second, some examples of

congestion patterns are analyzed for which one of the algorithms outperformed the other

one.

Since congestion patterns may vary significantly, naturally also the absolute values of

the resulting errors vary. Furthermore, each algorithm may have different variants, e.g.

different parametrizations. Therefore, in order to compare to classes of algorithms it

is reasonable to consider relative error bounds. Let A be a class of algorithms. Each

algorithm a 2 A represents a variant of this class of algorithm. Applying a to an

estimation problem results in the error IMAE(a). The relative error of two variants a

and b of possibly different classes of algorithms Ak and Al with k, l = 1, ..., NA is defined

as:

✏(a, b) :=
IMAE(a)

IMAE(b)
, a 2 Ak, b 2 Al. (4.46)

The lower/upper relative error bound ✏L/✏U is defined as the minimal/maximal relative

error of all pairs in Ak and Al:

✏L(Ak,Al) := min
a2Ak,b2Al

(✏ (a, b)) (4.47)

✏U (Ak,Al) := max
a2Ak,b2Al

(✏ (a, b)) . (4.48)

The same definition is applied for the quantiles.

PSM vs. Isotropic Smoothing Figure 4.18 visualizes the relative error bounds and

quantiles of the PSM compared to the isotropic smoothing method for all 101 congestion

patterns. Several observations can be made:

1. The lower and upper error values vary significantly with values between 0.4 and

1.2.

2. For the majority of the scenarios the PSM is more accurate than the isotropic

smoothing method.

3. There are a few scenarios where both classes of algorithms produce similar results,

or the isotropic smoothing method is slightly more accurate.

Figure 4.19 illustrates the velocity estimates of a variant of the PSM and the isotropic

smoothing for data of a congestion where the PSM yields a significantly lower estimation

error. The comparison of the contour plots reveals that the PSM achieves to reconstruct
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I. II. III.V.VI. VII. VIII.

VIII.

IV.

I
.

VIII.

VIII.

IV.IX. X.

Figure 4.18. Relative IMAE and its quantiles of the PSM compared to the isotropic
smoothing method. Error bounds include the minimal and maximal relative error with

respect to different parametrizations
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Scenario I.

(a) Raw trajectory data
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(b) Isotropic Smoothing Method
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(c) PSM
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Figure 4.19. Comparison of velocity estimates of an isotropic smoothing and the PSM
for a congestion that occurred on A8-99 in south-east direction on August 4th 2014
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II. III.

IV.

Figure 4.20. Congestion patterns that are reconstructed significantly more accurate
with the PSM compared to an isotropic smoothing method

the WMJs while the isotropic smoothing fails to do so. This explains the higher accuracy

of the PSM.

Figure 4.20 illustrates the raw data of a few other scenarios where the PSM produces

significantly more accurate results. These patterns comprises space-time regions of syn-

chronized flow and WMJs. Since the isotropic smoothing method is not able to recon-

struct moving jams, variants of this class of algorithm fail to determine accurate velocity

estimates.

Figure 4.21 shows a scenario where the isotropic smoothing method outperforms the

PSM. It is a synchronized flow congestion pattern with a relatively short length of

2-3 km and a temporal width of several hours. The velocity varies only slightly and

no noticeably moving jams are visible. Both algorithms reconstruct well the stationary

shape of the pattern. The reason for the isotropic smoothing method to be approxi-

mately 10% more accurate seems to be the better averaging of the trajectory data in

space-time. Due to the relatively low velocities, the PSM identifies emerging moving

jams which are not clearly visible in the original data. Thus, it is slightly more inac-

curate. Figure 4.22 depicts more congestion scenarios where the isotropic smoothing
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Scenario V.

(a) Raw trajectory data
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(b) Isotropic Smoothing Method
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(c) PSM

13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30
0

2

4

6

8

0

20

40

60

80

100

120

V
el

o
ci

ty
 [

k
m

/h
]

Figure 4.21. Comparison of velocity estimates of an isotropic smoothing and the PSM
for a congestion that occurred on A96 in west-bound direction on August 1st 2014
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VI. VII.

VIII. IX.

X.

Figure 4.22. Congestion patterns that are reconstructed with similar or slightly better
accuracy using an isotropic smoothing compared to the PSM

method and the PSM yield similar results, or the isotropic one is slightly more accurate.

Four of five of these patterns represent minor congestion patterns that are rather station-

ary. Traffic velocities are rather homogeneous. Since both classes of algorithms estimate

homogeneous synchronized flow phases similarly, the apparent similar accuracy results

can be explained well. Not mentioned yet is the congestion on August 21st on A99 in

westbound direction. Until 6pm traffic was in oscillating state (Oscillating Congested

Traffic (OCT) (Helbing et al., 2009)), when an accident at kilometer 38 occurred. Due

to closed lanes and significantly reduced road capacity, the pattern changed into homo-

geneous congested traffic (HCT), also called mega-jam (Kerner, 2009). The isotropic
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smoothing method reconstructs this pattern more accurately than the PSM. A detailed

discussion of this pattern is given in section 4.4.5.

The comparison of the PSM with the GASM results in the relative errors depicted in

Figure 4.23. It can be noticed that:

1. The error function is less volatile than the one in Figure 4.18. This can be ex-

plained with the higher degree of similarity between PSM and GASM. This higher

similarity also explains that

2. the difference of relative errors is generally smaller. Values range between 0.7 and

1.15. Still, most scenarios are reconstructed more accurately with the PSM than

with the GASM.

3. There exist a few situations where the GASM catches up with the PSM or is more

accurate.

Figure 4.24 depicts one example pattern where the PSM results in significantly lower

estimation errors. Several smaller synchronized flow patterns stick to bottlenecks at

kilometers 14, 18 and 22. In addition, at 8am an accident occurred at kilometer 12

which resulted in a relatively severe congestion with rather homogeneous traffic speeds.

In this pattern a few narrow moving jams emerged that propagated upstream, but which

did not develop into full WMJs. All of these patterns consist partly or completely of

stationary congestion patterns. As discussed in previous sections and illustrated in

Figure 4.14 the GASM is not able to reconstruct stationary patterns accurately using

FCD such that the PSM produces more accurate estimates. Figure 4.25 illustrates four

other scenarios. The first pattern is a stationary synchronized flow pattern. Three

others can be classified as GPs (Kerner, 2009) which comprise synchronized flow and

WMJ phases.

Figure 4.26 shows one example where the GASM produces similarly accurate results as

the PSM. The pattern is dominated by moving jams. Since the GASM reconstructs

moving jams well, the PSM is not able to outperform the GASM in this scenario. Also

two other congestion patterns as depicted in Figure 4.27 are less accurately, or similarly

as accurately reconstructed using the PSM. The right one comprises several WMJs. The

left scenario is known from the preceding comparison between PSM and the isotropic

smoothing approach. Apparently, the PSM fails to reconstruct this pattern. The dis-

cussion in section 4.4.5 highlights this issue.

Concluding the quantitative comparison, from a total of 101 congestion patterns that

occurred on the freeway network surrounding Munich, the PSM reconstructed 89 ones

better (i.e. both error bounds were below 1.0), 7 similarly accurate (the value of 1.0 is
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II. III.VI.

I.IV. V.VIII.VII.

Figure 4.23. Relative IMAE and its quantiles of the PSM compared to the GASM.
Error bounds include the minimal and maximal relative error with respect to different

parametrizations
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Scenario I.

(a) Raw trajectory data
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(b) GASM
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(c) PSM
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Figure 4.24. Comparison of velocity estimates of the GASM and the PSM for a
congestion that occurred on A99 in west-bound direction on July 28th 2014



Evaluation 81

II. III.

IV. V.

Figure 4.25. Congestion patterns that are reconstructed significantly better with the
PSM compared to the GASM

included in the bounds) and 5 worse than the isotropic smoothing method. In average,

the improvement varies between 25.7% and 18.4%. The 80% quantile is between 33.0%

and 26.2%. Compared to the GASM, 89 scenarios were reconstructed more accurately,

11 similarly and 1 worse. Average improvements using the PSM are 16.3% to 5.0%, the

80% quantile is between 22.8% and 8.5%.

These results, based on a multitude of un-biased congestion patterns, show that the

PSM manages to reconstruct most patterns more accurately than an isotropic smoothing

method as well as the GASM. Even under consideration of different sets of parameters,

taken into consideration using error bounds, the PSM outperforms the other algorithms

in 89 of 101 scenarios.
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Scenario VI.

(a) Raw trajectory data
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(b) GASM
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(c) PSM
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Figure 4.26. Comparison of velocity estimates of the GASM and the PSM for a
congestion that occurred on A9 in north-bound direction on August 6th 2014
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VII. VIII.

Figure 4.27. Congestion patterns that are reconstructed with similar or slightly better
accuracy using the GASM smoothing compared to the PSM
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Figure 4.28. Congestion pattern emerging at isolated bottlenecks with respect to the
bottleneck strength according to the Three-Phase traffic theory (Kerner, 2009)

4.4.5 Reconstruction of Mega-jams

The reconstruction of a mega-jam pattern with the PSM turned out to lack accuracy.

This section provides a deeper analysis of this congestion pattern.

According to the Three-Phase traffic theory, there are three types of congestion patterns

(Kerner, 2009): Synchronized Flow Patterns (SPs), GPs and mega-jams (also called

HCT in other traffic theories (Helbing et al., 2009)). The emergence of a certain type

of pattern depends on the bottleneck strength, i.e. the drop of the road capacity along

a road segment (see Figure 4.28). If the bottleneck strength is low, SPs occur. With

stronger bottlenecks, patterns develop into GPs which comprise synchronized flow as

well as WMJ phases. If a bottleneck is very strong, e.g. due to a lane closure, a mega-

jam pattern emerges. According to the Three-Phase traffic theory, a mega-jam is ”a

wide moving jam with an extremely great width growing continuously over time”. It is

further characterized as ”a non-regular dynamic behavior of wide moving jams as well as

random disappearance and appearance of the pinch region of synchronized flow within

an GP upstream of the bottleneck”, and ”the merger of wide moving jams of the GP

into a mega-jam” (Kerner, 2009). Thus, although this pattern is basically classified as a

WMJ, it shows some irregularities: Instead of individual, distinct waves with constant

downstream front velocity, a mega-jam consists of multiple WMJs which merge into one

phase region. In contrast to a typical WMJ which emerges as a narrow moving jam in

a pinch region (i.e. a synchronized flow phase) and develops slowly into a WMJ, there

is no pinch region in a mega-jam. Rather, all moving jams originate at the bottleneck

position. As a result, this congestion pattern shows a stationary downstream phase front

as long as the bottleneck is active.2

Reconstructing the previously mentioned mega-jam pattern with the PSM results in a

IMAE(MD) depicted in Figure 4.29. Apparently, the error of the PSM exceeds the

errors obtained by other methods for data coverages below 1%. Only then, at a coverage

greater than 2%, the PSM catches up and reconstructs slightly more accurate. Figure

2Due to the described irregularities of the mega-jam pattern, this type of pattern is part of the
discussion whether two or three states of traffic flow exist (Treiber et al., 2010b; Schönhof and Helbing,
2009; Kerner, 2009).
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Figure 4.29. Mean IMAE and error quantile of an isotropic smoothing method, the
GASM and the PSM when applied to a mega-jam pattern

4.30 illustrates the results of the estimation process with a zoom on the mega-jam. It

shows all collected data, a subset of trajectories that correspond to a mean data coverage

of 0.5% and the estimated velocities using the isotropic smoothing method, the GASM

and the PSM. The isotropic smoothing method reconstructs this stationary pattern quite

well. It smooths all velocity data and produces a homogeneous stationary pattern. The

GASM, using the shock-wave characteristic kernels, manages to smooth data widely and

reconstructs most of the congested region. Though, part of the congestion is propagated

beyond the bottleneck in downstream direction. The PSM reconstructs the downstream

front well, however, larger regions of the mega-jam are estimated as free-flow. These

wrongly estimated regions result in a large estimation errors.

The reason for the PSM’s inability to reconstruct this mega-jam as accurately as other

methods can be accounted to its strict accordance to the typical properties of phases as

described by the Three-Phase traffic theory. As described earlier, typical properties of

synchronized flow phases are its stationary character, while WMJs are shock waves with

constant downstream front velocity. The congestion patterns evaluated in section 4.4.4

showed that in most cases this approach results in a gain in accuracy. However, the

properties of mega-jams diverge from typical WMJ characteristics (”a non-regular dy-

namic behavior of wide moving jams”). The PSM is constructed and parametrized for

typical phase characteristics, i.e. that temporal widths of WMJs are low (Kerner and
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(a) All available trajectories (b) Random subset

(c) Isotropic smoothing (d) GASM

(e) PSM

Figure 4.30. Complete dataset (upper left), training data (upper right) and velocity
estimates produced by the isotropic smoothing, the GASM and the PSM for a mean

data density of 0.5%

Rehborn, 1996). Therefore, it fails to reconstruct the extensive space-time region of the

mega-jam.

In this study the mega-jam pattern occurred only once in 101 patterns. Also studies by

other researchers support the hypothesis of a rare observation of this pattern (Schoenhof

and Helbing, 2007). Though, if the accurate reconstruction of this pattern is especially

important, it is possible to adapt the PSM in order to improve the estimation accu-

racy. One way is to optimize its parameter for this pattern. While that would increase
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the estimation accuracy for mega-jam patterns, it is likely that the accuracy in recon-

structing other more typical patterns would decrease. Since most analyzed patterns are

reconstructed well with the proposed set of parameters, this is a less recommended way.

Another possibility is to integrate empirical features of mega-jams and the position of

the bottleneck into the phase calculation: If its existence and position is known (e.g.

because a lane closure has been reported by public authorities or a data-driven approach

detected a strong bottleneck) and a mega-jam pattern starts to develop, a queuing con-

gestion upstream the bottleneck is likely. This queuing pattern is in phase J and will

not dissolve until upstream and downstream front meet. Additionally, it is very unlikely

that any free flow or synchronized flow phase will occur in-between these phase fronts.

Such assumptions could be integrated into the PSM using a queue model which tracks

the upstream and downstream congestion fronts and assigns enclosed space-times a high

phase probability. This approach would be a minor extension and could be integrated

easily into the PSM framework in future works.

4.4.6 Sensitivity Analysis

The PSM involves several parameters (see Table 4.2) that need to be set. In order to

understand better the influence of certain parameters on the estimation accuracy, in this

section the sensitivity of the estimation accuracy with respect to different parameters

is presented. This facilitates the adoption and parametrization of the PSM to other

scenarios and allows for efficient optimizations of parameters.

Some of the parameters, such as the smoothing directions vdirp and vdir,Hp as well as the

velocity thresholds between the phases are motivated by empirical traffic characteristics.

Therefore, in the following, they are seen as constants. The parameters time headway

TH and minimal length x0 have been subject of several studies publishing distributions of

observed values in real traffic (Krbalek et al., 2001; Brackstone et al., 2002). Though, the

assumed microscopic car-following model in order to determine Ψ(t, x) is quite simple.

If it turns out that parameters TH and x0 influence the estimation result significantly,

more sophisticated models might be necessary. Finally, the kernel parameters ⌧p, ⌧
H
p ,

�p and �Hp do not correspond to any traffic constant. Up to now, they are set in a trial-

and-error procedure. Especially for these parameters it is important to know, which

one influences the estimation accuracy most, and which ones play a minor role when

maximizing the estimation accuracy.

A method that is commonly used to quantify the sensitivity of an input parameter on the

cost function is the Variance-Based Sensitivity Analysis (VBSA) (Saltelli et al., 2007).

Consider a function Y (X) with X 2 R
d as input vector. The first-order sensitivity Si



88 Phase-based Traffic Speed Estimation with FCD

Figure 4.31. First-order sensitivity indices of the parameters of the PSM

measures the effect of varying one input dimension Xi on the cost function Y :

Si =
Var (E (Y |Xi))

Var (Y )
(4.49)

where Var(.) denotes the variance and E(.) the expectation of a random variable. Note

that
P

i Si < 1 in case there are interaction terms among the input variables (Saltelli,

2007). The computation of these indices usually requires a vast number of samples of

Y (Cukier et al., 1978). In order to reduce this number for time-consuming models

a technique called Fourier-Amplitude Sensitivity Test (FAST) is proposed in (Saltelli

et al., 1999; Cannavó, 2012).

