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Abstract
In a wide range of practical problems, such as forming operations and impact tests, treating one of the contacting bodies as a
rigid obstacle is an excellent approximation to the physical phenomenon. In this work, thewell-established dualmortarmethod
is adopted to enforce interface constraints in the finite deformation frictionless contact of deformable bodies and rigid obstacles.
The efficiency of the non-linear contact algorithm proposed here is based on two main contributions. Firstly, the weighted
gap function is modified such that it retains the signal of the discrete gap function. Within the context of rigid/deformable
contact, this unlocks a significant simplification by removing the need to explicitly evaluate the dual basis functions. The
corresponding first-order interpolation is presented in detail. Particular focus is, then, placed on the extension for second-order
interpolation by employing a piecewise linear interpolation scheme, which critically retains the geometrical information of
the finite element mesh. Secondly, a new definition for the nodal orthonormal moving frame attached to each contact node is
suggested. It reduces the geometrical coupling between the nodes and consequently decreases the stiffness matrix bandwidth.
The proposed contributions decrease the computational complexity of dual mortar methods for rigid/deformable interaction,
especially in the three-dimensional setting, while preserving accuracy and robustness.

Keywords Signorini contact problem · Dual mortar · Weighted gap · Quadratic elements

1 Introduction

The application of the Finite Element Method (FEM) to
contact problems can be traced back to the late 1970s and
early 1980s, with contributions such as [1–5] being the ini-
tial spark for what would become the field of computational
contact mechanics. The classical discretisation techniques
were based on purely nodal considerations, with the node-
to-segment algorithm being, arguably, the most widespread
technique since then. Over the last decades, however, alter-
native formulations for improved robustness have gained
considerable attention, particularly the application of the so-
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called mortar methods for contact problems. Essentially, the
concept is based on the establishment of a variational oper-
ator for the imposition of occurring interface constraints in
an optimal weak sense. In the context of contact problems,
it allows the treatment of the contact constraints for non-
matching interface discretisations typically found in finite
deformation settings. Early implementations ofmortar meth-
odswithin the context of small deformation contact problems
can be found in [6–8]. Subsequently, the extension into the
realm of fully non-linear large deformation kinematics was
gradually derived and, without claiming the following list to
be exhaustive, the reader is referred to [9–16].

A fundamental aspect of mortar methods is that the solu-
tion is typically enforced by using Lagrange multipliers,
which, in order to preserve the accuracy of the solution, need
to be judiciously chosen. Nowadays, a popular choice for
the Lagrange multiplier space is the so-called dual Lagrange
multiplier approach [17]. In contrast with the standard choice
of mortar methods, dual Lagrange multipliers are of partic-
ular interest because they generate coupling conditions that
are easier to realise, without compromising on the optimal
convergence of the discretisation error. This fundamental
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advantage is deeply associated with the possibility to alge-
braically condense the Lagrange multipliers from the system
of equations in a trivial fashion. Early applications of this
technique to small deformation contact problems can be
found in [18–21]. Exemplary works focused on the exten-
sion to general finite deformation contact problems include
[22–26].

A summarized overview of the dual mortar contact algo-
rithm would describe it as a highly versatile and accurate
method requiring minimal calibration by the user. How-
ever, the trade-off regards its complexity, both in terms
of formulation and overall computational implementation
and computation. This becomes aggravated when consider-
ing quadratic elements, which, for industrial applications,
are particularly attractive to model complex geometries
and avoid numerical artefacts commonly found in linear
elements, such as shear locking, volumetric locking and
hourglassing. This renders the motivation for optimisation
strategies that aim at reducing the complexity of the contact
algorithm, yet without compromising on its mathematical
properties.

The classification of contact and impact procedures is typ-
ically based on the problem configuration, with factors like
the total number of bodies contacting each other or their
physical behaviour originating different contact problems.
While the contact between twodeformable bodies is typically
termed as unilateral contact, the setup consisting of one single
deformable body going against a rigid obstacle is commonly
referred to as Signorini contact. The former can be interpreted
as the most general class, turning out essential to derive the
fundamental mathematical and computational frameworks.
However, the underlying assumptions in Signorini contact
promote opportunities for simplifications, and the result-
ing strategy is an excellent approximation to a wide range
of engineering systems, such as forming and impact tests.
This work is precisely dedicated to the development of tech-
niques that exploit the simplifications of rigid/deformable
contact, having in mind the goal of reducing the computa-
tional complexity and improving the robustness of the contact
algorithm.

The dual mortar method was first applied to finite defor-
mation contact problems involving rigid boundaries in [18].
There, the assumption of a rigid boundary comes up as a
simplification for the formulation, which is not thoroughly
explored. Later on, in [27], the Signorini contact problem is
also mentioned, although within the context of thin-walled
structures. The issue was revisited more recently in [28] to
model rough surface contact. A mortar contact formulation
for second-order elements—which consists of using differ-
ent interpolation bases for the Lagrange multipliers and their
variation—is proposed, to avoid possible consistency errors
of the dual mortar algorithm in the case of large curvatures.
In this work, this technique will be further investigated. In

particular, the potential within rigid/deformable contact to
simplify the algorithm significantly by removing the need
to actually evaluate the dual basis functions is demontrated.
Moreover, an alternative technique for the interpolation of
the variation of the Lagrange multipliers is proposed, which
is based on the concept of a piecewise linear interpolation
scheme. Compared with the solution proposed in [28], the
main advantage is that it retains all the geometrical infor-
mation of the finite element mesh by allocating Lagrange
multipliers to every node in the non-mortar boundary. More-
over, the fact that one of the boundaries remains fixed is
exploited and a new definition for the unit normal vector
attached to each non-mortar node is proposed. It involves pro-
jecting the unit normal from the rigid side to the deformable
boundary. Eventually, this becomes an efficient alternative to
the averaged unit normal typically employed together with
mortarmethods. Aswill be shown in great detail in this work,
the computational advantages of the proposed nodal moving
frame are deeply connected with the simpler linearisation
procedure, which reduces the geometrical coupling between
contact nodes.

The remainder of this paper is organised as follows.
In Sect. 2, the continuum mechanics relations for rigid/
deformable contact under large deformations are introduced,
both in strong and weak form. Then, the finite element dis-
cretisation is described in Sect. 3, emphasizing the mortar
coupling terms and discrete contact constraints. The first cen-
tral concept of this work is described in Sect. 4 by discussing
the modification of the weighted gap. Secondly, a new def-
inition for the nodal orthonormal moving frame attached to
each contact node is presented in Sect. 5. The numerical
evaluation of mortar integrals is described in Sect. 6, fol-
lowed by the description of the global solution algorithm
in Sect. 7, which includes the consistent linearisation for the
application of the semi-smooth Newton algorithm and a suit-
able algebraic representation of the final condensed systemof
equations. Then, several numerical examples are presented
and discussed in Sect. 8, to validate and inspect the com-
putational performance of the algorithm. Lastly, the main
conclusions of this work are drawn in Sect. 9.

2 Continuummechanics of the Signorini
contact problem

From the viewpoint of mathematical problem formulation,
the Signorini contact problem is a popular alternative to
introduce the fundamental concepts of contact mechan-
ics within the linear regime. Nonetheless, the approach
to rigid/deformable contact derived in this work assumes
large deformations and generic constitutive behaviour. This
leads to a fully non-linear problem, which can be obtained
based upon the concepts of unilateral contact between two
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deformable bodies. The problem is derived in its strong and
weak form in the following.

2.1 Strong formulation

The nomenclature adopted and the representation of the
problem are schematically illustrated in Fig. 1. The (only)
deformable body is designated as non-mortar and identified
with the superscript (•)s. The open set �s

0 ⊂ R
d(d = 2, 3)

represents its reference configuration and the boundary �r
c

stands for the rigid obstacle contour. Herein, the superscript
(•)r relates to quantities associated with the rigid boundary
(thus replacing the notion of the mortar side, typically found
in unilateral contact). The boundary ∂�s

0 in the reference
configuration can be divided into three open disjoint subsets:
theDirichlet boundary�s

u , with prescribed displacements ūs,
the Neumann boundary �s

σ , satisfying a given surface trac-
tion t̄s, and the non-mortar potential contact interface �s

c. As
the body undergoes motion, denoted by the smooth mapping
ϕs, the counterparts in the current configuration �s

t ⊂ R
d

are referred to as γ s
u , γ s

σ and γ s
c , respectively. Note that the

rigid boundary �r
c remains stationary throughout the entire

process, thus having a null displacement field.
The boundary value problem of finite deformation quasi-

statics requires the displacement field, us = xs − Xs, which
describes the motion between the reference configuration
Xs and the current configuration xs, to satisfy the momen-
tum balance principle and the set of Dirichlet and Neumann
boundary conditions:

div σ s + bs = 0, in �s
t × (0, T ), (1)

us = ūs, on γ s
u × (0, T ), (2)

σ sns = t̄s, on γ s
σ × (0, T ). (3)

Herein, t ∈ [0, T ] plays the role of a pseudo-time, σ s stands
for the Cauchy stress tensor and bs represents the body force
per deformed unit volume. The prescribed displacements and
surface tractions at the Dirichlet and Neumann boundaries
in the current configuration are represented by ūs and t̄s,

respectively.Moreover,ns denotes the outward normal vector
to the surface γ s

σ . The contact conditions lead to an additional
set of constraints and are described in the following.

