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1. Zusammenfassung / Summary 
 

Das Bewusstsein für die Auswirkungen menschlicher Aktivitäten auf die Umwelt stellt 

nicht nur ein Merkmal unserer Zeit dar. Die enge Beziehung zwischen Mensch und 

Umwelt ist jedoch aufgrund der Auswirkungen des Klimawandels heute und in naher 

Zukunft offensichtlicher als je zuvor. Mittlerweile stellt der Mensch die einflussreichste 

Spezies auf der Erde dar, sodass Wissenschaftler die aktuelle geologische Epoche bereits 

als Anthropozän (der Terminus technicus bringt den umweltprägenden Charakter 

menschlicher Aktivitäten, wie zum Beispiel Veränderungen der Erdoberfläche oder der 

Atmosphärenzusammensetzung, zum Ausdruck) bezeichnen (Crutzen and Stoermer, 

2000; Lewis and Maslin, 2015). Ein genereller Zusammenhang zwischen Mensch und 

Umwelt wurde jedoch schon seit langer Zeit erkannt und beschrieben. 

Bereits Seneca (4 v.C. – 65) macht auf diesen Zusammenhang aufmerksam. Er beschreibt 

beispielsweise die Korrelation zwischen Feuerstellen, Verkehr oder das Verbrennen von 

toten Körpern und der Luftverschmutzung in Rom (Seneca, 1971[62 A.D.]). 

Viele Jahrhunderte später stellt sich Thomas Malthus (1766 - 1834) die Frage wie eine 

permanent schneller wachsende Bevölkerung die Verfügbarkeit von lebenswichtigen 

Ressourcen beeinflusst (Malthus, 1960 [1798]). Thomas Malthus äußert starke Zweifel 

daran, ob sich eine exponentiell wachsende Bevölkerung auf Dauer von begrenztem Land 

und Boden ernähren kann. Obwohl sich diese Bedenken zunächst nicht bewahrheiten 

(aufgrund sehr hoher Produktivitätswachstumsraten u.a. im Landwirtschaftsbereich) ist 

die Debatte bezüglich der Mensch-Umwelt Beziehung nie abgerissen (Galor and Weil, 

2000).1 Lediglich die Schwerpunkte der Diskussion haben sich verlagert wie z.B. auf die 

Erschöpfung von natürlichen Ressourcen (z.B. fossile Brennstoffe) oder auf den Abbau 

erneuerbarer Ressourcen (Panayotou, 2000).  

Mit den Schriften der klassischen Ökonomen (wie beispielsweise Thomas Malthus) hat 

die Beziehung zwischen Mensch und Umwelt das erste Mal eine gewisse Systematik 

erhalten (Dietz and Rosa, 1994). Davon sind auch weitere Wissenschaftler anderer 

Fachrichtungen inspiriert worden. Charles Darwin (1809 - 1882) äußert ähnliche 

Gedanken als er darstellt, wie eine immer größer werdende Bevölkerung den Druck auf 

 
1 Heutzutage bekommen die Bedenken von Malthus wieder eine gewisse Relevanz. Während die 
Weltbevölkerung immer noch weiter wächst zeigen sich die Wachstumsraten an (landwirtschaftlicher) 
Produktivität immer unsicherer aufgrund Auswirkungen des Klimawandels sowie anderer globaler 
Bedrohungen (wie etwa kriegerische Auseinandersetzungen). 
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notwendige Ressourcen erhöht und somit auch die Evolution antreibt (Darwin, 1958 

[1859]).   

Im Laufe der Zeit haben so immer mehr öfters verschiedene Wissenschaftsdiziplinen 

versucht die Phänomene zwischen Mensch und Umwelt von ihrer Perspektive aus zu 

beschreiben und zu verstehen. Eine vollständig systematische Untersuchung des 

Gegenstandes gab es jedoch größtenteils nicht. Die im Verlauf des 20. Jahrhunderts sich 

langsam herausbildende Disziplin der Ökologie änderte diesen Sachverhalt (Dietz and 

Rosa, 1994).  

Seitdem sind viele Versuche unternommen worden, um die Mechanismen zwischen 

menschlichen Aktivitäten und der Umwelt zu verstehen. Dafür sind unter anderem 

Erkenntnisse aus Biologie, Ökologie und Umweltwissenschaften kombiniert worden. 

Mittlerweile gibt es verschiedene Modelle, welche versuchen die Wirkungsweisen 

zwischen Mensch und Umwelt abzubilden. Solche Modelle können wichtige Instrumente 

sein, um anhand empirischer Schätzungen Handlungsempfehlungen abzuleiten 

(Schneider, 2022).   

Vor circa 50 Jahren haben Ehrlich und Holdren (1971) die Beziehung zwischen 

menschlichen Aktivitäten und der Umwelt mithilfe des IPAT-Modells (environmental 

Impacts of Population, Affluence and Technology) formalisiert. Das IPAT-Modell basiert auf 

der offenkundigen Annahme, dass menschliche Auswirkungen auf die Umwelt anhand der 

drei Faktoren Bevölkerung, Wohlstand und Technologie zum Ausdruck gebracht werden 

können. Das IPAT-Modell stellt dabei eine mögliche Ausgangslage zur Strukturierung 

dieser Debatte dar (Dietz and Rosa, 1994). Kurze Zeit nach diesen mehr theoretischen 

Überlegungen von Ehrlich und Holdren (1971) formuliert Commoner et al. (1971) das 

IPAT-Modell als mathematische Identität aus. Das Diese IPAT-Identität drückt nun 

konkret aus, dass sich Auswirkungen auf die Umwelt aus dem multiplikativen Produkt 

von Bevölkerung, Wohlstand und Technologie zusammensetzen. Die IPAT-Identität kann 

somit für jeden Faktor gelöst werden und ist beispielsweise häufig zur Berechnung der 

Technologiekomponente verwendet worden (z.B. Raskin, 1996). In der Anwendung der 

IPAT-Identität ist Bevölkerung als Anzahl der Einwohner, Wohlstand als Konsum oder 

Produktion pro Kopf sowie Technologie als Umweltauswirkung pro Produktionseinheit 

konzeptualisiert worden. 

Eine wesentliche Stärke dieses Modells ist die überschaubare und klare Spezifikation der 

menschlichen Faktoren, welche die Umwelt beeinflussen sowie die Implikation, dass 
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diese treibenden Kräfte nicht unabhängig voneinander wirken (aufgrund der 

multiplikativen Verflechtung). Die Formalisierung eines funktionalen Zusammenhanges 

reicht jedoch nicht für eine Hypothesenprüfung oder einer kausalen Interpretation aus 

(York et al., 2003). Außerdem können zusätzliche funktionale Annahmen (z.B. Nicht-

Linearitäten) notwendig oder weitere mögliche Treiber auf die Umwelt gegeben sein. Der 

etwas enge Rahmen des IPAT-Modells kann solche Fragestellungen nicht adressieren. 

Daher haben Dietz und Rosa (1997) das IPAT-Modell zum STIRPAT-Modell (STochastic 

Impacts on the environment by Regression on Population, Affluence and Technology)  

transformiert. Das STIRPAT-Modell ermöglicht empirische Analysen und gibt somit eine 

flexible Grundlage für die Hypothesenprüfung (Liddle and Lung, 2010). Viele Studien 

verwenden das STIRPAT-Modell für unterschiedliche empirische Anwendungen wie 

beispielsweise globale oder regionale Analysen oder die Evaluierung verschiedenster 

menschlicher Umwelttreiber (z.B. Vélez-Henao et al., 2019 oder Schneider, 2022). 

Die meisten STIRPAT-Studien befassen sich mit der Analyse von Auswirkungen auf die 

Umwelt im Hinblick auf CO2-Emissionen. CO2-Emissionen gelten als das wesentliche 

Treibhausgas und sind ein weltweit akzeptierter Maßstab zur Messung und 

Quantifizierung von Klimazielen. Zusätzlich gibt es eine umfängliche und solide Datenlage 

für CO2-Emissionen weltweit. Darüber hinaus werden jedoch auch alternative Maßstäbe 

wie beispielsweise Varianten des ökologischen Fußabdruckes oder 

Luftverschmutzungsindikatoren wie NOx- oder SO2-Emissionen näher betrachtet (Vélez-

Henao et al., 2019). 

Das STIRPAT-Modell wird generell verwendet, um die sogenannten ökologischen 

Elastizitäten zu schätzen. Diese geben den prozentualen Anstieg des jeweiligen 

Umweltindikators bei einer einprozentigen Steigerung der jeweiligen erklärenden 

Variablen an (alle weiteren erklärenden Variablen werden dabei konstant gehalten; 

Knight et al., 2013). Viele Studien kommen dabei zu dem Ergebnis, dass ein Anstieg der 

Bevölkerung um ein Prozent die CO2-Emissionen ebenfalls um ein Prozent ansteigen lässt.  

Die bisherigen Studien zeigen, dass Bevölkerung und Wohlstand (typischerweise 

operationalisiert als BIP pro Kopf) signifikante Treiber von CO2-Emissionen darstellen. 

Die meisten Studien analysieren dagegen nicht explizit die Auswirkungen von 

Technologie auf die Umwelt. Hier gibt es keinen überzeugenden Konsens bezüglich 

valider Technologieindikatoren (Knight et al., 2013). Es wird daher häufig angenommen, 
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dass die technologische Komponente entweder im Fehlerterm oder in weiteren 

erklärenden Variablen der Schätzgleichung implizit berücksichtigt wird. 

Die empirische Anwendung erlaubt es also neben den drei Hauptkomponenten (d.h. 

Bevölkerung, Wohlstand und Technologie) die Aufnahme weiterer potentieller Treiber in 

die Analyse mitaufzunehmen und bietet so ein großes empirisches Erweiterungspotential 

(Wu et al., 2021; Schneider, 2022). Der STIRPAT-Ansatz ermöglicht außerdem eine tiefere 

Untersuchung der drei Hauptkomponenten. Die Komponenten können beispielsweise in 

Variablen, welche umfassendere soziale Bedeutung haben, zerlegt werden (Rosa and 

Dietz, 1998).   

Das STIPRAT-Modell stellt eine starke und robuste Grundlage für zahlreiche empirische 

Anwendungen dar. Es gibt jedoch trotz zahlreicher Studien oftmals inkonsistente 

Ergebnisse oder Wissenslücken (Vélez-Henao et al., 2019). Dieses Phänomen lässt sich 

größtenteils auf verschiedene Modellspezifikationen (z.B. der Umgang mit der 

Technologiekomponente), verschiedene Beobachtungsgrundlagen (z.B. regional oder 

global), verschiedene Schätztechniken oder verschiedene Zeiträume zurückführen. 

 

Die hier vorliegende Dissertation (bestehend aus fünf zusammenhängenden aber in sich 

eigenständigen Beiträgen) trägt zur bestehenden STIRPAT-Literatur methodologisch 

sowie konzeptionell auf verschiedene Art und Weise bei. Die ersten beiden Beiträge (2. 

und 3. Kapitel) adressieren vor allem methodologische Herausforderungen, wohingegen 

die weiteren drei Beiträge (4., 5. und 6. Kapitel) vor allem konzeptionelle Fragestellungen 

behandeln und/oder neue Variationen in der Anwendung ausführen. 

Der erste Beitrag (2. Kapitel) gibt eine komplementäre Sichtweise hinsichtlich der 

relativen Einschätzung menschlicher Auswirkungen auf die Umwelt. 

Der zweite Beitrag (3. Kapitel) präsentiert eine alternative Möglichkeit der STIRPAT-

Anwendung anhand umgekehrter Kausalitätsannahmen. 

Der dritte Beitrag (4. Kapitel) beschäftigt sich mit den unterschiedlichen Rollen von 

Wohlstandsaspekten und deren Auswirkungen auf die Umwelt. 

Der vierte Beitrag (5. Kapitel) differenziert bei der Analyse von menschlichen Treibern 

auf die Luftverschmutzung hinsichtlich der zugrundeliegenden Siedlungsstrukturen. 

Der fünfte und letzte Beitrag (6. Kapitel) untersucht die Auswirkungen von 

technologischem Fortschritt auf die Umwelt. 
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Der erste Beitrag (The role of demographic and economic drivers on the environment in 

traditional and standardized STIRPAT analysis; siehe 2. Kapitel) zeigt, dass die STIRPAT-

Analyse standardisierte Koeffizienten in die Untersuchung miteinbeziehen sollte, falls der 

Fokus auf einer Analyse der relativen Wirkungsweisen von Umwelttreibern liegt. 

Die meisten Studien finden höhere ökologische Elastizitäten in Abhängigkeit von 

Bevölkerung als von BIP pro Kopf. Einige Autoren argumentieren daher, dass der trade-

off zwischen Wirtschaftswachstum und Umweltzerstörung durch eine Priorisierung von 

Bevölkerungsabnahmestrategien gelöst werden kann. Die Frage nach der relativen 

Wirkungsweise zwischen Variablen kann jedoch mit den herkömmlichen ökologischen 

Elastizitäten nicht hinreichend beantwortet werden.  

Daher ergänzt dieser Beitrag die traditionellen ökologischen Elastizitäten mit der 

Berechnung von β-Koeffizienten (die Untersuchungsgrundlage bilden 84 Länder für den 

Zeitraum zwischen 1980 bis 2014). Die Ergebnisse zeigen, dass das Wachstum von BIP 

pro Kopf zur Erklärung von negativen Umweltauswirkungen stärker ins Gewicht fällt als 

das für Bevölkerungswachstum der Fall ist. Zur Interpretation von standardisierten 

Koeffizienten muss jedoch folgendes beachtet werden. Erstens sind standardisierte 

Koeffizienten untersuchungsabhängig und können daher nicht über verschiedene Studien 

hinweg verglichen werden. Zweitens beeinflusst eine bestimmte Variable die Umwelt 

wahrscheinlich nicht für sich alleine. Der vorliegende Beitrag adressiert diese 

Problemstellungen und liefert eine umsichtige Interpretation von standardisierten β-

Koeffizienten (gerade auch im Vergleich mit nicht-standardisierten Koeffizienten). Die 

Ergebnisse zeigen alles in allem, dass negative Umweltauswirkungen effektiver mit 

passenden Maßnahmen im Hinblick auf das Wirtschaftswachstum als auf das 

Bevölkerungswachstum vermindert werden können.  

 

Der zweite Beitrag (Reversed STIRPAT modelling: the role of CO2-emissions, population 

and technology for a growing affluence; siehe 3. Kapitel) beschäftigt sich mit der 

grundsätzlichen Kausalitätsannahme der STIRPAT-Modellierung. Es wird dabei generell 

eine einseitige kausale Auswirkung von menschlichen Faktoren auf die Umwelt 

angenommen. Ein Blick in die allgemeine (und nicht nur STIRPAT-) Literatur gibt jedoch 

keinen Anlass zu dieser einseitigen Annahme. Die Kausalitätsbeziehung zwischen 

Variablen hängt oftmals von betrachteten Zeiträumen, Entwicklungsstufen oder 



8 
 

sektoralen Strukturen der betrachteten Länder ab (Costantini and Martini, 2010; Ozturk, 

2010).  

Dieser Beitrag stellt daher einen alternativen STIRPAT-Ansatz vor und zeigt ein 

stochastisches Modell, welches Wirtschaftswachstum mithilfe von Bevölkerung, CO2-

Emissionen (als Annäherungsvariable für Energieverbrauch oder 

Ökosystemdienstleistungen) und Technologie erklärt. Die Durchführung von Granger-

Kausalitäts-Tests lassen ebenso auf eine solche umgekehrte Wirkungsweise zwischen den 

Variablen hin schließen. Darauf basierend wird der Zusammenhang zwischen 

Wirtschaftswachstum, demographischer Entwicklung und CO2-Emissionen im Rahmen 

einer STIRPAT-Analyse für 30 Industrieländer zwischen 1982 bis 2014 analysiert. 

Die Ergebnisse zeigen, dass sich Wachstumsraten von BIP pro Kopf in industrialisierten 

Ländern signifikant von CO2-Emissionen, Bevölkerung und Energieintensität erklären 

lassen. Die Koeffizienten bleiben auch für verschiedenen Variationen (z.B. weitere 

Struktur- und Energievariablen, Schätzungen kurz- oder langfristiger Koeffizienten) 

konsistent. Die signifikanten und robusten Regressionsergebnisse für alle 

Modellvariationen demonstrieren die berechtigte Anwendung des STIRPAT-Modells in 

dieser Art und Weise. Die Ergebnisse zeigen außerdem die hohe Abhängigkeit von 

hochentwickelten Volkswirtschaften an Verfügbarkeit und Konsum von günstiger 

Energie. 

 

Die meisten Ergebnisse basierend auf STIRPAT-Analysen untersuchen Auswirkungen auf 

die Umwelt durch Bevölkerung (typischerweise als Anzahl der Einwohner definiert) oder 

durch Wohlstand (typischerweise als BIP pro Kopf definiert). Diese Ergebnisse zeigen 

sich größtenteils unabhängig von Modellspezifikationen oder dem zugrundeliegenden 

Datenset. 

Einige Studien untersuchen dabei die Auswirkungen von Bevölkerung anhand von 

Altersgruppen oder Bildungshintergrund auf die Umwelt detaillierter (z.B. Cole and 

Neumayer, 2004; Liddle and Lung, 2010). 

Im Gegensatz zu dieser differenzierteren Untersuchung von Umweltauswirkungen der 

Bevölkerung (und Technologie), wird Wohlstand zumeist ausschließlich anhand BIP pro 

Kopf analysiert. Das BIP pro Kopf stellt einen sehr zweckmäßigen Maßstab für Wohlstand 

dar. Dieser alleinige Maßstab vernachlässigt jedoch die vielen (und teilweise 

gegensätzlich wirkenden) Facetten von Wohlstand (gerade im Hinblick auf Auswirkungen 
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auf die Umwelt).  Interessanterweise wurde bereits seit Beginn der IPAT-Theorie darauf 

hingewiesen, dass Wohlstand von der Produktions- sowie von der Konsumseite 

betrachtet werden sollte (Dietz and Rosa, 1994).   

Daher analysiert der dritte Beitrag (The varying roles of the dimensions of affluence in 

air pollution: a regional STIRPAT analysis for Germany; siehe 4. Kapitel) die Rolle von 

Wohlstand hinsichtlich deren Auswirkungen auf NOx-Emissionen in einer 

differenzierteren Art und Weise. Die Auswirkungen von Wohlstand werden mithilfe einer 

Betrachtung von drei Aspekten, nämlich Einkommen pro Steuerzahler, 

Motorisierungsrate und Anteil an Einfamilienhäusern, untersucht. Die Ergebnisse für 367 

deutsche Landkreise (NUTS 3-Ebene) zwischen 1990 und 2020 zeigen, dass die 

Motorisierungs- sowie Einfamilienhäuserrate als wesentliche Treiber von NOx-

Emissionen gelten können. Dagegen wirkt sich das Einkommen pro Steuerzahler 

mildernd auf NOx-Emissionen aus (falls für Motorisierungs- sowie Einfamilienhäuser 

kontrolliert wird). Während Motorisierung sowie Einfamilienhäuser eher als material- 

und energieintensive Aspekte von Wohlstand gesehen werden können, deckt das 

Einkommen pro Steuerzahler tendenziell Alltagsausgaben (z.B. Lebensmittel) oder 

Ausgaben für Konsum, welche typischerweise für Wohlhabendere gelten (z.B. kulturelle 

Aktivitäten oder Dienstleistungen) ab.  

 

Der vierte Beitrag (Drivers of local air pollution: a regional STIRPAT analysis for 

Germany; siehe 5. Kapitel) knüpft am vorherigen Beitrag an und verwendet das STIRPAT-

Modell auf Landkreisebene (NUTS 3 Ebene) zur Analyse von Bevölkerung, 

Wirtschaftswachstum und Technologie auf die lokale Luftverschmutzung. Es werden 

dafür Daten von 367 deutschen Landkreisen zwischen 1990 und 2020 verwendet. 2 

Außerdem wird zwischen städtischen und ländlichen Regionen unterschieden. Zusätzlich 

werden anhand von Marginaleffekten mögliche nicht-lineare Wirkungsweisen der 

ökologischen Elastizitäten betrachtet. Die Ergebnisse zeigen, dass NOx-Emissionen 

signifikant von der Motorisierungsrate, regionaler Bevölkerung und Anteile an 

industrieller Produktion getrieben werden. Dieses Ergebnis gilt für ländliche und 

städtische Regionen zugleich. Das ist jedoch nicht der Fall hinsichtlich der 

Umweltauswirkungen von BIP pro Kopf und Bevölkerungsdichte. Es zeigt sich 

beispielsweise nur im Fall von ländlichen Gebieten ein abnehmender Effekt von 

 
2 Der vierte Beitrag basiert auf derselben Datengrundlage wie der dritte Beitrag. 
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Bevölkerungsdichte auf die Umwelt. Die Marginaleffekte deuten zudem an, dass 

Auswirkungen der Bevölkerung auf die lokale Verschmutzung stark an dem jeweiligen 

Bevölkerungsniveau abhängen. Je höher die Perzentile der Bevölkerung, desto stärker 

wird der marginale Effekt auf die Luftverschmutzung. 

 

Das STIRPAT-Modell wurde bisher selten angewendet um den (umweltbezogenen) 

Rebound-Effekt zu analysieren (Vélez-Henao et al., 2019). Der Rebound-Effekt beschreibt 

typischerweise die Veränderung von Konsum und Produktion bei einer Veränderung 

einer ökonomischen Variablen, welche wiederum anhand einer Veränderung der 

Energieeffizienz ausgelöst worden ist (Font Vivanco and Voet, 2014). Der 

umweltbezogene Rebound-Effekt gibt einen etwas umfassenderen Ansatz und drückt den 

Rebound-Effekt anhand verschiedener umweltbezogener Dimensionen (z.B. Emissionen) 

aus (Vélez-Henao et al., 2019).  

Produktivitätssteigerungen, welche durch technologischen Fortschritt erreicht werden, 

gelten üblicherweise als vielversprechende Maßnahme, um die negativen Auswirkungen 

des Klimawandels abzumildern (IPCC, 2018).  

Vor diesem Hintergrund beschäftigt sich der fünfte Beitrag (The effects of technological 

progress on CO2 emissions: a macroeconomic analysis; siehe 6. Kapitel) mit 

Auswirkungen von (technologischen) Produktivitätssteigerungen auf die Umwelt and 

versucht zu klären, ob sich hierbei ein umweltbezogener Rebound-Effekt feststellen lässt. 

Es werden dabei konkret Auswirkungen der Steigerung von Karbonintensität (definiert 

als „Ressourcenproduktivität“; d.h. CO2-Emissionen pro BIP) und genereller Produktivität 

(definiert als „Faktorproduktivität“; indirekt abgeleitet anhand einer Dekomposition der 

Produktionsfunktion) auf CO2-Emissionen untersucht. Für diese Analyse liegen Daten von 

118 Ländern zwischen 1962 bis 2014 zugrunde. Die Ergebnisse lassen darauf schließen, 

dass ein umweltbezogener Rebound-Effekt im Hinblick auf eine steigende 

Karbonintensität vorhanden ist. D.h. Steigerungen der Karbonintensität führen zu einer 

vergleichsweisen geringen Abnahme von CO2-Emissionen. Steigerungen der generellen 

Produktivität führen sogar zu mehr CO2-Emissionen (Backfire-Effekt, d.h. Rebound-Effekt 

> 100 Prozent). Zusammenfassend lässt sich schließen, dass technologischer Fortschritt 

im Sinne von Produktivitätssteigerungen die Spannungen zwischen Umwelt und 

Wirtschaftswachstum nicht lösen kann. 
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Diese Dissertation analysiert also unterschiedliche Forschungsfragen hinsichtlich der 

Mensch-Umwelt Beziehung mithilfe des STIRPAT-Modells. Alle Beiträge stellen dabei 

Handlungsempfehlungen, welche sich aus der Interaktion der Effekte von Bevölkerung, 

Wohlstand und Technologie auf die Umwelt ableiten, zur Verfügung. 

Dabei bleiben weiterhin theoretische und empirische Fragestellungen, welche für eine 

vollumfängliche Durchdringung der Mensch-Umwelt Beziehung beantwortet werden 

müssen, bestehen. Vor diesem Hintergrund gibt es noch viele Möglichkeiten zukünftiger 

Erweiterungen und Anwendungen des STIRPAT-Modells aufgrund dessen empirischer 

Flexibilität (Kilbourne and Thyroff, 2020). STIRPAT-Analysen können so auch zukünftig 

wichtige Hilfestellungen geben, um mit Problematiken, welche aus der Mensch-Umwelt 

Beziehung resultieren, umzugehen und so weiterhin für ein umfassendes Verständnis von 

menschlichen Treibern auf die Umwelt sorgen. 
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The awareness that human behavior is affecting the environment is not a unique attribute 

of these days. Probably, the human-environment interrelationship is present as never 

before due to the tremendous adverse effects of climate change in the near future. 

Humans have become the single most influential species on earth so scientists are even 

discussing to assign the term “anthropocene” (stating that human activities are the 

dominant influence on climate and environment causing land surface transformation and 

changes in the composition of the atmosphere) to the current geological epoch (Crutzen 

and Stoermer, 2000; Lewis and Maslin, 2015). Basically, the general human-environment 

interrelationship has been recognized and described for a long time in history. 

For example, Seneca the Younger (4 B.C. – 65 A.D.) already notes that there exists a 

relationship between human activities and environmental phenomena. Specifically, he 

argues that household cooking fires, traffic or burning of dead bodies is correlated with 

the pollution in Rome (Seneca, 1971[62 A.D.]). 

