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Abstract
RainbowPIV is a recent imaging technology proposed for time-resolved 3D-3C fluid velocity measurement
using a single RGB camera. It dramatically simplifies the hardware setup and calibration procedures re-
quired compared to alternative 3D-3C measurement approaches. RainbowPIV combines optical design and
tailored reconstruction algorithms, and preliminarily studies demonstrated its ability to extract physically
constrained fluid vector fields. This article addresses the issue of limited axial resolution, the major draw-
back of the original RainbowPIV system. We validate the new system with a direct, quantitative comparison
to four-camera Tomo-PIV. The reconstructed flow vectors of the two approaches exhibit a high degree of
consistency, with the RainbowPIV results explicitly guaranteeing physical properties such as divergence
free velocity fields for incompressible fluid flows.

1 Introduction
In recent years, a great amount of effort has been invested into the development of methods for complete
volumetric reconstruction of the three-dimensional, three-component (3D-3C) velocity vector fields. To-
mographic Particle Imaging Velocimetry (Tomo-PIV) (Elsinga et al., 2006; Scarano, 2012) has long been
considered as the standard technology for 3D measurement owing to its capability to handle high parti-
cle seeding densities and high spatial resolution reconstruction, as well as its robustness to many types of
the flow phenomena. Most recent advances regarding Tomo-PIV have been carried out for improving re-
construction accuracy (Schanz et al., 2016) or spatial and temporal resolution (Scarano and Moore, 2012;
Schneiders and Scarano, 2016) by exploiting temporal coherence, or reducing the cost of the setup, e.g.
using smartphones (Aguirre-Pablo et al., 2017; Cierpka et al., 2016). Tomo-PIV typically makes use of 4-6
cameras capturing the volume of interest from different viewing angles. While Tomo-PIV has the above-
mentioned advantages, it also suffers from several limitations that constrain its use. First, a considerable
amount of effort is required to set up and calibrate a multi-camera system. Precise calibration is required,
otherwise, calibration error may result in a degradation on the reconstruction quality. Depth-of-the-field is
another practical issue that Tomo-PIV, in general, cannot be applied for relatively large-scale fluid measure-
ment applications. A more severe limitation is that there are many experimental setups where optical access
is limited, and thus setting up a multi-camera system becomes impractical. In such situation, a single-camera
based 3D-3C technology would be desired.

There are mainly two types of single-camera approaches proposed in the last decades for 3D flow mea-
surement, specifically, encoding the particle depth by light path in the camera side or by color or spectral
information in the illumination side. The strategy of encoding the particle depth by light path dates back
to the work of Willert et al. (Willert and Gharib, 1992), which attaches a three-pin-hole mask in front of
the objective, and recover the 3D particle locations based on the position and length of the captured image
patterns (equilateral triangle) by means of defocusing technique. This method has been applied to several
flow scenarios (Pereira and Gharib, 2002; Yoon and Kim, 2006), although it has the disadvantages of low



light efficiency due to the fact that not the whole apertures (only three pinholes) are utilized and low particle
seeding density because of the ambiguity to distinguish overlapped image patterns for neighbor particles.
More recently, plenoptic camera (or light-field camera) based single-camera PIV approaches have been pro-
posed in (Fahringer et al., 2015; Shi et al., 2016), which records the full 4D light field of the scattered light of
the seeding particles and digitally reconstructs particle locations by means of ray-tracing based algorithms.
Quantitative comparisons between Tomo-PIV and Plenoptic-PIV have been conducted in recent work (Shi
et al., 2018; Rice et al., 2018). Plenoptic-PIV dramatically simplifies the hardware setup and gets rid of the
complicated calibration procedures required in Tomo-PIV, while as a compromise, the spatial resolution is
significantly sacrificed for the angular information to achieve desired depth resolution. Besides, the plenop-
tic camera normally has low frame rate, which restricts its usage for time-resolved non-stationary fluid flow
measurements.

