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ABSTRACT

A direct numerical simulation database of bubbly channel flows at friction Reynolds number 180 and with three different global void
fractions has been used to perform a multiscale analysis of the anisotropy of the Reynolds stress tensor, the dissipation tensor, and the
subgrid-scale (SGS) tensor in order to characterize the turbulence for a wide range of scales down to the smallest structures occurring in the
flow. Based on the hypothesis of Kolmogorov, the non-linear turbulent energy transfer is expected to result in a loss of directional informa-
tion such that, for a sufficiently high Reynolds number, the small-scale turbulence is expected to be isotropic and universal. The present
analysis reveals that the presence of the bubbles increases the anisotropy of the flow which persists down to the smallest scales of motion,
even for the dissipation and SGS tensor. This has implications for the complete landscape of turbulence modeling approaches ranging from
large eddy simulation, over hybrid approaches to Reynolds averaged Navier–Stokes based modeling.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0104594

INTRODUCTION

Kolmogorov,1 in his first hypothesis, introduced the concept that
for a sufficiently high Reynolds number, the small-scale turbulent
motions are statistically isotropic,2 i.e., any statistical quantity is invari-
ant with respect to coordinate axis reflection and rotation. This theory
is based on the hypothesis that during the non-linear energy transfer
process through the spectrum from large to small eddies, turbulence
loses orientation, so that, at sufficiently high Reynolds numbers, the
small-scale statistics are isotropic. While this explains the rationale of
the large eddy simulation (LES) approach, where only the small, unre-
solved scales have to be closed, in Reynolds averaged Navier–Stokes
(RANS) the whole energy spectrum has to be modeled which requires
typically much more complex constitutive equations for the Reynolds
stress tensor hu0iu0ji (here h�i denotes a suitable averaging operation
and the prime denotes the fluctuating part of velocity) or, alternatively,
a Reynolds Stress model which solves for the six Reynolds stress com-
ponents individually. Because of the scale separation2 of the turbulent
kinetic energy spectrum E jð Þ with wave number j (dominant at
larger scales) and the dissipation spectrum D jð Þ ¼ 2�j2EðjÞ with

the kinematic viscosity � (dominant at smaller scales), it is often
assumed that the dissipation tensor

eij ¼ 2�
@u0i
@xk

@u0j
@xk

* +
(1)

obeys an isotropic relation

eij ¼
2
3
edij ; (2)

where e is half the trace of eij.
This simple model given by Eq. (2) has sometimes been replaced

by a linear relation3 between the dissipation rate eij and the Reynolds
stress anisotropies aij, which is given as follows:

eij ¼
2
3
dij þ Ceaij

� �
e; aij ¼

u0iu
0
j

D E
2k

� 1
3
dij; k ¼ 1

2
u0iu

0
i

� �
; (3)

where Ce is a coefficient that could be a function of the Reynolds
number and goes to zero as the Reynolds number goes to infinity.
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An algebraic model for non-isotropic turbulent dissipation has been
suggested by Hallb€ack et al.4 and Speziale and Gatski5 in which the
Reynolds stress anisotropy is replaced by the dissipation rate anisot-
ropy and the latter quantity is given as

eij ¼
eij
2e

� 1
3
dij: (4)

Conversely, Liu and Pletcher6 propose an anisotropic model which
approximates the anisotropy tensor aij using a normalized turbulent
dissipation tensor eij. The relationship between the two anisotropy ten-
sors aij and eij has also been explored in Antonia et al.,7 where a linear
relation, with a constant of proportionality depending on the local
turbulence Reynolds number, has been suggested.

