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Kurzfassung
Elastomerwerkstoffe sind heute in technischen Anwendungen fest etabliert und

werden u.a. für Lager, Schläuche, Reifen und Dichtungen verwendet. Ge-
ometrisch komplexe Profile aus verschiedenen faserverstärkten und thermisch sta-
bilen Elastomeren werden mit Hilfe anderer Polymerwerkstoffe für die Herstellung von
Flugzeugtürdichtungen verwendet. Ihr Zweck ist es, die Innenkabine des Flugzeugs
gegen die Witterungsbedingungen abzudichten, wobei die Dichtungswirkung möglichst
unbeeinflusst von äußeren Störeinflüssen sein soll. Je nach Flughöhe unterscheiden sich
der Differenzdruck im Flugzeugrumpf und die Temperatur von Flug- zu Bodenbedin-
gungen. Diese Unterschiede beeinflussen die lokalen Beanspruchungen der Türdich-
tungen und verändern damit die erforderlichen speziellen Konstruktionslösungen. Das
Hauptziel dieser Arbeit ist es, eine geeignete Methode zur Quantifizierung und zum
Verständnis der Variablen hinter der Dichtungsleistung für die Designentwicklung mit
Hilfe kommerzieller CAE-Tools bereitzustellen.

Basierend auf dem Großdehnungsformalismus der Kontinuumsmechanik wird die
Charakterisierung der Materialeigenschaften als erster Schritt verwendet, um das Ver-
halten einer Elastomerdichtung auf physikalisch konsistente Weise zu betrachten. Da
Elastomere und Polymere zur Klasse der thermo-viskoelastischen Materialien gehören,
können auch Änderungen in der Kontaktspannungsverteilung aufgrund von Relax-
ation auftreten. Indem das Einsatzprofil eines Langstreckenflugzeugs vom Boden bis
zu den Flugbedingungen festgelegt wird, werden die Analyseschritte in einer Abfolge
von statischen, dynamischen und temperaturbeeinflussten Lösungen aufgebaut. Zu
Simulationszwecken werden 2D-Modelle nach Extrapolationstechniken verwendet, um
eine repräsentative Maschengröße mit der FEM anzunehmen. Ausgehend von einem
konzeptionellen aufblasbaren Dichtungsentwurf, der für Passagier- und Frachttüren
verwendet wird, werden die Simulationen in einer virtuellen Umgebung für Berech-
nungsexperimente parametrisiert. Trotz der fehlenden Validierung der Analysemetho-
den auf Komponentenebene ermöglicht die Versuchsplanung (Design of Experiments,
DOE) die Bewertung der Eingaben, die mit den Leistungsindikatoren der Dichtung
in Bezug auf Leckage, Kollaps, Kraft, Sicherheitsfaktoren und Restverschiebung ko-
rreliert sind. Diese Indikatoren hängen von den Modellergebnissen wie Spannung,
Verschiebung und Anpressdruck ab, die auf der Grundlage der Wahl des "besten"
Designs durch parametrische Optimierung geändert werden.

Die Ergebnisse zeigen, dass es mit zwei Algorithmen möglich ist, aus leicht un-
terschiedlichen Entwurfskandidaten oder -varianten die optimale Lösung zu finden:
NSGA-II und LSRGR. Eine Zielfunktion, die den Luftaustritt reduziert und gle-
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ichzeitig die Reaktionskraft beim Schließen der Tür minimiert, wird durch drei
kritische Belastungsbedingungen abgedeckt, die durch relative Verschiebungen des
Schließers bestimmt werden. Leistungsvergleiche werden schließlich mit der DOE-
Reanalyse von 500 Lastfällen berechnet, die ursprünglich durch das Optimierte Latin
Hypercube Sampling (LHS) von 11 Eingaben erzeugt wurden.
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Abstract
Elastomer materials are now firmly established in technical applications and are

used, among others, for bearings, hoses, tyres, and seals. Geometrically complex
profiles comprised of various fibre-reinforced and thermally stable elastomers are used
with the aid of other polymer materials for the manufacture of aircraft door seals.
Their purpose is to seal the interior cabin of the aircraft against the atmospheric
conditions, whereby the sealing effect should be as unaffected as possible by external
disturbing influences. Depending on the flight altitude, the differential pressure in
the fuselage of the aircraft and the temperature are distinct from flight to ground
conditions. These differences influence the local stresses of the door seals and thus
modify the required special design solutions. The main purpose of this work is to
provide a suitable methodology to quantify and understand the variables behind the
seal performance for design development with the help of the commercial CAE tools.

Based on the large strain formalism of continuum mechanics, the characterization
of the material properties is used as the initial step to consider the behaviour of an elas-
tomeric seal in a physically consistent manner. Since elastomers and polymers belong
to the class of thermo-viscoelastic materials, changes in the contact stress distribution
may also occur due to relaxation. By establishing the mission profile of a long-range
aircraft from ground to flight conditions, the analysis steps are built in a sequence of
static, dynamic, and temperature-influenced solutions. For simulation purposes, 2D
models are used after extrapolation techniques to assume a representative mesh size
using the FEM. From a conceptual inflatable seal design used for passenger and cargo
doors, the simulations are parametrised in a virtual environment for computational
experiments. Despite the lack of validation of the analysis methods on a component
level, Design of Experiments (DOE) provides the assessment of the inputs that are
correlated to the seal performance indicators related to leakage, collapse, force, safety
factors, and residual displacement. These indicators depend on model outputs such
as stress, displacement, and contact pressure which are modified based on the choice
of the ’best’ design through Parametric Optimisation techniques.

The results show that it is possible to extract the optimal solution from slightly
different design candidates or variants by combining the capabilities of two algorithms:
NSGA-II and LSRGR. An objective function that reduces air leakage, while minimis-
ing the reaction force when the door closes, is covered by three critical loading condi-
tions governed by relative displacements of the striker. Performance comparisons are
ultimately computed with the DOE re-analysis of 500 load cases that were initially
generated by the optimal Latin Hypercube Sampling (LHS) of 11 inputs.

vi



Contents

1. Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Objectives and structure . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Fundamentals 9
2.1. Continuum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2. Strain measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3. Rate of deformation . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4. Stress tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1. Mass balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2. Linear momentum balance . . . . . . . . . . . . . . . . . . . . . 17
2.2.3. Angular momentum balance . . . . . . . . . . . . . . . . . . . . 18
2.2.4. Energy balance (1st law of thermodynamics) . . . . . . . . . . . 18
2.2.5. Entropy balance (2nd law of thermodynamics) . . . . . . . . . . 19

2.3. Materials theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1. Isotropic hyperelasticity . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2. Finite linear viscoelasticity . . . . . . . . . . . . . . . . . . . . . 27

2.4. Introduction to optimisation . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.1. Gradient-based methods . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2. Design of Experiments (DOE) . . . . . . . . . . . . . . . . . . . 37
2.4.3. Genetic Algorithms (GA) . . . . . . . . . . . . . . . . . . . . . 39

3. Material investigations 40
3.1. Uniaxial coupon tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1. Quasi-static loadings . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2. Relaxation process . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Modelling assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1. About the seal hardness . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2. The influence of temperature . . . . . . . . . . . . . . . . . . . 52

vii



4. Seal FEM analysis 53
4.1. Premises of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2. Analysis steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2. Element suitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3. Seal performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1. Reaction force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2. Leakage criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3. Seal collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.4. Safety factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.5. Residual displacement . . . . . . . . . . . . . . . . . . . . . . . 73

4.4. Summary of seal performance analysis . . . . . . . . . . . . . . . . . . 74

5. Design of Experiments 75
5.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2. DOE analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1. Data correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2. Interpretation of the results . . . . . . . . . . . . . . . . . . . . 84

5.3. Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.1. Load case 1: Rx nominal max compression . . . . . . . . . . . . 86
5.3.2. Load case 2: Ux positive min compression . . . . . . . . . . . . 86
5.3.3. Load case 3: Mx negative min compression . . . . . . . . . . . . 86

6. Parametric Optimisation 87
6.1. Non-dominated Sorting Genetic Algorithm . . . . . . . . . . . . . . . . 89

6.1.1. Optimisation rounds . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.2. Design candidates . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2. Large-Scale Generalised Reduced Gradient . . . . . . . . . . . . . . . . 94
6.2.1. Design refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2. Design comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3. ’Best’ seal design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1. Design discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.2. Method considerations . . . . . . . . . . . . . . . . . . . . . . . 103

7. Summary and outlook 105

List of Figures 108

List of Tables 110

References 111

A. Appendix 1 120

viii



Abbreviations and notations
The following list presents the abbreviations and notations used for tensor algebra:

Abbreviations
CAE Computer-aided engineering
FEM Finite Element Method
CAD Computer-Aided Design
DOE Design of Experiments
OLHT Optimised Latin Hypercube Technique
OPT Parametric Optimisation
FPP Fluid Pressure Penetration
MSE Mean Squared Erros
GCI Grid Convergence Index
OWD Over Wing Door
PAX Passenger Door
CARGO Compartment Door
UMAT User-defined Material
DLOAD User-defined Distributed Load
WLF Williams-Landel-Ferry
CEL Coupled Eler Lagrangian
CFD Computational Fluid Dynamics
FAA Federal Aviation Administration
DIN Deutsche Institut für Normung
CPU Central Processing Unit
GPGPU General Purpose Graphics Processing Unit
NSGA-II Non-dominated Sorting Genetic Algorithm
LSGRG Large Scale Generalised Reduced Gradient
LHS Latin Hypercube Sampling

ix



General notation for tensors

a, b, ... Zero order tensor (scalar)
a,b, ... Tensors 1st order (vector)
A,B,... Tensors 2nd order (dyad)

Special tensor operations

Grad(•) = ∂(•)
∂X Gradient with respect to the reference configuration

Div(•) = Grad(•) : I Divergence with respect to the reference configuration
grad(•) = ∂(•)

∂x Gradient with respect to the current configuration

div(•) = grad(•) : I Divergence with respect to the current configuration
A ·B = AijBjk Simple scalar product between two 2nd order tensors
A : B = AijBij Twofold scalar product between 2nd order two tensors
(A ·B)T = BT ·AT Transpose of a tensor product
(A ·B)−1 = B−1 ·A−1 Inverse of a tensor product

Special continuum mechanical quantities

I = δij ei ⊗ ej Identity tensor 2nd order
x Position vector in the current configuration
X Position vector in the reference configuration
da Area element in the current configuration
dA Area element in the reference configuration
dv Volume element in the current configuration
dV Volume element in the reference configuration
F Deformation gradient
R Rotation tensor
U Left tensor of pure deformation
V Right tensor of pure deformation
B Left Cauchy-Green tensor
C Right Cauchy-Green tensor
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E Green-Lagrangian deformation tensor
A Euler-Almansi deformation tensor
a Finger strain tensor
e Piola strain tensor
ε Infinitesimal engineering strain
v Spatial velocity field
L Spatial velocity tensor
D Spatial deformation velocity tensor or rate of deformation
W Spin tensor
Ė Rate of the Green-Lagrangian deformation tensor
t Traction force vector in the current configuration
T Traction force vector in the reference configuration
σ Cauchy stress tensor
τ Kirchhoff stress tensor
P First Piola-Kirchoff tensor
S Second Piola-Kirchoff tensor
t̃ Convected stress tensor
J Jacobian Determinant
ψ(x, t) Phyisical quantity in the master balance
ψ Helmholtz free energy per unit mass
ρ and ρ0 Material density
ϕ(x, t) Flux term in the master balance
σ(x, t) Storage term in the master balance
ψ̂(x, t) Production term in the master balance
Pext Power of external forces
K Kinetic energy
Pint Internal stress power
E Total internal energy
Q Thermal power
S System entropy
Text Heat exchanged by the system
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e Internal energy per unit mass
r Supply of energy per unit mass
θ Thermodynamic temperature
η Entropy per unit mass
Ai and αi Internal variables
q Heat flux vector in current configuration
Q Heat flux vector in reference configuration
λ Stretch
p, pH or p∗H hydrostatic pressure
σeq and σ∞ Equilibrium stress
σov Overstress

Material and model parameters

Cij and Di Parameters of the generalised Mooney-Rivlin model
η̂ Dynamic viscosity
Ê Young’s modulus
µA and µB Shear moduli from Model A and B
τA and τB Relaxation times from Model A and B
G Shear modulus
G0 Instantaneous modulus

FEM analysis inputs

C10 , C02 and D1 Hyperelastic coefficients (n=2) [MPa]
gi Normalised shear modulus [-]
τi Relaxation times [sec.]
C1 and C2 WLF coefficients [-]
θ0 Reference temperature [C◦]
ρ0 Material density [tom/mm3]
k Material conductivity [W/(m.K)]
SHA Shore hardness A [-]
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µ Friction coefficient [-]
S1, S2 and S3 Slave seal surfaces [-]
M1 Master striker surface [-]
Ux and Uy Relative striker displacement [mm]
Rx and Ry Rigging tolerances [mm]
Px and Py Pressure displacements [mm]
Mx and My Manoeuvre displacements [mm]
Cy Closure striker displacement [mm]
T1, T2 and T3 Flight mission temperatures [C◦]
∆P Differential pressure [MPa]

FEM analysis outputs

CPRESS Contact pressure [MPa]
PPRESS Fluid pressure [MPa]
RF Reaction force [N/m]
S True stress [MPa]
LE Logarithmic strain [-]
U Final displacement [mm]
Force Linear force [daN/m]
Leakage Leakage index [-]
Collapse Collapse index [-]
Residual Residual displacement [mm]
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1. Introduction
Door seals are components found in civil aircrafts to maintain the air pressure in-

side the cabin under breathable human conditions. When commercial planes started
being used for longer distances during the late 1930s, flying at higher altitudes was a
solution to reduce the drag at a high cruising speed, while saving fuel consumption
in a rarefied atmosphere. On the other hand, cabin pressurisation through bleed-air-
conditioned systems was necessary to ensure passenger and crew comfort, which was
accomplished by trading part of the energy generated by the engines. Even though
these systems are increasingly being replaced by electrically powered compressors in
modern jets, door seals are still important to fill the gaps between the fuselage cut-
outs and the door skin to avoid air leakage, noise, and cabin depressurisation during
flight. The variety of doors of commercial planes is the initial challenge to developing
efficient seal designs. Generally, doors are used for different operations, such as passen-
ger boarding, disembarking, baggage loading and unloading, routine inspections, and
emergency evacuation. However, fuselage cut-outs are considered undesirable from
the structural point of view once they modify the loading path through the stiffened
panels. Even though the doors’ surroundings are reinforced to withstand the cabin
differential pressure and manoeuvres from flight loading events, relative displacements
between the seal and the contact interface should be considered to effectively size the
seal. Door rigging tolerances may have an impact on the seal’s compression given the
size of a seal cross-section. Nevertheless, material plays a central role in designing and
requires modern modelling techniques to address the challenges involved.

Ideally, sealing components are designed from rubber-like materials with fibre re-
inforcements to harness the cabin pressure in their favour and prevent air leakage. Due
to the stable mechanical characteristics under large strain and operating temperatures,
a silicone matrix is preferably chosen by the seal manufacturers. Technically called
elastomers, these polymers are well suited for seal solutions due to the nearly incom-
pressible nature of rubber that provides sufficient contact pressure under compressive
loads. Since silicone belongs to the class of thermoviscoelastic materials, contact
pressure distributions may change through creep and relaxation processes, which are
influenced by temperature. Complex profiles are usually created with injection mould-
ing techniques according to the production experience of manufacturers. Despite not
being significant structural items, seal system issues may impair aircraft operations,
thereby adding costs and incurring project delays. Thus, computational aided tools
are envisaged to support seal development by integrating the Finite Element Method
(FEM) with the Design of Experiments (DOE) and Parametric Optimisation.
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1.1. Background
In the development of a commercial aircraft, the door seals must be compliant

with the requirements of other adjacent structures concerning airworthiness. The
specification of an appropriate door mechanism for the right cut-out size is the foremost
priority for the fuselage. Subsequently, the door and its surrounding components must
be sized under limit loads from the structural analysis. Once there is a consensus on
the design of the door structures, the seal development concept can be started. From
this point, it is possible to gauge the minimum number of geometric features that
the door seal must exhibit against the relative displacements between the fuselage
and the door skin. It is up to the seal developers to develop a design that is in
accordance with the door kinematics which guarantees minimum air leakage while
remaining stable during flight. Overall, seals are devices used to prevent or limit the
leakage of fluids, often under high differential pressure. An ideal door seal system
should be as static as possible, which is often impractical since the aircraft has an
elastic body. Due to the structural loads that the aircraft is subjected to as a result of
manoeuvres combined with the cabin pressure, the fuselage deform in the longitudinal
and circumferential directions. Figure 1.1 illustrates the running loads distributed
along the aircraft, causing relative motions on the door surroundings.
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Figure 1.1. – Running loads of an aircraft.

The cabin differential pressure (∆P ) is assumed to be homogeneously distributed
along the pressurised sections of the fuselage. However, most of the structural loads
arising from flight and ground events are not equally distributed over the wing and
fuselage stations, e.g. in the A, B, and C sections. In addition, the size of each door,
such as the Over Wing Door (OWD), Passenger Door (PAX), and Cargo Compartment
(CARGO), requires different sealing interface solutions. Any clearances between mat-
ing surfaces are susceptible to letting the fluid molecules follow the pressure gradient
and air can pass through the open contact boundaries originating from the leakage.
This issue may be triggered during flight manoeuvres if the seal stability is not main-
tained. In critical scenarios, higher air flow can gradually evolve from aerodynamic
noise to cabin depressurisation. Since seal systems do not have redundancies, meaning
that there is no secondary seal to cover possible failures, robust solutions are necessary.
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According to the required design space and the limit loadings of door closure, a lip
seal or a hollow design is typically considered in consonance with the door kinematics
and the rigid striker interface, as illustrated by the cross-sections in Figure 1.2. Each
design philosophy has its advantages and disadvantages, depending on the specific
door applications. Although lip designs are simpler to manufacture they tend to
deliver higher compressive reaction forces to the same seal length compared to hollow
solutions. Lip seals are commonly used for smaller cut-outs, e.g. OWD, that are
mostly not in operation. Hollow seal designs, on the other hand, are used when door
cut-outs are wider, e.g. PAX and CARGO, and are frequently manipulated by the
crew. By adding vent-holes to the seal wall, the air pumped inside the cabin is also
used to inflate the cavity of the hollow. Furthermore, inflatable seals cover larger
design spaces to compensate for the relative displacements from the striker, while
reacting with lower forces during operations.

Figure 1.2. – Seal and striker design philosophies: lip (left) and hollow (right).

Although the cabin pressure load may be equally distributed along the fuselage
stations, it is not symmetrical for the sealing cross-section. When the contact forces
are not high enough to keep the seal stable, the profile is prone to slide under the
striker, thereby culminating in structural instabilities. Both the rigid contact struc-
tures and the elastomeric seal should be compatible to avoid collapse. The seal should
provide sufficient structural stiffness to prevent air leakage issues while respecting the
operational loads. If the design is oversized, it may increase the resultant forces re-
quired by the closure and latching mechanism, thereby adding more weight to the
aircraft door system. Doors that are manually operated by the crew must respect
certain limitations due to daily operations and the minimum air leakage should be
qualified in different environmental and rigging conditions for pressure acceptance.
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Considering the short time frame to certify a civil aircraft, trial and error is often
a pragmatic choice for door seal development. However, it can open an expensive
path to unexpected failures of these systems. Generally, manufacturers support the
seal conception through their prototyping technologies, e.g. injection moulding or ex-
trusion, and mostly rely on the expertise they gained from previous concepts. Due to
the lack of methods and validations, CAE tools are rarely explored in the industrial
context of seals. Instead, ground qualification testing is rather considered, which is
mandatory for verifying the pressurised compartment loads due to the cabin airtight-
ness of large planes [1]. With the door in a latched position, these tests demonstrate
whether the seal can keep the cabin pressure under allowable air leakage rate levels
by adding safety factors from the aircraft release valve [2]. Since the test takes place
under ground-controlled conditions for a couple of hours, the material response is not
completely covered by the time interval of long flights. The atmospheric temperature
and fuselage displacements of the flight spectra are not captured by full-scale tests,
which are expensive to run even for the component level. Additionally, fleet deviations
from rigging tolerances are not simply caught by controlled test conditions. Each seal
can vary within the manufacturer’s specifications from the hardness to the mechanical
properties that can directly affect the seal’s performance. From causing cabin noise to
more serious hazards such as hypoxia and barotrauma, defective door seals have been
highlighted by safety agencies as being the root cause of cabin depressurisation in air-
line operations [3, 4]. If the internal stress state of a seal changes the contact pressure
between the seal and the fuselage interface is also affected, which can negatively influ-
ence the sealing effect. In an ideal door seal system, the contact distributions between
the seal and door striker should be as independent as possible from all disturbing
factors and only then can the seal operate optimally in every possible scenario.

1.2. Objectives and structure
The starting point for this research is to analyse, quantify, and understand the

main influences that could affect the seal’s performance. For this purpose, a characteri-
sation of seal specimens is performed through uniaxial quasi-static and relaxation tests
on a Zwick-Roell machine. The simplifying hypothesis is that elastomeric seals are
isotropic and significantly influenced by their hyperelastic and viscoelastic response,
in view of their dimensions, loadings, and temperature conditions. Although the seal
samples extracted from actual parts have internal fabric layers and anti-friction coat-
ings on the outside, these are assumed to be incorporated by the overall material
response. Only the straight sections of the door seals are of interest, disregarding any
geometric effects of radii cut-outs, which allows simplifications of the models in the
plane-strain state. Hence, simple door seal interfaces are explored using commercial
CAE tools. Under these assumptions, FEM simulations are quickly carried out for
design conditions, thereby allowing for the exploration of sealing solutions.
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The foundation provided by continuum mechanics is indispensable for modelling
the non-linear behaviour of elastomers. Material modelling is substantiated by pa-
rameter identification from coupon tests within the strain range of interest for aircraft
doors. The fading memory characteristic of the filled elastomers is considered to be
governed by that of the silicone matrix, which is supported by the finite linear vis-
coelasticity theory. From the rheological model approach, the choice of a sufficient
number of parallel Maxwell elements delivers the time-dependent behaviour observed
in relaxation tests. By deriving the relationship between dual variables of strain and
stress, the constitutive equations of a nearly incompressible material are obtained.
Therefore, a fit between model predictions and the test results is conducted by com-
paring different material models. Both hyperelastic and viscoelastic parts are solved
separately with uniaxial analytical solutions in Wolfram Mathematica by the optimi-
sation algorithm NMinimise. Further influences arising from silicone hardness and
temperature are examined based on the literature in Chapters 2 and 3.

Although the FEM is at the core of this work, user-defined material models
(UMAT) are not addressed in this research. Instead, existing free energy models which
are already implemented in ABAQUS [5] were envisaged to ensure simple analysis au-
tomatisation. Notably, the possibility of choosing between Mooney-Rivlin polynomial
order models according to the need for representing hyperelastic behaviour stands out.
Through a sufficient number of terms in a Prony series, the viscoelastic model is feasi-
ble for large-strain solutions. Additionally, the temperature-dependent shift factor of
the Willams-Landel-Ferry (WLF) equation is also implemented, thereby relating the
relaxation time to two material constants and the glass transition temperature. Never-
theless, FEM models must be in accordance with material theory and be satisfactorily
discretised according to a mesh convergence criterion. For this, model output variables
that describe the seal performance are extrapolated for the grid refinement criterion.
The analysis of the seal performance obtained by FEM results is post-processed for
certain outputs, i.e., nodal forces, element stresses, and displacements. Reaction loads
per seal length, air leakage criteria based on contact pressures, and structural stability
are explained in Chapter 4.

Chapter 5 presents a suitable methodology to investigate the controllable influ-
encing variables on the seal performance outputs through DOE. In this case, the
management tool ISIGHT is employed to manage a pre-defined number of FEM sim-
ulations for multiple variables sampled by the Optimised Latin Hypercube technique.
In total, 11 variables including striker relative displacements and atmospheric tem-
perature during different stages of flight, seal hardness, and the coefficient of friction
are considered. By establishing a range of expected limits for the seal boundary con-
ditions, the FEM models are parametrised to cover possible scenarios that can arise
during aircraft missions. Spearman correlation tables are employed to highlight the
input impacts with regard to the seal performance indicators and select critical load-
ing conditions. Statistically grounded, the correlations that have the most significant
effects on performance indicators are highlighted for design comparisons.
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Among the functionalities of ISIGHT, an optimisation task is proposed to search
for the best geometric features of the door seal design performed under the critical
loading conditions found by DOE runs. With help of non-sorting genetic algorithms
(GA), parametric design optimisation is conducted in an attempt to identify the fac-
tors that influence a seal’s efficiency against leakage. This approach is elaborated
since many design variables can be modified independently, which motivates a multi-
objective optimisation subject to design constraints. After establishing the optimal
solution, the concept and improved designs are compared based on the DOE load
case selection. Figure 1.3 presents a diagram with all the tools, research points, and
interactions culminating in a methodology to support the seal design development.

DOE (OLHT)

Parametric

ABAQUSMathematica

EXPERIMENT

Zwick-Roell

THEORY

- Hyperelasticity

- Viscoelasticity

- Quasi-static

- Relaxation

FEM

Loads

Design

ISIGHT

Optimisation

Figure 1.3. – Diagram with tools, analysis topics and working points.

