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Abstract—This paper introduces a model for a one-phase Bat-
tery Modular Multilevel Management (BM3) Converter System
described by a system of differential equations . This allows
to simulate BM3 Systems in a performant manner. The model
is implemented in MATLAB and multiple Python extensions.
Comparing the runtimes of the simulation on a central processing
unit (CPU) and a graphics processing unit (GPU) cores has
shown that the CPU implementation currently exceeds the GPU
implementation performance-wise. The highest performance was
achieved by using the Python compiler Numba. This allows to
simulate 1 s uptime of a BM3 Converter with 10 modules in
0.33 s – a reduction by more than factor 130 compared to an
existing Matlab/SIMULINK model [1].

Index Terms—Battery Management Systems (BMS), Modular
multilevel converter, Simulation, GPU, Matlab, Python

I. INTRODUCTION

One main trend of the last decade in the automotive in-
dustry is the constant growth in demand for electric vehicles.
Germany alone, with its coalition agreement, has set a target
of at least 15 million electric cars on its roads by 2030 [2].
Another observed trend, directly related to the first one, is the
increase of operating voltages of the battery-powered electric
vehicles (BEVs) [3]. Also, more and more charging systems
enable higher voltages [4]. This progression requires a change
of the semiconductors or the inverter topology, and one of
possible solutions for this is the usage of multilevel inverter
topologies [3].

For the simulation of multilevel inverter topologies, mainly
tools of Matlab/SIMULINK are used [5]–[7]. This type of
simulation reaches its limits when, for example, driving cycles
of electric vehicles are simulated. This is due to the high mem-
ory requirements of these simulations, the low possibilities of
parallelization on central processing units (CPUs ) and graphic
processing units (GPUs ), and the insufficient possibilities of
optimization in the calculations with comparable accuracy. To
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make simulations like this possible and reduce computational
effort, lookup tables are often used [7], [8]. However, this
reduces the accuracy of such calculations.

On the other side, for proper performance, modular mul-
tilevel converter systems need a state-of-charge (SOC) bal-
ancing method for battery cells, i.e. based on an algorithmic
method, which was introduced in [1]. To apply machine
learning technologies to the whole system, a performance, and
accuracy optimized model is necessary.

A multilevel system consists of numerous nodes or sub-
modules, which makes it highly suitable for parallelization
through GPU cores [9]. In this paper, a system of differential
equations is introduced to model a multilevel inverter (Section
II). Section III lists the different implementations, in section IV
the simulation results are shown. The runtime of the different
implementations are discussed in section V and section VI
finishes with an outlook to further research VI.

II. MODULAR MULTILEVEL CONVERTER MODEL

In this article, the Battery Modular Multilevel Management
(BM3) [10] is considered as a multilevel converter. Its funda-
mental difference from the classic two-level system commonly
used in automotive applications today is the configuration of
the battery pack. In a two-level system, up to several thousand
batteries are connected in a fixed way and the battery pack
always has a voltage of the same value. A half-bridge for each
motor phase, which is controlled by a pulse-width modulation
(PWM), is used to produce a necessary sinusoidal output
voltage.

Multilevel inverters have configurable battery packs, which
allow for the battery cells to be connected in parallel, in series
or to be bypassed to produce an output voltage of the desired
level. This is possible because the entire battery pack is divided
into submodules, each controlled by multiple semiconductors.
In the case of the BM3, each submodule has three MOSFET
switches [10].
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A. BM3 Converter System

Fig. 1 shows a converter system (in red) with 3 modules (in
green). The number of modules in the system is represented
by N , in Fig. 1 therefore N = 3. The behavior of an electric
motor (blue) is modeled by the ohmic resistance RAC , the
electromagnetic coil LAC and an ideal voltage source uAC .
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Fig. 1. Single-phase strand of three cascaded BM3 modules.

A BM3 module k consists of a battery, a capacitor, and
three MOSFETs. Each module can be switched individually
into three possible states: series, parallel, and bypass. These
three states are described in Table I. The dynamic behaviour
of the MOSFETs is not modeled, they are instead described
as the resistors R

(k)
D3, R

(k)
D4 and R

(k)
D5. The two states of the

switches are defined as follows: on-state with a fix resistance
of 0.55mΩ and off-state as an infinite resistance.

