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Abstract: In the event of a disaster, the road network is often compromised in terms of its capacity
and usability conditions. This is a challenge for humanitarian operations in the context of delivering
critical medical supplies. To optimise vehicle routing for such a problem, a Multi-Depot Dynamic
Vehicle-Routing Problem with Stochastic Road Capacity (MDDVRPSRC) is formulated as a Markov
Decision Processes (MDP) model. An Approximate Dynamic Programming (ADP) solution method
is adopted where the Post-Decision State Rollout Algorithm (PDS-RA) is applied as the lookahead
approach. To perform the rollout effectively for the problem, the PDS-RA is executed for all vehicles
assigned for the problem. Then, at the end, a decision is made by the agent. Five types of constructive
base heuristics are proposed for the PDS-RA. First, the Teach Base Insertion Heuristic (TBIH-1) is
proposed to study the partial random construction approach for the non-obvious decision. The
heuristic is extended by proposing TBIH-2 and TBIH-3 to show how Sequential Insertion Heuristic
(SIH) (I1) as well as Clarke and Wright (CW) could be executed, respectively, in a dynamic setting
as a modification to the TBIH-1. Additionally, another two heuristics: TBIH-4 and TBIH-5 (TBIH-1
with the addition of Dynamic Lookahead SIH (DLASIH) and Dynamic Lookahead CW (DLACW)
respectively) are proposed to improve the on-the-go constructed decision rule (dynamic policy on the
go) in the lookahead simulations. The results obtained are compared with the matheuristic approach
from previous work based on PDS-RA.

Keywords: reinforcement learning; Markov decision processes; approximate dynamic programming;
rollout algorithm; constructive base heuristic; vehicle routing problem.

MSC: 90C40; 90B15; 90C59

1. Introduction

Recent events have shown that the occurrence of a disaster continues to claim many
lives despite the growing number of relief organisations to support and help the victims
throughout the world. In the case of the 2015 Nepal earthquake, for example, nearly
9000 lives were lost, and 23,000 people were injured [1]. In the event, critical medical
supplies and health personnel were far from lacking, given aid rushed into Nepal as soon
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as the news went out. The relief supplies received worldwide were so large in volume
that the Kathmandu airport was overwhelmed with the sudden increase in air traffic [2].
However, these life-changing resources could not be distributed accordingly and in a
timely manner given the lack of coordination between the local and international relief aid
providers. This led to inefficiencies in executing relief operations [1,2]. The fact that Nepal
is a landlocked country without any sea access also exacerbated the logistical challenges
further, as seen from the bottleneck problem in Kathmandu airport [3]. The hilly topography
of Nepal is prone to landslides [1,2,4], while continuous aftershocks damaged the road
infrastructure, such as the Pasang Lhamu and Araniko highways [5], which compromised
the road network to the disaster zone [4,6]. Additionally, the sudden onset of the disaster
meant that there was limited availability of vehicles and little preparation for emergency
logistics operations [4]. The viability of the long-term humanitarian operations with the
available vehicles, with regards to safety and logistics and asset management, were also
in question since the road network was compromised [4]. This hindered efficient relief
operations in terms of transport and delivery [4,7].

Meanwhile, urgent local medical supplies were rapidly diminishing as both field and
local hospitals were overrun by victims seeking immediate treatment [2,8]. If the relief
aid and supplies that were laying dormant at the Tribhuvan Airport could have been
channelled through effectively, it would certainly have helped alleviate the problem of the
urgent need for medical supplies and treatment.

In terms of disaster management preparedness, this case study serves to highlight the
critical role of transportation in the event of a disaster. Transportation service is a crucial
element when it comes to humanitarian logistics operation, in particular the in-country
transportation for delivery of relief supplies [4]. From the 2015 Nepal earthquake event,
some observations have been made with regards to ensuring efficient delivery of goods
through vehicle routing. The study in [4] pointed out that the geographical topology and
mountainous landscapes of Nepal as well as the second earthquake tremors and weather
conditions during the event heavily impacted the delivery speed, especially involving
the last mile of the delivery. In the disaster event, the road condition and capacity were
compromised by major accidents, causing traffic density and loss of cargo [4]. Furthermore,
there was an overwhelming demand for the limited number of trucks in terms of capacity
and availability due to critical delay and backlogs. This increased the price of transport
vehicle procurement to as high as 40%. Additionally, the lack of a decision support system
(DSS) to monitor and track transport vehicles, coupled with untrained drivers, also led to a
serious shortage of reliable transportation. Landslides, in particular, limited the routing to
certain areas. In addition, the risk of accidents due to a unfamiliar route was significant and
not helped by landslides which are sensitive to weather conditions. As such, intelligent
routing and communication access is pivotal for this particular vehicle routing problem.

The proposed Multi-Depot Dynamic Vehicle-Routing Problem with Stochastic Road
Capacity (MDDVRPSRC) model addresses such delivery problems in the setting of relief
humanitarian operations by incorporating the aforementioned challenges. The problem of
a bottleneck could be solved if “mini” airports were erected at strategic locations (multi-
depot). The problem of limited transport vehicles in terms of availability and capacity could
be addressed at some length through transport vehicles performing split deliveries which is
known to be a cheaper alternative by almost 50% [9]. Furthermore, these vehicles could also
perform multi-trip deliveries. Communication among Logistics Service Providers (LSPs)
and their local contacts helps in updating the road network conditions which may hint
towards dynamic problem modelling, with information updates at regular intervals. The
uncertainty which is the pivotal aspect of efficient delivery operations should be addressed
in terms of dynamic and stochastic settings of road capacity and conditions within the road
network [4,7].
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The Markov Decision Processes (MDP) modelling framework offers a natural way
to address these dynamic and stochastic aspects of the problem. However, incorporating
these aspects leads to an exponential growth of state, action and outcome spaces which
is needed when solving such a real and complex problem. To deal with the curse of
dimensionality [10], the Approximate Dynamic Programming (ADP) approach is com-
monly applied to solve the problem from the Machine Learning (ML) (Reinforcement
Learning, RL) perspective. To address the large outcome space, the Post-Decision State
(PDS) is applied as an extended version of the basic MDP modelling framework [11].

The ADP approach is usually applied to approximate the value of the next state sk+1
or the value of the action ak when solving the Bellman equation [12]. In ADP, the lookahead
approach is suitable when dealing with the large action and outcome space that constitutes
part of the curse of dimensionality. In this paper, the known Post-Decision State Rollout
Algorithm (PDS-RA) [13] is applied as part of the lookahead approach in the ADP.

A base heuristic in the PDS-RA is taken as the guiding policy for the decision rule
applied as the state transitions within the lookahead horizon. In modelling the VRP through
the MDP framework, the decision rule is generally the assignment of vehicles when the
state transitions. In the rollout, the transition occurs in the lookahead horizon beginning
from the potential next state sk+1 to the lookahead end state sK. In other words, the base
decision rule is a route computed for all vehicles to navigate within the future lookahead
horizon. In the case of MDDVRPSRC, however, assigning vehicles based on a computed
route, which is computed once, becomes problematic. This is due to the stochastic road
capacity which may render the computed route unusable in the next lookahead update.
One way to navigate around this is to have the route build dynamically on the go by a
simple constructive heuristic known as a base heuristic.

From the decision rule or route obtained through this approach at each iteration, only
the first assignments of the constructed route are applied while the rest are ignored. This
method is feasible and practical due to the less expansive computation performed by the
simple constructive heuristic. Here, the Teach Base Insertion heuristic (TBIH-1) is proposed
to balance the random exploration and to guide the exploitation by dictating obvious
assignments. Extending from this, the authors apply two known constructive heuristics:
Sequential Insertion Heuristic SIH(I1) and Clarke and Wright (CW), in a dynamic setting
and embed them into the TBIH-1(as proposed TBIH-2 and TBIH-3). To the best of our
knowledge, no paper has shown how these constructive heuristics can be executed, as
proposed, in a PDS-RA setting. We further derived from these two heuristics: TBIH-4 and
TBIH-5 that seek, within their algorithm, promising vehicle assignments by looking up
to two steps ahead. To deal further with the large action space, most research provides
some mechanism to segregate or cluster vehicles with a specific set of customers to serve.
Due to the stochastic road capacity, such mechanism is difficult to adopt. Thus, further
approximation is made when computing the optimal action a?k with regards to executing
the PDS-RA. Through this proposed method, each PDS-RA is executed for each vehicle for
every potential assignment that can be given to that vehicle.

The contributions made in this paper are as follows: first, the novel MDDVRPSRC
is proposed in a disaster event setting based on the modelling framework of MDP. Next,
TBIH-1 heuristic is proposed in this work along with four extended variants, namely
TBIH-2, TBIH-3, TBIH-4, and TBIH-5. By doing so, it is shown how SIH(I1) and CW can be
applied in the dynamic setting of route-based MDP for PDS-RA [14]. The authors also show
how these two can be extended by looking up to two steps ahead. Finally, it is also shown
and validated how the near optimal decision can be approximated further by disintegrating
the collective assignment decisions to an individual near optimal decision. To the best of
our knowledge, both the MDDVRPSRC MDP model and the five base heuristics applied in
the PDS-RA algorithm are novel and have not yet been proposed.
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This work is the extension of research published by [15], where the damage determi-
nation of the roads within the road network is referred from. Furthermore, the Poisson
stochastic distribution of a stochastic road capacity is also referred from. In this paper,
the dynamic and stochastic MDDVRPSRC MDP model is presented to complement the
earlier research in [15] that modelled the Deterministic Multi-Depot VRP with Road Capac-
ity (D-MDVRPRC) as well as the two-stage Stochastic Integer Liner Programming (SILP)
model of a Multi-Depot VRP with Stochastic Road Capacity (MDVRPSRC-2S). To solve
the MDP Model presented in this paper via the PDS-RA algorithm, the five base heuristics
are proposed as an alternative to the “cluster first, route second” approach that cannot
be applied. Meanwhile, to benchmark these heuristics, the matheuristic rollout presented
in [15] is applied where tractable.

This paper is organised as follows: Section 2 describes the literature review focusing on
the proposed model and base heuristics. Section 3 describes the problem of MDDVRPSRC
where some elements of the models have been referenced from the authors’ previous work.
The known PDS-RA approach is briefly described in Section 4 as well as how the optimal
decision is approximated through the proposed mechanism. Additionally, variants of the
proposed base heuristics are presented here. Section 5 presents the computational results.
while Section 6 synthesises the findings. Finally, Section 7 concludes the paper.

2. Literature Review

An extensive synthesis of the literature on works adapting VRP for humanitarian
operations can be found in [16,17]. In [17], numerous papers within the last decade
(as of 2020) have been reviewed in terms of the application of VRPs for three selected
humanitarian operations. Various modelling aspects, such as dynamic and stochastic
problem, multi-disaster phase, multi-objectives, multi-trips, multi-depots, split delivery and
more, which are relevant to the model proposed in this work, are elaborated. Furthermore,
the solution approaches applied are also discussed in detail, especially the challenges when
dealing with stochastic and dynamic VRPs. Ref. [15] extends the findings by discussing
some papers applying VRP outside the field of humanitarian operation settings but are still
relevant to the model that was proposed. Meanwhile, the RL adaptation in solving Supply
Chain Management (SCM) is discussed in [18]. Additionally, the adoption of RL in VRP
and TSP is discussed in [19].

2.1. Stochastic Vehicle Routing Problem for Humanitarian Operations

The survey in [20] discussed the recent dynamic VRP for various applications from
2015 to 2021. From the analysis of their work, it could be observed that the research focusing
on dynamic problems usually also address stochastic problems. The opposite, however,
may not necessarily be true. As such, some discussion on research works regarding
stochastic VRP for humanitarian operations is warranted to complement those discussed
in [17]. For example, the recent work of [21] addressed the Inventory Routing Problem (IRP)
with an uncertain traffic network. Here the distribution of essential multi-commodities in
the chaotic post-disaster phase among relief shelters and distribution centers is modelled
through the network flow model. The uncertain traffic network is due to the magnitude
of the earthquake’s attributes, such as the earthquake’s magnitude and the time of its
occurrence. Such attributes also affect the vehicle speeds when making split deliveries.
Apart from the optimized routing decision, the efficiency of the commodities distribution
is further improved through the optimized inventory decision. Both are computed via the
simulation optimization technique where the Sample Averaging Approximation (SAA)
method is applied.

On the other hand, Ref. [22] presented a two-stage Location Routing Problem (LRP) of
distributing first aid relief materials post-earthquake disaster where the complex demand
uncertainty is addressed. Here the mixture of uncertain demand from the perspective of
randomness (probabilistic theory) and fuzziness (possibility theory) due to the merging
of subjective and objective data forms the hybrid demand uncertainties. A scenario-
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based stochastic demand over a specified interval per scenario is considered for stochastic
probabilistic programming due to the strong relationship between events/scenarios such
as post-earthquakes and aftershocks and the demands’ uncertainty. As such, the demand
parameter is considered a fuzzy random variable. In the two-stage robust programming
model, the decision for locating a warehouse among existing warehouses is first determined,
while the routing and distribution decision is computed in the second stage. The objective is
to minimize the cost of warehouse location and the penalty induced by unsatisfied demand.
Here the equivalent crisp model is represented by the Basic Possibilistic Chance Constraint
Programming (BPCCP) model and later modified as the two-stage robust programming
model to overcome the drawback of BPCCP. A small-scale instance problem based on
the actual case study of Hamadan province of Iran, a location prone to earthquakes, is
applied to verify the model proposed. The solution obtained using CPLEX indicates that
the demand satisfaction level is significantly higher than in conventional scenario-based
stochastic programming.

Meanwhile, the work proposed in [23] focused on the redistribution of food to charita-
ble agencies, such as homeless shelters and soup kitchens, by picking up the resource (food)
from donors such as grocery stores and restaurants. Here the objective is to assure fairness
in distributing the donated foods while also considering the waste implicitly through the
constraints introduced. The demand from charitable agencies and the resource (donation)
are stochastic in this problem. Additionally, equity is the rate between allocated amounts to
respective agencies over the total demands. Some assumptions are made, such as unlimited
vehicle capacities and that all donors must be visited before distribution is performed. A
decomposition strategy in the form of a heuristic is applied to solve the problem where the
recipients and donors are clustered first. Then the route is computed for respective clusters,
and resources are allocated for each recipient.

Another multi-objective problem is addressed in [24] to deliver both non-perishable
and perishable items to demand points considering uncertainty, such as the location and
number of relief centers that should be established at the demand points as well as the
delivery means of the relief item post-disasters. A Mixed-Integer Non-Linear programming
(MINLP) model is formulated to minimise the total distance travelled, the maximum
travelled distance between relief centers and demand points, and the total cost associated
with acquiring the relief items and vehicles utilized as well as the inventory cost. This model
is solved by GAMS software for small-scale instances. Meanwhile, the larger instances are
solved by a Grasshopper Optimization Algorithm (GOA) metaheuristic.

Ref. [25] addressed another multi-objective problem involving the COVID-19 pan-
demic. In this problem, multi-period collection and delivery of multi-products in a single
open and close loop Supply Chain (SC) is modelled through the formulation of transporta-
tion problems and the Pick and Delivery VRP (PDVRP). Here the open and close supply
chain system involving reusable and non-reusable products is transferred from hybrid
depots that produce and recycle the products through a forward and reverse flow. The
transfer collection centers located in the affected COVID-19 areas acted as the intermediary
between the depots and the hospitals. Heterogeneous vehicles traverse the forward and
reverse flow via PDVRP from the transfer collection centers to the hospitals when delivering
products through split delivery while receiving the old product for reproduction. Various
uncertain parameters are defined involving vehicle cost, production cost, the demand from
the hospitals, and the returned products when computing for multiple decision variables
focusing on the number and routing of the vehicles, production and return of products,
shipping, and inventory of products. Finally, a robust optimization approach is applied
where the Tchebycheff method is adopted to solve the complex problem.

A complex problem of relief distribution within the humanitarian logistics network
and victim evacuation is addressed by [26]. This problem is based on the Facility Location
Problem (FLP) and VRP, where the uncertain demand, transportation time, miscellaneous
cost, injured victims, and facility capacity are considered. Moreover, the formulated
problem involves stakeholders, such as the suppliers of relief materials (e.g., charitable
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organizations), the distribution centers, the emergency centers that distribute the aids,
distribution units where the evacuated victims are located, and hospitals to which they are
sent to for further treatment. Thus, the decisions are based on locating and distributing
relief materials and allocating evacuated victims assigned to respective routed vehicles.
Multi-objectives are also addressed where the total humanitarian logistics cost, the total
time of relief operations, and the variation between the lower and upper bound of the
transportation cost of the distribution centers are minimized. The uncertainties in the
form of inconsistencies and unclear and inaccurate information are captured through the
neutrosophic fuzzy set. These uncertainties are prioritized and dealt with, respectively,
through the neutrosophic set and the robust optimisation, where the latter deals with the
uncertainties associated with worst-case planning involving victims, facility capacity, and
relief supply.

The work by [27] similarly addressed the LRP through the Conditional Value at Risk
with Regret (CVaR-R) bi-objective mixed nonlinear programming model in dealing with
relief distribution post-disaster. In this problem, the optimal decisions include selecting
distribution centers to be made operational among all existing distribution centers, the
number of vehicles that should be assigned, the assignment of vehicles to respective
demand points, and the allocation of relief aids delivered to each of these demand points.
The concept of regret when making these decisions due to inaccurate expectations of
demands allows for a novel chance constraint programming approach introduced through
the CVaR-R measure. The regret value for each objective to: (1) minimise the total waiting
time of demand points and (2) minimise the total system cost is measured by defining
possible demand scenarios with respective probability. For each demand scenario, the
difference between the ideal objective values (from the deterministic model) and the
objective values computed given the demands in each scenario is determined, from which
the worst-case scenarios are identified and applied to compute the CVaR-R. To solve the
problem model, the Nash Bargaining Solution (NBS) approach is applied with the help of a
hybrid Genetic Algorithm (GA) when solving the single LRP version of the problem (via
the GA) as well as determining the Pareto frontier (via the Non-Dominated Sorting GA
Algorithm II (NSGA-II)) used to compute the NBS.