The classical continuum mechanics framework of unilat-
eral contact is equally applicable to this problem, with the
only exception being a slight modification in the gap vector
definition. As a fundamental entity of contact kinematics, the
gap vector, g (xs, t), is involved in the definition of the gap
function,

g
(
xs, t

) = η
(
xs, t

) · g (xs, t) , (4)

and for rigid/deformable contact, it follows as

g
(
xs, t

) ≡ xs − x̂r
(
xs, t

)
. (5)

The contact point x̂r on the rigid boundary �r
c stands for the

projection of the non-mortar point xs ∈ γ s
c along its current

outward unit normal vector η. Compared with the general
unilateral contact formulation, the difference is that the coor-
dinates on the opposing side to the non-mortar boundary γ s

c
remain fixed, i.e.,

xr ≡ X r. (6)

Nonetheless, the projection point x̂r itself still depends on
the deformation of the opposite contact boundary γ s

c since
the projection possibly changes over time. As explained in
more detail in the following paragraphs describing the dis-
crete version of the problem, the fact that one of its terms
remains fixed simplifies the evaluation of several terms.

Besides the kinematical description of contact, the estab-
lishment of contact constraints requires a compatible mathe-
matical descriptionof the forces that developwithin the active
contact region. Thus, the contact traction tsc (xs, t) acting on
the current non-mortar contact region γ s

c is introduced and its
decomposition into normal and tangential components yields

tsc
(
xs, t

) = pηη + tτ . (7)

Fig. 1 Illustration and
nomenclature of the Signorini
contact problem in the reference
and current configurations
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The term pη (xs, t) represents the contact pressure,

pη
(
xs, t

) ≡ η · tsc, (8)

and the frictional traction vector, tτ (xs, t), results from the
projection on the tangential plane, i.e.,

tτ
(
xs, t

) ≡ (Id − η ⊗ η) tsc. (9)

Here, Id stands for the d-dimensional identity tensor. Alto-
gether, the classical Hertz-Signorini-Moreau (HSM) condi-
tions along the normal direction are given by

g ≥ 0, pη ≤ 0, gpη = 0, on γ s
c . (10)

The frictionless tangential condition reads

tτ = 0, on γ s
c . (11)

2.2 Weak formulation

The derivation of the weak version of the problem begins
with the introduction of the solution spaceU s and weighting
space Vs:

U s ≡
{
us ∈ [H1(�s

t

)]d | us = ūs on γ s
u

}
, (12)

Vs ≡
{
δus ∈ [H1(�s

t

)]d | δus = 0 on γ s
u

}
. (13)

These spaces are conceptually similar to the general case
of unilateral contact, although involving only the mappings
on the deformable non-mortar body. Consideration of the
principle of virtual work allows rewriting the momentum
balance, Eq. (1), as

δ�s
int − δ�s

ext − δ�s
c = 0, ∀ δus ∈ Vs, (14)

where δ�s
int

(
us, δus

)
represents the internal virtual work,

δ�s
int

(
u, δu

) ≡
∫

�s
t

σ s(us
) : ∇x

(
δus
)
d�s

t , (15)

and δ�s
ext

(
δus
)
the external virtual work,

δ�s
ext

(
δu
) ≡

∫

�s
t

bs · δus d�s
t +

∫

γ s
σ

t̄s · δus dγ s
σ . (16)

The third term, δ�s
c

(
us, δus

)
, stands for the virtual work

of contact forces. These terms remain unchanged from the
classical unilateral contact problem,with the exception being
the virtual work of contact forces. For the particular case of

Signorini contact, this contribution involves only the virtual
displacements of the non-mortar side, i.e.,

δ�s
c

(
us, δus

) ≡
∫

γ s
c

tsc · δus dγ s
c . (17)

As discussed in more detail in Sect. 3.1, this is the origin
of one of the main simplifications of the algorithm. The so-
called second mortar coupling matrix can be removed, thus
evaluating the virtual work of contact forces using solely the
first mortar coupling matrix.

The last step towards the formulation of the weak version
of rigid/deformable large deformation contact comprises the
treatment of the contact constraints. The formulation pro-
posed in this work is based on the dual mortar algorithm,
which introduces the Lagrange multiplier as the negative
contact traction on the non-mortar side, i.e., λ = −tsc. This
sets the basis for a mixed variational approach. Just like the
contact traction, the Lagrange multiplier is decomposed into
normal and tangential parts, i.e.,

λ = ληη + λτ . (18)

Based on these considerations, according to [29] the
Lagrange multiplier vector is chosen from the convex cone
M+ ⊂ M given by

M+ ≡
{
δλ ∈ M | δλτ = 0

〈δλη,w〉γ s
c

≥ 0, w ∈ W s, w ≥ 0
}
, (19)

where 〈•, •〉γ s
c
stands for the H1/2-duality pairing operator.

The term Ws represents the trace space, i.e. the restriction
of the solution space U s to the non-mortar contact boundary
γ s
c . Its dual counterpart on γ s

c is represented by M. Lastly,
δλ represents a trial contact traction. It should be mentioned
that the solution cone for the Lagrange multipliers space in
Eq. (19) simultaneously satisfies, in a weak sense, the HSM
conditions in the normal direction and the frictionless tan-
gential sliding condition.

Lastly, by adopting the concept of variational inequalities,
the final weak form of the problem can be stated. Given the
internal forces and boundary conditions, the problem con-
sists of finding the kinematically admissible displacement
function, u ∈ U s, and Lagrange multiplier, λ ∈ M+, such
that, for all t ∈ [0, T ], the virtual work equation

δ�s
int

(
u, δu

)− δ�s
ext

(
δu
)+

∫

γ s
c

λ · δus dγ s
c = 0,

∀ δu ∈ Vs, (20)
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the normal contact constraints

〈 g, δλ − λ 〉γ s
c

≥ 0, ∀ δλ ∈ M+, (21)

and frictionless condition

λτ = 0, (22)

are satisfied for any admissible test functions δu ∈ Vs and
δλ ∈ M+.

3 Mortar finite element discretisation

The weak form derived in Sect. 2.2 is approximated using
the finite element method. Its foundation relies on the par-
tition of the domain �s into ne element subdomains and
on the approximation of the geometry and displacement
field at discrete points of interest. Mathematically speaking,
this introduces the finite-dimensional subsets {U s}h ⊂ U s

and {Vs}h ⊂ Vs as approximations for their corresponding
functional sets. Following the isoparametric approach, both
geometry andfield variables are approximatedusing the same
interpolation functions and, additionally, the element domain
ismapped to the parameter space ξ s = (ξ s1, . . . , ξ

s
d).With the

focus being on the finite element discretisation of the con-
tact terms, though, only the associated physical quantities are
described in the following.

The finite element interpolation at the contact interface
reads:

xs ≈ {
xs
}h ∣∣∣{γ s

c }h ≡
ns∑

k=1

N s
k

(
ξ s
)
xsk, (23)

us ≈ {
us
}h ∣∣∣{γ s

c }h ≡
ns∑

k=1

N s
k

(
ξ s
)
dsk . (24)

Here, ns denotes the total number of nodes on the dis-
crete non-mortar boundary {γ s

c }h. The correspondingdiscrete
nodal coordinates (in the current configuration) are repre-
sented by xsk and the nodal displacement by dsk . The shape
functions N s

k are defined with respect to the associated finite
element parameter space ξ s.

One important notion to introduce at this stage is that the
geometry of the rigid boundary �r

c is also discretised, i.e.,

xr ≈ {
xr
}h ≡

nr∑

l=1

N r
l

(
ξ r
)
xrl , (25)

with nr denoting the total number of nodes defining the rigid
boundary. From a conceptual point of view, this step is not
mandatory, as the rigid boundary could be equally defined

by some analytical function. From a practical perspective,
however, finite element interpolation is possibly more con-
venient, as it allows for the treatment of arbitrarily complex
geometries found in engineering applications (which can
be difficult to describe analytically). It also allows reusing
several procedures and algorithms already established for
unilateral contact, such as contact search and the numerical
evaluation of mortar integrals. Notwithstanding, it should be
kept in mind that all the techniques described in the follow-
ing are still applicable for analytical representations of rigid
boundaries (and, in some cases, even simplified).

To complete the discretisation framework of the prob-
lem, the interpolation method of the Lagrange multipliers
λ must be defined. Within this work, the Lagrange multi-
plier interpolation is realized on the non-mortar side, and its
approximation is based on the introduction of the discrete
Lagrange multiplier space Mh ⊂ M. Additional details
concerning the choice of this discrete space, its fundamental
properties and implementation strategy follow in Sect. 4. At
this stage, though, a generic notation can be introduced as

λ ≈ λh ≡
nλ∑

j=1

� j
(
ξ s
)
z j , (26)

with � j representing the discrete Lagrange multiplier basis
functions, nλ the total number of non-mortar nodes carrying
additional Lagrange multiplier degrees of freedom and z j
the discrete nodal Lagrange multipliers. In mortar methods,
it is common to consider that every non-mortar node serves
as a coupling node, thus nλ = ns. However, for the sake of
generality, this is not considered at this stage.

3.1 Discrete contact virtual work

Based upon the finite element interpolation scheme intro-
duced in the previous section, the discretised version of the
contact virtual work δ�s

c, given in Eq. (17), can be written
as

δ�s
c ≈ {

δ�s
c

}h ≡
ns∑

j=1

ns∑

k=1

{

z j

[∫

{γ s
c }h

� j
(
ξ s
)
N s
k

(
ξ s
)
dγ s

c

]

δdsk

}

.

(27)

This introduces a fundamental entity withinmortarmethods:
the first mortar coupling matrix, herein denoted by

[
D
] ∈

R
(d·nλ)×(d·ns). Its nodal block D[ j,k] is defined as

D[ j,k] ≡ Id

∫

{γ s
c }h

� j
(
ξ s
)
N s
k
(
ξ s
)
dγ s

c , j = 1, . . . , nλ, k = 1, . . . , ns.

(28)
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It should be noted that the contact virtual work is entirely
based on the first mortar coupling matrix. In contrast to the
mortar boundary in unilateral contact problems, the rigid side
remains completely prescribed (fixed), it does not contribute
to the virtual work by the contact forces—the second mortar
matrix is not required.

