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Abstract

The high-voltage AC-DC-AC power system has large offshore wind farms connected to the
offshore AC substation. This offshore AC substation is then connected to the AC grid, which
is located on the mainland through the High Voltage Direct Current (HVDC) link. The main
function of this whole power system is to transfer the injected AC effective power produced
by the wind generation into the AC grid where the end users are connected. However, this
transfer is imperfect since a power fraction is either locally stored at the line inductances or
is dissipated at the line resistances. Thus, these two contributors of power loss, particularly
for a long HVDC link, have to be considered in detail to control the full dynamics accurately.
The thesis focuses on the development of a complete method for generating and tracking fast
trajectories which allow shifting the operation point of a high voltage AC-DC-AC power system
within a short time interval (time scale in the order of 10 ms or half of the AC period) without
exciting additional transients after reaching the operation point. It is important to note that
the full system is controlled by three converter stations placed at the beginning, middle, and
end of the system. These converter stations are where the inputs that drive the dynamics act.
When considering a high voltage AC-DC-AC power system with a conventional rectifier and
the modern converter topology known as Modular Multilevel Converter (MMC) as the inverter
along with their corresponding internal dynamics, the control of the system becomes more
complicated as a result of the increasing number of state variables that are coupled to each
other. Given the complexities of the system under consideration, there is a high possibility of
generating an undesirable transient at the final state when the system is driven from one state
to another. Therefore, the trajectory design has been carefully developed in order to generate
the input needed to achieve a smooth transition to a new steady state without causing any
transient and, if possible, in a short time interval. This framework lends itself well for developing
a stabilizing feedback that is capabale of compensating for small deviations from the desired
operation point. Moreover, the technique described in this thesis is applicable not only to
the conventional converters but also to the modern converter topology of MMC, and is very
promising for future applications involving a sudden voltage drop in a short time.
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Kurzfassung

Das Hochspannungs-AC-DC-AC-System verfügt über große Offshore-Windparks, die an das
Offshore-Wechselstrom-Umspannwerk angeschlossen sind. Dieses Offshore-Umspannwerk wird
dann über die Hochspannungs-Gleichstrom-Übertragung (HGÜ) an das Wechselstromnetz, das
sich auf dem Festland befindet, angeschlossen. Die Hauptfunktion dieses gesamten Energie-
versorgungssystems besteht darin, die von der Windenergie erzeugte AC-Wirkleistung in das
AC-Netz zu übertragen, an das die Endverbraucher angeschlossen sind. Diese Übertragung ist
jedoch nicht perfekt, da ein Teil der Leistung entweder lokal in den Leitungsinduktivitäten
gespeichert wird oder an den Leitungswiderständen abgeführt wird. Daher müssen diese bei-
den Beiträge zur Verlustleistung, insbesondere bei einer langen HGÜ-Verbindung, im Detail
berücksichtigt werden, um die gesamte Dynamik genau zu steuern. Die Arbeit konzentriert
sich auf die Entwicklung einer vollständigen Methode zur Erzeugung und Verfolgung schneller
Trajektorien, die es ermöglichen, den Betriebspunkt eines Hochspannungs-AC-DC-AC-Systems
innerhalb eines kurzen Zeitintervalls (Zeitskala in der Größenordnung von 10 ms oder der Hälf-
te der Wechselstromperiode) zu verschieben, ohne zusätzliche Transienten nach Erreichen des
Betriebspunkts anzuregen. Es ist wichtig zu erwähnen, dass das gesamte System von drei Um-
richterstationen gesteuert wird, die sich am Anfang, in der Mitte und am Ende des Systems
befinden. An diesen Umrichterstationen wirken die Eingänge, die die Dynamik steuern. Be-
trachtet man ein Hochspannungs-AC-DC-AC-System mit einem konventionellen Gleichrichter
und einer modernen Umrichtertopologie, die als Modular Multilevel Converter (MMC) be-
kannt ist, als Wechselrichter, zusammen mit ihrer entsprechenden internen Dynamik, so wird
die Steuerung des Systems aufgrund der zunehmenden Anzahl von miteinander gekoppelten
Zustandsgrößen komplizierter. In Anbetracht der Komplexität des betrachteten Systems be-
steht eine hohe Wahrscheinlichkeit, dass beim Übergang von einem Zustand in den anderen
eine unerwünschte Transiente im Endzustand entsteht. Daher wurde der Entwurf der Trajek-
torie sorgfältig entwickelt, um den Eingang zu erzeugen, der erforderlich ist, um einen glatten
Übergang zu einem neuen stationären Zustand zu erreichen, ohne dass es zu einer Transiente
kommt, und wenn möglich in einem kurzen Zeitintervall. Dieser Ansatz bietet die Grundlage
für die Entwicklung einer stabilisierenden Rückkopplung, die in der Lage ist, kleine Abweichun-
gen vom gewünschten Betriebspunkt zu kompensieren. Darüber hinaus ist die in dieser Arbeit
beschriebene Technik nicht nur auf konventionelle Umrichter, sondern auch auf die moderne
Umrichtertopologie, beispielsweise MMC, anwendbar und sehr vielversprechend für zukünftige
Anwendungen, die einen plötzlichen Spannungsabfall in kurzer Zeit erfordern.
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îw Amplitude of wind generator current A
Ld HVDC link’s inductance H
Le MMC’s arm inductance H
Lg AC grid’s inductance H
Lrc Rectifiers’s inductance H
Lst STATCOM’s inductance H
NSM Number of submodules
r relative degree
Rd HVDC link’s resistor Ω

Re MMC’s arm resistor Ω

Rf Resistor at island bus filter Ω

Rg AC grid’s resistor Ω

Rrc Rectifier’s resistor Ω

Rst STATCOM’s resistor Ω

s̃ Smooth base function
src,1/2/3 Three-phase switching signal at rectifier
ss,1/2/3 Three-phase switching signal at STATCOM

xix



t0 Start time of transition s
Tc Transition period for control s
Ts Transition period s
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ûg Amplitude of AC grid voltage V

uib, 1/2/3 Three-phase voltages of island bus V
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Chapter 1

Introduction

1.1 Background

Energy is an essential component of all economic activities. Electric power has increasingly
emerged as the main source of energy for domestic and commercial usage throughout the
previous century. According to the recent report on the Global Energy Review from the Inter-
national Energy, power and heat production recorded the greatest increase in CO2 emissions in
2021, with an increase of over 900Mt. This energy-related CO2 emission contributed to 46% of
the global rise in emissions, as the usage of all fossil fuels rose to fulfil the growing demand for
electricity [1]. Energy-related CO2 emissions are projected to rise even more rapidly, increasing
by 78% between 2005 and 2050 if action is not taken to curb them [2]. CO2, which is among
the greenhouse gases (GHGs) emitted by human activities, is by far the largest contributor to
climate change. In response to the escalating climate change and CO2 emissions along with
increasing energy demand, international treaties such as the Kyoto Protocol [3] and the Paris
Agreement [4], were initiated to urge for a reduction in fossil fuel dependency and the use of
renewable energy sources.

A transition away from fossil fuels to low-carbon alternatives will play a crucial role in
reducing CO2 emissions. Therefore, as an alternative, an environmentally friendly electrical
generation that utilises renewable resources such as hydropower, wind power, and solar power
provides a clean and sustainable solution to meet the demand of energy. Nevertheless, incorpo-
rating these resources into the conventional AC power grid presents numerous difficulties. One
of the challenging factors is the location of the renewable energy sources. Renewable energy
resources are typically located in remote and inaccessible places far from the locations where
the energy is consumed. For instance, when it comes to offshore wind farms, long distance
underwater power cables are needed to supply electricity to the mainland. For this reason, the
high voltage direct current (HVDC) transmission systems, which offer a highly efficient alter-
native for transmitting the electricity generated through renewable energy resources including
the off/on-shore wind farms over long distances, are becoming more important in the energy
landscape. Figure 1.1 illustrates an HVDC transmission system connected to the offshore wind
turbine.

1
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Figure 1.1: HVDC transmission system with offshore wind turbine[5]

The power electronic converters that are built by interconnecting semiconductor switches
are the essential component that makes the HVDC transmission technology possible. It involves
using a converter to convert AC to DC (rectifier) at the transmitting end and converting the
DC back to the AC (inverter) at the receiving end. However, the lack of reliable and efficient
converters has been a major hurdle in the development of HVDC. In spite of this, the modern
converter topology known as modular multilevel converters (MMCs) developed by Lesnicar
and Marquardt [6],[7],[8], provides a solution that is not only efficient but also economically
feasible for the grid integration of remote resources and the transfer of bulk power. It offers
high reliability capability through high number of submodule, where a defect submodule can be
replaced through a redundant submodule. Another appealing feature of MMC is its modular
design, which allows it to be scaled for different power and voltage levels. Beside that, MMC
offers high level of efficiency. This is due to the high number of submodules, which minimises
both the voltage stress across the switches and the switching frequency for each device. In
addition to this, the presence of many voltage levels results in better output since it reduces
the harmonics that are present in the voltage. As a consequence of this, the size of the harmonic
passive filters is reduced and the necessity for these filters can even be eliminated. Due to the
aforementioned advantages, research in the MMC topology has been intensified within the
academia and industry [9]. The Trans Bay Cable, a project commissioned by the Siemens
company, is the world’s first HVDC transmission project based on MMC technology and has
been in commercial operation since 2010. It is capable of supplying up to 400 MW of electrical
power, which covers 40% of the San Francisco city energy requirement. The electrical power
is transfered from Pittsburg, California to the city of San Francisco, via a subsea cable of 85
km [10][11].
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1.2 Motivation

In the event of an unexpected power outage in the transmission system, the available electrical
power would be significantly reduced. Thus, a rapid recovery plan and action need to be put
into place in order to guarantee that there will be no interruptions in the delivery of electricity
to the end user and that the electricity will be constantly available. Consequently, a fast
trajectory tracking design and control play a significant role. For instance, if one or some of
the wind generators are unable to operate due to the low wind intensity, this should trigger
the controller to compensate and stabilize the system within a relatively short time interval.
When taking into consideration a high voltage AC-DC-AC power system with a conventional
rectifier and the MMC as the inverter, the control of the system becomes more complex due to
the increased number of state variables that are coupled to each other. For instance, an MMC
consists of 6 internal arms equipped with many capacitances which can be inserted by means of
high power switches. Thus, the relevant degrees of freedom for controlling the MMC are the 6
currents flowing through each arm and the 6 energy components stored in the arm capacitances.
Due to the complexity of the considered system, there would be a high risk of inducing some
undesired transient at the final state when the system is driven from one state to another state.
Hence, in order to develop the corresponding input to drive the system with a smooth transition
from one steady state to a new steady state without producing any transient, the trajectory
design should be first carefully and thoroughly developed. While it is known that the power
transfer coupled to the current and voltage dynamics is a high order multi-input-multi-output
(MIMO) nonlinear system, thus, a suitable control technique should be adopted. Normally the
approach to this complex control is the implementation of cascaded control which incorporates
the use of both the outer loops and the inner loops [12][13]. However, the demand for speed
in these control loops reduces the robustness and makes it sensitive to noise. In contrast, the
classical control approaches, such as the proportional-integral (PI) controller, require many
control loops in order to achieve all of the control goals that have been set. In addition, the
PI controller’s performance relies on the controller gains being tuned, which can be a time-
consuming and difficult process. Based on the above-mentioned limitations, further research
in implementing an alternative control technique is warranted.

1.3 Objectives of the thesis

The objective of the thesis is to develop a complete method for generating and tracking fast
trajectories which allow to shift the operation point of a high voltage AC-DC-AC system within
a time scale in the order of 10 ms. The applied technique of flatness-based control allows a
very precise tracking of a desired trajectory for all relevant degrees of freedom in such a power
system. This technique has been applied in [14], which deals with an AC-DC-AC high power
system employing conventional converters (rectifier and inverter) without resolving the energy’s
internal dynamics. Inspired by this work, new ideas have been developed concerning a similar
power transmission system. However, this time the conventional inverter is being replaced by a
modern converter topology, namely a Modular Multilevel Converter (MMC), while maintaining
the conventional rectifier. Furthermore, the internal dynamics of each converter (particularly
the MMC inverter) are also taken into account this time. Using the MMC as an inverter
is primarily motivated by the considerably lower harmonic content of the supplied AC grid
current. The AC grid is where the end users are connected to and where the AC current has to
be nearly equal to the desired sinusoidal oscillation of some constant amplitude and frequency.
On the other hand, a conventional inverter with one single submodule (or a very reduced
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number of submodules) in each phase requires additional filters in the AC grid to remove
undesired harmonics produced by the switching pattern of the few submodules. However, an
MMC does not require such filters. In the case of the rectifier, since this is just located in
the middle of the power transmission system, there is no need for a "clean" DC current. Any
imperfect transmission that is caused by the rectifier will be corrected by the MMC at the end
of the transmission system. Nevertheless, if the island bus has a high probability of failures
that we wish to eliminate from the HVDC transmission line, an additional MMC as a rectifier
will be warranted. But in spite of that, employing a second MMC as a rectifier is quite costly
for the system as a whole and will not be addressed in this thesis. In other words, the MMC is
used as an inverter for producing a nearly perfect sinusoidal AC grid current, independent of
the imperfectly constant DC current issuing from the conventional rectifier. The main degrees
of freedom related to the MMC comprise the 6 current components that are flowing through
each arm and the 6 energy components that are collectively stored in the arm capacitances of
the MMC. These energy components are also relevant for the internal distribution of energy
among the 6 MMC arms. On the other hand, to control the internal energy redistribution
within the MMC, the circular current components and the common-mode voltage are used,
representing the MMC’s internal degrees of freedom. Apart from that, the AC grid voltage is
regarded as an externally controlled voltage and cannot be modified by the controller. Since
the MMC consists of a large number of state variables, the control of the MMC inverter is
complicated and becomes much more so when the state variables are coupled to one another
in the context of the full system. As the current work will consider the full internal dynamics,
it has to be ensured that the required power is transferred from the AC generator side across
the DC link to the AC grid where the end users are connected. Additionally, this framework
is well suited to develop a stabilizing feedback for compensating small deviations from the
desired operation point. The technique considered in this thesis can be applied not only to
the conventional converters but also to the modern converter topology of Modular Multilevel
Converters and is very promising for future applications when dealing with a sudden voltage
drop in a short time.

1.4 State of the art

• Zhou et al.[15]: “Grid Integration of DFIG-Based Offshore Wind Farms with
Hybrid HVDC Connection” (2008)
The authors present a hybrid topology of the HVDC transmission system for offshore
wind farms based on Doubly Fed Induction Generator (DFIG) that integrates the Line
Commutated Converter (LCC)-HVDC technology and Voltage Source Converter (VSC)-
HVDC technology is presented. The proposed hybrid HVDC system consists of an LCC
with a Static Synchronous Compensator (STATCOM) on the rectifier side and a Pulse
Width Modulation-Current Source Inverter (PWM-CSI) on the inverter side. In com-
parison to the current thesis, the transition from one operation point to another different
operation point in this paper took a longer time intervall which is approximately 0.5s.
Moreover, the control method for black start, current dynamics and independent reactive
power control described in this paper implements the classical PI controller.

• Mohammad et al.[14]: “Fast trajectory tracking based on flatness control for
a high voltage AC-DC-AC power system” (2018)
Due to the limitations stated in [15], a flatness-based tracking control has been derived
in full detail in order to drive the system along the desired trajectory, even in the event
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of a fast transition between different operation states for the nonlinear dynamics of a
complete high voltage DC (HVDC) power system connecting wind generators to an AC
grid which also incorporates conventional converters. Compared to the current thesis,
the system that was considered in this paper operates under one simplification: neither
the conventional AC-to-DC rectifier nor the conventional DC-to-AC inverter have had
their internal dynamics modelled. Thus, the time step that is used for the control cannot
be reduced below one AC period, which places a strong limitation on the fast trajectory
tracking.

• Stark et.al [16]:“Fast compensation of DC bus voltage drops using modular
multilevel converters” (2019)
In this paper, the MMC is considered as a DC-AC inverter with given voltages at both
the external DC and AC sides, along with the desired AC current that must be kept at all
costs. Here,the MMC is connected to a long DC transmission line with a long three-phase
AC transmission line. Following a sudden drop in the DC voltage, the DC current must
be increased to supply the AC grid with the required effective power. As a result, the
MMC must drive the DC side from the initial steady state to a new steady state within
a short interval consistent with the reduced DC voltage. Nevertheless, this deviation
should be compensated without affecting the AC side, while simultaneously restoring
the power flow and the symmetrized arm energies below one AC cycle. Out of the 3
internal degrees of freedom in an MMC (2 circular current components and 1 common-
mode voltage), only the circular currents are being used to control the 5 internal energy
components of the MMC over a short time interval. The 2 circular current components
are formulated as a linear superposition of smooth part and five hump functions of still
undetermined amplitudes. Those amplitudes will be determined from the change in the
five arm energies. On the other hand, since there is a sudden DC voltage drop, the DC
current will become another design variable, which will have the same pattern as the
circular current but this time the amplitude will be obtained from the change in the total
energy. Compared to this paper, the current thesis has proposed a similar technique for
designing the input required to drive the system. However, this time it is not applied
on a single subsystem but on the full high voltage AC-DC-AC power system. Apart
from that, the current work also has developed a trajectory tracking control using the
flatness-based control as well as a feedback control which is capable of compensating any
deviation that may arise in the system within a very short time interval (1 ms).

• Fehr et al.[17]: “Improved Energy Balancing of Grid-Side Modular Multilevel
Converters by Optimized Feedforward Circulating Currents and Common-
Mode Voltage” (2018)
In this work, a strategy for improving the energy-based control and balancing arm energies
in MMC has been proposed. The suggested energy control algorithm makes use of the
trajectories of the circular currents and common-mode voltage to drive the system back
to a balanced state in a finite amount of time. A feedforward is used to deliver these
trajectories when the method is implemented. In contrast to the current thesis, the
control algorithm in this paper is only dedicated to the separated subsystem which is the
MMC subsystem.

• Mehrasa et al.[18]: “Novel Control Strategy for Modular Multilevel Convert-
ers Based on Differential Flatness Theory” (2018)
In this paper, taking into account the dynamics of the AC side current and the DC side
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voltage, a control strategy for the MMC (MMC considered as DC-AC inverter) has been
developed using differential flatness theory, in which the instantaneous active and reac-
tive power have been chosen as the flat output components. Nevertheless, in contrast
to the current thesis, the stabilization of the state variables in this paper was not done
through the flatness-based control. Instead, several in general slow PI controllers for the
flat output errors have been put into place for the initial inputs to compensate for the
input disturbance, model errors and system uncertainties.

• Gensior et al.[19]: “Flatness-Based Loss Optimization and Control of a Dou-
bly Fed Induction Generator System” (2011)
The system that was researched in this paper is an electrical power circuit consisting of
a Doubly Fed Induction Generator (DFIG) and two power electronic converters. In an
attempt to minimise the amount of loss that this system experiences, the flatness-based
control technique has been presented, where the flatness of the model has been manip-
ulated to derive the power losses model in the system using the flat output components
and their derivatives. The stator flux and rotor speed are both chosen as flat output
components for the rotor converter side in DFIG, whereas the rotor voltages serve as the
control inputs. The integrating backstepping method is used to carry out the task of tra-
jectory tracking. In comparison to this paper, the flatness-based approach in the current
thesis that is applied to the MMC has fully considered the DC inductance. This is due to
the fact that the HVDC cable can be quite long and therefore, such DC inductance is no
longer negligible. However, in this paper, all the external inductances on the DC as well
as on the AC side have been neglected. On the other hand, it is important to mention
that the flatness-based approach in the current thesis has been developed without prior
knowledge of this paper.

• Schmuck et al.[20]: “Feed-Forward Control of an HVDC Power Transmission
Network” (2014)
The studied system in this work is an HVDC multiterminal network, which comprises
of two or more converter stations. The goal for such system is to maintain the power
balance between the electrical power supplied into and taken from the DC network by
the connected converter stations. At the same time, it is desirable to be able to modify
the power distribution between the converter terminals flexibly while the system is in
operation. Additionally, time delays caused by travelling waves might become significant
over long transmission distances. Hence, these delays should be taken into account. It
is worth mentioning that all the external inductances on the DC as well as on the AC
side have been neglected in this paper. Therefore, to meet the aforementioned goals,
the flatness-based design of a feed-forward control is proposed. Compared to this paper,
the flatness-based approach in the current thesis that is applied to the MMC has fully
considered the DC inductance. Again, this is due to the fact that the HVDC cable can
be fairly long and thus, such DC inductance can no longer be neglected. On the other
hand, it is important to note that the flatness-based approach in the current thesis is
similar to that in this paper, but it has been developed without prior knowledge of this
paper.

• Gensior et al.[21]: “On Some Nonlinear Current Controllers for Three-Phase
Boost Rectifiers” (2009)
The focus of this paper is on current controllers for three-phase three-wire boost rec-
tifiers, where the flatness-based method is implemented. Manipulating the flatness of
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the model suited for control of such rectifier, five stabilization concepts have been pre-
sented, which include 3 linearization-based methods (exact feedback linearization, exact
feedforward linearization and input-output linearization) as well as two passivity-based
methods. Furthermore, reference current is estimated by a reduced order load observer
considering parameter uncertainty. Apart from that, in terms of trajectory planning, the
flatness-based control outperforms the cascaded linear controllers during both transient
states. Since the subsystem representing current dynamics is the "faster" subsystem,
utilising a flatness-based trajectory planning technique is more crucial for system perfor-
mance than using a specific current controller. Unlike in the paper, the flatness-based
approach in the current thesis that is applied to the MMC has fully considered the DC
inductance since the HVDC cable can be quite long, and thus, such DC inductance is
no longer negligible. Nevertheless, this is not the case in this paper, where all the ex-
ternal inductances on the DC as well as on the AC side have been neglected. On the
other hand, it is important to mention that although the flatness-based approach in the
current thesis is partly similar to the results in this paper, it has been developed without
prior knowledge of this paper.

• Steckler et al.[22]: “Differential Flatness-Based, Full-Order Nonlinear Control
of a Modular Multilevel Converter (MMC)” (2022)
In this paper, a flatness-based control approach was presented. However, this is limited
only to the MMC and AC grid subsystems. Therefore, each flat output component in this
paper describes the corresponding stored energy in the respective MMC arm. Moreover,
a trajectory design method using the flatness property was proposed and used to develop
a full-order, linearizing control law. The tracking performance of the whole control is
shown, where the nominal power is established in one grid period (20 ms). In comparison
to the paper, the flatness-based approach in the current thesis that is applied to the
MMC has fully considered the DC inductance because the HVDC cable can be quite
long and hence, such DC inductance is no longer negligible. However, when considering
the current paper, all the external inductances on the DC as well as on the AC side have
been neglected.

1.5 Thesis contribution

The following are the main contributions of this thesis:

i Fast trajectory design for the complete AC-DC-AC power system
Although the technique was first introduced in [16], it is now extended to the entire high
voltage AC-DC-AC power system and is not limited to any separated subsystem.

ii Trajectory tracking control
A trajectory tracking control is developed using the flatness-based control, which allows
a very precise tracking of the desired trajectory for all relevant components in such a
power system.

iii Alternative feedback control
By repeating the trajectory recalculation (according to the technique in (i)) in regular
time intervals, and then generating the sequence of future inputs for driving the system,
an alternative feedback method for compensating deviations within a very fast time
interval (less than 1 ms) is proposed.
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1.6 Outline of the thesis

This thesis is divided into 6 chapters, which are as follows:

• Chapter 1 presents the background, motivation and objectives of the work.

• Chapter 2 introduces the AC-DC-AC power systems as the fundamental structure of
the researched system. Firstly, the equations of motion of the system is derived and
subsequently steady state analysis for this system will be carried out based on the derived
equations of motion.

• Chapter 3 proposes a general method in trajectory design for fast transition between
two steady states. As the full system under consideration is made up of many state
variables that are coupled to each other, a careful trajectory design is the first step for
later developing the corresponding input to achieve a smooth transition to a new steady
state without producing any transient, which should take place in a short time interval.

• Chapter 4 briefly describes the control technique used in this work, which is the flatness-
based control. This chapter starts with the basic idea of flatness-based control and is
followed by the discussion of the existence of flat output components for the complete
high voltage AC-DC-AC power system. On the basis of its existence, a flatness-based
control design for fast trajectory tracking is proposed.

• Chapter 5 presents the simulation results based on the techniques outlined in Chapter 3
and Chapter 4 for the high voltage AC-DC-AC power systems under different conditions.

• Finally, Chapter 6 wraps up the thesis by providing findings that are relevant to the
scope of the research work.



Chapter 2

Dynamics of AC-DC-AC power
systems

Controlling a system means driving a system through its inputs in order to obtain the desired
output behaviour. The most comprehensive knowledge of the model and an adequate descrip-
tion of the system’s dynamics are required for this. Therefore, this chapter will focus on the
derivation of the system’s dynamics for the high voltage AC-DC-AC power system, beginning
with the DFIG-based wind farm and ending with the final supply to the AC grid. The derived
differential equations serve as a basis for the later analysis of the actual control of such a sys-
tem, including all of its state variables, input variables, and externally given variables. Finally,
the steady state analysis for this system will be carried out based on the derived equations of
motion, which will be discussed in more detail later in this chapter.

2.1 Structure of the high voltage AC-DC-AC power system

The considered high voltage AC-DC-AC power system has large offshore wind farms connected
to the offshore AC substation. This offshore substation is connected to the AC grid, which is
located on the mainland through the High Voltage Direct Current (HVDC) link. The system
under consideration has been researched in [15] but now with its conventional inverter replaced
with a more advanced modular multilevel converter (MMC) topology, and the internal dynamics
of the rectifier as well as inverter is described. In order to better understand this system, it
can be broken down into three subsystems, which are as follows:

i. AC island bus subsystem
It contains the converter STATCOM (Static Synchronous Compensator) for adjusting the
reactive power inside the island bus, the wind generators (here considered as externally
given current sources) and the conventional AC-DC rectifier to transfer the effective power
into the high voltage DC (HVDC) link.

ii. High voltage DC (HVDC) link subsystem
It links the island to the main land as well as transporting the low-loss direct currents
onto the main land.

iii. MMC (Modular Multilevel Converter) inverter - AC grid subsystem
The received DC power is inverted and injected into the AC grid, whose voltage is main-
tained by externally given voltage sources. It is worth mentioning that the inverter

9
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considered in this work is of multilevel topology for producing a nearly perfect sinusoidal
current on the AC grid (which will be discussed in more detail later).

The main function of the whole system is to transfer the injected AC effective power produced
by the wind generation into the AC grid. Nevertheless, this transfer is not perfect since a power
fraction is either locally stored at the line inductances or is dissipated at the line resistances.
Thus, these two contributions (particularly for a long HVDC link) have to be considered in
detail to control the full dynamics accurately.
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Figure 2.1: Schematic illustration of high voltage AC-DC-AC power system, with
internal submodule dynamics of MMC

Figure 2.1 depicts the studied high voltage AC-DC-AC power system. The components
colored in red denotes the state components which describe the dynamics of the system and the
components marked in green are the input components which control the time evolution of the
state components, while the components marked in blue are the externally given components
known for the control, but which cannot be modified during any control strategy. It should
be noted that the full system is controlled by 3 converter stations placed at the beginning
(STATCOM), in the middle (rectifier) and at the end (MMC operating as an inverter). These
converter stations are where the inputs that drive the dynamics act.

Among these 3 converter stations, the most complex converter is the MMC. This new and
innovative converter topology developed 20 years ago [6][26] is made up of many identical
submodules (SM), which are connected in series to each other, forming 6 separated arms (3
upper and 3 lower arms), each of which comprises a large number of submodules, NSM . With
this large number of submodules, a fine stepped voltage of any desired form can be produced, in
particular a nearly perfect sinusoidal voltage on the attached AC grid to the left of the converter.
As shown in the Figure 2.1 above, each submodule in the so-called full bridge topology contains
a condensator CSM of relatively large capacitance (typically some mF) whose voltage can be
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either inserted or bypassed by some adequate switching state of the 4 IGBT’s connected to the
capacitance. This switching state can be modified with a frequency close to 1 MHz, i.e. every
1-2 µs, where the voltage of each inserted submodule increases or decreases depending on the
sign (positive or negative) of the arm current flowing through the capacitance. The voltage
produced at each arm results from the sum of the inserted submodules, where in the full bridge
topology, the capacitance voltage can be inserted with a positive as well as a negative sign,
thus allowing also for negative arm voltages.

By sorting and selecting the most discharged submodules (or the most charged submodules
depending on the arm current sign) at a high frequency according to some balancing algorithm
[6] [27] , a well balanced charge state in nearly all submodules can be ensured at a typical time
scale of 100-200 µs. Hence, at this latter, coarser time scale, the whole submodule group in each
arm can be effectively considered as a controllable voltage source whose voltage can be modified
as required for any control task, with that voltage being the average value of all submodule
voltages within the same arm. Furthermore, at such a time scale of 100-200 µs, the state of
the whole MMC converter is effectively described by the current flowing through the 6 internal
arms in MMC as well as by the 6 energy components collectively stored in the submodules
of each arm (or equivalently by the average voltage of all submodules in each arm). This
effective description using controllable voltage source at a coarse time scale, without resolving
the internal submodule dynamics at the much finer time resolution, corresponds to Figure 2.2,
once again assuming that an underlying fast sorting and balancing algorithm operates every
few microseconds to keep all submodules similarly charged.
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Figure 2.2: Schematic illustration of high voltage AC-DC-AC power system, without
resolving the internal submodule dynamics of MMC

The following is a general description of how power flows across the converter, either from
the perspective of an AC to DC converter (rectifier) or a DC to AC converter (inverter). It
should be noted that this is a 3 phase AC system.

• AC to DC converter (rectifier), corresponding to the upper part in Fig. 2.2 and the first
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half of the lower part in Fig. 2.2: The energy dynamics describing the power transfer
across the converter is as follows

3

2
(ug,1 ig,1 + ug,2 ig,2 + ug,3 ig,3)

︸ ︷︷ ︸

effective power from
3 phase AC transmission lines

into the converter

= ud id
︸︷︷︸

power into DC
transmission lines

+
d

dt
(Wconverter)

︸ ︷︷ ︸

change in the energy
stored in the converter

+ power losses
︸ ︷︷ ︸

in internal resistances
(mostly negligible)

,

(2.1)

where the effective power injected into the converter from the 3 phase AC transmission
lines is transferred as power into the DC transmission lines, along with a change in the
energy stored in the rectifier and the power dissipated at the resistances, which are mostly
negligible.

• DC to AC converter (inverter), corresponding to the lower part of Fig. 2.2 to the right of
the rectifier: Analogously, the energy dynamics describing the power transfer across the
converter, this time as an inverter, is as follows

ud id
︸︷︷︸

power from DC
transmission lines

=
3

2
(ug,1 ig,1 + ug,2 ig,2 + ug,3 ig,3)

︸ ︷︷ ︸

effective power into
3 phase AC transmission lines

from converter

+
d

dt
(Wconverter)

︸ ︷︷ ︸

change in the energy
stored in the converter

+ power losses
︸ ︷︷ ︸

in internal resistances
(mostly negligible)

,

(2.2)

where now the power from the DC transmission lines is transferred as effective power
into the 3 phase AC transmission lines, together with a change in the energy stored in
the inverter and the power losses at the resistances, which are mostly negligible.

Returning back to the considered high voltage AC-DC-AC power system of Figure 2.2, the
dynamics of the conventional rectifier (no modular multilevel topology but a single capacitance,
although a more complex realization can also be considered) is fully implemented, this time
including the charging and discharging of the single condensator.

On the other hand, the STATCOM works as a supplier of reactive power for the generator’s
stator and delivers reactive power to the AC grid, because no power (effective power) is being
injected into the converter

0
︸︷︷︸

no power
being injected

=
3

2
(ug,1 ig,1 + ug,2 ig,2 + ug,3 ig,3)

︸ ︷︷ ︸

effective power into
3 phase AC transmission lines

from converter

+
d

dt
(WSTATCOM)

︸ ︷︷ ︸

change in the energy
stored in the converter

+ power losses
︸ ︷︷ ︸

in internal resistances
(mostly negligible)

.

(2.3)

For the STATCOM, ug, 1/2/3 and ig, 1/2/3 are to be driven in such a way that d
dt (WSTATCOM) ≈

0, and therefore no effective power is transferred to the AC grid: only reactive power is being
injected into the AC transmission lines.

2.2 Useful transformations for a three-phase system

Before proceeding with the derivation of the equations of motion for the full system in the next
section, a derivation of two useful representations for three-phase system will be provided to
help the reader understand the systems that will be explained in the work.
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In most cases, the voltage and current equations of three-phase system are used to charac-
terise the behaviour of the system. However, the mathematical modelling of such a system is
typically quite involved since each single phase has to be considered. Therefore, mathematical
transformations are often used to decouple variables and to solve equations containing time
varying components by referring all variables to a common reference frame. The following are
the most well-known transformation methods among the many methods available, which are
the Clarke transformation and the Park transformation. In general, the three reference frames
considered in this transformation are as follows:

• Three-phase reference frame (1/2/3 axis)

AC system with oscillating 3 phases (either voltage or current) {x1(t), x2(t), x3(t)} of
common frequency ω are lying in the same plane and can be written as

x1(t) =

common average
︷ ︸︸ ︷

x1(t) + x2(t) + x3(t)

3
+

average-free part
︷ ︸︸ ︷
(

x1(t)−
x1(t) + x2(t) + x3(t)

3

)

x2(t) =
x1(t) + x2(t) + x3(t)

3
+

(

x2(t)−
x1(t) + x2(t) + x3(t)

3

)

x3(t) =
x1(t) + x2(t) + x3(t)

3
+

(

x3(t)−
x1(t) + x2(t) + x3(t)

3

)

. (2.4)

Of the 3 components in the average-free part, only 2 are independent (since their sum is
0) and, therefore, can be described by two variables, which are the amplitude x̂(t) and
phase ϕ(t) in 3 oscillating components that are shifted 2π

3 (= 120◦) to each other






x1(t)− x1(t)+x2(t)+x3(t)
3

x2(t)− x1(t)+x2(t)+x3(t)
3

x3(t)− x1(t)+x2(t)+x3(t)
3




 = x̂(t)





sin (ωt+ ϕ(t))
sin
(
ωt+ ϕ(t) − 2π

3

)

sin
(
ωt+ ϕ(t) + 2π

3

)



 , (2.5)

since sin (ωt+ ϕ(t)) + sin
(
ωt+ ϕ(t) − 2π

3

)
+ sin

(
ωt+ ϕ(t) + 2π

3

)
= 0 always hold. As

already mentioned in the previous representation, ω is the (main) radial frequency of the
AC system.

• Orthogonal stationary reference frame (α/β axis)

The Clarke transformed three-phase components xα and xβ both located along the α and
β axis, respectively, are orthogonal to each other, but in the same plane as the three-phase
reference frame.

• Orthogonal rotating reference frame (d/q axis)

The Park transformed three-phase components xd and xq, in which xq is at a rotation
angle θ = ωt to the phase 1 axis, whereas xd is perpendicular to xq along the d axis.

2.2.1 Clarke Transformation

The α/β/0 components where the zero component corresponds to the common average x1(t)+x2(t)+x3(t)
3 ,

while the α/β components are referred to stationary, fixed orthogonal axis and defined by the
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following transformation [29]

(
xα
xβ

)

=

Mα/β←1/2/3
︷ ︸︸ ︷
(

2
3 −1

3 −1
3

0 1√
3

− 1√
3

)



x1
x2
x3



 . (2.6)

This applied to




x1(t)
x2(t)
x3(t)



 =
x1(t) + x2(t) + x3(t)

3





1
1
1



+ x̂(t)





sin (ωt+ ϕ(t))
sin
(
ωt+ ϕ(t)− 2π

3

)

sin
(
ωt+ ϕ(t) + 2π

3

)



 , (2.7)

leads to
(
xα(t)
xβ(t)

)

= x̂(t)

(
sin (ωt+ ϕ(t))

− cos (ωt+ ϕ(t))

)

, x0(t) =
x1(t) + x2(t) + x3(t)

3
. (2.8)

2.2.2 Park Transformation

The d/q/0 components where the zero component corresponds (again) to the common average
x1(t)+x2(t)+x3(t)

3 with the d/q components are now referred to orthogonal rotating axis, which
rotates at the frequency ω and defined by the following transformation [30]





xd

xq



 =

Md/q←1/2/3
︷ ︸︸ ︷

2

3





sin(ωt) sin
(
ωt− 2π

3

)
sin
(
ωt+ 2π

3

)

cos(ωt) cos
(
ωt− 2π

3

)
cos
(
ωt+ 2π

3

)













x1

x2

x3









. (2.9)

This applied to




x1(t)
x2(t)
x3(t)



 =
x1(t) + x2(t) + x3(t)

3





1
1
1



+ x̂(t)





sin (ωt+ ϕ(t))
sin
(
ωt+ ϕ(t)− 2π

3

)

sin
(
ωt+ ϕ(t) + 2π

3

)



 ,

leads to
(
xd(t)
xq(t)

)

= x̂(t)

(
cos (ϕ(t))
sin (ϕ(t))

)

, x0(t) =
x1(t) + x2(t) + x3(t)

3
, (2.10)

where the amplitude x̂(t) and phase ϕ(t) have been separately extracted from the d/q compo-
nents, without the time dependence arising from the oscillating part proportional to ωt (which
was still present in the α/β components).

