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Abstract 

Extracorporeal Membrane Oxygenation (ECMO) is a life support technology used for patients with 
heart and lung failure by oxygenating the blood outside the body. The veno-arterial configuration is 
routinely used for providing both respiratory and hemodynamic support by delivering oxygenated 
blood through arteries and draining deoxygenated blood from the veins. However, the choice of the 
ECMO parameters, or the tradeoff between maintaining sufficient end-organ perfusion and reducing 
the afterload of the native left ventricle, is challenging without a non-invasive monitoring approach 
of the hemodynamics. Therefore, the current study applies PIV and PTV to determine the time-
resolved velocity field from contrast-enhanced (micro-bubble seeded) ultrasonographic images in 
order to study the interaction between the cardiac flow of a severely injured pig’s heart and the flow 
induced by an external ECMO machine. The measurements focus on the pig’s aortic root, where the 
external ECMO flow impinges directly on the cardiac outflow. Prior to PIV/PTV analysis, image 
processing including blind deconvolution, and local background removal is performed to overcome 
the undesirable blur and to segment the bubble traces. In addition, active contouring is applied to 
define the boundaries of the aorta and the moving aortic valves. Phase-averaged vorticity field and 
velocity-time integral are presented to help estimate the transitional point, which is the divide 
between well-oxygenated ECMO flow and oxygen deficient cardiac flow, and the cardiac functions. 
The results suggest that for the present conditions, an ECMO flow rate of 3 L/min is optimal, under 
which the transitional point is located 0.8-1cm downstream the sinotubular junction, with a 
maximum cardiac ejection speed of 14 cm/s.  
 

1 Introduction 

Extracorporeal Membrane Oxygenation (ECMO) is a technology that can pump and oxygenate a 

patient’s blood outside the body. There are two typical ECMO configurations: veno-venous (VV) and 

veno-arterial (VA). VV ECMO recovers respiratory function by draining blood from the vena cava or 

right atrium and returning to the right atrium (Makdisi et al. 2015), and VA ECMO provides both 

respiratory and hemodynamic support by draining blood through the venous system and returning 

through artery system (Pavlushkov et al. 2017). Therefore, VA-ECMO is often used as a salvage 
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therapy for patients with cardiogenic shock by offloading injured myocardium and thus favoring 

recovery (Lawler et al. 2015).  

However, deciding optimal ECMO parameters, which involves the tradeoff between maintaining 

sufficient end-organ perfusion and allowing for myocardial recovery, is challenging. Because in the 

VA ECMO layout, the arterial cannulation delivers retrograde flow against the cardiac outflow, as 

illustrated in Figure 1. Therefore, higher ECMO flow, which is favorable for adequate perfusion, may 

increase the afterload against which the native left ventricle (LV) must eject and result in greater 

stroke work and myocardial demand (Ostadal et al. 2015), preventing cardiac tissues from recovery. 

Monitoring hemodynamic changes using pressure catheters can help with deciding the right ECMO 

parameters. However, extra surgery is needed, and additional pain is caused on the patient during 

catheterization. Therefore, a reliable non-invasive test for identifying hemodynamic conditions 

associated with the myocardial recovery is required. The present study applies an integrated 

multiparameter echo PIV/PTV procedure (Sampath et al. 2018) to monitor the time-resolved 

cardiac flow field with various levels of ECMO flow rates. The echo-PIV was first introduced by Kim 

et al. (2003) for medical analysis, it has then been applied successfully to analyze abnormal LV flows 

over the last decade (Abe et al. 2013; Agati et al. 2014; Faludi et al. 2010; Sampath et al. 2018). 

Evolving from the optical PIV, echo-PIV uses ultrasonography for flow measurements in sample 

volumes without optical access. Contrast agents are administered intravenously as tracers. Typical 

contrast agents are lipid encapsulated perflutren microspheres with diameters ranging from 1-

10μm that generate strong echo signals when excited at resonant frequencies.  

