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Abstract: UAVs are widely used for aerial reconnaissance with imaging sensors. For this, a high
detection performance (accuracy of object detection) is desired in order to increase mission success.
However, different environmental conditions (negatively) affect sensory data acquisition and auto-
mated object detection. For this reason, we present an innovative concept that maps the influence of
selected environmental conditions on detection performance utilizing sensor performance models.
These models are used in sensor-model-based trajectory optimization to generate optimized reference
flight trajectories with aligned sensor control for a fixed-wing UAV in order to increase detection per-
formance. These reference trajectories are calculated using nonlinear model predictive control as well
as dynamic programming, both in combination with a newly developed sensor performance model,
which is described in this work. To the best of our knowledge, this is the first sensor performance
model to be used in unmanned aerial reconnaissance that maps the detection performance for a per-
ception chain with a deep learning-based object detector with respect to selected environmental states.
The reference trajectory determines the spatial and temporal positioning of the UAV and its imaging
sensor with respect to the reconnaissance object on the ground. The trajectory optimization aims to
influence sensor data acquisition by adjusting the sensor position, as part of the environmental states,
in such a way that the subsequent automated object detection yields enhanced detection performance.
Different constraints derived from perceptual, platform-specific, environmental, and mission-relevant
requirements are incorporated into the optimization process. We evaluate the capabilities of the
sensor performance model and our approach to sensor-model-based trajectory optimization by a
series of simulated aerial reconnaissance tasks for ground vehicle detection. Compared to a variety of
benchmark trajectories, our approach achieves an increase in detection performance of 4.48% on aver-
age for trajectory optimization with nonlinear model predictive control. With dynamic programming,
we achieve even higher performance values that are equal to or close to the theoretical maximum
detection performance values.

Keywords: aerial reconnaissance; trajectory optimization; optimal control; sensor performance model

1. Introduction

Unmanned aerial vehicles (UAVs) with imaging sensors in the visual or infrared spec-
trum are increasingly used in various fields in civil, commercial and military applications.
Examples include surveillance and reconnaissance missions [1,2], environmental monitor-
ing [3,4], aerial photogrammetric mapping [5,6], or search and rescue missions [7–10]. In all
these applications, a high detection performance (a measure to describe the accuracy of
localization and classification of objects within the sensor footprint) is aspired to perform
the mission successfully. A high detection performance imposes a high demand on the
capabilities of the sensor data processing and analysis algorithms, especially if the sensor
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data are analyzed in an automated manner directly on board the UAV. Changing environ-
mental conditions (e.g., brightness, visibility conditions) as well as variable operational
and parameter settings can have a negative impact on sensor data acquisition and the
subsequent processing chain, which can ultimately lead to a degradation of the detection
performance [11]. Moreover, it is important to quantitatively determine the confidence in
the measurement results. This is particularly relevant if only the processed results of the
automated object detection are transmitted to a human (e.g., UAV operator), who has to
deduce further action from these results [12].

In addition to automated sensory data acquisition and object detection, we also ad-
dress the optimization of UAV flight trajectories in the following. In this work, we reuse
the two optimization methods nonlinear model predictive control (NMPC) and dynamic pro-
gramming & optimal control (DP&OC), which were proposed in our previous works [13,14].
NMPC is a well-established method for UAV trajectory optimization and is used for exam-
ple by [15–18]. For the application of DP&OC for path and trajectory planning, we refer
to [19–22]. There is extensive work in the literature on algorithms for general trajectory
optimization. For a comprehensive overview of this topic, we refer the reader to [23,24].

Figure 1 is intended to give an overview of perceptual, platform-specific, environ-
mental, and mission-related aspects and influencing factors that have to be considered
for trajectory optimization. These aspects will be discussed in the respective sections of
this paper.

Figure 1. Illustration of relevant influencing factors on sensor-model-based trajectory optimization.
Adapted from [13].

1.1. State of the Art

Various publications can be found in the literature examining the detection perfor-
mance as a function of environmental conditions. Examples are given in the following:

The authors in [25] describe the influences of different environmental states including
topographic, atmospheric, and photographic conditions on the detection performance of
various perception chains for aerial surveillance and reconnaissance. The effect of the
environmental states on the detection performance was mapped by sensor performance
models. The goal is to dynamically find and select the best-performing perception chain by
the performance models depending on the prevailing environmental conditions.

In [26], the authors investigate the impact of the ground sample distance (GSD) on
the detection performance of three different deep learning-based object detectors applied
to aerial reconnaissance. The detectors used include YOLOv2 and Faster R-CNN. It was
determined that the GSD affects the achieved average precision (AP) and a deviation from
a specific GSD value resulted in a deterioration of the AP.
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In [27], an approach is presented to automatically detect injured humans in images
taken by a UAV. The authors could substantially improve the detection performance of
different object detectors due to the consideration of photographic states with respect to
height and pitch.

1.2. Research Gap

The photographic states, comprising the elevation angle (angle between the horizontal
plane and the line of sight of the sensor), as well as the ground sample distance affect the
detection performance of perception chains used in aerial reconnaissance [25,28]. Here,
the perception chain [29] consists of an imaging sensor, as well as downstream algorithms
for data processing and automated object detection.

The following examples of aerial reconnaissance either lack a sensor performance
model or use only a highly simplified model. This makes detailed and realistic coordi-
nation of UAV and sensor planning, as well as the calculation of the expected detection
performance for a real perception chain, impossible.

In [30], the authors present an approach to a UAV-based search for human victims
with imaging sensors. The UAV trajectory optimization is performed by model predictive
control. A person is considered to be detected if he or she is covered by the field of view
of the camera that is mounted to the UAV. It is found that the trajectory optimization
lacks a detailed sensor performance model that takes into account the detection perfor-
mance of the deployed perception chain. According to [27], the elevation angle has an
impact on the detection performance and therefore should be considered in more detailed
trajectory planning.

The authors in [31] propose a concept to plan optimized UAV trajectories to recognize
objects on the ground. To execute the aerial reconnaissance task, the UAV is equipped with
an electro-optical/infrared sensor system. The detection performance of the perception
chain is modeled utilizing the “National Imagery Interpretability Rating Scale” (NIIRS),
which leads to a major simplification of its capabilities and limitations. The detection
performance is essentially determined only by the ground sample distance. Furthermore,
atmospheric and topographic conditions in the reconnaissance area are also neglected,
and consequently their influence on detection performance.

1.3. Research Problem

The sensor performance model maps selected environmental states to the detection
performance of a specific perception chain. These environmental states include topo-
graphic, atmospheric, and photographic states (e.g., elevation angle and ground sample
distance) [25].

From the research gap and to our knowledge: the selective manipulation of the
photographic states by a coordinated UAV and sensor movement in order to enhance
the detection performance determined by a sensor performance model has not yet been
sufficiently investigated for the field of aerial reconnaissance.

To address this research problem, we have developed an innovative concept that we
present in the following.

1.4. Innovative Contribution and Novelty in This Work

Our innovative contribution to the research problem is the development of a func-
tional concept for sensor-model-based trajectory optimization in the field of unmanned aerial
reconnaissance, which we presented for the first time in our previous works [13,14].

To our knowledge, this is the first concept that utilizes detailed sensor performance
models of different perception chains in order to generate optimal UAV trajectories to
increase detection performance. The concept is based on a sensor performance model
that maps the dependence of the detection performance for various environmental con-
ditions. By employing different optimization methods, optimal UAV reference (setpoint)
trajectories are generated from this model under consideration of multiple constraints
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(e.g., flight dynamic limitations of the UAV). The optimization specifically exploits the
dependencies of the photographic states elevation angle and ground sample distance (as part
of the environmental states) on the detection performance to generate a UAV reference
flight trajectory along with a coordinated sensor footprint movement on the ground. In our
previous works [13,14], we were able to enhance detection performance resulting from the
optimized UAV reference trajectories compared to those of benchmark trajectories. Thus,
the validity and capability of our concept could be proven.

The novelty in this work is the development and evaluation of a new sensor perfor-
mance model for a perception chain with a deep learning-based object detector. We evaluate
the performance model in different simulated experiments by generating optimal UAV
reference trajectories, using two different optimization methods. The resulting detection
performances from the optimized reference trajectories are compared with the detection
performances that would arise from various benchmark trajectories.

An additional novelty is to model the state transitions of the discrete optimization
method dynamic programming & optimal control by Dubins paths in order to achieve more
realistic UAV dynamics than obtained in our previous work [14]. With this, it can be
guaranteed that UAV reference trajectories are generated that meet predefined roll an-
gle limitations.

1.5. Outline

This paper is structured as follows: in Section 2 we briefly describe the use of coverage
path planning for sensor control. This is followed by the introduction of a newly developed
sensor performance model to map the detection performance of a perception chain comprising
a deep learning object detector. We proceed with the explanation of perception maps in
Section 2.2.3 and briefly explain the basics of optimal control in Section 2.3. This is the basis
for trajectory optimization with nonlinear model predictive control in Section 2.4.2 and dynamic
programming and optimal control in Section 2.5.2. We validate our approach in Section 3 and
summarize the results in Sections 4 and 5.

2. Materials and Methods

In our approach, the spatio-temporal positioning of the sensor footprint on the ground
is separated from the computation of the optimized flight trajectory and performed sequen-
tially. For this, the path of the sensor footprint on the ground is determined using coverage
path planning, and then the UAV’s flight trajectory is optimized with respect to this foot-
print path. The separation is considered necessary to reduce the high complexity that a
fully combined planning and optimization of the sensor control and the flight trajectory
would entail.

A basic problem of planning theory in optimal approaches is that many general plan-
ning problems belong to the class of NP-hard problems [32], which means that there are
no known polynomial-time algorithms for solving this class of problems. An alterna-
tive is to restrict to suboptimal solutions using heuristic techniques [33]. For this reason,
in our approach, the sensor footprint positioning is planned first (Section 2.1) and the
movement of the UAV is adapted and optimized (Section 2.3) accordingly, while comply-
ing with numerous constraints related to mission, sensor platform, environmental and
perceptual aspects.