Thomas Malthus (1766 - 1834) is another popular example being part of this tradition. He 

asks how population growth affects the availability of resources needed for human 

welfare (Malthus, 1960 [1798]). Though Malthus’ concerns, which basically address the 

incapacity of fixed land feeding an exponentially growing population were considered to 

be wrong due to even higher growth rates of total production (Galor and Weil, 2000), the 

debate regarding the human-environment nexus does not disappear.3 Rather, it shifts to 

topics like the depletion of natural resources (e.g. fossil fuels) or the degradation of 

renewable resources (Panayotou, 2000).  

With the writings of classical economists like Malthus, “the population-resource link 

receives systematic attention” for the first time (Dietz and Rosa, 1994, p. 278). In addition, 

also scientists from other disciplines were inspired by Malthus. For example, Charles 

Darwin (1809 - 1882) is driven by the same basic thought when he argues that population 

pressure on critical environmental resources drives evolutionary changes (Darwin, 1958 

[1859]).  

So, various sciences (like social or biological ones) try to understand a similar 

phenomenon from their point of view throughout history. But, a systematic investigation 

of interrelations between human behavior and the environment is ignored for a long time. 

 
3 Nowadays, Malthus’ thesis is again becoming more relevant. While population is still increasing, the 
usually related increase in (agricultural) productivity is getting more and more uncertain due to climate 
change impacts or other global threats. 
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The raising discipline of ecology in the 20th century investigating the relations between 

organisms and environment slowly changes this status (Dietz and Rosa, 1994).  

Since then, many efforts are made in order to understand the mechanisms of human 

activities on the environment by combining the insights of biologists, ecologists and 

environmental scientists. Theoretical ideas are gradually transformed into models in 

order to determine and analyze the response of environmental change to a set of potential 

anthropogenic factors. One important objective of these models is to deliver policy 

recommendations based on robust (empirical) estimations (Schneider, 2022).   

About fifty years ago, Ehrlich and Holdren (1971) propose the idea of IPAT 

(environmental Impacts of Population, Affluence and Technology) in order to formalize 

the relationship between human activities and the environment. The IPAT model is based 

on the simple but plausible assumption that population, affluence and technology must 

be part of any serious effort to understand human impacts on the environment. Thus, the 

IPAT model provides a useful starting point for structuring this debate (Dietz and Rosa 

1994). Shortly after, Commoner at al. (1971) firstly formulated the IPAT model as 

algebraic equation. This mathematical accounting identity specifies that environmental 

impacts are the multiplicative product of population, affluence and technology that allows 

to solve for any variable of interest. For example, the IPAT identity has often been used to 

calculate the term of technology (given the remaining components; e.g. Raskin, 1996). 

Specifically, population is conceptualized as population size, affluence as per capita 

consumption or production and technology as environmental impact per unit of 

production.  

The main strengths of the IPAT model are the parsimonious and clear specification of 

anthropogenic driving forces affecting the environment as well as the implication that 

these driving forces do not influence impacts independently due to their multiplicative 

interconnectedness. However, the pure formalization of a functional relationship 

between variables does not allow any hypothesis testing or causal interpretations (York 

et al., 2003). Further, there may be different underlying functional assumptions (e.g., non-

linearities) or other potential driving forces affecting the environment. Obviously, the 

relative tight framework of the IPAT model cannot address these issues. 

Consequently, Dietz and Rosa (1997) develop a stochastic version of the IPAT model by 

transforming it into the STIRPAT (STochastic Impacts on the environment by Regression 

on Population, Affluence and Technology) model. The STIRPAT model allows empirical 
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analysis and thus builds a powerful and flexible framework for hypothesis testing (Liddle 

and Lung, 2010). Indeed, many studies use the STIRPAT framework for broad empirical 

applications, such as global and regional analyses or the assessment of various 

anthropogenic driving forces (e.g., see Vélez-Henao et al., 2019 or Schneider, 2022 for 

literature reviews regarding STIRPAT studies).  

The major part of studies using the STIRPAT approach estimates environmental impacts 

with respect to the principal of greenhouse gas emissions, i.e. CO2 emissions. CO2 

emissions are a globally accepted measure of environmental outcome in order to quantify 

climate policy goals. Moreover, there exist accurate and sound data for CO2 emissions for 

almost all parts of the world. However, also alternative measures for the environmental 

outcome like (variants of) the ecological footprint or different air pollutants (e.g., NOx or 

SO2 emissions) are analyzed within STIRPAT applications (Vélez-Henao et al., 2019).  

Traditionally, the STIRPAT approach is used to estimate the so-called ecological 

elasticities. The ecological elasticities indicate the percentage change in the 

environmental variable associated with a one percentage point increase in the respective 

explaining variable, holding the effects of the other explaining variables constant (Knight 

et al., 2013; for example, many studies found that a 1 percent increase in population 

increases CO2 emissions by about 1 percent).  

Generally, studies find that both population and affluence (typically operationalized as 

number of residentials and GDP per capita, respectively) are significant drivers of 

emissions. In contrast, most applications do not explicitly estimate the impacts of 

technology mainly due to the missing consensus on valid indicators for technology 

(Knight et al., 2013). So, technology is usually seen as included in the error term of the 

regression equation or (partly) captured by additional explanatory variables.  

Therefore, the empirical application of the STIRPAT model allows for the inclusion of 

additional potential driving factors into the analysis beside the three core components 

(population, affluence and technology) and thus offers a high potential for extensions 

compared to the benchmark framework (Wu et al., 2021; Schneider, 2022). Additionally, 

the approach encourages the investigation of environmental impacts regarding the three 

core components in more detail. For example, the components can be disaggregated into 

forms that have more social meaning (Rosa and Dietz, 1998).   
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All in all, the STIRPAT model represents a strong tool for various applications. However, 

“[…] despite the multiple applications and the high potential of the STIRPAT model, 

inconclusive results and/or knowledge gaps remain […]” (Vélez-Henao et al., 2019, p. 1). 

The inconclusive results are mainly due to different model specifications (e.g. the 

treatment of technology), different underlying samples (regional or global data), different 

estimation techniques or different periods of time. 

 

This dissertation (consisting of five related but individual contributions) contributes to 

the existing STIRPAT literature methodologically as well as conceptually in several ways. 

The first two contributions (sections 2. and 3.) principally address methodological 

challenges whereas the last three contributions (sections 4., 5. and 6.) mainly address 

conceptual issues of STIRPAT modelling and/or provide novel variations of application.  

The first contribution (section 2.) gives a complementary perspective when dealing with 

the relative importance between environmental impacts.  

The second contribution (section 3.) presents an alternative way of using the STIRPAT 

model with the focus on reversed causality. 

The third contribution (section 4.) deals with the varying roles of the dimensions of 

affluence on the environment. 

The fourth contribution (section 5.) differentiates between settlement structures when 

analyzing human impacts on air pollution. 

The last and fifth contribution (section 6.) covers the effects of technological progress on 

the environment.   

 

To begin with, the first contribution (The role of demographic and economic drivers on 

the environment in traditional and standardized STIRPAT analysis; see section 2.) shows 

that the STIRPAT analysis should at least be complemented with standardized coefficients 

if the research focus lies in the assessment of the relative importance between the driving 

forces.  

Most studies find higher ecological elasticities related to population compared to GDP per 

capita growth. Hence, some authors suggest to mitigate the trade-off between economic 

growth and environmental pressure by giving priority to population policies and reducing 

population growth in first place. However, the question of the predictor variables’ relative 

importance cannot be finally answered by this approach. 
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In response, the contribution complements the traditional ecological elasticities by the 

calculation of standardized β-coefficients (for a sample of 84 countries and the period 

between 1980 and 2014). Results indicate that GDP per capita rather than population 

growth matters more for explaining environmental impacts. Admittedly, interpretation of 

standardized coefficients is not without limitations. First, they are sample-specific and 

cannot be compared across different studies. Second, a predictor variable might not affect 

the environment only on its own, but joint impacts could be present. The contribution 

addresses these problems and provides a careful interpretation of and comparison 

between non-standardized and standardized β-coefficients. Overall, there is good reason 

to assume that environmental impacts can be reduced more readily by a policy giving 

priority to economic rather than population growth. 

 

The second contribution (Reversed STIRPAT modelling: the role of CO2 emissions, 

population and technology for a growing affluence; see section 3.) challenges the 

prevailing assumption of STIRPAT modelling, which in most cases proposes a one-way 

causality running from the anthropogenic factors to the environment. However, the rich 

portfolio of theoretical and empirical studies reveals no universal direction of causality 

between economic growth and the environment, findings rather depend on the 

considered time periods and countries’ stage of development and sectoral structure 

(Costantini and Martini, 2010; Ozturk, 2010).  

Consequently, the contribution proposes to add a new perspective to the IPAT/STIRPAT 

approach by setting up a stochastic model that explains impacts on economic growth 

(affluence) by regression on population, CO2 emissions (as a proxy for energy use or 

ecosystem services) and technology. Indeed, the applied Granger-causality tests indicate 

a reversed causal relationship. Therefore, the relationship between economic growth, 

demographic development and CO2 emissions for 30 industrialized countries using time-

series data from 1982-2014 in the IPAT/STIRPAT setting is analyzed.   

The results confirm that GDP per capita growth rates of highly industrialized economies 

are significantly driven by the development of CO2 emissions, population and energy 

intensity. Coefficients remain robust with or without integrating structural and energy 

variables and for the short- and long-run perspective. Thus, the significant and robust 

regression results in all model variants demonstrate the reasonableness of applying this 

setup in addition and complementary to the traditional STIRPAT model. In addition, the 
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findings confirm the ongoing high dependence of advanced economies on the 

availableness and consumption of cheap energy. 

 

The empirical findings of most STIRPAT studies show positive impacts of both population 

(commonly measured as number of residentials) and affluence (commonly measured as 

GDP per capita) on the environment independent of the model setup or underlying 

dataset.  

Furthermore, some studies are examining the effects of population on the environment in 

more detail. Thereby, authors differentiate population by region, economic status, 

settlement structure, age group or educational achievement (e.g., Cole and Neumayer, 

2004; Liddle and Lung, 2010). 

In contrast to the more differentiated investigations of the environmental effects of 

population (and technology), affluence is almost only analyzed by GDP per capita. 

Obviously, GDP per capita is a very convenient measure of affluence. But, this measure 

alone potentially neglects the possibility that increasing affluence affects the environment 

in varying - even opposing - ways.4 Interestingly, already the initial concept of the IPAT 

model suggest to think about affluence as some measure of (national) production and 

consumption patterns (Dietz and Rosa, 1994).   

Hence, the third contribution (The varying roles of the dimensions of affluence in air 

pollution: a regional STIRPAT analysis for Germany; see section 4.) analyzes the role of 

affluence for the production of local NOx emissions in a more differentiated way. The study 

addresses this gap by decomposing affluence into three dimensions—income per 

taxpayer, private car ownership, and the share of single-family houses—and analyzing 

their roles in the production of local NOx emissions. Results for 367 German districts and 

autonomous cities between 1990 and 2020 indicate that private car ownership per capita 

and single-family houses per capita can indeed be considered drivers of local pollutants. 

In contrast, income per taxpayer has a negative impact on NOx emissions. While private 

car ownership and single-family houses could reflect the material- and energy-intensive 

part of affluence, taxable income per taxpayer might cover (if we control for car 

ownership and the housing situation) expenditures for material (e.g., food, consumables) 

 
4 For the sake of completeness, some studies investigate potential non-linear effects of population or 
affluence on emissions by adding squared terms of GDP per capita or population size into the STIRPAT 
equation (e.g., Cole and Neumayer, 2004 or Arshed et al., 2021).  



18 
 

as well as types of consumption more common among the financially affluent (e.g., 

services, cultural activities). 

 

The fourth contribution (Drivers of local air pollution: a regional STIRPAT analysis for 

Germany; see section 5.) offers an assessment of the role played by population, economic 

growth and technology change in the evolution of local air pollution, using the STIRPAT 

approach at the district level (NUTS 3). The analysis covers the development of 367 

German districts and autonomous cities between 1990 and 2020.5 This procedure does 

not only allow for an analysis of the cities but also the rural districts. Further, the 

contribution analyzes the estimated environmental elasticities in detail by controlling for 

non-linear impacts. In this context, predicted margins of environmental elasticities are 

calculated.  

Results indicate that the development of local pollutants (NOx emissions) is clearly related 

to car ownership, regional population and industrial manufacturing. While the findings 

largely hold for urban and rural districts, they also indicate that environmental impacts 

depend on the types of regions for GDP per capita and urban density. For example, a 

negative environmental impact of urban density can be shown for rural but not for urban 

districts. Finally, the predicted margins analysis indicates that the effect of population on 

the environment strongly depends on its respective level. So, high percentiles of 

population reveal a (much) higher marginal impact compared to low percentiles.  

 

Finally, the STIRPAT model “[…] offers a valuable yet underused platform to address the 

(environmental) rebound effect […]” (Vélez-Henao et al., 2019, p. 1378). Traditionally, the 

rebound effect describes the change in overall consumption and production as a 

consequence of a change in economic variables induced by a change in the energy 

efficiency (Font Vivanco and Voet, 2014).  The environmental rebound effect provides a 

more holistic perspective and thus expresses the rebound effect through different 

environmental dimensions like emissions (Vélez-Henao et al., 2019).  

Typically, improvements in productivity induced by technological progress are seen as 

promising measure in order to mitigate the adverse effects of climate change (IPCC, 2018). 

Against this background, the fifth contribution (The effects of technological progress on 

CO2 emissions: a macroeconomic analysis; see section 6.) analyses the effects of 

 
5 This contribution exploits the same dataset as the third contribution. 
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(technological) productivity increases on the environment and thus tries to clarify 

whether an environmental rebound effect exists. Specifically, the effect of improvements 

in carbon intensity (defined as “resource productivity” and estimated directly by CO2 

emissions per GDP) and in overall productivity (defined as “factor productivity” and 

estimated indirectly by decomposition of a production function) on CO2 emissions is 

investigated. Therefore, data from 118 countries between 1962 and 2014 are analyzed. 

Findings indicate that there exists an environmental rebound effect regarding an 

increasing carbon intensity. So, improvements in carbon intensity lead to comparable 

underproportional decreases of CO2 emissions. Further, improvements of overall 

productivity could even lead to higher CO2 emissions (backfire-effect, i.e. rebound effect 

> 100 percent). In summary, technological progress in terms of productivity 

improvements cannot solve the environment-growth trade-off per se.  

 

All in all, the five contributions of this dissertation address several research questions 

regarding the human-environment nexus in the context of STIRPAT modelling. Moreover, 

all contributions provide environmental policy implications by taking the interaction 

between the effects of population, affluence and technology into account. 

Obviously, theoretical and empirical questions still remain to be solved in order to fully 

understand the complex human-environment relationship. There is no doubt that there 

are “many avenues for future expansion of the STIRPAT model” due to its wide flexibility 

in application (Kilbourne and Thyroff, 2020, p. 360). So, future STIRPAT studies can play 

a crucial role in gaining a comprehensive understanding of anthropogenic impacts on the 

environment and thus can help to deal with prospective challenges related to the 

multifaceted human-environment nexus.  
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2. The role of demographic and economic drivers on the environment in 
traditional and standardized STIRPAT analysis6 

 

2.1. Introduction 

There is plenty of literature investigating the anthropogenic impacts on the 

environment. On a global level, many studies deal with climate change triggered by 

greenhouse gases (e.g., Auffhammer, 2018; Manabe, 2019). One common approach is to 

make use of Integrated Assessment Models (IAM) to identify optimal climate policy 

strategies, another to apply probabilistic models to capture uncertainty. Though empirical 

findings differ substantially, there is broad consensus that current mitigation efforts are 

not sufficient to limit global surface warming to 1.5°C (Masson-Delmotte et al., 2018). 

Policy implications mostly refer to technological solutions or some sort of economic 

degrowth. This is in contrast to population growth, which is indeed part of the models but 

either not made a major subject or considered to play a minor role in the optimal policy 

mix (e.g., Raftery et al., 2017). 

This is different for the so-called STIRPAT (STochastic Impacts by Regression on 

Population, Affluence and Technology) approach that is in the focus of the presented 

paper. STIRPAT models explicitly investigate the impacts of population, GDP per capita 

and additional variables (often used as proxy for technology) on the environment (e.g., 

CO2 emissions, ecological footprint, etc.). In doing so, most STIRPAT analyses focus on the 

calculation of ”ecological elasticities” that calculate the percentage change of the 

environmental outcome in response to a 1 percent increase of a driving factor (York et al., 

2003). 

Whether these elasticities are robust for different countries or time periods is a matter of 

an ongoing discussion (see section 2.2. for details). Most empirical studies, however, find 

clearly higher ecological elasticities with regard to population compared to economic 

growth (measured as GDP/capita). This is why some authors suggest to mitigate the 

trade-off between economic growth and environmental pressure by giving priority to 

population policies and reducing population growth in first place (e.g., Casey and Galor, 

2017). This shows that the interest of STIRPAT analysis lies not only in the calculation of 

generally valid elasticities, but also in the relative importance of the predictor variables. 

 
6 The contribution is based on joint work together with Axel Schaffer (Bundeswehr University Munich) and 
Andreas Brieden (Bundeswehr University Munich) and is published in Ecological Economics (Lohwasser, J., 
Schaffer, A., & Brieden, A. (2020). The role of demographic and economic drivers on the environment in 
traditional and standardized STIRPAT analysis. Ecological Economics, 178). 
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More precisely, it might be interesting to know, how to rank the effect of one predictor on 

the response variable in comparison to the effects originating from the remaining 

variables.  

Against this background, we suggest (to our knowledge for the first time in the STIRPAT 

setting) to complement the identification of ecological elasticities with the calculation of 

standardized coefficients. First results confirm the findings on unstandardized ecological 

elasticities from the literature (with elasticities for population exceeding these of 

economic growth). At the same time standardized coefficients of growing GDP per capita 

are clearly higher compared to growing population. This holds for different dependent 

variables (CO2 emissions and ecological footprints), country samples and periods of 

observation.  

Even though standardized coefficients cannot be compared directly with unstandardized 

elasticities (see section 2.4.1. for details), resulting policy implications clearly deviate 

from most STIRPAT analyses. In particular policies aiming at reducing economic growth 

rates seem to be more promising compared to strategies diminishing population growth, 

if environmental pressure should be reduced.  

The remainder of the paper is organized as follows. Section 2.2. introduces the STIRPAT 

approach and provides an overview on relevant findings of empirical studies so far. This 

is followed by methodological considerations and the applicability of standardization 

within the STIRPAT context in section 2.3. and the model description as well as the 

discussion of results in section 2.4.. Finally, the paper closes with concluding remarks and 

policy implications. 

2.2. The tradition of STIRPAT 

2.2.1. General methodology 

The STIRPAT approach is the stochastically extension of the so-called IPAT formula 

that considers environmental impacts being the product of population, affluence and 

technology (Ehrlich and Holdren, 1971). The following STIRPAT equation can be used as 

a non-linear regression equation in order to test hypotheses (York et al., 2002; Dietz et al., 

2007). 

 𝐼𝐼𝑖𝑖,𝑡𝑡  = 𝑐𝑐𝑡𝑡 ∙ 𝑃𝑃𝑖𝑖,𝑡𝑡𝛼𝛼  ∙ 𝐴𝐴𝑖𝑖,𝑡𝑡
𝛽𝛽  ∙  𝑇𝑇𝑖𝑖,𝑡𝑡

𝛾𝛾  ∙ 𝑒𝑒𝑖𝑖,𝑡𝑡. (1) 
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Ii,t is the environmental impact of country i at time t. Pi,t is population, Ai,t is affluence 

(commonly defined as GDP per capita), Ti,t is technology and ei,t is the residual error term. 

The constant ct scales the model and accounts for the different dimensions and units of 

variables. α, β and γ are the environmental outcome elasticities with respect to population, 

affluence or technology, respectively. It is assumed that all observational units show the 

same elasticities. This seems a hard assumption since there are large differences across 

countries or regions. For exact policy implications based on a STIRPAT analysis one 

should account for regional differences (Singh and Mukherjee, 2019). However, the focus 

of this paper is to demonstrate the effects of standardization within a STIRPAT analysis 

and not to clarify differences across broader regions. Next, after taking natural logs 

equation (1) yields: 

 ln 𝐼𝐼𝑖𝑖,𝑡𝑡  = ln 𝑐𝑐𝑡𝑡  +  𝛼𝛼 ∙ ln 𝑃𝑃𝑖𝑖,𝑡𝑡  +  𝛽𝛽 ∙ ln𝐴𝐴𝑖𝑖,𝑡𝑡  +  𝛾𝛾 ∙ ln 𝑇𝑇𝑖𝑖,𝑡𝑡 + ln 𝑒𝑒𝑖𝑖,𝑡𝑡. (2) 

The logarithmic form of the STIRPAT equation gives not only a very tractable regression 

equation, but also dampens the skewed distribution of the variables (Jorgenson and Clark, 

2010).  

STIRPAT analysis is generally based on the assumption that the panel data are stationary. 

However, empirical studies reveal that panel data are often not stationary in their levels 

but their differences (e.g., Bilgili, 2017). Thus, in the attempt to address non-stationarity 

of variables and to avoid spurious results, most studies follow a first-differences structure 

of equation (2) (Jorgenson and Clark, 2010; Liddle, 2014; Casey and Galor, 2017). In 

addition, first-differences estimation considers time constant (and unobserved) unit-

effects and mitigates cross-sectional dependences (Liddle, 2015; Wooldridge, 2015). The 

following equation is formed by taking first-differences of equation (2) and represents the 

most established way for estimating the STIRPAT equation. 

 ∆ ln 𝐼𝐼𝑖𝑖,𝑡𝑡  = ∆ ln 𝑐𝑐𝑡𝑡  + 𝛼𝛼 ∙ ∆ ln𝑃𝑃𝑖𝑖,𝑡𝑡  + 𝛽𝛽 ∙ ∆ ln𝐴𝐴𝑖𝑖,𝑡𝑡  + 𝛾𝛾 ∙ ∆ ln𝑇𝑇𝑖𝑖,𝑡𝑡 + ∆ ln 𝑒𝑒𝑖𝑖,𝑡𝑡. (3) 

∆ ln 𝐼𝐼𝑖𝑖,𝑡𝑡 is the change of log environmental outcome in country i from time t−1 to t. ∆ ln𝑃𝑃𝑖𝑖,𝑡𝑡 

is the change of log population, ∆ ln𝐴𝐴𝑖𝑖,𝑡𝑡 is the change of log GDP per capita, ∆ ln 𝑇𝑇𝑖𝑖,𝑡𝑡 is the 

change of log technology. ∆ ln 𝑐𝑐𝑡𝑡 is the change of the log constant and ∆ ln 𝑒𝑒𝑖𝑖,𝑡𝑡 is the change 

of the log error term. In contrast to the other variables, technology is treated differently 

across studies. While some studies use a specific variable or a combination of variables 
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representing technology (e.g., energy intensity or research and development), others 

consider technology to be included in the error term.7 

2.2.2. Findings of empirical studies 

The STIRPAT framework is frequently applied to estimate human impacts on 

environmental outcome. Although all studies are using the same theoretical model (i.e. 

STIRPAT) there are many possibilities regarding its application and the findings differ 

substantially across studies. Vélez-Henao et al. (2019) suggest that the different findings 

across studies are due to geographical imbalances, variations regarding the choice of data, 

different additional explanatory variables or different regression models. Another 

explanation is the above mentioned different treatment of technology.8 However, despite 

the differences in application, most empirical findings indicate higher ecological 

elasticities of growing population compared to GDP per capita growth (see table (1) for 

an overview regarding the findings of recent literature using CO2 emissions for the 

environmental outcome). 

Table 1: Cross-national, inter-temporal STIRPAT studies estimating the drivers of CO2 emissions (all studies 
address the non-stationarity of variables). Values indicate elasticities of CO2 emissions with respect to 
changes in GDP per capita and population. The table is based on Liddle (2015). 

Study GDP per Capita Population Data Structure 
Casey and Galor (2017) 0.22 1.44 156 countries, 1950-2010 

Xu et al. (2016) 1.01 0.93 29 provinces, 1995-2011 

Knight et al. (2013) 0.59 2.25 29 countries, 1971-2007 

Zhu et al. (2012) 1.12 0.79 20 countries, 1992-2008 

Liddle (2011) 1.06 2.35 22 countries, 1960-2007 

Poumanyvong & Kaneko (2010) 1.08 1.12 99 countries, 1975-2005 

Jorgenson & Clark (2010) 0.65 1.43 86 countries, 1960-2005 

Jorgenson et al. (2010) 0.33 0.70 57 countries, 1990-2005 

Cole & Neumayer (2004) 0.89 0.98 86 countries, 1975-1998 

 
7 Generally, this is a critical assumption since technology has different levels across countries and time and 
therefore the error term is probably no longer normally distributed. 
8 See Wei (2011) for more details regarding the role of technology on STIRPAT models. 
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Only few studies, generally focusing on specific country groups or regional entities, 

indicate that elasticities of CO2 emissions with respect to GDP per capita growth are higher 

compared to growing population (e.g., Zhu et al. (2012) for a sample of 20 emerging 

countries or Xu et al. (2016) for 29 provinces of China). Given the broad consensus on the 

ecological elasticities of the key variables, the focus of STIRPAT studies has shifted from 

an in-depth analysis of the assessment of the main factors (i.e. population and GDP per 

capita) to the inclusion of alternative control variables or the application of the STIRPAT 

equation on specific country groups. 

Based on the higher ecological elasticity with respect to population compared to GDP 

per capita, many studies see a higher importance of the first predictor with respect to 

policy design. Casey and Galor (2017), for example, argue that population plays an utmost 

important role regarding the reduction of CO2 emissions. Due to a relatively higher 

population elasticity, Casey and Galor (2017) suggest that a 1 percent slower population 

growth would allow for increases of per capita income up to 7 percent with constant or 

even slightly decreasing CO2 emissions. 

