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Abstract Rubber components such as engine or suspension bearings are loaded during operation with large
deformations and high-frequency loads. In industrial applications, finite element analysis software is there-
fore needed to simulate and predict the behaviour of these components under different scenarios of loading
conditions. The usage of such software requires the user to be aware of certain limitations and shortcomings
in the implemented material models. In this paper, the stresses as well as the storage and loss modulus are
calculated analytically for an example of cyclic simple shear deformations. The analysed material model was
firstly proposed by Simo and is available in Abaqus version 2018 for viscoelastic materials under finite strains.
The analytical solution is used to highlight the non-physical response of the model under certain loading con-
ditions. A modification of the modelling approach is then proposed to avoid such limitations. The modified
model is implemented in the Abaqus software using a user material subroutine (UMAT). The behaviour of
the modified model and the original Abaqus model are compared using an example of tie rod under different
loading conditions. It is shown that with the suggested modification, reasonable results are obtained and the
non-physical responses are eliminated.

Keywords Viscoelastic · Quasilinear viscoelastic · Frequency domain · Pre-load dependency

1 Introduction

The quasi-linear viscoelasticity1 model also known as Fung’s model is one of the most widely used models for
finite viscoelasticity due to its simplicity. It was initially introduced by Fung to study the elongation behaviour
of soft tissues [1]. The QLV model is a special form of the general Pipkin–Rogers model [2]. The stresses

1 The quasi-linear viscoelasticity is abbreviated to QLV.
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in this model are calculated by decreasing the instantaneous stress by an amount that depends on the past
deformation history. A similar modelling approach was introduced by Simo [3], which is also commonly
used and implemented in finite element method (FEM) software such as Abaqus 2018. Simo presents in [3]
a material model to describe anisotropy, viscoelastic behaviour and continuum damage mechanics, known as
Mullins’ effect. The viscoelastic phenomena are based on a defined hyperelasticity model and a relaxation
function.

Although the aforementioned models are widely used, they exhibit some deficiencies that have been dis-
cussed in several publications. In the work of Ciambella et al. [4], the predicted stress results of the QLV
model were compared with the Abaqus model of finite viscoelasticity, presented in [5], section "Mechanical
Constitutive Theories>Viscoelasticity>Finite-strain viscoelasticity". Main differences and certain shortcom-
ings of the Abaqus model were highlighted. It was shown under simple shear loading that in comparison with
the QLV model, the Abaqus model gives rise to normal stresses due to viscoelastic effects. This behaviour
is non-physical and leads to an overestimation of the dissipated power. Using the same modelling approach
as Ciambella et al. [4], a numerical method to compute the dissipated power involving the decomposition of
the stretches and its FEM implementation was presented by Baaser [6]. The calculation of the dissipation was
illustrated using an example of simple shear deformation. The plausibility of the results was checked, and the
results were found to be reasonable.

The shortcomings of the QLV model were highlighted, and a modification was proposed in the published
study by De Pascalis et al. [7]. The predictions of the introduced model were compared with the results from
the model introduced by Ciambella et al. [4] and the model provided by Abaqus [5]. The results for a simple
extension example showed a non-physical behaviour of Ciambella’s model where an instantaneous zero stress
was obtained whenever the stretch value recovers back to zero, which indicates nomemory of the stress history.

In contrast to the above-mentioned models of finite viscoelasticity, different formulations, which are more
suitable from the point of view of the thermodynamic consistency, were introduced by Lion [8], Reese and
Govindjee [9], Haupt and Lion [10]. Based on the model in [10], modified formulations were presented in [11],
[12], and [13] to model, for example, the kinetics of curing of epoxy. A multiplicative split of deformation
gradient was proposed by Lion [8] and [9] for a finite viscoelastic model. This model was implemented by
Johlitz et al. [14] and Schröder et al. [15] to analyse the dissipative self-heating in elastomers.

A phenomenological inelastic constitutive model for rubber-like materials (MORPHmodel) was presented
by Besdo and Ihlemann [16] to describe the damage mechanics of elastomers. The model uses eight material
parameters to model several effects such as hysteresis, softening, and residual strains. The MORPH model
was used by Juhre et al. [17] to discuss the effect of inelasticity on the fatigue life of filled elastomers and was
recently used by Weiser et al. [18] to model the mechanical behaviour of cord-elastomer composites.

On the micro-mechanical level using the transient network theory, a finite viscoelastic model, which is
based on the multiplicative decomposition of the deformation gradient, was introduced by Reese [19]. A
physically motivated micro-mechanical model referred to as the non-affine micro-sphere model was presented
by Miehe et al. [20]. Using cluster mechanics, the dynamic flocculation model (DFM model) was presented
by Raghunath et al. [21]. The DFM model is based on the non-affine tube model and is able to model the
softening behaviour as well as the hysteresis during quasi-static experiments. It requires, however, the use of
the concept of representative directions to be implemented in FEM programs. The concept of representative
direction generalised one-dimensional material models to three-dimensional constitutive models, which is
introduced by Freund and Ihlemann [22]. Plagge et al. [23] modified and extended the DFM model to a
mathematically more robust approach (SIRM model). The model requires seven to nine parameters to cover
almost the full phenomenology of filled rubber. The authors, however, highlighted some shortcomings in the
introduced approach such as the thermodynamic consistency of the Prony element. A recent three-parameter
micro-mechanical model was presented by Dal et al. [24]. The model is an extension to the well-known
eight-chain model, proposed by Arruda and Boyce [25]. By adding a second invariant-based energy term, the
eight-chain model is enhanced under biaxial deformation.

Based on the principles of Boltzmann [26], the fading memory of viscoelastic materials can be modelled
with a convolution integral. A special form of the convolution integral proposed by Fung [1] is known as quasi-
linear viscoelastic model (QLV). The focus of this article is on the model with internal variables provided by
Simo [3] (Simomodel). The Simomodel approach is very similar to the QLVmodel and is widely used in FEM
software to model the viscoelastic behaviour of materials in a vast variety of applications. Behnke and Kaliske
[27] used the Simomodel to perform a thermomechanical coupled simulation of rolling tires under steady-state
conditions. The dissipated energy due to viscoelastic effects was computed, and the surface temperature of
the tire was compared to experimental results. The model showed promising predictability in a wide range
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of testing scenarios. In the work of Berjamin et al. [28], the QLV model was linked with the Simo model by
incorporating a single scalar relaxation function in the QLV model. The new approach was referred to by the
authors as the ’Fung-Simo’ model. The thermodynamic consistency of the new model (Fung-Simo model)
was illustrated, and the dissipative features were presented in an example of simple tension. In a recent article
by Berjamin and De Pascalis [29], the Fung-Simo model was used in an acoustoelastic analysis of phononic
crystals. In the biomedical field, the QLV model is confirmed to be a reasonable model for a wide range of
materials. It was used, for example, by Rashid et al. [30] to model brain tissues under dynamic strains and by
Lucas et al. to evaluate the linear viscoelastic behaviour of cervical spinal ligaments under fast-rate loading
[31]. As discussed by De Pascalis [7], the QLV model was implemented in the literature with other variant
forms that are slightly different from the original model proposed by Fung.