The goal is to generate reference trajectories for a UAV that are aligned with the spatio-
temporal sensor footprint positioning. The reference trajectory defines the setpoints for the
autopilot on board the UAV to perform the actual reconnaissance flight guidance, which is
not covered in this work. The spatio-temporal progression of the reference trajectory has to
take flight dynamic limitations of the UAV into account in order to model realistic flight
behavior. This includes roll angle and roll rate limitations, as well as a constant airspeed
for the fixed-wing UAV. For the reference trajectory, continuous curvature (C2-continuous
function) is required.
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2.1. Coverage Path Planning for Sensor Control

Coverage path planning (CPP) is often the first step in processing a reconnaissance task.
The purpose of CPP is to define the spatial and temporal positioning of the sensor footprint
in the area to be reconnoitered (see area reconnaissance scenario in Section 3.3) or along a
predefined route (see route reconnaissance scenario in Section 3.2). The predefined area or
route is deterministically and completely reconnoitered by utilizing CPP, with the goal
to detect objects of interest with a high detection performance. Since it is assumed that
no prior information is available about the quantity and location of objects in the area,
a systematic search approach using CPP is utilized. In this work, ground vehicles are the
objects of interest and the focus is on their detection.

With CPP, a cellular discretization of the reconnaissance area is made according to
the boustrophedon decomposition [34], combined with a back-and-forth planning of the
sensor footprint as described in [35]. The sweep width w f p (1) for the CPP is calculated
from the width of the sensor footprint on the ground. It is composed of the target ground
sample distance (GSD) gsdre f and the resolution of the imaging sensor Rsens. The shape of
the target sensor footprint on the ground is simplified as a square with edge length w f p.

w f p = gsdre f · Rsens (1)

The euclidean distance d f p (2) between the centers of two successive sensor foot-
prints is determined by the setpoint of the sensor footprint velocity v f p and the time step
interval ∆t.

d f p = v f p · ∆t (2)

Figure 2 shows an example of coverage path planning applied to a reconnaissance
area (green). The result is the sensor footprint path (blue), which defines the position of the
individual sensor footprints. Furthermore, the first sensor footprint (pale blue), as well as
an overlapping second footprint (black outline) are displayed.

Figure 2. Principle of coverage path planning for a reconnaissance area (green). The sensor footprint
path defines the positioning of the individual sensor footprints (pale blue). The size of the footprint
is defined by w f p and the Euclidean distance between footprints is determined by d f p. The black
dotted line marks the scanned area.

Table 1 lists the parameter settings that are relevant for coverage path planning in
this work. Parameters marked “predefined” were determined based on previous work or
studies, which will not be discussed here.

By applying CPP, we obtain a sequence of concatenated sensor footprints. Moreover,
the procedure determines the number, position and order of the footprints, which becomes
important for the generation of the perception maps in Section 2.2.3.
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Table 1. Parameter settings for coverage path planning.

Parameter Setting Remark

target ground sample distance gsdre f 0.07 m predefined
sensor resolution Rsens 1920 px predefined
sweep width w f p 134.4 m from Equation (1)
footprint velocity v f p 30 m/s predefined
time step interval ∆t 0.5 s predefined
distance d f p 15 m from Equation (2)

2.2. Sensor Performance Models

In this section, the concept and design of the applied sensor performance models will
be discussed. A sensor performance model [25], as depicted in Figure 3 and used in this
work, maps the influence of certain environmental states on the expected detection performance
with respect to a specific perception chain [29]. The perception chain comprises the essential
hardware and software components from data acquisition to data evaluation. It incorpo-
rates an electro-optical or infrared sensor for data acquisition, components for sensor data
processing, and algorithms for automated object detection comprising localization and clas-
sification. The environmental states depend on the UAV and/or sensor footprint position,
which will be discussed in Section 2.2.2. The topographic states refer to the content of the
sensor footprint. The atmospheric states take into account, among other things, the local
weather conditions in the UAV’s operational area, and the photographic states depend on the
position of the UAV relative to the sensor footprint on the ground.

Figure 3. The sensor performance model maps selected environmental states to the expected detection
performance of a specific perception chain (not displayed). These environmental states comprise
atmospheric, photographic, and topographic conditions resulting from the positioning of the UAV
and the sensor footprint on the ground.

Sensor performance models enable a quantitative prediction of the detection per-
formance under the influence of selected environmental conditions. The value of the
predicted detection performance pdet ranges from 0 to 1. A high value corresponds to
a good algorithm performance of the used perception chain, while a low value implies
poor performance. Thus, it is a quantitative representation of the trustworthiness in the
measurement result of a detection affected by the environment states.

In the following, two different performance models for vehicle detection are presented.
In Section 2.2.1, a newly developed model is explained that represents a perception chain
comprising a deep learning-based object detector. In contrast, Section 2.2.2 discusses a
performance model relying on a machine learning-based object classifier. This performance
model has already been introduced in our previous work [14]. Still, it is briefly explained
again in this work as it is applied in Section 3 for the validation of the partially new
developed trajectory optimization with dynamic programming (Section 2.5).

2.2.1. Deep Learning Based Object Detector

The objective of this section is to develop a sensor performance model to map the detection
performance of a perception chain utilizing YOLOv3, a deep learning-based object detector.
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The performance model builds on a model dataset for vehicle detection, as well as a trained
YOLOv3 detector from the work of [36]. Although there are more recent YOLO versions
nowadays, we develop the sensor performance model for the YOLOv3 detector. The reason
is that we build on the dataset of [36], for which object detection has already been performed
with this detector. However, the concept for this performance model is not limited to that
specific detector version, which will be briefly explained at the end of this section.

There are several reasons, which are summarized in the following, for choosing
YOLOv3 as an object detector to be utilized in a perception chain, and countless applications
can be found in the literature.

• Although now superseded by newer versions, YOLOv3 is still an efficient and high-
performing object detector [37,38].

• The free code base of the YOLOv3 detector and the availability of public and annotated
datasets (e.g., the UAVDT dataset [39]) have contributed to the widespread use of
this detector.

• YOLOv3 enables real-time image-based object detection on commercially available
hardware [40], which is especially advantageous for use on board the UAV.

In the past, Krump et al. [41] trained a YOLOv3 object detector for ground-based
vehicle detection using the images from the UAVDT dataset [39]. This dataset features a
large number of labeled aerial images and a high variation with respect to flight altitude,
viewing angle, and environmental conditions (e.g., daylight, night, fog).

In [36], Krump & Stütz describe the generation of a custom image dataset for vehicle
detection consisting of approximately 3300 images taken by a UAV with an electro-optical
sensor. In addition to the atmospheric conditions, the vertical and horizontal distance
between the UAV and the vehicles, as well as the bounding box of the vehicles were
recorded and annotated. For this dataset, which will be referred to as the K&S dataset in
the following, the aerial images were taken by varying the altitude (from 15 m to 90 m)
and horizontal distance (from 0 m to 80 m) between the UAV and the vehicles. In order to
achieve a wide variation of atmospheric conditions (see Table 2), the images were taken
at different times of day and weather conditions. Furthermore, multiple vehicles were
captured on different road surfaces and against varying backgrounds. In contrast to the
UAVDT dataset, for the K&S dataset, the altitude above ground and the horizontal distance
were measured and annotated, from which the ground sample distance and the elevation
angle can be calculated.

Table 2. Atmospheric states comprising the aerial imagery dataset of [36].

Environmental State Attributes

season summer, autumn
daytime day, night
visibility clear, foggy
road condition wet, dry
sky cover covered, sunny

The trained YOLOv3 object detector from [41] was applied to the annotated K&S
dataset by Krump & Stütz in [36]. The detector performed object localization and classifica-
tion for each image (depicted in Figure 4) and the results were recorded.

To transfer these results in a sensor performance model for this work, we define the
GSD and the elevation angle as the independent variables or inputs of the performance
model, whereas the expected detection performance is the dependent variable or output
of the model. The GSD and the elevation angle are both parts of the photographic state
and suitable for targeted affecting of the detection performance by selectively adjusting the
sensor/UAV position, as well as the sensor’s field of view [42]. We conducted the following
steps to develop the performance model, which is also depicted graphically in Figure 4:
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Figure 4. Procedure for generating the sensor performance model utilizing a YOLOv3 object de-
tector. States, the dataset, and the performance model are shown in light gray, actions are colored
in blue. The green rectangle marks the environmental states, consisting of the atmospheric and
photographic states.

In the first step, we calculated the intersection over union (IoU) from the bounding box
of the labeled ground truth and the predicted bounding box from the recorded localization
of the YOLOv3 object detector. The IoU is a measure that scores the overlap between two
bounding boxes. We set a threshold of 0.5 for the IoU and determined whether a detection
is true positive (TP), false positive (FP), or false negative (FN). The IoU is a common metric
in the field of object detection to evaluate the accuracy of localization.

Next, from the K&S dataset, we calculated the elevation angle and GSD (both part of
the photographic states) for each individual image utilizing the annotated data regarding
the altitude above ground and the horizontal distance between the vehicle and the UAV.
We then divided the dataset into 16 individual datasets by splitting the range of the GSD
and the elevation angle into four intervals each. The interval sizes were chosen such that
each region could be assigned approximately the same number of images.

Further, we divided the K&S dataset into sub-datasets with different compositions of
the complementary atmospheric states (see Table 2). It is mentioned that the sensor perfor-
mance model with the composition {autumn, day, clear, wet, covered} is used in this work.

Thus far, for each image in the K&S dataset, the IoU has been determined. Then, based
on their annotated data, the images were divided into sub-datasets by splitting the photo-
graphic states. This was carried out likewise for all complementary atmospheric states.

In the last step, from TP, FP, and FN, we computed precision and recall for each sub-
dataset and calculated the precision-recall curve. From this, we obtained die average precision
(AP) as the area under the precision-recall curve. The AP has a high value if both precision
and recall are high and a low value if either of them is low, with its value ranging between
0 and 1. For the sensor performance model with a deep learning object detector, we define
AP as the measure of the detection performance. Therefore, a high AP corresponds to a
high detection performance and vice versa.