Interestingly enough, the main results of the STIRPAT literature are in contrast to 

findings of other studies not using the STIRPAT approach. Usually, these attribute minor 

impacts of population growth on CO2 emissions. For example, Raftery et al. (2017) develop 

a statistically based probabilistic forecast of CO2 emissions. Findings indicate that 

population growth is not a major contributing factor but that sustainable development 

requires adjustments of the economic sphere (Rauf et al., 2018; Ahmed et al., 2019).9 

 

2.3. Standardization in the context of STIRPAT 

As mentioned already, the key interest of most STIRPAT models is the calculation of 

”ecological elasticities”, which, in their unstandardized form, reflect the slope of the 

relationship between the response and the considered predictor variable. They are 

predictive in a sense that they approximately estimate the response variable’s mean 

expected percentage change associated with a 1 percent change of the considered 

predictor variable. For example, the elasticity of CO2 emissions with respect to population 

 
9 Studies applying the STIRPAT approach but using indirect measures of CO2 emissions like energy demand 
come to similar conclusions (e.g. Shahbaz et al., 2017). 
 



25 
 

(GDP per capita) is the percentage change of CO2 emissions when population (GDP per 

capita) increases by 1 percent. 

For large enough samples and long enough periods of observation, the related 

coefficients remain rather stable for various subsamples and can easily be compared 

across different studies. Furthermore, the application of the logarithmic form of the 

STIRPAT equation reduces the skewness of the data by pulling outliers closer to the bulk 

of the sample and partly accounts for the predictor variables’ different variances and raw 

units. However, in case the predictor variables are developing with quite different 

dynamics and the main interest lies in the relative importance of different predictor 

variables within one sample, it might be helpful to fully eliminate the problem of different 

units and variances and to complement the calculation of the traditional ecological 

elasticities with the standardization of the parameters (e.g., Bring, 1994; Grace and Bollen, 

2005; German-Soto and Gutiérrez Flores, 2015, Gelman and Hill, 2007; Schielzeth, 2010).  

More concrete, standardization weights the past variation of variables with the help of 

their respective standard deviations, for example according to equation (4) (e.g., Bring, 

1994; Wooldridge, 2015): 

 𝛽𝛽𝑥𝑥𝑆𝑆 =  𝛽𝛽𝑥𝑥 ∙
𝜎𝜎𝑥𝑥
𝜎𝜎𝑧𝑧

, (4) 

where 𝛽𝛽𝑥𝑥𝑆𝑆 is the standardized coefficient of the independent variable 𝑥𝑥, 𝛽𝛽𝑥𝑥  is the estimated 

coefficient of 𝑥𝑥, σz is the standard deviation of 𝑥𝑥 and σz is the standard deviation of the 

dependent variable 𝑧𝑧. This means they reflect the change of the response variable 

measured in units of standard deviations for a one standard deviation change in the 

chosen predictor variable, holding the remaining independent variables constant.  

To illustrate the idea behind this standardization and to provide more insight for the 

following interpretation consider the standard linear equation from bivariate linear 

regression: 

 𝑧𝑧 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥 ∙ 𝑥𝑥 + 𝛽𝛽𝑦𝑦 ∙ 𝑦𝑦.  (5) 

An implicit goal of regression is to explain how the dependent variable 𝑧𝑧 varies depending 

on variation of the independent variable 𝑥𝑥 and 𝑦𝑦. Under the (idealistic) standard 

assumption that 𝑥𝑥 and 𝑦𝑦 are independent the equation 

 𝑣𝑣𝑣𝑣𝑣𝑣(𝑧𝑧) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽𝑥𝑥 ∙ 𝑥𝑥) + 𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽𝑦𝑦 ∙ 𝑦𝑦), (6) 
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equivalent to 

1 = 100% = var(𝛽𝛽𝑥𝑥∙𝑥𝑥)
var(𝑧𝑧) + var�𝛽𝛽𝑦𝑦∙𝑦𝑦�

var(𝑧𝑧) = 𝛽𝛽𝑥𝑥2∙var(𝑥𝑥)
var(𝑧𝑧) + 𝛽𝛽𝑦𝑦2∙var(𝑦𝑦)

var(𝑧𝑧) = (𝛽𝛽𝑥𝑥𝑆𝑆)2 + �𝛽𝛽𝑦𝑦𝑆𝑆�
2

,      (7) 

holds for the overall variance var(𝑧𝑧) = 𝜎𝜎𝑧𝑧2 of 𝑧𝑧. 

Straightforward, the squared standardized coefficient of an independent variable 

measures the relative contribution of this variable to the overall variance of the 

dependent variable and hence reflects the relative influence of the independent 

variable.10  

Additional information on “context-free” interpretation of standardization can be 

found, e.g., in Bring, 1994, Grace and Bollen, 2005 or Wooldridge, 2015, an example for 

domain-specific application of standardization in German-Soto and Gutiérrez Flores, 

2015.  

While standardization is rather common for multiple regression models, it has (to our 

knowledge) not been applied within the STIRPAT tradition yet. However, the basic idea is 

that standardization improves the comparability of the predictors’ effect on the response 

variable, since it accounts for the fact that a one unit change of one predictor variable (e.g., 

economic growth) might be easy to accomplish, whereas a one unit change in another 

factor (e.g., population) may be profound. Indeed, the two main predictor variables of our 

(and most other STIRPAT) model exhibit quite different standard deviations (see 

appendix, table (A.2.)). Historically, a 1 percent change of GDP per capita growth 

represents a much smaller change within its range compared to a 1 percent change of 

population growth. Thinking in “standard deviation units” therefore means to account for 

the variable’s changeability. This is a different dimension of analysis compared to 

elasticities that could help to design more feasible policy measures.  

The better comparability of the coefficients, however, does not automatically allow for 

an unconditional assessment of the independent variables’ relative contribution to the 

prediction of the response variable. Limitations addressed in the literature are basically 

twofold: To begin with, 𝛽𝛽-coefficients are sample specific and cannot be compared across 

different studies (King, 1986). Furthermore, a predictor variable might not affect the 

response variable on its own, but impacts could (partly) occur in combination with other 

predictor variables only. The higher the correlation of the predictor variables, the higher 

 
10 Note that in general the sum of the squared standardized coefficients is less than 100%, since above we 
omitted the error variable 𝜖𝜖 that contributes var(𝜖𝜖) to var(𝑧𝑧). 
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the joint contribution and the lower a variable’s unique impact (e.g., Bring, 1994; 

Schielzeth, 2010).  

The first issue is of minor importance for our study, since we are not interested in 

calculating concrete (or even generally valid) coefficients but primarily in the relative 

importance of the main predictors within this sample. The second issue, however, is 

exactly in the core of our research and it is addressed in two ways.  

First, the full model which includes the two main predictor variables and several 

control variables is complemented by a two-predictor model based on the growth of 

population and GDP per capita only. This is due to the fact that the problem of 

interpretation particularly holds for three- or more predictor equations, when shared 

explanatory power can unfold in various (unobserved) ways but it seems less problematic 

for two-predictor equations. Even though both predictors might still unfold some of their 

impact only in the presence of the other factor, 𝛽𝛽-coefficients can be considered “a good 

measure of relative importance of each variable” (Thayer, 1991, p. 12).  

Second, an alternative method of standardization, based on partial standard 

deviations rather than ordinary standard deviations, is applied. Following this idea, 

mentioned by Healy (1990) and further developed by Bring (1994), standardized 

coefficients could control for the shared explanatory power by taking into account the 

amount of multicollinearity for the predictor variables via the variance inflation factor 

(VIF) (Bring, 1994, p. 211): 

 𝑉𝑉𝐼𝐼𝑉𝑉𝑥𝑥 = 1
1−𝑅𝑅𝑘𝑘−1

2 , (8) 

where k is the number of independent variables, 𝑅𝑅𝑘𝑘−12 ,is the coefficient of determination 

when a predictor variable x is regressed on the k-1 other predictor variables. Partial 

standard deviation 𝜎𝜎𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 is then defined as 

 𝜎𝜎𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑝𝑝 = 𝜎𝜎𝑥𝑥

�𝑉𝑉𝑉𝑉𝑉𝑉𝑥𝑥
∙ �𝑛𝑛−1

𝑛𝑛−𝑘𝑘
,  (9) 

where n is the number of observations.  

Finally, the estimated coefficients can be standardized by using partial standard 

deviations according to 

 𝛽𝛽𝑥𝑥𝑆𝑆 =  𝑏𝑏𝑥𝑥 ∙
𝜎𝜎𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜎𝜎𝑧𝑧
.  (10) 
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In contrast to ordinary 𝛽𝛽-coefficients, standardized coefficients based on partial 

standard deviations are directly related to a variable’s unique contribution to the 

prediction of the response variable (Bring, 1994, p. 212). Thus 𝛽𝛽-coefficients based on 

partial standard deviation may be preferred over ordinary standardized coefficients, if 

relative importance is understood in this sense.  

Admittedly, the whole process of standardization (based on ordinary or partial 

standard deviation) at least partially moves the analysis away from the original data and 

the straightforward impacts of a one-unit change. To be more explicit, while the 

unstandardized coefficients still can be interpreted as elasticities, the standardized 

coefficients are defined by means of standard deviations of logarithmized data or in case 

stationarity is not given even by means of standard deviations of differences of 

logarithmized data. Nevertheless, they provide complementary information and should 

be presented and discussed next to unstandardized coefficients. 11 

 

2.4. Empirical analysis 

2.4.1. Method and data 

Following a common approach within STIRPAT literature, we assume that part of 

technology is disaggregated and can be (partly) captured by including time fixed-effects 

and structural control variables (e.g., York et al., 2003; Casey and Galor, 2017). This means 

that in equation (3) the term Ti,t for technology is replaced by Xi,t (i.e. a set of control 

variables). 12  

Including these control variables, the empirical analysis starts with the setup of the 

STIRPAT equation in logarithmic form (equation (2)) and the Hadri Lagrange Multiplier 

(LM) test for panel stationarity. As shown by table (2), the null hypothesis (H0: all panels 

are stationary) must be rejected at 0.01 significance level for all variables. Thus, the test 

results indicate non-stationarity in all cases. 

 
11 As most STIRPAT analyses focus on first-differences of the variables, the interpretation of the coefficients 
moves away from original data anyway. In particular elasticities no longer reflect long-run but rather short-
term relationships (Liddle, 2015). So, econometric refinements demand for a trade-off between the 
originality of data and statistical needs independent of the matter of standardization. 
12 Formally, it is assumed that technology is a multiplicative function of some structural variables (and a 
time trend): 

ln𝑇𝑇𝑖𝑖,𝑡𝑡  =  𝑓𝑓(𝑈𝑈𝑖𝑖,𝑡𝑡 ,𝑊𝑊𝑖𝑖,𝑡𝑡 ,𝜑𝜑𝑡𝑡), 

where Ui,t is the fraction of urban population, Wi,t is the fraction of working aged (15-64) and φt is the time 
fixed-effect. 
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In line with many STIRPAT literature, we therefore turn to the first-differences 

equation (see section 2.2.). This time findings of the Hadri LM test are inconclusive, so the 

Im-Pesaran-Shin (IPS) and Levin-Lin-Chu (LLC) test (both with the null hypothesis that 

panels are not stationary) are applied. It turns out that first-differences are indeed 

stationary (i.e. null hypothesis can be rejected at 0.01 significance level) for all variables 

(table (2)). 

Table 2: Panel Unit Root Tests 
 Hadri-LM-test 

Order of differences: 0 

H0: All panels are 
stationary 

 

IPS-test 

Order of differences: 1 

H0: Panels contain unit 
roots 

 

LLC-test 

Order of differences: 1 

H0: Panels contain unit 
roots 

 
 z-statistic W-t-bar-statistic Adjusted-t-statistic 
CO2-Emission 168.80*** -44.54*** -43.41*** 

Population 195.90*** -25.35*** -18.06*** 

GDP per capita 161.38*** -31.98*** -31.23*** 

Urban 125.36*** -3.34*** -5.45*** 

Working 185.13*** -2.45*** -3.08*** 

***p<0.01; LLC-test: Levin-Lin-Chu-test assumes common autoregressive (AR) parameters across panels, 
Akaike Information Criterion is minimized; IPS-test: Im-Pesaran-Shin-test assumes panel-specific AR 
parameters, Akaike Information Criterion is minimized; Hadri-LM-test: Hadri-Lagrange-Multiplier-test. 

Thus, the applied regression equation generally follows equation (3) and includes the set 

of structural variables and time-fixed effects (Xi,t). For the estimation of equation (11) a 

random effects regression model is used. 

 ∆ ln 𝐼𝐼𝑖𝑖,𝑡𝑡  = ∆ ln 𝑐𝑐𝑡𝑡  + 𝛼𝛼 ∙ ∆ ln𝑃𝑃𝑖𝑖,𝑡𝑡  + 𝛽𝛽 ∙ ∆ ln𝐴𝐴𝑖𝑖,𝑡𝑡  +  𝛾𝛾 ∙ ∆ ln  𝑋𝑋𝑖𝑖,𝑡𝑡 + ∆ ln  𝑒𝑒𝑖𝑖,𝑡𝑡. (11) 

In line with a large body of the STIRPAT literature, we use CO2 emissions as a measure of 

environmental impact. However, some highly-industrialized countries have successfully 

outsourced emission-intensive production branches but nevertheless show increasing 

trends in (imported) consumption-based emissions. Davis and Caldeira (2010), for 

example, find that in some highly developed countries more than 30 percent of 

consumption-based emissions are imported. The ecological footprint of consumption is 

applied as an alternative measure in order to catch this effect (see appendix, table (A.1.)). 
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Only few STIRPAT studies take care of this issue so far (e.g., Jia et al., 2009; Knight et al., 

2013). 

The main explanatory variables are population and GDP per capita. Further, two 

structural control variables are considered. First, the share of the working aged (15-64) 

population (% of total) controls for the assumption that this group consumes more energy 

compared to young and old people (e.g., Jorgenson et al., 2010; Casey and Galor, 2017). 

Second, the share of the urban population (% of total) accounts for the effects of 

urbanization and increasing population density (e.g., Jorgenson and Clark, 2009; Menz 

and Welsch, 2012). There is little doubt that urbanization has impacts on the environment 

but there is no consensus so far in which direction. On the one hand, urbanization could 

have negative effects due to a rising energy demand (e.g., Cole and Neumayer, 2004; York, 

2007; Liddle and Lung, 2010). On the other hand, urbanization might well increase energy 

efficiency (e.g., through mass public transportation or dense housing (e.g., Liddle, 2004)).  

Equation (11) is estimated by using cross-country panel data of 84 countries. The 

balanced yearly data are from 1980-2014. CO2 emissions are measured in kilotons and the 

data stem from Oak Ridge National Laboratory (Boden et al., 2015). The ecological 

footprint is measured in global hectares and the data refer to the Global Footprint 

Network National Footprint Accounts (Global Footprint Network, 2018). The main 

independent variables, GDP per capita (measured in millions US$ 2011) and population 

(measured in millions), are taken from the Penn World Tables version 9.0 (Feenstra et al., 

2015). The shares of the working aged (15-64) and the urban population (% of total) stem 

from the World Bank data base (The World Bank, 2018).  

Complementing the full model, we also show the results for a two-predictor equation 

including only GDP per capita and population growth.  

 

2.4.2. Results 

Table (3) presents the results based on estimating equation (11) with CO2 emissions 

as response variable. In order to provide as many information as possible and to allow for 

a better comparison with existing literature, columns (1) and (2) present the 

unstandardized coefficients for the two-predictor and the full model. Columns (3) and (4) 

show the respective standardized coefficients based on ordinary standard deviations. 

Finally, the standardized coefficients based on partial standard deviations are given by 

columns (5) and (6). 
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Looking at the unstandardized coefficients, the ecological elasticity with respect to 

population growth clearly exceeds the CO2 emissions elasticity with respect to GDP per 

capita. Results of the two-predictor model imply that CO2 emissions growth rises by 1.38 

percent (0.28) when population (GDP per capita) growth is increased by 1 percent 

(column (1)).13 This is qualitatively similar to the findings for the full model (column (2)) 

and in line with most empirical studies in this field.  

Table 3: The Effects of Standardization on CO2 Emissions 
 Unstandardized Standardized Standardized (Partial SD) 

Ln CO2 (1) 
 

(2) 
 

(3) 
 

(4) 
 

(5) 
 

(6) 
 

Ln 
Population 

1.38*** 
(0.22) 

1.37*** 
(0.23) 

0.11*** 
(0.02) 

0.11*** 
(0.02) 

0.06*** 
(0.01) 

0.06*** 
(0.01) 

Ln GDP p.c. 0.28** 
(0.12) 

0.28** 
(0.12) 

0.16** 
(0.07) 

0.16** 
(0.07) 

0.15** 
(0.06) 

0.15** 
(0.06) 

Ln Urban  0.10 
(0.23) 

  0.01 
(0.02) 

  0.01 
(0.02) 

Ln Working  1.88*** 
(0.49) 

 0.06*** 
(0.02) 

   0.05*** 
 (0.01) 

Constant - 0.05** 
(0.02) 

-0.06** 
(0.02) 

-0.32** 
(0.17) 

-0.32** 
(0.15) 

1.13*** 
(0.27) 

1.11*** 
(0.28) 

R2 (within) 0.045 0.047 0.045 0.047 0.045 0.047 
 R2 (between) 0.561 0.603 0.562 0.603 0.561 0.603 

R2 (overall) 0.058 0.061 0.058 0.061 0.058 0.061 
***p<0.01, **p<0.05, *p<0.1; Robust standard errors in parentheses; Year fixed-effects are included; 
Number of countries: 84; Number of observations: 2856; Partial SD: Partial Standard Deviation. 

With regard to ordinary standardization, 𝛽𝛽-coefficients of population are smaller 

compared to the standardized coefficients of GDP per capita for both models (columns 

(3)-(4)). If, for example, GDP per capita (population) growth is increased by one standard 

deviation CO2 emissions growth rises by 0.16 (0.11) standard deviations in the two-

predictor model (column (3)). As expected standardized coefficients based on partial 

standard deviations are slightly smaller, but overall results strengthen the findings of the 

ordinary standardization. Again, coefficients are higher for GDP per capita compared to 

population growth (columns (5)-(6)).14  

 
13 Usually, first-differences of logarithmized variables can be interpreted as growth rates. This holds 
especially for small changes (Wooldridge, 2015). 
14 In order to estimate the standardized coefficients based on partial standard deviations, the VIFs are 
calculated (see appendix, table A.2.). The low values (with a maximum of 3.11) indicate that 
multicollinearity is not a critical issue here. 
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With regard to the control variables, the share of the working population positively 

and significantly affects environmental impacts for all regressions. The coefficients of 

urbanization are positive but (just) not significant.  

Using ecological footprints instead of CO2 emissions as response variable reveals a 

very similar picture (see appendix, table (A.1.))   

 

2.4.3. Discussion of results  

Our findings regarding the classical ecological elasticities (unstandardized 

coefficients) show that when investigating the development of CO2 emissions or ecological 

footprints, which are of high relevance for a sustainable development, the impact of both 

main predictor variables (population and GDP per capita growth) is positive and 

significant. Furthermore, and in line with most empirical studies, elasticities for 

population growth are clearly higher compared to ecological elasticities related to 

economic growth. However, the question whether an input factor with high elasticity has 

indeed had large influence on an output factor cannot be finally answered. 

Even though standardized coefficients cannot be directly compared to unstandardized 

coefficients, they offer complementary information and may allow for drawing different 

conclusions. For our sample, impacts are still positive and significant for both main 

predictor variables. The higher 𝛽𝛽-coefficients for GDP per capita, however, indicate that 

economic development rather than population growth matters more for the development 

of CO2 emissions and ecological footprints. As this is true for the two-predictor and the full 

model economic growth can be considered to be of higher relative importance for this 

sample.  

Clearly, the main variables of interest, GDP per capita and population, are related to 

each other, thus CO2 emissions are likely to be driven partly by related trends. As 

mentioned already, standardized coefficients based on partial standard deviations can 

control for these joint effects and identify the predictor variables’ unique impact on the 

response variable. So not surprisingly, coefficients are smaller for both variables 

compared to the ordinary standardized coefficients. Nevertheless, the qualitatively 

similar results for standardized coefficients based on partial standard deviations 

demonstrate the general robustness of our results.  

Notably, we find very similar results for alternative measures of environmental 

impacts (e.g., ecological footprint), the inclusion of additional control variables (e.g., 
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trade), different groups of countries (e.g., relatively rich and poor countries) and for 

different time periods.  

Our approach is not without limitations. Aside from the more abstract interpretation 

of standardized parameters, applying first differences moves the analysis further away 

from original data and harbors the risk to neglect the variables’ long-term relationship. 

This is why some authors suggest to complement the unit root test by checking for the 

variables’ potential cointegration.  

If variables are not stationary but their first differences are, a test on cointegration 

might shed light on their mutual short- and long-run relationship. In case variables are 

not cointegrated, the long-term relationship is only weakly defined and the short-term 

relationship can be calculated by the estimation of the first differences equation. If, 

however, variables are cointegrated, the estimation of first differences would overlook a 

potential long-term relationship of the key variables and an error correction model should 

be applied to account for both, short- and long-run relationships (Engle and Granger, 

1987; Liddle, 2011). 

For this reason, we apply two cointegration tests (namely the Kao and the Pedroni 

test) in a last step. In contrast to the unit root tests, results are inconclusive (see Table 4). 

In the case of Kao test two out of three test statistics cannot reject the null hypothesis 

assuming no cointegration (i.e. Modified Dickey-Fuller and Augmented Dickey-Fuller). For 

the Pedroni test, this holds for one out of three test statistics (i.e. Modified Phillips-

Perron). 

Table 4: Results of the Kao- and Pedroni Cointegration tests    
Kao-test 

H0: No cointegration 

Pedroni-test 

H0: No cointegration 

CO2-Emission, Population, GDP per capita, Urban, Working (all variables logged) 

Modified Dickey-Fuller t 

Dickey-Fuller t  

Augmented Dickey-Fuller t 

 -0.88         (0.19) 

 -1.97**     (0.02)   

  0.90          (0.19) 

    Modified Phillips-Perron t 

Phillips-Perron t 

Augmented Dickey-Fuller t 

   0.40        (0.35) 

-15.97***  (0.00) 

-13.23***  (0.00) 

***p<0.01, p-value in parantheses; Kao-test assumes a constant cointegration vector; Pedroni-test assumes 
panel-specific AR parameters and includes specific time trends and uses panel specific means. 

In case of cointegration, which we cannot be sure about, equation (11) can be 

estimated by a pooled-mean-group estimator and augmented by an error correction 
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model. Results (given in the appendix) indicate that the CO2 emissions’ long-run elasticity 

for GDP per capita (0.32) is higher compared to the elasticity related to population (0.21) 

(table (A.3.), column (1)). The coefficient representing the speed of adjustment is negative 

(-0.38) and suggests that the variables exhibit a return to long-run equilibrium. The short-

run dynamics indicate a positive effect of GDP per capita on CO2 emissions (0.20). The 

short-run dynamic of population is not significant. We are not going further into this 

direction as this is not the intention of this paper. However, the aspect of cointegration 

between variables and the estimation of error correction models is an interesting field for 

future research.  

 

2.5. Concluding remarks and policy implications 

The presented paper offers a complementary perspective regarding STIRPAT analysis 

that is commonly used to calculate ecological elasticities with respect to population and 

GDP per capita. Following this approach, elasticities show the percentage increase of 

environmental outcome (e.g., CO2 emissions or ecological footprint) when the considered 

factor (e.g., population or GDP per capita) is increased by 1 percent.  

Most empirical findings suggest that the ecological elasticity with respect to 

population growth exceeds the elasticity with respect to growing GDP per capita. 

Therefore, some studies conclude that the conflict between economic growth and 

environmental pressure can be successfully resolved by prioritizing degrowth strategies 

with regard to population rather than the economy (e.g., Casey and Galor, 2017).  

In this paper we argue, that this conclusion should not be based on the calculation of 

unstandardized ecological elasticities only. Instead, if the interest lies in the relative 

importance of the independent variables to the prediction of the response variable, we 

suggest to complement the analysis by also considering standardized coefficients.  

Following this line of thought, we find strong support that – for the selected countries and 

over the chosen period of observation – the development of CO2 emissions and ecological 

footprints was more affected by economic development than by population growth. 

The seemingly conflicting result can be explained by the higher changeability of the 

economic development (in the past). Thus, while traditional ecological elasticities related 

to population might indeed be larger compared to elasticities related to GDP per capita – 

a result that can also be confirmed for our sample – it could be much more feasible to 

accomplish a 1 percent change of the economic drivers.  
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Admittedly, standardized variables are always sample-specific and should not be 

generalized. However, if similar findings could be found for other country samples and 

periods of observation, there is good reason to prioritize strategies that limit emissions 

coupled to economic growth over explicit population policies. 

Of course, the practical implementation of appropriate policies is context- and region-

specific and STIRPAT models, like any other model, cannot provide blueprints for 

policymakers. But in our view, they are helpful tools and give important insights regarding 

human impacts on the environment. This is particularly true for analysing impacts of 

population and economic dynamics on the environment, which both remain closely tied 

to growing demands of the environment (and STIRPAT models play a crucial role in 

communicating this point to politics). However, coefficients should be interpreted 

carefully depending on what aspect (e.g., general elasticities or a comprehensive relative 

assessment of variables) one is interested in. The suggested application of standardization 

processes is not without problems but it could provide a complementary tool to do so. 
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3. Reversed STIRPAT modelling: the role of CO2 emissions, population and 
technology for a growing affluence15 

 

3.1. Introduction 

In the past decade (2010-2020) global mean surface temperature has, on average, 

increased by approximately 1°C compared to pre-industrial levels. According to leading 

climate scientists this can be attributed to increasing anthropogenic greenhouse gas 

emissions mostly related to economic and population growth (e.g., IPCC 2014 and 2018). 

