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In this paper, the classical C1-continuous Bogner-Fox-Schmit (BFS) elements are employed to study the
buckling behavior of rectangular plates with multiple cutouts. BFS elements are constructed by taking
the tensor product of cubic Hermitian polynomials, and thus, arguably constitute one of the simplest
approaches to deriving plate/shell elements. The simplicity, however, comes at the cost of requiring reg-
ular/structured discretizations, which significantly restricts their use for applications featuring complex
geometrical details. To circumvent this shortcoming, a combination of a fictitious domain approach, in
particular the finite cell method (FCM), with BFS elements is proposed. Consequently, a typically
geometry-conforming discretization is replaced by a structured Cartesian background mesh in conjunc-
tion with a more involved numerical integration of the system matrices. This opens the path to analyzing
geometrically more complex structures such as plates with one ore more cutouts. Here, the main focus is
on the stability (buckling) analysis of such plates. By means of two numerical examples featuring only
one circular cutout, it is shown that the critical load can be obtained with high accuracy using the pro-
posed approach. In this context, the attained numerical results are compared with high-fidelity solutions
computed using isogeometric analysis (IGA). Moreover, the position of a circular cutout is optimized to
maximize the critical buckling load, before the last example demonstrates the applicability of Cut BFS ele-
ments to more complex cutout geometries.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Thin plates and shells of various shapes are widely used in prac-
tice, and the availability of different approaches for modeling their
mechanical behavior is essential for engineering and research pur-
poses. One of the simplest possibilities to approximate the
deformed shape of a plate was suggested by Bogner, Fox and Sch-
mit in Ref. [1]. Based on the use of a bi-cubic Hermitian approxima-
tion, C1-continuity is ensured between neighboring elements. It is
noteworthy that the approach is also capable of dealing with geo-
metrically nonlinear shell problems [2]. A brief discussion of the
theoretical basis of the Bogner-Fox-Schmit (BFS) finite element
approximation for plates is provided below in Section 2. Being reli-
able and efficient in terms of convergence, this approximation
strategy, however, imposes certain restrictions on the topology of
the finite element mesh, making its use possible only if the geom-
etry of the plate or shell under consideration fulfills some shape
regularity requirements. In the present paper, we suggest extend-
ing the range of applicability of this finite element scheme by
exploiting a fictitious domain approach, in particular the finite cell
method (FCM) [3,4]. Therefore, details concerning the basics of fic-
titious domain methods are provided in Section 4. Releasing the
limitations regarding the geometry of the physical domain, the
combined approach preserves the main benefits of the BFS finite
element scheme, i.e., simplicity of implementation and rapid mesh
convergence. Preliminary investigations on that particular topic
have been conducted at TU Wien by R. Duy in his Master’s thesis
[5]. These studies are extended in the paper at hand. Please note
that a similar idea has been recently published by Burman et al.
[6] in the context of CutFEM. There, the authors demonstrated
the accuracy of cut BFS elements for problems in linear elasticity
and specifically stressed a greatly increased applicability to prob-
lems of practical interest, which might help to re-vitalize this ele-
ment type.

The proposed computational scheme1 has the potential to be
applied to various kinds of analyses, such as linear and nonlinear sta-
tic analyses, dynamics analysis and stability analysis, in particular
the solution of buckling problems. The latter option makes it a per-
authors
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fect candidate for studying the effect of buckling strength increase
observed in plates under compressive or shear loading by introduc-
ing cutouts, as first demonstrated by Gracia and Rammerstorfer in
[7]. To determine critical values of the load factor, i.e., the buckling
load, a generalized eigenvalue problem including the bending stiff-
ness matrix of the plate and the geometric stiffness matrix resulting
from an in-plane pre-stressed state [8,9] is solved; for a brief discus-
sion of this topic see Section 3. Focusing on the task of finding the
optimal location of the cutout, which maximizes the critical load,
we substantially benefit from the key feature of the proposed com-
bined approach: The finite element mesh remains unchanged, while
the position of the cutout is changing. Although, for each new position
of the cutout the intersected finite cells (cut cells) must be deter-
mined anew and, consequently, the integration mesh must be
updated, no direct user intervention is required, making the pro-
posed approach highly automatic. Hence, a computationally expen-
sive re-meshing of the domain as required by conventional finite
element models becomes obsolete.

The outcome of the buckling analysis is validated against
other solutions featuring commercial finite element software
and an isogeometric model in Section 6. A simple convergence
study provides valuable insights regarding the relative accuracy
and reliability of the three considered approaches. We also
demonstrate the results of a simple parameter optimization
regarding the location of the cutout. The computed optimal posi-
tions are in qualitative correspondence to the theoretical predic-
tions provided in Ref. [7]. During the analysis, numerical
difficulties are met for particular discretizations or locations of
the cutout, which are attributed to the appearance of weakly
coupled degrees of freedom (degrees of freedom with small sup-
port), when just a small fraction of a finite element remains in
the physical domain [10]. This issue is particularly pronounced
for the considered optimization problem because of the need
to change the geometry of the physical domain in small steps.
In the present contribution, an engineering-type approach is cho-
sen to circumvent such problems. The stabilization of the pro-
posed method is achieved by choosing a suitable value for the
indicator function based on the material properties of the struc-
ture. This technique works very well for computing the funda-
mental buckling mode, but a different technique is required to
compute higher buckling modes. Here, a filter based on the
physical area of the cut element is suggested (see Appendix A).
Elements featuring small cuts are, thus, discarded from the anal-
ysis which entails a small error, but greatly enhances the numer-
ical robustness of the simulation. More advanced measures,
which are out of the scope of this article would be tailored
pre-conditioning procedures using additive Schwarz methods
[11] or additional stabilization terms such as the Ghost penalty
often used in CutFEM [12]. For the sake of completeness, a con-
vergence analysis for the static plate bending problem is con-
ducted, highlighting the expected optimal convergence of the
cut BFS elements (see Appendix C).

2. Bogner-Fox-Schmit elements

In the context of structural mechanics, we treat the plate as a
material surface with particles representing the cross-sectional
fibers of the three-dimensional structure. Allowing for no shear
deformation, the classical models of Kirchhoff plates and Kirch-
hoff–Love shells are based on a kinematic relation between the
rotation of particles and the deformation of the surface. Although
it is widely accepted that the classical plate model is sufficient
for the majority of engineering applications, modeling strategies
with independent fields of displacements and rotations possess
certain advantages. Thus, the Reissner–Mindlin-Uflyand model
2

[13,14] (also known as first order shear deformation theory; FSDT)
allows approximating the rotation of particles and their translatory
motion independently. Thus, the kinematic boundary conditions
include just the values of the field variables and not their deriva-
tives and, most importantly, the continuity requirements for the
finite element approximation are less restrictive than that of the
classical model. These advantages, however, are often outweighed
by an unnecessary high number of degrees of freedom in the model
along with the need to treat the issue of shear locking [15,16] and
to deal with complicated constitutive laws featuring essentially
more strain measures and stiffness coefficients in comparison to
the classical model.

A finite element approximation for a classical Kirchhoff plate
model must, strictly speaking, kinematically eliminate the trans-
verse shear, which imposes a smoothness condition at the inter-
faces between the elements, i.e., the normal to the deformed
surface of the plate must not exhibit jumps, and the approximation
for the deformed surface must remain C1-continuous. This require-
ment is, however, partially released in various plate finite elements
based on the discrete Kirchhoff theory, see the comprehensive
review provided in Ref. [17]. With deflection and rotation variables
approximated separately, such elements theoretically converge to
the exact solutions of the classical theory. This is due to the fulfill-
ment the ‘‘unshearability” on a part of the geometry (e.g., all
around the boundary) by means of an appropriate choice of the
approximating functions. An extension to curved shells is imple-
mented in commercially available finite element software pack-
ages like ANSYS or Abaqus in form of triangular elements, see
Ref. [18].

Other options are the use of a discontinuous Galerkin method
[19] with jumps of the unit normal vector of the surface across
the element boundaries, which are in turn compensated by bound-
ary integral terms, or by applying the technique of Lagrange mul-
tipliers [20]. This, however, results in an over-constrained
formulation with potential issues regarding the solvability. In the
context of rotation-free formulations, it is also possible to impose
the smoothness conditions just at the nodes of the finite element
mesh [21,22] – the consequence being that only sub-optimal rates
of convergence are attained [9]. Finally, we mention several known
possibilities for constructing a conforming approximation, which
exactly fulfills the C1-continuity condition. The TUBA-family of
finite elements [23,24], which has been known already since the
year 1968, is a universal solution, whose main drawback is its com-
putational inefficiency because of the high number of degrees of
freedom. The idea to construct diverse families of plate and shell
elements based on the isogeometric analysis (IGA) paradigm,
briefly discussed in Section 5, is nowadays very popular. This is
only natural, since the main strength of IGA is providing a straight-
forward path to develop elements with higher order continuity of
the ansatz space [25]. Also subdivision surfaces have been used to
develop fully C1-continuous Kirchhoff–Love shell elements [26]. In
the present paper, however, we focus on arguably one of the sim-
plest variants of finite element approximations providing the nec-
essary C1-continuity of the deformed surface of the plate, which
was suggested in the year 1965 by Bogner, Fox, and Schmit [1].
Specific details of the respective finite element model are discussed
in the remainder of this section, see also Refs. [9,2] for further
details.