Figure 5 shows the result of the AP for a specific configuration of the environmental
states. This also shows the interval ranges for the GSD and elevation angle, resulting in
16 sections. White fields indicate that there is no image data available for this case. It is also
evident from the plot that the AP varies depending on the GSD and the elevation angle.
We observed similar behavior with different compositions of the atmospheric conditions.
Therefore, by employing a newer YOLO detector (e.g., YOLOv4 [43]), we also expect the
AP to be dependent on the GSD and the elevation angle, which means that our approach to
modeling the sensor performance model will still hold. However, when applying a newer
YOLO version, the AP values in the individual intervals are expected to shift towards
higher values, as shown by an investigation of [44] for YOLOv3, YOLOv4 and YOLO5l.
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Figure 5. Illustration of the average precision (color-coded) for different interval ranges of the
ground sample distance and the elevation angle corresponding to a specific composition of the
environmental state.

2.2.2. Machine Learning Based Object Classifier

The development of the sensor performance model with a machine learning-based
object classifier is described in [25]. For this, synthetic model datasets comprising visual
and infrared images of vehicles in different environments were generated in a simulation
environment. These datasets also include the associated environment state vector, which
holds the ground truth of the simulated atmospheric, photographic, and topographic conditions
at the moment of image data acquisition. The environment state vector consists of the
following states, as stated in Section 2.2:

• Atmospheric states: cloudiness, fog, precipitation and lightening conditions defined
by the time of day and month.

• Topographic states: land cover (roads, meadow, water, vegetation and buildings) and
the surface roughness within the sensor footprint.

• Photographic states: ground sample distance and the sensor elevation angle (see
Figure 6 right plot).

1 

 

 

Figure 6. Representation of a perception map from the CC sensor performance model as a
3-dimensional plot (left) and the same map in a planar representation (right), with reference to
the corresponding sensor footprint (pale blue square) on the ground. The elevation angle α is deter-
mined by the horizontal distance dhor and the altitude above ground hagl . The color-coding of the
perception map corresponds to the predicted detection performance. Light colors represent high
performance values, while darker colors correlate with lower values.
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Each of these states affects the acquired sensor data and the subsequently used com-
puter vision algorithms and thus influences the detection performance. In [25], various
algorithms with machine learning-based object classifiers for vehicle detection were used to
evaluate the sensor data, in particular classification cascade (CC), deformable part model (DPM),
template matching (TM), and binary large object (BLOB). The detection performance results
from the data evaluation and is expressed as the F1-score, which includes both precision and
recall of the algorithm as a statistical quantity. In a final step, neural networks were trained
to predict the expected detection performance based on the environment state vector. For each
perception chain with its object classifier CC, TM, DPM or BLOB, an individual sensor
performance model was created. Further information on development, implementation
and validation can be found in more detail in [25,45].

Among the sensor performance models presented in this section, only the model based
on classification cascade (CC) is considered further in this work.

2.2.3. Perception Maps

In previous work [42], we have shown that specific environmental states exist which
can be manipulated in a targeted manner in order to deliberately influence and, in the best
case, enhance the detection performance. In this way, the negative effects on the detection
performance by uncontrollable conditions, such as visibility, daylight, or precipitation, can
be compensated or mitigated. The set of relevant mutable states includes the elevation angle
and the ground sample distance. Both states can be selectively adjusted within limits by
changing the sensor/UAV position relative to the sensor footprint location on the ground
and by adapting the sensor’s field of view. This is the basis for sensor-model-based trajec-
tory optimization. Here, the elevation angle and the field of view are specifically altered
in order to increase the detection performance while considering numerous constraints
related to the mission, sensor platform, and perceptual aspects.

The sensor performance model used implicitly maps the detection performance by a
neural network (Section 2.2.2) or as a section-wise defined function (Section 2.2.1). There-
fore, the mapping is not explicitly available as a multivariate function that permits a direct
evaluation of the respective environment states on the detection performance. For this
reason, we use the concept of the perception map (PM) that was developed in [14] and is
briefly explained in the following.

A PM represents the course of the detection performance (shaped as a potential field)
in a 2-dimensional plane, which coincides with the plane of motion of the UAV in a fixed
altitude above ground hagl . For each individual sensor footprint, defined by coverage
path planning in Section 2.1, an individual PM is created. Each PM is rotation symmetric
and circular with diameter dpm (see Table 3) and with its center perpendicular above the
center of the corresponding sensor footprint. The PM is obtained by selectively varying the
sensor/UAV position in the 2-dimensional plane, which leads to a change in the elevation
angle. The position of the sensor footprint permits the determination of the topographic
state within the footprint using a geographic information system (GIS). Together with the
atmospheric conditions prevailing in the PM, the detection performance can be calculated
for the specific elevation angle using the sensor performance model. The atmospheric states
are assumed to be constant within the individual PM due to their limited spatial extent.
The variation of the UAV position also changes the length of the line of sight, which would
result in a change of the GSD. Therefore, the field of view of the sensor is varied within its
technical limits so that the GSD reference value (see Table 1) is maintained.

Table 3. Parameter settings for the generation of the perception maps.

Parameter Setting Remark

UAV altitude above ground hagl 500 m predefined
perception map diameter dpm 2000 m predefined
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In the left image of Figure 6, a perception map resulting from the CC sensor perfor-
mance model is shown as a three-dimensional plot. The north-east plane coincides with the
UAV’s plane of motion and the z-direction represents the quantitative value of the predicted
detection performance as a measure of the F1-score or the average precision, depending on
the applied sensor performance model. The detection performance is color-coded for better
illustration. The perception map shown contains areas with a maximum performance of
0.98 (yellow colored area) and a minimum value of 0.83 (blue colored area). If sensor data
are acquired in an area of the perception map with a high value, this will result in high
predicted detection performance for the applied perception chain. This is indicated in the
right graph by a camera symbol in the yellow region. From this plotted sensor position and
the corresponding elevation angle α, a high detection performance results. The elevation
angle is calculated from the horizontal distance dhor and the altitude above ground hagl .
A representation of the perception map resulting from the sensor performance model with
the YOLOv3 object detector is given in Figure 7.

Figure 7. Perception map resulting from the Yolo-SPM sensor performance model.

In contrast to the deep learning-based performance model from Section 2.2.1, the ma-
chine learning-based performance model yields a continuous and differentiable profile
of the detection performance under variation of the elevation angle. This is due to the
mapping of the detection performance by a neural network. In contrast, the deep learning-
based performance model yields section-wise constant detection performance, which can
be seen in Figure 7.

The concept of perception maps has the advantage that it can be applied to implicit
and explicit functions as well as to differentiable (as with the sensor performance model
from Section 2.2.2) as well as non-differentiable and discontinuous functions (as with the
sensor performance model from Section 2.2.1).

Another decisive advantage is that the maximum value of the detection performance
can be determined for each individual sensor footprint from the associated perception
map. This maximum value is therefore the upper bound of the detection performance
of the respective perception map. The average of the maximum values of all perception
maps yields the maximum average detection performance for the assigned reconnaissance
task. This value is used in Section 3 to validate the achieved detection performance by our
trajectory optimization.
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2.3. Optimal Control for UAV Trajectory Optimization

Optimal control is an essential part of the two optimization methods nonlinear model
predictive control (Section 2.4.2) and dynamic programming and optimal control (Section 2.5.2)
used in this work for trajectory optimization. For this reason, the theoretical foundations of
optimal control for discrete-time systems are presented in this section as far as necessary.
The application to continuous-time systems is treated separately in the corresponding
section. Nevertheless, the main features of optimal control are identical for both systems.

In general, optimal control aims for determining the control inputs for a dynamical
system in such a way that a specific objective function is minimized with respect to system
state constraints. With control inputs, the course of the dynamical system state over time can
be affected. It is assumed that the evolution of the system state over time is deterministic.

The discrete-time optimal control problem (OCP) in its general form can be formulated
according to Equation (3):

minimize
x0,u0,x1,u1,...,uN−1,xN

J = E(xN) +
N−1

∑
k=0

L(xk, uk) (3a)

subject to

xk+1 − f (xk, uk) = 0, k = 0, . . . , N − 1 (3b)

xk ∈ Sk, k = 0, . . . , N (3c)

uk ∈ Uk, k = 0, . . . , N − 1 (3d)

r(x0, xN) = 0 (3e)

With xk as the discrete-time state vector of the system, the control input vector uk, the dis-
crete time step k ∈ N0, and the time horizon of length N. The discrete dynamic system (3b)
describes the transition from one state xk at time step k to the next state xk+1 in the following
time step k+ 1 caused by the control input uk. Equation (3a) gives the performance measure
of the objective or cost function comprised of the terminal cost E(xN) and the time step
dependent cost L(xk, uk), which is additive over time.

The goal of optimal control is to choose the control vector uk in such a way that the
cost function J ∈ R (3a) is minimized for the discrete time steps k, under consideration of
the constraints (3b) to (3e). The constraints take into account the discrete-time differential
Equation (3b) of the UAV’s flight dynamic system, which will be defined by Dubin’s paths
in Section 2.5.1. Furthermore, Equation (3c) accounts for system state constraints and
Equation (3d) addresses control input constraints on the OCP. Additionally, initial and/or
final system state constraints can be specified by Equation (3e).

The feedback control law µk (4) maps the system states xk to the control inputs uk.

uk = µk(xk) (4)

µk(xk) ∈ Uk(xk) ∀ xk ∈ Sk

A sequence of admissible µk composes the control strategy π (5) over all time steps.

π = {µ0, . . . , µN−1} ∈ Π (5)

Π = {π = (µ0, . . . , µN−1)|µk : Rnx → Rnu}

By applying Equation (3b), a given control strategy π (5) and a specific initial value of
the system state vector x0 ∈ Sk, the state transition (6) can be calculated:

xπ,x0
k+1 − f

(
xπ,x0

k , µk(xπ,x0
k )

)
= 0, k = 0, . . . , N − 1 (6)

The optimal control strategy

π∗ = {µ∗0 , µ∗1 , . . . , µ∗N−1} (7)
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is characterized by minimizing the total cost Jπ∗(x0) (9) of the objective function (8) for a
given initial state vector x0, satisfying the specified constraints. The total cumulative cost
of an admissible control strategy is constrained to be Jπ < ∞.