However, despite broad consensus that economic production has substantially altered 

the global environment, empirical findings on the causal relationship between economic 

growth and environmental impacts are (at least in some parts) inconclusive. While some 

authors identify a monocausal relationship running from economic growth to the 

production of anthropogenic greenhouse gases, others find strong evidence for a reversed 

causality running from environmental emissions to economic growth. Yet others observe 

bidirectional relationships or no causal link at all. In conclusion, the rich portfolio of 

empirical studies reveals no universal direction of causality, findings rather depend on 

the considered time periods and countries’ stage of development and sectoral structure 

(Costantini and Martini, 2010; Ozturk, 2010).  

Against this background the presented paper seeks to analyze the relationship 

between economic growth, demographic development and CO2 emissions for 30 

industrial countries in the well-known STIRPAT (STochastic Impacts by Regression on 

Population, Affluence and Technology) setting. However, in contrast to the general 

assumption of STIRPAT modelling, which proposes a one-way causality running from the 

anthropogenic factors to the environment, applied Granger-causality tests indicate a 

reversed causal relationship for the sample at hand. Thus, in contrast to existing 

applications of the STIRPAT model, this paper uses, to our best knowledge for the first 

time, the STIRPAT framework to estimate environmental impacts on economic growth. 

This means CO2 emissions can be, for industrial countries and the time period between 

1982 and 2014, considered a driver of economic growth rather than vice versa. Based on 

 
15 The contribution is based on joint work together with Axel Schaffer (Bundeswehr University Munich) and 
Tom Brökel (University of Stavanger Business School) and is published in Theory and Applications of Time 
Series Analysis and Forecasting (Lohwasser, J., Schaffer, A., & Brökel, T. (2023). Reversed STIRPAT 
modelling: the role of CO2 emissions, population and technology for a growing affluence. In: Valenzuela et 
al. (eds.): Theory and Applications of Time Series Analysis and Forecasting: Selected Contributions from 
ITISE 2021. Springer).  
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these results we suggest to complement the STIRPAT model family by a reversed version 

that explains stochastic impacts on affluence (rather than on the environment) by 

regression on population, technology and environmental impacts or inputs.  

The remainder of the paper is organized as follows. Section 3.2. discusses the general 

issue of causality and offers a new perspective on the IPAT and STIRPAT modelling. 

Section 3.3. continues with methodological remarks followed by the empirical application 

of the revised model for 30 advanced economies and the discussion of results in sections 

3.4. and 3.5. respectively. Finally, the paper closes with concluding remarks and some 

brief policy implications in section 3.6.. 

 

3.2. Perspectives of causality in the IPAT /STIRPAT model approach 

One way to analyze the relationship of anthropogenic factors and the environment is 

the so-called IPAT approach, which presumes that environmental impacts (I) are the 

multiplicative product of population (P), affluence (A) and technology (T) (Ehrlich and 

Holdren, 1971; Commoner et al., 1971): 

  

 𝐼𝐼 = 𝑃𝑃 ∙ 𝐴𝐴 ∙ 𝑇𝑇. (1) 

 

Notably the formula proposes a functional relation between anthropogenic factors and 

the environment but does not tell us much about the causality of this relationship (e.g., 

York et al., 2003). As a mathematical identity, the equation can be solved for any variable, 

e.g., for technology T, defined as environmental impact per unit output (e.g CO2 emissions 

per unit of GDP; Commoner, 1971; Ehrlich and Holdren, 1972; Raskin, 1996) or affluence 

A (2): 

 

 𝐴𝐴 = 𝑉𝑉
𝑃𝑃⋅𝑇𝑇

  (2) 

Accordingly, affluence (typically given as GDP per capita) rises with environmental 

impacts or inputs (operationalized by CO2 emissions) and technical progress T (if defined 

as decreasing fossil fuel consumption per unit of GDP).16 At the same time it decreases 

with an increasing population P. Or, the other way around, a shrinking population pushes 

GDP per capita. 

 
16 For a better traceability the environmental/energetic input is still denoted as I. 
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While clarity and simplicity certainly add to the popularity of the IPAT approach, the 

pure identity undermines hypothesis testing and causal interpretation (e.g., York et al., 

2003). This is why Dietz and Rosa (1994) suggest to transfer the IPAT equation into the 

so-called STIRPAT model that explains Stochastic Impacts on the environment by 

Regression on Population, Affluence and Technology and provides the framework for 

empirical analysis (3).  

 

 𝐼𝐼𝑖𝑖,𝑡𝑡  = 𝑐𝑐𝑡𝑡 ∙ 𝑃𝑃𝑖𝑖,𝑡𝑡𝛼𝛼  ∙ 𝐴𝐴𝑖𝑖,𝑡𝑡
𝛽𝛽  ∙  𝑇𝑇𝑖𝑖,𝑡𝑡

𝛾𝛾  ∙ 𝑒𝑒𝑖𝑖,𝑡𝑡, (3) 

where Ii,t is the environmental impact of country i at time t, Pi,t is population, Ai,t is 

affluence, Ti,t is technology, 𝑐𝑐𝑡𝑡 is the constant and ei,t is the residual error term. 

In order to address the skewness and non-stationarity of variables, STIRPAT models 

generally take logs and use first-differences (4) (e.g., Liddle, 2014; Casey and Galor, 2017): 

 

 ∆ ln 𝐼𝐼𝑖𝑖,𝑡𝑡  = ∆ ln 𝑐𝑐𝑡𝑡  + 𝛼𝛼 ∙ ∆ ln𝑃𝑃𝑖𝑖,𝑡𝑡  + 𝛽𝛽 ∙ ∆ ln𝐴𝐴𝑖𝑖,𝑡𝑡  + 𝛾𝛾 ∙ ∆ ln𝑇𝑇𝑖𝑖,𝑡𝑡 + ∆ ln 𝑒𝑒𝑖𝑖,𝑡𝑡. (4) 

where ∆ ln 𝐼𝐼𝑖𝑖,𝑡𝑡 is the change of log CO2 emissions in country i from time t−1 to t. ∆ ln𝑃𝑃𝑖𝑖,𝑡𝑡  

is the change of log population, ∆ ln𝐴𝐴𝑖𝑖,𝑡𝑡  is the change of GDP per capita, ∆ ln𝑇𝑇𝑖𝑖,𝑡𝑡  is the 

change of log technology, ∆ ln 𝑐𝑐𝑡𝑡 is the change of the log constant and ∆ ln 𝑒𝑒𝑖𝑖,𝑡𝑡  is the change 

of the log error term. 

In contrast to the simple IPAT identity, the very thought of setting up the main STIRPAT 

equation already implies the assumption of causality. Considering affluence, population 

and technology as key driving forces, contributing factors, predictive or explanatory 

variables that explain, determine or lead to environmental impacts further strengthens the 

underlying assumption of causality (Rosa and Dietz, 1998; York et al., 2003; Liddle, 2014; 

Casey and Galor, 2017; Singh and Mukherjee, 2019). After all, it is probably fair to say that 

the large majority of STIRPAT models assume a one-way causal impact through affluence 

(typically GDP per capita), population and technological progress (measured as 

environmental impact per output) on the environment (typically CO2 emissions).  

However, this monocausal perspective is not undisputable. First, many studies 

analysing the relationship between economic growth and the environment propose a 

bidirectional causality running from economic growth to the environment but also – e.g., 

through the provision of ecosystem services – from the environment to economic growth 

(e.g., Guo et al., 2010). This can easily be shown for CO2 emissions, which are frequently 
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used to illustrate and measure regulative services of the terrestrial ecosystem. Increasing 

carbon concentration, possibly exceeding the ecosystem’s regulative capacity, is not only 

the result of industrial production but might as well affect production factors and outputs 

and hamper economic growth (and affluence) in the long-run. In accordance with leading 

climate economists, impacts could be severe and equal up to 20 percent of GDP and more 

(Stern, 2007; Weitzman, 2007). Following this line of thought a bidirectional relationship 

between economic growth and the ecosystem services could be assumed in the long-run. 

Second, the estimates of CO2 emissions, probably the most common indicator for 

measuring environmental impacts within the STIRPAT analysis, generally derive from 

(fossil) energy consumption. This means they are not only a proxy for environmental 

impacts but equally reflect the use of (cheap) fossil fuels, which, until now, clearly 

dominates global energy use. Per se, this says nothing about the causal relation between 

economic growth and CO2 emissions, but it draws the attention to the broad literature on 

the relationship between the energy and the economic sphere.  

Empirical findings in this field reveal a strong and positive relationship between 

economic growth and energy consumption. However, the question of causality cannot be 

answered unequivocally. Following the “conservation hypothesis”, mainstream 

economics literature seem to focus on how a growing economy affects energy 

consumption rather than the other way around.17 Significant results indicating a causality 

in this direction can particularly be found for developing countries (Toman and 

Jemelkova, 2003; Wolde-Rufael, 2005 and 2006, Akinloo, 2008), but in some settings also 

for advanced industries (Kraft and Kraft, 1978; Yu and Choi, 1985; Soytas and Sari, 2003; 

Narayan and Smyth, 2005; Bowden and Payne, 2008).  

In comparison with this and deeply rooted in Georgescu-Roegen’s (e.g., 1971 or 1984) 

work on the physical basis of economic production, biophysical economists argue that 

any production process relies on material and energy inputs (flows), which are 

transformed by use of human labor, physical capital and Ricardian land (funds) into 

production outputs. Thus, the availableness of (cheap) energy can be considered a key 

prerequisite for economic growth and the constitution of the “age of affluence” (Hall and 

 
17 The “conservation hypothesis” (or “conservative hypothesis”) assumes that economic growth affects the 
production of emissions but that energy policies have no or negligible impact on growth (in the long-run). 
This is in contrast to the “growth hypothesis”, according to which (cheap) access to energy constitutes a key 
driver of economic growth. Finally, some authors argue in favor of a bidirectional causality (“feedback 
hypothesis”) or presume no causal relationship at all (“neutrality hypothesis”) (e.g. Behmiri and Manso, 
2012).  
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Klitgaard, 2018, p. 155; Georgescu-Roegen, 1971 and 1984; Stern and Cleveland, 2004).  

This so-called “growth hypothesis” played a minor role in economics for a long time, 

but gained in importance when some economists could convincingly explain the 

economic recession in the aftermath of the major oil crises by the declining availableness 

of cheap fossil fuels (e.g., Cleveland et al., 1984). Since then many empirical studies in this 

field confirm the idea that energy use drives economic growth. Notably, the causal 

relation running from energy use to economic growth seems to be of particular relevance 

for advanced industries (e.g., Stern, 1993 and 2000; Toda and Yamamoto, 1995; Coondoo 

and Dinda, 2002; Lee and Chang, 2007; Apergis and Payne, 2010; Lee et al., 2008).  

 

3.3. Methodological remarks 

Overall, both ways of causality are plausible and there is good reason to assume a 

bidirectional relationship over a longer-term perspective, as the economy is passing 

through different stages of development. We therefore propose to check for the direction 

of causality before setting up the final (STIRPAT) model. One way to do so, is the 

application of the Granger-causality test, which provides valuable insights about the 

forecasting quality of one variable on another by the help of its past values. For example, 

a vector autoregression (VAR) model with two variables y and x allows to test whether, 

after controlling for past values of y, past values of x help to forecast y (Wooldridge, 2015). 

Formally, x Granger-causes y if  

                          𝐸𝐸(𝑦𝑦𝑡𝑡|𝐼𝐼𝑡𝑡−1) ≠ 𝐸𝐸(𝑦𝑦𝑡𝑡|𝐽𝐽𝑡𝑡−1),                      (5) 

where 𝐼𝐼𝑡𝑡−1 contains past information on y and x, and 𝐽𝐽𝑡𝑡−1 contains only information on 

past y. Thus, Granger-causality does not mean causality per se and does not imply a 

contemporaneous causality between variables but rather a variable’s feasibility of 

predicting the other variable according to its past development. 

In order to test for Granger-causality most empirical studies either apply time series 

and cointegration analysis (Stern, 2000; Coondoo and Dinda, 2002; Oh and Lee, 2004; Lee 

and Chang, 2007) or use VAR models (Hamilton, 1983; Burbridge and Harrison, 1984; 

Stern, 1993). For the paper at hand we follow the VAR approach and estimate a panel 

vector autoregression (PVAR) model by the cross-sectional series of variables. The 

general PVAR structure is given by: 

 𝑦𝑦𝑖𝑖,𝑡𝑡  = 𝑐𝑐𝑖𝑖 + 𝐴𝐴𝑦𝑦𝑖𝑖,𝑡𝑡−1 + 𝑒𝑒𝑖𝑖,𝑡𝑡, (6) 
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where yi,t  = (Ii,t , Yi,t )´. Ii,t  is CO2 emissions (or population or energy intensity) and Yi,t is 

GDP per capita of country i at time t. ct is a country-specific intercept term, A is the 

coefficient matrix and ei,t is the residual term. In a next step equation (6) is transformed 

by taking logs and applying first-differences (7): 

 

 Δln 𝑦𝑦𝑖𝑖,𝑡𝑡  = 𝐴𝐴 ∙ Δln 𝑦𝑦𝑖𝑖,𝑡𝑡−1 + Δln 𝑒𝑒𝑖𝑖,𝑡𝑡. (7) 

Equation (7) is estimated by the generalized method of moments (GMM) while 

applying lagged values as instruments. The PVARs include first-order lags according to 

the Moment Model Selection Criterion (MMSC) and Akaike Information Criterion (AIC). 

In case the empirical analysis reveals, for the considered period of time, a monocausal 

relationship running from anthropogenic factors to the environment, the conventional 

STIRPAT model (equation (4)) should be applied. If however, findings indicate a reverse 

causality for the relationship between GDP per capita and CO2 emissions we suggest to 

add a new perspective to the STIRPAT approach. By analogy with the transformation from 

IPAT to STIRPAT (Dietz and Rosa, 1997), we setup a stochastic model based on equation 

(2) that explains stochastic impacts on economic growth (affluence) by regression on 

population, carbon emissions (as a proxy for energy use or ecosystem services) and 

technology: 

  

 𝐴𝐴𝑖𝑖,𝑡𝑡  = 𝑐𝑐𝑡𝑡 ∙ 𝑃𝑃𝑖𝑖,𝑡𝑡𝛼𝛼  ∙ 𝐼𝐼𝑖𝑖,𝑡𝑡
𝛽𝛽  ∙  𝑇𝑇𝑖𝑖,𝑡𝑡

𝛾𝛾  ∙ 𝑒𝑒𝑖𝑖,𝑡𝑡, (8) 

where Ai,t is affluence of country i at time t, Pi,t is population, Ii,t is environmental input 

(e.g., energy use, availability of energy or ecosystem service measured by CO2 emissions), 

Ti,t is technology and ei,t is the residual error term.18 

After taking logs and applying first-differences equation (8) yields: 

 ∆ ln𝐴𝐴𝑖𝑖,𝑡𝑡  = ∆ ln 𝑐𝑐𝑡𝑡  + 𝛼𝛼 ∙ ∆ ln𝑃𝑃𝑖𝑖,𝑡𝑡  + 𝛽𝛽 ∙ ∆ ln 𝐼𝐼𝑖𝑖,𝑡𝑡  + 𝛾𝛾 ∙ ∆ ln𝑇𝑇𝑖𝑖,𝑡𝑡 + ∆ ln 𝑒𝑒𝑖𝑖,𝑡𝑡. (9) 

where ∆ ln𝐴𝐴𝑖𝑖,𝑡𝑡 is the change of log GDP per capita in country i from time t−1 to t. ∆ ln𝑃𝑃𝑖𝑖,𝑡𝑡  

is the change of log population, ∆ ln 𝐼𝐼𝑖𝑖,𝑡𝑡  is the change of CO2 emissions, ∆ ln𝑇𝑇𝑖𝑖,𝑡𝑡  is the change 

of log technology, ∆ ln 𝑐𝑐𝑡𝑡 is the change of the log constant and ∆ ln 𝑒𝑒𝑖𝑖,𝑡𝑡  is the change of the 

log error term.  

 
18 In contrast to equation (2), P and T are not expressed inversely. This does not affect the estimation results. 
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3.4. Empirical application 

3.4.1. Granger-causality, non-stationarity and cointegration 

For the empirical part, a balanced yearly cross-country panel dataset of 30 advanced 

countries from 1982-2014 is used. The classification of advanced economies is according 

to the IMF (2016).19 CO2 emissions are measured in kilotons and the data stem from Oak 

Ridge National Laboratory (Boden et al., 2015). The variables GDP (in millions US$ 2011), 

population (in millions) and technology (defined as the energy intensity level of primary 

energy (in MJ per US$ 2011)), are taken from the Penn World Tables version 9.0 (Feenstra 

et al., 2015) and the World Bank data base (The World Bank, 2018), respectively.  

Following equations (5)-(7), the Granger-causality between CO2 emissions 

(environment) and GDP per capita (affluence), is estimated and tested in the first step (see 

appendix, tables (A.5.) – (A.7.)  for the underlying PVAR estimations). Findings for the 

logarithmized and first-differenced variables confirm the “growth hypothesis” (with a 

causality running from CO2 emissions to GDP per capita) but not the “conservation 

hypothesis” (implying a causal relationship running the other way around). Equally 

population Granger-causes GDP per capita but not vice versa. With regard to technology, 

however, Granger-causality only runs from GDP per capita to energy intensity (table (1)).  

 
Table 1: Granger-causality Wald test (Chi2-statistic) based on PVARs (equation (7)) 

GDP per capita 
 CO2-

emissions 

CO2 emissions 
 GDP per 

capita 

GDP per capita 
 population 

population 
 GDP per 

capita 

GDP per capita 
 Energy 
Intensity 

Energy Intensity  
 GDP per capita 

1.20 19.30*** 0.01 8.82*** 9.67*** 1.67 

***p<0.01.; H0: Variable does not Granger-cause the other variables. 
 

In general, the findings of the Granger-causality test support the idea to consider 

environmental impacts or inputs a main driving factor for affluence in industrially mature 

economies rather than vice versa (equation (8)). As the Hadri Lagrange Multiplier (LM) 

test, the Im-Pesaran-Shin (IPS) test and the Levin-Lin-Chu (LLC) test suggest that niveau 

parameters (order of differences: 0) are not stationary but first-differences variables are 

(see appendix, table (A.8.) for test results), we setup the modified STIRPAT model 

according equation (9).   

 
19 Though the IMF classifies 39 countries as advanced economies, full panel data are only available for 30 
economies. A complete list with all considered economies is given in the appendix (table (A.4.)). 
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In addition, the variables are tested for panel cointegration. Cointegration can be 

interpreted as evidence of a long-run equilibrium relationship between variables (e.g., 

Liddle, 2011). In case of cointegration, the evaluation of short-run dynamics between 

variables by using a first-differences regression can be complemented by the evaluation 

of long-run dynamics by using error correction models. In order to check for 

cointegration, the Kao and the Pedroni tests are applied. Most (four out of six and five out 

of six) test statistics reject the null hypothesis assuming no cointegration (i.e. Modified 

Dickey-Fuller, Dickey-Fuller and Augmented Dickey-Fuller; see appendix, tables (A.9.1.) 

and (A.9.2.) for test results). Thus, there is evidence for a long-run cointegrating 

relationship among economic impacts, carbon emissions, population and 

structural/energy variables (see next section). 

Consequently both, short-run and long-run impacts on economic growth are estimated. 

In order to evaluate the short-run dynamics, a standard random-effects (RE) estimator is 

used (estimation of equation (9)). In order to evaluate long-run dynamics, the fully 

modified ordinary least squares (FMOLS) estimator is applied.20  

 
 

3.4.2. Reversed STIRPAT 

Coefficients are estimated for three slightly different model variations (table (2)). In the 

first basic setup affluence (GDP per capita) is explained by CO2 emissions, population, and 

energy intensity (table (2), column (1)). Not surprisingly, and in line with the results of 

the Granger-causality tests, CO2 emissions positively and significantly affect GDP per 

capita. In fact, GDP per capita growth rises by 0.3 percent when CO2 emissions growth 

rises by 1 percent. In contrast, impacts of population growth has a negative impact on 

affluence (GDP per capita growth declines by about 0.6 percent when population growth 

rises by 1 percent).  Further, an increase in energy intensity has a negative and significant 

effect on GDP per capita. This means that an improvement of energy intensity (i.e. a 

decrease of energy intensity measured in MJ per $) positively relates to GDP per capita. 

Thus, in line with neoclassical growth theory, technological progress can be considered a 

key driver of affluence for the considered sample (Carlaw et al., 2003).21  

 
20 In addition to FMOLS, dynamics ordinary least squares (DOLS) and canonical cointegration regression 
(CCR) estimators are applied. Results confirm the findings of FOMLS qualitatively (not shown). Further, the 
pooled mean group estimator is used. This approach allows for estimation of short- and long-run 
dimensions within one error correction model. Results confirm the validation of RE OLS first-differenced 
results (see appendix, table (A.11.)). 
21 Generally, the STIRPAT studies treat technology differently. This paper uses energy intensity in order to 
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The results are confirmed for a long-run perspective except for energy intensity (the 

coefficient for energy intensity has the same sign but is hardly significant; see appendix, 

table (A.10.), column (1)).  

In the second model setup, the basic model is augmented by structural variables. In 

accordance with most STIRPAT models, we control for the share of urban population (% 

of total population; The World Bank, 2018) and thus for the effects of an increasing 

urbanization on economic growth. It can be assumed to have a positive impact on 

affluence due to agglomeration effects (Turok and McGranahan, 2013). Furthermore, the 

impacts of globalization (Globalization Index; Gygli et al., 2019) on economic growth are 

investigated.22 At least in the long-run globalization is assumed to have positive effects on 

economic growth due to various scale and spill-over effects (Chang and Lee, 2010). Finally, 

we test for possible effects of life expectancy (at birth in years; The World Bank, 2018) on 

economic growth. Life expectancy is assumed to play a crucial role regarding the quality-

quantity trade-off. Educational attainment rises if life expectancy increases. This process 

affects economic growth (e.g., Cervellati and Sunde, 2011).23 

With regard to the size and sign of the coefficients, impacts of the key variables (CO2 

emissions, population and technology) remain almost unchanged compared to the basic 

model (table (2), column (2)). Further, results show that globalization has a negative 

impact on affluence in the short run. In contrast, life expectancy positively and 

significantly drives GDP per capita.  At the same time, we find no significant impact of 

urbanization. Notably the long-run coefficients confirm the qualitative impacts of 

variables except for globalization, which has a positive effect on GDP per capita (see 

appendix, table (A.10.), column (2).  

Assuming that CO2 emissions reflect the utilization of terrestrial regulation services 

and fossil energy inputs, affluence might further be affected by the use of other (less 

carbon intensive) energy sources. For this reason, the third model setup additionally 

accounts for the share of renewable energy consumption (% of total; The World Bank, 

2018) and electricity production from nuclear sources (% of total; The World Bank, 2018). 

The findings on short-run impacts suggest that the use of (comparatively cheap) nuclear 

 
stay close to existing STIRPAT literature (Vivanco and Hernández, 2019). Often, technology is approximated 
and assumed to be partly captured of the error term.  
22 The Globalization Index contains an economic, social and political dimension and is taken from Gygli et 
al. (2019). 
23 Granger-causality test implies a unidirectional causality from life expectancy to GDP per capita in our 
sample (not shown). 
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energy positively and significantly relates to affluence (table (2), column (3)). With regard 

to renewable energy, no significant impacts can be observed in the short-run.  

Results are confirmed for most variables in the long-run. Interestingly, globalization 

and renewable energy consumption turn significantly positive (see appendix, table 

(A.10.)). Generally, results are hardly affected qualitatively, if niveau parameters and size 

effects are taken into consideration (short- versus long-run model). 
 

Table 2: Determinants of GDP per capita (RE Model) 

Ln GDP p.c. (1) 
 

(2) 
 

(3) 
 

Ln CO2 0.30*** 
(0.05) 

0.28*** 
(0.06) 

0.26*** 
(0.04) 

Ln Population -0.56*** 
(0.13) 

-0.65*** 
(0.12) 

-0.73* 
(0.42) 

Ln Energy Intensity -0.43*** 
(0.08) 

-0.40*** 
(0.08) 

-0.39*** 
(0.07) 

Ln Urban  0.05 
(0.44) 

-0.33 
(0.44) 

Ln Globalization  -0.18* 
(0.10) 

-0.11 
(0.09) 

Ln Expectancy  0.55*** 
(0.21) 

0.60 
(0.77) 

Ln Nuclear   0.04*** 
(0.01) 

Ln Renewable   -0.01 
(0.01) 

Constant 0.01* 
(0.01) 

0.02** 
(0.01) 

0.01 
(0.01) 

R2 (within) 0.42 0.42 0.56 
R2 (between) 0.58 0.63 0.19 
R2 (overall) 0.43 0.43 0.54 

observations 685 685 336 
countries 30 30 15 

***p<0.01, **p<0.05, *p<0.1; Robust standard errors clustered at country level in  
parentheses; Year fixed-effects are included; All variables first-differenced. 
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3.5. Discussion of results 

The results indicate that GDP per capita growth rates are significantly driven by the 

development of CO2 emissions, population and energy intensity. Coefficients remain 

rather robust with or without integrating structural and energy variables and for the 

short- and long-run perspective.  

In conclusion, the empirical results confirm the “growth hypothesis”, which considers 

(cheap) energy inputs a key driver of affluence. The positive impact of (comparatively 

cheap) nuclear energy further supports this hypothesis. In contrast, increasing shares of 

renewable energy have, in the short-run, no particular effect on welfare. However, results 

show that renewable energy consumption drives affluence in the long-run.24 Reasons are, 

for example, a slow accompanying infrastructure or market accessibility needed for 

renewable energy sources.  