The small-scale turbulence, which is strongly associated with the
mechanism of dissipation, has been an active area of research for sev-
eral decades. It is often studied by analysis of the scaling of the struc-
ture functions. An extensive review has been provided by Sreenivasan
and Antonia.8 More recently, Ouellette et al.9 found that the asymme-
tries of the large-scale flow are reflected in the small-scale statistics of
the second-order Lagrangian structure function for high Taylor-scale
Reynolds numbers in a laboratory experiment featuring two counter-
rotating disks. Pumir et al.10 analyzed the small-scale anisotropy in
turbulent channel flows and demonstrated that the statistical proper-
ties of the fluctuating velocity gradient in turbulent channel flow are
characterized by observables that are insensitive, whereas other quanti-
ties are much more sensitive to the anisotropy. Carter and Coletti11

analyzed the scale-to-scale anisotropy in two facing arrays of randomly
actuated air jets. They report a significant departure from isotropy of
the moments of the velocity gradients at the dissipative scales. The
multiscale behavior of anisotropy occurring in turbulent boundary
layers is investigated and analyzed by Liu and Pletcher.6 The results
revealed that the anisotropy does not decay with decreasing scale but
persists in the local scales.

Based on the experiments in turbulent shear flow up to a Taylor-
scale Reynolds number of Rek ¼ 1000, Shen and Warhaft12 found
that the odd moments of velocity derivatives are non-zero. This con-
tradicts the fact that the small-scale statistics should be invariant to
rotation. They conclude that the postulate of local isotropy is untena-
ble on both the dissipation and inertial scales and that this is also
unlikely at higher Reynolds numbers. Conversely, Iyer et al.13 reported
that independent of the anisotropic content of the energy containing
eddies, small-scale turbulent fluctuations recover isotropy and univer-
sality faster than previously reported in experimental and numerical
studies. They argue that highly anisotropic contributions have not
been accurately captured in earlier work.

Independent of the question whether the hypothesis of local isot-
ropy is valid or not, it is at the core of virtually all turbulence theories
and models.13 Sreenivasan and Antonia8 argue that understanding the
small scales will help to parameterize models for both RANS and LES
in an appropriate manner.

The flow anisotropy can be conveniently characterized by the
properties of the anisotropy tensor aij (and by analogy for eij) by ana-
lyzing the turbulent state in the so-called Lumley triangle.14 The
boundaries are given in terms of the second IIa and third IIIa invariant
of aij

IIa ¼ trace að Þ2 � trace a2ð Þ
� �

=2; IIIa ¼ det að Þ (5)

and by introducing the variables

g ¼ � 1
3
IIa

� �1=2

; n ¼ 1
2
IIIa

� �1=3

: (6)

Finally, the borders of the Lumley triangle are given by the two straight
lines connecting the origin ð0; 0Þ with the points ð�1=6; 1=6Þ and
ð1=3; 1=3Þ . The third border is represented by the curve g

¼ ð 127 þ 2n3Þ1=2: It can be shown that any physically realizable state of
the anisotropy tensors aij or eij has to lie within this triangle. These
borders of the triangle represent an axisymmetric contraction, axisym-
metric expansion, and the two-component state, respectively, while
the origin demarks the isotropic state2 as illustrated in Fig. 1.

It is worth mentioning that Banerjee et al.15 alternatively sug-
gested a barycentric map that provides the possibility of viewing the
anisotropic stress tensor, which also offers the possibility of quantify-
ing the weighting for any point inside it, in terms of the limiting states.
For convenience, we will use the traditional and more widely known
approach.

A considerable amount of research has been conducted to ana-
lyze the small scales in isothermal single-phase flows, but CFD applica-
tions often cover additional physics. For example, it is known that the
energy spectrum of fast rotating turbulence16 or in quasi-static magne-
tohydrodynamic turbulence17 can be anisotropic at all scales. Another
example of technical relevance is given by two fluid phases separated
by a sharp interface, as discussed in this work. The simulation and
modeling of such multiphase flows, such as bubbly flows, have recently
been addressed in several works.18–22 The anisotropy of the Reynolds
stress and dissipation tensor in bubbly channel flows of power-law flu-
ids has been analyzed in Ref. 23 in the context of Reynolds averaging.
However, today’s landscape of computational fluid dynamics (CFD)
covers a broad range of methods reaching from conventional one- or
two-equation models over hybrid RANS–LES to LES methods, all with
varying degrees of fidelity and scale resolving capability. Therefore, it
is required to study the anisotropy not only in the context of averaged
quantities but also for a varying level of scales reaching from the largest