Finally, Ref. [28] also addressed the risk decision factor regarding the relief distribution
with uncertain travel time. This problem is formulated based on the multi-level network
via a mixed integer programming model to minimise the total arrival time of vehicles
delivering relief materials to only selected demand points instead of satisfying demand for
all demand points. Furthermore, the near-optimal delivery route computed ensures that a
particular service level is reached throughout the operation by formulating the associated
constraints. By introducing the risk-averse approach, the objective function is adapted by
incorporating the standard deviation term representing the risk of the decision regarding
uncertain time travel. Meanwhile, the non-additional term is the expected total arrival that
needs to be minimized. Both are weighted to balance the importance of risk to the decision
maker when computing for the near-optimal decision. Here, the Variable Neighbourhood
Search (VNS) is employed to solve the problem based on the data obtained from the Haiti
earthquake case study in 2010.

2.2. Markov Decision Processes Model for Humanitarian Operations

In this paper, the current trends of VRP in the scope of MDP modelling are discussed.
It could be derived from [17] that MDP modelling for VRPs in the setting of humanitarian
operations is scarce. This is supported by the finding that only [29] addressed the problem
in humanitarian operations. Ref. [29] looked at multiple humanitarian operations, such as
delivery and search and rescue, by incorporating the Relief Assessment Team (RAT) and
the Emergency Relief Team (ERT), using the Decision-Making Agent (DMA) to coordinate
the former two. The problem is modelled as an MDP with multiple random parameters,
such as the demand and stability of the transport link. Here, the RAT is tasked to assess
affected areas and dynamically report the demand situation for each zone. ERT, on the
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other hand, is tasked to serve the zones assigned by the DMA. Meanwhile, decisions are
composed by assigning various combinations of aid organisations to a specified affected
zone, as well as routing decisions for both the ERT and RAT. Finally, Q-learning is applied
to solve the problem involving a maximum of 7 RAT and 10 ERT.

Other than papers reviewed by [17], there are works such as [30] which plan evacuation
routing for the last minute disaster preparedness phase. In this problem, residents are
evacuated prior to disaster occurrence via buses that pick up stochastic resident evacuees
at bus stops. The problem is modelled as a single trip operation with a homogeneous fleet
of vehicles within a finite horizon. Here, the action or decision is the assignment of the
next pick-up point for each of the vehicles and the number of evacuees taken, suggesting
a split delivery operation. The small instance of the problem is solved exactly using
structured value iteration. Meanwhile, dynamic re-routing is applied for a large-scale
problem through a reduced network flow MIP and Robust MIP (RMIP) model. Beyond
these aforementioned works, related works on modelling a VRP through the framework of
the MDP for humanitarian operations are sparse.

Instead, the MDP application is used to address humanitarian operations that revolve
around the coverage problem, the allocation problem, the path planning, and the scheduling
problem. Ref. [31] computed the evacuation routes during a disaster by modelling the
problem as an MDP model. However, the work cannot be regarded as a VRP as the target
application is not specified in terms that would constitute a VRP, such as the vehicles’
availability or their capacity. Similarly, Ref. [32] used the MDP model to address the
problem of clearing the debris from blocked edges or roads in an optimal assignment
with uncertain clearance resources. In the post-disaster event, the optimal decision was
computed considering the delivery of aid or service for demand nodes. Then we have [33]
who addressed the problem of congestion in terms of hospital facilities as well as limited
ambulances to rescue patients in the aftermath of a disaster. Considering the stochastic
treatment time and transportation availability, the decision for such planning was to allocate
ambulances to affected patients and to choose which medical facility the ambulance should
be headed for. Two types of vehicles are considered: a dedicated ambulance for a location
and another ambulance with flexibility in terms of the location. The latter might suggest
split delivery. However, neither capacity nor comprehensive routing were considered in
this problem. Dynamic patient treatment times were updated, and the problem was solved
based on proposed heuristics that applied a myopic approach with policy improvement.

2.3. Markov Decision Processes Model for Industrial Problems and the Application of Approximate
Dynamic Programming

Apart from the application for humanitarian operations, the MDP modelling frame-
work has also been adopted for industrial problems since 2000. Interestingly, most of the
early works are dedicated to solve the single VRP with stochastic demand such as in [34–37].
The study in [38] is among the first to look into the theoretical aspect of the pick-up and
delivery of a single vehicle-routing problem with stochastic request using MDP modelling.
The focus on the multi-vehicle problem is seen later in [39–41] for a VRP with stochastic
demands. On the other hand, Ref. [42] deviated from stochastic demands by addressing
the problem with stochastic customers or stochastic requests. In this type of application,
various different and diverse solution strategies were adopted. This contrasted with the
problem with stochastic demands which mainly applied the lookahead approach such as
the PDS-RA.

Meanwhile, in [14,43] the route-based MDP was introduced as opposed to the con-
ventional formulation of an MDP addressing a VRP while incorporating a dynamic route
plan at every decision epoch. This framework was applied in [44] to solve the problem of
maximising the number of services within the same period for stochastic service requests
using the Value Function Approximation (VFA). The problem was to decide which new
stochastic request should be accepted and which should be postponed to the next operation
period. Apart from the fixed working time, multi-periods would be considered as multi-trip
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operations. VFA was applied as one of the ADP solution approaches allowing for online
computation while dealing with the decision and outcome spaces. Through the VFA, the
state space was segregated based on common features. The resulting MDP model led to
a huge number of decision points which was dealt with by introducing a classification
of multi-period operations. The application of VFA as shown here is commonly known
to ignore some details of the state due to the aggregation mechanism within. The same
authors in [45] alleviated this problem by proposing a hybrid of two ADP approaches: the
VFA and the Rollout Algorithm (RA) to address the stochastic request for a single vehicle-
routing problem. The authors later addressed the same problem in [46] with a different
hybrid mechanism of VFA and RA by having the second part of the simulation horizon
driven by a base policy dictated by the VFA. This method was effective in increasing the
solution quality while reducing the computation time. A single vehicle-routing problem
was also addressed by [47] with regards to taxi routing when searching for a passenger. In
this MDP model, the transition probability is derived from the taxi–passenger matching
probability on a link. Here, an enhanced value iteration was applied to solve the problem
by reformulating Bellman’s Equation into a series of matrix operations.

2.4. Approximate Dynamic Programming in Machine Learning

As can be seen from the example mentioned above, aside for [47], ADP is commonly
adopted as a solution approach for problems formulated in MDP. The ADP emerged as a
means to solve real and practical MDP problem models. This is due to the complexity of
the MDP model that increases exponentially due to the explosion of state, outcome, and
action spaces [48,49]. Such problem renders the exact solution to be prohibitive as shown
in [50,51]. Afterwards, Ref. [52] coined the term ADP which is otherwise known as RL or
neuro–dynamic programming. The interest in ADP sparked around the mid–1990s when
it was extensively written on by [53,54]; although the ideas and concepts could be found
dating back to the 1950s. For instance, Ref. [55] described the concept of approximating the
value of a position in a chess game which is based on the state of the board. He likened the
concept to an experienced player evaluating a move roughly but not based on all possible
scenarios. Later, Ref. [12], when introducing dynamic programming, hinted at the idea
with the mention of value space and approximation. Then [56] not only applied the idea
of [55] in evaluating a position move, but also showcased the practical use of the lookahead
approach while approximating the value of a move in the game of checkers. At the same
time, he considered the possibility of remembering all the positions and moves, much
like the concept of a dynamic lookup table. The work was further improved in [57] with
regards to a tree search lookahead with an improved alpha–beta pruning scheme based on
the memorisation of a board position, known as the book-learning procedure. The basic
ideas from the aforementioned works were explored further resulting in pivotal works
of [58–60] which formed what is known as the modern era of ADP [53]. Following that,
Refs. [61–63] in his experiments with the game Backgammon afterwards demonstrated the
practical application of ADP to solve real and complex problems.

2.5. Rollout Algorithm and Post-Decision State Rollout Algorithm in Approximate
Dynamic Programming

The authors take advantage of the well-known operations of the VRP from the human-
itarian operations’ perspective and propose that the model based on MDP is adopted for
MDDVRPSRC with a known variant of RA (PDS-RA) being applied to solve the problem
online. The intuition for the lookahead approach as elaborated above can be identified back
to the work of [55] who thought of evaluating a move by thinking ahead in a lookahead
manner. The RA is based on the same principle but is refined by means of the quality of
the lookahead which depends on the base policy applied. Furthermore, the horizon of the
lookahead plays an important role as was mentioned by [64,65]. Another crucial aspect
of the rollout is the Monte Carlo sampling that would enable the multiple lookaheads to
account for the stochastic parameter for the simulated episode. Finally, the number of
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simulations performed would also contribute to a better mean approximation of the state
or PDS value. The RA is proposed by [48] belonging to the class type of policy iteration in
reinforcement learning. Note that [34] was among the first to develop a specified RA in
solving sequencing problems. This work was extended in [35] for a single VRP. In [49], the
performance of the rollout policy is compared to the optimistic approximate policy iteration
for the single VRP. The former showed a better performance. Cyclic heuristic is applied as
the base policy for the RA in [66] to solve the problem of of a VRP with stochastic demand
(VRPSD) as well as the problem of the Travelling Salesmen Problem (TSP) with stochastic
travel time. The former was also addressed by [36] who presented the two–stage stochastic
programming solution approach and compared it to the online approach using RA. The
outcome space was addressed exactly for all these problems up to this point. However,
Ref. [37] managed to tackle this challenging computation approach by applying Monte
Carlo sampling instead in a single- and two-stage RA. The computation was shown to have
shrunk by 65% when compared with [35].

In [39], the multi-vehicle VRPSD is finally addressed. The challenges that come with
the multi-vehicle problem is addressed through clustering to dedicate a set of different
customers to each vehicle. An offline a priori route is computed for respective vehicles,
and RA is only applied if a route failure occurred. Although RA was not applied from the
get-go, this work highlighted the potential of a clustering mechanism when dealing with a
multi-vehicle VRP. This was seen in [40] who made the clustering mechanism dynamic at
every decision point as the status of stochastic demands were being updated. The problem
was then solved by proposed variants of RA making use of the extension of the MDP
framework, pre-decision state (PRE) ,and post-decision state (PDS) , advocated by [67].
Here, the base policy applied was the fixed route heuristic. This heuristic was relaxed
forming a known restocking fixed route heuristic in [41], from which policies were iterated
and obtained through a local search. These policies were evaluated with the help of the
optimal value computed by dynamic programming to help with pruning the search space
in the search for a more effective rollout base policy. This base policy was then applied in
the RA to obtain a more optimal policy for the problem. The same concept was applied
in [68] for the same problem, apart from the duration limit for a single vehicle, where a
hybrid of backward and forward recursive dynamic programming was applied instead. In
the work of [42], the authors applied RA with the cheapest insertion heuristic as the base
policy for the problem of single VRP with stochastic requests. The solution was compared
with the solution obtained from a greedy heuristic and VFA, respectively. Meanwhile,
Ref. [69] proposed a framework for applying RA for the dynamic and stochastic VRP as an
ADP solution approach. In [45], PDS–RA was applied with the VFA method driving the
decision rule for the lookahead.

2.6. Rollout Algorithm as Matheuristic

An RA with which the base heuristic is driven by the policy of applying a mathematical
programming method could be regarded as a matheuristic method. Among those who
applied such a technique are [15,70–73]. In the work of [70], the authors addressed the
scheduling problem with RA, where the decision rule was obtained using the quadratic
programming approach. In [71], the Mixed Integer Linear Programming (MILP) was
applied to obtain the decision rule for the RA in solving the problem of inventory routing
with a single vehicle. Such approaches were also seen in [72,73] for solving the inventory
routing problem. In other works, Ref. [15] proposed a matheuristic RA method to solve
the multi-vehicle routing problem for humanitarian delivery operations by reducing the
two-stage stochastic programming model to two reduced models that was dependent on
the vehicle’s mode of operation: replenishment or serving an emergency shelter.
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2.7. Knowledge Gap and Research Contribution

By referring to Section 2.2, it is very clear that a humanitarian VRP, which is being
addressed through machine learning, is still lacking. Meanwhile, from the industrial
problem’s perspective, the literature available shows that solving the VRP problem via
reinforcement learning and RA are largely limited to stochastic demands, customers, or
request problems. No such approach applied has addressed the problem with stochastic
road capacity. The authors intend to fill this gap.

Furthermore, addressing the VRP through MDP formulation and the RA solution
method is often limited to those of a single-vehicle problem as seen in the
work [35–37,41,42,45,49,66,68]. This is evident even in the published works of the last
five years. Those who solve multi-vehicle problems such as the work [39–41] often resort to
a clustering or decomposition method of the vehicles to a set of different customers. Such a
method, with the exception of a dynamic decomposition method, could not be performed
when addressing MDDVRPSRC as the road capacity; thus the route is uncertain. Further-
more, it is not clear how a dynamic clustering or decomposition method could address
the problem with stochastic road capacity while also accounting for the split delivery and
multi-trip operations. To the best of the authors’ knowledge, there is no literature that has
proposed the method of building the decision rule on the go, guided by the constructive
heuristic as the policy while performing the rollout. Similarly, no known variants of such
heuristics have been introduced to allow for decision ruling on the go. Here the authors
intend to fill the research gaps by proposing the application of proposed heuristics (TBIH-
1–TBIH-5) within the PDS-RA adopted from [13]. In terms of the modelling approach, to
the best of the authors’ knowledge, no literature addresses the MDDVRPSRC, whether in
the form of a mathematical programming model or in the MDP formulation, especially in
humanitarian operations settings. Most literature for MDP formulation in VRPs addressed
multi-trip operations only for on-route failure occasions. For example, the work such
as [74] addressed the split operation also when triggered by the event of route failure due
to stochastic demands. Literature such as [44,45] which addressed the multi-period oper-
ations, however, do not include the possibility of split delivery operations. Furthermore,
most of these models only described operations involving a single vehicle. We differ from
existing literature by intentionally allowing multi-trip operation as well as split delivery
to address the limitation of delivery trucks during a disaster event rather than a result of
route failure. Addressing multi-vehicles leads to the explosion of action space and is often
very difficult to solve without resorting to a clustering approach. The authors therefore
present here how with a moderate number of destination nodes in various simulated road
network, the MDDVRPSRC could be solved without utilising a clustering or dynamic
clustering method.

3. MDDVRPSRC MDP Model
3.1. Problem Statement

The problem of MDDVRPSRC focuses on the delivery problem, one of the crucial
humanitarian operations during a disaster and post-disaster event. Here, the road network
is represented as an undirected incomplete graph G = (H, E) in graph theory. H is the
set of nodes in graph G such that H = {D}⋃{S}⋃{N} where D, S, and N are the set
of depots, emergency shelters, and connecting nodes respectively. The connecting nodes
represent the junction connecting the edges (i, j) ∈ E, representing the roads such that
E = {(i, j) : i, j ∈ N

⋃
S
⋃

D, i 6= j}. Note that emergency shelters whose demands are
satisfied can act as connecting nodes for vehicles to travel through.

In MDDVRPSRC, the medical supplies are to be delivered to temporary erected emer-
gency shelters, s ∈ S, with different demands, ws, by a homogeneous fleet of vehicles,
m ∈ M, with capacity, qm. The delivery of medical supplies is conducted via split delivery
to account for the limited number of vehicles during the sudden onset of a disaster. Vehicles
are allowed to perform multi-trip deliveries throughout the humanitarian operations to
satisfy all the demands. The vehicle capacity, qm, can be replenished to a full capacity, Q,
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as soon as they return to the depot, d ∈ D. All vehicles must be dispatched throughout
the operation until the total demand is satisfied as there is no guarantee that any assigned
vehicles might reach their designated emergency shelter. More on this point, a vehicle
is considered stranded when it is unable to travel to the next node on the way to the
depot for the consecutive decision points of ST once the total demand is satisfied. Unless
such an event occurs, all vehicles must return to the depot. However, they are not con-
strained as to which depot they should return to, advocating the flexibility needed for the
humanitarian operations.

All throughout the operation, the road capacity, ri,j, is uncertain. The mean road
capacity for each road, (i, j), as well as the capacity distribution deteriorates as the operation
time progresses for all damaged roads [15]. The deteriorating road capacity mean is due
to the damages inflicted by the subsequent post-disaster events, such as tremors of an
earthquake. This is simulated as the outward radial circles originating from the epicentre
of the earthquake [15]. For more information of road capacity distribution, road damage
determination, and simulation of earthquake tremors, refer to the work of [15].

3.2. Agent Solving MDDVRPSRC in Reinforcement Learning

In reinforcement learning, an agent learns to make decisions based on given informa-
tion of the system. The information is given in the form of the state representation of the
system as well as the transition of the state when making a constrained action or decision.
An agent learns to make optimal decisions based on the series of interactions it has made
from making decisions and in return obtained rewards. An MDP model formulates how an
agent sees the system through: (i) the state representation, (ii) how the system transitions,
(iii) the constrained actions or decisions it is allow to make as well, and (iv) the reward
it received from making a decision. In this work, the agent perceived the problem as a
MDDVRPSRC and will make a near optimal decision at every decision point. This agent
then becomes a part of the DSS for delivering critical medical supplies during a disaster.

The agent learns of the aforementioned delivery operations of the MDDVRPSRC
through a series of discrete states it observes at each decision point, k, beginning with the
initial state, s0, until the end state, sK, representing the end of delivery operations. The
Pre-Decision State (PRE), sk, represents the state of the operations at decision point, k, prior
to decision, ak, computed by the agent. The state observed by the agent after decision, ak, is
made and denoted as the Post-Decision State (PDS), sak

k . These states (PRE and PDS) are
described through the state variables l, t, q, w, e, and r, respectively:

• l: current location of all vehicles;
• t: the next arrival time to next destination of all vehicles;
• q: the capacity status of all vehicles;
• w: the demand status for all nodes;
• e: the occupancy status of road (i, j) in relation to vehicle m;
• r: the road capacity of all roads or edges.

In the MDDVRPSRC MDP formulation, an agent computes a decision, ak, to send
a fleet of vehicles to a destination node based on the state that it observed, sk. Once the
decision ak is executed, the PRE transitions to PDS, sak

k , deterministically and waits for the
next decision point, k + 1, which is triggered at Tk+1 by the arrival of one or more vehicles
m ∈ M′k+1 simultaneously at the emergency shelter s ∈ S or connecting node n ∈ N or
depot d ∈ D.