Jπ(x0) = E(xπ,x0
N ) +

N−1

∑
k=0

L
(
xπ,x0

k , µk(xπ,x0
k )

)
(8)

Jπ∗(x0) = min
π∈Π

Jπ(x0) (9)

With the optimization method dynamic programming and optimal control (DP&OC),
a global optimal reference trajectory is generated with respect to its state space. On the other
hand, with the method nonlinear model predictive control (NMPC) a locally optimal reference
trajectory is obtained for a given starting point and heading. Trajectory optimization
with DP&OC and NMPC has already been described in our previous work [13,14]. Both
approaches are described in condensed form in this paper to better understand their use
and evaluation with the newly developed sensor performance model (Section 2.2.1).

Before discussing the trajectory optimization methods in more detail, we will define
some simplifications and constraints that apply to both methods:

• The earth is assumed stationary and flat.
• The earth-fixed coordinate system is considered as an inertial system.
• The influence of wind or turbulence on the motion of the aircraft is neglected.
• The airspeed is predefined and can be considered approximately constant.
• The UAV is assumed to operate at a constant altitude, making the equation of motion

for vertical motion obsolete.

Further, it is assumed that the UAV features an autopilot and appropriate sensors
on board to recognize and compensate for deviations (e.g., due to wind or turbulence)
of the pre-planned reference flight trajectory by itself. For this purpose, with trajectory
optimization, it is necessary to provide margins with respect to the flight envelope limits of
the UAV in order to remain within the permissible limitations at all times. Moreover, it is
assumed that the UAV’s imaging sensor is attached to the UAV by a gimbal, which allows
the sensor to be aligned within technical limits independently of the UAV’s orientation.
Furthermore, the gimbal dynamics, and thus the sensor alignment, are considered to be
significantly faster than the UAV dynamics. Therefore, we do not explicitly consider gimbal
dynamics in the remainder of this paper.

2.4. Trajectory Optimization with Nonlinear Model Predictive Control

We presented our approach of generating optimized flight trajectories with nonlinear
model predictive control to enhance detection performance in [13]. It is based on path planning
(Section 2.4.1) followed by the actual trajectory optimization with nonlinear model predictive
control in Sections 2.4.2 and 2.4.3. The next sections provide an overview of the approach
to be able to examine the functionality of the sensor-model-based trajectory optimiza-
tion for time-continuous systems with our newly developed sensor performance model
(Section 2.2.1) followed by an evaluation in Section 3. In the following, the continuous-
time system is discretized in time by the time step interval ∆t for the computation of the
optimization. In contrast to DP&OC, the state space remains continuous.

The approach to trajectory optimization can briefly be summarized according to [13]:
Path planning is performed for each discretized time step to determine the future evolution
of the detection performance along the paths. It is followed by the actual UAV trajectory
optimization using NMPC. In this process, a previously determined optimal path acts as
the setpoint input of the trajectory optimization. The result is an optimal control input to
be applied for one time step. Applying the optimal control inputs for all time steps results
in the locally optimal UAV flight trajectory for a given starting position.

It is known from Section 2.2.3 that the detection performance in the UAV’s motion
plane resembles a potential field that varies, depending on the environmental state. There-
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fore, we use the combined approach with the preceding path planning for the following
reasons: Compared to classical methods of path planning with potential fields (e.g., [46]),
our approach is insensitive to local minima, discontinuities and peaks in the course of the
detection performance. Further, in classical path planning with potential fields, planning is
carried out from a starting point to a predetermined end point. In our case, there is a given
starting point, but the end point is determined by the course of the perception maps and
the combined path and trajectory planning and thus, is a priori unknown.

Besides these aspects, the use of NMPC for sensor-model-based trajectory optimization
offers the following advantages:

• The solution of the OCP is obtained by closed-loop control. This allows for the com-
pensation of uncertainties between the modeled system dynamics and the real system.

• Model predictive control is one of the few methods to handle hard system state and/or
control input constraints [47].

• The course of the setpoints does not need to reproduce the system dynamics exactly.

On the other hand, there are also disadvantages that are necessary to be mentioned:

• A suitable model must be found and modeled in order to be able to reproduce the
system dynamics with sufficient accuracy.

• From the nonlinear system dynamics follows a general non-convex optimal control
problem, for which only local optimal results can be computed [48].

2.4.1. Fan-Shaped Path Planning

Path planning is a part of the combined path and trajectory planning which is outlined
in Section 2.4.3 and was first introduced in [13]. The paths fulfill the following two purposes:
First, the position and course of the paths serve as set points for trajectory optimization
with NMPC. Second, for each path, the expected detection performance is calculated,
which would occur if the UAV would fly along the respective path. Here, the detection
performance is determined using the time step dependent perception maps presented in
Section 2.2.3.

The paths form an array originating at the time step-dependent position of the UAV.
From the UAV position, the paths spread out in a fan-shape with equal length. The path
length lpath is determined by Equation (10), with vre f as the predefined setpoint velocity of
the UAV, the time step interval ∆t from Section 2.1 and Mprev ∈ N as the number of time
steps of the preview horizon.

lpath = vre f · ∆t ·Mprev (10)

The path planning process can be briefly summarized as follows [13]: Starting from
the current UAV position at time step n ∈ {0, . . . , T} and T ∈ N, the detection performance
is determined along each path z ∈ {1, . . . , Z} with Z ∈ N for every future time step
m ∈ {1, . . . , Mprev} within the preview horizon. Each time step n + m is assigned a unique
sensor footprint by coverage path planning (see Section 2.1) and a corresponding perception
map, which maps the course of the local detection performance in the UAV’s motion plane.
The position of the UAV and its sensor is determined by the course of the path z and the
time step dependent distance dpath,m in (11) passed by the UAV in the preview horizon.

dpath,m = vre f · ∆t ·m (11)

Finally, the local detection performance pdet,n+m,z can be determined from the time
step-dependent UAV position and the associated perception map.

The individual detection performances are added up to a weighted cumulative detection
performance pprev,n+m,z according to Equation (12). Exponential weighting was chosen to
strengthen detection performance values closer in time and weaken values further away.
The effectiveness of this measure was confirmed by various test cases.
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pprev,n,z =
1

Mprev

Mprev

∑
m=1

e
− m

Mprev · pdet,n+m,z (12)

In Equation (13), the cumulative detection performance values are divided by their
maximum value to be normalized before being reused in Section 2.4.3.

p̃prev,n,z =
pprev,n,z

max
z

(pprev,n,z)
with max

z
(pprev,n,z) 6= 0 (13)

Here, p̃prev,n,z ∈ [0, 1] is the normalized cumulative detection performance of path z and
time step n. In Table 4, the relevant parameter settings for the path-planning process
are summarized.

Table 4. Parameter settings for the path planning process.

Parameter Setting Remark

preview horizon time steps Mprev 25 predefined
time step interval ∆t 0.5 s from Table 1
uav setpoint velocity vre f 35 m/s predefined
path length lpath 437.5 m from Equation (13)
number of paths Z 15 predefined

The shape of the paths approximates the flight behavior of a fixed-wing aircraft. Each
path has a fixed curvature, creating evenly distributed fan-shaped curve segments that
cover the range between a sharp left turn to a sharp right turn. The number of paths and
their curvature define the area in the UAV’s flight direction that is covered by the paths.
Whereas the path length determines the number of future time steps and thus the temporal
preview horizon.

Figure 8 illustrates the principle of path planning using a stationary sensor footprint
as an example. The fan-shaped path array is shown, which is used to determine the future
expected detection performance along each individual path at each time step. The thick
black line represents the optimized UAV flight trajectory and is the result of the combination
of path planning and nonlinear model predictive control, which is described in Section 2.4.3.
The perception map results from the atmospheric and topographic conditions and is
illustrated as a color-coded potential field. Bright areas mark regions of high detection
performance, whereas darker areas map low performances.

Figure 8. Depiction of the principle of path planning. The fan-shaped path array consists (for
representational reasons) of 9 evenly spaced curves (thin black lines). The thick black line is the
resulting UAV trajectory from trajectory optimization. The square represents the sensor footprint
on the ground. The perception map, which results from atmospheric and topographic conditions is
color-coded. Yellow areas mark regions with high detection performance. Adapted from [13].
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2.4.2. Nonlinear Model Predictive Control

In this section, the principles of nonlinear model predictive control are discussed. This is
in preparation for the combined path and trajectory optimization in the next section.

In Equation (14), the temporal change of the system state for a general continuous-time
dynamical system is described by an ordinary differential equation in explicit form.

ẋ(t) = F(x(t), u(t)), t ∈ [0, T] (14)

Here, x(t) ∈ Rnx is the continuous-time state vector of the system, u(t) ∈ Rnu is the
control input vector and t is the time. The mapping rule F : Rnx × Rnu × [0, T] → Rnx

describes the variation of the system state over time as a function of the system state itself,
the control input and the time. The differential Equation (15) give the nonlinear continuous-
time equations of motion for a fixed-wing UAV in the inertial frame of a two-dimensional
horizontal plane [13], taking into account the simplifications made in Section 2.3.

ė(t) = v(t) · sin(ψ(t)) (15a)

ṅ(t) = v(t) · cos(ψ(t)) (15b)

ψ̇(t) =
g

v(t)
· tan(φ(t)) (15c)

v̇(t) = a(t) (15d)

φ̇(t) = ω(t) (15e)

x(t) = [e(t), n(t), ψ(t), v(t), φ(t)]T (16)

The system state vector (16) of the nonlinear dynamic system (15) comprises the north
n(t) and east e(t) position, the yaw angle ψ(t), and the horizontal velocity v(t) and roll
angle φ(t) of the UAV. The gravitational acceleration, which is considered constant, is
denoted by g. The UAV flies in a two-dimensional horizontal plane at a constant altitude.
Therefore, altitude is not considered a state variable. The control input vector (17) consists
of the acceleration a(t) of the UAV tangential to the flight path and the roll rate ω(t).

u(t) = [a(t), ω(t)]T (17)

In order to implement flight envelope limitations for the UAV, state and control
restrictions are applied:

|φ(t)| ≤ φmax (18)

|ω(t)| ≤ ωmax (19)

|a(t)| ≤ amax (20)

vmin ≤ v(t) ≤ vmax (21)

With φmax, ωmax, vmin/max and amax ∈ R+. The parameter settings of the control and
state constraints as used for trajectory optimization with NMPC are listed in Table 5.