FIG. 1. Sketch of the Lumley triangle and its different turbulent states.
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down to the smallest scales. The present work aims to fill this gap in
the existing literature by performing a multi-scale analysis of the
anisotropy of the Reynolds stress and dissipation tensor in the context
of bubbly channel flow for a range of different void fractions. The
objectives of the present analysis are (i) to characterize the bubbly flow
anisotropy at all scales characteristic of current turbulence modeling
approaches, (ii) to provide explanation for the observed behavior, and
(iii) to indicate the modeling implications. The rest of the paper will be
organized as follows: Methodology section introduces the database
and the postprocessing methodology. Then, results will be presented
and analyzed before the main findings will be summarized in the
conclusions.

METHODOLOGY

This section introduces the numerical solution procedure, the
computational setup, and the postprocessing methodology.

Numerical technique and flow configuration

The TBFsolver, developed by Cifani,24,25 has been used to solve
the incompressible Navier–Stokes equation. The solver is well paral-
lelized and is able to handle up to 104 deformable bubbles. The finite
volume method on a staggered grid is used in conjunction with a
QUICK scheme for convective transport and a second-order central
differencing scheme for diffusive fluxes. Time integration is per-
formed by a second-order Adams–Bashforth scheme. The Poisson
equation is solved by a fast elliptic solver in combination with a
modified formulation for the pressure correction after transforming
it into a constant-coefficient equation. The liquid–gas interface is
described by a volume of fluid method (VOF) and the VOF marker
function is advected by a geometrical VOF scheme using a
piecewise-linear interface calculation. In order to avoid spurious
numerical bubble coalescence, the multi-marker formulation has
been applied which assigns a separate volume fraction field to each
bubble. The computational domain is a rectangular box of dimen-
sion 4pd� 2d� 4pd=3, where d is the channel half width, which is
resolved by a uniform cartesian grid of dimension 1152� 240
� 384: The bubbles have been resolved with more than 20 cells per
diameter which is considered sufficient for the present configura-
tion.25 No-slip walls are imposed in the y direction, whereas peri-
odic boundary conditions are used in streamwise (x) and lateral zð Þ
direction. The flow is driven by a constant mass flow, resulting in
a wall friction Reynolds number of Res ¼ 180. The liquid to gas
density ql=qg ¼ 20 and dynamic viscosity ratios ll=lg ¼ 20 have
been employed. Three cases with different bubble load (low,
medium, and high denoted L, M, H in the following) have been sim-
ulated together with the single-phase reference channel (S). An over-
view of the simulation parameters in terms of the number of bubbles
Nb, the total (global) void fraction atot , and bubble Reynolds number
Reb (based on the relative axial velocity of both phases) is given in
Table I. In all cases, the bubble diameter db, the gravity in mean flow
direction, and the coefficient of surface tension are chosen to obtain
an E€otv€os number of Eo ¼ ql � qgð Þgd2b=r ¼ 0:633. For more
details on the numerical solution procedure and computational
setup, the reader is referred to Refs. 24–26. Figure 2 exemplarily
shows instantaneous snapshots of the liquid–gas interface for cases
L, M, and H.

Data evaluation

For the multiscale analysis performed in this work, the velocity
field has been explicitly filtered using the convolution of two or three
1D Gaussian filter kernels in the following manner (shown here for
the three-dimensional convolution):

Q xð Þ ¼
ð
Q x � rð ÞG r1ð ÞG r2ð ÞG r3ð Þdr;

G rð Þ ¼ 6=pD2
� 	3

2exp �6r2=D2
� 	

;

(7)

TABLE I. Simulation parameters in terms of the number of bubbles Nb, global void
fraction atot , and bubble Reynolds number Reb, for the case without bubbles, low,
medium, and high void fractions.

