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Abstract
The predictive simulation of gas–liquid multiphase flows at industrial scales reveals the 
challenging task to consider turbulence and interfacial structures, which span a large range 
of length scales. For simulation of relevant applications, a hybrid model can be utilised, 
which combines the Euler–Euler model for the description of small interfacial structures 
with a volume-of-fluid model as a scale-resolving multiphase approach. Such a hybrid 
model needs to be able to simulate interfaces, which are hardly resolved on a coarse 
numerical grid. The goal of this work is to improve the prediction of interfacial gas–liquid 
flows on a numerical grid with comparably large grid spacing. From the low-pass filtering 
of the two-fluid model five unclosed sub-grid scale terms arise. The convective and the 
surface tension part of the aforementioned contributions are individually modelled with 
multiple closure formulations. Those models are a-posteriori assessed in cases of two- and 
three-dimensional gas bubbles rising in stagnant liquid. It is shown, that the chosen closure 
modelling approach is suitable to improve the predictive power of the numerical model 
utilised in this work. Hence, simulation results on comparably coarse grids are changed 
towards results obtained with higher spatial resolution.
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1 Introduction

In a large number of applications and processes, e.g., in renewable energy, mining, pro-
cessing or nuclear power industry, gas–liquid multiphase flows have a major impact on 
system performance and reliability. In particular, interactions between interfacial and tur-
bulent dynamics in the contact region between individual immiscible phases are of great 
importance as they significantly influence the behaviour of the whole system. In order to 
develop and improve these processes in terms of safety and efficiency, a way for reliably 
predicting actual physical occurrences at industrial scales with numerical tools is urgently 
needed. The choice of a method has always been a trade-off between the claim for preci-
sion and computational expenses. In recent years a strong trend towards hybrid multiphase 
models is observed, where interface resolving approaches are combined with ones, that 
describe interfacial structures in a statistical manner. The long-term objective is to simulate 
both large and small features of interfaces appropriately and to switch between different 
types of flow description depending on the actual type of flow. For this purpose, Hänsch 
et  al. (2012) proposed a hybrid model, which involves an algebraic volume-of-fluid-like 
approach and the Euler–Euler model for the description of large-scale and small-scale 
interfacial structures, respectively. This concept is entirely formulated in the spirit of the 
multifield two-fluid model, which forms the mathematical basis for the Euler–Euler model 
(Drew and Passman 1999). Under the condition of strong interfacial coupling, the two-
fluid model behaves like the one-fluid model by equalising all phase-specific velocity fields 
(Yan and Che 2010). Meller et al. (2021) apply compact momentum interpolation (Cubero 
et al. 2014) and interfacial drag coupling (Štrubelj and Tiselj 2011) to the hybrid model of 
Hänsch et al. (2012). This numerical framework forms the basis for the present work. It 
is noted that the term multifield two-fluid model expresses the applicability to multiphase 
flows rather than being restricted to two-phase flows (Meller et al. 2021). Even in the case 
of the presence of two distinct physical phases, different multiphase morphologies are han-
dled by means of individual sets of equations, hence, the term multifield. Such situations 
are beyond the scope of the present work.

Both ways to describe multiphase flows—Eulerian–Eulerian (E–E) and algebraic vol-
ume-of-fluid modelling (VOF)—are based on different assumptions regarding the ratio of 
length scales of interfacial structures, e.g., representative bubble diameter Db , and spac-
ing of the computational grid Δx . In the first case, dispersed structures, such as bubbles, 
droplets or particles, are modelled to be much smaller compared to the size of a grid cell 
and vice-versa for the second case. Besides a schematic of both model descriptions, com-
bined in the hybrid multiphase model, Fig. 1 shows their respective positions on the axis of 
length scale ratio Db∕Δx . It turns out, that there is a gap in the applicability of underlying 
assumptions of the basic multiphase methods in the range of 100 ≲ Db∕Δx ≲ 101 . Aim-
ing at a fully applicable hybrid multiphase model, a description of interfacial structures of 
every size, based on legitimate requirements, is crucial. The present work focuses on the 
representation of coarsely resolved interfacial and turbulence structures via algebraic VOF.

For this particular purpose, the concept of large-eddy simulation (LES) has been 
expanded to multiphase flows in the context of the one-fluid model several times in the 
past: Most often spatial low-pass filtering of governing equations (Sagaut 2006) forms 
the theoretical basis for this type of simulations. This procedure gives rise to numerous 
different unclosed terms in the so-called filtered Navier–Stokes equations. The influ-
ence of those terms has been assessed with a-priori investigations (Labourasse et  al. 
2004, 2007; Toutant et  al. 2006, 2008, 2009a, b; Vincent et  al. 2008; Larocque et  al. 
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2010; Chesnel et  al. 2011; Liovic and Lakehal 2007a; Ketterl and Klein 2016, 2018; 
Klein et al. 2019; Mimouni et al. 2017; Hasslberger et al. 2020; Saeedipour et al. 2019a; 
Saeedipour and Schneiderbauer 2019). In only a few investigations model formulations 
for those unclosed terms have been applied in actual multiphase simulations for a-pos-
teriori model assessment (Liovic and Lakehal 2007a, b, 2012; Saeedipour et al. 2019a, 
b; De Villiers et al. 2004; Aniszewski et al. 2012; Herrmann 2013, 2015; Ketterl et al. 
2019). All of the previously listed investigations have been carried out in the context of 
the one-fluid formulation. In contrast, Fleau (2017) and Mimouni et al. (2017) adopted 
the spatial low-pass filter formalism to multifield two-fluid models. Schneiderbauer 
(2017), Cloete et al. (2018) and Sarkar et al. (2016) apply a similar approach of filtering 
the two-fluid model to gas-sold flows. In those investigations, the focus is on the sub-
grid interfacial drag force in the frame of dispersed flows.

In the present work different closure models for sub-grid scale terms are applied 
to gas–liquid multiphase flows considering single rising bubbles with the hybrid mul-
tiphase model mentioned above (Meller et al. 2021). The focus of the present work is 
to create a basis for sub-grid scale modelling in the context of the filtered multiphase 
two-fluid model equations. It is the goal to improve the prediction of gas–liquid interfa-
cial flows with coarse computational grids. For this purpose, the basic equations and the 
modelling strategy are given in Sect. 2 including closure formulations for unclosed con-
vective and surface tension sub-grid scale (SGS) terms being reviewed and adapted to 
the present framework. The numerical method is briefly discussed in Sect. 3. Simulation 
results of applied SGS closure models together with detailed discussions are presented 
in Sect. 4 considering two- and three-dimensional rising gas bubbles in stagnant liquid. 
The work is finally concluded in Sect. 5.