The fundamental equations (and also kinematic boundary con-
ditions) of the classical Kirchhoff plate theory have been known for
a long time [27]. They were justified by physical and numerical
experiments, and additionally by asymptotic analysis [28]. The sin-
gle strain measure of a Kirchhoff plate consists in the tensor of cur-
vatures j, which equals the second gradient r of the transverse
deflection w:
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j ¼ rrw: ð1Þ
Introducing the Cartesian coordinates x; y in the plane of the plate
with unit basis vectors ex and ey, we rewrite (1):

j ¼ @2
xwexex þ @x@yw exey þ eyex

� �þ @2
yweyey; @x � @

@x
; @y

� @

@y
: ð2Þ

The strain energy of an elastic plate at bending is a functional over
the field of deflections:

Ub w x; yð Þ½ � ¼
Z
X
UdX: ð3Þ

Here, X is the physical domain of the plate and U is the strain
energy per unit area, which is a quadratic form of the strain
measure:

U ¼ 1
2

Dm trjð Þ2 þ D 1� mð Þtr j � jð Þ
� �

: ð4Þ

The flexural stiffness coefficient D depends on Young’s modulus E,
Poisson’s ratio m and the thickness t of the homogeneous plate:

D ¼ Et3

12 1� m2ð Þ : ð5Þ

For a non-smooth, i.e., C0-continuous, displacement field w x; yð Þ,
whose first order derivatives experience jumps at the boundaries
of the finite elements, the second order derivatives as components
of the curvature tensor in (2) would include Dirac’s delta functions.
This would result in concentrated contributions in the energy inte-
gral (3), which are difficult to account for in a numerical procedure.

Aiming to achieve the necessary inter-element continuity of the
derivatives of w x; yð Þ, we consider a finite element with four nodes
and four degrees of freedom per node, namely

wi; @nwð Þi; @gw
� �

i; @n@gw
� �

i: ð6Þ
Here, i ¼ 1;2;3;4 is the local number of the node, and @n; @g are the
derivatives with respect to the local coordinates n and g of the finite
element, which are bounded by �1 6 n;g 6 1. Not only the slopes
@nw and @gw, but also the mixed second-order derivative @n@gw is
necessary to achieve the desired smoothness. The mapping between
the local and global Cartesian coordinate systems needs to be C1-
continuous across the element boundaries as well, which imposes
certain limitations regarding the topology of the mesh. Exactly four
elements must meet in each node, such that a smooth continuation
of the coordinate lines n ¼ const or g ¼ const from one element to
another can be reached. This is, however, not a problem in the pre-
sent context of the combined approach, as only regular finite ele-
ment meshes are considered by definition. In particular, all finite
elements are squares with the side length h, and thus, the mapping
simplifies to

x ¼ x0 þ hn=2; y ¼ y0 þ hg=2; @x ¼ h=2@n; @y

¼ h=2@g; dX ¼ dxdy ¼ h2
=4dndg: ð7Þ

Ordering the nodes in counter-clockwise fashion and placing the
first node i ¼ 1 at n ¼ g ¼ �1 as depicted in Fig. 1, we write an
approximation within a finite element in the form

w ¼
X4
i¼1

wiSi;1 n1; n2ð Þ þ @nwð ÞiSi;2 n;gð Þ þ @gw
� �

iSi;3 n;gð Þ�
þ @n@gw
� �

iSi;4 n;gð Þ�: ð8Þ
The 16 bi-cubic shape functions Si;j and their first-order derivatives
(slopes) vanish along those edges of the finite element, which do
not include node i. At the node itself, they fulfill the natural
3

conditions Si;1 ¼ 1; @nSi;2 ¼ 1; @gSi;3 ¼ 1; @n@gSi;4 ¼ 1 with all other
values vanishing, which guarantees that the nodal degrees of free-
dom indeed retain their physical meaning. Note that the fact that
the values of the nodal degrees of freedom do not contribute to
the deflections and slopes at the two edges opposing the node at
hand is essential for obtaining the desired degree of the inter-
element continuity.

As visually demonstrated in Fig. 2, the actual shape functions
S1;j for the degrees of freedom of the first node of a finite element
are easily constructed as products of the one-dimensional cubic
Hermitian polynomials

w1 nð Þ ¼ 1
4

1� nð Þ2 2þ nð Þ; w2 nð Þ ¼ 1
4

1� nð Þ2 1þ nð Þ: ð9Þ

These functions possess the following properties:

w1 �1ð Þ;w10 �1ð Þ;w1 1ð Þ;w10 1ð Þ½ �
¼ 1;0;0;0½ �; w2 �1ð Þ;w20 �1ð Þ;w2 1ð Þ;w20 1ð Þ½ � ¼ 0;1;0;0½ �: ð10Þ

For a one-dimensional Euler–Bernoulli beam, w1 nð Þ corresponds to
the shape function connected to the displacement degree of free-
dom at the first node located at n ¼ �1, while w2 nð Þ accounts for
the rotational degree of freedom at the same node. The shape func-
tions related to other nodes are derived by taking the tensor pro-
duct of all four cubic Hermitian polynomials

w1 nð Þ ¼ 1
4 1� nð Þ2 2þ nð Þ; w2 nð Þ ¼ 1

4 1� nð Þ2 1þ nð Þ;
w3 nð Þ ¼ 1

4 1þ nð Þ2 2þ nð Þ; w4 nð Þ ¼ 1
4 1þ nð Þ2 n� 1ð Þ;

ð11Þ

in both local coordinates, i.e., wi nð Þwj gð Þ with i; j ¼ 1;2;3;4. Embed-
ding the local numbering of nodes into the global vector of degrees
of freedom q of the entire model and computing the integral given
in (3) in an element-wise fashion

Ub
e ¼

Z
Xe

UdX ð12Þ

using a Gaussian quadrature rule with 3� 3 integration points, we
obtain the quadratic form of the total strain energy at bending

Ub ¼
X

elements

Ub
e ¼ 1

2
qTKq ð13Þ

with the stiffness matrix K, which determines the elastic properties
of the plate at bending.

3. Stability analysis

In linear elasticity, bending and in-plane (membrane) deforma-
tions of a homogeneous plate are fully decoupled. It is, however,
not necessary to use the entire geometrically nonlinear formula-
tion of the shell theory [29] to obtain the critical membrane stress
state, at which the planar configuration becomes unstable. At con-
servative loading, buckling is associated with the bifurcation of the
equilibrium path, such that small bending becomes possible in the
absence of transverse loading, i.e., the solution becomes non-
unique, and the transverse stiffness of the structure vanishes.

Small bending of a plate under the simultaneous action of a
transverse distributed force f x; yð Þ and the tensor of membrane
stress resultants N is governed by the following equation for the
transverse deflection w:

DDDw�r � N � rwð Þ ¼ f : ð14Þ
Being referred to as the von Kármán plate theory [30], this equation
follows from the incremental theory of shells, in which the generally
nonlinear equations are linearized, and thus, allows us to consider a
small deformation superimposed upon a finite one [9, p. 143]. Inter-
estingly, Timoshenko and Woinowsky-Krieger [27, p. 380] mention,



Fig. 1. Square BFS finite element with local numbering of nodes and nodal degrees of freedom, embedded both in the global coordinate system x; y and the local one n;g.

Fig. 2. Bi-cubic shape functions of the first node of a BFS finite element.
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that this equation in the coordinate form has been derived by Saint–
Venant in his translation of the original work by Alfred Clebsch [31].
For thin plates, the respective in-plane deformation in the critical
state is small and can be ignored, so that the differential operators
r and D � r � r are considered with respect to the coordinates of
the undeformed state x; y as in the linear theory of elasticity. Note,
that the in-plane stress resultants N are considered for a through-
the-thickness element of a plate, i.e., they are the integrals of the
three-dimensional stresses over the thickness and hence, feature
the unit force per length N=m½ �. The in-plane loading is critical and
leads to buckling, if the corresponding stress field N, which follows
as a solution of the plane problem of elasticity, allows for a non-
trivial solution w – 0 of the homogeneous version of (14), i.e., in
4

the absence of transverse forces (f ¼ 0). The problemmust certainly
be considered for particular boundary conditions, both for the in-
plane stress and for the transverse bending.

Energy considerations play an important role in the theory of
elastic stability. The energy of a plate with membrane stresses,
which is associated with a given deflection field w x; yð Þ, is known
to be [32,33]

Utotal w½ � ¼ Ub w½ � þ Um w½ � þ Uext w½ �: ð15Þ
While the first term, which arises because of the bending stiffness of
the plate, shall be computed according to (3) (or (13) in the dis-
cretized model), the contribution caused by the in-plane loading
takes the following form
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Um ¼ 1
2

Z
X
rw � N � rwdX

¼ 1
2

Z
X

Nx @xwð Þ2 þ Ny @yw
� �2 þ 2Nxy @xw@yw

� �
dX: ð16Þ

The potential energy of the external forces has a simple expression

Uext ¼ �
Z
X
fwdX: ð17Þ

Indeed, the differential equation provided by (14) is a Euler-
Lagrange equation for the variational formulation

dUtotal ¼ 0; ð18Þ
which means that the total strain energy is at minimum in the state
of static equilibrium. The basic idea behind the linear buckling anal-
ysis is, that the external loading in the plane of the plate is consid-
ered being proportional to a single load factor k [34]. Because of the
linearity, the membrane stress resultants are also proportional to
this factor:

N ¼ k~N: ð19Þ

Consequently, the distribution of the membrane stress resultants ~N,
which corresponds to the unit value of the load factor, shall be
determined once in at beginning of the procedure. Substituting
(19) into the partial differential Eq. (14) with f ¼ 0 and taking speci-
fic boundary conditions for w into account, we obtain an eigenvalue
problem for k. Thus, we can determine the minimal value of the
force factor, at which the homogeneous boundary value problem
allows for a non-trivial solutionw – 0. This is the critical load factor
k�. Note that the planar configuration remains stable as long as
k < k�, and becomes unstable afterwards.