3.2 Discrete contact constraints

The treatment of the contact constraints starts with the defini-
tion of the discrete version of the gap vector, gh

(
ξ s
)
, which

for rigid/deformable contact reads

g ≈ gh
(
ξ s
) ≡

ns∑

j=1

N s
j

(
ξ s
)
xsj −

nr∑

l=1

N r
l

(
ξ̂
r)
xrl . (29)

When compared with the general case of unilateral contact,
they both have the same structure. However, because the
derivative of the rigid surface coordinates vanishes, its lin-
earisation is simplified.

As a final remark, it is worth mentioning that if the rigid
boundary geometry is discretised using finite elements, the
projection operations can be performed by employing exist-
ing techniques for unilateral contact, e.g., see [11,12,30].
These typically include an efficient global search algorithm
and a continuous field of normals associated with the non-
mortar boundary, as explained in mode detail in Sect. 5.

The discrete version of the normal contact constraints, see
Eq. (21), leads to the condition

∫

γ s
c

g
(
δλη − λη

)
dγ s

c

≈
nλ
∑

j=1

(
δzηj − zηj

) ∫

{γ s
c }h

� j
(
ξ s
)
gh
(
ξ s
)
dγ s

c ≥ 0. (30)

By choosing carefully the discrete Lagrange multiplier com-
ponent zη

j and test function δzη
j , one obtains a decoupling

of the contact constraints, which yield the set of point-wise
conditions

g̃ j ≥ 0, zη
j ≥ 0, g̃ jz

η
j = 0, (31)

in which the weighted gap g̃ j is defined as

g̃ j ≡
∫

{γ s
c }h

� j
(
ξ s
)
gh
(
ξ s
)
dγ s

c . (32)

The discrete gap function gh is evaluated as

gh
(
ξ s
) ≡ ηh

(
ξ s
) · gh (ξ s) , (33)

considering the discrete gap vector in Eq. (29). The discrete
frictionless condition simply states that

zτ
j = 0. (34)

It is worth mentioning that, strictly speaking, the con-
tact constraints expressed via the point-wise conditions in
Eq. (31) are only valid for dual interpolation based on the
bi-orthogonality and under the assumption of constant unit
normal vectors for the node-wise computation, see [29]. This
has to do with the localized character of the dual basis func-
tions with regard to the primal variable of the mixed weak
formulation.

4 Interpolation of the Lagrangemultipliers
and weighted gap definition

This work heavily relies on the so-called dualmortarmethod.
It consists of defining dual shape functions, herein denoted
by � j , to interpolate the Lagrange multipliers satisfying the
bi-orthogonality condition,

∫

{γ s
c }h

� j N
s
k dγ s

c = δ jk

∫

{γ s
c }h

N s
k dγ s

c . (35)

This technique becomes particularly advantageous within
contact problems, as it localizes the coupling conditions
while preserving the optimal convergence of the discretisa-
tion error. Thefirstmortar couplingmatrix becomesdiagonal,

D[ j,k] = Id

[

δ jk

∫

{γ s
c }h

N j
(
ξ s
)
dγ s

c

]

, (36)

and the contact constraints decouple to point-wise conditions,
thus creating a perfect fit for the application of efficient active
set strategies. However, when thinking about the require-
ments of the dual shape functions for contact mechanics,
several aspects need to be carefully analysed. More specif-
ically, the inequality nature of contact constraints requires
positivity for the Lagrange multiplier basis functions.

First of all, it can be easily shown that dual Lagrange
multiplier shape functions are guaranteed to satisfy partition
of unity on each non-mortar element, i.e.,

nes∑

j=1

� j = 1, j = 1, . . . , nes . (37)

This property is assured by the bi-orthogonality condition,
see [20] for a proof. Moreover, the partition of unity yields
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another essential feature of dual Lagrange multiplier basis:

∫

{γ s
c }he

� j dγ s
c =

∫

{γ s
c }he

N s
j dγ s

c . (38)

As mentioned below, this property plays a crucial role in
ensuring the integral positivity of Lagrange multiplier inter-
polation.

While Eqs. (37) and (38) are proven properties of dual
shape functions, when considering the transmission of con-
tact stresses across the interface additional requirements are
needed. First of all, in order to render the first mortar matrix
non-singular, thus invertible, the condition of non-zero inte-
grals arises, i.e.,

∫

{γ s
c }he

� j dγ s
c = 0. (39)

While this requirement is sufficient for mesh tying applica-
tions, inequality constraints in contact problems require the
Lagrange multiplier shape functions to satisfy at least inte-
gral positivity further, i.e.,

∫

{γ s
c }he

� j dγ s
c > 0. (40)

This condition becomes necessary within contact modelling
due to the physical interpretation of the HSM conditions. In
their discrete form, the HSM conditions are written using the
weighted nodal gap g̃ j , which inherits the nodal shape func-
tions used to interpolate the Lagrange multipliers. Therefore,
it turns out reasonable to require that positive discrete gap
function values, gh > 0, correspond to weighted gaps g̃ j that
are also positive—otherwise, it would lose its physical mean-
ing. From a closer inspection of the definition of theweighted
gap, Eq. (32), it is possible to conclude that this is only
satisfied if integral positivity of Lagrange multiplier shape
functions is guaranteed, i.e., if Eq. (40) holds. Moreover,
the first mortar coupling matrix, Eq. (28), is responsible for
characterizing the Lagrange multiplier distribution as con-
tact forces on the non-mortar boundary. Negative entries in
this matrix can compromise the physical interpretation of the
thirdHSMcondition, and, in turn, positivity ofD[ j,k] is a crit-
ical assumption in the mathematical proof of optimal spatial
convergence rates [31].

According to Eq. (38), integral positivity is directly
inherited from the corresponding displacement shape func-
tions N s

j . Unfortunately, while for first-order finite element
interpolation, this property is fulfilled, for second-order
approximation in three dimensions, this aspect reveals to be
particularly troublesome. Integral positivity does not hold
for specific elements there, e.g., corner nodes of eight-noded
quadrilateral (quad8) or six-noded triangular (tri6) facets.

For standard Lagrange multipliers, in [32], this issue has
been addressed either by choosing nλ < ns (i.e., only the
corner nodes carry discrete Lagrangemultipliers) or employ-
ing piecewise linear polynomials on subsegments. In the
dual Lagrange multiplier case, a solution based on special
basis transformation procedures is proposed in [26,31]. In
this approach, a modified basis of interpolation functions
based on a well-designed linear combination of the stan-
dard interpolation functions N s

j replaces the latter in the
bi-orthogonality condition to construct the corresponding
dual shape functions.

4.1 The weighted gap and strictly positive shape
functions

When dealing with contact problems under large deforma-
tions, integral positivity can be viewed as aminimum require-
ment for contact modelling. It assures convergence of the
global active set algorithm at least under approximately con-
stant gap conditions, but certainly not in every situation and
most likely not for severe gradients found in coarse meshes
with high curvatures. An illustrative two-dimensional exam-
ple with first-order interpolation is represented in Fig. 2, in
which the sign of contributions to the weighted gap g̃ j at a
given non-mortar node j is highlighted. Even though there is
no overlap between the two boundaries, node j will be erro-
neously identified as active. The reason for that has to dowith
the negative part of the dual shape function � j , which yields
for those regions weighted gap values g̃ j with the opposite
sign of the discrete gap gh.Whenever severe geometrical cur-
vatures are found, this effect can be amplified and, possibly,
yield non-physical results that can compromise the conver-
gence of the active set algorithm.

Since the severity of these artefacts is h-dependent, a pos-
sible solution to avoid these situations is the refinement of the
finite element mesh. However, these options are not always
available in practice, due to possible limitations in compu-
tational resources or even time to iterate on the numerical
model. The ideal solution is a further restriction to strictly
positive shape functions for the weighted gap interpola-

Fig. 2 Illustration of a possible unphysical contact state in two dimen-
sions
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tion, since the possibility of obtaining non-physical contact
states is entirely eliminated. However, in the case of strictly
positive standard interpolation functions, as in two- and
three-dimensional first-order elements, it is mathematically
impossible to generate strictly positive dual shape functions.
The concept proposed in this work departs from the concept
introduced in [25], according to which this problem is solved
by changing the shape function used to interpolate the varia-
tion of the Lagrange multipliers (i.e. the weighted gap). This
means that the dual shape function in Eq. (32) is replaced
with the standard shape function, i.e.,

g̃ j ≡
∫

{γ s
c }h

N s
j

(
ξ s
)
gh
(
ξ s
)
dγ s

c . (41)

Following this technique, the Lagrange multipliers can still
be condensed from the global system of equations, while
preserving the robustness of standard Lagrange multipliers
for the treatment of the contact constraints.

4.2 Additional advantages for rigid/deformable
interaction

For the case of rigid/deformable contact, in particular, the
application of different functions for the Lagrange multiplier
interpolation andweighted gapbecomes extremely important
for an additional reason: it allows us to completely eliminate
the evaluation of the dual shape functions. As already men-
tioned, the secondmortar couplingmatrix vanishes due to the
fact that one of the opposing contact surfaces remains fixed.
Moreover, the bi-orthogonality condition leads to a diagonal
first mortar coupling matrix, which can be evaluated using
the standard shape functions only, see Eq. (36). Therefore,
the only terms left involving the dual shape functions are
the contact constraints. As a consequence, and as explained
in more detail in the following paragraphs, if the gap func-
tion is defined using standard shape functions, the dual shape
functions are not explicitly used.