Although this work lacks validation of the analysis method with the final test ge-
ometry, this contribution to the development of aircraft door seals may shed some light
on the development of different elastomeric components that are subject to uncertain
conditions. Numerical methods offer excellent accuracy to solve non-linear problems
due to the increasing capacity and number of processors for calculations. It is under-
stood, however, that the boundary problem of complex FEM models may make it hard
to reach convergence within a reasonable analysis time. The simplification of the seal
model as well as native solutions from the commercial software ABAQUS to represent
boundary conditions, material behaviour, and analysis steps are explored within the
capabilities offered by the tool. As previously mentioned regarding the development
stages of an aircraft, it makes sense that interactive commercial solutions are in the
foreground of product development. Despite not being relevant for door structures,
elastomeric seals are complexly designed and should be mitigated in terms of failures
by understanding and quantifying their mechanical response.

Therefore, the continuum mechanics formalism is the starting point to model the
material behaviour in Chapter 2, providing hyperelasticity and linear viscoelasticity
constitutive laws to explain the stress-strain relations of an elastomer. Reinforced sili-
cone samples coming from seal applications of aircraft doors are used to fit the material
models through mechanical experiments in quasi-static and relaxation tests. Model
simplifications, such as material isotropy, dimensionality reduction, and temperature
dependency, are justified to reduce the complexity of the non-linear simulations. The
method of analysis for door seals is proposed for simple modelling representation to
achieve quick computational experiments and further improve a concept design.
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1.3. State of the art
Elastomers are recognised for their ability to store high levels of elastic deforma-

tion, making them an excellent candidate for sealing solutions. The flexible character-
istic of natural rubber was first documented during the colonisation of South America
by Europeans, who examined the possible uses of latex from Haveea Brasiliensis trees
[6]. Subsequently, in the industrial era, different kinds of polymers were synthesised to
improve the mechanical behaviour of rubber according to their chemical compounds.
With the existence of new materials, standards have been set for the specific applica-
tion of rubber qualification [7]. Silicone rubbers denoted by the letter Q, e.g. methyl
silicone (MQ), vinyl methyl silicone (VMQ), phenyl methyl silicone (PMQ), and flu-
orosilicone (FVMQ), are slightly different at the molecular level, showing variations
in their tensile strength and operating temperatures. In late 1938, with the Boeing
307 Stratoliner [8], the onset of pressurized commercial flights spurred the use of rub-
ber’s sealing capabilities. Given the rarefied atmosphere conditions at higher flight
altitudes, silicone alternatives should maintain good resistance against contaminants,
such as high concentrations of ozone and ice, and present a relatively low glass transi-
tion temperature [9, 10]. Withstanding flight cycles under differential pressure proved
to be a major challenge for aluminium fuselage panels at that time, as recorded in
the DH.106 Comet reports in 1953 which listed a total of 26 hull loss accidents, 13
of which were fatal [11]. In 1986, elastomers were implicated in a tragic milestone
in aerospace history with the failure of an O-ring during the Challenger launch [12].
Hence, understanding the material response must be the foundation of a seal design.

Fundamentally, modelling the mechanical behaviour of an elastomeric seal requires
a representative constitutive law based on the finite strain theory and a consistent
thermodynamic framework [13, 14]. On a macroscopic scale, rubber is intrinsically
influenced by its polymeric interactions on a molecular level. Many material models
were developed to match the incompressible elastic behaviour of elastomers, whether
by means of a phenomenological approach supported by continuum mechanics [15,
16] or by micromechanical formulation based on statistics [15, 16]. An overview from
1976 condenses various hyperelastic models of elastomers with respect to mechani-
cal experiments under large deformations [17]. Thereafter, free-energy-derived models
emerged, being modelled according to the description of deformations in space. No-
tably, Mooney-Rivlin [18] derived a general representation of polynomial functions
of the first two invariants of the Cauchy-Green tensor which provided a consistent
way to define material models that can model the non-linear relationships between
stress and strain. Since then, the theory of large elastic rubber deformations has
been implemented based on numerical methods in commercial FEM tools. Besides
hyperelasticity, another aspect of filled rubbers that plays an important role is the
time-dependency or dissipative behaviour, substantiated by linear viscoelasticity [19,
20, 21]. In this context, the stress-strain relationship has a dissipative component
represented by a rheological approach based on generalised Maxwell models [22, 23].
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A generalisation of the viscoelastic behaviour is fairly well-established and involves
combining Maxwell’s elements in parallel, which are represented by kernel energy func-
tions or series of Prony [24]. Relaxation and creep responses are then represented by
transient solutions for the time dependency. Furthermore, rubber is influenced by the
ambient temperatures [25] together with visco-elastic properties based on the time-
temperature superposition formulated by Williams, Landel and Ferry [26, 27]. Work
references with FEM analysis were conducted to predict the seal and gasket joint de-
formations in contact with rigid metallic interfaces under temperature influence [28].
Assuming a hyper-viscoelastic constitutive law for a silicone seal, the model simula-
tions are achievable using non-linear commercial FEM software [5, 29]. Incompressible
material models are found that are either implemented as derived from strain tensor
invariants, such as Neo-Hook and Mooney-Rivlin free-energy models [30, 31, 32], or
from eigenvalues of the stretch tensor e.g. Ogden [33]. About modelling and opti-
misation, door seals are mostly explored by automotive applications to deal with the
closure reaction forces [34]. Experimental investigations of elastic leakage [35] and fluid
percolation [36] show, at different scales, how the seal performance depends on the
contact pressure. More advanced simulation techniques such as Computational Fluid
Dynamics (CFD) [37] and Coupled Euler Lagrangian (CEL) [38] were used to simulate
fluid-structural interactions between liquid pressure and seal behaviour in post-leak
conditions. Remarkably, for aircraft door seal applications, the FEM analysis per-
formed by Zhao [39] features a simplistic approach to prescribe the cabin pressure
load with a Fluid Pressure Penetration (FPP) interaction. On the shape optimisa-
tion level, parametric studies with swellable elastomeric seals highlight the potential
of minimising leakage [40] by finding the interface which maximises contact pressures.
Therefore, pre-defined contact interactions are favoured to model the seal pressure.

Different options are found in the literature to optimise structures using FEM
analysis. A collection of statistical and mathematical techniques based on the Re-
sponse Surface Methodology [41] and Topology Optimisation [42] are applicable for
linear and continuous problems. However, under large discontinuities or strong non-
linearities, these techniques are not able to minimise multi-objective functions by
establishing feasible solutions. Alternatively, several computer simulations are rec-
ommended to evaluate the relation between influencing variables of the model using
DOE [43] depending on the sampling technique. Correlations between model inputs
and outputs are statistically substantiated by Spearman’s rank coefficients [44] ac-
cording to the number of experiments. Considering a virtual test stand, GA [45] are
effective to solve problems with a large number of global-local maxima and minima
when further combined with gradient-based techniques [46]. While there is no consen-
sus regarding the best solution for the structural optimisation of non-linear problems,
parametric techniques are very useful when the critical scenarios and design space are
delimited [47, 48]. Current CAE tools such as ABAQUS and ISIGHT have the po-
tential to combine nonlinear material modelling with optimisation algorithms, while
opening the path to explore innovative design solutions for aircraft door seals.
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2. Fundamentals
In this chapter, the fundamentals that cover material modelling and optimisation

techniques are reviewed. Based on references from Sidoroff [13], Haupt [49, 50] and
Holzapfel [14], continuum mechanics is formally introduced to describe the behaviour
of elastomers under mechanical and thermal loadings. From a parametric approach,
optimisation techniques applicable to engineering problems [51, 52] are presented to
investigate door seals under the scope of DOE [53].

2.1. Continuum mechanics
When subjected to a loading process, the material body performs a movement in

space. The concept of configurations is used to illustrate how these transformations
happen in different time frames, whereby the reference configuration (C0) is associated
with the initial position of the body, without stress and strain history at time t0. The
motion of the material body can be expressed as a transformation into the current
configurations (Ct) at a given time t. A material points P at an elementary volume is
described in terms of the system coordinates (O) by the position vectors X and x, in
C0 and Ct, respectively, as shown in Figure 2.1.

χ(X, t)

X x

P P

e1

e3

e2

u

C0 Ct

O

N
dS

dV

n

ds

dv

∆X ∆x

Figure 2.1. – Representation of the reference and current configurations.
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2.1.1. Kinematics
By introducing the bijective transformation χ(X, t), the position x of the material

point P is written as a motion function of reference position X and time t:

x = χ(X, t) (2.1)
In a Lagrangian description, the coordinates of the vector X and the time t are

selected as independent variables. In this case, the transformation χ(X, t) describes
the movement in relation to the reference configuration. Otherwise, χ−1(x, t) describes
the vector X in a Eulerian description, with respect to the current configuration. To
define the local transformation in the vicinity of P , considering the initial material
line ∆X on the reference and its image ∆x on the current configuration, the tangent
linear application is conventionally introduced:

∆x = ∂χ(X, t)
∂X

·∆X (2.2)

For an infinitesimal distance, the deformation gradient F is introduced:

dx = ∂χ(X, t)
∂X

· dX = F · dX (2.3)

while the displacement vector u is written to connect the position vectors of P :

u(X, t) = x(X, t)−X (2.4)
Through the derivation of Equation 2.4 with respect to the position vector X,

after rearranging the terms, F can be represented by the displacement vector u, in
the form:

F = ∂χ(X, t)
∂X

= ∂x
∂X

= ∂X
∂X

+ ∂u
∂X

= I + Gradu (2.5)

where I is a second-order identity tensor. Intrinsically, the deformation gradient
allows the configurations to be changed from C0 to Ct, which establishes transforma-
tions for the volume and surface elements, by the Jacobian definition J = det(F):

dv = JdV and nda = JF−T ·NdA (2.6)
By definition, F describes the local motion around a material point P . For large

deformations, it includes both rotations and pure distortions and hence it is not a
good measure of strain. Thus, other deformation measures are introduced to only
take the changes in shape into account, without keeping the rigid body rotations and
displacements. From the deformation gradient, it is possible to extract the dilations
and strain measures through a polar decomposition which helps to separate the rigid
body motions from the total motion of the material body. Thus, different ways of
measuring deformation are presented according to the finite strain theory.
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2.1.2. Strain measures
Figure 2.2 shows how F is decomposed in two ways in a polar decomposition.

The first transformation requires a deformation followed by a rotation, while the other
starts with the rotation instead, and is followed by a different deformation.

C0 Ct

R

RU

V

F

Figure 2.2. – Polar decomposition of the deformation gradient.

Both transformations in Figure 2.2 are equivalent, which yields the following
relation:

F = V ·R = R ·U (2.7)
where V and U are respectively the right (in the Lagrangian description) and

the left (in the Eulerian description) stretch tensors and R is an orthogonal rotation
tensor. Each deformation tensor can be transformed into the other by forward and
backward rotations as:

V = R ·U ·RT and U = RT ·V ·R (2.8)
By considering the vectors dX and dY in the reference configuration C0 and their

respective representations dx and dy in the actual configuration Ct, the following
measure is introduced:

dx · dy = (F · dX) · (F · dY) = dX · FT · F · dY (2.9)
where the right Cauchy-Green deformation tensor is written as:

C = FT · F = U2 (2.10)
In this way, the deformations are represented by the square of line elements in

C0. Alternatively, the deformation measure can also be expressed in Ct, as:

dX · dY = (F−1 · dx) · (F−1 · dy) = dx · F−T · F−1 · dy (2.11)
where the left Cauchy-Green deformation tensor is written as:

B = F · FT = V2 (2.12)
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Usually, the strain measures relative to the undeformed material body are em-
ployed, by means of the difference of the scalar products. Thus, for the reference
configuration, the Green-Lagrange finite strain tensor is introduced:

E = 1
2(C− I) (2.13)

For the actual configuration, the Euler-Almansi tensor is expressed as:

A = 1
2(I−B−1) (2.14)

Both strain tensors can be transformed into one another through the so called
push forward and pull back operations, respectively:

A = F−T · E · F−1 and E = FT ·A · F (2.15)
Additionally, by applying the last term of equation 2.5 for F, it is possible to verify

the difference between finite and infinitesimal strain approaches. To demonstrate it,
the Green strain tensor E is expanded as:

E = 1
2(Gradu + GradTu + GradTu ·Gradu) (2.16)

In the case of small strains, the non-linear term can be disregarded, which yields
the classical definition of the engineering strain ε:

ε = 1
2(Gradu + GradTu) (2.17)

• Principal scalar invariants

Here the definitions of te principal invariants of a second-order tensor Z from the
Cayley-Hamilton theorem are recalled:

Z3 − I1Z2 + I2Z− I3I = 0 (2.18)
where the factors of the characteristic polynomial equation are written as:

I1(Z) = tr(Z) (2.19)

I2(Z) = 1
2(tr(Z)2 − tr(Z2)) (2.20)

I3(Z) = det(Z) (2.21)

It is noticed that the third invariant is related to the Jacobian (J) employed in
Equation 2.6 with regard to the deformation gradient F:

I3(F) := J (2.22)
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2.1.3. Rate of deformation
Apart from the spatial relationship of the strain tensor, the rate at which the de-

formation gradient changes is also essential to model history dependent. The material
velocity field v is expressed as the time derivative of the motion vector x:

v = ẋ = ∂x
∂t

(2.23)

From Equation 2.4 it is possible to verify that v = u̇ and hence the time derivative
of the material deformation gradient F is given as:

Ḟ = Gradv(X, t) = ∂v
∂X

(2.24)

which is related to the spatial velocity gradient L with respect to the current
configuration Ct by the following expression:

L = gradv(x, t) = ∂v
∂x

= Ḟ · F−1 (2.25)

The spatial velocity gradient L describes the rate of change of a line element:

ẋ = Ḟ · dX = Ḟ · Ḟ−1 · dx = L · dx (2.26)
which can be decomposed into symmetrical and anti-symmetrical parts, deliver-

ing, respectively, the Eulerian rate of deformation D and spin W tensors, by:

L = D + W where
D = 1

2(L + LT ) = DT

W = 1
2(L− LT ) = −WT

. (2.27)

If the scalar product between two vectors dx and dy on Ct is derived in relation
to time, the following expression is written in the Eulerian form:

d
dt(dx · dy) = 2dx ·D · dy (2.28)

In the same way, the material strain rate Ė is described in the Lagrangian form:

d
dt(dx · dy) = 2dX · Ė · dY (2.29)

With 2.27, both rate tensors can be transformed into one another by:

Ė = FT ·D · F (2.30)
Or by the time derivative of Equation 2.13:

Ė = 1
2 Ċ (2.31)
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In particular, D can be written as the Oldroyd rate of the Euler-Almansi tensor
A, which is represented by its objective Lie derivative:

D =
4
A= Ȧ + LT ·A + A · L (2.32)

It is also related to the Green-Lagrange strain tensor E by employing the operation
of push forward presented on Equation 2.15:

4
A= F−T · Ė · F−1 (2.33)

where the time derivatives do not depend on the reference configuration C0. Sim-
ilarly, by deriving Equation 2.12, it is also possible to obtain:

Ḃ = L ·B + B · LT (2.34)
However, if a pre-deformation precedes a given state, the rigid body movements

are not cancelled. Since Ȧ and Ḃ are not adequate strain rate measures, it is necessary
to define a deformation gradient in an updated Lagrangian description, using:

F(τ) = Ft(τ) · F(t) (2.35)
where Ft(τ) is the relative deformation gradient subjected by the material between

instants t and τ , which are denoted as the past and present configurations. This
definition is important to establish the history-dependent constitutive relations of
mechanical behaviour, which are explored at the end of this chapter. For the specific
demonstration, the relative Green strain can be derived through:

Ct(τ) = Ft(τ)T · Ft(τ) (2.36)
which is more appropriate to represent the strain histories as:

Et(τ) = 1
2(Ct(τ)− 1) = F(t)−T [E(τ)− E(t)]F(t)−1 (2.37)

The polar decomposition is preserved in the case of relative configurations:

Ft(τ) = Rt(τ) ·Ut(τ) = Vt(τ) ·Rt(τ) (2.38)
It can also be demonstrated that the derived strain rate tensors are respected:

L(t) = ∂

∂τ
Ft(τ)

∣∣∣∣∣
τ=t
, W(t) = ∂

∂τ
Rt(τ)

∣∣∣∣∣
τ=t
, D(t) = ∂

∂τ
Ut(τ)

∣∣∣∣∣
τ=t

(2.39)
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2.1.4. Stress tensors
Three tensor descriptions are presented to define the stress state in a solid de-

pending on the choice of internal forces and surface elements. Figure 2.3 shows how
the internal forces and element surfaces are displayed on C0 and Ct.

e1

e3

e2

C0 Ct

O

N
dA

n

da
X

x

dT
dt

Figure 2.3. – Internal forces acting on an infinitesimal surface element vectors.

The stress on the current configuration can be calculated by the force vector dt
acting on an infinitesimal area da, with its normals. If the surfaces are taken with
respect to Ct, the forces are derived from the true stress:

dt = σ · nda (2.40)
where σ is the Cauchy stress, being a symmetric second order tensor. On the other

hand, the undeformed surface dA is usually employed to measure classical engineering
stresses in a mixed description:

dt = P · JF−T ·NdA (2.41)
where P is the first Piola-Kirchoff tensor, being asymmetric due to the trans-

formation of surface elements according to 2.6. Physically, it represents the internal
forces currently acting on an undeformed surface element. While σ is purely Eulerian,
P is a mixed description. To define a complete Lagrangian description of the stress,
the internal forces are transported to the reference configuration, by:

dT = F−1 · dt (2.42)
which helps to define the second Piola-Kirchhoff tensor S which has no physical

meaning, but has the particularity of being symmetrical:

dT = S ·NdA (2.43)
Therefore, the relationship between the three tensor descriptions is presented:

S = JF−1 · σ · F−T = F−1 ·P (2.44)
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2.2. Balance equations
To establish the relationship between stress and strain measures, the balance equa-

tions are employed to conjugate physical quantities in continuum mechanics. Since all
balance equations have the same form, a master balance is axiomatically introduced
according to [14]. For a body (Ω), it generalises the temporal change of a physical
quantity (ψ) multiplied by the material density (ρ) with its flux (ϕ) over the body
boundary (∂Ω), a storage term (σ) and a production term (ψ̂):

d
dt

∫
Ω

ρψ(x, t) dv =
∫
∂Ω

ϕ(x, t)da +
∫
Ω

σ(x, t) dv +
∫
Ω

ψ̂(x, t) dv (2.45)

Under the condition of continuity and continuous differentiability of the fields,
the Reynolds’ transport theorem is applied on the left term:

d
dt

∫
Ω

ψ(x, t) dv =
∫
Ω

ψ̇(x, t) dv (2.46)

Over the body boundary ∂Ω, the total flux of the physical quantity can also be
expressed as ϕ = Φ·n. By applying the divergence theorem, so that Equation 2.45 can
be written without considering volume integrals, the local form of the master balance
for a material point with velocity field v is obtained:

ψ̇ + ψ divv = divΦ + σ + ψ̂ (2.47)

2.2.1. Mass balance
In equation 2.47, different physical quantities can be attributed to ψ. If the density

ρ is chosen, assuming that the right terms of flux (ϕ), storage (σ) and production (ψ̂)
are zero, it delivers the mass balance in the current configuration:

ρ̇+ ρ divv = 0 (2.48)
By denoting ρ0 as the density per unit volume at the reference configuration, the

equation for the mass conservation is established by making use of equation 2.6:

ρdv = ρ0dV or ρ0 = Jρ (2.49)
This relationship is important to describe the incompressible nature of rubber. In

this particular case, the volume of a material element remains identical in both refer-
ence and current configurations. It leads to the following internal condition imposed
on the deformation gradient that also implies J = 1:

det(F) = 1 (2.50)
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2.2.2. Linear momentum balance
In classical mechanics, the linear momentum balance is defined according to New-

ton’s second axiom. According to this, the temporal change of momentum is caused by
forces, acting on the volume and the surface elements. Figure 2.4 displays a free-body
with boundary displacements and loads acting on each configuration:

e1

e3

e2

C0 Ct

O

u0

Ω
ω

T

N n

u

t

B
b

X
x

∂Ωu

∂ΩT

∂ωu

∂ωt

v

Figure 2.4. – Free-body on reference and current configurations.

The physical quantity ψ on the current configuration is taken by the impulse
ρv. Additionally, the boundary flux is delivered by the traction forces of the Cauchy
theorem t = σ · n, while the storage term is the body force ρb. No production term
is considered, thus, the local form of the momentum balance is given by:

ρ v̇ = divσ + ρb (2.51)
If a static problem is taken, the left-hand term is neglected (v̇ = 0), wherefore

the resulting equation establishes the boundary value problem on Ct as:
divσ + ρb = 0 ∈ ω

σ · n = t ∈ ∂ωt

u = u0 ∈ ∂ωu

(2.52)

where the vector u0 and t are prescribed displacements imposed to the body
boundaries. Another formulation of the problem can be written by taking the tractions
on C0 while also considering the mass conservation Equation 2.49:

DivP + ρ0 B = 0 ∈ Ω
P ·N = T ∈ ∂ΩT

u = u0 ∈ ∂Ωu

(2.53)

In the case of deformations from Equation 2.17, where the gradient F tends to-
wards unity, the expressions on C0 and Ct are the same, so σ ≈ P ≈ S. The stresses
are then usually denoted by the Cauchy tensor verifying the equilibrium equations
and boundary conditions as shown in Equation 2.52.
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2.2.3. Angular momentum balance
The evaluation of the angular momentum balance employs the physical quantity

ψ = r × ρv, with r being the position vector over the body. Additionally, the terms
considered for the balance are the flux (r× ρt) and the storage (r× ρb), which leads
to the condition of symmetry of the Cauchy stress tensor, which is presented as:

σ = σT (2.54)
As a consequence of this balance, it is possible to deduce that other tensors, such

as the second Piola-Kirchhoff stress tensor S and the Kirchhoff stress (τ = Jσ), are
also symmetric. However, from Equation 2.44, it is now clear why the first Piola-
Kirchhoff stress tensor P is, in general, not symmetric as described in [54].

2.2.4. Energy balance (1st law of thermodynamics)
The energy balance is presented according to the first law of thermodynamics for

the conservation of energy. For this, the transformation of external power is employed
to obtain the physical quantities of interest. If only mechanical energy is considered,
the power of the external forces is derived from the current configuration as:

Pext =
∫
∂ω

t · v da+
∫
ω

b · v dv (2.55)

By using the divergence theorem, namely the linear momentum balance from
Equations 2.51 and 2.32, the virtual work principle is established:∫

∂ω

t · v da+
∫
ω

b · v dv = d
dt

∫
ω

1
2ρv · v dv +

∫
ω

σ : D dv (2.56)

In this case, the mechanical energy balance is according to Pext = K̇+Pint, where:

K =
∫
ω

1
2ρv · v dv (2.57)

is the kinetic energy and the last term on the right of Equation 2.56 is the internal
stress power, which can be expressed using different stress-strain descriptions, e.g.:

Pint =
∫
ω

σ : D dv =
∫
Ω

S : Ė dV =
∫
Ω

P : Ḟ dV (2.58)

If the variation of the kinetic energy is zero, the problem is called quasi-static,
although the physical quantities may still depend on time. To account for thermal
work, an additive quantity is used to express the total internal energy of the body:

Ė = Pint +Q (2.59)
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According to reference [55], the variation of the internal energy E is governed by
the stress power Pint and the thermal power Q on the material whereby E is expressed
in terms of the specific internal energy e:

E =
∫
ω

ρ e dv =
∫
Ω

ρ0 e dV (2.60)

Lastly, the thermal power Q is decomposed into a volume distributed supply (r)
and a surface term derived from the Stokes’ theorem (−q · n):

Q =
∫
ω

ρ r dv −
∫
∂ω

q · n da =
∫
Ω

ρ0 r dV −
∫
∂Ω

Q ·N dA (2.61)

To express the energy balance in Equation 2.59 more explicitly, the divergence
theorem is used, while Equations 2.58 and 2.61 are recalled to obtain:

d

dt

∫
ω

ρ e dv =
∫
ω

(σ : D− divq + ρ r) dv (2.62)

The local form of the energy balance is presented in the current configuration:

ρ ė = σ : D− divq + ρ r (2.63)
In this case, the master balance implies the physical quantity ψ = 1

2ρv · v + ρ e,
the sum of flow is σ · v − q and the storage term is equal to ρ(v · b + r). The other
forms of the local energy balance depend on the description of the stress power:

ρ0 ė = S : Ė−DivQ + ρ0 r (2.64)

ρ0 ė = P : Ḟ−DivQ + ρ0 r (2.65)
where the dual strain tensors of the kinematic quantities D, E and F are obtained

by writing the virtual power theorem.