TABLE I
SWITCH STATES OF MOSFETS, MODELED AS ELECTRICAL RESISTORS

R
(k)
D3 R

(k)
D4 R

(k)
D5

Bypass on off off
Parallel on off on
Series off on off

A system with N modules can be described by the state
vector x⃗ as:

x⃗ =
(
iAC

(
SOC(1) i

(1)
B u

(1)
C

)
. . .
(
SOC(N) i

(N)
B u

(N)
C

))T
(1)

where iAC is the current of the converter system , i
(k)
B is

a battery current, u
(k)
C is a capacitor voltage and SOC(k)

represents the state-of-charge of battery cell in module k.
The nonlinear system behavior given in Eq. (1) can be

approximated by numerical integration by the forward Euler
method in time steps of equal duration. The current state x⃗
at t is considered to be known, and the state at the time step
t+∆t is to be determined.

The values of iAC and u
(k)
C at t+∆t are described by the

following algebraic system of N + 1 equations:


u
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C (t+∆t)
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C (t+∆t)

...
u
(N)
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iAC(t+∆t)

 = A−1 v⃗ (2)

A︷ ︸︸ ︷
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(3)

The elements of matrix A are defined as:

ak,k−1 = − ∆t

R
(k−1)
D3 C(k−1)

G
(k−1)
D5

G(k−1)

ak,k = 1 +
∆t

R
(k)
D3C

(k)

G
(k)
D4 +G

(k)
D5

G(k)
+

∆t

C(k)R
(k−1)
D5

G
(k−1)
D3 +G

(k−1)
D4

G(k−1)︸ ︷︷ ︸
if k≤1 then 0

ak,k+1 = − ∆t

R
(k)
D3C

(k)

G
(k)
D5

G(k)

ak,N+1 =
∆t

C(k)

G
(k)
D5

G(k)

aN+1,k =
∆t

LAC

G
(k)
D5

G(k)

aN+1,N+1 = 1 +
∆t

LAC

(
RAC +

N∑
k=1

1

G(k)

)
(4)

The electrical conductance is defined as the multiplicative
inverse of the electrical resistance, represented by G, and
measured in siemens. G

(k)
D3/4/5, and G(k) are dependent on

the switch state of the module k:

G
(k)
D3/4/5 =

1

R
(k)
D3/4/5

G(k) =
(
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(k)
D3 +G

(k)
D4 +G
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)
(5)

The vector v⃗ is defined as:

v⃗ = (v1 v2 . . . vN vN+1)
T (6)
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B. Battery simulation

There are several ways to simulate the characteristics of
the cell dynamics. It can be simulated by electro-thermal
[11], electrochemical [12] or equivalent circuit models [13].
In this paper, a third order Thévenin model is used, see
Fig. 2. The Thévenin model enables prediction of the battery
behavior with low error under dynamic and non-dynamic
current profiles [14]. It contains a SOC related voltage source,
an internal ohmic resistance R0 and three RC-pairs [1].

VOC(SOC)

R0
C1

R1 R2

C2

R3

C3
uB

Fig. 2. Third-order Thévenin model of a battery cell [13]

In [15], the equation of the open-circuit voltage and the
discharge voltage with the 2-RC model is introduced. This can
be adapted to the 3-RC model. The modeling of the battery
voltage is done within the inverter model to represent the
influences of the individual models on each other. Here, only
the current of the battery is modeled.

In [15], the discharging process is considered as a zero state
response process and the terminal voltage uB is described as:

uB = VOC(SOC)− iBR1

[
1− exp

(
− T

τ1

)]
− iBR2

[
1− exp

(
− T

τ2

)]
− iBR0, (8)

where τ is the time constant, τ = RC. The time T describes
the discharge time of the battery. Through the circuit results
uB = uC , where the calculations of uC is introduced in the
state vector x⃗ in Eq. (1).