In the numerical approach, we deal with the weak form of the
problem, which features the energy expressions given in (15).
The contribution due to the membrane stress resultants are also
scaled with the load factor:

Um ¼ k~Um; ~Um ¼ 1
2

Z
X
rw � ~N � rwdX: ð20Þ

In the discretized form, the integral results in a quadratic form for
the degrees of freedom of the finite element model

~Um ¼ 1
2
qTKNq ð21Þ

with KN being the geometric stiffness matrix [34], which is com-
puted once for the unit value of the load factor. In the absence of
external loading, the total energy of the plate – see (15) – becomes

Utotal ¼ 1
2
qT K þ kKNð Þq: ð22Þ

The stationarity condition for the static equilibrium, given by (18),
results in a homogeneous algebraic system of equations

K þ kKNð Þq ¼ 0; ð23Þ
which is only solvable if k belongs to the spectrum of the general-
ized eigenvalue problem with the conventional bending stiffness
matrix K and the geometric stiffness matrix KN . We are of course
interested in the minimal value k�, at which the discretized model
allows for a non-trivial solution, i.e., q – 0 when det K þ kKNð Þ ¼ 0.
Note that the matrix K þ kKN is closely related to the tangent stiff-
ness matrix of the fully geometrically nonlinear formulation, see
Ref. [8].

It needs to be mentioned, that it is very convenient to use the
same discretization for both the bending problem and the plane
stress problem. The latter problem is solved at the preliminary
stage of the analysis (see the simulation workflow provided in Sec-
5

tion 6.1). To this end, we discretize the two components of the in-
plane displacement field

u ¼ uex þ v ey ð24Þ
using the same bi-cubic shape functions as given in (8) and thus,
introducing eight nodal degrees of freedom

ui; v i; @nuð Þi; @nvð Þi; @gu
� �

i; @gv
� �

i; @n@gu
� �

i; @n@gv
� �

i:

ð25Þ
The linear in-plane problem is then solved for the unit value of the
load factor k ¼ 1, which provides the stress resultants ~N directly at
the integration points of the mesh (which are in general deter-
mined by the configuration of the finite cells). This is very conve-
nient, since these values are simply stored and later re-used for
computing the integral in (20) and the geometric stiffness matrix
KN . Obviously, the fictitious domain concept, as discussed in Sec-
tion 4, is also applied for solving the in-plane problem. Although
inter-element C1-continuity is not required for solving the plane
stress problem of elasticity, the approach is advantageous for three
reasons: There are the possibilities to (i) re-use parts of the simu-
lation code, (ii) evaluate ~N with highest possible accuracy right at
the integration points of the plate model and, (iii) obtain a high
rate of mesh convergence resulting from the use of bi-cubic shape
functions.
4. Fictitious domain concept

As discussed in Section 2, BFS elements suffer from the fact that
they require a regular topology of the mesh to ensure C1-continuity
between neighboring elements. This is a severe limitation regard-
ing the geometry of the physical domain, which restricts the use
of this type of plate elements for problems of practical interest.
On the other hand, we should also keep in mind that the formula-
tion of BFS elements is very simple and the convergence properties
are generally acknowledged to be excellent, surpassing most other
formulations. Consequently, we can state with good reason that
BFS elements constitute a very efficient approach to handle thin
plate/shell problems [8, p. 151ff.]. Provided that the geometry
meets the requirements mentioned before, we note that the theo-
retically expected convergence rates are attained in numerical
examples. In order to extend the range of applicability of BFS ele-
ments and thus, to re-vitalize them, we propose a combination of
BFS elements with a fictitious domain approach. This overcomes
the regular mesh issue as fictitious domain methods commonly
exploit Cartesian meshes to spatially discretize a structure. Thus,
we can leverage the exceptional accuracy and simplicity of BFS ele-
ments, while being able to take into account arbitrarily complex
geometries in an automatic manner without any user intervention.

The fundamental idea of fictitious domain methods, and the
finite cell method (FCM) in particular, is to solve the governing
equations on an extended domain Xex, which replaces the original
physical domain Xphys for the numerical analysis. While Xphys can
exhibit an arbitrarily complex shape, Xex is typically of regular
shape (cf. Fig. 3). Note that the following explanations are strictly
limited to void regions within the extended domain. For multi-
material problems more advanced solution strategies are required
and a local enrichment of the ansatz space is inevitable [35]. If only
voids are considered, the extended domain Xex is the union of the
physical domain Xphys and the so-called fictitious domain Xfict.
From a numerical point of view, it is clear that the additional ficti-
tious domain should not add any stiffness to the system in order to
obtain the same solution as for the initial problem. To this end, an
indicator function a xð Þ is introduced, which takes the value of 1 in
the physical domain, while it is equal to 0 in the fictitious domain



Fig. 3. Fundamental idea of fictitious domain methods (Cartesian mesh) in comparison to a typical finite element discretization (body-fitted mesh).

S. Eisenträger, J. Kiendl, G. Michaloudis et al. Computers and Structures 270 (2022) 106854
a xð Þ ¼ 1:0; 8 x 2 Xphys

0:0; 8 x 2 Xfict

�
ð26Þ

All volume integrals that arise in the weak form of the governing
equations (e.g., to compute the stiffness matrix, body forces, etc.)
are now multiplied with a xð Þ
Z
Xphys

P xð ÞdX ¼
Z
Xex
a xð ÞP xð ÞdX: ð27Þ

The immediate effect of the indicator function on the solution of
(27) is that, while we have a regular integration domain, a discon-
tinuous integrand is introduced for all elements that are cut by
the physical boundary. These elements, to better distinguish them
from conventional finite elements, are called cut cells (see Fig. 4)
and require a special treatment. It is well-known that the standard
Gaussian quadrature rules that are used in FEM do not cope well
with discontinuous integrands and therefore, a special integration
strategy must be devised. In the context of FCM, a spacetree based
decomposition of the integration domain is often favored due to its
robustness. Other approaches include the derivation of special inte-
gration rules for cut cells by means of moment fitting [36], the
application of the divergence theorem to reduce the dimensionality
of the problem [37], the generation of a geometry-aligned integra-
tion mesh [38,39], etc. Thus, it can be stated that the meshing prob-
lem is avoided by taking more sophisticated integration schemes
into account. For a comprehensive review on different integration
approaches, the reader is referred to Refs. [40,41]. For an in-depth
discussion of the FCM and its applications the review articles by
Schillinger and co-workers [42,43] are recommended, while a
mathematical analysis of the convergence properties is provided
in Ref. [44]. For a more comprehensive presentation of BFS elements
in combination with FCM in terms of its numerical implementation,
the reader is referred to Ref. [5].
Fig. 4. Physical, fictitious, and cut cells in th
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At this point, we only sketch the basic idea of the standard
quadtree-based sub-cell integration technique as discussed in
Ref. [41], which is implemented for the cut BFS elements. Since
Gaussian quadrature rules are not efficient when handling discon-
tinuous integrands, the domain must be subdivided recursively to
reduce the integration error. This approach is illustrated in Fig. 5
for the cut cell highlighted in Fig. 4. The quadtree decomposition
is executed for different refinement levels k. We clearly observe
that the smallest cells (leaf cells) are accumulated around the
boundary of the physical domain such that a composed Gaussian
integration rule yields accurate results. Each of the sub-cells
(which are strictly used for integration purposes) features its
own coordinate system r; sð Þ and is fitted with p þ 1ð Þ2 integration
points, where p is the polynomial degree of the shape functions
(p ¼ 3). Thus, (27) is re-written on an element-level as

Z
Xe

a xð ÞP xð ÞdX ¼
Xnsc
i¼1

XnIP
j¼1

a x nij rj
� �� �� �

P x nij rj
� �� �� �

wij; ð28Þ

where r is the vector of the sub-cell coordinate system, n denotes
the vector of the element coordinate system, and x stands for the
vector of global coordinates (see Fig. 6). The integration weight wij

has to be distinguished from the weight of the standard Gaussian
quadrature rules, as it is composed of integration weight multiplied
with the determinants of the Jacobian matrices for the two map-
pings from the sub-cell to the element and finally to the global
space. More details on the implementation and accuracy of the inte-
gration technique are given in Ref. [41], while a mathematically
concise convergence proof is provided in Ref. [44], demonstrating
that the theoretically optimal rate is attained if the numerical inte-
gration is accurate enough.

In a nutshell, the idea of decoupling the geometry approxima-
tion from the spatial discretization provides a path to extend the
possible range of applications for BFS elements. By exploiting the
e global and local coordinate systems.



Fig. 5. Construction of the element-level integration grid based on the quadtree decomposition of a cut element. Three different refinement levels k ¼ 1;3;5 are depicted.

Fig. 6. Illustration of the different coordinate spaces used in the quadtree-based numerical integration.
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fictitious domain concept, the need for a regular mesh does not
pose any limitation, but is a requirement to circumvent the mesh-
ing problem. We will make good use of this new freedom and
apply it to the buckling analysis of thin plates. Here, the excellent
numerical properties of BFS elements in combination with the flex-
ibility of fictitious domain methods provides a neat way to analyse
different plate configurations.
5. Isogeometric analysis

Isogeometric analysis (IGA) is a relatively new paradigm in
computational mechanics, featuring higher order continuity prop-
erties by adopting non-uniform rational B-splines (NURBS) as basis
functions [45]. Thus, IGA enables efficient discretizations of Kirch-
hoff plates and Kirchhoff–Love shells [46], and is used in this paper
for computing reference solutions in Section 6. We deploy an iso-
geometric Kirchhoff–Love shell element [25,47], which contains
the Kirchhoff plate formulation as a special case, and is also cap-
able of calculating the geometric stiffness matrix required for
buckling analysis.