With nonlinear model predictive control, a discrete-time open-loop optimal control
problem is solved periodically for each time step tn with n ∈ {0, . . . , T} over a prediction
horizon N ∈ N. The first control input u∗0 = µ∗0(x0) resulting from the solution of the OCP
is applied to the dynamic system (14). In the subsequent time step, the OCP is solved again
based on the newly evolved system state.
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Table 5. Parameter settings for nonlinear model predictive control.

Parameter Setting Remark

prediction horizon N 10 predefined
maximum roll angle φmax 0.7 rad from Equation (18)
setpoint roll angle φre f 0 rad predefined
maximum roll rate ωmax 0.5 rad/s from Equation (19)
setpoint roll rate ωre f 0 rad/s predefined
minimum velocity vmin 33 m/s from Equation (21)
maximum velocity vmax 37 m/s from Equation (21)
setpoint velocity vre f 35 m/s predefined
maximum acceleration amax 0.1 m/s2 from Equation (20)
setpoint acceleration are f 0 m/s2 predefined
diagonal weighting matrix Q 1, 1, 0.1, 0.1, 0.1 predefined
diagonal weighting matrix R 0.5, 0.5 predefined

For this, the continuous-time equations of motion (14) of the UAV are discretized,
e.g., using Euler discretization method with the sample time interval ∆t, which yields
Equation (22b). In addition, the OCP in its general form (3) is slightly adapted for the use
with NMPC:

minimize
x0,u0,x1,u1,...,uN−1,xN

J =
N−1

∑
k=0

L(xn+k, un+k) (22a)

subject to

xn+k+1 = f (xn+k, un+k) (22b)

un+k ∈ Un+k(xn+k) (22c)

xn+k ∈ Sn+k (22d)

The transition from state xn+k to the subsequent state xn+k+1 is described in Equation (22b).
Here, n is the current time step and k ∈ {0, . . . , N} is the number of time steps ahead in the
prediction horizon.

Equation (23) represents the objective function of (22a) in the common quadratic form.
The vectors xre f

m (26) and ure f
m (27) describe time step-specific setpoints for the system state

and for the control input, respectively. The index m (28) is a placeholder for the specific
time step.

L(xn+k, un+k) = x̃T
n+k Q x̃n+k + ũT

n+k R ũn+k (23)

x̃m = xm − xre f
m (24)

ũm = um − ure f
m (25)

xre f
m = [ere f

m , nre f
m , ψ

re f
m , vre f

m , φ
re f
m ]T (26)

ure f
m = [are f

m , ω
re f
m ]T (27)

m = n + k (28)

Q and R in (23) are positive definite symmetric weighting matrices with their values
defined in Table 5. These matrices determine which components of the system state vector
and the control vector are considered for the calculation of the objective function and the
weighting of these components.

After adapting the time steps from k to n + k for Equations (4) to (8), the minimum
total cost Jπ∗(xn) (29) is obtained from OCP (22a) over the prediction horizon at time step n.

Jπ∗(xn) = min
π∈Π

Jπ(xn) (29)
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The algorithm for the calculation of the nonlinear model predictive control is per-
formed for each sampling time tn of the optimization problem as follows (adapted from [49]):

1. The current system state xn at time tn is measured.
2. The optimal control problem (22) is solved for the quadratic objective function (23)

and the setpoint values xre f
n+k and ure f

n+k. The result is the optimal control strategy
π∗(xn) with respect to the current state xn.

3. From the optimal control strategy π∗(xn), the initial control input u∗n = µ∗n(xn) is
applied to the dynamical system for the duration of one time step ∆t.

4. At the end of the time step, the updated system state xn+1 is measured at time tn+1.
5. The NMPC algorithm starts again at point 1 with the updated system state and

continues until all time steps tn have been processed.

The calculation of the solution for NMPC can be carried out, for example, by utilizing
single shooting [50] or multiple shooting methods [51,52] or by sequential quadratic pro-
gramming [53]. For studies on the stability, robustness and optimality of nonlinear model
predictive control, we refer to [54,55]. For a more detailed description of nonlinear model
predictive control in general, we refer the reader to [47,56,57].

2.4.3. Combining Path Planning and NMPC for Trajectory Optimization

After introducing the essential aspects of path planning and NMPC, they are com-
bined as described in [13] to calculate the optimal control input at each time step tn. This
optimal control input incorporates the optimal weighted ratio of high expected detection
performance and low cost from the OCP. The approach is executed for each time step tn
as follows:

For the current time step n the position and heading of the UAV are obtained. From this,
the positioning of the path array (see Section 2.4.1) is determined. For each path in the path
array, the cumulative detection performance pprev,t,z along the path is calculated. In the next
step, the cumulative detection performance values are normalized as stated in Equation (13)
yielding the path and time step dependent normalized cumulative detection performance
p̃prev,t,z ∈ [0, 1].

This process is performed in a similar way for the calculation of the cost function
using NMPC. For this, each path z of the path array serves as a setpoint yielding the
time step-specific reference values nre f

n+k, ere f
n+k and ψ

re f
n+k along the prediction horizon N

for the OCP. This leads to the path and time step dependent minimum total cost Jπ(xn, z)
according to Equation (22a). In the next step, the minimum total cost values are scaled by
their largest value to be normalized according to (30).

J̃π(xn, z) =
Jπ(xn, z)

max
z

(Jπ(xn, z))
with max

z
(Jπ(xn, z)) 6= 0 (30)

The final step in the combined path planning and trajectory optimization is to deter-
mine the optimal path from the path array that combines the best detection performance
with the lowest total cost resulting from the OCP at time step n. For this, the normalized
minimum total cost J̃π(xn, z) ∈ [0, 1] and the normalized cumulative detection performance
p̃prev,t,z are weighted by γ ∈ [0, 1] (see Table 6) and processed according to Equation (31).

cmin,n = min
z

((1− γ) · J̃π(xn, z)− γ · p̃det,n,z) (31)

Table 6. Parameter settings for the combined path planning and NMPC.

Parameter Setting Remark

weighting factor γ 0.8 predefined
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This results in a time step-dependent combined minimum cost cmin,n of the detection
performance and the OCP. The minimum cost cmin,n relates to the optimal path z that
incorporates the best combination of benefit and effort. Furthermore, this optimal path is
the set point for the NMPC optimization and yields the optimal control input u∗n for the
next time step.

From the processing of all time steps n, an optimal control strategy π∗(x0) (7) results
with respect to the starting point x0. This control strategy determines the spatio-temporal
positioning of the UAV and thus the (optimal) flight trajectory. Furthermore, by this
trajectory, the final detection performance is determined, which would arise from the
application of this trajectory.

2.5. Trajectory Optimization with Dynamic Programming

Dynamic programming and optimal control is an optimization method that can be used
for generating optimal sensor-model-based UAV flight trajectories for discrete-time and
discrete-value systems. This approach was first described in [14] where the state transitions
were modeled in a simplified way by line segments, which were restricted in length and
change of direction. To achieve a smooth trajectory the line segments were approximated by
splines. In this paper, we present a new approach in which the state transition in DP&OC is
realized using Dubins paths, which is described in the next section. This allows the explicit
limitation of the admissible curve radius to meet g-load constraints, which could not be
realized with our previous approach.

2.5.1. Dubins Path

Dubins path planning was first outlined by Dubins [58] and describes a method to
identify the shortest path connecting a start configuration with a goal configuration in a
two-dimensional plane under curvature constraint. The configuration is the position of
the start or goal point in the plane of motion and the associated direction (heading) of
the velocity vector. In this work, we describe for the first time the use of Dubins paths
for modeling the discrete state transitions in sensor-model-based trajectory optimization
with DP&OC.

Dubins paths are used in this work to model the state transitions for the discrete
optimization method of dynamic programming. This is motivated by two major advantages
of Dubins paths: the paths are curvature constrained, taking the flight envelope limit for
the allowable acceleration into account. Furthermore, the principle of the Dubins path
results in the shortest (flight) path between two configurations, which ultimately minimizes
the flight duration.

For modeling the trajectory of a fixed-wing UAV using Dubins paths, a forward
velocity v(t) > 0 must be assumed. This excludes backward motion, which distinguishes
the Dubins path from the principle of the Reeds-Shepp curve [59]. The Dubins path is a
commonly used method for simplified modeling of time-optimal UAV trajectories with
respect to curvature constraints. Numerous application examples can be found in the
literature, for instance in [60–62].

In the following, the basic principles of Dubins path planning are presented before
they are combined into a global optimal trajectory of concatenated path segments using
dynamic programming. For this, the following two criteria must be satisfied ([63] p. 880):

• The velocity v of the UAV must be set constant.
• The maximum permissible roll angle φmax has to be defined.

The Dubins path is generated from the set of motion primitives {L, S, R}, where L is a
left-hand curve of maximum curvature, R is a right-hand curve of maximum curvature,
and S is a straight line segment. Equations (32) to (34) describe the motion of a UAV that
moves in the plane according to the criteria of Dubins path planning.
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ṅ(t) = vs. · cos(ψ(t)) (32)

ė(t) = vs. · sin(ψ(t)) (33)

ψ̇(t) =
g
v
· tan(φ(t)) (34)

|φ(t)| ≤ φmax

With n(t) and e(t) as position coordinates of the UAV in the earth-fixed coordinate
system and the discrete control input u(t) = φ(t) with u(t) ∈ U = {(l, 0, l), (l, 0, r), (r, 0, l),
(r, 0, r), (l, r, l), (r, l, r)} and l = −φmax as well as r = φmax. Further, ψ̇(t) is the turn rate as
a function of the roll angle φ(t), the gravitational acceleration g, and the constant flight path
velocity v. As a result of the discrete control inputs u(t), the roll angle φ(t) and roll rate
φ̇(t) change abruptly during the transition between the motion primitives. The trajectory is
therefore not C2-continuous.

