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Abstract
We present a new multiframe cross-correlation (Lucas-Kanade based) algorithm for time-resolved PIV. This
algorithm leverages time coherence in image sequences by decomposing the temporal dependency of motion
on an arbitrarily chosen trajectory basis. We propose to learn this basis from the data by performing a
Principal Component Analysis on trajectories sampled from the studied sequence. We show on simulated
data that such an approach can outperform the polynomial models classically used in multiframe PIV.

1 Introduction
Compared to classical particle image velocimetry, time-resolved PIV (TR-PIV) allows to characterize the
time evolution of unsteady phenomena instead of their instantaneous and mean properties. However, as
sensors and laser sources work at higher rates, it leads to a reduced signal-to-noise ratio. To deal with this
issue, one can exploit the temporal coherence in a multiframe estimation approach. Furthermore, multiframe
motion estimation allows computing short trajectories, instead of two-frame displacements. Thus, other
quantities than instantaneous velocity can be evaluated such as fluid acceleration.

FTC of Lynch and Scarano (2013), FTEE of Jeon et al. (2014), and the LKFT approach, Yegavian et al.
(2016), perform multiframe estimation for PIV assuming a polynomial time dependency. Thanks to this
polynomial model, multiframe estimation gains robustness against the noise. It can be seen in the figure 1
which compares the errors on the estimated displacement fields with LKFT or with the two-frame algorithm
FOLKI, Champagnat et al. (2011). Nevertheless, LKFT presents localized errors which, as we will see later,
appear in regions where the polynomial model is not perfectly adapted to the movement. Here we propose
to investigate the use of more precise motion models derived from the data.

For instance, in the context of computer vision, Garg et al. (2010) proposed to use principal component
analysis (PCA, known as POD for Proper Orthogonal Decomposition in the fluid mechanics’ community) to
derive trajectory models adapted to a given video sequence. More generally, the current trend of data-based
approaches motivates the development of generic multiframe motion estimation methods able to exploit a
learned basis of trajectories. In this purpose, we elaborate on ideas of Champagnat et al. (2011); Yegavian
et al. (2016) and derive an efficient algorithm to estimate the coefficients of the decomposition of fluid
trajectories on an arbitrary basis by window-based cross-correlation analysis.

We present a first application of this algorithm on a PCA-learned basis of trajectory models. Compared
to Garg et al. (2010), our estimation is based on a Lucas-Kanade algorithm instead of a variational approach.
The former is more adapted to the noise level encountered in PIV application, and also leads to faster
implementation.

2 Previous work
FOLKI is a Lucas-Kanade algorithm first been published for computer vision applications, Le Besnerais
and Champagnat (2005), and applied later to the context of PIV, Champagnat et al. (2011). The Lucas-
Kanade Fluid Trajectories (LKFT) approach, Yegavian et al. (2016), extended some ideas of FOLKI to the
multiframe motion estimation for time-resolved PIV. LKFT assumes a polynomial formulation of the motion
and directly estimates the coefficients by cross-correlation analysis on an interrogation window. Yegavian
et al. (2016) showed in particular that temporal modelling improves the robustness to noise of LKFT. Such
gain had been observed in previous references. FTEE of Jeon et al. (2014) also assumes a polynomial time



Figure 1: Error on the cross-stream displacement fields estimated by two-frame PIV, Champagnat et al.
(2011) and multiframe estimation with LKFT’s polynomial approach, Yegavian et al. (2016), both with an
interrogation window of 33×33 pixels. Estimation realized on the simulated sequence presented below in
section 4.1, degraded by an additive Gaussian noise with a level of 4 %. LKFT was runned with a polynomial
degree of 3 on a sequence of 8 images.

dependency but uses a different method to estimate the coefficients. Fluid Trajectory Correlation (FTC) of
Lynch and Scarano (2013) tracks independent fluid elements over multiple image-pairs and then applies a
polynomial fit to each estimated trajectory.