Once the decision point k + 1 is triggered, the random road capacities ˆri,j are observed
for all roads (i, j) ∈ E through the dynamic update from the locals at the arrival destinations.
At this point, the PDS transitions to PRE, sk+1, stochastically and the PRE state variables
ek and rk are updated. This new random information is now known to the agent (via the
updates of ek and rk) who then uses it to compute the next decision, ak+1, for all vehicles.
Once the decision ak+1 is computed, the PRE transitions to PDS, sak+1

k+1 . At the same time,
demand wh, ∀h ∈ S is served or the vehicle’s capacity is replenished or neither (when a
vehicle arrives at connecting node h ∈ H ∩ {S + D}) depending on where the vehicles
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arrived. Hence, the variables of PDS representing the next destination, lak , arrival time to
next destination tak , capacity, qak , status edges travelled, eak and demand status, wak are
updated accordingly. The MDDVRPSRC formulation that follows is developed by referring
to [75] and the work of [13]. All parameters, state variables. and decision variables are
listed in Tables 1 and 2.

Table 1. MDDVRPSRC: Parameters.

Parameters

N connecting node set
D depot set
S shelter set
H N

⋃
S
⋃

D
E set of edges E = {(i, j) : i, j ∈ N

⋃
S
⋃

D, i 6= j}
M set of vehicles
K end decision point
sk state at decision point k prior to decision ak being made, PRE
sak

k state at decision point k after decision ak is made, PDS
sK termination PRE state
k decision point such that k ∈ N∩ {0, K}
M′k set of vehicles that arrived at their assigned destination at decision point k where

M′k ⊂ M
Tk time at decision point k such that Tk ∈ R
twait waiting time for vehicle arrived at a node but is assigned to remain stationary at

current node such that twait ∈ [0, inf)
A(sk) decision set of all possible decisions at decision point k given sk
Aπ(sk) MDP decision rule at decision point k following policy π given sk
$π(sk) on-the-go constructed lookahead decision rule at decision point k following policy

π given sk
ηπ(sk) decision rule computed through construction heuristic or CPLEX determined by

policy π at decision point k given sk in the lookahead horizon
O′m set of all potential destination for vehicle m at i for all (i, j) ∈ E where O′m ⊂ H
Om reduced decision space set for a single vehicle m in rollout given that Om ⊂ O′m
Q maximum capacity of vehicles after replenishment at depot
ci,j cost incurred if edge (i, j) is travelled such that ci,j ∈ R
ti,j time travelled of edge (i, j) such that ti,j ∈ R
W(k) random information at decision point k
ri,j deterministic road capacity ri,j ∈ Z?, where Z? = Z+ ⋃{0} observed at decision

point k
ˆri,j stochastic road capacity ˆri,j ∈ Z?

pi,j damage unit sustained by road (i, j) [15], such that pi,j ∈ N
Z a large negative arrival time for vehicles resting at depot when all demand is served
G2 a larger constant acting as reward or penalty
ST a limit on how many times a vehicle is allowed to be stationary (stranded) consecu-

tively in terms of decision points
F(m, i) function that adds consecutive decision points for all stranded vehicle m at

i when all demand is served and all other vehicle is at depot consecutively
starting from decision point kstrand0 to current decision point kstrandk

such that

F : (m, i) → {kn|kn−1 − kn = 1}kstrandk
n=kstrand0

: ∀kstrandk
≤ ST m ∈ M, i ∈

H, ri,j = 0 ∀(i, j) ∈ E
λ discount factor in Bellman Equation [12]
π policy π ∈ Π ⊂ N that affect the decision rule $π(sk) : sk → ak
Rk(sk, ak) reward for the agent for making decision ak at decision point k when observ-

ing(given) the state sk
Rk,m(sk, ak) individual reward of vehicle m at decision point k
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Table 2. MDDVRPSRC: State and Decision Variables.

PRE and PDS Variables

lk, vector of next destination ∀m ∈ M at decision point k, such that lk ∈ H|M| =
[l0, l1, . . . , l|M−1|]

lak , vector of next destination ∀m ∈ M at decision point k, such that lak ∈ H|M| =
[lak

0 , lak
1 , . . . , lak

|M−1|]

tk, vector of arrival time ∀m ∈ M to assigned destination at decision point k, such that
tk ∈ R|M| = [t0, t1, . . . , t|M−1|]

tak vector of arrival time ∀m ∈ M to assigned destination at decision point k, such that
tak ∈ R|M| = [tak

0 , tak
1 , . . . , tak

|M−1|]

qk, vector of vehicle capacity ∀m ∈ M at decision point k, such that qk ∈ R|M| =
[q0, q1, . . . , q|M−1|]

qak , vector of vehicle capacity ∀m ∈ M at decision point k, such that qak ∈ R|M| =
[qak

0 , qak
1 , . . . , qak

|M−1|]

wk, vector of demand for all node i ∈ H at decision point k, such that wk ∈ R|M| =
[w0, w1, . . . , w|H−1|]

wak , vector of demand for all node i ∈ H at decision point k, such that wak ∈ R|M| =
[wak

0 , wak
1 , . . . , wak

|H−1|]

rk, vector of road capacity for all edges (i, j) ∈ E at decision point k, such that rk ∈ R|E| =
[ri,j]∀(i,j)∈E

rak , vector of road capacity for all edges (i, j) ∈ E at decision point k, such that rak ∈ R|E| =
[ri,j]∀(i,j)∈E

ek, vector of road occupancy of each vehicle for all (i, j, m) ∈ {(i, j, m) : ∀m ∈
M, ∀(i, j) ∈ E} at decision point k, such that ek ∈ {0, 1}|{(i,j,m): ∀m∈M, ∀(i,j)∈E}| =
[ei,j,m]∀(i,j,m)∈{(i,j,m): ∀m∈M, ∀(i,j)∈E}
1 if edge (i, j) travelled by specific vehicle m, 0 otherwise

eak , vector of road occupancy of each vehicle for all (i, j, m) ∈ {(i, j, m) : ∀m ∈
M, ∀(i, j) ∈ E} at decision point k, such that eak ∈ {0, 1}|{(i,j,m): ∀m∈M, ∀(i,j)∈E}| =
[eak

i,j,m]∀(i,j,m)∈{(i,j,m): ∀m∈M, ∀(i,j)∈E}
1 if edge (i, j) travelled by specific vehicle m, 0 otherwise

Decision Variable

ak vector of next assigned destination for vehicles, such that ak ∈ H|M| =
[a1, a2, . . . , a|M|] ∈ A(sk)

3.3. MDDVRPSRC Formulation

The pre-decision state (PRE) sk is a multi dimensional vector consisting of other vectors
representing each state variable, respectively. Within this vector are the state variables
defined in Table 2:

sk = [lk, tk, qk, wk, rk, ek]. (1)

The PDS representation shares the same features as the PRE differs only by annotation
and that its variables are updated after decision ak is made:

sak
k = [lak , tak , qak , wak , rak , eak ]. (2)

Once the decision point is triggered, based on the minimum current values within the
arrival time vector tak , at:

Tk = min
m∈M, t

ak
m ≥0

tak , (3)
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the respective decision/assignment is computed for all vehicles including those that arrived
as shown in Equation (4) below:

M′k = arg min
m∈M, t

ak
m ≥0

tak . (4)

Here, the vehicle that is still en route to its destination during the decision point k is
denoted by {m ∈ M\M′k}.

In the MDDVRPSRC, the decision ak is a |M| dimensional vector in a decision space (a
set) A(sk) given the state sk. The decision involves assigning the next destination for all
vehicles at every decision point k,

ak = a ∈ H|M| = [a0, a1, . . . , a|M−1|] ∈ A(sk). (5)

However, the decision space A(sk) for MDDVRPSRC is too large to obtain a good
solution within reasonable computation efforts. Therefore, for every decision point k, the
decision by the agent is computed as proposed in [15] where the reduced decision set for a
single vehicle Om is as defined for the rollout in Table 1:

A(Sk) = {ak ∈ H|M| :

am = j, ∀{m ∈ M′k : i = lm, j 6= i, ri,j > 0, wj 6= 0, qm 6= 0, j ∈ Om : Om ⊂ S}
am = j, ∀{m ∈ M′k : i = lm, j 6= i, ri,j > 0, ∑

h∈H
wh 6= 0, qm = 0, j ∈ Om : Om ⊂ D}

am = j, ∀{m ∈ M′k : i = lm, j 6= i, ri,j > 0, ∑
h∈H

wh = 0, i 6∈ D, j ∈ Om : Om ⊂ D}

am = i, ∀{m ∈ M′k : i = lm, j, d 6= i, ri,d > 0, ri,j = 0, ∑
h∈H

wh 6= 0, qm 6= 0,

j, d ∈ O′m, d ∈ D}
am = i, ∀{m ∈ M′k : i = lm, j, s 6= i, ri,j > 0, ri,s = 0, ∑

h∈H
wh 6= 0, qm 6= 0,

j, s ∈ O′m, s ∈ S}
am = i, ∀{m ∈ M′k : i = lm, ∑

h∈H
wh = 0, i ∈ D}

am = i, ∀{m ∈ M′k : i = lm, j 6= i, ri,j = 0 ∀(i, j) ∈ E}
am = j, ∀{m ∈ M′k : i = lm, j 6= i, ri,j > 0, ∑

h∈H
wh 6= 0, qm 6= 0, j ∈ Om : Om ⊂ (H\S)}

am = j, ∀{m ∈ M′k : i = lm, j 6= i, ri,j > 0, ∑
h∈H

wh 6= 0, qm = 0, j ∈ Om : Om ⊂ (H\D)}

am = lm, ∀{m ∈ M \M′k}}

(6)

The state Sk transitions deterministically to PDS, sak
k :

sak
k = SM,a(sk, ak), (7)

where the decision is made by the agent (lak = ak). This is where the next destination lak ,
arrival time tak , capacity of vehicle qak , travelled edges status by vehicles eak , as well as the
demands status wak are updated. At this point, the stochastic road capacity is not known;
hence rak is not updated.

The time of arrival tak
m ∈ R, ∀m ∈ M is updated to:
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tak
m =



tm − Z, ∀{m ∈ M′k : lm ∈ D, ∑
h∈H

wh = 0}

tm − Z, ∀{m ∈ M′k : i = lm, ri,j = 0, ∀(i, j) ∈ E,
|F(m, i)| = ST}

twait, ∀{m ∈ M′k : am = lm, lm 6∈ D, wh = 0, ∀h ∈ H, }
Tk + tlm ,am , ∀{m ∈ M′k : lm 6= am, lm 6∈ D, ∑

h∈H
wh = 0,

plm ,am = 0}
Tk + tlm ,am +

(
tlm ,am ×

plm ,am
10

)
, ∀{m ∈ M′k : lm 6= am, lm 6∈ D, ∑

h∈H
wh = 0,

plm ,am 6= 0}
twait, ∀{m ∈ M′k : am = lm, ∑

h∈H
wh 6= 0, }

Tk + tlm ,am , ∀{m ∈ M′k : lm 6= am, ∑
h∈H

wh 6= 0, plm ,am = 0}

Tk + tlm ,am +
(
tlm ,am ×

plm ,am
10

)
, ∀{m ∈ M′k : lm 6= am, ∑

h∈H
wh 6= 0, plm ,am 6= 0}

tm, otherwise

(8)

where twait is defined as:

twait =

t2, t′k = (t1, t2, ...tn), ti ∈ tk : ti ≥ 0, ti − ti−1 > 0, n ≥ 2
min
∀(i,j)∈E

ti,j, otherwise , (9)

and t′k is an n-tuple with an increasing order of arrival time.
Meanwhile, the capacity of all vehicles m ∈ M is updated to:

qak
m =


Q, ∀m ∈ {M′k : lm ∈ D}
max(qm − wlm , 0), ∀m ∈ {M′k : lm ∈ S}
qm, otherwise

. (10)

The travelled edges eak are updated ∀(i, j) ∈ E, ∀m ∈ M:

eak
i,j,m =

{
1, ∀m ∈ {M′k : i = lm, j = am, i 6= j}
ei,j,m, otherwise

. (11)

Finally, the demand of emergency shelter is also updated ∀h ∈ H:

wak
h =

{
max(wlm − qm, 0), ∀m ∈ {M′k : lm ∈ S}
wh, otherwise

. (12)

At decision point Tk+1, the uncertainty of the road capacity ˆri,j∀(i, j) ∈ E is now
observed by the agent which leads to the transition from PDS to PRE, sk+1:

sk+1 = SM,W(sak
k , Wk+1). (13)

The road capacity at this point is no longer uncertain ( ri,j∀(i, j) ∈ E) since it has
been sampled/known to vehicles that have arrived at their destinations. This information
is thus known to the agent. The next destination lm = lak

m (∀m ∈ M), the arrival time
tm = tak

m (∀m ∈ M), capacity of the vehicle qm = qak
m (∀m ∈ M), as well as the shelter

demand wh = wak
h (∀h ∈ H) remain the same.
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The travelled edges status, ek is updated ∀m ∈ M, ∀(i, j) ∈ E:

ei,j,m =

{
0, ∀m ∈ M′k
eak

i,j,m, otherwise
. (14)

The road capacity rk is at this point observed and updated:

ri,j = min((r̂i,j − ∑
m∈M

ek(i, j, m)), 0) ∀(i, j) ∈ E, (15)

where the random road capacity r̂i,j∀(i, j) ∈ E is obtained from a random Poisson distribu-
tion as described in [15].

When transitioning to PDS, sak
k , the agent receives a reward Rk(sk, ak) contributed by

all vehicles m ∈ M at decision point k:

Rk(sk, ak) = ∑
m∈M

Rk,m(sk, ak), (16)

where Rk,m(sk, ak), ∀m ∈ M is given by:

Rk,m(sk, ak) =

0, ∀m ∈ {M\M′k}

0, ∀m ∈ {M′k : i = lm, lm = am, ∑
h∈H

wh 6= 0}

(max(wlm − qm, 0)× G2)− clm ,am − tlm ,am ,

∀m ∈ {M′k : qm 6= 0, lm ∈ S, wlm > qm, plm ,am = 0}

(max(qm − wlm , 0)× G2)− clm ,am − tlm ,am ,

∀m ∈ {M′k : qm 6= 0, lm ∈ S, wlm < qm, plm ,am = 0}

(max(wlm − qm, 0)× G2)− clm ,am −
(
tlm ,am + tlm ,am ×

plm ,am

10
)
,

∀m ∈ {M′k : qm 6= 0, lm ∈ S, wlm > qm, plm ,am 6= 0}

(max(qm − wlm , 0)× G2)− clm ,am −
(
tlm ,am + tlm ,am ×

plm ,am

10
)
,

∀m ∈ {M′k : qm 6= 0, lm ∈ S, wlm < qm, plm ,am 6= 0}

G2− clm ,am − tlm ,am ,

∀m ∈ {M′k : lm 6= am, qm 6= 0, lm ∈ S, wlm = qm, plm ,am = 0}
or ∀m ∈ {M′k : lm 6= am, qm = 0, am ∈ D, ∑

h∈H
wh 6= 0,

plm ,am = 0}
or ∀m ∈ {M′k : lm 6= am, am ∈ D, ∑

h∈H
wh = 0, plm ,am = 0}

G2− clm ,am −
(
tlm ,am + tlm ,am ×

plm ,am

10
)
,

∀m ∈ {M′k : lm 6= am, qm 6= 0, lm ∈ S, wlm = qm, plm ,am 6= 0}
or ∀m ∈ {M′k : lm 6= am, qm = 0, am ∈ D, ∑

h∈H
wh 6= 0,

plm ,am 6= 0}
or ∀m ∈ {M′k : lm 6= am, am ∈ D, ∑

h∈H
wh = 0, plm ,am 6= 0}

−clm ,am − tlm ,am , otherwise, plm ,am = 0, ∀m ∈ M′k

−clm ,am −
(
tlm ,am + tlm ,am ×

plm ,am

10
)
, otherwise, plm ,am 6= 0, ∀m ∈ M′k

(17)
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Here, a policy of decisions denotes the guiding principle on which the decision is based.
For example, a policy πB ∈ Π could be a heuristic if a decision function AπB(sk) is mapped
from that heuristic. In this model formulation, the decision ak = Aπ(sk) ⊂ A(sk) [67] is selected
among other potential decisions in the decision space, A(sk) following a certain policy
π ∈ ∏ such that the decision rule function Aπ(sk) : sk → ak.

The objective (Equation (18)) is to find an optimal policy π? such that the expected
total rewards are maximised (objective function for the Bellman optimality equation [67]):

max
π∈Π

Eπ

{
K

∑
k=0

(Rk(sk, Aπ(sk))

}
. (18)

Hence:

π? = arg max
π∈Π

Eπ

{
K

∑
k=0

(Rk(sk, Aπ(sk))

}
, (19)

where for every decision point k, the optimal decision a?k is chosen: a?k = Aπ?
(sk) by

following the optimal policy π?.

4. MDDVRPSRC Solution Approach

To solve an MDP is to seek an optimal policy π?. Through this optimal policy, every
decision made by the agent is optimal: Aπ?

(sk) : sk → a?k as stated by the principal of
optimality [12]. To obtain the optimal policy, the Bellman Equation is solved [12] such that the
optimal decision a?k is computed for every decision point k for each given state sk observed by
the agent. This series of optimal computed decisions is said to be guided by the optimal policy
π? ∈ Π, and therefore the problem formulated in MDP is solved. To compute the optimal
decision, a?k , the Bellman Equation could be written as Equation (20) [67]:

a?k = arg max
ak∈A(sk)

(Rk(sk, ak) + λkE{Vk+1(sk+1)}). (20)

Due to the curse of dimensionality as seen in Equation (20), computing for an optimal
decision is often intractable. To alleviate the curse associated with the outcome or transition
space, the PDS is introduced [67] (Equation (21)) and the equation was rewritten as in
Equation (22):

Vak
k (sak

k ) = E{Vk+1(sk+1)}, (21)

a?k = arg max
ak∈A(sk)

(Rk(sk, ak) + λkVak
k (sak

k )). (22)

Even with PDS introduced as above, the computation for an optimal decision is usually
challenging, especially when computing the value of the PDS, Vak

k (sak
k ) in Equation (22).