2  Modelling

2.1  Basic Equations

The hybrid multiphase model is based on the multifield two-fluid model equations 
(Drew and Passman 1999). The methodology of spatial low-pass filtering is applied to 
this equation system, which is realised with a convolution integral (Labourasse et  al. 
2007; Sagaut and Germano 2005):

Db
∆x

10−1

Db

∆x

100 101 102

E-E VOF?

Fig. 1  Range of scales of interfacial structures in relation to spatial resolution for a hybrid multiphase 
model
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The variable � represents a general scalar, vector or tensor field quantity. Mimouni et al. 
(2017) and Fleau (2017) present the application of this formalism to the multifield two-
fluid model, which results in the filtered multifield two-fluid model equations. Under the 
assumption, that density and molecular viscosity are constant for each individual phase � , 
this includes conservation equations of phase volume fraction r�

and momentum

Linearity of the filter operation as well as a negligible commutation error of derivation 
and filtering are assumed. Einstein summation convention applies wherever two identi-
cal indices occur in a single term. Phase-specific density, molecular viscosity and velocity 
are denoted with �� , �� and �� , respectively. Pressure p is shared between all phases. This 
assumption is fundamental to the formulation of a single pressure equation. This differ-
ential equation is derived from mass conservation of the fluid mixture and phase-specific 
momentum equations, which are weighted with the phase volume fraction r� (Ferziger 
et al. 2002). The gravitational force is � . Surface tension force is modelled as a continuum 
surface force according to Brackbill et al. (1992). For a pair of phases � and � the sym-
bols ��� , �|S�� , �|S�� and �|S

��
 denote the surface tension coefficient, interface-Dirac function, 

interface curvature and interface normal vector, respectively. The interfacial drag force act-
ing on phase � is denoted by �D

�
 . The filtered strain rate tensor is defined as

Due to the filtering procedure sub-grid scale (SGS) contributions appear. Those terms are 
similarly named as in the work of Ketterl and Klein (2018), who applied the spatial low-
pass filtering to the one-fluid model:
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It is worth noting, that each individual one of the five SGS terms is affected by the fil-
tered gradient of phase fraction r� , which appears in the interface region. Therefore, all 
SGS contributions are to be expected in two-phase flows. While the classical SGS stress, 
as known from single-phase flows, is purely sensitive to gradients in the velocity field, the 
corresponding SGS convection term additionally considers filtered phase fraction gradi-
ents. Hence, an SGS convection contribution is not limited to turbulent flows but appears in 
(under-resolved) laminar two-phase flows as well.

In regimes of large-scale interfacial structures, different phases must not interpenetrate 
each other. In order to reproduce such dynamics with the underlying multifield two-fluid 
model, an interfacial no-slip condition is enforced via the drag model formulation of 
Štrubelj and Tiselj (2011):

with mixture density

Relaxation time �r is chosen to be several orders of magnitude smaller compared to the 
numerical time step size Δt . If the interfacial drag coupling is very strong, the behaviour of 
the one-fluid model will be recovered (Yan and Che 2010; Meller et al. 2021) equalising 
all fields of phase-specific velocities. Therefore, index � specifying the phase of a phase-
specific velocity will be skipped, when investigating velocity fields in simulation results. 
The fluid dynamics are mathematically described within the two-fluid model at any time. 
Due to the drag coupling described above, both individual momentum equations effectively 
collapse onto each other delivering an identical behaviour, which is identical to the homo-
geneous model. Hence, the numerical method can be described as an algebraic volume-of-
fluid-like method.

2.2  Sub‑grid Scale Modelling

The aforementioned five unclosed SGS terms are present for each individual phase � . Via 
an a-priori model analysis considering primary atomisation of a liquid jet, Ketterl and 
Klein (2016) estimated the contribution of SGS convection to have the strongest influ-
ence among all present SGS terms. However, the absolute value for the resulting force of 
the SGS surface tension contribution is comparably small. According to Herrmann and 
Gorokhovski (2008), the contribution of this unclosed term might nevertheless be of great 

(5)

SGS convection: �ruu,�,ij = r�u�,iu�,j − r�u�,iu�,j,

SGS diffusion: �rS,�,ij = r�S�,ij − r�S�,ij,

−r��������|S��n|S��,i,
SGS surface tension: �rnn,��,i = r��������|S��n|S��,i
SGS interfacial term: �ru,�,i = r�u�,i − r�u�,i,
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importance due to its dependence on interface curvature. For these reasons, the present 
work focuses on the investigation of closure models for both SGS convection and the SGS 
surface tension.

2.2.1  Convective Sub‑grid Scale Term

This unclosed term is object of numerous investigations since many decades and different 
modelling strategies have proven to be reasonable, such as functional and structural mod-
elling. All model formulations addressed in this section are originally formulated in the 
context of the one-fluid model. They are adapted to the multifield two-fluid formulation by 
accounting for the filtered phase volume fraction r� . Some convective SGS closure models 
rely on the filter length Δ . In the course of this work, this length scale is estimated to be 
Δ ≈

√
ACV or Δ ≈ 3

√
VCV in two- and three-dimensional space, respectively. The surface 

area of a control volume is referred to as ACV and VCV denotes its volume.
Functional models for the closure of the convective SGS term usually attempt to mimic 

contributions of non-resolved exchange of momentum by increasing viscosity. The most 
prominent SGS model of such type is the one proposed by Smagorinsky (1963), hereaf-
ter denoted as SMAG. Another SGS closure model of eddy-viscosity type is the sigma 
model (SIG) proposed by Nicoud et al. (2011). Due to its ability to generate zero eddy-vis-
cosity for two-dimensional or two-component flows, as well as for axisymmetric and iso-
tropic compressions/expansions it delivers the proper cubic behaviour in near-wall regions 
(Nicoud et al. 2011). Formulations for all individual closure models, which are subject to 
this section, are listed in Table 1.

