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Abstract
Composite optimization offers a powerful modeling tool for a variety of applications
and is often numerically solved by means of proximal gradient methods. In this paper,
we consider fully nonconvex composite problems under only local Lipschitz gradient
continuity for the smooth part of the objective function. We investigate an adaptive
scheme for PANOC-type methods (Stella et al. in Proceedings of the IEEE 56th CDC,
2017), namely accelerated linesearch algorithms requiring only the simple oracle of
proximal gradient. While including the classical proximal gradient method, our theo-
retical results cover a broader class of algorithms and provide convergence guarantees
for accelerated methods with possibly inexact computation of the proximal mapping.
These findings have also significant practical impact, as they widen scope and per-
formance of existing, and possibly future, general purpose optimization software that
invoke PANOC as inner solver.
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1 Introduction

Problems involving the minimization of the sum of a smooth and a nonsmooth func-
tion are of interest for a wide variety of applications ranging from optimal and model
predictive control (MPC), signal processing, compressed sensing, machine learning,
and many others; see, e.g., [10, 19, 30] and references therein. Structured problems
can also arise as subproblems within other numerical optimization algorithms, e.g.,the
augmented Lagrangian method (ALM) [5, 7, 23]. These use cases often yield non-
convex and large-scale problems and can pose stringent requirements in terms of both
computation and memory.

In the last few years, these considerations led to a renewed interest in algorithms
of splitting nature [10, 19] owing to their simple operation oracles and low memory
footprint, on top of their amenability to address nonsmooth, possibly nonconvex,
constrained problems, making them widely applicable. The price of this flexibility is
paid in terms of slow convergence and sensitivity to ill conditioning, hindering their
direct employment to real-time applications, such as MPC, where optimal solutions
to hard problems have to be retrieved in very limited time.

Inspired by Newton-type methods for smooth optimization, second-order informa-
tion can be adopted, so as to better scale with problem size and achieve asymptotic
superlinear rates. However, only local convergence guarantees can be expected with-
out introducing a globalization strategy, such as a backtracking linesearch procedure.
Unfortunately, for nonsmooth problems, even if fast search directions are available
classical linesearch strategies are not applicable. In fact, lacking directional differentia-
bility, the notion of descent directions is not relevant for possibly extended-real-valued,
discontinuous functions.

In this very setting, the recently introduced PANOC [32] demonstrated how these
downsides within the proximal gradient (PG) algorithm can be overcome while retain-
ing all the favorable features. Essentially, PANOC is a linesearch method that uses
the so-called forward–backward envelope (FBE) [22] as merit function to globalize
the convergence of fast local methods. It offers an umbrella framework that includes
the PG method as special instance; other variations are obtained by selecting virtually
arbitrary update directions. A most prominent use case is the employment of direc-
tions stemming from methods of quasi-Newton type applied to the nonlinear equation
Rγ (x) = 0 that encodes first-order necessary conditions for optimality, where Rγ is a
(set-valued) generalization of the gradient mapping for nonsmooth problems, cf. (2.6).
In accommodating arbitrary update directions, PANOC does not require differentia-
bility properties on the merit function and waives the need of regularization terms to
enforce a descent condition on the update directions.We defer amore detailed analysis
to the dedicated Sect. 3.

Although the algorithm uses the same computational oracle of PG, curvature infor-
mation enables asymptotic superlinear rates under mild assumptions at the limit point
[32]. By employing directions of quasi-Newton type, no inner iterative procedure nor
Hessian evaluations are required, making PANOC’s iterations simple, lightweight,
and scalable. Because of these favorable properties, PANOC was originally meant as
a nonlinear MPC solver particularly suited for embedded applications subject to lim-
ited hardware capabilities, such as land and aerial vehicles [15, 26, 28] and robotics
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[3, 4, 27]; see also [13, 18] for extensive surveys and comparisons with other popular
methods. Its success in the field led to a reconsideration of the spectrum of problems
that the solver could be applied to. On a historical note, this evolution was reflected
by a swift rebranding of the acronym over the years, originally meant as Proximal
Averaged Newton-type method for Optimal Control in the original publication [32],
but then tacitly reproposed as the same method for Optimality Conditions in [2] (and
subsequent appearances) to allude to its applicability to the much broader range of
compositeminimization problems. This flexibility was further exploited in [29], where
PANOC is employed as inner solver for ALMminimization subproblems for the gen-
eral purpose Optimization Engine (OpEn) solver.

This rapid evolution was perhaps neglectful of some aspects, primarily because
PG is subject to binding assumptions to guarantee a global Lipschitz differentiability
requirement. In the context of MPC, physical bounds on input variables result in opti-
mization problemswhere the feasible set is bounded, inwhich case local Lipschitzness
can be shown to suffice, making virtually no exclusion to the problems that can be
addressed. Inmore general formulations, and especially so in a fully nonconvex setting,
however, all known results are valid under a global Lipschitzness assumption, with the
very recent work [14] possibly emerging as unique exception in a vast literature; see
also [11, 25] for convex problems. Other alternatives are to be found in the Bregman
setting [1, 8, 17], which are, however, subject to (and thus limited in applicability by)
the identification of a distance-generating function enabling a so-called Lipschitz-like
convexity condition and that makes induced proximal operations tractable at the same
time. While this may not seem a major issue in composite minimization, it undeni-
ably constitutes a severe drawback in ALM contexts, where constraints relaxation can
produce subproblems with unbounded feasible sets, without this necessarily being the
case for the original problem. Although adding large box constraints to ensure con-
vergence may be thought of as a viable solution, unsatisfactory practical performance
can persist because of poor geometry estimation, as we will show.

This paper addresses the above-mentioned shortcomings of PANOC, and of PG as
a byproduct, by investigating an adaptive stepsize selection rule for its PG oracle. This
criterion, in a slightly less general form, was first proposed in [20, Alg. 7], but with-
out theoretical guarantees and driven from a different observation, namely the poor
performance of PANOC if initial stepsizes are badly estimated. After confirming this
claim with case study examples, we provide a complete convergence theory showing
that the method, here referred to as PANOC+ for clarity, can also cope with local
Lipschitzness, while this is not the case for PANOC. Furthermore, we examine the
robustness of the improved method with respect to suboptimal solutions of the PG
subproblems. These findings will significantly impact on PANOC(+) both in perfor-
mance and applicability, propagating to all its dependencies, e.g.,by removing stringent
assumptions of general purpose optimization solvers such as OpEn [29]. Indeed, the
significance and effectiveness of PANOC+ have already been demonstrated in [12,
21]. As part of the open-source Julia package ProximalAlgorithms.jl [31], our imple-
mentation PANOCplus of PANOC+ is publicly available.

A convergence analysis of PG with a locally Lipschitz smooth term and possibly
inexact innerminimizations is obtained as simple byproduct of themore general theory
here developed. Indeed, a vast class of algorithms is covered by the analysis in this
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work, thanks to the arbitrarity of the selected update directions within the PANOC
framework.

2 Problem Setting and Preliminaries

In this paper we consider structured minimization problems

minimize
x∈Rn

ϕ(x) := f (x) + g(x), (P)

where x ∈ R
n , n ∈ N, is the decision variable, under the following standing assump-

tions, assumed throughout.

Blanket assumption. The following hold in problem (P):

A1 f : Rn → R has locally Lipschitz-continuous gradient.
A2 g : Rn → R ∪ ∞ is proper, lsc, and γg-prox-bounded.
A3 inf ϕ > −∞.