2.2.5. Entropy balance (2nd law of thermodynamics)
The last balance considers the second law of thermodynamics which states that

the entropy production should always increase according to the inequality:

Ṡ − Text ≥ 0 (2.66)
where S is the system entropy and Text is the heat Q received by the system,

divided by the temperature θ. The balance is introduced by a specific entropy η:

S =
∫
ω

ρ η dv =
∫
Ω

ρ0 η dV (2.67)
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Equation 2.66 denotes a non-adiabatic system, according to which the entropy
supply by the heat transport into the continuum body can be written as:

Q =
∫
ω

ρ r

θ
dv −

∫
dω

q · n
θ

da =
∫
Ω

ρ0 r

θ
dV −

∫
dΩ

Q ·N
θ

dA (2.68)

By substituting Equations 2.67 and 2.68 into Equation 2.66, the Clausius-Duhem
inequality is presented here in the Eulerian description:

d

dt

∫
ω

ρ η dv −
∫
ω

ρ r

θ
dv +

∫
dω

q · n
θ

da ≥ 0 (2.69)

In material modelling, this inequality is widely employed according to the citations
[56, 57]. To derive the local form, the divergence theorem is once more employed with
the product form:

∫
dω

q · n
θ

da =
∫
ω

div
(q
θ

)
dv =

∫
ω

[1
θ
divq + q · grad

(1
θ

)]
dv

=
∫
ω

[1
θ
divq− 1

θ2q · grad (θ)
]

dv
(2.70)

In Ct and C0 respectively, the inequality in Equation 2.69 locally becomes:

ρη̇ − ρr

θ
+ div

(q
θ

)
≥ 0 (2.71)

ρ0η̇ −
ρ0r

θ
+ Div

(
Q
θ

)
≥ 0 (2.72)

From the master balance it is possible to achieve these equations, considering
that the physical quantity is the entropy ρη, the flow term is defined by −q/θ and
the storage term is ρr/θ. No production terms are considered in this case. Finally, by
introducing Equation 2.63 into the Equations 2.71 and Equation 2.64 and 2.65 into
the Equation 2.72, three formulations of the Clausius-Duhem inequality are obtained:

− ρ(ė− θη̇) + q
θ
· gradθ + σ : D ≥ 0 (2.73)

− ρ0(ė− θη̇) + Q
θ
·Gradθ + S : Ė ≥ 0 (2.74)

− ρ0(ė− θη̇) + Q
θ
·Gradθ + P : Ḟ ≥ 0 (2.75)

It is important to emphasise that the symbol θ represents the absolute temper-
ature in units of Kelvin. If isothermal boundary conditions are imposed, then the
remaining terms are part of the Clausius-Planck inequality[13].
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2.3. Materials theory
In the previous section, the equations describing the kinematics and physical bal-

ances were formulated independently of the material behaviour. According to Sidoroff
[13], the derivatives of the physical variables with respect to time do not interfere with
the definition of the local state, hence the state evolution is considered as a succession
of equilibrium states. A local approach is carried out to completely determine the
thermodynamic state at any point on a body, where the constitutive laws are usually
distinguished in the literature [14, 54] according to two types of variable relations:

• Process variables
Hereinafter, the pair strain and temperature can directly be obtained from the
measurements. This choice is equivalent to considering F and θ with regard to
each gradient transformation.

• Internal variables
These are introduced to describe complex phenomena such as plasticity, damage
or viscosity. In this case, the internal variables of interest are mostly defined
according to the aircraft door seal problem in the following chapters.

The more complex the model is from a thermodynamic point of view, the more
difficult its numerical implementation is. It is necessary to identify the predominant
phenomena in the behaviour of the material, to introduce a reduced but sufficient
number of variables, without affecting the desired material predictions. Therefore,
the relationships that represent the material behaviour may be adequately simulated.
Since this work makes use of simple material models that are already implemented
in commercial FEM software, the precision that is sought to determine certain elas-
tomer physical phenomena is limited to the material models already implemented on
ABAQUS 2018. Nevertheless, the conditions put forward in this study are assumed to
be verified and generalizable to descriptions with internal variables. Depending on the
thermodynamic variables, the existence of a specific thermodynamic free Helmholtz
energy potential ψ is postulated, in the form of the following Legendre transformation:

ψ = e− ηθ (2.76)
with the time derivative introduced into the Clausius-Duhem inequalities as:

− ρψ̇ − ρηθ̇ + q
θ
· gradθ + σ : D ≥ 0 (2.77)

− ρ0ψ̇ − ρ0ηθ̇ + Q
θ
·Gradθ + S : Ė ≥ 0 (2.78)

− ρ0ψ̇ − ρ0ηθ̇ + Q
θ
·Gradθ + P : Ḟ ≥ 0 (2.79)
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The free energy function plays a central role in phenomenological models. The
scalar formulation is based on process variables, e.g B and θ, together with internal
variables denoted as Ai and αi, respectively on C0 and Ct. Thus, the free Helmholtz
energy function may present the following relationship with the current configuration:

ψ = ψ(B, θ, α1, α2, ..., αn) (2.80)
The total time derivative of the scalar function is expressed in the tensorial form:

ψ̇ = ∂ψ

∂B
: Ḃ + ∂ψ

∂θ
: θ̇ + ∂ψ

∂αi
• α̇i (2.81)

where • denotes the contracted product to the number of orders sufficient for the
result to be a scalar. Since B is symmetric, Equation 2.34 is rearranged after the first
term from the right side of Equation 2.81 in the following way:

∂ψ

∂B
: Ḃ = ∂ψ

∂B
: (L ·B + B · LT ) = ∂ψ

∂B
: (L ·B) + ∂ψ

∂B
: (B · LT ) (2.82)

= ∂ψ

∂B
·BT : L + BT · ∂ψ

∂B
: LT (2.83)

= B · ∂ψ
∂B

: L + BT · ∂ψ
∂B

: LT (2.84)

= 2B · ∂ψ
∂B

: LT (2.85)

In the specific case that the material response is the same in all directions, the
free energy can be defined as an isotropic scalar function that respects:

ψ(RT ·B ·R) = ψ(B) (2.86)
whereR is an orthogonal rotation tensor. Under this assumption, and considering

the symmetry of B · ∂ψ
∂B , the following tensorial operation is valid:

B · ∂ψ
∂B

: LT = B · ∂ψ
∂B

: D (2.87)

By replacing this last expression in ψ̇ and then in the inequality in Equation 2.77
the following expression is obtained:

(σ − 2ρB · ∂ψ
∂B

) : D− ρ(η − ∂ψ

∂θ
) : θ̇ − ρ ∂ψ

∂αi
• α̇i −

q
θ
· gradθ ≥ 0 (2.88)

The constitutive relations arise from the reasoning of Coleman and Noll [57].
Hence, the process variables (D and θ̇), the internal variables (αi) and the heat flux
(q) are evaluated separately, while satisfying the Clausius-Duhem inequality. For the
other descriptions in Equations 2.78 and 2.79, the inequalities for material model
formulation are not presented here.
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2.3.1. Isotropic hyperelasticity
In this section, the phenomenological constitutive equation that describes the

hyperelastic response of elastomers is discussed without thermodynamic variables, such
as temperature and entropy. From the first term of the Clausius-Duhem inequality
2.77, the Clausius-Planck inequality is presented:

(σ − 2ρB · ∂ψ
∂B

) : D ≥ 0 (2.89)

For ny deformation history, the free energy function and the stress must respect
the Clausius-Planck inequality. This important concept in elasticity is related to the
polyconvexity of strain energy functions that are presented in previous studies in the
literature [58, 59]. For the hyperelastic behaviour, the constitutive equations are to
be defined in terms of the strain measures, without energy dissipation. Evaluating the
inequality in Equation 2.89 results in the constitutive model:

σ = 2ρB · ∂ψ
∂B

(2.90)

In the case of internal variables determined entirely through intermediate states,
the isotropy of the material is reflected in the invariance of the constitutive laws for any
rotation. It simplifies the relationships of the constitutive equations by fully defining
the free energy function through the invariants 2.19. Therefore, the strain energy
functions could be defined by the invariants, either from B or from C, since:

ψ(I1(B), I2(B), I3(B)) = ψ(I1(C), I2(C), I3(C)) (2.91)
For Equation 2.90, the free energy depends on the left Cauchy-Green strain tensor

B, which by means of the chain rule of differentiation results in:

∂ψ

∂B
= ∂ψ

∂I1

∂I1

∂B
+ ∂ψ

∂I2

∂I2

∂B
+ ∂ψ

∂I3

∂I3

∂B
(2.92)

The derivative of the first invariant I1 with respect to B can be reformulated by
the double contraction operation, which results in:

∂I1

∂B
= ∂tr(B)

∂B
= ∂I : B

∂B
= I (2.93)

The derivatives of I2 and I3 are similarly obtained using the Caylay-Hamilton
theorem in Equation 2.18 and the invariant relations in Equation 2.19:

∂I2

∂B
= 1

2

(
2tr(B) I− ∂tr(B2)

∂B

)
= I1I−B (2.94)

∂I3

∂B
= ∂det(B)

∂B
= det(B)B−T = I3B−1 (2.95)
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By substituting each of the invariants’ derivatives into Equation 2.90, the Cauchy
tensor is presented in its most general form in terms of the strain invariants:

σ = 2ρ0

J

[(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
B− ∂ψ

∂I2
B2 + I3

∂ψ

∂I3
I
]

(2.96)

where the density ρ0 is converted to the reference configuration according to
the mass balance in Equation 2.49. Since many elastomers do not exhibit large
volume changes under large strains, the incompressible hyperelasticity is often em-
ployed to impose constraints on the Jacobian which from Equation 2.50, implies that
J =

√
I3(B) = 1. This internal constraint has implications for the general formulation

of hyperelasticity. Essentially, the pure volumetric stresses should not affect the strain
values of an incompressible material. Therefore, the free energy function must only be
governed by isochoric deformations. Which be achieved by modifying the dependence
of the free energy function on the third invariant. To formulate the incompressible
constitutive equation, the free energy should be reformulated as the first two invariants
are the only independent variables:

ψ̂ = ψ(I1, I2)− p(I3 − 1) (2.97)
where p works as an intermediate Lagrange multiplier [14]. In other words, it does

not affect the mechanical work and must be determined from the boundary conditions.
From the Coleman-Noll procedure 2.90, the constitutive equations are associated with
I1 and I2 by the chain rule operation:

σ = 2ρB · ∂ψ(I1, I2)
∂B

− 2ρB · ∂p(I3 − 1)
∂B

(2.98)

= 2ρB · ∂ψ(I1, I2)
∂B

− 2ρB · pI3B−1 (2.99)

= 2ρB · ∂ψ(I1, I2)
∂B

− pHI (2.100)

where pH plays the role of hydrostatic pressure. Under the incompressibility
constraint, the density ρ = ρ0 is constant, while the derivative is replaced by equations
2.93 and 2.94, according to:

σ = 2ρ0

[(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
B− ∂ψ

∂I2
B2
]
− pHI (2.101)

Alternatively, the Cayley-Hamilton theorem can be used to substituteB2 in favour
of B−1, while also absorbing the second invariant recurrence by p∗H as shown below:

σ = 2ρ0

(
∂ψ

∂I1
B− ∂ψ

∂I2
B−1

)
− p∗HI (2.102)
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Equations 2.101 and 2.102 describe incompressible hyperelasticity. This is rather
handful for comparisons between analytical calculations and experimental results from
uniaxial, shear and bi-axial tests. However, for the numerical implementation into
FEM, solving this internal constraint is not straightforward. In Equations 2.101 and
2.102, the diagonal stress can assume arbitrary values, which are independent of B,
due to the Lagrange multiplier and the identity tensor contribution. Some resources
are feasible for the FEM implementation, either through hybrid elements [5] that
dedicate an integration point to the hydrostatic components, or through a compress-
ible formulation. In both cases, a degree of material compressibility is considered
for numerical solutions in a so-called near incompressible approach. For compressible
hyperelasticity, a solution proposed by Flory [60] is to decouple the volumetric and iso-
choric responses of the material. In this case, a multiplicative split of the deformation
gradient is proposed:

F = F̂ · F̄ (2.103)
where F̂ describes the volumetric deformations: F̂ = J1/3I. Thus, the following

transformation considers the gradient of deformation F̄ under constant volume:

F = (J1/3I)F̄ and B = J2/3B̄ (2.104)
B̄ is now defined as an isochoric left Cauchy-Green deformation tensor, which

allows for decoupling the free energy into isochoric and volumetric contributions:

ψ(B) = ψiso(B̄)− ψvol(J) (2.105)
The deviatoric invariants of B̄ are given by:

Ī1 = J−2/3I1 and Ī2 = J−4/3I2 (2.106)
Deriving the constitutive law for the compressible case requires a little more com-

putation than for incompressible case. Nevertheless, it is possible to obtain the Cauchy
stress derived from the modified strain gradient containing both isochoric and volu-
metric contributions as:

σ = 2ρ0J
−1B

∂ψ

∂B
= (σ̄ : P)− pI (2.107)

where p = 1
3tr(σ) and P is the fourth order projection tensor according to:

P = J2/3B−1∂B̄
∂B

B = (I− 1
3I⊗ I) (2.108)

with I being a fourth order identity tensor and the deviatoric stress written as:

σ̄ = 2ρ0J
−1B̄

∂ψiso(Ī1, Ī2)
∂B̄

(2.109)
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As a consequence, the isochoric stress response of the isotropic hyperelasticity
must be based on the choice of free energy functions that depend on the first two
invariants. Several specific functions have been proposed for elastomers in the isother-
mal and quasi-static regime through a phenomenological approach [15]. Some well-
known incompressible and nearly incompressible models are implemented in ABAQUS,
mainly derived from the principal invariants, such as: neo-Hookean, Yeoh [61], Arruda-
Boyce and the polynomial Mooney-Rivlin forms. To check the polyconvexity of the
free energy function, the software asses whether the given model parameters fulfil the
following boundary conditions:

ψ(B) = 0 F = I
ψ(B)→ +∞ λi → +∞ and

ψ(B)→ +∞ J → +∞
ψ(B)→ +∞ J → 0+ (2.110)

The parameter λi comprises the principal stretches, from the eigenvalues of U,
and the Jacobian must be taken when compressibility is considered. This verification
is performed with assistance of the Hill inequality [62] or Drucker’s criterion [63]:

dτ

dt
: D > 0 ∀D 6= 0 (2.111)

where the Kirchhoff stress τ = Jσ is given and D is the rate of deformation. To
explore the existing capabilities in ABAQUS, under the operating limits of an aircraft
door, two of the available energy functions are selected for the hyperelastic model.
• neo-Hookean

ρψ = C10(I1 − 3) + 1
D1

(J − 1)2 (2.112)

The neo-Hookean is the simplest model relating to hyperelasticity - since it only
depends on the first invariant. Theoretically, this model offers satisfactory adherence
to stretch levels up to λi = 1.5, or 50% strain [64]. For small strains, the parameter’s
first invariant is related to the shear modulus (µ = 2C10), while the Jacobian is related
to the inverse of the bulk modulus (k = 2D−1

1 ), in case of compressibility.
• Mooney-Rivlin (general)

ρψ =
n∑

i+j>1
Cij(I1 − 3)i(I2 − 3)j +

n∑
i>1

1
Di

(J − 1)2i (2.113)

The general Mooney-Rivlin model is presented with the polynomial order n with
the first and second invariants. Depending on the strain levels, a higher polynomial
order of the energy function can be employed to better describe the hyperelastic be-
haviour. In ABAQUS, Mooney-Rivlin is only denoted when n = 1 and the Polynomial
form when n > 1. For linear elasticity, the first order form has the shear modulus
given by µ = 2 (C10 +C01) and an identical bulk term (k = 2D−1

1 ) as the neo-Hookean.

26



2.3.2. Finite linear viscoelasticity
The constitutive equations introduced earlier describe elastic stress-strain under

purely mechanical conditions. In the case of viscoelastic material behaviour, isotropic
hyperelasticity governs the equilibrium part of the stress, independent of the strain
rate. However, elastomers also dissipate energy by means of relaxation, creep or a
characteristic hysteresis with time dependency. Thus, the history of external loadings
plays an important role in estimating the correct response of the non-equilibrium states
governed by internal variables of a memory functional. Under the assumption of in-
compressibility, which implies the existence of a constitutively undetermined pressure,
generalised stress is presented as follows:

σ(t) = σ̄(t)− p(X, t)I (2.114)
By keeping compatibility with the internal constraint, the deviatoric stress can

be written as a functional of the entire strain history:

σ̄(t) = F
τ≤t

[E(s)] (2.115)

Since for viscoelastic bodies the equilibrium stress σ̄eq is a function of the current
deformation, as shown in Equation 2.109, the expression is separated in two parts:

σ̄(t) = σ̄eq + σ̄ov(t) (2.116)
where σ̄ov is defined as the overstress. This process-dependent of over stress is a

functional of the strain history with fading memory written as:

σ̄ov(t) = F
s≤t

[Et(s),B(t)] (2.117)

where Et(s) is the relative strain history derived from Equation 2.37:

Et(s) = F−T (t)[E(t− s)− E(t)]F−1(t) (2.118)
The relaxation of the overstress to zero under temporally constant deformation

must be satisfied by the normalisation condition:

F
s≤t

[0(s),B(t)] = 0 (2.119)

In other words, the memory functional does not contribute to the equilibrium
stress under static conditions. To establish a representation of overstress, a general
theory of rate-dependent functionals developed by Coleman and Noll [65] is employed.
From a rheological approach, the one-dimensional Maxwell model is given by:

σ̇ov(t) + Ê

η̂
σov(t) = Êε̇(t) =⇒ σov(t) =

t∫
−∞

Êe−
Ê
η̂

(t−s)έ(s)ds (2.120)
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The principle behind rheological models is to describe the material behaviour by
a set of springs and dampers, that are lined up in an internal mechanical system. The
model must be able to represent the viscoelastic response by displaying relaxation
and creep behaviour, which depends on the number of elements and how they are
connected. In the differential Equation 2.120, a Maxwell element is calculated based
on a spring and a damper in a series. While the first responds elastically according
to the Hookean law with a Young’s modulus Ê, the second works as a Newtonian
viscous fluid that dissipates energy through a dynamic viscosity η̂. Different parallel
set-ups are possible such as the Kelvin-Voigt and Poynting-Thomson models. Figure
2.5 shows a generalisation of Maxwell’s model containing n-branches in parallel.

Ê∞

Ê1 η̂1

Ên η̂n

σ

ε∞

ε1

εn

Ê η̂ σov

Maxwell element Generalised Maxwell model

Spring Damper

Ê η̂
σeq σneq

Figure 2.5. – Generalised Maxwell model and rheological elements.

From this generalised representation, the sum of the stresses is defined by:

σ = σ∞ +
n∑
i=1

σiov (2.121)

where the equilibrium stress σ∞ is a function of the strain and σiov are the fading
internal forces of the material observed in a process of relaxation. This approach
for linear viscoelasticity can be extended to finite strains and hyperelasticity by two
models, according to the work of Haupt & Lion [66]:

Model A:
4
σ̄ov + 1

τA
σ̄ov = 2µAD̄ (2.122)

Model B:
5
σ̄ov + 1

τB
σ̄ov = 2µBD̄ (2.123)

The relaxation times τA and τB are the ratios between dynamic viscosities end
the shear moduli of each model.
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Model A employs a time derivative that is analogous to Oldroyd’s rate in Equation
2.32, while in the case of Model B, the contravariant operation is used for the stress:

5
σ= σ̇ − L · σ − σ · LT (2.124)

For the negative strain rate −D , the contravariant operation can be used as:

−D =5a= ȧ− L · a− a · LT = F · ė · FT (2.125)
where a is the Finger tensor written as:

a = 1
2(I−B) (2.126)

and e is related to the Piola strain:

e = 1
2(C−1 − I) (2.127)

To manipulate the models, the second Piola-Kirchoff tensor from Equation 2.44
is used together with the convected stress form on the current configuration:

t̃ = F−T · S · F−1 = FT · σ · F (2.128)
The specific stress power is calculated according the corresponding dual variables:

σ : D = S : Ė = −t̃ : ė (2.129)
Thus, for an isothermal process, the Clausius-Duhem inequality is simplified as:

S : Ė− ρ0ψ̇ ≥ 0 or − t̃ : ė− ρ0ψ̇ ≥ 0 (2.130)
For incompressible isotropic solids the derivation steps of the overstress Equations

2.122 and 2.123 are presented by keeping the total form of stress:

Ṡov + 1
τA
Sov = −2µAė (2.131)

˙̃tov + 1
τB

t̃ = +2µBĖ (2.132)

The solution of each constitutive law is obtained as shown in Equation 2.120:

Sov(t) = −
t∫

−∞
2µA e−

(t−s)
τA é(s)ds (2.133)

t̃ov(t) = +
t∫

−∞
2µB e−

(t−s)
τB É(s)ds (2.134)
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The Cauchy stresses are obtained by transforming the previous solutions to the
current configuration and by using the updated Lagrangian notation in Equation 2.118:

σAov(t) = +
t∫

−∞
2µA e−

(t−s)
τA ét(s)ds (2.135)

σBov(t) = −
t∫

−∞
2µB e−

(t−s)
τB Ét(s)ds (2.136)

where et and Et are the relative strain histories and the constitutive law have to be
thermodynamically consistent. For each model, the energy functional is presented in
the convolutional form, assuming compatibility with the Clausius-Duhem inequality:

ρψA(t) = −
t∫

−∞
2GA(t− s) d

dstret(s)ds (2.137)

ρψB(t) = −
t∫

−∞
2GB(t− s) d

dstrEt(s)ds (2.138)

where, the positive relaxation functions generally represented by G(t) have to
respect the following limit conditions:

lim
t→∞

G(t) = µ, and lim
t→∞

Ġ(t) = 0 (2.139)

After integration by parts and considering no pre-deformations, the free energy
functional is written with a valid semi-opened time interval starting at zero:

ρψA(t) = µAtrE(t)−
t∫

0

2GA(t− s) d
dstret(s)ds (2.140)

ρψB(t) = µBtre(t)−
t∫

0

2GB(t− s) d
dstrEt(s)ds (2.141)

where µA and µB are elasticity constants and the left parts of the equation are
related to the fading memory part of the free energy. To investigate the dissipation
inequalities, the following expressions are differentiated:

d
dttret(t− s) = 2 [e(t− s)− e(t)] Ė(t)− d

dstret(t− s) (2.142)

d
dttrEt(t− s) = 2 [E(t− s)− E(t)] ė(t)− d

dstrEt(t− s) (2.143)
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By inserting the previous relationships into the inequalities in Equation 2.130, the
stresses S and t̃ can be obtained by evaluating Equations 2.144 and 2.145:

S(t)− µAI +
t∫

0

2GA[e(t− s)− e(t)]ds
 : Ė−

t∫
0

GAtret(t− s)ds ≥ 0 (2.144)

t̃(t)− µBI +
t∫

0

2GB[E(t− s)− E(t)]ds
 : ė−

t∫
0

GBtrEt(t− s)ds ≥ 0 (2.145)

The equivalent formulations related to the current configuration are obtained after
a push-forward operation, which is presented by the deviatoric parts:

σ̄Aov(t) =
µAB− t∫

0

2GAet(t− s)ds
D (2.146)

σ̄Bov(t) =
−µBB−1 +

t∫
0

2GBEt(t− s)ds
D (2.147)

The remaining terms in Equations 2.144 and 2.145 correspond to the dissipated
energy. Since trEt and tret are always positive because of the incompressibility con-
dition, for any mechanical process each relaxation function must respect:

Ġ(t) ≤ 0 and G̈(t) ≥ 0 ∀ t (2.148)
Lastly, a combination between models A and B gives rise to the total stress

functional, which has non-equilibrium components represented by the convolutional
integrals:

σ(t) = µAB− µBB−1 −
t∫

0

2GAet(t− s)ds+
t∫

0

2GBEt(t− s)ds− p(t)I (2.149)

The equilibrium part has a similar representation if the energy function of
Mooney-Rivlin is taken in Equation 2.102. If only model A is used, then the neo-
Hookean model appears as the equilibrium part. A simple representation of the relax-
ation kernel functions is usually employed in the form of decreasing exponentials, as
a Prony series depending on how many Maxwell elements are chosen:

G(t) =
n∑
k=1

µke
−t/τk (2.150)

A long experimental data acquisition might be necessary to cover the long-term
relaxation behaviour of elastomers with good accuracy, whereby µk and τk parameters
must be positive to respect the conditions defined in Equation 2.148.
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Since the equilibrium and the non-equilibrium stresses are separated in Equation
2.149, the relaxation stress based on the generalised Maxwell model in te Equation
2.121 can easily be investigated. A quick deformation step at time t = 0 implies the
following form of a step function to F0 of the deformation gradient:

F(t) =
I ∀ t ≤ 0
F0 ∀ t > 0

=⇒ σ(t) =
0 ∀ t ≤ 0
σR ∀ t > 0

(2.151)

From the convolution theorem of a step function, the non-equilibrium stresses are
solved to suppress the time integration of the relative strain histories Et and et:

σR(t) = −2GA(t)F0 · e0 · FT0 + 2GB(t)F−T0 · E0 · F−1
0 − p(t)I (2.152)

By inserting the Piola and Green strain tensor at time zero:

e0 = 1
2(F−1

0 · F−T0 − I) and E0 = 1
2(FT0 · F0 − I) (2.153)

and employing the left Cauchy-Green deformation tensor definition B0 = F0 ·FT0 ,
the relaxation process is written as:

σR(t) = GA(t)(B0 − I) +GB(t)(I−B−1
0 )− p(t)I

= GA(t)B0 −GB(t)B−1
0 − p(t)I

(2.154)

The hydrostatic pressure p is constitutively undetermined. Since the relaxation
process fades into the equilibrium stresses governed by the elastic (static) response, the
instantaneous and equilibrium shear moduli G0 and G(∞) are related to the relaxation
function:

G(∞) = G0

(
1−

n∑
i=1

gi

)
=⇒ G(0) = G0 = (2.155)

where gi are dimensionless coefficients of the relaxation function that respects the
inequalities in Equation 2.148. It motivates an alternative formulation of the Prony
series in Equation 2.150 that assumes the existence of the instantaneous modulus G0:

G(t) = G0

[
1−

n∑
i=1

gi(1− e−t/τi)
]

(2.156)

The experimental identification of the instantaneous elastic terms is difficult due
to the large strain rate required at t = 0. However, the final solution remains mathe-
matically valid, since each long-term and instantaneous term are related to each other
as described in Equation 2.155. The time domain generalisation for hyperelastic ma-
terials implemented in ABAQUS uses the instantaneous stress σ0 as the core function
for the hereditary integral formulation. Besides dealing with deviatoric stresses, the
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hydrostatic pressure may be integrated on the basis of relaxation kernel functions.
However, for the nearly incompressible behaviour of rubber, the relaxation of the bulk
modulus is neglected, which leads to the following representation of the convolutional
form of the stress quantities:

σ(t) = σ0(t) +
t∫

0

G(τ)
G0

σ0(t− s)dτ − p(t)I (2.157)

Here the reduced time τ is introduced to provide a dependency with the temper-
ature shift function Aθ. The reduced time is related to the actual time s through the
time-superposition principle according to the differential equation:

dτ = ds
Aθ(θ(s))

(2.158)

where Aθ is the Williams-Landel-Ferry (WLF) equation [67] implemented in
ABAQUS in the following form:

− logAθ = h(θ) = C1(θ − θg)
C2 + (θ − θg)

(2.159)

where Cg
1 and Cg

2 are constants that can be calibrated by temperature-dependent
relaxation experiments, and θg is the glass transition temperature of the material.
According to [5], it is possible to use ’universal’ constants for rubber at any convenient
temperature range, other than below the glass transition. Therefore, a transformation
to the reference temperature (θ0) of the relaxation experiment is considered:

C1 = Cg
1

1 + (θ0 − θg)/Cg
2

(2.160)

C2 = Cg
2 + θ0 − θg (2.161)

Although each polymer presents a unique signature for the WLF constants, it is
possible to investigate the influence of temperature in the vicinity of the glass tran-
sition of the material. Room temperature measurements in uniaxial conditions are
proposed for finite strain viscoelasticity modelling. Initially, quasi-static tests for the
incompressible isotropic hyperelastic behaviour of silicone are derived from quasi-static
loadings. Optimisation methods are introduced in the following section and can be
applied to the fitting of models with experimental data. In the next chapter, relatively
inexpensive experimental investigations are presented to obtain the material model pa-
rameters based on aircraft doors seal samples. Since FEM implementation of material
models reviewed in this chapter is available in several commercial software packages,
this topic is not discussed in depth in this work, although, the continuum mechanics
formalism is concluded to facilitate the understanding of subsequent analysis sections.
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2.4. Introduction to optimisation
In this section, the basic concepts of nonlinear optimisation techniques are dis-

cussed for problems concerning: parametric identification, DOE and multi-objective
optimisation. Typically, optimisation is a process that may involve maximising or
minimising the values of one or more functions through the ’optimal’ choice of design
variables or parameters. In a general formulation, the optimisation tasks in this work
are given by the following constrained minimisation problem:

min
xi

f(xi) Objective function (2.162a)

subject to h(xi) ≥ 0 or h(xi) = 0 Boundary constraint (2.162b)
li ≥ xi ≥ ui Design constraints (2.162c)

Here, an objective function f(xi) depends on design variables xi within their
corresponding upper ui and lower limits li. The minimisation problem should respect
the boundary constraints h(xi), whether through equalities or inequalities. Figure 2.6
displays the idea behind minimising a function dependent on two variables, subject to
linear constraints based on Rao’s [51] explanation concerning optimisation techniques:

0 1 2 3 4 5

1

2

3

4

2− x1 + x2 = 0

f = 1.44

f = 0.50

4− x1 − x2 = 0

x1

x2

f = 0.0625

fopt = 0

�xopt

Figure 2.6. – Constrained minima under linear constraints.