The ADP approach approximates the value of PDS instead. This is to deal with the
large state space in the MDP. Through the ADP approach, Equation (22) is rewritten as
Equation (23), where the value of PDS is approximated and thus the decision is computed
to near optimality instead:

ã?k = arg max
ak∈A(sk)

(Rk(sk, ak) + λkVak
k (sak

k )). (23)

For MDDVRPSRC, this equation is still challenging to solve since the decision space
A(sk) in Equation (23) is too large for a practical number of vehicles to be involved. Fur-
thermore, the decisions consist of combinations of vehicle assignments that would require
a long rollout horizon as well as a large number of Monte Carlo simulations. The concern
is that the reward obtained for one vehicle may exaggerate the value of the decision for
all vehicles collectively if computed prematurely. This is seen in the initial experiments
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where, given limited computation capabilities on the machine, inefficient assignments for
vehicles resulted.

Alternatively, to cope with this challenge, the near optimal decision could be further
approximated as in Equation (24) as proposed in work [15]:

ã?k ∈ H|M| ≈ [ã?1 , ã?2 , . . . , ã?|M|] ∀k, (24)

where the decision space, made of combinations of vehicle assignments (which could be
astronomical), could be restricted to a decision space of possible assignments for each
vehicle Om instead, as shown in Equation (25):

ã?m = arg max
am∈Om

(Rk(sk, ak) + λkVam
k (sam

k )) ∀(k, m). (25)

Even with such measures, given the machine’s capabilities, the computation is only
limited to a small number of rollout horizons and Monte Carlo simulations. However, it is
shown in this work that the decisions computed are applicable to this type of problem.

To compute Equation (25), the PDS value, Vam
k (sam

k ) is approximated using PDS-RA, as
proposed by [40]. However, different base heuristics can be applied to solve for the MDP
problems with characteristics such as the one in this work. Finally, this approach is applied
to reciprocate the model for the agent’s decision in Equation (6).

4.1. PDS-RA Algorithm

PDS–RA is one of the RA families first introduced in [40] as an ADP solution algorithm
to the dynamic VRP with stochastic demand. PDS–RA takes advantage of the PDS struc-
tures that alleviate the problem associated with the outcome or transition space. This thus
reduces the number of rollout executions compared to the conventional RA to approximate
the value of PDS in a modified Bellman Equation effectively. The general PDS-RA could be
referred to in Algorithm 1. Here, the rollout transitioned PDS (simulation) is denoted as
sa to avoid confusion with the real-time transitioned PDS, (sak

k ) observed by the agent. In
this algorithm, the values of PDS, Vak

k (sak
k ) associated with each respected ak ∈ A(sk) is ap-

proximated (Vak
k (sak

k )). For each possible PDS associated with the next decision ak ∈ A(sk),
the PDS-RA is executed, and by the end of the execution, the approximated value of PDS,
Vak

k (sak
k ) is obtained. In every execution of PDS-RA, the base policy πB(sak

k )
∈ Π is first

assigned (policy to apply heuristic B), computing the decision rule function $
π
B(s

ak
k )(sk) for

the rollout simulation is based on the heuristic B performed given the PDS, sak
k . Based on

this specific decision rule (which is normally the assignment of vehicles to next destination
for VRP), the lookahead into the future as far as horizon K is performed. Transiting from

the simulated PRE to PDS is enabled by referring to $
π
B(s

ak
k )(sk) when making a decision

during the lookahead. This decision is followed by a stochastic transition, transitioning
PDS back to PRE (sk = SM,W(sa, Wk+1(ω(k + 1)))) in the lookahead simulation. Here,
the random information of road capacities for all roads, (Wk+1(ω(k + 1))), is known by
sampling ω(k + 1) ∈ Ω through a known distribution as part of the Monte Carlo simu-
lation approach. By sampling ω(k + 1) ∈ Ω, the exhaustive computation for all random
transitions of outcomes in the outcome space Ω is prevented as first observed by [37] in her
application of RA.

Each time the transition occurs within the lookahead along the horizon, rewards
Rk(sk, ak) are consecutively amassed. At the end of a one-episode lookahead simulation,
the sum of rollout rewards B̂n(πB(sak

k )
, k + 1, K) is obtained. This value is used to update

the approximated PDS value of the respective potential decision ak through an incremental
mean approach (Algorithm 1: line 14). The process repeats for N Monte Carlo simulation
episodes. After this number of Monte Carlo simulations, the resulting updated approxi-

mated PDS value, Vak
k

N
(sak

k ) is considered good enough an estimation for the respective
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decision ak. This approximated PDS value is mapped to the respective decision by a

function: f : ak ← Vak
k

N
(sak

k ).

Algorithm 1 Compute Va
k (s

ak
k ) (as shown in [75] based on PDS-RA proposed by [13] and

highlighted in [15]).

Require: sk, λ, ak
Ensure: Va

k (s
ak
k )

1: Initialise n, k, Rk(sk, ak), Bn

2: sak
k = SM,a(sk, ak)

3: $
π
B(s

ak
k )(sk)← πB(sak

k )
← B(sak

k )

4: while n ≤ N do
5: sa ← sak

k
6: while k 6= K do
7: Rk(sk, ak) = Rk(sk, ak) + λkRk(sk, ak)
8: sk = SM,W(sa, Wk+1(ω(k + 1)))

9: ak ← $
π
B(s

ak
k )(sk)

10: sa = SM,a(sk, ak)
11: k = k + 1
12: end while
13: B̂n(πB(sak

k )
, k + 1, K)← Rk(sk, ak)

14: Va
k

n
(sak

k ) = Va
k

n−1
(sak

k ) +
1
n
(

B̂n(πB(sak
k )

, k + 1, K)−Va
k

n−1
(sak

k )
)

15: n = n + 1
16: end while
17: return Vak

k
N
(sak

k )

The PDS-RA is then executed for the next possible decision ak ∈ A(sk) after which
the process repeats. Finally, when the PDS-RA is executed ∀ak ∈ A(sk), Equation (23) can
now be computed based on all approximated PDS values associated with each respective
potential next decision for agent to make. Based on the computation of Equation (23), a
decision is then made.

It should be noted that Algorithm 1 is applied to the rollout and looks into the
future of each potential decision where each decision ak revolves on the assignments of all
vehicles am = ak[m], ∀m ∈ M simultaneously per PDS-RA. The base policy πB(sak

k )
guides

the construction of the decision function $
π
B(s

ak
k )(sk) in one go, per PDS-RA execution

∀ak ∈ A(sk).
In the applied solution, the rollout is executed for every potential next destination

for each vehicle am, ∀m ∈ M, and the value for each PDS associated with the potential
next destination is computed by PDS-RA, such that near optimal assignments ã?m would
be computed in Equation (25). These near optimal individual assignments form the near
optimal decision as described in Equation (24). The base policy πB(sak

k )
is based on an

iterative policy πB(sk)
applied at each lookahead decision point sk to construct the decision

rule $
π
B(s

ak
k ) on-the-go using constructive base heuristics B. The decision rule $

π
B(s

ak
k ) is

constructed on the go such that $
π
B(s

ak
k ) : sk → η

πB(sk) (sk) where η
πB(sk) (sk) is the decision

rule computed at every decision epoch k in the lookahead horizon when applying heuristic
B based on the rollout state sk according to the iterative policy πB(sk)

.
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In Algorithm 2, for example, CPLEX (denoted as CPLEX) is applied instead as the
base heuristic. Here, CPLEX is run for a Stochastic Linear Integer Programming (SILP)

version of the reduced MDDVRPSRC to construct $
π

CP(s
ak
k )(sk) on the go given the current

rollout state sk and this results in η
πCP(sk) (sk). Since here the policy is to apply CPLEX, we

denote that the policy that the decision rule follows is of πCP(s
ak
k )

.

A detailed explanation on this matheuristic is given in [15] (Algorithm 2). The authors
used this exact configuration (with CPLEX as the base heuristic) as a benchmark where
tractable. As a solution approach in general, the Algorithm 3 is referred. The authors
first introduced the TBIH-1 heuristic (Algorithm 4) based on a pure random insertion
for the non-obvious decisions. Furthermore, other constructive heuristics were applied
dynamically (TBIH-2 and TBIH-3), extended from TBIH-1, to construct the decision rule on

the go ($
π
B(s

ak
k ) ) as shown in Algorithm 3, in contrast to Algorithm 2. Additionally from

these constructive heuristics, the authors propose another two new variants (TBIH-4 and
TBIH-5) for this problem by introducing the exploitation mechanism on both TBIH-2 and
TBIH-3.

Algorithm 2 Matheuristic Extended from Algorithm 1 to Compute ã?m [15].

Require: sk, λ, ak
Ensure: a?m

1: for am ∈ Om at decision point k do
2: Initialise n, k, Rk(sk, ak), Bn

3: while n ≤ N do
4: sam

k = SM,a(sk, am)

5: sa ← sam
k

6: while k 6= K do
7: Rk(sk, ak) = Rk(sk, ak) + λkRk(sk, ak)
8: sk = SM,W(sa, Wk+1(n(k + 1)))
9: πCPk(sk)

← CPLEX(sk)

10: η
πB(sk) ← πCPk(sk)

11: $
π
B(s

ak
k ) : sk → η

πB(sk) (sk)

12: am ← $
π
B(s

ak
k )(sk)

13: sa = SM,a(sk, am)
14: k = k + 1
15: end while
16: B̂n(πB(sak

k )
, k + 1, K)← Rk(sk, ak)

17: Vam
k

n
(sam

k ) = Vam
k

n−1
(sam

k ) +
1
n
(

B̂n(πB(sak
k )

, k + 1, K)−Vam
k

n−1
(sam

k )
)

18: n = n + 1
19: end while

20: f : am ← Vam
k

N
(sam

k )
21: end for
22: ã?m = arg max

am∈Om

(Rk(sk, ak) + λk f (am)) ∀(k, m)

23: return ã?m
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Algorithm 3 Compute ã?m based on [15] using other Base Heuristic, B.

Require: sk, λ, ak
Ensure: a?m

1: for am ∈ Om at decision point k do
2: Initialise n, k, Rk(sk, ak), Bn

3: while n ≤ N do
4: sam

k = SM,a(sk, am)

5: sa ← sam
k

6: while k 6= K do
7: Rk(sk, ak) = Rk(sk, ak) + λkRk(sk, ak)
8: sk = SM,W(sa, Wk+1(n(k + 1)))
9: πB(sk)

← B(sk)

10: η
πB(sk) ← πB(sk)

11: $
π
B(s

ak
k ) : sk → η

πB(sk) (sk)

12: am ← $
π
B(s

ak
k )(sk)

13: sa = SM,a(sk, am)
14: k = k + 1
15: end while
16: B̂n(πB(sak

k )
, k + 1, K)← Rk(sk, ak)

17: Vam
k

n
(sam

k ) = Vam
k

n−1
(sam

k ) +
1
n
(

B̂n(πB(sak
k )

, k + 1, K)−Vam
k

n−1
(sam

k )
)

18: n = n + 1
19: end while

20: f : am ← Vam
k

N
(sam

k )
21: end for
22: ã?m = arg max

am∈Om

(Rk(sk, ak) + λk f (am)) ∀(k, m)

23: return ã?m

4.2. Teach Base Insertion Heuristic (TBIH-1)

In this section, the base heuristics applied are described in general (Algorithm 4), and
the elaboration of each is described in the subsections that follow. TBIH-1, TBIH-2, TBIH-3,
TBIH-4, and TBIH-5 are the heuristics applied in this work to both validate the model and
to cross-compare the performance for each of the models.

The algorithm for each heuristic applied here follows the same main structure of: (i)
the teaching part (TP) and (ii) the seeking part (SP).

In the TP, the obvious decisions are chosen without running any heuristics to search
for the best next destination. These obvious decisions are stated in Equation (6) and applied
to each vehicle:

• To serve any shelter s ∈ S randomly among possible shelters as the next destination;
• To replenish at any depots d ∈ D randomly among possible depots as the next destination;
• To return to any depots d ∈ D randomly among possible depots when all demands

have been served;
• To remain stationary at the current arrival node i while still having capacity (qm 6= 0)

and demands that have not all been served, if the only next possible destination is to
a depot;

• To wait at the current arrival node i while still having capacity (qm 6= 0) if the road
capacity to the next possible shelter is blocked ri,j = 0;

• To remain resting at the depot if the current arrival node is a depot i ∈ D and all
demands have been served;

• To remain stationary at the current arrival node i if all road capacity to a neighbouring
node j are blocked ri,j = 0, ∀(i, j) ∈ E.
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Algorithm 4 TBIH-1 and General Structure Algorithm. (Note: |M′k| ≤ 1 in rollout).

Require: sk, M′k, M\M′k
Ensure: Decision during lookahead

1: update qm, ∀m ∈ M and wh, ∀h ∈ H as in Equation (10) and Equation (12)
2: unserved shelters vector, US = [h]∀h∈H:wh 6=0
3: for m ∈ M′k do
4: i = lm
5: potential next destination vector, next = [h]∀h∈H:ri,h∈E,ri,h>0

6: init empty list nextS, nextD, nextND, Decision
7: nextS = [i : i ∈ (next ∩US)]
8: nextD = [i : i ∈ (next ∩ D)]
9: nextND = [i : i ∈ (next 6∈ D)]

10: if qm 6= 0 AND len(nextS!=0) then
11: if len(nextS)!=1 then
12: am = random.choice(nextS)
13: while len(nextS)!=0 do
14: if ri,am > 0 then
15: Decision.append(am)
16: ri,am = max(ri,am − 1, 0)
17: break
18: else
19: nextS.remove(am)
20: if len(nextS)!=0 then
21: am = random.choice(nextS)
22: else
23: continue
24: end if
25: end if
26: end while
27: if Decision!= 0 then
28: break
29: else
30: continue
31: end if
32: else
33: am = random.choice(nextS)
34: if ri,am > 0 then
35: Decision.append(am)
36: ri,am = max(ri,am − 1, 0)
37: break
38: else
39: continue
40: end if
41: end if
42: else if qm == 0 AND len(nextD!=0) then
43: if len(nextD)!=1 then
44: am = random.choice(nextD)
45: while len(nextD)!=0 do
46: if ri,am > 0 then
47: Decision.append(am)
48: ri,am = max(ri,am − 1, 0)
49: break



Mathematics 2022, 10, 2699 23 of 70

Algorithm 4 Cont.

50: else
51: nextD.remove(am)
52: if len(nextD)!=0 then
53: am = random.choice(nextD)
54: else
55: continue
56: end if
57: end if
58: end while
59: if Decision!= 0 then
60: break
61: else
62: continue
63: end if
64: else
65: am = random.choice(nextD)
66: if ri,am > 0 then
67: Decision.append(am)
68: ri,am = max(ri,am − 1, 0)
69: break
70: else
71: continue
72: end if
73: end if
74: else if len(US)==0 AND len(nextD!=0) then
75: if len(nextD)!=1 then
76: am = random.choice(nextD)
77: while len(nextD)!=0 do
78: if ri,am > 0 then
79: Decision.append(am)
80: ri,am = max(ri,am − 1, 0)
81: break
82: else
83: nextD.remove(am)
84: if len(nextD)!=0 then
85: am = random.choice(nextD)
86: else
87: continue
88: end if
89: end if
90: end while
91: if Decision!= 0 then
92: break
93: else
94: continue
95: end if
96: else
97: am = random.choice(nextD)
98: if ri,am > 0 then
99: Decision.append(am)
100: ri,am = max(ri,am − 1, 0)
101: break
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Algorithm 4 Cont.

102: else
103: continue
104: end if
105: end if
106: else if qm!=0 AND len(US)!=0 AND len(nextD)!=0 AND len(nextS)== 0 AND

len(nextND)== 0 then
107: Decision.append(i)
108: break
109: else if qm!=0 AND ANY(h, ∀h ∈ US ∩ next) AND len(nextS)== 0 AND ANY(wh 6=

0, ∀h ∈ next) then
110: Decision.append(i)
111: break
112: else if ALL(wh == 0, ∀h ∈ H) AND i ∈ D then
113: Decision.append(i)
114: break
115: else if ALL(ri,j == 0, ∀j ∈ next, if (i, j) ∈ E) then
116: Decision.append(i)
117: break
118: else
119: if len(nextND) > 1 then
120: am = random.choice(nextND)
121: while len(nextND)!=0 do
122: if ri,am > 0 then
123: Decision.append(am)
124: ri,am = max(ri,am − 1, 0)
125: break
126: else
127: nextD.remove(am)
128: if len(nextND)!=0 then
129: am = random.choice(nextND)
130: else
131: continue
132: end if
133: end if
134: end while
135: if Decision!= 0 then
136: break
137: else
138: continue
139: end if
140: else
141: Decision.extend(nextND)
142: break
143: end if
144: end if
145: end for
146: if M\M′k then
147: for m ∈ M\M′k do
148: Decision[m] = lm
149: end for
150: end if
151: if len(Decision) == 0 then
152: print(“error”)
153: end if

return Decision
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These decisions are considered obvious decisions where computation efforts should
not be focused on. Instead, only when all of the above TP decisions are not applicable (no
obvious decisions), will the heuristic be applied. Ideally, none of these obvious decisions
should be specified. Instead, the agent should be able to figure out and learn the obvious
decision based on the reward obtained. However, such an ideal mechanism would require a
humongous amount of rollout episodes with horizons extending to the termination state on
each of them. For practical purposes, limited by computation power, the obvious decisions
are filtered out to avoid extensive computation efforts. Hence the term “teach” in TBIH-1’s
“teaching part” (TP).

For the SP, a purely random selection of the next destinations could be applied as in
TBIH-1 (Algorithm 4 (line 122)). In the proposed TBIH-1, the obvious decisions are inserted
by “teaching”. The non-obvious decision is decided by a purely random selection among
possible next destinations. The general structure of TBIH-1 is described in Algorithm 4
where the SP part is shown in line (121–147).

The TP consists of updating the capacity of all the vehicles as well as the demand of
the shelters (Algorithm 4 (line 1)). This is performed so that the decision selected is based
on the current status of the demand and capacity which are otherwise updated/observed
by the agent during the transition from PRE to PDS. The next part involves determining
the potential next destinations j for vehicle m and sorting these destinations whether they
are emergency shelters, depots or non–depot nodes (line 5–9). Afterwards, the obvious
decision selection follows as described in Equation (6) (line 10–120). The SP is executed if
none of the obvious decisions are suitable (line 121–147). For en route vehicles, the decision
is to remain at their current destination (line 149–153). Finally, a decision is selected and
returned by the algorithm.