With reference to the transformation previously discussed in subsection 2.2.1 and subsection
2.2.2, the following can be summarised





xα
xβ
x0



 =

Mα/β/0←1/2/3
︷ ︸︸ ︷




2
3 −1

3 −1
3

0 1√
3

− 1√
3

1
3

1
3

1
3









x1
x2
x3



 ,





x1
x2
x3



 =

M1/2/3←α/β/0 = Mα/β/0←1/2/3
−1

︷ ︸︸ ︷





1 0 1

−1
2 +

√
3
2 1

−1
2 −

√
3
2 1










xα
xβ
x0



 .
(2.11)
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







xd

xq

x0









=

Md/q/0←1/2/3
︷ ︸︸ ︷

2

3









sin(ωt) sin
(
ωt− 2π

3

)
sin
(
ωt+ 2π

3

)

cos(ωt) cos
(
ωt− 2π

3

)
cos
(
ωt+ 2π

3

)

1
2

1
2

1
2

















x1

x2

x3









,









x1

x2

x3









=

M1/2/3←d/q/0 = Md/q/0←1/2/3
−1

︷ ︸︸ ︷








sin(ωt) cos(ωt) 1

sin
(
ωt− 2π

3

)
cos
(
ωt− 2π

3

)
1

sin
(
ωt+ 2π

3

)
cos
(
ωt+ 2π

3

)
1

















xd

xq

x0









. (2.12)

On the other hand, the time derivative of the inverse Park transformation reads

d

dt

(
M1/2/3←d/q/0

)
= ω









cos(ωt) − sin(ωt) 0

cos
(
ωt− 2π

3

)
− sin

(
ωt− 2π

3

)
0

cos
(
ωt+ 2π

3

)
− sin

(
ωt+ 2π

3

)
0









= −ωM1/2/3←d/q/0





0 1 0
−1 0 0
0 0 0



 . (2.13)
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Apart from that, 1 it can be concluded that the scalar product of 2 different components in
three-phase system leads to the following relations

(
x1 x2 x3

)









y1

y2

y3









=
3

2
(xd yd + xq yq + 2x0 y0) ≡

3

2
(xα yα + xβ yβ + 2x0 y0) . (2.15)

It is worth mentioning that in most situations (as those considered in this work), the 0 compo-
nent is always zero, either because of the Y or ∆ connection of the transmission lines (leading
to a vanishing zero component in the currents) or because of a symmetric operation of the
three-phase voltages.

2.3 Equations of motion for the full system

The derivation of 19 equations that make up the whole system’s dynamics are going to be
explained in detail in the following subsections.

2.3.1 Required state and input variables

The dynamics of the considered full system (as shown in Figure 2.2) is described by the variables
(
uCs ist, 1/2/3 uib, 1/2/3 irc, 1/2/3 uCr ip, 1/2/3 in, 1/2/3 ig, 1/2/3 Wp, 1/2/3 Wn, 1/2/3

)T , and

driven by the effective input variables
(
ss,1/2/3 src,1/2/3 up, 1/2/3 un, 1/2/3

)T , along with the
externally given variables (current at the wind generators iw, 1/2/3 and voltage at the AC grid
ug, 1/2/3) that are not modifiable. All of these variable are listed in Table 2.1, Table 2.2 and
Table 2.3. Additionally, Table 2.4 lists the relevant constant parameters for passive elements,
which are used to describe the full system.

1Using the following trigonometric identities

cos (ωt) + cos

(

ωt−
2

3
π

)

+ cos

(

ωt+
2

3
π

)

= cos (ωt)

(

1 + cos

(
2

3
π

)

+ cos

(
2

3
π

))

+ sin (ωt)

(

0 + sin

(
2

3
π

)

− sin

(
2

3
π

))

= 0 ,

sin (ωt) + sin

(

ωt−
2

3
π

)

+ sin

(

ωt+
2

3
π

)

= sin (ωt)

(

1 + cos

(
2

3
π

)

+ cos

(
2

3
π

))

+ cos (ωt)

(

0− sin

(
2

3
π

)

+ sin

(
2

3
π

))

= 0 ,

cos2 (ωt) + cos2
(

ωt−
2

3
π

)

+ cos2
(

ωt+
2

3
π

)

=
1 + cos (2ωt)

2
+

1 + cos
(
2ωt+ 2

3
π
)

2
+

1 + cos
(
2ωt− 2

3
π
)

2
=

3

2
+ 0 ,

sin2 (ωt) + sin2

(

ωt−
2

3
π

)

+ sin2

(

ωt+
2

3
π

)

=
1− cos (2ωt)

2
+

1− cos
(
2ωt+ 2

3
π
)

2
+

1− cos
(
2ωt− 2

3
π
)

2
=

3

2
+ 0 ,

sin (ωt) cos (ωt) + sin

(

ωt−
2

3
π

)

cos

(

ωt−
2

3
π

)

+ sin

(

ωt+
2

3
π

)

cos

(

ωt+
2

3
π

)

= 0 . (2.14)
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State components Definition
uCs Effective capacitance voltage of STATCOM

ist, 1/2/3 Three-phase currents of STATCOM
uib, 1/2/3 Three-phase voltages of island bus
irc, 1/2/3 Three-phase currents of rectifier
uCr HVDC-link voltage of the rectifier side
id Current on DC link

ip, 1/2/3 Three-phase upper arm currents of MMC
in, 1/2/3 Three-phase lower arm currents of MMC
ig, 1/2/3 Three-phase currents of AC grid
Wp,1/2/3 Upper arm energy of MMC
Wn, 1/2/3 Lower arm energy of MMC

Table 2.1: List of state components

Effective input components Definition
ss,1/2/3 Three-phase switching signal at STATCOM
src,1/2/3 Three-phase switching signal at rectifier
up, 1/2/3 Upper arm voltages of MMC
un, 1/2/3 Lower arm voltages of MMC

Table 2.2: List of input components

Externally given components Definition
iw, 1/2/3 Three-phase currents of wind generator
ug, 1/2/3 Three-phase voltages of AC grid
Table 2.3: List of externally given components

2.3.2 Time resolution for system modelling and control related to the in-
ternal dynamics of the converters

Another key aspect to be considered is the time scale ∆tcontrol required for modelling and con-
trolling the system dynamics. Since the control takes place at the converters and their dynamics
are defined by the charging/discharging of the internal capacitances, let’s consider such dynam-
ics, firstly for the converters in the island bus since their topology is much simpler: if C is the
capacitance and iC the current flowing through the capacitance as a result of some switching

state inside the converter, the change in the capacitance voltage is described by
duC
dt

=
1

C
iC .

For typical values in a converter like those used within the island bus of a HVDC system,
C ∼ 10−3 F, iC ∼ 103 A and uC ∼ 104 V, a deviation in the capacitance voltage about 1 % of

the nomimal value, ∆uC ∼ 102 V, needs a time interval of ∆tcontrol ∼ C
∆uC
iC

∼ 0.1 ms to be

compensated. Hence the time step used in this work for numerical modelling the system dy-
namics, as well as controlling it, is chosen to be either ∆tcontrol = 0.1 ms or ∆tcontrol = 0.2 ms.

On the other hand, the converters in the island bus operate at a faster rate than this
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Parameter Definition
Cs STATCOM’s DC capacitor
Lst STATCOM’s inductance
Rst STATCOM’s resistor
Cr Rectifiers’s capacitor
Lrc Rectifiers’s inductance
Rrc Rectifier’s resistor
Cf Capacitor at island bus filter
Rf Resistor at island bus filter
Ld HVDC link’s inductance
Rd HVDC link’s resistor
Re MMC’s arm resistor
Le MMC’s arm inductance
Rg AC grid’s resistor
Lg AC grid’s inductance

Table 2.4: List of constant parameters for passive elements

∆tcontrol, typically with a time step ∆tconverter ∼ 10 µs or even less for changing its switch-
ing state. Such switching variables are actually integer valued, s ∈ {0, 1} (either switched on
or off), but if the time scale being resolved during the dynamics control is in the order of
∆tcontrol ∼ 20∆tconverter, those switching variables can be effectively considered as real valued
at that coarser time scale: 0 ≤ s ≤ 1. This can be explained briefly by the following example
illustrated in Figure 2.3 for ∆tcontrol = 200µs and ∆tconverter = 10µs. Given that during the
12 time step ∆tconverter, the switching variable is set equal to s = 1, while during the other
8 time step, the switching variable is set equal to s = 0. Since the intended control for the
system dynamics takes place at a coarse time scale that only observes an average behavior of
the switching variables, it can be assumed that the switching variables at this time resolution
are approximately equivalent to a value averaged over the duration of the coarse time scale
s̄ = 12

20 = 0.6.

Figure 2.3: Switching state over the duration of the coarse time scale

Let us consider in more detail the converters within the island bus. The dynamics of one
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Figure 2.4: Simplified circuit for a 3 phase 2-level rectifier with a single capacitance
and 6 switches; AC line currents (entering the converter), DC current and capacitance
voltage as state variables are represented in red, switch states as input variables in
green

conventional 2-level converter is easily derived, here for a simple AC-to-DC rectifier equipped
with a single capacitance and 6 high power switches, with the three lower switches operating
as the logical negation of the three upper switches (see Fig. 2.4). This converter connects 3 AC
phases with a single DC transmission line. Assuming that the dissipation at any internal load
(either switch or capacitance) can be safely neglected, the voltage between an upper switch
and its corresponding lower switch is always equal to the capacitance voltage uC and therefore
the voltage at any switch is given by (1− sC, j) uC , where sC, j ∈ {0, 1} denotes the switch
state allowing the capacitance voltage to be either inserted or bypassed (sC, j = 0 corresponds
to “switch off” and sC, j = 1 to “switch on”). The 3 equations for the voltage between two
adjacent AC lines read

uAC, 1 = − (1− sC, 1)uC + (1− sC, 2) uC + uAC, 2 ,

uAC, 2 = − (1− sC, 2)uC + (1− sC, 3) uC + uAC, 3 ,

uAC, 3 = − (1− sC, 3)uC + (1− sC, 1) uC + uAC, 1 ,

or equivalently

(uAC, 1 − uAC, 2) = (sC, 1 − sC, 2)uC ,

(uAC, 2 − uAC, 3) = (sC, 2 − sC, 3)uC ,

(uAC, 3 − uAC, 1) = (sC, 3 − sC, 1)uC , (2.16)

where only 2 of them are linearly independent since the sum of the 3 equations yields a trivial
result. If the 3 AC external voltages are in symmetric operation, uAC, 1 + uAC, 2 + uAC, 3 = 0,
and additionally the capacitance is relatively large such that its voltage remains unchanged
during one controlling/modelling time step ∆tcontrol, the previous equations relating to the
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external voltages with the switching state of the converter can be written 2 as




uAC, 1

uAC, 2

uAC, 3



 = −sC, 0uC





1
1
1



+





sC, 1

sC, 2

sC, 3



uC , sC, 0 =
sC, 1 + sC, 2 + sC, 3

3
, (2.17)

where now the 2 independent equations arising from (2.16) can be extracted in a more compact
way either in α/β components or in d/q components

(
uAC,α

uAC, β

)

=

(
sC,α

sC, β

)

uC ,

(
uAC, d

uAC, q

)

=

(
sC, d

sC, q

)

uC . (2.18)

Furthermore, the current flowing through the converter capacitance is given by the sum of
those AC lines connected to the capacitance at each time step minus the DC current leaving
the converter

iC =
(
sC, 1 sC, 2 sC, 3

)





iAC, 1

iAC, 2

iAC, 3



− iDC , (2.19)

where again since the sum of the 3 AC currents identically vanishes (due to either a Y or a ∆
connection of the 3 transmission lines) such capacitance current, and thus the dynamics of the
capacitance voltage, is equal to

iC = C
duC
dt

=

according to (2.15)
︷ ︸︸ ︷

3

2

(
sC,α sC, β

)
(
iAC,α

iAC, β

)

+ 3sC, 0 iAC, 0
︸ ︷︷ ︸

= 0

−iDC

≡ 3

2

(
sC, d sC, q

)
(
iAC, d

iAC, q

)

− iDC . (2.20)

The previous dynamical equation can be equivalently reformulated as the equation of motion

for the energy WC =

(
C

2
u2C

)

stored inside the converter capacitance, as always assuming a

symmetric voltage in the 3 AC phases after applying (2.18)

d

dt

WC
︷ ︸︸ ︷
(
C

2
u2C

)

= CuC
duC
dt

=
3

2

(
uAC, α uAC, β

)

︷ ︸︸ ︷

uC
(
sC,α sC, β

)
(
iAC, α

iAC, β

)

− uC iDC

≡ 3

2

(
uAC, d uAC, q

)
(
iAC, d

iAC, q

)

− uC iDC , (2.21)

which just means that the change in the converter internal energy is produced by the input of
effective power entering the converter from the 3 AC phases minus the power being transferred
to the DC line. In the case of the STATCOM (see Fig. 2.5), where no DC line is connected

2Relations (2.16) leads to the ansatz where the 3 AC voltages are directly proportional to the switching
state vectors times the capacitance voltage plus some (unknown) contribution common to all 3 AC phases:




uAC, 1

uAC, 2

uAC, 3



 =





sC, 1

sC, 2

sC, 3



uC + (something common)





1
1
1



, where now the “something common” is derived from

condition uAC, 1 + uAC, 2 + uAC, 3 = 0.
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Figure 2.5: Simplified circuit for a 3 phase 2-level STATCOM converter with a single
capacitance and 6 switches; AC line currents (leaving the converter) and capacitance
voltage as state variables are represented in red, switch states as input variables in
green

and the 3 AC lines leave (instead of entering, thus change in sign) the converter, the equations
of motion reduce to

C
duC
dt

= −3

2

(
sC,α sC, β

)
(
iAC,α

iAC, β

)

≡ −3

2

(
sC, d sC, q

)
(
iAC, d

iAC, q

)

,

d

dt

WC
︷ ︸︸ ︷
(
C

2
u2C

)

= −3

2

(
uAC, α uAC, β

)

︷ ︸︸ ︷

uC
(
sC,α sC, β

)
(
iAC, α

iAC, β

)

≡ −3

2

(
uAC, d uAC, q

)
(
iAC, d

iAC, q

)

. (2.22)

When regarding the more complicated modular multilevel converter (MMC) topology with
full bridge submodules, used for the inverter connecting the HVDC link to the final AC grid,
the previous derivation for the rectifier has to be generalized to the much higher number of
separated capacitances. In the MMC topology, instead of 6 single switches connected to the
same common capacitance, there exist 6 arms: each arm, with index j running from 1 to 6, con-
tains NSM similar submodules denoted by index k = 1, . . . , NSM , each one equipped with the
same capacitance CSM . Analogously to (2.19), each submodule voltage displays the dynamics

CSM

du
(k)
C, j

dt
= s

(k)
j ij , where s

(k)
j ∈ {−1, 0,+1} is the switching state of the k-th submodule in-

side the j-th arm and ij denotes the arm current flowing through the corresponding inserted
submodule (i.e., if s(k)j 6= 0). All the inserted submodules in the j-th arm produces its arm

voltage uj =

NSM∑

k=1

s
(k)
j u

(k)
C, j and thus the dynamics for the energy Wj stored in all submodules

contained inside the j-th arm is given by

Wj =
CSM

2

NSM∑

k=1

(

u
(k)
C, j

)2
,

d

dt
Wj =

NSM∑

k=1

u
(k)
C, j s

(k)
j ij = ij

NSM∑

k=1

s
(k)
j u

(k)
C, j

︸ ︷︷ ︸
= uj

= ij uj . (2.23)
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In a modern MMC, the time scale at which the switching state can be changed in the sub-
modules is in the order of ∆tconverter ∼ 1− 2 µs: this high operation rate allows to develop
fast sorting algorithms selecting the lowest/highest charged submodules depending on the sign
(positive/negative) of the arm current which are able to produce at the much coarser control
time scale ∆tcontrol ∼ 100∆tconverter the required arm voltage and simultaneously to keep all
submodule capacitances within the same arm at nearly the same voltage level at that coarse
time step (as previously discussed on page 11 and published in [6]). Hence, the control taking
place at the latter ∆tcontrol time step, where the arm voltage for some desired system behaviour
is designed, is decoupled from the much faster underlying driving of the separated submodules.
And moreover, instead of considering all NSM separated capacitance voltages within the j-th
arm, it is enough at the time resolution of ∆tcontrol to focus on a single average submodule
voltage ūC, j ; or equivalently on the energy stored inside the arm

Wj =
CSM

2

NSM∑

k=1

(

u
(k)
C, j

)2 at time scale ∆tcontrol−→ CSMNSM

2
ū2C, j , (2.24)

which is a single variable for the full arm. The variables describing the dynamics of the MMC
at the coarse time resolution are thus the 6 arm currents 3 and the 6 arm energies, with the
arm voltage 4 acting as the effective input for such dynamics.

2.3.3 Equations of motion related to AC island bus subsystem

For the AC island bus connecting the wind generators and STATCOM to the AC-DC rectifier,
all the AC voltages will be assumed to be operating in symmetric conditions, such that only
two components are sufficient to describe them. Therefore, the representation used for the
AC variables will be in d/q components. The STATCOM’s subsystem is comprised of the
STATCOM and the RC filter (with Cf and Rf inside the filter), both of which are connected
to the wind generator via the island bus filter. It is worth noting that the voltage components
(
ust, d
ust, q

)
(2.18)
= uCs

(
ss, d
ss, q

)

applied to the STATCOM serves effectively as 2 input components

(marked in green), whereas the generator current iw, d/q are externally given (marked in blue).
Focusing on this subsystem with i = 1, 2, 3 denoting the 3 AC phases in the island bus, the
mesh equation based on the Kirchhoff’s voltage law is as follows:

Lst
d

dt
ist,i +Rst ist,i + uib,i − ust,i = 0 , (2.25)

whereas the corresponding node equation based on the Kirchhoff’s current law reads:

Cs
d

dt
uCs = −

3∑

i=1

(ss,i ist,i)
(2.22)
≡ −3

2
(ss, d ist, d + ss, q ist, q) , (2.26)

iw,i + ist,i = irc,i +

if,i
︷ ︸︸ ︷
(

Cf
d

dt
uib,i +

uib,i
Rf

)

. (2.27)

3Actually only 5 of these currents are linearly independent since, due to the connection of the 6 arms,
ip, 1 + ip, 2 + ip, 3 = in, 1 + in, 2 + in, 3 is always satisfied.

4Or if one prefers with an average switching state s̄j as effective input for the j-th arm:

uj =

NSM∑

k=1

s
(k)
j u

(k)
C, j

(def)
= NSM s̄j ūC, j .
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In (2.27), if,i is the current that splits between the filter’s resistor Rf and the filter’s capacitor
Cf at the node, resulting in the same voltage drop uib,i across both components. Applying the
d/q transformation (2.9) and its corresponding time derivative (2.13) to equations (2.25) and
(2.27) leads to

d

dt

(
ist, d
ist, q

)

=

(

−Rst

Lst
+ ω0

(
0 1
−1 0

))(
ist, d
ist, q

)

+
1

Lst

(

uCs

(
ss, d
ss, q

)

−
(
uib, d
uib, q

))

, (2.28)

d

dt

(
uib, d
uib, q

)

=

(

− 1

RfCf
+ ω0

(
0 1
−1 0

))(
uib, d
uib, q

)

+
1

Cf

((
iw, d

iw, q

)

+

(
ist, d
ist, q

)

−
(
irc, d
irc, q

))

.

(2.29)

Instead of considering the dynamical equation at the capacitance voltage of STATCOM (2.26),
an equivalent formulation can be represented as the energy dynamic equation of the first half
of the island bus subsystem, where this energy is stored from the effective capacitance of the
STATCOM until the capacitance inside the filter of the island bus:

d

dt
Wst+ib

(2.26), (2.28), (2.29)
=

d

dt

(
Cs

2
u2Cs +

3

2

Lst

2

(
i2st, d + i2st, q

)
+

3

2

Cf

2

(
u2ib, d + u2ib, q

)
)

=
3

2
(uib, d iw, d + uib, q iw, q)−

3

2
(uib, d irc, d + uib, q irc, q)

−
[
3

2
Rst

(
i2st, d + i2st, q

)
+

3

2

1

Rf

(
u2ib, d + u2ib, q

)
]

. (2.30)

2.3.4 Equations of motion related to conventional rectifier

This subsystem consists of a conventional rectifier and an HVDC link, the latter being con-
nected to the island bus on the left side and the MMC inverter on the right side. It should

be noted that the voltage components
(
urc, d
urc, q

)
(2.18)
= uCr

(
src, d
src, q

)

at the input of the AC-DC

rectifier acts effectively as 2 input components (marked in green). With i = 1, 2, 3 denoting
the 3 AC phases and according to Kirchhoff’s voltage law, the mesh equation yields

Lrc
d

dt
irc,i +Rrc irc,i + urc,i − uib,i = 0 , (2.31)

while the corresponding node equation based on the Kirchhoff’s current law is as follows:

Cr
d

dt
uCr + id =

3∑

i=1

(src,i irc,i)
(2.20)
≡ 3

2
(src, d irc, d + src, q irc, q) . (2.32)

Formulating (2.31) in d/q components yields

d

dt

(
irc, d
irc, q

)

=

(

−Rrc

Lrc
+ ω0

(
0 1
−1 0

))(
irc, d
irc, q

)

+
1

Lrc

((
uib, d
uib, q

)

− uCr

(
src, d
src, q

))

. (2.33)

As an alternative to the dynamical equation at the capacitance voltage of rectifier (2.32), an
equivalent formulation can be written as the energy dynamic equation of the second half of the
island bus subsystem, where this energy is stored at the rectifier’s inductance and rectifier’s
capacitance:

d

dt
Wrc

(2.32), (2.33)
=

d

dt

(
3

2

Lrc

2

(
i2rc, d + i2rc, q

)
+

Cr

2
u2Cr

)

=
3

2
(uib, d irc, d + uib, q irc, q)− 3uCr ie, 0 −

3

2
Rrc

(
i2rc, d + i2rc, q

)
. (2.34)
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2.3.5 Equations of motion related to MMC inverter - AC grid subsystem

The following definitions are necessary before proceeding with the derivation of the equations
of motion for the dynamics of both arm currents and arm energies in the MMC inverter - AC
grid subsystem. It is important to note that the AC grid voltages will be considered to operate
in symmetric conditions.

2.3.5.1 Definition of the internal current components, ie, j, with j = 1, 2, 3

As illustrated in Figure 2.2, from the node equations together with j = 1, 2, 3, the following
relations directly follow from the form, how the 6 MMC current arms are connected to the
external DC and AC transmission lines

3∑

j=1

ip, j =

3∑

j=1

in, j ≡ id , (2.35)

ip, j − in, j = ig, j . (2.36)

This allows writing the 6 MMC arm currents (3 above, ip, 1/2/3, and 3 below, in, 1/2/3) as
the superposition of a constant DC contribution, a contribution arising from the external AC
currents plus additional free currents ie, 1/2/3, whose sum, ie, 1 + ie, 2 + ie, 3 identically vanishes

ip, 1/2/3 =
id
3
+

1

2
ig, 1/2/3 + ie, 1/2/3 ,

in, 1/2/3 =
id
3
− 1

2
ig, 1/2/3 + ie, 1/2/3 .

(2.37)

This representation satisfies the node equation (2.35) and (2.36) since ig, 1 + ig, 2 + ig, 3 = 0
(due to the star connection of the AC grid lines) and ie, 1 + ie, 2 + ie, 3 = 0 (due to the defining
condition for these free currents). Because only 2 of these ie, 1/2/3 are linearly independent, a
description using 2 components for instance α/β components (or eventually d/q components)
is easier:

(
ie, α
ie, α

)

=

(
2
3 −1

3 −1
3

0 1√
3

− 1√
3

)



ie, 1
ie, 2
ie, 3



 =

(
2
3 −1

3 −1
3

0 1√
3

− 1√
3

)





ip, 1+in, 1

2
ip, 2+in, 2

2
ip, 3+in, 3

2






=

(
1
3 −1

6 −1
6

1
3 −1

6 −1
6

0 1
2
√
3

− 1
2
√
3

0 1
2
√
3

− 1
2
√
3

)











ip, 1
ip, 2
ip, 3
in, 1
in, 2
in, 3











,

(2.38)

where ie, j =
ip, j + in, j

2
. These α/β components are denoted as internal circular currents and

this denomination deserves a short explanation: “internal”, since they are not present either in
the DC current (an external current to the MMC) nor in the AC currents on the other side of
the MMC; “circular”, since by the very definition ie, 1 + ie, 2 + ie, 3 = 0, the 6 arm currents can
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be described as follows

ip, 1 =
id
3
+

ig, 1
2

+

ie, 1
︷︸︸︷

icc, 1 , ip, 2 =
id
3
+

ig, 2
2

+

ie, 2
︷ ︸︸ ︷

(−icc,1 + icc, 2) , ip, 3 =
id
3
+

ig, 3
2

ie, 3
︷ ︸︸ ︷

−icc,2 ,

in, 1 =
id
3
− ig, 1

2
+

ie, 1
︷︸︸︷

icc, 1 , in, 2 =
id
3
− ig, 2

2
+

ie, 2
︷ ︸︸ ︷

(−icc, 1 + icc, 2) , in, 3 =
id
3
− ig, 3

2

ie, 3
︷ ︸︸ ︷

−icc, 2 ,

(2.39)

where

ie, 1
︷︸︸︷

icc, 1+

ie, 2
︷ ︸︸ ︷

(−icc, 1 + icc,2)+

ie, 3
︷ ︸︸ ︷

(−icc,2) = 0 trivially holds.

2.3.5.2 Derivation of equations of motion for MMC

As illustrated in Figure 2.2, the equations of motion for the current components, both external
and internal to the MMC, are derived from the loop equations that start from the HVDC
ground to the AC ground, either across the upper arms or across the lower arms

−uCr

2
+

1

2

(

Rd + Ld
d

dt

) ip, 1+ip, 2+ip, 3
︷︸︸︷

id +





up, 1
up, 2
up, 3



+

(

Re + Le
d

dt

)




ip, 1
ip, 2
ip, 3





+
(
ug, 1/2/3 + u0

)
+

(

Rg + Lg
d

dt

) ij=1/2/3−ij=4/5/6
︷ ︸︸ ︷

ig, 1/2/3 = 0 ,

−uCr

2
+

1

2

(

Rd + Ld
d

dt

) in, 1+in, 2+in, 3
︷︸︸︷

id +





un, 1
un, 2
un, 3



+

(

Re + Le
d

dt

)




in, 1
in, 2
in, 3





−
(
ug, 1/2/3 + u0

)
−
(

Rg + Lg
d

dt

) ij=1/2/3−ij=4/5/6
︷ ︸︸ ︷

ig, 1/2/3 = 0 .

(2.40)

As seen in the previous equations, the small resistance Re effectively represents the small losses
that occur at the switches within the submodules of each arm. Moreover, a time-dependent
voltage difference, u0, between the star connection of the 3 AC grid lines and the midpoint of
the DC line, known as the common-mode voltage, has been introduced. It is worth noting that
in the above equations, the DC current is coupled to the MMC internal currents as well as to
the AC phase currents. However, a decoupling can be achieved in two steps [28]:

• Step 1:

After introducing the following definitions

uΣ, 1/2/3 =
up, 1/2/3 + un, 1/2/3

2
, u∆, 1/2/3 = up, 1/2/3 − un, 1/2/3 , (2.41)

together with ie, 1/2/3 =
ip, 1/2/3 + in, 1/2/3

2
and considering the node equations ig, 1/2/3 =

ip, 1/2/3 − in, 1/2/3, six dynamic equations are derived by adding and substracting both
equation groups in (2.40)

−uCr +

(

Rd + Ld
d

dt

) ie, 1+ie, 2+ie, 3
︷︸︸︷

id +2 uΣ, 1/2/3 + 2

(

Re + Le
d

dt

)

ie, 1/2/3 + 0 = 0 ,

0 + u∆, 1/2/3 +

(

Re + Le
d

dt

)

ig, 1/2/3 + 2
(
ug, 1/2/3 + u0

)
+ 2

(

Rg + Lg
d

dt

)

ig, 1/2/3 = 0 .
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• Step 2:

In the second group of the recently derived equations, shows that the AC current compo-
nents are no longer coupled to the DC or to the internal currents ie, 1/2/3, but the latter
are nevertheless still mixed with the DC current id. Their decoupling is achieved by using
the Clarke transformation (2.11) and formulating the equations in α/β/0 components.

Thus, the resulting equations of motion for the current components are the following 5
equations:

internal circular:
d

dt
ie, α/β = −Re

Le
ie, α/β − 1

Le
uΣ, α/β ,

external DC:
d

dt
ie, 0 = −

R′

d
︷ ︸︸ ︷

3Rd

2
+Re

3Ld

2
+ Le

︸ ︷︷ ︸

L′

d

ie, 0 −
1

L′d

(

uΣ, 0 −
uCr

2

)

,

external AC:
d

dt
ig, α/β = −

R′

g
︷ ︸︸ ︷

2Rg +Re

2Lg + Le
︸ ︷︷ ︸

L′
g

ig, α/β − 1

L′g

(
u∆, α/β + 2ug, α/β

)
.

(2.42)

According to these dynamics equations, it is obvious that
{
uΣ, α/β/0, u∆, α/β

}
act as input

variables for the current dynamics, which is the reason for having them marked in green.

Although in principle, it is not required for decoupling purposes, the Clarke transfor-
mation has also been applied to the AC grid current components because this reduces
the 3 original dynamic equations to 2 differential equations together with 1 additional
algebraic equation u∆, 0 = −2ug, 0 − 2u0 derived from ig, 0 = 0 as a consequence of the 3
AC phase lines being star connected.

In the equations previously derived, the current components (as state variables) and the
voltage components (as input variables) can be written in compact matrix form as linear
combinations of the corresponding currents and voltages in the six arms. The matrix Mpn←Σ∆

shows the relationship of the 6 linearly independent arm current components and voltage arm
components, which is defined in accordance with (2.11)











ip, 1 up, 1
ip, 2 up, 2
ip, 3 up, 3
in, 1 un, 1
in, 2 un, 2
in, 3 un, 3











=

Mpn←Σ∆
︷ ︸︸ ︷












1 0 1 +1
2 0 +1

2

−1
2 +

√
3
2 1 −1

4 +
√
3
4 +1

2

−1
2 −

√
3
2 1 −1

4 −
√
3
4 +1

2
1 0 1 −1

2 0 −1
2

−1
2 +

√
3
2 1 +1

4 −
√
3
4 −1

2

−1
2 −

√
3
2 1 +1

4 +
√
3
4 −1

2























ie, α uΣ, α

ie, β uΣ, β

ie, 0 uΣ, 0

ig, α u∆, α

ig, β u∆, β

ig, 0 = 0 u∆, 0 = −2ug, 0 − 2u0











,

(2.43)
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with its inverse transformation











ie, α uΣ, α

ie, β uΣ, β

ie, 0 uΣ, 0

ig, α u∆, α

ig, β u∆, β

ig, 0 = 0 u∆, 0 = −2ug, 0 − 2u0











=

MΣ∆←pn = Mpn←Σ∆
−1

︷ ︸︸ ︷











1
3 −1

6 −1
6

1
3 −1

6 −1
6

0 1
2
√
3

− 1
2
√
3

0 1
2
√
3

− 1
2
√
3

1
6

1
6

1
6

1
6

1
6

1
6

1
3 −1

6 −1
6 −1

3
1
6

1
6

0 1√
3

− 1√
3

0 − 1√
3

1√
3

1
3

1
3

1
3 −1

3 −1
3 −1

3






















ip, 1 up, 1
ip, 2 up, 2
ip, 3 up, 3
in, 1 un, 1
in, 2 un, 2
in, 3 un, 3











.

(2.44)

A similar transformation as for the arm currents and voltages can also be performed for the arm

energy components, whose dynamics
dWj

dt
= uj ij with j = p1, p2, p3, n1, n2, n3 ≡ 1, . . . , 6

can be formulated in the following way:

ẆΣ, 0 =
d

dt

[

WΣ, 0
︷ ︸︸ ︷

Wp, 1 +Wn, 1 +Wp, 2 +Wn, 2 +Wp, 3 +Wn, 3

6

]

=
1

2
(uΣ, α ie, α + uΣ, β ie, β) + uΣ, 0 ie, 0 +

1

8
(u∆, α ig, α + u∆, β ig, β)

= − d

dt

[
Le

4

(
i2e, α + i2e, β

)
+

L′

d

2
i2e, 0 +

L′

g

16

(
i2g, α + i2g, β

)
]

−
[
Re

2

(
i2e, α + i2e, β

)
+R′

di
2
e, 0 +

R′

g

8

(
i2g, α + i2g, β

)
]

+
uCr

2
ie, 0 −

1

4
(ug, α ig, α + ug, β ig, β) , (2.45)

ẆΣ, α =
d

dt

[

WΣ, α
︷ ︸︸ ︷

2Wp, 1 + 2Wn, 1 −Wp, 2 −Wn, 2 −Wp, 3 −Wn, 3

6

]

=
1

2
(uΣ, α ie, α − uΣ, β ie, β) + (uΣ, 0 ie, α + uΣ, α ie, 0) +

1

8
(u∆, α ig, α − u∆, β ig, β) +

1

4
u∆, 0 ig, α

= − d

dt

[
Le

4

(
i2e, α − i2e, β

)
+ Leie, 0ie, α +

L′

g

16

(
i2g, α − i2g, β

)
]

−
[
Re

2

(
i2e, α − i2e, β

)
+ (R′

d +Re) ie, 0ie, α +
R′

g

8

(
i2g, α − i2g, β

)
]

− 3Ld

2

die, 0
dt

ie, α +
uCr

2
ie, α − 1

4
(ug, α ig, α − ug, β ig, β) +

u∆, 0

4
ig, α , (2.46)

ẆΣ, β =
d

dt

[

WΣ, β
︷ ︸︸ ︷

Wp, 2 +Wn, 2 −Wp, 3 −Wn, 3

2
√
3

]

= −1

2
(uΣ, α ie, β + uΣ, β ie, α) + (uΣ, 0 ie, β + uΣ, β ie, 0)−

1

8
(u∆, α ig, β + u∆, β ig, α) +

1

4
u∆, 0 ig, β

= − d

dt

[

−Le

2
ie, αie, β + Leie, 0ie, β −

L′

g

8
ig, αig, β

]
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−
[

−Reie, αie, β + (R′

d +Re) ie, 0ie, β −
R′

g

4
ig, αig, β

]

− 3Ld

2

die, 0
dt

ie, β +
uCr

2
ie, β +

1

4
(ug, α ig, β + ug, β ig, α) +

u∆, 0

4
ig, β , (2.47)

Ẇ∆, 0 =
d

dt

[

W∆, 0
︷ ︸︸ ︷

Wp, 1 −Wn, 1 +Wp, 2 −Wn, 2 +Wp, 3 −Wn, 3

3

]

=
1

2
(uΣ, α ig, α + uΣ, β ig, β) +

1

2
(u∆, α ie, α + u∆, β ie, β) + u∆, 0 ie, 0

= − d

dt

[
Le

2
(ie, αig, α + ie, βig, β)

]

−
[
R′

g +Re

2
(ie, αig, α + ie, βig, β)

]

− Lg

(
dig, α
dt

ie, α +
dig, β
dt

ie, β

)

− (ug, α ie, α + ug, β ie, β) + u∆, 0 ie, 0 , (2.48)

Ẇ∆, α =
d

dt

[

W∆, α
︷ ︸︸ ︷

2Wp, 1 − 2Wn, 1 −Wp, 2 +Wn, 2 −Wp, 3 +Wn, 3

3

]

=
1

2
(uΣ, α ig, α − uΣ, β ig, β) + (uΣ, 0 ig, α + u∆, α ie, 0) +

1

2
(u∆, α ie, α − u∆, β ie, β) + u∆, 0 ie, α

= − d

dt

[
Le

2
(ie, αig, α − ie, βig, β) + Leie, 0ig, α

]

−
[
R′

g +Re

2
(ie, αig, α − ie, βig, β) +

(
R′

d +R′

g

)
ie, 0ig, α

]

− 3Ld

2

die, 0
dt

ig, α − Lg

(
dig, α
dt

ie, α − dig, β
dt

ie, β

)

− 2Lg
dig, α
dt

ie, 0

+
uCr

2
ig, α − (ug, α ie, α − ug, β ie, β)− 2ug,α ie, 0 + u∆, 0 ie, α , (2.49)

Ẇ∆, β =
d

dt

[

W∆, β
︷ ︸︸ ︷

Wp, 2 −Wn, 2 −Wp, 3 +Wn, 3√
3

]

= −1

2
(uΣ, α ig, β + uΣ, β ig, α) + (uΣ, 0 ig, β + u∆, β ie, 0)−

1

2
(u∆, α ie, β + u∆, β ie, α) + u∆, 0 ie, β

= − d

dt

[

−Le

2
(ie, αig, β + ie, βig, α) + Leie, 0ig, β

]

−
[

−
R′

g +Re

2
(ie, αig, β + ie, βig, α) +

(
R′

d +R′

g

)
ie, 0ig, β

]

− 3Ld

2

die, 0
dt

ig, β + Lg

(
dig, α
dt

ie, β +
dig, β
dt

ie, α

)

− 2Lg
dig, β
dt

ie, 0

+
uCr

2
ig, β + (ug, α ie, β + ug, β ie, α)− 2ug, β ie, 0 + u∆, 0 ie, β . (2.50)

It is worth mentioning that one could, as for the island bus, go from the α/β/0 to the d/q
components by separating the time dependence due to the oscillation with frequency ωg in the
AC and the internal circular current components. However, this time, such a transformation
offers no additional simplification since the circular current, by its very definition of not having
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any influence at all on the external DC and AC sides, does not necessarily display any char-
acteristic frequency. Thus, its corresponding d/q components are not well defined. Hence, the
dynamics for the inverter and attached AC grid will be formulated as α/β components rather
than the d/q components.

