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Abstract A thermodynamically consistent concept to model the strain-induced crystallisation phenomenon
using a multiphase approach is discussed in Loos et al. (CMAT 32(2):501–526,2020). In this follow-up contri-
bution, the same mechanical framework is used to construct a second model that sets the same three phases in
a serial connection, demonstrating an alternative to the former parallel connection of phases. The hybrid free
energy is used to derive the constitutive equations. The evaluation of the Clausius–Duhem inequality ensures
thermomechanical consistency. The model is based on a one-dimensional derivation that extends with the con-
cept of representative directions to a three-dimensional anisotropic model. After the step-by-step derivation,
the performance of the model is analysed in detail, including its comparison to the well-known Flory model,
its evaluation for infinite fast and slow excitations, its simulation of uniaxial cycles and its validation via
relaxation experiments. Finally, the model is compared comprehensively to the former parallel model showing
their equivalent reason for existence.

Keywords Strain-induced crystallisation · Natural rubber · Nonlinear continuum mechanics · Constitutive
modelling · Thermodynamical consistency · Anisotropic modelling · Concept of representative directions

1 Introduction and state of the art

High deformations of natural rubber (NR) result in a change of the molecular orientation of its network.
Since its discovery in 1925 by Katz [33], the phenomenon of strain-induced crystallisation (SIC) in NR has
become the focus of experimental andmodelling investigations. Although SIC is a challenging subject due to its
complex thermodynamics, polymer physics and sophisticated kinetics, SIC is a rewarding subject for academic
research and industrial applications. It ismotivated by the beneficial influence of SICon themechanicalmaterial
characteristics such as NR’s superior crack growth resistance and excellent tensile properties [2,54]. The main
application made from NR is vehicle tires, where 60 - 70 % of the world’s NR production is utilised. The
kinetics of SIC is a highly investigated topic shown with a large number of recent publications and conference
contributions. Several studies focus on different aspects during the crystallisation process, such as the nucleation
of crystals and their orientation, whereas others focus on different materials and loading conditions [3]. The
crystallisation process during the loading of natural rubber is measured in situ with synchrotrons using wide-
angleX-ray scattering (WAXS) since the beginning of 2000 [60,61]. Huneau published an overview of different
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X-ray diffraction investigations [29]. Based on the scattered light intensity, Mitchell [52] defined a crystallinity
index in 1984 [9,59]. Recently, the measurement of SIC via infrared thermography has been presented by Le
Cam [36], which is compared in [37] to the X-ray diffraction technique.

A constitutive model should represent the three-dimensional (3D) nature of the stretch–stress behaviour to
represent the deformation process physically. The complex development of 3D constitutive laws is simplified
by developing generalisation concepts. The first developed concept was themicro-plane formulation by Bažant
et al. [4–6] in the context of crack development in concrete or rocks. The micro-plane concept was expanded in
[11] to hyperelastic materials under large strain. Other generalisation techniques have been used to formulate
material models, such as the well-known micro-sphere concept of Miehe et al. [25,49,50]. The micro-sphere
concept mainly focuses on averaging the free energies of individual polymer chains on a microscale to obtain
the total free energy on the macroscale. The micro-sphere concept is applied in several works [8,13–16,27,
35,51,53,54,58]. Recently, Behnke et al. [7] have developed a concept based on a unit cube with varying
directional reinforcement axes instead of a sphere. They applied the idea to the modelling of SIC in rubber.

Freund and Ihlemann [22,23,30] developed the concept of representative directions. In comparison with
the micro-sphere concept based on the consideration of statistical mechanics with a suitable homogenisation
technique, the concept of representative directions utilises a continuum mechanical approach. The concept of
representative directions is applied in the works of Lorenz et al. [43,44] to formulate constitutive laws.

Lion, Diercks & Caillard [17,40] present a general thermomechanical framework for the directional
approach in constitutive modelling, which is capable of representing process-induced anisotropies. Among
other things, they compare the closed form of the macroscopic Mooney–Rivlin material behaviour to the
angular averaging operator of the concept of representative directions. In the current study, the methodology
of representative directions is followed. This concept first formulates a one-dimensional (1D) material model
and transfers it to 3D deformation and stress states.

In Loos et al. [42], a model using a parallel connection of different phases is presented. This follow-up
contribution uses the same mechanical framework, but uses a serial connection of the same three distinct
phases. The derivation is equally physically motivated, but also includes the Flory model, which is the first
model to describe SIC [20]. The Flory theory is prominent within SIC research and was just revisited in Sotta
& Albouy [57]. The similarities between the current study and the Flory model is analysed.

An outline of the publication is as follows. Section 2 derives the expressions for the crystallinity and
the stretches of the three different material phases which are set in a serial connection. Section 3 derives the
constitutive equations with a focus on the multiplicative split of the deformation tensor, the affine micro-sphere
approach, the concept of the hybrid free energy and the evaluation of the Clausius–Duhem inequality. Section 4
evaluates the constitutive equations for infinite fast and slow deformations. In Sect. 5, the simulation results are
presented and evaluated. Therefore, they are compared with uniaxial tensile experimental data. Additionally,
the model is verified via its dependence on the load history, such as relaxation. Finally, the current model is
compared to the model published earlier by the same authors [42], which is based on a parallel connection of
the different phases. The current model using the in-series connection is also called serial model, whereas the
parallel model refers to the former published model [42]. The article closes with the overall conclusions and
an outlook on future investigations in Sect. 6.

2 Depicting crystallinity inside elastomers: usage of in-series connection

In this contribution, one of the fundamental ideas is to divide the microstructure of an elastomer part into
three phases, schematically sketched in Figs. 1 and 2, respectively. First, the material consists of a crystalline
phase with its length lc(t) (dark blue, right), which evolves at high stretches. Second, the material includes an
amorphous phase existing during all stretches. In the unstretched state, the material is considered to be 100%
amorphous. This amorphous phase is assumed to be subdivided into a crystallisable amorphous fraction with
length la (orange, left) and a non-crystallisable amorphous fraction ln (light blue, middle). Due to the serial
connection, the total length l(t) is summed up to

l (t) = la (t) + ln (t) + lc (t) . (1)

The existence of a non-crystallisable amorphous phase in polymers was first proved experimentally in 1980
[47], where Menczel and Wunderlich refer to a rigid amorphous phase [46,64]. Since the model uses a serial
connection, the total stress is equal to the stresses of the single phases σ = σa = σn = σc. The sketch in Fig.
1 visualises one of these parts in the virtual intermediate configuration, whereas the sketch in Fig. 2 shows the
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Fig. 1 Phases inside the elastomer in a serial connection in their virtual intermediate configuration: crystallisable amorphous
phase with its initial length la0 (left), non-crystallisable amorphous phase with its initial length ln0 (middle) and crystalline phase
with its initial length lc0 (right)

Fig. 2 Phases inside the elastomer in a serial connection: crystallisable amorphous phasewith its length la (left), non-crystallisable
amorphous phase with its length ln (middle) and crystalline phase with its length lc (right)

elastomer part in the current configuration in stretching direction. In the virtual intermediate configuration, the
crystallinity is equal to that of the current configuration, whereas the three phases are undeformed. A virtual
experiment helps to envision this configuration: the sample is deformed to a certain state, where it has a defined
crystallinity and certain stretches of the individual phases. Then, abruptly, the stress is removed such that the
crystallinity remains constant. This virtual experiment follows the method when the viscous strain of a damper
is identified in a viscoelastic Maxwell model. The three phases result to their initial lengths la0, ln0, lc0 without
any mechanical deformation.

The modelling of the microstructure of the elastomer is conducted relative to the unloaded configuration.
The crystallinity x is defined by the ratio of the length of the crystalline fraction to the total length in the virtual
intermediate configuration

x := lc0
l0

. (2)

Thus, the crystallinity index is related to the volume. The relation between the non-crystallisable amorphous
fraction and the crystalline phase is assumed to be directly proportional

ln0
l0

= ζ
lc0
l0

= ζ x , (3)

i.e. each crystalline part possesses a non-crystallisable amorphous part [42]. The mobile amorphous fraction

consequently is
la0
l0

. The straightforward derivation starting from the intermediate configuration in addition

to the application of the above definitions shows that the fraction of the crystallisable amorphous phase is
expressed as

la0
l0

= 1 − (ζ + 1) x ≥ 0

⇔ x ≤ 1

1 + ζ
=: x0 (4)

⇔ ζ = 1

x0
− 1.