4.3 Extension to quadratic elements using piecewise
linear interpolation

The establishment of quadratic dual shape functions in three
dimensions has always been a challenging topic, especially
for contact problems. Additional techniques are required for
assuring integral positivity, which, as mentioned previously,
is twofold: ensure optimal spatial convergence and physi-
cally meaningful weighted gaps. In this work, the locally
quadratic technique proposed in [26] is employed to address
the first point. Essentially, it consists of combining the bi-
orthogonality condition, Eq. (35),with a basis transformation
procedure. As suggested in [20], feasible dual shape func-
tions are constructed from the element-wise bi-orthogonality

condition, although based on the introduction of modified
shape functions Ñ s

j , i.e.,

∫

{γ s
c }he

� j Ñ
s
k dγ s

c = δ jk

∫

{γ s
c }he

Ñ s
k dγ s

c . (42)

It is noteworthy to mention that this technique leads to a non-
diagonal first mortar coupling matrix that, notwithstanding,
can still be trivially inverted due to the closed-form character
of the transformation scheme. For additional details on this
strategy, the reader is referred to the original publication in
[26].

If strict positivity of the shape functions used to define the
weighted gap is to be further pursued, the situation becomes
even more complicated. The original motivation for the tech-
nique proposed in [25] relies on the preservation of the
properties of standard shape functions in the contact con-
straints, while keeping the localization character of the dual
basis in the coupling conditions. However, it is rather obvious
that the requirement of non-negativity is only fully met by
standard Lagrange multiplier basis functions for first-order
finite element interpolation. For example, Fig. 3 represents
the integral value of the quadratic shape function associated
with the first node of an 8-noded (serendipity) quadrilat-
eral. The integration domain is considered rectangular, and,
as can be observed in the contour plot, there is a region
over which the integral value becomes negative. Within
the context of the contact formulation, this compromises
the physical interpretation of the weighed gap function and
impairs the convergence of the active set search. Therefore,
an additionalmodification of the interpolation scheme for the
variation of the Lagrangemultipliers is required for quadratic
elements.

This topic has been firstly addressed in [28] within the
context of dual mortar contact with regularisations. Simi-
lar to the concepts already introduced in [32], an alternative
is proposed to define Lagrange multipliers only at corner
nodes, which are interpolated using the associated first-order
standard shape functions. Despite leading to a semi-smooth
Newton method with a smaller active set to be iterated,
this technique has the disadvantage of losing surface infor-
mation for curved boundaries. The enforcement of contact
constraints at edge nodes is ignored and, for coarse meshes,
this can lead to non-physical results. Furthermore, as this
approach inherently relies on nλ < ns, the construction of
the dual basis is slightly more involved and requires substan-
tial algorithmic adaptations, see [26].

In this work, an alternative technique for quadratic finite
elements is proposed. In the spirit of the concepts presented
in [32] for the evaluation of the mortar integrals for quadratic
elements, it is based on the establishment of linear sub-
elements and corresponding piecewise interpolation. The
weighted gap function is defined using piecewise linear stan-
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Fig. 3 The integral value of the
standard shape function node 1,
N1, of the 8-noded quadratic
element over a partial
rectangular domains

dard shape functions N sub
j

(
ξ s
)
, i.e.,

g̃ j ≡
∫

{γ s
c }h

N sub
j

(
ξ s
)
gh
(
ξ s
)
dγ s

c . (43)

Compared with the alternative proposed by [28], all non-
mortar nodes are checked for contact, thus preserving more
information about the interface geometry. As the condition
nλ = ns is retained, the implementation of the proposed
approach requires little effort and enables recycling of most
of the pre-existing algorithmic components. In combina-
tion with the certainty of strict positivity of the piecewise
linear shape functions, this allows for a robust algorithm
that becomes less sensitive to discretization problems. How-
ever, as a trade-off, the computational complexity in the
numerical evaluation of mortar integrals increases. Instead
of approximating a single linear element (containing only
the corner nodes), each quadratic facet is divided into
multiple linear/bilinear sub-elements, which may require
further sub-divisions within the clipping polygon algo-
rithm. This downside, however, is not intrinsically related
to the proposed approach but is already present in popular
mortar segmentation procedures for quadratic elements in
deformable/deformable contact [32]. Notwithstanding, for
rigid/deformable contact, this aspect can be counterbalanced
by employing the efficient projected orthonormal frame to be
described in Sect. 5. The application of the piecewise linear
interpolation requires the establishment of proper mappings,
and we refer to Appendix A for their explicit expressions and
associated Jacobian matrices. Table 1 gives an overview of
the various finite element interpolation schemes used within
the proposed algorithm, also representing the shape functions
characteristic of both corner and edge nodes of a quadratic
8-noded quadrilateral (quad8).

5 Projected averagedmoving frame

With the discrete version of the contact virtual work and con-
tact constraints thought out, attention is now shifted towards
their computational treatment. The importance of mortar
integral evaluation within mortar methods is well-known and
represents one of the main challenges. Their correct evalua-
tion is essential to preserve the sought-after properties of the
mortar-basedvariational formulation. It requires approximat-
ing surface integrals with complex geometrical operations
involved and, therefore, ends up being one of the main con-
tributors to the overall cost of the algorithm. Therefore, there
is a clear motivation for new strategies that are able to facil-
itate the complexity of the algorithm without affecting its
accuracy and robustness. For the particular case at hand of
rigid/deformable contact under large deformations, the fact
that one of the boundaries remains fixed can be exploited and,
as explained in the following paragraphs, a new definition for
the continuous field of orthonormal frames is proposed.

In all contact problems, it is necessary to define a local
orthonormal moving frame attached to each contact node
containing a Lagrange multiplier. It splits the surface contact
tractions into normal and tangential components and estab-
lishes projection rules necessary for the evaluation of mortar
coupling terms. The overall idea of the proposed method
consists in defining an initial field of orthonormal frames on
the rigid side, which is then continuously projected onto the
non-mortar side throughout the deformation process. On the
ground foundation of this idea is the fact that, while contact
occurs, the boundaries of both sides tend to coincide and,
for the regions in full contact, become practically identical.
Therefore, the field of orthonormal frames on the rigid side
can be defined using sophisticated and accurate methodolo-
gies, which are then transmitted to the deformable side by
means of simple projections rules, similar to the ones already
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Table 1 Finite element
interpolations for
rigid/deformable dual mortar
contact and shape functions for a
quadratic 8-noded quadrilateral

used within the integration algorithm. The individual steps
are described in more detail in the following.

Firstly, it is necessary to define the field of orthonor-
mal frames on the rigid side. This operation is only realised
once during problem initialisation and the averaged normal
approach is employed here. Originally proposed by [12], and
later on slightly simplified by [22], it is based on a continuous
field of normal vectors defined on the non-mortar side, which
smooths the discontinuities associatedwith the discretization
of the contact interface by averaging the nodal unit normals.

Next, the unit normal vector is projected to the non-mortar
contact boundary and inverted in order to still point outwards,
see Fig. 4. For a given non-mortar node j with coordinates
xsj , the projection consists of finding the isoparametric coor-

dinate ξ̂
r
on the rigid side such that the following condition

holds:

nre∑

k=1

N r
k

(
ξ̂
r) [

xrk + αη̃rk
]− xsj = 0. (44)

Here, nre denotes the total number of nodes of the rigid ele-
ment and η̃rk the averaged unit normal vectors. The parameter

α relates to the normal distance between the points.1 This sys-
tem of equations can be solvedwith a local Newton–Raphson
procedure, in which each iteration reads

⎧
⎨

⎩

�ξ̂ r1
�ξ̂ r2
�α

⎫
⎬

⎭
= [W]−1

⎧
⎨

⎩

nre∑

l=1

N r
l

(
ξ̂
r)(

xrl + αη̃rk

)
− xsj

⎫
⎬

⎭
. (45)

Thematrix [W] ∈ R
d×d is obtained from the derivative of the

projection condition with respect to the rigid side coordinate
ξ r and the parameter α. In three dimensions, it yields

[
W
] ≡

⎡

⎣
nre∑

l=1

N r
l,ξ r1

(
xrl + η̃l

) ∣
∣
∣

nre∑

l=1

N r
l,ξ r2

(
xrl + η̃l

) ∣
∣
∣

nre∑

l=1

N r
l η̃l

⎤

⎦ .

(46)

The two-dimensional version is relatively straightforward by
simply omitting the second column. Lastly, with the pro-
jection coordinate ξ̂

r
at hand, the associated frame can be

1 For the sake of simplicity, the interpolated normal vector is not nor-
malized. This does not change the solution of the projection procedure,
thus affecting the physical meaning of the parameter α only.
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Fig. 4 Projection of the averaged orthonormal frame from the rigid
onto the non-mortar boundary

inverted, which means that the unit normal vector ηhj at the
non-mortar node j yields

ηhj = −
∑nre

l=1 N
r
l

(
ξ̂
r)

η̃rk
∣∣∣∣∑nre

l=1 N
r
l

(
ξ̂
r)

η̃rk
∣∣∣∣
. (47)

Having the unit normal vector at hand, the tangent vector can
be freely chosen from the tangential plane. A recommended
technique is, for example, considering the direction of the
interpolated tangent vector on the rigid side. In practice, the
projection is performed considering various rigid interface
elements until a valid solution is found. The application of
an efficient global search algorithm is, thus, highly recom-
mended in order to perform this iterative procedure based on
a reduced list of target elements.

Remark 1 In situations where no valid projection is found
(e.g., in dropping edge problems), the normal vector on
the non-mortar boundary can be defined using the averag-
ing technique locally, as it depends only on the deformable
boundary itself.