Similar to conventional STIRPAT results, the findings should not be interpreted in a 

general way but with respect to the underlying country group (Singh and Mukherjee, 

2019). This means, the results of this paper particularly hold for advanced economies but 

not necessarily for other countries. However, it is the governments of the advanced 

economies that have a particular responsibility to decarbonize their economies and to 

implement the intended energy turnaround towards renewable energy. This will not 

necessarily boost the welfare, but as long as prices are reasonably low, switching to 

renewables will not hamper the economic development either – renewables are more or 

less growth neutral in the short-run. 

Further, findings indicate that population growth has a negative impact on economic 

growth. This is in line with unified growth theory, according to which positive impacts of 

a shrinking population on the economy are still visible for advanced industries, even long 

time after the demographic transition (i.e. process from high to low mortality and fertility 

rates) has taken place (Reher, 2004). Admittedly the findings are less conclusive on the 

role of technology. On the one hand, there is clear evidence that technical progress (in the 

form of decreasing energy intensity) relates significantly and positively to GDP per capita. 

On the other hand, causality analysis indicates that GDP per capita Granger-causes energy 

intensity rather than vice versa. 

Increases in the share of urban population cannot be identified as a significant factor. 

 
24 Other studies confirm this long-run relationship between renewable energy and economic growth (e.g. 
Apergis and Danuletiu (2014)). 
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Again, this does not mean that the degree of urbanization is irrelevant for affluence. 

Rather advanced countries show generally very high levels of urbanization for the whole 

period of observation, so further increases might be less important in this case or even 

hamper economic growth (Nguyen, 2018).  

In contrast, there is evidence that globalization affects economic growth negatively in 

the short-run and positively in the long-run. The various channels of globalization take 

time to gain momentum regarding clear positive effects on economic growth. For 

example, an increasing knowledge acquiration due to globalization cannot immediately 

translate into research improvements and thus economic growth (Grossman and 

Helpman, 2015). 

Finally, life expectancy significantly and positively affects affluence in the short- and 

long-run. Exisiting literature points out that life expectancy increases economic growth 

due to effects on the age structure or improvements on educational attainment and labour 

productivity (Cervellati and Sunde, 2011). 

 

3.6 Concluding remarks 

The STIRPAT approach is commonly used to estimate anthropogenic impacts (growing 

affluence, increasing population and technological change) on the environment. Today, 

much of the debate in a continuously developing STIRPAT literature is on the choice of the 

control variables and the relative contribution of an increasing population, economic 

growth and technological change to the production of greenhouse gases and other 

environmental impacts. We largely stay clear of this discussion. Instead, our main interest 

lies in the causal relationship of the key variables.  

Rather the presented paper proposes an alternative extension of the IPAT identity for 

empirical analysis. Similar to the STIRPAT studies a directional relationship between 

variables is presumed. However, in contrast to STIRPAT literature and based on a 

Granger-causality test it seems plausible, at least for advanced economies, to activate the 

IPAT identity towards affluence and to estimate stochastic impacts on economic growth 

(affluence) by regression on population, carbon emissions (as a proxy for energy use or 

alternatively ecosystem services) and technology. The significant and robust regression 

results (short- and long-run estimations) with respect to the main variables (CO2 

emissions, population and energy intensity) in all model variants demonstrate the 

reasonableness of applying this setup in addition and complementary to the traditional 



48 
 

STIRPAT model.  

In addition, the findings confirm the ongoing high dependence of advanced economies 

on the availableness and consumption of cheap energy. Breaking the fossil path 

dependency and decarbonizing the economy, which in light of climate change is without 

alternatives, could in case of rising energy prices be accompanied with comparatively 

small growth rates of affluence (if measured as GDP per capita) in advanced economies in 

the near future. Policies should enhance the use of renewable energy and further support 

the substitution of non-renewable with renewable energy sources. So, a framework could 

be created that is able to foster economic growth during the energy transition. 

Without doubt, IPAT and particularly STIRPAT modelling has evolved to a powerful 

tool for illustrating and estimating anthropogenic impacts on the environment. However, 

this approach could be extended and also used to identify the relevance of environmental 

inputs on affluence. Following this line of thought further research might analyze other 

country groups (e.g., emerging economies) or earlier stages of development of 

industrialized countries. Furthermore, it might be interesting to use other, arguably more 

inclusive measures of environmental impacts, such as ecological footprints or ecosystem 

services, rather than fossil energy inputs.   
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4. The varying roles of the dimensions of affluence in air pollution: a regional 
STIRPAT analysis for Germany25 

 

4.1. Introduction 

Despite recent improvements in air quality, about 90 percent of the European Union’s 

(EU) urban population are exposed to concentration levels above the World Health 

Organization’s (WHO) latest annual guidelines for fine particulate matter (PM2.5), ozone 

(O3) and nitrogen dioxide (NOx) (European Environment Agency, 2022). Therefore, air 

pollution is still a considerable threat to ecosystems and human health in the EU. In 

response, EU clean air policy set ambitious reduction commitments for main air 

pollutants that member states are required to integrate in their national environmental 

policies.  

 
Figure 1: Sources of NOx emissions in Germany (1990-2020, in thousand tons) 

 
Source: Based on Umweltbundesamt (2022) 

As one of the EU’s main nitrogen oxide polluters, Germany is committed to reducing 

NOx emissions by 65 percent by 2030 compared to 2005 (Umweltbundesamt, 2019).26 

Therefore, German law- and policy-makers are interested in learning more about the 

 
25 The contribution is based on joint work together with Axel Schaffer (Bundeswehr University Munich) and 
is accepted for publication in Environmental Science and Pollution Research (Lohwasser, J. and Schaffer, A. 
(2022). The varying roles of the dimensions of affluence in air pollution: a regional STIRPAT analysis for 
Germany. Environmental Science and Pollution Research). 
26 In fact, Germany’s average concentration of NOx is among the highest in the EU, and almost all registered 
values are above the WHO guideline. 
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main sources of NOx emissions at the sectoral level and about its socioeconomic drivers 

at the macro level. These emissions’ sources are mainly the transportation, energy use, 

private households, and manufacturing sectors (figure (1)). 

As for NOx emissions' socioeconomic drivers at the macro level, the relationships of 

economic activities and population with environmental impacts (e.g., greenhouse gases, 

air pollution) are often analyzed using the environmental Kuznets curve (EKC) to measure 

the non-linear impact of the economy or population on the environment, or the STIRPAT 

model to measure the stochastic impacts on the environment by regressing population, 

affluence and technology. More recently, some studies also incorporate the EKC effect into 

STIRPAT modelling by adding non-linear effects of gross domestic product (GDP) or 

population size into the STIRPAT equation (e.g., Cole and Neumayer, 2004; Ge et al., 2018; 

Arshed et al., 2021). 

Most empirical findings generally confirm the now well-established positive impact of 

population and affluence on the environment in the STIRPAT framework (e.g., Liddle and 

Lung, 2010; Andrés and Padilla, 2017). However, a close look at the large variety of 

empirical studies reveals that it is not the population as a whole that increases 

environmental pressures but certain groups in the population. Therefore, many authors 

differentiate population by region (global north vs. global south), by economic status (rich 

vs. poor; economically active vs. inactive), by settlement structure and density (urban vs. 

regional), by age group (young, middle, old), or educational achievement.  

In contrast, affluence is almost exclusively defined as GDP per capita, which neglects 

the possibility that increasing prosperity affect the environment in different—even 

opposing—ways. Notable exceptions to this oversight include studies that disaggregate 

GDP by sector (Arshed et al., 2021; Wang et al., 2021), account for infrastructure capital 

per capita (Li et al., 2017), or expand the model using household size (Yousaf et al., 2021) 

or elements of consumer behavior, such as consumption of material goods (Kylbourne 

and Thyroff, 2020).  

Against this background, the present study analyzes affluence in a differentiated way. 

This approach is in line with recent empirical findings on poverty and wealth (e.g., Peichl 

and Pestel, 2013; Törmälehto, 2017), which suggest that more differentiated measures 

than GDP per capita are needed to capture all aspects of affluence (e.g., living conditions, 

social exclusion and mobility) and takes into account that STIRPAT analysis originally 
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differentiated affluence between national income and consumption patterns (Dietz and 

Rosa, 1994). 

In taking this approach, we seek to identify the impacts on local air pollution (measured 

by NOx emissions) of regional population and three aspects of affluence in German 

districts and autonomous cities between 1990 and 2020. We decompose affluence into 

(taxable) income per taxpayer, private car ownership, and the share of single-family 

houses per capita. 

While our results confirm the long established positive relationship between NOx 

emissions and population, the role of affluence is less conclusive. While the level of car 

ownership and the share of single-family houses per capita both have strong positive 

impacts on emissions, taxable income per taxpayer reveals a negative relationship 

between local NOx emissions and taxable income per taxpayer (when we control for car 

ownership and the share of single-family houses per capita).  

The remainder of the paper is organized as follows. Section 4.2. provides an overview 

of related literature, focusing on empirical findings and the treatment of affluence. Section 

4.3. describes the decomposition of affluence we used. Section 4.4. introduces the 

STIRPAT model and describes the data and the empirical application of the model. Section 

4.5. follows with a discussion of the results, and section 4.6. closes with concluding 

remarks and the study’s policy implications. 

 

4.2. Literature review 

An extensive body of STIRPAT studies examine anthropogenic impacts on the 

environment. With regard to climate change, probably the most frequently studied issue 

in the STIRPAT environment, most studies confirm the role of a growing population and 

increasing affluence on CO2 emissions (e.g., Kenworthy and Laube, 1999; Lankao et al., 

2009; Karathodorou et al., 2010; Liddle and Lung, 2010; Travisi et al., 2010; Xu and Lin, 

2016; Ge at al., 2018; Lv et al., 2019; Amin and as well as Scholl et al., 1996 for OECD 

countries; Timilsina and Shrestha, 2009 for Asian countries; Andrés and Padilla, 2017 for 

the EU; and Dogan, 2021 for regional studies).27  

 
27 While cross-country comparisons typically control for trade and economic structure or complexity, 

regional and city-based studies generally account for population (or urban) density and transport-related 
issues. 
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Compared to the rich portfolio of empirical studies related to greenhouse gases, the 

number of studies that analyze (local) air pollution is small, particularly for NOx 

emissions, which are in the focus of the present study. However, Yang et al. (2020) analyze 

the potential impacts on NOx emissions of 30 Chinese provinces and highlight the role of 

income and energy supply, which they suggest makes increasing denitrification tariffs a 

promising tool for reducing NOx emissions. Applying a spatial regression technique for 

Chinese provinces, Diao et al. (2018) confirm the significant and positive impacts of 

income (GDP per capita) on NOx emissions for the period from 2006 to 2015. While they 

also identify significant impacts from population size, energy efficiency and the industrial 

structure, their results indicate no significant impact from the number of private vehicles. 

This finding is in contrast to Montero et al. (2021), who analyze the drivers of NOx 

emissions in communities in the Madrid area from 2000-2009 and find clear impacts of 

the number of vehicles. Their findings also point to spatial effects and a strong impact of 

affluence on NOx emissions.  

Most STIRPAT studies confirm the roles of a growing population and increasing 

affluence, typically measured by the number of inhabitants and GDP per capita, 

respectively, on the environment. The advantage of these measures lies in their simplicity, 

as well as availability of good data, which allows conclusive comparisons and policy 

implications at the macro level. For example, many empirical studies find that population 

has clearly higher ecological elasticity than economic growth, which some authors take as 

a reason to argue in favor of a slowed economy and reduced population growth (e.g., 

Casey and Galor, 2017). Even though some authors are critical of the feasibility and 

effectiveness of population policies, the broad consensus is that population growth must 

be considered as having significant environmental impacts.  

At the same time, causal relationships between population and environmental impacts 

are not as simple as they appear. For example, empirical findings at the regional and city 

level suggest that population’s environmental impacts do not necessarily relate to the 

number of residents so much as the age structure, household size, number of households, 

and education level (Cramer, 1998; Liddle and Lung, 2010; Liddle, 2011; Zagheni, 2011; 

York and Rosa, 2012) because consumption patterns vary substantially for different age 

cohorts, stages of life, and education levels (Liddle, 2013b). Some studies also pay 

attention to the EKC relationship between population and environmental outcomes and 

include a quadratic term of population. Although these studies’ results are so far 
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inconclusive, Cole and Neumayer (2004) demonstrate that, in the case of SO2 emissions, a 

quadratic effect can be observed in some situations. This result suggests that the 

population-emissions elasticity is negative for small population sizes but rises rapidly as 

population increases. 

In contrast to a differentiated understanding of population, most STIRPAT applications 

treat affluence as one-dimensional. Although several authors emphasize the limitations 

of GDP per capita as a measure of affluence (e.g., Kashima and Kashima, 2003; Majewska 

and Gierałtowska, 2022) and underscore the importance of differentiating the role of 

affluence more fully, particularly by accounting for consumption and production effects 

(Ehrlich and Holdren, 1971; Dietz and Rosa, 1994, 1997; Waggoner and Ausubel, 2002; 

York et al., 2003), empirical applications to date tend to stick to the easily available 

measure of GDP per capita.  

Notable exceptions differentiate between GDP and public infrastructure per capita (Li 

et al., 2017), account for electric power consumption and sectoral value added (Montero 

et al., 2021), or use sectorally disaggregated GDP (Arshed et al., 2021; Wang et al., 2021). 

Some studies address the EKC relationship and include quadratic forms of (sectorally 

disaggregated) GDP per capita (e.g., Dietz and Rosa, 1997; York et al., 2003; Arshed et al., 

2021; Wang et al., 2021), while others expand the STIRPAT approach to the marketing 

industry and include elements of consumer behavior, such as consumer spending and 

consumption of material goods (Kilbourne and Thyroff, 2020). However, the focus there 

is on the theoretical expansion of STIRPAT to the marketing industry and not on empirical 

application, as only a cross-country regression for one year is applied. Studies outside the 

STIRPAT literature that examine the environmental impacts of affluence also point to the 

role of housing conditions, mobility patterns, socioeconomic status, and income 

distribution (e.g., Dunlap and Mertig, 1995, Myers and Kent, 2003; Ransome, 2005; Boyce 

et al., 2006; Peichel and Pestel, 2013; Weinzettel et al., 2013; Hobza et al., 2017; 

Törmälehto, 2017; Majewska and Gierałtowska, 2022). 

 

4.3. Decomposition of affluence 

In an attempt to provide a differentiated view of affluence’s impacts on the environment, 

we decompose affluence into three parts: taxable income per taxpayer (instead of the 

more common GDP per capita), car ownership (private passenger cars per capita) and the 

number of single-family houses per capita. 
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Because of rising profit shares in most OECD countries, in recent years, real GDP 

generally increased at a much faster pace than real household income did. However, the 

related literature indicates that household income, rather than GDP, is the basis of 

material wealth for most people and determines consumption patterns (Alda et al., 2004; 

Ribarsky et al., 2016). Therefore, we use taxable income per taxpayer instead of GDP per 

capita as a first measure of affluence.28 

Second, affluence can also be measured by the level of personal car ownership in a 

region. This is because of the related cost of acquisition and maintenance (Galobardes et 

al., 2006; Lansley, 2016). Even though some recent findings of increasing rates of 

ownership among the poor and a carless but affluent young generation in metropolitan 

areas indicate a decoupling of car ownership and social standing, car ownership still 

relates strongly to regional income levels in developing nations (e.g., Li et al., 2010 (for 

Chinese regions); Huang et al., 2012 (for Chinese cities)), as well as highly industrialized 

nations (e.g., Yeboah et al., 2007 (for England and Wales)).  

Finally, the number of single-family houses per capita reflects not only a region’s 

settlement structure and housing situation. Due to higher construction and maintenance 

costs, a higher per-capita share of single-family houses further relates to a region’s level 

of affluence (Kohler et al., 2017).  

Eventually, decomposing affluence into car ownership, share of single-family houses 

and taxable income per taxpayer allows for a more differentiated analysis of 

environmental impacts. As the rate of car ownership substantially increases traffic 

density, it can be seen a key driver of local air pollutants (Mayerthaler et al., 2017). Given 

the unbroken increase in private car ownership in Germany, we propose that this aspect 

of affluence substantially contributes to the production of NOx emissions. Considering 

single-family houses, buildings characteristic (e.g., living space per person or smart home 

devices) as well as the occupants’ behavioral patterns (e.g., usage of home office, home 

entertainment systems or private spa areas) can increase the per-capita energy 

consumption of single-family houses over that of other residential buildings (Yohanis, 

2008). Therefore, the share of single-family houses per capita can be expected to correlate 

positively with local NOx emissions. In contrast to the impacts of car-ownership and the 

share of single-family houses, the impact of income seems not clear. On the one hand 

 
28 However, to allow a better comparison with other studies, we also run the model with GDP per capita 
(see section 4.4.3.). 
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empirical findings of most STIRPAT studies indicate that increasing income positively 

correlates with emissions. On the other hand, following the main EKC hypothesis, 

increasing income could come along with higher willingness to pay for environmental 

protection (see section 4.2.). This particularly holds for local pollution, where 

environmental spending transfers into noticeable improvements of the situation. 

Following this line of thought, we assume that taxable income relates negatively to the 

development of air pollutants such as NOx emissions (if we control for the emission-

intensive activities of affluence, such as car ownership and housing situation). 

 

4.4. Theoretical model and empirical application 

4.4.1. STIRPAT model 

The STIRPAT approach was developed from the IPAT identity, which states that 

environmental impacts (I) are the multiplicative products of population (P), affluence (A) 

and technology (T) (Commoner et al., 1971; Ehrlich and Holdren, 1971). That is, 

 

 𝐼𝐼 = 𝑃𝑃 ∙ 𝐴𝐴 ∙ 𝑇𝑇. (1) 

 

While its clarity and simplicity add to the popularity of the IPAT approach, the pure 

identity undermines hypothesis testing and causal interpretation (e.g., York et al., 2003). 

Therefore, Dietz and Rosa (1994) suggest transferring the IPAT equation into the 

STIRPAT model, which explains stochastic impacts on the environment by regression on 

population, affluence and technology and provides the framework for empirical analysis: 

 

 𝐼𝐼𝑖𝑖,𝑡𝑡  = 𝑐𝑐𝑡𝑡 ∙ 𝑃𝑃𝑖𝑖,𝑡𝑡𝛼𝛼  ∙ 𝐴𝐴𝑖𝑖,𝑡𝑡
𝛽𝛽  ∙  𝑇𝑇𝑖𝑖,𝑡𝑡

𝛾𝛾  ∙ 𝑒𝑒𝑖𝑖,𝑡𝑡, (2) 

 

where Ii,t is the environmental impact of country i at time t, Pi,t is population, Ai,t is 

affluence, Ti,t is technology, 𝑐𝑐𝑡𝑡 is the constant and ei,t is the residual error term. α, β and γ 

are the economic outcome elasticities with respect to population, affluence, and 

technology, respectively. 

After taking the logarithm, the model is set up according equation (3): 

 

 ln 𝐼𝐼𝑖𝑖,𝑡𝑡  = ln 𝑐𝑐𝑡𝑡  +  𝛼𝛼 ∙ ln 𝑃𝑃𝑖𝑖,𝑡𝑡  +  𝛽𝛽 ∙ ln𝐴𝐴𝑖𝑖,𝑡𝑡   +  𝛾𝛾 ∙ ln𝑇𝑇𝑖𝑖,𝑡𝑡  + ln 𝑒𝑒𝑖𝑖,𝑡𝑡. (3) 
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The logarithmic form of the STIRPAT equation provides a tractable regression equation 

and dampens the potential for a skewed distribution of the variables (Jorgenson and Clark, 

2010).  

In decomposing affluence into the three dimensions, we estimate equation (3) by 

regressing NOx emissions on population, taxable income per taxpayer, car ownership and 

share of single-family houses per capita. Given the significant role of industrial emissions, 

we control for the share of industrial manufacturing and assume a positive impact. Finally, 

and in line with most regional studies, the model includes urban density, as we assume 

the well-established negative relationship between urban density and CO2 emissions 

(Kenworthy and Laube, 1999; Lankao et al., 2009; Karathodorou et al., 2010; Travisi et al., 

2010; Liddle, 2013b) because of urban areas' more efficient energy use by the housing 

sector and more favorable conditions for public and non-motorized individual 

transport.29 

 

4.4.2. Data 

We use a balanced cross-regional panel dataset (1990-2020) of 367 German districts and 

autonomous cities for the empirical application (NUTS 3).  

The German Environment Agency (Umweltbundesamt, 2021) provides data on 

regional emissions in the form of total NOx emissions measured in kilotons. Although 

(local) concentrations of nitrogen oxides have generally declined over time, they still 

exceed policy targets and have been associated with serious impacts on health (e.g., 

asthma, hypertension, diabetes mellitus) in both rural districts and autonomous cities 

(Schneider et al., 2018). The data are available for a five-year interval. 

Statistics from the Statistical Offices of the Federation and Lands (Statistische Ämter 

des Bundes und der Länder, 2021) identify increasing income per taxpayer (measured in 

€) for the 1990-2020 period we considered, albeit with regional differences. Population, 

which largely varies with the regions’ sizes and urbanization levels, is generally increasing 

 
29 Aside from STIRPAT modelling, some studies control for climate functions and meteorological 

conditions that could, favorably or not, affect NOx concentrations. For example, the findings of a recent study 
by the Leipniz Institute for Tropospheric Research (van Pinxteren et al., 2020) indicate that wind speed 
relates negatively and significantly to NOx concentrations, so wind-protected regions in “bowl” or “basin” 
locations have higher concentrations. Empirical findings on other meteorological factors (e.g. temperature, 
precipitation and solar radiation) are not yet conclusive, although these factors seem to have small or no 
impacts. These conditional factors remain largely unconsidered in STIRPAT models, which have a clear 
focus on anthropogenic drivers.  
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in the cities but stagnating or even shrinking in rural districts (Statistisches Landesamt 

Baden-Württemberg, 2021). 

Data from the Federal Motor Vehicle Office (Kraftfahrt-Bundesamt, 2022), shows that 

the average rate of private car ownership in Germany continuously increased from an 

already high level of just below 500 cars per 1,000 inhabitants in 1990 to more than 550 

cars per 1000 inhabitants in 2020 (+14 percent) with no future breaks in the trend likely. 

Although the national trend is driven by rural districts, where the average rate of car 

ownership increased by more than 25 percent between 1990 and 2020, from 491 to more 

than 618 cars per 1000 inhabitants, car ownership is also increasing in most German 

cities.  

The number of single-family houses per capita has increased over time and averaged 

18 per 1000 residences in 2020 (Statistische Ämter des Bundes und der Länder, 2021). 

Urban density can be defined in various ways in STIRPAT analyses (Dovey and Pafka, 

2014). We follow the most common measure, inhabitants per km2. Of course, average 

urban density (279 inhabitants per km2) is much higher and increases faster in the cities 

than it does in other districts. However, these dynamics vary widely across regions. For 

example, districts that surround major cities have similar or even more dynamic trends 

than cities themselves, probably because of lower land prices, less congestion, and more 

possibilities for expansion (Statistisches Bundesamt, 2021).  

The State Office for Statistics Baden-Württemberg (Statistisches Landesamt Baden-

Württemberg, 2021) reports that industrial manufacturing was 34 percent of GDP in 

2020. The share of industrial manufacturing is a measure of the industrial structure of an 

economy (Cole and Neumayer, 2004).  

Table 1 summarizes definitions, means, standard deviations, minima, maxima, 

skewness and kurtosis of the variables used in the study. The scatterplots in figure (2) 

indicate the correlations between NOx emissions and the main explanatory variables.  
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Table 1: Definitions and statistical descriptions of the study’s main variables 

 
Figure 2: Scatterplots of NOx emissions and the main explanatory variables 

 
 
 

Variables Definition 
 

Mean 
 

 
Standard 
Deviation 

 

 
Minimum 

 
Maximum 

 
Skewness 

 
Kurtosis 

NOx 
emissions 

kilotons 5.13 4.69 0.33 39.66 3.06 15.93 

Population thousand 198.53 223.88 

 

34.14 3629.16 9.59 128.93 

Income per 
taxpayer 

Income 
(€)/taxpayer 32803.55 6587.33 17172.94 70936.16 0.93 5.55 

Car 
ownership 

Cars/capita 0.55 0.07 0.21 1.14 0.45 9.29 

Houses per 
capita 

Houses/capita 0.18 0.05 0.04 0.34 0.03 3.26 

Industrial 
manufacturing 

% of GDP 34.13 11.08 5.29 79.09 0.38 3.52 

Urban density inhabitants/km2 279.43 646.47 35.95 4072.58 2.35 8.52 
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4.4.3. Model application 

Application of the model starts with unit root tests to determine the (non-)stationarity of 

variables, so we applied the Im-Pesaran-Shin (IPS) test (with the null hypothesis that 

panels are not stationary). The results show that the variables’ levels (order of 

differences: 0) are stationary, allowing the null hypothesis to be rejected at the 0.01 

significance level for all variables (table 2). 

 
Table 2: Panel Unit Root Test 

IPS-test 

Order of differences: 0 

H0: Panels contain unit roots 
 

 
NOx 

emissions Population 
Income 

per 
taxpayer 

Car 
ownership 

Houses per 
capita 

Industrial 
manu-

facturing 

Urban 
density 

 

Z-t-tilde-

bar-statistic 

-38.77*** -33.56*** -17.70*** -30.12*** -18.27*** -33.07*** -31.47***  

***p<0.01; IPS test: The Im-Pesaran-Shin-test assumes panel-specific AR parameters, Akaike Information 
Criterion is minimized; all variables are logarithmized. 

We also tested the variables for panel cointegration. When variables are not cointegrated, 

the long-term relationship is only weakly defined and the short-term relationship can be 

calculated by estimating a first-differences equation. However, when variables are 

cointegrated, estimating first differences would ignore a potential long-term relationship 

of the key variables, so an error-correction model should be applied to account for these 

dynamics (Engle and Granger, 1987; Liddle, 2011). 