Instead of a purely random selection as in Algorithm 4 (line 121–147), there could be
more meaningful guided approaches to select the next destination for the SP. From here, an
extend Algorithm 4 (line 121–147) shows the possibilities of inserting a better possible next
destination in the route by applying a dynamic SIH-I1 (DSIH) (Algorithm 5) in TBIH-2 and
a DCW in TBIH-3 (Algorithm 6), in their respective SP. The authors also experimented with
the proposed heuristics TBIH-4 (with an embedded Dynamic Lookahead SIH (DLASIH) in
the SP) (Algorithm 7) and TBIH-5 (with an embedded Dynamic Lookahead CW (DLACW)
in the SP) (Algorithm 8) to see if both aforementioned heuristics could be enhanced further
for better insertion.

4.3. TBIH-2

Among the first to develop SIH is [76], whose work is based on the generalised savings
algorithm. Ref. [77] then introduced three types of SIH to solve the VRP and scheduling
problem with a time window. The proposed SIH (I1) constructs a route by considering two
criteria: the first involves determining the best place for insertion, c1 based on c1,1 and c1,2.
The second is the consideration for the best un-routed node υ to be inserted c2. For the VRP
considering time windows, the SIH (I1) is computed with the following equations [77]:

c1,1(i, υ, j) = ci,υ + cυ,j − ξci,j ξ ≥ 0,

c1,2(i, υ, j) = bjυ − bj,

where c1,1 is the generalised savings, and c1,2 is the time difference between the new service
time for j, bjυ and the time prior to insertion of υ. Together, the best insertion place of υ is
computed as c(i(υ), υ, j(υ)) given by:

c(i(υ), υ, j(υ)) = min
(i,υ,j)∈c1

c1(i, υ, j),

where c1 is given as:

c1 = θ1c1,1(i, υ, j) + θ2c1,2, θ1 + θ2 = 1.



Mathematics 2022, 10, 2699 26 of 70

Meanwhile, the best υ insertion criterion c2 is given by:

c2(i, υ, j) = ζc0,υ − c1(i, υ, j), ζ ≥ 0,

where node 0 in the formulation is the depot; υ is then chosen based on:

υ? : (i, υ?, j) = arg max
(i,υ? ,j)∈c2

c2.

Since the MDDVRPSRC does not consider time windows, the θ2 value is given the
value of zero and therefore c1,2 is not considered. This turns c1 into a generalisation of [76].
Furthermore, both ζ and θ1 are given the value of one. Both node 0 and i are considered
as the current position of vehicle m at sk during the lookahead. In the DSIH, the seed j is
chosen randomly by looking one step ahead beyond the next destination of m currently at i
in a set such that {j : (υ, j) ∈ E, rυ,j > 0, j 6= i, j 6∈ (set of the immediate neighbor of i), ∀j ∈
H, ∀υ ∈ (set of the immediate neighbor of i)}. This is illustrated in Figure 1a–c. Here,
the road capacity is not considered to simplify the description of the DSIH. In Figure 1a,
the current position of vehicle m is at node 0 (not a depot) with capacity to serve. Node S5
is an emergency shelter with demand, while the rest are connecting nodes. The purpose of
the DSIH is to treat the next possible destination from the current position as υ by treating j
as the seed when constructing a route from node 0. In Figure 1b, the node j is identified
as node S9, node 4, and node 3. In the DSIH, the seed j is then chosen randomly among
these three potential seeds. In Figure 1c, node 3 is chosen randomly as the seed j. Here,
two possible nodes could be inserted as the υ: node 1 and node 5. After applying the
SIH(I1) (without time window consideration, θ1 and ζ is given the value one), node 5 is
considered the best inserted node and the route η

πB(sk) is constructed from node 0–5–3.
The next destination of the vehicle from node 0, am = η

πB(sk)(sk) is then selected as node

5. This also means that at the lookahead decision point k, the lookahead route $
π
B(s

ak
k ) is

constructed on the go/updated such that $
π
B(s

ak
k ) : sk → η

πB(sk)(sk) with heuristic B as per
TBIH-2. In addition, when applying TBIH-2, the route-based MDP concept is applied [14].
This means that at the lookahead decision point k + 1, the vehicle may not necessarily move
to node 3 (ηπB(sk)(sk+1)) next upon arriving at node 5 as the DSIH will be executed at every
decision point. In this example, the road capacity is ignored to simplify the explanation of
the DSIH that is used in the SP of TBIH-2. In reality, if the edge (0, 1) has no road capacity
available (r0,1 = 0), then SIH(I1) will not be applied as the only possible υ is node 5.

(a) (b)
Figure 1. Cont.
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(c)
Figure 1. Performing the DSIH in TBIH-2 in an example network (a) with node 0 as current position
of vehicle m and node S9 as an emergency shelter. The potential seeds j are considered in (b) and
chosen randomly in (c). As a result, node 5 (υ) is inserted and route (0–5–3) is constructed.

The decision selection specific to the DSIH is highlighted in Algorithm 5. Here, the
possible seed candidates are selected based on the neighbours of potential destination υ for
vehicle m (lines 3–5). The seed is then randomly selected (line 7) from which the number of
potential destinations υ is reduced (line 8). For each of the possible υ, the insertion criteria
are evaluated according to the SIH(I1) (lines 9–10), and the insertion of υ is determined
(lines 11–12) from which the decision is made and returned (line 18).

Algorithm 5 TBIH-2 (with Embedded DSIH) Algorithm.

Require: sk, M′k, M\M′k, current position of vehicle
Ensure: Decision

1: Perform Algorithm 4 (line 1–120)
2: if len(nextND)> 1 then
3: dict : υ← {j : ∀j ∈ H, (υ, j) ∈ E, rυ,j > 0, j 6= i, j 6∈ nextND} ∀υ ∈ nextND
4: newnextND = {j : ∀j ∈ dict(υ), ∀υ ∈ nextND, dict(υ) 6= {}}
5: remove duplicate node: list(set(newnextND))
6: if len(newnextND)!= 0 then
7: seed = random.choice(newnextND)
8: list of potential inserted nodes based on the selected seed, InsertList = {υ : ∀υ ∈

nextND, (υ, seed) ∈ E}
9: dictC11 : (i, υ, seed)← (ci,υ + cυ,seed − ci,seed), ∀j ∈ InsertList

10: dictC2 : (i, υ, seed)← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
11: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

12: am = υ
13: Decision.append(am)
14: ri,am = max(ri,am − 1, 0)
15: break
16: else
17: am = random.choice(nextND)
18: Decision.append(am)
19: ri,am = max(ri,am − 1, 0)
20: break
21: end if
22: else
23: Decision.extend(nextND)
24: break
25: end if
26: continue Algorithm 4 (148–156)

return Decision
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4.4. TBIH-3

The CW is derived from the work of [78] as an alternative heuristic solution to the
method proposed in [79] to solve the general VRP [80]. This algorithm which is also known
as the savings algorithm [81] is based on the savings computed for two non-depot nodes
(i, j) in a complete graph (where all non-depot nodes have arcs connecting them to the
depot). The savings is computed as Si,j = 2ci,0 + 2cj,0 − (ci,0 + cj,0 + ci,j) where 0 is the
depot [81]. The route is then constructed based on the savings computed for all non-depot
nodes in a decreasing order, provided that the capacity constraint is respected and the
connection between edges are allowed (normally the theoretical application onto a complete
graph). In the event that the capacity constraint is violated, a new route is constructed for
the next vehicle in the same manner of the remaining savings pair. The concept of the CW
algorithm is illustrated in Figure 2 [82]. One of the few surveys on the CW algorithm for
VRP can be referred to in [83]. A good example of the CW application can be referred to
in [84].

Figure 2. Concept of the Savings Algorithm. Reprinted/adapted with permission from Ref. [82].
2015, ProQuest Information and Learning Company.

In this work, the application of the Dynamic Clarke and Wright Algorithm (DCW)
is proposed and applied. By replacing the random selection of the TBIH-1 in the SP
with the DCW, TBIH-1 is then modified to form TBIH-3 and is used as the base heuristic
(among other heuristics) in the execution of the PDS–RA. In the DCW, the route-based
MDP approach [14] is adopted during the rollout resulting in the on-the-go construction

of the decision function $
π
B(s

ak
k ) . The idea is to apply the CW iteratively (πB(sk)

) when a
decision for a single vehicle’s next assignment during the lookahead is required, given that
the TBIH-3 has been selected as the base heuristic. Iteratively, the CW is applied when
no obvious decision can be taken during the lookahead when transitioning. At the point
of decision, the current position lm is regarded as the single depot in the CW while the
neighbouring nodes j ∈ Om : Om ⊂ H are considered customers. The example for applying
the DCW is illustrated in Figure 3a,b where node 3 is the current arrival spot of vehicle m.
Additionally, a shelter in the network example is denoted as the node S2. Using the CW,
route η

πB(sk) is constructed from the assumed depot (node 3) and back to the depot.
An example of a constructed route η

πB(sk) could be (3− 5− 1− 4− 3) or (3− 4−
1− 5− 3), or both if both edges (5,1) and (4,1) happen to have the highest savings. am

would then be chosen as the first insertion $
π
B(s

ak
k ) : sk → η

πB(sk)(sk) of the chosen route to
transition within the lookahead horizon.

The algorithm for the TBIH-3 is shown in Algorithm 6 as the extension of Algorithm 4
by replacing lines 121–147. In this algorithm, a decision is computed if no other obvious
decision can be chosen. To execute the CW, all possible pairs (j, k) ∈ E are detected from
the possible next destination nodes in the list nextND (lines 3–4). If there are no edges
that exist, a randomly selected node is chosen as the next destination for the vehicle m
(lines 5–9). Otherwise, the savings are computed from these edges and sorted in decreasing
order (lines 11–12) prior to constructing the temporary decision function η

πB(sk) (line 16)
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which constructs the on-the-go base decision function $
π
B(s

ak
k ) : sk → η

πB(sk)(sk) (line 17).
Lines 148–156 are similar to Algorithm 4 where the computed decision is returned.

(a) (b)
Figure 3. Performing DCW in TBIH-3 in an example network (a) with node 3 as current position of
vehicle m and node S2 as an emergency shelter. The components for performing CW are selected
in (b).

Algorithm 6 TBIH-3 Algorithm.

Require: sk, M′k, M\M′k, current position of vehicle
Ensure: Decision

1: Perform Algorithm 4 (line 1–120)
2: if len(nextND) > 1 then
3: Possible edges from the pair that could be formed in nextND, Pairs = (nextND

2 )

4: Remove (j, k) ∈ Pairs, if (j, k) 6∈ E
5: if len(pairs == 0) then
6: am = random.choice(nextND)
7: Decision.append(am)
8: ri,am = max(ri,am − 1, 0)
9: break

10: else
11: compute savings: (j, k)← ci,j + ci,k − cj,k ∀(j, k) ∈ Pairs
12: sort (j, k) ∈ Pairs with decreasing savings
13: if len(Pairs)==1 then
14: am = j : (j, k) ∈ Pairs
15: else

16: construct route $
π
B(s

ak
k ) : sk → η

πB(sk)(sk) from i = lm by inserting (j, k) ∈
Pairs as would be done in CW (decreasing savings)

17: am ← A
π
B(s

ak
k )(sk)

18: end if
19: Decision.append(am)
20: ri,am = max(ri,am − 1, 0)
21: break
22: end if
23: else
24: Decision.extend(nextND)
25: break
26: end if
27: continue Algorithm 4 (148–156)

return Decision

4.5. TBIH-4

The application of the SIH in the MDDVRPSRC for the rollout is quite clear, given the
chosen “seed customer” is the main driver of the method. In the MDDVRPSRC, the authors
concur with [85] that choosing an appropriate seed is very important for insertion heuristics.
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For this particular problem of depending on the capacity status of vehicle m, the seed is either
the depot in the route to replenish capacity or the emergency shelter in the route to serve a
shelter. This is different from Algorithm 5 where the seed is randomly chosen based on potential
destinations υ’s neighbour. In Figure 1a–c, it is clear that more can be done to guide the vehicles
towards fulfilling their task. In these figures, it could be argued that the selection of node 5
(while ignoring the road capacity condition in the network), which might occur through the
random selection of seeds that occurs in Algorithm 5, may not be the best choice. Instead, node
1 could be the better choice as it would lead to serving node S9. In the TBIH-4 (Algorithm 7),
the potential seeds j are reserved only for those which are either one of the depots, emergency
shelters, or neighbours of either. In Figure 1a–c, node 1 will be chosen instead as υ since this
node would lead to serving shelter S9. Only node 1 could be inserted as only a one-time
insertion procedure in DLASIH is performed at every decision point in the lookahead during
the construction of the route. For the shelter or depot which is farther than a one-step lookahead,
as seen in Figure 4a–c, the neighbour of either that shelter or depot is then chosen as the seed j.
In this case where the vehicle is packed with delivery supplies, node 9 shall be chosen as the
seed (j) since it is the neighbour of shelter S7. Since only node 1 can connect to node 9 from node
0 in the one-time insertion, node 1 is then regarded as the next destination υ. Here, no SIH(I1)
computation is necessary as the option is rather obvious. In this illustration case, recognising
node 9 as the neighbour of emergency shelter S7 helped in trimming down potential seeds to be
considered and thus also reduced the number of potential υ.

(a) (b)

(c)

Figure 4. Performing the DLASIH in the TBIH-4 in an example network (a) with node 0 as current
position of vehicle m ready to serve and node S7 as an emergency shelter. The potential seeds j are
considered in (b) and Node 9 was selected since it is the neighbour of shelter S7 in (c). As a result,
node 1 (υ) is inserted and route (0–1–9–S7) is constructed. (c) shows two potential seeds j (node 4 and
node 9) in which case a random selection between node 4 and node 9 as a seed is done.

However, if there are more potential υ leading to the neighbours of emergency shelters,
then one of these neighbours will be chosen randomly. If more than one possible υ is
connected to the chosen seed (j), the SIH(I1) will be executed.

In the TBIH-4 algorithm (Algorithm 7), the selection for j is restricted to those that would
lead to either a shelter or depot, depending on qm (lines 5 and 55). However, if such nodes
are not available, another lookahead is performed to see if there are potential destinations j
that could lead to neighbours of either a depot or shelter (lines 21 and 71). Depending on
the case considered, the numbers of possible j from which the seed for the SIH could be
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chosen from (lines 9, 37, 59, and 94) can be reduced. For either case, the insertion criteria

are computed and evaluated such that the on-the-go lookahead route $
π
B(s

ak
k ) is updated:

$
π
B(s

ak
k ) : sk → η

πB(sk)(sk), and the decision am = η
πB(sk)(sk) are returned (line 98 onwards).

Algorithm 7 TBIH-4 (with an embedded DLASIH) Algorithm.

Require: sk, M′k, M\M′k, current position of vehicle
Ensure: Decision

1: Perform Algorithm 4 (line 1–120)
2: if len(nextND)> 1 then
3: dict : υ← {j : ∀j ∈ H, (υ, j) ∈ E, rυ,j > 0, j 6= i, j 6∈ nextND} ∀υ ∈ nextND
4: if qm 6= 0 AND len(US)!= 0 then
5: dictA : υ ← {j : ∀j ∈ US, (υ, j) ∈ E, rυ,j > 0, j 6= i, j 6∈ nextND} ∀υ ∈

nextND
6: if len(dictA)!= 0 then
7: newnextNDS = {j : ∀j ∈ dictA(υ), ∀υ ∈ nextND, dictA(υ) 6= {}
8: remove duplicate node: list(set(newnextNDS))
9: seed = random.choice(newnextNDS)

10: list of potential inserted nodes based on selected seed, InsertList = {υ : ∀υ ∈
nextND, (υ, seed) ∈ E}

11: dictC1 : (i, υ, seed)← (ci,υ + cυ,seed − ci,seed), ∀υ ∈ InsertList
12: dictC2 : (i, υ, seed)← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
13: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

14: am = υ
15: Decision.append(am)
16: ri,am = max(ri,am − 1, 0)
17: break
18: else
19: List of shelter’s neighbours, USN = {n : n ∈ H, (s, n) ∈ E, ∀s ∈ US, n 6= i}
20: USN = list(set(USN))
21: dictB : υ ← {j : ∀j ∈ USN, (υ, j) ∈ E, rυ,j > 0, j 6= i, j 6∈ nextND} ∀υ ∈

nextND
22: if len(dictB)!=0 then
23: LNS = {j : ∀j ∈ dictB(υ), ∀υ ∈ nextND, dictB(υ) 6= {}
24: LNS = list(set(LNS))
25: else
26: continue
27: end if
28: init nextNDS
29: if len(LNS)== 0 then
30: nextNDS = {j : ∀j ∈ dict(υ), ∀υ ∈ nextND, dict(υ) 6= {}
31: else
32: nextNDS.extend(LNS)
33: end if
34: if len(nextNDS)==0 then
35: am = random.choice(nextND)
36: Decision.append(am)
37: ri,am = max(ri,am − 1, 0)
38: break
39: else
40: pass
41: end if
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Algorithm 7 Cont.

42: seed = random.choice(nextNDS)
43: list of potential inserted nodes based on selected seed, InsertList = {υ : ∀υ ∈

nextND, (υ, seed) ∈ E}
44: dictC1 : (i, υ, seed)← (ci,υ + cυ,seed − ci,seed), ∀υ ∈ InsertList
45: dictC2 : (i, υ, seed)← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
46: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

47: am = υ
48: Decision.append(am)
49: ri,am = max(ri,am − 1, 0)
50: break
51: end if
52: else
53: dictC : υ ← {j : ∀j ∈ D, (υ, j) ∈ E, rυ,j > 0, j 6= i, j 6∈ nextND} ∀υ ∈

nextND
54: if len(dictC)!= 0 then
55: newnextNDS = {j : ∀j ∈ dictC(υ), ∀υ ∈ nextND, dictC(υ) 6= {}
56: remove duplicate node: list(set(newnextNDS))
57: seed = random.choice(newnextNDS)
58: list of potential inserted nodes based on selected seed, InsertList = {υ : ∀υ ∈

nextND, (υ, seed) ∈ E}
59: dictC1 : (i, υ, seed)← (ci,υ + cυ,seed − ci,seed), ∀υ ∈ InsertList
60: dictC2 : (i, υ, seed)← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
61: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

62: am = υ
63: Decision.append(am)
64: ri,am = max(ri,am − 1, 0)
65: break
66: else
67: List of Depot’s neighbours, UDN = {n : n ∈ H, (d, n) ∈ E, ∀d ∈ D, n 6=

i, n 6∈ D}
68: UDN = list(set(UDN))
69: dictD : υ ← {j : ∀j ∈ UDN, (υ, j) ∈ E, rυ,j > 0, j 6= i, j 6∈ nextND} ∀υ ∈

nextND
70: if len(dictD)!=0 then
71: LND = {j : ∀j ∈ dictD(υ), ∀υ ∈ nextND, dictD(υ) 6= {}
72: LND = list(set(LND))
73: else
74: continue
75: end if
76: init nextNDD
77: if len(LND)== 0 then
78: nextNDD = {j : ∀j ∈ dict(υ), ∀υ ∈ nextND, dict(υ) 6= {}
79: else
80: nextNDD.extend(LND)
81: end if
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Algorithm 7 Cont.