In contrast, structural models aim at the estimation of all individual elements of the 
convective SGS stress tensor. Clark et al. (1979) proposed the gradient model (GM), which 
is based on the idea, that SGS structures of the velocity field may be approximated by 
unfolding the filtered field via the leading term of a Taylor-expansion. The model has been 
extended by Ketterl and Klein (2018) to take varying fluid properties due to spatial dis-
tribution of multiple phases into account and therefore is called extended gradient model 
(EGM). Approximation of SGS structures via a test filter operation ̌(⋅) has been proposed 
by Liu et  al. (1994) and, as it is based on the assumption of scale-similarity (Bardina 
et al. 1980), is denoted as scale-similarity model (SSM). The test filter is realised as the 
so-called simple filter (The OpenFOAM Foundation Ltd. 2020), which is constructed as a 
linear interpolation of values from cell centres to cell faces and back via a surface integral, 
weighted with the surface area of individual cell faces.

Contrary to most functional models, which increase effective viscosity and therefore 
act dissipatively, the proposed structural models may allow for anti-dissipative behaviour 
(Bardina et  al. 1980). Although this might correctly describe physical processes, it may 
be harmful to the stability of the numerical procedure (Anderson and Domaradzki 2012). 
In order to counteract this drawback, Bardina et al. (1980) linearly combined a structural 
model with a functional model, SMAG in this case. Hereafter, resulting model combina-
tions are called mixed model (M-mod-SMAG). Generally, mixed models can be a com-
bination of structural models with different individual eddy-viscosity type models, which 
would also allow for a combination with SIG. It turns out that the models SMAG and SIG 
reveal nearly identical results in the investigations carried out in the course of the present 
work. In order to limit the number of model combinations, mixed models are purely formu-
lated with SMAG as eddy-viscosity model formulation.
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Apart from linear combination with functional models, Kobayashi (2018) proposed 
a regularisation procedure, which is based on the idea to use arbitrary structural models 
�
mod
ruu,�

 , while preventing anti-diffusion. This modelling approach is modified by Klein et al. 
(2020) to be applicable without solving a transport equation for turbulent kinetic energy 
and is referred to as KOB. Additionally, Klein et al. (2020) proposed a simplification of the 
regularisation originating from the concept of adding just the right amount of dissipation in 
case the structural model itself delivers anti-dissipation. In this way the net energy transfer 
is set to zero, whenever anti-dissipation is detected. The latter formulation is denoted with 
KL.

2.2.2  Surface Tension Sub‑grid Scale Term

Analogous to the convective SGS stress, functional as well as structural modelling 
approaches have been proposed for approximation of the force resulting from SGS surface 
tension. The application of the scale similarity concept to this unclosed term is formu-
lated in terms of explicit volume filtering. In contrast to that, the test filter could be applied 
based on the concept of surface filtering as well (Hasslberger et al. 2020). However, this 
work focuses on volume-based filtering for the test filter operation. The resulting model 
formulation is proposed by Ketterl and Klein (2018) and is referred to as nn-SSM. All SGS 
surface tension closure formulations are listed in Table 2.

Most functional modelling approaches for closure of the convective SGS stress are 
based on the argumentation, that on a computational grid with given spatial resolution only 
a limited effective Reynolds number can be reliably reproduced. Therefore, the viscos-
ity is artificially increased by means of a modelled turbulent viscosity. Ketterl and Klein 
(2018) adapted this formalism to SGS surface tension via the concept of a maximum effec-
tive Weber-number Wecrit below which an interfacial structure is not expected to breakup. 
The condition of a maximum effective Weber-number is ensured via an additional surface 

Table 2  Overview over models for surface tension sub-grid scale term �
rnn,��

Models and model combinations, which will be finally assessed in this work are marked with bold letters. 
The new model combination is indicated with a black frame

Structural model

nn-SSM (Ketterl et al. 2019)

�nn-SSM
rnn,��,i

= 
r𝛼𝜎𝛼𝛽

(
̌(

𝛿|S
𝛼𝛽
𝜅|S

𝛼𝛽
n|S

𝛼𝛽,i

)
−

̌
𝛿|S

𝛼𝛽
�̌�|S

𝛼𝛽
ň|S

𝛼𝛽,i

)

Functional models
(Ketterl et al. 2019)
Weber-Number model

�We−mod
rnn,��,i

= r��We−mod
SGS,��

�|S
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�|S
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�|S

��
,

�We−mod
SGS,��
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(
���|���|2Δ2|||�|S��

|||
Wemod

crit

− ��� , 0

)

WE-KE (Ketterl et al. 2019) WeWE-KE
crit

= 2.76 (Miksis 1981)

�� − �� (
1

WeWE-Re
crit

) 10

9

=
 

(
1

2.76

) 10

9

+

(
1

0.247Re
3
4
loc

) 10

9

 (Ryskin and Leal 1984),

present work
Reloc =

|���|Δ
���
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tension coefficient �SGS,�� , which relies on the volume fraction weighted velocity ��� of 
phase pair �� . This quantity is determined analogously to Eq. (7). The quantity �SGS,�� is 
based on the definition of a fixed critical Weber-number, which was originally assumed to 
be Wecrit = 10 for liquid droplets in gas (Ketterl and Klein 2018). For gas bubbles in liq-
uid Miksis (1981) proposed a value of Wecrit = 2.76 . As it will turn out later, this require-
ment is too weak to deliver any significant model influence in the cases under investigation. 
Hence, smaller values will be assumed for Wecrit as well. In favour of numerical stability, 
the Weber-number model is reformulated in such a way, that 

1. The formulation is based on the mixture density ��� of a given phase pair �� (see 
Eq. (7)), and

2. The effective surface tension coefficient is defined to be the maximum of its molecular 
value and the SGS model value: �eff

SGS,��
= max(��� , �

We−mod
SGS,��

).

Hereafter, the Weber-number model in connection with a fixed critical Weber-number is 
referred to as We-KE.

The critical Weber-number is a model parameter and appropriate values may vary 
among different cases. Therefore, a formulation, which is distinct from a fixed value is 
highly desirable. For this purpose, the functional relationship between Reynolds-number 
and critical Weber-number by Ryskin and Leal (1984) is proposed here to be used in con-
junction with the general approach of the Weber-number model. The local Reynolds-num-
ber Reloc relies on the volume fraction weighted kinematic viscosity ��� of phase pair �� , 
which is also calculated from phase-specific quantities analogously to Eq. (7). The result-
ing model formulation is denoted with We-Re.