Motivated by its efficiency and popularity, yet aware of its inability to address this
general problem formulation, this paper studies a robustified variant of PANOC algo-
rithm with adaptive stepsize selection [32, Rem. III.4], building upon the preliminary
work of [20, §6.1]. PANOC and the proposed generalization PANOC+ will be pre-
sented and compared in Sect. 3, after the needed definitions and preliminary material
are covered in this section.

2.1 Notational Conventions

With R and R :=R ∪ {∞} we denote the real and extended real line, and by N =
{0, 1, . . .} the set of natural numbers. The effective domain of an extended-real-valued
function h : Rn → R is denoted by dom h := {x ∈ R

n |h(x) < ∞}, and we say that
h is: proper if dom h �= ∅; lower semicontinuous (lsc) if h(x̄) ≤ lim infx→x̄ h(x) for
all x̄ ∈ R

n ; coercive if h(x) → ∞ as ‖x‖ → ∞. For α ∈ R, the α-sublevel set of h
is lev≤α h := {x ∈ R

n : h(x) ≤ α}.
The notation T : R

n ⇒ R
n indicates a set-valued mapping T that associates

every x ∈ R
n to a subset T (x) ⊆ R

n . The graph of T is gph T := {(x, y)}[y ∈
T (x)]. Following [24, Def. 8.3], we denote by ∂̂h : Rn ⇒ R

n the regular (Fréchet)
subdifferential of h, where

v ∈ ∂̂h(x̄)
(de f )⇔ lim inf

x→x̄
x �=x̄

h(x) − h(x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0. (2.1)

The (limiting) subdifferential of h is ∂h : Rn ⇒ R
n , where v ∈ ∂h(x̄) if there exist

sequences (xk, vk)k∈N in gph ∂̂ f such that (xk, vk, h(xk)) → (x̄, v, h(x̄)). These
subdifferentials of h at x̄ ∈ R

n satisfy ∂̂(h + h0)(x̄) = ∂̂h(x̄) + ∇h0(x̄) and ∂(h +
h0)(x̄) = ∂h(x̄)+∇h0(x̄) for any h0 : Rn → R continuously differentiable around x̄
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[24, Ex. 8.8]. With respect to (P), we say that x∗ ∈ dom ϕ is stationary if 0 ∈ ∂ϕ(x∗),
which constitutes a necessary optimality condition of x∗ for the minimization of ϕ

[24, Thm. 10.1].
Given a parameter value γ > 0, the Moreau envelope function hγ and the proximal

mapping proxγ h are defined by

hγ (x) := inf
z∈Rn

{h(z) + 1
2γ ‖z − x‖2}, (2.2)

proxγ h(x) := argmin
z∈Rn

{h(z) + 1
2γ ‖z − x‖2}, (2.3)

andwe say that h is prox-bounded if it is proper and h+ 1
2γ ‖·‖2 is bounded belowonRn

for some γ > 0. The supremum of all such γ is the threshold γh of prox-boundedness
for h. In particular, if h is bounded below by an affine function, then γh = ∞. When
h is lsc, for any γ ∈ (0, γh) the proximal mapping proxγ h is nonempty- and compact-
valued, and the Moreau envelope hγ finite and locally Lipschitz continuous [24, Thm.
1.25 and Ex. 10.32].

2.2 Proximal Gradient Iterations

Given a point x ∈ R
n , one iteration of the proximal gradient (PG) method for problem

(P) consists in selecting

x̄ ∈ Tγ (x) := proxγ g (x − γ∇ f (x)) , (2.4)

where γ ∈ (0, γg) is a stepsize parameter. The necessary optimality condition in the
minimization problem defining the proximal mapping then reads

1
γ
(x − x̄) − (∇ f (x) − ∇ f (x̄)) ∈ ˆ∂ϕ(x̄), (2.5)

and in particular the fixed-point inclusion x ∈ Tγ (x) implies the stationarity condition
0 ∈ ∂ϕ(x). By interpreting (2.4) as a fixed-point iteration, one can also consider the
associated (set-valued) fixed-point residual Rγ , namely

Rγ (x) := 1
γ

(
x − Tγ (x)

)
, (2.6)

and seek fixed points ofTγ as zeros of the residual Rγ .

2.3 Forward–Backward Envelope

At the heart of PANOC rationale is the observation that, under assumptions, the fixed-
point residual Rγ in (2.6) is continuous around and even differentiable at critical
points [34, §4], and the inclusion problem 0 ∈ Rγ ( · ) reduces to a well-behaved
system of equations, when close to solutions. This motivated the adoption of Newton-
type directions on Rγ that enable fast convergence when close to solutions. The key
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tool enabling convergence regardless of whether or not the initial point happens to be
sufficiently close to a solution is the so-called forward–backward envelope (FBE).

Definition 2.1 (Forward–backward envelope) Relative to (P), the FBE with stepsize
γ ∈ (0, γg) is

ϕFB
γ (x) := min

w∈Rn
{ f (x) + 〈∇ f (x), w − x〉 + g(w) + 1

2γ ‖w − x‖2} (2.7a)

= f (x) − γ
2 ‖∇ f (x)‖2 + gγ (x − γ∇ f (x)) (2.7b)

or, equivalently, letting x̄ be any element of Tγ (x),

= f (x) + 〈∇ f (x), x̄ − x + g(x̄)〉 + 1
2γ ‖x̄ − x‖2. (2.7c)

Owing to its continuity properties, the FBE has been employed to generalize and
improve PG-based algorithms that address the general setting of structured nonconvex
optimization [9, 16, 34]. The following results are well known when f has globally
Lipschitz gradient [34, Prop.s 4.2 and 4.3]. A simple proof in the more general setting
addressed here is given for completeness.

Lemma 2.2 (Properties of the FBE) For any γ ∈ (0, γg) the following hold:

(i) ϕFB
γ is real valued and strictly continuous.

(ii) ϕFB
γ (x) ≤ ϕ(x) for any x ∈ R

n, with equality holding iff x ∈ Tγ (x).

(iii) If x̄ ∈ Tγ (x) and f (x̄) ≤ f (x) + 〈∇ f (x), x̄ − x〉 + L
2 ‖x̄ − x‖2, then

ϕFB
γ (x̄) ≤ ϕ(x̄) ≤ ϕFB

γ (x) − 1−γ L
2γ ‖x − x̄‖2. (2.8)

Proof Lemma 2.2(i) follows from the expression (2.7b), owing to the similar property
of the Moreau envelope gγ , while 2.2(ii) is obtained by taking w = x in (2.7a). The
first inequality in 2.2(ii) owes to item 2.2(ii) (independently of L), and the second one
follows from the expression (2.7c) of ϕFB

γ . ��

3 Good and Bad Adaptive Stepsize Selection Rules

As briefly mentioned in Sect. 2.3, the FBE is the key tool for globalizing the conver-
gence of fast local methods, such as of quasi-Newton type, applied to the nonlinear
equation Rγ (x) = 0 encoding necessary optimality conditions for (P). Elaborating
on how Newton-type directions can be selected given the nonsmooth, possibly set-
valued, nature of Rγ is beyond the scope of this survey, and the interested reader is
referred to [32, 34]. The core idea is nevertheless the same as in the familiar context
of smooth minimization: trying to enforce (supposedly fast) updates x �→ x + d in
place of “nominal” updates x �→ x̄ , where x̄ would amount to a gradient step or, in our
nonsmooth setting, a proximal gradient step x̄ ∈ Tγ (x) as in (2.4). Still in complete
analogy with the smooth case, accepting a candidate update x + d must be validated
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Algorithm 1 Original PANOC with “bad” adaptive stepsize γ [32, Rem. III.4]