82: if len(nextNDD)==0 then
83: am = random.choice(nextND)
84: Decision.append(am)
85: ri,am = max(ri,am − 1, 0)
86: break
87: else
88: pass
89: end if
90: seed = random.choice(nextNDD)
91: list of potential inserted nodes based on selected seed, InsertList = {υ : ∀υ ∈

nextND, (υ, seed) ∈ E}
92: dictC1 : (i, υ, seed)← (ci,υ + cυ,seed − ci,seed), ∀υ ∈ InsertList
93: dictC2 : (i, υ, seed)← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
94: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

95: am = υ
96: Decision.append(am)
97: ri,am = max(ri,am − 1, 0)
98: break
99: end if
100: end if
101: else
102: Decision.extend(nextND)
103: break
104: end if
105: continue Algorithm 4 (148–156)

return Decision

4.6. TBIH-5

In the previous section (Section 4.4), an example network (Figure 3a) is used to demon-
strate how the DCW could be applied in constructing a temporary route η

πB(sk) with B
being the heuristic from TBIH-3. From the temporary route, the first insertion is selected as
the decision for the current lookahead state sk based on the temporary route constructed:

$
π
B(s

ak
k ) : sk → η

πB(sk)(sk). From the example, it is seen that either node 4 or 5 (Figure 3b)
could be selected as the next destination since two routes could be computed from the
CW heuristic (if two edges have similar highest savings). However, it is also seen in the
example network that node S2 is next to node 4, while node 5 is much further than node S2.

If the vehicle is with capacity, inserting node 4 for the on-the-go lookahead route $
π
B(s

ak
k )

would make more sense.
If TBIH-3 (with an embedded DCW) could perform as a sort of lookahead (for non-

obvious decisions, SP) for a nearby emergency shelter when a vehicle m has capacity,
then the selection for the next destination would be more accurate. This is illustrated in
Figure 5a,b. In Figure 5a, the current position of vehicle m is at node 3, and the nearby
emergency shelter is node S9. With the exception of node 5, which is the neighbour of
node 3, both nodes 1 and 4 are neighbours of node S9. As a result, only nodes 4 and 1
are considered when constructing η

πB(sk)(sk) even though node 5 is also a neighbour of

node 3. This leads to a more promising construction of $
π
B(s

ak
k ) on the go. If node 5 is taken

into consideration, there is a possibility of node 5 being selected as the next destination for
vehicle m. This is undesirable as that would lead vehicle m, which has capacity, farther
from serving S9. With this concept, the DCW is extended into DLACW (turning TBIH-3
into TBIH-5). The principle of the proposed DLACW is, for most parts, similar with the
exception of a mechanism to detect a nearby shelter or depot depending on the capacity
status of vehicle m.
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The algorithm for TBIH-5 is presented in Algorithm 8. Similar to Algorithm 5,
Algorithm 6 is extended ,resulting in a different base heuristic. When compared to Algorithm 6,
some parts of this algorithm consist of detecting the potential next destination j of vehicle
m that might lead to either a shelter of depot, depending on the current capacity status qm
(lines 3–9). Through this mechanism, the possible option for j is restricted to only those
ideally more guided destinations. Edges are detected (line 10) and removed if they do
not exist in the network (line 11), while savings are computed (line 18) and sorted (line

19). Finally the on-the-go base policy $
π
B(s

ak
k ) is updated for the lookahead state sk, where

$
π
B(s

ak
k ) : sk → η

πB(sk)(sk) and the decision am = η
πB(sk)(sk) is returned.

Algorithm 8 TBIH-5 (with an embedded DLACW) algorithm.

Require: sk, M′k, M\M′k, current position of vehicle
Ensure: Decision

1: Perform Algorithm 4 (line 1–120)
2: if len(nextND)> 1 then
3: if qm 6= 0 AND len(US)!= 0 then
4: dict : j ← {k : ∀k ∈ US, (j, k) ∈ E, rj,k > 0, k 6= i, k 6∈ nextND} ∀j ∈

nextND
5: newnextND = {j : ∀j ∈ nextND, dict(j) 6= {}}
6: else
7: dict : j← {k : ∀k ∈ D, (j, k) ∈ E, rj,k > 0, k 6= i, k 6∈ nextND} ∀j ∈ nextND
8: newnextND = {k : ∀k ∈ dict(j), ∀j ∈ nextND, dict(j) 6= {}}
9: end if

10: Possible edges from pair that could be formed in newnextND, Pairs = (newnextND
2 )

11: Remove (j, k) ∈ Pairs, if (j, k) 6∈ E
12: if len(pairs == 0) then
13: am = random.choice(nextND)
14: Decision.append(am)
15: ri,am = max(ri,am − 1, 0)
16: break
17: else
18: compute savings, (j, k) :← ci,j + ci,k − cj,k ∀(j, k) ∈ Pairs
19: sort (j, k) ∈ Pairs with decreasing savings
20: if len(Pairs)==1 then
21: am = j : (j, k) ∈ Pairs
22: else

23: construct route $
π
B(s

ak
k ) : sk → η

πB(sk)(sk) from i = lm by inserting (j, k) ∈
Pairs as would be done in CW (decreasing savings)

24: am ← A
π
B(s

ak
k )(sk)

25: end if
26: Decision.append(am)
27: ri,am = max(ri,am − 1, 0)
28: break
29: end if
30: else
31: Decision.extend(nextND)
32: break
33: end if
34: continue Algorithm 4 (148–156)

return Decision
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(a) (b)
Figure 5. Performing the DLACW in TBIH-5 in an example network (a) with node 3 as the current
position of vehicle m and node S9 as an emergency shelter. The components for performing the CW
are selected in (b).

5. Computational Results

This study presents computational results for the following purposes:

• To validate the model MDDVRPSRC by observing through the simulation tool the
ecosystem (emergency medical supplies delivery) simulated.

• To validate the reinforcement learning solution of the agent in conducting the medical
delivery operations through decisions computed based on the ADP approach (PDS–
RA with 5 proposed base heuristics).

• To study the quality of the learning solution through the resulting simulated data
by means of a comparative approach against the matheuristic proposed in the work
of [15] in the stochastic setting of road capacity and dynamic road damage.

• To extend the findings in the work of [15] which serves as a preliminary study for
this research.

The experiment is conducted using the authors’ developed MDDVRPSRC Decision
Support System (DSS) program (Figure 6) with codes written in Python 2.7 programming
language. Embedded in this program is also a network monitoring layout through which
the simulation of medical supplies delivery operations in the setting of the MDDVRPSRC
is observed in real time (live simulation). Both the MDDVRPSRC model and the com-
putation of the agent’s decision are also implemented at the heart of the DSS. As part
of the computation of the agent’s decision, this program also executes the matheuristic
(upon selection) proposed in work of [15] with CPLEX computation executed through the
DOCPLEX API for Python. For the experiment, the MDDVRPSRC DSS is run on a laptop
computer running on IntelR CoreTM i7-7500U CPU at 2.70–2.90 GHz with 20 GB RAM.

Figure 6. MDDVRPSRC DSS for medical delivery operation.
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To test and validate the model and solutions algorithm for such a unique problem as
the medical supplies delivery operations with compromising circumstances, the common
benchmarks of Perl, Gaskell, and Christofides cannot be applied. So several test instances
are designed [86,87], ranging from a small and simple road network, to medium and more
challenging networks based on the available experimental apparatus (Figures A1–A10).
Along with each test instance are the associated initial damage for each road within the
network of the respective test instances [86,87]. These datasets, consisting of test instances
and the associated damage files are available in [87] and are shown in Table 3. In Table 3,
the test instances are ordered by increasing complexity levels, characterised in terms of total
number of nodes as well as the ratio between connecting node to a depot and emergency
shelter. The test instances associated with the road network D4N30S10 are placed last as
it is hypothesised as the most challenging network among the test instances listed. Each
network is comprised of multi-depots, multi emergency shelters with different demands
and connecting nodes as described in Section 3.1. The placement of the nodes is based on
the lessons learned from the 2015 Nepal earthquake.

In each of the road networks seen in Figures A1–A10, the blue, yellow, and brown
nodes each represent the depots, emergency shelters, and connecting nodes, respectively.
The violet circle lines represent the outward tremor that originated from an earthquake
epicentre (coordinate (460, 180) in all the networks). The degree of the initial road damage
is based on the intersection of these circles onto the edges, and the corresponding random
road capacity is denoted in red at the center of the edges. The demands of each emergency
shelter hovers above in a pink box. The green boxes represent vehicles that have arrived at
the nodes where they are currently stationed. The blue boxes represent vehicles en route
to each of their next assigned destinations. In Figure A11, the simulation example of an
ongoing medical supplies operation is shown. In the road network D8N20S8, five vehicles
are assigned to deliver medical supplies to eight emergency shelters with their respective
demands. The full road capacity in this network for a city road, normal road, and highway
is given in Table 3 as (6, 7, 8), respectively. In all road networks, the highways are placed at
the outer part of the network, while the city roads are placed at the innermost sections of
the networks. Normal roads can be found connecting highways with city roads in most
cases, especially in the larger networks. At decision point 104, which is at the simulated
time of 3097 min (translated as 2:3:37:00), the road capacity for each road changes randomly
based on the dynamic road capacity mean for the random distribution of each road. These
dynamic deteriorating road capacities in turn depend on the initial damage sustained by
the road (given in the damage file of each test instance in the repository [87]). Thus the road
capacity for the edges with more interceptions with the radial earthquake tremor circles
are seen with a tendency to have less road capacity at random when compared with the
edges with less or zero intersections. Hence, vehicles travelling at these edges will suffer
longer travel times proportional to the initial damage sustained by the edges as accounted
for in the MDDVRPSRC model described in Section 3.3. The work [15] is referred to for
more explanation on how the random road capacity is sampled at each decision point.
The experiment settings for both the simulation and computation of the agent’s decision
(PDS-RA) is given in Table 4.

For the model and solution validation, simulated data is compiled (Figure 6). For
each proposed base heuristics (TBIH-1, TBIH-2, TBIH-3, TBIH-4, and TBIH-5) applied
for all test instances in Table 3, 10 complete simulations of a medical supplies delivery
operation are performed. Out of the 10 complete simulations, there are 10 readings for
4 key measurements:

1. Total travelled distance (K1);
2. Total travelled time (K2);
3. Total computation time (K3);
4. Average decision computation time (K4).
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Table 3. Simulated test instances applied to validate the model and solutions algorithm.

Instance Depot Shelter Nodes Vehicle Total Demand Max Road Capacity

D3N8S3_4 3 3 8 4 550 6, 7, 8
D3N8S3_8 3 3 8 8 550 6, 7, 8
D3N8S3_15 3 3 8 15 550 6, 7, 8
D3N8S3_30 3 3 8 30 550 6, 7, 8
D3N8S3_50 3 3 8 50 550 6, 7, 8
D4N11S4_4 4 4 11 4 550 6, 7, 8
D4N11S4_8 4 4 11 8 550 6, 7, 8

D4N11S4_15 4 4 11 15 550 6, 7, 8
D4N11S4_30 4 4 11 30 550 6, 7, 8
D4N11S4_50 4 4 11 50 550 6, 7, 8
D5N13S5_4 5 5 13 4 650 6, 7, 8
D5N13S5_8 5 5 13 8 650 6, 7, 8

D5N13S5_15 5 5 13 15 650 6, 7, 8
D5N13S5_30 5 5 13 30 650 6, 7, 8
D5N13S5_50 5 5 13 50 650 6, 7, 8
D6N16S6_4 3 3 8 4 950 6, 7, 8
D6N16S6_8 3 3 8 8 950 6, 7, 8

D6N16S6_15 3 3 8 15 950 6, 7, 8
D6N16S6_30 3 3 8 30 950 6, 7, 8
D6N16S6_50 3 3 8 50 950 6, 7, 8
D7N18S7_4 7 7 18 4 1250 6, 7, 8
D7N18S7_8 7 7 18 8 1250 6, 7, 8

D7N18S7_15 7 7 18 15 1250 6, 7, 8
D7N18S7_30 7 7 18 30 1250 6, 7, 8
D7N18S7_50 7 7 18 50 1250 6, 7, 8
D8N20S8_4 8 8 20 4 1350 6, 7, 8
D8N20S8_8 8 8 20 8 1350 6, 7, 8

D8N20S8_15 8 8 20 15 1350 6, 7, 8
D8N20S8_30 8 8 20 30 1350 6, 7, 8
D8N20S8_50 8 8 20 50 1350 6, 7, 8
D8N22S9_4 8 9 22 4 1600 6, 7, 8
D8N22S9_8 8 9 22 8 1600 6, 7, 8

D8N22S9_15 8 9 22 15 1600 6, 7, 8
D8N22S9_30 8 9 22 30 1600 6, 7, 8
D8N22S9_50 8 9 22 50 1600 6, 7, 8
D9N25S10_4 9 10 25 4 1650 6, 7, 8
D9N25S10_8 9 10 25 8 1650 6, 7, 8
D9N25S10_15 9 10 25 15 1650 6, 7, 8
D9N25S10_30 9 10 25 30 1650 6, 7, 8
D9N25S10_50 9 10 25 50 1650 6, 7, 8
D9N30S10_4 9 10 30 4 1650 6, 7, 8
D9N30S10_8 9 10 30 8 1650 6, 7, 8
D9N30S10_15 9 10 30 15 1650 6, 7, 8
D9N30S10_30 9 10 30 30 1650 6, 7, 8
D9N30S10_50 9 10 30 50 1650 6, 7, 8
D4N30S10_4 4 10 30 4 1650 6, 7, 8
D4N30S10_8 4 10 30 8 1650 6, 7, 8
D4N30S10_15 4 10 30 15 1650 6, 7, 8
D4N30S10_30 4 10 30 30 1650 6, 7, 8
D4N30S10_50 4 10 30 50 1650 6, 7, 8

The first three key measurements are self explanatory. The last key measurement is
the average time taken for the agent to make one decision at decision point k based on
the total computation time divided by the number of decisions made (decision points) to
complete the delivery operations simulation. The PDS-RA with the proposed heuristic
bases are benchmarked with the matheuristic rollout found in the work of [15] for all
vehicle number settings (4, 8, 15, 30, and 50) for the road networks D3N8S8-D7N18S7. For
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the road network D8N20S8-D4N30S10, however, the benchmarking is completed only up
to the vehicle number settings of 4, 8, and 15. This is due to the resultant computational
time which is far longer than considered reasonable when compared with the longest
computation time obtained among the five proposed heuristics (Figures A14 and A18).
With the resulting simulated data, the model is then validated based on the analysis of
the output data produced (Figure 6). Furthermore, the performance of the proposed
heuristics compared to the matheuristic rollout applied is observed through a descriptive
and comparative analysis.

Table 4. Simulation and PDS-RA Configuration.

Parameter Value

Deterioration Proportional Constant P 0.1
Ω 200
Vehicle Speed 90 km/h
Vehicle Capacity, Q 50
Monte Carlo Simulation 3
Lookahead Horizon K 7

The computational results in the Supplementary file (Tables S1–S81) are collected and
recorded for a time span of more than two years; given the hardware available for the
experiments. A total of 10 readings were taken for each of the proposed base heuristics
applied in the PDS-RA for all test instances. This was for all key measurements (K1–K4)
given the stochastic road capacity and dynamic deterioration of the mean road capacity
in the problem addressed. From each 10 readings, the descriptive analysis is performed
to measure the mean, standard deviation, variance, and covariance of the sample data.
The Normality test is performed to determine that a suitable comparative analysis method
is applied for benchmarking. A total of 11,600 key readings were recorded as a result of
2900 simulations performed for further analysis involving the key measurements of K1, K2,
K3, and K4 mentioned in Section 5. The 2900 simulations consist of 290 sets of 10 readings
per set, for each of the 4 key measurements which are then used to compute the average
reading. Not all 290 sets tested were found to have a normal distribution based on the
Shapiro–Wilk test [88] performed in the Excel [89]. The highest percentage for normal data
(around 50%) is only seen in the K3 and K4 measurements. Furthermore, the 10 readings
for each key measurement of a test instance is considered small for a parametric test. As
such, a non-parametric test (Wilcoxon Signed Rank Test) was applied to test for significance
in differences against the matheuristic solution (PDS-RA with CPLEX as base heuristic).
Moreover, the Best So Far (BSF) measurement among the solution algorithms applied
at each test instance was performed to observe the performance of each PDS-RA of the
respective proposed heuristics against the matheuristic rollout.

The full computation results are presented in the supplementary file and the abbrevi-
ations applied are listed in Table 5. Furthermore, the general overview of the simulated
data collected is shown in Table A1. Thorough investigation and synthesise of the resulting
simulation data by means of cross-referencing key values were performed to ensure that
no errors are presented.