In this paper, the model presented by Simo [3] and implemented in the FEM Software Abaqus 2018
is discussed analytically. The analytical solution of the model is derived using an example of simple shear
deformation. As shown in [32], it has to be highlighted that the boundary value problem of simple shear is, even
for elasticity, a complex problem. In many studies [7,30,33], and [34], simple shear is used to demonstrate
the capability of a material model. Using the analytical solution, the resulting terms lead to the non-physical
behaviour of the model. These undesired behaviours are, for example, the overshoot oscillation at certain
frequencies, the pre-deformation dependency, and the amplitude dependency of the model. Furthermore, a
modification of the model is suggested to eliminate the sources of the non-physical behaviour. After discussing
the analytical solution, the modified model is programmed using the programming language Fortran 77 and
implemented in theAbaqus software through the usermaterial subroutine (UMAT). Finally, an FEMsimulation
is performed on an example of a tie rod under different loading scenarios. The FEM implementation aims to
highlight the existing shortcomings in the current Abaqus implementation and how they were overcame using
the modified model.

2 Viscoelasticity model for finite deformation

2.1 Principle of the finite viscoelastic Simo model

The presented model is motivated by generalised Maxwell elements (s. [35, p. 337]). A complete definition of
the free energy function is required to ensure thermodynamic consistency. An additive split into equilibrium
and non-equilibrium parts is suggested:

ρ0� = ρ0�eq(C, θ) + ρ0�neq(C̄, T̃ov,k, θ) (1)

Herein the initial density is given as ρ0 and θ is the temperature. The non-equilibrium part of the free energy is
dependent on the unimodular right Cauchy–Green tensor.2 It is assumed that the volumetric deformation leads
only to a change in the equilibrium part of the free energy. The internal variables T̃ov,k represent the inelastic
behaviour for each Maxwell element. Based on the treatments of Flory in [36], the volumetric and isochoric
deformation can be isolated from each other with an additive split of the free energy and a multiplicative split
of the deformation gradient

ρ0�eq = U ◦(J, θ) + γ∞W̄ ◦(C̄, θ) + ρ0�th(θ). (2)

Herein U ◦ and W̄ ◦ are the specific hyperelastic energy functions per volume for instantaneous deformation
processes. In the following, all variables for instantaneous deformation processes are signed with (•)◦. The
non-equilibrium part of the free energy is defined as:

ρ0�neq(C̄, T̃ov,k, θ) =
N∑

k=1

γkT̃ov,k : 1
2

C̄ + �

(
N∑

k=1

T̃ov,k

)
. (3)

The last term is defined in the equilibrium state, where the rates of the internal variables are zero. A Legendre
transformation of the internal variable T̃ov,k and the associated internal variable as deformation tensor is
suggested at this point in [35, p. 351, Eq. 10.2.22]. In [35, p. 351] and [27], a definition in the equilibrium state

2 The well-known variables of continuum mechanics and some tensor operators are listed in Table 1.
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Table 1 Notations

ID Symbol Calculation Description

Deformation variables
1 F Deformation gradient
2 J det(F) Determinant of the deformation gradient

3 F̄ J− 1
3 F Unimodular deformation gradient

3 C FT F Right Cauchy–Green tensor

4 C̄ J− 2
3 C Unimodular right Cauchy–Green tensor

5 B FFT left Cauchy–Green tensor

6 B̄ J− 2
3 B Unimodular left Cauchy–Green tensor

Stress-like tensors

7 T̃ 2nd Piola–Kirchhoff stress tensor
8 T J−1FT̃FT Cauchy stress tensor
9 S FT̃FT Weighted Cauchy stress tensor
10 T̃iso Isochoric 2nd Piola–Kirchhoff stress tensor
11 Tiso J−1F̄T̃isoF̄T Isochoric Cauchy stress tensor
12 T̃◦

iso Isochoric 2nd Piola–Kirchhoff stress tensor for instantaneous load history
13 Siso F̄T̃isoF̄T Weighted isochoric Cauchy stress tensor
14 T̃ov Overstress 2nd Piola–Kirchhoff stress tensor
15 T̃ov,k Overstress 2nd Piola–Kirchhoff stress tensor for k-th Maxwell element
16 Tov J−1F̄T̃ovF̄T Overstress Cauchy stress tensor
17 Sov F̄T̃ovF̄T Weighted overstress Cauchy stress tensor

Energy variables
18 � �(C(t), θ(t)) Free energy
19 �eq �eq(C, θ) Equilibrium free energy
20 �th �th(θ) Thermal free energy
21 �neq �neq(C̄(t), θ(t)) Non-equilibrium free energy
22 W̄ ◦ W̄ ◦(C̄, θ) Isochoric stored energy for instantaneous load history
23 U◦ U◦(J, θ) Volumetric stored energy for instantaneous load history

Mathematical operations:

24 DEV [(•)] = (•) − 1
3 ((•) · C) C−1 Deviator operator in initial configuration

25 DEV [(•)] = J− 2
3
[
(•) − 1

3 ((•) · C) C−1
]

Deviator operator in intermediate isochoric configuration

26 dev [(•)] = (•) − 1
3 ((•) · 1) 1 Deviator operator in current configuration

is suggested. In Eq. (3), the parameter γk is the proportionality factor for the k-th Maxwell element. Through
this formulation of the free energy, a potential relation for the 2nd Piola–Kirchhoff stress tensor can be derived

T̃ = 2ρ0
∂�

∂C
= 2ρ0∂C�. (4)

For the sake of clarity, partial derivatives are written as ∂�
∂C = ∂C�, so that the 2nd Piola–Kirchhoff stress

tensor results in

T̃ = ∂JU
◦ JC−1 + γ∞ J− 2

3

(
∂C̄W̄

◦ − 1

3

(
C : ∂C̄W̄

◦)C−1
)

+
N∑

k=1

γk J
− 2

3

(
T̃ov,k − 1

3

(
C : T̃ov,k

)
C−1

)
. (5)

In [35, p. 360 Eq. (10.4.12)], a deviatoric operator in the initial configuration is defined as:

DEV [(•)] = (•) − 1

3
(C : (•))C−1 (6)

with the property

FDEV [(•)]FT = F(•)FT − 1

3
(1 : F(•)FT )1 = dev

[
F(•)FT

]
. (7)
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An enhanced deviatoric operator can be defined as:

DEV [(•)] = J− 2
3

(
(•) − 1

3
(C : (•))C−1

)
(8)

with

FDEV [(•)]FT = F̄(•)F̄T − 1

3
(1 : F̄(•)F̄T )1 = dev

[
F̄(•)F̄T

]
. (9)