Applying the FAST to the PSM requires to define a range of valid values for each

parameter. They are set as follows: TH is varied in the range of [0.5, 3], x0 in [2, 20],

all ⌧ values in [20, 500] and all � in [100, 1000]. The method is applied to the scenario

described in section 4.4.3 using the depicted training and test set. All in all, 20,000

model evaluations with varying parameters are done, the IMAE is computed and the

sensitivities are determined.

Fig. 4.31 shows the resulting first-order sensitivities. Many parameters appear to have

minor influence on the estimation accuracy, for instance, the parameters of the assumed

car-following model applied for the computation of space-times Ψ. This low sensitivity

supports the hypothesis that a simple model is a sufficiently accurate approach for the

needs of the PSM. Furthermore, several kernel parameters such as �J , ⌧F , �
H
S,J and �HF

are less influential. The highest impact have parameters ⌧S,F and ⌧HJ,S . When applying

the PSM to other scenarios, an optimization of these two parameters is likely to produce

the greatest gain in accuracy.
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Overall, none of the 20,000 model evaluation with strongly varying input parameters

resulted in a failure of the model. Thus, since the PSM returns velocity estimates

even with parameter sets that deviate strongly from the optimum this method can be

described as robust with respect to its parametrization. Contrary, simulation models

based on the LWR model diverge if for example the Courant-Friedrich-Levy condition

is not satisfied, which results in non-physical velocities (Knoop and Daamen, 2016).

Note that this sensitivity analysis has bee performed with one scenario with fixed training

and test set. It is likely that other setups will result in slightly different sensitivities.

Furthermore, it appears that
P

i Si ⇡ 0.5 < 1. As described earlier, it means that

there are interaction terms between several parameters. The accurate calculation of

interaction terms in a 10-dimensional parameter space requires vast numbers of samples

(Saltelli et al., 2007). In order to generate that many function evaluations, a significant

amount of computational resources is needed, and a prior optimization of the code is

recommended. This could be subject of future work.

4.4.7 Run-time Analysis

Besides accuracy, efficiency is an important requirement of a traffic state estimation

method. Especially real-time applications require an algorithm that processes sensor

information of a large network as quickly as possible in order to broadcast up-to-date

traffic information. But also for processing greater amounts of historical sensor data,

efficient estimation algorithms are necessary. In order to provide insights into the ef-

ficiency of the PSM, this section presents its computational complexity and average

run-times required for scenarios with respect to varying network sizes.

When applied to a space-time domain discretized into Nt cells in time and Nx cells in

space, an implementation of the PSM comprises element-wise matrix operations and 2D

convolution processes. With respect to the run-time, it is irrelevant whether grid cells

contain measurements or not. Element-wise matrix operations have a complexity of

O(Nt Nx ). As shown in detail in (Schreiter et al., 2010; Schreiter, 2012), the convolution

process can be implemented efficiently using the FFT (Cooley and Tukey, 1965). The

resulting complexity is O (Nt Nx log (Nt Nx )). In complexity considerations, the term

with the highest order dominates. With Ntot = Nt Nx , denoting the total number of

grid cells in the domain, the overall complexity of the PSM is:

O(Ntot logNtot). (4.50)
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Figure 4.32. Run-time of the PSM with respect to an increasing domain size

This class of complexity is close to linear complexity. Furthermore, when it is applied

to increasing problem sizes (number of grid cells), the required number of computa-

tions increases only slightly stronger than linearly. If hardware-specific effects such as

memory-management are neglected, then also processing times are expected to grow

approximately linearly.

The computational complexity is important in order to estimate whether an algorithm

is eligible to be applied to huge problems, but does not give insight into the absolute

computation times. Therefore, in the following, the computation times for a real-time

scenario with increasing domain size are presented. We assume a domain with ∆T = 30 s

and Nt = 60 which describes a time domain of 30min duration. ∆X is set to 50m, and

the number of cells in space dimension Nx is varied. We assume that the PSM is called

iteratively (every time step) in the real-time case, such that the kernel functions can be

preprocessed. The time that it takes to process a matrix with velocity data VFCD into

the velocity estimate VE is measured. Each measurement is repeated for 50 times to

ensure robustness of the results. The computations are run on a notebook with i7-4800

processor with 2.7GHz and 8GB memory.

Fig. 4.32 illustrates the processing time with respect to an increasing problem size in a
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logarithmic scale. As expected from the complexity considerations, run-time increases

approximately linearly, with slight deviations at low run-times. Noticeable is that at

a cell count of approximately 6 · 106(5000 km) a significant jump of computation times

occurs. The reason is that the required memory exceeds the available memory of the

notebook, which causes time-consuming memory management measures of the operating

system. Moreover, although the mean run-time of 50 iterations is considered, the curve

is still noisy. This stems from the FFT implementation, which expands matrices to the

next higher value of 2Nt and 2Nx cells. Therefore, given a continuously growing number

of input cells, the resulting processing time is a non-smooth function.

To conclude, the PSM allows to process traffic data in network sizes of up to 1000 km

in about 3 s on a standard notebook using an un-optimized implementation. Further

optimizations of the code as well as distributed computing techniques will enable to

handle far larger network sizes in shorter times. For most real-time applications this

processing speed is expected to be satisfactory.

4.5 Conclusion and Outlook

In this chapter, a novel freeway traffic speed estimation algorithm called PSM was

developed and its accuracy, sensitivity to parameters and its efficiency were evaluated.

First, a new concept to represent FCD in time and space was introduced that allows

to describe the level of information a measurement holds. Afterwards, the two-step

approach of the PSM was motivated based on the Three-Phase theory. In the first step,

phase regions of free flow, synchronized flow and WMJ are reconstructed. In the second,

phase-dependent velocity estimates are computed and aggregated into a final velocity

estimate. In a subsequent qualitative analysis of the estimation results of one typical

congestion pattern, the strengths and weaknesses of the PSM in comparison with two

other state-of-the-art approaches were analyzed. Overall, the PSM outperformed the

other approaches.

In order to generalize the results and assess the estimation accuracy of the PSM in

comparison with the other algorithms, an extensive evaluation using 101 congestion

patterns, which occurred in the freeway network surrounding Munich, was conducted.

First a novel methodology was developed that seeks to eliminate the influence of the

available amount of data on the overall accuracy of an algorithm. The so-called mean

data coverage was introduced which allows to describe the level of information that

was available for speed estimation. This allowed to compare the estimation accuracy of

several variants of an isotropic smoothing method, the GASM and the PSM. Results
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showed that the PSM was in average 18.4% to 25.7% more accurate than the isotropic

smoothing method and 5.0% to 16.3% more accurate than the GASM. Only the recon-

struction of a mega-jam patterns lacked substantial accuracy. This pattern was analyzed

thoroughly in a subsequent discussion. The results of a first-order sensitivity analysis of

the parameters of the PSM on the estimation accuracy were investigated. As a result,

two parameters turned out to have the greatest impact. This finding allows to adapt

the PSM quickly to new scenarios and achieve accurate results by optimizing only two

parameters. Finally, the theoretical complexity and the actual run-times of the PSM

were analyzed. Its efficiency is shown in a real-time scenario where the mean processing

time is measured depending on the considered road length. For instance, on a standard

notebook, network sizes of more than 1,000 km can be computed in about 3 s.

To sum it up, the PSM fulfills the requirements of a practice-ready traffic speed estima-

tion algorithm (section 2.3): It is more accurate than other methods, it is sufficiently

efficient to be applied in large-scale networks, it is relatively simply to parametrize to

a new setup and it proved to be robust with respect to different parameter sets. Other

features are, that it allows for a fusion of different data sources and that it provides a

level of trust for each computed velocity value.

There are several aspects that could and should be addressed in future works. One

concerns a more sophisticated treatment of mega-jams in order to reconstruct this type

of congestion pattern more accurately. Another one is that the PSM is limited to the

estimation of traffic speeds on freeways. Since traffic dynamics in urban networks have

different characteristics, the PSM needs to be adapted/extended in order to be able to

reconstruct traffic speeds accurately on urban roads. Finally, for now, the PSM is able

to process velocity data. Due to increasing digitalization and decreasing communication

costs in the future more types of data, such as extended vehicle sensor information,

accurate density and flow from road side units, lane-information etc., will be available. A

comprehensive description and integration of various data types into the PSM framework

provides great potential to further increase the estimation accuracy.
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Chapter 5

Forecasting Congestion Fronts

using FCD and Flow Data

The PSM as described in chapter 4 is a general method that can be used to estimate

traffic speeds on freeways given various types of speed data as well as other measurements

that support the identification of traffic phases. Its strength are the accuracy, robustness

and the efficiency which allows real-time applications (section 4.4.7). Though, it does

not provide traffic state forecasts. Short-term traffic state forecasts constitute valuable

information for various traffic-related applications (Vlahogianni et al., 2014). Systems

such as travel time predictions as well as in-vehicle tail of congestion warnings increase

the calculability and safety of individual transportation. The overall efficiency and safety

benefit from accurate short-term traffic speed forecasts using effective control strategies

such as VSLs (Ackaah et al., 2015) or ramp-metering (Bogenberger and May, 1999).

Especially WMJs are a significant hazard for travelers: Vehicles entering the congestion

often need to decelerate strongly. Severe accidents, caused by inattentive drivers, occur

frequently. Therefore, effort is done in order to alert the driver and make him slow down

decently before arriving at the congestion front. However, time is needed in order to

generate and apply a congestion front warning and a driver needs to be warned ahead

of time. Therefore, short-term congestion forecasts are required. Nevertheless, the facts

that WMJs originate stochastically, the velocity of their upstream fronts varies and they

dissolve as soon as upstream and downstream front meet, make it challenging to provide

reliable and accurate short-term front forecasts.

The Three-Phase theory provides a few heuristics on congestion front propagation speeds:

The downstream front of WMJs propagates upstream with nearly constant velocity and

the downstream front of a synchronized flow phase typically sticks to a bottleneck and is

therefore stationary. The speed of the danger-prone upstream fronts depend on the flow
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and density difference of adjacent phases. Speed data alone does not allow for feeding a

physical model, which limits the accuracy of a forecast. However, given heterogeneous

types of data such as macroscopic flows and densities or aggregated origin-destination

information of individual travelers, more sophisticated forecasts can be determined. A

fusion of different types of data constitutes an important aspect of future ITS (see

(Faouzi and Klein, 2016)).

This chapter proposes a new method to forecast congestion fronts of WMJs based on

FCD fused with detector data for a short time horizon of up to 10min. In contrast to

other methods which usually require data to be collected at fixed positions in fixed time

intervals, the proposed method allows data to be sparse in time and space. The fusion of

FCD with detector data seeks to combine the strengths of both data sources: The high

spatio-temporal coverage of FCD that provides accurate traffic speed estimates and the

flow data collected by loop (or other stationary) detectors that is used for congestion

front prediction.

The following section briefly summarizes related work. Next, in section 5.2 a simple,

yet robust and flexible approach is described that extends the PSM with a short-term

congestion front forecast using sparse flow data. Three variants of the approach are

described as candidates for further analysis. In section 5.3 the results of an evaluation

using the data of a real freeway congestion are presented. Therefore, first a quality

metric that measures the prediction accuracy under consideration of a varying prediction

horizon is proposed. Second, the accuracy of each variant and a naive predictor is

assessed and, finally, the results are compared and discussed. Section 5.4 concludes this

chapter and proposes further directions.

5.1 Related Work

Many methods have been developed that predict traffic conditions on freeways for a

short time horizon (see section 2.3). Most approaches that are based on analytical

models apply a first or second order CTM model using loop detector data and apply data

assimilation techniques such as Kalman filters (Lighthill and Whitham, 1955; Richards,

1956; van Lint and Djukic, 2014; Wang and Papageorgiou, 2005; Yuan et al., 2012).

A different approach called ASDA/FOTO reconstructs space-time regions of free flow,

synchronized flow and WMJ and applies the shock wave equation of traffic flow in order

to forecast phase fronts (Kerner, 2004). All of these approaches develop dedicated traffic

flow models using detector data. However, they do not allow to incorporate FCD which,

due to its high spatio-temporal resolution, is a valuable source of traffic information.

Other approaches published in (Bekiaris-Liberis et al., 2016; Work et al., 2010; Work
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et al., 2008; Work et al., 2009) integrate probe velocity measurements into an LWR

based model. These models convert speed measurements into density or flow estimates

using a FD in order to estimate and forecast traffic conditions on a road segment.

Disadvantageous is that these methods require complete information at all boundaries

of the space-time domain.

To summarize, there are sophisticated CTMs using loop detector data which possibly en-

rich these measurements with probe data. Provided FCD is rather used as a supplement

than as a source of high quality data. These methods rely strongly on flow and density

data provided at regular time intervals as well as assumed boundary conditions. This

limits the applicability of many methods since boundary conditions are often unknown

in practice. Additionally, the accuracy may be low if detector spacings are large.

The present approach seeks to overcome these issues. The idea is to first utilize high

resolution FCD in order to identify current traffic phases. Next, these phase regions

are used to estimate phase flows and densities from sparse sensor data using phase-

characteristic smoothing operations. Subsequently, resulting traffic conditions feed a

physical phase front propagation model. In comparison to existing methods, it exploits

the high resolution of FCD and does not require boundary conditions at all. Further-

more, it seeks to be efficient, which enables a real-time application, and flexible due to

its applicability to heterogeneous sensor data.

5.2 Prediction Model

The idea of the present prediction model applies ideas of different methods such as the

ASDA/FOTO model, the GASM and the LWR shock wave equations. Four steps are

performed: First, traffic speeds up to the current point in time are estimated using

the PSM applied to all available FCD. Second, current phase fronts are identified and

phase-dependent estimates of the phase flows and densities are computed using mixes of

detector and FC data and phase-characteristic smoothing operations. Third, upstream

flows are predicted in time and space. Fourth, phase front propagations are simulated

over time depending on predicted flows and densities of adjacent phases.

The following three parts introduce the model: The first describes the definition of a

congestion front as well as the propagation of phase fronts according to the shock wave

formula. The subsequent two sections describe the estimation procedure of flows and

densities of adjacent phases.
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Figure 5.1. Schematic illustration of the front prediction

5.2.1 Phase Front Propagation

Let V (t, x) be the macroscopic traffic speed at time t and at position x on a road segment

of length L observed during time interval [0, T ], such that t 2 [0, T ] and x 2 [0, L]. Given

a high data coverage of FCD V (t, x) can be estimated accurately using using a state-of-

the-art traffic speed estimator such as the PSM described in chapter 4. The positions of

the GT upstream jam fronts Xup
GT (t) are defined as the positions where the traffic speed

undergoes a critical velocity of vthres:

Xup
GT (t) := {x : V (t, x) = vthres,

dV (t, x)

dx
< 0}. (5.1)

Accordingly, the downstream fronts are defined as:

Xdown
GT (t) := {x : V (t, x) = vthres,

dV (t, x)

dx
> 0}. (5.2)

Let tp be the predicted time, i.e. the time that has passed since a front has been

initialized with the GT. Then, the goal of the proposed forecast method is to process all

given data that is available up to the time t� tp and provide an estimate of all upstream

jam fronts Xup
E,i(t, tp), where index i denominates the i-th front in ascending order of x:

Xup
E,i(t, tp) = Xup

GT,i(t� tp) +

Z t

t�tp

Ẋup
E,i

�

t̂, t̂� (t� tp)
�

dt̂. (5.3)

This propagation equation is valid as long as the upstream and downstream front do

not meet:

Xup
E,i(t, tp) < Xdown

E,i (t, tp). (5.4)
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Figure 5.2. Fundamental diagram and corresponding space-time regions with phase
fronts and front propagation speeds (compare to (Treiber and Kesting, 2013))

If for any i the condition is violated, both, Xup
E,i and Xdown

E,i are removed from the sets

of currently active fronts. The propagation speed of a front is computed with the well-

known shock wave formula (Treiber and Kesting, 2013; Kerner, 2009; Richards, 1956;

Lighthill and Whitham, 1955):

Ẋup
E,i(t, tp) =

Qdown
i (t, tp)�Qup

i (t, tp)

Kdown
i (t, tp)�Kup

i (t, tp)
(5.5)

where Qdown
i and Qup

i denote the outflow and inflow into a congestion front, and Kdown
i

and Kup
i the traffic density slightly downstream and upstream of the front i (see Figure

5.1).