Despite the high flexibility of NURBS in geometric modeling, the
geometries considered in Section 6 pose a challenge when it comes
to describing them by means of a fully C1-continuous parametriza-
tion. In CAD modeling, such geometries would typically be
obtained via trimming, which, for analysis purposes, requires spe-
cial integration rules for trimmed elements, similar to the case of
cut elements discussed in Section 4. Several approaches have been
proposed for the integration of trimmed elements (see, e.g., Refs.
[48–51]), among them also the FCM, discussed briefly in Section 4.
Alternatively, such geometries can be modeled relatively easily by
using multiple patches or single patches containing lines of C0-
continuity in the parametrization. In these cases, the required C1-
continuity needs to be enforced through additional terms, e.g., by
penalty [52,53], Nitsche [54,51], or mortar [55,56] methods, which,
however, might introduce an additional error in the solution. For
the scope of this paper, we developed a fully C1-continuous single
7

patch modeling approach for square plates with circular cutouts.
The approach is parametrized such that arbitrary variations of
the geometry (plate dimensions, cutout radius, and location) can
be taken into account. The detailed procedure is presented in
Appendix B.
6. Numerical examples

The numerical behavior of the proposed cut BFS element in
application to buckling analysis is investigated in detail in this sec-
tion. Note that for the sake of completeness, a convergence analysis
for a static plate bending problem has been conducted as well and
is discussed in Appendix C. The numerical results highlight that
optimal rates of convergence are achievable by employing the pro-
posed cut BFS elements. However, before we delve into the topic of
buckling analysis a few comments regarding the numerical imple-
mentation to guarantee a robust solution of the eigenvalue prob-
lem are in order (see Section 6.1). Thereafter, the numerical
properties of cut BFS elements are comprehensively assessed. To
this end, a square plate with a circular cutout is studied under
two different load cases (see Section 6.2), i.e., uniaxial compression
and pure shear. The results obtained by employing cut BFS ele-
ments are verified against numerical overkill solutions that have
been generated using the commercial software Abaqus and an
in-house IGA model with exact geometry description (polynomial
degrees: p ¼ q ¼ 6, number of degrees of freedom: 220;698; see
Appendix B). In the next step, the maximal buckling load for a
square plate is computed depending on the location of a circular
cutout with fixed radius (see Section 6.3). Here, it is shown that
an increase of the critical load can be achieved despite introducing
a hole in the structure. Similar findings have also been reported in
Refs. [57,7]. This result is obviously also influenced by the size of
the void region with respect to the size of the plate under investi-
gation. As a last example, a rectangular plate with multiple cutouts
(see Section 6.4) is analyzed to demonstrate the capabilities of the
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proposed methodology for analyzing geometrically more complex
structures.
6.1. Implementational aspects

Before discussing the numerical results, a few comments
regarding the implementation and solution of the eigenvalue prob-
lem for the buckling load are necessary. The overall simulation
workflow consists of the following five steps:

1. The finite element mesh and the spacetree decomposition of the
integration domain for solving both the plane stress and the
plate buckling problems are initialized.

2. Solving the linear plane stress problem of elasticity, we obtain
the in-plane nodal degrees of freedom as in (25). The elastic
response to the unit load provides the distribution of the stress
resultants ~N. Note that the distortion of the physical domain
because of the in-plane displacement field u is neglected in
the linear buckling analysis [34].

3. The geometric stiffness matrix KN follows as the quadratic formeUm is assembled according to (20). The argument of the quad-
ratic form q comprises the nodal degrees of freedom of the plate
problem as introduced in (6).

4. The elastic stiffness matrix of the plate K is obtained by assem-

bling the strain energy of bending of the plate model Ub accord-
ing to (12).

5. The critical load factor is sought as the minimal eigenvalue k� of
the generalized eigenvalue problem for the matrices K and KN .
At k ¼ k�, the homogeneous equilibrium problem given by
(23) allows for a non-trivial solution q�, which determines the
first buckling mode.

The examples considered below feature simply-supported
edges in the plate buckling problem. These kinematic boundary
conditions require constraining two degrees of freedom of the
nodes on the edges: either wi and @nwð Þi on the horizontal edges,
which are (for regular Cartesian meshes) identical to the coordi-
nate lines of the local coordinate n, or wi and @gw

� �
i on the vertical

edges. This guarantees fulfilling the physical boundary condition
w ¼ 0 along the entire edge and not only in the nodes. In case of
a clamped edge, the vanishing slope in the direction normal to
the boundary would consistently be achieved by constraining all
four degrees of freedom of the respective nodes. In the framework
of the fictitious domain approaches, Nitsche’s method [58–60] is
employed to handle kinematic boundary conditions (in a weak
sense) at the inclined or curved edges, not coinciding with the
boundaries of the elements; a specific implementation and valida-
tion of this approach for BFS elements is a subject of future
research.

Finally, we also shortly comment on the specific issue of the fic-
titious domain method, which becomes particularly pronounced
during eigenvalue analyses when solving buckling or eigenfre-
quency problems. As mentioned before in Section 1, depending
on the position of the void in the mesh, cut elements can be gener-
ated that contribute only a very small amount to the physical
domain. Thus, some degrees of freedom exhibit only a small sup-
port, which leads to conditioning problems and also nonphysical
results in the analysis. Possible solutions to this problem consist
in (i) either using additional stabilization terms [6] or (ii) employ-
ing tailored pre-conditioners [11]. However, none of these tech-
niques have been tested and analysed for eigenvalue problems
yet and therefore, a simple, engineering-type solution is proposed
in this contribution.
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First, let us recall the definition of the indicator function a xð Þ
provided by (26), which is given at this point in a slightly changed
version:

a xð Þ ¼ 1:0; 8 x 2 Xphys

a0; 8 x 2 Xfict

�
ð29Þ

Instead of choosing a value of exactly 0 for points located in the fic-
titious domain, it is customary to use a very small value, i.e.,
a0 ¼ 10�c, where c commonly assumes values between 4 and 12.
Thus, the effect of the fictitious on the physical domain is limited,
while still guaranteeing accurate results without compromising
the robustness of the method. In our implementation, we select a
value based on the material properties, similar to the suggestion
put forward in Ref. [58],

c ¼ log10
E

2 1þ mð Þ 1� 2mð Þ eps

� �	 

¼ log10 kL þ lL

� �
eps

� �� �
; ð30Þ

where eps denotes machine precision (i.e.,
2�52 � 2:22045� 10�16), while kL and lL are Lamé’s constants.
When choosing steel as the plate’s material a c-value of 4 is
obtained. This value is especially critical for eigenvalue analyses
to avoid spurious mode shapes in the solution. In a nutshell, it
can be stated that the smaller the absolute value of c, the smaller
is the number of nonphysical results (see Fig. A.1). We need to
stress at this point, by applying (30) to select a suitable value for
a0, the minimal buckling load is accurately predicted for all exam-
ples studied in this article. However, if higher order buckling modes
are also of interest, i.e., we want to compute the first n buckling
modes, spurious results might still be part of the solution spectrum
despite the increased value of c. Therefore, additional filtering tech-
niques must be applied to obtain accurate and reliable results, see
Appendix A for further details.

6.2. Buckling analysis of a square plate with a circular cutout

The first numerical example is used to highlight the conver-
gence properties of the proposed element and to verify its accuracy
in comparison with solutions obtained from Abaqus and IGA. To
this end, a simple square plate including a circular cutout, as sug-
gested in Refs. [7,5], is selected. The plate has an edge length of
lx ¼ ly ¼ 1 m and a thickness of t ¼ 1 mm. For the analysis, two
load cases (LC) have been defined to compute the critical load,
i.e., uniaxial compression (LC1) and pure shear loading (LC2); the
external loads (unit force per length; N=m½ �) are applied along
the edges of the structure as indicated in Fig. 7. A homogeneous
and isotropic (linear-elastic) material behaviour is assumed for
the remainder of this section and the material properties of steel
are employed, i.e., E ¼ 210 GPa and m ¼ 0:3.

In order to account for the circular hole, the indicator function is
defined by means of an implicit function similar to the level-set
method [61]

a xð Þ ¼ 1:0; ifL xð Þ P 0
0:0; ifL xð Þ < 0

�
; with L xð Þ ¼ x� xcð Þ2 þ y� ycð Þ2 � r2;

ð31Þ
where xc; ycð Þ denotes the position of the center of the circle and r
its radius. For the following investigations, two different set ups
have been selected:

	 Plate 1 (P1): xc ¼ 0:5 m, yc ¼ 0:5 m, r ¼ 0:15 m,
	 Plate 2 (P2): xc ¼ 0:9 m, yc ¼ 0:5 m, r ¼ 0:055 m.



2 Remark: The analytical solutions, as detailed in this section, are given in terms of
surface loads (pressure loads or surface tractions). However, for the sake of clarity of
the presentation, we will provide the load multiplier k for the subsequent analyses —
as defined in (23) — instead of the values of the applied surface loads.

(a) Uniaxial compression (b) Pure shear

Fig. 7. Simply-supported square plate (SSSS) with circular cutout subjected to different in-plane load cases.