In the previously successful applications of echo PIV in the human’s LV, the regions of imaging are 

close enough to the ultrasound probe to maintain a satisfactory signal to noise ratio. In contrast, the 

current study focuses on the flow in the aortic root (AR) of a pig model. Since the orientation and 

depth of the pig’s heart are different from those of human’s, and the AR is sheltered by other 

ventricles, conventional Transthoracic Phased Array probes (TTE) are not suitable for the current 

study. Instead, a Transesophageal (TEE) Phased Array probe is applied for a closer look at the AR by 

performing observations through the pig’s esophagus. Additional blind deconvolution (Pan et al. 

2014) and local background removal procedures are introduced for deblurring the image and 

segmenting traces with spatiotemporal variant size and intensity distributions. Furthermore, an 

active contouring method is used to generate a specific mask for each phase in the cardiac cycle to 

accommodate the opening and closing motions of the aortic valve. The velocity field is calculated 

following the previous PIV/PTV procedure (Sampath et al. 2018) by choosing the optimized velocity 

vectors among those generated with varying enhancement parameters. The PIV measurements are 

then refined using the result by PTV and singular value decomposition (SVD) based interpolation. 

Phase-averaged vorticity distributions are used for demonstrating the changes to the flow field for 

varying ECMO flow rates, and for evaluating the transition point between well-oxygenated ECMO 

flow and oxygen deficient cardiac flow. The time integrals of velocity for each cardiac cycle as well 

as each minute are used for evaluating the cardiac function in response to different ECMO flows. 

Potentially, they could be used for choosing the optimal ECMO flow.  

2 Methods 

2.1 Experiment setup  
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Because of the similarities in cardiac output and blood circulation system, adult pigs (30±5 kg, 

cardiac output: 4L/min) are used as a model for human’s blood circulation system in the current 

study. After the anesthesia, peripheral veno-arterial ECMO (VA ECMO) cannulation is implemented. 

As sketched in Figure 1, the return cannula, which sends oxygenated blood to the ascending aorta, is 

cannulated through the left femoral artery, and the drainage cannula, which drains deoxygenated 

blood from vena cava, is cannulated through the right femoral vein. This configuration bypasses 

both the lung and the heart to provide both respiratory and circulatory support (Pavlushkov et al. 

2017). The other end of the drainage cannula is connected to a centrifugal pump which maintains 

the ECMO flow rate between 1.5L/min and 4L/min. The blood passes through an oxygenator and 

then flows back through the return cannula. Once VA ECMO cannulation is completed, a balloon is 

inserted in one of the left coronary arteries through the left femoral artery cannulation. The balloon 

is then inflated to cause ischemia in the muscles of the left ventricle. Depending on the extent of 

balloon inflation, a mild or a severe injury can be induced. The present study focuses on a severely 

injured model.   

The contrast echocardiography is performed using the GE Vivid-E9 system. Since the orientation 

and the depth of the pig’s heart are different from those of human’s, the 6VT-D Transesophageal 

(TEE) Phased Array probe is used for acquiring data. Comparing with the conventional clinical 

Transthoracic Phased Array probes (TTE), which are placed against the chest, the TEE probe is 

placed in the pig's esophagus (Figure 1) closer to the region of interest (ROI). The current study 

focuses on the aortic root (at the bottom of the ascending aorta), where the outflow from the left 

ventricle and the retrograde ECMO flow impinge on each other. The images are acquired under the 

Cardiac_E factory presetting with harmonic imaging, and the mechanical index (MI) is adjusted to be 

lower than 0.4. The ultrasound beam sector is narrowed and tilted to focus only on the aortic root. 

The scanning depth is also tuned to bring the ROI to about 2/3 of the total depth for an optimal view. 

Under these settings, the current system can achieve a frame rate of 147 fps. For seeding the flow, 

1.5ml of the contrast agent DefinityTM (Bristol-Myers Squibb Medical Imaging, North Billerica, MA, 

USA) is diluted with 40ml saline and agitated gently to avoid sedimentation. For each recording, 2 

ml of the solution is administered through the arterial cannula, and the cine loop is recorded for 15 

cardiac cycles. The recorded data are written in a DICOM (Digital Imaging and Communications in 

Medicine) format with lossless RLE compression. The following image analysis steps of the cine 

clips are performed using an in-house echo-PIV code written in MATLAB on a desktop computer.  

