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Abstract

Cyber-Physical Systems (CPS) are subject to var-
ious faults due to failing actuators, sensors or
structural components. The increasing size and
complexity of modern systems result in cost- and
time-intensive manual fault handling. To enable
systems to adapt to faults autonomously, reconfig-
uration, i.e. the identification of a new valid con-
figuration that recovers operation, is necessary.
This paper presents an extension of the recently
published reconfiguration algorithm AutoConf
and the application to the Environmental Con-
trol and Life Support System (ECLSS) of the
COLUMBUS module aboard the ISS. The imple-
mentation draws on a qualitative system model
formulated in propositional logic. The corre-
sponding satisfiability problem is solved by a state
of the art SAT-Solver. The extension consists of
three contributions, namely a health status imple-
mentation, a dynamic causal graph and a problem-
specific formulation of serial dependencies of the
actuators. Both a static and dynamic evaluation
(integrated simulation) of the extended reconfig-
uration algorithm is presented for 72 fault cases,
covering a wide range of faults.

1 Introduction
The Environmental Control and Life Support System
(ELCSS) of the International Space Station (ISS) can be
classified as a Cyber-Physical System, since its mechanisms
and operational modes are controlled and monitored by an
algorithm. Although there are Fault Detection, Isolation
and Reconfiguration (FDIR) procedures implemented on the
component level, a system-wide automatic fault-handling of
ECLSS is nonexistent, requiring quick and continuous en-
gineering support. Despite being designed as a very robust
system, during the past decade operation was interrupted be-
cause of insufficiently handled sensor, structure and actuator
faults. Since ECLSS is of vital importance for the astronauts
and experiments aboard the ISS, it is worthwhile to investi-
gate, whether the safety and reliability can be increased by
a system-wide reconfiguration approach.

To assess this hypothesis the project (K)ISS1 implements

1The project (K)ISS is part of dtec.bw®

https://dtecbw.de/home/forschung/hsu/projekt-kiss

a software stack of Anomaly Detection, Diagnosis and Re-
configuration for the automatic fault handling.

The task of reconfiguration is to transfer the system from
an invalid to a valid configuration, that is to recover a system
from a fault by automatically adapting the system configura-
tion so that operation within the specification of the system
can be maintained [1].

This paper presents the extension and application of the
recently published algorithm AutoConf by Balzereit and
Niggemann [2] for automated reconfiguration to the ECLS
System. The algorithm performs a reconfiguration in two
steps: First a logical formula which represents the recon-
figuration problem is created, which is then solved using a
satisfiabilty (SAT) solver.

AutoConf requires a qualitative process model in the form
of a causal graph which can be translated into propositional
logic. With the description of the system goals (e.g. main-
taining a specified temperature within the cabin) and fur-
ther constraints the problem of reconfiguration can be trans-
ferred into a satisfiability (SAT) problem, i.e. finding an
assignment of variables that satisfy the logical formula. A
reconfiguration typically needs to be identified from a large
parameter space. Since the choices are usually binary, the
search space is increasing exponentially. To solve the for-
mula and find a new configuration efficiently a state of the
art SAT solver (Z3, Microsoft Research) [3] is used. The
choice for this solver is mainly due to its wide user base and
support of SMT, which might be used when expanding the
algorithm.

AutoConf implements such an approach, yet exhibits a
few limitations when applied to the specific system at hand.
Some of these shall be addressed as adaptations in this pa-
per, which lead to the following research questions:

RQ1: Which extensions to the existing reconfiguration al-
gorithm AutoConf are necessary to accurately model the
multi-physical system ECLSS? Usually a reconfiguration
task is triggered by an anomaly detection followed by a di-
agnosis, which identifies the faulty component. This com-
ponent is no longer available to the system, and thus, should
be excluded from the new configuration. Additionally, in
physical processes, the impact of a control variable typically
depends on the state variables it is influencing. The flow di-
rection through a valve, e.g., generally depends on the direc-
tion of the pressure differential. Finally, serial dependencies
that require a set of control variables (e.g. valve positions)
to be set to achieve a certain objective are commonly found
in real world systems.

RQ2: How can a (quantitative) simulation be integrated

https://dtecbw.de/home/forschung/hsu/projekt-kiss


for a dynamic evaluation of the (qualitative) reconfigura-
tion? A static evaluation of a reconfiguration solution does
not account for inherent dynamics of the system. To validate
the correct system response to a given fault, the reconfigu-
ration algorithm is integrated into a physical simulation of
ECLSS.