2.4 Resulting equations of motion for the full system

By taking into account that one third (
1

3
) of the AC current components is superfluous, and the

AC voltages are assumed to be operating symmetrically, the full system dynamics is described
by a state vector with 19 components

~x19d =
(
uCs ist, d/q uib, d/q irc, d/q uCr ie, 0 Wj=1,...,6 ie, α/β ig, α/β

)T
,

whose time evolution is driven by the 10 components of the input vector (marked in green)

~u19d =
(
ss, d/q src, d/q uΣ/∆, 0/α/β

)T
.

For externally given (marked in blue) generator current iw, d/q and AC grid voltage ug, α/β the
resulting full system of equations of motion is given by

duCs

dt
= −

3

2Cs

(
ss, d ss, q

)
(
ist, d
ist, q

)

d

dt

(
ist, d
ist, q

)

=

(

−
Rst

Lst
+ ω0

(
0 1
−1 0

))(
ist, d
ist, q

)

+
1

Lst

(

uCs

(
ss, d
ss, q

)

−

(
uib, d

uib, q

))

d

dt

(
uib, d

uib, q

)

=

(

−
1

RfCf
+ ω0

(
0 1
−1 0

))(
uib, d

uib, q

)

+
1

Cf

((
iw, d

iw, q

)

+

(
ist, d
ist, q

)

−

(
irc, d
irc, q

))







STATCOM+
generator

d

dt

(
irc, d
irc, q

)

=

(

−
Rrc

Lrc
+ ω0

(
0 1
−1 0

))(
irc, d
irc, q

)

+
1

Lrc

((
uib, d

uib, q

)

− uCr

(
src, d
src, q

))

duCr

dt
=

1

Cr

(
3

2

(
src, d src, q

)
(
irc, d
irc, q

)

− 3ie, 0

)

die, 0

dt
= −

R′

d

L′

d

ie, 0 −
1

L′

d

(

uΣ, 0 −
uCr

2

)

, ie, 0 =
id

3







conventional rectifier+
HVDC transmission line

dWj

dt
= uj ij , j = p1, p2, p3, n1, n2, n3 ≡ 1, . . . , 6

d

dt

(
ie, α
ie, β

)

= −
Re

Le

(
ie, α
ie, β

)

−
1

Le

(
uΣ, α

uΣ, β

)

d

dt

(
ig, α
ig, β

)

= −
R′

g

L′
g

(
ig, α
ig, β

)

−
1

L′
g

((
u∆, α

u∆, β

)

+ 2

(
ug, α

ug, β

))







MMC inverter+AC grid

(2.51)

where resistance Rst, as well as Re, is small and can be considered as negligible. As already
discussed in the previous section, the dynamics for 6 arm energy components of the MMC can
also be formulated in the six {WΣ, α/β/0, W∆, α/β/0} components: (2.45), (2.46) , (2.47), (2.48),
(2.49) and (2.50), respectively.

2.5 Steady state analysis

As many design specifications are described in terms of a system’s steady state characteristics,
determining the steady state is vital. Moreover, studying a system’s steady state enables a
comprehensive picture of which components are heavily loaded in the long-run operation. It
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offers a greater understanding of the system’s functionality and operational behaviour. Apart
from that, it is also essential in the trajectory design between different steady states, which
will be discussed in further detail later in the Chapter 3.

In general, the steady state (denoted from now on as (ss)) of the considered system is defined
as follows:

• constant current and voltage in DC link;

• sine oscillating current and voltage in AC island bus and AC grid, which is described by
constant d/q or α/β components;

• constant total energy of STATCOM, rectifier and MMC, which also correspond to con-
stant energy component Wst+ib,Wrc and W ′Σ, 0 as described in (2.52, (2.53) and (2.54),
respectively. This will be discussed in further detail afterwards.

Before moving on to the derivation of the corresponding steady state, let’s examine how
the power behaves in steady state for each subsystem.

• Initial section of island bus:

0 =
d

dt

(

Wst+ib
︷ ︸︸ ︷

Cs

2
u2Cs +

3

2

Lst

2

(
i2st, d + i2st, q

)
+

3

2

Cf

2

(
u2ib, d + u2ib, q

)
)

=⇒ 3

2
(uib, d iw, d + uib, q iw, q)

︸ ︷︷ ︸

effective power input
from generators

=
3

2
(uib, d irc, d + uib, q irc, q)

︸ ︷︷ ︸

effective power transferred
into second section of island bus

+

Rst ≈ 0
︷ ︸︸ ︷

3

2
Rst

(
i2st, d + i2st, q

)
+
3

2

1

Rf

(
u2ib, d + u2ib, q

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

︸ ︷︷ ︸

dissipation at resistances of initial
section of island bus

.

(2.52)

A stationary state in uCs, as well as in the amplitude of the AC current issuing from the
STATCOM,

√

i2st, d + i2st, q, and in the amplitude of island bus voltage,
√

u2ib, d + u2ib, q,
means that the effective power from the generator is fully transferred as effective power
into the island bus, except for the low power dissipated at the subsystem’s resistances
(denoted above with a wavy line). It is important to note that the power loss at the
small resistance Rst will be neglected because the corresponding transmission line is the
shortest of all lines. Therefore, the voltage drop at Rst is less than 1% of the existing
voltage at the island bus.
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• Second section of island bus:

0 =
d

dt

(

Wrc
︷ ︸︸ ︷

3

2

Lrc

2

(
i2rc, d + i2rc, q

)
+

Cr

2
u2Cr

)

=⇒ 3

2
(uib, d irc, d + uib, q irc, q)

︸ ︷︷ ︸

effective power input
into rectifier

= 3uCr ie, 0
︸ ︷︷ ︸

power into
HVDC link

+
3

2
Rrc

(
i2rc, d + i2rc, q

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

︸ ︷︷ ︸

dissipation at resistances of second
section of island bus

. (2.53)

Analogously, the stationary state in uCr, together with the amplitude of the current
entering the conventional rectifier,

√

i2rc, d + i2rc, q, means that the effective power injected
into the rectifier results in the full power transfer into the HVDC transmission line. Once
again, the small power dissipated at the subsystem’s resistances is indicated with a wavy
line.

• DC link:

0 =
d

dt

(

6W ′Σ, 0
︷ ︸︸ ︷

6WΣ, 0 +
3

2
Le

(
i2e, α + i2e, β

)
+ 3L′d i

2
e, 0 +

3

2

L′g
4

(
i2g, α + i2g, β

)
)

=⇒ 3uCr ie, 0
︸ ︷︷ ︸

power into
HVDC link

=
3

2
(ug, α ig, α + ug, β ig, β)

︸ ︷︷ ︸

effective power transferred
into AC grid

+ 6R′di
2
e, 0 + 3Re

(
i2e, α + i2e, β

)
+

3

2

R′g
2

(
i2g, α + i2g, β

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

︸ ︷︷ ︸

dissipation at resistances in DC link, inside MMC
and AC grid

. (2.54)

Finally, the stationary state in the MMC energy, as well as the energy stored in the
internal inductance, along with the DC and AC inductance, indicates that the power
being passed into the HVDC transmission line is completely transferred as effective power
into the AC grid transmission lines, except for the losses at the resistances.

• Total energy:

Besides that, the total energy stored within the full system can be defined as in the
equation (2.55).

Wtotal =

Wst+ib
︷ ︸︸ ︷

Cs

2
u2Cs +

3

2

Lst

2

(
i2st, d + i2st, q

)
+

3

2

Cf

2

(
u2ib, d + u2ib, q

)

+

Wrc
︷ ︸︸ ︷

3

2

Lrc

2

(
i2rc, d + i2rc, q

)
+

Cr

2
u2Cr

+

6W ′Σ, 0
︷ ︸︸ ︷

3L′d i
2
e, 0 + 6WΣ, 0 +

3

2
Le

(
i2e, α + i2e, β

)
+

3

2

L′g
4

(
i2g, d + i2g, q

)
. (2.55)
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Taking the time derivative of (2.55) leads to the following relation

dWtotal

dt
=

dWst+ib

dt
︷ ︸︸ ︷

3

2

(

uib, d (iw, d✘✘
✘−irc, d) + uib, q (iw, q✘✘

✘−irc, q)
)

− 3

2

1

Rf

(
u2
ib, d + u2

ib, q

)

+
3

2

(

✭
✭
✭
✭
✭
✭
✭
✭
✭✭

uib, d irc, d + uib, q irc, q

)
❳
❳
❳
❳
❳

−3uCr ie, 0 −
3

2
Rrc

(
i2rc, d + i2rc, q

)

︸ ︷︷ ︸

dWrc

dt

+❳
❳
❳

❳❳
3uCr ie, 0 −

3

2
(ug, d ig, d + ug, q ig, q)− 3Re

(
i2e, α + i2e, β

)
− 6R′

d i
2
e, 0 −

3

2

R′

g

2

(
i2g, d + i2g, q

)

︸ ︷︷ ︸

6
dW ′

Σ, 0

dt
(2.56)

Hence, in steady state, characterized by
dWtotal

dt
= 0, following energy balance condition

results

0 =

net power injected
into the system

︷ ︸︸ ︷

3

2
(uib, d iw, d + uib, q iw, q)−

3

2
(ug, d ig, d + ug, q ig, q)

−
[

+
3

2Rf

(
u2
ib, d + u2

ib, q

)
+

3

2
Rrc

(
i2rc, d + i2rc, q

)
+ 3Re

(
i2e, α + i2e, β

)
+ 6R′

d i
2
e, 0 +

3

2

R′

g

2

(
i2g, d + i2g, q

)
]

︸ ︷︷ ︸

power losses
at resistances

,

(2.57)

where from the equation (2.57), it can be concluded that the condition for the steady state
of the total energy results in a nearly vanishing difference between the effective power
injected at the generator and the effective power passed to the AC grid transmission lines,
minus the power dissipated at the corresponding resistances.

Now the procedure to calculate the steady state will be presented in two main steps. First,
the steady state in MMC will be computed analytically, followed by the steady state in the
island bus. Both of these steps will be covered in further depth in the subsequent two subsec-
tions.

2.5.1 Analytical derivation of steady state in MMC subsystem

For externally given AC grid voltage ug, α/β of constant amplitude û(ss)g in the steady state and

externally fixed period
2π

ωg
, as well as a constant DC voltage uCr, the steady state is defined

by the condition that no energy is being absorbed (or lost) in the MMC. Thus, the power
is completely transferred from the DC side to the AC side as effective power (except for the
power dissipated at the corresponding resistors inside the MMC and at the DC as well as AC
transmission lines). This condition is mathematically expressed as Ẇ (ss)

Σ, 0 = 0. A full derivation
of all arm currents and arm energy components in the steady state of a MMC is discussed in
[23]. In this subsection, only the main results of that reference will be briefly discussed.

As shown in equation (2.51), for the MMC subsystem, there are a total of 11 equations
of motion that can be used to determine the 11 state components, along with the 6 input
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components, provided that the AC grid voltage is externally given. As a result, 6 of the 11
state components can be freely chosen for the steady state calculation in this subsystem; these
are listed in Table 2.5.

Externally given variable Freely chosen variables Variables to be determined

ug, α/β
d

dt
Weff , ϕi, g, îe, ϕi, e, vC , û0 ip/n, j , up/n, j, Wp/n, j where j=1,2,3

Table 2.5: Externally given variable, freely chosen variables and variables to be
determined for the steady state calculation in MMC

2.5.1.1 General formulation of
{
ug, α/β , ig, α/β , ie, α/β

}
in steady state

Due to the fact that the external DC side remains constant, while the AC side oscillates with
an angular frequency ωg = 2π/T and constant amplitude, the external DC and AC voltages
are defined by

u
(ss)
Cr = const ,

u
(ss)
g, 1/2/3 = û(ss)g

︸︷︷︸

const





sin (ωgt)
sin
(
ωgt− 2π

3

)

sin
(
ωgt+

2π
3

)



 ⇐⇒ u
(ss)
g, α/β = û(ss)g

︸︷︷︸

const

(
sin (ωgt)

− cos (ωgt)

)

,
(2.58)

whereby u
(ss)
Cr and û

(ss)
g are given.

The DC current as already discussed at the beginning of this section, on the other hand,
should maintain a constant value in the steady state, whereas the AC current is a symmetric,
3-phase system with constant amplitude and phase-shifted by ϕi, g with respect to the AC
voltage

i
(ss)
d = 3i

(ss)
e, 0 = const ,

i
(ss)
g, 1/2/3 = î(ss)g

︸︷︷︸
const





sin (ωgt+ ϕi, g)
sin
(
ωgt+ ϕi, g − 2π

3

)

sin
(
ωgt+ ϕi, g +

2π
3

)



 ⇐⇒ i
(ss)
g, α/β = î(ss)g

︸︷︷︸
const

(
sin (ωgt+ ϕi, g)

− cos (ωgt+ ϕi, g)

)

,

(2.59)

with its derivative given by

d

dt
i
(ss)
g, α/β = î(ss)g ωg

(
cos (ωgt+ ϕi, g)
sin (ωgt+ ϕi, g)

)

. (2.60)

Additionally, the internal current is assumed to oscillate at an arbitrary (although usually
this amplitude will be taken = 0) constant amplitude îe in the steady state. The frequency (or
frequencies) of such oscillation is, in general, free. The only condition imposed is not interfering
with the frequency wg of the AC grid, since, by its very definition, the internal circular current
is decoupled from the external AC current. Hence, such frequency is chosen to be a multiple he
of the AC frequency ωg, and since it should have no effect on either the external DC current (no
frequency) or the external AC current (single frequency AC), the smallest multiple is he = 2
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i
(ss)
e, 1/2/3 = ie, 0 + î(ss)e

︸︷︷︸
const





sin (2ωgt+ ϕi, e)
sin
(
2ωgt+ ϕi, e − 22π

3

)

sin
(
2ωgt+ ϕi, e + 22π

3

)



 ⇐⇒ i
(ss)
e, α/β = î(ss)e

︸︷︷︸
const

(
sin (2ωgt+ ϕi, e)

+ cos (2ωgt+ ϕi, e)

)

,

(2.61)

with its derivative given by

d

dt
i
(ss)
e, α/β = î(ss)e 2ωg

(
cos (2ωgt+ ϕi, e)
− sin (2ωgt+ ϕi, e)

)

. (2.62)

2.5.1.2 General formulation of inputs
{
uΣ/∆, α/β/0

}
in steady state

Once all current components in the steady state
{

i
(ss)
e, α/β/0, i

(ss)
g, α/β

}

have been defined, the
corresponding equations of motion (2.51) may be used to derive the five input components in
the steady state

{

u
(ss)
Σ, α/β/0, u

(ss)
∆, α/β

}

as follows:

u
(ss)
Σ, α/β = −Rei

(ss)
e, α/β − Le

d

dt
i
(ss)
e, α/β

=

û
(ss)
Σ,α/β

︷ ︸︸ ︷

−î(ss)e

√

R2
e + (2ωgLe)

2




sin
(

2ωgt+ ϕi, e + arctan
(
2ωgLe

Re

))

+cos
(

2ωgt+ ϕi, e + arctan
(
2ωgLe

Re

))



 , (2.63)

u
(ss)
Σ, 0 =

u
(ss)
Cr

2
−R′di

(ss)
e, 0 − L′d

=0, since
steady state (constant)

︷ ︸︸ ︷

d

dt
i
(ss)
e, 0 , (2.64)

u
(ss)
∆, α/β = −2u

(ss)
g, α/β −R′gi

(ss)
g, α/β − L′g

d

dt
i
(ss)
g, α/β

=

û
(ss)
∆,α/β

︷ ︸︸ ︷

−

√
(

2û
(ss)
g

)2

+
(

î
(ss)
g

)2 (

R′
g
2 +

(
ωgL′

g

)2
)

+ 4û
(ss)
g î

(ss)
g

(
R′

g cosϕi, g − ωgL′
g sinϕi, g

)

×







sin

(

ωgt+ ϕi, g + arctan

(

−2û(ss)
g sinϕi, g+î

(ss)
g ωgL′

AC

2û
(ss)
g cosϕi, g+î

(ss)
g R′

g

))

− cos

(

ωgt+ ϕi, g + arctan

(
−2û(ss)

g sinϕi, g+î
(ss)
g ωgL′

g

2û
(ss)
g cosϕi, g+î

(ss)
g R′

g

))







. (2.65)

Moreover, the amplitude for the voltage component u(ss)∆, 0 is freely chosen. In the steady state,
the common-mode voltage u0 is chosen to have a constant amplitude, which oscillates with the
third harmonic of the AC frequency ωg, so that this voltage component has no effect on either
the internal circular current dynamics or the external DC and AC current dynamics

u
(ss)
0 = û

(ss)
0 sin (3ωgt+ ϕu, 0) =⇒ u

(ss)
∆, 0 = −2û

(ss)
0 sin (3ωgt+ ϕu, 0) (2.66)

2.5.1.3 Derivation of ie, 0 during steady state

As previously mentioned in the subsection 2.5.1, the total energy amount in the MMC remains
constant in the steady state. In other words, the power is completely transferred from the DC
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side to the AC side as effective power (except for the power dissipated at the corresponding
resistors).

Ẇ
(ss)
Σ, 0 = 0 =

d

dt

[

W
(ss)
Σ, 0

︷ ︸︸ ︷

W
(ss)
p,1 +W

(ss)
n, 1 +W

(ss)
p, 2 +W

(ss)
n, 2 +W

(ss)
p, 3 +W

(ss)
n, 3

6

]

=
1

2

(

u
(ss)
Σ, α i

(ss)
e, α + u

(ss)
Σ, β i

(ss)
e, β

)

+ u
(ss)
Σ, 0 i

(ss)
e, 0 +

1

8

(

u
(ss)
∆, α i

(ss)
g, α + u

(ss)
∆, β i

(ss)
g, β

)

= −
[
Re

2

(

î(ss)e

)2
+R′di

2
e, 0 +

R′g
8

(

î(ss)g

)2
]

+
u
(ss)
Cr

2
i
(ss)
e, 0 − 1

4
û(ss)g î(ss)g cosϕi, g . (2.67)

As u
(ss)
Cr on the DC side as well as

{

û(ss)g , î(ss)g , ϕi,g

}

on the AC side are given, along with

î
(ss)
e = 0, this leads to the following quadratic equation in i

(ss)
e, 0

(

i
(ss)
e, 0

)2
− u

(ss)
Cr

2R′d
i
(ss)
e, 0 +

[

û
(ss)
g î

(ss)
g cosϕi, g

4R′d
+

Re

2R′d

(

î(ss)e

)2
+

R′g
8R′d

(

î(ss)g

)2
]

= 0 , (2.68)

i
(ss)
e, 0 =

u
(ss)
Cr

4R′d
−

√
√
√
√

(

u
(ss)
Cr

4R′d

)2

−
(

û
(ss)
g î

(ss)
g ϕi, g

4R′d
+

Re

2R′d

(

î
(ss)
e

)2
+

R′g
8R′d

(

î
(ss)
g

)2
)

(2.69)

Among the two solutions for i
(ss)
e, 0 , the solution with the least magnitude is chosen over the

larger one, as the larger one would result in more losses at the resistors

2.5.1.4 Derivation of arm current, arm voltage and arm energy components dur-
ing steady state: ij , uj andWj with j = {p1, p2, p3, n1, n2, n3} ≡ {1, 2, 3, 4, 5, 6}

As for now, the current and voltage components at the 6 MMC arms in the steady state are
made up of terms up to the second and third harmonics, respectively. In order to determine
the 6 arm energies during the steady state, the product of the corresponding arm currents
and arm voltages need to be integrated. Hence, these can be expressed as a superposition of
oscillating terms together with an offset as follows:

i
(ss)
j = a0 + a1 sin (ωgt+ ϕ1, j) + a2 sin (2ωgt+ ϕ2, j) ,

u
(ss)
j = ã0 + ã1 sin (ωgt+ ϕ̃1, j) + ã2 sin (2ωgt+ ϕ̃2, j) + ã3 sin (3ωgt+ ϕ̃3, j) ,

(2.70)
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where the arm index is denoted by j = {p1, p2, p3, n1, n2, n3} ≡ {1, 2, 3, 4, 5, 6}, together
with the following auxiliaries

a0 =
i
(ss)
d

3
≡ i

(ss)
e, 0 ,

a1 =
1

2
î(ss)g ,

a2 = î(ss)e ,

ã0 =
u
(ss)
Cr

2
− R′

d

3
i
(ss)
d ≡ u

(ss)
Cr

2
−R′

di
(ss)
e, 0 ,

ã1 = −1

2

[(

2û(ss)
g

)2

+
(

î(ss)g

)2 (

R′

g
2
+
(
ωgL

′

g

)2
)

+ 4û(ss)
g î(ss)g

(
R′

g cosϕi, g − ωgL
′

g sinϕi, g

)
]1/2

,

ã2 = −î(ss)e

√

R2
e + (2ωgLe)

2 ,

ã3 = −û
(ss)
0 ,











ϕ1, p1

ϕ1, p2

ϕ1, p3

ϕ1, n1

ϕ1, n2

ϕ1, n3











= ϕi, g +











0
− 2π

3
+ 2π

3
π
π
3
5π
3











,











ϕ2, p1

ϕ2, p2

ϕ2, p3

ϕ2, n1

ϕ2, n2

ϕ2, n3











= ϕi, e +











0
+ 2π

3
− 2π

3
0

+ 2π
3

− 2π
3











,











ϕ̃1, p1

ϕ̃1, p2

ϕ̃1, p3

ϕ̃1, n1

ϕ̃1, n2

ϕ̃1, n3











= arctan

(

î
(ss)
g

(
R′

g sinϕi, g + ωgL
′

g cosϕi, g

)

2û
(ss)
g + î

(ss)
g

(
R′

g cosϕi, g − ωgL′

g sinϕi, g

)

)

︸ ︷︷ ︸

= ϕi, g + arctan

(

−2û
(ss)
g sinϕi, g + î

(ss)
g ωgL

′

g

2û
(ss)
g cosϕi, g + î

(ss)
g R′

g

)

+











0
− 2π

3
+ 2π

3
π
π
3
5π
3











,











ϕ̃2, p1

ϕ̃2, p2

ϕ̃2, p3

ϕ̃2, n1

ϕ̃2, n2

ϕ̃2, n3











= ϕi, e + arctan

(
2ωgLe

Re

)

+











0
+ 2π

3
− 2π

3
0

+ 2π
3

− 2π
3











,











ϕ̃3, p1

ϕ̃3, p2

ϕ̃3, p3

ϕ̃3, n1

ϕ̃3, n2

ϕ̃3, n3











= ϕu, 0 +











0
0
0
π
π
π











.
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Therefore, the power at each of the 6 MMC arms, Ẇj = uj ij , can now be integrated to deter-
mine the energy stored in each arm at steady state.

W
(ss)
j = Cj +

[

a0ã0 +
a1ã1 cos (ϕ̃1, j − ϕ1, j) + a2ã2 cos (ϕ̃2, j − ϕ2, j)

2

]

t

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

−
ã1a0

ωg
cos (ωgt+ ϕ̃1, j)−

a1ã0

ωg
cos (ωgt+ ϕ1, j)

+
ã2a1

2ωg
sin (ωgt+ ϕ̃2, j − ϕ1, j) +

a2ã1

2ωg
sin (ωgt+ ϕ2, j − ϕ̃1, j) +

ã3a2

2ωg
sin (ωgt+ ϕ̃3, j − ϕ2, j)

−
ã2a0

2ωg
cos (2ωgt+ ϕ̃2, j)−

a2ã0

2ωg
cos (2ωgt+ ϕ2, j)

−
ã1a1

4ωg
sin (2ωgt+ ϕ̃1, j + ϕ1, j) +

ã3a1

4ωg
sin (2ωgt+ ϕ̃3, j − ϕ1, j)

−
ã3a0

3ωg
cos (3ωgt+ ϕ̃3, j)−

ã2a1

6ωg
sin (3ωgt+ ϕ̃2, j + ϕ1, j)−

a2ã1

6ωg
sin (3ωgt+ ϕ2, j + ϕ̃1, j)

−
ã3a1

8ωg
sin (4ωgt+ ϕ̃3, j + ϕ1, j)−

ã2a2

8ωg
sin (4ωgt+ ϕ̃2, j + ϕ2, j)

−
ã3a2

10ωg
sin (5ωgt+ ϕ̃3, j + ϕ2, j) ,

(2.71)

where Cj represents the corresponding integration constant. The value of Cj is derived from
the condition that the average value of the arm energy over a full AC period is a constant,

regardless of the arm, with Cm =
CSM

NSM
(CSM is the capacitance within each single submodule

and NSM is the number of submodules in each arm).

W̄j =
ωg

2π

∫ t=2π/ωg

t=0
W

(ss)
j (t) dt ∀j = 1, . . . , 6

=
Cm

2

averaging over one period
︷ ︸︸ ︷

ωg

2π

∫ 2π/ωAC

0
u
(ss)
C,j

2
(t) dt ≡ Cm

2

(

vC u
(ss)
Cr

)2
, (2.72)

=⇒ Cj =
Cm

2

(

vC u
(ss)
Cr

)2
∀j = 1, . . . , 6 , (2.73)

The average value should be slightly higher than
(

u
(ss)
Cr

)2
so that during an AC period, the

respective arm capacitor is not completely discharged. This reserve is specified by means of a
factor vC > 1, typically between 1.1 and 1.4. It is worth noting that the wavy term in (2.71)
vanishes due to the steady state condition (2.68).

Before examining the steady state in the island bus subsystem, it is worth recalling the
following points, which are required for deriving the steady state in the MMC:

• externally given variable: ug, α/β ;

• freely chosen variables: d
dtWeff , ϕi, g, îe, ϕi, e, vC , û0;

• derived variables: ip/n, j , up/n, j , and, Wp/n, j where j=1,2,3.

2.5.2 Analytical derivation of steady state in island bus subsystem

Recall that the variables in the first 8 equations of motion in (2.51) are formulated as d/q

components, along with externally given generator current vector ~iw =

(
iw, d

iw, q

)

. It is worth
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mentioning that from now on, the d and q component can also be compactly written together

as a 2 component vector, ~v =

(
vd
vq

)

. Thus, in the steady state, where the time derivatives from

this set of 8 equations are set to zero, the following equations can be deduced,

du
(ss)
Cs

dt
= 0 = − 3

2Cs

(

s
(ss)
s, d s

(ss)
s, q

)
(

i
(ss)
st, d

i
(ss)
st, q

)

, (2.74)

d

dt

(

i
(ss)
st, d

i
(ss)
st, q

)

= ~0 =

(

−Rst

Lst
+ ω0

(
0 1
−1 0

))(

i
(ss)
st, d

i
(ss)
st, q

)

+
1

Lst

(

u
(ss)
Cs

(

s
(ss)
s, d

s
(ss)
s, q

)

−
(

u
(ss)
ib, d

u
(ss)
ib, q

))

,

(2.75)

d

dt

(

u
(ss)
ib, d

u
(ss)
ib, q

)

= ~0 =

(

− 1

RfCf
+ ω0

(
0 1
−1 0

))(

u
(ss)
ib, d

u
(ss)
ib, q

)

+
1

Cf

((
iw, d

iw, q

)

+

(

i
(ss)
st, d

i
(ss)
st, q

)

−
(

i
(ss)
rc, d

i
(ss)
rc, q

))

,

(2.76)

d

dt

(

i
(ss)
rc, d

i
(ss)
rc, q

)

= ~0 =

(

−Rrc

Lrc
+ ω0

(
0 1
−1 0

))(

i
(ss)
rc, d

i
(ss)
rc, q

)

+
1

Lrc

((

u
(ss)
ib, d

u
(ss)
ib, q

)

− u
(ss)
Cr

(

s
(ss)
rc, d

s
(ss)
rc, q

))

,

(2.77)

du
(ss)
Cr

dt
= 0 =

1

Cr

(

3

2

(

s
(ss)
rc, d s

(ss)
rc, q

)
(

i
(ss)
rc, d

i
(ss)
rc, q

)

− 3i
(ss)
e, 0

)

. (2.78)

As can be seen in the previous equation, there are a total of 8 equations of motion that
can be used to determine the 8 state components and the 4 input components for the island
bus subsystem, assuming that the generator current is externally given. Thus, 4 of the 8 state
components can be freely chosen for the steady state calculation and these are summarized in
Table 2.6.

Externally given variable Freely chosen variables Variables to be determined
iw, d/q uCs, ϕu, ib, ϕi, rc, uCr ûib, îrc, ist, d/q, ss, d/q, src, d/q

Table 2.6: Externally given variable, freely chosen variables and variables to be
determined for the steady state calculation in the island bus

• The amplitude of the current entering the rectifier in steady state î
(ss)
rc (marked by a

vertical arrow) is determined by a series of steps as follows:

From the equations of motion for uCs in steady state (2.74)

0 =
(

s
(ss)
s, d i

(ss)
st, d + s(ss)s, q i

(ss)
st, q

)

, (2.79)

and scalar multiplying ~iTst with the equations of motion for ist, d/q in steady state (2.75),
following algebraic equation results

~iTst·
d

dt

(

Lst
~ist

)
(ss)
= 0 = −

negligible
︷ ︸︸ ︷

Rst

(

î
(ss)
st

)2
+uCs

= 0 , from (2.79)
︷ ︸︸ ︷
(

s
(ss)
s, d i

(ss)
st, d + s(ss)s, q i

(ss)
st, q

)

−
(

u
(ss)
ib, d i

(ss)
st, d + u

(ss)
ib, q i

(ss)
st, q

)

.
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(2.80)

From the previous equation, it can be deduced that the following relation for steady state
(

u
(ss)
ib, d i

(ss)
st, d + u

(ss)
ib, q i

(ss)
st, q

)

= 0 (2.81)

holds true and describes that no effective power is being injected by the STATCOM into
the wind generators (only reactive power is provided by the STATCOM). On the other
hand, multiplying uCr with the equations of motion for uCr in steady state (2.78), results

uCr
d

dt
(Cr uCr)

(ss)
= 0 = u

(ss)
Cr

(

s
(ss)
rc, d i

(ss)
rc, d + s(ss)rc, q i

(ss)
rc, q

)

− 2u
(ss)
Cr i

(ss)
e, 0 . (2.82)

Equation (2.81) and (2.82), combined with the scalar multiplication of ~uTib and ~iTrc with
the equations of motion for uib, d/q as well as irc, d/q in steady state, (2.76) and (2.77)
respectively, yields

~uT
ib ·

d

dt
(Cf~uib)

(ss)
= 0 = − 1

Rf

(

û
(ss)
ib

)2

+

û
(ss)
ib îw cos (ϕiw − ϕuib

)
︷ ︸︸ ︷
(

u
(ss)
ib, d iw, d + u

(ss)
ib, q iw, q

)

+

= 0 , from (2.81)
︷ ︸︸ ︷
(

u
(ss)
ib, d i

(ss)
st, d + u

(ss)
ib, q i

(ss)
st, q

)

−
(

u
(ss)
ib, d i

(ss)
rc, d + u

(ss)
ib, q i

(ss)
rc, q

)

︸ ︷︷ ︸

û
(ss)
ib

⇓
î(ss)rc cos (ϕirc − ϕuib

)

⇒ û
(ss)
ib = Rf



îw cos (ϕi, w − ϕu, ib)−
⇓

î(ss)rc cos (ϕi, rc − ϕu, ib)





(2.83)

~iTrc ·
d

dt

(

Lrc
~irc

)
(ss)
= 0 = −Rrc

⇓
(

î(ss)rc

)2

−2u
(ss)
Cr i

(ss)
e, 0 +

(

u
(ss)
ib, d i

(ss)
rc, d + u

(ss)
ib, q i

(ss)
rc, q

)

= −Rrc

⇓
(

î(ss)rc

)2

−2u
(ss)
Cr i

(ss)
e, 0

+
⇓

î(ss)rc cos (ϕi,rc − ϕu,ib)

= û
(ss)
ib

︷ ︸︸ ︷


Rf



îw cos (ϕi,w − ϕu,ib)−
⇓

î(ss)rc cos (ϕi,rc − ϕu,ib)









(2.84)

This leads to the following quadratic equation for î(ss)rc

0 =

⇓
(

î(ss)rc

)2(
Rrc +Rf cos

2 (ϕi, rc − ϕu, ib)
)

−
⇓

î(ss)rc

(

Rf îw cos (ϕi, w − ϕu, ib) cos (ϕi, rc − ϕu, ib)
)

+ 2u
(ss)
Cr i

(ss)
e, 0 , (2.85)
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and therefore, the resulting î
(ss)
rc reads

î
(ss)
rc =

Rf îw cos (ϕi, w − ϕu, ib) cos (ϕi, rc − ϕu, ib)

2
(

Rrc +Rf cos2 (ϕi, rc − ϕu, ib)
)

±

√
√
√
√
√




Rf îw cos (ϕi, w − ϕu, ib) cos (ϕi, rc − ϕu, ib)

2
(

Rrc +Rf cos2 (ϕi, rc − ϕu, ib)
)





2

−
2u

(ss)
Cr i

(ss)
e, 0

(

Rrc +Rf cos2 (ϕi, rc − ϕu, ib)
) .

(2.86)

The resulting î
(ss)
rc corresponds to the larger (“+”) solution of (2.86), since the other

solution (“-”) would be incapable of supplying sufficient effective power to the rectifier
(particularly if Rrc → 0 and Rf → ∞).