Figure 5.2 visualizes the front propagation speeds for several pairs of flow and density of

adjacent traffic phases computed with the LWR shock wave formula. Since the prediction

model is focused on the more dangerous transitions from free to WMJ state, in the

visualization mainly examples of free flow and WMJ are given. Still, the potentially wide

scattered states of the synchronized flow phase follow the same rules. As described in

section 2.1, two distinct velocities have been observed extensively in real traffic patterns:

vfree ⇡ 80 km/h (Kerner et al., 2004; Kerner, 2009; van Lint and Hoogendoorn, 2009;

Treiber and Kesting, 2013) and vcong ⇡ �15 km/h (Newell, 1993; Kerner, 2009; Treiber

et al., 2010b). vfree has been found to be the average speed of shock waves in free flow,

and vcong in congested flow. Transitions between free and WMJs state may have different

propagation speeds. For instance, if traffic flow is in free and unstable state (close to

qmax, (Kerner, 2009)) and streams into a WMJ phase, the (absolute) front speed is

higher than vcong. Similarly, if the in-flow into a highly congested state is relatively low,

the (absolute) front speed is lower. The other way around, the speed of the downstream

front of a WMJ adjacent to free flow varies merely. It has been observed to be quite

constant close to vcong (Kerner, 2004).
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In order to determine these quantities in practice, measurements provided by e.g. loop

detectors are available that are reported sparsely in time and space. Flow data is rep-

resented as a set of tuples Q = {(t, x, q)1, ..., (t, x, q)Nq
: tj  t � tp, j 2 1, ..., Nq}.

According density values (usually determined as q/v) follow the same notation: K =

{(t, x, k)1, ..., (t, x, k)Nk
: tj  t � tp, j 2 1, ..., Nk}. However, raw data does not corre-

spond to the desired quantities. First, these measurements are available only up to the

time of initialization t� tp, but the forecast model requires predictive flows and densities

in order to simulate a congestion front. Second, measurements are sparse in time and

space. Though, flows and densities up- and downstream and in proximity of a congestion

front are required. The following two sections describe the estimation process of flows

and densities given sparse flow data.

5.2.2 Estimating Phase Flows

Continuous and predictive flows and densities are determined using traffic-characteristic

spatio-temporal smoothing operations as described in section 4.3.2. In free flow, the

kernel ΦH
F is applied which models the propagation of information in free flow conditions.

For the WMJ phase the kernel ΦH
J,S is used. In addition, the probability P¬J := 1� PJ

is defined which assigns each space-time (t, x) a weight according to the phase it belongs

to. This results in the definition of the flow inside (QJ(t, x)) and outside (Q¬J(t, x)) a

WMJ phase:

QJ(t, x) =

P

(t∗,x∗,q∗)2QΦ
H
J,S(t� t⇤, x� x⇤) · PJ (t

⇤, x⇤) · q⇤
P

(t∗,x∗,q∗)2QΦH
J,S(t� t⇤, x� x⇤) · PJ (t⇤, x⇤)

. (5.6)

Q¬J(t, x) =

P

(t∗,x∗,q∗)2QΦF (t� t⇤, x� x⇤) · P¬J (t
⇤, x⇤) · q⇤

P

(t∗,x∗,q∗)2QΦF (t� t⇤, x� x⇤) · P¬J (t⇤, x⇤)
. (5.7)

Thus, given sparse flow data up to time t � tp, QJ(t, x) and Q¬J(t, x) describe con-

tinuous flow estimates using the phase regions determined with the potentially high

spatio-temporal resolution of FCD. Moreover, the smoothing process constitutes an

extrapolation of data into the future. These estimates allows to set the upstream and

downstream predictive flows.

Using this model, two phase transitions are possible: A transition from a non-WMJ

phase to a WMJ, and from a WMJ to a non-WMJ phase. The in-flow Qup
i (t, tp) for the

first case is set as:

Qup
i (t, tp) := Q¬J

⇣

t,Xup
E,i (t, tp)

⌘

. (5.8)

Qdown
i (t, tp) could be set analogously with QJ(t, x). Though, since the flow in the WMJ

phase is very low, an extrapolation (i.e. forecast) of the current phase flow does not add
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information. Therefore, Qdown
i is set to the flow at time of initialization:

Qdown
i (t, tp) := QJ

⇣

t� tp, X
up
E,i (t� tp, 0)

⌘

. (5.9)

It is possible to measure and set input and output flows for the second case as well.

Though, it has been observed that the downstream front of a WMJ has a relatively

constant speed. This constitutes already an accurate forecast, which a dynamic model

can hardly outperform. Therefore, with respect to (Kerner, 2009), Ẋdown
E,i (t, tp) is set to:

Ẋdown
E,i (t, tp) = vcong. (5.10)

5.2.3 Estimating Phase Densities

The estimation of phase densities is similar, but differs in one important aspect. Since

loop detectors do not measure density, but it is determined as the quotient of flow and

speed, traffic density can be biased. In free flow conditions macroscopic speeds and

flows can be measured with high precision, such that also traffic densities are estimated

accurately. In turn, in congested traffic conditions vehicle speeds and vehicle counts

are low. The macroscopic flow and speeds, which constitute averages, are determined

using only a few samples. Additionally, technical measurement errors influence speed

values. Therefore, in congested traffic the accuracy of density data deduced from loops

is limited.

Due to low speeds in WMJs phase regions this impacts strongly the forecast of severe

congestion fronts. In order to analyze the effects of this issue and identify a possibly

more accurate density estimator, in the following three variants to estimate the densities

are contrasted.

The first variation, denominated as K-DET, smooths density quantities K determined

from detector data in the same way as flow data. The resulting smoothed and continuous

functions K¬J(t, x) and KJ(t, x) are used to set the respective density values:

Kdown
i (t, tp) := KJ

⇣

t� tp, X
up
E,i (t� tp, 0)

⌘

(5.11)

Kup
i (t, tp) := K¬J

⇣

t,Xup
E,i (t, tp)

⌘

. (5.12)

The second variant, denominated as K-MAX, is based on the ASDA/FOTO model

(Kerner et al., 2004). In that model the authors precompute a density which represents

the maximal density in congested traffic where vehicle velocities are very low. This
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Figure 5.3. Schematic representation of the German freeway A9 in north-bound
direction. The distance refers to the origin of the freeway.

approach is integrated into this framework by setting:

Kdown
i (t, tp) := kmax (5.13)

andKup
i (t, tp) similar to K-DET. In this case, kmax is set to 90 veh./km based on (Kerner

et al., 2004).

The idea of the third variant, denominated as K-FCD, is that great part of the estimation

error of the densities in the congested flow regime possibly stems from the inaccuracy

of the traffic speed measurements. Since the velocity estimate VE(t, x), obtained from

FCs is expected to have a greater accuracy than a detector-based speed estimate, the

overall accuracy of densities could increase if the FCD-based velocity estimate is utilized.

Kdown
i (t, tp) and Kup

i (t, tp) are computed using the velocity estimate at the time of

initialization and the flow forecast described in the previous section:

Kdown
i (t, tp) :=

QJ(t�tp,X
up
E,i

(t�tp,0))
VE(t�tp,X

up
E,i

(t�tp,0))
(5.14)

Kup
i (t, tp) :=

Q¬J(t,Xup
E,i

(t,tp))
VE(t�tp,X

up
E,i

(t�tp,0))
. (5.15)
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5.3 Evaluation

The test site for evaluation is the German Autobahn A9 close to Munich in northbound

direction. On April 30th, 2015 a severe congestion occurred due to a lane closure after

an accident (Fig. 5.3). One-minute flow measurements on several lanes are collected

using detectors, averaged over all lanes and normalized by the number of lanes (Figure

5.4 up)1. Figure 5.4 mid visualizes the raw trajectory data that was reported by the fleet

of vehicles (see chapter 3) during that day on this road segment. The velocity estimate

VE(t, x) (Figure 5.4 down) is computed using the PSM.

The downstream congestion front of the pattern is fixed upstream at the accident location

at kilometer 43. There, WMJs emerge and propagate upstream. These WMJs separate

as they travel upstream., forming distinct phase regions. At the time when the congestion

occurs (approx. 5pm), the upstream congestion front propagates upstream with about

15km/h until 6pm. At 6pm a significant drop of upstream flow is measured. The

upstream front propagates much slower and some WMJs dissolve. At around 7pm, the

maximum length of the congestion pattern is reached.

5.3.1 Accuracy Assessment

In order to evaluate the accuracy of a front forecast an error metric is required. A first

approach would be to consider the RMSE of a GT position and a forecast position.

Though, this metric has one significant drawback. In the case a jam dissolves and its

phase fronts vanish but a forecast front still exists, there is no pair of fronts to calculate

an error. Hence, the RMSE is not able to represent the over- or underestimated existence

of a phase front.

Therefore, a metric is applied that penalizes the following errors:

1. If the simulated front deviates more than xtol from the GT front.

2. If the forecasted front dissolved, but the GT front is still active (true negative).

3. If the GT front already dissolved, but the simulated front is still active (false

positive).

The fulfillment of these conditions is summarized in the binary value Hiti(t, tp). It

indicates whether for predicted front i there is a corresponding real front in the proximity

1Thanks to Autobahndirektion Südbayern for providing the detector data.
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Figure 5.4. Congestion scenario used for evaluation. (Up) Normalized flow values
collected by loop detectors. (Center) Collected FCD. (Bottom) Estimated traffic speed

using the PSM
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of xtol depending on the current time t and the forecast time tp:

Hiti(t, tp) =

8

<

:

1 if 9j :
�

�

�
Xup

GT,j(t)�Xup
E,i(t, tp)

�

�

�
< xtol, j = 1, ..., |XGT |

0 otherwise .
(5.16)

Additionally, Toti(t, tp) indicates whether there exists either a GT or simulated front of

index i at time t:

Toti(t, tp) =

8

<

:

1 if |Xup
GT (t)| � i _ |Xup

E (t, tp)| � i

0 otherwise .
(5.17)

For instance, if at prediction time tp there exist two GT fronts and one simulated front

(since the algorithm has predicted the dissolution of a jam), Tot1(t, tp) would equal one,

and Tot2(t, tp) would equal one. Hit1(t, tp) equals one if the still existing forecasted

front is in proximity of xtol to any GT front, and Hit2(t, tp) equals zero. Thus, for this

point in time and this prediction horizon the algorithm has an accuracy of 50%.

The accuracy A(tp, i) aggregates all Hiti(t, tp) and Toti(t, tp) of time interval [T1, T2]

and calculates the ratio. Its parameters are the prediction time tp and front index i:

A(tp, i) =

Z T2

T1

Hiti(t, tp)

Toti(t, tp)
dt. (5.18)

5.3.2 Results

In this comparison four algorithms are implemented and its accuracies depending are

compared. In addition to the aforementioned three variants K-DET, K-MAX and

K-FCD, a naive predictor is applied. It propagates any front with a constant veloc-

ity of vcong upstream.

Two influences on the accuracy are evaluated: The prediction horizon tp and the front

index i. Therefore, time is discretized into intervals of ∆T = 1 s and space into ∆X =

50m. For each point in time for which at least one GT front exists, the identified

(upstream and downstream) fronts are forecasted for horizons of tp 2 [0, 10min]. For

accuracy estimations xtol is set to 500m.

Figure (5.5) depicts the positions of the simulated upstream fronts compared to the

GT fronts for tp = 5min and tp = 10min respectively. For a concise description of the

observations, in the following upstream fronts with index i equal to one are denominated

as ’first order’ fronts, and the remaining upstream fronts (with i > 1) as ’higher order’
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Figure 5.5. Comparison of Ground Truth fronts and predicted upstream fronts for
several variations of the proposed algorithm and a prediction horizon of 5min (up) and

10min (bottom)

fronts. Note that in this context it does not refer to any mathematical concept but is

simply used as an abbreviation.

Comparing the GT fronts and the predictors several observations can be made:

• During 5pm and 6pm all predictors produce reasonably accurate results for a 5min

horizon.

• In this time, the second order front is forecasted most accurately with the naive

predictor.

• During 6pm and 8pm the first order fronts have lower propagation speeds and

several WMJs dissolve. For both time horizons the K-DET and naive approach
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Figure 5.6. Accuracy of several variations of the proposed algorithm with respect
to the prediction horizon. On the left, the accuracy for the prediction of the most

upstream congestion front; on the right the accuracy for all other fronts

frequently overestimates the front propagation, significantly. K-MAX seems to be

the most accurate one.

• Higher order fronts seem to have quite constant propagation speeds. All ap-

proaches except the naive forecast strongly varying fronts.

Fig. 5.6 visualizes the accuracies of the three variants and the naive algorithm with

respect to the prediction horizon. A distinction between the prediction of the first order

and higher order fronts is made since in both cases different effects influences the front

propagation: the first order front is mostly influenced by the prediction of the upstream

flow, while the inflow of higher order fronts is given by the outflow of the neighboring

fronts (compare Fig. 5.2).

The accuracy for the first order front forecast are visualized in the left diagram. As

expected all algorithms achieve worse accuracies with increasing prediction horizon. The

K-DET is the most inaccurate. After a relatively short time of 5min its performance

drops below 15%. The naive approach and K-FCD perform similarly: After 5min they

still forecast correctly in about 45% of the time. With an accuracy of 65% K-MAX

yields most accurate results for all horizons.

The accuracy for higher order fronts shows different results. Here, the naive approach

outperforms the other ones: After 5min its accuracy is at about 50% whilst K-MAX,

K-FCD and K-DET forecast with an accuracy of 34%, 27% and 18%, respectively.

Noticeable is the equal accuracy of all predictors for a horizon between 0min and 2min.

This is due to the discontinuity of higher order fronts in complex congestion patterns. As

a pattern evolves over time, WMJs diverge and partly merge, the exact location of higher

order fronts is difficult to define (and estimate from sparse data). Therefore, as visible

in Fig. 5.5, there are several identified front positions of very short duration. These
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fronts are forecasted for several minutes, but since the GT front already vanished, all

predictions are wrong. At the same time, a simulated front requires some time to deviate

more than xtol from the initialized GT. Therefore, the systematic error dominates over

the algorithm-specific prediction accuracy during the first minutes, which causes similar

accuracies for all approaches. This effect is also visible in the first order prediction

accuracy, but it is less striking.

To conclude the results, K-DET is the least accurate predictor. Apparently, the usage

of density data deduced from loop detectors results in the most inaccurate phase front

forecast. A detailed analysis of the calculated densities reveals that in the congested

regime the traffic density is often underestimated. The consequence are overestimated

(absolute) front propagation speeds. The K-FCD approach is able to correct the estimate

to a certain degree, such that its performance is significantly higher for first order and

higher order fronts. Though, it does not manage to eliminate the bias completely and

underestimates traffic densities similarly. In average, the naive predictor is comparably

as accurate for first order fronts. Setting the traffic density based on empirical values

as done in the K-MAX variant seems to be the most accurate way to calculate realistic

first order front speeds. For higher order front speeds it appears to be more difficult

to estimate realistic traffic conditions up- and downstream of the phase fronts. Hence,

the analytical models lack accuracy and are outperformed by a naive approach. The

good performance of the naive approach for higher order fronts can be explained well

with the FD (Fig. 5.2): The in-flow into the congested state is the outflow of the

upstream free flow (or synchronized flow) state whose in-flow, in turn, equals the out-

flow of another congested regime. The transition from a WMJ state with nearly constant

downstream front speed of vcong implies that flow and density of the downstream phase

lie on the according line of the FD (compare to states (2,3,4,6) in the diagram). Another

transition from any state on this line to a WMJ state results consequently in phase front

propagation speeds of vcong. Hence, the obtained results of the naive predictor match

the expectations that stem from the assumed FD.