Since the fraction of the crystallisable amorphous phase is non-negative, the crystallinity is limited by a
maximum value x0. The advantage of this concept is that the maximum crystallinity x0 is smaller than 1
in comparison with models where the degree of crystallinity can reach 100%. In contrast, the maximum
crystallinity x0 reaches around 20% in reality; see synchrotron measurements published in [10,55]. With these
abbreviations, each length fraction simplifies to
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lc0
l0

= x, (crystalline fraction)

la0
l0

= 1 − x

x0
and (cryst. amorphous frac.)

ln0
l0

= x

x0
− x . (non-cryst. amorphous frac.)

2.1 Stretches of the different phases inside the elastomer

The stretch is defined as the length fraction of the virtual intermediate configuration shown in Fig. 1 and the
current configuration shown in Fig. 2

λ = l (t)

l0
, (total stretch)

λc = lc (t)

lc0
, (stretch of the crystalline fraction)

λa = la (t)

la0
and (stretch of the mobile amorphous fraction)

λn = ln (t)

ln0
. (stretch of the non-crystallisable amorphous fraction)

The following calculation beginning with Eq. (1) derives the expression for the total stretch λ and the stretch
of the amorphous phase λa dependent on crystallinity x and the stretches of the remaining phases λn, λc.

l (t) = la (t) + ln (t) + lc (t)

⇔ λ = λa la 0
l0

+ λn ln 0
l0

+ λc lc 0
l0

⇔ λ =
(
1 − x

x0

)
λa +

(
1

x0
− 1

)
x λn + x λc (5)

⇔ λa =
λ − x λc −

(
1
x0

− 1
)
x λn

1 − x
x0

Consequently, assuming an amorphous stretch of λa > 0 and x ≤ x0 (and setting x = x0), the numerator of
the fraction in Eq. (5) results in

λ − x λc −
(

1

x0
− 1

)
x λn > 0

⇒ x0 λc + (1 − x0) λn < λ with x = x0, (6)

which is the condition that assures the stretch of the mobile amorphous phase λa to be non-negative. Further-
more, the well-knownmodel published by Flory in 1947 [20] is a special case included in Eq. (5). With x0 = 1,
the stretch of the amorphous phase λa reads as

λa = λ − x λc

1 − x
, (7)



Strain-induced crystallisation in natural rubber

Fig. 3 Flory’s model: Stretch of the amorphous phase λa over crystallinity x for different fixed stretches of the crystalline phase
λc at the fixed maximum value of crystallinity x0 = 1

where the limit of the stretch for the amorphous phase for x → 1 is lim
x→1

λ − x λc

1 − x
= ∞ . The stretch of the

amorphous phase increases continuously, i.e. it reaches unbounded values. Here, the physical interpretation

of Flory’s λc and the λc of the proposed model is different. Since the proposed model introduces λc = lc(t)

lc0
as an internal variable, which is defined by the corresponding evolution Eq. (45) in Sect. 3.4, the physical
interpretation is inherently complicated.

Additionally, under the assumption of high stiffness of the non-crystallisable phase and therefore limited
to λn = 1, the limit for x → x0 for the stretch of the amorphous phase given in Eq. (5) is unlimited positively
as x approaches to x0

lim
x→x0

λ − x λc −
(

1
x0

− 1
)
x λn

1 − x
x0

= ∞ . (8)

In the following, the stretch of the amorphous phase of Flory’s model [20] is compared to the model presented
here. In Flory’s model, increasing crystallinity x leads to an increase in the stretch of the mobile amorphous
phase λa for a fixed total stretch of λ = 6, as shown in Fig. 3. Moreover, an increasing stretch of the crystalline
phase λc leads to a decrease in the stretch of the mobile amorphous phase λa visualised in Figs. 3 and 4.

For example, with constant values for the maximum crystallinity x0 = 0.5, the crystallinity x = 0.2, the
stretch of the non-crystallisable phase λn = 1 and the stretch of the crystalline phase λc = {1, 3, 5, 6}, the
here presented model shows the following behaviour: As the total stretch λ increases, the stretch of the mobile
amorphous phase λa increases as visualised in Fig. 5. Moreover, a higher fixed stretch of the crystalline phase
also increases the stretch of the amorphous phase, though with less effect as the stretch of crystalline fraction
λc goes to 6. A further point to mention is that an increasing crystallinity x leads to an increase in the stretch
of the mobile amorphous phase λa depicted in Fig. 6 for a fixed stretch of the crystalline phase λc = 2.

3 Modelling approach: the structure of the constitutive model

The here presented model is based on the framework published in [42]. With the thermomechanical basics
shown in Lion & Johlitz [39], the directional approach applied in Lion et al. [40], based on the works of Miehe
& Göktepe et al. [25,49,50], Guilie, Thien-Nga & Le Tallec et al. [27,58], the model is further constructed to
focus on the accurate description of SIC with its hysteresis characteristics.
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Fig. 4 Flory’s model: Stretch of the amorphous phase λa over stretch of the crystalline phase λc for different values of constant
crystallinity x , at the fixed maximum value of crystallinity x0 = 1

Fig. 5 Current model: Stretch of the amorphous phase λa over total stretch λ for different constant stretches of the crystalline
phase λc, for a maximum value of crystallinity of x0 = 0.5, fixed stretch of the non-crystallisable phase λn = 1 and fixed
crystallinity x = 0.2

3.1 The multiplicative split of deformation gradient

The deformation gradient F is decomposed multiplicatively into the isochoric part F̂ and the volumetric part
F̄, consequently F := F̂ · F̄, first introduced by Flory [21]. Thus, changes in shape and volume are considered

independently. The volumetric part is defined as F̄ := J
1
3 1 with the Jacobian of the deformation gradient

J = det(F).
The isochoric Green–Lagrange strain tensor is defined as Ê := 1

2 (Ĉ − 1), where Ĉ = F̂T · F̂ = J− 2
3C is

the isochoric right Cauchy–Green deformation tensor. The Cauchy stress tensor is split into a volumetric and
a deviatoric part

T = −p1 + TD, (9)

where p := − 1
3 tr(T) describes the hydrostatic pressure and TD is the deviatoric stress. The second Piola–

Kirchhoff stress is defined as T̃ := JF−1·T·F−T, and in a similarmanner, the deviatoric secondPiola–Kirchhoff
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Fig. 6 Current model: Stretch of the amorphous phase λa over total stretch λ for different values of crystallinity x , for a maximum
value of crystallinity x0 = 0.5, fixed stretch of the non-crystallisable phase λn = 1 and fixed stretch of the crystalline phase
λc = 3

Fig. 7 Introduction of a fictitious intermediate configuration

stress is ˆ̃T := J F̂−1 ·TD · F̂−T. Thus, the second Piola–Kirchhoff stress is split in a volumetric and a deviatoric
part

T̃ = −pJ
1
3 Ĉ−1 + J− 2

3
ˆ̃T . (10)

The latter is only denoted as deviatoric part. A correction term is introduced in Eq. (17) in Sect. 3.2 to make
ˆ̃T deviatoric in the current configuration. With the volume strain εvol := J − 1, the stress power is split into
volumetric and deviatoric parts [41, p. 731, Eq. (18)]:

T̃ : Ė = − p ε̇vol + ˆ̃T : ˙̂E. (11)

3.2 The concept of representative directions

The concept of representative directions includes an appropriate micro-to-macro transition of micro-
mechanicallymotivatedmodels.Averaging operations on the unit sphere are carried outwith integrals presented
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Fig. 8 Arbitrary direction eα with Cartesian unit vectors e1, e2, e3 and polar coordinates ϕ, ϑ

in the following. Continuous orientation is replaced by a discrete set of orientations. For the current simulation,
the following steps are taken. First, arbitrary states of deformation are projected to one-dimensional deforma-
tions along with specific directions. Each directional stretch is used within the one-dimensional material model
to calculate directional stresses, crystallinities and other quantities. The directional stresses are then combined
via an averaging scheme along a unit sphere to a three-dimensional stress tensor. The major advantage of this
approach is that the formulation of constitutive equations becomes accessibly simple since the formulation is
executed in one-dimensional states of deformation and stress. Moreover, the micro-sphere concept includes
direction-dependent effects like anisotropic behaviour naturally. The one-dimensional quantities are specified
per direction eα defined in the spherical coordinate system shown in Fig. 8. The Cartesian unit vectors e1, e2, e3
form an orthogonal basis.