The local frame is deformation-dependent for contact
under large deformations, and, therefore, needs to be lin-
earised within the Newton–Raphson algorithm. In fact, this
now exposes the main advantage of this technique, which
regards the self-contained character of the projection pro-
cedure. As demonstrated in more detail in Sect. 7.1, the
projected frame derivatives are guaranteed to have the min-
imum bandwidth, i.e., they contain only the degrees of
freedom associated with the non-mortar node itself. This
has a beneficial impact on the computational complexity
of the algorithm by reducing the total number of individ-
ual operations. As the derivatives of the normal and tangent

vectors appear (directly and indirectly) in every term of the
formulation, the reduction in the number of terms in the
derivatives becomes amplified in the overall computational
cost. Recall that, beyond the contact constraints, the inte-
gration scheme is based on projections that also use the
continuous field of normals on the non-mortar side. The
improvements in computational complexity are carefully
investigated and quantitatively measured in the numerical
examples shown in Sect. 8.2.

6 Numerical evaluation of mortar integrals

The prime cause for the difficulty in evaluating mortar inte-
grals is related to the quantities with terms belonging to
different sides of the contact interface—usually connected
by means of projection rules that, within the ongoing for-
mulation, are based on the projected normals. Generally
speaking, these include the transmission of contact stresses
across the interface, described by the secondmortar coupling
matrix, and the kinematics describing the relative motion
between both boundaries, namely in the form of the gap vec-
tor. One of the main simplifications for the particular case
of rigid/deformable contact is that the second mortar matrix
vanishes. However, even in the simplest case of frictionless
contact, the weighted gap still needs to be evaluated and,
therefore, the challenge of correctly evaluating mortar inte-
grals is still present.

The primary source of complexity involves the trans-
mission of geometrical information between boundaries (to
determine the overlap of both domains) and, in the three-
dimensional case, the evaluation of surface integrals with
complex geometries. As the rigid boundary is interpo-
lated using finite elements, the techniques described in the
overview work by [30] are equally applicable to the problem
at hand. Both the segmentation and element-wise integration
schemes remain practically unchanged, with the only excep-
tion being the displacements of the mortar side vanishing.
Nonetheless, for quadratic interpolation using piecewise lin-
ear interpolation, the understanding of how the subdivision of
the interface element into multiple sub-elements affects the
integration scheme is noteworthy to mention. In the spirit of
preserving all the techniques derived for linear elements, each
individual sub-element of the parent quadratic facet is treated
accordingly. The two strategies employed for the numerical
approximation of mortar integrals are described in the fol-
lowing.

6.1 Evaluation of mortar integrals for piecewise
linear interpolation

For the segmentation strategy in two dimensions, segments
are formed using each pair of nodes of the involved 3-noded
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line elements, while in three dimensions, the clipping poly-
gon is established using the sub-elements (3-noded triangles
or 4-noded quadrilaterals). Because the clipping polygon
technique for three-dimensional problems is only valid for
linear facets (otherwise, it would be impractical to perform
the clipping algorithm based on curved domains), this means
that the quadratic facets on the rigid side also need to be
divided into sub-elements. The basic steps of the algorithm
remain the same: after defining the clipping polygon, it is
divided into multiple cells to be numerically integrated (tri-
angles and quadrilaterals) and the Gauss points are projected
back to the sub-element. At this stage, however, an additional
step needs to be performedby recovering the original isopara-
metric coordinate at the parent element (quadratic) using the
mappings described in Appendix A. The contribution D j j

of a given pair of non-mortar and rigid elements to the first
mortar coupling matrix, see Eq. (36), becomes

D j j≈
nsub∑

s =1

ncell∑

c=1

ng∑

g=1

wg N j
(
ξ sg
(
ξ subg

(
ζ g
)))

Jc, (48)

where nsub stands for the total number of sub-elements and
ncell is the total number of integration cells. The Gaussian
quadrature is defined over ng integration points with wg

weights and coordinates ζ g. The Jacobian determinant, Jc,
defines the transformation from the integration cell of the
sub-element to the global spatial configuration, i.e.,

Jc
(
ξ sub

) =
∣∣∣∣

∣∣∣∣
∂
{
xs
}h

∂ξ s

∣∣∣∣

∣∣∣∣ ·
∣∣∣∣

∣∣∣∣
∂ξ s

∂ξ sub

∣∣∣∣

∣∣∣∣. (49)

For the element-based integration, the Gauss points are
definedon the sub-element anddirectly projected to the oppo-
site side. Figure 5 schematically represents the boundary-
segmentation method in three dimensions, which is based on
the combination of both strategies. The algorithm is illus-
trated for a pair of non-mortar and rigid elements, which,
after division into sub-elements, yields both types of inte-
gration cells. For the sub-element represented in red, all the
Gauss points are successfully projected, whereas the remain-
ing sub-elements require segmentation.

It is important to mention that, from a practical perspec-
tive, there exists a slight difference in both strategies that
motivates a modified physical interpretation of the Jacobian
determinant. For element-wise integration, all the nodes of
the integration cell belong to the parent finite element and,
therefore, the mapping to the parent element is explicitly
employed and the Jacobian evaluated using the two terms in
Eq. (49). However, when applying the segmentation scheme,
the sub-element is projected to the auxiliary plane, which
leads to a relative loss of geometrical information (inter-

Fig. 5 Schematic illustration of the boundary-segmentation integration
method for the piecewise linear interpolation in three dimensions. The
top two figures represent the division into sub-elements and the bottom
two figures correspond to the integration cells originated from two of
the five sub-elements

preted as a kind of faceting of the quadratic element).2 The
nodes of the integration cells become either projections of
the sub-element nodes to the auxiliary plane or nodes gen-
erated by the clipping algorithm. The Jacobian determinant
is evaluated directly by using the global coordinates of the
integration cell nodes and, thus, overlooking the two-step
operation in Eq. (49).

7 Global solution algorithm

The final step to obtain the final discrete non-linear contact
problem between a deformable body and a rigid obstacle
regards the active set strategy. As for the general case of uni-
lateral contact between two deformable bodies, the contact
inequality constraints require identifying the subset of inter-
face nodes effectively in contact. To address this problem, the
primal-dual active set strategy (PDASS) described in [18]
is thoroughly applied without any modifications. In a nut-
shell, it consists of reformulating the discrete nodal inequality
constraints using a non-linear complementarity (NCP) func-
tion. This introduces a certain regularisation on the active

2 Strictly speaking, this becomes relevant only for 4-nodedquadrilateral
facets, in which the possibility of element warping exists.
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set search and enables the application of a Newton–Raphson
type algorithm, comprising not only geometrical andmaterial
non-linearities, but also the contact active set search itself.
The final discrete contact problem can bewritten as the entire
set of equality conditions:

r (d, z) ≡ fint (d) − fext + fc (d, z) = 0, (50)

zη
j − max

{
0, zη

j − cη g̃ j

}
= 0 , j = 1, . . . , ns, (51)

zτ
j = 0, j = 1, . . . , ns. (52)

Recall that r (d, z) represents the residual vector, fint (d) and
fext the internal and external forces vectors (which remain
unchanged from classical finite element problems). The vec-
tor fc (d, z) stands for the discrete contact forces. At this
stage, the foundations for the application of a Newton-type
algorithm are complete. Thus, we describe in the following
the consistent linearisation of the problem.

7.1 Consistent linearisation

The application of the semi-smooth Newton algorithm
requires consistent linearisation of both the discrete balance
equations and the NCP functions. In this section, the focus is
exclusively placed on the terms introduced within the current
formulation for non-linear rigid/deformable contact, namely
the piecewise linear interpolation for quadratic dual mortar
contact and the projected orthonormal frame. The remain-
ing derivations remain unchanged from the unilateral contact
case and, therefore, the reader is referred to the discussions
in [11,22,33], to name a few. In what follows, the compact
notation D (•) stands for the so-called directional derivative
at a given iteration k, i.e.

D (•) ≡ ∂ (•)

∂d

∣
∣∣∣

k

�d + ∂ (•)

∂z

∣
∣∣∣

k

�z. (53)

The vectors �d and �z stand for the solution increment in
the displacements and Lagrange multipliers, respectively.

7.1.1 Piecewise linear interpolation

The piecewise linear interpolation affects the definition of
the isoparametric coordinates at each Gauss point. As the
interface element is divided into sub-elements, the numeri-
cal integration requires the application of mappings between
domains. These need to be taken into account within the
derivative chain rule and, for example, the derivative of the
isoparametric non-mortar coordinate, Dξ s, yields

Dξ s = ∂ξ s

∂ξ sub
Dξ sub. (54)

The first term regards the Jacobian matrix of the mappings,
and we refer to Appendix A for its definition. The derivative
Dξ sub contains the directional derivative of the sub-element
parameter space, which is computed using the typical first-
order element procedures.

7.1.2 Projected orthonormal frame

Considering the definition of the projected unit normal given
in Eq. (47), its linearisation reads

Dηhj =
(

1

lη̌r
I − 1

l3
η̌r

η̌
r ⊗ η̌

r

)

D η̌
r
. (55)

Here, η̌rj
(
ξ̂
r)
has been introduced as an abbreviation for the

non-unit normal vector on the rigid boundary,

η̌
r
j

(
ξ̂
r) ≡

nre∑

l=1

N r
l

(
ξ̂
r)

η̃rk, (56)

of length lη̌r and whose derivative yields

D η̌
r
j

(
ξ̂
r) =

nre∑

k=1

N r
k,ξ r1

(
ξ̂
r)
D ξ̂ r1 η̃rk

+
nre∑

k=1

N r
k,ξ r2

(
ξ̂
r)
D ξ̂ r2 η̃rk . (57)

Note that the only derivative needed arises from the pro-
jection procedure, given that the averaged unit normal
linearisation vanishes (the rigid boundary remains fixed). The
linearisation of the projected rigid isoparametric coordinate
ξ̂
r
can be extracted from the projection condition in Eq. (45)

as follows:

⎧
⎨

⎩

D ξ̂ r1
D ξ̂ r2
Dα

⎫
⎬

⎭
= [

W
]−1{

�xsj
}
. (58)

It is noteworthy to mention that the matrix [W] to be inverted
is already computed during the projection, see Eq. (46),
which makes the computational evaluation of the orthonor-
mal moving frame relatively straightforward and efficient.