• Once î
(ss)
rc has been calculated, the amplitude of the island bus voltage in steady state

û
(ss)
ib is given by the equation in (2.83)

• The corresponding input s
(ss)
rc, d/q is derived from the equations of motion for uCr, along

with the equations of motion for irc, q in steady state, (2.78) and the second component
of (2.77) respectively:

0 =
(

s
(ss)
rc, d i

(ss)
rc, d + s(ss)rc, q i

(ss)
rc, q

)

− 2i
(ss)
e, 0 , (2.87)

0 = −Rrc i
(ss)
rc, q − ω0Lrc i

(ss)
rc, d + u

(ss)
ib, q − u

(ss)
Cr s(ss)rc, q . (2.88)

Hence, the resulting s
(ss)
rc, d/q are as follows

s(ss)rc, q =
u
(ss)
ib, q −Rrc i

(ss)
rc, q − ω0Lrc i

(ss)
rc, d

u
(ss)
Cr

,

s
(ss)
rc, d =

2i
(ss)
e, 0

i
(ss)
rc, d

− i
(ss)
rc, q

i
(ss)
rc, d

u
(ss)
ib, q −Rrc i

(ss)
rc, q − ω0Lrc i

(ss)
rc, d

u
(ss)
Cr

. (2.89)

• The current issuing from the STATCOM is determined by combining the equation of mo-
tion for uib, q in steady state ( second component in (2.76) ), together with the previously

derived relation
(

u
(ss)
ib, d i

(ss)
st, d + u

(ss)
ib, q i

(ss)
st, q

)

= 0:

i
(ss)
st, q = −iw, q + i(ss)rc, q +

1

Rf
u
(ss)
ib, q + ω0Cf u

(ss)
ib, d ,

i
(ss)
st, d = −

u
(ss)
ib, q

u
(ss)
ib, d

(

−iw, q + i(ss)rc, q +
1

Rf
u
(ss)
ib, q + ω0Cf u

(ss)
ib, d

)

. (2.90)

• Finally, the corresponding input s(ss)s, d/q follows from the equations of motion for ist, d/q in
steady state (2.75), leading to

(

s
(ss)
s, d

s
(ss)
s, q

)

=
1

u
(ss)
Cs

[(

u
(ss)
ib, d

u
(ss)
ib, q

)

+

(

Rst − ω0Lst

(
0 1
−1 0

))(

i
(ss)
st, d

i
(ss)
st, q

)]

. (2.91)
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2.5.3 Summary of the full steady state

As shown in equation (2.51), there are a total of 19 equations of motion that can be used to
determine the 19 state components, along with the 10 input components, provided that the
generator current and AC grid voltage are externally given. As a result, 10 of the 19 state
components can be freely chosen for the steady state calculation; these are 4 for the island
bus subsystem (since 4 are also the number of input variables driving such subsystem) and 6
for the DC link-MMC subsystem (since 6 are also the number of input variables driving such
subsystem)







uCs, uCr, ϕu, ib, ϕi, rc
︸ ︷︷ ︸

island bus

... Ẇeff , ϕi, g, îe, ϕi, e, vC , û0
︸ ︷︷ ︸

AC grid + MMC







The following are some brief explanations of those freely chosen state components:

• The total effetive power into the AC grid is defined as

Ẇ
(ss)
eff =

3

2
û(ss)g î(ss)g cosϕi, g . (2.92)

For externally given amplitude of AC grid voltage ûg, together with some chosen phase
ϕi, g in the AC grid current, the amplitude of AC grid current can be obtained as follows

î(ss)g =
2

3

Ẇ
(ss)
eff

û
(ss)
g cosϕi, g

. (2.93)

Therefore,the AC grid current components are fully defined.

• The 2 voltages u(ss)Cs at the STATCOM as well as u(ss)Cr at the rectifier.

• The 4 phases of the island bus voltage, the current into the rectifier, the AC grid current

and the circular current : ϕu, ib = arctan




u
(ss)
ib, q

u
(ss)
ib, d



, ϕi, rc = arctan




i
(ss)
rc, q

i
(ss)
rc, d



, ϕi, g = arctan




i
(ss)
g, q

i
(ss)
g, d



,

& ϕi, e.

• For the steady state, the amplitude of the circular current, î(ss)e and the amplitude of the
common-mode voltage, û(ss)0 , may be any value. In this thesis, î(ss)e = 0 = û

(ss)
0 was used

, however this is not necessary.

• The constant energy stored in the MMC W
(ss)
Σ, 0 (up to a factor 1/6), characterized by the

so called reserve factor vC : W
(ss)
Σ, 0 = NSM

CSM

2







(

vC u
(ss)
Cr

)

NSM







2

with NSM and CSM the

number of submodules in each arm and the submodule capacitance, respectively.

For the steady state, the remaining 9 state components as well as the corresponding 10 input
components can be calculated in two main steps:

a) analytical derivation of steady state in MMC, and

b) analytical derivation of steady state in island bus.
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Chapter 3

Trajectory design for fast transition
between two steady states

As already discussed in the previous chapter, the full system being considered consists of many
state variables coupled to each other. Hence, when driving the system from some initial state
to some desired final steady state, there exists the risk of inducing some undesired transient at
the final state. Therefore, a careful trajectory design is the first step for later developing the
corresponding input to achieve a smooth transition to a new steady state without producing
any transient and, if possible, in a short time interval.

Thus, in this chapter, a general method is developed for designing a fast trajectory in some
of the degrees of freedom of the full system. For this purpose, only variables that have less
contribution or affect less the power flow will be taken into account. The transition from the
initial steady state (ss1) to the final steady state (ss2) should happen in a short time interval
Ts (in the order or below one period of the AC grid) without exciting additional transients
after reaching the new state. Difficulty arises, however, when an attempt is made to design
the trajectory. The main issue is using a very limited number of variables to design the tra-
jectory of all system variables and, simultaneously satisfy all equations of motion. Since the
number of variables to be designed is usually less than the number of equations of motion
to be fulfilled, additional free parameters must be introduced into these few design variables.
These are “hump” functions of short duration (which will be discussed in more detail later),
whose still undetermined amplitudes will be later adjusted to satisfy the corresponding equa-
tions of motion. Since these “hump” functions, used as base functions, are at this stage free,
additional conditions can be later imposed to simplify the equation for the unknown ampli-
tudes, in particular the energy equations containing some nonlinear contributions in the hump
amplitudes.

As already mentioned at the very beginning of this chapter, the trajectory design for the
state variables of the full system is complicated because the state variables in the full system
are strongly coupled to each other. To simplify the solution, the full system is divided into two
subsystems:

i Front subsystem(“island bus”) : STATCOM + island bus + conventional rectifier

ii End subsystem(“MMC”) : HVDC link + MMC inverter + AC grid

Despite of the strong coupling of the full system, both subsystems can be treated separately
from each other as it will be shown later. Because of the complexity of the MMC subsystem,
it will be discussed first, later it will be combined with the island bus subsystem.

43
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3.1 Central idea for the trajectory design

As already seen in the previous chapter, the full system is described by 19 state variables
~x19d =

(
uCs ist, d/q uib, d/q irc, d/q uCr ie, 0 Wj=1,...,6 ie, α/β ig, α/β

)T and driven by 10

input variables ~u19d =
(
ss, d/q src, d/q uΣ/∆, 0/α/β

)T for some externally given current at the
wind generators ~iw and voltage at the final AC grid ~ug. Most of the equations of motion for
the state variables contain nonlinear terms, arising from the capacitances of the three converter
systems (STATCOM, conventional rectifier, MMC) as a product of some state variable with
some input variable

duCs

dt
= − 3

2Cs

(
ss, d ss, q

)
(
ist, d
ist, q

)

d

dt

(
ist, d
ist, q

)

=

(

−Rst

Lst
+ ω0

(
0 1
−1 0

))(
ist, d
ist, q

)

+
1

Lst

(

uCs

(
ss, d
ss, q

)

−
(
uib, d

uib, q

))

d

dt

(
uib, d

uib, q

)

=

(

− 1

RfCf
+ ω0

(
0 1
−1 0

))(
uib, d

uib, q

)

+
1

Cf

((
iw, d

iw, q

)

+

(
ist, d
ist, q

)

−
(
irc, d
irc, q

))







STATCOM+
generator

d

dt

(
irc, d
irc, q

)

=

(

−Rrc

Lrc
+ ω0

(
0 1
−1 0

))(
irc, d
irc, q

)

+
1

Lrc

((
uib, d

uib, q

)

− uCr

(
src, d
src, q

))

duCr

dt
=

1

Cr

(
3

2

(
src, d src, q

)
(
irc, d
irc, q

)

− 3ie, 0

)

die, 0
dt

= −R′

d

L′

d

ie, 0 −
1

L′

d

(

uΣ, 0 −
uCr

2

)

, ie, 0 =
id
3







conventional rectifier+
HVDC transmission line

dWj

dt
= uj ij , j = p1, p2, p3, n1, n2, n3 ≡ 1, . . . , 6

d

dt

(
ie, α
ie, β

)

= −Re

Le

(
ie, α
ie, β

)

− 1

Le

(
uΣ, α

uΣ, β

)

d

dt

(
ig, α
ig, β

)

= −
R′

g

L′

g

(
ig, α
ig, β

)

− 1

L′

g

((
u∆, α

u∆, β

)

+ 2

(
ug, α

ug, β

))







MMC inverter+AC grid

(3.1)

It is worth mentioning that instead of considering uCs and uCr separately, an equivalent
formulation for the two degrees of freedom can be written when considering the energy of the
two halves of the island bus subsystem, each half containing either the converter described
by uCs or the converter described by uCr ( Wst+ib and Wrc respectively ). The equations of
motion of these two energy components can be derived from (3.1).

dWst+ib

dt
=

3

2

[

(uib, diw, d + uib, qiw, q)− (uib, dirc, d + uib, qirc, q)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

]

− 3

2

1

Rf

(
u2ib, d + u2ib, q

)
,

dWrc

dt
=

3

2
(uib, dirc, d + uib, qirc, q)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

− 3uCrie, 0 −
3

2
Rrc

(
i2rc, d + i2rc, q

)
. (3.2)

On the other hand, the six equations of motion for the arm energies Wj in the subsystem
“MMC+AC grid” can also be written in Σ/∆ components:

ẆΣ, 0 =
d

dt

[

WΣ, 0
︷ ︸︸ ︷

Wp, 1 +Wn, 1 +Wp, 2 +Wn, 2 +Wp, 3 +Wn, 3

6

]

=
1

2
(uΣ, α ie, α + uΣ, β ie, β) + uΣ, 0 ie, 0 +

1

8
(u∆, α ig, α + u∆, β ig, β)

= − d

dt

[
Le

4

(
i2e, α + i2e, β

)
+

L′

d

2
i2e, 0 +

L′

g

16

(
i2g, α + i2g, β

)
]
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−
[

Re

2

(
i2e, α + i2e, β

)
+R′

di
2
e, 0 +

R′

g

8

(
i2g, α + i2g, β

)

]

+
uCr

2
ie, 0 −

1

4
(ug, α ig, α + ug, β ig, β) ,

ẆΣ, α =
d

dt

[

WΣ, α
︷ ︸︸ ︷
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6

]

=
1

2
(uΣ, α ie, α − uΣ, β ie, β) + (uΣ, 0 ie, α + uΣ, α ie, 0) +

1

8
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1

4
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4

(
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)
+ Leie, 0ie, α +
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2
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4
(ug, α ig, α − ug, β ig, β) +
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2
√
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]
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2
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−3Ld

2

die, 0
dt

ie, β +
uCr

2
ie, β +

1

4
(ug, α ig, β + ug, β ig, α) +

u∆, 0

4
ig, β ,

(3.3)

Ẇ∆, 0 =
d

dt

[

W∆, 0
︷ ︸︸ ︷

Wp, 1 −Wn, 1 +Wp, 2 −Wn, 2 +Wp, 3 −Wn, 3

3

]

=
1

2
(uΣ, α ig, α + uΣ, β ig, β) +

1

2
(u∆, α ie, α + u∆, β ie, β) + u∆, 0 ie, 0

= − d

dt

[
Le

2
(ie, αig, α + ie, βig, β)

]

−
[
R′

g +Re

2
(ie, αig, α + ie, βig, β)

]

−Lg

(
dig, α
dt

ie, α +
dig, β
dt

ie, β

)

− (ug, α ie, α + ug, β ie, β) + u∆, 0 ie, 0 ,

Ẇ∆, α =
d

dt

[

W∆, α
︷ ︸︸ ︷

2Wp, 1 − 2Wn, 1 −Wp, 2 +Wn, 2 −Wp, 3 +Wn, 3

3

]

=
1

2
(uΣ, α ig, α − uΣ, β ig, β) + (uΣ, 0 ig, α + u∆, α ie, 0) +

1

2
(u∆, α ie, α − u∆, β ie, β) + u∆, 0 ie, α
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= − d

dt

[
Le

2
(ie, αig, α − ie, βig, β) + Leie, 0ig, α

]

−
[
R′

g +Re

2
(ie, αig, α − ie, βig, β) +

(
R′

d +R′

g

)
ie, 0ig, α

]

−3Ld

2

die, 0
dt

ig, α − Lg

(
dig, α
dt

ie, α − dig, β
dt

ie, β

)

− 2Lg
dig, α
dt

ie, 0

+
uCr

2
ig, α − (ug, α ie, α − ug, β ie, β)− 2ug,α ie, 0 + u∆, 0 ie, α

✿✿✿✿✿✿✿

,

Ẇ∆, β =
d

dt

[

W∆, β
︷ ︸︸ ︷

Wp, 2 −Wn, 2 −Wp, 3 +Wn, 3√
3

]

= −1

2
(uΣ, α ig, β + uΣ, β ig, α) + (uΣ, 0 ig, β + u∆, β ie, 0)−

1

2
(u∆, α ie, β + u∆, β ie, α) + u∆, 0 ie, β

= − d

dt

[

−Le

2
(ie, αig, β + ie, βig, α) + Leie, 0ig, β

]

−
[

−
R′

g +Re

2
(ie, αig, β + ie, βig, α) +

(
R′

d +R′

g

)
ie, 0ig, β

]

−3Ld

2

die, 0
dt

ig, β + Lg

(
dig, α
dt

ie, β +
dig, β
dt

ie, α

)

− 2Lg
dig, β
dt

ie, 0

+
uCr

2
ig, β + (ug, α ie, β + ug, β ie, α)− 2ug, β ie, 0 + u∆, 0 ie, β

✿✿✿✿✿✿✿

. (3.4)

The main function of the full system is to transfer power from the wind generator to the AC
grid, such that some of the state variables are more involved and thus more constrained than
others. Since the power flow across the system is mainly determined by the d components of
uib and irc within the island bus, the ie, 0 current as well as the uCr voltage in the DC link and
the d component of ig in the AC grid, these latter variables cannot be changed too strongly
during the transition and other state variables should take over and carry the main burden of
the transition. In order to better discuss how to deal with such difficulties, let us first consider
the dynamics of the 6 energy components in MMC, just focusing only on the most important
contributions and neglecting, for now, all terms proportional to inductances and resistances
which are not so relevant when compared with the energy stored into the capacitances within
the MMC submodules

ẆΣ, 0 ≈+
uCr

2
ie, 0 −

1

4
(ug, α ig, α + ug, β ig, β) ,

ẆΣ, α ≈+
uCr

2
ie, α − 1

4
(ug, α ig, α − ug, β ig, β) +

u∆, 0

4
ig, α ,

ẆΣ, β ≈+
uCr

2
ie, β +

1

4
(ug, α ig, β + ug, β ig, α) +

u∆, 0

4
ig, β ,

Ẇ∆, 0 ≈− (ug, α ie, α + ug, β ie, β) + u∆, 0 ie, 0 ,

Ẇ∆, α ≈+
uCr

2
ig, α − (ug, α ie, α − ug, β ie, β)− 2ug, α ie, 0 + u∆, 0 ie, α ,

Ẇ∆, β ≈+
uCr

2
ig, β + (ug, α ie, β + ug, β ie, α)− 2ug, β ie, 0 + u∆, 0 ie, β . (3.5)

From these simplified equations, two important facts can be extracted:

1. The dynamics of the five internal energy components WΣ, α/β and W∆, α/β/0 are strongly
influenced by the three internal MMC degrees of freedom, namely the two internal circular
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components ie, α/β and the single common-mode voltage u∆, 0 (actually the common-mode
voltage corresponds to u0 = −1/2u∆, 0 but for the following discussion also u∆, 0 will be
referred to as common-mode voltage); therefore such three internal MMC degrees of
freedom are good candidates to be used for the trajectory design.

2. The dynamics of the total energy (corresponding to 6WΣ, 0) remains uninfluenced by any
of the three internal MMC degrees of freedom, being determined by the current and
voltage of the DC link as well as by the current and voltage at the AC grid; thus, only
the product uCr ie, 0 from the DC link is also a useful design variable since the current
and voltage at the AC grid are externally fixed by some strict requirements (power level,
operating voltage) and can not be modified.

Nevertheless, this approach immediately shows a difficulty: in order to drive the five MMC
internal energy components from one steady state to another one, only three design variables
(instead of five) are to be used. Moreover, the equations of motion for two of the internal
energies, W∆, α/β , are nonlinear in such design variables ( terms marked by a wavy line in
(3.4) ). The solution for both problems follows the approach in [16] by noticing that the
energy change results from the integration during the transition interval of the trajectory of
such design variables, ie, α/β and u∆, 0. Since time integration allows to include oscillation of
different frequencies in the design variables being integrated without having any influence in
the integral itself. Following this idea, let us distribute among the three design variables five
contributions which are only active during the transition (thus the name “hump") and whose
amplitudes are adjusted in such manner to satisfy the desired change in the five internal energy
components after the transition. Furthermore, these hump contributions are expanded as a
superposition of base functions that are orthogonal to each other (when integrated during the
transition interval) such that the nonlinear terms in the equations of motion for W∆, α/β yield
exactly no contribution to the energy change.

Inspired by the previous discussion on the MMC internal energy components, the two
energy components in the island bus subsystem as defined in (3.2) can be simplified when
focusing only on the most relevant terms (neglecting contributions proportional to inductances
and resistances)

dWst+ib

dt
≈3

2
[(uib, diw, d + uib, qiw, q)− (uib, dirc, d + uib, qirc, q)] ,

dWrc

dt
≈3

2
(uib, dirc, d + uib, qirc, q)− 3uCr ie, 0 . (3.6)

For some externally given generator current iw, d/q and a previously determined product uCr ie, 0,
the simplified dynamics of these two energy components are clearly controlled by uib, d/q and
irc, d/q . Since these four variables, uib, d/q and irc, d/q, are internal variables to the island bus
subsystem, all these can be used as design variables. In principle, one only needs two hump
contributions with their corresponding amplitudes for satisfying the change in the energy com-
ponents Wst+ib and Wrc. For that reason, one could try designing only irc, d/q: nevertheless
the coupling of uib, d/q and irc, d/q is not so strong to these energies and therefore, also a strong
change in irc, d would be required, making the trajectory dynamics too wild for adjusting an
eventually large desired energy change. Hence, instead of only two hump contributions dis-
tributed into two of the four variables uib, d/q and irc, d/q , a higher number of hump contributions
will be used and distributed among all four variables, allowing for additional constraints such
as the minimization of the hump amplitudes.

The implementation of this approach will now be considered in more mathematical detail
in the following section.
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3.2 Solution of the trajectory design for the full dynamics

Following the discussion of the design variables in the previous section, this section aims to
develop a method for designing a fast trajectory for the full system during a short transition
time interval. As a first step, the design variables chosen in the discussion of the previous
section are written as a superposition of two main contributions during the short transition
interval:

i symmetric smooth function between the two steady states (ss1) and (ss2)
This function starts and ends flat, so that no contribution to the time derivative is
produced at either end of the transition;

ii “hump” function
By implementing only the smooth function, some of the equations of motion might not
be satisfied. Therefore an additional contribution is introduced where it has a number of
bumps during the transition interval (but vanishing at both ends of such interval). These
functions will be called as “hump” functions and satisfy some additional “orthogonality”
condition to simplify some of the equations describing the change in energy during the
transition. The amplitudes of these additional bump contributions are calculated in such
a way to satisfy all equations of motion. This concept is represented schematically in
Figure 3.1.

hump

0
t

0
+T

s

initial i (ss1)
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Figure 3.1: Superposition of smooth and hump function

The advantage of this approach is that it avoids the problem of nonlinearities, which emerge
from the product of two different design variables, making the trajectory design simple and
fast. Formulated in a more mathematical way, let us consider the following situations.

Beginning at t0 and during a short interval of duration Ts, a trajectory for state variable
z(t) is to be designed with the constraints:

z(t = t0) = z(ss1)(t = t0) , z(t = t0 + Ts) = z(ss2)(t = t0 + Ts) ,

ż(t = t0) = ż(ss1)(t = t0) , ż(t = t0 + Ts) = ż(ss2)(t = t0 + Ts) ,

z̈(t = t0) = z̈(ss1)(t = t0) , z̈(t = t0 + Ts) = z̈(ss2)(t = t0 + Ts) .

(3.7)

Now the trajectory design as already mentioned, is composed of two contributions z(t) =
z(g)(t) + z(hump)(t) for t0 ≤ t ≤ t0 + Ts, where the first part z(g)(t) (also called smooth ground
contribution) already satisfy the just introduced constraints at t0 and t0 +Ts while the second
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part z(hump)(t) (called hump contribution) vanish (and its time derivatives vanish too) at both
ends of the transition interval although during such interval display a relative large oscillation.
Both contributions will be discussed in detail in the following two subsections.

3.2.1 Smooth base function
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Figure 3.2: Smooth function

The smooth function selected to connect two steady states during the transition interval
t0 ≤ t ≤ t0 + Ts as illustrated in Figure 3.2 is defined:

s̃(t) =
1

2

(

1− 9

8
cos

(
π(t− t0)

Ts

)

+
1

8
cos

(
3π(t− t0)

Ts

))

(3.8)

This smooth function has the following properties

s̃(t = t0) = 0 , s̃(t = t0 + Ts) = 1 ,
ds̃

dt
t=t0

=
d2s̃

dt2
t=t0

= 0 ,
ds̃

dt
t=t0+Ts

=
d2s̃

dt2
t=t0+Ts

= 0 ,
(3.9)

Function s̃ is flat at both ends of the transition interval, hence its derivatives ds̃
dt and d2s̃

dt2

generate no contribution.
A smooth transition (denoted with (g)) for any variable z and its derivatives is described
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by the following equations

z(g) = z(ss1)(t) (1− s̃(t)) + z(ss2)(t) s̃(t) ,

ż(g) =
(

z(ss2)(t)− z(ss1)(t)
)

˙̃s(t) +
(

ż(ss2)(t)− ż(ss1)(t)
)

s̃(t) + ż(ss1)(t) ,

z̈(g) =
(

z(ss2)(t)− z(ss1)(t)
)

¨̃s(t) + 2
(

ż(ss2)(t)− ż(ss1)(t)
)

˙̃s(t)

+
(

z̈(ss2)(t)− z̈(ss1)(t)
)

s̃(t) + z̈(ss1)(t) , (3.10)

where the above mentioned properties can be easily proved based on (3.9) :

z(g)(t = t0) = z(ss1)(t = t0) , z(g)(t = t0 + Ts) = z(ss2)(t = t0 + Ts) ,

ż(g)(t = t0) = ż(ss1)(t = t0) , ż(g)(t = t0 + Ts) = ż(ss2)(t = t0 + Ts) ,

z̈(g)(t = t0) = z̈(ss1)(t = t0) , z̈(g)(t = t0 + Ts) = z̈(ss2)(t = t0 + Ts) .

(3.11)

3.2.2 Hump base function
During the transition interval t0 ≤ t ≤ t0 + Ts, the following “hump” base functions are defined

Φ̃1(t) = Φ1(t− t0) =

√

72

35

1

2

[

1−
4

3
cos

(
2π (t− t0)

Ts

)

+
1

3
cos

(
4π (t− t0)

Ts

)]

,

Φ̃2(t) = Φ2(t− t0) =

√

72

35







+
1

2

[

1−
4

3
cos

(
4π (t− t0)

Ts

)

+
1

3
cos

(
8π (t− t0)

Ts

)]

, 0 ≤ (t− t0) ≤
Ts

2

−
1

2

[

1−
4

3
cos

(
4π (t− t0)

Ts

)

+
1

3
cos

(
8π (t− t0)

Ts

)]
Ts

2
≤ (t− t0) ≤ Ts

Φ̃3(t) = Φ3(t− t0) = A3







+
1

2

[

1−
9

8
cos

(
4π (t− t0)

Ts

)

+
1

8
cos

(
12π (t− t0)

Ts

)]

0 ≤ (t− t0) ≤
Ts

4

1−
C0

2

[

1 +
4

3
cos

(
4π (t− t0)

Ts

)

+
1

3
cos

(
8π (t− t0)

Ts

)]
Ts

4
≤ (t− t0) ≤

3Ts

4

+
1

2

[

1−
9

8
cos

(
4π (t− t0)

Ts

)

+
1

8
cos

(
12π (t− t0)

Ts

)]
3Ts

4
≤ (t− t0) ≤ Ts

Φ̃4(t) = Φ4(t− t0) =

√

72

35







+
1

2

[

1−
4

3
cos

(

8π
t− t0

Ts

)

+
1

3
cos

(
16π (t− t0)

Ts

)]

0 ≤ (t− t0) ≤
Ts

4

−
1

2

[

1−
4

3
cos

(

8π
t− t0

Ts

)

+
1

3
cos

(
16π (t− t0)

Ts

)]
Ts

4
≤ (t− t0) ≤

Ts

2

+
1

2

[

1−
4

3
cos

(

8π
t− t0

Ts

)

+
1

3
cos

(
16π (t− t0)

Ts

)]
Ts

2
≤ (t− t0) ≤

3Ts

4

−
1

2

[

1−
4

3
cos

(

8π
t− t0

Ts

)

+
1

3
cos

(
16π (t− t0)

Ts

)]
3Ts

4
≤ (t− t0) ≤ Ts

Φ̃5(t) = Φ5(t− t0) = A5







+
1

2

[

1−
9

8
cos

(

6π
t− t0

Ts

)

+
1

8
cos

(
18π (t− t0)

Ts

)]

0 ≤ (t− t0) ≤
Ts

6

1−
C1

2

[

1 +
9

8
cos

(

6π
t− t0

Ts

)

−
1

8
cos

(
18π (t− t0)

Ts

)]
Ts

6
≤ (t− t0) ≤

Ts

3

(1− C1) +
C2

2

[

1−
4

3
cos

(

6π
t− t0

Ts

)

+
1

3
cos

(
12π (t− t0)

Ts

)]
Ts

3
≤ (t− t0) ≤

2Ts

3

1−
C1

2

[

1 +
9

8
cos

(

6π
t− t0

Ts

)

−
1

8
cos

(
18π (t− t0)

Ts

)]
2Ts

3
≤ (t− t0) ≤

5Ts

6

1−
1

2

[

1 +
9

8
cos

(

6π
t− t0

Ts

)

−
1

8
cos

(
18π (t− t0)

Ts

)]
5Ts

6
≤ (t− t0) ≤ Ts

(3.12)

with a3 = 1.36353 and a5 = 1.54742. All of these “hump” functions Φ̃ and their first, second
as well as third time derivative vanish at both ends of the transition interval, i.e., at the start
(t = t0) and at the end (t = t0 + Ts) of the specified interval. These “hump” base functions
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also satisfy the “orthonormality” relation,

1

Ts

∫ t0+Ts

t0

Φ̃i Φ̃j dt = δi j =

{
1 i = j
0 i 6= j

, (3.13)

which later will be important to simplify the equations for solving the trajectory design. The
above defined “hump” functions (3.12) are plotted in Figure 3.3.
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Figure 3.3: 5 orthognal base functions required for defining the circular current
components and common-mode voltage during the transition to the new steady state

3.2.3 Constraints and tasks in the trajectory design

Before going into the details on how to solve the fast trajectory design for the full system, it is
important to note that the following constraints are necessary:

• Constraint 1: The AC grid components are externally constrained and not free for tra-
jectory design. Therefore, the current and voltage of the AC grid are externally given as
a smooth transition according to (3.10)

ug, α/β(t) = u
(ss1)
g, α/β(t)

(

1− s̃(t)
)

+ u
(ss2)
g, α/β(t) s̃(t)

≡ u
(g)
g, α/β(t) ,

ig, α/β(t) = i
(ss1)
g, α/β(t)

(

1− s̃(t)
)

+ i
(ss2)
g, α/β(t) s̃(t)

≡ i
(g)
g, α/β(t)

(3.14)
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• Constraint 2: The current of the wind generator also follows a smooth transition

iw, d/q(t) = i
(ss1)
w, d/q(t)

(

1− s̃(t)
)

+ i
(ss2)
w, d/q(t) s̃(t)

≡ i
(g)
w, d/q(t)

(3.15)

• Constraint 3: The trajectory has to connect the six arm energies of the initial steady
state at t = t0 with the desired six arm energies of the new steady state at t = t0 + Ts

without inducing any subsequent transient.

• Constraint 4: Similarly, the trajectory has to connect the two energy components in the
island bus of the initial steady state at t = t0 with the desired two energy components
in the island bus of the new steady state at t = t0 + Ts without inducing any subsequent
transient.

The design task can be divided into three main tasks, each of which determines the time
evolution of the previously proposed design variables.

• Task 1: The product of uCr ie, 0 which consists of a superposition of smooth part and one
hump base function with amplitude A0 yet to be determined

(uCr ie, 0) (t) = (uCr ie, 0)
(ss1) (1− s̃(t)) + (uCr ie, 0)

(ss2) s̃(t)
︸ ︷︷ ︸

(uCr ie, 0)
(g)(t)

+A0ĩṽΦ̃1(t) , (3.16)

is designed to satisfy the desired change in the total energy of the MMC. In the previous
equation, ĩ and ṽ are respectively some adequate current and voltage scale, for instance,
the current in the DC link and the voltage at the rectifier for some operation point. In
this way, the hump amplitude A0 is kept dimensionless.

• Task 2: The two circular currents ie, α/β and the common-mode voltage u∆, 0 (actually
the common-mode voltage corresponds to u0 = −1/2u∆, 0 but for the following discussion
also u∆, 0 will be referred to as common-mode voltage) are designed to satisfy the desired
change in the energy internal redistribution within the MMC arms during the transition
interval t0 ≤ t ≤ t0 + Ts described by the five internal energy components ( WΣ, α/β and
W∆, α/β/0 ). After uCr and ie, 0 have been already determined in Task 1, the three internal
MMC degrees of freedom are now formulated as a linear superposition of smooth part as
well as five “hump” functions (five because of the five internal energy components) of still
undetermined amplitudes A1/2/3/4/5. In general, these amplitudes are distributed among
the three design variables as follows

ie, α(t) = i(ss1)e, α (t)
(

1− s̃(t)
)

+ i(ss2)e, α (t) s̃(t) +A1 ĩ Φ̃
′
1(t) +A2 ĩ Φ̃

′
2(t)

≡ i(g)e, α(t) +A1 ĩ Φ̃
′
1(t) +A2 ĩ Φ̃

′
2(t) ,

ie, β(t) = i
(ss1)
e, β (t)

(

1− s̃(t)
)

+ i
(ss2)
e, β (t) s̃(t) +A3 ĩ Φ̃

′
3(t) +A4 ĩ Φ̃

′
4(t)

≡ i
(g)
e, β(t) +A3 ĩ Φ̃

′
3(t) +A4 ĩ Φ̃

′
4(t) ,

u∆, 0(t) = u
(ss1)
∆, 0 (t)

(

1− s̃(t)
)

+ u
(ss2)
∆, 0 (t) s̃(t) +A5 ṽ Φ̃

′
5(t)

≡ u
(g)
∆, 0(t) +A5 ṽ Φ̃

′
5(t) .

(3.17)
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It is important to note that these three internal MMC degrees of freedom will be used
only during the specified transition interval. Meanwhile, the steady state, on the other
hand (regardless of whether it is the initial or final steady state), will be chosen as having
all these three internal degrees of freedom frozen to zero. These conditions are defined
as follows

ie, α/β(t = t0) = i
(ss1)
e, α/β(t) = 0 = ie, α/β(t = t0 + Ts) = i

(ss2)
e, α/β(t) ⇒ i

(g)
e, α/β(t) = 0 ,

u∆, 0(t = t0) = u
(ss1)
∆, 0 (t) = 0 = u∆, 0(t = t0 + Ts) = u

(ss2)
∆, 0 (t) ⇒ u

(g)
∆, 0(t) = 0 . (3.18)

For that reason, the expression in (3.17) will be simplified in the following formulation

ie, α(t) = A1 ĩ Φ̃
′
1(t) +A2 ĩ Φ̃

′
2(t) ,

ie, β(t) = A3 ĩ Φ̃
′
3(t) +A4 ĩ Φ̃

′
4(t) ,

u∆, 0(t) = A5 ṽ Φ̃
′
5(t) ,

(3.19)

where Φ̃′1/2/3/4/5 are given by the original base function,Φ̃1/2/3/4/5 as defined in (3.12),
in some specified combination of {1, 2, 3, 4, 5}; again ĩ and ṽ are the same current and
voltage scales used for Task 1. Table 3.1 below shows the 30 possible combinations of the
base functions Φ̃1/2/3/4/5. It is worth mentioning that the Φ̃ combinations highlighted

Combination ie, α ie, β u∆, 0 Combination ie, α ie, β u∆, 0

01 Φ̃1 & Φ̃2 Φ̃3 & Φ̃4 Φ̃5 16 Φ̃2 & Φ̃4 Φ̃1 & Φ̃3 Φ̃5

02 Φ̃1 & Φ̃2 Φ̃3 & Φ̃5 Φ̃4 17 Φ̃2 & Φ̃4 Φ̃1 & Φ̃5 Φ̃3

03 Φ̃1 & Φ̃2 Φ̃4 & Φ̃5 Φ̃3 18 Φ̃2 & Φ̃4 Φ̃3 & Φ̃5 Φ̃1

04 Φ̃1 & Φ̃3 Φ̃2 & Φ̃4 Φ̃5 19 Φ̃2 & Φ̃5 Φ̃1 & Φ̃3 Φ̃4

05 Φ̃1 & Φ̃3 Φ̃2 & Φ̃5 Φ̃4 20 Φ̃2 & Φ̃5 Φ̃1 & Φ̃4 Φ̃3

06 Φ̃1 & Φ̃3 Φ̃4 & Φ̃5 Φ̃2 21 Φ̃2 & Φ̃5 Φ̃3 & Φ̃4 Φ̃1

07 Φ̃1 & Φ̃4 Φ̃2 & Φ̃3 Φ̃5 22 Φ̃3 & Φ̃4 Φ̃1 & Φ̃2 Φ̃5

08 Φ̃1 & Φ̃4 Φ̃2 & Φ̃5 Φ̃3 23 Φ̃3 & Φ̃4 Φ̃1 & Φ̃5 Φ̃2

09 Φ̃1 & Φ̃4 Φ̃3 & Φ̃5 Φ̃2 24 Φ̃3 & Φ̃4 Φ̃2 & Φ̃5 Φ̃1

10 Φ̃1 & Φ̃5 Φ̃2 & Φ̃3 Φ̃4 25 Φ̃3 & Φ̃5 Φ̃1 & Φ̃2 Φ̃4

11 Φ̃1 & Φ̃5 Φ̃2 & Φ̃4 Φ̃3 26 Φ̃3 & Φ̃5 Φ̃1 & Φ̃4 Φ̃2

12 Φ̃1 & Φ̃5 Φ̃3 & Φ̃4 Φ̃2 27 Φ̃3 & Φ̃5 Φ̃2 & Φ̃4 Φ̃1

13 Φ̃2 & Φ̃3 Φ̃1 & Φ̃4 Φ̃5 28 Φ̃4 & Φ̃5 Φ̃1 & Φ̃2 Φ̃3

14 Φ̃2 & Φ̃3 Φ̃1 & Φ̃5 Φ̃4 29 Φ̃4 & Φ̃5 Φ̃1 & Φ̃3 Φ̃2

15 Φ̃2 & Φ̃3 Φ̃4 & Φ̃5 Φ̃1 30 Φ̃4 & Φ̃5 Φ̃2 & Φ̃3 Φ̃1

Table 3.1: 30 possible combinations of the base functions Φ̃1/2/3/4/5 for the design
of ie, α/β and u∆, 0 during the transition interval

in red hardly lead to meaningful solutions for the amplitudes A1/2/3/4/5 because the
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resulting amplitudes are too large. As a result, these possible combinations will not be
taken into account. More details on this issue will be discussed later in subsection 3.2.5
on page 59.