In the computer vision community, it has been shown by Tomasi and Kanade (1992) that the image
motion of a rigid scene could be described in a very low-dimensional linear subspace. Irani (2002) used
this idea to compute a motion basis to constrain the multiframe optical flow estimation for a rigid motion,
and Garg et al. (2010) extended this principle to the non-rigid case using PCA. PCA has also been used to
learn a motion basis in Black et al. (1997); Wulff and Black (2015) but their basis vectors represent spatial
dependency whereas Garg et al. (2010); Yegavian et al. (2016) model time dependency.

In fluid mechanics, PCA (or POD) is used under to estimate spatial motion models. POD on spatiotem-
poral patches is studied in Stapf and Garbe (2014). In contrast, we focus here on learning temporal motion
models.

3 Approach

3.1 A generic multiframe motion algorithm
In Champagnat et al. (2011), the displacement field between two frames is estimated, at each pixel location
k, by minimizing the sum over an interrogation window W of squared differences between image intensi-
ties. In a multiframe context, Yegavian et al. (2016) chose a reference frame Ire f among the N considered
consecutive images, and defined a multiframe criterion as the sum of the two-frame criteria for every image
pair involving the reference image:

N

å
n=1

å
k′

W (k− k′)(Ire f (k′)− In(k′+ u(k; tn)))
2 (1)

LKFT reduces the number of indeterminates by approximating the time dependency of motion as a polyno-
mial model. Here we consider a generalization of this approach where the motion is projected on some basis
of temporal models. To be more specific: each component (horizontal u and vertical v) of the displacement
is written as a linear combination of temporal models, ei and hi, which are vectors of RN , N being the length



of the sequence:
u(k;tn) = å d

i= 1q(u)
k;i ei [n]

v(k;tn) = å d
i= 1q(v)

k;i hi [n]
(2)

the temporal models are polynomial (ie.ei [n] = hi [n] = t i
n) in LKFT (Yegavian et al., 2016), or are learned

on motion trajectory sample in our new method. As a result, for each pixelk of the reference image, instead
of estimating the displacement at every time-step, a small set of 2d coef�cients qk;i describes the whole
trajectory passing over the pixel's location at the reference time instant.

The 2d coef�cients are estimated by iterative minimization of the multiframe cost function (1). At
each iteration, (2) is approximated by a linear least-squares criterion and its optimization is reduced to the
resolution of a 2d� 2d linear system for each pixel. In our approach, the �rst order expansion of (1) follows
the inverse form of FOLKI described in Champagnat et al. (2011). As shown in the appendix below (in the
caseei = hi), we take advantage of a space-time separability property to propose a very ef�cient two-step
resolution: ad� d-matrix inversion made once at the beginning (for all pixels, time-steps and iterations) and
a 2� 2-matrix inversion at each pixel and each iteration. Note that, although this has not been demonstrated
in the appendix because of the lengthy mathematical developments, this new algorithm can handle two
different bases for the horizontal and vertical components of the motion �eld.

Our formulation includes the LKFT paradigm. Indeed, using a polynomial model leads to results identi-
cal to the initial implementation of LKFT as described in Yegavian et al. (2016), but with a drastic reduction
of the computational time and memory usage. However, the genericity of this algorithm, as it can work with
any trajectory basis, makes it possible to use temporal models learned from the data.

3.2 Learning a motion basis from the data

The proposed algorithm offers the possibility to regularize motion estimation with a data-driven model: a
new specialized basis of temporal models can be used for every new image sequence.

To build a basis adapted to the data, we use PCA on a set of trajectories representative of the studied
sequence. Representative trajectories could be estimated from the image sequence in a preprocessing step by
particle tracking velocimetry methods, or be extracted from a simulation corresponding to the experimental
scenario at hand. We gather such trajectories in a large data matrix and apply a singular-value decomposition.
The selected motion basis is made of the vectors related to the highest singular values. The rank of the basis
can be set manually or chosen automatically by thresholding the cumulated energy of singular values.

Two different learning processes are proposed here. In the �rst one, a PCA is applied to temporal
samples of the horizontal and vertical displacements taken indifferently together. This approach leads to a
single basis for both components –ei = hi in Eq. (2) – and is called ”isotropic PCA” in the following. In the
second one, horizontal and vertical samples are separated, and two PCAs are done independently on each
set. Two different bases are obtained, each specialized for one component. This second process is called
”asymmetric PCA” in the following.