The contribution of this paper is threefold:

1. Showcasing the application of AutoConf to a real-world
system, addressing specific constraints and challenges.

2. Further development and extension of AutoConf to sup-
port actuator health statuses, dynamic causal graphs
and serial dependencies.

3. Evaluating the resulting reconfiguration algorithm
within a simulation of the ECLS system.

This paper is structured as follows: First, the related work
is discussed and our approach is classified within the FDIR
and control research area. Next, we will provide a descrip-
tion of the system at hand, namely ECLSS, and the simula-
tion model thereof, which will be used for the dynamic val-
idation of the reconfiguration algorithm. Thirdly, the exten-
sions to the existing AutoConf algorithm will be presented,
followed by the evaluation, where both the static as well as
dynamic results will be discussed. The article ends with a
conclusion and an outlook on possible future work.

2 Related Work
This section provides an overview over literature in related
research areas, namely fault tolerant control and qualitative
approaches to reconfiguration.

2.1 Fault Tolerant Control
Fault-Tolerant Control (FTC) is concerned with designing
controllers that maintain system operation even in the pres-
ence of faults. The system dynamics are modeled using or-
dinary differential equations; a controller uses this model
to continuously calculate new system inputs that establish
desired system behavior [4]. Blanke et al. [1] separated
FTC techniques into robust and adaptive control. Robust
controllers contain a single controller whose parameters are
chosen to handle as many faults as possible. In case of a
fault, the controller is not adapted but an a priori choice of
controller shall enable tolerance towards most faults. Adap-
tive controllers, on the other hand, change their parame-
ters with the faulty situation. Thus, the plant’s behavior is
adapted to the faulty situation and the effects of the fault
may be mitigated. For this purpose, the system behavior
needs to be estimated. Ma et al. [5] estimated the system
dynamics using fuzzy logic.

However, as FTC mainly operates on quantitative models,
its applicability towards hybrid systems is limited: discrete
system behavior coming from different discrete operation
modes is expensive, as for each discrete mode, a new con-
trol needs to be defined. This makes handling unforeseen
faults nearly impossible. In addition, major faults requir-
ing structural system adaptations cannot be handled by FTC
properly.

2.2 Qualitative Approaches
Qualitative Simulation is concerned with the estimation of
future system behavior, given a qualitative system descrip-
tion. Instead of ordinary differential equations, information

about the monotony of system variables and landmark val-
ues, i.e. values representing significant system regions, are
used [6].

Crow and Rushby [7] established the research area of
model-based reconfiguration. They extended Reiter’s diag-
nosis algorithm [8] towards the identification of a system
adaptation for discrete systems. This idea was taken up in
further research and led to an integration of AI-based diag-
nosis in control approaches [9].

Similarly, Blanke et al. [1] emphasized the need for re-
configuration as an automated adaption of a system’s con-
troller, to enable efficient fault handling.

One approach combining AI-based reconfiguration and
modern control theory has been published by Balzereit and
Niggemann [2]. Their algorithm AutoConf is based on a
satisfiability solver identifying an input mask, that enables
cyber-physical production systems (CPPS) to maintain pro-
duction in the presence of faults. Since their approach has
been developed for CPPS, this work extends it to further ap-
plication areas.

3 ECLS System Description and Model
The COLUMBUS module is the biggest contribution of the
European Space Agency (ESA) to the International Space
Station. The purpose of COLUMBUS is to serve as a unique
platform for different fields of research: Human physiology,
biology, fundamental physics, material sciences and fluid
physics. Furthermore, external experiment facilities allow
the long-term and non-perturbed observation of the Earth
and the universe. The European laboratory is operated by
the COLUMBUS Control Center at the German Space Oper-
ations Center nearby Munich [10].

3.1 ECLS System Overview
The most critical and vital system of the COLUMBUS mod-
ule is the Environmental Control and Life Support System
(ECLSS), whose topology is shown the process flow dia-
gram in figure 1. It consists of a supply (ISFA) and return
(IRFA) fan assembly, a redundant pair of cabin fan assem-
blies (CFA 1/2), a temperature control valve (TCV), which
distributes the airflow into two redundant cooling and con-
densation cores (Core 1 and 2) within the condensate heat
exchanger (CHX) to cool and dehumidify the air.