eα = sin ϑ cosϕ e1 + sin ϑ sin ϕ e2 + cosϑ e3 (12)

The averaging operator A, which calculates three-dimensional quantities through integration over the
sphere of one-dimensional quantities, is defined as

f (t) = 1

4π

∫ 2π

0

∫ π

0
fα(ϑ, ϕ, t) sin ϑ dϑ dϕ =: A[ fα(t)] , (13)

where fα is a physical quantity related to the direction eα . Its first time derivative is ḟ = A[ ḟα]. Regarding
the operator A, the physical quantities related to the direction eα are introduced:

λ̂α =
√
F̂eα · F̂eα =

√
eα · Ĉeα (directional stretch)

ψ̂ = A[ψ̂α] (isochoric part of the specific hybrid free energy)

ŝ = A[ŝα] (isochoric part of the specific entropy)

ˆ̃T = A[ ˆ̃Tα] (deviatoric 2nd Piola–Kirchhoff stress)
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qR = A[qRα eα] (heat flux vector)

x = A[xα] (total crystallinity)

The isochoric part of the stress power is formulated as

A[σ̂α
˙̂
λα] = A[ ˆ̃Tα : ˙̂E] = A[ ˆ̃Tα] : ˙̂E = ˆ̃T : ˙̂E . (16)

The directional stress tensor ˆ̃Tα = σ̂α

λ̂α

eα⊗eα is derived through the evaluation of theClausius–Duhem inequal-

ity of the one-dimensional constitutive law, explained in detail in Sect. 3.4. This anticipation is consciously

inserted here for a clear understanding of the following important extension. When ˆ̃T = A[ ˆ̃Tα], which is
essentially the outcome of the one-dimensional constitutive law, is pushed forward to the current configuration

with the relation TD = 1
J F̂ · ˆ̃T · F̂T given in Sect. 3.1, the trace of the deviatoric part of the Cauchy stress TD

must be zero, i.e. TD : 1 = ˆ̃T : Ĉ = 0. Thus, the following ansatz has been introduced in accordance with
[41, p.731f]

ˆ̃T = A

[
σ̂α

λ̂α

eα ⊗ eα + � Ĉ−1
]

, (17)

where � is an arbitrary scalar. The thermodynamic consistency is ensured: the additional �Ĉ−1 term does
not produce stress power in the Clausius–Duhem inequality, Sect. 3.4, due to the orthogonality relation
d

dt
det

(
Ĉ−1

)
= Ĉ−1 : ˙̂C = 0 of the unimodular Cauchy–Green deformation tensor Ĉ. Inserting Eq. (17) into

ˆ̃T : Ĉ = 0 and using Ĉ−1 : Ĉ = tr(1) = 3, the scalar � is given by

� = −1

3
A

[
σ̂α

λ̂α

eα ⊗ eα : Ĉ
]

. (18)

Consequently, the isochoric second Piola–Kirchhoff stress ˆ̃T has the final form

ˆ̃T = A

[
σ̂α

λ̂α

eα ⊗ eα − 1

3
σ̂αλ̂αĈ−1

]
, (19)

where the relation λ̂2α = eα ⊗ eα : Ĉ is used.

3.3 The concept of the hybrid free energy

The constitutive model is based on the formulation of the hybrid free energy [41], which is decomposed
additively into two contributions

ϕ(Ê, p, θ, ...) = g(p, θ, ...) + ψ̂(Ê, θ, ...) . (20)

The Gibbs-type energy contribution g represents the volumetric part of the material behaviour and depends on
pressure p, temperature θ and possibly on the total crystallinity x .

The energy contribution of Helmholtz-type ψ̂ describes the isochoric part of the material behaviour ψ̂ =
A

[
ψ̂α

(
λ̂α, θ, xα

)]
such that the isochoric part of the material behaviour is modelled by using the concept

of representative directions explained in Sect. 3.2. Within the current model with its total directional stretch
given in Eq. (5), the isochoric part of the specific hybrid free energy depends on three single stretches, i.e.

ψ̂ = A
[
ψ̂α

(
λ̂a, λ̂n, λ̂c, θ, xα

)]
due to the three individual material’s fractions.
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3.3.1 Total directional Helmholtz free energy

The specific directional Helmholtz free energies of the single phases are stated as

ψ̂αa(λ̂a, θ), (cryst. amorphous phase)

ψ̂αn(λ̂n, θ), (non-cryst. amorphous phase)

ψ̂αc(λ̂c, θ), (crystalline phase)

which are all considered to be dependent on their corresponding stretch. The directional total Helmholtz free
energy per unit mass ψ̂α is the sum of the free energies of the individual phases

ψ̂α(λ̂a, λ̂n, λ̂c, θ, xα) =
(
1 − xα

x0

)n

ψ̂αa(λ̂a) +
(
xα

x0
− xα

)k

ψ̂αn(λ̂n) + xmα ψ̂αc(λ̂c) + Rθ

M
γ (xα), (21)

where the last term originates from the entropy of mixing, where R is the universal gas constant, M is the
molar mass and the function γ (xα) is the mixing ratio. Its derivation is found in detail in [42]. The empirical
exponents m, n, k are introduced to formulate the model with more flexibility to represent experimental data.
They do not influence on the thermodynamical consistency of the constitutive model. The mixing ratio of the
elastomer part, derived in [42], is

γ (xα) = x0 − xα

x0
ln

(
x0 − xα

x0

)
+ xα

x0
ln

(
xα

x0

)
. (22)

For the evolution equation of crystallinity, the first derivative of the mixing ratio with respect to the crystallinity
is required and reads as

dγ (xα)

dxα

= 1

x0
ln

(
xα

x0 − xα

)
. (23)

The individual contributions of the isochoric part of the free energy ψ̂α defined in Eq. (21) consist of the
directional free energy densities of the crystallisable and non-crystallisable amorphous elastomer, which are
both considered to be entropy elastic

ψ̂αa = ψ̂0a − s0a (θ − θG) + θ

θB
ϕ̂αa

(
λ̂a

)
(24)

ψ̂αn = ψ̂0n − s0n (θ − θG) + θ

θB
ϕ̂αn

(
λ̂n

)
(25)

and the directional free energy density of the crystalline elastomer, which is considered to be energy elastic

ψ̂αc = ψ̂0c − s0c (θ − θG) + ϕ̂αc

(
λ̂c

)
. (26)

Here, ψ̂0a, ψ̂0n and ψ̂0c are the initial free energy densities, s0a, s0n and s0c are the initial specific entropies and
ϕ̂αa(λ̂a), ϕ̂αn(λ̂n) and ϕ̂αc(λ̂c) are the directional strain energies of the amorphous and crystalline phases. The
stretch-dependent mechanical contributions to the directional free energies, i.e. the individual strain energies
ϕ̂αa, ϕ̂αn, ϕ̂αc can be chosen arbitrarily, e.g. empirical or physical-based models. The temperature θG is a refer-
ence temperature of the material (e.g. glass transition temperature), and θB is the basic reference temperature
for entropy elasticity, cf. Lion [38, p.29]. θ

θB
is the purest form of the temperature dependence of the strain

energy function ϕ̂ in the context of entropy elasticity [48]. The partial derivative of the isochoric part of the
free energy with respect to the crystallinity is

∂ψ̂α

∂xα

= − n

x0

(
1 − xα

x0

)n−1

ψ̂αa + k

(
1

x0
− 1

)(
xα

x0
− xα

)k−1

ψ̂αn + mxm−1
α ψ̂αc + Rθ

Mx0
ln

(
xα

x0 − xα

)

(27)
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Since the Helmholtz-type free energy is dependent on five quantities ψ̂ = A
[
ψ̂α