3  Numerical Method

The system of differential equations is solved via a finite-volume method on an unstruc-
tured computational grid, where solution variables are stored in the centre position of 
each grid cell. A segregated solution procedure is used including a projection method for 
pressure-velocity coupling. All terms are spatially discretised with second order accuracy 
including flux limiting schemes (Hirsch 1990) for the convective terms of both phase frac-
tion and phase-specific momentum transport equations. The transient terms are discre-
tised first order explicitly and implicitly in phase fraction equations and in phase-specific 
momentum transport equations, respectively. Thus, the overall solution procedure is char-
acterised by semi-implicit discretisation in time.

With an algebraic volume-of-fluid-like method as it is utilised in this work, gradients 
of fields, e.g., of phase fraction r� , are by definition finite in regions of resolved interfaces. 
Nevertheless, magnitudes of gradients of field quantities may become very large. In order 
to accurately capture this in a simulation, while maintaining numerical stability the com-
pact momentum interpolation (CMI), which is proposed by Cubero et al. (2014) is applied. 
From interfacial drag coupling via the drag model, described in Sect. 2.1 results a strong 
coupling between momentum equations of individual phases and, hence, a high stiffness of 
the resulting coupled system of equations. For segregated solution algorithms this implies 
a bad convergence rate over iterations. In order to overcome this drawback, the partial 
elimination algorithm (Spalding 1981) is employed.
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The implementation is realised in the framework of the multiphaseEulerFoam solver, 
which is part of the C++ software library OpenFOAM (The OpenFOAM Foundation Ltd. 
2020). Details on the numerical model as well as the public source code are provided by 
Meller et al. (2021) and Schlegel et al. (2021), respectively.

4  Simulation Results

The goal is to identify SGS closure models, which allow for improved predictions of inter-
facial flows on coarse numerical grids. Hence, the obtained simulation results shall ideally 
be similar to ones, which are obtained on grids with higher spatial resolution.

Both test cases considered in this work are characterised by the liquid phase being stag-
nant, which results in a zero turbulence intensity of the liquid flow approaching the gas 
bubbles. Hence, the SGS closure models react to the implicitly filtered interfacial region 
and the attached velocity boundary layers rather than turbulent eddies of chaotic nature. 
The numerical setups for both test cases are provided by Hänsch et al. (2021) and can be 
executed with the public source code (Schlegel et al. 2021).

4.1  Convective Sub‑grid Scale Term

4.1.1  Three‑Dimensional Rising Gas Bubble

The test case under investigation considers a single three-dimensional gas bubble, which 
rises in stagnant liquid. Material properties and constraints are selected, such that a wob-
bling bubble regime is achieved. The system is characterised by several dimensionless 
numbers: Reynolds number Reg = �LUgDb∕�L , Eötvös number Eo = �L|�|D2

b
∕�GL and 

Morton number Mo = |�|�4
L
(�L − �G)∕(�

2
L
�3
GL
) as well as by ratios of phase-specific den-

sity and kinematic viscosity values. Material properties specific for liquid and gas phases 
are denoted with L and G, respectively, whereas index GL indicates the pair of both phases. 
The gas bubble is initialised as a sphere of diameter Db . Furthermore, gravitational time 
tg =

√
Db∕��� and gravitational velocity Ug =

√���Db are defined. Quantities of length, 
time and velocity are made dimensionless via scaling with Db , tg and Ug , respectively. This 
operation is denoted by (̂⋅) . The corresponding values of all characteristic dimensionless 
parameters for the test case under investigation are listed in Table 3. The cuboid computa-
tional domain of size 4Db × 4Db × 6Db is specified to be bounded by periodic conditions 
in both horizontal directions x and y. At the top of the domain, pure liquid enters with a 
uniform downward velocity uinlet . The bottom boundary is set up to serve as an outlet for 
pure liquid. The gas bubble is initialised with the centre of gravity at the target height, 
which is located in a distance of 2Db to the inlet boundary at the top. The deviation of 
the centre of gravity of the gas bubble from the target height is denoted with ΔZb

 . Via a 

Table 3  Dimensionless 
parameters for test case of three-
dimensional rising gas bubble

Reg Eo Mo �
L
∕�

G
�
L
∕�

G

320 2.5 1.5 × 10−9 100 10
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proportional-integral-derivative (PID) type controller the inlet velocity uinlet = fPID(ΔZb
(t)) 

is manipulated with the control value at time step n:

The controller coefficients for proportional, integral and differential contributions are 
KP = −0.8 s−1 , KI = −0.05 s−2 and KD = −0.2 , respectively. In this way, the bubble main-
tains its original vertical position, such that the aforementioned deviation is negligible. In 
that sense, the gas bubble is simulated in a frame of reference, which is attached to its 
vertical position, similarly to the approach of Fang et al. (2013). Therefore, inlet velocity 
uinlet(t) is identical to the bubble rising velocity Ub(t) . The centre of gravity itself is calcu-
lated via (Chen et al. 2004)

A schematic of the setup is shown in Fig.  2. In order to compare average field quanti-
ties, time averaging ⟨⋅⟩t for the time period 14.38 <�t < �T  is applied. Additionally, field 
variables are averaged over circumferential angle Φ for each radial position r relative to the 
bubble’s centre of gravity (see Fig. 2):

(8)fPID(xn) = KP xn +

n∑
m=1

KIΔt,m xm + KD

xn − xn−1

Δt,n

.

(9)�b =

⎛⎜⎜⎝

Xb

Yb
Zb

⎞⎟⎟⎠
=

∫
Ω

rG� dV

∫
Ω

rG dV
.

(10)⟨�⟩Φ =
1

2�

2�

∫
0

�(Φ) dΦ.

Fig. 2  Overview over test case of 
three-dimensional rising gas bub-
ble with computational domain 
and boundary conditions; the gas 
bubble is shown in a position, 
which vertically deviates from 
this initial height (dashed line)
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Via an averaging procedure with respect to time t and angle Φ , average radial profiles of 
vertical velocity component 

⟨
uz
⟩
t,Φ
(r) are obtained. This is equivalent to mapping the data 

to the lateral position of the bubble’s centre of gravity.