• Task 3: The four internal variables to the island bus subsystem, uib, d/q and irc, d/q , are
given by the superposition of a smooth part and five hump functions with amplitudes
Ai1/2/3/4/5 still to be calculated

(
uib, d(t)
uib, q(t)

)

=

(

u
(ss1)
ib, d

u
(ss1)
ib, q

)

(1− s̃(t)) +

(

u
(ss2)
ib, d

u
(ss2)
ib, q

)

s̃(t)

︸ ︷︷ ︸

u
(g)

ib, d/q
(t)

+

(
Ai1 ṽΦ̃i1(t) +Ai2 ṽΦi2(t)

Ai3 ṽΦ̃i3(t)

)

,

(
irc, d(t)
irc, q(t)

)

=

(

i
(ss1)
rc, d

i
(ss1)
rc, q

)

(1− s̃(t)) +

(

i
(ss2)
rc, d

i
(ss2)
rc, q

)

s̃(t)

︸ ︷︷ ︸

i
(g)

rc, d/q
(t)

+

(
Ai4 ĩΦ̃i4(t)

Ai5 ĩΦ̃i5(t)

)

. (3.20)

These five unknown amplitudes Ai1/2/3/4/5 are to be adjusted in such a way that the
integration over the transition time interval of the energy components, Wst+ib and Wrc,
satisfy the desired change in those energies.

Remark: Although the main nonlinear contributions in the hump amplitudes arising from
uib, d/q irc, d/q and ie, α/β u∆, 0 ( marked by a wavy line in (3.2) and (3.4) respectively ) are
completely eliminated due to the orthogonal property of the base functions Φ̃, there are still
other terms describing power losses at resitances, which also yield quadratic contributions in
the hump amplitude. Since those terms are nevertheless quite irrelevant ( most of the power is
transfered and only a small fraction is dissipated at the resistances ), their effect can be inple-
mented in an iterative way by linearizing the quadratic terms around some provisional solution
of the hump amplitudes. From a provisional (already known) x(prov) an improved solution x is
obtained by linearization of the quadratic terms, according to the following approximation

(x)2 =
(

x(prov) +
(

x− x(prov)
))

≈
(

x(prov)
)2

+ 2x(prov)
(

x− x(prov)
)

= −
(

x(prov)
)2

+ 2x(prov)x , (3.21)

and since this contribution is quite irrelevant, only a couple of iterations are necessary for
obtaining a converged solution.

3.2.4 Task 1: Trajectory of uCr ie, 0 satisfying desired change in ∆W ′
Σ, 0

Starting from a previously obtained provisional solution for all the design variables, a better
solution (particularly, an improved solution for the hump amplitudes) is to be obtained by
solving Task 1 until Task 3. For the first task, and as briefly discussed in section 3.1, the
combined variable uCr ie, 0 is designed to satisfy the desired change in the total energy of the
MMC

∫ t0+Ts

t0

ẆΣ, 0 dt = WΣ, 0
(ss2)

t0+Ts

−WΣ, 0
(ss1)

t0

= ∆WΣ, 0 .

The total energy of the MMC and its dynamic can also be reformulated as follows
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W ′Σ, 0 = WΣ, 0 +
Le

4

(
i2e, α + i2e, β

)
+

L′d
2
i2e, 0 +

L′g
16

(
i2g, α + i2g, β

)
, (3.22)

where the contributions from the inductances attached to the MMC are included. Its dynamics
is expressed as below

dW ′Σ, 0

dt
=

uCr

2
ie, 0 −

1

4
(ug, α ig, α + ug, β ig, β)−

[

R′di
2
e, 0 +

R′g
8

(
i2g, α + i2g, β

)
]

. (3.23)

The unknown amplitude A0 for the trajectory of (uCr ie, 0) is determined by the energy equation
for the change in W ′Σ, 0 (3.23) during the transition.

W ′(ss2)
Σ, 0 −W ′(ss1)

Σ, 0 − 1

2

∫ t0+Ts

t0

(uCrie, 0)
(g)

dt+
1

4

∫ t0+Ts

t0

(ug, α ig, α + ug, β ig, β) dt

+R′

d

∫ t0+Ts

t0

(ie, 0)
2
dt+

R′

g

8

∫ t0+Ts

t0

(

~ig

)2

dt

= A0

[

1

2
ṽĩ

∫ t0+Ts

t0

Φ̃1dt

]

(3.24)

Except for the trajectory of ie, 0 during the transition, everything in the previous equation
is defined. It can be included iteratively by using ie, 0(t) ≈ i

(ss1)
e, 0 (1− s̃(t)) + i

(ss2)
e, 0 s̃(t) at the

first iteration because its contribution mainly comes from the losses at the resistance R′d, which
only produces a small correction compared to the other terms.

3.2.5 Task 2: Trajectory of ie, α/β and u∆,0 satisfying desired change in
∆WΣ, α/β and ∆W∆, α/β/0

Once the time evolution during the transition interval for uCr and ie, 0 has been fully defined,
the five unknown amplitudes A1/2/3/4/5 can be calculated in such a way that the five following
equations for the energy components are fulfilled during the transition interval t0 ≤ t ≤ t0 + Ts











∫ t0+Ts

t0
ẆΣ, α dt

∫ t0+Ts

t0
ẆΣ, β dt

∫ t0+Ts

t0
Ẇ∆, α dt

∫ t0+Ts

t0
Ẇ∆, β dt

∫ t0+Ts

t0
Ẇ∆, 0 dt











=
















WΣ, α
(ss2)

t0+Ts

−WΣ, α
(ss1)

t0
WΣ, β

(ss2)

t0+Ts

−WΣ, β
(ss1)

t0
W∆, α

(ss2)

t0+Ts

−W∆, α
(ss1)

t0
W∆, β

(ss2)

t0+Ts

−W∆, β
(ss1)

t0
W∆, 0

(ss2)

t0+Ts

−W∆, 0
(ss1)

t0
















=









∆WΣ, α

∆WΣ, β

∆W∆, α

∆W∆, β

∆W∆,0









(3.25)

Nevertheless, the wavy terms,
∫ t0+Ts

t0

ie, α ie, β dt and
∫ t0+Ts

t0

ie, α/β u∆, 0 dt, which appear in

the third equation in (3.3) and last two equations in (3.4), ẆΣ, β(t) and Ẇ∆, α/β(t) respectively,
yield nonlinear contribution as a consequence of the product of two design variables. However,
these problematic contributions, which are relevant since no longer proportional to negligible
resistances, can be completely eliminated due to the “orthonormality” conditions as already
mentioned in (3.13)

1

Ts

∫ t0+Ts

t0

Φ̃i Φ̃j dt = δi j =

{
1 i = j
0 i 6= j
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As a result ( together with the condition in(3.18 ) the following relations hold

∫ t0+Ts

t0

ie, αie, β dt = 0 =

∫ t0+Ts

t0

ie, α/βu∆, 0 dt . (3.26)

The only nonlinearity in the unknown amplitudes originates solely from
∫ t0+Ts

t0

(
i2e, α ± i2e, β

)
dt

in the first two energy equations, which is marked by the double underline in equation (3.3).
As this integral is proportional to the small resistance Re, it only represents a minor correction,
which can be iteratively incorporated into the equations. Based on the discussion in (3.21),
from a provisional (already known) A

(prov)
1/2/3/4 an improved solution A1/2/3/4 is obtained by

linearization of the quadratic terms

1

Ts

∫ t0+Ts

t0

(
i2e, α ± i2e, β

)
dt ≈ −ĩ2

[(

A
(prov)
1

)2
+
(

A
(prov)
2

)2
±
(

A
(prov)
3

)2
±
(

A
(prov)
4

)2
]

+ 2 ĩ2 A
(prov)
1 A1 + 2 ĩ2 A

(prov)
2 A2 ± 2 ĩ2 A

(prov)
3 A3 ± 2 ĩ2 A

(prov)
4 A4 .

(3.27)

It is important to recall that, since the circular currents ie, α/β are frozen to zero during the
initial and final steady state as previously mentioned in (3.18), the following relations hold

∫ t0+Ts

t0

d

dt
ie, α/β

2 dt = 0 =

∫ t0+Ts

t0

d

dt
ie, αie, β dt = 0 =

∫ t0+Ts

t0

d

dt

(
ie, 0ie, α/β

)
dt . (3.28)

As a result, the five unknown amplitudes A1/2/3/4/5 can be determined from the five linear
algebraic equations (from ∆WΣ, α/β and ∆W∆, α/β/0).

WΣ, α
(ss2)

t0+Ts

−WΣ, α
(ss1)

t0

+
Le

4

=0, see (3.28)
︷ ︸︸ ︷
[(

i(ss2)e, α

2 − i
(ss2)
e, β

2)

t0+Ts

−
(

i(ss1)e, α

2 − i
(ss1)
e, β

2)

t0

]

+ Le

=0, see (3.28)
︷ ︸︸ ︷
[

i
(ss2)
e, 0 i(ss2)e, α

t0+Ts

− i
(ss1)
e, 0 i(ss1)e, α

t0

]

+
L′

g

16

[

(
i2g, α − i2g, β

)
(ss2)

t0+Ts

−
(
i2g, α − i2g, β

)
(ss1)

t0

]

+
R′

g

8

∫ t0+Ts

t0

(
i2g, α − i2g, β

)
dt− Re

2
ĩ2 Ts

[(

A
(prov)
1

)2

+
(

A
(prov)
2

)2

−
(

A
(prov)
3

)2

−
(

A
(prov)
4

)2
]

+
1

4

∫ t0+Ts

t0

(ug, αig, α − ug, βig, β) dt

= A1

[

−Re ĩ
2 A

(prov)
1 Ts + ĩ

∫ t0+Ts

t0

(

u
(prov)
Cr

2
− (R′

d +Re) i
(prov)
e, 0 − 3Ld

2

di
(prov)
e, 0

dt

)

Φ̃′

1 dt

]

︸ ︷︷ ︸
m1 1

+A2

[

−Re ĩ
2 A

(prov)
2 Ts + ĩ

∫ t0+Ts

t0

(

u
(prov)
Cr

2
− (R′

d +Re) i
(prov)
e, 0 − 3Ld

2

di
(prov)
e, 0

dt

)

Φ̃′

2 dt

]

︸ ︷︷ ︸
m1 2

+A3

[

Re ĩ
2 A

(prov)
3 Ts

]

︸ ︷︷ ︸
m1 3

+A4

[

Re ĩ
2 A

(prov)
4 Ts

]

︸ ︷︷ ︸
m1 4

+A5

[

ṽ

∫ t0+Ts

t0

ig, α
4

Φ̃′

5 dt

]

︸ ︷︷ ︸
m1 5

,
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WΣ, β
(ss2)

t0+Ts

−WΣ, β
(ss1)

t0

− Le

2

=0, see (3.28)
︷ ︸︸ ︷
[

i(ss2)e, α i
(ss2)
e, β

t0+Ts

− i(ss1)e, α i
(ss1)
e, β

t0

]

+Le

=0, see (3.28)
︷ ︸︸ ︷
[

i
(ss2)
e, 0 i

(ss2)
e, β

t0+Ts

− i
(ss1)
e, 0 i

(ss1)
e, β

t0

]

−
L′

g

8

=0, see (3.28)
︷ ︸︸ ︷
[

i(ss2)g, α i
(ss2)
g, β

t0+Ts

− i(ss1)g, α i
(ss1)
g, β

t0

]

−
R′

g

4

∫ t0+Ts

t0

ig, αig, β dt

− 1

4

∫ t0+Ts

t0

(ug, αig, β + ug, βig, α) dt

= A3

[

ĩ

∫ t0+Ts

t0

(

u
(prov)
Cr

2
− (R′

d +Re) i
(prov)
e, 0 − 3Ld

2

di
(prov)
e, 0

dt

)

Φ̃′

3 dt

]

︸ ︷︷ ︸
m2 3

+ A4

[

ĩ

∫ t0+Ts

t0

(

u
(prov)
Cr

2
− (R′

d +Re) i
(prov)
e, 0 − 3Ld

2

di
(prov)
e, 0

dt

)

Φ̃′

4 dt

]

︸ ︷︷ ︸
m2 4

+ A5

[

ṽ

∫ t0+Ts

t0

ig, β
4

Φ̃′

5 dt

]

︸ ︷︷ ︸
m2 5

,

W
(ss2)
∆, 0 −W

(ss1)
∆, 0 +

Le

2

=0, see (3.28)
︷ ︸︸ ︷
[(

i(ss)g, α i
(ss2)
e, α + i

(ss)
g, β i

(ss2)
e, β

)

t0+Ts

−
(

i(ss)g, α i
(ss1)
e, α + i

(ss)
g, β i

(ss1)
e, β

)

t0

]

= A1

[

−ĩ

∫ t0+Ts

t0

(

ug, α + Lg
dig, α
dt

+
R′

g +Re

2
ig, α

)

Φ̃′

1 dt

]

︸ ︷︷ ︸
m3 1

+ A2

[

−ĩ

∫ t0+Ts

t0

(

ug, α + Lg
dig, α
dt

+
R′

g +Re

2
ig, α

)

Φ̃′

2 dt

]

︸ ︷︷ ︸
m3 2

+ A3

[

−ĩ

∫ t0+Ts

t0

(

ug, β + Lg
dig, β
dt

+
R′

g +Re

2
ig, β

)

Φ̃′

3 dt

]

︸ ︷︷ ︸
m3 3

+ A4

[

−ĩ

∫ t0+Ts

t0

(

ug, β + Lg
dig, β
dt

+
R′

g +Re

2
ig, β

)

Φ̃′

4 dt

]

︸ ︷︷ ︸
m3 4

+ A5

[

ṽ

∫ t0+Ts

t0

i
(prov)
e, 0 Φ̃′

5 dt

]

︸ ︷︷ ︸
m3 5

,

W∆, α
(ss2)

t0+Ts

−W∆, α
(ss1)

t0

+
Le

2

=0, see (3.28)
︷ ︸︸ ︷
[(

i(ss)g, α i
(ss2)
e, α − i

(ss)
g, β i

(ss2)
e, β

)

t0+Ts

−
(

i(ss)g, α i
(ss1)
e, α − i

(ss)
g, β i

(ss1)
e, β

)

t0

]

+ Le

[

i
(ss2)
e, 0 ig, α

(ss2)

t0+Ts

− i
(ss1)
e, 0 ig, α

(ss1)

t0

]
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−
∫ t0+Ts

t0

(

u
(prov)
Cr

2
− (R′

d +Rg) i
(prov)
e, 0 − 3Ld

2

di
(prov)
e, 0

dt

)

ig, α dt

+

∫ t0+Ts

t0

(

2ug, α + 2Lg
dig, α
dt

)

i
(prov)
e, 0 dt

= A1

[

−ĩ

∫ t0+Ts

t0

(

ug, α + Lg
dig, α
dt

+
R′

g +Re

2
ig, α

)

Φ̃′

1 dt

]

︸ ︷︷ ︸
m4 1

+A2

[

−ĩ

∫ t0+Ts

t0

(

ug, α + Lg
dig, α
dt

+
R′

g +Re

2
ig, α

)

Φ̃′

2 dt

]

︸ ︷︷ ︸
m4 2

+A3

[

+ĩ

∫ t0+Ts

t0

(

ug, β + Lg
dig, β
dt

+
R′

g +Re

2
ig, β

)

Φ̃′

3 dt

]

︸ ︷︷ ︸
m4 3

+A4

[

+ĩ

∫ t0+Ts

t0

(

ug, β + Lg
dig, β
dt

+
R′

g +Re

2
ig, β

)

Φ̃′

4 dt

]

︸ ︷︷ ︸
m4 4

+ A1A5 · 0 +A2A5 · 0 ,

W∆, β
(ss2)

t0+Ts

−W∆, β
(ss1)

t0

− Le

2

=0, see (3.28)
︷ ︸︸ ︷
[(

i
(ss)
g, β i

(ss2)
e, α + i(ss)g, α i

(ss2)
e, β

)

t0+Ts

−
(

i
(ss)
g, β i

(ss1)
e, α + i(ss)g, α i

(ss1)
e, β

)

t0

]

+ Le

[

i
(ss2)
e, 0 ig, β

(ss2)

t0+Ts

− i
(ss1)
e, 0 ig, β

(ss1)

t0

]

−
∫ t0+Ts

t0

(

u
(prov)
Cr

2
− (R′

d +Rg) i
(prov)
e, 0 − 3Ld

2

di
(prov)
e, 0

dt

)

ig, β dt

+

∫ t0+Ts

t0

(

2ug, β + 2Lg
dig, β
dt

)

i
(prov)
e, 0 dt

= A1

[

−ĩ

∫ t0+Ts

t0

(

ug, β + Lg
dig, β
dt

+
R′

g +Re

2
ig, β

)

Φ̃′

1 dt

]

︸ ︷︷ ︸
m5 1

+A2

[

−ĩ

∫ t0+Ts

t0

(

ug, β + Lg
dig, β
dt

+
R′

g +Re

2
ig, β

)

Φ̃′

2 dt

]

︸ ︷︷ ︸
m5 2

+A3

[

+ĩ

∫ t0+Ts

t0

(

ug, α + Lg
dig, α
dt

+
R′

g +Re

2
ig, α

)

Φ̃′

3 dt

]

︸ ︷︷ ︸
m5 3

+A4

[

+ĩ

∫ t0+Ts

t0

(

ug, α + Lg
dig, α
dt

+
R′

g +Re

2
ig, α

)

Φ̃′

4 dt

]

︸ ︷︷ ︸
m5 4

+ A3A5 · 0 +A4A5 · 0 . (3.29)

As was pointed out in (3.26), the yellow terms in (3.29) do not contribute any quadratic
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term in the amplitudes due to the orthonormality conditions of the Φ̃ functions.
Therefore, the five equations in the system of equations (3.29) can be rewritten more com-

pactly in the following form:








m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55









︸ ︷︷ ︸

M5×5









A1

A2

A3

A4

A5









=









v1
v2
v3
v4
v5









︸ ︷︷ ︸

~v5×1

=⇒









A1

A2

A3

A4

A5









= M
−1
5×5 ~v5×1 , (3.30)

The calculation step of the five unknown amplitudes from the previous system of five
equations runs as follows.

• Firstly, one of the possible combinations of the base functions, Φ̃, is chosen in sequence
as given in Table 3.1. However, for a short transition time, neither ie, α nor ie, β should
be assigned to two hump base functions Φ̃ with solely even hump number (Φ̃2/4). Oth-
erwise, the matrix elements m1 1/2 and m2 2/3 might become very small because uCr and

ug, α/β stay nearly constant during this short Ts. This leads to m1 1/2 ∼
∫ t0+Ts

t0

Φ̃j ≈ 0

and m2 3/4 ∼
∫ t0+Ts

t0

Φ̃j ≈ 0 due to even number of periodic humps in Φ̃2/4. In both

cases, a nearly singular matrix M5×5 is produced, resulting in very large and nonsensical
amplitudes of A1/2/3/4/5. Such combinations will therefore not be considered, as briefly
stated in subsection 3.2 on page 54.

• Subsequently, the provisional amplitudes A
(prov)
1/2/3/4/5 are initialised to 0, which is the

next step in calculating the five unknown amplitudes. Then, the five linear/linearized
equations for the energy change in the five internal energy components ∆WΣ, α/β and
∆W∆, α/β/0 are solved for A1/2/3/4/5, and better solutions for those amplitudes are ob-
tained.

• With the solution just determined for the five amplitudes A1/2/3/4/5, the previous steps
are iteratively repeated a few times to get the improved solutions. In the end, a new
combination is used in assigning the hump base functions, Φ̃, in ie, α/β and u∆, 0. After the
five amplitudes have been calculated for each possible combination of the base functions,
Φ̃, the arm energies expressed in Wp/n, 1/2/3, are integrated numerically.

• Finally, the best Φ̃ combination is selected according to the lowest oscillation strength of
the energy trajectories during the transition interval.

3.2.6 Task 3: Trajectory of uib, d/q and irc, d/q satisfying desired change in
∆Wst+ib and ∆Wrc

After the product uCr ie, 0 has been determined in Task 1, it can be seen that the wavy terms
in dWst+ib

dt and dWrc
dt which appear both in (3.2), contribute to nonlinearity as a consequence

of the product of two design variables ~uib ·~irc. For that reason, the indices for the Φ̃ basis

functions are always selected as
{

i4 6= i1, i2
i5 6= i3

in order to completely eliminate these unwanted



60 CHAPTER 3. FAST TRAJECTORY DESIGN BETWEEN STEADY STATES

contributions (highlighted in yellow in (3.31)) and to ensure that the time integration of the
effective power injected in the rectifier during the transition is always linear in the amplitudes{

Ai1/2/3/4/5

}

, due to the orthogonality property (3.13).

∫ t0+Ts

t0

(uib, dirc, d + uib, qirc, q) dt =

∫ t0+Ts

t0

(

u
(g)
ib, di

(g)
rc, d + u

(g)
ib, qi

(g)
rc, q

)

dt

+Ai1

[

ṽ

∫ t0+Ts

t0

i
(g)
rc, dΦ̃i1dt

]

+Ai2

[

ṽ

∫ t0+Ts

t0

i
(g)
rc, dΦ̃i2dt

]

+Ai3

[

ṽ

∫ t0+Ts

t0

i(g)rc, qΦ̃i3dt

]

+Ai4

[

ĩ

∫ t0+Ts

t0

u
(g)
ib, dΦ̃i4dt

]

+Ai5

[

ĩ

∫ t0+Ts

t0

u
(g)
ib, qΦ̃i5dt

]

+ Ai1Ai4 · 0 + Ai2Ai4 · 0 + Ai3Ai5 · 0 (3.31)

Thus, the only still remaining nonlinearities in the unknown amplitudes all come from the
product of two design variables which is marked by the double underline in equation (3.2).
However, these are proportional to very weak dissipation coefficients (Rf and Rrc), thus such
nonlinear terms can be linearized as in (3.21) and iteratively included into the equations. As a
result, during the transition interval t0 ≤ t ≤ t0 + Ts, the following two linear equations along
with the result (3.31) are solved for the five unknown amplitudes Ai1/2/3/4/5 . It is also useful to
note that the compact vector notation, ~v · ~w = vdwd+vqwq, is used in the following discussion.

v1 = W
(ss2)
st+ib −W

(ss1)
st+ib −

3

2

∫ t0+Ts

t0

~u
(g)
ib ·

(

~iw −~i(g)rc

)

dt

+
3

2Rf

∫ t0+Ts

t0

(

~u
(g)
ib

)2
dt− 3

2Rf
ṽ2Ts

((

A
(prov)
i1

)2
+
(

A
(prov)
i2

)2
+
(

A
(prov)
i3

)2
)

= Ai1

[

+
3

2
ṽ

∫ Ts

t0

(

iw, d − i
(g)
rc, d

)

Φ̃i1dt−
3

Rf
ṽ

∫ Ts

t0

u
(g)
ib, dΦ̃i1dt−

3

Rf
(ṽ)2TsA

(prov)
i1

]

︸ ︷︷ ︸
m11

+Ai2

[

+
3

2
ṽ

∫ Ts

t0

(

iw, d − i
(g)
rc, d

)

Φ̃i2dt−
3

Rf
ṽ

∫ Ts

t0

u
(g)
ib, dΦ̃i2dt−

3

Rf
(ṽ)2TsA

(prov)
i2

]

︸ ︷︷ ︸
m12

+Ai3

[

+
3

2
ṽ

∫ Ts

t0

(

iw, q − i(g)rc, q

)

Φ̃i3dt−
3

Rf
ṽ

∫ Ts

t0

u
(g)
ib, qΦ̃i3dt−

3

Rf
(ṽ)2TsA

(prov)
i3

]

︸ ︷︷ ︸
m13

+Ai4

[

−3

2
ĩ

∫ Ts

t0

u
(g)
ib, dΦ̃i4dt

]

︸ ︷︷ ︸
m14

+Ai5

[

−3

2
ĩ

∫ Ts

t0

u
(g)
ib, qΦ̃i5dt

]

︸ ︷︷ ︸
m15

v2 = W (ss2)
rc −W (ss1)

rc − 3

2

∫ t0+Ts

t0

~u
(g)
ib ·~i(g)rc dt+ 3

∫ t0+Ts

t0

(uCr ie, 0)
(prov) dt

+
3Rc

2

∫ t0+Ts

t0

(

~i(g)rc

)2
dt− 3Rc

2
(̃i)2Ts

((

A
(prov)
i4

)2
+
(

A
(prov)
i5

)2
)
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= Ai1

[

+
3

2
ṽ

∫ Ts

t0

i
(g)
rc, dΦ̃i1dt

]

︸ ︷︷ ︸
m21

+Ai2

[

+
3

2
ṽ

∫ Ts

t0

i
(g)
rc, dΦ̃i2dt

]

︸ ︷︷ ︸
m22

+Ai3

[

+
3

2
ṽ

∫ Ts

t0

i(g)rc, qΦ̃i3dt

]

︸ ︷︷ ︸
m23

+Ai4

[

+
3

2
ĩ

∫ Ts

t0

u
(g)
ib, d)Φ̃i4dt− 3Rrcĩ

∫ Ts

t0

i
(g)
rc, dΦ̃i4dt− 3Rrc(̃i)

2TsA
(prov)
i4

]

︸ ︷︷ ︸
m24

+Ai5

[

+
3

2
ĩ

∫ Ts

t0

u
(g)
ib, q)Φ̃i5dt− 3Rrcĩ

∫ Ts

t0

i(g)rc, qΦ̃i5dt− 3Rrc(̃i)
2TsA

(prov)
i5

]

︸ ︷︷ ︸
m25

(3.32)

Therefore, the two equations in the system of equations (3.32) can be reformulated in matrix
form

(
m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

)

︸ ︷︷ ︸

M2×5









Ai1

Ai2

Ai3

Ai4

Ai5









︸ ︷︷ ︸

~A5×1

=

(
v1
v2

)

︸ ︷︷ ︸

~v2×1

, (3.33)

but it seems that the equation system becomes undetermined, due to the fact that there are five
unknown amplitudes

{

Ai1/2/3/4/5

}

to be solved with only two equations. The extra unknowns
are used to minimise the following cost function

J( ~A) =
1

2

[
c1A

2
i1 + c2A

2
i2 + c3A

2
i3 + c4A

2
i4 + c5A

2
i5

]
, with constant weights ci > 0, (3.34)

in order to generate uib, d/q and irc, d/q trajectory with minimal “hump” contributions. Never-
theless, in this circumstance, all amplitudes Ai are dependent on each other because they are
related by the constraint (3.32). The minimization of the above specified cost function J is
simply accomplished under such constraints by introducing a Lagrange multiplier vector ~λ into
the following extended cost function

J ′
(

~A, ~λ
)

=
1

2

[
c1A

2
i1 + c2A

2
i2 + c3A

2
i3 + c4A

2
i4 + c5A

2
i5

]
− ~λT

(

M2×5 ~A− ~v
)

, (3.35)

where now the five amplitudes ~A together with two Lagrange multipliers ~λ can be treated as
seven independent parameters to be solved from the seven following equations

∂J ′

∂Ai
= 0 =⇒






c1 . . . 0
...

. . .
...

0 . . . c5






~A−

(M2×5)
T~λ

︷ ︸︸ ︷

~λT
M2×5 = ~0 =⇒ 5 equations, (3.36)

∂J ′

∂λj
= 0 =⇒ M2×5 ~A− ~v = ~0 =⇒ 2 equations. (3.37)
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So, the resulting amplitudes are as follows:

~A =






c1 . . . 0
...

. . .
...

0 . . . c5






−1

(M2×5)
T ~λ ,

M2×5 ~A = ~v ⇒ ~λ =




M2×5






c1 . . . 0
...

. . .
...

0 . . . c5






−1

(M2×5)
T






−1

~v ,

~A =






c1 . . . 0
...

. . .
...

0 . . . c5






−1

(M2×5)
T




M2×5






c1 . . . 0
...

. . .
...

0 . . . c5






−1

(M2×5)
T






−1

~v. (3.38)

3.2.7 Resulting trajectory of the remaining state variables and input vari-
ables

The trajectory of seven state variables (uCr ie, 0, ie, α/β , uib, d/q, irc, d/q) and one input variable
(u∆, 0) has been calculated, after determining all of the hump amplitudes from the eight equa-
tions for the energy change (∆WΣ/∆, α/β/0 as well as ∆Wst+ib and ∆Wrc) during the transition.
In order to obtain the eight energy state variables, the same eight energy equations are again
applied, but this time not as an energy change between begin and end of the transition interval,
but rather at each time step during the transition. From the previously calculated energies
Wst+ib and Wrc, the other two state variables, uCr ( derived in (3.39) ) and uCs ( derived
in 3.44) ) respectively, can be determined. At this point, and after having used the eight
equations of motion as well as being given externally two state variables, a total of seventeen
(7 + 8 + 2 = 17) state variables and one input variable are known. Of the remaining eleven
equations of motion, two of them (from duib, d/q

dt ) are used for obtaining the remaining still
unknown two state variables (ist, d/q) ( derived in (3.43) ). The other nine equations of motion
are used for obtaining the nine remaining input variables:

• uΣ, 0 ( derived in (3.40) ) from designed ie, 0 using equation of motion die, 0
dt ;

• uΣ, α/β ( derived in (3.46) ) from designed ie, α/β using equation of motion
die, α/β

dt ;

• src, d/q ( derived in (3.42) ) using equation of motion dirc, d/q
dt ;

• ss, d/q ( derived in (3.45) ) using equation of motion
dist, d/q

dt .

The detailed mathematical implementation procedure follows now.

1. As the trajectory of irc, d/q(t) has previously been determined, the trajectory of uCr(t) is
derived from Wrc(t)

uCr(t) =

√

2

Cr

(

Wrc(t)−
3

2

Lrc

2

(

~irc(t)
)2
)

. (3.39)

2. As a result, the trajectory of the DC current ie, 0(t) can be extracted in a separated way
out of the product of the designed (uCr ie, 0( t)) together with the previously obtained
uCr(t).
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The time derivative of the previous fully defined (uCr ie, 0( t)), uib, d/q(t) and irc, d/q(t) as
well as ie, α/β is required to derive the remaining states and inputs. Because all of the basis
functions are simple smooth functions, taking their time derivative is straightforward.

3. However, in order to derive one of the 6 MMC’s input

uΣ, 0(t) =
1

2
uCr(t)− L′d

die, 0
dt

−R′die, 0(t) , (3.40)

the time derivative of the DC current die, 0
dt is needed. This may be calculated using the

equation of motion for the rectifier voltage uCr, as well as the derivatives of Wrc and
irc, d/q, yielding the following relationship

d (uCrie, 0)

dt
= uCr

die, 0
dt

+ ie, 0

1

CruCr

d

dt

(
Cr

2
u2Cr

)

︷ ︸︸ ︷

duCr

dt
= uCr

die, 0
dt

+
ie, 0

CruCr

(

dWrc

dt
− 3

2
Lrc

d~irc
dt

·~irc
)

,

die, 0
dt

=
1

uCr

[

d (uCrie, 0)

dt
− ie, 0

CruCr

(

3

2
~uib ·~irc − 3 (uCrie, 0)−

3

2
Rrc

~i2rc −
3

2
Lrc

d~irc
dt

·~irc
)]

(3.41)

4. Meanwhile,because uCr(t) has already been calculated in (3.39), the input components
src, d/q(t) during the transition can be singled out from the product

(
uCrsrc, d/q

)
, which

is derived from the equation of motion of the current into the rectifier dirc, d/q
dt

(
uCr src, d/q

)
(t) = uib, d/q(t)− Lrc

dirc, d/q

dt
−
(

Rrc − ω0Lrc

(
0 1
−1 0

))(
irc, d(t)
irc, q(t)

)

(3.42)

5. The equation of motion of the island bus voltage, on the other hand, can be used to
determine the trajectory of ist, d/q(t) and its derivative

ist, d/q(t) = −iw, d/q + irc, d/q(t) + Cf

duib, d/q

dt
+

(
1

Rf
− ω0Cf

(
0 1
−1 0

))(
uib, d(t)
uib, q(t)

)

,

dist, d/q(t)

dt
= −

diw, d/q

dt
+

dirc, d/q

dt
+ Cf

d2uib, d/q

dt2
+

(
1

Rf
− ω0Cf

(
0 1
−1 0

))(duib, d

dt
duib, q

dt

)

.

(3.43)

6. Following that, the uCs(t) trajectory is defined by the previously established Wst+ib(t)

uCs(t) =

√

2

Cs

(

Wst+ib(t)−
3

2

Lst

2

(

~ist(t)
)2

− 3

2

Cf

2
(~uib(t))

2

)

. (3.44)

7. From the equation of motion of ist, d/q(t), inputs ss, d/q(t) follows

ss, d/q(t) =
1

uCs(t)

[

uib, d/q(t) + Lst

dist, d/q

dt
+

(

Rst − ω0Lst

(
0 1
−1 0

))(
ist, d(t)
ist, q(t)

)]

.

(3.45)
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8. Based on the equation of motion for the circular current of the MMC, die, α/β

dt , together
with the designed ie, α/β(t), the other two MMC’s inputs are derived

uΣ, α/β(t) = −Re ie, α/β(t)− Le

die, α/β

dt
(3.46)

9. Finally, inputs u∆, α/β(t) are obtained from the equation of motion for the AC grid
current, for some desired and given trajectory in ig, α/β during the transition

u∆, α/β(t) = −R′g ig, α/β(t)− 2ug, α/β(t)− L′g
dig, α/β

dt
. (3.47)



Chapter 4

Differential flatness and flatness-based
control for the AC-DC-AC power
system

In this chapter, the existence of a flat output vector for the complete high voltage AC-DC-
AC power system is discussed and a flatness-based control design for fast trajectory tracking
based on its existence is proposed, in which all variables describing the system state can be
shifted very fast from one operation point to another one. The definition and characteristics
of differential flatness are discussed as an introduction to this chapter.

4.1 Basic idea of flatness-based control

The main task addressed in this work is an accurate calculation of the required input for fast
shifting of the operation point from one steady state (ss1) to a different steady state (ss2).
After having explained in the previous chapter how to design a fast trajectory for all of the
state variables in the considered AC-DC-AC power system as well as the necessary feedforward
input for driving the system along such trajectory (assuming no disturbance happens), in this
chapter, the required theory will be developed for an eventual feedback control to compensate
any deviation from the designed trajectory. This is achieved by finding a differential flat output
for the dynamics [24]. Even though the mathematical definition of flatness is quite abstract,
the main idea behind is simple.

Let us consider a system described by a state vector with n components whose dynamics
are given by n differential equations of first order (in general nonlinear); thus, the order of such
dynamics is n. In general, the system is driven by an input vector with m < n components
and some output variables yi are measured. Now let us assume that, for this system, one is
able to find a vector of m output variables such that the sum of the relative degrees of each
output component equals the dynamics order; the relative degree ri of variable yi is its lowest
time derivative for some component of the input vector to appear explicitly in the differential
equation. This is a flat output vector.

From its very definition, i.e. because the sum of the relative degrees of such m components
corresponds to the full order of the considered dynamics, controlling the dynamics of the flat
output vector components means controlling the full system, even if the number of output
components is less than the dimension of the state vector. In other words, by forcing the
flat output components to follow some desired trajectory, each state component can no longer

65
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freely evolve but is also constrained to follow the flat output. Moreover, since both the flat
output as well as input vector have the same number of components, the relationship between
both can be inverted by writing the input vector as some algebraic combination of the flat
output components and their derivatives until the respective relative degree ri. Also, the full
state vector can be analogously expressed as some algebraic combination of the flat output
components and their derivatives until the respective relative degree minus one (since a further
derivation makes the input appear). Therefore, if the desired trajectories for the flat output
components are given as some smooth functions, the required input as well as the full state
vector are completely determined without the need to solve any differential equation system,
just only algebraic operations are involved.

4.2 Existence of an approximated flat output vector for full sys-
tem dynamics

Since the number of state variables for the considered dynamics is relatively large, in order to
explain how to find a potential flat output vector without being distracted by irrelevant terms
in the equations of motion, the following points should be taken into consideration. The terms
that are quadratic in the current components and proportional to the corresponding resistances
in (3.3) and (3.4), will be neglected in a first approximation when compared to the voltages on
the DC and AC sides (the latter are typically two orders of magnitude larger). It is to be noted
that including their effects does not modify the conclusions regarding the existence of a possible
flat output vector, but it makes the proof more difficult to follow; such approximation will be
removed at a later stage of this section when the main idea of the proof has been discussed.