Case Nb atot Reb

Single (S) 0 0% N=A
Low (L) 64 0:5% �210
Medium (M) 320 2:5% �186
High (H) 1280 10% �139

FIG. 2. Instantaneous volume fraction iso-surfaces for cases L, M, and H. It is
worth noting that some bubbles intersect with the periodic boundaries, which should
not be confused with a concave surface topology.
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where the overbar denotes the filtering operation andQ refers to a gen-
eral quantity. The application of this convolution integral, correspond-
ing to a lowpass filtering operation, “removes” eddies with size smaller
than D represented by the filtered velocity field u. The scales smaller
than D (associated with a high pass filter of the same filter width) can
be obtained by taking the difference u� u as illustrated in Fig. 3. For
the analysis carried out in this work, a series of filter width has been
used corresponding to n ¼ D=DDNS, with n ¼ 2; 4; 8; 16; 32; 50; 64
and DDNS being the direct numerical simulation (DNS) grid spacing.

Filtering in bounded (non-homogeneous) computational
domains requires special treatment, whenever the center of the filter
approaches the domain boundary, here the wall. Two filter versions
are considered and discussed: (i) a two-dimensional filter where filter-
ing is only performed in the periodic x � z� planes, and (ii) a three-
dimensional asymmetric filter where the filter kernel is clipped to zero
whenever it extends across the bounding wall and the remaining filter
kernel is renormalized to unity.

RESULTS

The present configuration represents a bubble laden downflow
channel. According to Lu and Tryggvason,27 the lift force acts to accu-
mulate the bubbles in the channel center. This effect can be clearly

seen in the void fraction distribution shown in Fig. 4(a), which results
in an increasing flattening of the mean velocity profile with increasing
global void fraction [see Fig. 4(b)].

All results in this work are based on one instantaneous flow field
and averaging is performed in both homogeneous directions. The
results are in very good agreement with those from earlier work which
included time averaging on the fly25 and are considered sufficiently
accurate for the qualitative analysis presented in this work. It should
also be noted that the profiles shown in Figs. 4–7 have not been aver-
aged over the two channel halves and, consequently, they are not per-
fectly symmetric. Instead, they provide an indication of the statistical
error inherent in the present analysis.

The profiles of the Reynolds stresses in Fig. 5 show the homoge-
nizing effect of the bubbles resulting in an increasingly constant
Reynolds stress distribution in the channel center accompanied by
peaks in the transition region toward the bubble-free regions close to
the walls. By comparing both extreme cases, i.e., the single-phase case
and the case with the highest void fraction (10%), it becomes clear that
the bubbles increase the homogeneity in the channel bulk flow, but at
the same time increase the anisotropy, with a more pronounced domi-
nance of R11 over the other components of the Reynolds stress tensor.
A more detailed discussion of the first and second order moments can
be found in Refs. 24–26 and is not repeated here.

The observations made in Fig. 5 for the Reynolds stresses hold
for the dissipation tensor shown in Fig. 6, except that the dissipation
peaks at the wall (while Rij ¼ 0) and the dominance of e11 over the
other components of eij is even more pronounced at the wall com-
pared to the Reynolds stresses.

Next, the effects of the two different filter versions (2D vs 3D
asymmetric) will be discussed. The results will be shown using a high
pass filter with filter sizes D=DDNS ¼ 2; 16; 32; 64. The results for
intermediate filter sizes follow the same trend and are not shown here
for the sake of brevity. In order to be able to relate the filter size to the
physical dimensions of the flow, it is recalled that the initially spherical
bubbles are resolved with at least 20 cells per diameter, such that the
shown filter sizes roughly correspond to D ¼ 0:1D; 0:8D; 1:6D;
3:2D, i.e., from scales of about 10% the bubble diameter to more than
three times the bubble diameter. It is also important to relate the filter
size to the turbulent length scales of the flow. To this end, a directional
turbulent length scale is defined in the following manner:

Li ¼
1
2
R iið Þ

� �3
2



1
2
e iið Þ

� �
; (8)

FIG. 3. A sketch of turbulent kinetic energy spectrum of unfiltered velocity u (black
line) as a function of wave number in a double logarithmic plot. The red line shows
the energy spectrum of the velocity field u filtered with a filter of length D, while the
blue line shows the spectrum of u� u. For better visibility, the blue and red line are
slightly shifted downwards.