The airflow is then channeled into the cabin, where it
mixes with the cabin air. To refresh the air and ensure smoke
detection, a minimum volumetric flow rate has to be passed
by the smoke detectors (SD 1/2) and is returned by the ISFA
and recycled in part through the CFAs. The thermal control
system (TCS) is composed of the Cores, the coolant and ex-
ternal heat exchangers and is controlled by the redundant
cabin temperature control units (CTCU 1/2).

Additionally, there are multiple sensors, measuring the
volumetric airflow (AFS), pressure differentials across fans
and filter (∆P or DPS), partial pressure of O2 and of CO2

gas (PPOS/PPCS), cabin temperature (CTS 1-6), humidity
(HS 1/2) and the total pressure (TPS 1-4). In the follow-
ing section, we will define a theoretical model to represent
ECLSS.

3.2 Theoretical Model - Hybrid Automaton
ECLSS is a mixed discrete-continuous system - exhibit-
ing analog and continuous properties combined with digi-
tal, discrete controls. It can thus be modeled as a hybrid
automaton H, which is defined below.



Figure 1: Process flow diagram of the ISS ECLS System (Cabin Loop) from Doyé [10]

Definition 1. H shall be defined (according to McIlraith et
al. [11]) by the tuple (I,X,xxx0,F ,Σ,Φ) where:

• I = {iii1, ..., iiik} is the set of input variables of size k.
In this work, I only takes binary values. Every combi-
nation of inputs iii defines a control mode µ ∈ M,

• X ⊂ Rn describes the set of continuous state variables,
influenced by the binary inputs I . The initial state is
expressed by xxx0.

• F = {fµ1
, ..., fµm

} is a finite set of functions describ-
ing the system dynamics in each control mode over
time t ∈ R.

• Σ = {σ1, ..., σp} is the set of discrete actions that tran-
sitions the system between control modes

• Φ : Σ×M×X → M×X is the a transition function
that maps an action, mode and state into a new mode
and initial state.

The figure 2 below shows the graph of a simple hybrid au-
tomaton for illustration purposes.

mode µ1

ẋ̇ẋx = f1(xxx)
mode µ2

ẋ̇ẋx = f2(xxx)

σ1

σ2

Figure 2: A simple hybrid automaton.

Definition 2. A configuration of the hybrid system is defined
as the tuple (xxx, iii) of input and state variables.

A CPS is usually operated by a control program P , which
adjusts the inputs iii to match the states xxx to specified refer-
ence values www [1].

Definition 3. A configuration is valid if the deviation from
the reference value ϵϵϵ = |www−xxx| remains within certain state
limits ∆ϵϵϵ.

Given a valid configuration the system satisfies its sys-
tem goal via a control program. If the limits are violated
due to a plant component fault, the configuration is invalid,
preventing the system goal to be reached and requiring a
reconfiguration.
Definition 4. Given an invalid configuration (xxx0, iii0) recon-
figuration is a function fR : IR → IR so that the configu-
ration (xxx, fR(iii

0)) is valid within a specified reconfiguration
time ∆t.

4 Development and Application of the
Extended Solution Algorithm

This section covers the brief presentation of the reconfig-
uration algorithm AutoConf and the algorithmic extension
needed for the application to ECLSS.

4.1 AutoConf — The Original Approach
AutoConf was recently presented by Balzereit and Nigge-
mann [2] and is divided into two steps: In the first step a
logical formula which represents the reconfiguration prob-
lem is created. In the second step, this formula is solved by
a SAT solver.

For the first step of creating the logical formula, also
called qualitative system model (QSM), causal graphs G are
required. This causal graph qualitatively defines which in-
puts affect which states of the system. As AutoConf only
deals with binary inputs (e.g. valve opened or closed), we
will define these as B = {bbb1, ..., bbbk}. The causal graph is
first divided into two subgraphs of positive G+ = (V,E+)
and negative G− = (V,E−) influences on the state vari-
ables. The nodes of the graphs consist of the states and
inputs V = {xxx1, ...,xxxn, bbb1, ..., bbbk}. The edges in the pos-
itive graph E+, connecting inputs and states, indicate a sig-
nificant increase of that state when that input is activated:
E+ = {(bbbj ,xxxi) | j ∈ {1, ...k}, i ∈ {1, ...n}}. Similarly
the edges of the negative graph E− correspond to a signif-
icant decrease in the state variable. The causal graph thus
integrates a qualitative description of the system dynamics
(e.g. opening a valve will increase the respective state in the
connected reservoir).