Require x0 ∈ R
n ; γ0 ∈ (

0, γg
)
; D ≥ 0; α, β ∈ (0, 1)

Initialize k = 0, compute x̄0 ∈ Tγ (x0), and start from step 1.6

1.1: Select an update direction dk ∈ R
n with ‖dk‖ ≤ D‖x̄k−1 − xk−1‖ and set τk = 1

1.2: xk = (1 − τk )x̄k−1 + τk (xk−1 + dk )

1.3: Compute x̄k ∈ Tγ (xk ) and use it to evaluate ϕFBγ (xk ) as in (2.7c)

1.4: if ϕFBγ (xk ) > ϕFBγ (xk−1) − β 1−α
2γk−1

‖x̄k−1 − xk−1‖2 then

* τk ← τk/2 and go back to step 1.2

1.5: γk ← γk−1

1.6: while f (x̄k ) > f (xk ) +
〈
∇ f (xk )

〉
x̄k − xk + α

2γk
‖x̄k − xk‖2 do

* γk ← γk/2 and recompute x̄k ∈ Tγ (xk )

1.7: k ← k + 1 and start the next iteration at step 1.1

by a “quality check”, like an Armijo-type condition, in violation of which d is either
discarded or dampened with a smaller stepsize. PANOC is precisely a mechanism
to dampen and accept update directions in a nonsmooth setting, using the FBE as
validation control. Its steps are given in Algorithm 1.

A basic assumption for PANOC is that ∇ f be globally L f -Lipschitz, so that a
well-known quadratic upper bound, see e.g., [6, Prop. A.24], ensures that L = L f can
be taken for all x ∈ R

n in Lemma 2.2(iii). Alternatively, if g has bounded domain
and the selected directions dk are bounded, it suffices that ∇ f is locally Lipschitz-
continuous; see [32, Rem. III.4]. For any α ∈ (0, 1) the choice γk = α/L f then
violates step 1.6, meaning that γk ≡ γ is constant. The dampening of the direction
occurs at step 1.2, where starting with τk = 1 the candidate update xk−1+dk is pushed
towards x̄ k−1 ∈ Tγ (xk−1) by reducing the steplength τk until the value of the FBE is
sufficiently reduced, cf. step 1.4. ϕFB

γ is continuous (at x̄ k−1), and it is strictly smaller

than ϕFB
γ (xk−1) − β 1−α

2γk−1
‖x̄ k−1 − xk−1‖2 there, cf. (2.8).

3.1 PANOC+: the“Good” Adaptive Stepsize Rule

What is presented in Algorithm 1 is actually the “adaptive” variant of PANOC, which
still works under the assumption of global Lipschitz differentiability but waives the
need of prior knowledge about L f . The γ -backtracking at step 1.6 decreases (i.e.„
“adapts”) γk and terminates as soon as the needed bound as in Lemma 2.2(iii) is
satisfied. As first noted in [20, §6.1], however, this adaptive criterion may produce bad
estimates of the local Lipschitz constant of ∇ f and overall result in poor algorithmic
performance. The phenomenon can be attributed to an asynchrony between the two
backtracking steps, the one dampening the update direction and the one adaptively
adjusting the proximal gradient stepsize. This claim can be verified in the iteration
mismatch between variable xk and stepsize γk−1 occurring at step 1.3 (cf. Remark
3.1).
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Algorithm 2 PANOC+: the “good” adaptive γ -stepsize rule

Require x0 ∈ R
n ; γ0 ∈ (0, γg); D ≥ 0; α, β ∈ (0, 1)

Initialize k ← 0, and start from step 2.4

2.1: γk ← γk−1

2.2: Select an update direction dk ∈ R
n with ‖dk‖ ≤ D‖x̄k−1 − xk−1‖ and set τk = 1

2.3: xk = (1 − τk )x̄k−1 + τk (xk−1 + dk )

2.4: Compute x̄k ∈ Tγ (xk ) and use it to evaluate Φk := ϕFBγ (xk ) as in (2.7c)

2.5: if f (x̄k ) > f (xk ) +
〈
∇ f (xk )

〉
x̄k − xk + α

2γk
‖x̄k − xk‖2 then

*γk ← γk/2, and go back to step 2.2 if k > 0, or step 2.4 if k = 0

2.6: if k > 0 and Φk > Φk−1 − β 1−α
2γk−1

‖x̄k−1 − xk−1‖2 then

* τk ← τk/2 and go back to step 2.3

2.7: k ← k + 1 and start the next iteration at step 2.1

To account for this fact, [20, Alg. 7] proposes to adapt the PG stepsize γk within the
linesearch on the update direction. As recently showcased in [21], not only does this
conservatism prove beneficial in preventing the acceptance of poor quality directions,
but it often also reduces the overall computational cost. Although numerical simula-
tions indicate superior performance, this refined linesearch lacks a theoretical analysis
of its convergence properties.

This modification, which we allusively call the “good” adaptive variant (or
PANOC+ for brevity), is depicted in Algorithm 2. In fact, the method presented
here presents a slight, but important generalization, namely in allowing the selec-
tion of a new direction dk every time the stepsize γk is reduced, cf. step 2.5, which
was not considered in [20, Alg. 7]. This flexibility is crucial: whenever the stepsize
γk changes so does the PG residual mapping Rγ , and consistently so should direc-
tions using its curvature information. Moreover, we provide theoretical guarantees on
the finite termination of the backtracking linesearch procedure, even without global
Lipschitz gradient continuity and merely suboptimal proximal computation. These
findings uphold the algorithmic framework proposed in [20, 21, 32] on two aspects:
the adaptive linesearch is shown to terminate, and can cope with a merely locally
Lipschitz-differentiable term f . Moreover, it will be shown that all this remains true
even if the minimization problem defining the PG mapping Tγ is solved inexactly
and/or suboptimally.

The peculiarity of PANOC+ over the bad adaptive rule of original PANOC is that
the twobacktracking steps, the oneon the direction τk and the oneon thePGstepsizeγk ,
are tightly intertwined. The intricate structure emerges at step 2.5 and 2.6: the direction
stepsize τk resets every time the proximal stepsize γk is adjusted and, conversely, the
value of γk is assessed anewwhen τk changes. This entanglement allows the evaluation
of the FBE at step 2.4 with an up-to-date stepsize γk , as opposed to (and eliminating)
the asynchrony obstructing PANOC’s performance. The adaptivity of PANOC+ allows
the FBE ϕFB

γ to better capture the (local) landscape of ϕ and, ultimately, to relax the
assumption of globally Lipschitz gradient.
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To substantiate these claims, in the following Sect. 3.2 we first showcase the
ineffectiveness of PANOC applied to problem (P) where f has only locally Lipschitz-
continuous gradient, and then compare the “good” and the “bad” adaptive strategies
on a common ground in Sect. 3.3.

Remark 3.1 (Algorithm notation) Algorithm 2 operates two linesearch steps within
each iteration, one on the “proximal” stepsize γk at step 2.5 and one on the “direction”
stepsize τk at step 2.6. Whenever the respective needed conditions are violated, either
γk or τk is reduced and the iteration restarted from a previous step. As a consequence,
variables may be overwritten within each iteration before being accepted. To avoid a
heavy double-index notation, used only within proofs out of full rigor, the sub- and
superscript notation is designed to differentiate temporary and permanent variables;
specifically, within iteration k only variables indexedwith k are updated,whereas those
indexed with k − 1 remain untouched. Similar considerations apply to Algorithm 1.