FIG. 4. Profiles of (a) mean gas volume
fraction and (b) normalized wall-normal
mean axial velocity for all cases.
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(where the parentheses around the tensor’s double indices indicate
no summation) in analogy to the traditional definition of the length

scale L ¼ k
3
2=e ¼ 1

2Rii
� 	3

2= 1
2 eii
� 	

: This definition is much more con-
venient than the one based on the integral of the two-point autocor-
relation function which requires a very long averaging time for
statistics (even longer for bubbly flows, because the small gas fraction
needs much larger averaging times) and special treatment if the inte-
grand oscillates or has undershoots. Figure 7 shows the corre-
sponding length scales Li in all three directions and for the four
cases. In all cases, the elongated (streaky) flow structures close to the
wall can be clearly seen and this is most pronounced for the single-
phase channel flow. The length scales tend to become isotropic
toward the channel center for the single-phase case and case L with
low global gas fraction. These results are consistent with earlier find-
ings in single-phase channel flows.23,26

With increasing void fraction, the length scales decrease because
the bubbles act as mixing elements that fragment large flow structures
as demonstrated in Refs. 23 and 26. In analogy to the Reynolds
stresses, the distribution of turbulent length scales becomes more
homogeneous in the bulk flow and also more anisotropic with
L1 > L2 � L3. In summary, it can be noted that the range of D=L cov-
ers the values that are likely to be observed in LES, hybrid RANS/LES
and RANS simulations.

In a next step, the effect of the two different filter kernels will be
studied. Figure 8 shows the multiscale analysis of the anisotropy of the

Reynolds stresses in the Lumley triangle for all cases and a range of
filter width, i.e., D=DDNS ¼ 64; 32; 16; 2 from top to bottom. Since a
high pass filter is used mostly flow structures smaller than D are
retained (mostly, because a Gaussian filter is not sharp), and the large
energy carrying structures are progressively removed from top to bot-
tom. Note that the point closest to the wall (channel center) is marked
with a circle (cross) in Fig. 8 and the subsequent figures. A 2D filter is
used for the left column, while a 3D asymmetric filter is used for the
right column. It is remarked that very close to the wall the n-coordinate
changes quickly and the linear interpolation between successive points
potentially could give the impression of data points lying erroneously
outside the triangle, which is in fact not the case. The general trends
observed in Fig. 8 are consistent with available experimental and
DNS data from turbulent channel flows:2 Very close to the wall, in the
viscous sublayer of the channel flow, the turbulence is essentially two-
component, with v being much smaller than u and w. Anisotropy
reaches a peak at a dimensionless wall distance of about yþ � 7 close
to the 1C state and subsequently becomes increasingly isotropic toward
the channel center. While the general behavior is similar for the 2D
and the 3D filter, there are remarkable differences close to the wall and
the channel center: With the 2D filter, the points close to the wall lie on
the curved 2C border at a value of n � 0:2 (or even smaller for smaller
filter width), while with the 3D filter these points are shifted toward the
1C end point of the curve. The curved upper border describes the two
component state (for channel flow v0 ¼ 0) with an equality of u0 and

FIG. 5. Normalized wall-normal Reynolds
stress profiles for the single-phase flow
and the bubbly flows with low, medium,
and high global void fractions.
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FIG. 6. Normalized wall-normal dissipa-
tion profiles for the single-phase flow and
the bubbly flows with low, medium, and
high global void fractions.