It is worth noting that routine contrast echocardiography is performed using the Contrast presetting, 

in which signals are acquired at a much lower overall MI.  Hence, only the bubble traces can be seen 

in the recorded images. However, the Contrast mode is not ideal for an echo PIV study for the 

following reasons: 1) the Contrast mode works at lower frame rates. For a similar view of the 

current study, the Cardiac_E mode data can be recorded at 147 fps (or even more), but the Contrast 

mode data can only be acquired at 77 fps. 2) The choice of ROI depends on being able to obtain clear 

images of the boundaries between different chambers in the heart, and they are not observable in 

the Contrast mode images. It is also worth noting that clinical settings tend to involve significant 

levels of time averaging, spatial smoothing, and speckle removal, significantly reducing the ability to 

track individual bubbles. Hence, it is necessary to turn off all the smoothing functions while 

acquiring data for echo-PIV. 
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Figure 1: (a) the ECMO machine connected to the pig’s heart and the location of the TEE probe for 

the present experiments, and (b) the sample area focusing on the LV and the ascending aorta.  

2.2 Image preprocessing  

 

Figure 2: Image processing procedures: (a) sample raw image, (b) image after blind deconvolution, 

(c) the spatially variant point spread functions, (d) sample trace intensity profile showing: left - 
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typically isolated traces; right - aggregated traces with various size and intensity distribution, and (e) 

image after enhancement.  

2.2.1 Blind deconvolution  

Several mechanisms affect ultrasound image quality. First, due to the considerable range of 

penetration depths and the varying layers of tissues between the ultrasound probe and the regions 

of interest (ROI), the ultrasound wave and its echo attenuate in different levels spatiotemporally, 

resulting in varying tracer intensities (Fig. 2(a)). For similar reasons, the noise caused by echoes 

from tissues or other traces is also prone to a non-uniform spatiotemporal distribution. Second, the 

curvilinear scanning mechanism of the ultrasound beams tends to produce increasingly elongated 

traces with increasing distance from the probe. Finally, the spatial distribution of the traces, which 

is determined by the blood circulation, is usually not uniform. Though less apparent in previous 

human subject LV studies because of the closer distance between the apex 4 chambers (A4C) view 

and the ultrasound probe (Abe et al. 2013), these issues are inevitable in the current measurements 

on the pig’s aortic root with more tissues to penetrate. As shown in Fig. 2(a), the traces, especially 

those at the bottom of the image, which are located farthest from the probe, have been deteriorated 

to a nearly uniform intensity distribution with obscure boundaries between them. Consequently, 

segmentation of individual traces required for the PIV/PTV procedure is hard and subject to 

inaccuracies. Therefore, additional image preprocessing is carried out for deblurring and denoising 

the current echo images. 

Since the diameters of the current traces are usually around 3μm (Goertz et al. 2007), which is 

lower than the spatial resolution of the imaging system, these tracers act as point scatterers with 

uniform peak intensity (Iuni) that appear being blurred differently in the image. The shape and the 

intensity of the blurred signals are affected by the local blurring kernels or the point spread 

functions (PSF). Therefore, the acquired raw image (Iraw) could be modeled as the convolution 

between the PSF and Iuni with additional noise:  

𝐼𝑟𝑎𝑤 = 𝑃𝑆𝐹⨂𝐼𝑢𝑛𝑖 + 𝑛 (1) 

The PSF is usually unknown. Viessmann et al. (2013) apply an in-vitro model with a thin wire to 

estimate the PSF of the echo images at a certain depth. This approach might not be sufficient for 

deblurring images recorded in clinical studies, where the PSF varies spatially because of the 

curvilinear scanning on a broad range of depth. Therefore, the current study applies the blind 

deconvolution algorithm proposed by Pan et al. (2014) to estimate the PSF. The PSF is evaluated by 

alternately and iteratively solving:  