In this simple example, the global optimum is contained within the boundary
conditions at the point (1, 2). However, depending on the problem formulation, the
solution may become very complex if too many variables are involved in the problem.
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When more than one function is optimised at the same time, the problem is
classified as a multi-objective optimisation. Hence, new concepts known as the set
of solutions are applied to a vector minimisation problem [51]. This approach does
not satisfy a global optimum, but generates a set of solutions that can be considered
Pareto optimal. By definition, a solution is in a Pareto set if there is no other solution
that can minimise the function f(xi) without increasing another objective function
g(xi). To illustrate , two polynomial functions are chosen to be minimised. Figure 2.7
shows their graphs where multiple solutions can be taken as a Pareto optimal set.

20

40

60

1 2 3 4 5 6 7 8
x

f, g

f(x) = (x− 3)4

g(x) = (x− 6)2

P Q

Figure 2.7. – Pareto optimal solutions are located within points P and Q.

Additional boundary and side constraints may add more complexity to a multi-
parametric optimisation. However, a large number of independent variables xi to be
optimised at the same time may render the approach difficult or make it unfeasible to
reach a solution. These problems designated by large-scale optimisation can be solved
efficiently by using parallel processing, depending on the computation capabilities. For
the parameter identification of hyper-viscoelastic models, the optimisation problem is
formulated by minimising the mean-squared error between the model output and test
results. It corresponds to a single objective function scalar depending on the variables
denoted as the model parameters: Cij from the general Mooney-Rivlin formulation or
gi and τi from the Prony series. However, in the case of the optimisation of a door seal
design, several independent variables can be parametrised in an attempt to improve
more than one design response. Table 2.1 lists suitable optimisation techniques that
apply to several engineering problems according to references [51, 52, 53].

Table 2.1. – Optimisation techniques according to operation research methods.

Mathematical
programming

Stochastic
process

Statistical
methods

Modern
techniques

Calculus methods Random search Regression analysis Neural networks
Nonlinear programming Markov processes Pattern recognition Particle swarm
Gradient-based methods Monte Carlo DOE GA
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Historically, optimisation techniques come from calculus and are based on method-
ologies developed by Newton, Lagrange, and Cauchy. The nonlinear programming of
mathematical methods is useful in determining the local minimum for large-scale vari-
ables and constrained conditions. On the other hand, stochastic processes are easily
implemented, since computers have programmed functions for random number gener-
ators. These techniques are based on trial and error, or the probability of a solution
eventually being reached, with no guarantee of convergence. Subsequently, statisti-
cal methods start from sampling methods similar to stochastic processes but adding
notions of correlation analysis to determine empirical models or to evidence the sen-
sibility of the objective function to certain variables. Despite being a time-consuming
technique, DOE is useful to reduce the number of variables involved in a process by
correlating the inputs and outputs. More recently, modern algorithms have emerged
to handle complex problems faster by programming principles observed in nature, such
as genetics and natural selection. Some of these optimisation techniques applied in
this thesis are briefly described in the following subchapters.

2.4.1. Gradient-based methods
The optimisation techniques based on the gradient of an objective function comes

from the Newton’s implicit method for root finding, which expands the objective
function f(x) in a quadratic approximation of Taylor’s series:

f(x) = f(xi) + f ′(xi)(x− xi) + 1
2f
′′(xi)(x− xi)2 (2.163)

where xi is an initial guess for the root of the expression. To find the minimum
of the function, the first derivative of Equation 2.163 should be equal to zero:

f ′(x) = f ′(xi) + f ′′(xi)(x− xi) = 0 (2.164)
By isolating the variable x in Equation 2.164, a recurrence relation is obtained:

xi+1 = xi + f ′(xi)
f ′′(xi)

(2.165)

Since the derivatives of an objective function are often not available in a closed
form or are difficult to differentiate, they can be approximated by the formulas:

f ′(x) = f(xi + ∆x)− f(xi −∆x)
2∆x (2.166)

f ′′(x) = f(xi + ∆x)− 2∆x+ f(xi −∆x)
∆x2 (2.167)

where ∆x are small steps given to the implicit scheme with a convergence criterion
|f ′(x)| ≤ ε, for a small value of ε. The generalised reduced gradient (GRG) method is
described by Lasdon [68] to account for multiple variables and constraints.
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2.4.2. Design of Experiments (DOE)
DOE is a statistical tool that is commonly employed in industry to understand

the relationship between key process inputs and outputs. For example, in a designed
experiment of a machine, inputs or design parameters are intentionally modified to
observe changes in the functional performance of the product. A common approach
used by engineers in manufacturing companies is One-Variable-At-a-Time (OVAT),
in which a single independent variable is perturbed while all other variables are un-
changed [53]. However, when several design parameters can influence a certain char-
acteristic of the product, statistical fundamentals are useful to highlight which inputs
are most relevant for the observed outputs based on sampling and correlation meth-
ods. In reality, each experiment or process may be influenced by external factors that
cannot be effortlessly monitored. Figure 2.8 illustrates a general process that depends
on two types of inputs: controllable and uncontrollable variables.

Output(s)Input(s)

y1 y2 ... ym

Process

x1 x2 ... xn

Uncontrollable variables (factors)

Controllable variables (factors)

f(�x, �y)(�x, �y)

Figure 2.8. – General process with controlled and uncontrolled inputs.

By considering the general process as a seal design optimisation with several
variables, it is important to define the control inputs prior to attempting the overall
optimisation. Therefore, screening designs are considered to reduce the number of
variables by identifying the key variables in a minimum number of experimental runs.
The external or uncontrolled factors that affect the seal performance are often related
to the loads, temperatures and material uncertainties on the product. Since the ex-
periments in this work are conducted virtually, a certain number of runs are used to
indicate critical scenarios for the seal performance by following the DOE tasks:

• Hypothesis: assumption about the influencing factors on the seal performance.

• Experiment: simulations conduced according to a sampling methodology.

• Analysis: collecting data and performing statistical analysis (correlation).

• Interpretation: understanding the experimental results and correlations.

• Conclusion: accepting or rejecting the hypothesis or establishing new scenarios.
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Another important aspect of DOE is the possibility of approximating the process
through surface response or meta-models [69]. If the response is correlated with cer-
tain variables, polynomial functions can be used to approximate the model outputs.
However, this methodology is discarded due to the complexity of representing the
non-linear response of the FEM simulations to the observed variables.

Latin Hypercube Sampling (LHS)

To conduct the designed experiments, a plan must be developed based on sampling
methods. It is widely accepted that Full Factorial Designs with two-levels are used
for correlations between the process and design parameters [53], by picking the upper
and lower limits of the k-variables. However, the Full Factorial is represented by
2k experiments, which very often do not allow adequate time and resources to be
carried out. Since a large number of factors may influence the seal performance, other
sampling technique based on the Latin Hypercube is proposed for a reduced number of
experiments based on statistical judgement. Similar to other stochastic methods such
as Monte Carlo, LHS consists in dividing the space formed by k-variables in a stratified
and quasi-random manner by covering a design space with fewer redundancies in
computational experiments. In two dimensions, LHS can be easily illustrated by the
Latin square, name given by Leonhard Euler in his attempt to solve the 36 officer
puzzle. Figure 2.9 shows on the left hand side a board in which each square has
one of the first three letters from the Latin alphabet arranged so that any identical
combination does not occupy the same row or column. Similarly, on the right hand
side, a 3 × 3 chessboard formed by the two variables (x1 and x2) is arranged so that
no two points have common values.

A B C

A

C

B

A

C

B
x1

x2

Figure 2.9. – Latin square example for the generalisation of the Latin hypercube.

The Latin hypercube is the generalisation of this last example to k dimensions:
the sample space of each of the k variables is divided into n equiprobable intervals, and
a point is chosen in each of these intervals; this generates a matrix of k columns, formed
by the samples of each variable, which are then randomly permuted, generating the
final sample of n vectors of k dimensions. In Chapter 5 an optimised LHS technique
is employed by maximising the distance between the sampling points. For DOE with
door seals simulations this technique is more suitable due to the large amount of
variables considered, offering low computational cost compared to the Full Factorial.
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2.4.3. Genetic Algorithms (GA)
Depending on the optimisation problem, variables can be represented by con-

tinuous or discrete values in a discontinuous and non-convex design spaces. If the
previously mentioned techniques (GRG or DOE) are applied to such complex prob-
lems, convergence and computational cost aspects would possible not allow them to
reach a feasible solution. Hence, GA were developed to find global optimum solutions
through concepts of biological evolution based on Darwin’s theory. GA differ from
traditional methods since they do not require derivatives and are not simply random
with respect to the problem variables. Despite the initial solutions are randomly ini-
tiated to create a population of designs, these algorithms are governed by a series of
operations derived from genetics, such as:

• Reproduction: this selective operator sorts the solutions with above-average
performance to pass their information on the next generation. Multiple copies of
a variable input are added to a mating pool to be carried to the next generation
based on a probability proportional to the solution fitness.

• Crossover: after the reproduction, this operator combines the variables from
parent solutions to create new individuals for the next generation. It is expected
that the resulting population will perform better than the previous. However,
this effect may not be always useful for the success of the GA and, thus, the
crossover has also an associated probability of occurrence to retain some charac-
teristics from the parent solutions instead of completely changing all the variable
inputs.

• Mutation: this last operator creates small perturbations on random variables
of each newborn individual. It also depends on probability as well, and hence
not all the variables will be affected by the mutation.

Given a number of generations driven by the three operators, the GA may suc-
cessively yields a design solution that optimises complex multi-objective problems.
However, for a small number of individuals covered by the algorithm, the global opti-
mum may not be achieved, satisfying only the condition of a local minimum. Thus, it
is recommended to use GA more than once with different initial populations to assume
a convergence to the ’best’ solution. In the case of parametric optimisation with a
single objective function, Wolfram Mathematics’ NMinimize algorithm employs GA
by default in minimisation of numerical problems. In Chapter 6, the Non dominated
Sorting Genetic Algorithm (NSGA-II) is used since it does not to privilege only the
most sensitive objective function in a multi-objective design optimisation of a door
seal, by constructing a Pareto set of feasible solutions. This exploratory technique
is found implemented in ISIGHT software, which is handful for design optimisation
through CAE tools. Both material and FEM models are parametrised and optimised
by algorithms through their designed objective functions.
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3. Material investigations
This chapter deals with experimental investigations and assumptions for the sub-

stantiation of material models used in FEM simulations for the mechanical charac-
terization of an actual door seal. For large aircraft, structural components must be
verified according to the means of compliance [70], which can be achieved through
tests or analysis according to their criticality. Typically, the door sealing systems are
not considered as significant structural component that contributes to the fuselage
load path during flight, landing and take-off manoeuvres. However, cabin pressure,
apart from being the reason for the existence of seals, is the load case that sizes most
of the door structures. For the airframe certification, static and fatigue tests may
require full-scale or component testing of the fuselage section. From an aerospace
project perspective, these tests are the most expensive stages of development which is
why the structures must be compliant with the requirements without interrupting the
progress of a large test campaign. Although seals do not represent a great danger to
structural integrity, the malfunctioning of a single-sealing system can cause delays in
the development due to cabin decompression failure. A smaller test campaign can be
conducted using sub-components by taking the door and its surrounding door struc-
tures into account to check the airtightness in a closed door configuration. However,
these tests are considered only if a door mechanism philosophy is developed for the
validation of the kinematics rather than specifically for the seal functionality.

Ultimately, the seal element should be tested in detail, considering the door striker
and adjacent structures. Exploring different configurations, as well as cabin pressure
or out-of-plane loads, would be an ideal set-up to identify the competing seal failure
modes and the critical loading conditions for leakage. This approach should be applied
to predict whether the analysis methods are reliable in the design of a seal, as other-
wise, they do not provide a long-term solution for the development. The manufacture
of seal parts is costly, as the injection moulding process for the silicone seal and its
inner layers take time for each new geometry proposal. Thus, coupon tests with simple
geometries are considered a relatively inexpensive way to obtain the material charac-
teristics for further analysis consideration. The data necessary for FEM computations
must be derived from simple experimental investigations and assumptions concerning
the material behaviour under different loading conditions. Uniaxial, biaxial, and shear
loads should be prescribed to cover the different operational conditions of a structural
element. Since manufacturing processes are constantly being improved in the indus-
try, these tests are standardised for material qualification. In general, coupon tests
are sufficient to qualify new materials and provide reliable stress databases.
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Figure 3.1 shows a conceptual diagram for validating the door fuselage structures
that are based on the level of tests for structuring different mechanical tests.

Uniaxial Biaxial Simple shear Pure shear Volumetric

COUPONS TESTS

ELEMENTS / DETAILS

Door

Seal

SUB-COMPONENTS

Seal

Striker

COMPONENTS

Fuselage section

Fuselage
frames

- Notch sensitivity

- Out-of-plane loads

- Critical loading conditions

- Competing failure modes

- Design scale

FULL-SCALE

$

Hinge
mechanism

Vent
hole

Figure 3.1. – Diagram with the test levels considered for aircraft certification.

This pyramid scheme is based on the Federal Aviation Administration (FAA)
advisory [71] for composite structure tests. Even if there are no explicit guidances
that establishes compliance means for elastomeric components, the standard norms
for rubber provide inputs and instructions for a coupon base. The main references for
this chapter are based on the standards DIN 53504 for uniaxial testing [72] and DIN
13343 for linear viscoelasticity [73].
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3.1. Uniaxial coupon tests
According to the DIN 53504 standard [72], at least three specimens should be

tested for the main load directions. Two sets of five samples were obtained from seals
used in civil aircraft doors for quasi-static and relaxation tests. Perpendicular cuttings
of the specimens, either in the longitudinal or transverse directions to the sealing line,
were used to check if the fibre-reinforced seal can be simplified as an isotropic material.
The coupon tests provide a data-basis for the material modelling. Previous analyses
of elastomeric door seals [74] indicated that the maximum principal deflection does
not exceed 50% when subjected to combined compressive and cabin pressure loadings.
Therefore, a representative domain for the principal strains was considered. Uniaxial
tests are conveniently chosen to identify the material parameters up to a maximum
stretch of λ = 1.5, representing the ratio between the final and initial length of the
sample. The sample dimensions follow the same DIN 53504 standard and are tested
on a Zwick-Roell universal testing machine under ambient temperature conditions
measured at 20◦C, with a 500N force sensor. Figure 3.2 shows how the samples are
obtained from seal sheets for mechanical tests according to the machine standards for
the quasi-static and relaxation investigations for uniaxial loading conditions.

A: Transversal

B: Longitudinal

8.5

50 4± 0.050

thickness
2± 0.200

Seal cut sheet

Sealing line

Figure 3.2. – Sample cutting directions and main dimensions in mm.

Although all of the rubber sheets are extracted from the same door seal element,
a total of ten specimens are considered to cover the variability along the geometry. An
average density of 1.189 g/cm3 was measured for all specimens. It is also important
to note that the seal sheets contain layers that are not solely composed of silicone
rubber. The external anti-friction layer and the internal reinforcements are assumed
to be homogeneous bodies. Tensile tests were performed for each specimen on a Zwick-
Roell c© universal testing machine at room temperature with a force sensor of 500 N and
different strain rates depending on quasi-static and relaxation experiments. From a
material modelling point of view, more loading conditions are recommended according
to model rubber components that are based on the first two invariants [75].
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3.1.1. Quasi-static loadings
Quasi-static tests are employed to characterise the elastic behaviour of the ma-

terial, which is the equilibrium stress. During this process, the load endured by the
specimen and the change in length are measured. To avoid viscoelastic dissipation,
the process is conducted at a low strain rate for 10 different samples at a limit strain
of 50%. Therefore, the specimens are stretched along their largest major axis at a con-
stant speed of 15 mm/min until maximum stress (force) or strain (stretch) is reached.
Although a minor degree of visco-elastic behaviour should be present, a good repre-
sentation of the equilibrium stress is assumed. If laboratory costs and testing time are
not limiting factors for the research, lower strain rates or step tests are recommended
to characterise the elastic behaviour [76].

Figure 3.3 presents the stress-strain diagram for a set of average curves according
to the directions extracted from the seal samples. To calculate the forces acting on the
undeformed surface element, the first Piola-Kirchoff notation is used to express the
uniaxial stress component P11. Two curves for the longitudinal and transverse cutting
directions are obtained from the average of the uniaxial tests, in addition to the total
mean stress with error bars for a Confidence Interval (CI) of 95% for the specimens.
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Figure 3.3. – Average stress from 2×5 samples based on the cutting direction.

These preliminary investigations show that the seal material does not exhibit
a pronounced anisotropic behaviour up to stretch values of 1.5. At the maximum
level of stress with a standard deviation of 0.226MPa between all 10 samples, a CI
of 1.81±0.14MPa is built. Although a maximum variation of ±14.4% of the elastic
behaviour is observed at the highest stress between both directions, the material of
the seal is assumed to be isotropic in the considered deformation range. Therefore, the
mean stress-strain curve serves as input for the parametric identification of hyperelastic
models developed in Section 2.3.1. Different free energy models are considered to derive
the best representation of the mechanical behaviour under large strains.
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To relate the experimental studies to the formalism of continuum mechanics,
the equations for the stresses are derived for the uniaxial loadings. Therefore, the
prescribed displacements are represented by the single stretch variable (λ) along with
the internal conditions of material incompressibility. The related deformation gradient
definition is written as:

F =


λ 0 0
0 1√

λ
0

0 0 1√
λ

 (3.1)

Since the neo-Hookean (Equation 2.112) and Mooney-Rivlin (Equation 2.113)
models are based on the first and second invariants of the left Cauchy-Green deforma-
tion tensor B = F · FT , the invariants are given by:

I1(B) = λ2 + 2
λ

(3.2)

I2(B) = 1
λ2 + 2λ (3.3)

where the third invariant I3(B) = det(B) is equal to the unity for any value of
deformation to keep the compatibility with the incompressibility condition at Equa-
tion 2.50. Apart from the isotropic assumption for the Equation 2.102, the uniaxial
stress is obtained from the boundary value problem considering that the transversal
components σ22 and σ33 are zero. Therefore, the constitutive equations in matrix form
are derived for any energy function ψ that depends on the invariants I1 and I2:

σ = 2ρ0


λ2 ∂ψ

∂I1
− 1

λ2
∂ψ
∂I2

0 0
0 1

λ
∂ψ
∂I1
− λ ∂ψ

∂I2
0

0 0 1
λ
∂ψ
∂I1
− λ ∂ψ

∂I2

− pH
 1 0 0

0 1 0
0 0 1

 (3.4)

The pressure pH , or Lagrangian multiplier, is computed by:

σ22 = σ33 = 0 =⇒ pH = 2ρ0

λ

(
∂ψ

∂I1
− λ2 ∂ψ

∂I2

)
(3.5)

and hence the uniaxial Cauchy stress is given by the following scalar function:

σ11 = 2ρ0

(
λ2 − 1

λ

) [
∂ψ

∂I1
+ ∂ψ

∂I2

1
λ

]
(3.6)

By using the relationship in Equation 2.44, the stresses can be related to the
undeformed surface element in the same way as the test results were evaluated:

P11 = 2ρ0

(
λ− 1

λ2

) [
∂ψ

∂I1
+ ∂ψ

∂I2

1
λ

]
(3.7)
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Different free energy functions are investigated with respect to the test results to
stipulate the best representation of the elastic behaviour of rubber. For this purpose,
four forms of incompressible hyperelastic models are chosen, which include the neo-
Hookean model and variants of the generalised form of Mooney-Rivlin:

• Model 1: neo-Hookean form with one parameter.

ρ0ψ = C10(I1 − 3) (3.8)

• Model 2: Mooney-Rivlin (n = 1) form with two parameters.

ρ0ψ = C10(I1 − 3) + C01(I2 − 3) (3.9)

• Model 3: Yeoh or reduced polynomial form with three parameters.

ρ0ψ = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (3.10)

• Model 4: Mooney-Rivlin (n = 2) or polynomial form with five parameters.

ρ0ψ = C10(I1 − 3) + C01(I2 − 3)
+C11(I1 − 3)(I2 − 3) + C20(I1 − 3)2 + C02(I2 − 3)2 (3.11)

These models do not take the Jacobian into account, as in Equations 2.112 and
2.113, since the constitutive relations are formulated for the incompressible case. In
the same way, the density only considers ρ0. Once the free energy functions are
differentiated by the invariants in Equation 3.7 to obtain the uniaxial stress, the model
parameters are identified while checking if the polyconvexity condition is fulfilled. A
bounded optimization problem is proposed through the minimization of the sum of
mean squared errors (MSE) between the test results and the model predictions, as:

MSE = 1
N

N∑
k=1

(
Pmodel11 (λk)− Ptest11 (λk)

)2
(3.12)

where N is the number of data-points from the mean stress curve. To check if
the model fitting is valid in a range beyond the tested strain range, Drucker’s criteria
in Equation 2.111 are employed considering a rate of deformation in a biaxial state
Dbiaxial between 0.25 and 2.5 of stretch. This consideration is described in [77], showing
that the parameter identification must be fulfilled by the following inequalities for the
model stability:

tr(Dbiaxial) > 0 and det(Dbiaxial) > 0 (3.13)
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The results presented in this work aim to evaluate the quality of the four hyper-
elastic models, according to their adherence to test results and modelling complexity.
Therefore, the parameter identification by the proposed minimisation problem was
carried out with the nonlinear algorithm NMinimize for global optimisation that is
available in Wolfram Mathematicar and employed when solving constrained problems
[78]. This approach is described in the context of experimental studies with silicone
materials to evaluate 3D printing technologies for aircraft door seal simulations [77].
Figure 3.4 shows the fitted models, which are slightly beyond the limits of the tests.
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Figure 3.4. – Fitted material models with MSE values obtained with NMinimize.

The first two models that have a linear relationship with the invariants are not
well suited to fit the curves, as they yield larger errors compared to the polynomial
forms of models 3 and 4. Table 3.1 presents the identified parameters for each model.

Table 3.1. – Identified parameters for the four material models.

Model parameters in MPa C10 C01 C11 C20 C02 C30

Model 1: neo-Hookean 0.782
Model 2: Mooney-Rivlin (n=1) 0.785 -0.003
Model 3: Yeoh (Reduced poly.) 0.649 0.200 0
Model 4: Mooney-Rivlin (n=2) 0.619 0 0 0 0.425

The standard Mooney-Rivlin form n = 1 requires at least one negative parameter
that is close to zero, which is not consistent with the polyconvexity conditions and has
a similar response to that of the neo-Hookean model. On the other hand, the stability
criteria allowed the optimization problem to reduce the number of parameters of the
polynomial forms. Both the Yeoh and the second-order Mooney-Rivlin n = 2 models
are better suited to represent the material response under quasi-static loadings. To
ascertain the representativeness of the material models under large deformations, a
uniaxial tension test until failure was conducted with one of the samples.
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Figure 3.5 shows how the material models behave up to the limit stretch of 2.5,
where the sample started to fail. Although none of the models can match the behaviour
at stretches greater than 1.5, it is possible to highlight that model 4 (Mooney-Rivlin
n = 2) is conservative enough to estimate the limit stresses under lower values of
stretching. While models 1 and 2 present stress responses below the rupture point,
model 3 diverges significantly from the experimentally observed behaviour. Therefore,
a limit of 4MPa for the engineering stress (P11) at 100% strain is established, which
is equivalent to 8MPa in the true stress (σ11) cf. Equation 3.6.
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Figure 3.5. – Stress-strain results to rupture (left) based on one sample (right).