3.2 Failure of “Bad” PANOCWithout Globally Lipschitz Gradient

Let us consider the minimization of the convex, twice continuously differentiable,
coercive function ϕ = f + g, where f (x) = 2

9 |x |3 and g = 0, namely

minimize
x∈R ϕ(x) := 2

9 |x |3 + 0, (3.1)

and adopt PANOC as given in Algorithm 1. In particular, we choose directions

dk = 9
2γk−1xk−1

(xk−1 − x̄k−1). (3.2)

As we are about to show, starting from any x0 > 0 this particular choice of directions
complies with the bound ‖dk‖ ≤ D‖xk−1 − x̄k−1‖ for D = 18 and satisfies the
τ -linesearch with τk = 1 for every k. Moreover, the choice α = 16/27 leads to a
conveniently simple expression for the γ -linesearch, namely γk ≤ 1

2xk
. As a result,

starting from x0 > 0with γ0 > 1
4x0

, the algorithm reduces iterating the following lines

⎧
⎪⎨

⎪⎩

halven γk untilγk ≤ 1
2xk

x̄k = xk(1 − 2
3γk xk)

xk+1 = xk + 9
2γk xk

(xk − x̄k) = 4xk

(3.3)

and thus produces a sequence xk = x04k that is diverging, and causes the cost to
increase unboundedly. We now show the claims one by one. To this end, denoting
yk := γk xk throughout, observe that

x̄k = xk
(
1 − 2

3 |yk |
)

and ϕFB
γ (x) = 2

9 |x |3(1 − γk x). (3.4)

• Linesearch on γ . For xk > 0 the backtracking on γk at step 1.5 (after removing a
2
9 x3k factor) terminates when
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∣∣1 − 2
3 yk

∣∣3 ≤ 1 − 2yk + αyk . (3.5)

To simplify the computation, observe that necessarily yk ≤ 1 for inequality (3.5)
to hold, and in particular the argument of the absolute value is necessarily positive:

in fact, since yk = γk xk > 0 and α < 1, (3.5) implies
∣
∣1 − 2

3 yk
∣
∣3 ≤ 1− yk , hence

yk ≤ 1. After this simplification and by restricting the analysis to yk = γk xk > 0, it

can be seen that (3.5) has solution 0 < γk ≤ 9
4xk

(
1 −

√
1 − 2

3α

)
. For α = 16/27,

this bound simplifies to 0 < γk ≤ 1
2xk

as claimed. This shows the validity of the
first line in (3.3). Since γk is halved (only) until it enters this range, one also has that

yk := γk xk > 1
4 ∀k. (3.6)

• Bound on the directions ‖dk+1‖ ≤ D‖xk − x̄k‖. Since dk+1 = 9
2γk xk

(xk − x̄k), one

has ‖dk+1‖ = 9
2|γk xk | ‖xk − x̄k‖ ≤ 18‖xk − x̄k‖ as it follows from (3.6).

• Linesearch on τ . Starting with xk > 0 we show that xk+1 = xk + dk+1 = 4xk

satisfies the linesearch condition. Indeed, by using the expression for the FBE in
(3.4), according to step 1.4 the iterate xk+1 = 4xk is accepted if

2
9 (4xk)

3(1 − 4yk) ≤ 2
9 x3k (1 − yk) − β(1 − α) 29 x3k yk,

which is easily reduced to yk ≥ 43−1
44−1−β(1−α)

. Since β(1 − α) < 1, one has
43−1

44−1−β(1−α)
≤ 43−1

44−2
< 1

4 , and (3.6) implies that the inequality always holds.

We stressed that, although we consider an exemplary problem designed to yield
simple computations, similar arguments would still apply for C∞, strongly convex
formulations, e.g.,x4 + x2; see also Remark 3.2.

3.3 “Good” PANOC+ Versus“Bad” PANOC

3.3.1 Robustness Against Poor Directions

In spite of the breakdown demonstrated in Sect. 3.2, global convergence guarantees for
PANOC can be recovered by adding a term g with bounded domain, as is the case of a
possibly large but bounded box constraint, and selecting update directions dk that are
bounded, see [32, Rem. III.4]. Nonetheless, as noted in [20, §6.1], this would scarcely
help in practice: early iterations would be agnostic to the large box and exhibit the
same diverging behavior until the boundary is approached, at which point a drastically
reduced stepsize γ would be the cause of a painfully slow convergence.

We substantiate these claims by considering the example in Sect. 3.2 with some
amendments. In particular, we let g be the indicator function of the interval [−B, B],
namely g(x) = 0 if |x | ≤ B and g(x) = ∞ otherwise, and select directions dk

as above if ‖dk‖ ≤ E and Edk/‖dk‖ otherwise, with possibly large but bounded
B, E ≥ 0. The problem becomes
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Fig. 1 Comparison of convergence metrics versus number of evaluations of Tγ for PANOC and PANOC+
on the illustrative problem (3.7), with directions as in (3.2) saturated in the interval [−100, 100]. We used
x0 = 1, γ0 = 1, α = 0.95, and β = 0.5. PANOC’s iterates diverge until the (safeguarding) box constraint
activates, and only then, with a reduced stepsize γ , slowly recovers

minimize
x∈R

2
9 |x |3 subject to |x | ≤ B. (3.7)

Adopting these precautions, PANOC generates iterates that converge to a solution,
starting from any initial point. We set B = E = 100 for the results displayed in
Fig. 1 with a comparison against PANOC+. Although the latter solves the illustra-
tive problem in its original form (that is, with B = ∞), we stress that it would not
be affected by the safeguards put in place to guarantee the convergence of “bad”
PANOC.

The diverging behavior of PANOC is apparent, until the safeguards activate, as
expected from Sect. 3.2. At step 1.3 PANOC accepts an update xk based on the
sufficient decrease of a merit function defined by the FBE with the previous stepsize
γk−1. Figure 2 illustrates this phenomenon by comparing the merit functions adopted
by PANOC and PANOC+ to verify whether a tentative update is to be accepted or not.
In this example, PANOC’s merit function are lower unbounded (see (3.4)) and full
steps along the update directions dk are accepted, in fact favored, leading to diverging
iterates. In turn, this results in a temporary departure from the solution, degrading the
overall efficiency of the algorithm. Conversely, at step 2.4 PANOC+ verifies sufficient
decrease of the FBE with the current stepsize γk , yielding monotone decrease of the
(time varying, but lower bounded) merit function ϕFB

γ , as depicted in Fig. 1. Note
that the merit function for PANOC+ in Fig. 2 is only piecewise continuous because
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Fig. 2 Comparison of the cost
function ϕ for the illustrative
problem (3.1) against PANOC’s
and PANOC+’s merit
functions with previous, or
initial, estimate γk−1 = 1

its evaluation is always preceded by the γ -stepsize backtracking, i.e.„ the stepsize
γk = γk(xk) in ϕFB

γ depends on the candidate update xk being tested. This adaptivity
allows PANOC+ to well estimate the geometry of the cost function ϕ and to construct
a tighter merit function.

These simulations also show that, despite the more conservative linesearch,
PANOC+ does not necessarily require more iterations nor function evaluations to
provide a more consistent performance, nor does it lead to a smaller stepsize. Indeed,
considering larger box constraints and update directions, i.e.,larger values for B, the
limitations and inadequacy of “bad” PANOC in this setting become apparent, while
providing support in favor of the (initially) more conservative adaptive scheme of
“good” PANOC+.