Firstly, let us consider the MMC. By including the energy contributions at the inductances
which appear inside the total time derivatives in (3.3) and (3.4) into the energy components
describing the energy stored within the capacitances of the 6 MMC arms, the following extended
arm energies in the MMC are defined as follows

W ′Σ, 0 = WΣ, 0 +
Le

4

(
i2e, α + i2e, β

)
+

L′d
2
i2e, 0 +

L′g
16

(
i2g, α + i2g, β

)
,

W ′Σ, α = WΣ, α +
Le

4

(
i2e, α − i2e, β

)
+ Leie, 0ie, α +

L′g
16

(
i2g, α − i2g, β

)
,

W ′Σ, β = WΣ, β − Le

2
ie, αie, β + Leie, 0ie, β −

L′g
8
ig, αig, β ,

W ′∆, 0 = W∆, 0 +
Le

2
(ie, αig, α + ie, βig, β) ,

W ′∆, α = W∆, α +
Le

2
(ie, αig, α − ie, βig, β) + Leie, 0ig, α ,

W ′∆, β = W∆, β − Le

2
(ie, αig, β + ie, βig, α) + Leie, 0ig, β ,

(4.1)

where 6W ′Σ, 0 is the total energy (factor 6 is just a convention in the definition of Σ, 0 com-
ponents) stored in all MMC capacitances as well as in the inductances of the DC and AC
transmission lines connected to the MMC. Assume that the red terms containing Lg in (3.4)
are practically negligible, but not the red terms containing Ld, which together corresponds to
a system with a long DC link but shorter AC grid lines. Even if the AC grid transmission
lines are long (Lg ∼ 0.1 H), since the trajectory being designed is such to maintain the AC
grid lines at their steady state operation condition, relation Lgωg îg ≪ ûg is always satisfied
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for the typical operation state of the AC grid. Taking into account the previously discussed
simplification, the resulting dynamic equations for the 6 energy components (4.1) now become

Ẇ ′Σ, 0 ≈
uCr

2
ie, 0 −

1

4
(ug, α ig, α + ug, β ig, β) ,

Ẇ ′Σ, α ≈ −3Ld

2

die, 0
dt

ie, α +
uCr

2
ie, α − 1

4
(ug, α ig, α − ug, β ig, β) +

u∆, 0

4
ig, α ,

Ẇ ′Σ, β ≈ −3Ld

2

die, 0
dt

ie, β +
uCr

2
ie, β +

1

4
(ug, α ig, β + ug, β ig, α) +

u∆, 0

4
ig, β ,

Ẇ ′∆, 0 ≈ − (ug, α ie, α + ug, β ie, β) + u∆, 0 ie, 0 ,

Ẇ ′∆, α ≈ −3Ld

2

die, 0
dt

ig, α +
uCr

2
ig, α − (ug, α ie, α − ug, β ie, β)− 2ug, α ie, 0 + u∆, 0 ie, α ,

Ẇ ′∆, β ≈ −3Ld

2

die, 0
dt

ig, β +
uCr

2
ig, β + (ug, α ie, β + ug, β ie, α)− 2ug, β ie, 0 + u∆, 0 ie, β .

(4.2)

In absence of those contributions proportional to die, 0
dt , these 6 equations could in principle

being used to obtain the 6 variables
{
ie, 0, ie, α/β, ig, α/β, u∆, 0

}
as a function of the 6 derivatives

{

Ẇ ′Σ, 0/α/β , Ẇ
′
∆, 0/α/β

}

for some given DC and AC grid voltages
{
uCr, ug, α/β

}
. This is the

starting point for the following discussion.
For the considered nonlinear system equations (3.1), which are described by a state vector

with 19 components ~x19d =
(
uCs ist, d/q uib, d/q irc, d/q uCr ie, 0 Wj=1,...,6 ie, α/β ig, α/β

)T

and driven by the 10 dimensional input vector ~u19d =
(
ss, d/q src, d/q uΣ/∆, 0/α/β

)T , a possi-
ble first candidate for a flat output vector having the same number of components as the input
vector, is the following one

~y =











y1 = û2ib
y2 = ie, 0

y3 = WA = Cs
2 u2Cs +

3
2
Lst
2

(

i2st, d + i2st, q

)

+ 3
2
Cf

2

(

u2ib, d + u2ib, q

)

y4 = WB = 3
2
Lrc
2

(

i2rc, d + i2rc, q

)

+ Cr
2 u2Cr + 3

(
3Ld
2 + Le

)

i2e, 0
y5/.../10 = W ′Σ/∆, 0/α/β











. (4.3)

The selection of the previous 10 variables as flat output components (4.3) might seem quite
arbitrary, but it is not when considering that all of them actually represent energy components:
besides the last 5 output components y6/.../10 describing the internal energy distribution within
the 6 MMC arms (except for the total energy, described by y5), y2 = ie, 0 and y5 = W ′Σ, 0 allow to
separate the energy stored in the MMC capacitances from that stored in the DC link inductance
(the latter proportional to L′d i

2
e 0). Similarly, y3 = WA and y4 = WB describe the energy stored

in each of the two converter stations located in the island bus subsystem, together with the
transmission lines attached to them as well as the filter capacitance at the wind generator: thus,
it is the role of y1 = û2ib to separate the filter energy (the latter proportional to Cf û

2
ib) from

the STATCOM energy, both of them added together in y3, and therefore, allow a separated
control of the most relevant energy components; and again y2 permits the separation in y4 of
the DC link inductance energy from the recitifier energy.

The reason, why energy components are a good choice for candidates of flat output com-
ponents, is actually due to the way where the three converter stations are located inside the
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AC-DC-AC power system: it is the converter where the driving input variables act (the switch-
ing state of the converters determines how the power flow across the different subsystems takes
place) controlling the dynamics of the current(s) attached to the converter. Since these input
variables appear in the dynamic equations of the currents, and the currents also describe the
derivatives of the energy components (in general: energy change ∼ power ∼ voltage × current),
such energy components display a high relative degree, since in general not until reaching the
second derivative of the energy, and as a result, not until the first derivative of the currents
entering or leaving the corresponding converter, some of the input variables appear. Therefore,
properly chosen energy components are good candidates for flat output variables.

This strategy extends the ideas already published in [14], but this time generalized to an
MMC converter as DC-AC inverter (instead of a conventional converter). Using the 6 energy
components as a flat output vector for describing the current and energy dynamics inside an
MMC has also been proposed in [25], although the derivation in the current work was carried
out independently and without prior knowledge of such papers, which were read much later
when this work was nearly completed.

However, the proposed flat output components in (4.3) are not yet a flat output vector
since the sum of the relative degrees is still only 13,

y1 = û2ib −→ r1 = 2 ,

y2 = ie, 0 −→ r2 = 1 ,

y3 = WA −→ r3 = 2 ,

y4 = WB −→ r4 = 1 ,

y5 = W ′Σ, 0 −→ r5 = 2 ,

y6/.../10 = W ′Σ/∆, α/β, W
′
∆, 0 −→ r6/.../10 = 1 ,

(4.4)

leaving a gap of 6 with respect to the dimension of the original state vector (dim(~x19d) = 19).
The derivation of these relative degrees when using ~u19d =

(
ss, d/q src, d/q uΣ/∆, 0/α/β

)T as
input and the equations of motion (3.1), as well as (4.2) is the following:

• y1 = û2ib:
d
dt

(
û2ib
)
∼ ~uib ·~iw , ~uib ·~ist , ~uib ·~irc ,

d2

dt2

(
û2ib
)
∼ uCs

d

dt
~ist ∼ ~ss
︷︸︸︷

~ss ·~uib , uCr

d

dt
~irc ∼ ~src
︷︸︸︷

~src ·~uib −→ r1 = 2 .

• y2 = ie, 0: d
dt ie, 0 ∼ uΣ0 −→ r2 = 1 .

• y3 = WA:

d

dt
WA ∼ ~uib ·~iw , ~uib ·~irc , û2ib ,

d2

dt2
WA ∼ uCr

d

dt
~irc ∼ ~src
︷︸︸︷

~src ·~uib −→ r3 = 2 .

• y4 = WB:

d

dt
WB ∼ uΣ, 0 ie, 0 −→ r4 = 1 .
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• y5 = W ′Σ, 0:

d

dt
W ′Σ, 0 ∼ uCr ie, 0

d2

dt2
W ′Σ, 0 ∼ uCr

d

dt
ie, 0 ∼ uΣ0

︷︸︸︷
uΣ, 0 , ~ug ·

d

dt
ig, α/β ∼ u∆α/β

︷ ︸︸ ︷
u∆, α/β −→ r5 = 2 .

• y6/.../10 = W ′Σ/∆, α/β :

d

dt
W ′Σ/∆, α/β ∼ u∆, 0 ig, α/β , u∆, 0 ie, 0 , u∆, 0 ie, α/β −→ r6/.../10 = 1 .

Nevertheless, such a gap between the sum of relative degrees and the dimension of the orig-
inal state vector can be significantly reduced by extending the original state vector, eventually
closing the gap for an appropriate choice of such extended state vector, always assuming the sim-
plification discussed above regarding those contributions proportional to Lg in Ẇ∆, α/β/0 (3.4).
As a first step, let us include the following 10 components

{
src, d/q, uΣ/∆, 0, uΣ/∆, α/β , u̇Σ/∆, 0

}

into the state vector, removing them from the original input vector, and simultaneously by
promoting

{
ṡrc, d/q, üΣ/∆, 0, u̇Σ/∆, α/β

}
as new input components in their place

~x29d =
































x1 = uCs

x2/3 = ist, d/q
x4/5 = uib, d/q
x6/7 = irc, d/q
x8 = uCr

x9 = ie, 0
x10/.../15 = Wj=1,...,6

x16/17 = ie, α/β
x18/19 = ig, α/β
x20/21 = src, d/q
x22 = uΣ, 0

x23 = u∆, 0

x24/25 = uΣ, α/β

x26/27 = u∆, α/β

x28 = u̇Σ, 0

x29 = u̇∆, 0
































, ~u29d =











u1/2 = ss, d/q
u3/4 = ṡrc, d/q
u5 = üΣ, 0

u6 = ü∆, 0

u7/8 = u̇Σ, α/β

u9/10 = u̇∆, α/β











, (4.5)

where now the resulting relative degree of most of the 10 components yi in (4.3) increases
significantly (the exact derivation of each respective relative degree will be discussed in the
next section. Here, only the result is stated for better following the derivation)

y1 = û2ib −→ r1 = 2 ,

y2 = ie, 0 −→ r2 = 3 ,

y3/4 = WA/B −→ r3/4 = 3 ,

y5/.../10 = W ′Σ/∆, 0/α/β −→ r5/.../10 = 3 .

(4.6)

Despite the addition of following 10 new state components,
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• 2 from “island bus+rectifier+HVDC link” subsystem: src, d/q

• 8 from “MMC+AC grid” subsystem: uΣ/∆, 0, uΣ/∆, α/β, u̇Σ/∆, 0

the relative degrees of the output components related to the first subsystem consisting of
“island bus+rectifier+HVDC link” profit collectively by an amount of 5, whereas the output
components W ′Σ/∆, α/β/0 associated with the subsystem “MMC+AC grid” profit altogether by
an increase of 11. As a result, the sum of all relative degrees now equals 29, which is just the
dimension of the extended state vector. Therefore, the 10 output variables in (4.3) define a flat
output vector for the energy stored in the considered dynamics when the latter is being driven
by ~u29d =

(
ss, d/q ṡrc, d/q üΣ/∆, 0 u̇Σ/∆, α/β

)T , always assuming that the AC grid inductance
is negligible. Table 4.1 provides a brief overview of the relative degree of the flat output vector
when considering the dynamics described by the original state vector ~x19d as well as when
described by the extended state vector ~x29d.

output components
relative degree ri

for dynamics described by ~x19d

relative degree ri
for dynamics described by ~x29d

y1 = û2ib r1 = 2 r1 = 2

y2 = ie, 0 r2 = 1 r2 = 3

y3 = WA r3 = 2 r3 = 3

y4 = WB r4 = 1 r4 = 3

y5 = W ′Σ, 0 r5 = 2 r5 = 3

y6/.../10 = W ′Σ/∆, α/β, W
′
∆, 0 r6/.../10 = 1 r6/.../10 = 3

10∑

i=1

ri 13 ✗ (gap of 6) 29 ✓ (no gap)

Table 4.1: Relative degree of the flat output vector for dynamics described using
~x19d and using ~x29d

It is important to note that the proposed flat output vector in (4.3) is an approximated flat
output vector due to the neglecting of the red terms in (3.4) related to the energy stored in
the (relatively) small inductances of the AC grid lines. This can be safely done when such low
energy contributions are compared to the energy stored in the converter capacitances or in the
DC link inductance. Nevertheless, if those AC grid inductance energies were not so negligible
and thus their separated energy has to be controlled, the previously introduced candidate for
a flat output vector would not suffice for fully describing the whole system dynamics.

The complete derivation of the relative degree for each component of the flat output vector
will be discussed in more detail in the section that follows. The reader not interested in the
mathematical proof can skip the next section and continue with the discussion on the feedback
control in the section 4.5 on page 82.

It is worth recalling that the condition for the existence of an approximated flat output
vector is due to the neglecting of the red terms containing Lg but not the red terms with Ld in
the dynamics of the energy differences between the upper and lower MMC arms as indicated
in the equation (3.4) on page 46.
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4.3 Derivation of the relative degrees for each component of the
flat output vector

For the system dynamics described by the extended state vector ~x29d and driven by the extended
input vector ~u29d as defined in (4.5), let us consider the following output vector

~y =
(

y1 = û2ib y2 = ie, 0 y3 = WA y4 = WB y5/.../10 = W ′Σ/∆, 0/α/β

)T
.

Firstly, the first and second time derivatives of each output components are calculated in or-
der to determine their relative degrees, where each component of the input vector ~u29d =
(
ss, d/q ṡrc, d/q üΣ/∆, 0 u̇Σ/∆, α/β

)
is marked by a vertical arrow. Additional auxiliary rela-

tion used in the derivation can be found in the Appendix B on page 127.

• y1 = û2ib:

d

dt

(
û
2
ib

)
= −

2

RfCf
û
2
ib +

2

Cf

(

~uib ·~iw + ~uib ·~ist − ~uib ·~irc

)

, (4.7)

d2

dt2

(
û
2
ib

)
= −

2

RfCf

d

dt

(
û
2
ib

)
+

2

Cf

d

dt

(

~uib ·~iw

)

+
2

Cf

d

dt

(

~uib ·~ist

)

no ~u

−
2

Cf

d

dt

(

~uib ·~irc

)

+
2

LstCf
uCs

⇓
~ss ·~uib .

(4.8)

• y2 = ie, 0:

d

dt
ie, 0 = −

R′

d

L′

d

ie, 0 −
1

L′

d

uΣ, 0 +
1

2L′

d

uCr , (4.9)

d2

dt2
ie, 0 = −

3

2L′

dCr
ie, 0 −

R′

d

L′

d

d

dt
ie, 0 −

1

L′

d

u̇Σ, 0 +
3

4L′

dCr
~src ·~irc . (4.10)

• y3 = WA:
d

dt
WA =

3

2
~uib ·~iw −

3

2
~uib ·~irc −

3

2Rf
û
2
ib , (4.11)

d2

dt2
WA = −

3

2RfCf

(

~uib ·~iw

)

−
3ω0

2

(

~u
T
ib

(
0 1
−1 0

)

~iw

)

+
3

2
~uib ·~̇iw +

3

2

(
Rrc

Lrc
+

1

RfCf

)(

~uib ·~irc

)

+
3

2Cf

(

~i
2
w +~i

2
rc +~ist ·~iw −~ist ·~irc − 2~irc ·~iw

)

−
3

2Lrc
û
2
ib +

3

2Lrc
uCr ~src · ~uib −

3

2Rf

d

dt

(
û
2
ib

)
. (4.12)

• y4 = WB :
d

dt
WB =

3

2
~uib ·~irc − 6uΣ, 0ie, 0 −

3Rrc

2
~i
2
rc − 6R′

die, 0
2
, (4.13)

d2

dt2
WB = −

3

2

(
3Rrc

Lrc
+

1

RfCf

)(

~uib ·~irc

)

+
3

2Cf

(

~irc ·~iw +~irc ·~ist −~i
2
rc

)

+
3R2

rc

Lrc

~i
2
rc +

3

2Lrc
û
2
ib

− 6u̇Σ, 0ie, 0 − 6uΣ, 0
d

dt
ie, 0 − 12R′

die, 0
d

dt
ie, 0 +

3Rrc

2Lrc
uCr ~src ·

(

2~irc −
1

Rrc
~uib

)

. (4.14)

Together with the 6 MMC energy components, it should be noted that the simplification as
discussed in section 4.2 on page 67 regarding the contributions proportional to Lg in Ẇ∆, 0/α/β :∣
∣
∣
∣
Lg

dig, α/β

dt

∣
∣
∣
∣
≪
∣
∣ug, α/β

∣
∣ is always applied and marked by (*) when used in the derivation

• y5 = W ′Σ, 0:

d

dt
W

′

Σ, 0

(∗)
≈ −

Re

2

(
i
2
e, α + i

2
e, β

)
−

R′

g

8

(
i
2
g, α + i

2
g, β

)
+

(

L
′

d
d

dt
ie, 0 + uΣ, 0

)

ie, 0 −
ug, α ig, α + ug, β ig, β

4
, (4.15)

d2

dt2
W

′

Σ, 0 = +
R2

e

Le

(
i
2
e, α + i

2
e, β

)
+

R′2
g

4L′
g

(
i
2
g, α + i

2
g, β

)
+

3

4

R′

g

L′
g

(ug, α ig, α + ug, β ig, β)
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+

(

L
′

d

(

ie, 0
d2

dt2
ie, 0 +

(
d

dt
ie, 0

)2
)

+ uΣ, 0
d

dt
ie, 0

)

−
u̇g, α ig, α + u̇g, β ig, β

4
+

u2
g, α + u2

g, β

2L′
g

+
Reie, α

Le
uΣ, α +

Reie, β

Le
uΣ, β +

R′

gig, α + ug, α

4L′
g

u∆, α +
R′

gig, β + ug, β

4L′
g

u∆, β + ie, 0 u̇Σ, 0

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

. (4.16)

• y6 = W ′Σ, α:

d

dt
W

′

Σ, α

(∗)
≈ −

Re

2

(
i
2
e, α − i

2
e, β

)
−

R′

g

8

(
i
2
g, α − i

2
g, β

)
+

(

Le
d

dt
ie, 0 −Reie, 0 + uΣ, 0

)

ie, α

−
ug, α ig, α − ug, β ig, β

4
+

u∆, 0

4
ig, α , (4.17)

d2

dt2
W

′

Σ, α = +
R2

e

Le

(
i
2
e, α − i

2
e, β

)
+

R′2
g

4L′
g

(
i
2
g, α − i

2
g, β

)
+

3

4

R′

g

L′
g

(ug, α ig, α − ug, β ig, β)

+

(

Le
d2

dt2
ie, 0 −

Re

Le

(

2Le
d

dt
ie, 0 −Reie, 0 + uΣ, 0

))

ie, α −
u̇g, α ig, α − u̇g, β ig, β

4
+

u2
g, α − u2

g, β

2L′
g

−
R′

g

4L′
g

u∆, 0ig, α −
1

2L′
g

u∆, 0ug, α+
Reie, α − Le

d
dt
ie, 0 +Reie, 0 − uΣ, 0

Le
uΣ, α −

Reie, β

Le
uΣ, β

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

+
R′

gig, α + ug, α − u∆, 0

4L′
g

u∆, α −
R′

gig, β + ug, β

4L′
g

u∆, β + ie, α u̇Σ, 0 +
ig, α

4
u̇∆, 0

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

. (4.18)

• y7 = W ′Σ, β:

d

dt
W

′

Σ, β

(∗)
≈ +Reie, αie, β +

R′

g

4
ig, αig, β +

(

Le
d

dt
ie, 0 −Reie, 0 + uΣ, 0

)

ie, β

+
ug, α ig, β + ug, β ig, α

4
+

u∆, 0

4
ig, β , (4.19)

d2

dt2
W

′

Σ, β = −
2R2

e

Le
ie, αie, β −

R′2
g

2L′
g

ig, αig, β −
3

4

R′

g

L′
g

(ug, α ig, β + ug, β ig, α)

+

(

Le
d2

dt2
ie, 0 −

Re

Le

(

2Le
d

dt
ie, 0 −Reie, 0 + uΣ, 0

))

ie, β +
u̇g, α ig, β + u̇g, β ig, α

4
−

ug, αug, β

L′
g

−
R′

g

4L′
g

u∆, 0ig, β −
1

2L′
g

u∆, 0ug, β−
Reie, β

Le
uΣ, α −

Reie, α + Le
d
dt
ie, 0 −Reie, 0 + uΣ, 0

Le
uΣ, β

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

−
R′

gig, β + ug, β

4L′
g

u∆, α −
R′

gig, α + ug, α + u∆, 0

4L′
g

u∆, β + ie, β u̇Σ, 0 +
ig, β

4
u̇∆, 0

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

. (4.20)

• y8 = W ′∆, 0:

d

dt
W

′

∆, 0

(∗)
≈ −

R′

g +Re

2
(ie, αig, α + ie, βig, β)− (ug, α ie, α + ug, β ie, β) + u∆, 0 ie, 0 , (4.21)

d2

dt2
W

′

∆, 0 = +
R′

g +Re

2

(
R′

g

L′
g

+
Re

Le

)

(ie, αig, α + ie, βig, β) +

(
R′

g +Re

L′
g

+
Re

Le

)

(ug, α ie, α + ug, β ie, β)

+ u∆, 0
d

dt
ie, 0 − (u̇g, αie, α + u̇g, βie, β)+

(R′

g +Re)ig, α + 2ug, α

2Le
uΣ, α +

(R′

g +Re)ig, β + 2ug, β

2Le
uΣ, β

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

+
(R′

g +Re)ie, α

2L′
g

u∆, α +
(R′

g +Re)ie, β

2L′
g

u∆, β + ie, 0u̇∆, 0

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

. (4.22)

• y9 = W ′∆, α:

d

dt
W

′

∆, α

(∗)
≈ −

R′

g +Re

2
(ie, αig, α − ie, βig, β) +

(

Le
d

dt
ie, 0 −R

′

gie, 0 + uΣ, 0

)

ig, α

− (ug, α ie, α − ug, β ie, β)− 2ug, α ie, 0 + u∆, 0 ie, α , (4.23)
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d2

dt2
W

′

∆, α = +
R′

g +Re

2

(
R′

g

L′
g

+
Re

Le

)

(ie, αig, α − ie, βig, β) +

(
R′

g +Re

L′
g

+
Re

Le

)

(ug, α ie, α − ug, β ie, β)

+

(

Le
d2

dt2
ie, 0 −

R′

g

L′
g

(

(L′

g + Le)
d

dt
ie, 0 −R

′

gie, 0 + uΣ, 0

))

ig, α

−
2

L′
g

(

(L′

g + Le)
d

dt
ie, 0 −R

′

gie, 0 + uΣ, 0

)

ug, α − (u̇g, α ie, α − u̇g, β ie, β)− 2u̇g, αie, 0

−
Re

Le
u∆, 0ie, α+

(R′

g +Re)ig, α + 2ug, α − 2u∆, 0

2Le
uΣ, α −

(R′

g +Re)ig, β + 2ug, β

2Le
uΣ, β

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

+
(R′

g +Re)ie, α − 2Le
d
dt
ie, 0 + 2R′

gie, 0 − 2uΣ, 0

2L′
g

u∆, α −
(R′

g +Re)ie, β

2L′
g

u∆, β + ig, α u̇Σ, 0 + ie, α u̇∆, 0

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

.

(4.24)

• y10 = W ′∆, β :

d

dt
W

′

∆, β

(∗)
≈ +

R′

g +Re

2
(ie, αig, β + ie, βig, α) +

(

Le
d

dt
ie, 0 −R

′

gie, 0 + uΣ, 0

)

ig, β

+ (ug, α ie, β + ug, β ie, α)− 2ug, β ie, 0 + u∆, 0 ie, β , (4.25)

d2

dt2
W

′

∆, β = −
R′

g +Re

2

(
R′

g

L′
g

+
Re

Le

)

(ie, αig, β + ie, βig, α)−

(
R′

g +Re

L′
g

+
Re

Le

)

(ug, α ie, β + ug, β ie, α)

+

(

Le
d2

dt2
ie, 0 −

R′

g

L′
g

(

(L′

g + Le)
d

dt
ie, 0 −R

′

gie, 0 + uΣ, 0

))

ig, β

−
2

L′
g

(

(L′

g + Le)
d

dt
ie, 0 −R

′

gie, 0 + uΣ, 0

)

ug, β + (u̇g, α ie, β + u̇g, β ie, α)− 2u̇g, βie, 0

−
Re

Le
u∆, 0ie, β−

(R′

g +Re)ig, β + 2ug, β

2Le
uΣ, α −

(R′

g +Re)ig, α + 2ug, α + 2u∆, 0

2Le
uΣ, β

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

−
(R′

g +Re)ie, β

2L′
g

u∆, α −
(R′

g +Re)ie, α + 2Le
d
dt
ie, 0 − 2R′

gie, 0 + 2uΣ, 0

2L′
g

u∆, β + ig, β u̇Σ, 0 + ie, β u̇∆, 0

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

.

(4.26)

It is worth noticing, that the terms containing the 6 components
{
uΣ, α/β , u∆, α/β, u̇Σ, 0, u̇∆, 0

}

in the 6 equations (4.16), (4.18), (4.20), (4.22), (4.24) and (4.26) are marked with a wavy line.
Whereas for equation (4.8) (and the following equations below),

no ~u

denotes all terms without

components of the input vector.
Apart from the first component of the flat output vector, y1 = û2ib, which already con-

tains the input components ss, d/q in the second time derivative (4.8), the current component,
y2 = ie, 0, and the energy components of the flat output vector, y3/4 = WA/B as well as
y5/.../10 = W ′Σ/∆, 0/α/β , only require the third time derivative for input components to appear.
Therefore, the first flat output component has a relative degree of r1 = 2, while the remaining
9 flat output components have a relative degree of r2/.../10 = 3.

• y2 = ie, 0:

d3

dt3
ie, 0 = −

3

2L′

dCr

d

dt
ie, 0 −

R′

d

L′

d

d2

dt2
ie, 0 −

3

4L′

dCr

Rrc

Lrc
~src ·~irc −

3ω0

4L′

dCr

~i
T
rc

(
0 1
−1 0

)

~src +
3

4LrcL′

dCr
~uib · ~src

−
3

4LrcL′

dCr
uCr~s

2
rc +

3

4L′

dCr

⇓

~̇src ·~irc −
1

L′

d

⇓
üΣ, 0 . (4.27)

• y3 = WA:

d3

dt3
WA =

3

2

d2

dt2

(

~uib ·~iw

)

no ~u

−
3

2

d2

dt2

(

~uib ·~irc

)

no ~u

+
3

R2
fCf

d

dt

(
û
2
ib

)
−

3

RfCf

d

dt

(

~uib ·~iw

)

−
3

RfCf

d

dt

(

~uib ·~ist

)

no ~u
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+
3

RfCf

d

dt

(

~uib ·~irc

)

+
3

2LstCf
uCs

⇓
~ss ·

(

~iw −~irc −
2

Rf
~uib

)

+
3

2Lrc
uCr

⇓

~̇src ·~uib . (4.28)

• y4 = WB:

d3

dt3
WB =

3

2

d2

dt2

(

~uib ·~irc

)

no ~u

− 12u̇Σ, 0
d

dt
ie, 0 − 6uΣ, 0

d2

dt2
ie, 0 −

3Rrc

2

d2

dt2

(

~i
2
rc

)

no ~u

− 12R′

d

(
d

dt
ie, 0

)2

− 12R′

die, 0
d2

dt2
ie, 0 +

3

2LstCf
uCs

⇓
~ss ·~irc +

3Rrc

2Lrc
uCr

⇓

~̇src ·

(

2~irc −
1

Rrc
~uib

)

− 6
⇓

üΣ, 0 ie, 0 . (4.29)

• y5 = W ′Σ, 0:

d3

dt3
W

′

Σ, 0 = −
Re

2

d2

dt2

(
i
2
e, α + i

2
e, β

)

no ~u

−
R′

g

8

d2

dt2

(
i
2
g, α + i

2
g, β

)

no ~u

+ L
′

d
d2

dt2

(

ie, 0
die, 0

dt

)

no ~u

+
d2

dt2
(uΣ, 0ie, 0)

no ~u

−
1

4

d2

dt2
(ug, αig, α)

no ~u

−
1

4

d2

dt2
(ug, βig, β)

no ~u

+
3

4Cr
ie, 0

⇓

~̇src ·~irc +
Reie, α

Le

⇓
u̇Σ, α +

Reie, β

Le

⇓
u̇Σ, β +

R′

gig, α + ug, α

4L′
g

⇓
u̇∆, α +

R′

gig, β + ug, β

4L′
g

⇓
u̇∆, β .

(4.30)

• y6 = W ′Σ, α:

d3

dt3
W

′

Σ, α = −
Re

2

d2

dt2

(
i
2
e, α − i

2
e, β

)

no ~u

−
R′

g

8

d2

dt2

(
i
2
g, α − i

2
g, β

)

no ~u

+ Le
d2

dt2

(

ie, α
die, 0

dt

)

no ~u

−Re
d2

dt2
(ie, αie, 0)

no ~u

+
d2

dt2
(uΣ, 0ie, α)

no ~u

−
1

4

d2

dt2
(ug, αig, α)

no ~u

+
1

4

d2

dt2
(ug, βig, β)

no ~u

+
1

4

d2

dt2
(u∆, 0ig, α)

no ~u

+
3

4Cr

Le

L′

d

ie, α

⇓

~̇src ·~irc +
Reie, α − Le

die, 0
dt

+Reie, 0 − uΣ, 0

Le

⇓
u̇Σ, α −

Reie, β

Le

⇓
u̇Σ, β

+
R′

gig, α + ug, α − u∆, 0

4L′
g

⇓
u̇∆, α −

R′

gig, β + ug, β

4L′
g

⇓
u̇∆, β +

(

1−
Le

L′

d

)

ie, α
⇓

üΣ, 0 +
ig, α

4

⇓
ü∆, 0 . (4.31)

• y7 = W ′Σ, β:

d3

dt3
W

′

Σ, β = +Re
d2

dt2
(ie, αie, β)

no ~u

+
R′

g

4

d2

dt2
(ig, αig, β)

no ~u

+ Le
d2

dt2

(

ie, β
die, 0

dt

)

no ~u

−Re
d2

dt2
(ie, βie, 0)

no ~u

+
d2

dt2
(uΣ, 0ie, β)

no ~u

+
1

4

d2

dt2
(ug, αig, β)

no ~u

+
1

4

d2

dt2
(ug, βig, α)

no ~u

+
1

4

d2

dt2
(u∆, 0ig, β)

no ~u

+
3

4Cr

Le

L′

d

ie, β

⇓

~̇src ·~irc −
Reie, β

Le

⇓
u̇Σ, α −

Reie, α + Le
die, 0
dt

−Reie, 0 + uΣ, 0

Le

⇓
u̇Σ, β

−
R′

gig, β + ug, β

4L′
g

⇓
u̇∆, α −

R′

gig, α + ug, α + u∆, 0

4L′
g

⇓
u̇∆, β +

(

1−
Le

L′

d

)

ie, β
⇓

üΣ, 0 +
ig, β

4

⇓
ü∆, 0 . (4.32)

• y8 = W ′∆, 0:

d3

dt3
W

′

∆, 0 = −
R′

g +Re

2

d2

dt2
(ie, αig, α + ie, βig, β)

no ~u

−
d2

dt2
(ug, αie, α)

no ~u

−
d2

dt2
(ug, βie, β)

no ~u

+
d2

dt2
(u∆, 0ie, 0)

no ~u

+
(R′

g +Re)ig, α + 2ug, α

2Le

⇓
u̇Σ, α +

(R′

g +Re)ig, β + 2ug, β

2Le

⇓
u̇Σ, β

+
(R′

g +Re)ie, α

2L′
g

⇓
u̇∆, α +

(R′

g +Re)ie, β

2L′
g

⇓
u̇∆, β +ie, 0

⇓
ü∆, 0 . (4.33)
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• y9 = W ′∆, α:

d3

dt3
W

′

∆, α = −
R′

g +Re

2

d2

dt2
(ie, αig, α − ie, βig, β)

no ~u

+ Le
d2

dt2

(

ig, α
die, 0

dt

)

no ~u

−R
′

g
d2

dt2
(ig, αie, 0)

no ~u

+
d2

dt2
(uΣ, 0ig, α)

no ~u

−
d2

dt2
(ug, αie, α)

no ~u

+
d2

dt2
(ug, βie, β)

no ~u

+
d2

dt2
(u∆, 0ie, α)

no ~u

− 2
d2

dt2
(ug, αie, 0)

+
3

4Cr

Le

L′

d

ig, α

⇓

~̇src ·~irc +
(R′

g +Re)ig, α + 2ug, α − 2u∆, 0

2Le

⇓
u̇Σ, α −

(R′

g +Re)ig, β + 2ug, β

2Le

⇓
u̇Σ, β

+

R′

g+Re

2
ie, α − Le

die, 0
dt

+R′

gie, 0 − uΣ, 0

L′
g

⇓
u̇∆, α −

(R′

g +Re)ie, β

2L′
g

⇓
u̇∆, β +

(

1−
Le

L′

d

)

ig, α
⇓

üΣ, 0 +ie, α
⇓

ü∆, 0 .

(4.34)

• y10 = W ′∆, β :

d3

dt3
W

′

∆, β = +
R′

g +Re

2

d2

dt2
(ie, αig, β + ie, βig, α)

no ~u

+ Le
d2

dt2

(

ig, β
die, 0

dt

)

no ~u

−R
′

g
d2

dt2
(ig, βie, 0)

no ~u

+
d2

dt2
(uΣ, 0ig, β)

no ~u

+
d2

dt2
(ug, αie, β)

no ~u

+
d2

dt2
(ug, βie, α)

no ~u

+
d2

dt2
(u∆, 0ie, β)

no ~u

− 2
d2

dt2
(ug, βie, 0)

+
3

4Cr

Le

L′

d

ig, β

⇓

~̇src ·~irc −
(R′

g +Re)ig, β + 2ug, β

2Le

⇓
u̇Σ, α −

(R′

g +Re)ig, α + 2ug, α + 2u∆, 0

2Le

⇓
u̇Σ, β

−
(R′

g +Re)ie, β

2L′
g

⇓
u̇∆, α −

R′

g+Re

2
ie, α + Le

die, 0
dt

−R′

gie, 0 + uΣ, 0

L′
g

⇓
u̇∆, β +

(

1−
Le

L′

d

)

ig, β
⇓

üΣ, 0 +ie, β
⇓

ü∆, 0 .

(4.35)

A complete list of all the terms that contain the notation
no ~u

, as well as other auxiliary

relations, can be found in Appendix B on page 127.

4.4 Derivation of the extended state components in ~x29d

Consider the following scenario: the considered full system is perfectly described by the equa-
tions of motion, with no additional unmodeled effects or disturbances, and the output sensors
measure all flat output components without introducing any noise, allowing the time deriva-
tives to be estimated accurately from a sequence of present and previous values. In this case,
as already mentioned in the introduction to this chapter, the whole information of the system
is contained in the flat output vector and its derivatives. As a result, all components of the
extended state vector ~x29d can be extracted from the flat output components and their time
derivatives until the respective relative degree minus one, (ri − 1). These steps will be further
explained in the following subsections.

4.4.1 Reconstruction of the 6 extended state components
~ζ = (ie, α ie, β ig, α ig, β uΣ, 0 u∆, 0)

T

The reconstruction of the 6 components ~ζ =
(
ie, α ie, β ig, α ig, β uΣ, 0 u∆, 0

)T in the ex-
tended state vector will be obtained from the first time derivative of the flat output components
ẏ6/.../10 in equations (4.15), (4.17), (4.19), (4.21), (4.23) and (4.25). It corresponds to the so-
lution of the nonlinear algebraic equation system ~g(~ζ) = ~0 with the components of function
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vector ~g(~ζ) given by

g1 = −Ẇ
′

Σ, 0 −
Re

2

(
i
2
e, α + i

2
e, β

)
−

R′

g

8

(
i
2
g, α + i

2
g, β

)
+

(

L
′

d
d

dt
ie, 0 + uΣ, 0

)

ie, 0 −
ug, α ig, α + ug, β ig, β

4
,

g2 = −Ẇ
′

Σ, α −
Re

2

(
i
2
e, α − i

2
e, β

)
−

R′

g

8

(
i
2
g, α − i

2
g, β

)
+

(

Le
d

dt
ie, 0 −Reie, 0 + uΣ, 0

)

ie, α

−
ug, α ig, α − ug, β ig, β

4
+

u∆, 0

4
ig, α ,

g3 = −Ẇ
′

Σ, β +Reie, αie, β +
R′

g

4
ig, αig, β +

(

Le
d

dt
ie, 0 −Reie, 0 + uΣ, 0

)

ie, β

+
ug, α ig, β + ug, β ig, α

4
+

u∆, 0

4
ig, β ,

g4 = −Ẇ
′

∆, 0 −
R′

g +Re

2
(ie, αig, α + ie, βig, β)− (ug, α ie, α + ug, β ie, β) + u∆, 0 ie, 0 ,

g5 = −Ẇ
′

∆, α −
R′

g +Re

2
(ie, αig, α − ie, βig, β) +

(

Le
d

dt
ie, 0 −R

′

gie, 0 + uΣ, 0

)

ig, α

− (ug, α ie, α − ug, β ie, β)− 2ug, α ie, 0 + u∆, 0 ie, α ,

g6 = −Ẇ
′

∆, β +
R′

g +Re

2
(ie, αig, β + ie, βig, α) +

(

Le
d

dt
ie, 0 −R

′

gie, 0 + uΣ, 0

)

ig, β

+ (ug, α ie, β + ug, β ie, α)− 2ug, β ie, 0 + u∆, 0 ie, β .