Since the arguments in the deviatoric operator are linear, the 2nd Piola–Kirchhoff stress tensor is given as:

T̃ = ∂JU
◦ JC−1 + DEV

[
γ∞2∂C̄W̄

◦ +
N∑

k=1

γkT̃ov,k

]
. (10)

The following partial derivative of the instantaneous stored energy function is defined as a stress-like source
term:

T̃◦
iso = 2∂C̄W̄

◦. (11)

Thus, the 2nd Piola–Kirchhoff stress tensor is given as:

T̃ = J∂JU
◦C−1 + DEV

[
γ∞T̃◦

iso +
N∑

k=1

γkT̃ov,k

]
. (12)

In [35, p. 365 Eq. (10.5.2)], Simo and Hughes recommend an evolution equation for the overstress, which is
motivated from the rheological 1D-Maxwell element. This idea transformed to the equation introduced in Eq.
(3), which leads to the following evolution equation

˙̃Tov,k + 1

τk
T̃ov,k = d

dt

(
DEV

[
T̃◦
iso

])
. (13)

Herein the time derivative is signed with ˙(•) = d
dt (•). This evolution equation can be transformed to a

convolution integral

T̃ov,k =
t∫

−∞
e
− t−s

τk
d

ds

(
DEV

[
T̃◦
iso(s)

])
ds. (14)

Therefore, the weighted Cauchy stress tensor is defined with the forward transformation of the 2nd Piola–
Kirchhoff stress tensor (see eqs. (5) and (14))

S = FT̃FT = J∂JU
◦1 + dev

⎡

⎢⎣γ∞ F̄T̃◦
isoF̄T

︸ ︷︷ ︸
S◦
iso

+
N∑

k=1

γk F̄T̃ov,k F̄T

︸ ︷︷ ︸
Sov,k

⎤

⎥⎦ (15)

S = J∂JU
◦1 + γ∞dev

[
S◦
iso

]

+
N∑

k=1

γkdev

⎡

⎣F̄

t∫

−∞
e
− t−s

τk
d

ds

(
DEV

[
T̃◦
iso(s)

])
dsF̄T

⎤

⎦

︸ ︷︷ ︸
Sov,k

. (16)

For a nearly static load history, the overstress part is T̃ov,k ≈ 0 and consequently Sov,k ≈ 0. In this case,
the weighted Cauchy stress tensor is approximated to:

S ≈ ∂JU
◦ J1 + γ∞dev

[
S◦
iso

]
. (17)
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Table 2 Definition of finite proportional viscoelasticity

Known or accordingly given functions

Instantaneous stored isochoric energy W̄ ◦(C̄)
Instantaneous stored volumetric energy U ◦(J )

Relaxation function with relative coefficients g(t) = γ∞ +
N∑

k=1
γke

− t
τk

Variables, which have to be defined with respect to deformation history

Instantaneous isochoric 2nd Piola–Kirchhoff stress tensor T̃◦
iso = 2∂C̄W̄

◦
Instantaneous isochoric weighted Cauchy stress tensor S◦

iso = F̄T̃◦
isoF̄T

Overstress of weighted Cauchy tensor Sov,k = F̄
t∫

−∞
e
− t−s

τk d
ds

(
DEV

[
T̃◦
iso

])
dsF̄T

Weighted Cauchy stress tensor S = J∂JU◦1 + dev
[
γ∞S◦

iso +∑N
k=1 γkSov,k

]

S with relaxation function S = J∂JU◦1 + dev

[
F̄

t∫
−∞

g(t − s) d
ds

(
DEV

[
T̃◦
iso

])
dsF̄T

]

In the case of an instantaneous deformation with a high rate, the weighted Cauchy stress tensor is:

S ≈ ∂JU
◦ J1 +

(
γ∞ +

N∑

k=1

γk

)
dev
[
S◦
iso

]
. (18)

The main idea of the proportional viscoelasticity is that the weighted Cauchy stress tensor S can be defined
with stress tensor S◦

iso in case of instantaneous deformation processes

S ≈ ∂JU
◦ J1 + dev

[
S◦
iso

]
. (19)

This motivation leads to the restriction

1 = γ∞ +
N∑

k=1

γk . (20)

It has to be checked whether this also applies to cyclic deformations with high deformation rates.
The stress equations are summarised in Table 2. The equilibrium part of the weighted Cauchy stress

tensor is proportional with the parameter γ∞ to the instantaneous weighted Cauchy tensor. This type of finite
viscoelasticity is assigned as a proportional energy function represented in [37]. Tomodel the finite viscoelastic
behaviour, two constitutive functions are needed. On the one hand, a hyperelastic energy function and on the
other hand an exponential series with relative moduli γi and corresponding relaxation times τi , which is also
known as the Prony series. The suggested evolution equation doesn’t satisfy the request in Eq. (18) entirely.
This is discussed in the next section.

2.2 Simo model with neo-Hookean hyperelasticity

For the sake of clarity, in the following only oneMaxwell element is assumed and a neo-Hookean hyperelasticity
model is assumed for the stored energy function

U◦ = κ

2
(ln(J ))2 and W̄ ◦ = c10

(
IC̄ − 3

)
. (21)

Herein IC̄ is the first invariant of the unimodular right Cauchy–Green tensor. Usually for isotropic hyperelas-
ticity, the stored energy function depends on the first invariant

IC̄ = C̄ : 1 (22)

and the second invariant

I IC̄ = 1
2

(
(C̄ : 1)2 − C̄C̄ : 1

)
. (23)
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In case of neo-Hookean elasticity, the stored energy W̄ ◦ is only a function of the first invariant. Hence, the
instantaneous 2nd Piola–Kirchhoff stress tensor according to Eq. (11) is

T̃◦
iso = 2c101. (24)

Therefore, the overstress part is determined by:

˙̃Tov + 1

τ
T̃ov = 2c10

d

dt

(
DEV [1]

)
. (25)

To understand the relation between the deformation history and the stress tensor, the weighted Cauchy
stress tensor is derived for a simple shear oscillation:

F =
⎡

⎣
1 α(t) 0
0 1 0
0 0 1

⎤

⎦ . (26)

For orthogonal base vectors, the deformation gradient can be represented by a 3× 3 matrix. Herein α(t) is the
shear angle function, which oscillates with the angular frequency ω and the amplitude α̂

α(t) = α̂ sin(ωt). (27)

The deformation gradient (26) inserted in Eq. (25) with Eq. (8) yields to

˙̃Tov + 1

τ
T̃ov = 2c10

d

dt

⎛

⎜⎜⎝

⎡

⎢⎢⎣

−
(
4α2

3 + α4

3

) (
α + α3

3

)
0(

α + α3

3

)
−α2

3 0

0 0 −α2

3

⎤

⎥⎥⎦

⎞

⎟⎟⎠

˙̃Tov + 1

τ
T̃ov = 2c10

⎡

⎢⎣
−
(
8αα̇+4α3α̇

3

) (
α̇ + α̇α2

)
0

(
α̇ + α̇α2

) − 2α̇α
3 0

0 0 − 2α̇α
3

⎤

⎥⎦ . (28)