Applied to the 3-RC model and rearranged to the battery
current, this results for the time step t+∆t in:

iB(t+∆t) =

[
VOC(SOC(t))− uB(t+∆t)

]
[
R1

[
1− exp

(
− T

τ1

)]
+R2

[
1− exp

(
− T
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)]

+R3

[
1− exp

(
− T

τ3

)]
+R0

]−1

(9)

The SOC is modeled by coulomb counting and for the time
step t+∆t defined as:

SOC(t+∆t) = SOC(t)−
∫ ∆t

0

iB
Q0

dt, (10)

where Q0 indicates the rated capacity of the battery.

III. IMPLEMENTATION

To ensure a significant evaluation of the runtime the
simulation was implemented using MATLAB, and Python
libraries, NumPy [16], and CuPy [17], and the Python
compiler Numba [18].

Numba - Just-in-Time compilation in Python
Numba is a LLVM-based just-in-time compiler for Python.
The focus is in scientific and array-oriented computing
[18]. This allows developers to implement Python code
which can reach the execution time of C or FORTRAN.
LLVM [19] is an open-source project that provides a collection
of modular and reusable compiler and tool chain technologies.

CuPy - GPU-accelerated Computing with Python
CuPy is a library that allows to use the high performance
parallelization of matrix operations on GPUs by using NumPy
syntax or implementing NVIDIA CUDA Kernels in Python
[17]. An illustration of the implemented CUDA Kernels to
realize parallel execution is shown in Fig. 3.
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Fig. 3. Architecture for parallel computing with CUDA Kernels on NIVIDIA
GPU implemented in CuPy

IV. SIMULATION RESULTS

Fig. 4 shows the battery currents i
(k)
B for each module, its

capacitor voltages u
(k)
C , the state of the charge of the batteries

and the inverter voltage uconv , resulting current iAC . As a
battery cell for modelling, a KeepPower P1834J [20] was
taken. The figure shows a 55ms simulation of a BM3 System
with 10 modules with a step size of ∆t = 10 µs.

Fig. 4d shows that in the simulation, the ideal reference
sinusoidal control signal uref is approximated by the multi-
level system in a step by step manner. In total, 11 levels can
be identified, which correspond to the connection of 1 up to
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Fig. 4. Simulation of System with N = 10, t =55ms, ∆t =10 µs

N = 10 modules in series, plus another one equal to 0V,
when all modules are not involved in the voltage generation
and are in bypass mode.

In addition, the plot of the resulting voltage uconv illustrates
the influence of the capacitance of each module, especially
in the areas corresponding to a voltage of 20V or more.
The resulting current iAC has a smooth sinusoidal shape and
takes a steady-state value after 5ms, due to the presence of
inductance LAC in the system, it delays the voltage by 34.6
degrees.

Fig. 4a shows that each of the modules of the system during
the time corresponding to one uconv stage has a current, that
differs in value from the current of the other modules. This
is due to the different type of connection of the modules
at different times of operation. The maximum current value
is reached at the stage which corresponds to the maximum
possible voltage value of 40V. In order to obtain this voltage,
all modules are switched in series with each other.

Fig. 4c demonstrates that the batteries in the different

TABLE II
HARD- AND SOFTWARE SPECIFICATIONS OF USED SERVER

Server Dell PowerEdge R750xa
Operating System Ubuntu 20.04 LTS

CPU Intel Xeon Gold 6338
GPU NVIDIA A40
RAM 512 GB

modules are not discharging evenly. This is due to the lack of a
suitable algorithm for balancing the batteries in this program.
Such an algorithm should take into account the state of the
charge of each battery cell in the system and use the ones
with the highest charge first.

V. DISCUSSION

A. Time measurement of different implementations

The hard- and software specification of the measurement’s
used server is shown in Table II.
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Fig. 5 shows the runtime by the number of modules N
to simulate 1 s uptime of the system with ∆t =10 µs. Ten
experiments were performed and represented per implementa-
tion and number of modules. This figure shows the results of
experiments from 20 modules up to 200 modules. The largest
absolute increase of runtime is observed from the NumPy
(green) implementation. The smallest relative increase can
be observed from the GPU solution implemented with CuPy
(orange). The best runtimes are to be seen at MATLAB (red)
and specially Numba (blue). The experiments performed here
do not show any advantages when run on the GPU compared
to the results with Numba or MATLAB. Only worse runtimes
can be determined. The measurements suggest that the CPU
runtime exceeds the GPU, with a linear increase of this for
about 300 modules.