5.3.3 Discussion

The proposed method is able to handle sparse FCD and sparse flow measurements in

order to provide short-term front forecasts of WMJs fronts. One variant of the method

showed to be more accurate than a naive predictor for first order fronts. Up to now,

the model focuses fronts of WMJs which are especially dangerous for road users due

to significant drops of velocity. Nevertheless, for some applications also the fronts of

synchronized flow phases may be relevant. In order to provide short-term forecasts

also for synchronized flow states the proposed model needs to be extended. Therefore,
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the phase probabilities computed during the PSM can be utilized. Though, since the

synchronized flow phase is characterized by a wide-scattering of traffic states (Kerner,

2009), the exact determination of traffic flow and density is more challenging. This

increases the requirements of high quality and high resolution of data. Additionally,

for synchronized flow phases also a distinct downstream phase front forecast need to be

calculated. This is especially challenging since it depends on a forecast of bottleneck

capacities and ramp in-flows (e.g. at merging regions).

Another limitation is that the flow forecast is basically a linear extrapolation (including

a smoothing) of current measurements into the future. However, if there are off- or

on-ramps the real flow may change over time. A more sophisticated model could include

current (and predictive) in- and outflows at ramps as well as infrastructural properties

of the road (e.g. lane reductions).

5.4 Conclusion and Outlook

In this chapter a novel method is proposed that combines the strengths of flow as well

as FC data in order to provide short-term congestion front forecasts. Using the high

spatio-temporal resolution of FCD, congested regimes and according congestion fronts

are identified. Subsequently, sparse flow data is utilized to forecast the congestion front

positions. The developed model is based on a basic FD and the shock wave formula,

which are widely accepted among different schools of traffic theory (Richards, 1956;

Newell, 1993; Treiber and Kesting, 2013; Kerner et al., 2004; Laval, 2007; Nagatani,

2002). It combines different data sources in a flexible, robust and efficient way using

smoothing operations. This allows to apply the method to various types of data and in

real-time.

The evaluation of the method is done using the FCD and loop data reported during

a severe congestion on a German Autobahn. The accuracies of three variants of the

proposed method and a naive predictor are compared. The results show that for the

first upstream congestion front one variant of the proposed method outperforms the other

approaches significantly. For cascades of WMJs, further upstream fronts are forecasted

more accurately using a naive predictor, which complies with the expectations that stem

from the assumed traffic model. Hence, in a future traffic system a combination of both

approaches is likely to achieve the most accurate forecasts.

For future work, further studies should be conducted that focus the fusion of various

types of data, e.g. density and flow measurements collected via vehicle sensors (see (Seo

and Kusakabe, 2015) who study the estimation of traffic density using in-vehicle distance
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sensors). Furthermore, the proposed model could be extended with more sophisticated

flow forecasts which consider in- and outflows and infrastructural properties.
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Chapter 6

Congestion Analysis and

Prediction in Urban Road

Networks

In the preceding two chapters methods were described that estimate traffic speeds and

forecast congestion fronts on freeways. In this chapter, urban road networks are focused.

Compared to traffic congestion on freeways, congestion in urban road networks differs

in the following ways:

• Freeways are usually designed as long multi-laned roads. Ramps with dedicated

acceleration and deceleration lanes seek to harmonize vehicle speeds on the main

lanes in order to increase traffic flow and safety. The free driving speed often ex-

ceeds 100 km/h. Congestion patterns usually origin due to interactions between

vehicles at on- and off-ramps in dense traffic conditions (see (Kerner, 2004)). A

congestion pattern is usually represented as a congested interval on a road corri-

dor (see chapter 4). Urban networks usually have low speed-limits. They comprise

many short road segments connected at signalized intersections. Traffic conges-

tion usually spreads over several connected segments and branches intersections.

Therefore, the common way to represent a congestion pattern on a road corridor is

not applicable. Rather, branched subgraphs of the network need to be considered.

• Stationary sensors providing data are costly and freeways are covered only sparsely.

Urban road networks are usually equipped even less dense. Therefore, the estima-

tion of traffic conditions is additionally challenging.

• Many freeway traffic forecast approaches develop analytical models of flow, density

and speed based on the LWR equation and assimilate data with the model (see
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section 2.3). A forecast of traffic conditions in urban road networks is particu-

larly challenging. It requires further predictive information such as turn ratios of

vehicles and signal timings. Both are information that are difficult to obtain in

practice.

As source of traffic data with potentially high coverage FCD allows to estimate urban

traffic congestion on a wide scale. Though, the estimation and prediction of urban

traffic states is still challenging. Vehicles frequently accelerate and brake, change lanes

etc. even if traffic density is low. This complicates the detection and description of

congestion. For instance, if a vehicle in a dense network reports low velocities, it is

unclear whether the vehicle is in congested traffic, queuing at a signal, parking at the

road side, not able to overtake a slow bike etc. Thus, data from individual vehicles

may be non-representative for the traffic conditions. Moreover, a network comprises a

huge number of road segments with different properties such as lengths, speed-limits and

number of lanes. Processing data on a multitude of segments can be computationally

expensive if algorithmically complex methods are applied. Finally, sparse FCD is barely

able to feed a data-hungry analytical forecast model.

This chapter presents a novel way to cope with the challenges of traffic prediction in

urban networks. The idea is to reduce the traffic network to the most vulnerable parts

that are frequently congested and analyze network-wide traffic congestion based on a few

variables representing the level of congestion in said parts. This simplifies the manual

analysis of traffic in large networks, and furthermore facilitates the training of data-

driven prediction models.

Section section 6.1 presents related works in urban traffic analysis and prediction and

motivates a novel approach. Section 6.2 provides a formal definition of the developed

clustering algorithm and travel time prediction method. The evaluation is done using

one year of FCD reported in the Munich traffic network (section section 6.4). First, the

sensitivity of the method with respect to its parameters is investigated. Subsequently,

traffic conditions inside the clusters are examined for spatio-temporal patterns. Finally,

the key results of the pattern analysis are integrated into the proposed forecast method-

ology and its accuracy is assessed. Section 6.5 summarizes the chapter with a critical

discussion and an outlook.

6.1 Related Work and Solution Approach

In (Vlahogianni et al., 2014) ten major challenges of traffic forecasting are pointed out

which mark promising directions to increase forecast accuracy. Among them is the need
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to consider temporal as well as spatial dependencies between traffic conditions on differ-

ent edges in the network. Several recent works published results aligned with that direc-

tion. To mention a few, (Min and Wynter, 2011) apply a multivariate spatial-temporal

autoregressive model on a sample network with different road categories. (Kamarianakis

and Prastacos, 2005) model the traffic flow in space and time using a Space-Time Autore-

gressive Integrated Moving Average (STARIMA) model. (Cheng et al., 2012a) compute

correlations between edges in the London traffic network in order to analyze required

model complexities for models such as STARIMA. (Ma et al., 2015a) study congestion

propagation in networks using probe data. They apply a Restricted Boltzmann machine

in order to predict the congestion evolution in the road network. Most of the litera-

ture is based on small to medium sized networks that model dependencies between road

segments. For bigger networks, the computational expense to compute the correlations

between all edges increases dramatically. In order to eliminate mutual dependencies,

neighborhood selection techniques, such as a Graphical Lasso are proposed (Gao et al.,

2011). (Haworth and Cheng, 2014) give a comparison about different methods. Still,

these approaches are on an edge-level, plus, the neighborhoods are still local which does

not allow to consider network-wide relations. In order to aggregate similarly behaving

edges of a large network, (Asif et al., 2014) apply several clustering techniques. Edges

do not need to be connected and, therefore, resulting clusters are disseminated. (Anwar

et al., 2014) propose algorithms in order to create so-called supernodes that represent

connected subgraphs of large road networks. Edges of a subgraph are expected to have

high similarities. Though, the approach is validated with simulated data only and the

number of resulting supernodes is still large. A different way is to analyze congestion

from a on network-level. (Ji and Geroliminis, 2012; Ji et al., 2014) partition a road

network dynamically into connected and congested subgraphs with similar properties.

They observe the evolution of such congested regions over time and seek to determine a

macroscopic FD for urban networks.

The presented method is based on the work by (Ji and Geroliminis, 2012) and extended

with further concepts that allow for a more sophisticated congestion pattern analysis

and forecast. One observation when applying the dynamic partitioning of the network is

that congestion often emerges and resides in the same parts of the network. A possible

explanation is that similar commuting patterns of travelers cause high traffic demands

at the same bottlenecks every day, which ultimately leads to recurrent spatio-temporal

congestion patterns. As a side-effect, there are also many edges of the network which

are rarely or never congested. For traffic monitoring and prediction, these edges are less

relevant and may be neglected in favor of a reduced model complexity and decreased

computational times. Thus, the idea is to identify these regions in a network in which

congestion occurs on a regular basis and focus monitoring and forecasting on said parts.
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Besides a reduced computational effort, the identification of such regions has further

benefits. One advantage is that the level of congestion at one bottleneck can be quan-

tified with one variable. Compared to edge-based approaches where each edge has a

different length and may be in a different traffic condition, an aggregation of all in-

volved edges results in a more robust and representative variable for a subgraph. These

aggregates computed for several congestion-prone parts of a network finally enable to

analyze the spatio-temporal relations between traffic conditions at distant bottlenecks

in the network using using just a small number of variables. A small number of variables

is advantageous for analysis and visualization as well as for the training of data-driven

forecasting methods with limited amount of data.

In the following, these congestion-prone regions are called ’congestion clusters’. They

have the following desired properties:

1. They span the regions that are frequently congested.

2. They are static over time.

3. All edges of a congestion cluster are connected.

6.2 Definition of Congestion Clusters

Figures 6.1 gives an overview of the steps taken in order to determine static congestion

clusters. These steps will be explained in detail in the following sections. First, for each

time step an edge is determined as free or congested depending on reported velocity

data and the edge’s speed limit. Subsequently, subgraphs of congested and connected

edges are identified which are denominated as congestion pockets. A spatial smoothing

is performed that closes gaps in-between these subgraphs. These congestion pockets

are determined for each point in time. In a next step, a so-called connectivity matrix

is computed that counts the number of time steps two edges are assigned to the same

congestion pocket. Finally, using this matrix an iterative algorithm constructs static

congestion clusters comprising edges which are frequently congested simultaneously.

6.2.1 Dynamic Congestion Pockets

Assume that for each edge e 2 E of the graph G (see section 3.2) the average traffic

velocity at time t is determined from reported GNSS data and denominated as VRec(e, t).

Further assume that the length of an edge e is l(e) and the speed limit VLim(e). The

relative driving speed is defined as:

VRel(e, t) =
VRec(e, t)

VLim(e)
. (6.1)
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Figure 6.1. Overview of the steps taken to process FCD into static congestion clusters

The relative driving speed is compared to a threshold V thres
Rel 2 [0, 1] that distinguishes

between free and congested traffic. Accordingly, the function J(e, t) (’J’ for ’jam’) is

defined that indicates whether edge e is congested at time t:

J(e, t) :=

8

<

:

1 if VRel(e, t)  V thres
Rel

0 otherwise .
(6.2)

Similar to (Ji et al., 2014) a dynamic congestion pocket P is defined. A congestion pocket

denotes the spatial extent of an occurring traffic jam at a certain time t. Each congestion

pocket is a time-dependent subgraph G0 = (V 0, E 0) of G = (V, E), i.e. V 0 ✓ V, E 0 ✓ E . For

each point in time the number and size of the congestion pockets may change. Formally,

for some time t and a congested edge e⇤, a congestion pocket P(e⇤, t) is defined as the

set of all edges e 2 E that have the subsequent properties:

1. J(e, t) = 1 8e 2 P(e⇤, t).
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2. Either there exists a path from e⇤ to e on G or a path from e to e⇤ on G that

consists solely of edges to which J(e, t) assigns a value of one.

Thus, P(e⇤, t) describes a set of edges that are associated with edge e⇤ which is part

of the congestion pocket. For non-congested edges this set is consequently empty. This

relation from edge to congestion pocket is surjective, which means that each edge at time

t is mapped to one congestion pocket at maximum. On the other hand, a congestion

pocket may refer to several edges.

When considering real traffic data, the number of congestion pockets can become large.

An often occurring effect is that regions, which seem to belong to the same congestion

pocket are separated by single, non-congested edges. In many cases, this is rather a

lack of data, an error of the map-matcher or a short change of traffic conditions than

a real separation of two congestion pockets. Hence, a spatial smoothing is carried out

as suggested in (Ji et al., 2014). There, after determining the set of congested edges

for some time t, all edges which have more congested neighbors than non-congested

neighbors are defined as congested as well. This means that function J is redefined as

stated below:

J(e, t) :=

8

>

>

>

<

>

>

>

:

1 if VRel  V thres
Rel

1 if
�

�{e0 2 N (e) : VRel(e
0, t)  V thres

Rel }
�

� > |N (e)| /2

0 otherwise .

(6.3)

Thereby, |.| denotes the cardinality of a set and N (e) denotes the neighborhood of e, i.e.

the set of all edges in E that share at least one node with e (except for edge e itself).

Having function J adjusted, the definition of congestion pockets remains basically the

same.

6.2.2 Static Congestion Clusters

If two edges are frequently congested at the same time and they have a high proximity

it is likely that those edges belong to a congestion-prone region at the same bottleneck.

A static congestion cluster is supposed to agglomerate these edges. Dynamic congestion

pockets model the proximity and congested state of edges such for one point in time. In

the following, the temporal clustering of congestion pockets is described.

Assume that for all discrete time intervals T = {T0 ,T0 +∆T,T0 +2 ·∆T, ...,T1} con-

gestion pockets are computed. The function Y (e1, e2) is defined counting the number of
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time intervals in which two edges e1, e2 2 E are part of the same congestion pocket:

Y : E ⇥ E ! {0, 1, ..., |T |} (6.4)

Y (e1, e2) := |{t 2 T : e1 2 P (e2, t)}| . (6.5)

The resulting quantities can be represented as a matrix (compare Figure 6.1 step D).

It is symmetric with the total number of time steps for which an edge is congested

on its diagonal. For the clustering, the duplicate entries (due to the symmetry) and

the diagonal elements are not relevant. Therefore, in the following matrix Y ⇤ as the

strictly lower triangular matrix of Y is considered. Two edges with a relatively high

corresponding entry in Y ⇤ are called edges with high connectivity.

All edges with a high connectivity are supposed to be clustered into a finite number of

static clusters Ci 2 E , i = 1, ..., nc. An iterative algorithm is applied which assigns edges

to different clusters Ci based on Y ⇤. In short, the algorithm finds the pair of edges with

the highest connectivity in the matrix. It checks, whether one of the edges is already

assigned to any cluster. If not, a new cluster is defined that comprises these two edges.

If one of the edges is already assigned to a cluster, the other edge is assigned to the same

cluster. If both edges are already assigned to differing clusters both clusters are merged.

Finally, the connectivity of these two edges is set to zero and the algorithm evaluates

the next pair of edges. This procedure is done as long as:

max (Y ⇤ (e⇤1, e
⇤
2)) > Ymin (6.6)

with

Ymin = ↵ ·max ({Y (e1, e2) : e1 6= e2}) . (6.7)

Parameter ↵ 2 [0, 1] is introduced to decouple the clustering from the number of analyzed

time intervals T .

Algorithm 1 describes the iterative pseudo code for the cluster generation. Auxiliary

function c(e) returns the index of the cluster Ci to which e is assigned. If it is not

assigned yet it returns the value zero.

After the clustering algorithm has stopped it holds that the union of all edges in all

clusters represents a set of edges where any two edges are at least Ymin time slices part

of the same cluster:

C =
[

i=1,2,...,nc

Ci = {e 2 E : 9e0 2 E where Y ⇤(e, e0) � Ymin}. (6.8)
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Algorithm 1: Static clustering

Data: Connectivity matrix Y ⇤, connectivity threshold Ymin

Result: Static clusters C
nc := 0;
while max (Y ⇤ (e⇤1, e

⇤
2)) > Ymin do

find (e⇤1, e
⇤
2) := argmax(Y ⇤(e1, e2) : e1 6= e2) ;

if c(e⇤1) = 0 ^ c(e⇤2) = 0 then
nc := nc + 1 ;
Cnc := {e⇤1, e

⇤
2} ;

else if c(e⇤1) > 0 ^ c(e⇤2) = 0 then
Cc(e∗

1
) := Cc(e∗

1
) [ e⇤2 ;

else if c(e⇤1) = 0 ^ c(e⇤2) > 0 then
Cc(e∗

2
) := Cc(e∗

2
) [ e⇤1 ;

else
Cc(e∗

1
) := Cc(e∗

1
) [ Cc(e∗

1
) ;

Cc(e∗
2
) := {} ;

end
Y ⇤(e⇤1, e

⇤
2) := 0 ;

end
Remove empty clusters from list and update nc;

This approach is designed to identify connected edges of a network that are frequently

congested. As such, they are expected to be most relevant for traffic management and

for individual travelers. Therefore, in the following section a method is developed that

utilizes the clusters for traffic forecasts.