With the given shear oscillation (27), the differentiation can be carried out. Every product of sine and cosine
functions can be transformed to a linear sine and cosine function with a corresponding frequency. Thus, each
component of the overstress tensor T̃ov is determined by a non-homogeneous ordinary differential equation:

[ ˙̃Tov

]

i j
+ 1

τ

[
T̃ov

]

i j
=

n∑

l=1

lω
(
Ai j,l cos(lωt) + Bi j,l sin(lωt)

)
. (29)

The terms Ai j,l and Bi j,l are the amplitudes for the corresponding frequency lω and can be calculated from
the right-hand side of equation (28)

B11,2 = −2c10
α̂4 + 4α̂2

6
and B11,4 = 2c10

α̂4

24
, (30)

B22,2 = B33,2 = −2c10
α̂2

6
, (31)

A12,1 = 2c10

(
α̂ + α̂3

4

)
and A12,3 = −2c10

α̂3

4
. (32)

All other coefficients are zero. The solution of this first-order differential equation is:

[
T̃ov

]

i j
= Ci j e

− t
τ +

n∑

l=1

lτω

1 + (lτω)2

[
(Bi j,l + lτωAi j,l) sin(lωt)

+(Ai j,l − lτωBi j,l) cos(lωt)
]
. (33)
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Table 3 Definition of finite proportional viscoelasticity with neo-Hookean hyperelasticity

Known or accordingly given functions

Instantaneous stored isochoric energy: W̄ ◦(C̄) = c10(IC̄ − 3)
Instantaneous stored volumetric energy: U ◦(J ) = κ

2 (ln(J ))2

Relaxation function with relative coefficients: g(t) = γ∞ +
N∑

k=1
γke

− t
τk

Variables, which have to be defined with respect to deformation history

Instantaneous isochoric 2nd Piola–Kirchhoff stress tensor: T̃◦
iso = 2c101

Instantaneous isochoric weighted Cauchy stress tensor: S◦
iso = 2c10B̄

Overstress of weighted Cauchy stress tensor: Sov,k = F̄
t∫

−∞
2c10e

− t−s
τk d

ds

(
DEV [1]

)
dsF̄T

Weighted Cauchy stress tensor S = κ ln(J )1 + dev
[
γ∞S◦

iso +∑N
k=1 γkSov,k

]

With the initial condition T̃ov(t = 0) = 0, the integration constants Ci j can be calculated. Since the overstress
part of 2nd Piola–Kirchhoff stress tensor is already computed, the weighted Cauchy stress tensor is obtained
with the pushforward operation (see Eq. (15))

S = J∂JU
◦1 + dev

[
γ∞S◦

iso + γ Sov
]
. (34)

The chosen hyperelasticity function leads to:

S◦
iso = 2c10B̄. (35)

With the solution (33) and the definition in Eq. (15), the overstress part of the weighted Cauchy stress
tensor is defined. The derived equations to define the weighted Cauchy stress tensor are summarised in Table
3. The response function for each component of Sov is as follows:

[Sov]11 = a11,0 +
4∑

l=1

(
a11,l cos(lωt) + b11,l sin(lωt)

)
, (36)

with the coefficients

a11,0 = c10α̂
2ω̄2

(
(4 + α̂2)

2(1 + ω̄2)
− α̂2

3
(
1 + (3ω̄)2

) − 16 + 6α̂2

3
(
1 + (2ω̄)2

)e− t
τ

+ 4α̂2
(
1 + (4ω̄)2

)e− t
τ

)
,

b11,1 = c10α̂
2ω̄e

t
τ

(
α̂2

1 + (3ω̄)2
− (4 + α̂2)

1 + ω̄2

)
,

a11,2 = c10α̂
2ω̄2

(
4(4 + α̂2)

3
(
1 + (2ω̄)2

) + 2α̂2

3
(
1 + (2ω̄)2

)
(
1 + e− t

τ

)

− 4 + α̂2

2(1 + ω̄2)
− 3α̂2

2
(
1 + (3ω̄)2

)
)

,

b11,2 = c10α̂
2ω̄

(
− (8 + 3α̂2)

3
(
1 + (2ω̄)2

) + 4 + α̂2

2(1 + ω̄2)
+ α̂2

2
(
1 + (3ω̄)2

)
)

,

a11,4 = c10α̂
4ω̄2

(
− 4

3
(
1 + (4ω̄)2

) − 1

3(1 + (2ω̄)2)
+ 3

2(1 + (3ω̄)2)

)
,

b11,4 = c10α̂
4ω̄

(
4

3
(
1 + (4ω̄)2

) + 1

6(1 + (2ω̄)2)
− 1

2(1 + (3ω̄)2)

)
(37)
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and

a11,1 = a11,3 = b11,3 = 0.

Herein, a relative angular frequency ω̄ = ωτ is introduced. The shear stress component is as follows:

[Sov]12 = a12,0 +
3∑

l=1

(
a12,l cos(lωt) + b12,l sin(lωt)

)
, (38)

with the coefficients

a12,0 = c10ω̄α̂e− t
τ

(
− 4 + α̂2

2(1 + ω̄2)
+ α̂2

2(1 + (3ω̄)2)

)
,

a12,1 = c10ω̄α̂

(
4 + α̂2

2(1 + ω̄2)
− α̂2

3(1 + (2ω̄)2)

)
,

b12,1 = c10ω̄
2α̂

(
4 + α̂2

2(1 + ω̄2)
− 2α̂2

3(1 + (2ω̄)2)

(
1 + 2e− t

τ

))
,

a12,3 = c10ω̄α̂3
(

− 1

2(1 + (3ω̄)2)
+ 1

3(1 + (2ω̄)2)

)
,

b12,3 = c10ω̄
2α̂3

(
− 3

2(1 + (3ω̄)2)
+ 2

3(1 + (2ω̄)2)

)

and

a12,2 = b12,2 = 0.