(
λ̂a, λ̂n, λ̂c, θ, xα

)]
, its time

derivative is

A
[ ˙̂
ψα

]
= A

[
∂ψ̂α

∂λ̂a

˙̂
λa + ∂ψ̂α

∂λ̂n

˙̂
λn + ∂ψ̂α

∂λ̂c

˙̂
λc + ∂ψ̂α

∂θ
θ̇ + ∂ψ̂α

∂xα

ẋα

]
(28)

3.3.2 Strain energies of elastic materials

Each material fraction of the model, i.e. the crystalline in addition to the crystallisable amorphous and the
non-crystallisable amorphous phase, is described with a material model of elasticity. Each phase can be treated
separately when it comes to the aspect of finding a suitable material model. The corresponding stress tensors
are derived from the strain energy density function ϕ [45, p.837], which is defined per unit volume. The
following material models for each phase were chosen after a parameter identification using the multistep
experimental data for stretch up to λ ≤ 3.5 by [42, Fig. 11] representing the amorphous material response.
Since the presented model uses a serial connection for all phases, the softest material determines the stiffness
and the material’s stress response. For the amorphous phase (crystallisable and non-crystallisable), the model
of extended tube is used, which was introduced by Kaliske & Heinrich [28,32] and is based on physical
considerations on the molecular scale. The total elastic free energy change, or elastic potential, of the extended
tube model [32, p.606] is divided into two additive terms: the cross-link part and the elastic part ϕ̂ = ϕ̂c + ϕ̂e,
respectively. The cross-link strain energy for the extended tube model is

ϕ̂c(λ̂) = Gc

2

[
(1 − δ2)(IĈ − 3)

1 − δ2(IĈ − 3)
+ ln

(
1 − δ2(IĈ − 3)

)]
, (29)

and for the constraint contribution, the related strain energy reads

ϕ̂e(λ̂) = 2

β2Ge

3∑
i=1

(
λ̂

−β
i − 1

)
. (30)

The constants Ge, Gc, β and δ are material parameters: shear moduli, completeness of cross-link reaction and
inextensibility parameter. IĈ = λ̂21 + λ̂22 + λ̂23 = λ̂2 + 2λ̂−2 is the first invariant of the isochoric right Cauchy–

Green tensor Ĉ for uniaxial extension. Here, the strain energies of the amorphous phase ϕ̂αa(λ̂a), ϕ̂αn(λ̂n) in
Eqs. (24-25) are modelled with the extended tube model using the same parameters shown in Tab. 1.

For the crystalline phase, a Yeoh-type model [65] with three terms n = 3 is chosen, such that the model
has three material parameters C1, C2, C3. The phenomenological model is using the strain energy density
function

ϕ̂ =
n∑

i=1

Ci
(
IĈ −3

)i

= C1
(
IĈ −3

) + C2
(
IĈ −3

)2 + C3
(
IĈ −3

)3 + ... for i = 3 (31)

Here, the strain energy of the crystalline phase ϕ̂αc(λ̂c) in Eqs. (26) is modelled with this Yeoh-type model
using the parameters shown in Tab. 1 representing a stiff material response.

3.3.3 Volumetric part of the free energy

The model for the volumetric part of the free energy of Gibbs type [42] is

g = g0 − s0 (θ − θG) − (
cp0 − βθG

) (
θ ln

(
θ

θG

)
− (θ − θG)

)
− β

2
(θ − θG)2 + αv

ρR
(θ − θG) p − p2

2ρRK
.

(32)
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It is assumed that the degree of crystallinity does not influence the volume. Thus, the Gibbs-type free energy
contribution depends on two quantities g(p, θ). Its time derivative is

ρR ġ = ρR
∂g

∂p
ṗ + ρR

∂g

∂θ
θ̇ (33)

Thus, the time derivative of the hybrid free energy ϕ̇ is

ρR ϕ̇ = ρR
∂g

∂p
ṗ + ρR

(
∂g

∂θ
+ A

[
∂ψ̂α

∂θ

])
θ̇ + ρR A

[
∂ψ̂α

∂λ̂a

˙̂
λa + ∂ψ̂α

∂λ̂n

˙̂
λn + ∂ψ̂α

∂λ̂c

˙̂
λc

]
+ A

[
ρR

∂ψ̂α

∂xα

ẋα

]

(34)

3.4 Thermodynamical considerations: the Clausius–Duhem inequality

The Clausius–Duhem inequality has to be satisfied by the constitutive law such that the second law of thermo-
dynamics is satisfied. With the stress power given in Eq. (11), the Clausius–Duhem inequality on the reference
configuration reads as

−ρRψ̇ − ρR s θ̇ − 1

θ
qR · gR + ˆ̃T : ˙̂E − pε̇vol ≥ 0 . (35)

With the time derivative of the free energy ρR ψ̇ = ρR ϕ̇ − ṗ εvol − p ε̇vol, one derives

⇔ −ρR ϕ̇ + ṗ εvol − ρR s θ̇ − 1

θ
qR · gR + ˆ̃T : ˙̂E ≥ 0 (36)

The stress power ˆ̃T : ˙̂E = A[σ̂α
˙̂
λα] given in Eq. (16) reads as

A[σ̂α
˙̂
λα] = A

[
σ̂α

((
1 − xα

x0

) ˙̂
λa +

(
xα

x0
− xα

) ˙̂
λn + xα

˙̂
λc +

(
− 1

x0
λ̂a +

(
1

x0
− 1

)
λ̂n + λ̂c

)
ẋα

)]

(37)

after insertion of the time derivative of the total stretch calculated fromEq. (5). The Clausius–Duhem inequality
considering the directional quantities introduced in Sect. 3.2, inter alia, and the time derivative of the hybrid
free energy Eq. (34) reads as

⇔
(

−ρR
∂g

∂p
+ εvol

)
ṗ − ρR

((
∂g

∂θ
+ A

[
∂ψ̂α

∂θ

])
+ s

)
θ̇ − 1

θ
qR · gR

+ A

[(
1 − xα

x0

)(
−ρR

(
1 − xα

x0

)−1
∂ψ̂α

∂λ̂a
+ σ̂α

)
˙̂
λa

]

+ A

[(
xα

x0
− xα

) (
−ρR

(
xα

x0
− xα

)−1
∂ψ̂α

∂λ̂n
+ σ̂α

)
˙̂
λn

]
+ A

[
xα

(
−ρRx

−1
α

∂ψ̂α

∂λ̂c
+ σ̂α

)
˙̂
λc

]

+ A

[(
−ρR

∂ψ̂α

∂xα

+
(

− 1

x0
λ̂a +

(
1

x0
− 1

)
λ̂αn + λ̂c

)
σ̂α

)
ẋα

]
≥ 0 (38)

Here, the variables λ̂n, λ̂c, xα are used as internal state variables, which are defined by the solution of ordinary
differential equations (ODEs). To evaluate this inequality, the stretch λ̂a of the mobile amorphous phase given
in Eq. (5) is used as the process variable. The definition of state and process variables is flexible and has to
be set once. Requiring that Eq. (38) is non-negative for arbitrary values of the individual variables [12], the
following quantities result directly in consequence: the volume strain

εvol = ρR
∂g

∂p
(39)
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the specific entropy s is the negative derivative of the free energy with respect to the temperature

s = −
(

∂g

∂θ
+ A

[
∂ψ̂α

∂θ

])
, (40)

and the directional heat flux

qR = −κ gR , (41)

whereκ is the thermal conductivity. From the inversion of the linear pressure-dependent volume strain εvol ∼ p,
the pressure p = p (εvol , θ, x) can be easily computed. The total stress is computed with the usage of the

partial derivative ∂ψ̂α

∂λ̂a
=

(
1 − xα

x0

)n
∂ψ̂αa

∂λ̂a
as

σ̂α = ρR

(
1 − xα

x0

)−1
∂ψ̂α

∂λ̂a
= ρR

(
1 − xα

x0

)n−1
∂ψ̂αa

∂λ̂a
. (42)

The evolution equation of the directional crystallinity including a prefactored positive function β(θ, ...) ≥ 0
reads as

ẋα = β(θ, ...)

[
−ρR

∂ψ̂α

∂xα

+
(

− 1

x0
λ̂a +

(
1

x0
− 1

)
λ̂αn + λ̂c

)
σ̂α

]

= ρR β(θ, ...)