Remark 3.2 Noticeably, the “bad” PANOC can exhibit this diverging behavior even
when the problem admits just one feasible point. To see this, let us consider once again
the illustrative example above with B = 0, so that dom g = dom ϕ = {0}. Then,
patterning the proof in Sect. 3.2, we obtain that the algorithm produces a sequence
xk k∈N that is diverging, despite the fact that x̄ k = 0 for every k, since ϕFB

γ (x) =
x2

( 1
2γk

− 4
9 |x |) is still lower unbounded for any γk > 0. This also confirms the necessity

of imposing bounded ‖dk‖ in [32, Rem. III.4], in addition to ‖dk‖ ≤ D‖xk−1− x̄ k−1‖
as in step 1.1 , not needed in the “good” PANOC+ even with unbounded domains.

3.3.2 Robustness Against Poor Initial Stepsize Estimation

The poor performance of PANOC on problem (3.7) can be attributed to the bad quality
of update directions dk . We now consider a more meaningful comparison on problem
(3.7), this time with directions given by a classical Newton-type approach. We extend
f linearly outside of the box [−B, B] so as to make it (convex and) globally Lipschitz
differentiable without affecting the problem. We thus consider

minimize
x∈R f (x) subject to |x | ≤ B, (3.8)

where

f (x) =
{

2
9 |x |3 if |x | ≤ B
2
3 B2(|x | − 2

3 B) otherwise.
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Fig. 3 Comparison of convergence metrics versus number of evaluations of Tγ for PANOC and PANOC+
on problem (3.8), with Newton-type directions as in (3.9) and parameters x0 = 1, γ0 = 1, α = 0.95,
β = 0.5, and μ = 10−6. Similarly to the situation depicted in Fig. 2, the poor geometry estimation of
PANOC is responsible for an initial divergent behavior that causes slower asymptotic convergence with a
small stepsize

Because of the constraints, the problem is nonsmooth.Nevertheless, since f is globally
L f -Lipschitz differentiable (with L f = 2

3 B2), the minimization of f is equivalent
to that of ϕFB

γ , when γ < 1/L f . As such, in the spirit of [33] we may select update
directions based on a Newton method on the FBE. We simulate the scenario in which
L f is unknown, thereby selecting an initial stepsize γ0 larger than 1/L f . Since the cost
function is coercive and has a unique stationary point, both methods are guaranteed
to converge to the unique solution x	 = 0.

We consider classical Newton directions

dk = −max{μ, ∇2ϕFB
γ k (xk)}−1∇ϕFB

γ k (xk) (3.9)

with μ > 0 as regularization parameter. When not defined, ∇2ϕFB
γ k is intended in a

Clarke generalized sense.
Figure 3 shows that PANOC’s iterates initially diverge, even if the starting point

x0 is close to the solution x	, if the proximal stepsize γ0 is poorly estimated, in line
with the observations above, and despite the choice of regularized Newton-type direc-
tions. Conversely, PANOC+ adaptively constructs a tighter merit function and exhibits
monotone decrease of ϕFB

γ , as depicted in Fig. 3. Once again, these simulations show
that PANOC+ provides a more consistent performance without necessarily requiring
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more iterations or function evaluations; moreover, the nested linesearch procedure
does not lead to a smaller stepsize nor does it hinder fast asymptotic convergence.

4 Algorithmic Analysis Under Inexact Proximal Oracles

In this section we analyze the properties of the iterates generated by PANOC+, starting
from theirwell-definedness.As a substantial proof of robustnesswith respect to inexact
prox evaluations, we will generalize the setting to an extent that the oracle of the
proximalmapping is not required, and instead only a local solution of the proximal sub-
minimization problem is needed. We will refer to this variant as the inexact PANOC+
and emphasize that the exact counterpart described in Algorithm 2 falls as a special
case.

The investigation in this section originates essentially from three observations. First,
in the inexact scenario we cannot avail ourselves of the FBE, as its evaluation requires
global optimality in the solution of the proximal subproblem. Second, by considering
the equivalent reformulation of (P)

minimize
x,z∈Rn

f (x) + g(z) subject to x = z

and defining the associated augmented Lagrangian function

Lβ(x, z, y) := f (x) + g(z) + 〈y, x − z〉 + β
2 ‖x − z‖2, (4.1)

we remark that

ϕFB
γ (x) = L1/γ (x, x̄,−∇ f (x)), (4.2)

where

x̄ ∈ Tγ (x) = argminL1/γ (x, · ,−∇ f (x)) (4.3)

is the result of an exact proximal minimization. Third, in the ALM framework, algo-
rithms can be constructed that converge in some sense to stationary points of the
optimization problem, even solving the associated subproblems only approximately
[7]. Therefore, we seek relaxed (sub)optimality concepts for the evaluation of the
proximal mapping. This viewpoint will ultimately highlight how additionally to being
used as a solver within ALMs, as in [12, 21, 29], PANOC+ can operate as an ALM-
type solver itself.

In the broadest possible setting, we do not require any (sub)optimality in the prox-
imal minimization subproblem other than improvement with respect to the previous
iteration. Clearly, additional conditions are needed for generating meaningful iterates,
but as a proof of robustness of PANOC+ we demonstrate that any choice complying
with said requirement maintains the well definedness of the algorithm. We will then
provide instances of such conditions that, possibly under additional assumptions on
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the problem, ensure optimality conditions for the limit points of the proposed inexact
variant.

Specifically, we consider Algorithm 2 with the following instruction replacing step
2.4 therein, remarking that “exact” x̄ k ∈ Tγ (xk) as prescribed in Algorithm 2 comply
with this relaxed requirement (any such x̄ k is a globalminimizer ofL(xk, ·,−∇ f (xk)),
and Φk = ϕFB

γ (xk) in this case).

Suboptimal prox step for inexact PANOC+. Let x̄ k be a suboptimal minimizer of
L(xk, · ,−∇ f (xk)) such that

Φk :=L(xk, x̄ k,−∇ f (xk)) ≤ L(xk, x̄ k−1,−∇ f (xk)). (4.4)

4.1 Well-Definedness and Convergence Results

A crucial complication that the stepsize adjustment in the “good” PANOC+ suffers
if compared with the original one in the “bad” PANOC, is that it gives rise to a
nested dependency between γk , τk , and dk that could potentially give rise to infinite
recursions. While this is fortunately not the case, as we are about to show, the proof
is not as straightforward as in [32]. On top of this, while in the “exact” case local
boundedness properties of the PG operator Tγ could conveniently be exploited, in
accounting also for inexactness even for a fixed xk the set of points x̄ k complying with
the relaxed requirement (4.4) may be unbounded. The following result will serve as
surrogate of local boundedness for the suboptimal proximal operator.

Lemma 4.1 Let a constant c ∈ R, a sequence (γ j ) j ∈ N ↘ 0, and two bounded

sequences (u j , z j ) j ∈ N in R
n be fixed, and for every j ∈ N let z̄ j be such that

g(z̄ j ) +
〈
u j z̄ j − z j

〉
+ 1

2γ j
‖z̄ j − z j‖2 ≤ c

2γ j
.

Then, (z̄ j ) j ∈ N is bounded.

Proof An application of Young’s inequality on the inner product yields

2γ j g(z̄ j ) ≤ c + γ j‖u j‖2 − (1 − γ j )‖z̄ j − z j‖2.