Furthermore, the diagonal components are given as:

[Sov]22 = [Sov]33 = − 2c◦
10α̂

2ω̄

3
(
1 + (2ω̄)2

)
(
sin(2ωt) − 2ω̄

(
cos(2ωt) − e− t

τ

))
(39)

For a very small relative angular frequency ω̄ � 1, the overstress converges to:

ω̄ � 1 and t � τ ⇒ Sov ≈ 0 (40)

and therefore

ω̄ � 1 and t � τ ⇒ S ≈ J∂JU
◦1 + γ∞2c10dev

[
B̄
]
. (41)

For a very high relative angular frequency ω̄, the amplitudes a11,4, b11,4, a12,0, a12,1 and a12,3, b12,3 can be
neglected. In this case, the shear overstress is:

ω̄ � 1 and t � τ ⇒ [Sov]12 = 2c10α̂

(
1 + α̂2

6

)
sin(ωt). (42)

This yields to

ω̄ � 1 and t � τ ⇒ [S]12 = 2c10α̂

[
γ∞ + γ

(
1 + α̂2

6

)]
sin(ωt). (43)

Due to the term α̂2/6, the stress amplitude is nonlinearly dependent on the shear amplitude. This phenomenon
is not expected for neo-Hookean elasticity. In order to clarify the amplitude dependence, the value 3 is assumed
for α̂. The amplitudes are calculated with material parameters, listed in Table 4. To focus this analysis on the
overstress part, γ∞ = 10−4 is assumed.Due to the amplitude dependence, the sine amplitude b12,1/α̂ converges
towards 5MPa (s. Figure1) at higher angular frequencies. For the chosen material parameter according to neo-
Hookean hyperelasticity b12,1/α̂ should converge towards 2c10 = 2MPa (see Eq. (18)). At high angular
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Table 4 Material parameters for the simulation

Material parameters for the simulation

c10[MPa] γ∞ γi τ [s] κ[MPa]
1 10−4 1 − γ∞ 1 100

10−2 10−1 100 101 102
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Fig. 1 Amplitudes of the shear stress S12 at α̂ = 3

0 10 20 30 40 50 60 70 80
−2

−1

0

1

2

Time/s

Sh
ea
r
st
re
ss

S
12
/M

P
a

α̂ = 1
α̂ = 2
α̂ = 3

Fig. 2 Shear stress response for different amplitudes at ω = 1
6
1
s

frequencies, it is obvious that b12,1/α̂ starts with the expected value 2c10 = 2MPa and converged to the
nonlinear amplitude-dependent value. The non-monotonic behaviour of the coefficients a12,3, b12,3 and the
corresponding angular frequency 3ω cannot be neglected in a specific frequency domain and with large shear
strain amplitudes α̂ � 1. The cosine amplitude a12,3 has a minimum at the angular frequency ofω = 1/(

√
6s).

The sine amplitude b12,3 has a maximum at ω = 1/s and a minimum at ω = 1/(6s). To illustrate the critical
frequency range, the shear stress response for an excitation angular frequency ofω = 1/(6s) is shown in Fig. 2.
It is visible that the shear stress response for α̂ = 3 shows an overshooting behaviour. For smaller amplitudes,
this overshooting oscillation can be neglected.

2.3 Linearisation relative to a pre-deformed configuration

In most technical applications of rubber bushings, the material is loaded with a pre-deformation. To take this
into account, a finite deformation is assumed from the initial configuration I to the pre-deformed configuration
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Fig. 3 Initial, preloaded and current configuration

P0 (see Fig. 3). The dependency of the viscoelastic behaviour on the pre-deformed configuration is presented
with one Maxwell element and neo-Hookean hyperelasticity. A further assumption is that the preload is kept
constant for a long time. This means that all overstresses during loading from the initial configuration to the
pre-deformed configuration become zero. The deformation change from the pre-deformed configuration to the
current configuration is given by 1 + h, so that the deformation gradient is

F = (1 + h)F0. (44)

Herein, h is the displacement gradient for the referenced pre-deformed configuration. Since the displacement
gradient ‖h‖ � 1 is small enough, it is efficient enough to work with the linearised constitutive equations in
the pre-deformed configuration. The linearisation can be defined with the Gateaux differential:

δ(•)(x0, v) = lim
s→0

(•)(x0 + sv) − (•)(x0)
s

. (45)

The linearised form of the weighted Cauchy stress tensor is defined as:

S = S(F0) + δS(F0, hF0) (46)

For this purpose, the Gateaux differentials of the following variables are needed:

δ J (F0, hF0) = J−1
0 (1 : h) (47)

δ
(
F−1) (F0, hF0) = −F−1

0 h (48)

δ
(
F̄
)
(F0, hF0) = dev [h] F̄0 (49)

δ (C) (F0, hF0) = FT
0 (h + hT )F0 (50)

δ
(
C̄
)
(F0, hF0) = F̄T

0 (dev
[
h + hT

]
)F̄0 (51)

δ
(
C−1) (F0, hF0) = −F−1

0 (h + hT )F−T
0 (52)

δ
(
B̄
)
(F0, hF0) = dev [h] B̄0 + B̄0dev

[
hT
]

with B̄0 = F̄0F̄T
0 (53)

δ
(
dev
[
B̄
])

(F0, hF0) = dev
[
dev [h] B̄0 + B̄0dev

[
hT
] ]

(54)

For the case of neo-Hookean hyperelasticity (see Table 3), the Gateaux differential of the deviator operator is
needed:

δ
(
DEV [1]

)
(F0, hF0) = −2

3
(1 : h)DEV0 [1] − 1

3
((h + hT ) : B̄0)C

−1
0

+ 1

3
(1 : B̄0)F

−1
0 (h + hT )F−T

0 . (55)
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Since the pre-deformation F0 is constant, the time derivative of the deviator operator is:

d

dt

{
δ
(
DEV [1]

)
(F0, hF0)

} = −2

3
(1 : ḣ)DEV0 [1] − 1

3
((ḣ + ḣT ) : B̄0)C

−1
0

+ 1

3
(1 : B̄0)F

−1
0 (ḣ + ḣT )F−T

0 . (56)

If we assume that all deformations are isochoric for nearly incompressible rubber materials, the Gateaux
differential can be reduced to:

d

dt

{
δ
(
DEV [1]

)
(F0, hF0)

} = −1

3
((ḣ + ḣT ) : B̄0)C̄

−1
0

+ 1

3
(1 : B̄0)F̄

−1
0 (ḣ + ḣT )F̄−T

0 . (57)

Herein the condition of incompressibility leads to a unimodular deformation gradient in all configurations
and the hydrostatic pressure p has to be defined from the kinematic restriction of incompressibility. With this
assumption, the Gateaux differentials of the following variables read as:

δ J (F̄0, hF̄0) = 0 = (1 : h) ⇒ dev [h] = h (58)

δ
(
F̄−1) (F̄0, hF̄0) = −F̄−1

0 h (59)

δ
(
C̄
)
(F̄0, hF̄0) = F̄T

0 (h + hT )F̄0 (60)

δ
(
C̄−1) (F̄0, hF̄0) = −F̄−1

0 (h + hT )F̄−T
0 (61)

δ
(
B̄
)
(F̄0, hF̄0) = hB̄0 + B̄0hT (62)

δ
(
dev
[
B̄
])

(F̄0, hF̄0) = dev
[
hB̄0 + B̄0hT

]
(63)

d

dt

{
δ
(
DEV [1]

)
(F̄0, hF̄0)

} = −1

3
((ḣ + ḣT ) : B̄0)C̄

−1
0

+ 1

3
(1 : B̄0)F̄

−1
0 (ḣ + ḣT )F̄−T

0 (64)