The algorithm then traverses the graph, encoding the
causality into propositional logic. Therefore the state lim-
its ∆ϵϵϵ are transferred into symbols lowxi

and highxi
, being

true if xi is below the lower limit or above the upper limit.
These, respectively, imply certain inputs to be activated or
deactivated. For example, if a reservoir exceeds its limit,
the formula will imply an opening of an outflow or a closing
of an inflow. These constraints are formulated using the bi-
nary logical connectives (negation [¬], conjunction [∧] and
disjunction [∨]).

In the second step, a logical SAT solver is used to solve
the logical formula, utilizing logical reasoning. If the for-
mula is satisfiable then there exists an assignment of input
variables, that yields the formula true. The assignment cor-
responds to the new configuration needed to achieve a valid
system state within a specified reconfiguration time ∆t. If
the formula is not satisfiable, then a reconfiguration cannot
be performed and the system might be shut down. Thus,
given a causal graph and a system observation, the reconfig-
uration of the system can be handled automatically.

4.2 AutoConf_extd — Extension of AutoConf for
Real-World Systems

The application of AutoConf to ECLSS - a real-world sys-
tem - gives rise to certain extensions of the algorithms to
adequately reconfigure the system. Therefore, we will first
define the (continuous) system states xxx and the (binary) in-
put variables bbb for ECLSS, consisting of the following com-
ponents (cf. section 3.1):

xxx = [Tc, ϕc, V̇AFS , pc]
T (1)

bbb = [bISFA, bIRFA, bCFA1
, bCFA2

, ... (2)

bTCV1
, bTCV2

, bC1
, bC2

]T .

It is important to note, that the temperature control valve
(TCV), which splits the airstream into the two cores, is han-
dled as two binary inputs. The activation of a certain input
corresponds to a specified maximum actuation, e.g. for the
fans that might be the maximum continuous speed accord-
ing to specifications. The reference values with permissible
deviation of the states (under normal operation) are given by

www ±∆ϵϵϵ =

 295K −4K +3K
0.5 −0.2 +0.2

500m3/h −50m3/h +1000m3/h
101.3× 103 Pa −1300Pa +1700Pa


(3)

The following presents the three main extensions neces-
sary for a valid reconfiguration strategy.

Health status implementation
AutoConf does not include a component health status imple-
mentation. Yet, this is a vital functionality for determining
whether and how a system can be reconfigured. For exam-
ple, a broken actuator cannot be used for reconfiguration.
Since we can manipulate the system only through the actu-
ators (input variables), we limit our component health sta-
tus to those. The health status will be implemented as an
additional constraint on the existing formula. We define a
boolean health status vector hhh corresponding to the input
vector in (2) as

hhh = [hISFA, hIRFA, hCFA1
, hCFA2

, ... (4)

hTCV1 , hTCV2 , hC1 , hC2 ]
T .

The additional constraint added to the logical formula,
called System Model (SM ), is presented below.

Algorithm 1 AutoConf_GenSM_healthStatus
1: Input: X,B, low, high, POS,NEG,SM
2: Output: SM
3: for j ∈ {1, 2, ...k} {for every input ik} do
4: SM := SM ∪ (hj ⇒ bj)
5: end for
6: for l ∈ {1, 2, ...n} {for every state variable xl} do
7: SM := SM ∪

[
highl ⇒

∨
bj∈NEGl

(b0j ∧ hj) ⇒ bj)
]

{constraint to inhibit closing outflows}
8: SM := SM ∪

[
lowl ⇒

∨
bj∈POSl

(b0j ∧ hj) ⇒ bj)
]

{constraint to inhibit closing inflows}
9: end for

10: return SM

Given the state X and input I variables, the state sets of
deviated state variables low and high, as well as the posi-
tive POS and negative NEG sets of inputs and the system
model, the line 4 of algorithm 1 ensures that only healthy in-
puts are being used, whereas inputs are automatically closed
for the new configuration. The next two lines inhibit a clos-
ing of outflows (negative input), in case of a high system
state (cf. line 7) and a closing of inflows, where a low sys-
tem state (cf. line 8). The conjunction with the health status
variable enables faulty inputs to be closed regardless of this
additional constraint.