S. Eisenträger, J. Kiendl, G. Michaloudis et al. Computers and Structures 270 (2022) 106854
In terms of kinematic constraints, both in-plane displacement
degrees of freedom u and v are fixed at the node at (0,0), while only
the displacement in y-direction is restricted at the node at (lx,0).
This is done to avoid rigid body motions of the plate and thus,
guarantee the uniqueness of the solution of the plane stress prob-
lem in the absence of kinematic boundary conditions. As a conse-
quence, three degrees of freedom are deleted from the system.
Considering the kinematic boundary conditions for the plate prob-
lem, we constrain the out-of-plane displacements for all four
edges. Additionally, the first derivatives parallel to the plate edges
are fixed, i.e., the first derivative with respect to y is constrained for
the two vertical edges, while the the first derivative with respect to
x is locked for the two horizontal edges. These boundary conditions
correspond to a simply-supported boundary condition on all four
edges of the plate (SSSS).

In order to assess whether the critical load is in- or decreased
due to the introduced cutout [7], we need to determine the buck-
ling load for an intact plate first. In the case of uniaxial compres-
sion (LC1), an analytical solution for a simply-supported plate is
readily available [62]

rcr ¼ Dp2

t l2y

mly
lx

þ n2lx
mly

� �2

; ð32Þ

where m and n denote the number of half-waves of buckling in the
x- and y-directions respectively. For a square plate (lx ¼ ly) and the
smallest buckling load (n ¼ m ¼ 1) (32) simplifies to

rcr ¼ 4
Dp2

t l2x
: ð33Þ

Using (33), the critical load, which is given as a pressure load, is
computed as 759.2kN=m2 for our specific configuration. When a
pure shear stress state is induced, the critical load cannot be deter-
mined analytically and therefore, we have to fall back on empirical
formulae, which are based on experimental data. Thus the critical
load under pure shear can be determined as [63]

scr ¼ KeE
t
b

� �2

; ð34Þ

where Ke depends on the support of the plate edges and b is the
length of the shorter side. For a Poisson’s ratio of m ¼ 0:3 and
simply-supported edges, the value of Ke is determined as approxi-
mately 8.43 [64] and thus, (34) yields a critical load, which is given
as a surface traction, of 1769.7kN=m2. Keep in mind, the provided
critical pressure and surface traction values rcr and scr need to be
multiplied by the thickness of the plate t to obtain the equivalent
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normal load N or shear load V, respectively, which are defined as
force per unit edge length and thus have the dimension of N=m½ �.
6.2.1. Uniaxial compression
The first load case (LC1), constitutes the buckling analysis of a

simply-supported plate under uniaxial compression with a circular
cutout. The convergence behaviour is assessed with respect to a
high-fidelity solution obtained using IGA. The IGA reference value
for the load multiplier2 related to the geometrical set-up P1 is
612.43805, while it is 765.13849 for P2. These results already indi-
cate that there are configurations, where the fundamental buckling
load is slightly increased (e.g., P2) despite the circular hole, while
in other examples (e.g., P1) significant reductions in the load bearing
capacity before buckling are observed.

In Fig. 8, the convergence of the fundamental buckling load with
respect to the IGA reference solution is depicted. It can be observed
that the results are almost independent of the subcell refinement
level for k P 2. In order to assess the convergence behaviour, an
h-extension is performed, where the square plate under investiga-
tion is subdivided into ne � ne elements, with
ne 2 4;8;16; . . . ;1024f g. Thus, an error of well below 10�4% in
the critical load can be achieved for both examples. At a later point
(even finer spatial discretization), the integration error starts to
dominate the overall numerical error in the model and therefore,
an error plateau is typically reached as discussed in Ref. [44]. Note
that these results have been obtained without applying the filter-
ing techniques discussed in Appendix A. In addition to the conver-
gence study using the proposed cut BFS elements, we also included
the results obtained with the commercial FEA software Abaqus.
Here, quadrilateral S8R5 elements, have been employed, which
are 8-node thin shell elements featuring 5 degrees of freedom
per node, where a reduced integration technique is applied to com-
pute the stiffness matrix. The numerical results obtained by utiliz-
ing Abaqus show a peculiar behavior in that a divergence is
observed for very fine meshes. That is to say, by increasing the
number of degrees of freedom the Abaqus model seems to get
softer and thus, the computed buckling load decreases. This is
related to the fact that the S8R5 elements are not a priori C1-
continuous along their edges, which is enforced by additional pen-
alty terms. Thus, no convergence in a strictly mathematical sense



(a) Uniaxial compression (LC1) — P1 (b) Uniaxial compression (LC1) — P2

Fig. 8. Error in the critical load for a square plate with a circular cutout under uniaxial compression.
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can be achieved. However, the obtained accuracy is sufficient for
engineering applications.
6.2.2. Pure shear
The second load case (LC2), constitutes the buckling analysis of

a simply-supported plate under pure shear loading. As in the pre-
vious section, the convergence is evaluated based on an IGA refer-
ence solution. The IGA reference values of the load multiplier
related to plates P1 and P2 are 1035.4682 and 1783.3341, respec-
tively. Here, a similar behavior compared to the uniaxial compres-
sion case is observed. Note that again the buckling load is increased
for configuration P2, while it is drastically reduced for the first set-
up P1.

In Fig. 9, the convergence of the fundamental buckling load with
respect to the IGA reference solution is depicted. It can be observed
that the results are virtually independent of the subcell refinement
level for k P 2. In order to assess the convergence behavior, an h-
extension is performed, where the square plate under investigation
is subdivided into ne � ne elements, with ne 2 4;8;16; . . . ;1024f g.
Thus, an error well below 10�3% in the critical load can be achieved
for both examples. In contrast to the uniaxial compression case, a
smooth and monotonic convergence is observed. However, the
attainable errors are slightly higher. A somewhat surprising find-
ing, which is not fully understood and only occurs for this config-
uration, is that the most accurate results are obtained without
applying a special integration technique, i.e., for k ¼ 0. Due to
the generally oscillatory convergence of the results for k ¼ 0, one
possible conjecture is that for some spatial discretizations the
numerical solution is getting close to the exact one just by coinci-
dence. However, additional investigations are needed to clarify this
issue. Again, these results have been obtained without applying the
filtering technique discussed in Appendix A. The conclusions that
have been drawn regarding the use of Abaqus’ S8R5 element are
confirmed also for the pure shear case, as the solution again
diverges for fine spatial discretizations.
3 Remark: Sensor holes are infinitesimally small virtual cutouts with circular shape.
6.3. Maximal buckling load of a square plate with a circular cutout

In a recent article by Gracia and Rammerstorfer [7], it has been
shown how the position of cutouts influences the buckling
strength. An increase in the buckling load can be achieved by intro-
10
ducing holes in certain regions of the plate. These findings are
related to the concept of ‘‘sensor holes”3 and should also be verified
for cutouts of finite dimensions. To this end, a simple brute force
optimization approach is utilized to determine the maximum buck-
ling load in a square plate with a circular cutout. The obtained
results are then qualitatively compared to the solution provided by
Gracia and Rammerstorfer. Since we want to determine the regions,
in which cutouts are ideally located, it does not make too much
sense to apply advanced optimization techniques. In this case, we
would obtain the maximum or minimum critical loads, but could
not identify regions of increased or decreased values with respect
to the intact plate. However, we are going to exploit existing symme-
try properties of the problem to minimize the computational effort.
To this end, only the locations marked in red in Fig. 10 are taken into
account. Again, we want to stress that to obtain the fundamental
buckling load for this example no filtering techniques, as discussed
in Appendix A, are required. Keep in mind that these techniques
are pre-dominantly needed for reliably calculating higher order
modes.

For the subsequent analyses, the radius is set to either
r1 ¼ 0:055 m or r2 ¼ 0:15 m (identical to the previous examples)
and the center of the circle can be located in the regions
A1 ¼ 0:1;0:9½ � � 0:1;0:9½ � or A2 ¼ 0:2;0:8½ � � 0:2;0:8½ � to allow
for a minimal distance to the edge of the plate. Here, it is assumed
that the edge will not be cut such that the outer boundary stays
intact. As in the previous section, we will study both load cases,
i.e., uniaxial compression and pure shear. Based on the findings
discussed in Section 6.2, we choose a sub-cell refinement level
k ¼ 2 for both load cases. Regarding the spatial discretization,
the number of elements per coordinate direction is chosen as
ncomp
e ¼ 16 for the uniaxial compression case, while it is

nshear
e ¼ 64 for the pure shear loading. According to the conver-

gence results presented in Figs. 8 and 9, these configurations yield
errors of approximately 0:1% with respect to the IGA reference
solution. For visualization purposes, the obtained numerical results
are smoothed using a Savitzky-Golay filter [65] of order 3 and
frame length 13 (Matlab: sgolayfilt) to avoid effects introduced
by inevitable numerical noise present in the solution.



(a) Pure shear (LC2) — P1 (b) Pure shear (LC2) — P2

Fig. 9. Error in the critical load for a square plate with a circular cutout under pure shear.

Fig. 10. Center locations for the numerical analysis of the maximum buckling load of the square plate with circular cutout. Red markers represent the actual simulations that
have been executed. The results for the blue markers are obtained by simple transformations (mirroring, rotations).
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It is worthwhile to remark that due to the application of a ficti-
tious domain approach, there is no need for expansive re-meshing
procedures as the analysis mesh is fixed. In each analysis step, only
the identification of cut and fictitious elements must be performed
repeatedly, which is a very robust and automated process. There-
after, the stiffness matrices associated with cut elements are re-
calculated. Since all uncut elements are of the same shape and have
the same material properties, it suffices to compute the elemental
matrices for just one finite element and copy the results into the
global matrices according to the connectivity/topology data of
the spatial discretization.