After the sample rupture, internal layers are visible, revealing that the rupture
stress should correspond to a different location depending on the cutting direction. A
longitudinal sample was designated for the destructive tests since transversal cutting
directions presented higher stiffness. Furthermore, it is observed that the tested spec-
imen presents a slightly attenuated elastic response compared to the originally fitted
models before reaching 50% strain. Since the specimens came from new seal parts,
an internal damaging process denominated as Mullins’ effect might play a role in the
representation of the material behaviour between the first stretch and the succeeding
stretches [79]. As the FEM method of analysis proposed in Section 4 does not take
the stress histories arising from one flight cycle to the next into account, the use of
internal variables is purely dedicated to the viscoelastic modelling, as they are relevant
for a single flight and temperature variations.
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3.1.2. Relaxation process
To study the time-dependent response of seals due to a fading memory behaviour

observed in elastomers [24], relaxation tests were conducted with a single sample with-
out a previous history of loadings. No influence of the cutting directions is considered,
assuming an isotropic silicone matrix for the dissipative energy modelling. Therefore,
uniaxial tests were performed with a similar set-up as on the quasi-static tests, with
the main difference being the initial rate of deformation and the test duration. To
prescribe similar boundary conditions as in the case of door closure, an abrupt unit-
step loading with a 500mm/min deformation rate of up to a 50% maximum strain
is configured on the Zwick-Roell machine. After the loading, the sample is kept at a
constant deformation for 12 hours to cover long-distance flights of civil aircraft. Figure
3.6 shows the experimental stress results from the relaxation process, as well as the
stretch step in the course of the experiment.
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Figure 3.6. – Relaxation process with a deformation step of λ = 1.5 for 12 hours.

In this test, the maximum stress of 2.64MPa is observed, before a decrease occurs
close to the equilibrium value of 1.85MPa. At the end of the test, the relaxation is
not completely finished. While the coupon tests described in the previous Section
3.1.1 substantiate the choice of the hyperelastic material models in equilibrium, the
relaxation process aims at identifying the viscoelastic model parameters from the cho-
sen fading memory functional in Equation 2.117. It is assumed that the relaxation
process can be approximated by a series of exponential functions from Equation 2.156.
Although the initial strain rates do not correspond to the unit step function at the
beginning of the experiment, the results are assumed to be representative of the in-
stantaneous stress response. Therefore, the relaxation modulus is obtained from the
normalised stress after dividing each data point by the maximum value, which implies
the following dimensionless expression:

G(t)
G0

= 1−
n∑
i=1

gi(1− e−t/τi) (3.14)
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This approach enables estimation of the viscoelastic model parameters indepen-
dently of the modelling choice for the elastic behaviour. Since the stress response in
Equation 2.154 is derived from a Prony series corresponding to a discrete number of
Maxwell elements in parallel, a good representation of the relaxation spectrum must
be verified for a minimum number of elements. By prescribing the relaxation times τi
inside the time range of the experiment through a sequence of decades, the dimension-
less parameters gi of the normalized relaxation function is identified by minimising the
error as given by Equation 3.12. This leads to a more simplified way of formulating
the nonlinear optimisation problem to determine the material parameters [80]. Figure
3.7 presents the fitted series of Prony according to the pair of terms (2× n) with the
mean squared error (MSE) results found by NMinimize:
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Figure 3.7. – Relaxation modulus from test data to fitted kernel functions.

Table 3.2 shows the identified coefficients for a set of predefined relaxation times:
Table 3.2. – Identified coefficients for the linear viscoelasticity models.

gi coefficients τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8
for τi in sec. 10−2 10−1 1 10 102 103 104 105

n = 5 0 0.0368 0.0085 0 0.1582
n = 6 0 0.0412 0.0680 0.0595 0 0.1141
n = 7 0 0.0411 0.0686 0.0521 0.0499 0.0247 0.0575
n = 8 0 0.0415 0.0673 0.0556 0.0423 0.0358 0.0402 0.0406

The model error is reduced as the coefficients take long relaxation times into
account. Since for values of τi below 0.1 seconds, the dimensionless coefficients of gi
are found to be equal zero, seven Maxwell elements in parallel are sufficient according
to n = 8. Therefore, a total of 14 parameters with relaxation times between 0.1
and 105 seconds are representative of the time-dependent seal modelling at ambient
temperature conditions of 20◦C.
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3.2. Modelling assumptions
Since the tests were conducted with samples derived from a specific manufacturing

process of injection moulding, other types of crosslinking or fibre reinforcements may
have an impact on the mechanical behaviour [81]. Some assumptions were made
about the material modelling if different silicone matrices and room temperatures
were employed during the experiments. It may affect the elastic and visco-elastic
response which is further investigated by the DOE for the seal analysis.

3.2.1. About the seal hardness
The relationship between the modulus of elasticity and the shore hardness of

rubber [82] was initially employed to derive the obtain elastic properties of the silicone.
According to Gent [83], it has a good correlation with Young’s modulus estimation
through the Shore A hardness, making it possible to estimate the range in which the
parameters of the hyperelastic model may vary according to the specifications of the
silicone from the supplier. The following equation derived by Gent is widely used for
the linear modulus of rubber based on values measured with the durometer in degrees:

E(SHA) = 0.0981(56 + 7.62336SHA)
0.137505(254− 2.54SHA) [MPa] (3.15)

Figure 3.8 displays a range in which the correlation can be employed for rubber:

E
(S

H
A

)
[M

Pa
]

SHA [deg.]

1.2

1.0

0.8

0.6

0.4

0.2
20 30 40 50 60 70 80

Figure 3.8. – Gent’s relationship between Young’s modulus and hardness.

According to the specifications of the seals used for aircraft doors, a range of SHA

from 40 to 65 degrees is used. As the requirements of cabin pressure or closing mecha-
nisms dictate these limits, variations in the Shore hardness are a rapid and inexpensive
way to characterise how stiff the design is. By measuring the shore A hardness of the
samples, an average of 56 degrees was obtained, resulting in an approximated Young’s
modulus of 3.154 MPa from Gent’s equation.
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To compare the linear modulus with the material parameters of hyperelasticity
models, the uniaxial stress should be derived with respect to the stretch under the
assumption of small strains. The Mooney-Rivlin polynomial model with the smallest
error is carried out, depending on C10 and C02:

ρ0ψ = C10(I1 − 3) + C02(I2 − 3)2 (3.16)
By the definition of the first Piola-Kirchoff Equation 3.7, the uniaxial stress is

written:

P11 = 2C10
(λ3 − 1)
λ2 + 4C02

(2λ+ 1) (λ3 − 1) (λ− 1)2

λ5 (3.17)

Differentiating it and carrying out λ→ 1, the linear expression is obtained:

E = dP11

dλ

∣∣∣∣∣
λ=1

=
(

2C10
(λ3 + 2)
λ3 + 4C02

(2λ6 + 2λ3 − 9λ2 + 5)
λ6

) ∣∣∣∣∣
λ=1

= 6C10 (3.18)

Applying the parameter identified for the model C10 = 0.619MPa, the initial
modulus of 3.714MPa is obtained. This result is slightly superior to that obtained
using Gent’s equation due to the presence of fibre reinforcements. Thus, the Equation
3.15 is modified to obtain the exact parameter C10 = 0.619MPa at SHA = 56 as:

C10 = E(SHA + 4.74)
6 = 0.356872SHA + 4.31309

95.26− SHA

[MPa] (3.19)

The second material parameter C02 = 0.425MPa is not present in the linear ex-
pression 3.18 and it is assumed unchanged. Figure 3.9 shows uniaxial stress curves
resulting from the estimation of model parameter C10 and hardness range.
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Figure 3.9. – Stress curves based on different hardness degrees for door seals.

In the analysis sections, the seal hardness is considered as a design variable to be
investigated with regard to the influence of the sealing performance. An extrapolation
of the parameters is comparable to studies employing the Mooney-Rivlin forms for
silicone applications in the literature [84, 85, 86, 87].
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3.2.2. The influence of temperature
The experimental investigations presented prior to this section are valid for the

characterisation of pure mechanical loadings in ambient temperature conditions. To
transfer the mechanical behaviour of the seal at room temperature to other temper-
atures, which are relevant for the aircraft, the WLF function in Equation 2.159 is
considered to estimate the relaxation times for different temperature ranges. The con-
stants Cg

1 and Cg
2 are found in practice through temperature sweep tests using a master

curve fitting [26]. In view of the relevant temperature range for the seals, above the
glass transition temperature it is possible to employ the ’universal’ WLF constants
Cg

1=17.44 and Cg
2=51.6K, which are often used due to the lack of experiments [88].

According to references on polymers and their physical properties [89, 90, 91, 92, 93],
the glass transition temperature of silicone rubber is in a range of between −135◦C
to −120◦C. In the case of atmospheric conditions relevant for civil aircraft, the lowest
temperatures are approximated at −55◦C in flight at altitudes of 35 000ft [94, 10] and
extreme ground climates. To take the effect of the temperature on relaxation time
shifting into account, a glass transition temperature of θg=−60◦C is chosen to remain
slightly bellow the limit conditions found in door seals. Thus, the values adopted for
the WLF equation are C1=6.84 and C2=131.6◦C, after calculations with Equations
2.161 and 2.160 from a reference temperature θ0 of 20◦C approximately measured dur-
ing the relaxation tests. These arbitrary parameters do not deviate significantly from
the experimental findings for silicone rubber in the work of Yoon and Siviour [95].
Figure 3.10 illustrates the effect on the relaxation modulus by employing the WLF
function to account for the influence of temperature.
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Figure 3.10. – Relaxation modulus employing the WLF shift function.

It is anticipated that the seal performance might be affected under both positive
and negative temperature variations between flight cycles due to the seal relaxation
time shift. Since the WLF function should be limited to θg+100◦C for many polymers
[96], a temperature of 50◦C is considered to account for hot ground conditions.
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4. Seal FEM analysis
The following sections present the important FEM model inputs of an aircraft

door seal design as well as the related analysis steps. For the boundary value problem
with an incompressible material, a hybrid element formulation is employed for the
discretisation of a concept geometry. A suitable element formulation is chosen from
ABAQUS library to account for the test’s representativeness and temperature depen-
dency. To establish the minimum number of elements in the seal, a mesh convergence
investigation is performed with Grid Convergence Index (GCI) criteria [97]. The anal-
ysis steps are split into mission events, such as door closure, take-off and landing, with
a combination of pressurisation and manoeuvres, by providing a standard flight profile
of a civil aircraft. The loads that have a direct influence on the seal system are defined
based on contact interactions, prescribed displacements and distributed loads from the
cabin pressurisation. In addition, the seal temperature is directly modified on each
element according to ground-air-ground steps to avoid heat transfer simulations and
keep a purely mechanical problem the displacement-based results.

FEM solutions have limitations, either due to convergence issues of the implicit
solver or the complexity of coupling thermal and mechanical problems [98]. Neverthe-
less, the commercial software ABAQUS allows the problem to be split into multiple
independent analysis steps, according to the physical quantities that are necessary for
the solution. Specifically for seal simulations, the main advantage of the software is
the application of distributed loads through the FPP interaction [5]. For the heat
exchange between the cabin and atmosphere at the door contour, simplifications are
made by considering a no-temperature gradient over the seal cross-section. Conse-
quently, the solver configuration in ABAQUS can be changed between quasi-static
and dynamic steps to keep convergence along the analysis, while keeping steady-state
conditions for the temperature transitions. Nevertheless, the possibility of integrating
the simulation sequences for multiple flight conditions using the ISIGHT tool is an
important feature to set up different loadings in Chapter 5.

The seal performance is derived from pass-failure criteria for leakage based on
FEM outputs, founded on contact stresses. Furthermore, other outputs such as the
reaction force for section compression and the residual displacement after a creep phase
are used to evaluate the design from a multi-objective perspective. To cover a larger
number of design variables, 2D plane strain are assumed to reduce the calculation time
for a large amount of simulations. Although the proposed methodology is applicable
for straight sections of the seal, which cover the majority of a door sealing system, it
is not valid for more complex 3D simulations for the corner locations [74].
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4.1. Premises of the model
Regarding the 2D modelling approach for the straight sealing sections of aircraft

doors, the minimum number of parts that establish a sealing interface is the seal and
the striker. The design philosophy for each part may reflect how the door kinematics
operates, as previously illustrated in Figure 1.2. It is often necessary to use adjacent
structures, such as retainers, to stabilize hollow section seals under cabin pressure.
However, reinforcing the sealing interface through seal design choices should be feasible
without adding stiff components. The striker that forms part of the rigid door contour
structure must compress the seal and not clash with any rigid parts of the door. For
the placement of the seal, an available area of ca. 50x50mm is estimated around the
door contour, given the boundaries between the frames and the skin edges. To consider
a simple design whose dimensions are easily set to Computer-Aided Design (CAD), a
prototype is reiterated from previous studies with FEM analysis of seals [77], as shown
in Figure 4.1.
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Figure 4.1. – Seal prototype (solid) and rigid striker (dashed) cross sections [77].

The striker is long enough and centred on the seal cross-section, keeping a clear-
ance to the door skin in the nominal closed position. All of the radii transitions are set
to 2mm between the seal wall along the cross-section and the hollow inflatable areas of
the seal and the red dimensions added to the sketch are kept constant for all analysis
sections. To operate with the initial values of a prototype, the seal design variables
are conceived following the inputs in Table 4.1. These values are revised in Chapter 6
using Parametric Optimisation for the improvement of the seal performance.
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Table 4.1. – Initial design values for the seal prototype.

Design parameters Description Initial values
tL, tR, tT Thickness (seal wall) 2.0mm
HL, HR Height (seal wall) 40.0mm
hL, hR Height (lip feature) 3.0mm
θL, θR Angle (seal wall) 75◦
wB Width (seal bottom) 12.5mm
µ Friction coefficient 0.25

From the information provided it is apparent that an unconventional design vari-
able has been considered, namely the coefficient of friction between the seal and striker
surfaces. The way in which nondimensional variable can be changed is related to the
addition of anti-adherent layers, which often do not play a structural role in the me-
chanical behaviour of the seal. However, it is regarded as a finishing aspect of the
material design rather than a mechanical property. In Chapter 5 related to the DOE,
the coefficient of friction is modified to check its influence on the FEM results.

4.1.1. Boundary conditions
The boundary conditions in the FEM model are defined relative to the seal refer-

ential, which means that the seal does not move in space. Usually, aircraft seals are
located on the door’s side, which in turn perform translational and rotational move-
ments around the fuselage during opening and closing. For reasons of simplification of
the prescribed displacements, it is conventionally defined that the rigid striker located
on the side of the fuselage translates the door kinematics instead of the elastic seal
body. For proper modelling of straight sections of the seal, plane strain conditions are
important for the 2D element formulation. On the other hand, the striker is taken as
a rigid body because it has a considerably higher modulus of elasticity compared to
rubber. Additionally, in ABAQUS, 2D rigid parts can be created either by a meshing
with lines elements or analytically using two lines and a semicircle. Due to the simplic-
ity of the striker geometry, an analytical rigid body is preferable for the contact pairs
of the surface formulation. Therefore, the relative displacements are prescribed to a
single reference node where the rigid striker is connected in all degrees of freedom. The
closure kinematics is specified as a movement in the y-direction of the cross-section,
up to a minimum clearance of 13mm from the fixed door attachment. Further relative
motions in either the x- or y-direction are given according to the flight mission events
or rigging tolerances. Door displacements Ux and Uy are variable inputs, while the
rotational degree of freedom is considered fixed. Therefore, a reversed local coordinate
relative to the global system is placed on the striker reference node.
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In addition to the prescribed displacements, contact interactions play a funda-
mental role in the sealing problem. From all the nonlinearities highlighted for the
modelling so far that are intrinsically geometric or related to the material, the con-
tact problem must be processed with greater care to reach an acceptable numerical
solution [74]. In the case of contact between deformable bodies, the relationship be-
tween stresses and displacements may be disturbed, which affects the calculation of
the tangent matrix for the implicit scheme. This leads to a gradual reduction in the
integration increments, which eventually may exceed the limiting number of attempts
to obtain a feasible solution. In ABAQUS, the maximum displacement and force incre-
ment criteria add more constraints to the solution [5]. For the considered seal analysis,
a maximum value of 20 attempts was set, which increases the chances of getting a valid
iteration. The default value in the software is 5. Another way to overcome divergence
is by adding numerical damping to the solution, which is not recommended since it
removes elastic energy from the system. To avoid these issues, simulations are defined
with intermediate dynamic steps when static solution is not feasible.

To save some time in the solution of a contact problem, predefined pairs of surfaces
are better suited than a general algorithm for surface detection. Furthermore, certain
interactive features can only be explored by using a surface-to-surface algorithm, e.g.
FPP, which is very important for an appropriate cabin pressurization prescription.
Among the properties chosen for contact interactions, the same friction coefficient is
set for all pairs of surfaces using the penalty method. Figure 4.2 displays the seal
and the striker with a set of 4 surfaces used in the implementation of the boundary
conditions, including the self-contact and the pressure load.

Ux

Uy

Atmosphere Cabin side

Fixed door attachment

S1 S2

S3

M1

x

y

Figure 4.2. – Contact interactions with 3 slave surfaces on the seal and 1 master
rigid striker surface (Pairs: M1−S1 (FPP) andM1−S2; Self contact: S1 and S3).
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The slave surfaces S1 and S2 are paired with the master surface of the striker M1,
while all the slave surfaces of the seal, including the inner wall S3, have self-contact
interactions. It is conventionally stipulated that the cabin side is to the right of the
seal and the atmosphere to the left, while the striker reference node is placed at the
centre of the semi-circle to prescribe the displacements Ux and Uy. The boundary
conditions are often not applied simultaneously according to the order of the loading
cases for a correct representation of the physical problem. To apply the cabin pressure,
the seal must be previously compressed. It is necessary to identify the areas where
the seal should be under cabin pressure. Usually, in linear problems, the distributed
loads do not move or rotate. However, the sealing problem is the perfect example of
nonlinearities that are even extended to the force load definition. The difficulty to ap-
ply cabin pressure to elastomeric seals has been addressed in another publication [74].
Notably, the FPP interaction is the most suitable method for the pressure applica-
tion of seal problems. If the pressure is applied with the standard distributed loading
method (DLOAD) the boundaries would be able to translate according to the striker
boundary the between cabin and the atmosphere. Before the striker compresses the
seal, it is not possible to decide, which part of the boundary surface is pressurised and
which part is not, thereby rendering it difficult to assume where the pressure must be
taken. Fortunately, the function behind FPP updates the loads from a known refer-
ence point and penetrates the forces from the pressure until a contact boundary on the
slave surface is reached. This process occurs along each time increment to take into
account the contact changes. The algorithm requires only two parameters: one is the
penetration time to gradually update the interaction and the second is the magnitude.

• Relevant aspects concerning the Fluid Pressure Penetration (FPP):

To correctly operate with the FPP feature, the pressure loads should be applied
on the external surfaces (S1) with the negative sign rather than on the cabin area
(S2). The sign of the pressure assigns the direction in which the forces are applied.
When it is positive, it orientates the distributed loads in the opposite direction to
the element surface normal. If the pressure is applied from the cabin side, it must
be considered positive since the gradient of pressure points to the atmosphere side.
Alternatively, a negative pressure with the same magnitude is also true from the other
side, accounting for the pulling forces on the atmosphere. This second option is found
to be simpler, since it avoids the creation of an additional distributed load on the
hollow area for the seal’s inflation and works better with FPP in ABAQUS. Once
the cabin pressure increases, the seal slides towards the atmosphere. When the cabin
pressure is positively prescribed on the cabin side, if one element with applied pressure
penetrates through the striker barrier, the algorithm applies the load over all external
walls of the seal. This often leads to the false conclusion of air leakage by only reading
the outputs. If loads are applied from the atmosphere side, the algorithm works as
expected, creating a tractive load to the new surfaces of the elements that cross the
striker contact line, while maintaining the cabin side with zero pressure.
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Although FPP is a built-in feature in ABAQUS, it is only available for the general
implicit analysis that provides static solutions. The need for a dynamic counterpart
for the analysis was highlighted in a study of FEM simulations with elastomer seals
under cabin pressure [74]. In the case of seal collapse or post-leakage scenarios, when
the seal slides under the door striker, the profile does not have sufficient stiffness to
remain stable. The failure mechanism by the collapse of the seal occurs during in a
quick process that has no margin to reach equilibrium when the structure contact is
lost. Dynamic solutions accounting for the inertia of the system are certainly needed
and must incorporate pressure loads that are representative of the seal physics. Re-
markably, it is possible to induce the software to carry the FPP interaction even for
thermally coupled and dynamic solutions if a general static step prior to this creates
the interaction. By resorting to the dynamic solution only when the sliding motion is
prone to occur, it is possible to use FPP for the cabin pressurisation and save time
in the simulations. The FEM model is adjusted to keep the transient material be-
haviour active for creep and relaxation at any stage of the simulation. Furthermore,
the temperature is modified during the same steps where the pressure load is changed
and it motivates the use of a multi-step analysis solution from ABAQUS to properly
represent all the boundary conditions involved in the sealing problem.

4.1.2. Analysis steps
Figure 4.3 draws a flight mission profile in a timeline marking when the displace-

ments, altitude, pressure and temperature are changed during different events.
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Figure 4.3. – Mission profile of a civil aircraft.
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During the transition between the ground and flight, the differential pressure is
applied with ramp steps according to the altitude. At the cruise altitude of 30 000ft,
the cabin pressure has a set value of 470mbar, which corresponds to a ∆P value
of 0.0470MPa in the unit system of the analysis [94]. Analogously, the atmospheric
temperature changes during the climbing phase, although the ground origin and des-
tination temperatures could be different. Thus, three temperature levels T1, T2 and T3
are set depending on the weather conditions at sea level and high atmosphere cruis-
ing speed. Another variable affected by flight events is the relative striker position,
which starts from the point of door closure and can change due to the pressurisation
and during the flight manoeuvres. Depending on the fuselage stiffness and rigging
tolerances, the striker displacements Ux and Uy may differ from the nominal position
for each aircraft of the fleet starting from the door closure configuration. While the
pressure is a defined asset for the seal system, the temperature and striker relative dis-
placements are not simply fixed, but rather are affected by external disturbances. In
Chapter 5, both temperature and displacements are provided in an acceptable range
for hypothetical flight profiles.

The FEM model is built in a sequence of analysis steps to simulate the events of
any given mission. It is not possible to carry out a dynamic simulation directly after
a thermal-displacement coupling in ABAQUS. For this purpose, visco solutions (tran-
sient static) are added in between each step to shift between thermal and dynamic
conditions. Fundamentally, visco and coupled temperature-displacement analysis are
static solutions that take the time-dependent behaviour of the material for creep and
relaxation into account and which are essential for applying the cabin pressure am-
plitude and the temperature boundary conditions, respectively. The implicit dynamic
steps are necessary for the analysis sequence to overcome convergence issues when
accelerations are relevant for the system response, e.g. seal collapse. Table 4.2 lists
the sequence of the loading steps, as well as the time for each calculation in seconds
that is integrated based on the multi-step implicit integration scheme.

Table 4.2. – Analysis sequence of a flight mission with time step durations.

# Description ABAQUS Step Displacement Temperature Pressure Time [s]
0 Ground (Initial) Created Created 0
1 Door closure Dynamic Modified Propagated 11
2 Taxiing Visco Propagated Propagated Created 600
3 Take-off Temp.-displ. Modified Modified Modified 1 800
4 Cruise Visco Propagated Propagated Propagated 18 000
5 Manoeuvre Dynamic Modified Propagated Propagated 60
6 Cruise Visco Propagated Propagated Propagated 18 000
7 Landing Temp.-displ. Modified Modified Modified 1 800
8 Taxiing Visco Propagated Propagated Propagated 600
9 Door opening Dynamic Modified Propagated Propagated 11
10 Parked Visco Propagated Propagated Propagated 1 800
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The first analysis step is used to initiate the ground conditions at time zero. The
dynamic phases of the analysis occur when there are large relative displacements of
the striker during short time intervals, such as during door closure and opening (11s)
or a flight manoeuvre event (60s). The take-off and landing phases last 30 minutes
(1 800s) each and modify the pressure, temperature and relative striker displacements
with amplitude ramps according to the altitude level. When the three types of loading
are modified, the temperature-displacement coupling is required. Between altitude
transition phases, a long flight with a cruising time of 10h (2×18 000s) is considered
to be solved by the static (visco) transient response for seal relaxation. Taxiing times
are approximated to 600s for ground phases, with 1 800s in total additional waiting
for the aircraft parked at the end of each mission. Whenever a boundary condition
is propagated, the same values are retained from previous analysis steps. As there is
no history dependence from one flight to another, the analysis stresses are calculated
within a standardised flight mission of 11 hours 51 minutes 22 seconds. Despite the
restrictions of combinations between the analysis steps, the software allows for the
transfer of the state of stress and strain even between different solutions. Additionally,
the temperature results are transferred to the Gauss points even for solutions where no
thermal analysis is involved for visco and dynamic steps. This is very important since
the seal temperature affects the relaxation times of the selected viscoelastic model.
Ideally, thermally coupled dynamic responses that allow the application of the cabin
pressure with the FPP would be an effective solution for the seal analysis to cover
the entire flight spectrum. However, the fully coupled thermal-stress analysis does not
consider inertia effects, which are useful for the convergence of the analysis.