Dynamic causal graph
ECLSS features intensive (pressure, temperature, humidity)
and a extensive state variable (volumetric flow rate). For
intensive state variables inflows can have both a positive or
negative influence. For example, is the inflow temperature
from the ISS higher than within the COLUMBUS cabin, the
increase of the ISFA fan speed, will yield in a temperature
rise in the cabin. To accomodate intensive state variables,
we will define the incidence matrix dynamically. Alterna-
tively, there is the possibilty to alter the state variables to the
corresponding extensive state variables (e.g. instead of the
temperature (intensive) the enthalpy (extensive) of a system
might be considered). Formally, the causal graph is altered
depening on the state of the system and the inflow condi-
tions. An edge is part of the positive subgraph ei ∈ E+ if
it contributes significantly, i.e. above a certain threshold de-
fined by expert knowledge, to the increase of the respective
state variable.

Serial actuator dependencies
The third extension of AutoConf deals with the serial depen-
dencies of actuators. The TCV for example has to allow for
airflow to pass through in order for the cooling cores (Core
1/2) to be able to transfer heat. These additional constraints
are highly dependent on the specific system topology. For
this paper, an individual treatment will suffice, although an
generalization in the form of a dependency matrix might be
beneficial for more complex systems. The first serial con-
straint pertains to the need for a minimum airflow through
the cabin. Either ISFA or the recirculation fans (CFAs) need
to be active and the TCV must be opened to either position.

[bISFA ∨ (bCFA1
∨ bCFA2

)] ∧ (bTCV1
∨ bTCV2

) (5)
The second serial constraint links the TCV position and the
cores together via the implication, that a use of a cooling
core requires the TCV to pass air though it.



(bC1 ⇒ bTCV1) ∨ (bC2 ⇒ bTCV2) (6)
With the extensions described above, the algorithm,

which we will denote as AutoConf_extd, is able to model
ECLSS sufficiently for the task of reconfiguration. In the
following we will show the application to an example fault
case to illustrate the process.

4.3 Application of AutoConf_extd to an Example
Fault Case

For illustration purposes we will consider one hypothetical
failure case: Suppose an accident occurs, during an experi-
ment within the COLUMBUS module. As a consequence the
Cooling Core 1 fails and due to gas leakage the pressure in
the cabin has increase beyond the threshold. Also, the hatch
has been closed following the accident. The state of the sys-
tem before reconfiguration is given by the system state

xxx0 = [Tc, ϕc, V̇AFS , pc]
T (7)

= [303K, 0.50, 500m3/h, 103.5× 103 Pa]T

and the input configuration

bbb0 = [bISFA, bIRFA, bCFA1
, bCFA2

, ... (8)

bTCV1
, bTCV2

, bC1
, bC2

]T

= [1, 0, 0, 1, 1, 0, 1, 0]T .

We thus have only ISFA, CFA2 and one cooling branch
(TCV1, C1) activated, which corresponds to the default con-
figuration, where the used air is returned over the hatch
opening.

We also find, by an underlying fault diagnosis algorithm,
that two actuators have failed. The health state is given by

hhh0 = [1, 1, 1, 0, 1, 1, 0, 1]T . (9)

With the above inputs, the reconfiguration algorithm
first classifies the inputs into in- and outflows via the dy-
namic incidence matrix. These are then formulated via the
AutoConf_extd into a logical set of formulas, which incor-
porates the following idea: "Which inputs do I need to open
or close to bring the corresponding state within acceptable
bounds?" The following line is an excerpt of the full logical
formula.

Thigh ⇒ ¬b07 ∧ b7 ∨ ¬b08 ∧ b8 ∨ ¬b01 ∧ b1, (10)

It shows the implications of a high temperature, which are
to switch on either one of the cooling cores (b7 or b8)
or to switch on the ISFA fan. The negation of the pre-
reconfigured inputs (b0) is necessary to exclude from the
search space those inputs which are already reconfigured.
Please note, that since we’re dealing with high tempera-
ture fault case, the dynamic incidence matrix will assign the
colder inflowing air via the ISFA a positive value, modeling
a sink.

These implications are set up for all state variables and
for both cases - one for the violation of the lower and upper
boundary. The serial actuator dependencies are also added
to the logical formula to refine the model and internal flow
structures.

This logical formula is then handed over to Z3 and
checked for satisfiability. If it is satisfiable, a model can
be retrieved, i.e. an input assignment, that satisfies the logi-
cal formula. In this sample fault case, the logical formula is

satisfiable and the algorithm proposes a new input configu-
ration to recover the system

bbb = [1, 1, 0, 0, 0, 1, 0, 1]T . (11)

By switching on the ISFA, the pressure can be reduced,
and by acticating the second cooling branch (TCV2 and C2)
the temperature can be lowered. Note that in this implemen-
tation, there is no guarantee for minimal cardinality of the
solution, since the input space is rather small.