4.1.2  Sensitivity to Spatial Resolution

Prior to the assessment of model influences, the effect of spatial discretisation shall 
be investigated. For this purpose, four different levels of grid refinement are defined, 
namely G1 to G4. The corresponding quantities concerning the number of grid cells, 
grid spacing Δ̂x , time step size Δ̂t and simulated time T̂  are listed in Table 4. In order to 
give an impression of bubble deformation and spatial resolution, Fig. 3 shows the bub-
ble surface in front of the computational grid for refinement levels G1 to G4. First of all 
the focus will be on the trajectory of the centre of gravity. The corresponding curves in 

Table 4  Levels of grid 
refinement and corresponding 
characteristic numerical 
parameters

Refinement 
level

Number of cells Δ̂x Δ̂t T̂

G1 40 × 40 × 60 1/10 3.0 × 10−3 1917
G2 60 × 60 × 90 1/15 2.4 × 10−3 383
G3 120 × 120 × 180 1/30 1.2 × 10−3 154
G4 240 × 240 × 360 1/60 4.8 × 10−4 118

Fig. 3  Side view of the instantaneous bubble surface in front of computational grid for four different grid 
refinement levels
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3D space as well as their projection into the xy-plane are depicted in Fig. 4. Every time 
the gas bubble passes a pair of periodic boundaries, the trajectory is extended to show a 
continuous behaviour. In that way, discontinuities are prevented indicating the jump of 
the bubble centre of gravity from one side of the domain to the opposite one. Hence, the 
horizontal coordinates x̂ and ŷ used for the representation of the bubble trajectory may 
take values, which are formally beyond the bounds of the computational domain. When 
the gas bubble is cut by a pair of periodic boundaries, the centre of gravity is individu-
ally calculated for each gas structure and, subsequently, from those the common value 
is evaluated. Furthermore, the lengths of the different trajectories differ according to the 
individual maximum simulation times T̂  as listed in Table 4. It turns out, that the coarse 
spatial resolution of G1 leads to a zig-zag type rising path with a fixed orientation of the 
lateral movement. With grid level G2 the zig-zag path is still apparent but the orienta-
tion of lateral movements stays fixed only for short sections before it is slightly tiled in 
the z direction. With G3 the gas bubble shows a rather chaotic movement with short sec-
tions of the shape of a flattened helix, whereas a stable flattened helical rise is observed 
with G4. According to Cano-Lozano et al. (2016) the latter type of path is physical for 
the investigated bubble regime. Hence, the data obtained with G4 serve as a reference in 
the course of this work.

Additionally to the trajectory, the bubble rising velocity Ûb is an important charac-
teristic. The corresponding time averaged values are listed in Table 5. As it turns out, a 
zig-zag type trajectory is connected to a lower rising velocity Ûb compared to a chaotic 
path. This trend is visible for refinement levels G1 to G3. For the last refinement step 
from G3 to G4, the resulting averaged rising velocity decreases gently. Hence, the cha-
otic bubble movement reveals the highest bubble rising velocity Ûb among the different 
types of trajectories.

Fig. 4  Trajectories of rising gas 
bubble with different spatial 
resolutions as three-dimensional 
path and as projection into the 
plane ẑ = 0
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Table 5  Temporally averaged 
dimensionless bubble rising 
velocity for different spatial 
resolution

Refinement level
⟨
Û

b

⟩
t

G1 1.022
G2 1.055
G3 1.104
G4 1.087
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The radial profile of vertical velocity component 
⟨
ûz

⟩
t,Φ

 allows for a more detailed look 
into the flow inside and outside the gas bubble as well as across the gas–liquid interface. 
Those distributions are shown in Fig. 5. A nearly uniform downward velocity is observed 
in the liquid flow in locations of large radial distance from the bubble centre of gravity. 
Those values differ slightly for the individual grid refinement levels, which corresponds to 
the different bubble rising velocities discussed above. Nevertheless, the absolute values are 
slightly larger compared to the average inflow velocity. This behaviour results from the 
fact, that a significant portion of the cross section of the computational domain is blocked 
by the gas bubble. In the interface region at r̂ ≈ 0.5 the velocity increases towards the bub-
ble centre of gravity and reaches a global maximum of positive value for all grid level cor-
responding to an internal gas flow, which is directed upwards. For G2 to G4 the value of 
the local velocity maximum reduces with increasing spatial resolution, while the radial 
velocity profile becomes flatter in this region. That implies, that the maximum upward 
velocity rises with larger grid spacing. This trend does not apply to G1 and it is assumed, 
that the grid spacing is just too coarse for an even sharper velocity peak than obtained with 
G2 to be resolved in the bubble centre. Furthermore, the radial velocity gradient rises in 
the interface region ( ̂r ≈ 0.5 ) with increasing refinement, at least for G1 to G3. The chaotic 
trajectory and the high rising velocity distinguish the result with refinement level G3 from 
the remaining ones. This behaviour is explained with the connection between bubble move-
ment and an unique flow pattern inside and outside the gas bubble at this particular level of 
spatial resolution.

4.1.3  Model Assessment

In the following the individual SGS closure models presented in Sect. 2.2.1 are applied to 
the aforementioned test case. All a-posteriori investigations are carried out on spatial grid 
refinement level G2 and the time period for gathering transient and statistical data corre-
sponds to simulation G2-O (see. Table 4). A comparison is drawn to the numerical results 
obtained with G2 and with G4 without application of any SGS closure model. The corre-
sponding results are referred to as G2-O and G4-O, respectively.

The time averaged values of rising velocity Ûb obtained with different convective SGS 
closure models obtained with G2 as well as the results without any model formulation 

Fig. 5  Radial profiles of vertical 
velocity component for different 
mesh resolutions; the interface 
position for a volume-equivalent 
sphere is marked with a black 
solid vertical line
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(G2-O) are listed in Table 6. Those values are further expressed as relative deviation from 
the reference result G4-O in percent. It is observed, that the general trend of a lower rising 
velocity on G2 compared to G4 is maintained, regardless of the choice of closure model. 
The eddy-viscosity type models SMAG and SIG lead to slightly increased rising velocities 
with respect to G2-O. With the structural closure models the value of average rising veloc-
ity varies stronger compared to the functional model approaches. Among mixed and Klein-
regularised models, M and KL, the gradient model (GM) and the extended gradient model 
(EGM) show small and moderate positive influence on the average rising velocity, respec-
tively. However, the scale similarity model (SSM) results in a weaker bubble acceleration 
(KL-SSM) or even a deceleration (M-SSM-SMAG) compared to reference G2-O. Gener-
ally, structural models with Klein’s regularisation (KL) lead to more precise predictions of ⟨
Ûb

⟩
t
 compared to the results without any model, with eddy-viscosity models and with the 

mixed approach. Among the three Kobayashi model configurations (KOB) the gas bubble 
rises fastest with the gradient model KOB-GM, which represents the most precise predic-
tion. KOB-SSM leads to a slightly slower bubble rise, which is still an improvement com-
pared to the result of G2-O. KOB-EGM decreases the value of the predicted velocity and, 
therefore, reveals a worse prediction in this context. The best velocity prediction among all 
closure models is achieved with the Klein-regularised extended gradient model 
(KL-EGM).