7.2 Algebraic representation

This last section provides the algebraic representation of the
discrete entities involved in the contact algorithm. All nodes
and corresponding degrees of freedom are partitioned into
two (instead of three) disjoint sets S∪N : a group S contain-
ing all non-mortar quantities and a groupN associated with
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all remaining nodes or degrees of freedom. Then, the non-
mortar set S is further partitioned into two disjoint sets: the
inactive nodes set I the setA of nodes in contact. The assem-
bled system to be solved within each semi-smooth Newton
step k in order to obtain the incremental displacements vector
�d and current Lagrange multipliers zk+1 can be expressed
as:

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

0

0

0

KAN

KIN

KNN

FI

AI

0

K̃AI

K̃II

KNI

FA

AA

0

K̃AA

K̃IA

KNA

0

0

II

DT
AI

DT
II

0

T

0

0

DT
AA

DT
IA

0
⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
zk+1
A

zk+1
I

�dA

�dI

�dN
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0

g̃

0

r̃A

r̃I

rN
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(59)

The blocks K denote the stiffness matrix resulting from
the linearisation of the internal forces vector. The blocks K̃
represent the effective stiffness matrix, obtained from the
summation of the respective stiffness blocks K with the lin-
earization terms of the contact force vector fc with respect to
the displacements, i.e.,

[
K̃ (d, z)

] ≡ [
K (d)

]+
[

0
DDT

] {
z
}
. (60)

Thematrix blocks ofD are abbreviated such that, for instance,

DT
IA ≡ [

DT]
IA. (61)

Notice that

DT
IA = [

DIA
]T

. (62)

The blocks A contain the derivatives with respect to the
displacements of the NCP function for the normal contact
constraints. The matrices F and T aggregates the deriva-
tive of the frictionless condition (52) with respect to the
displacements and Lagrange multiplier, accordingly. The
residual blocks r̃ stand for the abbreviation r̃ ≡ fint − fext,
which comes as a result of solving directly for the unknown
Lagrange multipliers zk+1 at each iteration (i.e., without
employing an incremental formulation). The vector g̃ gathers
all the nodal weighted gaps. Compared with the counterpart
for unilateral contact, the only difference is that there are no
mortar degrees of freedom, thus leading to a reduced number
of stiffness matrix blocks.

Remark 2 It should be mentioned that, in Eq. (59), the case
of a non-diagonal first mortar coupling matrix is assumed

for the sake of generality. Nonetheless, for first-order finite
elements, it retains the diagonal structure due to the bi-
orthogonality condition given in Eq. (35). For second-order
interpolation, on the other hand, the application of the
modified dual shape functions, see Eq. (42), leads to a non-
diagonal first mortar matrix (although, still easily inverted).

7.2.1 Elimination of the Lagrangemultipliers

As already mentioned, the use of dual Lagrange multipliers
allows for a straightforward simplification of the system of
equations by performing the condensation of the Lagrange
multipliers (thus removing the unwanted saddle point struc-
ture). This is possible because thefirstmortar couplingmatrix
D is trivially inverted. The evaluation of the Lagrange mul-
tipliers at a given configuration starts with the consideration
of the following system of equations

{
zk+1
I
zk+1
A

}
= −

[
D−T

II D−T
IA

D−T
AI D−T

AA

] {
r̃I +∑

X∈{N ,I,A} KIX�dX
r̃A +∑

X∈{N ,I,A} KAX�dX

}
.

(63)

Consideration of the fourth row of Eq. (59) yields zk+1
I = 0

and, therefore, one has

zk+1
A =−

∑

Y∈{I,A}
D−T
AY

⎡

⎣r̃Y+
∑

X∈{N ,I,A}
KYX�dX

⎤

⎦ .

(64)

This allows us also to solve the third row of Eq. (59). It is
important to highlight that, in the equations above, the blocks
of the inverse of the first mortar coupling matrix are obtained
from the global inverse, i.e.,

D−T
IA ≡ [

D−T]
IA. (65)

Notice that

D−T
IA = [

DIA
]−T

. (66)

It should be also mentioned that the presented condensation
procedure becomes simplified for first-order finite elements,
as the firstmortar couplingmatrixmaintains a diagonal struc-
ture.

Substitution of the expressions above into Eq. (59) leads
to the final condensed system:

⎡

⎢⎢
⎣

KNN KNI KNA
K̆N K̆I K̆A
0 AI AQ
F̆N F̆I F̆A

⎤

⎥⎥
⎦

⎧
⎨

⎩

�dN
�dI
�dA

⎫
⎬

⎭
=−

⎧
⎪⎪⎨

⎪⎪⎩

rN
r̆I
g̃
r̆A

⎫
⎪⎪⎬

⎪⎪⎭
. (67)
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Here, several algebraic functions and abbreviations havebeen
introduced to facilitate the notation. The algebraic function
K̆(•) is defined as

K̆(•) ≡
{
KI(•) −∑

Y∈{I,A} DT
IAD−T

AYKYN�dN , if (•) ∈ N ,

K̃I(•) −∑
Y∈{I,A} DT

IAD−T
AYKY(•)�d(•), if (•) /∈ N ,

(68)

and the corresponding residual comes as

r̆I ≡ r̃I −
∑

Y∈{I,A}
DT
IAD−T

AY r̃Y . (69)

The algebraic function F̆(•) reads

F̆(•) ≡
{−∑Y∈{I,A} TD

−T
AYKYN�dN , if (•) ∈ N ,

F(•) −∑
Y∈{I,A} TD

−T
AYKY(•)�d(•), if (•) /∈ N ,

(70)

and the corresponding residual r̆A yields

r̆A ≡ −
∑

Y∈{I,A}
TD−T

AY r̃Y . (71)

8 Numerical results

In the following, several numerical examples are presented
and analysed in order to validate the proposed formula-
tion for rigid/deformable finite deformation contact. The
set of numerical examples presented is exclusively focused
on particular aspects of the proposed formulation. Firstly,
the optimal convergence rate of the formulation using the
modified weighted gap function is discussed in Sect. 8.1,

Fig. 6 Hertzian contact—schematic representation of the problem set-
ting

considering the classical Hertzian contact problem in two
dimensions under uniform mesh refinement. The spatial
convergence of the proposed piecewise linear interpolation
scheme for quadratic finite elements is also analysed. The
improvement in computational complexity is measured in
Sect. 8.2 by analysing the three-dimensional contact prob-
lem of a half torus going against a complex rigid boundary.
Lastly, the proposed piecewise linear interpolation scheme
for quadratic finite elements in three dimensions is employed
in Sect. 8.3 to solve the contact of a deformable base against
a rigid punch.

8.1 Spatial convergence—Hertzian contact

The first numerical example to be analysed regards the
Hertzian frictionless contact between two cylinders under
plane strain conditions. The objective is to assess the spa-
tial convergence rate of the original dual mortar formulation
and the proposed techniques. The geometry of the prob-
lem is schematically represented in Fig. 6. It consists of one
deformable cylinderwith radius R1 = 8, described by theSt.-
Venant-Kirchhoff hyperelastic material model, with Young’s
modulus E = 200 and Poisson’s ratio ν = 0.3, contacting
against a rigid cylinder with the same radius R2 = 8. For
simplicity, only half of the deformable cylinder is modelled
and the constant pressure of p0 = −0.8 is applied to the top
surface of the hemisphere. The problem is discretised using
a structured mesh of standard 4- and 8-noded quadrilateral
elements for first- and second-order interpolation. The exter-
nal pressure is applied incrementally in 20 steps, considering
a relative convergence tolerance for the nonlinear solver of
εr = 1 × 10−10. Only the segment-based strategy is con-
sidered in order to not compromise the spatial convergence
properties of the underlying mixed finite element formula-
tion.

Firstly, in order to inspect the convergence rate, successive
uniform mesh refinement steps are employed in a structured
manner. Figure 7 shows the entire coarse finite elementmesh,
including a snippet of the remaining refinement levels. The
contact region starts with a discretisation based on n = 4
elements, which is then doubled four times, i.e., until reach-
ing n = 64 elements. The idea is to compare the solution
of each level with a reference solution, here obtained using
the second-order finite element mesh with n = 256 (two
refinement levels above the most refined mesh).

Figure 8 shows the discretisation error based on the H1-
norm of the error in the displacement field, i.e., by evaluating
directly ||u−uh|| between solutions. For first-order interpola-
tion, O(h) convergence is observed, while for second-order
interpolation, optimal results of O(h3/2) are achieved. These
are in accordance with the theoretical estimates and numeri-
cal investigations carried out within the context of unilateral

123



Computational Mechanics

Fig. 7 Hertzian
contact—successive finite
element mesh refinement

Fig. 8 Hertzian
contact—convergence of the
H1-norm of discretization error
||u − uh||, for both first- and
second-order finite interpolation
based on quadrilaterals

contact due to a reduced regularity of contact solutions,
e.g., see [26,31]. Regarding the ongoing formulation for
rigid/deformable contact, one significant result is that the
convergence rates of the proposed algorithm are practically
identical with the original formulation. This indicates that
the mathematical structure of the dual mortar formulation
remains unaffected by the employed mixed interpolation
scheme. The same is observed for the piecewise linear inter-
polation.

Numerical results for the contact pressure distribution are
illustrated in Fig. 9 for first-order interpolation using differ-
ent discretization levels.3 As expected, no oscillations on the
contact normal pressure are observed throughout the active
contact region, and the solution with the second level of
refinement, n = 8, is practically identical with the remaining
finer meshes. The coarsemesh, n = 4, appears to be inappro-
priate to model the contact problem accurately, as the active
region is only described by three elements. Notwithstanding,
this problem configuration has been intentionally considered
beforehand to identify possible limitations of the formula-
tions. Even in this case, no particular formulation becomes

3 Even though not documented here for the sake of brevity, similar
results are obtained with the second-order interpolation.

clearly more compelling in terms of accuracy and, there-
fore, reinforces the conclusion that the porposed formulation
behaves similarly to the original.