Another group of single-camera methods is based on the encoding of the particle depth by structured
light (monochromatic or polychromatic light), thus the 3D particle locations can be determined by 2D spa-
tial location and 1D light illuminated information in the captured single image. The method of exploit-
ing monochromatic illumination has been proposed in (Aguirre-Pablo et al., 2019), which illuminates the
volume by a spatially and temporally varying intensity profiles and achieves 200-levels depth resolution.
However, the temporal resolution is sacrificed in a certain extend for the sake of high depth resolution, and
also it fails to separate overlapped particles. Most of the related work using polychromatic illumination is
summarized in (Watamura et al., 2013). Early work extracts the particle depth based on a calibrated map-
ping function of RGB or hue value to depth. This naive method cannot deal with overlapping particles, and
thus it is not suitable for dense fluid flow reconstructions. An additional disadvantage is that the method is
sensitive to random noise, optical aberration and unpredictable secondary light scattering from the particles.
Recently proposed RainbowPIV (Xiong et al., 2017) tackles most of the existing issues by a combinational
design of the illumination and optics, in conjunction with an integrated optimization framework to jointly
reconstruct both of the particle distribution fields and velocity vector fields. While it suffers from a limited
and fixed volume size due to the rainbow generation engine (linear variable filter) and the constant focal
length of the specifically designed optics (diffractive optical elements). Xiong et al. (Xiong et al., 2018)
further proposed a reconfigurable RainbowPIV system with an adjustable rainbow generation engine and a
varifocal optical design, extending it to a volume size with a considerable range.

Even though these single-camera approaches achieved by color-encoded illumination greatly simplify
the hardware setup with respect to both Tomo-PIV and Plenoptic-PIV, and significant improvements have
been made recently for 3D dense fluid velocity imaging, the limited axial resolution is still a major draw-
back for this type of method, which constrains its usage in fluid measurement applications requiring a high
depth resolution. In this work, we address this issue and propose an extension to the precedent RainbowPIV,
implementing a depth super-resolved RainbowPIV system. Furthermore, we carry out a direct comparison
with the well established four-camera Tomo-PIV system to verify its applicability and reconstruction ac-
curacy for flow measurement. Moreover, we demonstrate that RainbowPIV, unlike Tomo-PIV, reconstructs
physically plausible flows e.g. divergence free flow fields in the case of incompressible fluid flow.

2 System Overview
In order to realize a simultaneous measurement with RainbowPIV and Tomo-PIV, the schematic diagram
for the designed experimental setup is shown in Fig. 1. Four cameras are arranged to view the octagonal
tank from different perspectives for Tomo-PIV. Among these, the central camera, equipped with a specially
designed diffractive optical element (DOE) and achieving a hybrid refractive/diffractive imaging system, is
also utilized for RainbowPIV. All cameras are triggered by a synchronized signal. The DOE is a Fresnel
phase plate used for all-in-focus imaging in the RainbowPIV setup. Normally, the cameras used in Tomo-
PIV setup keep a relatively small aperture size for a large depth-of-field, in the meantime, the light efficiency
is reduced proportional to the inverse of the square of the F-number (smaller aperture size means lower light
efficiency). In contrast, the depth-of-field of the utilized hybrid refractive/diffractive lens is not affected
by the aperture size, hence RainbowPIV can make use of the largest available aperture for maximum light
efficiency, and still maintain an extended depth-of-field. The design, fabrication and impact of the DOE are
explained in detail in (Xiong et al., 2017).

Another notable part is the illumination system (rainbow generation). The physical size of the measured
volume is dependent on the field-of-view of the camera (x-y) and the illumination width (z), corresponding
to the rainbow width. In order to generate parallel and size-controlled rainbow, we utilize two blazed gratings
and place them parallel to each other at the blazed angle. With a while light beam comes in, output of this
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Figure 1: Schematic diagram for the experimental setup (top) and the vortex ring generator (bottom). Two
blazed gratings are utilized for generating size-controlled rainbow. Four cameras are utilized for Tomo-PIV
measurement, among which, the third camera with custom designed DOE is also used for RainbowPIV.
Instead of multiple optical access points to the measured volume required by the Tomo-PIV system, Rain-
bowPIV requires only one camera and one illumination access port.

system is a parallel rainbow, the size of which can be adjusted by altering the distance between these two
gratings.

We place a vortex ring generator (Fig. 1) beneath the tank to produce specific flow scenarios for measure-
ments. Specifically, it is composed of a circular chamber covered by an elastic latex membrane. The whole
is then enclosed by a 3D printed cap with a small circular centered hole on the top. The air pulse comes into
the chamber and upwards pressurizes the membrane, driving the water pass through the membrane and the
hole on the cap, finally generates the desired vortex ring.