(4.36)

This system can be solved numerically by means of the Newton-Raphson algorithm: from a
provisional solution ~ζ(prov) still not satisfying the equation system, an improved solution ~ζ is
obtained by linearization

~0 = ~g(~ζ) ≈ ~g(~ζ(prov)) +

(
∂~g

∂~ζ

)

~ζ(prov)

(

~ζ − ~ζ(prov)
)

,

~ζ ≈ ~ζ(prov) −
[(

∂~g

∂~ζ

)

~ζ(prov)

]−1

~g(~ζ(prov)) ,

(4.37)

with the 6× 6 quadratic matrix

∂~g

∂~ζ
=



















−Reie, α −Reie, β −

R′

gig, α+ug, α

4

−Reie, α + Le
die, 0

dt
− Reie, 0 + uΣ, 0 +Reie, β −

R′

gig, α+ug, α−u∆, 0
4

+Reie, β +Reie, α + Le
die, 0

dt
− Reie, 0 + uΣ, 0 +

R′

gig, β+ug, β
4

−

(R′

g+Re)ig, α+2ug, α

2
−

(R′

g+Re)ig, β+2ug, β
2

−

R′

g+Re

2
ie, α

−

(R′

g+Re)ig, α+2ug, α−2u∆, 0
2

+
(R′

g+Re)ig, β+2ug, β
2

−

R′

g+Re

2
ie, α + Le

die, 0
dt

− R′

gie, 0 + uΣ, 0

+
(R′

g+Re)ig, β+2ug, β
2

+
(R′

g+Re)ig, α+2ug, α+2u∆, 0
2

+
R′

g+Re

2
ie, β

−

R′

gig, β+ug, β
4

ie, 0 0

+
R′

gig, β+ug, β
4

ie, α
1
4
ig, α

+
R′

gig, α+ug, α+u∆, 0
4

ie, β
1
4
ig, β

−

R′

g+Re

2
ie, β 0 ie, 0

+
R′

g+Re

2
ie, β ig, α ie, α

+
R′

g+Re

2
ie, α + Le

die, 0
dt

− R′

gie, 0 + uΣ, 0 ig, β ie, β



















(4.38)

It should be noted that the existence of the inverse for the previous matrix when calculating
vector ~ζ is related to the controllability condition of the full dynamics, which will be discussed

later. Using matrices Nα =

(
+1 0
0 −1

)

& Nβ =

(
0 −1
−1 0

)

for a more compact notation, the
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determinant of matrix M6 =
∂~g

∂~ζ
is approximately given by

detM6 ≈ −
1

64

[

4

(

uΣ, 0 + Le
die, 0

dt

)

(

~i
T
e ~ug

)

︷ ︸︸ ︷

(
ie, α ie, β

)T
(
ug, α

ug, β

)

+u∆, 0

(

~i
T
g ~ug

)

+ 8ie, 0

(

uΣ, 0 + Le
die, 0

dt

)

u∆, 0

+
(
ig, α ig, β

)T
(
~ug

T
Nα~ug

~ug
T
Nβ~ug

)

︸ ︷︷ ︸
(

~i
T
g

(

~ug
T ~N~ug

))

]2

+
1

16

[ (

uΣ, 0 + Le
die, 0

dt

)(

~i
T
g ~ug

)

+ 4ie, 0

(

uΣ, 0 + Le
die, 0

dt

)2

+ u∆, 0

(

~i
T
e ~ug

)

+ ie, 0u
2
∆, 0

−ie, 0
(
u
2
g, α + u

2
g, β

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

+
(

~i
T
e

(

~ug
T ~N~ug

))
]2

, (4.39)

after neglecting those small contributions proportional to resistances R′g & Re. In steady state,
or close to it, where the AC grid oscillates with 1ωg, the internal MMC circular currents with
2ωg and the internal MMC common-mode voltage with 3ωg, all terms in the first square bracket
of detM6 oscillate with 3ωg and thus even during a relatively short time interval all those terms
are nearly averaged out and yields no relevant contribution. In contrast, all terms in the second
squared bracket above yield time independent contributions in steady state: the only negative
term, −ie, 0

(

u2g, α + u2g, β

)

(marked by a wavy line in (4.39), is unable to compensate all the
other terms since the power transfer across the MMC in conditions close to the steady state

leads to ie, 0uΣ, 0 ≈
iduCr

2
≈

(

~iTg ~ug

)

4
and thus

detM6 ≈ +
1

16ie, 0




1

4

(

~iTg ~ug

)2
+

1

4

(

~iTg ~ug

)2
−
(

ie, 0

îg

)2
(

îgûg

)2
+O(ie, u∆, 0)





2

.

(4.40)

Since the amplitude of the AC grid current is usually in the order of magnitude îg ∼ 2id = 6ie, 0,
the discussed negative term is never able to compensate the other positive terms: assuming a
nonvanishing power being injected into the MMC and subsequently transferred to the AC grid,

detM6 is always strictly positive, ensuring thus the existence of a matrix inverse for M6 =
∂~g

∂~ζ

and the corresponding reconstruction of the state variables in ~ζ.

4.4.2 Reconstruction of the 6 extended state components,
~ζ ′ = (uΣ, α uΣ, β u∆, α u∆, β u̇Σ, 0 u̇∆, 0)

T

Then, the reconstruction of the next 6 extended state components described by the vector
~ζ ′ =

(
uΣ, α uΣ, β u∆, α u∆, β u̇Σ, 0 u̇∆, 0

)T follows completely the same way as in the pre-
vious subsection, but this time from the second time derivative of the flat output components
ÿ6/.../10 in equations (4.16), (4.18), (4.20), (4.22), (4.24) and (4.26). As in the previous step,
this corresponds to the solution of the nonlinear algebraic equation system ~g′(~ζ ′) = ~0 where
the components of function vector ~g′(~ζ ′) can be easily obtained by shifting Ẅ ′Σ/∆, 0/α/β to the
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right hand side of the corresponding equations, for instance

g
′

1 = −Ẅ
′

Σ, 0 +
R2

e

Le

(
i
2
e, α + i

2
e, β

)
+

R′2
g

4L′
g

(
i
2
g, α + i

2
g, β

)
+

3

4

R′

g

L′
g

(ug, α ig, α + ug, β ig, β)

+

(

L
′

d

(

ie, 0
d2

dt2
ie, 0 +

(
d

dt
ie, 0

)2
)

+ uΣ, 0
d

dt
ie, 0

)

−
u̇g, α ig, α + u̇g, β ig, β

4
+

u2
g, α + u2

g, β

2L′
g

+
Reie, α

Le
uΣ, α +

Reie, β

Le
uΣ, β +

R′

gig, α + ug, α

4L′
g

u∆, α +
R′

gig, β + ug, β

4L′
g

u∆, β + ie, 0 u̇Σ, 0 ,

(4.41)

and similarly for the other 5 components. These 6 equations are again solved by means of

the Newton-Raphson algorithm, where the quadratic matrix
∂~g′

∂~ζ ′
is nearly identical to that in

(4.38), only this time each column is multiplied by the inverse of the corresponding inductance

∂~g′

∂~ζ′
=



























Reie, α
Le

Reie, β
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R′

gig, α+ug, α

4L′
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Le
−

Reie, β
Le
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4L′
g

−
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−
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−
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g
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g+Re)ig, α+2ug, α

2Le
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g+Re)ie, α

2L′
g
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−

(R′
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2Le
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2
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dt

+R′
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g

−

(R′
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2Le

−
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g+Re)ig, α+2ug, α+2u∆, 0
2Le

−

(R′
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g
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gig, β+ug, β

4L′
g

ie, 0 0

−

R′

gig, β+ug, β

4L′
g

ie, α
1
4
ig, α

−

R′

gig, α+ug, α+u∆, 0

4L′
g

ie, β
1
4
ig, β

(R′

g+Re)ie, β

2L′
g

0 ie, 0

−

(R′

g+Re)ie, β

2L′
g

ig, α ie, α

−

R′

g+Re

2
ie, α+Le

die, 0
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−R′

gie, 0+uΣ, 0

L′
g

ig, β ie, β


























(4.42)

The existence of the inverse of this latter matrix is guaranteed by the same discussion as that
following equation (4.39): the matrix can be inverted as long as there is a nonvanishing power
injection into the MMC which is also transferred to the AC grid.

4.4.3 Reconstruction of the remaining extended state components

Once
{
ie, α/β , ig, α/β , uΣ/∆, 0, uΣ, α/β , u∆, α/β , u̇Σ/∆, 0

}
have been determined, the remaining

components of the extended state vector can be calculated as follows:

• From ẏ2 =
d
dt ie, 0 (4.9) state component uCr can now be obtained:

uCr = 2

(

L′d
d

dt
ie, 0 +R′d ie, 0 + uΣ, 0

)

(4.43)

• Amplitude îrc follows now from y4 = WB (combined with y2 = ie, 0 and the solution of
the previous step).

îrc =

√

4

3Lrc

(

WB − 1

2
Cr u

2
Cr − 3L′d ie, 0

2

)

(4.44)
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• Phase ϕuib
is determined by ẏ3 = ẆA together with ẏ4 = ẆB; state components uib, d/q

are thus fully determined (together with y1).

ẆA + ẆB =
3

2

√

û2ib îw cos(ϕuib
✿✿✿

− ϕiw)

︷ ︸︸ ︷

~uib ·~iw −6uΣ, 0ie, 0 −
3û2ib
2Rf

− 3Rrc

2
î2rc − 6R′die, 0

2 (4.45)

ϕuib
= ϕuib

− arccos




~uib ·~iw
√

û2ib îw



 (4.46)

• Phase ϕirc by ẏ3 = ẆA; state components irc, d/q are thus fully determined.

ẆA =
3

2
~uib ·~iw − 3

2

√

û2ib îrc cos(ϕirc
✿✿✿

− ϕuib
)

︷ ︸︸ ︷

~uib ·~irc−
3û2ib
2Rf

(4.47)

ϕirc = ϕuib
+ arccos




~uib ·~irc
√

û2ib îrc



 (4.48)

• ~ist from the following two equations

d
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û
2
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û
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−
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+
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(
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û
2
ib î
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~iw (4.49)

• ~src from the following two equations
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.
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~src =
î2rc (~uib · ~src)−

(

~irc · ~src

)(

~uib ·~irc

)
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2
rc −

(

~uib ·~irc

)2

︸ ︷︷ ︸
[

~u
T
ib

(
0 1
−1 0

)

~irc

]2

~uib +
û2
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It is important to note that the previously discussed reconstruction of ~ist (4.49) and ~src
(4.50) is dependent on a non-vanishing reactive power at the two parts in the island bus,

~uTib

(
0 1
−1 0

)

~iw 6= 0 and ~uTib

(
0 1
−1 0

)

~irc 6= 0, respectively. In other words, without some

reactive power flowing across the island bus, there is no way to drive the system by just only
controlling the flat output components.

4.5 Derivation of the extended input components

Once all of the extended state vector, ~x29d has been determined, the components of the extended
input vector, ~u29d =

(
ss, d/q ṡrc, d/q üΣ/∆, 0 u̇Σ/∆, α/β

)
, are algebraically derived from the

highest time derivatives of the flat output components ( which is from those derivatives of order
corresponding to the respective relative degree, (r1 = 2, r2/.../8 = 3) ).





















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dt2
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W ′
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dt3
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d3
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d3
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
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
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




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







=

( ~A)
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︷ ︸︸ ︷

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



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
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
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


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b1,1 b1,2 0 0 0 0 0 0 0 0
0 0 b2,3 b2,4 b2,5 0 0 0 0 0

b3,1 b3,2 b3,3 b3,4 0 0 0 0 0 0
b4,1 b4,2 b4,3 b4,4 b4,5 0 0 0 0 0
0 0 b5,3 b5,4 0 0 b5,7 b5,8 b5,9 b5,10
0 0 b6,3 b6,4 b6,5 b6,6 b6,7 b6,8 b6,9 b6,10
0 0 b7,3 b7,4 b7,5 b7,6 b7,7 b7,8 b7,9 b7,10
0 0 0 0 0 b8,6 b8,7 b8,8 b8,9 b8,10
0 0 b9,3 b9,4 b9,5 b9,6 b9,7 b9,8 b9,9 b9,10
0 0 b10,3 b10,4 b10,5 b10,6 b10,7 b10,8 b10,9 b10,10


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



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ss, q
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
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

,

(4.51)

The complete derivation of all entries in matrix M10 and vector ~A can be found in Appendix
C on page 132. It is worth mentioning that the inversion of the extended input vector as a
function of the highest derivatives of the flat output components, which corresponds to a control
design, requires that the matrix M10, the so-called controllability matrix of the subsystem, to
be regular. In other words, the determinant of the controllability matrix M10 cannot be zero
in order for it to be invertible.

After neglecting every contribution proportional to the small internal resistance Re, the
following is the simplified form of the controllability matrix M10





























+ 2
LstCf

uCs ~uT
ib

~01×2 0

~01×2 + 3
4

1
L′

d
Cr

~iTrc −
1

L′

d

+ 3
2

1
LstCf

uCs

(

~iw −~irc −
2

Rf
~uib

)T
+ 3

2Lrc
uCr ~uT

ib 0

+ 3
2LstCf

uCs
~iTrc −

3
2Lrc

uCr

(
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−6ie, 0
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4Cr

ie, 0~i
T
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4Cr
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d





ie, α

ie, β



~iTrc

(

1 −
Le
L′

d

)




ie, α

ie, β





~01×2
~01×2 0
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4Cr
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d





ig, α

ig, β



~iTrc

(

1 −
Le
L′

d

)




ig, α

ig, β




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0 ~01×2
~01×2

0 ~01×2
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~01×2

0 ~01×2
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
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

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g
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









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







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




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
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








︸ ︷︷ ︸

M10,simplified
(4.52)

The existence of the inverse for the matrix M10 is simply the controllability condition in
the full dynamics, allowing each (extended) input components to be expressed as an algebraic
relation of the derivatives of the flat output components from their lowest (zero) derivative to
that corresponding relative degree. The determinant of the above simplified square matrix M10
in the case where all resistances are neglected (a robustly controllable system cannot depend
on a weak dissipation at the resistances) is given by

detM6

eq. (4.39)
≈ −

1

64

[

4
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,

detM10 ≈ −
27

8

(uCs)
2
uCr

L2
stC

2
fLrcCrL′

dL
′2
gL2

e

(

~iw
T

(
0 +1
−1 0

)
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)(

~i
T
rc

(
0 +1
−1 0

)

~uib

)

detM6 +O

(
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L′

d

)

, (4.53)

with additional corrections proportional to Le/L
′
d which are negligible since the long DC link

has a larger inductance than the internal conductors within the MMC: L′d ≫ Le. It is also worth
noting that, as already mentioned on page 76, the controllability condition is determined by the
matrix M6 being used to reconstruct the (extended) state components related to the MMC,
~ζ =

(
ie, α ie, β ig, α ig, β uΣ, 0 u∆, 0

)T . Hence, in the considered 29d full dynamics, the
simultaneous conditions for a feasible calculation of the (extended) input vector ~u29d from the
derivatives of the flat outputs read

1. STATCOM at the beginning of the island bus operating and not fully discharged: uCs 6= 0.

2. Reactive power being injected into the island bus generators as well as into the rectifier:
(

~iw
T

(
0 +1
−1 0

)

~uib

)

6= 0 &
(

~iTrc

(
0 +1
−1 0

)

~uib

)

6= 0.

3. Rectifier at the end of the island bus operating and not fully discharged: uCr 6= 0.
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4. Nonvanishing power flowing across the long DC link from the rectifier into the MMC
converter, the latter transfering this power as effective power into the AC grid, as already
derived from detM6 6= 0.

In other words, matrix M10 can be inverted if all of the following aforementioned conditions
are satisfied. Provided that these conditions are satisfied, the full system dynamics can be
exactly linearized as follows


















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
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





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)

no ~u

]

=⇒
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
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




















= ~v , (4.54)

where now the vector ~v can be designed in such a way to produce the desired trajectory.

• Either as a feedforward control, if the system dynamics is accurately described by the
considered equations of motion and no disturbance occurs, and additionally the system
starts very close to the initial state of the desired trajectory. Hence, a perfect trajectory
tracking can be attained by driving the system with the following extended input,

~uff = (M∗10)
−1
[

~v − ~A∗
]

, ~v =
(
ÿ∗1

...
y ∗2,...,10

)T (4.55)

where the desired trajectory is denoted by ∗ (no complex conjugation).

• Or as a feedback control, if there is some unmodelled disturbance and for a relatively
strong deviation from the desired trajectory. Therefore, to ensure an asymptotic stable
trajectory tracking to compensate the error between the actual flat output components
yi and the desired behaviour in such components y∗i , the system will be driven with the
following resulting extended input,

~ufb = (M10)
−1
[

~v − ~A
]

, (4.56)

however, this time ~v equals to

~v =







d2y∗

1

dt2 − c
(0)
1 (y1 − y∗1)− c

(1)
1 (ẏ1 − ẏ∗1)

d3y∗

2 /... /10

dt3 − c
(0)
2 /..., /10

(

y2 /... /10 − y∗2 /... /10

)

− c
(1)
2 /... /10

(

ẏ2 /... /10 − ẏ∗2 /... /10

)

−c
(2)
2 /... /10

(

ÿ2 /... /10 − ÿ∗2 /... /10

)







(4.57)

with positive constant coefficients {c(0)i , c
(1)
i , c

(2)
i } (i = 1, . . . , 10) in order to ensure the

asymptotically stable behavior (~yi − ~yi
∗)

t→∞−→ ~0 according to the Hurwitz-Routh crite-
rion. In the case of a linear differential equation of third order, the additional condi-
tion c

(1)
i c

(2)
i − c

(0)
i > 0 for i = 2, . . . , 10 is also required for the asymptotical stabilitiy
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(~yi − ~yi
∗)

t→∞−→ ~0. A simple choice for such coefficients satisfying the required condition is

c
(0)
i =







1
τ2
i

i = 1

1
τ3
i

i = 2 / . . . /10
c
(1)
i =







2
τi

i = 1

3
τ2
i

i = 2 / . . . /10
c
(2)
i =







0 i = 1

3
τi

i = 2 / . . . /10

(4.58)

with τi some time scale describing the decay time of the trajectory error ei = (yi − y∗i ).
In order to implement this type of feedback control, it is necessary to make an estimation
of the high order derivatives ẏ1 /... /10 and ÿ2 /... /10, as shown in the previous equation
(4.57).

4.6 Alternative method of feedback control in the form of model
predictive control

There is, however, a downside to the flatness-based feedback control that must be addressed
for achieving the desired trajectory tracking. On the one side, a small time scale τi is required
for designing a feedback capable of compensating a small deviation in the flat outputs back
to the desired trajectory; on the other side, a small τi implies large values ci in the feedback
(4.58), such that a sudden disturbance producing a large deviation will lead to a large input.
This will have detrimental effects on the system’s ability to provide the proper input because
of the usual physical limitations of producing too large arm voltages in the MMC arms and,
as a result, will lose the control for achieving the desired trajectory tracking. Alternatively,
one may select a larger time scale, but doing so would not serve the purpose of the thesis of
fast trajectory control. In order to overcome this problem, an alternative approach of feedback
control is proposed in this section.

This, nevertheless, does not mean that the full derivation regarding the existence of a flat
output vector discussed in the previous sections of this chapter has to be discarded. With the
hindsight gained in this chapter regarding some energy variables acting as flat output compo-
nents, the trajectory design developed in Chapter 3 is actually constructing the trajectory of
those flat output energy components. Hence, from the very definition of flatness, the trajectory
design of the previous chapter allows calculating the driving inputs for the full system with-
out worrying that some component may uncontrolled "slip away". If this trajectory design is
now being constantly repeated in periodic short intervals of duration Tc, any sudden deviation
which may sudden occur can be compensated in the same spirit as the usual model predictive
control. In other words, by calculating the necessary future input sequence during each interval
Tc, would lead the disturbed dynamics back to the desired state after such time interval.

Let’s consider the following two scenarios by referring to the Figure 4.1. The first scenario
takes place between t0 and t0 + Ts. This corresponds to a change during Ts between two
different steady states. By driving the system with the input generated using the technique
described in Chapter 3 and assuming there is no deviation between the desired and actual
variable, a fast smooth transition from the old steady state to the new steady state during
t0 ≤ t ≤ t0 + Ts has been achieved. However, in the second scenario, after a period of time
being operating in steady state (ss2), some sudden deviations take place at t = t′0 (or have
accumulated until this time step) and a new input needs to be recalculated (again applying the
technique described in Chapter 3) in order to drive the system during a shorter control time
interval Tc back to the desired final steady state (ss2). Besides any physical disturbance, there
are also other sources for persistent deviations:
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Figure 4.1: Transition between two different steady state with a disturbed steady
state

• finite number of submodules inside the MMC and thus, impossibility of accurately im-
plementing the exact calculated arm voltages; this situation is even worse in the island
bus rectifier, where only a single capacitance is available;

• additional delays in the transmission of input or measurements.

By repeating this trajectory recalculation in regular time intervals, and then generating the
sequence of future inputs for driving the system, an alternative feedback method for compen-
sating deviations is proposed. Although this will require more computing time, it will prevent
the controller from producing a large input if the deviation is quite significant. In order to im-
plement this feedback, a smooth transition function (denoted by (g)) similar to the one stated in
subsection 3.2.1, but now with a little modification, is introduced as follows, where z∗ denotes
the disturbed steady state:

z(g) = z∗(t = t′0) (1− s̃(t)) + z(ss2)(t = t′0 + Tc) s̃(t) ,

ż(g) =
(

z(ss2)(t = t′0 + Tc)− z∗(t = t′0)
)

˙̃s(t) +
(

ż(ss2)(t = t′0 + Tc)− ż∗(t = t′0)
)

s̃(t))

+ ż∗(t = t′0) , (4.59)

with

s̃(t) : s̃(t = t′0) = 0; s̃(t = t′0 + Tc) = 1; ˙̃s(t = t′0) = 0 = ˙̃s(t = t′0 + Tc) ,

Thus

z(g)(t = t′0) = z∗(t = t′0); z(g)(t = t′0 + Tc) = z(ss2)(t = t′0 + Tc) ,

ż(g)(t = t′0) = ż∗(t = t′0); ż(g)(t = t′0 + Tc) = ż(ss2)(t = t′0 + Tc) .

However, it is important to recall that in the steady state phase, the variables being used
for the trajectory design are constant for the d/q components in the island bus, DC voltage
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and DC current, whereas zero for the circular currents and common-mode voltage in MMC.
The only exception is the AC grid current, which is required to remain in an unchanged
oscillation the whole time and thus, cannot be used for the trajectory design. Therefore,
the time derivative of the state components in the final steady state to be reached is zero
(ż(ss2)(t = t′0 + Tc) = 0) and only the derivative of the suddenly disturbed state, ż∗(t = t′0),
must be considered. Nevertheless, such derivative will be forced (by means of the resulting
input) to stay equal to zero to avoid any further increase after the sudden deviation. Hence,
the time derivative of the smooth transition function described earlier will be simplified as
follows

ż(g) =
(

z(ss2)(t = t′0 + Tc)− z∗(t = t′0)
)

˙̃s(t) . (4.60)

4.6.1 Feedback control applied to MMC subsystem

In this subsection, for the sake of clarity and simplicity, the feedback control is only focused
on the MMC dynamics for the three internal energy components, W ′Σ, α/β/0. The control is
implemented to compensate within a very fast control time interval, Tc (in the order of one
tenth of the AC period), for a sudden deviation in ie, α/β/0 as well as in W ′Σ, α/β/0, but not
in the other components (particularly the common-mode voltage). Only three variables are
designed to satisfy the changes in the three aforementioned energy components. These three
design variables are formulated as a linear superposition of smooth transition function (4.59)
as well as 3 hump contributions (3 because of the 3 considered internal energy components) of
still undetermined amplitudes A0/1/2, along with an adequate current scale ĩ, for instance, the
current in the DC link:

ie, 0(t) = i
(g)
e, 0(t) +A0 ĩΦ1(t) ,

ie, α(t) = i(g)e, α(t) +A1 ĩΦ1(t) ,

ie, β(t) = i
(g)
e, β(t) +A2 ĩΦ1(t) .

(4.61)

In this particular case, the same hump function Φ1 is used for all three current components in
(4.61) because no orthogonal property is required to facilitate the calculation of the undeter-
mined amplitudes. In contrast, the orthogonal property was used in Section 3.2.3 to eliminate
the nonlinear terms in the third equation of (3.3). However, now the terms proportional to the
small resistance Re, which contributes to this nonlinearity, have been safely neglected.

4.6.1.1 Task 1: Controlled trajectory of ie, 0 satisfying sudden change in ∆W ′Σ, 0

and ie, 0

The ie, 0 is designed to compensate the sudden change that arises in the total energy of the
MMC as well as in ie, 0 during the control interval t′0 ≤ t ≤ t′0 + Tc

∫ t′0+Tc

t′0

Ẇ ′Σ, 0 dt = W ′Σ, 0
(ss2)

t′0+Tc

−W ′Σ, 0
∗

t′0

= ∆W ′Σ, 0 .

It is important to note that, unlike in (3.24), uCr is now no longer a design variable and is
considered to be constant at all times. From the dynamics of total energy in MMC,

dW ′Σ, 0

dt
=

uCr

2
ie, 0 −

1

4
(ug, α ig, α + ug, β ig, β)−

[

R′di
2
e, 0 +

R′g
8

(
i2g, α + i2g, β

)
]

,
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the unknown amplitude A0 for the trajectory of ie, 0 is determined by the following energy
equation for the sudden change in W ′Σ, 0 during the control time interval, Tc.

(

WΣ, 0
(ss2)

t′0+Tc

−WΣ, 0
∗

t′0

)

=
1

2

∫ t′0+Tc

t′0

(uCr

2
−R′

d i
(g)
e, 0

)

i
(g)
e, 0 dt−

1

4

∫ t′0+Tc

t′0

(ug, α ig, α + ug, β ig, β) dt

−
R′

g

8

∫ t′0+Tc

t′0

(

~ig

)2

dt+A0

[

ĩ

∫ t′0+Tc

t′0

(uCr

2
− 2R′

d i
(g)
e, 0

)

Φ1dt

]

+A2
0







−R′

d ĩ
2

∫ t′0+Tc

t′0

Φ2
1dt

︸ ︷︷ ︸

Tc








(4.62)

4.6.1.2 Task 2: Controlled trajectory of ie, α/β satisfying sudden change in ∆W ′Σ, α/β
and ie, α/β

After the time evolution during the control time interval, Tc, for ie, 0 has been fully determined,
the two remaining unknown amplitudes A1/2 can be obtained in such a way that the two
following equations for the energy components are fulfilled during the sudden change interval
t′0 ≤ t ≤ t′0 + Tc





∫ t′0+Tc

t′0
Ẇ ′Σ, α dt

∫ t′0+Tc

t′0
Ẇ ′Σ, β dt



 =






W ′Σ, α
(ss2)

t′0+Tc

−W ′Σ, α
∗

t′0
W ′Σ, β

(ss2)

t′0+Tc

−W ′Σ, β
∗

t′0




 =

(
∆W ′Σ, α

∆W ′Σ, β

)

. (4.63)

Therefore, the two unknown amplitudes A1/2 can be calculated from the two simplified (after
neglecting the terms proportional to the very small resistance Re) linear algebraic equations
as follows:

W ′

Σ, α
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t′0+Tc

−W ′
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−
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︸ ︷︷ ︸
m1 1
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−
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4
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m2 2

. (4.64)
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Therefore, the two equations in the system of equations (4.64) can be reformulated more
compactly in the following form:

(
m11 m12

m21 m22

)

︸ ︷︷ ︸

M2×2

(
A1

A2

)

=

(
v1
v2

)

︸ ︷︷ ︸

~v2×1

=⇒
(
A1

A2

)

= M
−1
2×2 ~v2×1 , (4.65)

It is worth mentioning that if the other three internal energy components of the MMC,
W ′∆, α/β/0, also display some sudden deviation, the same steps as in Section 3.2.5 are carried
out, applying the design variables specified in Section 3.2.3. In this instance, the orthogo-
nal property plays a significant role, where the nonlinear terms that appear in the last two
equations of (3.4), Ẇ∆, α/β(t) can be completely eliminated.

4.6.1.3 Resulting trajectory of the input, uΣ, α/β/0

Finally, after the evolution of the designed variables ie, α/β/0(t) have been fully calculated,
the three input that drives the three MMC internal energy components W ′Σ, α/β/0 from the
deviated state back to its original steady state are derived based on the equation of motion for
the circular current of the MMC,

die, α/β

dt , along with the equation of motion of the current in
the DC link, die, 0

dt

uΣ, α/β(t) = −Re ie, α/β(t)− Le

die, α/β

dt
,

uΣ, 0(t) =
1

2
uCr(t)− L′d

die, 0
dt

−R′die, 0(t) .

Therefore, the trajectory design is being constantly repeated in a manner similar to the model
predictive control in order to be able to react in a very short time interval to any deviation
that may suddenly happen.
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Chapter 5

Simulation Results and Discussion

This chapter is dedicated to demonstrating the simulation results based on the approach of
fast trajectory design between two steady states for the AC-DC-AC power systems developed
in Chapter 3 as well as the compensation algorithm based on the model predictive control
developed in Section 4.6. Its efficiency will be investigated and verified by means of simulations
performed in Matlab.

5.1 Structure of the simulation

Before proceeding with the simulation results, it is preferable to have a brief understanding of
how the simulation results are organized. The parameters of the considered AC-DC-AC power
system, which can be seen in Figure 2.2, are first initialised. These parameters are provided
in Table 5.1. In addition to this, the time step, ∆t and the duration of the transition Ts that
takes place between the initial steady state and the new steady state are both defined. In this
model, ∆t = 0.1ms will be used to numerically solve and integrate the system’s equations of
motion as been discussed in Section 2.3.2. The same time step ∆t = 0.1ms also serves as the
time resolution for the input that drives the dynamics. It is important to keep in mind that
the aim of the thesis is to develop a fast trajectory that allows for shifting the operation point
of a high voltage AC-DC-AC power system within a time scale in the order of 10ms (half of the
AC period). This corresponds to a transition duration of Ts ≤ 10ms for a transition between
two different operation points. However, since Ts is an integer multiple of 24 time steps which
is necessary for a smooth definition of the hump function, Ts will be adjusted to Ts = 9.6ms or
Ts = 19.4ms. Next, the first steady state (ss1) and the second steady state (ss2) of the state
components

~x19d =
(
uCs ist, d/q uib, d/q irc, d/q uCr ie, α/β/0 ig, α/β Wj=1,...,6

)T
,

along with the input components for both steady states

~u19d =
(
ss, d/q src, d/q uΣ/∆, α/β/0

)T
.

are calculated based on the parameters listed in Table 5.1 and Table 5.2. The corresponding
steady state computations have already been discussed and can be referred to Section 2.5.1
and Section 2.5.2.

After both steady states (ss1) and (ss2) for the state components and input components
have been calculated, the fast trajectory design for a transition interval t0 ≤ t ≤ t0 + Ts for the

89
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full system will be carried out. As a result, the full system will be driven using the input derived
from the trajectory design being used as a feedforward. The details on how to implement such
algorithm can be found in Section 3.2.

5.2 Simulation parameters

Parameter Definition Value
Cs STATCOM’s DC capacitor 20mF

Lst STATCOM’s inductance 2mH

Rst STATCOM’s resistor 10mΩ

Cr Rectifiers’s capacitor
2mF

40
Lrc Rectifiers’s inductance 4mH

Rrc Rectifier’s resistor 20mΩ

Cf Capacitor at island bus filter 20µF

Rf Resistor at island bus filter 4 kΩ

Ld HVDC link’s inductance 140mH

Rd HVDC link’s resistor 3Ω

Re MMC’s arm resistor 10mΩ

Le MMC’s arm inductance 1mH

Rg AC grid’s resistor 842mΩ

Lg AC grid’s inductance 27mH

CSM Submodule’s capacitance 3mF

NSM Number of submodule 200

∆t Time step 0.1ms

Table 5.1: List of values for the simulation parameters

The set of simulation parameters that would be used in Matlab can be found in Table
5.1. It is essential to point out that the capacitor on the AC-DC rectifier side of an HVDC
system is assumed to theoretically have a voltage of up to 4 kV with a capacitance in the order
of 2mF. In order to store 400 kV of HVDC-link voltage on the rectifier side, uCr = 400 kV,
an effective total of 100 capacitors that are connected in series are required such that the

effective capacitance would be
2mF

100
, which corresponds to a quite small value. However, to

make it more difficult to control the dynamics, the capacitor at the rectifier side of the HVDC
system will be set to 10 kV. Hence, 40 capacitors are connected in series and the rectifier’s

effective capacitor would be Cr =
2mF

40
, which is larger in comparison when working with 100

capacitors. Moving on to the steady state, the first steady state (ss1) and second steady state
(ss2) are calculated for the parameter values mentioned in Table 5.1 together with the freely
chosen variables as well as externally given variables, that are summarized in Table 5.2.
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Freely chosen Definition (ss1) (ss2) (ss2)
variables Scenario 1 Scenario 2

uCs Effective capacitance voltage of STATCOM 500 kV 500 kV 500 kV

uCr HVDC-link voltage of the rectifier side 400 kV 360 kV 440 kV

ϕu, ib Phase of the island bus voltage 0◦ 0◦ 0◦

ϕi, rc Phase of the current into the rectifier 30◦ 30◦ 30◦

d

dt
Weff Grid effective power 0.8GW 0.8GW 0.8GW

ϕi, g Phase of the AC grid current 30◦ 30◦ 30◦

îe Amplitude of the circular current 0A 0A 0A

ϕi, e Phase of the circular current 0◦ 0◦ 0◦

vC Reserved factor 1.3 1.3 1.3

û0 Amplitude of the common-mode voltage 0 kV 0kV 0kV

Externally given variables for (ss1): îw = 4.5 kA, ϕi, w = 20◦, ûg = 250 kV, ϕu, g = 0◦

Externally given variables for (ss2): îw = 3.6 kA, ϕi, w = 20◦, ûg = 250 kV, ϕu, g = 0◦: Scenario 1
Externally given variables for (ss2): îw = 6.3 kA, ϕi, w = 20◦, ûg = 290 kV, ϕu, g = 0◦: Scenario 2

Table 5.2: Parameters of the first steady state (ss1) and the second steady state
(ss2)

5.3 Considered cases for the simulations

This section will describe briefly the cases that will be considered for the simulation.

• Firstly, in Subsection 5.4.1, the studied high voltage AC-DC-AC power systems work in
the steady state mode according to the parameters listed in Table 5.1 and Table 5.2. This
case will be denoted as Case 0. Here, two scenarios will be considered, both of which will
be driven by the steady state input. In the first situation, the initial state corresponds
exactly to the steady state. In comparison, the initial state in the second situation is
perturbed from its corresponding steady state.

• In the subsequent sections, the fast transition from the first steady state (ss1) to the
second steady state (ss2) that occurs at t0 (start time of transition) will be presented for
2 different transition periods: Ts = 14.4ms (for Case 1 and Case 2) and Ts = 9.6ms (for
Case 4 and Case 5). These cases will be covered in Section 5.4.2 and 5.4.3, respectively.

• Next, Section 5.4.4 will present the effect of the different start time of transition, t0.
These cases will be referred to as Case 3.0 until Case 3.9 (for Ts = 14.4ms), and Case
6.0 until Case 6.9 (for Ts = 9.6ms).

• Finally, the feedback control applied to a part of the MMC subsystem for compensating
any sudden deviation within a short time interval will be discussed in Section 5.4.6 and
denoted as Case 7.