Figure 10 shows the maximum normal contact pressure,
pmax, with mesh refinement for all the combinations con-
sidered in this section. All the results converge to the same
value, with the only significant difference being the results
obtainedwith the coarsemesh.While the first-order the origi-
nal formulation tends to underestimate the maximum contact
pressure, the first-order modified technique tends to follow
the trend of second-order interpolation and overestimates the
result. The results obtained with the piecewise linear inter-
polation have the slightest variation.

Lastly, in order to have a complete picture of the results,
Fig. 11 shows the deformed configuration of the cylinder,
including a coloured representation of the vertical displace-
ment. Only the case with the coarse mesh is represented,
as the remaining meshes are similar. In fact, even for the
coarse mesh, the difference in the displacement field is so
slight that the only significant difference regards the results
obtained with the new approach with first-order elements. A
small penetration of the nodes at the end of the active contact
zone is observed, which reflects the difference in the way
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Fig. 9 Hertzian
contact—convergence of the
contact pressure distribution p
with mesh refinement for
first-order quadrilateral meshes

Fig. 10 Hertzian contact—maximum normal contact pressure pmax
with mesh refinement for first-order and second-order quadrilateral
meshes

the weighted gap is evaluated. Nonetheless, this is consistent
with similar studies, e.g., in [25,28], and is a behaviour that
tends to vanishwithmesh refinement. No overlap is observed
in the results obtained with the next finer mesh, n = 8.

8.2 Computational complexity—Half-torus
Signorini contact

In this section, the computational complexity of dual mortar
formulations for rigid/deformable contact is quantitatively
measured. Besides robustness, the motivation for the pro-
posed techniques is mainly driven by improving the numer-
ical efficiency of contact modelling. Therefore, a numerical
example designed to unveil the computational performance
of the contact algorithm has been carried out. The prob-
lem setup and dimensions are schematically illustrated in
Fig. 12, which consists of the contact of a deformable
half-torus against a rigid surface with a relatively complex
shape. This example renders a high ratio between the con-
tact interface and total degrees of freedom, while involving
a non-trivial rigid contour to define the projected normal
vectors. The Neo-Hookean material model is considered for
the half-torus, which is subjected to an incremental vertical
displacement and has its outer surface set as non-mortar. Fric-
tionless contact is assumed based on four combinations of
formulations:
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Fig. 11 Hertzian
contact—vertical displacement
for different methods. The
penetration obtained with the
modified weighted gap function
and linear finite elements is
highlighted

Fig. 12 Half-torus—schematic
representation of the problem
setting

• Original/modified algorithm;
• Averaged/projected orthonormal moving frame.

The idea is to measure the impact of the two main aspects
discussed in this work (individually and combined), thus get-
ting an estimate of the overall computational performance of
the algorithms for rigid/deformable contact.

The body is discretised using a structured 8-noded hexa-
hedron mesh with F-bar elements [34] and the rigid side is
discretised using 4-noded bilinear quadrilaterals. The total
dimension of the problem is around 85k nodes, from which
13k are rigid. The displacement is applied in 108 equally
spaced increments and a relative convergence tolerance of
εr = 1 × 10−6 is considered. In order to accentuate the
complexity of the contact algorithm, the mortar integrals are
evaluated using the segmentation method exclusively. Using
a desktop workstation, the total simulation time has varied
between 14 and 8 hours. An exemplary representation of the
deformed configuration at the end of the simulation is given

in Fig. 13, including glyphs representing the contact stress
field.

The time needed to evaluate all the terms related to contact
is represented in Fig. 14. Here, the average time per iteration
of a given increment is plotted against the ratio between the
total number of active nodes and the total number of nodes
of the finite element mesh. As the number of active nodes
increasesmonotonicallywith the pseudo-time, the horizontal
axis can be interpreted as the pseudo-time, or currently pre-
scribed displacement, yet adjusted to amore relevant quantity
for the current analysis. In turn, the ratio of active node
numbers measures the impact of contact modelling within
the global finite element problem. On the vertical axis, the
contact time (mainly dominated by the linearisation update
procedures) is summed per iteration and, after the global
Newton algorithm converges, it is averaged over the total
number of iterations needed to achieve equilibrium condi-
tions. It should be mentioned that, in order evaluate the
computational time based on this measure, the number of
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Fig. 13 Half-torus—deformed configuration contact stress field

iterations needed to achieve convergence should be practi-
cally the same. Otherwise, the averaging procedure could be
neglecting any convergence discrepancies between themeth-
ods. In Table 2 the average number of iterations is shown
for all the methods. The first observation is that choosing
between the averaged or projected normal does not affect the
convergence of the algorithm. Modifying the weighted gap,
however, increases the average number of iterations by 5%.
From a practical perspective, this means that the algorithm
will occasionally require one more iteration. Notwithstand-
ing, this also means that one can look at the time per iteration
in order to evaluate the computational performance.

It is observed that, as expected, the computational time
increases with the total number of active nodes. The clas-
sical formulation with the averaged orthonormal frame is
the most computational demanding combination. In con-
trast, the newly proposedmethodology based on themodified
weighted gap function and projected frame is the fastest. In
order to evaluate the differences more clearly, the bottom
graph in Fig. 14 shows the speed-up of each formulation in
relation to the originalmethod. Themost significant improve-
ment in efficiency is achieved by changing the interpolation
of the weighted gap, with an average reduction of ≈ 35% in
computation time. This reduction is most likely related with
avoiding the evaluation of the dual shape functions. The pro-
jected frame achieves a reduction of ≈ 10%, which means
that the two methodologies combined sum up to a ≈ 45%
reduction in the computation time for contact evaluation.

At this stage, it seems appropriate to discuss the impact of
the contact algorithm within the global framework of finite
element modelling. One can acknowledge that the impact of
this reduction in the global simulation time is highly depen-
dent on the problem size, the computational implementation

Fig. 14 Half-torus—time required to complete all operations related
with contact (the solid lines are linear fittings)

and the computer hardware. All the examples presented in
this work have been solved using a desktop workstation.
The global linear system of equations have been solved by
employing a direct solver and all the operations have been
carried out in serial. Under these conditions, the problem is
dominated by the contact algorithm and, therefore, the global
computation times follow approximately the same tendency
of the times plotted in Fig. 14. By employing strategies such
as parallelisation, one should expect the problem to become
dominated more by the linear solver. Nonetheless, even for
such an optimised scenario, the computational complexity
associated with the contact algorithm (especially the geo-
metrical operations and subsequent linearisation) is typically
not negligible. It is expected to remain an essential part of
the overall computational performance for more demanding
problems with a high ratio of active contact nodes.

In order to understand more clearly the reduction in
computational complexity, one can look at memory usage.
Figure 15 shows the total number of non-zero entries in the
derivatives of the unit normal vector at each active contact
node for both the averaged and projected techniques. For the
sake of simplicity, only the results obtained with the modi-
fied weighted gap are shown, as the results of the classical
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Table 2 Average number of iterations needed to achieve convergence
with all the combinations of original and modified weighted gap and
averaged and projected unit normal

Averaged Projected

Original 3.7 3.7

Modified 3.9 3.9

Fig. 15 Half-torus—number of non-zero entries of the derivative of the
unit normal vector

formulation are exactly the same. As expected, this number
increases throughout the simulation, and the bandwidth of
the derivative of the projected frame is smaller than for the
averaged method. The derivative of the unit normal vector
appears in every term of the mortar formulation. As already
mentioned, it has an amplified effect by dictating the total
number of individual operationswithin the sparsematrix pro-
cedures.

Besides the total number of non-zero entries, one can
look at the sparsity pattern of the global stiffness matrix
to understand the improvements in computational complex-
ity. Figure 16 shows a visualisation of an exemplary square
system matrix originating from the averaged and projected
methodologies, in which a non-zero entry in the matrix is
marked with a black pixel. For ease of interpretation, a mag-
nified representation of the blocks associatedwith the contact
constraints is also included, as any modification in the con-
tact algorithmwill be reflected there. As expected, the pattern
is more compact in the projected frame variant because the
projected frame derivative involves fewer terms than the
averaged strategy. Nonetheless, both global system matrices
exhibit the pronounced band structure obtained with mortar
methods, see e.g., [35].

8.3 Piecewise linear interpolation—3D punch

The last numerical example is focused on demonstrating
the effect of the piecewise linear interpolation for quadratic
dual mortar methods in three dimensions. The problem

Fig. 16 Half-torus—exemplary sparsity pattern of the global stiffness
matrix, where black pixels represent non-zero entries

is schematically represented in Fig. 17 and consists of a
deformable cuboid base being pressed against a rigid pin
with rounded edges under frictionless conditions. The small
fillet radius on the rigid punch naturally produces high local
curvatures, especially for coarse discretisation, thus pos-
ing substantial convergence problems for algorithms that
do not rely on strictly positive interpolation functions for
the weighted gap calculation. The base material is charac-
terised by the Neo-Hookean constitutive model. Both the
bottom and lateral faces have their vertical displacement pre-
scribed and are fixed along the remaining directions, such
that no lateral movement is allowed (thus avoiding unstable
configurations). The displacement is applied in 65 equally
spaced increments, considering a convergence tolerance of
εr = 1 × 10−6.