4 Experiments

Temporal modelling allows reducing the number of estimated coef�cients with respect to the classical PIV
processing of each pair of consecutive images. This not only reduces computational time but also increases
robustness to noise thanks to temporal redundancy. However, the estimation quality depends on the choice
of the model: a trajectory stepping out of the model cannot be well estimated. The aim is to provide new
trade-offs between noise and model errors.

Through different simulated experiments, we have compared the estimations given by our new generic
algorithm with different basis choices:

• a polynomial basis, leading to the same result than LKFT

• a basis shared by both horizontal and vertical components estimated by the isotropic PCA process.

• two different bases, one for each component, estimated by the asymmetric PCA process.

To focus on the ability of these models to adapt to a complex motion sequence, we compute the PCA on the
best data-suited trajectories we can hope for by using a subset of the simulated trajectories.



Figure 2: Streamwise and cross-stream components of the ground truth instantaneous displacement at the
central time-step.

The estimated multiframe motion �elds are 3D-tensors which provide for each spatial location, given
by the pixel grid of the reference image, the trajectory on the whole given sequence. In all the following
experiments the reference image is at the center of the sequence (for instance, for a sequence of 5 or 6
images, the reference frame is the third one). On the one hand, the result can be evaluated in the whole
spatial �eld at one speci�c time-step: for the �rst time-step following the reference image this corresponds
to an instantaneous velocity, it can be compared with other PIV results. In Sec. 4.2 we study instantaneous
spatial �elds of multiframe methods, a comparison with the two-frame FOLKI algorithm of (Champagnat
et al., 2011) using the same interrogation window size is displayed in Fig. 1. On the other hand, by selecting
a particular spatial location, the whole estimated trajectory can be studied, as proposed in Sec. 4.4.

4.1 Testing sequence

In the following experiments, we use the velocity �eld in the wake of a �apping foil at Reynolds number
250, obtained by direct numerical simulation, Jallas et al. (2017). The streamwise and cross-stream compo-
nents of the instantaneous displacement at the central time-step are shown on �gure 2. Using these simulated
velocity �elds, we compute trajectories and generate a particle image sequence on which the PIV methods
are tested. The particles are Gaussian-shaped with a standard deviation of 0.4 pixels. To evaluate robust-
ness to noise, an additive Gaussian noise is added to the sequence for some of the following experiments.
To represent a time-resolved PIV context, this sequence is temporally well sampled, leading to interframe
displacements of the order of one pixel. Working on such simulated data makes it possible to derive quan-
titative comparison metrics with regard to the ground truth motion. We use the ”endpoint error” de�ned as
the norm of the difference between the estimated vector and the ground truth vector for each pixel location.

4.2 Instantaneous motion �eld: spatial analysis

In this section, we study the errors on the instantaneous displacement �eld at the time-step following the
reference frame. We �rst compare the potential of the PCA decomposition to the polynomial model, by
computing the projection error of the simulated known motion �eld of 2 on both bases. The projection error
is the endpoint error between the ground truth �eld and its projection on the considered basis (polynomial or
obtained by PCA). By doing so, it can be determined to what extent the different models are adapted to the
studied motion. All trajectories are projected on the PCA basis on the one hand, and on the polynomial basis
on the other. We consider 8 time-steps, an order 3 polynomial model and a PCA basis made of 3 vectors.
According to the projection error displayed in �gure 3 (upper line), the PCA leads to a better approximation
in regions with high motion gradients.



We also present results of multiframe PIV processing of the generated sequence of images introduced
before. Error �elds on the cross-stream displacement are shown on the lower line of Figure 3. LKFT with
an order 3 polynomial is compared to the proposed PCA-based multiframe estimation with 3 vectors; both
methods use a 33� 33 interrogation windows and on the same sequence of 8 images. These parameter
choices are justi�ed in the parametric study in section 4.3. We use a noise level of 4 % of the maximal
intensity. The localized model errors seen on the projected �eld (upper line) match the ones found on the
estimated �eld, and are also slightly higher with the polynomial basis. Thus, the basis learned by PCA
appears better suited to the studied motion, and its use in the whole dense motion estimation process leads
to better results than the polynomial basis. We did not present the results for the ”asymmetric PCA”, because
they are very similar to those obtained with the ”isotropic PCA”.