The proposed sequence of implicit solutions is an improvement on a previous
work that used numerical approaches to overcome divergence problems regarding elas-
tomeric door seal simulations [74]. Generally, the implicit scheme performs iterations
with Newton’s method to balance the equilibrium equations presented in the weak
form in Section 2.2. Instead of using artificial damping parameters to reduce the
residuals of the static solution, the analysis step sequences rely on the dynamic im-
plicit scheme to reach convergence of steps 1, 5, and 9, where accelerations are relevant.
According to the available dynamic implicit scheme [99], the numerical dissipation is
less than 1% of the total energy. This introduces fewer errors compared to results
from seal simulations where more than 6% of the total model energy was dissipated
to stabilise the static analyses. If the solution is divergent in steps 3 and 7, the results
are explored to predict seal failures, such as collapse and leakage. Since these steps
vary the pressure load and striker displacement due to fuselage deformations, they are
prone to induce seal slippage, which leads to statically unstable conditions. Section
4.3 presents the seal failure criteria for the performance evaluation of different designs.
As the seal analysis is based on FEM results, output parameters such as the contact
pressure (CPRESS), reaction force (RF), principal stress (S) and final displacement
(U) are stored for the analysis steps 1 for door closure, 3 for take-off, 4 and 6 for
cruising, 5 for manoeuvring and 10 for the parked aircraft.
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4.2. Element suitability
From the identified material parameters, a single-element study is conducted to

check whether the numerical solution can reproduce the relaxation test results. Table
4.3 condenses the parameters given to each FEM model.

Table 4.3. – FEM material model parameters given to ABAQUS.

Hyperelasticity Poly. (n = 2) Visco-elasticity WLF
C10 C02 gi τi θ0

[MPa] [MPa] [-] [sec.] [C◦]
0.619 0.425 0.0415 0.1 20

0.0673 1 C1
Miscellaneous 0.0556 10 [-]

Density Conductivity 0.0423 100 6.84
ρ0 k 0.0358 1000 C2

[ton/mm3] [W/(m.K)] 0.0402 10000 [C◦]
1.12E-09 1* 0.0406 100000 131.6

Most of the values shown above were introduced in Chapter 3, except for of
the heat conductivity (k). This parameter is required for heat exchange problems.
However, since the temperature is directly prescribed for all elements, the solution
of a heat transfer problem is avoided, which means that the heat conductivity plays
no role in the solution. For the analysis with the FEM tool, this supplementary
parameter is irrelevant and is set to 1. On the other hand, the material density
(ρ0) is converted to tons per cubic millimetre values to maintain consistency with SI
units in millimetres. Given the additional conditions required for incompressible and
thermally coupled models, a hybrid formulation for the hydrostatic pressure is required
when the compliance parameter of the Mooney-Rivlin model is set to zero (D1 = 0).
For temperature, the integration points are disregarded in the numerical solution and
are only used for prescribed values. In the ABAQUS element library [5], the following
formulations are employed for the models featured in this work, depending on whether
the problem is set up as 2D or 3D, respectively:
• CPE4RHT: 4-node bilinear plane strain thermally coupled quadrilateral, reduced

integration, hybrid, constant pressure and hourglass control.

• C3D8RHT: 8-node thermally coupled brick, trilinear displacement and tempera-
ture, reduced integration, hybrid, constant pressure and hourglass control.

Both formulations have a reduced integration that automatically employs an hour-
glass control [100], which is a common feature for reduced integration. Although an
in-depth exploration of FEM theory is not of interest to this work, it should be high-
lighted that this choice avoids shear and volumetric locking issues with fully-integrated
elements [101].
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For verification purposes with a uniaxially loaded element, a unit cube with all
edges equal to 1mm and the C3D8RHT formulation is suitable for relaxation test
comparisons. The boundary conditions are fixed for 3 perpendicular faces of the
element in the X, Y and Z directions while in the remaining X face the displacements
are prescribed according to the relaxation test presented in Section 3.1.2. Figure 4.4
shows the contour plots of displacement (U) and stress (S):
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Figure 4.4. – Unit cube element outputs from the relaxation step.

The standard stress outputs from ABAQUS are given in terms of the Cauchy
stress. The test results are converted into the current configuration against time on a
logarithmic scale to compare with the test stress data shown in Figure 4.5:
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Figure 4.5. – Comparison of the stress from the FEM and relaxation test data.
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Although the single-element model does not show the pronounced stress peak af-
ter the 50% strain step, the long-term response matches the test data very well. Part
of this error could be due to the relatively large time increment values adopted by the
solver after 0.1s, which are given by tolerances of the implicit integration scheme. Nev-
ertheless, for seal analyses the equilibrium stresses are more important since relaxation
has an effect on leakage and it is sufficient to adopt the hybrid element formulation
with the application of the identified material model parameters for incompressible
hyperelasticity and finite linear viscoelasticity.

Mesh convergence

For FEM modelling, it is crucial to define a discretization level based on the
convergence of the model outputs. As mentioned, the seal model has a large number of
nonlinearities that require attention to ensure the reliability of the numerical results.
In the case of contact interactions, the mesh size influences the contact pressures,
which are used for the analysis of the seal performance. A well-known procedure
for grid refinement considered for numerical simulations derives from Richardson’s
generalised extrapolation theory [102]. The method described by Roache [97] is used
to estimate the error of the FEM simulations that must converge within a sequence of
three uniform element refinements. For this study, the seal cross section is continuously
refined starting with two elements along the seal’s thickness (grid 1), to four elements
(grid 2), until it reaches eight elements (grid 3). Equation 4.1 is used to incrementally
calculate the extrapolated solution (Oe) for uniform refinement step outputs (Oi) with
a ratio of 2 between the edges of the elements from one grid size to the next:

Oe = Oi + Oi+1 −Oi

2p − 1 (4.1)

where p is the order of convergence calculated after three grid outputs:

p =
ln
∣∣∣O1−O2
O2−O3

∣∣∣
ln(2) (4.2)

A GCI is assigned from a consistent uniform mesh refinement procedure to verify
that the output results converge to an extrapolated solution. Equation 4.3 calculates
the convergence index for each step:

GCIi = Fs

∣∣∣∣Oi −Oe

Oe

∣∣∣∣ (4.3)

where the absolute error between the extrapolated solution and the outputs from
a considered mesh size is multiplied by a safety factor (Fs) of 1.25. This value is
recommended by the literature to estimate a confidence interval of 95% from three
levels of uniform refinement. If only two grid refinements are used, a safety factor of
3 should be employed [97] to maintain acceptable CI.
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Lastly, a final check of the convergence method is performed for the GCI progres-
sion based on the last two grid refinements. The output of the Equation 4.4 should
be close to 1 to ensure that the solution is converging for any given FEM output:

r = CGI2
CGI3

1
2p (4.4)

If this value is outside the range from 0.9 to 1.1, the extrapolated solution is not
asymptotic and the element size should be further refined for comparisons. Figures
4.6 and 4.7 display the selected model outputs that are relevant for the seal analysis.
The first simulation step of door closure is considered with the seal compressed up to
50% of the maximum striker displacement in the y-direction. This initial study was
conducted to achieve a simple visualisation of the contact boundary in a single region
of interaction between the seal and the striker. For higher door closure displacements,
more contact regions are prone to appear around the lip areas.
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Figure 4.6. – Logarithmic strain (LE) and reaction force (RF) on the rigid striker.
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It is observed that the strain increases with a finer grid, while the reaction force
deceases due to the better representation of the bending through the seal wall. The
contact pressure output is dependent on the element area and must be well represented
for small areas of interactions over the semi-circle region of the striker. By applying
Richardson’s extrapolation for each of the model outputs, the solution error is esti-
mated based on the GCI calculation from a uniform element size reduction. Table 4.4
shows the convergence results for the given outputs.

Table 4.4. – Mesh convergence results from FEM outputs used for seal analysis.

Output
variable

Grid
(i)

Edge
size [mm]

Output
value (Oi)

Index
(GCI)

CGI
check (r)

Extrapolated
solution (Oe)

1 1.00 0.10 -
2 0.50 0.14 19%

Logarithmic
strain
LE [-] 3 0.25 0.16 6%

1.099 0.163

1 1.00 0.35 -
2 0.50 0.20 14%

Reaction
force

RF [N/mm] 3 0.25 0.18 2%
0.900 0.177

1 1.00 0.141 -
2 0.50 0.174 10%

Contact
pressure

CPRESS [MPa] 3 0.25 0.184 3%
1.057 0.188

The results show that it is possible to extrapolate the solution from each model
output through a uniform refinement with the three meshes. Furthermore, by taking
8 elements through the seal thickness, a maximum error of 6% should be expected,
when considering the GCI of the logarithmic strain. In addition to the convergence
criterion, it is reasonable to consider the calculation times involved in the simulation:
14.1 seconds for grid 1, 23.1 seconds for grid 2 and 36.8 seconds for grid 3. Due to
large number of simulations required for the DOE, it is expected that the simulation
time might be longer. Although the time increase of 60% is relative to grid 2, a
fine mesh coming from grid 3 is considered for the subsequent seal analyses. Due to
the proximity to the boundary conditions in the door attachment region, a coarser
mesh is employed since it does not affect the global model outputs. Furthermore, two
processors were dedicated to the CPU calculations among the 10 available physical
cores. This facilitates running up to five analyses in parallel without impacting the
duration of each simulation. It was observed that there is no significant gain when
all cores are allocated for a single simulation. For information purposes, the FEM
simulations were realised with standard job definitions on an Intel(R) Xeon(R) W-
2155 CPU with a 3.30GHz processor, without GPGPU deployment for acceleration.
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4.3. Seal performance
After evaluating the quality of a fine mesh based on the model outputs, the

analysis criteria for seal performance investigations are derived from the simulation
results. There is no consensus about how the seal analysis should properly rely on
numerical modelling. While FEM is generally employed for component sizing under
development, for aircraft doors, experimental validations are mandatory by certifica-
tion agencies [103]. Although the criteria presented here emerge from the operational
requirements for aircraft doors, seal simulations in the automotive industry have often
sought to establish stable contact conditions by balancing with the handling forces
induced by the cross-section compression [104]. As the finite viscoelastic model is
employed to model the inelastic behaviour of the elastomer, the analysis results must
be properly supported by the output result histories. Certain outputs, such as the
reaction force and the safety factor for seal rupture, are directly obtained from the
maximum envelope for specific simulation steps. A residual displacement criterion is
further added to evaluate the relationship between the material model and different
temperature conditions at the end of the flight. For the overall description of a good
design, leakage and collapse are the main indicators of the efficiency of a seal. In an
attempt to describe how the seal performance is obtained, the following subsections
make use of graphical representations of FEM simulations under specific loading con-
ditions. The main drivers used for the design evaluation are the closing reaction force,
leakage criterion, seal collapse, stress safety factor, and residual displacement.

4.3.1. Reaction force
The reaction force required for door closure is the first indicator of the seal’s

performance under operating conditions. The model that is used represents the seal
under plane deformation conditions with a unit thickness that is converted from N/mm
to daN/m by a factor of 100, which is commonly represented in seal catalogues [105]:

Force = 100×max (RF(t))
[
daN
m

]
(4.5)

Due to the time dependence of the forces induced by the viscoelasticity of the
material, the measurements are taken within the analysis time steps 1 and 2. Since
ground temperature and taxiing time before take-off may play a role in the FEM out-
puts, different boundary conditions must be considered. With a constant closing speed
of the door, the maximum forces in the first two analysis steps are relevant for this
initial evaluation of the cross-section compression. Subsequently, different mounting
conditions involving the rigging tolerances of the door in the x and y directions should
be considered to check their influences on the forces. With the striker positioned in
its nominal position, the first studies are presented to illustrate the seal relaxation in
response to different levels of ground temperatures (T1).
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Figure 4.8 shows the reaction forces measured with FEM under different temper-
atures between -30◦C and +30◦C with 20mm of seal compression after 30min:
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Figure 4.8. – Reaction force measured over 30min with peaks at first 10s.

The finite linear viscoelastic model presents differences in the peak values from
the maximum force according to the ground temperature. Although the instanta-
neous elastic responses are mathematically identical for a deformation step with an
infinite strain rate at any temperature, the relaxation times of the Maxwell models
are directly influenced by the WLF equation. In the rheological representation of
the material behaviour, the dampers of the Maxwell elements behave more viscous at
lower temperatures. When considering realistic values of strain rate, the distinction
due to the shift is more evident, as the reaction force peak is not solely dependent on
the maximum strain value. However, it should also be noted that the maximum seal
deformation is influenced by the initial rigging conditions set at step zero. Figure 4.9
shows the influence on the reaction forces when varying the rigging conditions for the
same temperature of +30◦C after prescribing 20mm of displacement in the y-direction.
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Figure 4.9. – Reaction force influences of rigging tolerances.
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4.3.2. Leakage criterion
Air leakage in seals is simply presented as a qualitative measure relating dif-

ferential cabin pressures and contact stresses at the seal interface. In the field of
fluid-structural interaction, it is possible to model the dynamics between air particles
and mechanical structures using techniques such as Coupled Euler-Lagrange (CEL)
[38], which involves a high degree of complexity compared to the assumptions placed
on the modelling of an elastomeric seal. Furthermore, numerical studies regarding
the fluid percolation [36] of the contact area between elastic solids showed how fluid
squeeze-out depends on the contact pressure distributions. Remarkably, publications
about elastic leakage in aircraft seals [35, 106] display a good correlation with em-
pirical models based on contact pressure to estimate the air leakage rate on the door
surroundings. For these cases, experimental validations are necessary to fit specific
parameters for the contact mechanics since the leakage depends on the interface ge-
ometry as well as on the roughness of the surfaces. Nevertheless, leakage is related to
how far apart the contact surfaces or interface forces are distributed in a pressurised
system. While it is valid to check whether leakage occurs due to a lack of contact
between the striker and seal over the FEM result history, it is necessary to establish a
continuous measure of leakage-related performance to judge different design solutions.
Therefore, the following dimensionless index based on contact pressure (CPRESS) is
employed to gauge leakage between flight analysis steps 3 to 7:

Leakage =
max

∣∣∣PPRESS(t)
CPRESS(t)

∣∣∣ for |PPRESS(t)| ≤ CPRESS(t)
1 for |PPRESS(t)| > CPRESS(t)

(4.6)

where PPRESS is the FPP output that corresponds to the differential pressure
of the cabin assigned to the FEM model. Similar to the reaction force, the leakage
criterion is evaluated using the entire history of the simulation results. The values
obtained for this performance parameter vary in a range between 0 and 1 and are
1 when the contact stress equals the cabin pressure. Eventually, when the contact
pressures are lower than the cabin pressure, or are zero, the leakage is limited to the
value of 1 as well. This criterion is also related to the seal collapse check in which the
seal is unable to recover its contact with the striker. The purpose of relating contact
and fluid pressure works as an indirect measure of leakage, as it is not directly con-
verted to airflow rates. Thus, the maximum leakage value is used as a performance
quality parameter throughout the different flight stages (take-off, cruise, manoeuvres
and landing). An operation in terms of absolute values is used to normalise the cabin
pressure applied negatively on the atmosphere side. The leakage criteria are influ-
enced by rigging tolerances, relative striker displacements, the coefficient of friction,
the mechanical properties of the seal, as well as the temperatures before and during
the flight. The following sequence of figures serves to illustrate the leakage criteria
evaluation by taking the pressure loads against contact pressure within the analysis
history into account.
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Figure 4.10 presents the initial states in which the differential pressure starts in-
creasing, thereby creating a gradient between the atmosphere and cabin environments.
Here, some simplifications were made by taking a fixed displacement of the striker at
the nominal position without influences from the fuselage deformation. The tempera-
ture is taken as +20◦C while the friction coefficient is defined as 0.2. In this instance,
it is noticeable that the ratio between PPRESS and CPRESS is low, since the cabin
pressure is only 0.008MPa, resulting in a leakage index of 0.034.
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Figure 4.10. – First instants after the cabin pressure starts to increase.

Figure 4.11 shows the seal pressurised up to the value of ∆P = 0.047MPa. Due
to the design choice of an inflatable seal, it benefits from the pressure inside its hollow
section to increase the contact forces. Remarkably, it can be seen that the seal has
slipped in the negative x direction, which results in a redistribution of the pressure load
carried out by the FPP interaction. Although the contact pressures have increased in
the final increment, the last measured leakage index increases to 0.054.

PPRESS

−0.047
−0.039
−0.031
−0.023
−0.015
−0.008
 0.000

X

Y

Z

CPRESS

0.000
0.143
0.285
0.428
0.571
0.713
0.856

X

Y

Z

Max: 0.856

Figure 4.11. – Cabin pressure that is reached with the maximum differential.
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Given the sequence of events in a standard mission profile, the aircraft goes
through phases of cruising and manoeuvres as presented in Table 4.2. If the seal
does not fail during the altitude gain phase as considered in previous studies with
hyperelastic modelling [74], air leakage may either increase by seal relaxation [35,
106] or by relative displacements of the striker/fuselage. Therefore, it is necessary to
monitor the leakage index during subsequent flight steps after the maximum cabin
pressurisation is reached to evaluate the performance of the design. Fortunately, the
selected geometry has lip features placed on both sides of the profile to block lateral
displacement of the seal at the section boundary. However, Figure 4.12 shows that it
is often not possible to block the seal sliding, which results in a drastic loss of contact
pressure. At the maximum cabin pressure, the leakage index reaches a value of 0.231
up to the point where it is still in contact with the striker interface. In this example,
the seal is pushed outboard - into the atmosphere side - by the pressure load, which
can be triggered by the striker movement or the stiffness loss from the seal.
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Figure 4.12. – Seal profile (about to collapse) that is part of a leakage scenario.

After this point, the seal cross-section may completely lose contact with the
striker. In this case, the leakage index reaches the maximum value of 1 according
to Equation 4.8. The leaking mechanism can be triggered at different flight stages
such as climbing, cruising and manoeuvring. As previously stated, this criterion is
not absolute for measuring the air flowing through sealing sections as fluid leakage
involves tribology and fluid-dynamics and a good correlation of the predicted leakage
with experimental results should be verified. Nevertheless, the proposed leakage in-
dex is an accurate qualitative measure to determine the effect of loading conditions
on seal performance. Additionally, different design solutions should be comparable to
the smallest leakage index under identical conditions. Usually, binary criteria, such
as pass or fail results, can be applied to sensitivity studies in DOE. However, a con-
tinuous measure of the leakage criterion is generally recommended for multi-objective
optimisation techniques explained in Section 6.
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4.3.3. Seal collapse
The next condition to evaluate the performance of the seal is directly related to the

previously described criterion. When the seal completely loses its ability to maintain
contact with the striking interface, the seal cross section flips out to the atmospheric
side and may no longer return to its compressed configuration. To quantify this, the
seal’s overall contact pressures are measured again. If the pair of master and slave
surfaces are non-existent and the seal has self-contact with its external surfaces, a flag
is assigned to the seal condition as:

Collapse =
0 for CPRESS(t) ≥ 0 ∈M1 − S1

1 for CPRESS(t) > 0 ∈ S1 − S1
(4.7)

In contrast to the leakage index, this criterion is a binary definition of seal collapse.
The self-contact measurements of the slave surface of the seal S1 can be distinguished
from the interactions with the master surface of the striker M1. Furthermore, due to
the definition of the boundary conditions for applying FPP, the differential pressure is
not distributed to the contact surfaces of the cabin side S2. As it is complex to evaluate
how the seal behaves due to dynamic interactions between the air and structure, some
limitations are imposed on the problem after the collapse. A compromise that was
found to keep some realistic boundary conditions involves restricting the distributed
loads to surfaces located in the atmosphere region to simplify the conditions written
in equation 4.7. Once contact is lost, the seal tends to move towards the atmosphere
side under the resulting pressure force. Ultimately, it results in a self-contact under
stable conditions no longer maintained by the striker. This verification in turn is
simpler than that presented for design optimisation studies [74] that rely on the FEM
nodal displacement results of the cross-section of the seal. Figure 4.13 displays the
first condition to be verified for seal collapse by the complete loss of contact with the
striker.
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Figure 4.13. – First instants of the seal without contact with the striker.
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This first verification sets the leakage index to 1, while from the analysis history
it is possible to check whether the seal touches itself after contact loss. Figure 4.14
illustrates the self-contact of the external seal surfaces:
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Figure 4.14. – Fully collapsed seal in an irreversible configuration.

Although this condition can be evaluated in other ways, it is easier to verify the
collapse with contact outputs from the FEM model. It is observed that the pressure
penetration (PPRESS) is limited to the S1 surfaces, leading to similar collapse con-
figurations. This behaviour is independent of the variables considered for the model,
from the boundary conditions to different design solutions.

4.3.4. Safety factor
In a static stress analysis, it is very common to apply safety factors to avoid the

failure of structural components under limited conditions. Based on the experimental
results of tensile tests, the stress limit of the elastomer for the failure of Slim = 8MPa
was estimated . Although such values are estimated for tensile stresses, an identical
value for compression is assumed for the calculation of a safety factor. Therefore, the
following expression is defined for the safety factor:

Safety = 1− max |S(t)|
Slim

(4.8)

where Slim is the absolute maximum principal stress, according to the Cauchy
stress computed by ABAQUS. A safety factor based on stresses should be positive for
any combination of loads: compression, pressurisation, and temperature. If a negative
value is reached, it indicates that the seal could be jeopardized after a critical loading
scenario. From an excessive compression of the seal cross-section during the ground
steps to an event of seal collapse during flight events, the safety factor is monitored
over the complete stress history of the FEM simulations.
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Figure 4.15 shows the maximum stresses belonging to two different scenarios,
involving the critical scenario after the seal collapse. On the left side of the figure the
safety factor is 84.8%, whereas on the right side it has a value of 49.1%.
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Figure 4.15. – Two stress measurements from for safety evaluation.

Remarkably, it is evidenced that lower safety factors correlate with the collapse
occurrences based on DOE in Chapter 5. In this case, by restricting the seal collapse
it is possible to cover the risks of damage to the seal. Thus, the safety factor is not
considered for design improvements in Chapter 6.

4.3.5. Residual displacement
Residual displacement after door opening is a measurement that can influence the

seal performance between one flight and another. By a creeping process after landing
and take-off, in addition to the temperature on the ground, the seal response can be
impaired due to the viscoelastic behaviour of the material. If the seal geometry does
not return to its original configuration, there is a reduction in the closing reaction
forces and consequently a risk of leakage due to the loss of contact pressure. The
pre-deformed configuration of the seal is dependent on the previous flight. However,
according to the FEM model assumptions, no relation between the stress histories of
sequential flight missions is considered. Nevertheless, the final displacement of the
seal is globally measurable from the last time (tf ) at the end of each simulation for
comparison purposes between different FEM model input variables as:

Residual = max [U(tf )] (4.9)
The ABAQUS outputs of the displacement magnitude are denoted as U for the

nodal displacements. Thus, for all elements representing the seal geometry, the maxi-
mum values are measured for studies involving DOE, especially for the relative motion
of the striker and temperature levels on the ground and in flight.
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Figure 4.16 presents two deformed configurations at the maximum displacement
during cruise conditions and the last increment after door opening for the seal re-
laxation. An undeformed frame from the beginning of the analysis is kept to show
the differences between the displacement-based solutions of the FEM. The maximum
residual displacement of 1.17mm takes place at the atmosphere wall, showing that
pressure loads play an important role in the history of the analysis results.
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Figure 4.16. – Residual displacement due to creeping process.

Even though the model outputs for the displacements in a sequence of flight events
are relevant for the overall performance, these results are not used for the Parametric
Optimisation of the seal design in Chapter 6.

4.4. Summary of seal performance analysis
Five indicators related to a seal’s performance were defined and can be evaluated

using the FEM model outputs. Table 4.5 summarises their applicability to the DOE
and Parametric Optimisation tasks in the following chapters.

Table 4.5. – Seal performance indicators summary for the next chapters.

Seal performance summary Chapter application
Notation Subsection Units FEM Ouputs DOE [5] OPT [6]
Force 4.3.1 [daN/m] RF X X

Leakage 4.3.2 [ - ] PPRESS, CPRESS X X

Collapse 4.3.3 [ - ] CPRESS X X

Safety 4.3.4 [ - ] S X

Residual 4.3.5 [mm] U X
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5. Design of Experiments
DOE is a method that aims to understand the relationship between the inputs

and outputs of an observable system through statistical concepts. The usual approach
starts from an experimental strategy of combining influencing design factors [43] to
highlight the variables that influence on the measurements. In some instances, DOE
can be used as an optimisation tool to search for the best candidates by extensively
testing the outputs of the system for different design parameters. However, in this
thesis, DOE was primarily used to determine which variables influence the five per-
formance indicators in Table 4.5. As each FEM simulation is a controllable and mea-
surable experiment, the conceptual seal design is evaluated under different conditions
and thermal and mechanical loadings, as well as dimensional and material tolerances,
must be adjusted for multiple simulations.

From a range of hypothetical scenarios, the seal model inputs are modified accord-
ing to the aircraft door operation limits. In total, 11 inputs are considered relevant for
the five performance indicators presented in the previous section. Three temperatures
(T1, T2 and T3) are set independently to simulate different start/destination flight
missions with altitude temperature variations. A reasonable range between -40◦C and
+40◦C for ground conditions (T1 and T3) and between -50◦C and -12◦C for flight stages
(T2) is considered according to the international atmosphere standards [94]. Since the
mechanical properties are affected by the manufacturing process, a deviation of ±5
from the reference Shore hardness (SHA) of 56 is proposed according to the model
assumptions in Section 3.2 to adapt the hyperelastic parameters of the material model.
Furthermore, surface finishing and external factors for the coating layers of the seal are
important for the system stability and thus, a second material/design input variable
is related to the coefficient of friction (µ), which is roughly estimated in a range from
0.1 to 0.4 for the envisaged simulations.