The linearised weighted overstress is the Gateaux differential of the overstress:

Sov = δ

⎛

⎝dev

⎡

⎣F̄

t∫

−∞
2c10e

− t−s
τ

d

ds

(
DEV [1]

)
dsF̄T

⎤

⎦

⎞

⎠ (F̄0, hF̄0) (65)

With the definition in Eq. (45), the linearisation results in

Sov = dev

⎡

⎣F̄0

t∫

−∞
2c10e

− t−s
τ δ

(
d

ds

(
DEV [1]

))
(F̄0, hF̄0)dsF̄T

0

⎤

⎦ (66)

Inserting the Gateaux differential from Eq. (64) in (2.3) yields to

Sov = dev

⎡

⎣
t∫

−∞

2c10
3

e− t−s
τ

(
(1 : B̄0)(h′ +

(
hT
)′

) − 2(h′ : B̄0)1
)
ds

⎤

⎦ (67)

For the sake of clarity, the differentiation d
ds h(s) is assigned as h′. The linearised weighted overstress is given

as:

Sov = (1 : B̄0)

t∫

−∞

2c10
3

e− t−s
τ dev

[
h′ + (hT )′

]
ds. (68)
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Therefore, the linearised weighted Cauchy stress tensor of the total stress is given by:

S = −p1 + γ∞2c10dev
[
B̄0 + hB̄0 + B̄0hT

]

+ γ (1 : B̄0)

t∫

−∞

2c10
3

e− t−s
τ dev

[
h′ + (hT )′

]
ds. (69)

In the following, the stress response is analysed for a harmonic shear oscillation in the pre-deformed configu-
ration. The total shear strain is:

α(t) = α0 + α with α = α̂eiωt . (70)

So, the deformation gradient belonging to the pre-deformed configuration is:

F̄0 =
⎡

⎣
1 α0 0
0 1 0
0 0 1

⎤

⎦ (71)

and the displacement gradient with respect to pre-deformed configuration is:

h =
⎡

⎣
0 α̂eiωt 0
0 0 0
0 0 0

⎤

⎦ . (72)

The left Cauchy–Green tensor is:

B̄0 =
⎡

⎣
1 + α2

0 α0 0
α0 1 0
0 0 1

⎤

⎦ . (73)

The previously defined total deformation results in the following weighted Cauchy stress:

S = −p1 + γ∞2c10dev

⎡

⎣
1 + α2

0 + 2α0α α0 + α 0
α0 + α 1 0

0 0 1

⎤

⎦

+ γ (3 + α2
0)

t∫

0

2c10
3

e− t−s
τ dev

⎡

⎣
0 α′ 0

α′ 0 0
0 0 0

⎤

⎦ ds, (74)

S = −p1 + γ∞2c10

⎡

⎣
2
3

(
α2
0 + 2α0α

)
α0 + α 0

α0 + α − 1
3

(
α2
0 + 2α0α

)
0

0 0 − 1
3

(
α2
0 + 2α0α

)

⎤

⎦

+ γ (3 + α2
0)

t∫

0

2c10
3

e− t−s
τ iωα̂eiωsds

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ . (75)

The remaining integral is evaluated for the case of a very large time period (i.e. t � τ ). This yields:

lim
t→∞

t∫

0

e− t−s
τ α̂eiωsds = lim

t→∞

(
τ

1 + iωτ

(
eiωt − e− t

τ

))
= τ

1 + iωτ
eiωt . (76)

Caused by the boundary condition, the expected Cauchy stress tensor has the form:

S = T =
⎡

⎣
0 σ12 0

σ12 σn 0
0 0 σn

⎤

⎦ . (77)
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The three variables to be determined are the shear stress σ12, the normal stress σn and the hydrostatic pressure
p. With the defined response functions (75) and the integration (76), the following system of equations is
derived:

0 = −p + γ∞c10
4

3

(
α2
0 + 2α0α̂e

iωt
)

, (78)

σn = −p − γ∞c10
2

3

(
α2
0 + 2α0α̂e

iωt
)

, (79)

σ12 = 2c10

(
γ∞(α0 + α̂eiωt ) + γ

3
(3 + α2

0)
iωτ

1 + iωτ
α̂eiωt

)
. (80)

From Eqs. (78) and (79), the hydrostatic pressure

p = γ∞c10
4

3

(
α2
0 + 2α0α̂e

iωt
)

(81)

and the normal stress

σn = −γ∞2c10
(
α2
0 + 2α0α̂e

iωt
)

(82)

can be computed. Both consist of a constant component and one that oscillates with the excitation angular
frequency. The oscillating part disappears when the static pre-deformation disappears. For the shear stress, the
following expression is finally obtained

σ12 = 2c10γ∞α0 + 2c10α̂

(
γ∞ + γ

3
(3 + α2

0)
iωτ

1 + iωτ

)
eiωt . (83)

The first part is the static shear stress resulting from the static deformation and the second part results from
the oscillating additional excitation. The pre-factor before the complex excitation is the complex frequency-
dependent modulus consisting of the storage and the loss modulus

G∗ = 2c10

(
γ∞ + γ

3
(3 + α2

0)
iωτ

1 + iω

)
= G ′ + iG ′′ (84)

with the storage modulus

G ′ = 2c10

(
γ∞ + γ

3
(3 + α2

0)
(ωτ)2

1 + (ωτ)2

)
(85)

and the loss modulus

G ′′ = 2c10
γ

3
(3 + α2

0)
(ωτ)2

1 + (ωτ)2
. (86)

Both moduli depend on the pre-deformation in the same way, which does not occur in material models of
viscoelasticity based on Maxwell models. In these models, the loss modulus does not depend on the pre-
deformation. Experimental investigations in [38] show that the storage modulus decreases with increasing pre-
deformation. In the model considered here, the storage modulus increases with increasing pre-deformation.
The loss modulus shows the same trend. In Maxwell models, the loss modulus does not depend on the pre-
deformations.
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2.4 Enhanced modification of the Simo model

The analysis of the simple shear shows that the Simo model at high frequency domain differs from the
instantaneous stress S◦

iso. In addition, non-physical overshoots occur. For a relative angular frequency ω̄ � 1,
the differential equation (13) can be approximated by:

˙̃Tov ≈ d

dt

(
DEV

[
T̃◦
iso

])
. (87)