For the motion primitives L and R, Equation (35) gives the relationship between the
velocity v, the maximum roll angle φmax, and the resulting minimal curve radius rmin,
which is indirectly proportional to the maximum path curvature κmax. Table 7 provides a
summary of the corresponding parameter settings.

κmax =
1

rmin
=

g · tan(φmax)

v2 with vs. 6= 0 (35)

Table 7. Parameter settings for Dubins path planning.

Parameter Setting Remark

UAV velocity v 35 m/s predefined
maximum roll angle φmax 0.694 rad predefined
gravitational acceleration g 9.81 m/s2

minimum turn radius rmin 150 m from Equation (35)

Equation (36) describes the arc length s of the flight path from a start configuration a
to a goal configuration b. The arc length will be reused in the next section as an evaluation
criterion for trajectory optimization.

s =
∫ b

a

√
ṅ(t)2 + ė(t)2 dt (36)

Figure 9 illustrates an example of connecting two points a and b with given yaw
angles ψa and ψb by a Dubins path. The control input u(t) is composed of a specific
configuration of the section-wise constant motion primitives L, S and R at a constant flight
velocity v. For the solution of the Dubins path planning problem, we refer to the literature,
for instance [64,65].

Figure 9. Example of a Dubins path from the start configuration a to the goal configuration b defined
by a specific set of motion primitives L, S and R (left). The associated curvature profile of the Dubins
path is plotted on the (right).
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2.5.2. Dynamic Programming and Optimal Control

With dynamic programming and optimal control a discrete optimal control problem, which
was described in Section 2.3, can be solved. DP&OC enables the computation of global
optimal reference trajectories with respect to discretization. In this work, DP&OC is
used to generate UAV flight trajectories from Dubins path segments. A key advantage
of dynamic programming is that non-differentiable system dynamics can be used, such
as with the section-wise constant roll angle input in Dubins path planning. In the final
step, the trajectory from Dubins path planning is smoothed to meet the requirement from
Section 2 for continuous curvature.

Dynamic programming and optimal control are based on the principle of optimality [66]
and is a method to solve a discrete-time, discrete-value OCP. It was developed in the 1950s,
in particular by Bellman [66]. According to [67], the principle of optimality can be described
in a simplified way that every subtrajectory of an optimal trajectory is an optimal trajectory
itself. It can be expressed mathematically as follows:

Let π∗ be the optimal control strategy for an OCP, then {µ∗i , µ∗i+1, . . . , µ∗N−1} is the
optimal control strategy for the subproblem from time l to the final time step N that
minimizes the cost of the objective function Jπ∗(xl), with

Jπ∗(xl) = min
π∈Π

{
E(xπ,x0

N ) +
N−1

∑
k=l

L
(
xπ,x0

k , µk(xπ,x0
k )

)}
. (37)

Thus, optimization in dynamic programming starts at the final time step k = N and
proceeds backward to the first time step k = 0. The DP&OC process is described in the
following and depicted graphically in Figure 10.

Figure 10. Flow chart of the DP&OC process for time steps k = 0, . . ., N .

For each time step k the states in Equation (38) are assigned and to the following time
step k + 1 the states in Equation (39) are allocated.

xi
k, i = 1, . . . , nk with nk ∈ N in k ∈ {0, . . . , N} (38)

xj
k+1, j = 1, . . . , nk+1 with nk+1 ∈ N in k ∈ {0, . . . , N − 1} (39)

xi
k = [ni

k, ei
k, ψi

k]
T (40)
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Here, xk is the state vector at time step k. i and j are time step-dependent indices for
specific state characteristics. The state vector (40) of the discrete-time and discrete-value
system is composed of the position coordinates ni

k and ei
k of the UAV and its yaw angle

ψi
k. The number of different state characteristics mstate,n (41) per time step results from the

number of north mnorth,n and east meast,n positions, as well as the number of different yaw
angles mψ,n.

mstate,n = mnorth,n ·meast,n ·mψ,n (41)

The number of different north and east positions arises from the grid of the perception
map, whereas the number of yaw angles is predefined and can be found in Table 8.

Table 8. Parameter settings for dynamic programming and optimal control.

Parameter Setting Remark

UAV velocity v 35 m/s from Table 7
minimum turn radius rmin 150 m from Table 7
time step interval ∆t 0.5 s from Table 1
minimum Dubins path length smin 17.5 m from Equation (44)
maximum Dubins path length smax 942.5 m from Equation (45)
weighting factor pw 0.5 predefined
number of yaw angles mψ,n 12 predefined

The spatial discretization in the north and east directions is performed on a grid with
the equidistant spacing of smin in Equation (44). The set of states at time step k ∈ {0, . . . , N}
is defined by Sk = {xi

k, . . . , xnk
k }. Each pair of states xi

k in time step k and xj
k+1 in time step

k + 1 can be associated with a state transition cost given in Equation (42).

cij
trans,k = ctrans

(
xi

k, xj
k+1

)
(42)

The state transition cost represents the length of the Dubins path calculated in Equa-
tion (36) from the starting configuration xi

k to the goal configuration xj
k+1 and is stated in

the following Equation (43):

cij
trans,k =


∞ if sij

k < smin
1

smax−smin
· sij

k + −smax
smax−smin

if smin ≤ sij
k ≤ smax

∞ if sij
k > smax

(43)

smin = ∆t · v (44)

smax = rmin · π (45)

Here, smin in (44) is the minimum distance the UAV can travel within one time step
∆t at the predefined speed v. On the other hand, smax in (45) is defined as the maximum
permissible path length which allows a half circle to be flown. Equation (43) shows that
short path lengths result in low transition costs and large path lengths are penalized.
Dubins path lengths shorter than smin are impossible, and path lengths greater than smax are
undesirable and therefore assigned an infinite cost. Between smin and smax, the transition
costs are cij

trans,k ∈ [0, 1].
Furthermore, state-dependent costs in (46) are assigned to each system state xi

k for the
time step k.

ci
state,k = cstate

(
xi

k

)
(46)

The state-dependent cost corresponds to the local detection performance at position ni
k

and ei
k and arises from the time step-dependent perception map (see Section 2.2.3). The de-

tection performance, and therefore the state-dependent cost, is per definition ci
state,k ∈ [0, 1].
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By applying the state transition costs (42) and the state-dependent costs (46) to the general
objective function (3a), the cost (47) for the last time step k = N is obtained.

J(xi
N) = E(xN) = ci

state,N ∀ xi
N ∈ SN (47)

Equation (48) yields the minimum total costs for the time steps k = 0, . . . , N− 1 using the
principle of optimality. These total costs result from the sum of the current state-dependent
cost, the path cost to the subsequent state and the minimum total cost from this subsequent
state to the final state. pw is a factor to weigh the state-dependent costs against the state
transition costs. A high weighting factor emphasizes an increase in detection performance,
with the caveat that this may increase the length of the trajectory. A low weighting factor
favors a shorter trajectory, which reduces the reconnaissance time. However, this may also
lead to a deterioration of the resulting detection performance.

J(xi
k) = L(xk, uk) = min

j=0,...,nk+1

{
pw · ci

state,k + (1− pw) · cij
trans,k + J(xj

k+1)
}

(48)

∀ xi
k ∈ Sk , k = 0, . . . , N − 1

pw ∈ [0, 1]

In Figure 11, the system states (circles), the state-dependent costs (index st) and the
state transition costs (index tr) are exemplarily plotted for two time steps in an acyclic graph.

Figure 11. Illustration of the states and the state transitions in an acyclic graph. Circles represent
the states 0, . . . , nk in the individual time steps 0, . . . , N. The arrows represent the state transitions
between two states. As an example, the state-dependent costs ci

st,k and the state transition costs cij
tr,k

are plotted from time step k to k + 1.

From the backward calculation and the principle of the optimality follows that each
state in the time steps k = 0, . . . , N − 1 has a dedicated optimal subsequent state, which
combines the minimum total costs of all optimal subsequent states. Therefore, each state is
the starting point of an optimal subtrajectory. The iterative continuation of the calculation
of the optimal subtrajectory results in the optimal trajectory for a specific initial state. Based
on the minimum total cost, an optimal control

u∗k (xk) = µ∗k (xk) = arg min
uk∈Uk(xk)

{L(xk, uk) + Jk+1( f (xk, uk))} (49)

for each system state xk can be determined [67].
The global optimal trajectory can be found by comparing the total cost J(xi

0) of all
associated initial states xi

0 and identifying the global minimum total cost J(x∗0). The initial state
x∗0 is thus the starting point of the global optimal trajectory with respect to the discretization.

A major disadvantage of DP&OC is that the discretization of the state space increases
the computational cost quadratically to the number of system states xk. Bellman coined
the term “the curse of dimensionality” [66] for this. In order to keep the computation time
within acceptable limits, an appropriate discretization of the state space is necessary.

For a more complete description of the dynamic programming algorithms, we refer to
the work of Bellman [66] and Bertsekas [67].
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2.5.3. Dubins Path Segments Smoothing

In the final step, the trajectory, which is composed of concatenated Dubins path
segments, is smoothed. This is to achieve a continuous roll angle transition along the entire
trajectory, as required in Section 2. The smoothing procedure is performed by nonlinear
model predictive control as presented in Section 2.4.2. In this case, the Dubins path segments
serve as the setpoint input providing north nre f and east ere f position as well as the yaw
angle ψre f for the optimization. The result is a C2-continuous flyable UAV trajectory that
satisfies specific flight dynamic constraints, e.g., roll rate, roll angle and velocity limitations.

2.6. Benchmark Trajectories

Benchmark trajectories will be used as a baseline to validate the sensor-model-based
trajectory optimization. For this purpose, the detection performance resulting from the
benchmark trajectory and the optimized trajectory from Section 2.4 and 2.5, respectively,
will be determined in the next section. By comparing the resulting detection performances,
our trajectory optimization approach will be quantitatively validated.