[
n

x0

(
1 − xα

x0

)n−1

ψ̂αa − k

(
1

x0
− 1

)(
xα

x0
− xα

)k−1

ψ̂αn − m xm−1
α ψ̂αc

+ 1

ρR

(
1

x0
λ̂a −

(
1

x0
− 1

)
λ̂n − λ̂c

)
σ̂α − Rθ

Mx0
ln

(
xα

x0 − xα

)]
, (43)

using the partial derivative given in Eq. (27). In the current work, the function β(θ, . . .) in the evolution
equation describes the temperature dependence of the crystallisation rate among other optional dependences
on internal state variables. It is possible to add dependences on stress, stretch or internal state variables to this
function, which remains as a degree of freedom. The temperature dependence is represented by the approach
by Williams, Landel, Ferry [63].

β(θ) = β0 exp

(
c1 (θ − θG)

c2 + (θ − θG)

)
, (44)

with c1 = 17.44 and c2 = 51.6 K. Regarding temperature, the function β(θ, . . .) remains constant for the
isothermal case. In the current work, the experiment and the simulation are both isothermal at θ = 300 K.

The evolution equations for the stretches of the non-crystallisable amorphous phase and the crystalline
phase are

˙̂
λc = xα

ηc

(
σ̂α − ρRx

−1
α

∂ψ̂α

∂λ̂c

)
(45)

= ρR xα

ηc

((
1 − xα

x0

)n−1
∂ψ̂αa

∂λ̂a
− xm−1

α

∂ψ̂αc

∂λ̂c

)
and (46)

˙̂
λn = 1

ηn

(
xα

x0
− xα

) (
σ̂α − ρR

(
xα

x0
− xα

)−1
∂ψ̂α

∂λ̂n

)
(47)

= ρR

ηn

(
xα

x0
− xα

)((
1 − xα

x0

)n−1
∂ψ̂αa

∂λ̂a
−

(
xα

x0
− xα

)k−1
∂ψ̂αn

∂λ̂n

)
, (48)

where ηc, ηn ≥ 0 are the scalar proportional factors of the single phases comparable to the standard relation

of linear viscoelasticity for dashpots λ̇ = 1

η
σ .
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Fig. 9 Sketch of stress for different deformation rates: For infinitely slow deformations, the equilibrium stress response is the solid
black line. The stress hysteresis, which occurs for real finite stretch rates, is plotted in dashed line. For infinitely fast deformations,
the stress response at the high stretches is higher, as plotted using the solid grey line. No hysteresis is evident for the equilibrium
or the infinitely fast deformations

4 Model evaluation for special cases: fast and slow excitations

In this section, the index α, which refers to the directional quantity is neglected.

4.1 Evaluation for fast deformations

The model can be evaluated for fast and slow thermomechanical excitations. First, the evaluation for infinitely

fast deformations ˙̂
λ → ∞ from the initial state λ̂ = 1, x = 0 is carried out. For such a high stretch rate,

all internal state variables are frozen, i.e. the evolution of crystallinity is not induced ẋ = 0 such that no
crystallinity evolves x = 0. Thus, crystallisation remains zero as shown in Fig. 10 by the solid grey line.
Likewise, the evolution of the stretches of the non-crystallisable amorphous phase and crystalline phase remains

zero ˙̂
λn = 0, ˙̂

λc = 0 such that the stretch of the crystallisable amorphous phase equals the total stretch λ̂ = λ̂a .

The stress is determined from Eq. (42) by the behaviour of the amorphous phase σ̂ (λ̂a, x = 0) = ρR
∂ψ̂a

∂λ̂a
. The

sketch of the stress, where no hysteresis is observed, is plotted qualitatively with the solid grey line in Fig. 9.
The stress response is higher compared to the equilibrium case.

4.2 Evaluation for slow deformations

Secondly, the case of infinitely small stretch rate is analysed ˙̂
λ → 0. Starting from the initial state λ̂ = 1, x = 0,

the equilibrium stress and crystallinity response are reached, plotted in solid black line in Figs. 9 and 10. The
following calculations show the absence of hysteresis within the equilibrium response. For the steady state,

the time derivatives ẋ, ˙̂
λn,

˙̂
λc remain zero. The evolution equation for the degree of crystallinity allows the

computation of the equilibrium degree of crystallinity as a function of the individual stretches of each phase.
With ẋ = 0, Eq. (43) follows as

0 = ρR β(θ, ...)

[
n

x0

(
1 − x

x0

)n−1

ψ̂a − k

(
1

x0
− 1

)(
x

x0
− x

)k−1

ψ̂n − m xm−1ψ̂c

+ 1

ρR

(
1

x0
λ̂a −

(
1

x0
− 1

)
λ̂n − λ̂c

)
σ̂ − Rθ

Mx0
ln

(
x

x0 − x

)]

⇒ x = xeq
(
λ̂a, λ̂n, λ̂c, xeq

)
⇒ xeq

(
λ̂a, λ̂n, λ̂c

)
,
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Fig. 10 Sketch of crystallinity for different deformation rates: The equilibrium crystallinity observed at infinitely slow stretch
rate is plotted in solid black line. The crystallinity hysteresis found at real finite deformations is plotted in dashed line. No
crystallisation evolves when the sample is stretched with infinitely fast stretch rate (solid grey line). No hysteresis is evident for
the equilibrium or the infinitely fast deformations

such that the equilibrium crystallinity xeq can only be calculated with the help of numerical methods due to
its implicit expression. The evaluation shows that the stretch of the crystalline phase and the stretch of the
non-crystallisable amorphous phase are dependent on the process variables λ̂a and x

0 =
(
1 − x

x0

)n−1
∂ψ̂a

∂λ̂a
− xm−1 ∂ψ̂c

∂λ̂c
⇒

(
1 − x

x0

)n−1

x1−m ∂ψ̂a

∂λ̂a
= ∂ψ̂c

∂λ̂c
⇒ λ̂c = f (λ̂a, x)

0 =
(
1 − x

x0

)n−1
∂ψ̂a

∂λ̂a
−

(
x

x0
− x

)k−1
∂ψ̂n

∂λ̂n
⇒

(
1 − x

x0

)n−1 (
x

x0
− x

)1−k
∂ψ̂a

∂λ̂a
= ∂ψ̂n

∂λ̂n
⇒ λ̂n = g(λ̂a, x)

Therefore, the equilibrium degree of crystallinity can be expressed as a function depending on the stretch of
the amorphous phase

x = xeq
(
λ̂a, f (λ̂a, xeq), g(λ̂a, xeq)

)
⇒ x̃eq(λ̂a, x̃eq) ⇒ x̃eq(λ̂a) .

Thus, the stretch of the amorphous phase is dependent on the total stretch

λ̂a =
λ̂ − x̃eq(λ̂a) λ̂c −

(
1
x0

− 1
)
x̃eq(λ̂a) λ̂n

1 − x̃eq(λ̂a)
x0

⇒ λ̂a = h (λ̂) .

Consequently, the stress σ̂ = ρR

(
1 − x

x0

)n−1
∂ψ̂a

∂λ̂a
can also bewritten as a function of the total stretch σ̂ = σ̂ (λ̂)

as well as the crystallinity being dependent on the total stretch x = x(λ̂). These expressions cannot be resolved
analytically due to the implicit formulation. To summarise, in the case of infinitely slow deformations, all
quantities of the model can be expressed as a function of the total stretch. Finally, the dependence of stress and
the crystallinity response on the global stretch results in the absence of a hysteresis. Figures 11 and 12 show
the simulation results for infinitely fast and slow deformations for the here presented model (serial model) and
the former presented model (parallel model) [42].
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Fig. 11 Simulation of infinitely small and fast excitation: stress over total stretch, parallel and serial model, 3D simulation,
experimental data of [10] used for guidance

Fig. 12 Simulation of infinitely small and fast excitation: crystallinity over total stretch, parallel and serial model, 3D simulation,
experimental data of [10] used for guidance

5 Simulation results

5.1 Macro–micro–macro transition

In the context of a simulation of a homogeneous uniaxial cyclic tension test, the first step within the con-
cept of representative directions is to compute the isochoric directional stretches λ̂α from the relation λ̂α =√
eα ⊗ eα : Ĉ as presented inSect. 3.2. The11-component is consequently Ĉ11 = λ̂2e1⊗e1+ 1