To arrive to a contradiction, up to extracting if necessary, suppose that 0 < ‖z̄ j‖ → ∞.
Since lim inf j→∞ g(z̄ j )/‖z̄ j‖2 > −∞ by [24, Ex. 1.24], dividing by ‖z̄ j‖2 and
passing to the limit leads to the contradiction 0 ≤ −1. ��

To avoid trivialities, in what follows we assume that xk �= x̄ k always holds. This is
consistent with stopping criteria based on the PG residual 1

γk
‖xk − x̄ k‖, see Sect. 4.2,

in which case xk = x̄ k would trigger a successful termination.

Lemma 4.2 (Well-definedness of the “good” (inexact) PANOC+). Consider the
iterates generated by Algorithm 2 with inexact proximal evaluation at step 2.4 as
given in (4.4). The following hold:
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(i) Well-definedness: at every iteration, the number of backtrackings at steps 2.5 and
2.6 is finite.

(ii) At the end of the kth iteration (k ≥ 1), one has

ϕ(x̄ k) + δk ≤ Φk ≤ Φk−1 − βδk−1 where δk := 1−α
2γk

‖x̄ k − xk‖2. (4.5)

(iii) Every iterate x̄k remains within lev≤c ϕ, where c = Φ0 < ∞.

Proof As observed in Remark 3.1, each iteration k defines or updates only vari-
ables indexed with a k sub/superscript, while those defined in previous iterations
are untouched. In what follows, let us index by k, j the variables defined at the j th
attempt within iteration k. Note further that γk, j Lk, j = α ∈ (0, 1) holds for every
attempt j within every iteration k, since every time γk is halved the estimate Lk is
doubled (cf. step 2.5).

• 4.2(i) We proceed by induction on k. If k = 0, there is no backtracking on τ , and
from Lemma 4.1 we conclude that all the trials x̄0, j remain confined in a bounded
set Ω0, and therefore any stepsize γ0, j < 1/L f ,Ω0 is accepted.
Suppose now that k > 0 and observe that, by the definition of Φk in (4.4) and the
failure of the condition at step 2.5, the inequality

ϕ(x̄ k−1) ≤ Φk−1 − 1−α
2γk−1

‖xk−1 − x̄ k−1‖2 (4.6)

holds. Since ‖dk, j‖ ≤ D‖x̄ k−1−xk−1‖ and τk, j ∈ [0, 1], any attempt xk, j defined
at step 2.3 during the kth iteration satisfies

‖xk, j − x̄ k−1‖ = τk, j‖xk−1 − x̄ k−1 + dk, j‖ ≤ (1 + D)‖x̄ k−1 − xk−1‖

and thus remains in a bounded set, be it Ωk . To arrive to a contradiction, suppose
that γk, j ↘ 0 as j → ∞. Observe that condition (4.4) reads

g(x̄ k, j ) +
〈
∇ f (xk, j )x̄ k, j − x̄ k−1

〉

+ 1
2γk, j

‖xk, j − x̄ k, j‖2 ≤ g(x̄ k−1) + 1
2γk, j

‖xk, j − x̄ k−1‖2.

Since xk, j
j ∈ N is bounded, an application of Lemma 4.1 reveals that x̄ k, j too is

bounded. Up to possibly enlarging the set, both sequences remain confined in the
bounded set Ωk , implying that the condition at step 2.5 should have terminated in
finite time, whence the sought contradiction.
Hence, γk, j is backtracked finitely many times within iteration k; up to discarding
early attempts, we may denote γk, j = γk . Condition (4.4) reads

L(xk, j , x̄ k, j ,−∇ f (xk, j )) ≤ L(xk, j , x̄ k−1,−∇ f (xk, j ))

= f (xk, j ) + g(x̄ k−1) +
〈
∇ f (xk, j )x̄ k−1 − xk, j

〉

+ 1
2γk

‖xk, j − x̄ k−1‖2.
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As τk, j ↘ 0, one has that xk, j → x̄ k−1. Since f and ∇ f are continuous, the
right-hand side of the inequality converges to ϕ(x̄ k−1), overall resulting in

lim sup
j→∞

L(xk, j , x̄ k, j ,−∇ f (xk, j )) ≤ ϕ(x̄ k−1)
(4.6)≤ Φk−1 − 1−α

2γk−1
‖xk−1 − x̄ k−1‖2.

Since ‖xk−1 − x̄ k−1‖ > 0 and β < 1, for j large enough the condition at step 2.6
will be violated and therefore the kth iteration successfully terminated.

• 4.2(ii) Follows by combining (4.6) with the failure of the condition at step 2.6 at
the end of the iteration.

• 4.2(iii) Direct consequence of Lemma 4.2(ii). ��
We next consider an asymptotic analysis of the algorithm.

Theorem 4.3 (Asymptotic analysis of the “good” (inexact) PANOC+) Consider the
iterates generated by Algorithm 2with inexact proximal evaluation at step 2.4 as given
in (4.4). The following hold:

(i) (Φk)k∈N converges to a finite value ϕ	 ≥ inf ϕ from above.
(ii)

∑
k∈N 1

γk
‖x̄ k − xk‖2 < ∞.

(iii) limk→∞ ‖xk − x̄ k‖ = limk→∞ ‖xk − xk−1‖ = limk→∞ ‖x̄ k − x̄ k−1‖ = 0,
and in particular the set of limit points of (xk)k∈N is closed and connected and
coincides with that of (x̄ k)k∈N.

(iv)
∑

k∈N γk = ∞.
(v) lim infk→∞ 1

γk
‖xk − x̄ k‖ = 0.

(vi) Consider the following assertions: (1) ϕ is level bounded; (2) (x̄ k)k∈N is bounded;
(3) (xk)k∈N is bounded; (4) (γk)k∈N is asymptotically constant, i.e.„ there exists
κ ∈ N such that γk = γκ for every k ≥ κ; (5) f has globally Lipschitz-continuous
gradient. One has (1) ⇒ (2) ⇔ (3) ⇒ (4) ⇐ (5).

Proof • 4.3(i) Follows from (4.5).
• 4.3(ii) A telescoping argument on (4.5) yields

β(1 − α)
∑

k∈N
1
2γk

‖x̄ k − xk‖2 ≤ Φ0 − inf ϕ = ϕFB
γ (x0) − inf ϕ, (4.7)

whence the claimed finite sum.
• 4.3(iii) That ‖xk − x̄ k‖ → 0 follows from Theorem 4.3(ii), since γk is upper
bounded. Next, by the conditions at step 2.2 and 2.2, observe that

‖xk − xk−1‖ = ∥∥(1 − τk)(x̄ k−1 − xk−1) + τkdk
∥∥ ≤ (1 + D)‖x̄ k−1 − xk−1‖

(4.8)

and thus ‖xk − xk−1‖ vanishes, and in turn so does ‖x̄ k − x̄ k−1‖ since

‖x̄ k − x̄ k−1‖ ≤ ‖xk − x̄ k‖ + ‖x̄ k−1 − xk−1‖ + ‖xk − xk−1‖.
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• 4.3(vi) The first implication follows fromLemma 4.2(iii), and the second one from
Theorem 4.3(ii). If (xk)k∈N is bounded, and thus so is (x̄ k)k∈N, the set Ωk in the
proof of Lemma 4.2(i) can be taken independent of k, and asymptotic constancy
of γk follows from the same arguments therein. Finally, if ∇ f is L f -Lipschitz
continuous the condition at step 2.5 fails to hold as soon as γk ≤ α/L f [6, Prop.
A.24], and γk is thus asymptotically constant.