Since in the free energy Eq. (3) the internal variable T̃ov is scalar multiplied by the unimodular right Cauchy–
Green tensor, the deviator operator is applied a second time. In [27], the internal variable in the free energy is
multiplied by the right Cauchy–Green tensor. Thus, the deviator operator is only considered in the tensorial
differential equation. However, the integration with the deviator operator still leads to non-physical overshoots
regarding the neo-Hookean model. In addition, this variant contributes to the volumetric stress components of
the Cauchy tensor in the case of isochoric deformations. An alternative would be to consider the unimodular
right Cauchy–Green tensor in the free energy, and the differential equation for the internal variable without
deviator operator. For the neo-Hookean material model, this leads to the fact that the evolution equation of
the internal variable no longer depends on the deformation. If the partial derivative of the free energy is
expanded with the inverse right Cauchy–Green tensor, this does not lead to any change in the Cauchy stress
tensor. This addition is eliminated again by the deviator operator. The advantage of this addition is that a
deformation dependence is taken into account in the evolution equation even with the neo-Hookean model.
Another property is that the spontaneous stress tensor becomes T̃◦

iso(F = I) = 0 also recommended in [7]
for the unloaded state. This motivates a suggestion in case of hyperelastic energy functions based on first and
second invariants of unimodular right Cauchy–Green tensor. The derived stress relation based on Eq. (11) for
an isotropic hyperelastic energy function is:

T̃◦
iso = 2∂IC̄W̄

◦1 + 2∂I IC̄W̄
◦(IC̄1 − C̄). (88)

The following modification is suggested:

T̃◦
iso = 2∂IC̄W̄

◦(1 − C̄−1) + 2∂I IC̄W̄
◦(IC̄1 − C̄ − 2C̄−1). (89)

This does not affect the thermodynamical consistency and does not change the instantaneous Cauchy stress.
With the modified 2nd Piola–Kirchhoff stress tensor, the evolution Eq. (13) can be adapted to:

˙̃Tov + 1

τ
T̃ov = d

dt
T̃◦
iso (90)

so that the deviatoric operator is only applied once. In this case, the viscoelastic material model based on the
neo-Hookean model does not provide overshoots. For very high relative angular frequencies of ω̄ � 1, the
material response is identical to the spontaneous tensor S◦

iso. Since the deviator operator is applied after the
integration of the evolution equation, a clear separation of the volumetric and isochoric stress tensor is ensured.
Furthermore, if neo-Hookean energy function is applied, the obtained material model is equal to the proposed
material model assigned as "Model A" in [10]. The constitutive equations are summarised in Table 5.

2.5 Integration algorithm

In [35, p. 372], an integration algorithm is suggested. In the same manner, the algorithm is summarised in
Table 6 for the Simo model. In this section, we assume that the hyperelasticity function for the stored energy
depends on the invariants IC̄ and I IC̄. The algorithm for the modified model is summarised in Table 7.

3 Simulation of a tie rod in car chassis

A tie rod in a multi-link chassis is coupled with the car body and the wheel carrier through two rubber bushings.
The bushings of the rod are subjected to torsional loads due to the vertical compression of the car suspension.
To show the effects of the presented viscoelastic model, this vertical displacement of a chassis is simulated. A
2D drawing of the tie rod with the relevant dimensions is shown in Fig. 4.
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Table 5 Alternative definition of finite proportional viscoelasticity hyperelasticity

Known or accordingly given functions

Instantaneous stored isochoric energy W̄ ◦(C̄)
Instantaneous stored volumetric energy U ◦(J )

Relaxation function with relative coefficients g(t) = γ∞ +
N∑

k=1
γke

− t
τk

Variables, which have to be defined with respect to deformation history
Alternative instantaneous isochoric 2nd Piola-Kirchhoff stress tensor T̃◦

iso = 2∂IC̄ W̄
◦(1 − C̄−1) + 2∂I IC̄ W̄

◦(IC̄1 − C̄ − 2C̄−1)

Instantaneous isochoric weighted Cauchy stress tensor S◦
iso = F̄T̃◦

isoF̄T

Overstress of weighted Cauchy stress tensor: Sov,k = F̄
t∫

−∞
e
− t−s

τk d
ds

(
T̃◦
iso

)
dsF̄T

Weighted Cauchy stress tensor: S = J∂JU◦1 + dev
[
γ∞S◦

iso +∑N
k=1 γkSov,k

]

Table 6 Integration algorithm for finite proportional viscoelasticity [35, p. 372]

Given entities
Deformation gradient F(tn) = Fn and F(tn+1) = Fn+1

Internal variable: T̃ov,kn
Variables, which have to be defined for the time point tn+1

Relaxation function with relative coefficients:

g∗(t) = γ∞ +
N∑

k=1
γke

− t
2τk

Instantaneous isochoric weighted Cauchy stress tensor:
S◦
ison+1 = 2∂IC̄ W̄

◦(C̄n+1)B̄n+1

+∂I IC̄ W̄
◦(C̄n+1)(IC̄n+1

B̄n+1 − B̄n+1B̄n+1)

S◦
ison = 2∂IC̄ W̄

◦(C̄n)B̄n

+∂I IC̄ W̄
◦(C̄n)(IC̄n

B̄n − B̄nB̄n)

Update algorithmic internal variables:

T̃ov,kn = e
− t

τk T̃ov,kn − e
− t

2τk F̄−1
n dev

[
S◦
ison
]

F̄−T
n

T̃ov,kn+1 = T̃ov,kn + e
− t

2τk F̄−1
n+1dev

[
S◦
ison+1

]
F̄−T
n+1

Sov,kn = F̄n+1T̃ov,knF̄T
n+1

Weighted Cauchy stress tensor:

S = Jn+1∂JU◦(Jn+1)1 + dev
[
g∗(t)S◦

ison+1 +∑N
k=1 γkSov,kn

]

The simulation is performed using the FEM software Abaqus. Before setting up the boundary conditions,
the tie rod geometry is discritised with 3D elements. The rubber part is discretised by 10976 C3D8H (8-node
linear brick, hybrid with constant pressure) elements, while the steel part is discretised by 23624 C3D8R
(8-node linear brick, reduced integration with hourglass control) elements. Figure5 shows the discretisation
of the complete geometry.

After discretisation, the boundary conditions are set as shown in Fig. 6. Two reference points are kine-
matically coupled with the inner diameters of the rubber bushings. The displacement of the reference point 1
(RP1) is kept fixed in all directions except the rotational displacement around the x-axis, which is set free. On
the other end of the rod, the reference point 2 (RP2) is allowed to displace in the z- and the y-direction and
rotate about the x-axis. All other displacement boundary conditions are held fixed. The displacement in the
z-direction is given as:

Uz = Uz0 + Ûz sin(ωt). (91)

To highlight the non-physical response of the presented model, four different loading cases are simulated.
The loading cases are summarised in Table 8. The results are obtained for both the presented model (Abaqus
Model for finite viscoelasticity) and the modified model. The implementation of the modified model in Abaqus
is done through a user material subroutine (UMAT) programmed using Fortran 77.