In order to get an insight into the dynamical behaviour of the gas bubble, the trajectories 
predicted by the individual SGS closure models are projected into the horizontal plane. 
They are shown in Fig.  6 side-by-side together with the results without closure models. 
Again, discontinuities in the trajectories due to the gas bubble passing a pair of periodic 
boundaries are avoided as described in Sect. 4.1.1. Furthermore, it is noted, that the differ-
ent periods of averaging for individual levels of grid refinement according to Table 4 result 
in trajectories of different length. The SGS models SMAG and SIG result in stable zig-zag 
bubble trajectories, which maintain their spatial orientation during the whole simulation 
time (Fig. 6e, f). Those results are similar to G1-O (Fig. 6a). Apparently, both eddy-vis-
cosity models induce a dissipation by increasing the effective viscosity. This has a similar 
effect on the discretisation error in connection with a low spatial resolution. This behaviour 

Table 6  Dimensionless rising 
velocity obtained with different 
closure models for convective 
SGS term �

ruu,� averaged over 
time in absolute values and as 
relative deviation from reference 
result of G4-O

SGS Model
⟨
Û

b

⟩
t

⟨
Û

b

⟩
t
−
⟨
ÛG4−O

b

⟩
t⟨

ÛG4−O
b

⟩
t  (%)

G2-O 1.055 − 2.91
SMAG 1.061 − 2.34
SIG 1.058 − 2.59
M-GM-SMAG 1.060 − 2.47
M-EGM-SMAG 1.071 − 1.45
M-SSM-SMAG 1.041 − 4.24
KOB-GM 1.076 − 0.99
KOB-EGM 1.043 − 4.01
KOB-SSM 1.068 − 1.70
KL-GM 1.070 − 1.54
KL-EGM 1.078 − 0.82
KL-SSM 1.069 − 1.63
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Fig. 6  Trajectories of rising gas bubble for different closure models for convective SGS term �ruu,� pro-
jected into the horizontal plane
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is not desired. Instead an SGS closure model shall allow for simulation results comparable 
to a numerical grid, which is sufficiently fine to produce reliable results without any sub-
grid scale model. Such a tendency is indeed observed for the investigated structural models 
in a sense, that the bubble rising path tends to be more chaotic compared to the results 
of G2-O (Fig.  6b), just as observed in G3-O (Fig.  6c). With all three mixed models as 
well as with KOB-EGM and KL-GM sections of stable zig-zag rising behaviour alternate 
with events of changing horizontal bubble position and path orientation. Looking at the 
model combinations, KOB-GM, KOB-SSM and KL-SSM the gas bubble tends to tempo-
rarily follow a straight diagonal rising path and from time to time changes the orientation 
of that trajectory. KL-EGM results in a bubble movement which comes closest to a chaotic 
change of rising direction among the investigated closure models. Only a single section of 
nearly straight motion is observed. From this point of view the latter model combination 
is evaluated to perform best regarding the shape of the trajectory. A flattened helical path 
as observed in G4-O (Fig. 6d) cannot be recovered with any of the investigated convective 
SGS closure models.

In order to gain more insight into flow inside and outside the gas bubble, radial profiles 
of averaged vertical velocity component 

⟨
ûz

⟩
t,Φ

 in the horizontal plane at the height of the 
bubble centre are shown in Figs. 7 and 8. Data resulting from application of closure models 
are compared to reference solutions G2-O and G4-O. It is evident from the radial profiles, 
that the eddy-viscosity models SMAG and SIG as well as all model combinations incorpo-
rating the gradient model GM show only a minor influence on the velocity fields. This 
result most likely stems from the low overall turbulent intensity of the flow. All the SGS 
models have in common, that they do not take into account the structure of the large-scale 
interface, which is expressed via r� . Contrary, all model combinations concerning the 
extended gradient model (EGM) result in a lower vertical velocity inside the gas bubble. 
Furthermore they lead to steeper velocity gradients in the interface region at r̂ ≈ 0.5 . This 
results in smaller deviations from reference solution G4-O. For models combinations with 
scale similarity model SSM both effects are even more pronounced. As a consequence, the 
radial velocity profile obtained with M-SSM-SMAG is close to G4-O, while the ones 
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Fig. 7  Radial profiles of vertical velocity component for eddy-viscosity and mixed models for the SGS con-
vective term; the interface position for a volume-equivalent sphere is marked with a black solid vertical line
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resulting from KOB-SSM and KL-SSM are nearly identical to the reference. Note the 
small velocity offset in Figs. 7 and 8 for �r > 1 , which reflects the different rising velocities.

In the frame of modelling of the convective SGS term, structural models, which take the 
interfacial structure directly into account, turn out to improve overall simulation results. 
Regarding rising velocity and trajectory of the gas bubble, the model combination KL-
EGM delivers the best predictions, while KOB-SSM and KL-SSM lead to improved radial 
velocity profiles. The results obtained with those models are qualitatively closer to high 
resolution simulation results compared to simulations without closure model.