By taking the simulation steps with relative displacements into account, the striker
position in the x and y directions should be modified for both ground and flight events,
such as pressurisation and manoeuvrers. Based on global assumptions of fuselage
deformation and assembly tolerances, three different types of rigid body offsets are
chosen for the striker reference node. At step 0, the initial striker position is created
based on the maximum rigging tolerances from the door to the fuselage cut-out. A
variation of ±4mm from the nominal position is assumed for study purposes of the
rigging, as previously presented for the reaction force in Figure 4.9, and also to verify
any correlation with important performance indicators such as leakage and collapse.
Denoting the rigging tolerances, two variables Rx and Ry are assigned to the DOE.
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Afterwards, the prescribed displacements of the striker are modified along with
door closure, cabin pressurisation, and flight manoeuvre steps as presented in Table
4.2. It is assumed that the door kinematics in step 1 is identical for all simulations
with a closure displacement of Cy = 30mm respective to the reference node of the
striker, as shown in Figure 4.2. The only variation in the seal compression up to step
2 is a consequence of the assembly tolerances in step 0. After the start of the flight
events in step 3, the superposition of the fuselage deformations by the pressurisation
and flight manoeuvre steps allows for the definition of four more independent inputs
for displacement. The first two consist of the relative deformation of the door cut-
outs, solely due to the pressure loads Px and Py. Since an important counterpart of the
running loads along the fuselage sections is affected by flight manoeuvrers, the relative
displacements are not only driven by the cabin pressurisation. For this purpose, the
additional interface movements Mx and My are considered in step 5. Therefore, the
displacements Ux and Uy relative to the striker position are summed by each step
through the operations:

Ux = Rx + Px +Mx (5.1)

Uy = Ry + Py +My + Cy (5.2)
Each sub-input increases linearly by a ramp function up to its end value. Un-

til the (middle) step 5, the striker position is established by combining all types of
displacements. From this point, the relative displacement is reflected back to the pre-
vious configurations, returning to the cruise, landing, and door opening. Global FEM
models of the fuselage are usually able to predict the maximum displacements on the
door surroundings, by the envelope of limit loading conditions. Some maximum and
minimum values are proposed according to technical references for door cut-outs in
airframe structures [107]. Table 5.1 displays the ranges of the 11 input variables for
the DOE:
Table 5.1. – Maximum and minimum ranges of the design matrix for the DOE.

Input
Rig. [mm] Striker disp. [mm] Mat. [-] Temp. [◦C]
Rx Ry Px Py Mx My SHA µ T1 T2 T3

Maximum 4.0 4.0 7.0 4.0 8.0 3.0 61 0.4 40 -12 40
Minimum -4.0 -4.0 0.0 0.0 -5.0 -4.0 51 0.1 -40 -50 -40

The range of inputs is crucial for defining a strategy for the computational experi-
ments. Each experiment should contain at least one factor distinct from another model
setup, to characterise the influence of the performance indicators from the FEM out-
puts. Sampling tools for the experiments are very important to establish systematic
calculations for the DOE with regard to the FEM simulations.
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For convenience, the native tool ISIGHT [108] from SIMULA was used, since it
permits integration with ABAQUS, which allows the user to parametrise the FEM
model inputs and outputs. Figure 5.1 displays the simulation flow through the com-
ponents for the pre-processing of CAE inputs and the post-processing of FEM outputs.

Figure 5.1. – Process components in the ISIGHT interface for the DOE.

Five performance indicators were obtained for each run by post-processing the
models’ outputs as presented in Subsection 4.3. In this chapter, a sequence of 500
simulations is proposed by using the Optimal Latin Hypercube technique to generate
the inputs for the seal analyses. The design performance in a DOE was evaluated
once the set of simulations was completed by assessing the number of failed runs with
regard to leakage and collapse. Since the DOE module builds a database for further
statistical analysis, Spearman’s rank correlation [44] was calculated between the 11
model inputs and the 5 outputs describing the seal performance. The main objective
was to verify which variables are relevant to further improve the seal design with the
help of optimisation techniques. In Chapter 6, the DOE is recalled for comparisons
between the initial design and the optimised seal geometry. The alternative workflow
optimisation software OptiSlang [48] could be used for DOE with ABAQUS inputs
(.inp) to modify certain parameters. However, for the design optimisation, the tool
ISIGHT offers more advantages due to a direct parametrisation of ABAQUS part
geometries with an automatic mesh update in each run. It simplifies the simulation
flow and does not require integration with other CAE components and subroutines.

5.1. Sampling
Once the working environment was defined, sampling techniques were employed

to conceive the number of experiments. There are several ways to combine the model
inputs in ISIGHT, including using by Stochastic sampling, Latin Square methods or
Factorial Design techniques [43]. In Full Factorial experiments with 11 variables, it
would be necessary to have a minimum of 211 samples, or 2 048, FEM simulations.
Since parallel calculations are restricted to 5, a reduced size is envisaged to save time.
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In a discrete distribution of observations, the experiments must be supported by
statistical concepts to draw conclusions about the results concerning the sampling size.
The ratio of the number of simulations with leakage to the total number of samples
yields a generalization of the seal’s efficiency. It is assumed that this seal failure rela-
tionship can be correlated by a reduced number of samples within the minimum and
maximum range of the inputs. One technique available in ISIGHT, which is denoted
as the Optimal Latin Hypercube, gives users the freedom to choose the number of
experiments by evenly distributing the samples within an input space. Generally, this
technique is recommended to increase the resolution of the experiment by selecting a
higher order of combinations compared to the factorial analysis. However, it also works
to reduce the data by eliminating redundancies between sample points. This statisti-
cal method for DOE is widely used to create computer experiments and exploratory
designs [109]. Figure 5.2 shows three different sampling techniques represented by
points and frames inside the range of two variables X1 and X2.

X1

X2

X1

X2

X1

X2

Full Factorial (2nd order) Latin Hypercube (Random) Optimal Latin Hypercube

Figure 5.2. – Sampling concepts illustrated for a DOE configuration with two
variables and four design points employing different techniques from ISIGHT.

In the left frames, the Full Factorial is presented with 4 points or experimental
setups. Since this technique combines the maximum and minimum boundaries from
each input, it allows 4 repeated input values either at X1 or X2 on an orthogonal array
[110]. If more input variables are added and only a few have a significant influence on
the outputs, these redundancies make no contributions to the experimental correla-
tions. Alternatively, in the middle frame, a random distribution of points is employed
with a Latin Hypercube arrangement to avoid dualities between points. Although the
number of experiments is the same, the random data may create some bias due to the
uneven sample distribution. Therefore, the optimal version [111] of the Latin Hyper-
cube is better suited to avoid redundancies, since its algorithm attempts to maximize
the distance between each point, as presented in the frame on the right.
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Several criteria can be used to achieve an even distribution of samples. In the
ISIGHT software, the optimal arrangement considers the maximin approach [112] that
maximises the minimum inter-site distance between the sample vectors xi and xj:

min
1≤i,j≤N,i6=j

d(xi,xj) (5.3)

where N is the number of samples and d(xi,xj) is the Euclidean distance between
the n-arguments indexed by k for the point pairs xik and xjk:

d(xi,xj) = dij =
[
n∑
k=1
|xik − xjk|2

]1/2

(5.4)

The Optimal Latin Hypercube technique sorts the inter-sited distances into a list
(d1, d2, ..., ds) and then maximises the distances for all the s listed groups. According to
the φp-optimal criteria [109], it is equivalent to minimise the following inverse relation:

φp = dij =
[
s∑
i=1

Jid
−p
i

]1/p

(5.5)

where Ji is the pair of distances dij that are sorted by the algorithm, while p is
assigned to a large positive integer number as described by Morris and Mitchell [109].
For a given set of N = 500 samples with n = 11 independent input variables, in Table
5.1, the Optimal Latin Hypercube technique manages to reach a φp plateau acceptance
for the sample size. By starting with different random seeds, the maximin approach
finds the optimal design matrix for FEM simulations after 11 000 iterations, requiring
19.2 minutes of CPU time. Table A.1 is included in the Appendix A to demonstrate
the diversity of sample points considered for the computational experiments.

One of the advantages of the Optimal Latin Hypercube lies in the reduction
of simulations, which became more than four times smaller compared to the Full
Factorial approach. In fact, 500 runs were intended to be carried out during one day,
since 5 runs in parallel required approximately 15 minutes per simulation. After 12h
of idle computer, semi-finished DOE runs were available to be checked to determine
if the results were coherent or not. This significantly helped to correct bugs and
check if the parametric inputs that were given to ABAQUS were incorrect. Another
important aspect is that the selected sampling technique works as a unique load case
generator for the seal performance studies as each sample point corresponds to a
hypothetical scenario for a single flight mission profile. Thus, an evaluation of how
many failures occur regarding leakage or seal collapse gives a general representation
of the seal’s efficiency. With different design proposals, it should be assumed that the
best candidate has lower failure occurrences. After the simulation runs are finished,
a database is consolidated for statistical analysis. The outputs corresponding to each
sample point are summarily evaluated in the post-processing interface with the help
of data analysis tools.
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5.2. DOE analysis
Seal efficiency is the first holistic analysis of the DOE results. From 500 simula-

tions with different parameters for the conceptual design, the number of runs without
leakage reveal how efficient a seal is on average of possible flight missions. Therefore,
it is necessary to account for the occurrences of failure modes due to leakage and
collapse. Overall, 22 simulations did not reach convergence according to the implicit
scheme. Hence, it is evident that of the 500 experiments that were performed, only
478 were valid for further analyses. Table 5.2 shows all entries used to calculate the
seal’s efficiency. By counting the simulations with leakage criteria equal to 1, a total
of 244 runs lost their sealing capability at some point. Among these cases, 216 pre-
sented seal collapse, and all of these instances that occurred during the manoeuvring
loads in step 5. In the remaining 28 cases, leakage took place during cruise conditions
without structural instabilities. The scenarios with seal collapse are considered to be
more critical, as they tend to be irreversible and may cause higher stresses. In general,
leakage is the primary seal failure mode, which comprises the collapse events. Thus,
runs without any leakage are accounted for in the sampling quantification of sealing
efficiency.

Table 5.2. – Efficiency calculated from sealed runs categorised by valid samples.

Planned Divergent Valid Collapse Leakage Sealed Efficiency
500 22 478 216 244 234 49.0%

As the leakage criterion takes the seal collapse into account, the global efficiency
of the adopted seal concept is 49%. Evidently, the sample distribution created by
the Optimal Latin Hypercube technique is not representative of the normal flight
conditions due to a higher occurrence of limit loadings. However, a uniform sample-
based efficiency motivates the search for improved design candidates with greater
effectiveness, especially for critical conditions. Reducing the risks of leakage in specific
cases and design improvement recommendations require a verdict about the causes of
leakage. ISIGHT has built-in tools to analyse the DOE database, including Pareto
charts, Response Surface and Data Correlation. The Pareto principle is useful to
break problems down into smaller components, if one assumes that 80% of failure
occurrences are caused by 20% of the source variables. However, certain model input
contributions can be neglected by this principle. Response Surfaces are mathematical
functions based on the higher polynomials used to fit the outputs by taking the inputs
as independent variables. Also referred to as metamodels [69], the approximations
are useful for understanding the system performance, but they are not suitable for
representing discrete-event patterns such as the case of seal leakage and collapse.
Therefore, Data Correlations are rather employed based on statistical fundamentals
given an interval of acceptance for the sample size. Additionally, Spearman’s rank
coefficients allow for assessing the extent of the influence of DOE variables.
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5.2.1. Data correlation
Data correlation is very useful to understand the relationship of dependence be-

tween control variables and the measurements derived from experiments. These tables
are built from correlation coefficients that attempt to explain statistical relationships
between inputs (Xi) and outputs (Yi). The Pearson correlation [113] is usually em-
ployed to populate the tables by the ratio between covariance and standard deviation
that is represented as:

rXY =
∑N
i=1(Xi − X̄)(Yi − Ȳ )√∑N

i=1(Xi − X̄)2
√∑N

i=1(Yi − Ȳ )2
(5.6)

where X̄ and Ȳ are the mean values of N samples from each variable. A more
robust coefficient calculation called Spearman’s rank is often recommended to slightly
reduce non-linearities from experiments. By transforming the experimental data for
both variables into ranked values and then substituting them into Equation 5.6, a
rank coefficient is similarly calculated. In fact, ranking is a way of cataloguing higher
and lower values from variables through positive ordinal numbers which allow the
Spearman’s rank coefficient to be written in the following form:

rs = 1− 6∑N
i=1 ∆R2

i

N3 −N (5.7)

where ∆Ri is the difference between two ranks R(Xi) and R(Yi) variables. The
operator R stands out in the ranking process, which can easily be addressed in Mi-
crosoft Excel with the Rank.AVG function by selecting column inputs from Table
A.1 to transform each line value. Since the ISIGHT tools do this internally with the
database, ranking is merely stated to differentiate Spearman’s rank from the standard
Pearson correlation. In this case, the coefficients not only quantify how strong the
relationship between the variables is but also how they interact. If a correlation co-
efficient is close to 1, a proportional relationship exists between an input and output.
On the other hand, an inverse relationship between the variables brings the coefficient
to -1. When the rank coefficients are close to zero, it indicates a lack of dependence
between the inputs and output.

For the DOE, some of the correlations should yield values close to zero, as they are
not conjugated by the same time events. For instance, the air temperatures, T2, have
no causality effect on the maximum reaction forces (Force), as are measured before
the aircraft starts to fly. On the other hand, different coefficients are expected to be
driven by at least one strong factor, such as the ground temperature (T3) and the
final displacement (Residual), which is mainly influenced by the creeping of the seal.
The force and displacements are very good output controls to check if the correlations
are physically coherent, whereby the main outcome is the evidence of multiple effects
coming from individual inputs. Air leakage and seal collapse can be influenced by a
conjunction of factors that may be explained by the data correlation.
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Table 5.3 shows the rank correlation coefficients calculated after 478 simulations
with the conceptual seal design for the DOE. The heatmap chart is chosen since it is
useful to visualise where the spots with direct proportional or inverse relations are.
With Spearman’s Equation 5.7, the variables employed are represented by the vectors
X i and Y i, indexed by the sample runs from the DOE database, where:

X i = [Rx , Ry , Px , Py ,Mx ,My , SHA , µ , T1 , T2 , T3 ]i (5.8)
are the input headers from Table 5.1 with 11 variables and:

Y i = [Force ,Leakage ,Collapse , Safety ,Residual ]i (5.9)
is summarised in Table 4.5 (seal performance indicators).

Table 5.3. – Spearman’s rank correlation between the inputs and outputs.

Spearman’s Rigging Striker displacements Material Temperature

rank (rs) Rx Ry Px Py Mx My SHA µ T1 T2 T3

Force 0.06 0.83 0.01 -0.09 0.01 -0.05 0.37 -0.08 -0.01 0.02 -0.01

Leakage -0.04 -0.47 0.04 -0.04 -0.23 -0.18 -0.36 0.04 -0.01 0.02 0.02

Collapse -0.22 -0.20 0.07 0.08 -0.16 -0.22 -0.05 -0.22 0.09 -0.01 -0.03

Safety 0.23 0.18 -0.12 -0.01 0.19 0.21 -0.30 0.25 -0.05 0.02 0.06

Residual -0.08 -0.10 -0.02 0.14 0.04 0.13 -0.01 0.04 0.10 0.02 -0.87

As previously estimated, a high correlation between residual displacement and
ground temperature (T3) has an inverse relationship, whereby the lower the ground
temperature, the higher the residual displacement at the end of the final analysis
step. On the other hand, the reaction force presents a direct dependency on the
striker’s position in the y direction. It is noteworthy that the coordinate system for
the relative displacements is reversed compared to the global system, which means
that rigging tolerances in the +y direction cause more seal compression by the striker,
thereby increasing the reaction forces during closure. Furthermore, the seal hardness
variation has a similar influence, albeit of a lower intensity than the rigging since the
correlation value is smaller. Before going into detail about each performance indicator
in the correlation table, a limit must be set for the coefficient values that express
dependence among the output outcomes with model inputs. According to Ramsey
[114], a test is commonly performed to verify the significance of Spearman’s rank
based on the Z-test for normal distribution:

Z = rs
√
N − 2 (5.10)
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where N is the number of samples considered for the correlations.
Given the sample size of the Z-test, a threshold probability value α > 0.001 is used

to reject the null hypothesis that no correlations exist between a certain input and
output. It corresponds to a confidence level of 99.9% where Spearman’s coefficients
|rs| are greater than 0.15 in their absolute values. Table 5.4 highlights the confidence
levels for all Spearman’s rank coefficients for which a correlation should exist.

Table 5.4. – Confidence levels based on Spearman’s ranks with N = 478.

Confidence Rigging Striker displacements Material Temperature

interval [%] Rx Ry Px Py Mx My SHA µ T1 T2 T3

Force 83.1 99.9 19.0 95.8 17.3 74.3 99.9 93.0 11.8 25.6 19.0

Leakage 65.2 99.9 55.5 64.0 99.9 99.9 99.9 66.3 19.0 30.9 35.3

Collapse 99.9 99.9 86.2 90.3 99.9 99.9 73.4 99.9 95.1 22.3 48.7

Safety 99.9 99.9 99.1 10.4 99.9 99.9 99.9 99.9 72.5 33.7 77.8

Residual 93.6 96.4 33.3 99.8 58.0 99.6 12.1 66.3 97.3 37.0 99.9

From this approach, a preliminary screening of the DOE results reveals the model
inputs that probably had the greatest influence on the seal performance indicators:
• Rigging: it has more correlations among all factors. Since it is an input that

affects the initial conditions of the FEM problem, there are chances that it
impacts the performance indicators of the seal at some point.

• Displacements: most correlations due to the relative motion of the striker arise
from the effects of flight manoeuvres. Displacements resulting from pressure and
cruise conditions (Px and Py) are unlikely to have an impact on any performance
indicator compared to manoeuvre displacements (Mx and My).

• Material: the mechanical properties of the seal, although simplified for DOE
studies, influence leakage and collapse. Notably, they play an important role in
the reaction forces and the stress safety factor.

• Temperature: although the material model and boundary conditions have been
enforced to capture thermal effects for creep and relaxation, there are not many
correlations with the temperature levels apart from the residual displacement.

Only a few variables should be used to redesign the seal. Through the correlation
tables, it was possible to visualise and filter the input variables with a high impact on
the seal’s efficiency. In the following Subsection 5.2.2, the data correlation results are
interpreted to select the critical inputs for design improvement.
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5.2.2. Interpretation of the results
First, each output row of Table 5.3 is individually discussed with respect to the

input variables that were highlighted in Table 5.4:

• Force: as previously mentioned, reaction forces are mostly driven by two factors,
namely rigging tolerances and material stiffness. The initial displacements from
Ry have more influence on the maximum values than the shore hardness SHA

of the elastomer.

• Leakage: it seems to be driven by factors from rigging, material, and manoeuvre
displacements. The lower the seal compression, the lower the contact pressures
that impair the sealing effect. When SHA is reduced, it mostly affects the mate-
rial stiffness. Conversely, a negative Ry in the seals does not enable a sufficient
compression of the section. Additionally two other displacement variables Mx

and My can play a role in flight manoeuvre events. If the striker moves towards
the cabin, with a negative displacement, there are more chances for leakage
to occur. However, other in-flight displacements due to pressurisation do not
seem to have a detrimental effect on the seal performance. Although the model
takes temperature into account for the viscoelastic modelling, no seal relaxation
influences were evidenced for the leakage occurrences.

• Collapse: Even though leakage embeds the cases with collapse, it is possible to
provide evidence that the variables that drive both criteria are slightly different.
It is very unlikely to correlate this performance indicator correctly since the
collapse values are binary, i.e. either 0 or 1 which is why the correlations are fairly
weak for the valid inputs. Notably, the friction coefficient µ plays an important
role in the seal collapse as the greater its value, the lower the chance of a sliding
mechanism that could trigger contact losses. Negative manoeuvre displacements
are likely to be critical because they work in the opposite direction of the pressure
load, which also explains the correlations of the leakage with My. Here, the
ringing tolerance Rx seems to be equally correlated to the seal collapse. Thus,
a combination of rigging and manoeuvrers could trigger structural instability.

• Safety: these correlations are almost inverse to the seal collapse, with the ex-
ception of the material hardness SHA. This is because once the modulus of
elasticity of the material is higher, the stresses also increase. As the absolute
allowable value of 8MPa is fixed, the safety factor essentially relates to the rise
in internal stresses in the material. In general, the occurrences linked to collapse
correspond to those with low safety factors.

• Residual: residual displacements are mostly related to the final temperature on
the ground T3 of the destination. Although not used in the design improvement,
it serves to check whether the simulations were sensitive to the temperature.

84



5.3. Outcomes
From the analysis of the DOE data, some questions can be answered regarding the

efficiency of an aircraft door seal against leakage. Systematically, different designs can
be evaluated under identical conditions and compared according to their performance
indicators. Using data correlation and statistical analysis, the experimental variables
that are most relevant can be filtered. The causes of seal failure and leakage may be
highlighted by means of Spearman’s correlation coefficients in table form. With a high
confidence interval given the number of samples considered, it is possible to identify
which FEM model inputs are critical to the seal analysis outputs.

These outcomes are important to separate the dimensioning load cases for the
seal. In theory, it is possible to add an optimisation loop after a DOE process in
ISIGHT. However, each round of optimisation would require another 500 simulations
to be performed for each design iteration. A very large number of simulations would
be required until the ’best’ candidate is accepted by an optimisation criterion. For
this purpose, the insights gathered from the DOE data analysis are useful to define
a reduced number of scenarios for design improvements. In general, thermal loadings
should not be applied as no significant correlations have been demonstrated for leak-
age, collapse or reaction forces. A low coefficient of friction should be considered for
optimisation studies since it contributes to an increased chance of collapse. Since the
unsealed runs happened after manoeuvre events, the striker displacement Uy must be
prescribed in the worst configuration from the combination between Py and My after
the door closure displacement Cy. Figure 5.3 displays how the displacements are fixed
for the critical conditions. Ux and Ry are defined according to the nominal, negative
and positive positions of the striker, according to the maximum and minimum seal
compression for the optimisation tasks in Chapter 6.

Ry

Cy = 30

Py = −4

My = −8

Step 0

Uy

Step 1 Step 2 Step 3 Step 4 Step 5

Uy

Striker displacements
mm

mm mm
Ux

Figure 5.3. – Striker displacement envelope in Uy used for optimisation runs.

The following subsections describe the three load cases used in Chapter 6 with
variations of the striker displacement for the ground and flight steps in the Ux direction.
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5.3.1. Load case 1: Rx nominal max compression
The objective behind a nominal loading case is to evaluate the maximum reaction

force undergone by the seal. It considers the striker in the nominal position for Rx, but
with maximum tolerances in the positive y-direction. This extreme case of rigging with
Ry = 4mm is used to tighten the limited operating conditions for door closure. The
hardness of the seal is assumed to have a maximum value of SHA = 61 so the material
stiffness is the highest. After step 2, the striker moves uniquely in the y-direction due
to the cabin pressure and manoeuvring effects following the envelope from Figure 5.3,
while the striker displacements Ux are kept fixed to the nominal position. It serves
to check if the seal is able to perform its function under normal disturbed conditions.
Alternatively, load cases 2 and 3 consider the striker’s lateral movement.

5.3.2. Load case 2: Ux positive min compression
Contrary to the previous scenario, in load case 2, the striker Ux relative displace-

ment is assigned to the positive direction from the nominal reference. In order to
prescribe severe conditions, the rigging tolerance of Ry = 4mm is assigned to reduce
the reaction forces during closure thereby presenting a minimum compression of the
seal profile. Under this condition, the seal was not able to establish higher contact
pressures during manoeuvring, which increased the leakage and collapse occurrences
in the DOE. Lastly, the material stiffness is reduced to SHA = 51, while maximum
displacements Px = 4mm and Mx = 8mm are set to impair the structural strength.

5.3.3. Load case 3: Mx negative min compression
Load case 3 is a variation of load case 2 with the exception of the manoeuvre

displacements Mx and Rx. As the cabin pressure brings the striker to the atmo-
sphere direction due to the door cut-out deformation, Py is kept at 4mm. However,
the displacement manoeuvres can occur in the opposite direction to the pressure
loading, which is likely to cause collapse due to the sliding movement. Therefore,
the maximum negative displacement of Mx = −5mm prescribes a reverse motion.
Although there is no strong correlation between positive manoeuvre displacements
and leakage, it is speculated that some leakage originates from reverse displacements.
Analogously, the same rigging tolerances are assigned to Ry as in load case 2. Since it
operates with lower compression levels, the striker is placed with a negative tolerance
of Rx = −4mm, which is added to the manoeuvre displacements.

A final remark about DOE: it is assumed that the load case descriptions presented
in Subsections 5.3.1, 5.3.2, and 5.3.3 are the most critical for the seal design to reduce
the number of simulations. However, the sealing concept should be redesigned with
more conservative loading conditions to further improve the efficiency of the DOE.
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6. Parametric Optimisation
Within the branch of structural optimisation of the FEM, parametric and non-

parametric techniques can be distinguished. In the case of a non-parametric optimisa-
tion, the initial mesh region is given to an optimisation process that either removes the
mass without changing the elements (topology optimisation) or manipulates the posi-
tion of the nodes (shape optimisation) to achieve the desired goal. On the other hand,
Parametric Optimisation uses design variables, e.g. from CAD, in an optimisation
process bounded by dimensioning values. Because non-linearities mostly arise from
the FEM simulations of contacts, it is cumbersome to employ Non-Parametric Opti-
misation tools such as TOSCA [115]. Thus, Parametric Optimisation is favourably
considered to improve the seal design shown in Figure 4.1 while Table 6.1 presents
the design parameters bounded by the maxima and minima based on the conceptual
measures from Table 4.1.