If the logical formula would not be satisfiable, a shut
down of the system is invoked. Alternatively, it would be
possible to lower the system requirements by removing con-
straints, thus prioritizing certain state variables.

5 Results
To validate the reconfiguration algorithm and system model,
we will present both a static as well as a dynamic evaluation.

5.1 Static Evaluation
The static evaluation of the reconfiguration algorithm de-
veloped above applied to ECLSS will highlight two aspects
of the result. First, we will present the results for a com-
prehensive fault case list in some detail. In a second part,
we will compare these results to the original formulation of
AutoConf and classify deviations of reconfigurability.

Reconfiguration with AutoConf_extd
Table 1 shows the results for 72 selected fault cases. The
fault list is split into categories of single faults, affecting
only one state or actuator (input), double and multiple faults.
The faults are further differentiated into types of state limit
violations (e.g. due to leakage or external disturbances), ac-
tuator faults (e.g. due to valves being stuck) and combined
faults (state limit violation and actuator fault). For each fault
the number of cases (# cases) and the number of reconfig-
urable faults (# rcfg.) is given. It is important to note, that
all reconfigurable faults were succesfully identified and re-
configured by AutoConf_extd according to the definition of
a valid configuration (cf. definition 3). For the other cases,
insufficient redundancy prevents a reconfiguration to a valid
system state.

Table 1: Static reconfiguration results for the AutoConf_extd
algorithm for 72 selected faults

Fault category # cases # rcfg.
Single 19 15

Limit violation 9 7
Actuator fault 5 5
Combined faults 5 3

Double 38 29
Limit violation 12 11
Actuator fault 15 11
Combined faults 11 7

Multiple 16 9
Sum total 72 53

Although the fault case list is not exhaustive, it does cover
a wide range of faults. About 78% of the single faults are
reconfigurable. Some single faults (such as a low tempera-
ture) are not directly reconfigurable, since ECLSS provides
no direct way to heat the incoming air. It is important to



Table 2: Comparison of reconfiguration results for the Auto-
Conf_extd vs. AutoConf algorithm - with and without health
status.

AutoConf
_extd

AutoConf
with health status

Fault category # cases # rcfg. # TP # TN # FP # FN
Single 19 15 11 4 4 0

Limit violation 9 7 5 2 2 0
Actuator fault 5 5 5 0 0 0
Combined 5 3 1 2 2 0

Double 37 29 11 5 19 2
Limit violation 12 11 5 1 5 1
Actuator fault 14 11 4 2 7 1
Combined 11 7 2 2 7 0

Multiple 16 9 2 2 11 1
Sum total 72 53 24 11 34 3

33% 15% 47% 4%
AutoConf

_extd
AutoConf

without health status
Sum total 72 53 18 9 45 0

25% 13% 63% 0%

note, that the failure of any actuator can be handled, since
the system exhibits a minimum twofold redundancy.

The double faults constitute the largest category, of which
about 76% are reconfigurable. The double actuator and
combined faults exhibit lower reconfigurability, since the
failure of two actuators of the same type (e.g. both cooling
cores) may cause the loss of that function. Understandably,
the multiple fault cases have the lowest reconfigurability of
about 56%, since multiple state limit violations and actuator
faults restrict the solution space severely. Since the applica-
tion at hand is a unique system, no direct comparison or
benchmark is applicable, which makes it hard to assess the
performance of the algorithm. However, in the next section
we will show the relative performance increase by compar-
ing the extended algorithm to the original formulation.

Comparison of the extended and original algorithm
Table 2 compares the results of the extended algorithm
AutoConf_extd with the original algorithm AutoConf, both
with and without the health status implementation. The de-
viations are shown as a binary classification with respect
to the correct fault reconfiguration result by AutoConf_extd.
The columns (from left to right) denote the fault category,
the number of cases, the number of reconfigurable cases
(baseline for comparison), and the binary classification of
the deviations pertaining to the original algorithm, consist-
ing of True Positives (TP), True Negatives (TN), False Pos-
itives (FP) and False Negatives (FN).