 
Table 3: Results of the Kao- and Pedroni Cointegration Tests 

Kao-test 

H0: No cointegration 

Pedroni-test 

H0: No cointegration 

NOx emissions, population, income per taxpayer, car ownership, houses per capita, industrial manufacturing, 

urban density (all variables logged) 

Modified Dickey-Fuller t 

Dickey-Fuller t  

Augmented Dickey-Fuller t 

     -19.58***    

     -12.61***     

      -7.14***   

    Modified Phillips-Perron t 

Phillips-Perron t 

Augmented Dickey-Fuller t 

     -19.39***    

     -18.70***     

     -12.39***   

***p<0.01; The Kao test assumes a constant cointegration vector, and the Pedroni-test assumes panel-specific 
AR parameters. Cross-sectional averages are substracted. 
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We applied the Kao and the Pedroni tests to check for cointegration (table 3). All test 

statistics clearly reject the null hypothesis, which assumes no cointegration. Thus, strong 

evidence suggests a long-run cointegrating relationship among the variables, and we 

proceed by estimating long-run impacts using an error-correction model. 

 Consequently, the fully modified ordinary least squares (FMOLS) estimator is used in 

order to estimate long-run elasticities. The FMOLS estimator can be applied to 

cointegrated panel data, and it addresses the cross-correlation between the cointegration 

equation error and the regressor innovations. The FMOLS estimator also accounts for any 

remaining non-stationarity issues and provides consistent estimates in small samples 

(Pedroni, 2001b; Chakraborty and Gosh, 2011). All variables are mean-centered to 

mitigate potential structural multicollinearity problems and to get stable estimates 

(Raudenbush, 1989; Cohen et al. 2002; Bell and Jones, 2015). The model is set up as in 

equation (3). 

Table 4 presents the regression results with NOx emissions as the dependent variable. 

In the first model setup, only population, taxable income per taxpayer and car ownership 

are estimated. Then, single-family houses per capita, industrial manufacturing and urban 

density are stepwise included. In addition, the model is estimated with GDP per capita 

instead of income per taxpayer. 

In line with most STIRPAT analyses, population size positively and significantly affects 

NOx emissions, a result that holds for all variations of estimation. For example, NOx 

emissions rise by 0.90 percent when population rises by 1 percent.  

The role of affluence is less conclusive. While private car ownership and the number 

of single-family houses per capita clearly translate into higher NOx emissions for all 

estimations, the coefficients for taxable income per taxpayer are negative and significant 

in all cases. At first glance, the environmental impact of car ownership seems much 

greater than the impact of single-family houses per capita, but first estimations of 

standardized coefficients indicate no significantly different impacts of these variables (not 

shown). The results for population, private car ownership and single-family houses per 

capita also hold if we replace taxable income per taxpayer with the more common 

measure of GDP per capita. However, the coefficients on GDP per capita are insignificant 

in two of three cases.  

The coefficient for industrial manufacturing is positive but not significant. With regard 

to urban density, the coefficient behaves as expected in indicating a negative impact on 



61 
 

emissions. However, the coefficient is only strongly significant when GDP per capita is 

used instead of income per taxpayer.  
 

Table 4: Determinants of NOx emissions 

***p<0.01, **p<0.05, *p<0.1. Robust standard errors are in parentheses. Year fixed effects are included. Variables  
are mean-centered before estimation, and estimations are based on the FMOLS technique. The varying number of 
observations is due to a lack of data for some variables. 

 
Next, we evaluate the quality of the data and results using postestimation statistics and 

variations of estimations. First, we control for multicollinearity, so we calculate the 

independent variables’ variance inflation factors (VIFs). The VIF indicates how much of 

the variance in the estimated regression coefficient would be inflated if the independent 

variables are correlated. The calculated values are clearly below 10 (maximum of 3.69), 

indicating that multicollinearity is unlikely to be a problem (Shrestha, 2020; table 5).  
 

Ln NOx emissions 
 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

 

 (5) 

 

 (6) 

Ln Population  0.90*** 
(0.05) 

    0.96*** 
(0.04) 

1.02*** 
 (0.06) 

0.91*** 
(0.03) 

0.95*** 
(0.03) 

 1.02*** 
(0.06) 

Ln Income per taxpayer 
(columns (1)-(3)) 

Ln GDP per capita 
(columns (4)-(6)) 

  -0.57*** 
     (0.19) 

    -0.41** 
      (0.17) 

-0.49** 
  (0.22) 

 
 
 

-0.15*** 
(0.20) 

   
 
  
  -0.01 
    (0.22) 

     
 
  
   0.01 
   (0.11) 

Ln Cars ownership    0.77*** 
     (0.25) 

 

     0.52** 
      (0.23) 

  1.07*** 
   (0.23) 

      0.98*** 
(0.06) 

   0.59* 
     (0.08) 

0.69* 
(0.37) 

Ln Houses per capita   
    

                 
     0.32***  

(0.09) 

           
  0.24** 
  (0.12) 

    0.39*** 
      (0.06) 

  0.28** 
(0.13) 

Ln Industrial 
Manufacturing 

     0.08 
    (0.08) 

      0.11 
  (0.08) 

Ln Urban density     -0.04 
  (0.06) 

     -0.09* 
     (0.05) 

Constant   0.072*** 
     (0.08) 

     0.37*** 
(0.06) 

  0.36*** 
(0.07) 

     0.72*** 
(0.06) 

0.41*** 
(0.07) 

 0.36*** 
(0.08) 

R2  0.60 0.61 0.61 0.55 0.60 0.60 
Number of districts 367 367 367 367 367 367 

Number of observations 1315 1176 1167 2240 1168 1168 
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Table 5: Postestimation Statistics 

 Results based on regression model 
Table 4 Column (3) 

Results based on regression 
model Table 4 Column (6) 

 VIF 

Ln Population 1.98 1.98 

Ln Income per taxpayer 3.17  

Ln GDP per capita  1.91 

Ln Car ownership 3.07 2.67 

Ln Houses per capita 2.16 2.22 

Ln Industrial manufacturing 1.13 1.10 

Ln Urban density 3.69 3.20 

 Model Specification (link test) 

Prediction squared  -0.01 
(not significant) 

0.01 
(not significant) 

 
Second, we test whether the regression equation is mis-specified because of missing 

variables or the assumption of the functional form. We perform a link test by regressing 

the independent variable to its prediction and its prediction squared. The results show 

that the null hypothesis, according to which there is no specification error cannot be 

rejected—that is, the prediction squared has no explanatory power (table 5)—so there is 

no evidence of misspecification in the model (Alho and Silva, 2014; StataCorp., 2017).30  

Finally, we estimated the model for other time periods (e.g., 1995-2015 and 2000-

2020; not shown). The results remain qualitatively and quantitatively similar, confirming 

the robustness of the coefficients.  

 

4.5. Discussion of results 

Our findings show that the development of NOx emissions is clearly related to population, 

car ownership, the housing situation, income per taxpayer, and urban density in German 

districts and autonomous cities. While private car ownership, the number of single-family 

houses per capita and population positively affect NOx emissions, taxable income per 

taxpayer and urban density have negative effects. Moreover, the significant results for the 

 
30 Similarly, we test for potential non-linear relationships between NOx emissions and income per taxpayer 
and between NOx emissions and population. Overall, we did not find evidence for the inclusion of squared 
terms, as only when population, population squared and income are used as explanatory variables does a 
significant negative impact of population squared appear (not shown). This result might be due to our use 
of disaggregated variables for affluence and control variables’ (for technology) catching-up potential non-
linearities (Cole and Neumayer, 2004). Further, the necessary threshold level for EKC is likely to be out of 
the sample range used here. 
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decomposed dimensions of affluence reveal a varying role of affluence in environmental 

degradation.  

The positive impact of car ownership on NOx emissions reflects an increase in 

motorized passenger transport in almost all counties and cities. Given the high share of 

cars with traditional combustion engines, which is particularly pronounced in rural 

districts but is also observed in most of the cities, individual motorized transport will 

remain a driver in local pollution in the near future. However, the emergence of e-mobility 

could change the game in the medium and long runs. In that case, even if private car 

ownership continues to increase, local emissions related to the internal combustion of 

fossil fuels may lose importance while other emissions (e.g., tire abrasion, brake dust) 

continue. For the moment, however, electric cars still account for less than 10 percent of 

new passenger-car registrations.  

The positive environmental impact of the housing situation is likely to relate to the 

comparatively high energy use per capita in single-family houses, particularly because of 

over-average heating consumption, which is still powered primarily by fossil fuels. 

However, other household-related consumption of electricity in smart homes, digital 

devices, and household appliances also contribute.  

The negative correlation between taxable income per taxpayer and local NOx emissions 

(when controlling for car ownership and the housing situation) could be explained by the 

higher educational attainment and the willingness to pay for an intact environment by 

those with higher income. Therefore, contrary to the common findings of the STIRPAT 

literature (which usually uses only GDP per capita to measure affluence), our results 

indicate a varying role of affluence on local emissions. This result may be due to the three 

dimensions of affluence capturing different aspects of wealth. While private car 

ownership and single-family houses could reflect the material- and energy-intensive part 

of affluence, taxable income per taxpayer covers (if we control for car ownership and the 

housing situation) expenditures for material (e.g., food, consumables) as well as types of 

consumption more common among the financially affluent (e.g., services, cultural 

activities).  

The divergent impacts of the dimensions of affluence on emissions are in line with a 

limited number of STIRPAT studies that investigate affluence in a differentiated way (see 

section 4.2.). So, Montero, et al. (2021) find a negative impact of gross disposable income 

and a positive impact of electric power consumption and sectoral value added on 
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emissions (all of which indicate affluence) by analysing the municipalities of Madrid. 

Further, Arshed et al. (2021) show a U-shaped EKC for 80 countries when affluence is 

disaggregated into the sectorial shares of GDP (i.e., the industrial, agricultural and services 

sectors). In contrast, Kilbourne and Thyroff (2020) find no qualitative differences in the 

environmental impacts of components of affluence like consumer spending and 

consumption of material goods in 113 countries. 

In line with the classic STIRPAT analysis, our regional findings confirm the important 

role of population with respect to local NOx emissions. In the STIRPAT literature this effect 

is explained by the (high) level of energy consumption related to human activities.  

Further, our findings confirm the negative correlation between urban density and local 

pollution (NOx emissions) that most empirical studies in this field find. More densely 

populated regions are likely to allow for more competitive public transportation and, 

because of shorter distances between probable destinations, more non-motorized 

individual transport. 

Largely because of a lack of data at the district level, our analysis does not address some 

explanatory variables. While public transport structures and related activities might be 

captured, at least in part, by urban density (even though the quality of services differs 

among regions with similar density), weather conditions remain unconsidered. For 

example, the wind conditions mentioned above can have a significant impact on the 

concentration of local emissions (van Pinxteren et al., 2020).  

Overall, the results presented here are robust to variations in the estimations used and 

confirm the appropriateness of the STIRPAT approach for estimating impacts on the local 

environment in small-structured regional settings (i.e., NUTS 3). 

 

4.6. Concluding remarks 

The paper presents a region-based STIRPAT analysis that investigates 

anthropogeneous impacts on local air pollutants (NOx emissions). Unlike most other 

regional studies, the analysis is not limited to a few cities but covers almost all German 

districts between 1990 and 2020. The paper decomposes affluence (one of the driving 

forces often identified) into three dimensions. Private car ownership, single-family houses 

per capita and taxable income per taxpayer facilitates a more differentiated consideration 

of affluence and its environmental impacts. 
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Because of existing cointegration dynamics between variables, our findings are based 

on long-run estimation techniques and largely confirm the findings of related empirical 

studies (e.g., on the role of population and urban density). However, they also provide new 

evidence of major driving forces of NOx emissions from a regional perspective. In 

particular, we find a varying effect of three dimensions of affluence on NOx emissions, as 

private car ownership and single-family houses per capita can be considered drivers of 

local pollutants, but such is not the case for taxable income per taxpayer or GDP per capita 

(if the income variable is controlled for the other two dimensions of affluence).  

Although our results are not generalizable outside their underlying regional sample, 

the analysis highlights the crucial roles of private car ownership and settlement 

structures in decisions regarding policies for fighting local air pollution and leads to three 

conclusions: 

• Urban policies should further strengthen integrated mobility concepts with 

high shares of intermodal transport, easily accessible car-sharing services, and 

so on. Mobility patterns can be highly persistent and, because of socio-

demographic or topographic conditions, highly dependent on private cars, 

particularly for rural regions but also for smaller cities. Therefore, the call for 

better public services and more bike lanes could fall short of the mark, so they 

should be complemented with policies that support the transition to low-

emission car technology.  

• Policies should further support low-emission infrastructure (e.g., local and 

district heating networks) to mitigate its environmental impacts that are due to 

existing housing conditions and related consumption patterns. In addition, 

incentives should be established that favor investment into modern heating and 

self-sufficiency systems (e.g., insulation, photovoltaic installations, energy 

efficient appliances). 

• Considering a more general aspect of STIRPAT modelling, our findings 

encourage a differentiated view of the role of affluence (or economic growth) in 

environmental degradation. While some dimensions of affluence can be 

considered drivers of emissions (e.g., private car ownership and single-family 

houses), other dimensions of affluence might work in the other direction (e.g., 

taxable income). Hence, future research is needed to understand fully the 

various impacts of affluence on the environment. 
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Like most empirical studies, the analysis could benefit from additional control 

variables that facilitate a more in-depth analysis of anthropogenic drivers of environment 

degradation. For example, detailed information on local freight transportation, which can 

be considered an important source of NOx emissions, could be of value, as could knowing 

more about the age structure of single-family houses or the fuels used for heating. 

However, data, particularly time-series data, at the regional level is limited. Future 

analyses could focus on specific regions with better data availability (e.g., cities) to 

examine these factors. With regard to the rapid shift to electric cars and the mandatory 

installation of photovoltaic systems on new houses (at least in some regions), adopting a 

one-year interval and predicting future trends could be useful. 
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5. Drivers of local air pollution – a regional STIRPAT analysis for Germany31 
 

5.1. Introduction 

There is broad consensus that anthropogenic activities have substantially altered the 

environment. One important driving factor is transportation. In Germany, for example, 

the transport sector accounts for about 20 percent of total greenhouse gas (GHG) 

emissions and even higher shares for selected air pollutants (e.g., 40 percent of total NOx) 

(Umweltbundesamt, 2022).  

Though generally declining in absolute terms, reduction of transport-related emissions 

cannot always keep pace with the development in other sectors and more ambitious 

climate and environmental policy goals. This particularly holds for transport related CO2 

emissions that decreased by no more than 10 percent compared to the early 1990ies.32 

But it is also true for major air pollutants such as particulate matter (PM2.5) and nitrogen 

oxide (NOx), which until today regularly exceed existing threshold values, at least at 

regional level. Hence, the transportation sector has moved into the focus of environmental 

and climate policy, often by calling for technological improvements (e.g., alternative fuels 

and drive technologies). While there is no doubt that successful climate or environmental 

policy cannot succeed without new technologies and alternative fuels, transport-related 

emissions also depend on structural characteristics and regional context of transport 

activities and systems.  

One way to analyze the relationship between technological progress, structural factors 

and emissions is the application of the well-known IPAT/STIRPAT model. Though 

normally applied to analyze environmental impacts (I) driven by population (P), affluence 

(A) and technology (T) in general, the IPAT/STIRPAT framework is increasingly and 

successfully being used to identify impacts on the environment caused by transport 

activities and the nature of transport systems (Timilsina and Shrestha, 2009; Liddle, 

2013a; Fan and Lei, 2016; Andrés and Padilla, 2018). Following this research stream and 

in line with some recent series of city- and region-based STIRPAT analysis (Lankao et al., 

2009; Liddle, 2013a; Zhang and Nian, 2013; Montero et al., 2021) the presented study 

adopts a regional STIRPAT model to assess evolution of NOx emissions by regional 

 
31 The contribution is based on joint work together with Axel Schaffer (Bundeswehr University Munich) and 
Thomas Bolognesi (Grenoble School of Management). 
32 This is by far below the reduction of CO2 emissions in the energy sector that decreased by more than 50 
percent in the same period. 
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population, GDP per capita, level of motorization (i.e. car ownership) and structural 

factors (urban density as well as share of industrial manufacturing) for 367 German 

(rural) districts and autonomous cities between 1990 and 2020.33 This procedure does 

not only allow for an analysis of the cities but also the rural districts. Not surprisingly, 

results confirm the positive relationship between NOx emissions and key drivers 

(population, car ownership and share of industrial manufacturing) for urban and rural 

counties. Additionally, predictive margins analysis indicates that impacts of population 

increases with its level (i.e. percentiles). This is in contrast to urban density, where 

findings show the well-established negative relationship with environmental impacts 

mainly for rural but not for urban districts. Similarly, the findings reveal a negative 

relationship between local pollution and per capita income only for rural counties.  

The remainder of the paper is organized as follows. Section 5.2. presents the relationship 

between urban structures and environmental development and briefly reviews the main 

findings of transport-related and region-based STIRPAT analysis in this context so far. 

Section 5.3. presents the model specification and describes the data. Sections 5.4. and 5.5. 

continue with the empirical application and the discussion of the results. Finally, the 

paper closes with concluding remarks and brief policy implications in section 5.6.. 

 

5.2. Literature review 

5.2.1. Sustainable development at urban level 

Urbanization is a primary driver of biodiversity loss and carbon emissions (Rees and 

Wackernagel, 2008; Seto et al., 2012). Cities source about three-quarter of global GHG 

emissions (IPCC, 2014). According to Moran et al. (2018), urban areas host 60 percent of 

the world population and produce 68 percent of the global carbon footprint, and the 100 

biggest cities emit 18 percent of global GHG emissions. Air pollution is, to a large extent, 

an urban development question—the same holds for many environmental and 

sustainability topics. Urban areas concentrate people, human activity, and population in 

limited geographic regions. It leads to exceeding environment carrying capacity and 

increases the likelihood of irreversible damage. For instance, each Athenian has an 

ecological footprint of about 5 global hectares, i.e., the surface of nature necessary to 

support its lifestyle (Baabou et al., 2017). This mismatch between human needs and 

 
33 In spite of existing regional STIRPAT studies, there is little understanding whether STIRPAT models 
capture the human-economy-environment relationship at county and city level (Schneider, 2022). 
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environment capacity stresses development – competition for resources – and the 

environment -resource viability. Thus, the urban level is a relevant scale to study 

sustainability and development patterns. 

Besides global assessments, inquiries on specific relations between urban development 

and the environment have been carried out. Urban forms and urban growth are 

intertwined, and the environment should play a role in or be affected by this relationship. 

Globally more difficult climatic conditions (heat and water scarcity) associate with more 

urbanization (Castells-Quintana et al., 2021). The association reveals non-linearities 

regarding urban concentration, size, and spatial structure. As a result, deteriorating 

climate conditions attract people to urban areas that will tend to sprawl and fragment 

simultaneously. At first glance, urban sprawl should increase air pollution, but the effect 

is not that straightforward if considering the change in congestion patterns (Nechyba and 

Walsh, 2004). 

Urban forms affect GHG emissions heterogeneously across the globe (Peri and Robert-

Nicoud, 2021). Studying 50 Japanese cities, Makido et al. (2012) found that residential-

related CO2 emissions per capita are negatively correlated with low fragmentation and 

regular urban forms and positively with densest and monocentric forms. They argue a 

non-linear pattern, especially when considering the transport sector. Density contributes 

to reducing per capita CO2 emissions, but there is a turning-point from which more 

density leads to more CO2 emissions. Mono-centricity is an aggravating condition. Lee and 

Lee (2014) investigate a similar relation by applying SEM (structural equation modelling) 

framework to the 125 largest urban areas in the US. They estimate doubling density in 

those places reduces households' CO2 emissions by 48 percent regarding travel and 35 

percent regarding residential energy consumption. The mediating effect of mono-

centricity/fragmented urban structure reveals moderate. In Italy, similar null results 

hold, and urban sprawl comes with more CO2 emissions (Burgalassi and Luzzati, 2015). 

Next to GHG emissions, air pollution is of serious concern for health and economic activity. 

It reduces work productivity, even in service sectors that are less physically intense 

(Chang et al., 2019). This effect could be long-standing. Historical data on British 

industrial development proved that coal-induced air pollution lessened city employment 

and the working population in the long run (Hanlon, 2020). Cities growth improves 

overall population health but comes with air pollution as a countervailing force 
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(Ebenstein et al., 2015; Hanlon and Tian, 2015). Thereby, road vehicles are one of the 

major sources of air pollution in cities (Kumar et al., 2013; see next section).   

Generally, environmental changes affect socio-economic outcomes. For example, the 

degree of land artificialization exacerbates cities' vulnerability while a high degree of 

economic development attenuates it (Bolognesi, 2015). The complex and heterogeneous 

relations between urban development and environmental conditions motivate the study 

of sustainability at the urban level, where both causes and consequences of unsustainable 

trajectories come with acute topicality (Truffer and Coenen, 2012; Brelsford et al., 2017; 

Peri and Robert-Nicoud, 2021). To tackle the challenge, modeling urban development as 

a social-ecological process is being developed (Cooper and Dearing, 2019). New types of 

indicators emerge to ease future empirical investigation and current decision-making. For 

instance, the Doughnut economics approach is being downscaled to the city level (Fanning 

et al., 2020), and so is the planetary boundaries framework (Hoornweg et al., 2016). 

Composite metrics that include social concerns enable the necessary rethinking of what 

is well-being at the urban level (Floridi et al., 2011; Le Roy and Ottaviani, 2022). 

 

5.2.2. Transport-related and region-based STIRPAT analysis   

Germany, like any other member State of the EU, is legally bound to reduce air pollution 

and meet tightened thresholds set by the National Emission Ceilings Directive (NEC 

Directive) for sulphur dioxide (SO2), non-methane volatile organic compounds (NMVOCs), 

ammonia (NH3) and nitrogen oxides (NOx). While the 2020 and even 2030 targets have 

already been achieved for SO2 and NMVOCs, additional efforts are necessary to meet 

national ceilings for NH3 and NOx.34 While ammonia largely relates to farming activities, 

NOx is mainly driven by transport-related emissions, which account for about 43 percent 

of the total. Transport-related emissions weigh twice those of the second leading 

contributor, the energy sector with no more than 21 percent.  

Therefore, research interest for accounting transport-based NOx emissions and 

investigating potential driving factors to ultimately evaluate the effectiveness of 

regulative measures (e.g., a reduction in the number of lanes or inner-city driving bans for 

older diesel vehicles) raises. Methodological tools are manifold and include, among 

others, bottom-up sector based analysis (e.g., Selvakkumaran and Limmeechokchai, 

 
34 Considering NOx almost all EU member states must substantially reduce emissions to meet the 2030 
target (EEA, 2020). 
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2015), integrated assessment and optimization models (e.g., Wang et al., 2015) or 

econometric analysis (e.g., Montero et al., 2021).  

Belonging to the group of the latter, transport-related STIRPAT analysis often compare 

international trends and make use of country-specific panel data to identify 

anthropogenic factors of transport-related environmental impacts. Findings generally 

confirm the crucial role of a growing population and increasing affluence that trigger 

traffic density and related environmental impacts in passenger and freight transport (e.g., 

Scholl et al. (1996) for OECD countries, Timilsina and Shrestha (2009) for Asian countries, 

Andrés and Padilla (2017) for the EU). Besides, many studies find that emissions per 

passenger and tonkilometer are increasing, probably due to modal shifts towards more 

fossil energy-intensive modes (e.g., Scholl et al. (1996) for OECD countries, Lakshmanan 

and Han (1997) and Steenhof et al. (2006) for Northern America). In this context, some 

analyses highlight the importance of a growing road freight transport volume (Regmi and 

Hanaoka, 2015; Andrés and Padilla, 2017). Many authors, however, found a steady 

increase in private vehicle stock (Solis and Steinbaum, 2013; Xu and Lin, 2016). 

Apart from population, affluence and transport-related factors, most studies further 

control for urban density and economic structures. Since average national levels of 

urbanization could be misleading, regional or city-based data gets preferred to gain in 

accuracy (e.g., Kenworthy and Laube, 1999; Lankao et al., 2009; Lankao et al., 2009; 

Karathodorou et al., 2010; Liddle and Lung, 2010; Travisi et al., 2010; Xu and Lin, 2016; 

Ge et al., 2018; Lv et al., 2019; Montero et al., 2021). Interestingly, empirical results 

indicate opposing effects for passenger and freight transport. The negative relationship 

between urban density and emissions related to passenger transit is now well-established 

(Kenworthy and Laube, 1999; Lankao et al., 2009; Karathodorou et al., 2010; Travisi et al., 

2010; Liddle, 2013a). The primary drivers of the relationship are the shorter trip length 

and the more favorable conditions for public and non-motorized individual transport in 

urban areas permitted by higher density.  In contrast, probably due to frequent deliveries 

to supermarkets and the retail trade sector, impacts from road freight transport seem to 

increase with the level of density (Lv et al., 2019). Furthermore, emissions also depend on 

the regions’ economic structure, in particular on sectoral composition. This is due to 
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production-related emissions (in particular for energy supply and industrial production) 

and transport-related emissions (e.g., due to the generation of commuter traffic).35 

Finally, the relationship of economic activities and environmental outcomes (like GHG or 

air pollutants) are often analyzed using the environmental Kuznets curve (EKC) in order 

to measure potential non-linear environmental impacts. The EKC thesis states that 

emissions initially increase with economic growth, whereas further economic expansion 

leads to a decline in emissions (Schneider, 2022). More recently, some studies also 

incorporate the EKC effect into STIRPAT applications by adding non-linear terms (e.g., Ge 

et al., 2018; Arshed et al., 2021). 