The results obtained in Tables S1–S81 are further synthesised for numerical analy-
sis focusing on model validation and base heuristics performances. The MDDVRPSRC
model is validated based on the trends and patterns observed in Figures A12, A13, A16
and A17. Meanwhile, the performance of the proposed heuristics, as compared to the
matheuristic rollout, can be seen in the remaining figures between Figures A12–A27 and in
the supplementary file S1 (Figures S1–S62). Figures A12–A15 show the trends for average
measurements of each of the 10 sample readings based on all four key measurements, while
Figures A16–A19 shows the trends for best measurements among the 10 reading samples
for each key measurement. Figures A20–A23 show the total numbers of BSF counts for each
algorithm for all 40 instances with the matheuristic rollout benchmark. Figures A24–A27
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depict the total numbers of BSF counts in percentage for each algorithm for all 50 instances
with and without (omitting 10 test instances for matheuristic rollout due to computation
time limitation) the matheuristic rollout benchmark. A more detailed breakdown per test
instance of the percentage of BSF associated with each heuristics is shown in Figures S1–S40.
Meanwhile, Tables A2–A7 give a more detailed breakdown on numbers of the BSF counts,
normal distribution data, and the significant differences for each key measurements. Finally,
a detailed performance of each PDS-RA with proposed heuristics for all key measurements
is shown in Figures S41–S62.

Table 5. Abbreviation for Tables and Figures.

Base-H Base Heuristic applied during rollout lookahead
TBIH-1 Teach Based Insertion Heuristic
TBIH-2 TBIH with dynamic SIH
TBIH-3 TBIH with dynamic CW
TBIH-4 TBIH with dynamic lookahead SIH
TBIH-5 TBIH with dynamic lookahead CW
CPLEX DOCPLEX (Python): solving MDVRPSRC-2S1 and MDVRPSRC-2S2
SW(P) P value: Shapiro Wilk Test for normality test

Wilcox(P) P value: Wilcoxon Signed Rank Test for Significance test
BSF Best So Far Measurement Value
Sig. Significance
N Normal

(% V2) Percentage Performance based on 40 Measurements instead of 50
(CPLEX Application as Base Heuristic for benchmarking)

6. Discussion

In terms of the MDDVRPSRC MDP model validation, the behaviours plotted in
Figures A12, A13, A16 and A17 are conforming to the natural expectation on how the hu-
manitarian operational aspects will shape out based on the key measurements.
Figures A12 and A16, for example, show a logical increase of total distance travelled
with the increase in the number of vehicles. Here, the increase in total distance is also
attributed to the policy that all vehicles must be dispatched for delivery to compensate for
the potential risk that a vehicle might be stranded while en route due to the road damage
incurred. Furthermore, a stochastic road capacity with multiple dispatches of vehicles
might ensure a faster delivery time at the cost of an increase in total distance travelled.

For the road network D3N8S3, the increase of total distance is higher than that of
networks D4N11S4, D5N13S5, and D6N16S6. This is comparable to that of network
D7N18S7 onwards with operations involving 30 and 50 vehicles. This is due to the large
amount of vehicles travelling on a road network with limited roads. The random road
capacity as well as deteriorating road conditions cause a bottleneck at some connecting
nodes. However, a steady increase of roads in more complex networks alleviates this
problem, as shown in networks D4N11S4, D5N13S5, and D6N16S6. Given the increasing
demands and more complex networks, a different observation could be made.

The road networks of D7N18S7, D8N20S8, D9N25S9, and D9N30S10, for example,
indicate roughly the same trend of total distance travelled with an occasional peak at
about 10,000 km for networks D8N20S8 and D9N25S10. However, an obvious increase
of total distance travelled can be seen for the network D4N30S10, thereby confirming the
hypothesis that this network is the most complex in terms of delivery operations. This is
explained by the ratio of depots to connecting nodes where the vehicle has only a limited
number of depots to replenish supplies in this network as compared to the other networks.
Furthermore, the ratio of depots and shelters also contributes to this observation, showing
the difficulties of completing the deliveries given the smaller number of depots to replenish.

Additionally, the reduced number of depots in this network also leads to more con-
necting options between the depots and connecting nodes which may not necessarily be
advantageous to the delivery operations. This is especially true for networks that tend to
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have a shorter route disabled due to random road capacity and a dynamic reduction of the
road capacity due to damage to the road. As a result, a longer route is taken leading to the
increase of total distance travel by all vehicles.

All of the observations for the total distance travelled shown in Figures A12 and A16
also apply to the observations seen in Figures A13 and A17. In general, the increase of the
total vehicle numbers leads to the reduced delivery operations time (total travel time). For
the network D3N8S3, a limited number of vehicles in a small network with high demands
relative to the number of vehicles led to an increase in total travel time compared to network
D4N11S4. This is due to the longer time required by the smaller number of vehicles to
satisfy the total demands within the network. Moreover, the deteriorating road capacity for
each damaged road may lead to lesser road availability for an already small road network.
This leads to vehicles taking the longer route compared to that of network D4N11S4.

Vehicles may also travel back and forth along the same road due to connecting roads
becoming increasingly less available. The bottleneck effect is also seen for the larger number
of vehicles when comparing the total time travel within the road network of D3N8S3 with
the road networks of D4N11S4, D5N13S5, and D6N16S6. It is also shown clearer here that
the bottleneck effect could be alleviated through trends observed for networks D7N18S7,
D8N20S8, D9N25S9, and D9N30S10. Similarly the reduced ratio between depots to shelters
and depots to connecting nodes leads to a more complex network. This is despite not
having the highest number of nodes that contributes to a higher total travel time for some
of the algorithms. Interestingly, the matheuristic rollout approach does not show the same
observations. This shows the potential of the matheuristic rollout in navigating more
complex networks compared to the proposed heuristics.

This, however, comes at the cost of computation time as shown in Figures A14, A15,
A18, A19, A22, A23, A26 and A27. This was observed when investigating the performance
of the proposed base heuristics against the matheuristic rollout as a benchmark. The
total computation time increases for the matheuristic rollout applying CPLEX at every
lookahead decision point for road network D5N13S5 onwards for all vehicle settings
(Figures A14 and A18) when compared with the results obtained with PDS-RA applying
the proposed base heuristics. This trend is even more obvious in Figures A15 and A19,
showing a clear increase in computation time for the agent in making a decision on average.
As a result, no BSF count was ever obtained through the matheuristic rollout for the key
measurement of K3 and K4 (Figures A22, A23, A26 and A27).

Apart from showing an exponential increase for both K3 and K4 (see Figures A15
and A19), it is also obvious that this trend depends on the total number of nodes that
are involved in the network. This is evident when comparing the two key measurements
for networks D9N30S10 and D4N30S10. However, the road networks sharing a similar
number of nodes as D4N30S10, such as D9N25S10, do not indicate a similar magnitude of
increment. Therefore, it could be concluded that both the number of nodes and complexity
associated with each network affect the two key measurements for the matheuristic rollout.

Meanwhile, the performance of the proposed PDS-RA applying base heuristics is
further investigated through the BSF count for all instances tested. Figures A22, A23, A26
and A27 confirm the observation made for the matheuristic rollout in terms of compu-
tation time (K3 and K4). However. the matheuristic rollout shows clear dominance in
terms of the key measurements of K1 and K2 (Figures A20, A21, A24 and A25). This is
especially seen in the breakdown of K1 and K2 in Figures S46 and S52 which Figure S46
interestingly also show a good performance of TBIH-1 for K1. This shows the relevance
of the matheuristic approach for complex stochastic problems. In most of the individual
networks, the matheuristic approach seems to also perform better compared to the other
proposed approaches for K1 and K2 (Figures S46 and S52). However, as it can be seen in
Figures A12–A17 with the exception of Figures A14 and A15, the application of PDS-RA
with proposed heuristics remains competitive with low gaps of difference. This is also
supported by the statistical numerical evidence that show lower significance differences
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recorded throughout all simulated data involving K1 and K2 when compared with data
obtained by the matheuristic rollout (Table A1).

Of those, a vast majority of significance difference is seen in Figures A14, A15, A18
and A19 which corroborates findings in terms of computation time for K3 and K4. Judging
from the trends, the practicality of the matheuristic rollout as benchmarked, is shown to be
poor at least for the given hardware used for the experimentation. This is despite the good
performance shown for K1 and K2, albeit with no significance difference.

On the other hand, the TBIH-1 shows clear advantage as shown from Figures A20–A27
in terms of the BSF count. This is perhaps expected considering the stochastic problem
which may favour the exploratory approach more than the exploitation part, as is per-
formed in TBIH-1 with random selection for the SP part of the algorithm. The comparable
performance of PDS-RA with TBIH-1 compared to the matheuristic rollout is also shown in
most of the road networks, respectively. Furthermore, TBIH-1 is seen at times neck to neck
with the benchmark when looking into the performance in each individual network, such
as in Figures S26, S29, S33, S34, and S36 among others. It is also noteworthy to see that the
algorithm also performs rather well for the network D4N30S10, with the exception of key
measurement K2. Moreover, the dominance of the TBIH-1 is increasingly more noticeable
for larger networks as best seen in Figures S41, S47, S53, and S58. Meanwhile, both the
TBIH-2 and TBIH-4 also perform well in the overall BSF count (as seen in Figures A20–A27)
when compared to that of TBIH-3 and TBIH-5 which is based on DCW. This highlights the
advantages of the DSIH which centred on the concept of inserting and placing promising
nodes in ways that optimise the operation.

DCW, on the other hand, tends to ignore the inner part of the nodes and favour the
outer nodes in an attempt to reduce parallel connections to the origin node as CW has
always been intended for. This is evident by the performance of TBIH-3 which is the lowest
followed by TBIH-2 when looking at BSF counts for both the individual network and overall
networks (Figures S41–S62). Except for K3 in Figure S55, the TBIH-3 only scores a BSF
count of one for all other key measurements (Figures S43, S49 and S60). This translates in a
low BSF count obtained in Figures A20–A27 where the TBIH-3 is seen multiple times with
BSF counts as low as 0% and 2.5% while topping at most only an 8% as seen in Figure A26.
TBIH-5 shows an improved performance when compared to TBIH-3 (for K1, K2, K3, and
K4 in Figures S45, S51, and S57) and TBIH-2 (except for K3 and K4) with the addition of a
lookahead mechanism for selecting more promising nodes in the route. This demonstrates
the strength of exploitation in the heuristics to improve selection. The TBIH-2, however, is
better in terms of K3 and K4 (Figures S54 and S59), displaying the trade off for embedding
such features.

Similarly the TBIH-2’s performance is improved in TBIH-4 by means of an exploitation
mechanism that requires a lookahead in selecting more promising nodes and filtering out
those that are not. Unlike the TBIH-3 and TBIH-5, however, the gap in the computation
speed between the TBIH-2 and TBIH-4 is not obvious. This shows that the TBIH-5 might
be more costly to implement compared to TBIH-4 which improves on the TBIH-2 with less
trade-off as seen in Figures S54, S56, S59 and S61. As such, the TBIH-4 could be considered
an all-rounder with a balanced performance next to TBIH-1.

It should be noted that the PDS–RA is performed per vehicle when making a collective
decision for all vehicles. Furthermore, both the number of Monte Carlo simulations and
the length of the lookahead horizon shown in Table 4 could be considered low when
compared to other similar work. However, the new perspective of the computing decision,
as proposed in Equation (24), demands some compromise be made, especially with limited
computational power available for this research. Furthermore, the method applied in this
research is necessary to break the usual practice of clustering the emergency hot-spots per
vehicle and then computing the routing decision afterwards. Additionally, the research
for stochastic road capacity problems with additional consideration for damaged roads is
very limited among reinforcement-learning-oriented research. Due to the stochastic road
capacity, the resulting key measurements are highly varied as shown in the variance and



Mathematics 2022, 10, 2699 42 of 70

covariance measurement of each of the simulated samples collected (Tables S2–S81). Ideally,
a good amount of Monte Carlo simulations of the rollout and a longer horizon for the
lookahead would be best to account for such stochastic problems. A trade-off still needs
to be made where the limitation of computation is a concern. If anything, this research
proves that the proposed methods could be applied to a machine with limited capability to
simulate, visualise, and compute decisions as a DSS for an emergency medical supplies
delivery humanitarian operation.

However, more study into this research is warranted. With capable machines, the
number of lookahead horizons and the number of Monte Carlo simulations should be
increased. With such an increase in parameters, perhaps the TP of the algorithm could be
discarded; allowing the agent a pure learning opportunity when making decisions. In the
experiments here, this could not be achieved; hence the TP is needed. Furthermore, with
enough Monte Carlo simulations, the highly stochastic problem concerning routing can
be properly addressed. A longer horizon of the lookahead ensures better decisions in a
long-term perspective.

The investigation included a one-factor experiment performed by varying the fixed
number of vehicles per road networks, which is a limitation. It should be note,d however
that various road networks were tested consisting of varying numbers of depots, emer-
gency shelters, and connecting nodes. Furthermore, given the entry level machine that is
utilized, this experiment (involving 2900 simulations and 11,600 measurement readings)
took more than one year to complete. Given a more capable machine, factorial experiments
should be performed to investigate the performance of the proposed heuristics againist the
matheuristic benchmark. For example, through a factorial experiment, the existing network
could be expanded into more challenging networks. In D4N30S10 for instance, it would
also be interesting to see how the delivery operation with such a number of depots and an
increase of connecting nodes fares with a smaller number of emergency shelters as more
options for routing become available. Will the agent with the proposed solution method
be able to navigate intelligently among these many options? Hence, more studies should
be performed with expanded networks where the combination of ratios between depots,
connecting nodes, and emergency shelters are varied. For this experiment, the vehicles
are placed randomly at depots initially. This is performed to account for the degree of
unpreparedness, where coordination should be planned with random accounts of assets.
Hence, even though the key measurements are assessed through 10 average readings for
each test instance, the initial situation for each simulation run is varied. There are two
ways that this study could be expanded further: (1) to increase the number of simulations
per test instance to obtain more than 10 readings for a better average reading, and (2) to
apply a fixed assignment of vehicles per depot for all simulations. The latter approach,
however would not account for a more realistic scenario of emergency medical supplies
delivery operations. Finally, in this study, the placement of depots, connecting nodes, and
emergency shelters are made such that the findings obtained from the lessons learned
in the 2015 Nepal earthquake are addressed. Instead of utilising a simulated network, a
more concrete simulation could be performed by applying real networks and incorporating
details of the depots, connecting nodes, emergency shelters, vehicles, road damages, and
road capacities during that actual disaster event. It is noted that such data is usually of a
sensitive nature. However, developing a simulated network allows for flexibility when
completing planning exercise and experiments.

7. Conclusions

As part of the DSS for humanitarian emergency medical supplies delivery operations,
the 2015 Nepal earthquake is referred to in developing the MDDVRPSRC MDP model. The
presented model focuses on the difficulty in navigating through stochastic road capacity
within the compromised road network due to the ongoing tremors from the earthquake.
The model also incorporates multi-depots, multi-trips, and split delivery operations. Here
the conventional approach of “cluster first, route second” largely applied among related
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research cannot be applied. Instead, to solve the problem, a lookahead approach of ADP
is adopted, where the PDS-RA is applied. As part of the PDS-RA mechanism, five base
constructive heuristics are proposed to construct the decision rule on the go dynamically
and iteratively. Unlike conventional applications of the PDS-RA in VRP, this research
adopted the proposed method in the work of [15] for a consecutive application of the PDS-
RA for each vehicle that arrives at every decision point. The resulting individual assignment
of vehicles computed collectively forms an MDP decision at every decision point.

The five proposed base heuristics are based on a decision-making strategy that con-
sists of obvious decisions (TP) and non-obvious decisions (SP) to reduce the burden of
computation. In the TBIH-1, the SP applied pure random selection for selecting a vehicle’s
next destination. Alternatively, the principle of constructive heuristics used in SIH(I1) and
CW, (coined as DSIH and DCW, respectively) are adopted in the TBIH-2 and the TBIH-3. A
lookahead exploitation mechanism is adapted to both the DCW and the DSIH, giving birth
to DLASIH and DLACW which is applied in the proposed TBIH-4 and TBIH-5, respectively.
These five proposed base heuristics are compared with the matheuristic proposed in the
authors’ previous work, [15]. Moreover, test instances were developed and made available
in the repository [87]. The results presented in the supplementary file validate the model
where expected behaviour is observed from the simulated operations based on four key
measurements: K1, K2, K3, and K4. Furthermore, the performance of the PDS-RA applied
with the proposed five base heuristics shows comparable performance for K1 and K2 with
no significant difference recorded. Meanwhile, all the proposed heuristics showed superior
performance for K3 and K4 when compared to the matheuristic. The results also highlight
the power of exploration associated to pure random selection in the TBIH-1 in addressing
a highly stochastic problem such as the MDDVRPSRC. Furthermore, the advantages of
exploitation are shown in TBIH-4 and TBIH-5 when compared with the performance of
TBIH-2 and TBIH-3, respectively. For problems such as the MDDVRPSRC, it would appear
that the DSIH (TBIH-2) and DLASIH (TBIH-4) perform better than their counterparts: DCW
(TBIH-3) and DLACW (TBIH-5).
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Abbreviations
The following abbreviations are used in this manuscript:

ADP Approximate Dynamic Programming
MDDVRPSRC Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity
CSM Supply Chain Management
MDP Markov Decision Processes
DSS Decision Support System
LSPs Logistics Service Providers
ML Machine Learning
RL Reinforcement Learning
MIP Mixed Integer Programming
PRE Pre Decision State
PDS Post Decision State
RA Rollout Algorithm
PDS–RA Post Decision State Rollout Algorithm
SILP Stochastic Linear Integer Programming
SIH Sequential Insertion Heuristic
DSIH Dynamic Sequential Insertion Heuristic
DLASIH Dynamic Lookahead Sequential Insertion Heuristic
CW Clarke and Wright
DCW Dynamic Clarke and Wright
DLACW Dynamic Lookahead Clarke and Wright

Appendix A. Simulated Road Networks and Analysis Results

Figure A1. Road network for instance D3N8S3 [15].
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Figure A2. Road network for instance D4N11S4 [15].

Figure A3. Road network for instance D5N13S5 [15].
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Figure A4. Road network for instance D6N16S6.

Figure A5. Road network for instance D7N18S7.
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Figure A6. Road network for instance D8N20S8.

Figure A7. Road network for instance D8N22S9.
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Figure A8. Road network for instance D9N25S10.

Figure A9. Road network for instance D9N30S10.
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Figure A10. Road network for instance D4N30S10.

Figure A11. Example of medical supply delivery in progress for the network D8N20S20.
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Table A1. Descriptive overall view on simulated data collected.