3 RainbowPIV Tracking and Reconstruction

3.1 Joint Optimization Framework
In order to fully reconstruct the dense 3D-3C velocity fields, prior work utilizes a pipeline approach that
firstly estimates the particle distribution fields at successive time steps, and then reconstructs the corre-
sponding flow fields using the estimated particle distributions. Such a pipeline approach neglects strong
physical cues for temporal coherence, which can significantly improve the results. Specifically, particles



present at current time step should also be present at the subsequent time step and the previous time step as
well (excluding a small number of disappeared and new-coming particles), and their location should be con-
sistent with the estimated 3D-3C flow fields. RainbowPIV, for the first time, proposed a joint optimization
framework for particle distribution fields and fluid velocity vector fields reconstruction on a sequentially
captured video frames. As illustrated in (Xiong et al., 2017), one can benefit from this prior information
to refine those ambiguity particles computed from a single frame, obtaining more precise flow fields. This
joint optimization framework has also been utilized for multi-camera 3D Fluid Flow Estimation (Lasinger
et al., 2018) and X-ray computed tomographic applications (Zang et al., 2018), and exhibits improved re-
construction quality in respective work. Specifically, the integrated optimization problem for RainbowPIV
can be expressed as:

(p∗,u∗) = argmin
p,u
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where p∗ and u∗ are the target particle distribution fields and fluid velocity vector fields, respectively. The
above energy function is minimized using a coordinate decent method, alternating on these two variables.
Specifically, we alternate between keeping u fixed, and solve for p, and then fixing p and solving for u. The
following sections will provide intuitive motivations and explanations for the above optimization problem.
More detailed derivations and solvers for it can be found in (Xiong et al., 2017).

3.2 Particle Distribution and Velocity Field Reconstruction
Starting with extracting the particle distributions from a single RGB image, straightforward ways have been
proposed in (Watamura et al., 2013; McGregor et al., 2007), which relates the hue values of the captured
image to the particle depth in the volume. This type of approach, as discussed before, cannot correctly
extract the locations of overlapped particles due to the color mixing, also it is not robust to random noise
and unpredictable light scattering occurred during the imaging and light propagation processes.

The above problem, alternatively, can be formulated as an inverse problem, and we can then efficiently
and accurately solve it by exploiting modern optimization frameworks. Each possible particle in the 3D
volume can be considered as a point light source, and the camera response to the point source is a point
spread function (PSF), which is depth dependent. In order to construct the inverse problem, we first express
the imaging system by a forward model, which is a linear process and can be expressed by Apt, with A being
the coefficient matrix representing the convolution operation (with various PSFs) and pt being the particle
distribution fields at time step t (1 ≤ t ≤ T ). Denoting the corresponding captured image as it, ideally, we
have Apt = it.

However, this linear system is underdetermined (or ill-posed) since we have less constraints than un-
known variables. Introducing additional regularization terms and constructing a minimization problem are
common strategies to tackle this kind of problem. A sparse distribution of particles in the volume is ex-
pected (only a small percentage of voxels contains particles), and the value of the particle distribution fields
should be within the range of 0 and 1. These two constraints account for the second and third terms in line
2 of Eq. (1), where ‖ · ‖1 is the L1 norm, κ1 is the penalty parameter enforcing the sparsity. diag(w) is the
weights compensating the sensor sensitivity to different wavelengths, detailed explanation of which can be
found in (Xiong et al., 2018). Π[0,1] is the operator projecting the value to the convex set [0,1].

We can also take the temporal priors into account to alleviate the ambiguity of determining the particle
distributions from sole image. The fourth term in the third line of Eq. (1), named as particle presence
consistency, interprets the temporal coherence into the minimization problem, where pt+1(ut,−∆t) indicates
advecting the particle distribution fields at time step t + 1 under flow field ut by −∆t unit of time. Notice
that this term is also used by reconstructing velocity fields.

After obtaining the particle fields in sequential time steps, we can then perform velocity estimation
on them to generate the time-resolved velocity fields. A common method for such velocity estimation



methods is Digital Volume Correlation (DVC), based on cross-correlation of volume neighborhoods, or
windows (Prasad, 2000). However, the window size can be difficult to choose, since large windows result
in overly smooth flow fields, while small windows give wrong matches, especially on noisy low-light im-
ages. Furthermore, such algorithm requires a sufficiently high density of particles, which cannot always be
satisfied in various flow scenarios, especially in 3D measurements. Moreover, the cross-correlation based
framework does not easily support adding extra physical constraints, such as divergence free flows in the
case of incompressible fluids.

An alternative method is adopted from the computer vision community, which solves a variational “op-
tical flow” problem (corresponding to 2D digital image correlation), by finding the correspondence between
two successive particle distribution fields. Liu et al. (Liu and Shen, 2008; Liu et al., 2015) first studied the
connections between the optical flow and the fluid flow. Horn-Schunck algorithm is the most widely used
global variational optical flow method, which assumes the brightness constancy between successive images
and the smoothness of the flow vectors in spatial domain. Instead of assuming photo-consistency of 2D
image intensities (the brightness constancy constraint does not hold, since the color of particles will change
when they traverse different depth levels in axial direction), our 3D version of Horn-Schunck assumes a
consistency on particle distribution fields p (see fourth term of Eq. (1)). In this way, the particle presence
consistency term ties the particle and velocity reconstruction together into a joint optimization problem.