 

5.3. Empirical design 

5.3.1. Model specification 

Ehrlich and Holdren (1971) propose a conceptual framework for calculating 

environmental impacts of human development. This IPAT approach presumes that 

environmental impacts (I) are the multiplicative product of population (P), affluence (A) 

and technology (T) (Commoner et al., 1971; Ehrlich and Holdren, 1971) and can be 

written as follows: 

 

 𝐼𝐼 = 𝑃𝑃 ∙ 𝐴𝐴 ∙ 𝑇𝑇. (1) 

 

While clarity and simplicity certainly add to the popularity of the IPAT approach, the 

pure identity undermines hypothesis testing and causal interpretation (e.g., York et al., 

2003). This is why Dietz and Rosa (1994) suggest to transfer the IPAT equation into the 

so-called STIRPAT model that explains STochastic Impacts on the environment by 

Regression on Population, Affluence and Technology and provides the framework for 

empirical analysis: 

 
35 Largely aside from STIRPAT modelling, some studies control for climate functions and meteorological 
conditions that could – favorably or not – affect NOx concentrations. Findings of a recent study by the Leipniz 
Institute for Tropospheric Research indicate, for example, that wind speed relates negatively and 
significantly to NOx concentrations (van Pinxteren et al., 2020). This means NOx concentration generally 
decrease with higher wind speed. In contrast, wind protected regions in “bowl” or “basin” locations seem 
to be affected the most by high concentrations. Empirical findings on other meteorological factors, e.g., 
temperature, precipitation and solar radiation, are less conclusive so far and seem to have (if at all) only 
small impacts. These conditional factors remain largely unconsidered in STIRPAT models. which have a 
clear focus on anthropogenic drivers. In addition, most STIRPAT models explain differences (rather than 
levels) of environmental impacts. Weather conditions are, however, relatively stable, and explain levels 
rather than differences of environmental impacts.   
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 𝐼𝐼𝑖𝑖,𝑡𝑡  = 𝑐𝑐𝑡𝑡 ∙ 𝑃𝑃𝑖𝑖,𝑡𝑡𝛼𝛼  ∙ 𝐴𝐴𝑖𝑖,𝑡𝑡
𝛽𝛽  ∙  𝑇𝑇𝑖𝑖,𝑡𝑡

𝛾𝛾  ∙ 𝑒𝑒𝑖𝑖,𝑡𝑡, (2) 

 

where Ii,t is the environmental impact of country i at time t, Pi,t is population, Ai,t is 

affluence, Ti,t is technology, 𝑐𝑐𝑡𝑡 is the constant and ei,t is the residual error term. α, β and γ 

are the economic outcome elasticities with respect to population, affluence or technology, 

respectively. The logarithmic form of the STIRPAT equation gives a tractable regression 

equation and dampens the skewed distribution of the variables (Jorgenson & Clark, 

2010). 

So, the model is setup according equation (3) 

 

 ln 𝐼𝐼𝑖𝑖,𝑡𝑡  = ln 𝑐𝑐𝑡𝑡  +  𝛼𝛼 ∙ ln 𝑃𝑃𝑖𝑖,𝑡𝑡  +  𝛽𝛽 ∙ ln𝐴𝐴𝑖𝑖,𝑡𝑡   +  𝛾𝛾 ∙ ln𝑇𝑇𝑖𝑖,𝑡𝑡 +  ln 𝑒𝑒𝑖𝑖,𝑡𝑡, (3) 

 

where technology (𝑇𝑇𝑖𝑖,𝑡𝑡) is assumed to be part of the error term, a combination of log-

linear factors (like car ownership, urban density and share of industrial manufacturing) 

and time-fixed effects.  

Transport-related STIRPAT analyses generally refer to this model setup but include 

transport-specific factors that explain GHG emissions or air pollutants.36 For this purpose, 

they often use city-based or regional (rather than national) panel data to account for 

regional characteristics of transport systems, which might indeed drive environmental 

impacts but cannot be captured by (average) national levels or trends (e.g., Liddle, 

2013a).  

Following this line of thought, the proposed model identifies impacts of population, per 

capita income, car ownership, urban density as well as the share of industrial 

manufacturing on regional NOx emissions of German districts between 1990 and 2020.  

 

5.3.2. Data description 

For the empirical application, a balanced cross-regional panel dataset (1990-2020) of 367 

German districts and autonomous cities is used (NUTS 3). Additionally, the full sample is 

divided into two subgroups depending on a districts’ settlement structure. The 

classification is derived from the criteria defined by the Federal Institute for Research on 

 
36 While some authors explicitly focus on transport-related emissions, others explain total emissions but 

are interested in the contribution of transport-related drivers. Our study belongs to the latter group.     
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Building, Urban Affairs and Spatial Development (Federal Institute for Research on 

Building, Urban Affairs and Spatial Development 2022). There are 229 large cities and 

urban counties (e.g., Dortmund or Munich) if the number of inhabitants per squared 

kilometers is larger than 150. Similarly, there are 138 rural and very rural counties if the 

number of inhabitants per squared kilometers is smaller than 150 (e.g., Harz or 

Miesbach).  

Regional emissions are given by total NOx emissions (measured in kilotons) and stem 

from the German Environment Agency (Umweltbundesamt, 2021). Transport-related NOx 

emissions are responsible for the major part (of the change) of total NOx-emissions 

regarding the considered time period (see section 5.1.). Though generally declining over 

time, local concentrations of nitrogen oxides still exceed policy targets and can be 

associated with serious impacts on health (e.g., asthma, hypertension, diabetes mellitus) 

in both, rural districts and autonomous cities (Schneider et al., 2018). The data are 

available for a five-year interval (figure (1)). 

 
Figure 1: Development of NOx emissions (in kilotons) 

 
Source: Own illustration. Number of observations; 2240. 
 
Official statistics generally identify an increasing GDP per capita (measured in €) for 

the considered time period with regional disparities (Statistische Ämter des Bundes und 

der Länder, 2021). Population, which largely varies with the regions’ size and 
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urbanization level, is generally increasing in the cities but rather stagnating or even 

shrinking in rural districts (Statistisches Landesamt Baden-Württemberg, 2021). 

The average rate of private car ownership in Germany (used as a proxy for individual 

motorized transport) has continuously increased from an already high starting level of 

slightly below 500 cars per 1000 inhabitants in 1990 to more than 550 cars per 1000 

inhabitants in 2020 (+14 percent) without any breaks in trends in sight. Though the 

national trend is certainly driven by a particular dynamic development in rural districts, 

where the average rate of motorization increased by more than 25 percent (from 491 cars 

per 1000 inhabitants in 1990 to more than 618 in 2020), car ownership is – maybe more 

surprising and despite an intensive debate on climate and environmental protection – 

also increasing in most German cities. The data are taken from the Federal Motor Vehicle 

Office (Kraftfahrt-Bundesamt, 2022). 

While the number of private cars is still increasing, average annual NOx emissions per 

private car are declining over time. This is due primarily to a cut of technology-driven 

specific emissions (NOx/km) by more than 60 percent from 80 mg/km in 2012 to 28 

mg/km in 2020 for new registered cars in Germany (Kraftfahrt-Bundesamt, 2022). This 

favorable development is attributable to the gradual renewal of the vehicle fleet and more 

stringent emission standards. In addition, we observe, at least on average, stagnating or 

even slightly declining annual mileage per car in recent years (from slightly above 14,200 

km per car in 2013 to about 13,300 km/car in 2020; Kraftfahrt-Bundesamt, 2022). Both 

trends can be observed for rural and urban districts, but are more pronounced for the 

latter. 

With regard to the remaining structural variables, urban density is defined as 

inhabitants per km2. There are various ways of defining urban density (Dovey and Pafka, 

2014). Here, the variable is supposed to reveal effects due to a concentrated public 

infrastructure such as the shortening of distances and a general increase of mobility. 

Thereby, average urban density (279 inhabitants per km2) is much higher and develop 

faster for the cities compared to the other districts. However, dynamics vary strongly 

across all types of regions. Districts surrounding major cities, for example, show similar 

or even more dynamic trends (probably due to lower land prices, less congestion, better 

expansion possibilities) compared to the cities themselves. The data for the share of 

industrial manufacturing (34 percent of GDP in 2020) are taken from the State Office for 

Statistics Baden-Württemberg (Statistisches Landesamt Baden-Württemberg, 2021). 
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Table 1 summarizes definitions, means, standard deviations, minima, maxima, skewness 

and kurtosis of the variables used in the study. 

 
Table 1: Definitions and statistical descriptions of the study’s main variables 

 

5.4. Results 

Model application starts with unit root tests to determine the (non-)stationarity of 

variables. Therefore, the Im-Pesaran-Shin (IPS) test (with the null hypothesis that panels 

are not stationary) is applied. It turns out that level variables (order of differences: 0) are 

stationary (i.e. null hypothesis can be rejected at 0.01 significance level) for all variables 

(table (2)).  

In addition, the variables are tested for panel cointegration. In case variables are not 

cointegrated, the long-term relationship is only weakly defined and the short-term 

relationship can be calculated by the estimation of a first-differences equation. If, 

however, variables are cointegrated, the estimation of first-differences would ignore a 

potential long-term relationship of the key variables and an error correction model should 

be applied to account for these dynamics (Engle and Granger, 1987; Liddle, 2011). 

In order to check for cointegration, the Kao and the Pedroni tests are applied (table 

(3)).  All test statistics clearly reject the null hypothesis assuming no cointegration. Thus, 

there is strong evidence for a long-run cointegrating relationship among the respective 

variables, i.e., evolution patterns of the variables are associated. 

Variables Definition 
 

Mean 
 

 
Standard 
Deviation 

 

 
Minimum 

 
Maximum 

 
Skewness 

 
Kurtosis 

NOx 
emissions 

kilotons 5.13 4.69 0.33 39.66 3.06 15.93 

Population thousand 198.53 223.88 

 

34.14 3629.16 9.59 128.93 

GDP per 
capita GDP (€)/capita 25538.82 13145.27 6822 182301 2.90 19.73 

Car 
ownership 

Cars/capita 0.55 0.07 0.21 1.14 0.45 9.29 

Industrial 
manufacturing 

% of GDP 34.13 11.08 5.29 79.09 0.38 3.52 

Urban density inhabitants/km2 279.43 646.47 35.95 4072.58 2.35 8.52 
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Table 2: Panel Unit Root Test 

IPS-test 

Order of differences: 0 

H0: Panels contain unit roots 
 

 NOx Population GDP p.c. Car 

ownership 

Manufacturing Urban density  

Z-t-tilde-

bar-statistic 

-38.77*** -33.56*** -33.47*** -30.12*** -33.07*** -31.47***  

***p<0.01; IPS-test: Im-Pesaran-Shin-test assumes panel-specific AR parameters, Akaike Information  
Criterion is minimized; all variables are logarithmized. 
 
Table 3: Results of the Kao- and Pedroni Cointegration Tests 

Kao-test 

H0: No cointegration 

Pedroni-test 

H0: No cointegration 

NOx, population, GDP per capita, car ownership, manufacturing, urban density (all variables logged) 

Modified Dickey-Fuller t 

Dickey-Fuller t  

Augmented Dickey-Fuller t 

  -53.77***    

  -26.97***      

  -16.76***        

    Modified Phillips-Perron t 

Phillips-Perron t 

Augmented Dickey-Fuller t 

     -67.63***    

     -39.68***     

     -37.39***   

***p<0.01; Kao-test assumes a constant cointegration vector; Pedroni-test assumes panel-specific AR 
parameters; Cross-sectional averages are substracted. 

Consequently, long-run impacts by using an error correction model are estimated. 

Therefore, the fully modified ordinary least squares (FMOLS) estimator is applied and 

long-run elasticities are estimated. The FMOLS estimator is applicable for cointegrated 

panel data and accounts for the heterogeneity that is present in the fixed effects as well as 

in the short-run dynamics. Further, the estimator addresses the cross-correlation 

between the cointegration equation error and the regressor innovations, mitigates 

potential remaining non-stationarity issues and provides consistent estimates in small 

samples. All in all, this estimator is very accurate in panels with heterogeneous serial 

correlation dynamics, fixed effects or endogenous regressors (Pedroni, 2001a and b; 

Chakraborty and Gosh, 2011).  

Finally, the model is setup according to equation (3). As mentioned above, the term 𝑇𝑇𝑖𝑖,𝑡𝑡 

for technology is not estimated explicitly and is assumed to be part of control variables 

and time-fixed effects as well as the error term (ei,t). Table (4) presents the results based 

on estimating equation (3) with NOx emissions as dependent variable. Column (1) shows 
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the results for the full sample. Columns (2) – (3) show the results for urban (i.e. large cities 

and urban counties) and rural districts (i.e. rural and very rural counties) respectively. 

Population size positively and significantly effects NOx emissions. This holds for the 

full sample as well as for the subgroups. For example, NOx emissions rise by 0.94 percent 

when population rises by 1 percent (column (1)).  

The coefficient for GDP per capita is insignificant in two of three cases. Only in case of 

rural districts a significant negative impact can be observed (column (3)).   

Private car ownership and the share of manufacturing both translate into higher NOx 

emissions. This holds for all specifications. 

With regard to urban density, coefficients indicate a significant and negative impact. 

While this holds for the full sample and the rural districts, the coefficient is insignificant 

for urban districts.  

 
Table 4: Results for all regions and specified areas 

***p<0.01, **p<0.05, *p<0.1; Robust standard errors in parentheses; Year fixed-effects are included; Large 
cities and urban counties: inhabitants per km2 > 150. Rural and very rural counties: inhabitants per km2 < 
150. 
 

Additionally, we check for potential non-linearities. First, a squared term for GDP per 

capita is included in equation (3) in order to control for potential EKC dynamics. Results 

show a U-shaped effect of GDP per capita on NOx emissions in the case of the full sample 

(table (5), column (1)). This dynamic cannot be confirmed for the subgroups.  

Ln NOx 

 
(1) 

Full sample 

 
(2) 

Large cities and 
urban counties 

 

 
(3) 

Rural and very 
rural counties 

Ln Population 0.94*** 
(0.03) 

0.93*** 
(0.04) 

1.11*** 
(0.04) 

Ln GDP p.c.             -0.01 
(0.08) 

              0.04 
(0.10) 

-0.27*** 
(0.08) 

Ln Car ownership              0.41* 
(0.22) 

0.64** 
(0.31) 

0.64*** 
(0.25) 

Ln Manufacturing  0.17*** 
(0.06) 

              0.15* 
(0.08) 

0.31*** 
(0.05) 

Ln Urban density  -0.10 *** 
 (0.03) 

             -0.04 
(0.04) 

-0.37*** 
(0.05) 

Constant             -1.79** 
 (0.73) 

-2.40** 
(0.96) 

1.65*** 
(0.85) 

R2  0.57 0.65 0.64 
Number of counties 367 229 138 

Number of observations 2240 1384 855 
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Table 5: Results controlling for EKC 

***p<0.01, **p<0.05, *p<0.1; Robust standard errors in parentheses; Year fixed-effects are included; Large 
cities and urban counties: inhabitants per km2 > 150. Rural and very rural counties: inhabitants per km2 < 
150. 
 

Figure 2: Variation in GDP or population coefficient over the conditional percentiles. 

 
***p<0.01 for all coefficients; Number of observations: 2240. 
 

Moreover, figure (2) presents the predicted margins of GDP per capita and population on 

NOx emissions. Specifically, the predicted margins indicate how the predicted elasticities 

Ln NOx 

 
(1) 

Full sample 

 
(2) 

Large cities and 
urban counties 

 

 
(3) 

Rural and very 
rural counties 

Ln Population 0.96*** 
(0.03) 

0.94*** 
(0.04) 

 1.14*** 
(0.08) 

Ln GDP p.c.             -3.64* 
(1.93) 

              -4.00 
(2.73) 

3.71 
(4.51) 

(Ln GDP p.c.)^2 0.18* 
             (0.09) 

0.19 
             (0.13) 

-0.20 
  (0.22) 

Ln Car ownership              0.28 
(0.23) 

0.52* 
(0.31) 

0.69 
(0.45) 

Ln Manufacturing  0.19*** 
(0.06) 

              0.18*** 
(0.08) 

  0.31*** 
(0.10) 

Ln Urban density  -0.10 *** 
 (0.03) 

             -0.04 
(0.05) 

-0.41*** 
(0.09) 

Constant             16.72** 
 (9.97) 

18.71** 
(14.23) 

 18.42*** 
(22.61) 

R2  0.01 0.03 0.01 
Number of counties 367 229 138 

Number of observations 2240 1384 855 
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for GDP per capita or population succinctly differ across their percentiles. The predicted 

margins of GDP per capita are ranging non-monotonically between 1.42 and 1.26. In 

contrast to, the predicted margins of population increase with the respective percentile.  

For example, the effect of the 90th-percentile of population is almost 4 times higher 

compared to the 10th-percentile. 

 

5.5. Discussion of results 

In general, the results of this paper show that the development of local pollutants (NOx 

emissions) is clearly related to population, GDP per capita, car ownership, industrial 

manufacturing as well as urban density regarding German districts and autonomous cities 

in the long-run. In addition, findings show that the environmental impacts of variables 

partly depend on the underlying settlement structure (e.g., population density) or on the 

level of the explaining variable. Specifically, results indicate that there exist differences 

regarding environmental impacts between large cities and urban counties and rural and 

very rural counties.  

On the one side, car ownership, population and industrial manufacturing show positive 

effects on NOx emissions independently of the regions’ structure.  

The findings confirm the important role of population with respect to NOx emissions for 

all estimation models. In line with existing studies, this driving effect may be based on the 

level of energy consumption related to human activities. Further, findings indicate that 

the environmental impact of population increases with its respective level. So, high 

populated areas (not necessarily corresponding with high density) intensify emissions-

intensive activities.  

Moreover, positive environmental impacts of motorization can be found for both, rural 

and urban districts.37 The rate of motorization reflects the share of individual motorized 

passenger transport, which is not only affected by the level of income but also by sheer 

necessities and persistent mobility patterns. Given the ongoing increase of motorization 

and the high share of cars with traditional combustion engines, which is particularly 

pronounced in rural districts but can also be observed for most of the cities, individual 

motorized transport will remain a clear driving force of local pollution in the near future. 

 
37 If the subsample rural and very rural counties is again separated into rural counties and very rural counties, 
it can be shown that motorization rate has clearly the highest impact for rural counties compared to all other 
subgroups. The results are not shown due to less observations. 
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In the medium- and long-run, the emerging e-mobility could change the game. Even with 

still increasing private car ownership, local emissions related to the internal combustion 

of fossil fuels may then lose in importance and other emissions (e.g., tyre abrasion, brake 

dust) might come to the fore. For the moment, however, electric cars still account for less 

than 10 percent of new passenger car registration and much less considering private car 

fleet.  

With regard to the structural factors, the findings show positive effects of industrial 

manufacturing on NOx emissions. Though declining over time, industrial production still 

adds significantly to local pollution. In addition, locations of industrial manufacturing are 

related to (heavy) freight transportation further contributing to higher NOx emissions.  

On the other side, the results for GDP per capita and urban density depend on the 

considered regions. The findings show that the effect of GDP per capita is not significant 

in urban areas while being an important source of emission reduction in rural areas. 

Generally, people living in rural areas have not necessarily a higher level of education 

(although ongoing digitalization and increasing home-office opportunities may change 

this situation). However, people might have a deeper relationship with the existing 

natural environment and thus have higher preferences for environmental quality when 

living in rural areas. So, for example, larger amounts of higher income are spent for eco-

friendly products and/or services. Moreover, the inclusion of car ownership potentially 

catches the emission-intensive part of affluence and thus reveals mitigating effects of GDP 

per capita on air pollution. In particular, this holds for rural areas with high private car 

ownership and low public infrastructure standards.  

Additionally, results indicate a U-shaped effect of GDP per capita on NOx emissions 

(only for the full sample). This is in contrast to most of empirical studies following the EKC 

theory (see section 5.2.). Probably, the threshold level for EKC is likely to be out of the 

sample range due to the relative high level of GDP per capita for German counties.   

Further, our findings confirm the negative correlation of urban density and local pollution 

(NOx emissions) found in most empirical studies in this field. It is likely that more densely 

populated regions allow for more competitive public transportation and (due to shorter 

distances) for more non-motorized individual transport.  However, there is also a 

difference regarding a counties’ settlement structure. Thus, a negative environmental 

impact of urban density can be shown for rural but not for urban districts. Probably, the 
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mitigating effects of urban density on local pollutants are limited after passing a certain 

threshold.  

Admittedly, the analysis misses, largely due to a lack of data at district level, explaining 

variables reflecting local weather conditions or public transport services. While public 

transport structures and related activities might partly be captured by urban density 

(even though the quality of services certainly differs among regions with similar density), 

weather conditions remain fully unconsidered. This could be particularly problematic for 

wind conditions (van Pinxteren et al., 2020), which can have a strong impact on local 

emission concentrations. However, it might be negligible if local weather conditions are 

relatively stable over time.  

 

5.6. Concluding remarks 

The paper presents a region-based STIRPAT analysis that investigates anthropogenous 

impacts on local air pollutants (NOx emissions). Unlike most other regional studies, the 

analysis is not limited to selected cities but covers almost all German districts between 

1990 and 2020. Overall, the robust estimations confirm the appropriateness of the 

STIRPAT approach for estimating environmental impacts with respect to a small-

structured regional setting (i.e. NUTS 3).  

The findings, which are, due to existing cointegration dynamics between variables, 

based on long-run estimation techniques largely confirm the findings of related empirical 

studies (e.g., on the role of population, urban density, sectoral composition) but also 

provide new evidence of major driving forces of NOx emissions in a regional perspective. 

In particular we find positive impacts of population, private car ownership and share of 

industrial manufacturing for all regions.  In contrast, GDP per capita and urban density 

show negative impacts on local NOx emissions mostly for rural districts.  

Though results should not be interpreted in a general way but with respect to the 

underlying regional sample, the analysis leads to the following conclusions. 

 With regard to policies fighting local air pollution, the results highlight the crucial role 

of private car ownership. Thus, policies should further strengthen integrated mobility 

concepts with high shares of intermodal transport, easily accessible car sharing services, 

etc. At the same time, mobility patterns can be very persistent and (due to socio-

demographic or topographic conditions) highly dependent on private cars. Thus, uniform 

pricing policies or the call for better public services and more bike lanes could, depending 
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on the regions’ exogenous environment, fall short of the mark and should be 

complemented by fostering the transition to low-emission car technology.  

Further, it can be concluded that heterogeneity of settlement structure is clearly 

relevant for environmental effects and associated health and social impacts. So, 

policymakers should be aware of the fact that the effectiveness of measures depends on 

the regions’ structure. For example, the density of buildings (and people) should be 

increased in rural areas in order to exploit its mitigating effects on local pollutants. In 

contrast to, this cannot be recommended for urban areas. 

Last but not least, (urban) policymakers should be aware of the increasing predictive 

margins regarding the effect of population on air pollutants. How to balance population 

size and density for sustainable development is surely an important area of further 

investigation.  
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6. The effects of technological progress on CO2 emissions: a macroeconomic 
analysis38 

 

6.1. Introduction 

Human-caused CO2 emissions continue to increase steadily. Yearly CO2 emissions more 

than tripled from 1960 to 2018 (figure (1)). In 2018, about 36,500 million of tons of CO2 

emissions went into the air. The major part of these emissions comes from the combustion 

of fossil fuels (United States Environmental Protection Agency, 2019). 

Figure 1: Global CO2 emissions (in millions of tons) 

 
Source: Statista (2020) 

 CO2 emissions caused by humans are only a fraction of the total (natural) CO2 cycle, 

but the additional amount of CO2 emissions humans contribute means that the earth’s 

natural absorption of CO2 emissions is no longer guaranteed (Wayne, 2014). As a result, 

the CO2 concentration in the atmosphere is increasing as never before in history. Today’s 

CO2 concentration is about 400 ppm (parts per million), as opposed to the historically 

natural level of about 270 ppm (Lindner and Schuster, 2019).39 Figure (2) shows the 

 
38 The contribution (German version) is published in Mensch und Technik – Perspektiven einer 
zukunftsfähigen Gesellschaft (Lohwasser, J. (2020). The effects of technological progress on CO2 emissions: 
a macroeconomic analysis. In: Hartard and Schaffer (eds.): Mensch und Technik - Perspektiven einer 
zukunftsfähigen Gesellschaft (2020). Metropolis). 
39 Atmospheric CO2 concentration had not exceeded 300 ppm for the last 650,000 years (Schmidt, 2005). 
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accelerating increase of CO2-concentration since the beginning of the industrial 

revolution.  

Figure 2: CO2 concentration in parts per million (ppm)

 
Source: Mairal (2013) 

CO2 represents the largest share of greenhouse gases and so is seen as major driver of 

climate change. Although the precise progression of climate change is difficult to predict, 

it is clear that it is an existential threat for humans, other life, and the environment. The 

direct impacts of climate change have multiplying indirect effects (e.g., rise in the sea level, 

crop failures, migration flows). The IPCC (Intergovernmental Panel on Climate Change), 

which regularly summarizes the latest scientific findings regarding this issue, states that 

it is still possible to limit global warming to 1.5°C (IPCC, 2018). To achieve this objective, 

CO2 emissions must decrease significantly and approach zero in the mid-run. Therefore, 

transitional strategies that activate mechanisms related to energy and land use, cities, 

infrastructure, and industry are needed (IPCC, 2018). 

Whether CO2 emissions are reduced successfully depends on the choice of solution. 

One high-potential solution is in “combinations of new and already existing technologies” 

(IPCC, 2018, p. 17) and “acceleration of technological innovations (and behavioral 

changes)” (IPCC, 2018, p. 23), which could increase productivity in all sectors and 

decrease resource inputs.  