6.3 Data-Driven Congestion Prediction in a Clustered Net-

work

In this section a data-driven prediction model is developed. Alike the clustering, it is

based on the assumption that traffic congestion follows certain patterns. For instance,

that congestion occurs recurrently in similar regions of the network and at similar times.

Furthermore, it is assumed that there are spatio-temporal dependencies between the level

of congestion in different clusters of the network. These dependencies might be of various

nature. For instance, on a day there may be especially low or high traffic demand, which

impacts the level of congestion in all clusters. Or a higher demand occurs only on some

origin-destination relations affecting only a few clusters. To model these dependencies

explicitly and collect the necessary data in order to apply the model to forecast problems

is challenging. The advantage of a data-driven approach is that no explicit modeling

is required but that the model is deduced from collected data. Though, there exist
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Figure 6.2. Flowchart of common supervised learning algorithms

numerous ways to formulate a data-driven method. This concerns the considered input

and output variables, the model itself and the set of provided training data.

This approach focuses two aspects of a data-driven forecast method and thus distin-

guishes from other published works (see section 2.3): The first is the usage of the con-

gestion clusters in order to develop a small set of expressive features as model input.

The second is that not only the local neighborhood of a bottleneck but also network-

wide traffic conditions are a valuable input for a traffic forecast in order to increase the

accuracy.

6.3.1 Overview of the Machine Learning Pipeline

Many data-driven methods can be classified as ML approaches. ML is a subcategory

of Artificial Intelligence (AI). The idea is that a computer program or mathematical

model is derived from data solely, in contrast to traditional programs and models that are

specified by humans. The task of an ML algorithm is to process possibly huge amounts

of data and learn from these such that it is able to provide a response to unseen data.

One distinguishes between supervised, unsupervised and reinforcement learning (Russell

et al., 2003). In supervised learning the algorithms process pairs of input and respec-

tive output during learning phase and use a trained model for inference. These types

of algorithms are frequently utilized for the prediction of outputs given unseen data.

Unsupervised learning seeks to identify hidden structures and patterns in data without

a label (for classification) or function output. In reinforcement learning an algorithm

seeks to learn strategies in order to optimize the reward that a dynamic environment

returns. These algorithms require that the environment provides flexible amounts of

data.
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For congestion prediction based on observed data supervised learning suits. Reported

data can be used to generate a model of a system that returns predictions for a future

time. Figure 6.2 depicts the common process of supervised learning. First, during

training phase, input and corresponding output data are used to train a function that

approximates outputs from given inputs. Often, input data is transformed into another

space. This process is called feature extraction. After training a model, the model can

be used for inference. This denominates the process of predicting an output with unseen

data input.

Compared to many other ML approaches in traffic forecasting this approach presented

here is characterized by the definition of congestion clusters. In the context of ML this

constitutes a feature extraction: data of tens of thousands of edges is transformed into a

few variables describing the level of congestion inside the clusters. Feature extraction is

a fundamental process in ML applications, summarized by one of the leading ML scien-

tists Andrew Ng1: ’Coming up with features is difficult, time-consuming, requires expert

knowledge. Applied machine learning is basically feature engineering.’ It increases the

accuracy of a model, enables a deeper problem understanding and reduces the compu-

tational complexity of an algorithm (Krupka et al., 2008; Domingos, 2012; Guyon and

Elisseeff, 2003). Furthermore, as shown in (Levi and Weiss, 2004) for an object detection

problem, good features reduce the number of required training samples. The reduced

number of training samples is a significant advantage for traffic forecasts. Since traffic

congestion is a temporal phenomenon, there exists only a strongly limited number of

days on which traffic data can be collected. Due to changes of the infrastructure and

commuting patterns of travelers, data that has been collected several years ago might

not be descriptive for the current system. This makes data-efficient approaches highly

relevant.

6.3.2 KNN Travel Time Predictor

Many variables can be subject of a prediction in a traffic network. Usually, traffic

speed, flow, density as fundamental variables are predicted. For travelers the most

relevant information is the travel time, or, likewise, the Travel Time Loss (TTL) due

to congestion. Traffic managers are interested in the reduction of TTLs of all vehicles

in order to reduce the economical impacts of congestion and ensure smooth traffic flow.

The instantaneous TTL on a set of edges E⇤ ✓ E at time t is approximated with the

1Former professor for machine learning at Stanford, in leading positions for machine learning and AI
at Google, Coursera and Baidu in the past years
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recorded velocities VRec(e, t) as:

TTLE∗(t) =
X

e2E∗

l(e)

✓

1

VRec(e, t)
�

1

VLim(e)

◆

. (6.9)

Note that the instantaneous TTL considers current traffic conditions. A real vehicle

that passes through congestion may perceive a different travel time due to dynamically

changing traffic conditions.

As described in the preceding section, the selection of expressive features is fundamental

for all machine-learning tasks. For the choice of features in this application the following

considerations are done: The assumption of the clustering and this predictor is that

there are similar commuting patterns. At times with low traffic overall traffic demands,

the infrastructure’s capacity suffices to meet the demand. Traffic conditions are free

in all parts of the network, including the congestion clusters. With increasing demand

more vehicles intend to pass certain bottlenecks of the network. When the bottleneck’s

capacity is exceeded, traffic gets congested and the TTL in these regions rises. With

more vehicles entering the bottleneck region, more edges get congested and the TTL in

the congestion clusters increases. Thus, the level of congestion of a cluster relates to the

current traffic demand on the corresponding bottleneck. Observing not only one but all

clusters at the same time and their respective levels of congestion gives a picture of the

traffic demand of the entire network. Note that this is a rough approximation of the

real demand of the network. However, given incomplete FCD, more accurate estimates

of the network demand are difficult to obtain. These current demands at bottlenecks

are promising features for traffic forecast methods: they relate to the physical reason for

congestion and each congestion cluster can be represented with just one quantity, which

allows to represent the current state of the network with a small number of expressive

variables.

Hence, one possibility is to use the TTL of an observed time interval of the current day

as a feature for a data-driven traffic forecast. The TTL is a time series and each of the

nc clusters provides one time series discretized into intervals of ∆T . The consequence

is a feature vector of size nc ⇥ |T ⇤| where T ⇤ represents the observed time interval

considered for model training and inference. This feature vector is further simplified due

to the following reasons: Because of a changing level of congestion and measurement

inaccuracies the perceived TTL is volatile. This noise reduces the expressiveness of each

individual measurement. Furthermore, for short-term predictions of a few minutes the

current traffic conditions are highly relevant since congestion is relatively inert, i.e. the

system requires time to change significantly. Thus, for short-term forecasts the most

up-to-date measurements give important information about the traffic conditions that

will prevail likely in the next minutes. Considering a longer-term prediction there is no
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Congestion Clusters

A:   Computation of STTLs of the Training Data 

for the Feature Time Interval

B:   Computation of the STTL for All Clusters            

for the Current Day

C:   Identification of the KNNs of the Current

Day STTL in the Training Data

D:   Computation of the Average TTLs of Sel-

ected Days for the Prediction Interval

Figure 6.3. Data-driven TTL prediction using a KNN model

distinct time step of the TTL which has more predictive power than any other time step.

Rather, it is assumed that the overall development of the function up to the current time

provides the most valuable information. Due to these reasons the TTL over time interval

T ⇤ is aggregated. The Summed Travel Time Loss (STTL) is defined as:

STTLT ∗

E∗ =
X

t2T ∗

TTLE∗(t). (6.10)

Thus, the STTL represents the approximated traffic demand of edge set E⇤ aggregated

over interval T ⇤. This step further reduces the number of features while trying to keep

the essential information.

Since congestion occurs recurrently data is structured day-wise. Given d = 1, ..., nd

days for which time-discrete data VRel(e, t) is available, the TTL and STTL for cluster

i = 1, ..., nc are defined as:

TTLd,t∗,i := TTLCi (Td,t∗) (6.11)

STTLTF
d,i := STTL

Td,TF

Ci
(6.12)

where Td,t denominates a point in time that is described by day d and daytime t and

TF the feature time interval represented as a set of discrete times. Thus, for a specific

feature time the STTLs can be represented as a matrix of size nd ⇥ nc. Figure 6.3

summarizes the process to provide TTL predictions for a cluster. First, for all training

days DP the corresponding STTLs for a specific feature time are determined. Next, for

the current day d⇤ the STTL for the same feature time is computed, denominated as

STTLd∗,i. A KNN classificator is applied which returns the K most similar historical

days, i.e. the days with the lowest distance between all rows in STTLDP
2 R

| DP |⇥nc

and STTLd∗ 2 R
1⇥nc . The set of similar days is denominated as K. In order to compare
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multi-dimensional vectors, a distance metric such as the (normalized) euclidean or the

manhattan distance etc. needs to be selected. The according TTLs of the similar

historical days are aggregated into a TTL prediction TTLPred for the current day d⇤:

TTLPred
d∗,t,i =

1

|K|

X

k2K

TTLk,t,i. (6.13)

In the last decades hundreds of machine learning algorithms and uncountable variants

of each algorithm have been proposed. The KNN classificator is a rather simple method

with only one parameter (i.e. the number of neighbors K), which is frequently applied

in machine learning tasks (Bishop, 2013; Kuhn and Johnson, 2016). The focus of this

work is to develop a framework that benefits from the definition of congestion clusters

for the advantageous definition of prediction features. The KNN is selected as an ex-

emplary algorithm which may be replaced with other more sophisticated methods. The

identification of the most accurate algorithm requires extensive studies and could be

part of future work.

To summarize, the proposed framework for traffic prediction constitutes a novel way to

predict network-wide traffic congestion. It is based on the definition of congestion clus-

ters whose traffic conditions are forecasted using a simple KNN approach. In section 6.3

this method is evaluated using one year of FCD.

6.4 Evaluation

In the following, the proposed methods are evaluated with the FCD described in chap-

ter 3. Therefore, first the preparation of the data for this approach is presented. Next,

the results of the static clustering are visualized and compared using several metrics and

varying clustering parametrization. Subsequently, traffic conditions inside the clusters

are analyzed statistically and spatio-temporal congestion patterns are extracted. Based

on the statistical results, the travel time predictor is applied and its prediction accuracy

is assessed. Section 6.5 summarizes this chapter and gives an outlook.

6.4.1 Data Preparation

The FCD collected in the Munich region in year 2015 is map-matched as described in

section 3.2. In total 318 days of data are available, resulting in approximately 400,000

velocity measurements per day on a network comprising 17413 major road edges (corre-

sponds to 1826 km). In order to process the measurements of individual vehicles into a
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space-time continuous traffic estimate and fill gaps for which no data is reported, the fol-

lowing considerations are done: First, time is discretized into intervals of ∆T = 1min,

such that Td = 1, ..., 1440. Then, all velocity measurements VRel are interpreted as

macroscopic traffic velocities for the respective time interval. If there are several mea-

surements for the same time interval and the same edge e, their arithmetic average is

computed. Since usually not for all time slices a velocity measurement is available, there

are gaps in time and space. A simple estimation algorithm is applied: Each measurement

is assumed to be valid for either 15min or until a new measurement is reported. This

allows to have a mostly continuous representation of traffic conditions for peak hours of

the day. For all remaining gaps, which appear mostly at night or on minor roads, free

flow conditions are assumed.

Figure 6.4 and Figure 6.5 depict the resulting traffic conditions during the morning

and evening peak in the Munich road network for one exemplary day (March 11th,

2015). It is a regular Wednesday, in the sense, that no relevant events occurred that

influenced traffic significantly. As visible most parts of the network remain in free

conditions throughout the day. Some parts of the A99 get congested in morning traffic

and others get congested during evening hours. Also certain parts of the ’Mittlerer Ring’

get congested significantly. Inside this ring road several roads with low velocities are

reported.

6.4.2 Cluster Metrics

In order to assess the quality of a clustering quantitatively and evaluate if they meet

certain requirements, in the following four metrics are developed.

The first is the intra-cluster dissimilarity or homogeneity, originally proposed by (Ji and

Geroliminis, 2012). One desired property of the clustering is that all edges of a cluster

behave similarly, i.e. these edges are clustered optimally if all edges of that cluster are

either congested or free at the same time. In this case a cluster is most homogeneous, or

respectively, its dissimilarity is lowest. In accordance to (Ji and Geroliminis, 2012) the

following metric measuring the homogeneity of a cluster (and extended with a temporal

component) is applied:

�(E⇤) := 1�

P

t2T

P

e12E∗

P

e22E∗ (VRel (e1, t)� VRel (e2, t))
2

|T | · |E⇤|2
. (6.14)

Homogeneity is one important property, but not the only one. For example, diminutive

clusters can have a high homogeneity, but do not provide information about the network

since they are not able to cover a significant part of the network. Therefore, a second
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Figure 6.4. 30min-Snapshots of the traffic conditions during morning peak on March
11th, 2015
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Figure 6.5. 30min-Snapshots of the traffic conditions during evening peak on March
11th, 2015
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metric is introduced: the network representativeness:

⇢ (E⇤, E) :=
cov (E∗ ,E)

� (E∗) · � (E)
with E∗,i =  (E⇤, Ti) (6.15)

with cov the covariance, � the standard deviation and  the level of congestion of a set

of edges (corresponds to the congested part of a cluster):

(E⇤, t) :=

P

e2E⇤ J(e, t)l(e)
P

e2E⇤ l(e)
, E⇤ ✓ E . (6.16)

The network representativeness describes the correlation of the traffic conditions in a

set of edges with the traffic conditions in all edges of the network. A high correlation

means that an overall increase of congestion is related to an increase of congestion in a

cluster. Consequently, the observation of cluster(s) allows to infer traffic conditions in

the entire network. The best value of representativeness can naturally be reached if all

edges of the network are clustered, while only few clustered edges correspond to a low

representativeness.

A third metric is denominated as the specificity. It is the average level of congestion

that occurs in all clusters over time period T ⇤:

⇠ (E⇤) :=

P

t2T ∗  (E⇤, t)

|T ⇤|
. (6.17)

It expresses the requirement that a congestion cluster is supposed to span only mostly

congested parts of the network during a relevant time interval. Connected free flow

edges expand the size of the cluster but do not provide additional information. A high

specificity describes that a cluster comprises edges that are mostly congested (during a

peak interval T ⇤).

Finally, the coverage described the ratio of congestion that occurs inside the clusters

compared to the overall congestion in the network:

⇣ (E⇤, E) :=

P

t2T (E
⇤, t)

P

t2T (E , t)
. (6.18)

It is similar to the network representativeness with the difference that it does not de-

termine correlations but compares absolute levels of congestion. A resulting high value

expresses that most part of the network congestion is covered by the congestion clusters.

In the following congestion clusters with a varying parametrization are determined and

the proposed metrics are applied and compared.
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6.4.3 Static Clusters in the Munich Road Network

A great part of road users that drive during peak hours commute between their homes

and workplaces. The high number of trips at similar times ultimately causes congestion

during peak hours. As visible in Figures 6.4 and 6.5, different parts of the network

get congested during morning compared to evening peak. The congestion clusters are

designed to be static over time. Hence, if applied to the data of a complete day the

clustering algorithm would merge several areas of morning and evening peak into one

cluster. As as result the specificity of the clusters would decrease. In order to differen-

tiate between morning and evening traffic, each day is split at 12.00 noon and for each

half-day a cluster set is determined.

All in all, 318 days of traffic data are used for cluster generation. Figure 6.6 illustrates

the ten largest clusters resulting from the clustering with varying parameter ↵ for the

morning and evening period. Several observations can be done:

1. The higher is parameter ↵, the smaller the clusters.

2. There are substantial differences between the clusters of the morning and evening

period. That justifies the approach to distinguish between these peaks.

3. During morning peak there seems to be frequent congestion on the freeway roads

that lead into the urban region of the city.