The values of material parameters for the rubber bushings are listed in Table 4. The steel rod has a Young’s
modulus (E) of 210 GPa and a Poisson’s ratio (ν) of 0.3. The neo-Hookean solid is used for modelling the
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Table 7 Integration algorithm for alternate model suggested in sec. 2.4

Given entities
Deformation gradient: F(tn) = Fn and F(tn+1) = Fn+1

Internal variable: T̃ov,kn
Variables, Which have to be defined for the time point tn+1

Relaxation function with relative coefficients:

g∗(t) = γ∞ +
N∑

k=1
γke

− t
2τk

Instantaneous isochoric weighted Cauchy stress tensor:
S◦
ison+1 = 2∂IC̄ W̄

◦(C̄n+1)(B̄n+1 − 1)

+∂I IC̄ W̄
◦(C̄n+1)(IC̄n+1

B̄n+1 − B̄n+1B̄n+1 − 2 · 1)

S◦
ison = 2∂IC̄ W̄

◦(C̄n)(B̄n − 1)

+∂I IC̄ W̄
◦(C̄n)(IC̄n

B̄n − B̄nB̄n − 2 · 1)

Update algorithmic internal variables:

T̃ov,kn = e
− t

τk T̃ov,kn − e
− t

2τk F̄−1
n S◦

isonF̄−T
n

T̃ov,kn+1 = T̃ov,kn + e
− t

2τk F̄−1
n+1S◦

ison+1F̄−T
n+1

Sov,kn = F̄n+1T̃ov,knF̄T
n+1

Weighted Cauchy stress tensor:

S = Jn+1∂JU◦(Jn+1)1 + dev
[
g∗(t)S◦

ison+1 +∑N
k=1 γkSov,kn

]

Fig. 4 A 2D drawing with the dimensions of the modelled tie rod

Fig. 5 The discretised 3D Model
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Fig. 6 Boundary conditions for the simulation
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Fig. 7 Calculated reaction force Fz(UZ ) as a function of time for both models at 130mm amplitude loading

Table 8 Simulation cases

Simulation cases

Load case Amplitude Angular frequency Preload
Ûz ω Uz0
[mm] [rad/sec] [mm]

LC1 130 1/6 0
LC2 1 20π 0
LC3 1 20π 100
LC4 130 20π 0

hyperelastic parts of the model. The parameter values are purposefully chosen so that the material response
has a very small equilibrium stress (γ∞ has a very small value).

3.1 Simulation of an alternating finite deformation

In this subsection, the first simulation case (LC1) along with its results is presented. As shown in Fig. 7, the
loading is applied in the z-direction as a sine function with an amplitude of 130mm (see. Equation (91) and
LC1 from Table 8). The reaction force in the z-direction is plotted against time in Fig. 7. As a response to the
sinusoidal deformation, the reaction forces are expected to behave also in a sinusoidal manner. Figure7 shows,
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Fig. 8 Calculated reaction force Fz(UZ ) as a function of time for both models at 1mm amplitude loading with no preload
deformation
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Fig. 9 Calculated reaction force Fz(UZ ) as a function of time for bothmodels at 1mmamplitude loadingwith preload deformation
of 100mm

on the contrary, a non-physical response of the original Abaqus model. Instead, the modified model shows the
expected behaviour of a sinusoidal wave form of the reaction force.

3.2 Preload dependency of models

As discussed and shown in Sect. 2.3, the dynamic behaviour of the model should not depend on the applied
static preload. To show the preload dependency of the Abaqus model, two different loading cases are simulated
(LC2 and LC3 from Table 8). In LC2, no pre-deformation is applied. A cyclic loading with an amplitude of
1mm and an angular frequency of 20π /sec is simulated. The results are shown in Fig. 8.

The results show that at the small amplitude with no pre-deformation, the behaviour of the two models,
the Abaqus model, and the modified model, are identical. Adding a preload before cyclic deformation (LC3)
shows the pre-load dependency of the Abaqus model as visualised in Fig. 9. In LC3, the preload is set to
100mm. Before applying the cyclic loading, the material pre-deformation is held constant for 100s to allow
complete relaxation of the stresses. After ensuring a complete relaxation where the reaction forces are zero,
a cyclic deformation is applied with an amplitude of 1mm and an angular frequency of 20π /sec. In Fig. 9,
the force response to the vertical displacement is shown. It is obvious that the reaction force with the Abaqus
model is nearly two times greater than the reaction with the modified model.
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Fig. 10 Calculated reaction force Fz(UZ ) as a function of time for both models at 130mm amplitude loading with loading
frequency of 10 Hz (ω = 2π rad/sec)

3.3 Model behaviour at high frequency loading

According to the Maxwell model, the material responds at high frequency loading with the instantaneous
elasticity. That means that at a sufficiently high frequency, the response is mainly elastic. The results obtained
by using the Abaqus model for hyperelasticity without adding viscous effects should be, therefore, at high
frequencies identical to the results obtained using the Abaqus model with adding one viscoelastic arm. In
the simulation case LC4, the results of the three models (Abaqus finite viscoelasticity, modified model, and
Abaqus model for hyperelasticity) are compared as shown in Fig. 10.

The results from the hyperelastic model of Abaqus are the same as those obtained from themodifiedmodel.
Moreover, the finite viscoelastic model of Abaqus shows a sine wave with an increasing amplitude which is a
non-physical response.

4 Conclusion

The use of commercial FEA software in the industrial field requires prior knowledge of the limitations of the
implemented material models. In this contribution, the focus was on testing the behaviour of the Simo model
for finite viscoelasticity under different loading conditions. For this purpose, an analytical stress response
for a simple shear load is derived in Sect. 2. The analytical investigations show that the applied viscoelastic
material model suggested in [3] shows non-physical overshoot oscillations in a specific frequency range.
Furthermore, for relatively high frequencies the stress amplitude depends nonlinearly on the shear amplitude.
The linearisation in the pre-deformed configuration shows that the storage modulus increases with increasing
pre-deformation. Experimental results show a reverse phenomenon, i.e. decreasing storage modulus with
increasing pre-deformation. The loss modulus also increases with increasing pre-deformation. To avoid these
undesirable phenomena, a modified model is suggested. For the implementation of the modified model, the
existing integration algorithm can be adjusted with minor changes.

Finally, an example of an application is chosen to illustrate the difference between the modified and the
existing Simo model. The chosen example is a tie rod in a multi-link chassis. The compression of the chassis
leads to a torsional load on the rubber bearings. With the Simo model, a non-physical overshoot oscillation
can be shown in the vertical reaction force. Furthermore, the analytical results from the linearisation could be
shown for the chosen example with load case LC2 and LC3. With the last load case (LC4), it is shown that the
desired behaviour of the Simo model, i.e. proportional overstress at high frequencies, is only satisfied for small
deformations. All of these effects can be avoided with the suggested modification. It should be mentioned that
these effects only make a visible contribution in the case of large deformations.

The modification is implemented into Abaqus for neo-Hookean hyperelasticity. It has to be shown that
the modification avoids these effects also with other hyperelastic models. It is expected that with higher-order
hyperelasticmodels, the overshoot cannot be avoided evenwith themodification.But the desiredproportionality
of the overstress at higher frequencies should be ensured with the modification.
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