6.3.1. Uniaxial compression
The influence of the position of the circular void on the funda-

mental buckling load for the uniaxial compression case is depicted
in Figs. 11a and c for the different radius values. We clearly observe
that there are two regions where an increase in the critical load is
caused by introducing a circular hole of radius r1. These regions
11
occur near the edges of the plate where the compression loads
are applied. However, the maximum critical load is increased by
only 0:76% compared to the buckling load of the intact plate. On
the other hand, the reduction in buckling strength is more severe
with 4:67%. Also note that in Fig. 11a the position of the circular
cutout (marked by an x) for plate P2 has been added. Moreover,
the circle drawn with a solid black line indicates the actual size
of the cutout for this particular example. As discussed above, we
notice that this hole is placed directly in the region with an
increased buckling strength. The qualitative behaviour is very sim-
ilar for the larger void with the radius r2. However, in this case no
increase in the buckling strength can be reported. Due to the size of
the hole, the decrease in the critical load is between 11:69% and
25:05% compared to the buckling load of the intact plate. Thus,
the size of the cutout plays a decisive role in the obtained results.
In Fig. 11c, the position of the circular cutout for plate P1 has been
shown. The results again confirm the findings reported in
Section 6.2.



Fig. 11. Influence of the position of the center of the circular cutout on the buckling strength. The color scale, displayed in the colorbars, is related to the ratio of the critical
loads computed the cut plate and intact plates. The locations and sizes of the cutouts discussed in the previous examples are indicated by an x-marker and a circle drawn in a
solid black line.
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6.3.2. Pure shear
The influence of the position of the circular void on the funda-

mental buckling load for the pure shear case is depicted in
Figs. 11b and d for the different radius values. Again, two distinct
regions are observed where an increase in the buckling load is pre-
dicted for circular holes of radius r1 or r2. In this example, both the
increase but also the decrease in buckling strength are more pro-
nounced compared to the uniaxial compression case. For the first
configuration with the smaller hole, an increase of the critical load
of up to 3:33% is achieved, while a decrease of up to 10:16% is
observed if the hole is incorrectly positioned. Here, the maximum
buckling load regions are separated by the diagonal where a
decreased load is observed. Interestingly, a larger void region with
radius r2 results in much more pronounced variations. For this par-
ticular case, increases in the critical load of up to 44:41% are noted,
while a significant decrease of 63:76% is also possible. In the pure
shear loading case, it is possible to get reasonable results by load
reversal. That is to say, while we achieve a ‘‘phenomenal” increase
12
in the load, a load reversal will automatically be much more dan-
gerous. This is not seen for the smaller void regions. Considering
the uniaxial compression, there is no effect such as that.

The numerical results obtained in this section have shown that
a void region does not only lead to a reduction in mass, but can also
achieve an increase in the buckling strength of that plate. Even
though, the increase might not be very significant depending on
the radius of the void, it is helpful to know where cutouts can be
placed in a plate if they are required for maintenance or other pur-
poses. This is however, only half the story. We also saw that signif-
icant increases are possible for larger voids, but that goes hand in
hand with the risk of failure if the loading conditions change. It
remains to notice, that the configurations of the domains in
Fig. 11, in which the hole must be placed to increase the buckling
strength, are qualitatively very similar to those reported in Ref. [7],
which have been obtained by means of the ‘‘sensor holes” concept.
The minor differences are attributed to the finite dimensions of the
voids used in our studies.



Fig. 12. Simply-supported rectangular plate (SSSS) with three cutouts (circle, ellipse, star) subjected to uniaxial compression.

Fig. 13. Buckling mode shapes of the simply-supported rectangular plate (SSSS) with three cutouts (circle, ellipse, star) subjected to uniaxial compression. Depicted are the
first three physical buckling modes (from top to bottom), which occur at load multiplier values of 508.75, 631.66, and 713.26, respectively. Additionally, three selected
spurious modes are shown to illustrate the typical displacement characteristics.
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6.4. Buckling analysis of a rectangular plate with multiple cutouts

As a last example, the critical load for a rectangular plate with
multiple cutouts is computed. This example serves to demonstrate
that the proposed method is also applicable to geometrically more
complex structures, where the mesh generation would be very
involved for numerical methods requiring a geometry-
conforming discretization. Thus, the example serves to demon-
strate the advantages of an automatic approach compared to meth-
ods that rely on user intervention and expertise in mesh
generation. The dimensions of the plate are lx ¼ 3 m, ly ¼ 1 m,
13
and t ¼ 1 mm (see Fig. 12). Note that the kinematic boundary con-
ditions are identical to those used in the previous examples. Three
different cutouts are introduced in the plate and the corresponding
level-set functions (to determine whether points are located
within the fictitious or physical domain) are given below:

1. Circular cutout: r ¼ 0:1 m, xc ¼ 0:25 m, and yc ¼ 0:2 m
Lcirc xð Þ ¼ x� xcð Þ2 þ y� ycð Þ2 � r2: ð35Þ
2. Elliptical cutout: a ¼ 0:35 m, b ¼ 0:2 m, xc ¼ 1:3 m, and

yc ¼ 0:7 m
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Lellipse xð Þ ¼ x� xcð Þ2
a2

þ y� ycð Þ2
b2 � 1: ð36Þ

3. Star-shaped cutout: a ¼ 35; b ¼ 1:25; xc ¼ 2:5 m, and
yc ¼ 0:4 m

Lstar xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a x� xcð Þ2 þ a y� ycð Þ2

q
� r x; yð Þ; with

r x; yð Þ ¼ cos10 bh x; yð Þð Þ þ sin10 bh x; yð Þð Þ
h i�1=6

;

h x; yð Þ ¼ atan2 x� xc; y� ycð Þ:

ð37Þ

The mathematical function atan2 in (37) denotes the four-
quadrant inverse tangent of the argument v ¼ x� x0=y� y0. The
plate and the selected void regions are displayed in Fig. 12. The
fundamental buckling load is only calculated for the case of a uni-
axial compression (LC1).

Again, the analytical solution for buckling loads of different
orders, i.e., buckling loads with more than one sine-half wave in
one of the plate directions or in other words higher eigenvalues
of the generalized eigenvalue problem presented in (23), can be
calculated by means of (32). This is the reference solution for an
intact rectangular plate. The fundamental buckling load is obtained
for m ¼ 3 and n ¼ 1, i.e., for three half-waves in x- and one in y-
direction. This yields a value of the load multiplier of 759.2, which
is identical to the square plate case. Considering the simply-
supported plate with multiple cutouts a value of the load multi-
plier of 508.75 is achieved (without applying any of the introduced
filtering techniques4), which is significantly lower than the analyti-
cal reference value. The numerical result has been computed utiliz-
ing a spatial discretization consisting of nx

e ¼ 96 elements in x-
direction and ny

e ¼ 32 elements in y-direction, while the refinement
level for the subcell integration scheme is k ¼ 2. This is all too nat-
ural, since the cutouts are comparably large and make up 0:385m2,
which is roughly 13% of the area of the intact plate. Thus, the void
region for this final example is considerably larger than in the previ-
ous problems. Therefore, a more drastic decrease in the buckling is
also expected. In Fig. 13, the selected mode shapes of physical and
spurious buckling modes are depicted.
7. Summary

In the paper at hand, a cut BFS element for the analysis of buck-
ling problems has been developed. The original BFS element is
arguably one of the simplest element formulations that ensures
C1-continuity between adjacent elements and yet achieves very
accurate results. This remarkable accuracy is based on the bi-
cubic Hermitian polynomials being used as shape functions. Its
only shortcoming is seen in the need for a structured (regular) dis-
cretization and therefore, BFS elements are not widely applied in
industrial practice. This shortcoming has been fixed by combining
the original element with a fictitious domain approach, yielding
cut BFS elements. As fictitious domain methods are exclusively
relying on Cartesian meshes, the problem of conventional BFS ele-
ments becomes a feature of cut BFS elements. By means of several
numerical examples, it has been conclusively shown that despite
the simple formulation of the novel cut BFS elements very accurate
results are obtained.
4 Remark: By treating all cut elements as either fictitious elements (discarded from
the analysis) or finite elements (physical boundary within the element is disre-
garded), one can obtain a lower and an upper bound for the correct buckling load.
Thus, the correct value for the load multiplier can be selected from among the
spurious solutions. For this particular example, employing the filtering technique 3
(see Appendix A) would result in a load multiplier of 501.3 (Ae

del ¼ 0:1%), which
incurs an error of approximately 1:5%. Even if we increase the value of Ae

del to 0:8%
the resulting error is still below 2% compared to the unfiltered solution.
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8. Conclusion

The analysis of the critical buckling load of plates with cutouts
has led to the following conclusions: Depending on the size of the
introduced void region, an increase in the buckling load can still be
achieved. This behavior is surprisingly more pronounced for a lar-
ger void, however, this goes along with the risk of a significant
reduction of the critical load for other loading directions.

A problem that needs to be overcome when applying fictitious
domain approaches for the analysis of eigenvalue problems is the
occurrence of spurious modes, which are not always easy to iden-
tify or to distinguish from physical modes. One of the main charac-
teristics of the FCM as a particular approach to fictitious domain
methods is that the displacement field is allowed to extend
smoothly into the fictitious domain. This is one source for the
occurrence of local buckling modes that originate in the fictitious
domain. These modes need to be suppressed without changing
the mathematical problem at hand to ensure a robust methodol-
ogy. This is an important aspect of further research.