For the classification, first the original algorithm
AutoConf is solved for each fault case and a new configu-
ration (input variable assignment) is obtained. The config-
uration is then assigned to the extended algorithm formula
AutoConf_extd. If the extended formula is satisfiable, the
original algorithm has found a valid configuration and the
result is a True Positive (TP). If it is not satisfiable, AutoConf
has found a invalid configuration - a False Positive (FP). If
neither of the formulas is satisfiable, we obtain a True Neg-
ative (TN), and if the extended algorithm found a valid con-
figuration, but the original algorithm has not, we obtain a
False Negative (FN).

The comparison for the original algorithm with health
implementation is presented in detail for each fault cate-
gory. Overall, about 49% of the fault cases were identified
correctly as either reconfigurable (TP) or unreconfigurable

(TN). Yet, a large part (51%) of the input assignments by
AutoConf do not satisfy the extended formula, since they
neither take the dynamic causal graph nor the serial actua-
tor dependencies into account (cf. section 4.2). The number
of False Positives is especially high for the multiple fault
category, since the limited solution space causes a more fre-
quent violation of the serial actuator dependencies. False
Negatives (FN) are almost non-existent since the original
algorithm is less constraining towards a solution.

The comparison for the original algorithm without health
implementation shifts the imbalance further toward False
Positives, since the formula does not take faulty actuators
into account. The total number of misclassified faults is
about 63%, indicating a significantly improved fault han-
dling by the extended algorithm.

5.2 Dynamic Evaluation
This section deals with the dynamic evaluation of the re-
configuration algorithm. The results show the effects of
the reconfiguration algorithm on a continuous simulation of
ECLSS. First, the simulation architecture and implementa-
tion are presented and then the system response for certain
faults is assessed.

Simulation Architecture
Figure 5 shows the architecture of the ECLSS simulation
within MATLAB/Simulink using the Simscape library for
physical modeling. The airflow through the components is
modeled as moist air (MA), implementing real gas proper-
ties with partial water loading. The coolant is modeled as a
thermal liquid. The signals on the bottom left are the con-
trol inputs I for the actuators (i.e. valves and fans). The
individual components of ECLSS are modeled as follows:
On the left , the ISS node 2 is implemented as a reservoir,
setting constant boundary conditions. The fans (ISFA, IRFA
and CFAs) are modeled by a constant volumetric flow rate
sources with a flow resistance as a bypass to account for
pressure potential equalization. The condensate heat ex-
changer (CHX) transfers the heat of the moist air flow to the
coolant. If the dewpoint is reached, water will condensate
on the cooling cores, lowering the absolute water loading of
the air. The sources on the right implement a constant heat
and moisture injection into the COLUMBUS cabin. Finally,
the output X on the right reports the state of the system.

Figure 3 shows the ECLSS time response to the reconfig-
uration algorithm. The reconfiguration step is called every
10s. The fault-case specific values for the states and inputs
are initialized in the beginning. The selected fault-case is of
the category double limit violation - the cabin temperature
Tcab is too low and the relative humidity Φcab too high. The
state limits are indicated by dashed horizontal lines.

Dynamic System Response to Reconfiguration
The input reconfiguration sequence for all 8 inputs is shown
in figure 4. In the first call of the reconfiguration, the al-
gorithm finds a new valid configuration by activating both
ISFA and TCV1. Following this initial reconfiguration, the
algorithm fails to further reconfigure the system. Although
there is an insufficient airflow V̇cab and the CFAs could be
activated to resolve that, this solution is not found. The un-
derlying logical formula is unsatisfiable, because the first
two states block a solution for the third state - all possible
inputs have been already assigned, yet the state still remains
beyond its limit, yielding the whole formula unsatisfiable.



Figure 3: Simulation of ECLSS response to reconfiguration
of fault-case #30, double limit violation (low Tcab + high
Φcab)

Figure 4: Input reconfiguration sequence of fault-case #30,
double limit violation (low Tcab + high Φcab)

Until at approx. t = 200s both the temperature and humid-
ity enter into their valid range and the algorithm promptly
activates the CFA1 and IRFA. This behavior is seen also for
other fault-cases. One solution to this behavior would be a
partial building of the logical formula, updating only those
elements, which have not yet been reconfigured. Another
solution would be to increase the reconfiguration time ∆t to
allow enough time to return to a valid system state.