𝑚𝑖𝑛(𝐼𝑢𝑛𝑖) ‖𝐼𝑢𝑛𝑖 ⊗ 𝑃𝑆𝐹 − 𝐼𝑟𝑎𝑤‖2
2 + 𝛽‖𝐼𝑢𝑛𝑖 − 𝑢‖2

2 + 𝜇‖∇𝐼𝑢𝑛𝑖 − 𝑔‖2
2 (2) 

𝑚𝑖𝑛(𝑢) 𝛽‖𝐼𝑢𝑛𝑖 − 𝑢‖2
2 + 𝜆𝜎‖𝑢‖0 (3) 

𝑚𝑖𝑛(𝑔) 𝜇‖∇𝐼𝑢𝑛𝑖 − 𝑔‖2
2 + 𝜆‖𝑔‖0 (4) 

and 

𝑚𝑖𝑛(𝑝𝑠𝑓) ‖∇𝐼𝑢𝑛𝑖 ⊗ 𝑃𝑆𝐹 − ∇𝐼𝑟𝑎𝑤‖2
2 + 𝛾‖𝑃𝑆𝐹‖2

2 (5) 
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In which, Υ, λ, and σ are the input weights. 𝑢 and 𝑔 are auxiliary variables corresponding to Iuni and 

∇Iuni. 𝛽 and 𝜇 are initiated with 2𝜆𝜎 and 2𝜆 accordingly and multiplied by 2 for each step until a 

prescribed limit. The choice of the blind deconvolution parameters in the current study follows the 

suggested values by Pan et al. (2014). Using search windows containing 5 to 10 traces in searching 

steps of half the window width, the process is carried out separately for each window. Twenty 

random images are selected for PSF estimation, and the results are averaged and subsequently used 

as the PSF for deblurring the rest of the images. The PSFs obtained at different locations for the 

present data are shown in Fig. 2(c). As is evident (and expected), with increasing distance from the 

ultrasound probe, the peak intensity decreases, and traces become more stretched and blurred. 

Using these PSFs and applying a deconvolution algorithm (Whyte et al. 2014) with saturation 

suppression result in the deblurred image (Ideconv) shown in Fig. 2(b). The intensity peaks in the 

center of each trace are more prominent, and the boundaries between adjacent traces are much 

clearer, facilitating the following image enhancement procedures.  

2.2.2 Image enhancement  

The purpose of the image enhancement is to separate the traces from the noisy background as well 

as remove other objects, such as aortic valve leaflets, walls of the ascending aorta, and other tissues. 

These tissues appear as large patterns, which are either stagnant or located at similar places at the 

same phase for each cardiac cycle. Therefore, as a first step, a phase is assigned to each image based 

on the Electrocardiogram (ECG). The peak of the P wave, which is conventionally defined as the 

beginning phase of the cardiac cycle, is hard to track on the ECG signal shown on the echo images. 

Hence the current study uses the peak of the R wave as the beginning phase of the cardiac cycle. The 

average (Iph) and the standard deviation (σph) of all the Ideconv at each phase are calculated to estimate 

the background and location of the tissues. For each phase, a threshold Tσ for σph is computed using 

Otsu’s thresholding method (Otsu 1979) to identify the slowly moving or stagnant regions for each 

phase, which usually correspond to tissues. The pixels whose σph (i, j) is smaller than 0.2Tσ are first 

removed, and Iph is then subtracted from Ideconv for each phase. After the background subtraction, the 

noise is mostly removed, but the images are still not ready for the PIV/PTV procedure for two 

reasons: 1) the aggregated traces are not sufficiently separated, as sketched in Fig. 2(d), and 2) the 

signatures of the tissues are not entirely removed as their intensities vary over time.  

To address the first problem, additional local background subtraction is performed. After the phase-

average-subtraction, the remainder image (Isub) features a non-uniform spatial distribution of trace 

intensity and size, and a lower noise level. Simply imposing a universal threshold to separate 

aggregated traces may also remove dim isolated traces. Therefore, the background removal is 

carried out locally. Six 2D moving average operators (Fave) with window sizes ranging from 0.5Dtrace 

to 2Dtrace are applied to the Isub, where Dtrace is the estimated trace diameter. Using a range of filter 

sizes is aimed at accommodating varying trace sizes across the image. This filtering procedure 

produces six different filtered images (Ifilt). As demonstrated in Fig. 2(d), the minimum value at each 

pixel among these six values of Ifilt is the estimated local background. By subtracting this estimated 

local background, the aggregated traces can then be segmented by applying a universal threshold 

(Fig. 2(d)). 