FIG. 7. Directional turbulent length scales
normalized with bubble diameter.
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w0 at the left end (2C, axial) and with u0 � w0 toward the right end
(in the 1C limit one has w0 ¼ 0). Close to the wall one finds2 v0 � 0
and u0;w0 � yþ2. However, u0 increases much faster than w0 (see
Fig. 5). At the wall, the 3D filter is asymmetric and, hence, captures

higher u0 values than w0 values. This moves the isotropic state toward
the 1C point, because within the filter volume u0 � w0: In contrast,
there is no asymmetry effect with the 2D horizontal filter (located in
the x � z-plane). The energetic structures are elongated in x-direction

FIG. 8. Multiscale analysis of the anisot-
ropy of the Reynolds stresses in the
Lumley triangle for all cases and a range
of filter widths. A 2D filter is used for the
left column while a 3D asymmetric filter is
used for the right column. Here, and in the
remaining figures, the point closest to the
wall (channel center) is marked with a cir-
cle (cross).
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(see Fig. 7). If these long streaky structures of axial momentum are fil-
tered away, the axial velocity fluctuations u0 will be diminished and will
come closer to w0, which moves the isotropic state toward the middle
of the curved 2C border (see bottom left column). At the channel

center nothing unexpected happens for the 3D filter: Things become
more isotropic for smaller filter width, which can be seen from the
blue, yellow, red, and green crosses moving along the axisymmetric
expansion border toward n ¼ 0. In the channel center, in particular for

FIG. 9. Multiscale analysis of the anisot-
ropy of the Reynolds stress and dissipa-
tion tensors in the Lumley triangle for all
cases and a range of filter widths.
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the two-phase flow cases, we have u0 > v0 ¼ w0 (axisymmetric com-
pression border). After application of a 2D x � z filter, flow structures
in z-direction will have reduced energy content and one obtains
u0 > v0 > w0, i.e., a 3D state departing from the axisymmetric border,
as can be clearly seen for small filter width.

According to Fig. 8 case M has the highest anisotropy in the
channel center. Case M represents a transition between a single-phase
channel flow (case S), which resembles case L, and a bubbly flow with
high volume concentration, i.e., case H. While the fluctuations increase
for all velocity components from case L to case H, the rate of increase

FIG. 10. Multiscale analysis of the anisot-
ropy of the Reynolds stress tensor in the
Lumley triangle for all cases and a range
of filter widths, based on unconditional
velocities (left column) and conditional
velocities (right column).
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is slower for the velocity components normal to the mean flow direc-
tion, resulting in a larger ratio of R11=R22 and R11=R33. This behavior
is consistent with the Reynolds stress profiles from Cifani et al.25

The previous discussion reveals that both filtering approaches
have some influence on the results obtained. Alternatively, high order
commutative filters have been presented in the literature,28,29 but the
commutation property is irrelevant for this kind of a priori analysis
and the effect of asymmetry will be similar to the filter used in this
work. Several classical analyses have employed the 2D filtering
approach for a priori analysis of single-phase channel flow simulations
and the same approach will be followed here for simplicity.30 All results
in the following will henceforth be based on the 2D filter kernel.

Figure 9 shows the multiscale analysis of the anisotropy of the
Reynolds stress and dissipation tensors in the Lumley triangle for all
cases and four different filter widths. For all filter widths, there is a
close coupling between the anisotropies of Rij and eij. For the dissipa-
tion tensor, the turbulence state at the wall is located closer to the 1C
end point compared to the Reynolds stress tensor. Consistent with
Figs. 5 and 6, this indicates that close to the wall e11=e33 > R11=R33.
Furthermore, in both cases, the isotropy increases with decreasing
filter size, i.e., as expected the small scales are (slightly) more isotropic.
For both tensors, the flow state in the two-phase flow cases is consider-
ably less isotropic compared to the single-phase channel flow as

observed in Figs. 5 and 6. Finally, the dissipation tensor is slightly
more isotropic than the Reynolds stress tensor which can be seen from
the smaller n and g coordinates of the endpoints of the curves, which
are indicated by crosses. It becomes clear from Fig. 9 that even at the
channel center, even for the dissipation tensor and even for the small-
est scales a non-negligible anisotropy remains.