4.2  Surface Tension Sub‑grid Scale Term

In order to assess the SGS surface tension closure models, presented in Sect. 2.2.2, a test 
case with strong curvature of the interface is selected. For this purpose, the investigation 
of model influence is carried out in the two-dimensional benchmark case of Hysing et al. 
(2009), which is referred to as case 2 in the reference. Convergence and consistency of 
the underlying numerical framework in general as well as for this particular case is dem-
onstrated by Meller et  al. (2021). Deviating from the original configuration, the case is 
adapted in such a way, that both ratios of phase-specific density values and molecular vis-
cosity values are reduced to 50. The reason for this choice is, that the method of Brackbill 
et al. (1992) for modelling surface tension is known to induce spurious currents. In the cur-
rent case, those numerical artefacts are effectively dampened by increased gas density and 
viscosity. As the Weber-number based SGS models effectively increase the surface tension 
coefficient, in that way model influences can be investigated without interfering with the 
numerical deficiencies named before. This test case features a rectangular computational 
domain with slip conditions on both top and bottom as well as no-slip conditions on left 
and right boundaries. The gas bubble is initialised as a circle of diameter Db with its cen-
tre 1Db above the lower boundary. The domain has a width and a length of 2Db and 4Db , 
respectively. The characteristic dimensionless parameters are listed in Table  7. Two dif-
ferent spatial refinement levels with homogeneous, orthogonal numerical grids are inves-
tigated: with G1 the sphere-equivalent bubble diameter Db is resolved with 10 grid cells, 
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Fig. 8  Radial profiles of vertical velocity component for Kobayashi and Klein regularised models for the 
SGS convective term; the interface position for a volume-equivalent sphere is marked with a black solid 
vertical line
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while with G2 Db is equivalent to 160 grid cells. As reported by Meller et al. (2021) spatial 
resolution G2 is sufficiently fine to serve as a reference solution. Dimensionless time and 
velocity, tg and Ug , are defined as described in Sect. 4.1.1.

The performance of SGS surface tension closure models is compared to simulation data 
obtained without model formulation on resolution G1 and G2, from now on referred to 
as G1-O and G2-O. No model influence is observed for model We-KE with Wecrit = 2.75 
(We-KE-2.76). Therefore, the model is additionally assessed with critical Weber number 
Wecrit = 0.25 (We-KE-0.25) and the corresponding results are shown in Fig.  9. In refer-
ence solution G2-O thin ligaments form on both left and right sides of the bottom of the 
gas bubble due to the shear in the surrounding liquid flow, which results from the narrow 
computational domain. On grid G1 these structures are predicted to be comparably thick, 
because in particular small details cannot be resolved. Nevertheless, the necking, which is 
observed in result G2-O, is not recovered without SGS surface tension closure model on 
the coarse grid (G1-O). The model nn-SSM results in a qualitatively identical behaviour 
just as We-KE-2.76 does. In contrast, Weber-number models with a stricter Weber-number 
criterion, namely We-KE-0.25 and We-Re in this case, do allow for this particular process. 
Apart from that, results on G1 don’t show significant deviation among different SGS sur-
face tension closure formulations.

In order to understand, why the necking is recovered with Weber-number models in 
general, the distribution of model forces is shown in Fig. 10. At both t̂ = 2.8 and t̂ = 4.2 
the scale similarity model nn-SSM delivers strong contributions in regions of higher gas 

Table 7  Dimensionless parameters of two-dimensional test case considering rising gas bubble (G) in liquid 
(L)

Reg Eo Mo �
L
∕�

G
�
L
∕�

G

35 125 1.276 50 50
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G1-O

nn-SSM-G1
We-KE-2.76-G1
We-KE-0.25-G1

We-Re-G1

(a)
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 1.4  1.6  1.8
(b)

Fig. 9  Interface position r
G

= 0.3 at t̂ = 4.2 for different SGS surface tension models with G1 as well as 
results with G1 and G2 without any SGS closure model; a whole gas bubble and b a zoom to 1.5 < �x < 1.8 
and 1.2 < �y < 1.8
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volume fractions rG with the resulting force pointing in the direction of the liquid phase. 
This explains the negligible influence of this closure formulation in the present case. It 
is worth noting, that in this particular test case the interface defined as 0 < r𝛼 < 1 is pre-
dicted to be comparably thick due to the coarse spatial resolution G1. Hence, it is possible 
to observe contributions of the SGS model force in such a large area. The distribution of 
SGS surface tension over the interfacial region is considered in more detail by Hasslberger 
et  al. (2020) in a-priori analysis. The Weber-number models We-KE-0.25 and We-Re 
reveal resulting model forces, which mainly appear at the lower side of the gas bubble 
acting in a direction, such that they counteract the curvature of the interface. In this way, 
the behaviour is reproduced, which was the theoretical starting point for formulating the 
Weber-number model (Ketterl et al. 2019). At t̂ = 2.8 both Weber-number models reveal 
similar model forces, whereas at t̂ = 4.2 We-KE-0.25 shows a smaller effect compared to 
We-Re, especially in the region and the ends of the ligaments. At the same time, We-Re 
shows a tendency to compress those slender gas structures. The effect of enhanced necking 
of the ligaments is common to both Weber-number models, We-KE-0.25 and We-Re. The 
model force contribution resulting from We-KE-2.76 is negligibly small and, therefore, is 
not shown here.

In this two-dimensional test case, the scale similarity model did not show any influence 
on simulation results, which applies to We-KE-2.76 as well. Contrary, We-KE-0.25 and 
We-Re formulations allow for the prediction of features of gas–liquid flows on a coarse 
numerical grid, which are typically reproduced on computational grids with high spatial 

Fig. 10  Distribution of forces at t̂ = 2.8 a–c and at t̂ = 4.2 d–f resulting from G1 with different closure 
formulations for SGS surface tension �rnn,�� ; the interface position r

G

= 0.3 is marked with the black line
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resolutions. Those closure models help to predict a bubble shape, which is qualitatively 
similar to the results of a finer numerical grid without SGS modelling.

4.3  Combined Application of Convective and Surface Tension Sub‑grid Scale Terms

After closure models for convective and surface tension SGS terms have been individually 
assessed previously, the combined effect of models for both terms is investigated. For this 
purpose, a single closure formulation for each individual SGS term is selected, namely 
We-Re for modelling the surface tension SGS term and KL-SSM for the convective SGS 
term. Both models perform very good, when applied and tested in the two- or three-dimen-
sional test cases described earlier. In the following both closure formulations are simulta-
neously applied to both test cases.