For the second problem, an active contour approach (Chan et al. 2001) is utilized to generate a 

different mask for each phase automatically. This algorithm is designed to segment the input image 
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into disconnected foreground and background of low intra-region variance, which are separated by 

a smooth closed contour (Maska et al. 2013). The algorithm solves the minimization problem of a 

morphology regularized energy function by re-expressing it using a level set formulation (Osher et 

al. 1988), and then obtaining the steady-state solution of the associated Euler-Lagrange equation 

iteratively. The entire process is illustrated in Figure 3.  Since the solution of this algorithm tends to 

converge on the sharp local edge or corner features, the current study first stretches the contrast of 

each Iph using: 

𝑆𝑝ℎ =
1

1 + (
𝐼𝑝ℎ
̅̅ ̅̅

𝐼𝑝ℎ
)

5  (6)
 

where Sph and Iph
̅̅ ̅  are the contrast-enhanced image and the average intensity of each Iph, respectively. 

The valve region is treated separately using a similar approach and integrated back into Sph, as 

shown in Fig. 3(b). Furthermore, a rough mask is generated manually based on the ensemble 

averaged image of Ideconv to confine the solution to the region of interest (Fig. 3(c)). For clarity, the 

boundary of the mask is marked in Figure 3 in yellow, inside which is the ROI of the current study. 

For the next step, an initial guess of the mask is created manually, and the same initial mask is 

applied to all the Iph (Fig. 3(d)). The active contour algorithm is then executed to generate a specific 

mask for each Iph. The current method allows using an initial mask in random sizes. To speed up the 

convergence, it is suggested to use a very close guess as the initial mask. As demonstrated in Fig. 

3(d-f), the contour gradually converges to the enhanced boundary features with iterations. For the 

current study, it usually takes 200 steps for the mask to converge.   

 

Figure 3: Active contouring procedures: (a) phase-averaged image showing the aortic valve leaflets 

and the walls of the ascending aorta that need to be masked out, (b) image after intensity stretching 

and valve specific enhancement, (c) the rough mask (yellow curve) generated manually using the 

ensemble-averaged image and applied to (b), (d) initial guess for the active contour algorithm 
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(yellow rectangular), (e) mask produced after 80 iterations (yellow curve), and (f) final mask 

created after 200 steps iterations (yellow curve).   

The local background removal and phase-specific masking are applied to every Ideconv. Then, taking 

advantage of the intensity peaks in the center of traces and steep gradient along their boundaries, 

intensity and gradient thresholds, followed by a modified histogram equalization (MHE)(Roth et al. 

2001), are imposed to enhance the remaining traces, obtaining the image shown in Fig. 2(e). The 

choices for the intensity, gradient, and MHE thresholds follow the previous work described in 

Sampath et al. (2018). 

The PIV analysis is performed following the procedures described by Sampath et al. (2018). The 

parameters for PIV computation, namely correlation threshold, allowed variation between 

neighboring vectors, and window size, are hard to preselect due to the nonuniform trace density. 

Hence, a parameter space, which includes both the image enhancement and PIV parameters, is 

created. Standard correlation-based analysis performed for each parametric combination resulting 

in a corresponding velocity distribution. Subsequently, an optimization procedure, which includes 

outlier removal and smoothing, is applied to select the correct vector among the different 

parametric combinations. It is followed by a super-resolution PIV procedure (Keane et al. 1995), 

which is based on particle tracking and guided by the optimized PIV data. In searching for the 

correct candidates, a series of properties including deviation from the expected locations, 

percentage change in the area and perimeter, data continuity and peak cross-correlation values are 

imposed. Then, singular value decomposition (SVD) (Sheng et al. 2008) is used for interpolating the 

PTV data onto a regular grid, and integrating it with the PIV results. Details on these procedures are 

provided in Sampath et al. (2018). 