The benchmark trajectories used in the following are based on common loitering
patterns used in aviation. It is assumed that these trajectories are either generated auto-
matically by a flight management system on board the UAV or are determined by a UAV
operator. In both cases, the planning is carried out without the knowledge or consideration
of the sensor performance models from Section 2.2.

The following three loitering patterns are used as benchmark trajectories in this work:

• Circle pattern.
• Racetrack pattern.
• Figure-8 pattern.

All three patterns have in common that they are made up of an easy-to-model geometry
and consist of a closed set of lines. Thus, each pattern can be passed through an unlimited
number of times. The shape of the benchmark trajectories in our work, which are depicted
in Figure 12, is specified by two points, direction information, and radius, where required.
These patterns were chosen because they offer different shape characteristics, for example,
a constant path curvature for the Circle pattern or sections of straight lines with the
Racetrack and Figure-8 patterns.

Figure 12. Illustration of the benchmark trajectories Circle (left), Racetrack (center) and Figure-8
(right). Additionally, the starting point pstart, the support point psup and the path direction are
sketched. The radius rloiter is predefined or results from the design.

2.7. Implementation

The implementation of the NMPC functionality was carried out in C++, whereas
the other parts of the program, such as the program control, the coverage path planning,
the calculation of the perception maps and the evaluation were implemented in Python.
The communication between the C++ process and the Python modules was realized using
ROS 2 [68]. In contrast, for the calculation of the trajectories with DP&OC all necessary
program modules were realized in Python.
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3. Results

We validate our approach to sensor-model-based trajectory optimization by planning
optimized reference trajectories for a simulated route reconnaissance scenario (Section 3.2)
and an area reconnaissance scenario (Section 3.3) for vehicle detection with a fixed-wing
UAV. With the validation, we aim to demonstrate the ability of our approach to increase
the detection performance obtained by the reference trajectory compared to the detection
performance achieved by a benchmark trajectory. Furthermore, we compare the detection
performance with the theoretical maximum average detection performance, which can be
determined by the perception maps (from Section 2.2.3) and acts as an upper bound.

With the route reconnaissance scenario, vehicle detection is to be conducted along a
road whereas the route was defined in advance. In the area reconnaissance scenario, vehi-
cles are to be reconnoitered within a predefined area. Coverage path planning determines
the spatial and temporal positioning of the sensor footprint along the route or within the
area. This task was performed automatically in advance and is not described in detail here.

In the following, the sensor performance model that represents the perception chain
including the YOLOv3 object detector will be referred to as “Yolo-SPM”. Correspondingly,
the sensor performance model with the classification cascade object classifier is referred to
as “CC-SPM”.

3.1. Validation Process and General Specifications

The validation process proceeds as follows: With the NMPC trajectory optimization,
12 simulations are performed, each for the route reconnaissance scenario and the area
reconnaissance scenario. In each simulation, a benchmark trajectory is defined and a
reference trajectory is computed using our approach with NMPC optimization. Here, it is
defined that the starting point and the starting heading for both trajectories are identical
in order to be able to compare the detection result afterward. Six of the 12 simulations
are performed with the CC-SPM and the other six with the Yolo-SPM. The six simulations
comprise two different configurations of each of the three different benchmark trajectories
(Circle, Racetrack and Figure-8).

For trajectory optimization with DP&OC, two simulations are performed for the route
reconnaissance scenario and two for the area reconnaissance scenario. In each case, one
simulation is carried out with the CC-SPM sensor performance model and the other one
utilizing Yolo-SPM. The result in each case is a global optimal reference trajectory whose
expected detection performance is compared with the theoretically maximum average
detection performance.

For the NMPC-optimized reference trajectory and the benchmark trajectory, which is
only used for the NMPC optimization as a comparison, the sensor footprint velocities are
constant (compare Table 1) and equal. Since the UAV velocities are also constant, both the
reference and the benchmark trajectories have identical trajectory lengths, resulting in the
same minimal reconnaissance duration.

In contrast, the length of the DP&OC-optimized reference trajectory is longer since it
is based on a cartesian grid with equidistant spacing. As the UAV velocity is constant and
consistent with the other trajectories, the flight time increases. Additionally, because the
UAV trajectory is also matched to the sensor movement, the sensor footprint velocity must
be dynamically slowed down, however, this will not be discussed in detail in this paper.

The following is assumed for the execution of the simulation: The route or area to
be reconnoitered is defined and known a priori. Coverage path planning has already
been carried out and is identical for the reference trajectory as well as for the benchmark
trajectory. It is assumed that the benchmark trajectories are set by a UAV operator or a flight
management system on board the UAV, without the knowledge or consideration of the
corresponding sensor performance model. However, the expected detection performance
for both trajectories is determined based on the same performance model. This is necessary
to be able to compare the detection performance results with each other.
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3.2. Route Reconnaissance Scenario

With the route reconnaissance scenario, the course of the route was designed in such a
way that the topographic conditions included both rural (meadow, vegetation, water) and
urban regions (roads, buildings). In addition, the routing should contain several changes
of direction to show the ability of the reference trajectory for adaptation. The route has
a length of about 2.2 km. The arrow marks the direction in which the reconnaissance
task is conducted. Figure 13 shows the reconnaissance route (green line) and provides
examples of individual perception maps to give the reader an impression of their different
characteristics. Six perception maps of the performance model CC-SPM are depicted (not
to scale), which would result in the respective footprint position.

The illustration of the different perception maps is intended to emphasize that the
regions with high detection performance can vary significantly from map to map. For ex-
ample, in the top left perception map, the area of high detection performance is far from
the center of the map and thus far from the center of the sensor footprint. In contrast, in the
lower left perception map, the area of high performance is concentrated near its center.
In the upper right map, the area of high performance is even more localized. To achieve a
high overall detection performance for the reconnaissance task, the trajectory optimization
has to calculate a reference trajectory that ideally passes only through these areas of high
performance, while taking into account additional constraints such as roll angle and roll
rate limitations of the UAV.

Figure 13. Illustration of the route reconnaissance scenario. The green line marks the reconnaissance
route, supplemented by several perception maps resulting from the CC-SPM performance model.
The color-coding of the different perception maps corresponds to the predicted detection performance.
Light colors represent high performance values, while darker colors correlate with lower values.

The perception map resulting from the Yolo-SPM model is consistent across the route
and is displayed in Figure 7. It can be seen that the course of the detection performance
assumes section-wise constant values and does not have a continuously differentiable
characteristic like the perception maps from the CC-SPM.

3.2.1. NMPC Trajectory Optimization

Table 9 lists the atmospheric states for the CC-SPM sensor performance model. It
is considered that these are determined by mission planning (time of day, month) and
the local weather conditions in the reconnaissance area. Due to the localized extent of
the reconnaissance area, these are assumed to be constant during the actual reconnais-
sance operation.

The topographic states are depicted in Figure 14. They result from the content of the
sensor footprints along the reconnaissance route and were determined using a geographic
information system.
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Table 9. Parameter settings of the atmospheric conditions for the CC-SPM sensor performance model.

Parameter Setting Remark

time of day 16 h predefined
month June predefined
cloud cover 25% predefined
fog density 0% predefined
precipitation 0% predefined

Figure 14. Topographic states resulting from the route reconnaissance scenario.

The variation of the topographic states along the sensor footprint path results in a
highly dynamic change of the perception maps as depicted in Figure 13. The detection
performance results from the sensor performance model under the influence of atmospheric,
topographic and photographic conditions. The detection performance profile in Figure 15
belongs to the route reconnaissance scenario (a) in Figure 16. The theoretical maximum
detection performance is indicated as a black line and acts as an upper bound.

Figure 15. Illustration of the detection performances for the NMPC and benchmark trajectory with
respect to the sensor footprint path length. The black line marks the theoretical maximum detection
performance as an upper bound.

The atmospheric states for the Yolo-SPM performance model are listed in Table 10. This
performance model does not require any additional topographic conditions to determine
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the detection performance. For this reason and the assumption that the atmospheric
conditions in the reconnaissance area are constant, it follows that the perception maps (see
Figure 7) of the individual sensor footprints are all identical.

To give the reader an idea of the trajectory optimization results, Figure 16 shows
the reference trajectory (blue line) and the benchmark trajectory (green line) for different
simulation settings. Plots (a) and (b) show the Racetrack pattern, whereas (c) and (d)
display the Figure-8 pattern. The reference trajectories in plots (a) and (c) were optimized
for the CC-SPM model and the Yolo-SPM-optimized trajectories are given in (b) and (d).

Table 10. Parameter settings of the atmospheric conditions for the Yolo-SPM sensor perfor-
mance model.

Parameter Setting Remark

daytime day predefined
season autumn predefined
visibility clear predefined
road condition wet predefined
sky cover covered predefined

Figure 16. Trajectory optimization for the route reconnaissance scenario with sensor performance
model CC-SPM in (a,c) and with Yolo-SPM in (b,d). The blue line indicates the NMPC-optimized
reference trajectory and the light green line represents the benchmark trajectory. The starting points
of both trajectories are identical and marked by a black aircraft symbol. In (a,b), the Racetrack
benchmark pattern is displayed, whereas in (c,d), the Figure-8 pattern is applied.

In Figure 17, “roll rate” and “acceleration” of the control input vector (17) are plotted,
which belong to the experiment sample of the route reconnaissance scenario (a) with
CC-SPM in Figure 16. It reveals that the flight dynamic limitations, specified in Table 5,
are maintained. The control inputs lead to changes in the system states “velocity” and
“roll angle”.

The simulation results for the route reconnaissance scenario with NMPC-optimized
reference trajectory and benchmark trajectory are summarized in Table 11. The maximum
average detection performance is determined from the maximum values of each perception
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map, which is graphically represented by the upper bound (black line) in Figure 15. Since
the coverage path planning and the sensor performance model are identical for the NMPC-
optimized trajectory and the benchmark trajectory, the maximum detection performance
values are also identical. The average detection performance is calculated from the average
of each of the six simulations with the CC-SPM or the Yolo-SPM performance model.
With the NMPC-optimized reference trajectory utilizing the CC-SPM model, an average
increase in detection performance of 4.46% is achieved. Additionally, the NMPC-optimized
reference trajectory with the Yolo-SPM, an enhancement of 4.90% is obtained. The length
of the flight trajectory is about 2.6 km and approximately identical for both NMPC and
benchmark trajectories.