• 4.3(iv) By iteratively applying inequality (4.8), we obtain that

‖xk − x0‖ ≤ (1 + D)

k−1∑

j=0

‖x̄ j − x j‖

= (1 + D)

k−1∑

j=0

γ
−1/2
j ‖x̄ j − x j‖γ 1/2

j

≤ (1 + D)

√∑k−1
j=0 γ −1

j ‖x̄ j − x j‖2
√∑k−1

j=0 γ j

(4.7)≤ (1 + D)

√

2
ϕFB

γ (x0)−inf ϕ

β(1−α)

√∑k−1
j=0 γ j .

Contrary to the claim, if
∑

k∈N γ k < ∞ holds, then (xk)k∈N is bounded. From
Theorem 4.3(vi) proven above we then infer that γk is asymptotically constant,
thus contradicting the finiteness of

∑
k∈N γk .

• 4.3(v) Immediate consequence of Theorem 4.3(ii) and 4.3(iv). ��

Remark 4.4 If the iterates remain bounded (as is the case when the objective ϕ is
level bounded), owing to Lemma 4.3(vi), Algorithm 2 with exact prox evaluations
as in step 2.4 eventually reduces to the original PANOC [32] with constant stepsize,
and its convergence results are then readily available, including global convergence
(possibly at R-linear rates) under Kurdyka-Łojasiewicz assumptions, and superlinear
when converging to a strong local minimum with directions satisfying the Dennis-
Moré condition, see [32, 34].

Nevertheless, even in accounting for inexact proximal evaluations it is still possible
to derive some qualitative guarantees for the limit points, provided that x̄ k satisfies
some local suboptimality requirements. We list two such instances in the following
definition and later detail a proof validating the claim.

Definition 4.5 (Prox suboptimality criteria) Relative to the minimization problem
(4.3) defining the PG mapping, we say that the iterates x̄ k computed at step 2.4 are:

(i) δ-stationary (for some δ > 0) if dist
(
0, ∂

[L(xk, · ,−∇ f (xk))
]
(x̄ k)

) ≤ δ, that is,
if there exists v̄k ∈ ∂g(x̄ k) such that

∥
∥v̄k + ∇ f (xk) + 1

γk
(x̄ k − xk)

∥
∥ ≤ δ. (4.9)
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(ii) Uniformly locally optimal if there exist r > 0 and a sequence εk ↘ 0 such that
the following local minimality condition holds:

L(xk, x̄ k,−∇ f (xk)) ≤ L(xk, x,−∇ f (xk)) + εk ∀x ∈ B(x̄ k; r). (4.10)

Notice that no (approximate) local minimality is required in the approximate sta-
tionarity criterion ofDefinition 4.5(i). Consequently, the output can be retrieved by any
descent method starting at the previous iteration and terminating when δ-stationarity
is achieved. It is also worth remarking that the prox suboptimality tolerance δ does not
need to be small nor fixed for all iterations and can instead be replaced by a sequence
δk ↘ δ ≥ 0. The uniform local optimality requirement of Definition 4.5(ii) is instead
more restrictive, and is possibly subject to prior knowledge on the geometry of the
augmented Lagrangian. The uniformity is dictated by the value of r > 0, whose role
can be appreciated by considering the sequence zk = 1/k for k > 0 which consists of
(isolated) local minimizers for the function

h(x) =

⎧
⎪⎨

⎪⎩

x if x = 1/k, k ∈ N>0

x2 + x − 1 if x ≤ 0

∞ otherwise,

yet the limit z = 0 is not stationary for h. The pathology arises from the nonuniformity
of the radius of local minimality of zk , which is rk < 1/k(k+1) → 0.

Theorem 4.6 (Subsequential convergence of inexact PANOC+) Consider the iterates
generated by Algorithm 2 with inexact proximal evaluation at step 2.4 as given in
(4.4). Suppose that the iterates remain bounded (as is the case when ϕ is coercive),
and let ω be the set of limit points of (x̄ k)k∈N. Then:

(i) If (x̄ k)k∈N are δ-stationary as in Definition 4.5(i) and gph ∂g is closed relative to
dom g × R

n, then ω is made of δ-stationary points for ϕ.
(ii) If the sequence (x̄ k)k∈N is (eventually) uniformly locally optimal as in Definition

4.5(ii) (this being true in case of exact prox evaluations, having r = ∞ and εk = 0
in this case), then the set ω is made of stationary points for ϕ, and ϕ is constantly
equal to ϕ	 as in Theorem 4.3(i) there.

Proof Up to possibly discarding early iterates, in light of the boundedness of the
sequences and the consequent eventual constancy of γk by 4.3(vi), wemay assume that
γk ≡ γ > 0 holds for all k. Let x	 ∈ ω be fixed, and let an infinite set of indices K ⊆ N

be such that (2 = k ∈ N, 3 = )
[
x̄ k k ∈ K ] → x	, so that (2 = k ∈ N, 3 = )

[
xk k ∈ K ] →

x	 too as it follows from Theorem 4.3(iii).

• 4.6 Since ∇ f (xk) + 1
γ
(x̄ k − xk) → ∇ f (x	) as K � k → ∞, up to extracting a

subsequence if necessary, it follows from (4.9) that v̄k → v̄	 with‖v̄	+∇ f (x	)‖ ≤
δ. Since (Φk = L(xk, x̄ k,−∇ f (xk)))k∈N is bounded, owing to Theorem 4.3(i),
and since both f and ∇ f are continuous, clearly (g(x̄ k))k∈N remains bounded,
and therefore, by lower semicontinuity, x	 ∈ dom g. Since also (x̄ k)k∈K ⊆ dom g,
from the assumptions we conclude that v̄	 ∈ ∂g(x	) and thus v̄	 + ∇ f (x	) ∈
∂ϕ(x	), proving δ-stationarity of x	 for ϕ.
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• 4.6 Letting ϕ	 be as in 4.3(i) and invoking (4.5), lsc of ϕ yields ϕ(x	) ≤ ϕ	. For
k large enough so that x̄ k is r -close to x	, we have

ϕ	 = lim
k∈K

Φk = lim
k∈K

L(xk, x̄ k,−∇ f (xk))

≤ lim sup
k∈K

L(xk, x	,−∇ f (xk)) + εk

= L(x	, x	,−∇ f (x	)) = ϕ(x	) ≤ ϕ	,

owing to continuity of f and ∇ f , and the fact that both εk and ‖xk − x̄ k‖ vanish
(the former by assumption and the latter by 4.3(iii)). From the arbitrarity of x	 ∈ ω

we conclude that ϕ is constant on ω with value ϕ	. Notice further this also shows
that g(x̄ k) → g(x	) as K � k → ∞. Ekeland’s variational principle [24, Prop.
1.43] with δk = √

εk ensures for every k ∈ K (large enough so that
√

εk ≤ r ) the
existence of ξ k ∈ B(x̄ k;√

εk) together with

ηk ∈ ˆ∂
[L(xk, · ,−∇ f (xk))

]
(ξ k) = ∇ f (xk) + ∂̂g(ξ k) + 1

γ
(ξ k − xk)

such that L(xk, ξ k,−∇ f (xk)) ≤ Φk and ηk ∈ B(0;√
εk). By lsc of g and since

ξ k → x	, necessarily g(ξ k) → g(x	) and the inclusion −∇ f (x	) ∈ ∂g(x	) is
then readily obtained, whence the claimed stationarity of x	 for ϕ. ��
Closedness of gph ∂g relative to dom g×R

n as required inTheorem4.6 is frequently
encountered in applications and trivially encompasses all functions that are continuous
on their domain, such as indicators of closed sets. The 0-norm is instead an example
of a function which is not continuous on its domain but that nevertheless complies
with the requirement in Theorem 4.6. Indeed, notice that

∂g(x) = ∂̂g(x) = E1 × · · · × En, where Ei =
{
R if xi = 0

{0} if xi �= 0

for g = ‖ · ‖0. Consider a sequence xk → x along with ∂g(xk) � vk → v; we will
show that v ∈ ∂g(x), regardless of whether or not g(xk) converges to g(x). Indeed, if
xi = 0, then trivially vi ∈ R = Ei . Otherwise, xk

i �= 0 holds for large enough k, thus
necessarily vk

i = 0, and consequently vi ∈ {0} = Ei . Either way, since this holds for
every component, we conclude that v ∈ ∂g(x).