λ̂
e2⊗e2+ 1

λ̂
e3⊗e3

for uniaxial tension. Next, for each direction, the directional stress σ̂α is computed by Eq. (42) via the solution
of the coupled system of ODEs for xα , λ̂n and λ̂c. Having the directional stresses σ̂α computed, the second
Piola–Kirchhoff stress tensor T̃ is calculated with the relation from Eqs. (10) and (19):

T̃ = −pJ
1
3 Ĉ−1 + J− 2

3 A

[
σ̂α

λ̂α

eα ⊗ eα − 1

3
σ̂αλ̂αĈ−1

]
. (49)
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Fig. 13 Stress response of unfilled natural rubber, 21 versus 37 integration points based on [4]

Fig. 14 Crystallinity over stretch of unfilled natural rubber, 21 versus 37 integration points based on [4]

To determine the hydrostatic pressure p, the relation T̃11 = 3
2

ˆ̃T11 from Lion et al. [40, Eq.(67)] is taken into
account. The second Piola–Kirchhoff stress tensor T̃ is related to the first Piola–Kirchhoff stress tensor P by
the following operation

P = F · T̃. (50)

Moreover, for the micro-to-macro transition, i.e. to compute T̃ from σα in Eq. (49), the following discrete
averaging AD [ fα] scheme is applied

A [ fα] ≈ AD [ fα] =
N∑

α=1

wα fα, (51)

where N is the number of integration points alias directions and wα is the weight defined per direction for
which

∑N
α=1 wα = 1 is valid. The widely used integration points and weights of Baz̆ant and Oh [4] are here

varied from 21 to 37 directions per half sphere, cf. Figs. 13, 14.
Many sets of orientation vectors eα and weightswα are given in this work and also in [50]. For instance, the

reader is referred to [31] and [62] for detailed discussions and the comparison of different integration points
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Fig. 15 Stress response of unfilled natural rubber, integration points based on [19]

Fig. 16 Crystallinity over stretch of unfilled natural rubber, integration points based on [19]

and methods. The usage of a high amount of points does not improve the numerical accuracy significantly.
Vice versa, the usage of many integration points leads to a large number of ODEs, which has to be solved at
each Gauss point in the context of the finite element method (FEM). As a consequence, in this study, instead
of using many integration points, the parameters are optimised for the minimum number of integration points
possible. In addition to the mentioned reasons, the change of the simulated stress response is neglectable and
only noticeable when the unloading path reaches the loading path at a stretch around λm ≈ 3. In contrast, the
simulated crystallinity response decreases slightly in the unloading path. Furthermore, Miehe et al. stated that
the 21-point integration scheme provides sufficient accuracy [50, p.2639, l.14]. Nevertheless, in similar to the
work of [31], different amounts of integration points presented by Fliege and Maier [19] are successfully used
and presented in Figs. 15, 16 for comparison reasons. In parallel with the expectations, changes in the stress
or crystallinity response are not significant when increasing the number of directions, which underlines the
statement of Miehe et al. cited above.

5.2 Optimisation strategy

In the following subsection, dealing with the parameter identification, the subscript α, which stands for ‘direc-
tional’, is omitted for notation clarity. The first-order ODEs developed in Sect. 3 form a fully coupled system.
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The evolution equations for the directional crystallinity x , stretch of the crystalline phase λ̂c and stretch of
the non-crystalline phase λ̂n are presented in Eqs. (43), (46), (48), respectively. The stress σ̂ is given in Eq.
(42) and the constraint is used to compute the crystallisable amorphous stretch λ̂a from Eq. (5). This set of
equations constitutes a coupled system for each direction. Considering an isothermal state and for the given
time interval t ∈ [0, tend], the coupled system can be written in the clear short form

ẋ = −β f̃x
(
x, λ̂c, λ̂n

)
, (52)

˙̂
λc = f̃c

(
x, λ̂c, λ̂n

)
, (53)

˙̂
λn = f̃n

(
x, λ̂c, λ̂n

)
,

λ̂a =
λ̂ − x λ̂c −

(
1
x0

− 1
)
x λ̂n

1 − x
x0

, (54)

where all evolution equations are highly nonlinear. This system is solved in each direction. Then, the total
quantities are acquired by the weighted sum of each direction. The authors made use of a four-step ‘hybrid
optimisation’ approach described in the following:

1. Generate a high number of Monte Carlo samples (10 Mio), uniformly distributed between lower and upper
boundaries

2. Sort and pick parameter sets concerning stress and crystallinity
3. Use genetic algorithm with Monte Carlo’s result as initial population matrix
4. Select a parameter set from the Pareto front as a compromise between stress and crystallinity response

For the Monte Carlo sampling, i = 10 million parameter sets pi = [p1i , p2i , . . . , pni ]T normally distributed
in between lower and upper boundaries pl and pu are generated:

pi = pl + (pu − pl) · R (55)

where R ∈ [0, 1] is a random real number between zero and one. Then, favourites are selected to generate an
initial population matrix used in the genetic algorithm gamultiobj in MATLAB’s optimisation toolbox.
The aim is to identify the global optimum with these heuristic approaches. They are often used for coupled
nonlinear differential equations. In particular, the reader is referred to [24,26,34] for further information about
optimisation of ODEs in general and multiobjective optimisation. The total constraint minimisation problem
in a permitted set between upper and lower boundaries is stated as

min
p

f (p) ,

pl ≤ p ≤ pu . (56)

where the objective function f(p) = [ fσ , fx ] includes two separated objectives. Here, parameter sets p =
[p1, p2, . . . , pn]T laying on the Pareto front are identified with the following weighted objective functions

fσ (p ) :=
s∑

j = 1

c j

m∑
i = 1

(
σ̄i − σi ( x(p ) )

‖ σ̄‖
)2

j
and

fx (p ) :=
m∑

i = 1

(
x̄i − xi ( p )

‖x̄‖
)2

. (57)

where σ̄i and x̄i are the stress and the crystallinity index obtained from the experiment, and σi (p) and xi (p)
are the stress and crystallinity index computed by the model, respectively. Furthermore, the stress response
is divided into s different parts, which are weighted with c j to emphasise the importance of certain parts of
the stress response, such as the characteristic plateau exemplary. The advantage of the Pareto front approach
is that many parameter sets are available for selection from the Pareto front. This multiobjective optimisation
allows treating the objectives separately. On the other hand, the parameter set presented in this work is a
compromise between these two objectives: stress and crystallinity. There is no indication that the presented
parameter set is the global optimum within the set boundaries. Certainly, the boundaries were selected such
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Fig. 17 Simulation of a uniaxial tensile test: total stress over total stretch using 21 directions

that no parameter never lies on any boundary. The usage of the multiobjective optimisation is also motivated by
the available experimental data for the crystallinity index. It is measured as the ratio of intensities of scattered
electromagnetic waves in the reciprocal lattice. For further information on WAXS the reader is referred to
[9, p.64f] and [10, p.66]. On the contrary, the simulated crystallinity is defined by a ratio of lengths, which
is consequently related to the volume, cf. Eq. (2). Thus, the equality of the modelled and the experimental
remains unsure.

5.3 Evaluation and comparison to experimental data

The simulation results are showngraphically in Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26. The identifiedmaterial
parameters are shown in Table 1, where the set in the column ‘3D serial model’ is valid for this subsection. The
abbreviations 1D and 3D refer to the usage of the concept of representative directions. In the former published
model (parallel model), directional values were presented (1D). Therefore, four parameter sets are presented
in total to make a complete comparison. The experiment and the simulation are both conducted isothermally
at θ = 300 K, which results in a constant value for β (θ, . . .) ≥ 0. The simulation results are compared to
experimental data of Candau [10].

To begin with, the total stress response over total stretch is shown in Fig. 17, which show high concordance
with the experimental data. Also, the crystallinity response in Fig. 18 satisfies the experimental data most
satisfactorily. The details will be explained in the latter comparison, although it can already be said at this
point that the results obtained are gratifying.