Figure 17. Illustration of the control inputs “roll rate” and “acceleration” for route reconnaissance
with CC-SPM, plotted with respect to the flight duration. The control inputs yield changes in the
system states “velocity” and “roll angle”. Shown also are the predefined limitations.

Table 11. Predicted detection performance results for route reconnaissance with NMPC optimization.

CC-SPM Yolo-SPM
NMPC Benchm. NMPC Benchm.

maximum average detection performance 0.972 0.972 0.936 0.936
average detection performance (abs.) 0.815 0.772 0.924 0.878
average detection performance (rel.) 83.88% 79.42% 98.66% 93.77%

3.2.2. DP&OC Trajectory Optimization

By utilizing DPOC optimization, global optimal reference trajectories are generated,
thus eliminating the need for a direct comparison with a benchmark trajectory. It follows
that only two simulations were performed for route reconnaissance: one using the CC-SPM
performance model (Figure 18, left plot) and one using the Yolo-SPM model (Figure 18,
right plot).

The results of the simulation are summarized in Table 12. The values of the maximum
average detection performance are identical to those in Table 11 from the previous section.
It can be seen that the trajectory optimization with the Yolo-SPM achieves the theoretical
maximum possible value for the detection performance and with the CC-SPM model,
a high value is obtained as well.
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Table 12. Predicted detection performance results for route reconnaissance with DP&OC optimization.

CC-SPM Yolo-SPM

maximum average detection performance 0.972 0.936
average detection performance (abs.) 0.910 0.936
average detection performance (rel.) 93.62% 100.00%

The length of the DP&OC-optimized flight trajectory for route reconnaissance with the
CC-SPM performance model is about 5.5 km. In contrast, the trajectory resulting from the
Yolo-SPM is approximately 3.3 km long. Both trajectories are shown in Figure 18. The long
straight trajectory segments can be explained by the fact that the trajectory optimization is
based on a discrete cartesian grid.

Figure 18. Depiction of the DP&OC-optimized trajectories for the route reconnaissance scenario with
sensor performance models CC-SPM (left) and Yolo-SPM (right). The blue line marks the UAV flight
trajectory and the green line maps the sensor footprint on the ground.

3.3. Area Reconnaissance Scenario

In Figure 19, the area for vehicle detection is shown as a green colored zone. This
area contains, similar to the route reconnaissance scenario, both rural and urban regions.
The sensor footprint path was calculated in advance using coverage path planning. It is
meander-shaped and has a length of approximately 3 km. The path is drawn as a green
line within the reconnaissance area. Additionally, several perception maps resulting from
the CC-SPM performance model are depicted.

3.3.1. NMPC Trajectory Optimization

The atmospheric states for the CC-SPM sensor performance model are identical to
the route reconnaissance settings listed in Table 9. The same applies to the atmospheric
states for the Yolo-SPM, whose settings are summarized in Table 10. Figure 20 displays the
topographic states along the sensor footprint path of the reconnaissance area. The large
change in the topographic conditions along the footprint path is the cause of a high variation
among the perception maps, which are depicted in Figure 19.

The results of the trajectory optimization for the Figure-8 benchmark pattern are
shown in (a) and (b), and the Circle pattern in (c) and (d) in Figure 21. In (a) and (c),
the reference trajectories were optimized for the CC-SPM performance model, whereas in
(b) and (d), they were optimized for the Yolo-SPM model.
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Figure 19. Illustration of the area reconnaissance scenario. The green line marks the sensor footprint
path within the green reconnaissance area. Several perception maps resulting from the CC-SPM
model illustrate the detection performance along the footprint path. The red lines indicate the
positions of the perception maps along the sensor path. The color-coding of the different perception
maps corresponds to the predicted detection performance.

Figure 20. Topographic states resulting from the area reconnaissance scenario.

Table 13 summarizes the simulation results for the area reconnaissance scenario with
NMPC-optimized reference trajectory and the benchmark trajectory. The calculation of the
maximum average detection performance and the average detection performance is carried out
similarly to the description in Section 3.2.1. With the NMPC-optimized reference trajectory
and the CC-SPM performance model, an average increase in detection performance of
3.71% can be achieved for area reconnaissance. With the Yolo-SPM performance model,
an improvement of 4.86% is gained. Here, the length of the flight trajectory is about 3.5 km.

If we omit the separation into route and area reconnaissance, the average increase
in detection performance by the NMPC-optimized reference trajectory compared to the
benchmark trajectory is 4.09% with the CC-SPM performance model and 4.88% with the
Yolo-SPM model. If all 24 simulation results are considered equally without differentiat-
ing between route and area reconnaissance or sensor performance models, the NMPC-
optimized trajectory yields an increase in detection performance of 4.48% compared to the
benchmark trajectory.
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Figure 21. Trajectory optimization for the area reconnaissance scenario with sensor performance
model CC-SPM in (a,c) and with Yolo-SPM in (b,d). The blue line indicates the NMPC-optimized
reference trajectory and the light green line marks the benchmark trajectory. The starting points of
both trajectories are identical and depicted by the aircraft symbol. In (a,b), the Figure-8 pattern is
used, whereas in (c,d), the Circle benchmark pattern is applied.

Table 13. Predicted detection performance results for area reconnaissance with NMPC optimization.

CC-SPM Yolo-SPM
NMPC Benchm. NMPC Benchm.

maximum average detection performance 0.948 0.948 0.936 0.936
average detection performance (abs.) 0.846 0.810 0.933 0.887
average detection performance (rel.) 89.19% 85.48% 99.66% 94.80%

3.3.2. DP&OC Trajectory Optimization

The results of the simulation with DP&OC are summarized in Table 14. Similar to
the results in Table 12, it can be seen that the trajectory optimization with the Yolo-SPM
achieves the theoretical maximum detection performance. A high value is also achieved
using the CC-SPM performance model.

Table 14. Predicted detection performance results for area reconnaissance with DP&OC optimization.

CC-SPM Yolo-SPM

maximum average detection performance 0.948 0.936
average detection performance (abs.) 0.909 0.936
average detection performance (rel.) 95.89% 100.00%

In the case of area reconnaissance with the CC-SPM performance model, the length of
the flight trajectory is approximately 6.3 km. In comparison, the optimized trajectory for
the Yolo-SPM is about 5.3 km long. Both trajectories are depicted in Figure 22.
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Figure 22. Illustration of the DP&OC-optimized trajectories for the area reconnaissance scenario with
sensor performance models CC-SPM (left) and Yolo-SPM (right). The blue line depicts the UAV flight
trajectory and the green line marks the sensor footprint on the ground.

3.4. Computational Effort

The reference trajectories that are generated using sensor-model-based trajectory
optimization are calculated in advance of the actual reconnaissance process and act as
setpoint inputs. Therefore, the computation of these optimized trajectories is carried
out prior to the execution of the flight and are therefore not subject to any real-time
requirements. The optimization of the computation time was therefore not the focus
of this work. Nevertheless, we would like to briefly mention the computational effort:
The computations were performed on a desktop PC with a six-core processor running
at 3.3 GHz. As mentioned in Section 2.7, the program code is implemented in C++ and
Python. The computation time of the trajectories with NMPC optimization took about 30 s
whereas the computation using DP&OC was about 15 min for route reconnaissance and
about 20 min for area reconnaissance.

4. Discussion

By using our approach for sensor-model-based trajectory optimization, we were able
to show that an increase in detection performance of approximately 4.5% on average was
achieved with trajectory optimization using nonlinear model predictive control. With dy-
namic programming optimized reference trajectories, we even obtained detection perfor-
mances that are equal or close to the theoretical maximum detection performance values.

Using the reference trajectories obtained by DP&OC optimization, a level of detection
performance can be achieved that exceeds the average detection performance of both the
benchmark and the NMPC-optimized trajectory. For the reference trajectories optimized
for the Yolo-SPM model, even the theoretical maximum detection performance for route
and area reconnaissance is achieved. However, this high detection performance comes at
the cost of a significantly longer flight trajectory, which also increases the reconnaissance
duration. For route reconnaissance, the flight duration increases by a factor of 1.3 to 2.1,
depending on the sensor performance model used. For area reconnaissance, the flight dura-
tion increases by a factor of 1.5 to 1.8. Therefore, for mission planning, it must be weighed
whether the gain in detection performance justifies the increase in reconnaissance duration.

The comparison of the computation time is intended to indicate that the generation
of a global optimal reference trajectory with DP&OC optimization is associated with a
computational effort about 40 times higher than for NMPC-optimized trajectories. It is
therefore highly dependent on the application case, which optimization method shall
or can be applied. We assume that the computation time for the DP&OC optimization
could significantly be reduced by a high parallelization of the dynamic programming task.
Alternatively, the resolution of the discretization can be reduced in order to vastly decrease
the number of computations.
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5. Conclusions

In this paper, we utilized sensor-model-based trajectory optimization to enhance de-
tection performance in unmanned aerial reconnaissance. For this, we presented a newly
developed sensor performance model, which maps relevant environmental states (including
elevation angle and ground sample distance) to the expected detection performance for a
perception chain with a YOLOv3 object detector. By utilizing the sensor performance model
and optimization methods NMPC and DP&OC, we computed optimized reference trajectories
for the UAV that are coordinated with the spatio-temporal positioning of the sensor footprint
on the ground. By conducting several experiments in a simulation environment, with these
reference trajectories, we achieved an increase in detection performance compared to the
detection performance resulting from various benchmark trajectories. Furthermore, it could
be shown for the DP&OC optimization method that the state transitions based on Dubins
paths resulted in valid trajectories with consideration of curvature constraints.

In summary, we have verified that our approach of sensor-model-based trajectory
optimization is capable of enhancing the resulting detection performance. Additionally,
different requirements concerning perception (sensor, image processing algorithms), sen-
sor platform (flight dynamics, flight envelope limitations), environment (daytime and
season, illumination) and multiple mission aspects (reconnaissance area, high detection
performance vs. reconnaissance duration) are considered for the optimization.
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