At time t = 640s the temperature exceeds the upper limit
and both cooling cores are activated. However, also CFA1
and IRFA are deactivated again, causing the airflow to fall
below its limit. This is a undesirable behavior caused by
a questionable selection of the state variable, the volumet-
ric airflow V̇cab. The volumetric airflow does not satisfy
the thermodynamic definition of a state variable, rather it
is known as a process variable [12]. A jump in the input
causes, with almost no delay, a jump in the output, so that
V̇cab does not exhibit accumulative behavior. The problem
of a low volumetric airflow is solved at the next reconfig-
uration step by the activation of TCV2. One solution for
this issue is to choose another state variable to monitor the

airflow, for example the kinetic energy of the flow within
the cabin. A transfer of the state limits and required sen-
sors however requires further expert knowledge and makes
the application less straightforward. Another solution could
be the explicit declaration of state and process variables and
differentiating the logical propositions related to these.

5.3 Limitations
The evaluations above have exposed the limitations of
the developed algorithm and propositional logic based ap-
proaches in general. The static evaluation has demonstrated
the strong dependency on a valid system model. If sys-
tem constraints are overlooked, a high number of misclas-
sified reconfigurations can be the result (cf. table 2). The
manual effort required to generate fine-tuned qualitative sys-
tem model, including additional constraints, increases with
complexity and size. Here, it could be beneficial to deploy
system identification methods based on symbolic regression
to find the qualitative system dynamics. Recent machine
learning algorithms for sparse dynamic identification, like
SINDYc [13], show promising results for the data-driven
learning of input-output relations as needed for the inci-
dence matrix.

The dynamic evaluation has shown two limitations of the
current implementation. The first limitation is a blocking
behavior and arises, when a state is out of limit, but the
system has already been reconfigured. For the part of the
formula dealing with that state, no new configuration can be
found, which will yield the whole logical formula unsatis-
fiable. Although another state might be reconfigurable, the
part of the formula corresponding to the first limit violation
is blocking the solution. This only occurs with consecutive
execution of the algorithm and can be solved relatively easy
by a piece-wise generation of the formula. The second lim-
itation discovered in the dynamic evaluation is the necessity
of well-defined state variables. Process flow variables like
V̇cab do not exhibit accumulative behavior and thus must be
handled differently.

6 Conclusion and Outlook
Cyber-Physical Systems are subject to various faults, such
as broken actuators, leakages or strong external forcing.
Nowadays fault handling is mostly done manually which is
time and cost intensive. That is especially true for the ever-
growing size and complexity of modern systems. However,
in many cases, the system goal could still be reached by
adapting the configuration of the system. Whereas control
can only deal with faults forseen at design time, reconfigu-
ration enables systems to adapt to unforseen faults. [2]

This article presents an extension of the recently pub-
lished reconfiguration algorithm AutoConf and it’s applica-
tion to the safety-critical Environmental Control and Life
Support System of the COLUMBUS module aboard the ISS.
The extension consists of three contributions, namely a
health status implementation, a dynamic causal graph and a
problem-specific formulation of serial dependencies of the
actuators (cf. RQ1). These extensions allow for a suffi-
ciently precise qualitative system model (QSM) represent-
ing the real-world system ECLSS. To validate the extended
algorithm AutoConf_extd a static and dynamic evaluation
was performed on a fault case list with 72 entries covering
a wide range of faults. The static evaluation shows a signif-
icant improvement in the reconfiguration of faults over the



Figure 5: Simplified moist air process flow diagram of the ECLSS model - implemented in MATLAB/Simulink Simscape

original algorithm (cf. table 1). The dynamic evaluation, for
which reconfiguration was integrated into a physical simu-
lation of ECLSS, showcases the continuous fault-handling
(cf. RQ1). Two main limitations were identified: A subop-
timal blocking behavior when the reconfiguration algorithm
is executed repeatedly and the necessity of selecting a well-
defined state variable, which is not always possible. (cf.
section 5.3).

Future research may be conducted in the automatic data-
driven generation of the qualitative system model, including
system-specific constraints by sparse regression based sys-
tem identification approaches, as developed by Brunton et
al. [13]. This is of particular interest since the generation of
the specific causal graph, although only qualitative in nature,
still requires human expertise and extensive model checking
effort. As indicated in the limitations, the algorithm does not
always find the best solution. A further extension by incor-
porating a cost function might be developed to identify the
cost-minimal solution. Further, the integration of AutoConf
with a control system remains to be shown, which would
operate on the input mask of the reconfigured system. Fi-
nally, the interaction of reconfiguration with diagnosis can
be studied further to make use of all available data, widening
the solution space.
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