4.3.1  Two‑Dimensional Case

At first the test case from Sect. 4.2 is used to assess the closure models. For that purpose, 
interface position rG = 0.3 at t̂ = 4.2 is shown in Fig. 11 for the whole gas bubble and as 
zoom showing the right ligament of the gas bubble. Besides the results G2-O, G1-O and 
We-Re-G1, which are already presented in Fig. 9, KL-SSM is applied exclusively as well 
as in combination with We-Re. It turns out that KL-SSM shows a very minor overall influ-
ence on the shape of the gas structure. The result obtained purely with this closure formu-
lation hardly differs from G1-O without model for any SGS term. Solely in the region of 
the ligament, the gas structure tends to be slightly more elongated downwards at the tip 
and to have a slight tendency towards enhanced necking at ŷ ≈ 1.5 , compared to G1-O. 
The same influence is observed, when investigating the application of KL-SSM together 
with We-Re. With both models combined the ligament tends to be slightly longer than with 
We-Re applied only. However, the overall influence of KL-SSM is small compared to the 
positive performance of We-Re in this two-dimensional test case.
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 2.4

 2.8

 0.4  0.8  1.2  1.6
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G1-O

We-Re-G1
KL-SSM-G1
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Fig. 11  Interface position r
G

= 0.3 at t̂ = 4.2 for individual application of KL-SSM, We-Re and the combi-
nation of both models with G1 as well as results with G1 and G2 without any SGS closure model; a whole 
gas bubble and b a zoom to 1.5 < �x < 1.8 and 1.2 < �y < 1.8
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4.3.2  Three‑Dimensional Case

For the test case from Sect. 4.1 radial profiles of vertical velocity component are shown 
in Fig. 12. Besides the results G4-O, G2-O and Kl-SSM-G2, which are already presented 
in Fig. 8, the results from isolated application of We-Re as well as in combination with 
KL-SSM are presented here. It is evident, that the Weber-number model does not show 
any influence on the radial velocity profile. Hence, the results of We-Re-G2 and G2-O are 
nearly identical to each other. The same holds for results We-Re-G2 and KL-SSM+We-Re-
G2. It turns out, that in this test case the gas bubble is not deformed strong enough, such 
that the interface shows a curvature, which is large enough for the Weber-number criterion 
of We-Re to activate the model.

In order to check the consistency of those results, the bubble rising paths as projection 
into the horizontal plane are investigated. Those are shown in Fig. 13 for refinement level 
G2 and for the configurations of SGS closure models named above. Indeed, the observa-
tion of minor influence of We-Re in this case is confirmed. Neither with or without the 
usage of the convective SGS model KL-SSM, the Weber-number models reveals an influ-
ence on the quality of the results. In case no convective SGS closure model is applied, the 
gas bubble describes a zig-zag path with moderate variance of spatial orientation of the 
lateral movement. With KL-SSM, the bubble shows longer distances of straight trajectories 
between random changes of orientation. Both statements hold, regardless of the application 
of We-Re.

Following the basic idea of the Weber-number model of Ketterl and Klein (2018) 
together with the specific formulation of the effective surface tension coefficient proposed 
in this work, this closure model must only be active in regions with extreme interface cur-
vatures with respect to the numerical grid. As this situation is not met in the present test 
case, the model works as intended.

For both KL-SSM and We-Re it is concluded, that both individual SGS models improve 
the prediction in cases, where the respective unclosed SGS terms are of particular impor-
tance. At the same time both models do not change the results qualitatively in the opposite 
case.

-1.5
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-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

G4-O
G2-O

We-Re-G2
KL-SSM-G2

KL-SSM+We-Re-G2

Fig. 12  Radial profiles of vertical velocity component for individual application of KL-SSM, We-Re and 
the combination of both models with G2 as well as results with G2 and G4 without any SGS closure model; 
the interface position for a volume-equivalent sphere is marked with a black solid vertical line
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5  Conclusion

In the present work the multifield two-fluid model equations are spatially low-pass filtered. In 
this way, a hybrid multiphase model combining Euler–Euler and algebraic volume-of-fluid 
methods in a single numerical framework is extended for scale resolving simulations of mul-
tiphase flows with large scale interface structures, particularly for gas–liquid flows. The pre-
diction of such flows utilising coarse computational grids is successfully improved. From the 
five different unclosed sub-grid scale terms, arising from the filter formalism, convective and 
surface tension sub-grid scale contributions are selected to be modelled with several closure 
formulations each. The selected models are either of functional or of structural type and are 
adapted for the formulation in the hybrid multiphase model. Functional closure formulations 
for the convective sub-grid stress are additionally regularised in order to prevent anti-diffu-
sivity and, therefore, numerically destabilising behaviour. For sub-grid surface tension, the 
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ŷ

x̂

-30

-20

-10

 0

-20 -10  0  10
x̂

2G-eR-eW)b(O-2G)a(

(c) KL-SSM-G2 (d) KL-SSM+We-Re-G2

Fig. 13  Trajectories of rising gas bubble projected into the horizontal plane; results are shown for different 
closure models for the convective and the surface tension SGS terms
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functional Weber-number model is extended to rely on a Reynolds-number dependent critical 
Weber-number model, which avoids case specific definition of the latter quantity.

All models are individually tested in an a-posteriori fashion in cases of two- and three-
dimensional rising gas bubbles in liquid. Among all investigated closure formulations for the 
convective sub-grid stress, structural models perform best. The reason is that they account 
for the structure of the flow field as well as the interfacial structure itself, which is expressed 
in terms of phase-specific volume fraction. Especially, the extended gradient model (Ketterl 
and Klein 2018) (EGM) together with regularisation according to Klein et  al. (2020) (KL) 
delivers promising results overall. Regarding sub-grid surface tension, the functional approach 
of the Weber-number model successfully limits interface curvature according to the level of 
actual spatial resolution. Together with the criterion of a Reynolds-number dependent critical 
Weber-number, this approach delivers promising results in the two-dimensional test case with-
out demanding for a case specific tuned model parameter. The combined application of one 
convective and one surface tension SGS model shows, that the prediction of the simulation is 
improved in situations, where the respective SGS term is of great relevance, while not chang-
ing the result qualitatively in other cases.

While the present work focuses on establishing closure models for unclosed SGS contribu-
tions arising from filtering across the phase interface in a-posteriori analysis, the investigated 
setups are comparatively simple with low and moderate degrees of turbulence. Future work 
shall focus on more complex bubble flow configurations with bubble swarms under more tur-
bulent flow conditions considering interactions of interfaces with stronger velocity fluctua-
tions. Furthermore, finding suitable combinations of convective and surface tension SGS clo-
sures shall be also part of future endeavours.
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