First of all, the analysis is dedicated to the individual directions. The single stretches, stresses and crys-
tallinities of each direction are shown in Figs. 19, 20, 21, 22, 23, 24, 25, 26, where the non-weighted and
weighted values are presented. The direct comparison of non-weighted and weighted stretches in Figs. 19 and
20 visualises the influence of the weights within the concept of representative directions. Since the weights sum
up to 1,

∑N
α=1 wα = 1, it follows that only the non-weighted values represent real values in micro-mechanical

manner. The averaging scheme makes the weighted and therefore reduced values only interpretable in a qual-
itative manner.

Since the number of one direction is not dedicated to the location in the unit sphere, Fig. 21 is key to the
three dimensionality and visualises the concept of representative directions. The directional values are shown in
the nodes and interpolated in between with a colour bar. The direction parallel to the stretching direction is the
one with maximum stretch, which equals the total stretch, whereas the directions orthogonal to the stretching
direction experience compression due to transverse deformation. The surrounded directions decrease radially
to the stretching direction. The visualisation in Fig. 22 shows the directional stretches using 900 integration
points by [19].
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Fig. 18 Simulation of a uniaxial tensile test: total crystallinity over total stretch using 21 directions

Fig. 19 Simulation of a uniaxial tensile test: single stretches of 21 directions over time

Fig. 20 Simulation of a uniaxial tensile test: single stretches of 21 directions including weights over time
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Fig. 21 Simulation of a uniaxial tensile test: directional stretches in the unit sphere, 21 integration points by [4]

Fig. 22 Simulation of a uniaxial tensile test: directional stresses in the unit sphere, 900 integration points by [19]

For stress and crystallinity, the same analysis is shown in Figs. 23, 24, 25, 26, 27, 28. Since the third
direction is the most stretched one, it shows the highest stress (Fig. 23) and the highest crystallinity evolution
(Fig. 25).Other directions showcompression in stress,whereas the evolution of crystallinity is not influenced by
compression, which follows experimental results. Another point is that no stress hysteresis occurs in directions,
which are stretched below the critical stretch for SIC. In these directions, the crystallinity does not evolve either.
Figures 28 and 27 show the spheric plots. In terms of the stress presented in Fig. 27, the high nonlinear upturn
of the stress is the reason for the point of maximum stress on the tip. The reader is referred to the legend that
reaches from 0 to 2.1 MPa. In terms of crystallinity in Fig. 28, it is confirmingly observed that crystallinity
only occurs at high deformations.

To analyse mechanic consistency, the free energies ψ̂a, ψ̂n, ψ̂a , including the strain energies
ϕ̂a(λ̂a), ϕ̂n(λ̂n), ϕ̂c(λ̂c) given in Eqs. (24–26) are presented in Fig. 30. They satisfy the polyconvexity. The
polyconvexity of the free energy is one of the physical boundary conditions. The free energy approaches to the
infinity as λ̂ decreases to zero: lim

λ̂ν→0
ψ̂ν = +∞, ν = [a, n, c]. This mandatory aspect for mechanic consis-

tency of the model is therefore satisfied. The same behaviour is observed at high stretches, where infinite high
energy is reached: lim

λ̂ν→+∞
ψ̂ν = +∞, ν = [a, n, c]. The requirement of polyconvexity, i.e. the convexity of

the free energy function in each argument, is detailly depicted in the thesis of Doll [18, p.32-38].
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Fig. 23 Simulation of a uniaxial tensile test: single stresses σ̂α of 21 directions over global stretch

Fig. 24 Simulation of a uniaxial tensile test: single stresses σ̂α of 21 directions including weights over global stretch

Fig. 25 Simulation of uniaxial tensile test: single crystallinities of 21 directions over global stretch
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Fig. 26 Simulation of uniaxial tensile test: single crystallinities of 21 directions including weights over global stretch

Table 1 Selected material parameters derived through optimisation and used in the simulations

Parameter 1D parallel 3D parallel 1D serial 3D serial Unit

Material model: extended tube, neo-Hooke and Yeoh type
Gc 0.1392 0.5189 0.1996 0.6300 106 Pa
Ge 0.2545 0.6779 0.1441 0.4712 106Pa
δ2 0.0190 0.0231 0.0201 0.0218 –
β 1 1 1 1 –
μ 0.2914 0.5710 – – 106 Pa
C1 – – 0.3243 · 106 0.3923 · 106 –
C2 – – −0.7899 · 104 −1.6530 · 104 –
C3 – – 122.3060 897.79 –
Crystallinity evolution
x0 0.5152 0.5177 0.4350 0.9218 –
M 0.0060 0.0038 0.0040 0.0029 m3/mol
β (θ = 300, ...) 1.4235 1.1296 1.0337 1.9572 10−10

Free energies, amorphous/crystalline phase
ψ0a 9.3867 2.869 6.3270 5.1421 106 J/kg
ψ0n - - 0.3713 0.9635 106 J/kg
ψ0c 1.8000 6.8305 1.4172 3.2608 106 J/kg
s0a 1.3664 0.9581 0.9329 1.1348 105 J/(kg θ)
s0n – – 0.0378 0.2655 105 J/(kg θ)
s0c 0.3000 0.4123 0.1524 0.4184 105 J/(kg θ)
θG 210 210 210 210 K
θB 300 300 300 300 K
Empirical exponents
m 2.23 2.50 1.72 1.33 –
n 1.38 1.38 2.80 2.69 –
k – – 1 1.30 –

The parameters ‘1D parallel’ were first published in [42]

5.4 Model validation

The constitutive model is validated via two different deformation processes, where the material’s time depen-
dence is analysed. The material’s relaxation behaviour in a one-step relaxation and two-step relaxation with
decreasing stretch is investigated. For both experiments, videoextensometry is used to identify the exact stretch,
which differs from the machine input due to sample clamping. For higher accuracy, the stretch measured via
videoextensometry was 2.2% less at themaximum stretch. In the relaxation experiments, the stretch rate during
loading and unloading is λ̇ = 0.0261

s , which is higher in comparison with the stretch rate of λ̇ = 0.00421
s for

the cycles shown in the simulations of the former Sect. 5.3. Since the model is rate dependent, deviations in
stress and crystallinity are to be expected.
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Fig. 27 Simulation of uniaxial tensile test: directional stresses in the unit sphere

Fig. 28 Simulation of uniaxial tensile test: directional crystallinities in the unit sphere

Fig. 29 First derivative with respect to the stretch of single phases in dependence of single stretches. Mandatory for the proof of
mechanical consistency
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Fig. 30 Free energies of single phases in dependence of single stretches. All free energies show polyconvexity

Fig. 31 Validation: Simulations of relaxation tests with different maximal stretches vs experimental results published in [42]

5.4.1 Stress relaxation at a constant stretch, one-step relaxation

Thegiven experiments are published in [42]. First of all, the simulations shown inFigs. 31 and34 cover the stress
relaxation qualitatively. In the following, a few characteristics are accentuated. First, the high concordance of
the simulation and the experiment for amaximum stretch of λmax = 3 should be highlighted, where small stress
relaxation is observed, i.e. 2.5% stress relaxation from maximum stress. Second, at the stretch of λmax = 6,
the simulation shows faster stress relaxation than the experiment. In the simulation, the equilibrium stress
is reached earlier. Moreover, the absolute and relative value of the amount of relaxed stress is lower in the
simulation. The simulation covers stress relaxation due to SIC.

5.4.2 Stress relaxation at a constant stretch, two-step relaxation

Another experiment is conducted to clearly distinguish between stress relaxation when the sample is stretched
below or above the critical stretch of crystallisation onset. A two-step relaxation is conducted starting at a
constant stretch of λI = 6 with a relaxation time of 6 hours, unloading directly to a second step at λII = 3
for another 6 hours. The simulation of the stress response is shown in Figs. 33 and 34. Starting with Fig.
33, the stress highly agrees with the experiment. Especially at the second step, it excellently agrees with the
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Fig. 32 Validation: Simulations of relaxation tests with 2 steps λI = 6 and λII = 3

Fig. 33 Validation: Simulations of relaxation tests with two steps λI = 6 and λII = 3

Fig. 34 Validation: Simulations of relaxation tests with two steps, Zoom at second step λII = 3
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Fig. 35 Simulation of uniaxial tensile test: stress over total stretch for one-dimensional implementation

experiment. In contrast, the stress relaxation in the first step shows similar characteristics as discussed in the
former subsection: The equilibrium stress is reached earlier in time, and the relative and absolute amount
of relaxed stress is smaller in the simulation compared to the experiment. In particular, with the help of
the close up of the second step shown in Fig. 34, it is observed that stress reaches the equilibrium directly
after unloading to the constant stretch of the second step. This increase in the stress is in parallel with the
experimental data, showing that the proposed model captures two-step relaxation experiments. In addition,
the crystallinity simulation of the two-step relaxation presented in Fig. 32 is in agreement with the kinetics
of SIC. Crystallinity evolves during the first step, where stress relaxation takes place. In contrast, crystallinity
vanishes during the second step, where the stretch lies below the critical stretch of crystallisation onset, and
stress relaxation is absent. The reader is referred to [10,55] for similar experimental data.