3 Sample Results 

 
Figure 4: Phase averaged vorticity (color contours) and velocity (arrows) for ECMO flows of 4.0 (top 

row), 3.5 (middle row), and 3.0 L/min (bottom row). Sample phases shown are: (a) peak of the R 

wave, the selected initial phase, (b) aortic valve opening, (c) intermediate phase of the ventricle 

systole, (d) aortic valve closing, (e) intermediate phase of ventricle diastole, and (f) peak of the P 

wave. 
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To maintain adequate perfusion for the current severely injured heart, the data acquisition is 

performed starting from high ECMO flow rates, 4.0 L/min. The flow rate is then carefully lowered in 

steps of 0.5L/min until it decreases to 1.5 L/min. Figure 4 shows sample contour plots of the phase-

averaged vorticity field for ECMO flows of 3.0, 3.5, and 4.0 L/min, each calculated based on data 

recorded over 10 cardiac cycles. Retrograde ECMO flows right before valve closing are observed for 

all three cases, as highlighted by the arrows in phase d. Before valve opening, as the ECMO flow 

keeps perfusing the ascending aorta, interactions with secondary flows remaining from the previous 

cardiac cycle result in the generation of a pair of counter-rotating vortices inside the sinus (phases e, 

f and a). The peak vorticity magnitude appears to increase with decreasing ECMO flow rate. Once 

the LV pressure (PLV) surpasses the aortic pressure (PAR), the aortic valve opens, and the LV flow 

forms a strong ejection (phases b-c), forcing the ECMO flow away from the valve. As the ECMO flow 

rate decreases from 4.0 to 3.0 L/min, the maximum ejection velocity increases from 12 to 14cm/s, 

and the location of maximum ejection speed in the sample area migrates 0.5cm downstream. These 

trends are consistent with the expected improvements to cardiac function with decreasing ECMO. 

As the aortic valve closes, there is an immediate reversal of the flow direction along the upper wall 

of the ascending aorta (phase d). This reverse flow generates an outwards flow along the lower wall 

of the aorta, and a region with positive vorticity 0.8-1cm downstream the sinotubular junction. 

Subsequently, the ECMO flow turns away from the valve (at least in the present plane), and a pair of 

counter-rotating vortices form immediately downstream of the valve, with the negative vortex 

located at the right bottom corner of the sinus. This pair stays at a similar location until the next 

cardiac outflow (Fig. 4(e-f)). In general, it appears that for ECMO flows above 3.0 L/min, the 

transition between this vortex pair and the ECMO backflow is located 0.8-1 cm downstream the 

sinotubular junction.  

 
Figure 5: (a) Right ventricle pressure signal indicating heart failure at 2.5 L/min, and (b) velocity-

time integral during systole per minute (VTI, left axis) and per stroke (VTIstroke, right axis). 

To evaluate the cardiac function as a function of ECMO flow rate for the current severely injured 

heart, we calculate the velocity-time integral across a cross-section located 1cm downstream the 

sinotubular junction and aligned nearly perpendicularly to the aortic walls by:  

𝑉𝑇𝐼𝑠𝑡𝑟𝑜𝑘𝑒 = ∑ 𝑣𝑜𝑢𝑡̅̅ ̅̅ ̅̅
𝑠𝑦𝑠𝑡𝑜𝑙𝑒

× Δ𝑡 (7) 

𝑉𝑇𝐼 = 𝐻𝑅 × 𝑉𝑇𝐼𝑠𝑡𝑟𝑜𝑘𝑒 (8)   
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Here, HR is the heart rate, Δ𝑡 is the time lag between phases, and 𝑣𝑜𝑢𝑡̅̅ ̅̅ ̅̅  denotes the cross-sectional 

average velocity, which is a surrogate for the cross-sectional flow rate. Although the locations of the 

views are consistent for all the cases, they are not precisely aligned to the center plane of the 

ascending aorta. Therefore, 𝑣𝑜𝑢𝑡̅̅ ̅̅ ̅̅  is used directly instead of multiplying it by an area estimated from 

the length of the sinotubular junction to avoid confusing the actual total output flow rate from the 

LV. Summing the values of  𝑣𝑜𝑢𝑡̅̅ ̅̅ ̅̅ × Δ𝑡 during systole per each cycle represents the cardiac output or 

the stroke volume per unit area of the aorta per cycle, which is noted as VTIstroke (right axis of Fig. 