It is worth mentioning that in the transition phase between the two steady states, 3 freely chosen
variables have been selected to have a change in their second steady state values: {uCr, ûg, îw}.
The values of these variables are highlighted in magenta.
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Case No. t0 [ms] Steady state uCr [kV ] ûg [kV ] îw [kA]

0 (ss1) 400 250 4.5

Transition from initial steady state (ss1) to second steady state (ss2)
1 8 (ss2) 360 250 3.6

2 8 (ss2) 440 290 6.3

3.0 9 (ss2) 440 290 6.3

3.1 10 (ss2) 440 290 6.3

3.2 11 (ss2) 440 290 6.3

3.3 12 (ss2) 440 290 6.3

3.4 13 (ss2) 440 290 6.3

3.5 14 (ss2) 440 290 6.3

3.6 15 (ss2) 440 290 6.3

3.7 16 (ss2) 440 290 6.3

3.8 17 (ss2) 440 290 6.3

3.9 18 (ss2) 440 290 6.3

Table 5.3: Parameter of Case 1 until Case 3.9 for time step ∆t = 100µs and period of transition
Ts = 14.4ms

Case No. t0 [ms] Steady state uCr [kV ] ûg [kV ] îw [kA]

0 (ss1) 400 250 4.5

Transition from initial steady state (ss1) to second steady state (ss2)
4 8 (ss2) 360 250 3.6

5 8 (ss2) 440 290 6.3

6.0 9 (ss2) 440 290 6.3

6.1 10 (ss2) 440 290 6.3

6.2 11 (ss2) 440 290 6.3

6.3 12 (ss2) 440 290 6.3

6.4 13 (ss2) 440 290 6.3

6.5 14 (ss2) 440 290 6.3

6.6 15 (ss2) 440 290 6.3

6.7 16 (ss2) 440 290 6.3

6.8 17 (ss2) 440 290 6.3

6.9 18 (ss2) 440 290 6.3

Table 5.4: Parameter of Case 4 until Case 6.9 for time step ∆t = 100µs and period of transition
Ts = 9.6ms

5.4 Results of numerical simulations

5.4.1 Case 0: Steady state simulation results

In this subsection, the simulations are carried out when the considered system is in the steady
state. The results that are depicted on the left-hand side of Figure 5.1 to Figure 5.4 together
with a prefix “a” means that the initial state of the system is identical to the steady state that
has been calculated in advance. On the other note, the results that took place when the initial
state of the system does not exactly correspond to the pre-calculated steady state are shown
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Figure 5.1: Simulated ist and irc for Case 0. Figure 5.1a shows the resulting steady state
when the initial state exactly corresponds to the steady state, whereas Figure 5.1b shows the
resulting steady state when the initial state does not exactly corresponds to the steady state.
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Figure 5.2: Simulated ie, α/β/0 and ig, α/β for Case 0. Figure 5.2a shows the resulting steady
state when the initial state exactly corresponds to the steady state, whereas Figure 5.2b shows
the resulting steady state when the initial state does not exactly corresponds to the steady
state.

on the right-hand side of each of the figures from Figure 5.1 to Figure 5.4 together with a prefix
“b”. For instance, the following is one way of describing this last possible scenario:







ist, d/q(t = 0) = 1.1 i
(ss1)
st, d/q, ie, α/β/0(t = 0) = 1.1 i

(ss1)
e, α/β/0

uib, d/q(t = 0) = 0.9u
(ss1)
ib, d/q, ig, α/β(t = 0) = 1.1 i

(ss1)
g, α/β

irc, d/q(t = 0) = 0.9 i
(ss1)
rc, d/q, Wp/n,1/2/3(t = 0) = 1.1W

(ss1)
p/n, 1/2/3







(5.1)

It is important to note, despite the fact that the initial state does not begin exactly at their
steady state, the resulting steady state of the state components (except Wp/n,1/2/3) was able to
reach the desired steady state over the duration of the simulation as depicted in Figures 5.1b,
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Figure 5.3: Simulated uCr, uCs and uib, d/q for Case 0. Figure 5.3a shows the resulting steady
state when the initial state exactly corresponds to the steady state, whereas Figure 5.3b shows
the resulting steady state when the initial state does not exactly corresponds to the steady
state.
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Figure 5.4: Simulated Wp/n,1/2/3 for Case 0. Figure 5.4a shows the resulting steady state
when the initial state exactly corresponds to the steady state, whereas Figure 5.4b shows the
resulting steady state when the initial state does not exactly corresponds to the steady state.

5.2b, and 5.3b. This is due to the asymptotical stability of the current dynamics when driven
by the input of the steady state. In other words, the difference between the actual steady
state and the desired steady state for the current dynamics decreases exponentially towards
zero when such dynamics is driven by the input required for the considered steady state, as
explained in the following:

Assuming that an external voltage, uext, is measured, while the resistance as well as in-
ductance, R and L respectively, are exactly identified whereas input u∗ can be implemented
accurately, in general the actual current dynamics reads

L
d

dt
i+Ri = −u∗ − uext ,
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while the desired current dynamics is similarly given

L
d

dt
i∗ +R i∗ = −u∗ − uext ,

where both of them are driven by the same input u∗. By considering the error in the current
dynamics, ei = i− i∗

t→∞
= 0:

L
d

dt
ei +Rei = 0 ⇒ d

dt
ei = −R

L
ei , (5.2)

the resulting dynamics proves that such error ei decays exponentially to zero within a dissipa-

tion time scale of τ =
L

R
. Therefore the dynamics of such error is asymptotically stable, as

long as R > 0.
On the other hand, Figure 5.4b shows that the resulting steady state for Wp/n,1/2/3 is

stable but not asymptotically stable, since the resulting energy trajectories asymptotically
deviates from the desired behaviour by a constant vertical shift that is determined by the
initial condition. This can be briefly explained as follows. Assuming the same conditions as for
the current dynamics, an external voltage, uext, is measured and input u∗ can be implemented
accurately, the actual energy dynamics reads

d

dt
W = (u∗ + uext) i ,

whereas the desired energy dynamics is

d

dt
W ∗ = (u∗ + uext) i

∗ ,

leading to the following equation of motion for the energy error ew = W −W ∗

d

dt
ew = (u∗ + uext) ei .

Since the error in the currents ei = i − i∗
t→∞
= 0 due to the asymptotical stable character of

the current dynamics, it follows
d

dt
ew

t→∞
= 0, or equivalently ew

t→∞
= const. (and in general

nonzero). This explains the observed asymptotical vertical shift of the resulting energy tra-
jectories (compared to the expected steady state behaviour) when the system starts from a
deviated steady state but is being driven by the input of the unperturbed steady state.

Referring back to the simulation results, Figure 5.1b and Figure 5.2b indicate that the
deviation in the currents decays exponentially towards zero within a time scale of approximately

5 τ : τst =
Lst

Rst
= 0.2ms for AC current issuing from the STATCOM, τrc =

Lrc

Rrc
= 0.2ms for

current entering the AC-DC rectifier, τd =
L′d
R′d

= 47ms for the DC current and τe =
Le

Re
=

100ms for the circular current.

5.4.2 Simulation results for Case 1 and Case 4

In this subsection, the cases for Scenario 1 are analysed and evaluated, with simulations con-
ducted according to the following settings as described in Table 5.3 and Table 5.4. The
HVDC-link voltage of the rectifier side, uCr, has a change of 10% from its first steady state



96 CHAPTER 5. SIMULATION RESULTS AND DISCUSSION

(∆uCr = −0.1u
(ss1)
Cr ), whereas amplitude of the wind generator current has a change of 20%

from its first steady state (∆îw = −0.2 î
(ss1)
w ). However, in relation to the amplitude of the

AC grid voltage, ûg, there is no change in its steady state (∆ûg = 0V ). In other words, the
AC grid being supplied by the HVDC transmission system must remain unchanged during the
transition between both steady states. The transition between the two steady state starts at
t0 = 8ms with two different transition intervals: Ts = 14.4ms and Ts = 9.6ms, which are
assigned to Case 1 and Case 4, respectively.

As shown in the figures from Figure 5.5 until Figure 5.11, the resulting state components
(full lines) almost accurately follow their reference trajectories (dotted lines) for both cases,
Case 1 and Case 4, which are driven by the input components depicted in Figure 5.12 and
Figure 5.13. A possible source of such deviation are the inaccuracies in the time discretization
or roundings in formulas and calculations. Apart from that, the derivation of the equations
for the energy shift is based on differential equations, which in turn assumes an arbitrarily fine
time resolution in the input. Therefore, in order to remove such deviation, a finer or shorter
time step, ∆t can be used and will be discussed further in subsection 5.4.5. On the other hand,
such small deviations, in addition to any other physical disturbances that may occur within the
system, are able to be compensated for by the suggested state feedback control that was covered
in subsection 4.6. The results of this control will be provided in subsection 5.4.6. Furthermore,
it is also worth noting that the period of the transition, Ts, has a considerable influence,
particularly in the current components. It can be concluded that the resulting amplitude of
the current components during the transition intervall increases as Ts decreases. For instance,
the circular currents are able stay within a range that is less than 2 kA, which can be safely
implemented by an HVDC MMC. Apart from that, the AC grid current remains unchanged as
desired throughout the transition. On the other hand, the resulting amplitudes for the voltage
of island bus, uib, d/q , indicate a similar behaviour for both cases. The resulting amplitudes
in uib, d are able to achieve a minimal value, whereas the resulting amplitudes in uib, q remain
1 order of magnitude smaller than uib, d. This is important to make sure that the injected

effective power from the wind generators into the island bus,
3

2
~uib ·~iw, can be transferred into

the AC grid without any problem. In regards to the energy trajectories for the MMC, it can
be seen that they are being maintained within a tight tolerance band for both cases.
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Figure 5.5: Simulated ist, d/q and irc, d/q for Case 1 (top: Ts = 14.4ms) and Case 4 (bottom:
Ts = 9.6ms)
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Figure 5.6: Simulated ie, α/β/0 for Case 1 (top: Ts = 14.4ms) and Case 4 (bottom: Ts = 9.6ms)
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Figure 5.8: Simulated uCs, uCr and uib, d/q for Case 1 (top: Ts = 14.4ms) and Case 4 (bottom:
Ts = 9.6ms)
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Figure 5.9: Simulated Wp/n,1/2/3 for Case 1 (top: Ts = 14.4ms) and Case 4 (bottom: Ts =
9.6ms)
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Figure 5.10: Simulated WΣ, 0 for Case 1 (top: Ts = 14.4ms) and Case 4 (bottom: Ts = 9.6ms)
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Figure 5.11: Simulated W∆, 0 for Case 1 (top: Ts = 14.4ms) and Case 4 (bottom: Ts = 9.6ms)
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Figure 5.12: Simulated ss, d/q and src, d/q for Case 1 (top: Ts = 14.4ms) and Case 4 (bottom:
Ts = 9.6ms)
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Figure 5.13: Simulated up/n, 1/2/3 for Case 1 (top: Ts = 14.4ms) and Case 4 (bottom: Ts =
9.6ms)

5.4.3 Simulation results for Case 2 and 5

While maintaining the start time of the transition at t0 = 8ms and the transition period at
Ts = 14.4ms (for Case 2) as well as Ts = 9.6ms (for Case 5), however this time, uCr, ûg

and îw display changes in their second steady state (ss2): {∆uCr = +0.1u
(ss1)
Cr , ∆ûg =
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0.16 û
(ss1)
g , ∆îw = 0.4 î

(ss1)
w }. The following figures show the simulation results for these pa-

rameters.
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Figure 5.14: Simulated ist, d/q and irc, d/q for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom:
Ts = 9.6ms)
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Figure 5.15: Simulated ie, α/β/0 for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom: Ts = 9.6ms)
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Figure 5.16: Simulated ig, α/β for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom: Ts = 9.6ms)
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Figure 5.17: Simulated uCs, uCr and uib, d/q for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom:
Ts = 9.6ms)
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Figure 5.18: Simulated Wp/n,1/2/3 for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom: Ts =
9.6ms)
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Figure 5.19: Simulated WΣ, 0 for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom: Ts = 9.6ms)
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Figure 5.20: Simulated W∆, 0 for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom: Ts = 9.6ms)
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Figure 5.21: Simulated ss, d/q and src, d/q for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom:
Ts = 9.6ms)
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Figure 5.22: Simulated up/n, 1/2/3 for Case 2 (top: Ts = 14.4ms) and Case 5 (bottom: Ts =
9.6ms)

As can be seen from the Figure 5.14 until Figure 5.18, it can be concluded that the state
components can still follow their reference trajectories, either with a long or a shorter transition
period, Ts = 14.4ms or Ts = 9.6ms, respectively. In comparison to Case 4, the resulting
amplitudes for the circular currents for Case 5 are approximately 4 kA, which is relatively
high, but it is still within the safe range that can be managed by an HVDC MMC. As for
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the Case 1 and 4, the AC grid current stays unchanged for both cases, Case 2 and Case 5.
Regarding the resulting amplitudes in uib, d/q, both Case 2 and Case 5 display the same pattern,
where the resulting amplitudes in uib, d are able to achieve a minimal value, while the resulting
amplitudes in uib, q remain 1 order of magnitude smaller than uib, d. In terms of the energy
trajectories for the MMC, it is possible to draw the conclusion that they are being kept within
a tight tolerance band. This holds true for both Case 2 and Case 5.

5.4.4 Simulation results for Case 3 and Case 6 at different start of transition
t0, 1...10

This subsection presents the results of the study that investigates how the time at which the
transition starts, t0, has an effect on the previous results. As far as the MMC is concerned,
the arms of the MMC are subjected to different loads depending on the waveform of the AC
voltage , ug, 1/2/3, together with the waveform of the instantaneous AC phase power. Thus,
a different load on the individual arms is also to be expected at the start of the transition,
t0, in a manner that is determined by the waveforms of the AC voltage and AC phase power.
Therefore, the start time of the transition, t0, is chosen to vary from t0 = 9ms to t0 = 18ms in
time increments of 1ms. In order to allow a comparison of the results, the following subsection
will only display the worst and best cases graphically. These cases are classified according to
the energy band ∆Wp/n,1/2/3 during the transition interval. The lowest energy band will be
considered as the best case, whereas the highest energy band as the worst case. All the cases
that were investigated are included in Appendix D.

Case No. t0 [ms] ∆Wp/n, 1/2/3 [MJ ] Case No. t0 [ms] ∆Wp/n, 1/2/3 [MJ ]

3.0 9 2.22 6.0 9 2.62

3.1 10 1.91 6.1 10 3.33

3.2 11 2.57 6.2 11 2.83

3.3 12 2.04 6.3 12 2.72

3.4 13 2.08 6.4 13 3.27

3.5 14 3.15 6.5 14 2.75

3.6 15 2.11 6.6 15 1.99

3.7 16 2.42 6.7 16 2.70

3.8 17 3.12 6.8 17 2.78

3.9 18 2.30 6.9 18 3.05

Table 5.5: Energy difference of MMC ∆Wp/n, 1/2/3 at different start time of transition t0, 1...10

As can be observed from Table 5.5 that were retrieved from the simulation results, apart
from the different combination 1 of the hump base function Φ in the designed variables, the
selection of the start time of transition, t0, will also yield different resulting trajectories. These
indicate that there is another suitable combination depending on the start time of transition.
In this regard, it might be the case that the presumed worse combinations of Φ function that
were found in the results of the previous simulation would be more suited at a different start
time of transition. From Table 5.5, it can be concluded that the best (denoted in green colour)
and worst case (denoted in red colour) for Case 3 are Case 3.1 and Case 3.5, respectively. On
the other hand, for the Case 6, the best and worst case are Case 6.6 and Case 6.1, respectively.

1As already discussed in Chapter 3, the best hump base function Φ combination is selected according to the
lowest oscillation strength of the energy trajectories during the transition interval.



116 CHAPTER 5. SIMULATION RESULTS AND DISCUSSION

These cases are shown in Figure 5.23 and Figure 5.24.

5.4.4.1 Simulation results for Case 3.1 (t0, 2 = 10ms) and Case 3.5 (t0, 6 = 14ms)
for Ts = 14.4ms

0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028
1

1.5

2

2.5

3

3.5

Case 3.1: t=0.1ms, t
0
=10ms, T

s
=14.4ms, power=800 800MW; 

 u
Cr

=400 440kV, i
DC

=2.03166 1.83733kA, i
g
=2.46336 2.12359kA; 

 min/max(W
p/n,1/2/3

)=1.18505/3.09231MJ, min/max(i
p/n,1/2/3

)=-1.3816/3.05004kA; 

best 
i
 combination(island bus): 1  3  3  2  2 

best  combination(MMC): 2  5  1  3  4

0.01 0.015 0.02 0.025 0.03 0.035
0

0.5

1

1.5

2

2.5

3

3.5

4

Case 3.5: t=0.1ms, t
0
=14ms, T

s
=14.4ms, power=800 800MW; 

 u
Cr

=400 440kV, i
DC

=2.03166 1.83733kA, i
g
=2.46336 2.12359kA; 

 min/max(W
p/n,1/2/3

)=0.479069/3.62987MJ, min/max(i
p/n,1/2/3

)=-2.87171/4.527kA; 

best 
i
 combination(island bus): 1  3  3  2  2 

best  combination(MMC): 1  4  3  5  2

Figure 5.23: Simulated Wp/n,1/2/3 for Case 3.1 at t0, 2 = 10ms and Case 3.5 at t0, 6 = 14ms.
Case 3.1 is considered as best the case whereas Case 3.5 as the worst case.
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5.4.4.2 Simulation results for Case 6.1 (t0, 2 = 10ms) and Case 6.6 (t0, 7 = 15ms)
for Ts = 9.6ms
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Figure 5.24: Simulated Wp/n,1/2/3 for Case 6.1 at t0, 2 = 10ms and Case 6.6 at t0, 7 = 15ms.
Case 6.1 is considered as the worst case whereas Case 6.6 as the best case.

5.4.5 Simulation results for Case 1 with finer time step, ∆t = 10µs

A finer time step, ∆t = 10µs for driving and integrating the dynamics of the system can be
used to remove the deviations appeared in the previous simulations, where the source of these
deviations has been discussed in subsection 4.6 and subsection 5.4.2. To demonstrate this point,
this chosen finer time step will be implemented in Case 1. As can be clearly seen, for example,
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from Figure 5.25, the resulting ist, d/q and irc, d/q (full lines) accurately follow their reference
trajectories (dotted lines). However, such a finer time step usually cannot be implemented, as
has been discussed in subsection 2.3.2 on page 17.
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Figure 5.25: Simulated ist, d/q and irc, d/q for Case 1 with finer time step, ∆t = 10µs

5.4.6 Simulation results for Case 7: Using trajectory design as feedback
control

As of now, the presented simulation results have been limited to feedforward control. In that
case, it has posed no problem, provided that the model perfectly describes the system under
consideration and the start conditions correspond to the desired steady state. This means that
the system will be driven solely by the designed input and it will not have the capability to
compensate for any deviation that may arise within the system. Nonetheless, this is not always
the case. If the model is not properly modelled or has some deviations at the start, a feedback
control needs to be implemented to compensate the deviations and to achieve an asymptotic
trajectory tracking.

The feedback algorithm discussed in subsection 4.6 on page 83 is now used to calculate
the required input for driving a part of the MMC dynamics during a correction time interval,
Tc = 1ms, in order to compensate the deviations indicated in Table 5.6. In this particular
case uCr is assumed to remain unchanged. The details on how to calculate such input are
explained in subsection 4.6.1 on page 85. Meanwhile, Figure 5.26a, Figure 5.28a and Figure
5.29a show the time evolution when the system is being driven solely by the input of steady state
without trying to compensate any deviation (dotted lines denote the reference trajectory and
full lines refer to the measured trajectory). As expected, the current dynamics is asymptotically
stable and the deviation in current exponentially decays towards zero within a time scale of
approximately 5τ , where τ refers to the time scale for dissipation in the current dynamics.
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Variables Unit Initial steady state Deviation
ie, α kA 0 ∆ie, α = 0.265

ie, β kA 0 ∆ie, β = −0.243

ie, 0 kA 0.362 ∆ie, 0 = 0.205

WΣ, α MJ 0.053 ∆WΣ, α = 0.004

WΣ, β MJ 0.103 ∆WΣ, β = 0.025

WΣ, 0 MJ 25.35 ∆WΣ, 0 = 0.063

Table 5.6: Sudden (random) deviation in ie, α/β/0 and WΣ, α/β/0

In this particular instance, τd =
L′

d
R′

d
= 50ms refers to the dissipation time scale for the DC

current, whereas τe = Le
Re

= 100ms for the circular current. On the other hand, the energy
dynamics is stable but not asymptotically stable. In this case, only the time derivative of the
energy deviation goes to zero and therefore, the energy deviation itself goes to a constant value
as depicted in Figure 5.28a, Figure 5.29a and Figure 5.30a.

In the event that these sudden deviations take place, the resulting input from the feedback
control is capable of driving the system back to its original steady state within a very short
time interval of Tc = 1ms. These results can be seen in Figure 5.26b, Figure 5.28b and Figure
5.29b. It is worth mentioning once again that such a design for a fast trajectory to compensate
deviations can be repeated in regular time intervals in the manner of a typical model predictive
control in order to keep the dynamics on the desired track.
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Figure 5.26: Simulated id and ie, α/β with deviation at start in id and ie, α/β as well asWΣ, 0/α/β .
Figure 5.26a shows the resulting steady state slowly decaying towards the desired trajectory
without feedback control. Figure 5.26b shows the resulting trajectory when feedback control
is activated during a control time interval Tc = 1ms.
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Figure 5.27: Simulated ∆id and ∆ie, α/β with deviation at start in id and ie, α/β as well as
WΣ, 0/α/β . Figure 5.27a shows the resulting steady state slowly decaying towards the desired
trajectory without feedback control. Figure 5.27b shows the resulting trajectory when feedback
control is activated during a control time interval Tc = 1ms.
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Figure 5.28: Simulated WΣ, 0 with deviation at start in id and ie, α/β as well as WΣ, 0/α/β .
Figure 5.28a shows the resulting nonzero vertical shift without feedback control. Figure 5.28b
shows the resulting trajectory when feedback control is activated during a control time interval
Tc = 1ms.
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Figure 5.29: Simulated WΣ, α/β with deviation at start in id and ie, α/β as well as WΣ, α/β .
Figure 5.29a shows the resulting nonzero vertical shift without feedback control. Figure 5.29b
shows the resulting trajectory when feedback control is activated during a control time interval
Tc = 1ms.
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Figure 5.30: Simulated ∆WΣ, 0/α/β with deviation at start in id and ie, α/β as well as WΣ, α/β .
Figure 5.30a shows the resulting nonzero vertical shift without feedback control. Figure 5.30b
shows the resulting trajectory when feedback control is activated during a control time interval
Tc = 1ms.
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Chapter 6

Conclusions and Future Work

With their various advantages over conventional converter technologies, modular multilevel
converters (MMCs) are quickly becoming the preferred choice for HVDC power transmission
and renewable energy applications such as offshore wind farms. Driving high voltage AC-
DC-AC power systems with a conventional rectifier and MMC as an inverter, on the other
hand, poses huge difficulties. The current work develops new techniques to solve some of these
difficulties.

The thesis begins with deriving the equations of motion for the power systems under consid-
eration, which form the basis for the control analysis. Following that, the steady state analysis
for this system will be carried out using the derived equations of motion.

One of the main task addressed in this work is an accurate calculation of the required
input for fast shifting of the operation point from one steady state (ss1) to a different steady
state (ss2). This shifting should occur during a time interval Ts less than or equal to 10
ms (Ts ≤ 10 ms). Chapter 3 explains a comprehensive technique for generating such fast
trajectories for all of the state variables in the considered AC-DC-AC power system as well
as the necessary feedforward input for driving the system along such trajectory (assuming no
disturbance happens). Due to the fact that the dynamics of the five internal energy components
of the MMC are strongly influenced by the three internal MMC degrees of freedom, namely
the two internal circular current and the common-mode voltage, these components have been
chosen as the design variables for the trajectory design. On the other hand, none of these
three internal MMC degrees of freedom influence the dynamics of the total energy. As the
current and voltage at the AC grid are externally fixed by some strict requirements (power
level, operating voltage) and can not be modified, only the product of the current and voltage
at the DC link remains as the only variable that is influencing the dynamics of the total energy.
Therefore, this product is also selected as one of the design variables. Regarding the island bus
subsystem, the two energy components in this subsystem are clearly influenced by the d and
q components of the island bus voltage along with the current issuing from the rectifier. As a
result, these components are selected as the design variables.

Furthermore, in order to compensate for any potential deviation from the previously de-
signed trajectory, additional feedback control is, in general, needed. This is achieved by finding
a differential flat output for the considered dynamics as discussed in Chapter 4. However, adopt-
ing the flatness-based control as a feedback-driven compensation for any sudden deviation has
a limitation that needs to be taken into consideration. When a small time scale is chosen to
compensate for such deviation, this may result in a significant amount of input. Due to the
physical limitations of providing very large input, particularly the arm voltages in the MMC
arms, this will put a limitation on such control to achieve the desired trajectory. Although a
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larger time scale might be chosen, this is not the aim of the work of having a fast trajectory
control. In light of the hindsight gained in Chapter 3 and Chapter 4, an alternative technique
for feedback control is developed and implemented. The trajectory design presented in Chapter
3 appears to be an indirect representation of the trajectory design of the flat output energy
components addressed in Chapter 4. If such trajectory design is now being constantly repeated
in periodic short intervals of duration Tc (in the order of one tenth of the AC period), any
sudden deviation which may suddenly occur in the system can be compensated, in the same
spirit as the usual Model Predictive Control (MPC). In other words, by repeating this trajec-
tory recalculation in very short regular time intervals and afterwards generating the sequence
of future inputs for driving the system, such control is expected to lead the disturbed dynamics
back to the desired state after such short time interval.

Next, the methods discussed in Chapter 3 and Chapter 4 have been simulated in Matlab
and demonstrated promising performance under different conditions, some of them even cor-
responding to energy changes that are quite hard to be managed. At first, the system starts
exactly at the initial steady state (without any additional deviation) and the feedforward in-
put drives the system in the event of fast transition from the first steady state (ss1) to the
second steady state (ss2) during an interval of duration Ts. Two different transition intervals,
Ts = 9.6ms and Ts = 14.4ms, have been presented. The simulations revealed that as expected,
the resulting amplitudes of the state components are inversely proportional to the transition
period Ts. In other words, if Ts decreases, the resulting oscillation strength of the energy and
current variables during the transition, increases. Therefore, a reasonable transition period
Ts must be selected for the resulting trajectories to be kept within a safe range that can be
actually managed by the corresponding converters. From the simulation results, it can be con-
cluded that the implemented technique outlined in Chapter 3 has demonstrated the ability of
the designed feedforward input to drive the system along the designed trajectory in 9.6 ms. For
clarity and simplicity, the feedback control in this thesis merely considers the MMC dynamics
for the three internal energy components. Thus, in the event of a sudden deviation within the
MMC dynamics, the previous trajectory design, which now has been constantly repeated in
periodic short time intervals of duration, Tc = 1 ms, such deviation can be compensated in
principle. This control has demonstrated its efficiency by restoring the deviating dynamics to
their desired state after such very short time interval, Tc = 1 ms.

In the current thesis, it has not yet been mathematically proven that the continuous rep-
etition of the trajectory design in short time intervals described in Subsection 4.6.1 on page
85 will asymptotically drive the system to the desired final steady state. Up to now, such
behaviour is expected in analogy with the Model Predictive Control (MPC). It is important
to note that in MPC, nevertheless, there is an underlying cost function that is minimized at
each time step. However, this cost function is not yet considered in the proposed technique
and a proof requires, for instance, the existence of some form of energy (or Lyapunov) function
that is continuously decreasing. Hence, an additional superposed feedback correction, which
has not yet been implemented, might be needed to ensure that the repetition of the trajectory
planning can remove slight deviations. This topic could be the subject of a future work. On the
other hand, the findings of this thesis were obtained only through simulations. Therefore, for
future study, the results should be verified through experimental evaluation in order to ensure
their applicability in the real world.



Appendix A

Derivation of hump function, Φ̃

During the time interval t0 ≤ t ≤ t0 + Ts, the following general “hump” functions are introduced
as follows:
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(A.1)

All of these Φ functions and their first, second and third time derivative vanish at both ends
of the transition interval, i.e., at the start (t = t0) and at the end (t = t0 + Ts) of the specified
interval.
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Because of its previous mentioned properties, following relations are automatically satisfied :

1

Ts

∫ t0+Ts

t0

Φ1 Φ2 dt = 0 =
1

Ts

∫ t0+Ts

t0

Φ1 Φ4 dt ,

1

Ts

∫ t0+Ts

t0

Φ2 Φ3 dt = 0 =
1

Ts

∫ t0+Ts

t0

Φ2 Φ4 dt =
1

Ts

∫ t0+Ts

t0

Φ2 Φ5 dt ,

1

Ts

∫ t0+Ts

t0

Φ3 Φ4 dt = 0 ,

1

Ts

∫ t0+Ts

t0

Φ4 Φ5 dt = 0 ,

Therefore, the unknown constants C0, C1, C2 can be determined as below :

1

Ts

∫ t0+Ts

t0

Φ1 Φ3 dt =
1

Ts

∫ t0+Ts

t0

Φ3 Φ5 dt =
1

Ts

∫ t0+Ts

t0

Φ1 Φ5 dt = 0

where C0 = 1.63684, C1 = 1.66657 and C2 = 1.24894.
From

1

Ts

∫ t0+Ts

t0

Φ2
1 dt =

1

Ts

∫ t0+Ts

t0

Φ2
2 dt =

1

Ts

∫ t0+Ts

t0

Φ2
4 dt =

35

72
,

1

Ts

∫ t0+Ts

t0

Φ2
3 dt = 0.53786 ,

1

Ts

∫ t0+Ts

t0

Φ2
5 dt = 0.41762 .

By normalizing each Φi(t) with the corresponding
[
1

Ts

∫ t0+Ts

t0

Φ2
i dt

]−1/2

, the resulting “hump”

functions Φ̃i(t) are expressed as in (3.12) on page 50.



Appendix B

Auxiliary relations for the derivation
of the relative degrees for each
component of the flat output vector

It is worth recalling that the condition for the existence of an approximated flat output vector
is due to the neglecting of the red terms containing Lg but not the red terms with Ld in the
dynamics of the energy differences between the upper and lower MMC arms as indicated in the
equation (3.4) on page 46. By neglecting the power losses at Rst, following useful relations result

d

dt

(

~uib ·~iw

)

= −
1
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(

~uib ·~iw

)
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(

~u
T
ib

(
0 1
−1 0

)
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)

+ ~uib ·~̇iw +
1

Cf
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2
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,
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)
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+

1
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)(

~uib ·~irc

)

+
1
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(
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1
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+
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û
2
ib

︸ ︷︷ ︸
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(
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)

no ~u

+
1
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⇓
~ss ·~uib ,

d
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(

~i
2
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)

= −
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~i
2
rc +

2

Lrc

(

~uib ·~irc

)

−
2

Lrc
uCr ~src ·~irc ,

d
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(

~irc ·~iw

)

= −
Rrc

Lrc

(

~irc ·~iw

)

− ω0
~i
T
rc

(
0 1
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)

~iw +~irc ·~̇iw +
1

Lrc

(

~uib ·~iw

)

−
1

Lrc
uCr ~src ·~iw ,

d

dt

(

~ist ·~iw

)
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(

~ist ·~iw

)
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~i
T
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(
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d
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−
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1
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uCr ~src ·~ist
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d
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+
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⇓
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d2
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=

(
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2
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+
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(
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−
1
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2
f

(
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2
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+
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Cf

(
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⇓
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û
2
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(
Rrc
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)(
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+
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)

=
d2

dt2

(

~uib ·~irc
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⇓
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û
2
ib +
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(
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d2
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+
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+ üg, α/βie, 0 which contains no input
component.
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Appendix C

Vector ~A and matrix M10
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136 APPENDIX D. SIMULATION RESULTS FOR CASE 3.0-3.9 AND CASE 6.0-6.9

Appendix D

Simulation results for Case 3 and Case
6 at different start of transition t0, 1...10

D.1 Simulation results for Case 3.0 and Case 6.0 at t0, 1 = 9ms
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Case 3.0: t=0.1ms, t
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=2.03166 1.83733kA, i
g
=2.46336 2.12359kA; 
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)=0.91527/3.13573MJ, min/max(i
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)=-3.08855/4.95941kA; 
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best  combination(MMC): 3  4  2  5  1

Figure D.1: Simulated for Case 3.0 (top: ms) and Case 6.0 (bottom:
ms) at ms



D.2. SIMULATION RESULTS FOR CASE 3.1 AND CASE 6.1 AT T0, 2 = 10MS 137

D.2 Simulation results for Case 3.1 and Case 6.1 at t0, 2 = 10ms
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Figure D.2: Simulated Wp/n,1/2/3 for Case 3.1 (top: Ts = 14.4ms) and Case 6.1 (bottom:
Ts = 9.6ms) at t0, 2 = 10ms
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D.3 Simulation results for Case 3.2 and Case 6.2 at t0, 3 = 11ms
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Figure D.3: Simulated Wp/n,1/2/3 for Case 3.2 (top: Ts = 14.4ms) and Case 6.2 (bottom:
Ts = 9.6ms) at t0, 3 = 11ms
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D.4 Simulation results for Case 3.3 and Case 6.3 at t0, 4 = 12ms
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Figure D.4: Simulated Wp/n,1/2/3 for Case 3.3 (top: Ts = 14.4ms) and Case 6.3 (bottom:
Ts = 9.6ms) at t0, 4 = 12ms
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D.5 Simulation results for Case 3.4 and Case 6.4 at t0, 5 = 13ms
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Figure D.5: Simulated Wp/n,1/2/3 for Case 3.4 (top: Ts = 14.4ms) and Case 6.4 (bottom:
Ts = 9.6ms) at t0, 5 = 13ms
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D.6 Simulation results for Case 3.5 and Case 6.5 at t0, 6 = 14ms
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Case 3.5: t=0.1ms, t
0
=14ms, T

s
=14.4ms, power=800 800MW; 

 u
Cr

=400 440kV, i
DC

=2.03166 1.83733kA, i
g
=2.46336 2.12359kA; 

 min/max(W
p/n,1/2/3

)=0.479069/3.62987MJ, min/max(i
p/n,1/2/3

)=-2.87171/4.527kA; 

best 
i
 combination(island bus): 1  3  3  2  2 

best  combination(MMC): 1  4  3  5  2

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028
0.5

1

1.5

2

2.5

3

3.5

4

Case 6.5: t=0.1ms, t
0
=14ms, T

s
=9.6ms, power=800 800MW; 

 u
Cr

=400 440kV, i
DC

=2.03166 1.83733kA, i
g
=2.46336 2.12359kA; 

 min/max(W
p/n,1/2/3

)=0.764318/3.51821MJ, min/max(i
p/n,1/2/3

)=-1.95713/3.03084kA; 
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Figure D.6: Simulated Wp/n,1/2/3 for Case 3.5 (top: Ts = 14.4ms) and Case 6.5 (bottom:
Ts = 9.6ms) at t0, 6 = 14ms
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D.7 Simulation results for Case 3.6 and Case 6.6 at t0, 7 = 15ms
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best  combination(MMC): 1  3  4  5  2

Figure D.7: Simulated Wp/n,1/2/3 for Case 3.6 (top: Ts = 14.4ms) and Case 6.6 (bottom:
Ts = 9.6ms) at t0, 7 = 15ms
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D.8 Simulation results for Case 3.7 and Case 6.7 at t0, 8 = 16ms
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Figure D.8: Simulated Wp/n,1/2/3 for Case 3.7 (top: Ts = 14.4ms) and Case 6.7 (bottom:
Ts = 9.6ms) at t0, 8 = 16ms
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D.9 Simulation results for Case 3.8 and Case 6.8 at t0, 9 = 17ms
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Figure D.9: Simulated Wp/n,1/2/3 for Case 3.8 (top: Ts = 14.4ms) and Case 6.8 (bottom:
Ts = 9.6ms) at t0, 9 = 17ms
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D.10 Simulation results for Case 3.9 and Case 6.9 at t0, 10 = 18ms
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Figure D.10: Simulated Wp/n,1/2/3 for Case 3.9 (top: Ts = 14.4ms) and Case 6.9 (bottom:
Ts = 9.6ms) at t0, 10 = 18ms
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