Another potential application of the discussed technique would
be the analysis of axially moving plate and shell structures with
cuts using the mixed Eulerian–Lagrangian kinematic description,
see e.g., Ref. [66]. While the cuts are moving across the non-
material finite element mesh, they shall be captured by means of
the presented fictitious domain approach. This provides a way
towards efficient simulations of such technological processes as
roll forming of profiles of perforated steel sheets or transport of flat
structures with holes. Embedding the fictitious domain approach
into the structural mechanics formulations with contact and mate-
rial inelasticity shall be considered as a challenging but practically
relevant novel research direction.
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Appendix A. Filtering techniques

The need of filtering is related to the occurrence of spurious
buckling modes (i.e., local buckling modes partly located in the fic-
titious domain). In preliminary analysis, it has been found that the
conditioning of the system of equations does not provide reliable
information to indicate the occurrence of spurious results. More-
over, it must be noted that sometimes despite the existence of very
badly cut elements in the spatial discretization accurate results are
obtained, while in other less severe cases corrupted results are
obtained. Therefore, additional research must be conducted to
ascertain the actual cause of these numerical problems. Although
it has been found that the filtering techniques proposed in the
remainder of this section work quite robustly in detecting non-
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physical results, they do not solve the inherent problem that
causes this effect.

In the following, several possibilities are discussed, which have
been implemented in the in-house research code (developed in
MATLAB) that is used for the numerical analysis. The suggested
methods are referred to as:

1. Displacement-based mode shape filtering,
2. Strain energy-based mode shape filtering,
3. Area-based element filtering,
4. Support-based degree of freedom filtering.

A.1. Mode shape-based filtering techniques

The first and second filtering techniques are based on the vari-
ation of the computed displacement field for a buckling mode. The
main goal is to identify common features for all spurious mode
shapes and to exploit these features to robustly detect them.

Displacement-based mode shape filtering. Let us start with taking
a closer look at the displacement fields of physical and spurious
buckling mode shapes as depicted in Fig. A.1 for plate P1 (see Sec-
tion 6.2). For the purpose of visualization, all elements including
cut elements have been plotted, which means that the displace-
ment field within the fictitious domain is also shown. It can be
clearly observed that displacement peaks are present in the ficti-
tious domain, which is related to the fact that the displacement
field is allowed to smoothly extend beyond the physical domain.
Fig. A.1. Mode shapes for a simply-supported (SSSS
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This is actually no problem, but ensures the proven high accuracy
of the FCM. However, what is problematic is that the displacement
values in the fictitious domain are much larger than in the physical
domain for the spurious modes, while they are in the same order of
magnitude for the physical ones. This observation can be used as
the basis for deriving a first displacement-based filtering tech-
nique. In the following, we assume without loss of generality that
all computed mode shapes are normalized such that the maximum
displacement is þ1. In the next step, we determine all nodes of the
mesh that are located in the physical domain (the rest of the nodes
is then naturally part of the fictitious domain). To this end, a simple
point-membership-test is conducted, which is particularly simple
if level-set (or implicit) functions are utilized to describe the geom-
etry of the fictitious domain. Thus, we can subdivide the set of
nodes P into Pphys and Pfict, with Pphys [Pfict ¼ P and
Pphys \Pfict ¼ £. From the connectivity data of the finite element
discretization, we only need to extract the displacement degrees of
freedom of each of the nodes in those two sets, denoted by Dphys

and Dfict. The ratio of the maximum displacement values

Rw ¼ max w Dfictð Þ½ �
max w Dphys

� �� � ðA:1Þ

will then be used to judge the mode. If the ratio is above 10, the
mode is marked as nonphysical. Note that this value is empirical
and not a strict bound and therefore, false classifications might
occur. To prevent this from happening, a combination with the sec-
ond filter, described in the next paragraph, is recommended. This
) square plate with a circular cutout (P2; LC1).
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procedure allows for a robust classification of the results of the
eigenvalue analysis.

Strain energy-based mode shape filtering. A second idea, also
inspired by the excessive displacements in the fictitious domain
for spurious mode shapes (see Fig. A.1), consists in computing
the strain energy for all degrees of freedom associated with the
sets of nodes Pphys and Pfict. To determine the energy value, we
take all four degrees of freedom per node into account. This is dif-
ferent compared to the displacement-based filtering technique,
described in the previous paragraph, where only the displacement
degrees of freedom have been accounted for. Consequently, the
new sets of degrees of freedom that are employed in the strain
energy-based filtering technique are denoted as ~Dphys and ~Dfict.
According to (13), the strain energy is computed as

Ub
phys ¼

1
2
qT
phys K qphys; with qphys D



phys

� �
¼ q D



phys

� �
and qphys D



fict

� �
¼0; ðA:2Þ

Ub
fict ¼

1
2
qT
fict K qfict; with qfict D



fict

� �
¼ q D



fict

� �
and qfict D



phys

� �
¼0: ðA:3Þ

We recall that K denotes the stiffness matrix of the plate bending
problem and q is the vector of degrees of freedom associated with
a particular buckling mode. As can be inferred from the equations,
all values that are not related to the physical or fictitious parts
are set to zero for the calculation of the corresponding energies.
In order to decide whether a buckling mode is nonphysical, the ratio
of the two strain energies is determined

RSE ¼ Ub
fict

Ub
phys

: ðA:4Þ

Values above 1.0 are deemed nonphysical and therefore, the mode
would be marked as spurious. Judging from our experience, if both
criteria, i.e., the displacement- and strain energy-based filtering
techniques, mark/label a buckling mode as nonphysical the classifi-
cation result is rather reliable.

A.2. Element-based filtering techniques

The third and fourth filtering techniques are based on the prop-
erties of the spatial discretization and are thus, not connected to
the buckling modes directly. Here, the overarching goal is to iden-
tify badly cut elements or shape functions that do not contribute
much to the system of equations.

Area-based element filtering. Based on an area-filter, cut ele-
ments are identified, which are critical for the numerical stability
of the solution, and are discarded. To this end, the total and phys-
ical areas of each cut BFS element are computed

Atot
e ¼

Z
Xe

dX ¼ hxhy; Aphys
e ¼

Z
Xe

a xð ÞdX;

Avoid ¼
Z
Xe

1� a xð Þð ÞdX ¼ Atot
e � Aphys

e ; ðA:5Þ

where hi are the element sizes in the respective coordinate direc-
tions and Xe represents the integration domain of an element. Note
that the subscript�e always refers to elemental entities. The ratio of
physical to total area is called vA, which should be below a user-

defined threshold Athr for the element to discarded. This value is
chosen adaptively depending on the three area measures

Atot
e ;Aphys

e , and Avoid introduced in (A.5):

Athr ¼ Avoid

Atot
e

Adel
e %½ � < vA ¼ Aphys

e

Atot
e

; ðA:6Þ

with Adel
e denoting the area of the void region in percent. That is to

say, a cut BFS element might be discarded from the analysis as soon

as the physical area it contributes to the model Aphys is less than
16
Adel
e =100Avoid. For example, if Adel

e ¼ 0:1%, one cut element is

allowed to contain 0:1% of Avoid and can still be deleted from the
analysis. This value is obviously directly related to the achievable
accuracy of the approach. Since the area of the void in the model

is constant throughout the analysis the value of Athr increases with

decreasing element size. For the studied examples, Adel
e ¼ 0:1% and

Athr
< 50% has been shown to yield reliable results within an engi-

neering accuracy of around �1%. To put the selected parameter val-
ues into perspective, it means that when the maximum value of
50% is reached, 200 elements are covering the same area as the
void, which constitutes a very fine spatial discretization that is
hardly needed for any analysis (especially considering the fact that
the BFS shape functions are bi-cubic already). Note that the need for
a filter typically only arises for rather fine spatial discretizations and
high order modes. For the examples discussed in Section 6.2 (square
plate with circular cutout), the filter is typically required for
ne P 16 elements per coordinate direction if the value for a0 is cho-
sen too small.

Support-based degree of freedom filtering. Based on a degree of
freedom-filter, degrees of freedom with small support in the phys-
ical domain are identified, which are critical for the numerical sta-
bility of the solution, and are discarded. This can be achieved by
integrating each shape function both over the cut element and
the entire elemental domain. By dividing both values we get a rel-
ative measure isupp of the support of a function

ii;jsupp ¼
R
Xe a xð ÞSi;j nð ÞdXR

Xe Si;j nð ÞdX < ithrsupp; ðA:7Þ

where Si;j denotes the jth shape function of node i (see Section 2).
The threshold for shape functions to be deleted is by default set
to ithrsupp ¼ 10�5. In combination with the area-based filtering tech-
nique, the support-based one is rarely ever applied. On its own, it
does not seem to be effective enough to alleviate the spurious
modes problem.

A.3. Concluding remark on the different filtering techniques

At this point, we want to stress again that none of the filtering
techniques are required to accurately determine the first buckling
mode. In this case, it is sufficient to rely on (30) for an appropriate
choice of a. However, if higher order modes are of interest, filtering
techniques need to be applied. From experience, the combined use
of approaches 1 and 2 is recommended. Note that by using
approaches 3 and 4, the system/problem under investigation is
essentially changed and therefore, great care has to be taken to
ensure that the results are still reasonable. Despite the mentioned
shortcomings, these approaches seem to work robustly and ensure
reliable results. It must be emphasized that the proposed methods
are also applicable to the problem of Modal Analysis, where an
eigenvalue problem is solved to determine the natural frequencies
and mode shapes. However, since these techniques are neither
mathematically elegant nor based on a solid theoretical founda-
tion, more sophisticated techniques should be developed in future
research.