5(b)). Multiplying VTIstroke with HR represents the overall cardiac output per unit area of the aorta 

and is noted by VTI (left axis of Fig. 5(b)). According to published pressure-volume loop simulation 

(Burkhoff et al. 2015), a healthy active hemodynamic response shows an increasing stroke volume 

as the ECMO flow decreases. The plot of VTIstroke vs. ECMO flow rates in Fig. 5(b) shows a similar 

trend, i.e., VTIstroke increases from 1.6 to 2.75 cm/beat when the ECMO flow decreases from 4.0 to 3.0 

L/min. This trend suggests that in that period, the ECMO flow is sufficient to maintain adequate 

perfusion of oxygenated blood in the coronary arteries, resulting in the expected response to the 

decreasing ECMO flow. However, there is a sharp drop in VTIstroke as the ECMO flow rate is decreased 

to 2.5 L/min or lower values. In this range, the heart no longer responds significantly to the 

variations in ECMO flow. Since the current heart is severely injured, we speculate that a 2.5 L/min 

ECMO flow cannot maintain adequate perfusion in the coronary arteries, causing heart failure. A 

support for this postulate is provided in Fig. 5(a), which shows the pressure in the right ventricle, 

and indicates a heart failure at 2.5 L/min. We have not measured the pressure in the left ventricle 

because the placement of the pressure catheter causes additional shadows to the echo images. 

Subsequently, as the ECMO flow is lowered to 1.5 L/min, the heart rate increases to maintain a VTI 

of 120 cm/min, compensating for the persistent decrease in VTIstroke. Based on this discussion, an 

ECMO flow rate of 3.0 L/min seems to be the minimum level required for maintaining adequate end-

organ perfusion for the current severe cardiac injury model.   

4 Conclusion 

The current study investigates the interaction between cardiac outflow from a severely injured pig’s 

heart with the backflow induced by VA ECMO support system. Our objective is introducing a 

methodology for using the measured flow structure and parameters derived from it to assess the 

optimal ECMO flow rate. Time-resolved echo PIV/PTV is performed to characterize the 

hemodynamic parameters of the flow inside the pig’s ascending aorta noninvasively. A series of new 

procedures are introduced to enhance the echo images prior to velocity calculations. First, a blind 

deconvolution approach is used to estimate the spatially varying point spread function and utilize it 

for deblurring the images. This step achieves more prominent intensity peaks in the center of traces 

and sharper boundaries between adjacent ones. Second, the spatiotemporal variant background is 

estimated and subtracted from each pixel by choosing the minimum intensity among images filtered 

spatially at different window sizes. Finally, an active and iterative contouring method is used for 

masking out undesired sections of images containing tissues and dynamic aortic valve. This process 

involves the automatic generation of specific masks for each phase of the cardiac cycle. The velocity 

distribution is computed using a previously developed integrated and optimized procedure 

encompassing image enhancement, PIV, and PTV. The phase-averaged velocity and vorticity 

distributions reveal the evolution of flow structure in the ascending aorta, as the ECMO flow 

interacts with the cardiac outflow. For flow rates above 3.0 L/min, the penetration of ECMO 
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backflow is observed shortly after the aortic valve closing. Subsequently, a counterrotating vortex 

pair forms in the sinus, with the transition to the backflow occurring 0.8-1cm downstream the 

sinotubular junction. When the ECMO flow rate decreases from 4.0 to 3.0 L/min, the maximum 

cardiac ejection velocity increases, and its location migrates downstream. Finally, surrogates for the 

cardiac output per cycle and overall flow rate are introduced. Both show a sharp decrease in cardiac 

function of the severely injured heart when the ECMO flow decreases below 3.0 L/min. Future 

studies will determine whether this observation could be generalized.  
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