The described framework is also amenable to easily incorporating physical priors such as incompress-
ibility of the fluid. In this work, we consider the fluids to be incompressible and nonviscous. One essential
physical property for the incompressible fluids is mass conservation, which indicates zero divergence of
the flow vectors. Additionally, the incompressible Navier-Stokes equation describes the time evolution of
the fluid flows. These two physical priors account for the last two terms of Eq. (1). ΠCDIV is the opera-
tion to project arbitrary flow vector fields onto a space of divergence-free velocity field, ut+1(ut,−∆t) and
ut−1(ut−1,∆t) approximate the time evolution of the flow vector fields backward and forward, respectively.
Notice that we are not using the Navier-Stokes equations to compute the flows, but they are performed as
regularization terms in the optimization problem (a variant of Horn-Schunck algorithm).

3.3 Depth Super-Resolution
The precedent RainbowPIV only delivers a limited and fixed depth levels because of the relatively low
camera sensitivity to the wavelength change. This low depth resolution greatly limits its usage in many flow
scenarios. The number of depth levels is dependent on the number of PSFs (each depth level has an unique
PSF). In this work, we show that it is feasible to increase the number of PSFs by using a simple linear
interpolation to generate in-between PSFs. We claim that the PSFs are not change linearly with respect to
wavelength, while it is fair to assume that within a short wavelength range, the PSFs exhibit a linear change
in approximation. It is worthy to point out that this super-depth strategy is not aiming to precisely locate the
particles at particular depth level, otherwise, prompting to generate super-depth particle distribution fields
with respect to the altered PSFs. With this simple digital adaptation (no hardware adjustment), we are able
to reconstruct the flow vectors with super-resolved depth resolution. The accuracy of the reconstructed flow
vectors in this fashion will be experimentally validated in the following.

4 Experimental Results

4.1 RainbowPIV and Tomo-PIV
A direct comparison of the RainbowPIV and Tomo-PIV is conducted under the simultaneous measurements.
The depth of the measurement volume relies on the generated rainbow size. In the experiment, we work on
a 25 mm rainbow with wavelength ranging from 480 nm to 680 nm (the rainbow size is easily adjustable
by changing the distance of the employed two gratings). The size of the x-y plane observed by the camera
is 50 mm× 35 mm. The effective resolution of the captured RainbowPIV images is 1600× 1120. We
downsample the images by a factor of 8 in both dimensions (no further image preprocessing required),
resulting in 200×140 images, and each particle occupies roughly 3×3 pixels. The particle seeding density
is roughly 0.05 ppp (particle per pixel). The depth dimension is discretized into 100 levels in order to
get regular voxel, where the PSFs of 20 levels (1.25 mm per level) are obtained by calibration, and the
intermediate PSFs are digitally generated by linear interpolation based on the calibrated neighbor PSFs.
Therefore, the reconstruction grid size is 200×140×100. The pixel voxel ratio is 1:1:1 and the resolution
for each voxel is approximately 0.25 mm×0.25 mm×0.25 mm. One vector per voxel will be generated by
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Figure 2: The captured RainbowPIV image with ppp = 0.005 (a), ppp = 0.015 (b) and ppp = 0.05 (c), respec-
tively. Notice that with the employment of the specifically designed DOE, different colored particles have
similar level of focus with the maximum aperture (f/1.8), even though they have different object distance.

the proposed algorithm, therefore, the reconstructed velocity field has the same dimension size and spatial
resolution as the grids.

For the Tomo-PIV, a 1120× 780× 560 particle intensity field is reconstructed by MART method, fol-
lowed by a multi-pass cross-correlation with reduced interrogation window size and 75% overlap. The
reconstructed velocity field has the size of 50× 35× 25, resulting in a vector spatial resolution of 1 mm×
1 mm×1 mm. All of the utilized algorithms are built in the LaVision Davis software.