To verify this prediction of a linear rise, a series of exper-
iments up to 400 modules were conducted . The Numba and
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Fig. 7. Runtime by solving Eq. (2) with random matrix and vector imple-
mented in NumPy

CuPy implementations are compared against each other. Figure
6 shows that the postulated intersection can not be determined.
Between 220 and 240 modules, a leap point at the CuPy
implementation can be detected. From this point, the runtime
increases similarly for each of the two different solutions.
Therefore, an increase in runtime performance cannot be
determined with the current setup for the GPU solution.

B. Leap point in runtime

By analyzing the runtime of the simulation, shown in Fig. 5,
the leap points in the NumPy (green , 100 - 110 modules),
MATLAB (red , 120 - 130 modules) and Numba (blue , 140 -
150 modules) implementations can be observed . In the figure
these leap points are highlighted. The same can be observed
for CuPy between 220 and 240 modules in Fig. 6. An analysis
of the runtime showed that the rise originates from how the
algebraic system described in Eq. (2) is solved .

It is necessary to determine if this is a general problem or
a phenomenon within the model. The problem is abstracted to
further investigate this. The vector v⃗, and the matrix A, defined
in Eq. (6), and (3), are filled with random values. They are
used to solve the algebraic system, as defined in Eq. (2).

Fig. 7 shows the measured runtimes by solving 105 of
these random algebraic systems. From 148 to 149 modules an
increase of 24.49 s can be observed. This is a rise of 86.1%,
with the remaining increase being 5.94%.

A probable explanation could be the increased amount
in needed memory. From a certain size of the matrix, it
is necessary to use the Random-Access Memory (RAM) of
the server instead of the CPU cache only . This leads to
higher memory access times, more cache misses and thus
to higher runtimes. Another assumption could be the solver
implementation. Standard libraries are used, and it cannot be
ruled out that from a certain size of the matrix another solver
method is implemented. However, this is less likely, as we see
the effect in all used programming languages and libraries. It’s
more likely to find the cause for the leap points in a caching or



memory configuration or size as we see the effect on different
hardware setups with different matrix sizes.

C. Comparison with MATLAB/Simulink

A runtime comparison with the in [1] used
MATLAB/Simulink model showed a significant improvement.
To simulate a system with 10 modules, the Matlab model
needed 42.10 s ± 0.73 s. This simulation uses the same
simulation time and step size as configured during the time
measurements depicted in Fig. 5. To simulate this number
of batteries, the best implementation based on Pyton needed
0.33 s without significant differences in the simulation results.
This reduces the runtime by at least factor 130. The here
presented solution allows to simulate between 140 and 150
modules while the original Matlab/SIMULINK model can
only simulate 10 modules at the same time.

VI. CONCLUSION

In this paper, a new framework was introduced which allows
to simulate a BM3 converter system in one phase with a
variable number of modules. Four different implementations
were compared using MATLAB and the Python libraries
NumPy, and CuPy, and the Python compiler Numba. Beside
the observation of the programming languages MATLAB and
Python, a comparison of the runtime performance of GPU
and CPU was taken. It has been shown that there were no
performance rises by using a GPU. The best runtime results
were 0.33 s ± 0.7ms at 10 BM3 modules up to 133.25 s
± 0.5386 s at 400 BM3 modules to simulate 1 s uptime of
the system. These results were measured by using the Python
compiler Numba.

Two variants were shown with the MATLAB and Numba
implementation, which represent a high-performance alterna-
tive to the Matlab/SIMULINK implementation. A performance
gain of more than factor 130 could be achieved at 1 s simula-
tion time with 10 modules.

VII. OUTLOOK

In modelling the next step, this introduced framework will
be extended by a three-phase electrical motor. Among other
things, this extension should make it possible to gain insights
into balancing methods or the evaluation of losses of the
converter system . This will make it possible to simulate driv-
ing cycles such as the Worldwide harmonized Light vehicles
Test Procedure (WLTP) without resorting to time consuming
methods such as lookup tables.
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