
Cluster-based Contextual Recommendations

Kostas Stefanidis
ICS-FORTH, Greece
kstef@ics.forth.gr

Eirini Ntoutsi∗
Leibniz Universität

Hannover, Germany
ntoutsi@kbs.uni-hannover.de

ABSTRACT
In this work, we address the problem of contextual recom-
mendations by exploiting the concept of subspace clustering.
Specifically, we pre-partition users that have rated subsets of
data items similarly into clusters and we associate a context
situation with each cluster. The cluster context is defined as
any internally stored information that can be used to char-
acterize the cluster members per se. Then, given a query
context, we identify the clusters with the most similar con-
text, and we use their members for making suggestions in a
collaborative filtering manner.

1. DESCRIPTION
Recommender systems have become indispensable for sev-

eral Web sites, such as Amazon, Netflix and Google News,
helping users to navigate through the infinite number of
available choices. Motivated by the fact that often users
have different preferences under different context situations,
several approaches, e.g., [1], extend recommender systems
beyond the two dimensions of users and items to include
further contextual information. Context can be defined as
any external to the database information that can be used
to characterize the situation of a user, such as the loca-
tion, time or companion of the user, or any internally stored
information that can be used to characterize the data per
se [6]. In our work, we follow an internal contextualization
approach, and infer context from the data itself. A simple
way to express an internal context is by specifying condi-
tions for the presence of particular attribute values in the
data. For example, for a movies recommender, an internal
context can be: genre=comedy & production-year=2015. It
is clear that such a context characterization cannot be done
upon the whole database, as the data display a lot of vari-
ability. Rather, we should look for contextual information
in smaller, homogeneous subgroups of the data.

∗Work done while with the Ludwig-Maximilians University,
Munich.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

To extract contextual information, we rely on similarities
on the user ratings. Intuitively, users close together in their
ratings, share the same context, let it be the preference for
similar movie genres, or preferences towards specific direc-
tors or actors. Typically the user similarity is evaluated
w.r.t. the full dimensional feature space, i.e., all available
items. Finding similar users for all different items though is
hard, while it is more reasonable to find users similar w.r.t.
a subset of the items. A straightforward approach to derive
such subsets is to categorize the items based on some domain
knowledge. In case of movies, for example, the movie genre
can be used and items that belong to the same genre can
form a subset. A problem with this approach is that such
categories are quite vaguely defined, diverse and also over-
lapping. For instance, the movies Ted and My big fat Greek
wedding are both classified under comedy, the later however
can be also found under romance. For a user interested in
comedies it is not clear whether she would equally appreci-
ate a suggestion on Ted and My big fat Greek wedding. Such
a general item categorization, does not reveal much about
the aspects that bring users together. Moreover, such as-
pects might be beyond some given categorization, like the
movie genre and also, they might involve more than one di-
mension, e.g., movie genre and director. Ideally, we want
to find subsets of items which are rated similarly by some
users; such a subset implies that these items have something
in common which brings these users together. This does not
need to be that generic as the genre, but it might be some
other common property of the items, like the director, the
story, or even a mixture of them.

In [4], we locate such user-item groups by exploiting (fault-
tolerant) subspace clustering. Subspace clustering is a pop-
ular approach for clustering high dimensional data which
discovers, except for the cluster members, the dimensions
upon which these members form a cluster. Different sub-
space clusters might be defined upon different subspaces and
member and subspace overlap among the different clusters
is allowed. In our case, subspace clustering identifies groups
of users with similar behavior w.r.t. a set of items. We em-
ploy the items of a subspace cluster to build its context and
use it to locate, at query time, clusters with context similar
to the query context. In contrast to our prior work [4] that
considers all user-related clusters for recommendations, here
we define the notion of cluster context and we consider only
context-related clusters for the specific user.

Recommendations Basics: Assume a recommender sys-
tem, where I is the set of items and U is the set of users.
Each item i ∈ I is described as a set of (attribute, value)

Poster Paper

Series ISSN: 2367-2005 712 10.5441/002/edbt.2016.100

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.100

pairs; let D be the set of all distinct (attribute, value) pairs
appearing in all data items. For instance, for a movies ap-
plication, an attribute can be the director or the production
year of a movie. A user u might rate an item i with a
score rating(u, i) in [0.0, 1.0]; let R be the set of all ratings
recorded in the system. Typically, the cardinality of I is
high and users rate only a few items. For an i, unrated by
u, with Nu representing u’s most similar users (neighbors),
its relevance score is computed as:

relevance(u, i) =

∑
u′∈Nu

simU(u, u′)rating(u′, i)∑
u′∈Nu

simU(u, u′)
(1)

where the similarity function simU(u, u′) evaluates the prox-
imity between u and u′. The most prominent items, i.e.,
those with the higher relevance, are suggested to the user.

Fault-tolerant Subspace Clustering: Subspace cluster-
ing aims at detecting clusters embedded in subspaces of a
high dimensional dataset. Clusters may consist of different
combinations of dimensions, while the number of relevant
dimensions per cluster may vary strongly. A subspace S de-
scribes a subset of items, S ⊆ I. A subspace cluster C is
then described in terms of both its members U ⊆ U and
the subspace of dimensions S ⊆ I upon which it is defined
as C = (U, S). Typically, subspace clustering does not deal
with missing values, which is a key problem for recommen-
dations. Fault tolerant subspace clustering [3] deals with
this issue by allowing a certain amount of missing values
per items, users and ratings in a subspace cluster.