Total Test Instances: (10 Networks × 5 vehicle settings) 50
Proposed Base Heuristics & Benchmark: (5 + 1) 6
Total Test Instances: Base Heuristic & Benchmark 290
(with 10 Omitted Matheuristic Benchmark: ((50× 6)− 10))
Total Simulation Run 2900
Total Key Measurements 4
Total Set of 10 Samples Readings: 290× 4 1160
(for Four Key Measurements)
Total Sample Readings 11,600

Total Normality Analysis (Shapiro-Wilk Test) Applied 290
(for Each Key Measurement)
Total 10 Normal Sample Reading 39 (13.44%)
(Total Travelled Distance)
Total 10 Normal Sample Reading 42 (14.48%)
(Total Travelled Time)
Total 10 Normal Sample Reading 148 (51.03%)
(Total Computation Time)
Total 10 Normal Sample Reading 166 (57.24%)
(Average Decision Computation Time)

Total Comparative Analysis (Wilcoxon Signed-Ranks Test) Applied 200
(for Each Key Measurement: ((50× 5)− (10× 5)))
Total Significant Difference 68 (34%)
(Total Travelled Distance)
Total Significant Difference 69 (34.5%)
(Total Travelled Time)
Total Significant Difference 191 (95.5%)
(Total Computation Time)
Total Significant Difference 194 (97%)
(Average Decision Computation Time)

Table A2. PDS_RA performance with TBIH-1 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 X X X X X X
D3N8S3_8 X X X X
D3N8S3_15 X X X
D3N8S3_30 X X
D3N8S3_50 X X X X

1 3 2 0 0 1 3 4 0 1 4 0

D4N11S4_4 X X X
D4N11S4_8 X X X X X
D4N11S4_15 X X X X X X X X
D4N11S4_30 X X X X X X
D4N11S4_50 X X X X

2 2 0 2 2 0 3 4 0 4 5 2
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Table A2. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D5N13S5_4 X X X X X
D5N13S5_8 X X X X
D5N13S5_15 X X X X X X
D5N13S5_30 X X X
D5N13S5_50 X X X X X X

1 0 1 1 0 0 4 5 2 4 5 1

D6N16S6_4 X X X X X
D6N16S6_8 X X X X X X
D6N16S6_15 X X X X X
D6N16S6_30 X X X X X X
D6N16S6_50 X X X X

0 2 1 0 1 1 2 5 3 3 5 3

D7N18S7_4 X X X X X X X X
D7N18S7_8 X X X X X X X
D7N18S7_15 X X X X
D7N18S7_30 X X X X X X X
D7N18S7_50 X X X X

2 2 1 2 1 0 3 5 2 4 5 3

D8N20S8_4 X X X X X X X X
D8N20S8_8 X X X X X X X X
D8N20S8_15 X X X X
D8N20S8_30 X X X
D8N20S8_50 X X

2 0 2 1 0 1 3 3 3 3 3 4

D8N22S9_4 X X X X X X
D8N22S9_8 X X X X
D8N22S9_15 X X X X X X X
D8N22S9_30 X X X X X X
D8N22S9_50 X X X

0 1 3 1 1 2 2 3 4 3 3 3

D9N25S10_4 X X X X X X X X
D9N25S10_8 X X X X
D9N25S10_15 X X X X
D9N25S10_30 X X X
D9N25S10_50 X

0 1 2 0 1 0 3 3 1 4 3 2

D9N30S10_4 X X X X X X X X
D9N30S10_8 X X X X X
D9N30S10_15 X X X X X X X
D9N30S10_30 X X X X
D9N30S10_50 X

1 1 2 1 1 2 4 3 2 4 3 1
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Table A2. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D4N30S10_4 X X X X X X
D4N30S10_8 X X X X
D4N30S10_15 X X X X X
D4N30S10_30 X X X
D4N30S10_50 X

0 3 2 0 3 0 2 3 1 1 3 1

Total 9 15 16 8 10 7 29 38 18 31 39 20
(%) 18.00 30.00 32.00 16.00 20.00 14.00 58.00 76.00 36.00 62.00 78.00 40.00

Table A3. PDS_RA performance with TBIH-2 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 X X X X
D3N8S3_8 X X X
D3N8S3_15 X X X X X X X X
D3N8S3_30 X X X
D3N8S3_50 X

1 0 0 0 2 0 2 4 2 1 4 3

D4N11S4_4 X X X X X X
D4N11S4_8 X X X
D4N11S4_15 X X X X
D4N11S4_30 X X X X X X
D4N11S4_50 X X X

1 1 1 2 0 0 3 5 1 2 5 1

D5N13S5_4 X X X X X X X
D5N13S5_8 X X X X X X X X
D5N13S5_15 X X X X
D5N13S5_30 X X X
D5N13S5_50 X X X X X X

1 2 0 2 1 0 2 5 1 5 5 4

D6N16S6_4 X X X X
D6N16S6_8 X X X X X
D6N16S6_15 X X X X X X
D6N16S6_30 X X
D6N16S6_50 X X X X

0 2 0 0 2 0 3 5 1 3 5 0

D7N18S7_4 X X X X
D7N18S7_8 X X X X
D7N18S7_15 X X X X X X
D7N18S7_30 X X X X X
D7N18S7_50 X X X X X

0 2 0 0 2 0 3 5 1 4 5 2
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Table A3. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D8N20S8_4 X X X X X
D8N20S8_8 X X X X X
D8N20S8_15 X X X X X
D8N20S8_30 X
D8N20S8_50

0 0 0 0 1 2 3 3 0 4 3 0

D8N22S9_4 X X X X
D8N22S9_8 X X X X
D8N22S9_15 X X X X
D8N22S9_30
D8N22S9_50 X

0 0 0 0 0 0 3 3 0 3 3 1

D9N25S10_4 X X X X
D9N25S10_8 X X
D9N25S10_15 X X X X X
D9N25S10_30 X X X
D9N25S10_50

1 0 0 0 0 1 3 3 0 3 3 0

D9N30S10_4 X X X X X
D9N30S10_8 X X X X X X
D9N30S10_15 X X X X X
D9N30S10_30 X X
D9N30S10_50 X

0 2 1 0 1 0 4 3 0 4 3 1

D4N30S10_4 X X X X X X
D4N30S10_8 X X X X X
D4N30S10_15 X X X X X
D4N30S10_30 X
D4N30S10_50 X

0 1 0 0 3 0 2 3 1 4 3 1

Total 4 10 2 4 12 3 28 39 7 33 39 13
(%) 8.00 20.00 4.00 8.00 24.00 6.00 56.00 78.00 14.00 66.00 78.00 26.00

Table A4. PDS_RA performance with TBIH-3 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 X X
D3N8S3_8 X X X
D3N8S3_15 X X X
D3N8S3_30 X X
D3N8S3_50 X X X

1 0 0 1 2 0 2 3 0 1 3 0



Mathematics 2022, 10, 2699 54 of 70

Table A4. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D4N11S4_4 X X X
D4N11S4_8 X X X X X
D4N11S4_15 X X X X
D4N11S4_30 X X X X X
D4N11S4_50 X X X X X

1 4 0 1 3 0 2 4 0 2 5 0

D5N13S5_4 X X X X X X
D5N13S5_8 X X X X X
D5N13S5_15 X X X X
D5N13S5_30 X X X X X
D5N13S5_50 X X X X X

1 3 0 2 4 0 2 5 0 3 5 0

D6N16S6_4 X X X X X X
D6N16S6_8 X X X X X X
D6N16S6_15 X X X X X X
D6N16S6_30 X X X X X
D6N16S6_50 X X X

1 3 0 1 3 0 4 5 0 4 5 0

D7N18S7_4 X X X X
D7N18S7_8 X X X X
D7N18S7_15 X X X X
D7N18S7_30 X X X X X X
D7N18S7_50 X X X X

0 2 0 1 2 0 3 5 1 3 5 0

D8N20S8_4 X X
D8N20S8_8 X X X X X X
D8N20S8_15 X X X X
D8N20S8_30 X X X
D8N20S8_50 X X X

2 0 2 1 0 2 2 3 1 2 3 0

D8N22S9_4 X X X X X X
D8N22S9_8 X X X X
D8N22S9_15 X X X X
D8N22S9_30
D8N22S9_50

0 1 0 0 1 0 3 3 0 3 3 0

D9N25S10_4 X X X X
D9N25S10_8 X X X
D9N25S10_15 X X X X
D9N25S10_30 X
D9N25S10_50

0 0 0 0 1 0 2 3 1 2 3 0
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Table A4. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D9N30S10_4 X X X X X X
D9N30S10_8 X X X X
D9N30S10_15 X X X X
D9N30S10_30 X
D9N30S10_50

0 1 0 0 1 0 3 3 0 4 3 0

D4N30S10_4 X X X X X
D4N30S10_8 X X X X X
D4N30S10_15 X X X X X
D4N30S10_30
D4N30S10_50 X

0 3 0 1 3 0 0 3 1 1 3 1

Total 6 17 2 8 20 2 23 37 4 25 38 1
(%) 12.00 34.00 4.00 16.00 40.00 4.00 46.00 74.00 8.00 50.00 76.00 2.00

Table A5. PDS_RA performance with TBIH-4 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 X X X X X
D3N8S3_8 X X
D3N8S3_15 X X X X
D3N8S3_30 X X X X X X X X X
D3N8S3_50 X X X X

2 0 1 2 0 1 1 5 2 3 5 2

D4N11S4_4 X X X X X X X
D4N11S4_8 X X X X X
D4N11S4_15 X X X
D4N11S4_30 X X X X X X X X X
D4N11S4_50 X X X X X X

0 2 1 2 1 2 3 5 4 3 5 2

D5N13S5_4 X X X X X
D5N13S5_8 X X X X X
D5N13S5_15 X X X X X
D5N13S5_30 X X X X
D5N13S5_50 X X X X X X X X

2 1 0 1 0 4 4 5 2 3 5 0

D6N16S6_4 X X X X
D6N16S6_8 X X X X X
D6N16S6_15 X X X X X X
D6N16S6_30 X X
D6N16S6_50 X X X X X X

0 3 0 0 2 0 2 5 1 3 5 2
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Table A5. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D7N18S7_4 X X X X X X
D7N18S7_8 X X X X X X
D7N18S7_15 X X X X X X
D7N18S7_30 X X X X X
D7N18S7_50 X X X

0 4 1 0 3 1 3 5 0 4 5 0

D8N20S8_4 X X X X
D8N20S8_8 X X X X
D8N20S8_15 X X X X X X
D8N20S8_30
D8N20S8_50

1 0 0 1 0 0 3 3 0 3 3 0

D8N22S9_4 X X X X X X
D8N22S9_8 X X X X
D8N22S9_15 X X X X
D8N22S9_30
D8N22S9_50

0 1 0 0 1 0 3 3 0 3 3 0

D9N25S10_4 X X X X
D9N25S10_8 X X X
D9N25S10_15 X X X X
D9N25S10_30 X X X
D9N25S10_50 X X X

0 0 0 1 0 1 3 3 1 4 3 1

D9N30S10_4 X X X X
D9N30S10_8 X X X X X X
D9N30S10_15 X X X X X
D9N30S10_30 X X
D9N30S10_50 X X X X

0 0 0 2 0 1 3 3 3 3 3 3

D4N30S10_4 X X X X X X X X
D4N30S10_8 X X X X X
D4N30S10_15 X X X X X X
D4N30S10_30 X
D4N30S10_50 X X X

1 1 0 2 3 2 4 3 0 4 3 0

Total 6 12 3 11 10 12 29 40 13 33 40 10
(%) 12.00 24.00 6.00 22.00 20.00 24.00 58.00 80.00 26.00 66.00 80.00 20.00
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Table A6. PDS_RA performance with TBIH-5 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 X X X
D3N8S3_8 X X X X X X X X
D3N8S3_15 X X
D3N8S3_30 X X X X
D3N8S3_50 X X X

1 3 1 1 2 1 2 3 1 2 3 0

D4N11S4_4 X X X
D4N11S4_8 X X X X
D4N11S4_15 X X X X
D4N11S4_30 X X X X X
D4N11S4_50 X X

1 1 0 0 1 0 3 5 0 2 5 0

D5N13S5_4 X X X X X X
D5N13S5_8 X X X X X
D5N13S5_15 X X X
D5N13S5_30 X X X X
D5N13S5_50 X X X X X

0 1 0 1 3 0 4 4 0 5 5 0

D6N16S6_4 X X X X X X
D6N16S6_8 X X X X X X
D6N16S6_15 X X X X X X X X
D6N16S6_30 X X X
D6N16S6_50 X X X X

2 4 0 1 4 0 3 5 0 3 5 0

D7N18S7_4 X X X X X X
D7N18S7_8 X X X X
D7N18S7_15 X X X X
D7N18S7_30 X X X X X X
D7N18S7_50 X X X X X

1 2 0 0 2 1 4 5 1 4 5 0

D8N20S8_4 X X X X
D8N20S8_8 X X X
D8N20S8_15 X X X X X
D8N20S8_30
D8N20S8_50

0 0 1 0 0 0 1 3 1 2 3 1

D8N22S9_4 X X X X X X
D8N22S9_8 X X X X X X
D8N22S9_15 X X X X
D8N22S9_30 X X
D8N22S9_50

0 0 1 0 0 1 4 3 1 4 3 1
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Table A6. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D9N25S10_4 X X X X
D9N25S10_8 X X
D9N25S10_15 X X X X X X
D9N25S10_30 X
D9N25S10_50 X X X X

2 0 0 0 0 0 3 3 2 2 3 2

D9N30S10_4 X X X X X X
D9N30S10_8 X X X X X X
D9N30S10_15 X X X X
D9N30S10_30 X X X
D9N30S10_50

1 2 0 0 2 0 4 3 0 4 3 0

D4N30S10_4 X X X X X X X
D4N30S10_8 X X X X X
D4N30S10_15 X X X X
D4N30S10_30 X
D4N30S10_50 X

0 1 1 1 3 0 1 3 2 1 3 2

Total 8 14 4 4 17 3 29 37 8 29 38 6
(%) 16.00 28.00 8.00 8.00 34.00 6.00 58.00 74.00 16.00 58.00 76.00 12.00

Table A7. PDS_RA performance with CPLEX application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4
D3N8S3_8 X
D3N8S3_15 X X X
D3N8S3_30
D3N8S3_50 X

0 - 1 1 - 2 0 - 0 1 - 0

D4N11S4_4
D4N11S4_8 X X X
D4N11S4_15 X X X
D4N11S4_30 X X
D4N11S4_50 X X X X X X

2 - 3 3 - 3 1 - 0 2 - 0

D5N13S5_4 X X
D5N13S5_8 X
D5N13S5_15
D5N13S5_30 X X X
D5N13S5_50 X X X X

1 - 4 1 - 1 1 - 0 2 - 0
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Table A7. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D6N16S6_4 X X X X
D6N16S6_8 X X X X
D6N16S6_15 X X X
D6N16S6_30 X
D6N16S6_50 X X X X X X

2 - 4 1 - 4 3 - 0 4 - 0

D7N18S7_4 X
D7N18S7_8 X X
D7N18S7_15 X X X
D7N18S7_30 X X
D7N18S7_50 X X X

0 - 3 1 - 3 2 - 0 2 - 0

D8N20S8_4 X X
D8N20S8_8
D8N20S8_15 X
D8N20S8_30
D8N20S8_50

0 - 0 0 - 0 2 - 0 1 - 0

D8N22S9_4 X X X X
D8N22S9_8
D8N22S9_15 X X
D8N22S9_30
D8N22S9_50

1 - 1 0 - 2 1 - 0 1 - 0

D9N25S10_4 X X
D9N25S10_8 X X X
D9N25S10_15 X X
D9N25S10_30
D9N25S10_50

0 - 3 0 - 3 0 - 0 1 - 0

D9N30S10_4 X X
D9N30S10_8 X X
D9N30S10_15
D9N30S10_30
D9N30S10_50

0 - 2 0 - 2 0 - 0 0 - 0

D4N30S10_4 X X X
D4N30S10_8 X X
D4N30S10_15 X
D4N30S10_30
D4N30S10_50

0 - 2 0 - 3 0 - 0 1 - 0

Total 6 - 23 7 - 23 10 - 0 15 - 0
(%) 12.00 - 46.00 14.00 - 46.00 20.00 - 0.00 30.00 - 0.00
(% V2) 15.00 - 57.50 17.50 - 57.50 25.00 - 0.00 37.50 - 0.00
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Figure A12. Algorithms performance compared to matheuristic rollout applied in PDS-RA: average
total distance travelled (km) based on test instances.

Figure A13. Algorithms performance compared to matheuristic rollout applied in PDS-RA: average
total travel time (min) based on test instances.
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Figure A14. Algorithms performance compared to matheuristic rollout applied in PDS-RA: average
total computation time (sec) based on test instances.

Figure A15. Algorithms performance compared to matheuristic rollout applied in PDS-RA: average
decision computation time (sec) based on test instances.
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Figure A16. Algorithms performance compared to matheuristic rollout applied in PDS-RA: best total
distance travelled (km) measured based on test instances.

Figure A17. Algorithms performance compared to matheuristic rollout applied in PDS-RA: best total
travel time (min) measured based on test instances.
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Figure A18. Algorithms performance compared to matheuristic rollout applied in PDS-RA: best total
computation time (sec) measured based on test instances.

Figure A19. Algorithms performance compared to matheuristic rollout applied in PDS-RA: best
average decision computation time (sec) measured based on test instances.
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Figure A20. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total BSF
measured for total travelled distance over all test instances applied (omitting 10 non-benchmarked
measurements).

Figure A21. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total
BSF measured for total travel time over all test instances applied (omitting 10 non-benchmarked
measurements).
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Figure A22. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total BSF
measured for total computation time over all test instances applied (omitting 10 non-benchmarked
aasurements).

Figure A23. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total
BSF measured for average decision computation time over all test instances applied (omitting 10
non-benchmarked measurements).
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Figure A24. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total BSF
measured for total travelled distance over all test instances applied (including 10 non-benchmarked
measurements).

Figure A25. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total
BSF measured for total travel time over all test instances applied (including 10 non-benchmarked
measurements).
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Figure A26. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total BSF
measured for total computation time over all test instances applied (including 10 non-benchmarked
measurements).

Figure A27. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total
BSF measured for average decision computation time over all test instances applied (including 10
non-benchmarked measurements).
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