The deformable base is discretised using 20-noded hexa-
hedra with full integration, while the rigid pin is discretised
with 8-noded quadrilateral elements. For the sake of integra-
tion accuracy, the mortar integrals are being evaluated using
the segmentation method exclusively. The deformed config-
uration of the base at the end of the simulation is represented
in Fig. 18, including a contour plot of the displacement field
along the vertical direction. The proposed algorithm con-
verges without any spurious contact states or oscillations for
both coarse and fine finite element meshes.

In order to visualise more clearly the concepts of the pro-
jected frame and piecewise linear interpolation, a snippet of
the integration cells at the final increment of the simulation
is schematically represented in Fig. 19. The unit normal vec-
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Fig. 17 3D punch—schematic representation of the problem setting

Fig. 18 3D punch—vertical displacement of the deformable base at the
end of the simulation. Only half of the base is visualized

tor associated with each non-mortar node is also indicated.
Looking at the unit normals, one can see that they all point
towards the rigid punch, which does not match the contour of
the body for inactive regions of the contact interface (e.g. top
left part of the left image in Fig. 19). Nonetheless, as the dis-
tance between both surfaces decreases, they become almost
identical and the normal vectors start capturing the contour
of the non-mortar boundary very precisely. This aspect of
the algorithm is also visualised when looking at the orien-
tation of the integration cells, which are established based
on the auxiliary plane defined from the continuous field of
normal vectors. Lastly, in Fig. 19 the division of the elements
into sub-elements can also be identified when looking at the
contour of the integration cells.

9 Conclusions

This work focuses on the development of an efficient dual
mortar contact algorithm specifically tailored for rigid/
deformable contact under large deformations. This class
of contact problems, also commonly termed as Signorini
contact, is found in a wide range of engineering systems.
The consideration that one of the contacting bodies is a
rigid obstacle unlocks significant simplification potential for
computational contact analysis. Moreover, this is a problem
configuration commonly found in contact homogenisation as
well. It can be traced back to a well-known result of contact
mechanics, which states that, under certain circumstances,
the contact between two rough surfaces can me mapped to
an equivalent roughness and a rigid flat.

The primary motivation for this contribution is to reduce
the considerable computational complexity of dual mortar
methods, especially in three dimensions. The FEM itself is
already regarded as an expensive simulation method, which
becomes an even more computationally demanding option
when used in combination with mortar methods. There-
fore, the simplifications associatedwith Signorini contact are
exploited in order to simplify the algorithm while preserving
its accuracy and flexibility—the main argument favouring
the mortar FEM. The first idea regards the consideration of
standard shape functions to define the weighted gap func-
tion instead of dual shape functions. In the particular case of
Signorini contact, this methodology is exceptionally advan-
tageous, as it eliminates the need to explicitly evaluate the
dual basis during the simulation. The extension of this for-
mulation to second-order interpolation in three dimensions is
also carried out by proposing a piecewise linear interpolation
for the variation of the Lagrangemultipliers and the resulting
weighted gap definition. The second idea is based on a new
definition for the nodal orthonormal moving frame attached
to each contact node, which uses the projection of the frame
on the rigid side to the deformable body. When compared
with the well-established method based on the averaged unit
normal, this technique reduces the bandwidth of the deriva-
tives associated with both the normal and tangential vectors,
which now depend only on the degrees of freedom associ-
atedwith the finite element node itself. This effect propagates
throughout all the contact-related computations and, in the
end, a significant reduction in the computation time of all the
operations related to the mortar approach is achieved.

The numerical examples indicate that, firstly, the algo-
rithm based on the modified weighted gap function preserves
the optimal convergence rate of the discretisation error as
known from the original formulation. Moreover, the reduc-
tion in computational complexity is quantitatively measured,
and a reduction of ≈ 40% in the computation time needed
to enforce the contact constraints is achieved. Lastly, the
proposed piecewise linear interpolation for 3D second-order
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Fig. 19 3D punch—slice of the
central section of the deformed
configuration. The arrows
represent the unit normal vector
at each non-mortar node and the
blue cells are the integration
cells resulting from the
segmentation algorithm

mortar FEM is applied to a problem with high local cur-
vatures, which typically hinders the application of standard
versions of the dual mortar method. This confirms the robust-
ness of the proposed algorithm.
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Appendix A: Mapping operations between
quadratic finite elements and linear sub-
elements

The application of the piecewise linear interpolation requires
the establishment of proper mappings, herein denoted by �,
from the parent element space, ξ , to the sub-element space,
ξ sub, viz.

ξ sub = �(ξ). (A.1)

Conversely, the inverse mapping from the sub-element space
ξ sub back to the parent element reads

ξ = �−1(ξ sub). (A.2)

These mappings can be derived by employing simple linear
transformations between both domains based on geometrical
considerations. Table 3 shows the transformations associ-
ated with quadratic 6-noded triangles, followed in Table 4
and Table 5 by the 8-noded and 9-noded quadrilaterals,
respectively. Besides the expressions for the mappings, lin-
earisation of all deformation-dependent terms in mortar
integrals requires taking into account the mapping in the
derivative chain rule. Therefore, one also needs to derive the
Jacobian matrices associated with the mapping operations,
which are represented by the matrices

[
�
] ∈ R

(d−1)×(d−1).
The construction of these matrices is as follows:

[
�
] ≡ ∂ξ sub

∂ξ s
=
⎡

⎣
ξ sub1,ξ1

ξ sub1,ξ1

ξ sub2,ξ1
ξ sub2,ξ2

⎤

⎦ . (A.3)

Their inverse read

[
�
]−1 = ∂ξ

∂ξ sub
=
⎡

⎣
ξ1,ξ sub1

ξ1,ξ sub1

ξ2,ξ sub1
ξ2,ξ sub2

⎤

⎦ . (A.4)
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Table 3 Mapping between interface elements and the associated sub-elements for the 6-noded triangle

Sub-element Node ordering �(ξ) � �−1(ξ sub) �−1

1 1, 4, 6 ξ sub1 = 2ξ1 ξ sub2 = 2ξ2

[+2 0
0 +2

]
ξ1 = ξ sub1 /2 ξ2 = ξ sub2 /2

[+1/2 0
0 1/2

]

2 4, 2, 5 ξ sub1 = 2ξ1 − 1 ξ sub2 = 2ξ2

[+2 0
0 +2

]
ξ = (ξ sub1 + 1)/2 ξ2 = ξ sub2 /2

[+1/2 0
0 1/2

]

3 6, 5, 3 ξ sub1 = 2ξ1 ξ sub2 = 2ξ2 − 1

[+2 0
0 +2

]
ξ1 = ξ sub1 /2 ξ2 = (ξ sub2 + 1)/2

[+1/2 0
0 +1/2

]

4 5, 6, 4 ξ sub1 = −2ξ1 + 1 ξ sub2 = −2ξ2 + 1

[−2 0
0 −2

]
ξ1 = (−ξ sub1 + 1)/2 ξ2 = (−ξ sub2 + 1)/2

[−1/2 0
0 −1/2

]

Table 4 Mapping between interface elements and the associated sub-elements for the 8-noded quadrilateral

Sub-element Node ordering �(ξ) � �−1(ξ sub) �−1

1 1, 5, 8 ξ sub1 = ξ1 + 1 ξ sub2 = ξ2 + 1

[+1 0
0 +1

]
ξ1 = ξ sub1 − 1 ξ2 = ξ sub2 − 1

[+1 0
0 +1

]

2 2, 6, 5 ξ sub1 = ξ2 + 1 ξ sub2 = −ξ1 + 1

[
0 +1

−1 0

]
ξ1 = −ξ sub2 + 1 ξ2 = ξ sub1 − 1

[
0 −1

+1 0

]

3 3, 7, 6 ξ sub1 = −ξ1 + 1 ξ sub2 = −ξ2 + 1

[−1 0
0 −1

]
ξ1 = −ξ sub1 + 1 ξ2 = −ξ sub2 + 1

[−1 0
0 −1

]

4 4, 8, 7 ξ sub1 = −ξ2 + 1 ξ sub2 = ξ1 + 1

[
0 −1

+1 0

]
ξ1 = ξ sub2 − 1 ξ2 = −ξ sub1 + 1

[
0 +1

−1 0

]

5 5, 6, 7, 8 ξ sub1 = ξ2 + ξ1 ξ sub1 = ξ2 − ξ1

[+1 +1
−1 +1

]
ξ1 = (ξ sub1 − ξ sub2 )/2 ξ2 = (ξ sub1 + ξ sub2 )/2

[+1/2 −1/2
+1/2 +1/2

]
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Table 5 Mapping between interface elements and the associated sub-elements for the 9-noded quadrilateral

Sub-element Node ordering �(ξ) � �−1(ξ sub) �−1

1 1, 5, 9, 8 ξ sub1 = 2ξ1 + 1 ξ sub2 = 2ξ2 + 1

[+2 0
0 +2

]
ξ1 = (ξ sub1 − 1)/2 ξ2 = (ξ sub2 − 1)/2

[+1/2 0
0 +1/2

]

2 5, 2, 6, 9 ξ sub1 = 2ξ2 − 1 ξ sub2 = 2ξ1 + 1

[+2 0
0 +2

]
ξ1 = (ξ sub2 + 1)/2 ξ2 = (ξ sub1 − 1)/2

[+1/2 0
0 +1/2

]

3 9, 6, 3, 7 ξ sub1 = 2ξ1 − 1 ξ sub2 = 2ξ2 − 1

[+2 0
0 +2

]
ξ1 = (ξ sub1 + 1)/2 ξ2 = (ξ sub2 + 1)/2

[+1/2 0
0 +1/2

]

4 8, 9, 7, 4 ξ sub1 = 2ξ2 + 1 ξ sub1 = 2ξ2 − 1

[+2 0
0 +2

]
ξ1 = (ξ sub1 − 1)/2 ξ2 = (ξ sub2 + 1)/2

[+1/2 0
0 +1/2

]
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