In [4], we use fault tolerant subspace clustering to locate
users with similar preferences to a query user, for comput-
ing her recommendations. In particular, for a query user u
we locate its similar users via the subspace clusters where
the user belongs to. These are locally similar users, the term
“locally” meaning that they are similar w.r.t. a set of dimen-
sions (those in their corresponding subcluster). We refine
this set of users based on their common ratings to u; this is
a “global” evaluation aiming to check their overall proxim-
ity, i.e., over all items. This local-global refinement results
in a more qualitative set of friends Nu for recommendations.
The new set Nu is plugged in Formula 1 for issuing recom-
mendations. Our results show that this careful selection of
friends, is reflected in more qualitative recommendations.

Inferring the Cluster Context: We consider that the
context of a subspace cluster C = (U, S) expresses the most
significant parts of the items S within the cluster; these are
captured through the attribute values of the items of S, upon
which C is defined and are therefore sets of (attribute, value)
pairs. Similar to [5], we ground the significance of each
(attribute, value) pair on its frequency in the data appearing
in the cluster. By post-processing the (attribute,value) pairs
in S, we rank these pairs based on their frequency in C; the
significance of a pair is normalized taking into account its
frequency in the whole database, so as to downgrade global
popular pairs corresponding to common trends and focus on
cluster-specific context. This way, we define the context of
a cluster as an expression containing one or more significant
(attribute,value) pairs. For instance, the context of a movie
cluster could be: genre=comedy & actor=Meryl Streep.

Luckily, our subspace clustering is offline and therefore
there is no need to compute at query time the context of
the produced clusters. This fact allows us to resorting to
non-approximate solutions for context identification.

Contextual Recommendations: Given a user u along
with a query with context p, expressed as a set of (attribute,
value) pairs with attributes in D, for computing contextual
recommendations for u, we first locate the users that exhibit
the most similar behavior to u under p. These are the mem-
bers of the clusters for which u is also a member; we denote
them by Cu. Due to the context-constraints though, not
all clusters are relevant as some of them describe a different
context than p. Therefore, we need a way to evaluate the
relevance of a cluster context to p. We distinguish between:
•Exact context match: If there are clusters in Cu that

match exactly the query context p of u, i.e., Cp
u, then the

members of these clusters comprise the set of friends Nu

upon which the recommendations for u will be computed.
•Partial context match: If there is no cluster with context

equal to p, we relax our context relevance evaluation by look-
ing for context-similar clusters, instead of context-identical
clusters. To determine how close a context query p and a
cluster context c are, we rely on a vector-based approach.
Let D be the set of all N distinct (attribute, value) pairs ap-
pearing in all data items. A vector representation of p is a
binary vector Vp of size N , whose j-th element corresponds
to D[j]. If D[j] appears in p, then Vp[j] = 1; otherwise it is
0. Analogously, the vector representation of a cluster con-
text w is a binary vector Vw of size N , where Vw[j] = 1, if
D[j] appears in w; otherwise it is 0. The similarity between
p and w is then defined using their vector representations
Vp and Vw as:

sim(p, w) = cos(Vp, Vw) =
Vp · Vw

|Vp||Vw|
(2)

Having located the clusters Cp
u with the most similar con-

texts to p, we employ their members as the set of the most
similar users to u and compute recommendations based on
them. Actually, we apply a weighted ranking approach to
refine the set of like-mined users according to the similarity
of the context of the cluster they belong to, to p.

Next Steps: We are working on improving our cluster con-
text description, by a better aggregation of the attribute val-
ues within the cluster and by using item hierarchies, and on
more sophisticated methods for context matching and user
aggregation. Also, we are working on the scalability aspect
to parallelize the subspace cluster and context extraction
parts. Preliminary results with MapReduce appear in [2].

2. REFERENCES
[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and

A. Tuzhilin. Incorporating contextual information in
recommender systems using a multidimensional approach.
ACM Trans. Inf. Syst., 23(1):103–145, 2005.

[2] V. Efthymiou, K. Stefanidis, and E. Ntoutsi. Top-k
computations in MapReduce: A case study on
recommendations. In IEEE Big Data, 2015.

[3] S. Günnemann, E. Müller, S. Raubach, and T. Seidl.
Flexible fault tolerant subspace clustering for data with
missing values. In ICDM, pages 231–240, 2011.

[4] E. Ntoutsi, K. Stefanidis, K. Rausch, and H. Kriegel.
Strength lies in differences: Diversifying friends for
recommendations through subspace clustering. In CIKM,
2014.

[5] R. Srikant and R. Agrawal. Mining quantitative association
rules in large relational tables. In SIGMOD, 1996.

[6] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on
representation, composition and application of preferences in
database systems. ACM Trans. Database Syst., 36(3):19,
2011.

713

	Cluster-based Contextual RecommendationsKostas Stefanidis, Eirini Ntoutsi