Appendix B. C1-continuous NURBS parametrization of a square
plate with a circular cutout

This section contains the details of the geometry parametriza-
tion of a square plate with a circular cutout by an untrimmed, fully
C1-continuous, single NURBS patch, which is the basis of the IGA
computations performed in Section 6. Due to the cutout, a simple
parametrization with parametric coordinates aligned with the
sides of the plate is not possible without trimming. Instead, the



Table B.1
NURBS parametrization of a circular disk with a circular cutout. The outer radius of
the disk is a=2 and its center is located at x ¼ y ¼ a=2. The cutout may have an
arbitrary location described by its center coordinates xc; yc and a radius r.

Parameter Value

p 2
q 1
U 0; 0; 0; 1=4; 1=4; 1=2; 1=2; 3=4; 3=4; 1; 1; 1½ �
V 0; 0; 1; 1½ �
Xo 1; 2; 2; 2; 1; 0; 0; 0; 1½ � a=2
Yo 0; 0; 1; 2; 2; 2; 1; 0; 0½ � a=2
Xi 0; 1; 1; 1; 0; �1; �1; �1; 0½ � r þ xc
Y i �1; �1; 0; 1; 1; 1; 0; �1; �1½ � r þ yc
W 1;

ffiffiffiffiffiffiffiffi
1=2

p
; 1;

ffiffiffiffiffiffiffiffi
1=2

p
; 1;

ffiffiffiffiffiffiffiffi
1=2

p
; 1;

ffiffiffiffiffiffiffiffi
1=2

p
; 1

h i
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geometry can be modeled as a swept area between the outer and
inner boundaries. In this case, the four corners pose the difficulty
of having sharp corners within a C1-continuous, i.e., smooth,
parametrization. This problem can be solved by collapsing control
points at the corners, as was shown in Ref. [45] for a quarter of
such a plate.

In the following, we describe a general procedure to model the
geometry of a square plate of dimension a with a circular cutout at
an arbitrary location xc; ycð Þ with a radius r via a single, fully C1-
continuous NURBS patch. This methodology is based on three
steps, which are illustrated in Fig. B.1 and discussed in detail in
the following paragraphs.

We start by modeling a circular disk with a circular cutout,
where the diameter of the outer circle is equal to the square’s
dimension a. Table B.1 lists the NURBS parameters for such a
geometry, where p and q denote the polynomial degrees in the
two parametric directions, where first coincides with the circum-
ferential direction and the second with the radial one. The corre-
sponding knot vectors are denoted by U and V, respectively.
Control point coordinates are denoted as Xo;Yo and Xi;Y i for the
outer and inner control points, respectively, while the control
weightsW are identical for both the outer and inner control points.
The parametrization given in Table B.1 is defined in terms of the
parameters a; xc; yc, and r, such that it allows for arbitrary varia-
tions of the cutout within the plate. Fig. B.1a depicts the corre-
sponding geometry and control net for a ¼ 1 m, xc ¼ yc ¼ 0:5 m,
r ¼ 0:15 m.

As a second step, each knot span in U is bisected, i.e., additional
knots are inserted at 1=8;3=8;5=8;7=8, in order to obtain addi-
tional control points as shown in Fig. B.1b.

In the third step, control point coordinates are edited such that
the two points closest to each corner of the square are moved to
that corner, see Fig. B.1c. The coincidence of two control points
leads to sharp corners without losing C1-continuity of the
parametrization within the patch. The model obtained in such a
way represents the coarsest mesh of the geometry. For analysis,
it can then be further refined using order elevation and knot inser-
tion [45]. For the buckling analysis reference results in Section 6,
the polynomial degrees are set to p ¼ q ¼ 6 and a mesh corre-
sponding to 220;698 degrees of freedom was used. For the static
analysis reference results in Section C, the polynomial degrees
are set to p ¼ q ¼ 6 and a mesh corresponding to 61;530 degrees
of freedom was used.

Remark 1: The initial parametrization provided in Table B.1 con-
tains four lines of C0-continuity in the parametric space due to
double knots in the knot vector U. The physical image of these lines
Fig. B.1. NURBS parametrization of a square with
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are the four knot lines at 6, 3, 12, and 9 o’clock. C1-continuity of the
geometry is given because of the colinearity of control points
across these lines [25]. C1-continuity of the solution can be
imposed by enforcing the colinearity of these control points also
in the deformed configuration, which is done by master–slave con-
straints as described in Ref. [25].

Remark 2: For obtaining a fully C1-continuous parametrization,
it is important that the outer boundary of the initial geometry
(Fig. B.1a) is modeled as an exact circle, i.e., using the weights W,
although this boundary is then modified to represent a square. If
this is not the case, e.g., if all weights of the outer control points
are simply set to 1, the resulting geometry will still be a square
plate with a circular cutout (Fig. B.1c), but it will not be C1-
continuous at the 6, 3, 12, 9 o’clock locations.

Appendix C. Static analysis

In the following, the performance of the proposed cut BFS ele-
ments for plate bending problems is briefly discussed. While in
the present article, a combination of FCM and BFS elements is pre-
sented, the main features of this formulation are shared by the cut
BFS elements discussed in Ref. [6] for static analysis. In the men-
tioned article, BFS elements were enhanced by utilizing the Cut-
FEM approach, which also belongs to the class of fictitious
domain methods. The authors were able to show that the elements
are optimally order convergent and stable. These properties are
expected to seamlessly carry over to our formulation. Therefore,
we will only demonstrate the convergence of the proposed ele-
ment type by means of a simple static example featuring a
simply-supported plate with a circular cutout under a uniform sur-
face load. In fact, the geometry and kinematic boundary conditions
a circular cutout. Construction in three steps.



Fig. C.1. Convergence in strain energy for a simply supported plate with circular
cutout under uniform surface load.
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are identical to those given for plate (P1), studied in Section 6.2. To
ensure an accurate approximation of the cutout during the integra-
tion of the stiffness matrix and the load vector, the refinement
level k is set to 4. The convergence in the strain energy is depicted
in Fig. C.1, where the reference solution is computed again using an
IGA model as discussed in Section B and is obtained as

Ub ¼ 4:1176963� 10�5 J. We observe a monotonic convergence

of the strain energy with an optimal order O h�3
� �

. In contrast to

the generalized eigenvalue problem that is solved for the buckling
analysis, the solution of linear systems of equations is not as sus-
ceptible to suffer from small cuts, i.e., elements that hardly contain
physical material. Therefore, the simplified (diagonal) precondi-
tioning technique as proposed by de Prenter et al. [10] can be
applied to this problem and yields notably improved condition
numbers for the stiffness matrix (see Table C.2). Note that all val-
ues that are related to the preconditioned system are denoted with
~�, where Ub denotes the strain energy associated to plate bending
and j is the condition number of the stiffness matrix. In the case of
generalized eigenvalue problems, it has been found that the simple
diagonal preconditioning approach is not sufficient to overcome
ill-conditioning and more importantly the spurious mode shapes
problem. Consequently, the complete preconditioning scheme
must be employed, which is, however, out of the scope of this arti-
cle. At this point, we must stress again that even without applying
any preconditioning technique the results of the static analysis are
Table C.2
Results of the static plate bending problem.

nDOF Ub eUb j ~j

36 3.738898E-5 3.738898E-5 73.755 17.441
100 3.967871E-5 3.967871E-5 414.285 311.102
324 4.115711E-5 4.115711E-5 2.143E4 4.793E3
1,136 4.117242E-5 4.117242E-5 3.172E7 1.405E5
4,208 4.117592E-5 4.117592E-5 1.162E11 1.508E7
16,016 4.117721E-5 4.117721E-5 2.457E9 2.190E7
62,560 4.117695E-5 4.117695E-5 4.250E12 3.857E8
246,864 4.117690E-5 4.117690E-5 3.014E12 6.214E9
981,056 4.117688E-5 4.117691E-5 2.974E12 9.490E10
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very accurate. That is to say, in analyses involving the solution of
eigenvalue problems different techniques are required compared
to static analyses.

For the sake of completeness, let us briefly recall the diagonal
preconditioning scheme discussed in Ref. [10]. It has been shown
that this approach works well for Poisson and linear elasticity
problems, being able to efficiently reduce the condition number
of the system matrix. This method is, however, not recommended
for general use due to fill-in and a lack of robustness for arbitrarily
cut elements. For a generic linear system of equations

Ax ¼ b; ðC:1Þ
a symmetry preserving preconditioning technique takes the follow-
ing form

DADTy ¼ Db; with x ¼ DTy: ðC:2Þ
In this framework, D denotes the diagonal preconditioner and y is
the solution to the preconditioned linear system of equations. The
solution to the original system x is obtained in simple post-
processing step by left-multiplying the transpose of the precondi-
tioner DT to the solution y. For our purposes, the diagonal precondi-
tioner is defined as

D ¼

1=
ffiffiffiffiffiffiffi
A11

p

1=
ffiffiffiffiffiffiffi
A22

p

. .
.

1=
ffiffiffiffiffiffiffiffi
ANN

p

2
66664

3
77775; ðC:3Þ

where N denotes the size of the system matrix A. As indicated
before, a reasonable improvement of the conditioning of the stiff-
ness matrix is achieved, while the accuracy of the results (consider-
ing the converged digits) is not changed at all, as evidenced by
Table C.2.
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