The multiframe paradigm can be compared to classical two-frame PIV on �gure 1 and 4. Figure 1 shows
that unlike the two-frame estimation which is globally noisy, the multiframe one is well regularized except
in some areas where the error is higher because the local motion steps out of the chosen model. Figure 4
enlights that when the noise level increases, the error of the two-frame method increases faster than the error
of the multiframe algorithms. Multiframe estimation is more robust to noise. However, for low noise levels,
the two-frame estimation error is lower than the multiframe one in the areas of high bias.

To estimate an instantaneous motion �eld, multiframe approaches appear more robust to noise but also
exhibit localized errors in the high-gradient regions, where the model is not fully suited to the motion. In
these regions, the learned PCA basis allows a reduction of the bias compared to the polynomial approach.

4.3 Parametric study

For LKFT as for our new algorithm, some parameters can be tuned :

• The radius of the interrogation window (a radius of 16 means an interrogation window of size 33� 33).

• The numberN of consecutive images considered for the estimation.

• The numberd of vectors (temporal models) in the basis. For LKFT it corresponds to the polynomial
degree.

For the problem to be well-de�ned,N has to be greater thand. By plotting the averaged endpoint error in
the instantaneous �eld at the center of the sequence, as a function of these parameters, we determine their
in�uence on the estimation quality.

The in�uence of the size of the interrogation window is shown on �gure 5. As the window gets bigger,
the error of every tested method decreases sharply, reaches an optimum and then increases slowly. If the
window is too small the problem is not well-conditionned, if it is too big the estimation fails to capture
�ne details. The optimum of the multiframe methods varies with the dimensiond of the basis: a small
number of temporal models means a stronger temporal regularisation which can compensate a lack of spatial
regularisation due to a smaller window. The two-frame method error is always higher, and the gap with the
multiframe approaches is larger for small windows. In our case, a 33� 33 window is a good choice for both
d = 2 andd = 3.

Figure 6 shows the in�uence of the length of the sequence. The two-frame PIV error level is given for
comparison but, of course, does not depend on the sequence length. By increasing the number of frames, one
can hope a growing robustness to noise and a lower estimation error. This is true if the numberd of temporal
models in the basis is high enough to capture the complexity of the motion. As this complexity generally
grows when raising the sequence length, using many frames implies to increase the rank of the basis to limit
the bias error. This can be seen on �gure 6: with two temporal models, the multiframe methods are better
than the two-frame's only for short sequences (4 or 5 frames), and then the error radically increases; longer
sequences can be used with 3 models, until 8 or 10 frames before the error goes up.

Finally, note that in almost all these experiments, PCA models lead to lower or equivalent errors than
the polynomial model, with a slight advantage for the asymmetric PCA model.

4.4 Trajectories: temporal analysis

Multiframe paradigm also gives the possibility to consider the trajectories over the whole sequence, some
are presented on �gure 7. For this evaluation, we consider a longer sequence, with 25 frames, 3 temporal
models and no added noise on the image sequence. We focus on two different areas of the �eld (underlined
by a white square in Fig. 3): the �rst one exhibit high motion gradients, the second one has smoother



Figure 3: Error (in pixels) on the cross-stream component of the instantaneous displacement at the central
time-step. First row: projection error on the polynomial (left) and PCA (right) bases. Second row: error on
the displacement �elds estimated by multiframe estimations with LKFT's polynomial approach (left) and
the proposed algorithm using an ”isotropic PCA” basis (right), both with an interrogation window of 33� 33
pixels. A sequence of 8 images was used, LKFT was tuned with a polynomial degree of 3, and the PCA
basis was composed of 3 vectors. A Gaussian noise with a level of 4 % was added to the images.
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