4. During evening congested regions seem to be concentrated on more central parts

of the network

5. Even with a low ↵ there are many roads in the network that are not covered by

any of the ten largest clusters during morning or evening peak. Hence, congestion

here seems to be less severe in general.

6. In the center of the city there are clusters during morning and evening hours, which

quickly merge into larger clusters with decreasing ↵.

Figure 6.7 depicts the homogeneity, representativeness, specificity and coverage of the

evening clusters with respect to a varying parameter ↵. As expected the coverage and

representativeness decrease as the clusters become smaller since fewer regions are cov-

ered. The specificity increases since the clustered edges tend to be congested more often

if the clustering algorithm quits earlier. The homogeneity seems to have a minimal value

at ↵ ⇡ 20%. Apparently, small clusters as well as extensive clusters behave more homo-

geneously than mid-sized clusters. The reason is that small clusters (i.e. high ↵), which

comprise only a few connected edges, are usually congested or free during the same time

intervals and thus behave homogeneously. With a decreasing ↵ more edges are added.



Evaluation 127

(a) Clusters for morning (left) and evening period (right) with ↵ = 0.20

(b) Clusters for morning (left) and evening period (right) with ↵ = 0.10

(c) Clusters for morning (left) and evening period (right) with ↵ = 0.05

Figure 6.6. Results of the static clustering with respect to parameter ↵
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Figure 6.7. Quality metrics of the evening clusters with respect to parameter ↵

Due to the clustering algorithm these edges have a lower chance to be congested than the

ones assigned before. As a result the homogeneity decreases. With even further growing

clusters (decreasing ↵) the number of edges that are frequently in free flow state further

increases. These edges are mutually highly homogeneous. As a consequence, the overall

homogeneity of big clusters increases due to the high number of free flow edges. To

summarize, the parameter ↵ can be varied in order to fit the cluster properties to the

application’s needs.

6.4.4 Congestion Pattern Analysis

In this section a set of statistical tools is presented that support a practitioner analyzing

network-wide traffic congestion using the clustering approach. The focus of this analysis

is to identify spatio-temporal congestion patterns and use these for enhanced traffic

prediction in networks. For the following analyses, a congestion cluster set generated

with ↵ = 0.15 is selected (Figure 6.8). The ten largest clusters are considered which

cover a length of 96.2 km (52% of all clustered distance) during morning and 95.7 km

(55% of all clustered distance) during evening hours.

6.4.4.1 Average Levels of Congestion

Figure 6.9 depicts the total median cluster congestion C of all clusters with respect to

different weekdays. Monday to Thursday are grouped as they represent usual working

days. On these days the level of congestion starts to increase at around 6:30am and
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(a) Clusters for morning traffic with ↵ = 0.15

(b) Clusters for evening traffic with ↵ = 0.15

Figure 6.8. Static clusters chosen for the following congestion pattern analyses.
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(a) Morning (b) Evening

Figure 6.9. Median total cluster congestion grouped by days of the week

reaches the peak between 8am and 9am. Afterwards, the level of congestion decreases

to a low level again. In the afternoon the congestion starts to increase again at around

4pm and reaches its maximum at around 6pm. All congestion dissolves at around 8pm.

On Fridays the congestion during morning peak is significantly less severe. During

afternoon the level of congestion starts to increase significantly earlier compared to the

other working days, reaches a lower maximum and decreases earlier. The less severe

congestion on Friday morning might be related to relatively less people who commute at

all. The earlier, broader and less severe congestion during afternoon is probably related

to the earlier time that people tend to leave from offices, which relaxes the peak time.

During Saturdays and Sundays the level of congestion is low in general.

Figure 6.10 illustrates the median cluster congestion (Ci, t) of each cluster during work-

ing days Monday-Thursday. Under consideration of the cluster locations during morning

the following observations can be done:

1. Some of the clusters get congested earlier than others. For instance, congestion in

clusters 1, 2, 4, 7 begins earlier than in the clusters 3, 6, 8, 9, 10. The time offset

can be approximated with the value of about half an hour. These early congested

clusters are located on the freeways ’A99’, ’A9’ and ’A96’ which conduct traffic

streams from the North and West into the city. Thus, apparently there is a high

traffic demand early in the morning that causes a traffic breakdown in these regions.

Clusters 3, 6 and 9 on the other hand are located closer to the city center. An

explanation for the delayed congestion in these clusters may be that the major

freeways that guide vehicles into the more central road network work like valves

with limited throughput: They get congested early, but it takes time until the

limited throughput suffices to exceed the capacity of the central road network.
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(a) Morning

(b) Evening

Figure 6.10. Median cluster congestion of each cluster for morning and evening peak
for all Mondays-Thursdays in 2015

Though, since there are also vehicles starting their trips inside the central part

this is not an exclusive explanation.

2. Cluster 6 gets congested relatively late and, during morning hours, does not get

entirely free again. This cluster covers the edges that are most central. These are

affected by a more balances traffic demand over the day.

3. The median cluster congestion of cluster 5 is zero. Apparently this cluster is not

a common bottleneck during working days (Mo-Thur). Though, since it has been

identified as a congestion cluster there must have been frequent congestion at this

location.

During evening the situation changes:

1. Cluster 1 and 10 are the only freeway clusters, whereas cluster 10 corresponds to

cluster 5 during morning. Similarly, it is not congested on Mondays to Thursdays

during evening hours. Cluster 1 on the other hand is severely congested with a

high median  and long peak time. An explanation for congestion occurring on

more central parts of the network during evening could be that commuters leaving
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the city center cause high demand on the central road infrastructure. Their limited

throughput causes congestion. The outflow of these bottlenecks is not sufficient in

order to induce a traffic breakdown in outer parts of the network.

2. Cluster 1 and 3 get congested at similar times. Cluster 3 is located on a parallel

road to ’A99’ (cluster 1). Possibly, the demand is distributed among these two

roads as they constitute alternative routes for similar destinations.

3. Clusters 4 and 9 get congested slightly later than the other ones. Though, time

delays between start of congestion are less obvious when compared to the ones

during morning peak.

In the following, a more thorough analysis of the spatio-temporal relations between

clusters is conducted in order to assess its potential to be used for network-wide traffic

predictions.

6.4.4.2 Cluster Correlations

In this section correlations between the level of congestion in different clusters are ex-

amined. One way to determine the similarity of two signals is the cross-correlation. For

two continuous functions f and g it is defined as (see (Stoica and Moses, 2005) for more

details):

(f ⇤ g) (�) =

Z +1

�1

f (t) g (t+ �) dt (6.19)

where � is called the displacement or lag. Note its similarity to the convolution (eq. (4.3)),

which differs only with respect to the sign of the displacement. In order to compare two

discrete processes X and Y , often a normalized cross-correlation R̂ is considered that

scales the output to values between zero and one:

RX,Y (�) =

+1
X

�1

Y [i]X [i+ �] (6.20)

R̂X,Y =
RX,Y (�)

kXk kY k
(6.21)

where k.k denominates the Euclidean norm.

The consideration of the cross-correlations is a simple way to compare two signals that

may have a temporal displacement and determine whether these signals follow a similar

behavior. For congestion pattern analyses this allows to compare the congestion in

different clusters even if there is a temporal shift between starts and ends of congestion

as it appears to be the case. Therefore, it can be applied as a flexible tool that allows
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Figure 6.11. Normalized cross-correlation coefficients between congestion in cluster 7
and cluster 10 on July 14th, 2015

Figure 6.12. Mean normalized cross-correlation and mean time shift between morning
congestion inside congestion clusters over all workdays in 2015. (Notice: A positive lag
for a cluster combination (i, j) means that congestion in cluster i starts later than

congestion in cluster j)

to obtain a first general overview of potential dependencies. Figure 6.11 visualizes the

cross-correlation between the (t) of morning cluster 7 and 10. As visible, the congestion

in cluster 10 starts later. Furthermore, the peak of congestion is reached approximately

40 minutes later. On the right, the result of the cross-correlation is illustrated. It

reaches its maximum at a displacement of about � ⇡ �40min. Due to the definition of

cross-correlation the position of the maximum can be interpreted as the amount of time

that the second signal needs to be shifted in order to match best with the first signal.

Formally, the lag between two signals is defined as:

�max := argmax
χ

R̂X,Y (�). (6.22)

Figure 6.12 illustrates the cross-correlation coefficient and the average lag between all



134 Congestion Analysis and Prediction in Urban Road Networks

clusters averaged over 260 weekdays in 2015 during morning peak. Several observations

can be made:

1. Having coefficients greater than 0.8 it can be stated that many clusters correlate

strongly. Due to the overall peak hour and the median cluster congestions this

result meets the expectations.

2. Cluster 5 correlates less with all other clusters. This matches with the previous

analysis that cluster 5 behaves differently than the others.

3. Partially, there are strong lags between the congestion patterns: In average, con-

gestion in cluster 6 is delayed about 40min to 50min compared to other cluster

congestions. Clusters 2 and 7 tend to get congested earlier than other clusters.

This also matches the previous findings. For comprehensiveness, the evening clus-

ter correlations and lags are visualized in A.2.

To summarize, the cross-correlation analysis is a tool that provides an overview of the

similarities between the level of congestion in the clusters. As such, it points out which

clusters are more similar and which tend to get congested earlier/later than others.

Though, its results may be misleading: If e.g. the duration of one congestion is signifi-

cantly longer than the other one, the resulting cross-correlation is low since the maximal

overlap between the two signals is reduced. Furthermore, the lag may be less obvious

when the signals are complex. Therefore, cross-correlation coefficients and lags are only

indicators of dependencies. Further analyses are required in order to verify hypotheses

based on the cross-correlations.

6.4.4.3 Relating Starts and Ends of Daily Congestion

The previous studies revealed that, in average, there are correlations and lags between

the time series of congestion among several clusters. In this section, the dependencies

between congestion starts and ends on a daily basis are analyzed. The question that is

investigated can be summarized as follows: ’Does the observation of congestion in one

cluster allow to predict the level of congestion in another cluster for the past, current

and future time?’. Especially the future time is most interesting since it enables traffic

forecasts which are relevant for travelers and traffic managers.

In order to analyze starts and ends of congestion a definition of these events is required.

Qualitatively, a congestion start is defined as the point in time when the level of conges-

tion increases from a mean low level to a mean high level. Using the cross-correlation
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Figure 6.13. Definition of congestion start and end times. Left: The applied kernel
function, mid: the result of the cross-correlation with  of cluster 10 observed on July
14th, 2015, right: the resulting start and end times of congestion for clusters 7 and 10

function again, this definition is applied as:

tstarti :=

8

>

<

>

:

argmax
χ

Rκi,S (�) if max (Rκi,S (�)) > Rthres

0 otherwise

(6.23)

where

S(t) :=

8

>

>

>

<

>

>

>

:

�1 if 0 > t > �TA

1 if 0 < t < TA

0 otherwise

(6.24)

and TA, R
thres 2 R+ denominate the time window used for averaging and a threshold

that filters minor congestions, respectively. Congestion ends are defined similarly. A

mandatory prerequisite is that a congestion start has been detected for the same day

and cluster:

tendi :=

8

>

<

>

:

argmin
χ

Rκi,S (�) if tstarti > 0

0 otherwise.

(6.25)

Figure 6.13 illustrates the definition with TA = 30min and Rthres = 7.5 and the resulting

start and end times for congestion levels of cluster 7 and 10 on one exemplary day.

Note that the definition utilizes the unnormalized cross-correlation. A threshold value

of Rthres = 7.5 in combination with TA = 30min means that the average increase of

congestion at the time of congestion start needs to exceed 7.5/30 = 0.25 in order to be

classified as a congestion start.

In the following the starts and ends of congestion of several pairs of clusters are discussed.

Examples of clusters-pairs with significant lag in congestion, pairs with high correlation
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Figure 6.14. Congestion starts and ends of several cluster combinations with high
correlation and minor lag. Blue markers indicate the start times and orange markers
the end times of congestion. Missing congestion are visualized as symbols on the axis

of the diagram.

and pairs with low correlation are presented exemplary.

Figure 6.14 illustrates two examples of cluster pairs with high correlation and minor lag

for a total of 179 workdays in 2015 (due to technical reasons not for all working days data

is available). For each day one (blue) marker indicates start time tstart of congestion

and one (orange) end time tend. Two types of symbols distinguish between Monday-

Thursday and Friday. If no congestion start and end for a cluster is is identified for a

certain day, these markers are drawn on the axis of the diagram. The dotted, isochronal

line is a visual aid. A table in the upper left counts the numbers of starting/ending

times with respect to different combinations of congestion status. Several interesting

observations can be made:

1. In most days, both, cluster 3 and 4 get congested between 7am and 8am and

congestion ends around 9am.

2. Outliers occur relatively often on Fridays; during Monday-Thursday outliers are

relatively rare.

3. The distribution of congestions starts in cluster 8 and 9 is much narrower. It

spreads around 7.30am.

4. Both cluster pairs are located in similar parts of the network, though not on the

same road. The narrow distributions of starts and ends and the low number of

outliers indicate a strong dependency between these bottlenecks.
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Figure 6.15. Congestion starts and ends of several cluster combinations with low
correlation. Blue markers indicate the start times and orange markers the end times of
congestion. Missing congestion are visualized as symbols on the edges of the diagram.

Figure 6.15 illustrate two examples of pairs with low correlation. The start and end

of congestion in cluster 5 compared to cluster 1 and cluster 6 spread across the entire

morning. Furthermore, there are many days in which no start and end times are detected.

As a result, the observation of congestion in cluster 5 does not allow to infer information

on one of the other clusters.

The most interesting cases are the ones where there is a significant lag between conges-

tion starts and/or ends. Figure 6.16 illustrates four examples of pairs that show these

characteristics. Observations are:

1. Cluster 2 gets congested relatively reliably between 6.30 and 7am in the morning.

Cluster 8 and 9 do so at around 7.30am. Both distributions are narrow with only

few outliers. This allows to formulate a statistically strong prediction rule: If

cluster 2 happens to be congested between 6.30am and 7am, it is very likely that

cluster 8 and 9 will get congested half an hour later.

2. In most cases cluster 7 gets congested earlier than cluster 3 and 6. Thus, also

the observation of congestion in cluster 7 allows to deduce likely states for the

other two clusters. However, the distribution of start times is wider and there are

relatively many cases in which cluster 6 does not get congested at all.

3. Unfortunately, the ends of congestion distribute wider than the starts, which chal-

lenges a statistical forecast. Though, in some of the presented cases there are

significant lags between congestion ends as well.
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Figure 6.16. Congestion starts and ends of several cluster combinations with signif-
icant lag. Blue markers indicate the start times and orange markers the end times of
congestion. Missing congestion are visualized as symbols on the edges of the diagram.

Compared to the cross-correlation analysis, this type of analysis of cluster relations

provides insights into daily traffic patterns of several dependent clusters. This allows to

identify the distribution of starts and ends of congestion. Given narrow distributions

with few outliers, this enable accurate traffic forecasts on a network level. Moreover,

if lags are low, highly correlated clusters can be used to formulate expected states of

the network at different times. These expectations can be fused with sparse data in

order to provide more accurate current traffic estimates. Furthermore, irregularities of

traffic in the network can be detected using observed traffic conditions in the clusters.

However, applying these methods one has to consider that these results are based on the

assumption of an invariant traffic system. If significant changes of the infrastructural

supply or road usage demand occur, gathered data may become outdated. Thus, the

application of such methods requires a continuous update of data. Furthermore, this
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analysis is performed only for the Munich road network. Similar results are expected to

be found in other metropolitans, though, this proof remains for future work.

All in all the congestion pattern analysis in this section reveals two important aspects

that are relevant for traffic forecasts in networks: First, there are recurring congestion

patterns that show a high degree of regularity. They can be explained well with the

commuting patterns of travelers. Second, there are spatio-temporal relations between

congestion at different bottlenecks of the network. For instance, some clusters are usually

congested earlier than others and some clusters on alternative roads are congested at

similar times. In the following section, these findings are (inherently) applied using the

forecast methods as described in section 6.3.

6.4.5 Cluster-Based Congestion Prediction

The goal of the prediction algorithm is to provide accurate predictions of TTLs for each

cluster given data of the current day as well as historical data. Specifically, in this

evaluation part it is shown that the consideration of network-wide congestion provides

relevant information for the prediction of the TTL in one cluster.