5.5 Evaluation and comparison to the parallel model

In [42], a concept to model strain-induced crystallisation was presented using a parallel connection of three
phases. Since the simulation results in [42] only covered the 1D approach, both models (parallel and in-series
connection) are first compared with each other in 1D. This helps to understand the micro-to-macro transition.
Further in this subsection, both models are compared with their 3D results. The micro-sphere approach of
the parallel model is successfully implemented, as proposed in the outlook of Loos et al. [42]. All identified
parameters are presented in Table 1 for an effortless comparison. The 1D results are shown in Figs. 35 and 36,
whereas the 3D results are presented in Figs. 37 and 38. Concerning the simulation results, one detail has to
be mentioned: the comparison follows from separately identified parameter sets, which produce unique results
as the parallel model and the serial model are different from each other and the parameters result from the
optimisation approach explained in Sect. 5.2. The experimental data from Candau [10] are used as guidance
for the reader.

The stress stretch and the crystallinity stretch graphs have several characteristics:

Capture of the amorphous stress response In the undeformed state, all the material is composed of the
amorphous phase. Therefore, the material’s stress response in the beginning of a uniaxial tension experiment
is totally covered by the amorphous phase. The parameters of the amorphous phase are identified by stretching
thematerial less than the critical stretch of crystallisation onset λcritical ≈ 4.3. This almost linear loading path is
captured perfectly for the presented unfilled NR. The main parameters, which influence the behaviour for low
stretches, are the shear moduli of the crystallisable amorphous phase Ge,Gc, excluding the δ since it mostly
influences the nonlinearity of stress at high stretches. The reunion of the unloading path with the loading path
takes place at λ = 3, which underlines the absence of classical viscoelastic effects in this unfilled natural
rubber. Another evidence is that the specimen does not lengthen during the slowly conducted tensile test, i.e.
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Fig. 36 Simulation of uniaxial tensile test: crystallinity over total stretch for one-dimensional implementation

Fig. 37 Simulation of uniaxial tensile test: stress over total stretch for three-dimensional implementation

Fig. 38 Simulation of uniaxial tensile test: crystallinity over total stretch for three-dimensional implementation
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Fig. 39 Simulation of uniaxial tensile test: directional stresses in the unit sphere, parallel model

no recovery time is needed to return to its initial length. All presented data capture the amorphous response,
where the one-dimensional results fit precisely, and the three-dimensional results vary slightly, which is caused
by the integration over all directions.

Capture of the stress plateau As the amorphous phase relaxes short after the onset of crystallisation, the onset
of crystallisation results in a stress relaxation, which is depicted in the plateau of the stress response close to
λcritical ≈ 4.3 in the experimental results in Figs. 35 and 37. The authors see a correlation between the capture
of the plateau and the shape of the hysteresis. Therefore, the benefit of the presented models is the ability to
capture this stress decrease at crystallisation onset.

Capture of the nonlinear upturn of the stress response The nonlinearity of the stress response is influenced
by the nonlinearity of the material models. For the in-series connection, a Yeoh-type model is used for the
crystalline phase with its parameters C1,C2,C3. As the amorphous phase modelled by the extended tube
model, the parameter δ mostly influences the nonlinearity upturn, which refers to an inextensibility parameter
[32]. The higher this parameter, the higher is the nonlinearity upturn.

Capture of the area of the stress hysteresis The model is able to capture the area of hysteresis. The difference
between loading and unloading is due to the crystallisation evolution. The area of the hysteresis gives evidence
to the work per unit volume done during the cyclic test. In all simulations, the area of the hysteresis of the
stress response is captured with high accordance.

Capture of the crystallinity shape First of all, when it comes to the comparison of the simulations with
experiments in Figs. 35 and 38, the discrepancy between the crystallinities is qualitatively higher than the small
discrepancy between the stresses. This underlines a behaviour observed during the derivation of the model:
the concordance between stress and crystallinity response is of minor size, which motivates the introduction
of the empirical parameters m, n, k similar to [42], cf. Section 3.3.1 first seen in the Helmholtz free energy
in Eq. (21). In the current study, the main focus lies on the capture of the stress response, including its
hysteresis. As mentioned in Sect. 5.2, it cannot be ensured that the experimental and the simulated crystallinity
indices are identical. Thus, the good concordance in shape and hysteresis of the crystallinity is pleasant. The
characteristics of the crystallinity response can be structured with the help of three aspects: first, the stretch
at crystallisation onset is higher for the 3D serial model in comparison with the 3D parallel model in Fig. 38.
Second, the beginning of the unloading path shows varying rates of increase in the crystallinity, depending on
the material parameters. In dependence of the material composition and the kinetics of crystallinity evolution,
the stress decreases, but the crystallinity can decrease [10, p.193] or increase [10, p.236]. Third, the qualitative
representation of the shape, including the area of the crystallinity hysteresis is of interest. The simulations
demonstrate that the 3D simulations provide better results for the crystallinity in comparison with the 1D
simulations. Moreover, the 3D parallel model and the 3D serial model vary slightly in terms of crystallinity,
but they have a similar behaviour depending on the material parameter.
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Fig. 40 Simulation of uniaxial tensile test: directional crystallinities in the unit sphere, parallel model

Concerning the spherical plots of the parallel model in Figs. 39 and 40, the similarity to the serial model
is underlined. The exact values are less obvious in comparison with Figs. 37 and 38, where the reader is likely
to concentrate on small differences between experiment and simulation. Both models have similar capabilities
to simulate the experimental data.

6 Conclusion and outlook

A thermomechanical approach to model strain-induced crystallisation is presented in continuation of [42].
The here presented formulation of a constitutive model is based on serial connection of three different phases:
the crystallisable amorphous phase, the non-crystallisable amorphous phase and the crystalline phase. The
stretch relation proposed by Flory [20], which is based on a two-phase approach, is contained as a special case
(x0 = 1). Flory’s theory and its in-series connection are taken up by Albouy & Sotta [1,57] exemplary.

The derivation of the serial approach is stated in detail from basic considerations such as multiplicative
split of the deformation gradient and the concept of the hybrid free energy. Thermodynamic consistency is
used to derive the constitutive equations. The model is evaluated via special cases such as infinitely fast
and slow excitations. These evaluations prove physical and mechanical accuracy. Suitable parameter sets are
identified using a multistep optimisation method. Within the simulation, ODEs of the first order were solved.
The simulations show high agreement with experimental data. To validate the model, two approaches of
stress relaxation are simulated, which both show high qualitative concordance with the experimental data.
Finally, a complete and comprehensive comparison is made. First, the current model using serial connection
is compared for one direction to the former model using parallel connection of phases. Second, the three-
dimensional simulations of both models are compared since they are equivalent to the experimental data. All
in all, the parallel model and the serial model provide similar performance, although the parallel model has
one evolution equation compared to three evolution equations of the serial model. All shown simulations cover
the experimental data in high concordance in shape and absolute values. The models depict the viscoelastic
behaviour of the material depending on the degree of deformation. They also represent cyclic processes
precisely and simulate the development of SIC, including its hysteresis behaviour. Themodels are characterised
by their simplicity. They do not make use of artificially introduced case distinctions, which could, for example,
distinguish between loading and unloading.

Since all conducted simulations show isothermal results, the implementation of the equation of heat con-
duction is left for future works, which is of high interest since the phenomenon of strain-induced crystallisation
is highly exothermal. Future studies could include filled NR, whereas the current study focuses on unfilled
NR.

The evolution equations with internal variables developed here are similar to the theory of viscoelasticity
with internal variables, but are not connected.
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