This paper focuses on whether technological innovations have contributed to 

decreasing CO2 emissions, so it investigates human and technological drivers of CO2 
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emissions. In taking several periods in time into account, the analysis considers the 

potential environmental effects of three historical events. The report “The Limits to 

Growth” (Meadows, 1972) demonstrates for the first time that global actions motivated 

by material growth will be limited at some point (e.g., because of resource availability). 

This early wake-up call could have led to technological innovations that increased 

resource-saving production. As of 1989, with the fall of the Iron Curtain and the related 

acceleration of globalization, the prioritization of resource-saving production potentially 

decreased until the Kyoto-protocol was concluded in 1997 and the goal of reducing CO2 

emissions at the global level was fixed for the first time. This event could be a turning 

point in terms of environmental awareness, and the accompanying technical 

developments could again result in a focus on resource-saving production.  

The remainder of the paper is organized as follows. Section 6.2. provides a brief 

overview of CO2 intensity as a benchmark for resource efficiency and of the rebound effect 

in this context. Section 6.3. follows with a definition of productivity and a presentation of 

the methodological procedure. Section 6.4. shows the results, and Section 6.5. ends the 

paper with concluding remarks. 

6.2. CO2-intensity and the rebound-effect 

CO2 intensity indicates the relationship between technological progress and CO2 

emissions that, is the amount of CO2 emissions per unit produced (in monetary units; 

CO2/GDP).  

Technological progress plays a central role in the efficient use of resources and, so, in 

reducing CO2 intensity. Between 1960 and 2014, an era of rapid increases in productivity, 

CO2 intensity decreased significantly (figure 3). However, the absolute amount of CO2 

emissions increased in spite of a more CO2-efficient production, so the question is whether 

improving CO2 intensity not only reduces CO2 emissions but also fosters the components 

of CO2 intensity (e.g., GDP) such that, in the end, improvements in CO2 intensity turn into 

higher CO2 emissions. 
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Figure 3: CO2 concentration in parts per million (ppm) 

 
Source: Own illustration based on data from the Penn World Table 9.0 (Feenstra et al., 2015) and the Oak 
Ridge National Laboratory (Boden et al., 2015) 

 

As early as 1866, William Stanley Jevons states that efficiency gains in the production 

sector do not necessarily lead to savings in resources. Jevons explains this paradox using 

the example of the steam engine, whose invention led to more resource-saving production 

but also to more coal consumption (Jevons, 1866). Today, the logic of Jevons’ “Paradoxon” 

is known as the rebound effect. Daniel Khazzoom (1980), among others, investigates this 

phenomenon and describes how efficiency gains in the energy sector can increase 

demand for energy. 

Greening et al. (2000) divides the rebound effect into three categories with respect to 

energy consumption (Herring, 2006): 

• Direct (microeconomic) rebound effect: The increase of energy efficiency in one 

sector results in a lower price of the produced good and, thus, to higher demand 

for the good. This mechanism counteracts the potential energy savings. 

• Indirect (microeconomic) rebound effect: The indirect rebound effect derives from 

the direct rebound effect such that the savings that result from the lower price for 

the more energy-efficient good can be spent on other (more energy-intensive) 

goods.  
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• Macroeconomic rebound effect: The individual (especially indirect) rebound 

effects are relatively small, so the macroeconomic rebound effect considers the 

cumulative effects. The lower price of one good because of efficiency gains can 

result in a large global energy demand, and the efficiency gains can stimulate 

economic growth, leading again to increased energy demand. 

In general, one refers to a (direct, indirect or macroeconomic) rebound effect if the 

decrease in resources used is less than the efficiency gains would imply. If higher 

efficiency turns into a higher demand for resources, the so-called backfire phenomenon 

results. For example, if the CO2 intensity of a product decreases by 1 percent, CO2 

emissions per GDP decrease by 1 percent (ceteris paribus); the rebound effect occurs if 

the CO2 emissions decrease less than 1 percent in this case (e.g., the rebound effect is 50 

percent if the CO2 emissions decrease by only 0.5 percent). In the case of the backfire 

phenomenon, the CO2 emissions increase (i.e., the rebound effect > 100 percent). 

Therefore, the rebound effect should be taken into account in analysing the effects on 

resource savings of productivity gains from technological progress. 

In addition to establishing the theoretical foundations of the rebound effect, a range 

of studies estimate the direct and indirect rebound effects.40 However, these studies do 

not use a common methodological approach, so they offer no clear results regarding the 

macroeconomic rebound effect (Herring, 2006). Most studies that evaluate the 

(macroeconomic) rebound effect are regionally, sectorally, or temporally limited, while 

it is the macroeconomic (overall) rebound effect that must be investigated for fighting 

the drivers of climate change, especially in the global context of CO2 emissions. 

6.3. Identifying productivity using the STIRPAT approach 

Plenty of studies investigate the human drivers of CO2 emissions. The STIRPAT 

(Stochastic Impacts by Regression on Population, Affluence and Technology) approach, 

which estimates CO2 elasticities with respect to population, affluence and technology, has 

not been used so far to investigate potential rebound effects even though this approach is 

highly flexible and facilitates global, regional, and temporal assessments (Velez-Henao et 

al., 2019). This section investigates the effects of productivity gains (defined as 

technological progress) on CO2 emissions using the STIRPAT approach and estimates the 

 
40 For example, Sorrell et al. (2009) analyze related studies and conclude that the average direct rebound 
effect is smaller than 30 percent. 
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environmental elasticities, which indicate the percentage change of one variable (e.g., CO2 

emissions) when another variable (e.g., GDP per capita) increases by 1 percent.  

The STIRPAT approach assumes that the most important drivers of CO2 emissions are 

population, affluence (often defined as GDP), and technology (here: productivity). This 

relationship can be expressed by the following identity (based on Ehrlich and Holdren, 

1971):  

 

𝐶𝐶𝐶𝐶2 = 𝑃𝑃 ∗ 𝐺𝐺𝐺𝐺𝑃𝑃
𝑃𝑃
∗ 𝐶𝐶𝐶𝐶2
𝐺𝐺𝐺𝐺𝑃𝑃

,                        (1) 

 

where P is population and GDP is the gross domestic product, so CO2 emissions are the 

product of population, GDP per capita (GDP/P), and CO2 intensity (CO2/GDP). Since 

technological progress is defined as productivity, it is represented by the part of output 

(i.e., CO2 emissions) that is not captured by physical inputs (Comin, 2006), so this paper 

defines productivity as CO2 intensity (CO2/GDP) and as part of GDP per capita (GDP/P).  

CO2 intensity, which states how much CO2 emissions per unit of production are 

emitted, is given by the ratio of CO2 emissions and GDP. Clearly, this kind of productivity—  

named “resource productivity” to distinguish between kinds of productivity—affects CO2 

emissions.41 

GDP per capita measures monetary wealth and is used to approximate economic 

growth. GDP can be expressed by a production function that includes components like 

capital, labor, education level, and productivity. However, this kind of productivity is not 

directly measurable and so is identified here by means of decomposition; that is, 

productivity is measured as the residuum (the amount that is not identified by 

measurable factors like capital or labor) of the overall output. Productivity defined in this 

way does not directly apply to CO2 emissions but to resources in general, but it contributes 

to economic growth and, thus, to CO2 emissions. We name this kind of productivity “factor 

productivity,” as GDP is decomposed into several directly measurable input factors to 

identify the remaining factor productivity. Thus, GDP per capita is expressed by the 

following production function f: 

 

 
41 The term “resource productivity” is commonly used to express how much GDP is obtained per unit of 
resource (e.g., raw material), but this paper uses this term in another way. 
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𝐺𝐺𝐺𝐺𝑃𝑃
𝑃𝑃

=  𝑓𝑓(𝑃𝑃𝑅𝑅,𝐿𝐿(𝑃𝑃,𝐻𝐻),𝐶𝐶)
𝑃𝑃

,                       (2) 

 

where PR is productivity, L is labor (consisting of population (P) and human capital (H)), 

and C is physical capital. 

Next, equation (2) is transformed into a stochastic version to estimate the effects of 

resource productivity and factor productivity on CO2 emissions (cf. Dietz et al., 2007): 

 

(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑡𝑡 = 𝑐𝑐𝑡𝑡 (
𝐺𝐺𝐺𝐺𝑃𝑃
𝑃𝑃

)𝑖𝑖,𝑡𝑡𝛼𝛼  (𝐶𝐶𝐶𝐶2
𝐺𝐺𝐺𝐺𝑃𝑃

)𝑖𝑖,𝑡𝑡
𝛽𝛽  𝑃𝑃𝑖𝑖,𝑡𝑡

𝛾𝛾  𝑢𝑢𝑖𝑖,𝑡𝑡,        (3) 

 

where i is the respective country, t is the point in time, c is the constant and scales the 

model, and u is the error term. α, β, and γ are the respective CO2 elasticities. After taking 

logs and including other variables (to isolate the factor productivity), equation (3) 

becomes the following regression equation:42 

 

𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑡𝑡 = ln 𝑐𝑐𝑡𝑡 +α ln (𝐺𝐺𝐺𝐺𝑃𝑃
𝑃𝑃

)𝑖𝑖,𝑡𝑡 + β ln (𝐶𝐶𝐶𝐶2
𝐺𝐺𝐺𝐺𝑃𝑃

)𝑖𝑖,𝑡𝑡 + 𝛾𝛾 ln(𝑃𝑃)𝑖𝑖,𝑡𝑡 + δ ln(𝐶𝐶)𝑖𝑖,𝑡𝑡 + 𝜀𝜀 ln(𝐻𝐻)𝑖𝑖,𝑡𝑡 +
ln 𝑢𝑢𝑖𝑖,𝑡𝑡.                 (4) 

 

The coefficients γ, δ, and ε are the CO2 elasticities with respect to population, physical 

capital, and human capital, respectively. α is the CO2 elasticity with respect to the resource 

productivity, and β is the CO2 elasticity with respect to the factor productivity (assuming 

including the other factors isolates this effect).43 

6.4. Results 

Table (1) presents the results based on estimating equation (4). Column (1) shows the 

results for the full sample (i.e., 1962-2014), for which the CO2 elasticity with respect to 

the factor productivity (GDP p.c.) is higher than the resource productivity (CO2/GDP). For 

example, the CO2 emissions increase 0.78 percent when factor productivity rises 1 

percent. Because an increase in factor productivity leads to an increase in CO2 emissions, 

the backfire phenomenon shows up (rebound effect > 100 percent). If the resource 

 
42 All variables from equation (4) are from t-1 to t, subtracted for statistical reasons. 
43 The data for GDP per capita, population, physical capital, and human capital are taken from Penn World 
Table 9.0 (Feenstra et al., 2015) and the data for CO2 emissions stem from the Oak Ridge National 
Laboratory (Boden et al., 2015). 
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productivity improves (i.e., decreases 1 percent), then CO2 emissions decrease by 0.76 

percent.44 Again, the result indicates a rebound effect (of about 32%) because the CO2 

emissions decrease by less than 1 percent.45 

 
Table 1: Determinants of CO2 emissions  

 (1) 
1962-2014 

 

(2) 
1972-2014 

 

(3) 
1989-2014 

 

(4) 
1997-2014 

 
Ln GDP p.c. 0.78*** 

(0.06) 
0.77*** 
(0.06) 

0.74*** 
(0.08) 

0.78*** 
(0.08) 

Ln CO2/GDP (-) 0.76*** 
(0.08) 

0.74*** 
(0.09) 

0.70*** 
(0.12) 

0.77*** 
(0.11) 

Ln Population 1.00*** 
(0.12) 

1.00*** 
(0.13) 

1.08*** 
(0.13) 

0.78*** 
(0.13) 

Ln Physical Capital 0.14*** 
(0.05) 

0.14*** 
(0.06) 

         0.10 
(0.08) 

         0.12** 
(0.06) 

Ln Human capital        -0.61 
(0.43) 

        -0.73 
(0.54) 

-1.33*** 
(0.31) 

         1.41 
(0.94) 

observations 4757 4050 2465 1631 
R2 (within) 0.77 0.75 0.72 0.78 

R2 (between) 0.48 0.49 0.55 0.77 
R2 (overall) 0.77 0.74 0.71 0.78 

***p<0.01, **p<0.05, *p<0.1; OLS regression. All variables are first-differenced. Year fixed-effects are 
included. Robust standard errors are in parentheses. Number of countries: = 118. 

CO2 emissions also increase when improvements in both kinds of productivity are 

considered (i.e., backfire) because of higher CO2 elasticity with respect to factor 

productivity (0.78) compared to resource productivity (0.76).46 As table 1 shows, this 

finding remains qualitatively similar for various time periods. For the 1997-2014 period, 

a backfire effect remains (column (4)), while for the 1989-2014 period (column (3)), the 

CO2 elasticity with respect to resource productivity is smaller (0.70) than it was the 1972-

2014 period (0.74; column (2)). The mitigating impact of the resource productivity on CO2 

emissions increases slightly beginning in 1997 (0.77; column (4)).  

The coefficients regarding population and physical capital are positive and significant, 

while the coefficient of human capital is negative and significant for the 1989-2014 

period.  

 
44 Resource productivity increases when CO2/GDP decreases, so this term is marked with (-) in table (1) to 
simplify reading.  
45 Calculation of the rebound effect: (1-0.76)/0.76=0.32. 
46 The results remain qualitatively similar when standardized variables are considered (not shown). 
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6.5. Conclusion 

CO2 emissions must be drastically reduced to address climate change, and technological 

progress is a promising approach to doing so (IPCC, 2018). This paper analyzes the effects 

of technological progress, which is difficult to measure, on CO2 emissions by identifying 

(parts of) technological progress with their productivity improvements and their effects 

on CO2 emissions. The findings lead to several insights.  

At first glance, the ongoing decrease in CO2 intensity indicates environment-friendly 

production, but this development is contrasted with a clear rebound effect: An increase in 

resource productivity reduces CO2 emissions, but not to the extent one could expect, and 

an increase in factor productivity even drives CO2 emissions. 

 In addition, if the macroeconomic rebound effect is defined as the sum of both effects, 

then their sum is more than 100 percent, so the savings potential of resource productivity 

is smaller than the driving force of factor productivity. This finding holds for different 

periods of time. 

Our analysis of different periods in time shows that the resource productivity’s highest 

mitigating effect on CO2 emissions holds for the latest period (i.e., from 1997-2014), and 

the smallest mitigating effect holds for the 1989-2014 period. These findings indicate that 

global developments like globalization and increasing environmental awareness (e.g., the 

Kyoto protocol) influence the effects of technological progress on the environment.  

All in all, our results suggest that technological progress (defined as productivity) is 

probably not the way to limit CO2 emissions. Because of the related rebound effect, it is 

not enough to make production more efficient.  Of course, some technological innovations 

can reduce CO2 emissions in another way, such as technologies that enable the storage of 

CO2 emissions. However, other solutions are needed because of the urgent need for action. 

Moreover, new definitions of growth and affluence are necessary for a real resource-

saving transformation. 
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Appendix 

 
Table A.1.: The Effects of Standardization on Ecological Footprint 

 Unstandardized Standardized Standardized (Partial 
 Ln Footprint (1) 

 

(2) 
 

(3) 
 

(4) 
 

(5) (6) 

Ln 
Population 

0.83*** 
(0.10) 

0.81*** 
(0.10) 

0.13*** 
(0.02) 

0.13*** 
(0.02) 

0.08*** 
(0.01) 

0.07*** 
(0.01) 

Ln GDP p.c. 0.15*** 
(0.03) 

0.14** 
(0.03) 

0.16*** 
(0.03) 

0.16*** 
(0.03) 

0.15*** 
(0.03) 

0.15*** 
(0.03) 

Ln Urban  0.12 
(0.08) 

  0.02 
(0.01) 

  0.02 
(0.01) 

Ln Working  0.76*** 
(0.22) 

 0.05*** 
(0.01) 

 0.04*** 
(0.01) 

Constant - 0.01 
(0.01) 

-0.01 
(0.01) 

-0.17 
(0.11) 

-0.17** 
(0.11) 

-0.17 
(0.11) 

1.49*** 
(0.22) 

R2 (within) 0.07 0.07 0.07 0.07 0.07 0.07 
R2 (between) 0.58 0.63 0.58 0.62 0.58 0.63 
R2 (overall) 0.09 0.09 0.09 0.10 0.09 0.09 

***p<0.01, **p<0.05, *p<0.1; Robust standard errors in parentheses; Year fixed-effects are included; 
Number of countries: 84; Number of observations: 2856; Partial SD: Partial Standard Deviation. 
 
 
 
Table A.2.: Summary Statistics of the Predictor Variables and Variance of Inflation Factor (VIF) 

Variable Variance of 
Inflation Factor 

(VIF) 

Mean Standard 
Deviation 

Partial Standard 
Deviation 

 Two-Predictor-Model 
 

Δ Ln Population 2.96 0.02 0.01 0.01 

Δ Ln GDP p.c. 1.13 0.02 0.08 0.08 

 Full-Model 

Δ Ln Population 3.11 
 

0.02 0.01 0.01 

Δ Ln GDP p.c. 1.13 0.02 0.08 0.08 

Δ Ln Urban 1.75 0.01 0.01 0.01 

Δ Ln Working 1.41 0.01 0.01 0.01 

Number of countries: 84; Number of observations: 2856. 
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Table A.3.: Ecological Elasticities by Using the Pooled Mean Group Estimator 
 Unstandardized Standardized 
 (1) 

Δ Ln CO2 

(2) 
Δ Ln CO2 

LR 
Ln Population 

 
0.21*** 
(0.07) 

 
0.15*** 
(0.05) 

Ln GDP p.c. 0.32*** 
(0.03) 

0.16*** 
(0.01) 

Ln Urban 1.49*** 
(0.11) 

0.35*** 
(0.03) 

Ln Working 1.76*** 
(0.25) 

0.08*** 
(0.01) 

SR 
Speed of 

Adjustment 

 
-0.37*** 
(0.03) 

 
-6.36*** 
(0.51) 

Δ Ln Population -1.02 
(2.63) 

-0.08 
(0.21) 

Δ Ln GDP p.c. 0.20*** 
(0.07) 

0.11*** 
(0.04) 

Δ Ln Urban -5.62 
(4.23) 

-0.50 
(0.37) 

Δ Ln Working 0.30 
(1.83) 

0.01 
(0.06) 

Constant -2.46*** 
(0.23) 

-0.77 
(0.65) 

* p<0.10, ** p<0.05, *** p<0.01; Standard errors in parantheses; 
Number of Countries: 84; Number of Observations: 2856; 
LR: Long-Run, SR: Short-Run. 
 
Table A.4.: 30 Advanced Economies 

Australia Germany Netherlands 

Austria Greece New Zealand 

Belgium Ireland Norway 

Canada Israel Portugal 

Cyprus Italy Slovenia 

Czech Republic Japan Spain 

Denmark Latvia Sweden 

Estonia Lithuania Switzerland 

Finland Luxembourg United Kingdom 

France Malta United States 
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Table A.5.: PVAR Model Results Regarding CO2-emissions and GDP per Capita 

 Dependent variable 
 Δ Ln CO2 Δ Ln GDP p.c. 

L. Δ Ln CO2 0.01 
(0.04) 

0.11*** 
(0.03) 

L. Δ Ln GDP p.c. 0.09 
(0.08) 

0.33*** 
(0.09) 

***p<0.01, **p<0.05, *p<0.1; Robust standard errors in parentheses; Number of 
 countries: 30; Number of observations: 1256. The PVAR includes first-order lags  
according to the Moment Model Selection Criterion (MMSC) and Akaike  
Information Criterion (AIC ). 
 

Table A.6.: PVAR Model Results Regarding Patents and GDP per Capita 

 Dependent variable 
 Δ Ln 

population 
Δ Ln GDP p.c. 

L. Δ Ln population 0.40*** 
(0.13) 

1.17*** 
(0.39) 

L. Δ Ln GDP p.c. -0.01 
(0.01) 

0.37*** 
(0.09) 

***p<0.01, **p<0.05, *p<0.1; Robust standard errors in parentheses; Number of 
 countries: 30; Number of observations: 1256. The PVAR includes first-order lags  
according to the Moment Model Selection Criterion (MMSC) and Akaike  
Information Criterion (AIC ). 
 

Table A.7.: PVAR Model Results Regarding Energy Intensity and GDP per Capita 

 Dependent variable 
 Δ Ln energy 

intensity 
Δ Ln GDP p.c. 

L. Δ Ln energy intensity -0.18*** 
(0.06) 

-0.07 
(0.05) 

L. Δ Ln GDP p.c. -0.22*** 
(0.07) 

0.16** 
(0.07) 

***p<0.01, **p<0.05, *p<0.1; Robust standard errors in parentheses; Number of 
 countries: 30; Number of observations: 626. The PVAR includes first-order lags  
according to the Moment Model Selection Criterion (MMSC) and Akaike  
Information Criterion (AIC ). 
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Table A.8.: Panel Unit Root Tests  

 Hadri-LM-test 

Order of differences: 0 

H0: All panels are 
stationary 

 

IPS-test 

Order of differences: 1 

H0: Panels contain unit 
roots 

 

LLC-test 

Order of differences: 1 

H0: Panels contain unit 
roots 

 
 z-statistic Z-t-tilde-bar-statistic Adjusted-t-statistic 
Ln CO2-Emission 131.91*** -18.94*** -26.89*** 

Ln GDP per capita 18.60*** -17.31*** -23.50*** 

Ln Population 149.18*** -0.90 -5.42*** 

Ln Energy Intensity  -14.04***  

Ln Renewable  -13.36***  

Ln Nuclear  -13.10***  

Ln Urban  -3.64***  

Ln Expectancy  -23.60***  

Ln Globalization  -16.68***  

***p<0.01; LLC-test: Levin-Lin-Chu-test assumes common autoregressive (AR) parameters across panels, 
Akaike Information Criterion is minimized; IPS-test: Im-Pesaran-Shin-test assumes panel-specific AR 
parameters, Akaike Information Criterion is minimized; Hadri-LM-test: Hadri-Lagrange-Multiplier-test. 

 

Table A.9.1.: Results of the Kao- and Pedroni Cointegration Tests (Variation of Variables 1) 

Kao-test 

H0: No cointegration 

Pedroni-test 

H0: No cointegration 

GDP per capita, CO2-emission, Population, Energy Intensity, Urban, Globalization, Life Expectancy (all variables 

logged) 

Modified Dickey-Fuller t 

Dickey-Fuller t  

Augmented Dickey-Fuller t 

 1.27         (0.10) 

 1.30*       (0.09)   

  1.09        (0.14) 

    Modified Phillips-Perron t 

Phillips-Perron t 

Augmented Dickey-Fuller t 

 4.78***   (0.00) 

-2.25**    (0.01) 

-2.87***  (0.00) 

***p<0.01, **p<0.05, *p<0.1; p-value in parantheses; Kao-test assumes a constant cointegration vector; 
Pedroni-test assumes panel-specific AR parameters; Cross-sectional averages are substracted. 
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Table A.9.2.: Results of the Kao- and Pedroni Cointegration Tests (Variation of Variables 2) 

Kao-test 

H0: No cointegration 

Pedroni-test 

H0: No cointegration 

GDP per capita, CO2-emissions, Population, Energy Intensity, Renewable, Nuclear  (all variables logged) 

Modified Dickey-Fuller t 

Dickey-Fuller t  

Augmented Dickey-Fuller t 

 1.39*       (0.08) 

 1.45*       (0.07)   

  0.77        (0.22) 

    Modified Phillips-Perron t 

Phillips-Perron t 

Augmented Dickey-Fuller t 

 2.20**   (0.01) 

-2.80***  (0.00) 

-2.01**    (0.02) 

***p<0.01, **p<0.05, *p<0.1; p-value in parantheses; Kao-test assumes a constant cointegration vector; 
Pedroni-test assumes panel-specific AR parameters; Cross-sectional averages are substracted. 

 

Table A.10.: Determinants of GDP per Capita for the Long-run (FMOLS) 

Ln GDP p.c. (1) 
 

(2) 
 

(3) 
 

Ln CO2 0.37*** 
(0.07) 

0.44*** 
(0.06) 

0.55*** 
(0.06) 

Ln Population -0.34*** 
(0.07) 

-0.42*** 
(0.06) 

-0.51*** 
(0.07) 

Ln Energy 
Intensity 

-0.13 
(0.10) 

-0.20** 
(0.09) 

-0.42*** 
(0.07) 

Ln Urban  -0.09 
(0.18) 

-0.17 
(0.21) 

Ln Globalization  1.68*** 
(0.23) 

1.17*** 
(0.25) 

Ln Expectancy  6.18*** 
(1.58) 

3.75*** 
(1.13) 

Ln Nuclear   0.04** 
(0.02) 

Ln Renewable   0.08*** 
(0.02) 

Constant 6.83*** 
(0.58) 

-27.14*** 
(7.08) 

-14.99** 
(6.09) 

R2  0.53 0.30 0.06 
observations 551 551 263 

countries 30 30 15 
***p<0.01, **p<0.05, *p<0.1; Standard errors in parentheses;  
Year fixed-effects are included. 
 



98 
 

 
 
 
 
Table A.11.: Elasticities by Using the Pooled Mean Group Estimator for Core Variables 

 Δ Ln GDP p.c 

LR 
Ln CO2 

 
0.71*** 
(0.14) 

Ln Population -1.22*** 
(0.05) 

Ln Energy Intensity -1.31*** 
(0.07) 

SR 
Speed of Adjustment 

 
-0.17*** 
(0.04) 

Δ Ln CO2 0.34*** 
(0.07) 

Δ Ln Population -0.18 
(1.41) 

Δ Energy Intensity -0.46*** 
(0.10) 

Constant 1.18*** 
(0.25) 

* p<0.10, ** p<0.05, *** p<0.01; Standard errors in parantheses; 
Number of Countries: 30; Number of Observations: 529; 
LR: Long-Run, SR: Short-Run. 
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