4.2 Termination Criteria

Algorithm 2 runs indefinitely and generates an infinite sequence of iterates (xk)k∈N
and (x̄ k)k∈N. Along its execution, we are compelled to check some suitable conditions
for stopping and returning an x̄ k that, in some sense, satisfactorily minimizes ϕ. The
Theorem of 4.3(v) guarantees that the standard termination criterion on the residual

1
γk

‖xk − x̄ k‖ ≤ ε
2 (4.11)
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is verified in finite time. However, considering (2.5), a control on the magnitude
of ‖∇ f (xk) − ∇ f (x̄ k)‖ must also be imposed in order to guarantee bounds on
dist(0, ∂ϕ(x̄ k)). This calls for a strengthened linesearch condition at step 2.5 ensuring
also the satisfaction of

‖∇ f (xk) − ∇ f (x̄ k)‖ ≤ 1
γk

‖xk − x̄ k‖, (4.12)

so that, by a triangular inequality argument on (2.5), ε-stationarity of x̄ k (that is,
dist(0, ∂ϕ(x̄ k)) ≤ ε) would be guaranteed by (4.11). On the one hand, owing to
AssumptionA1 the proof of Lemma4.2(i) (and of all other results)would still verbatim
apply,meaning that this criterionwould not affect thewell-definedness ofAlgorithm 2,
or in fact any result presented so far. On the other hand, this would require evaluations
of ∇ f (x̄ k), otherwise not needed, and thus affect the overall complexity. To account
for this fact, a viable solution is to trigger this strengthened linesearch only after (4.11)
is first satisfied, at which point the algorithm can terminate whenever (4.11) is verified
again.

Note that the same conclusions can be made under suboptimal prox evaluations
complying with the local uniformly of Definition 4.5(ii), as long as εk = 0 for all
k. In case of δ-stationarity as in Definition 4.5(i), instead, the same criterion would
guarantee (δ + ε)-stationarity of the output.

4.3 NonmonotoneVariant

Nonmonotone linesearch procedures often prove beneficial in practice, as they can
reduce conservatism in the linesearch and favor larger steps. By patterning the rationale
of the ZeroFPR algorithm [34], a nonmonotone linesearch can be readily integrated in
PANOC+ at step 2.6 without affecting the finite termination and asymptotic properties
asserted in Lemma 4.2and Theorem 4.3. This is done by changing the definition of
Φk at step 2.4 into Φk = (1 − pk)Φk−1 + pkϕ

FB
γ (xk) for k > 0 (with ϕFB

γ (xk)

being replaced by L(xk, x̄ k,−∇ f (xk)) in the inexact case), where (pk)k∈N ⊂ (0, 1]
is any user-selected sequence bounded away from 0. The key observation enabling
the possibility to replicate all the convergence results is the inequality ϕFB

γ (xk) ≤ Φk ,
which follows from an elementary induction (cf. [34, Lem. 5.1]).

4.4 Adaptive Proximal Gradient Method

By selecting dk = x̄ k−1 − xk−1 at step 2.2, PANOC+ reduces to the classical prox-
imal gradient method xk ∈ Tγ (xk−1) with an adaptive stepsize. In fact, the descent
condition at step 2.6 does not need to be checked, as it is always satisfied for any τk ,
having xk = (1−τk)x̄ k−1+τk(xk +dk) = x̄ k−1 independently of the value of τk . For
this specific choice of the update direction dk , the algorithm simplifies and reduces to
the proximal gradient method with adaptive stepsize selection given in Algorithm 3.
Convergence results developed in the general setting of PANOC+ can thus be readily
imported, even in the inexact case.
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Corollary 4.7 (Convergence of adaptive PG) All the assertions of Theorems 4.3 and
4.6 remain valid for the iterates generated by Algorithm 3.

Algorithm 3 Inexact proximal gradient with adaptive γ -stepsize rule

Require x0 ∈ R
n ; γ0 ∈ (0, γg); α ∈ (0, 1)

Initialize x̄−1 = x0, k ← 0, and start from step 2

3.1: γk ← γk−1, xk ← x̄k−1

3.2: Let x̄k be as in (4.4) (e.g.„ x̄k ∈ Tγ (xk ))

3.3: if f (x̄k ) > f (xk ) +
〈
∇ f (xk )

〉
x̄k − xk + α

2γk
‖x̄k − xk‖2 then

*γk ← γk/2, and go back to step 2

3.4: k ← k + 1 and start the next iteration at step 1

We note that the exact version of Algorithm 3, that is, with x̄ k ∈ Tγ (xk) in step
2, corresponds to a simplified version of the linesearch strategy [25, LS1], with no
relaxation and in finite dimensional spaces but here analyzed for (fully) nonconvex
problems. Alternatively, it can be viewed as the monotone PG method outlined in [14,
Alg. 3.1] with a slightly more conservative linesearch, since

ϕ(x̄ k) ≤ f (xk) +
〈
∇ f (xk)x̄ k − xk

〉
+ α

2γk
‖x̄ k − xk‖2 + g(x̄ k)

(2.7c)= ϕFB
γ (xk) − 1−α

2γk
‖x̄ k − xk‖2 ≤ ϕ(xk) − 1−α

2γk
‖x̄ k − xk‖2,

where the inequalities follow from step 3 and Lemma 2.2(ii). Remarkably, plain con-
tinuous differentiability (as opposed to locally Lipschitzian) suffices in the given
reference, under a few other technical assumptions. However, the discussion therein
is confined to plain PG iterations as in Algorithm 3, while our analysis is more general
and captures plain PG as simple byproduct.

5 Conclusions

Weinvestigated an adaptive scheme to appropriately select the proximal stepsizewithin
solvers for fully nonconvex composite optimization, focusing on (and extending) the
PANOC framework. Our convergence analysis demonstrates the well-definedness of
the algorithm and characterizes its asymptotic properties, possibly in the absence of
(global) Lipschitz gradient continuity for the smooth term. Indeed, witnessing the
approach’s robustness, we considered a setting with possibly inexact proximal map-
ping oracle for the nonsmooth term, providing suitable conditions for its approximate
computation. By means of detailed illustrative examples, we highlighted weaknesses
of previous approaches and the crucial steps undertaken in this work, as well as their
benefits in terms of convergence guarantees and efficiency. Our findings indicate that,
by better capturing the problem’s geometry, a more conservative adaptive scheme
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can yield superior practical performance under weaker conditions. Comprising also
arbitrary acceleration directions and nonmonotone variants, these results significantly
enlarge the scope of PANOC, both as stand-alone tool for optimization and internal
solver within other algorithms, e.g.,in ALM and sequential programming approaches.
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