The evaluation of the method presented in section 6.3 is structured in the following way:

First, some parameters of the KNN based predictor are presented and a few variants are

motivated. Next, the evaluation methodology is described. Subsequently, the errors of

several variants and comparative algorithms are presented. Finally, the influence of two

parameters on the prediction accuracy is analyzed.

Basically, the proposed KNN predictor and its accuracy is influenced by the following

four settings:

• Prediction horizon: Since the predictor utilizes complete historical time-series,

technically it is not limited to any prediction horizon. In this case, the TTL is

based on the congestion inside the clusters generated for morning and evening

period, respectively. With respect to the results of the congestion pattern analysis

which detects congestion ends usually before 10am, the maximal prediction horizon

is limited to this time.

• Feature time interval: For the computation of the STTLs which serve as features

for the prediction model, a time interval has to be specified for which the TTL

is aggregated. Since the STTL is supposed to be an indicator for the overall

congestion inside a cluster, the time of earliest congestion in a cluster is considered.

For morning hours it is set to 5am up until the current daytime.
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• Number of Neighbors: The KNN-method searches for the K most similar (his-

torical) neighbors and computes an average TTL reported on these days. With

higher K, random fluctuations are smoothed. However, also more dissimilar neigh-

bors are considered. In other approaches where a KNN method is applied to traffic

forecasting, optimal numbers of neighbors K are found in the range of 5-30 (Zheng

and Su, 2014; Myung et al., 2011; Smith et al., 2002; Bustillos and Chiu, 2011).

For the following evaluations a value of K = 10 neighbors is used. Later, a brief

analysis studies the influence of K on the accuracy.

• Distance measure: The distance measure is a crucial influence since it decides

which features are similar and which not. In this case, two distance metrics are

applied. One is the standardized Euclidean norm:

∆
s(STTLd, STTLd∗) :=

�

���1
T (STTLd � STTLd∗)

�

� (6.26)

where ��1
T denotes a vector with reciprocal standard deviations of each dimension

of the training dataset. The standardization is applied in order to convert the

features to the same scale, such that each feature dimension is weighted similarly.

The second metric makes use of the cluster correlations. Integrated into a dis-

tance metric, it scales the distance for the similarity of cluster i with the powered

correlation values R̂ of cluster i and all other clusters:

∆
c
i (STTLd, STTLd∗) :=

�

�

�
R̂γ

i �
�1
T (STTLd � STTLd∗)

�

�

�
(6.27)

where � 2 R is a parameter that controls the impact of the correlation coefficients.

The idea of this metric is that clusters that are correlated strongly are more relevant

for the determination of similarity. With increasing � the coefficients of weakly

correlated clusters vanish such that their impact on the selection of similar patterns

is reduced.

For the following comparison three variants of the KNN based predictor are considered:

One, denominated as ’KNN Uni’, is a univariate formulation where for the selection

of similar days for cluster i considers only the training STTLs of the same cluster.

This approach can be seen as a representative for a time-series prediction which is not

influenced by network dynamics. ’KNN All’ uses as distance function the normalized

euclidean norm (eq. (6.26)). Finally, ’KNN Cov’ applies the cluster-based distance

function that integrates the covariance (eq. (6.27)). � is set to a value of 10.

As comparative algorithms three commonly applied approaches are selected: One (’All

days’) takes the average of all training TTL for each time for all working days and

determines the average. The second builds two clusters: One average time-series for all
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Mondays-Thursdays and one for all Fridays. The third further distinguishes between

usual days and school holidays and thus computes four time-series in total.

As error the RMSE is applied:

RMSE(t) =

v

u

u

t

1

|DT |nc

DT
X

d∗

nc
X

i

⇣

TTLPred
d∗,i,t � TTLGT

d∗,i,t

⌘2
(6.28)

where DT denotes the test set used for evaluation of the method. The set is chosen as

a random subset of all days for which data is available. The training set DP is used to

determine the TTL forecasts for all methods. Size of training and test are divided in

a ratio of 80:20. Note, that the KNN has only one parameter such that no over-fitting

of the method is possible and no validation set is required. In order to obtain robust

results, average RMSE values over 50 iterations are considered.

Figure 6.17 depicts the RMSE for the six methods applied to different times of the

day for predicting the TTLs of the morning peak until 10am. At a time of 6.30am

the errors for all prediction horizons are high. The most dedicated historical average

is the most accurate one. The KNN predictors are inaccurate since no congestion has

been detected yet, such that no distinct prediction is possible. This changes at 7am.

While the historical average stay unaffected since they do not consider the current traffic

situation, the ’KNN All’ and ’KNN Cov’ result in significantly more accurate predictions.

Compared to the situation at 6.30am the ’KNN Uni’ also improved, but less than the

other KNN approaches. A similar result is illustrated in the figure depicting the errors

at 7.30am. Here, the KNN predictors that consider network-wide traffic for the forecast

outperform the other approaches significantly. This shows that the current network-

wide level of congestion is a valuable feature for accurate traffic forecasts. At later

times of prediction the ’KNN Uni’ variant improves, outperforms the ’KNN All’ slightly

and forecasts with similar accuracy as the ’KNN Cov’. This result can be accounted

to the fact that all clusters are congested at that time such that the consideration of

congestion in other clusters is decreasingly relevant. All in all, the ’KNN Cov’ is the most

accurate or similarly as accurate as the other KNN-based predictors. It indicates that

a weighting of the feature dimensions with the cluster correlations is a way to increase

the expressiveness of the features. The errors for the evening period are depicted in A.3.

Since their results are similar to the ones described for the morning period a description

is omitted here.

Figure 6.18 depicts the prediction error for the best historical average and the best

KNN predictor in comparison to a free flow prediction (TTL = 0 for all time steps)

and an RTTI prediction (the current traffic conditions are kept constant over the entire

prediction period). As point in time 7.30am is chosen. As expected, the free flow
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Figure 6.17. Time-dependent prediction error of several variants of a historical average
and a KNN based predictor with respect to a varying start of prediction for the morning

peak
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Figure 6.18. Prediction error of a Free Flow predictor and an RTTI predictor com-
pared to the best historical and best KNN predictor

Figure 6.19. Mean RMSE of the prediction accuracy using variants of the KNN
predictor with respect to the considered number of neighbors (left) and the parameter

� (right)

prediction is the most inaccurate one with errors that exceed the other approaches over

the entire prediction time. The RTTI prediction is more accurate than the other ones

for a short horizon of 10-15 minutes. After this time the historical average and especially

the KNN predictor are more accurate. This shows that historical averages and KNN

predictors are specialized for longer term prediction horizons. Since the historical average

does not consider current traffic conditions at all, and the KNN-based approaches do so

only indirectly, they are not able to account for accurate short-term traffic evolutions.

One simple way to gain accuracy in short-term predictions would be to fuse the current

traffic situation with the longer term prediction. The weight between these two methods

would favor the current traffic conditions for a short-term horizon, and favor the KNN

predictor for long-term prediction horizons.

Figure 6.19 (left) illustrates the mean RMSE of the ’KNN Cov’ predictor at 7.30am with

respect to the number of considered neighbors K. The convex error function concurs
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with the hypothesis that too many neighbors as well as too few neighbors decrease the

overall accuracy. In this case an optimal number of K ⇡ 16 neighbors is found. Though,

the exact number may vary depending on the time of prediction and the number of

available training days. Figure 6.19 (right) depicts the influence of the parameter �

on the mean prediction error. Apparently there exists an optimal value for parameter

� which enables a higher prediction accuracy than the ’KNN All’ and the ’KNN Uni’

approach. The method relates to ’KNN All’ and ’KNN Uni’ in the following way: With

� = 0 the correlation matrix is turned into a matrix of ones, resulting in an equal

weighting of all features. Hence, it matches the ’KNN All’ method. With � ! +1 the

correlation matrix turns into the identify matrix since all entries in the matrix converge

towards zero except the main diagonal (which equals always one). This in turn matches

the univariate KNN approach.

To conclude, if the features and coefficients are selected cautiously, the consideration of

network-wide congestion for the prediction of TTLs in one congestion cluster yields the

most accurate predictions. Even if � is not optimized, the equal weighting of the features

still produces more accurate results than the consideration of only one STTL value. Es-

pecially during the hours where there is substantial lag between the starts of congestion

in several clusters, the presented approach outperforms other methods. However, the

presented studies constitute only results for a limited number of available techniques.

For instance, there are several ways to define correlation between cluster congestion, the

current variant does not respect the lag between the time-series of cluster congestion

and as predictor a simple KNN is applied. The quick advances in the fields of machine

learning in the last decade rises the expectation of significant further improvements of

the prediction accuracy considering more sophisticated feature selection and prediction

methods.

6.5 Conclusion and Discussion

In this chapter a novel approach to analyze and predict network-wide traffic conditions

was presented and its strengths and limitations were assessed. The basic idea was

to reduce a road network to the regions that are frequently congested and focus the

congestion analysis and forecast on these so-called congestion clusters. The benefits of

this approach are:

• The result of the clustering is an abstract representation of the road network orig-

inally comprising thousands of edges with varying properties as a limited number

of homogeneous regions. This simplification improves the computational efficiency

and robustness of all depending methods.
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• For understanding network-wide traffic congestion (as the first step for long-term

traffic improvements), the abstraction enables meaningful and clear statistical

analyses such as the presented correlation study. Hereby, the homogeneity of

clusters contributes to the reduction of measurement noise.

• The observation of a few number of regions, whose level of congestion can be

described with one variable each, simplifies network-wide congestion estimation

and allows for systems with ’humans are in the loop’, e.g. some kind of traffic

control system.

• Compared to other edge-based methods the reduced computation efficiency and

reduction of noise are especially valuable in networks where significant lags between

the congestion starts and ends can be observed. For data-driven prediction, these

traffic conditions inside the congestion clusters constitute expressive features which

showed to improve the efficiency and accuracy of an applied machine learning

algorithm.

Aside the aforementioned advantages, the clustering approach comes with some disad-

vantages and open issues that need to be considered in further work:

• A major drawback is that, while the clusters cover frequently congested regions,

non-recurrent congestion that may occur due to special events such as weather

conditions, accidents, festivals etc. is possibly not covered by the congestion clus-

ters. In this case, traffic estimation and control algorithms based solely on the

clusters would lack sufficient information. Therefore, it is necessary to develop

and assess ways to identify irregularities. Since traffic congestion in the road net-

work is connected to a certain degree, the observation of the congestion clusters

for irregularities might indicate that current traffic conditions are non-recurrent.

• The statistical analysis provides spatio-temporal congestion patterns which can be

used to identify dependencies between different regions in the network. However,

these correlations do not reflect casual connections. This is a drawback since it

does not allow to reason with certainty. For instance, if traffic conditions in one

cluster change, it is not secure that a strongly correlated cluster will change as

well. Rather, a statistical likelihood can be determined.

• A third issue is that the presented forecast methods are data-driven. They rely

on the assumption that data collected from a system will provide information

for future states of the system. In the presence of substantial changes of the

infrastructure or the commuting patterns of travelers the validity of collected data

decreases. In this case, outdated observations need to be discarded and new data
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need to be collected. As a result, it may take time until the previous prediction

accuracy is restored.

Currently, the definition of the congestion clusters as well as the TTL use only velocity

data in order to detect the state of congestion as well as travel time losses. The total

number of vehicles that is affected is neglected. For future developments, a fusion of

this approach with flow data should be considered. The multiplication of speeds or

travel time losses with flow data would allow to measure the loss of all travelers, which

is a more meaningful quantity for traffic control than individual losses. Furthermore,

in order to improve the interpretation of cluster correlations, trajectory data could be

evaluated: For instance, if there are relatively many road users that pass through several

bottlenecks during peak hours, there is an apparent strong dependency between these

clusters. Finally, it is promising to apply the clustering to more cities world-wide that

may have different congestion patterns. Especially metropolitans regions with several

millions of inhabitants which suffer strongly from congestion could reveal interesting

spatio-temporal patterns and could benefit from a network-wide traffic congestion pre-

diction.
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Chapter 7

Conclusion

7.1 Summary

The goal of this thesis was to advance the state of the art in traffic speed estimation and

prediction using FCD. Therefore, three research objectives have been identified that

focus on the effective use of FCD in order to improve specific traffic systems.

The first objective targets the basis of many traffic-related applications: The estimation

of accurate traffic speeds on freeways. In contrast to many approaches that require flow

data, a novel approach based on the Three-Phase traffic theory was presented using only

FCD. Sparse data in time and space is processed in phase- and shock-wave-characteristic

ways in order to reconstruct the continuous macroscopic traffic speed. In an evaluation

with 101 congestion patterns, the accuracy of the PSM was compared to state-of-the-

art methods. As a result, it outperformed the isotropic smoothing method by 18.4%

to 25.7% and the GASM by 5.0% to 16.3%, depending on the parametrization. A

subsequent run-time analysis proved its efficiency. The performed Global Sensitivity

Analysis (GSA) indicated its robustness and resulted in recommendations for practical

parametrization. An advantage relevant for future applications is that the method can

be applied to fuse heterogeneous traffic speed data. Due to these reasons, the PSM is

seen as a relevant contribution for the field of traffic speed estimation with sparse sensor

data on freeways.

The second objective focused on the short-term forecast of congestion fronts in order

to provide hazard warnings and improve traffic control measures. Based on a real-time

velocity estimate provided by the PSM and sparse flow data, an analytical forecast model

was developed. In an evaluation with real data one variant of the method was able to

produce significantly more accurate short-term forecasts than comparable approaches.
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This demonstrates the advantages of fusing several data sources for short-term forecasts:

the high spatio-temporal accuracy of FCD and flow data gathered by loops.

The third objective focused on traffic congestion in urban road networks. First, a cluster-

ing method was developed that reduces complex road networks to those regions which

are frequently congested. The consideration of congestion levels of these clusters al-

lowed to study network-wide congestion using only a few abstracted variables. Next,

the clustering approach was applied to one year of FCD in Munich city. Using several

statistical tools clear spatio-temporal congestion patterns and dependencies between

the clustered regions could be identified. These findings motivated the development of

a network-wide traffic prediction algorithm. A data-driven approach was proposed in

order to predict travel-time losses in congested clusters. In a comparison of several pre-

dictors this approach outperformed other data-driven and naive methods. These results

demonstrated that these abstracted quantities are valuable features for a network-wide

prediction model.

In section 2.3 four requirements which traffic state estimation and prediction algorithms

are supposed to fulfill have been pointed out: Accuracy, efficiency, robustness and gen-

erality. Figure 7.1 provides a qualitative evaluation of the developed approaches with

respect to these requirements. The last row summarizes the most promising open issues

of each approach that could be addressed in future work.

7.2 Outlook

These developed methods show that FCD is a valuable source of traffic information

which, processed in an appropriate way, allows for traffic speed estimation and prediction

systems on freeways as well as urban roads. Still, there are still several limitations of

FCD and current models that need to be addressed in order to increase the utility of

this technology. One limitation is that the proposed as well as most other traffic models

assume the homogeneity of traffic conditions among all lanes. This assumption fails in

those cases where one or more lanes diverge from the main lane and measurements of

different traffic conditions are fused. Another limitation is that traffic flow and density,

which are fundamental quantities for analytical traffic flow models, are still difficult to

deduce from FCD. A promising development that may alter these limitations is the

steadily increasing number of in-vehicle sensors. Data from cameras as well as distance

sensors are processed in order to create a model of traffic in the vehicle’s proximity.