All statistics so far have been based on unconditional velocities,
i.e., they do not distinguish between velocities of the gas and liquid
phase. Classical experimental observations31 often have been limited
to conditional velocities of the continuous, liquid phase. For this rea-
son and for completeness, Fig. 10 compares the anisotropy of the
Reynolds stress tensor based on unconditional (left column) and con-
ditional (right column) velocity. Close to the wall, the void fraction
approaches zero [see Fig. 4(a)] and the difference between conditional
and unconditional Reynolds stresses is small. In the channel center,
the two-phase flow tends to be more isotropic when considering
conditional velocities compared to unconditional velocities. This is
particularly evident for the large filter sizes D=DDNS � 32, where the
two-phase flow features pronounced anisotropies in the channel cen-
ter. Exemplarily, it is mentioned that the center channel points for the
conditional case are all located on the axisymmetric expansion border
with values of n 	 0:15; whereas for the conditional cases values of
n � 0:15 are attained. Since bubbles have been shown to increase

FIG. 11. Multiscale analysis of the anisot-
ropy of the subgrid-stresses in the Lumley
triangle for all cases and a range of filter
widths.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 085122 (2022); doi: 10.1063/5.0104594 34, 085122-10

VC Author(s) 2022

https://scitation.org/journal/phf


anisotropy, it is not unexpected that excluding the gas phase leads to
moderately increased isotropy. Apart from this, the qualitative findings
from earlier figures remain the same for conditional statistics.

Finally, the anisotropy of the subgrid-scale(SGS) stress tensor is
analyzed in Fig. 11 for the same filter widths as before. However, in
contrast to the previous results, a low pass filter is used to define the
subgrid-scale stresses sij given by

sij ¼ uiuj � ui uj : (9)

Once again, it can be seen that the isotropy increases with decreasing
filter size, but even for the SGS stresses and the smallest filter size
(D=DDNS ¼ 2), the anisotropy remains at the channel center in the
bubbly channel flows.

CONCLUSIONS

The anisotropy of the Reynolds stress, dissipation, and SGS ten-
sor in a turbulent bubbly channel flow has been characterized using
the Lumley triangle. To understand the implications for the full band-
width of turbulence modeling approaches, which extend more or less
continuously from modeling the full energy spectrum in RANS to
modeling only the smallest scales in LES, a multiscale analysis has
been performed by explicitly filtering the velocity field with a large
range of different filter sizes. The smallest (largest) filter width has
been selected to be considerably smaller (larger) than the bubble diam-
eter and the energy carrying turbulent structures. The main findings
can be summarized as follows:

(i) The presence of the bubbles results in a homogenization of
the bulk flow statistics but at the same time increases their
anisotropy.

(ii) The same statement holds for the directional turbulent
length scales.

(iii) Toward the channel center, the anisotropy decreases moder-
ately with decreasing filter width, where a high pass (low pass)
filter is used in the context of RANS (in the context of LES).

(iv) At the wall, the turbulent state of the dissipation tensor is
located closer to the one component corner (1C) of the
Lumley triangle compared to the Reynolds stress tensor. At
the channel center, the dissipation tensor has a slightly
larger isotropy.

(v) Conditional and unconditional flow statistics have been com-
pared in terms of their anisotropy. For the present downflow
channel configuration, the bubbles stay away from the wall
and the conditional averaging affects only the bulk flow
region. In the channel center, the conditional statistics tend
to be more isotropic than their unconditional counterpart.

(vi) The effect of 2D filtering vs asymmetric 3D filtering has
been analyzed and it has been found that the asymmetric
3D filtering influences the Reynolds stress distribution at
the wall whereas the 2D filtering results in a deviation from
the axisymmetric expansion border toward the channel cen-
ter for the smallest filter width.

The results show that a non-negligible anisotropy remains even
for the dissipation and SGS tensors and even for the smallest scales of
motion. This observation is relevant for the modeling of turbulence in
two-phase flows across the entire spectrum of methods from LES to
hybrid RANS-LES to RANS methods.

As the present analysis is limited to moderate Reynolds numbers,
more analysis will be needed in the future to evaluate if the aforemen-
tioned trends persist at higher Reynolds numbers.
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