A qualitative comparison of the reconstructed velocity fields for the introduced vortex ring at one time
step is presented in Fig. 3. Two sliced views (one is perpendicular and the other is parallel to the image
plane) of the reconstructed flow vectors and the color-coded vorticity magnitude are visualized. The overall
flow structure obtained by RainbowPIV agrees well with that computed by Tomo-PIV, nevertheless, with
multiple perspectives, Tomo-PIV has higher depth resolving capability than the proposed single view ap-
proach. We can observe that the reconstructed flow vectors from RainbowPIV in the depth direction exhibits
to be more noisy compared with the flows in the image plane. As discussed in Sec. 3.3, on account of rel-
atively lower sensitivity of the camera to the wavelength change, the camera is less sensitive to the particle
motions in the axial direction than in-plane motions. Quantitative comparisons between Tomo-PIV and
RainbowPIV show an average difference of about 0.05 m/s for flow vector components in x-y plane and
0.1 m/s for vector component in z direction with the maximum flow magnitude at 0.53 m/s. The uncertainty
of the reconstructed axial flows are roughly twice that of the lateral flows. In comparison, in the original
RainbowPIV work (Xiong et al., 2017), the axial uncertainty was roughly at six times the lateral uncertainty
for an even narrower rainbow illumination, which confirms a dramatic axial resolution improvement.

Additional comparison is conducted by visualizing the isosurface of the velocity magnitude, as is shown
in the top of Fig. 4. The figures reveal the high similarity of the core structures reconstructed by these two
measurement technologies. We further verify the mass conservation properties of the reconstructed flow
fields which should be complied with the physical property. The divergence of the computed flows is shown
in the bottom of Fig. 4. Zero divergence is expected everywhere for incompressible fluids. This property is
explicitly enforced by our reconstruction method, whereas the flow field from Tomo-PIV do not obey this
physical property. This result demonstrates that, despite the overall high quality and detail of the Tomo-PIV
solution, it can in fact not be considered a ground-truth solution.

4.2 Low Particle Seeding Density
Next, we evaluate the RainbowPIV system at low particle density situations, which are far below the desired
particle density of Tomo-PIV. The correlation-based algorithms applied in Tomo-PIV require sufficiently
dense seeding particles to extract accurate flow fields, and usually exhibits poor performance at low particle
densities. The presented variant of optical flow method, however, eases the issue by exploiting a local
constraint (particle presence consistency) which ensures that at those regions with present particles, the
reconstructed local flow vectors match with the practical particle motion, and two global constraints (global
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Figure 3: (a)-(b): Reconstructed flow vectors and vorticity magnitude by RainbowPIV; (c)-(d): Recon-
structed flow vectors and vorticity magnitude by Tomo-PIV. The length of the arrow indicates the magnitude
of the flow vectors. All the plots are in the same length scale.

smoothness constraint and temporal coherence) transmitting the accurate local flow vectors to the regions
without particle presence. Moreover, the physical properties are always satisfied regardless of the particle
density.

The tested particle seeding densities are roughly at 0.005 and 0.015 ppp, the captured images for which
are shown in Fig. 2. The reconstructed flow vectors and vorticity magnitude are also visualized in Fig. 5,
which demonstrates that RainbowPIV successfully captures the expected flow structures for the vortex ring
at various low density levels. Owing to both of the local and the global constraints, the proposed method
delivers decent results at rather low particle densities, under which conditions Tomo-PIV performs poorly.
As a result, we believe that RainbowPIV can also be very competitive in experiments where uniform particle
seeding is difficult or impossible.
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Figure 4: Isosurface visualization for the velocity fields computed from RainbowPIV (a) and Tomo-PIV (b);
The divergence of the velocity fields (∇ ·u) by RainbowPIV (c) and Tomo-PIV (d).

5 Conclusion
In this paper, we have proposed a depth super-resolved RainbowPIV system which overcomes the limita-
tion of axial resolution existed in precedent RainbowPIV system. A comprehensive study has been con-
ducted for comparing the RainbowPIV with well developed four-camera Tomo-PIV using a simultaneous
measurement setup. Both qualitative and quantitative results demonstrates a good agreement achieved by
these two systems. Beyond the velocity consistency, owing to the physical-constrained velocity estimation
model, RainbowPIV delivers divergence-free velocity fields for the measured incompressible fluids, whereas
Tomo-PIV fails. In addition to that, with the employment of both local and global constraints, RainbowPIV
successfully reconstructs velocity fields in rather low particle densities, which is restricted in Tomo-PIV.
All the observations confirms the potential usage of RainbowPIV in 3D volumetric velocity measurements,
specially in applications with limited optical access and low or non-uniform particle densities.
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Figure 5: Reconstructed flow vectors and vorticity magnitude by RainbowPIV at ppp=0.005 (c)-(d) and
ppp=0.015 (a)-(b).
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