This model includes all types of traffic-related information: the positions and speeds of

surrounding vehicles, the signal status of traffic lights, the lane a vehicle is driving on

etc. Thus, in the future, extended data will facilitate to assign vehicle data to certain
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• Improved accuracy

compared to a naive 

forecast approach

• Study is limited to one

congestion pattern

• Study show an accuracy

gain for long-term TTL 

predictions

• Less accurate for short-

term predictions

• Able to process large 

networks in short time 

• Comparable to the PSM 

efficiency since similar

operations are applied

• Numerical integration of

few fronts is fast

• Clusters pre-computation

allows for efficient use

• KNN approach with

relatively low sample 

sizes (100-1000) is fast

• GSA showed its

robustness in case of non-

optimal parametrization

• Applied successully to

different congestion

patterns under varying

data coverage

• Smooths data to reduce

noise and eliminate

outliers

• May fail with low data

availability or complex

road infrastructure

• Clustering is based on one

parameter only

• KNN is a robust predictor

by design

• Can be applied to any

speed data on freeways

• Integration of other types

of data (flow, density) 

elaborated theoretically

• Requires flow and speed

data with acceptable data

coverage

• Is limited to the forecast

of WMJ fronts

• Applicable to all link-

based speed data

• Cluster TTLs cannot be

used for routing

applications

• Study of fusion

capabilities with

heterogeneous data

sources

• Transfer to urban 

networks

• Study accuracy in real-

time application

• Model the in- and

outflows at ramps as well

as varying road capacities

• Usage of in-vehicle

sensors to estimate

flows/densities

• Sensitivity analysis with

respect to data availability

and type of congestion

• Validate results in other

cities

• Combine speed with flow

data in clustering to

consider road importance

• Reforumlate to link-based

prediction and fuse with

real-time data to enable

application in routing

Figure 7.1. Overview of research objectives and evaluation with respect to the re-
quirements of traffic state estimation and prediction algorithms (see section 2.3) as well

as a summary of future work
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lanes, or groups of lanes. Additionally, more sophisticated vehicle sensors will allow to

determine traffic densities and flows using vehicle sensors. One advance towards this goal

is already published in (Seo and Kusakabe, 2015) where traffic densities are estimated

from the data of vehicle’s distance sensors.

With increasing accuracies and amounts of FCD, further aspects might be investigated.

One concerns the de-facto standard to represent traffic flow with the macroscopic quan-

tities flow, density and speed. A macroscopic representation aggregates all vehicle infor-

mation into the quantities flow, density and speed. The necessity to aggregate vehicle

information over time and space constitutes a lower bound on the maximal accuracy

of such a representation. In order to overcome these bounds and describe traffic in a

general and accurate way, it is promising to advance to a meso- or microscopic level. In

this thesis, the concept of a spatio-temporal vehicle occupation was introduced, which

can be seen as a first step. Though, higher penetration rates of equipped vehicles and

more detailed sensor data could lead towards a new level of traffic information. The

development of such representations is highly encouraged. Related to this aspect are

the chances, challenges and risks of augmenting data acquisition and exchange. Whilst

the acquisition and exchange of data might enable applications with great effectiveness,

the privacy of the travelers must be respected. Therefore, concepts are necessary that

make data anonymous but preserve its essential information.

To conclude, FCD turned out to be a powerful source of traffic data that suits well for

traffic speed estimation and prediction. The methods developed and described in this

thesis hopefully contribute to an optimal use of this source of traffic data in order to

reduce traffic congestion in the future.
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Appendix A

Appendix

Authors & Year Time Roads Sensors Model

Treiber and Helbing, 2003 Retrospective Freeway Loops+FCs+.. Data-driven

Treiber et al., 2010a Retrospective Freeway Loops+FCs Data-driven

van Lint and Hoogendoorn, 2009 Retrospective Freeway FCs+Other Data-driven

Kerner et al., 2013 Retrospective Freeway FCs Data-driven

Palmer et al., 2011 Retrospective Freeway FCs Data-driven

Herrera et al., 2010 Retrospective Freeway FCs Data-driven

Kerner et al., 2005 Retrospective Freeway FCs Data-driven

Seo and Kusakabe, 2015 Retrospective Freeway FCs Other

Bar-Gera, 2007 Retrospective Freeway Other Data-driven

Bhaskar et al., 2011 Retrospective Urban Loops+FCs Data-driven

Sarvi et al., 2003 Retrospective Urban FCs Data-driven

Hong et al., 2007 Retrospective All FCs Data-driven

Cho and Rice, 2006 Real-Time Freeway Other Data-driven

Wang et al., 2014 Real-Time Freeway Loops+FCs+.. Data-driven

Deng et al., 2013 Real-Time Freeway Loops+FCs+.. Analytical

Westerman et al., 1996 Real-Time Freeway Loops+FCs Data-driven

Astarita et al., 2006 Real-Time Freeway Loops+FCs Other

Blandin et al., 2013 Real-Time Freeway Loops+FCs Analytical

Piccoli et al., 2015 Real-Time Freeway Loops+FCs Analytical

Suzuki et al., 2003 Real-Time Freeway Loops+FCs Analytical

Qing Ou et al., 2011 Real-Time Freeway Loops+Other Other

Guo et al., 2009 Real-Time Freeway Loops Analytical

Hegyi et al., 2006 Real-Time Freeway Loops Analytical

Leclercq et al., 2007 Real-Time Freeway Loops Analytical
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Mihaylova et al., 2007 Real-Time Freeway Loops Analytical

Mihaylova et al., 2012 Real-Time Freeway Loops Analytical

Morarescu and Wit, 2011 Real-Time Freeway Loops Analytical

Morbidi et al., 2014 Real-Time Freeway Loops Analytical

Ngoduy, 2011 Real-Time Freeway Loops Analytical

Tampere and Immers, 2007 Real-Time Freeway Loops Analytical

van Wageningen-Kessels et al., 2010 Real-Time Freeway Loops Analytical

Wang and Papageorgiou, 2005 Real-Time Freeway Loops Analytical

Yuan et al., 2012 Real-Time Freeway Loops Analytical

Rempe et al., 2016a Real-Time Freeway FCs Data-driven

Krause et al., 2008 Real-Time Freeway FCs Data-driven

Sanwal and Walrand, 1995 Real-Time Freeway FCs Data-driven

Ygnace et al., 2000 Real-Time Freeway FCs Data-driven

Bekiaris-Liberis et al., 2016 Real-Time Freeway FCs Analytical

Herrera and Bayen, 2010 Real-Time Freeway FCs Analytical

Work et al., 2010 Real-Time Freeway FCs Analytical

Work et al., 2008 Real-Time Freeway FCs Analytical

Work et al., 2009 Real-Time Freeway FCs Analytical

Cheng et al., 2006 Real-Time Freeway Other Data-driven

Kwong et al., 2009 Real-Time Urban Other Data-driven

Bhaskar et al., 2014 Real-Time Urban Loops+Other Analytical

Geroliminis and Skabardonis, 2011 Real-Time Urban Loops+Other Analytical

Nantes et al., 2013 Real-Time Urban Loops+Other Analytical

Nantes et al., 2015 Real-Time Urban Loops+FCs+.. Analytical

Kong et al., 2009 Real-Time Urban Loops+FCs Data-driven

Mehran et al., 2011 Real-Time Urban Loops+FCs Analytical

Liu et al., 2009 Real-Time Urban Loops Analytical

Lu et al., 2013 Real-Time Urban Loops Analytical

Chen et al., 2007 Real-Time Urban FCs Data-driven

Feng et al., 2014 Real-Time Urban FCs Data-driven

Herring et al., 2010a Real-Time Urban FCs Data-driven

Hofleitner et al., 2012b Real-Time Urban FCs Data-driven

Ramezani and Geroliminis, 2012 Real-Time Urban FCs Data-driven

Uno et al., 2009 Real-Time Urban FCs Data-driven

van Zuylen et al., 2010 Real-Time Urban FCs Data-driven

Ban et al., 2011 Real-Time Urban FCs Analytical

Cheng et al., 2012b Real-Time Urban FCs Analytical
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Ramezani and Geroliminis, 2015 Real-Time Urban FCs Analytical

Hofleitner et al., 2012a Real-Time Urban FCs Analy.+DD

Ladino et al., 2017 RT+Pred. Freeway Loops Data-driven

Kerner et al., 2004 RT+Pred. Freeway Loops Analytical

Corrado de Fabritiis, 2008 RT+Pred. Freeway FCs Data-driven

Rehborn and Klenov, 2009 Predictive Freeway Loops+FCs Data-driven

Zou et al., 2014 Predictive Freeway Loops Data-driven

Dong et al., 2014 Predictive Freeway Loops Analy.+DD

Helbing et al., 2009 Predictive Freeway Loops Data-driven

Barimani et al., 2012 Predictive Freeway Loops Data-driven

Kamarianakis et al., 2012 Predictive Freeway Loops Data-driven

McFadden et al., 2001 Predictive Freeway Loops Data-driven

Park et al., 2011 Predictive Freeway Loops Data-driven

Hashemi et al., 2012 Predictive Freeway Loops Data-driven

van Hinsbergen et al., 2009 Predictive Freeway Loops Data-driven

van Lint, 2006 Predictive Freeway Loops Data-driven

van Lint, 2008 Predictive Freeway Loops Data-driven

van Lint et al., 2005 Predictive Freeway Loops Data-driven

Yildirimoglu and Geroliminis, 2013 Predictive Freeway Loops Data-driven

Zhang et al., 2014 Predictive Freeway Loops Data-driven

Elhenawy et al., 2014 Predictive Freeway FCs Data-driven

Ye et al., 2012 Predictive Freeway FCs Data-driven

Myung et al., 2011 Predictive Freeway Other Data-driven

Ma et al., 2015b Predictive Urban Other Data-driven

Park and Lee, 2004 Predictive Urban Loops+FCs Data-driven

Asif et al., 2014 Predictive Urban Loops Data-driven

Csikos et al., 2015 Predictive Urban Loops Data-driven

Min and Wynter, 2011 Predictive Urban Loops Data-driven

Fusco et al., 2015 Predictive Urban FCs Data-driven

Herring et al., 2010b Predictive Urban FCs Data-driven

Kong et al., 2016 Predictive Urban FCs Data-driven

Ma et al., 2015a Predictive Urban FCs Data-driven

Yao et al., 2017 Predictive Urban FCs Data-driven

Leonhardt, 2009 Predictive All Loops+FCs Data-driven

Table A.1. State-of-the-art approaches for traffic speed estimation and predic-
tion
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Figure A.1. Raw trajectory data of all congestion patterns collected on the freeway
network surrounding Munich between July 7th, 2014 and August 7th, 2014

Figure A.2. Mean normalized cross-correlation and mean time shift between evening
congestion inside congestion clusters over all workdays in 2015. (Notice: A positive
lag for a cluster combination (i, j) means that congestion in cluster i starts later than

congestion in cluster j)
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Figure A.3. Time-dependent prediction error of several variants of a historical average
and a KNN based predictor with respect to a varying start of prediction for the evening

peak
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Abbreviations

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance System

AI Artificial Intelligence

ANN Artificial Neural Network

ARIMA Autoregressive Integrated Moving Average

CTM Cell Transmission Model

FAST Fourier-Amplitude Sensitivity Test

FCD Floating Car Data

FC Floating Car

FD Fundamental Diagram

FFT Fast Fourier Transform

GASM Generalized Adaptive Smoothing Method

GP General Pattern

GNSS Global Navigation Satellite System

GSA Global Sensitivity Analysis

GT Ground Truth

HCT Homogeneous Congested Traffic

ITS Intelligent Transportation Systems

KNN K-Nearest Neighbors

LWR Lighthill-Whitham-Richards

ML Machine Learning

OCT Oscillating Congested Traffic

OSM Open Street Map

PSM Phase-based Smoothing Method

RTTI Real-Time Traffic Information

SP Synchronized Flow Pattern
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STARIMA Space-Time Autoregressive Integrated Moving Average

STTL Summed Travel Time Loss

TT Travel Time

TTL Travel Time Loss

V2X Vehicle-to-Everything

VBSA Variance-Based Sensitivity Analysis

VSL Variable Speed Limit

WMJ Wide Moving Jam
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List of Symbols

x Position on a road

t Time

L Length of a road corridor

T Specific point in time

Nc Total number of vehicles providing trajectory data

xc Trajectory of vehicle c

vc Velocity of vehicle c

x0 Minimal length of a vehicle

TH Time headway

Ψ Region occupied by any vehicle

Ω Set of traffic phases

F Phase: free flow

S Phase: synchronized flow

J Phase: wide moving jam

U Uncertain state

Pp Probability that traffic is in phase p

P i
p Criteria probabilities for phase p

VFCD Velocity input generated from FCD

VU Fall-back velocity

V H
p Harmonic velocity estimate for phase p

VE Estimate of macroscopic traffic velocity

Q Quality estimate

Φ Kernel function

⌧ Parameter for a kernel function
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� Parameter for a kernel function

Γ Convolution process

Λ Normalized convolution

D Data density

w Continuous weighting function as input for the convolution process

vfree Propagation speed of shock waves in Free Flow

vcong Propagation speed of shock waves in congested flow

vthres Velocity threshold of a phase

vdirp Propagation speed of phase front p

�v Function converting velocities into probabilities

�d Function converting densities into probabilities

� Strictness of sigmoid function

∆X Space discretization

∆T Time discretization

A Set of estimation algorithms

✏ Relative estimation error of two algorithms

tr List of tupels representing a trajectory

S Set of Trajectories

DE Normalized local data coverage

 Cell occupation

Si First-order sensitivity index

G Graph representing a road network

V Nodes of the graph

E Edges of the graph

l Length of an edge

VLim Speed limit of an edge

VRec Average recorded driving speed on an edge of the network

VRel Relative driving speed

V thres
Rel Relative velocity threshold between free and congested traffic

J Binary function that indicates the congestion status of an edge

P Congestion pocket as a set of connected and congested edges

Y Function that counts the time two edges are congested simultaneously

C Static congestion cluster as a set of edges
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↵ Parameter for static clustering

K Set of most similar datasets resulting from KNN classification

� Intra-cluster dissimilarity

 Level of congestion

⇢ Cluster representativeness

⇠ Specificity of a cluster

⇣ Coverage of clusters

� Temporal lag between two congestion patterns

R Cross-correlation

� Parameter controlling the influence of the correlation coefficients

D Set of days
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ngrössen unter Nutzung räumlich-zeitlicher Verkehrsmuster. Vol. 9. Lehrstuhl für

Verkehrstechnik, Technische Universität München, 2009. isbn: 978-3-937631-09-

7.



177

[101] K. Levi and Y. Weiss. “Learning object detection from a small number of exam-

ples: the importance of good features”. In: Proceedings of the 2004 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, 2004.

CVPR 2004. 2004, pp. 53–60.

[102] M. Lighthill and G. Whitham. “On kinematic waves II. A theory of traffic flow on

long crowded roads.” In: Proceedings of the Royal Society A 229 (1955), pp. 317–

345.

[103] Henry X. Liu et al. “Real-time queue length estimation for congested signalized

intersections”. In: Transportation Research Part C: Emerging Technologies 17.4

(2009), pp. 412–427.

[104] Christine Lotz and Malte Luks. Qualität von on-trip Verkehrsinformationen im

Straßenverkehr. Vol. 82. Berichte der Bundesanstalt für Strassenwesen, Fahrzeug-

technik. Wirtschaftsverl. NW Verl. für neue Wiss, 2011.

[105] Yang Lu, Ali Haghani, and Wenxin Qiao. “Macroscopic Traffic Flow Model for

Estimation of Real-Time Traffic State Along Signalized Arterial Corridor”. In:

Transportation Research Record: Journal of the Transportation Research Board

2391 (2013), pp. 142–153.

[106] Xiaolei Ma et al. “Large-scale transportation network congestion evolution pre-

diction using deep learning theory”. In: PloS one 10.3 (2015), e0119044.

[107] Xiaolei Ma et al. “Long short-term memory neural network for traffic speed pre-

diction using remote microwave sensor data”. In: Transportation Research Part

C: Emerging Technologies 54 (2015), pp. 187–197.

[108] Reinhard Mahnke and Reinhart Kühne. “Probabilistic description of traffic break-

down”. In: Traffic and Granular Flow’05. Springer, 2007, pp. 527–536.

[109] John McFadden, Wen-Tai Yang, and S. Durrans. “Application of Artificial Neu-

ral Networks to Predict Speeds on Two-Lane Rural Highways”. In: Transporta-

tion Research Record: Journal of the Transportation Research Board 1751 (2001),

pp. 9–17.

[110] Babak Mehran, Masao Kuwahara, and Farhana Naznin. “Implementing Kine-

matic Wave Theory to Reconstruct Vehicle Trajectories from Fixed and Probe

Sensor Data”. In: Procedia - Social and Behavioral Sciences 17 (2011), pp. 247–

268.
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