Table 6.1. – Design parameters’ range of the door seal optimisation.

Design parameters Description Minimum Maximum
tL, tR, tT Thickness (seal wall) 1.0mm 5.0mm
HL, HR Height (seal wall) 35.0mm 43.0mm
hL, hR Height (lip feature) 1.0mm 5.0mm
θL, θR Angle (seal wall) 60◦ 90◦
wB Width (seal bottom) 5.0mm 15.0mm

The way the desired goal is reached derives from the reference to multi-parametric
design optimisation [77], except that force and leakage are considered as multi-
objective functions to be minimised subject to the following constraints:

min
xi ∈Table 6.1

f(xi), g(xi) f(xi) = Force (6.1a)

g(xi) = Leakage (6.1b)
subject to Leakage < 1 (6.1c)

Collapse = 0 (6.1d)

This approach attempts to optimise the seal geometry with the lowest reaction
force while respecting the leakage and seal collapse criteria for the three critical load
cases presented in Subsections 5.3.1 to 5.3.1.
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Ultimately, it is anticipated that the geometry can be improved simply by a better
combination of the design variables associated with the cross-section. By reducing
the reaction force, it is envisaged to reduce weight in the closure mechanism, while
keeping structural strength to cover critical cases. Some performance indicators are
not employed for the optimisation according to Table 4.5 in Section 4.4. The safety is
covered by the collapse events, while the residual displacements are hard to integrate
into the optimisation scheme since they need to be considered from the loading history.
Therefore, an optimisation task is built into the software by integrating three models
in parallel according to the critical loading conditions. Figure 6.1 presents the scheme
given to the optimisation algorithms to search for better design candidates.

Figure 6.1. – Components of the ISIGHT interface for the Optimisation.

In the ISIGHT tool, some optimisation techniques are implemented depending
on objective functions, either by considering design constraints or not, to minimise
the multi-objective functions. Among the available options, the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) and the Large Scale Generalised Reduced Gradient
(LSGRG) can be employed, respectively, to explore and refine the designs candidates.
According to the ISIGHT manual, the NSGA-II is well-suited for highly non-linear
problems with discontinuities, while the LSGRG is useful for exploring the local area
around an initial design point, which should be provided in anticipation. In standard
operations of mutation and crossover, the NSGA-II attempts to keep the ’best’ candi-
dates by constructing a Pareto set, in which it is not possible to improve one objective
without sacrificing another. Lastly, the LSGRG deals with inequality and equality
constraints under convergence conditions to look for design improvements.
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6.1. Non-dominated Sorting Genetic Algorithm
NSGA-II is classified as a multi-objective exploratory technique that is comprised

of a group of GA [45]. The heuristics behind it does not have a mathematical proof
that guarantees solutions that are either minimised or maximised for multiple ob-
jectives. However, these algorithms are largely employed to solve computationally
complex problems, since they present a faster and more efficient solution compromise
than gradient-based methods. Being categorised as part of evolutionary algorithms,
NSGA-II follows a modified mating and survival selection for the combination of de-
sign variables based on the general outline of a genetic analogy. It is derived from the
assumption that not all individuals in a population may pass their genes to the next
generation since each individual is ranked by their objectives. The algorithm takes
the standard operations of mutation and crossover from GA into account and deals
with each objective function independently through a Pareto-optimal [51].

Initially, the diversity of a population is provided by a random seed that is consid-
ered within the range of dimensions provided in Table 6.1. Each individual is seen as
a unique seal, with specific size parameters (xi) or a genetic code, that is composed of
10 independent design variables. In the optimisation procedure, each objective func-
tion f(xi) and g(xi) is treated separately to construct a Pareto front with feasible
non-dominated solutions [116]. It implies that none of the objective functions can be
improved without impairing the other function, which means that a candidate design
has a certain trade-off between force and leakage, e.g f(xi) < g(xi). Consequently,
the ’best’ solution is selected by comparing the candidates after certain genetic in-
teractions are completed, given the population size and how many generations of the
genetic process are considered. Each objective function has a different unit and mag-
nitude, which makes the design choice a compromise between both objectives to be
optimised [77]. Since leakage is described as a qualitative index, the ’best’ design is
pragmatically taken from the lowest reaction force delivered by load case 1.

To verify if the algorithm is capable of converging into comparable design solu-
tions, different initial populations are generated to provide at least three best can-
didates among all the generations. Since this technique is not well-suited for long-
running simulations due to the strong dependence on crossover and mutation param-
eters of the genetic algorithm, a reduced number of simulations is envisaged in the
attempt to achieve time-feasible results. Compared to the DOE, NSGA-II can explore
candidates more quickly than sampling techniques by employing the recommended
control settings for the genetic algorithm. A probability parameter establishes how of-
ten the recombination of genes between parent and offspring solutions occurs and two
distribution indices are related to crossover and mutation operations that inversely in-
fluence how the genes are disturbed. The lower the value of these control parameters,
the greater the variation of each generation. The ISIGHT manual recommends values
of high probability and lower distribution indices to add diversification and achieve a
quick convergence at the cost of a highly focused search.
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6.1.1. Optimisation rounds
Table 6.2 provides the standard parameters recommended by ISIGHT that are

attributed to the NSGA-II algorithm for optimisation rounds. In total, 240 interactions
are performed for each round of optimisation according to a population size of 12
individuals for 20 generations. It is important to highlight that the three critical
load cases from Subsections 5.3.1, 5.3.2 and 5.3.3 are simulated in parallel inside the
optimisation loop in Figure 6.1. When a round is started, 720 simulations are queued
with a maximum of 5 simultaneous calculations due to processor limitations. If a
similar DOE approach was considered for a total of 500 samples, it would take at
least 3 days to complete each optimisation round. Thus, the importance and necessity
of optimisation techniques to overcome the time constraints in the search for design
solutions become clear.
Table 6.2. – NSGA-II standard parameters employed for optimisation in ISIGHT.

NSGA-II parameters Value

Population size (multiple of 4) 12
Number of generations 20
Crossover probability 0.9
Crossover distribution index 10
Mutation distribution index 20
Initialisation mode Random

A random initialisation mode causes the algorithm to generate the first population
evenly with Latin-Hypercube sampling. Along with unbiased Knuth Shuffling [117], a
population size with a multiple of 4 individuals should be provided which establishes
a nearly uniform distribution of individuals within the design space. Since the first
generation can influence how the problem converges to a better or worse solution, ran-
dom seeds are used to highlight the trend towards a single ’best’ candidate. However,
there is no guarantee that the final design is accurate enough to be close to a relative
local minimum. In addition, the problem is likely to have many local minima within
the conditions imposed. Depending on the technique employed, or on the formulation
of the objective function, different types of design solutions can be achieved due to
the high nonlinearity of the problem. Sensitivity studies with the genetic algorithm
parameters would be required to effectively perform longer searches with small control
parameters and a larger number of simulations. Therefore, three optimisation rounds
with different random seeds are employed to check if closer design candidates are
reached at the end of each round. Ideally, for the seal optimisation problem, another
set of control parameters for the NSGA-II technique may improve convergence. How-
ever, the scope of this study is to evaluate the capabilities of available optimisation
techniques, rather than to focus on the algorithm calibration.
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Figure 6.2 displays the objective function f(xi) only represented by the individuals
with different starting population sets. Inside the graph area, small circles represent
the feasible simulations, while red triangles are unfeasible runs due to constraint vi-
olations from Equations 6.1c or 6.1d. The blue diamond marks are Pareto-optimal
designs, whereby a single candidate is highlighted as the ’best’ feasible design with
the smallest force result.
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Figure 6.2. – Optimisation results for three random seeds with NSGA-II.

On the first examination, the findings appear to indicate that the third round of
optimisation has a convergent trend, which implies a batch of individuals with a better
combination of design parameters. However, it is necessary to compare the objective
function results concerning the optimised design variables. Table 6.3 summarises the
combination of dimensions of each design variant corresponding to the optimisation
rounds A, B, and C with the run number (n) from which the candidate is obtained.

Table 6.3. – Design parameters extracted from each NSGA-II optimisation round.

OPT Wall thickness Seal height Lip height Width Angles Force Leakage

NSGA-II tT tL tR HL HR hL hR wB θL θR f(xi) g(xi)

Variant (n) [mm] [grad] [daN/m] [-]

A (102) 2.7 1.5 3.4 39.3 42.7 2.9 2.3 8.6 64.0 74.6 33.7 0.518

B (157) 2.8 1.0 4.5 37.5 37.5 1.7 3.1 11.6 70.4 72.7 22.1 0.586

C (133) 1.2 3.3 4.0 36.0 38.3 1.5 2.4 14.5 70.2 72.2 42.9 0.471

For the first variant A, the best candidate was extracted from the 9th generation,
while variants B and C appeared during the 14th and 12th generations, respectively.
Examining the values from right to left in Table 6.3, it is apparent force and leakage are
competing in the multi-objective criteria. Notably, load case 3 described in Subsection
5.3.3 has critical values for g(xi) in contrast to f(xi) sized by case 1, in Subsection
5.3.1. The collapse of the seal is mostly driven by case 2 in Subsection 5.3.2.
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In the second round of the optimisation, the algorithm was able to generate can-
didates with lower reaction forces compared to the first optimisation. Since the initial
population of the third round started with slightly lower reaction forces for feasible
solutions, the algorithm favoured design features that minimised leakage rather than
force. On the other hand, variant A emerged from an intermediate solution with val-
ues of force and leakage that are more dispersed according to the distribution of the
Pareto points. Figure 6.3 displays the feasible runs with a Pareto front formed with
blue diamond marks, with the best candidate highlighted using green lines.
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Figure 6.3. – Pareto-optimal front from NSGA-II between objectives.

Throughout the course of the optimisation from random design populations, it
can be observed that the algorithm finds distinct solutions depending on how the first
generation evolves. According to the references on NSGA-II [45], the main difference
from the standard GA resides in the way the population diversity is maintained. A
Pareto-optimal set is considered to transmit the genes, whereby NSGA-II presents
higher elitism compared to standard GA since it ranks candidates before crosslink
and mutation. When compared to other evolutionary algorithms with more spread
populations [118], NSGA-II often leads to faster convergence of results at the cost of
reducing the variety of solutions to be explored. However, for the design variables in
Table 6.3, each seal candidate is slightly different, showing close deviations from the
conceptual geometry in Table 4.1. The wall thickness was optimised to be thicker on
the right-hand side of the seal (tR) compared to the left (tL) and top (tT ) locations.
The seal height on both sides (HL and HR) was moderately reduced from the original
height of 40mm in most cases. Furthermore, the lip heights (hL and hR) were reduced,
except for of the optimisation variant B, which kept a similar size on the right side
(hR). The angles (θL and θR) were adjusted just below the conceptual value of 75◦
for all of the candidates and only the base width (wB) turned out to be distinct for
each optimisation. Nevertheless, the selected solutions are potential seal candidates
that provided a minimum amount of reaction force for aircraft door ground operations
without violating the in-flight leakage and collapse for the three critical conditions.
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6.1.2. Design candidates
Figure 6.4 contrasts the cross-section of each design candidate with filled colours

against the original seal profile represented by lines. These solutions reflect how the se-
lection process keeps certain design features that are beneficial for the seal’s efficiency,
while certain regions are added due to the genetic operations.
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Figure 6.4. – Seal design candidates compared to the original concept profile.

Visually, it is possible to highlight that the aspect ratio of the profile was partially
preserved from the conceptual design. The values of the heights and angles reveal that
the first geometry used for the DOE was not beyond the scales that contribute to the
seal’s efficiency. However, at least two thicknesses around the section were increased,
while one wall was hindered by the algorithm, mostly to reduce the force during seal
compression. Figures 6.4a and 6.4b show thinner thicknesses on the right-hand side,
while Figure 6.4c presents another option with lower thicknesses at the top wall. Since
variants A and B have geometrical similarities, it is preferred to preserve the second
design because it exhibits less reaction force during the door closing. Alternatively,
there is potential behind the geometry of variant C due to the reduced leakage index,
which was initially not considered in the screening criteria for the candidates. Thus,
the two remaining designs are further investigated with regard to the multi-objective
improvements on leakage and force by employing different optimisation methods. It
is assumed that the candidates found were close to a local minimum in the vicinity
of each solution. As previously described, GA are techniques that do not necessarily
deliver the optimal solution in a few steps. In theory, if the number of generations
and individuals per population were increased, different candidates could emerge from
the optimisation process. However, it would require a large number of simulations
to be carried out by the algorithm, since most of the designs explored were not even
feasible solutions. Thereby, in the next section, the input variables from the remaining
candidates are employed as the starting point for the design refinement by exploring
a gradient-based technique. In this manner, it is aimed to obtain improved solutions,
with fewer simulations based on convergence criteria to judge a single ’best’ design.
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6.2. Large-Scale Generalised Reduced Gradient
In this last task of the Multi-Parametric Optimisation, the LSGRG method is em-

ployed in the search for improvements, starting from the B and C variants discovered
by NSGA-II. The concept behind the generalised reduced gradient is to use implicit
methods to solve a multi-objective function while using constraints and equalities to
reduce the number of independent variables. Thus, the algorithm performs a search
in certain directions of the design space based on a vector of dependent variables that
satisfies all the constraints [47]. This method was not used in the first instance for the
concept geometry because it requires a starting point for feasibility. In the first phase,
if the initial design is not feasible, the algorithm performs several interactions to reach
at least one valid solution, otherwise the optimisation stops. Once a starting point is
reached, the algorithm begins a second phase to search for small improvements. Basi-
cally, in the ISIGHT solver, the same components and problem formulations are given
to the LSGRG algorithm, but it is possible to shift between optimisation techniques
while employing other settings. Table 6.4 provides the control parameters that are
specified by the LSGRG algorithm for each design refinement with custom inputs.

Table 6.4. – LSGRG custom parameters employed for the optimisation algorithm.

LSGRG parameters Value

Max iterations 100
Relative step size 0.1
Convergence criteria 0.1
Convergence interactions 3
Max failed runs 5
Initialisation mode Custom

The values in bold are not standardly recommended by the software, but they
are provided to increase the convergence speed. A larger step size of 0.1 is used to
modify the design variables at the first decimal place to reach faster convergence.
Since dimensional tolerances of ± 0.1mm and ±0.1◦ for the angles are expected from
the manufacturing process, it is not interesting to keep the precision under this scale.
Equally, the convergence criterion is accepted once the multi-objective function does
not vary in the first decimal place for the sum of f(xi) with g(xi) after 3 iterations.
This means that either leakage or force can not be minimised by more than 0.1 to-
gether, thereby restricting the improvement of the design goal of each candidate.
A convergence interaction is required to stop the algorithm, as well as a maximum
number of sequential failure runs for the divergence criterion. LSGRG is suited for
nonlinear design spaces without too many discontinuities whereby it is assumed that
the objective functions are continuous in the vicinity of each design candidate.
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6.2.1. Design refinement
Figure 6.5 shows how the seal design variants are refined for the multi-objective

function using the LSGRG optimisation technique. Once more, small circles are feasi-
ble solutions and blue diamonds are Pareto points. The design refinements were frozen
after the convergence criterion was reached, as indicated by the green lines.
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Figure 6.5. – Design refinement with selected variants using LSGRG.

From the results, it is apparent that variant C was improved to reduce the force
in conjunction with leakage. On the other hand, variant B was not improved as much,
which implies that the solution found by NSGA-II is already optimised regarding the
sum of objectives f(xi) + g(xi). This means that the refined variant B∗ is close to the
original design source B, while the new variant C∗ provides major changes in the force
results compared to C. Table 6.5 summarises the dimensions extracted from the ’best’
candidates that minimise the combination between force and leakage.

Table 6.5. – Design parameters refined with the LSGRG optimisation algorithm.

OPT Wall thickness Seal height Lip height Width Angles Force Leakage

NSGA-II tT tL tR HL HR hL hR wB θL θR f(xi) g(xi)

Variant (n) [mm] [grad] [daN/m] [-]

B∗ (26) 2.8 1.0 4.4 37.2 38.5 1.7 3.1 11.6 70.3 72.7 22.1 0.580

C∗ (99) 1.0 3.1 3.8 36.8 38.2 1.9 1.9 15.0 67.6 69.9 27.3 0.459

Remarkably, small changes in the thickness helped to reduce the force by 36% and
leakage by 2.5%, when compared to the original C variant. Despite the optimisation
efforts, the force remains the same for variant B∗, with small improvements in the
leakage. Since the optimisation process is mostly driven by the force results, the
leakage has less of an impact on the sum of both objectives.
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6.2.2. Design comparisons
Each new variant is compared in terms of the FEM simulations for the critical

conditions used for the optimisation tasks. Through judgement during certain time
frames of the analysis regarding force, leakage and collapse, a single geometry is se-
lected to be carried out for seal efficiency comparisons with the original design. Figure
6.6 displays the moment when the maximum force is reached for variant B∗ for load
case 1 from Subsection 5.3.1. At this point, the striker moves 24.6mm from its original
position, which generates low reaction forces for variant C∗. It is possible to observe
that the left wall of variant B∗ is structurally weaker than C∗’s left wall, leading to a
buckling state, that was not observed in previous simulation results.
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Figure 6.6. – Variants B∗ (left) and C∗ (right) at the initial compression stage.

Figure 6.7 shows the moment when the maximum force occurrs in variant C∗ at
the end of the compression loading step, with 34mm for the displacement Uy. At this
point, variant B∗ is no longer able to hold the seal in a stable configuration due to
a buckled state (unstable). This premature failure mode was not considered in the
door-closing stage, which requires adjustments to the optimisation in future studies.

8.3

U, Magnitude

 0.0
 4.9
9.7
14.6
19.4
24.3
29.1
34.0

X

Y

Z
27.3

U, Magnitude

 0.0
 4.9
9.7
14.6
19.4
24.3
29.1
34.0

X

Y

Z

Figure 6.7. – Variants B∗ (left) and C∗ (right) at the maximum seal compression.
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Figure 6.8 depicts the two variants respecting the collapse conditions for the
critical load case 2, just after the maximum manoeuvrer displacement. Although
the collapsing condition is respected, since the seals are in contact with the striker,
variant B∗ has self-contact with its external walls on the bottom left side. Once the
seal is inflated, the buckled wall pops out due to the differential pressure. This can
lead to undesirable consequences, i. e. noise due to cavity volume change, as well as
potential damage of the seal. Despite the magnitude of the absolute principal stresses
(S) being within the limits admissible for seal failure, the high-stress amplitudes must
be controlled to avoid fatigue problems.
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Figure 6.8. – Variants B∗ (left) and C∗ (right) respecting the collapse.

Figure 6.9 illustrates how both variants were able to keep the cabin airtightness
with reduced leakage index at load case 3. In this case, the manoeuvre is carried out
to the cabin side in the positive global x-axis or in the negative direction referring to
the Ux coordinate system. The PPRESS contour plot in Figure 6.9 indicates where
the maximum differential pressure is bounded by the contact striker interface due to
the lip feature located on the right-hand side of the profile.
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Figure 6.9. – Variants B∗ (left) and C∗ (right) with a reduced leakage index.
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6.3. ’Best’ seal design
According to the optimisation results in the previous section, it is possible to

elect a single candidate as the ’best’ design to improve seal efficiency regarding the
500 runs of the DOE. Based on engineering judgement, the last C∗ variant should
be able to improve the seal’s efficiency regarding leakage while ensuring structural
integrity in critical loading cases and providing a minimum force for door operations.
Thus, only the seal geometry is changed according to the tasks described in Chapter
5. Essentially, the ’best’ design is compared to the first seal concept regarding the
occurrences of leakage and collapse in the simulations. Despite the lack of validation
of the analysis methods presented up to this point, either through component or
system qualification tests, improvements in the sealing performance for applications
in aircraft doors are expected. Furthermore, it is anticipated that the other sources
that may impair the seals’ functioning could be highlighted by the correlation table.

After completing the DOE rerun for variant C∗ employing the input protocol
in Table A.1, the results are presented side by side with those of the conceptual
design according to the survey of relevant performance indicators. Even if the initial
main interest was to reduce the chances of leakage and collapse, it is possible to
contrast other performance indicators obtained by virtual experiments to highlight
design trade-offs that were not foreseen by the optimisation tasks. Minimum and
maximum limits for force, displacement, and safety factor values are identified for
every seal geometry, as well as average operational values, which may depend on the
door system specifications. Table 6.6 displays the summary of the DOE comparisons:

Table 6.6. – Comparisons between ’best’ and concept designs with DOE runs.

Performance indicators ’Best’ design Concept design

Force
[daN/m]

Maximum 44.8 33.5
Minimum 16.9 11.9
Average 28.1 20.4

Safety
Maximum 83.4% 88.1%
Minimum 47.2% 44.3%

Displacement
[mm]

Maximum 9.4 16.9
Minimum 0.2 0.6
Average 2.3 2.7

DOE runs Occurrences
Valid runs 495 478

Leakage/Collapse 34/32 244/216
Sealed runs 461 234

Sealing efficiency 93.1% 49.0%
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Correlation table

The improvements yield by the optimisation process are evident when examinating
the sealing efficiency comparisons. In addition, more valid rounds occurred due to
better convergence of results. Before discussing the results, Spearman’s correlation
coefficients are recalculated for the second DOE trial by only considering the valid
simulations. Table 6.7 displays a different distribution of correlation coefficients rs:

Table 6.7. – Spearman’s correlation of the DOE trial with the ’best’ design.

Spearman’s Rigging Striker displacements Material Temperature

rank (rs) Rx Ry Px Py Mx My SHA µ T1 T2 T3

Force -0.19 0.09 -0.08 -0.08 -0.04 0.01 0.13 -0.02 0.09 -0.01 0.05

Leakage -0.20 -0.15 -0.02 -0.10 -0.29 -0.03 0.44 -0.03 -0.01 0.18 0.01

Collapse 0.02 -0.57 -0.06 0.02 -0.29 -0.04 0.32 -0.24 -0.22 0.01 0.05

Safety 0.18 0.08 0.04 -0.04 0.15 0.02 -0.05 0.43 0.01 0.00 -0.06

Residual -0.02 -0.09 -0.02 0.01 0.02 0.01 -0.01 0.00 -0.01 -0.03 -0.49

For a population of N = 495 and a confidence level of 99.9%, the |rs| values must
be greater than 0.147 to reject that there is no correlation. Table 6.8 highlights the
inputs that are strongly correlated to the performance indicators.

Table 6.8. – Confidence levels based on Spearman’s ranks with N = 495.

Confidence Rigging Striker displacements Material Temperature

interval [%] Rx Ry Px Py Mx My SHA µ T1 T2 T3

Force 99.9 96.1 91.0 90.8 62.3 13.7 99.5 32.8 95.6 18.0 77.1

Leakage 99.9 99.9 36.2 97.4 99.9 47.2 99.9 50.3 19.4 99.9 21.2

Collapse 33.2 99.9 78.6 28.7 99.9 63.2 99.9 99.9 99.9 10.2 71.6

Safety 99.9 93.6 65.2 57.6 99.9 31.7 68.4 99.9 17.0 6.3 82.3

Residual 35.4 95.8 32.9 20.3 26.9 19.8 21.6 2.5 22.0 45.3 99.9

From these brief results, it is possible to draw new conclusions regarding the
efficiency of the seal. From the conceptual design, points that were not previously
apparent from the first correlation are discussed with regard to the optimised design.
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6.3.1. Design discussion
As previously mentioned, the improvements to seal by the C* variant are remark-

able. Because of the Parametric Optimisation based on the multi-objective problem,
a considerable increase in the closing reaction force to ensure an improvement in seal
efficiency is observed. On average, a 37% increase in force is expected, which is re-
lated to the thicker side walls. However, a maximum force of 44.8 daN per meter
of sealing line must be considered depending on the door specifications. Despite the
lower occurrence, the leakage cases that incorporated the seal collapse are still prone
to deliver negative safety factors. Due to the high stresses resulting from the critical
failure mode, seal rupture is a major issue that was not completely covered by the op-
timisation tasks. A distinct improvement stems from the reduction of the maximum
residual displacement. Arguably, raising the overall stiffness of the design allows a seal
to be more resilient in recovering its original configuration. In this case, there is still a
high correlation with the ground temperature T3 coming from the material modelling
and it is possible to highlight that the ground temperatures before (T1) and during the
flight (T2) have shown correlations with the seal leakage and collapse. For the ’best’
design, the temperature should be employed to counteract unforeseen failures.

In fact, the term ’best’ is written in quotation marks, because it is still possible
to exhaust additional design candidates if further critical conditions are considered
for the optimisation tasks. The range of input variables was mitigated in order to re-
duce the number of simulations and optimise the design for a couple of hypothetically
severe scenarios. Despite the increasing sealing efficiency, the critical loading cases
mainly took the effects of the relative striker displacements from fuselage deforma-
tion and rigging tolerances into account. Furthermore, it is still possible to evidence
strong correlations with the lateral displacements Rx and Mx, which became smaller
for displacements in the y direction, by comparing Tables 5.3 and 5.4 with Tables
6.7 and 6.8. The correlation coefficients reveal a manufacturing dependence in failure
modes that were also as pronounced as the conceptual design. Confidence levels re-
lated to material inputs such as the coefficient of friction and the shore hardness of the
elastomer are still present since they affect the structural stability. However, for the
’best’ design, the increase in stiffness is directly related to leakage and collapse when
looking at the SHA column. Even in a linear analysis, buckling problems are challeng-
ing to be circumvented by simply increasing stiffness when the boundary conditions
are unknown. An overall increase in stiffness does not prevent a lateral buckling, as
the top wall (tT ) of the profile becomes less flexible to the cabin pressure outboard
movement. In combination with a low coefficient of friction, the elastic behaviour
might be constantly involved in the seal’s performance, regardless of the design. It
is important to recall that the material modelling relying on temperature effects was
exaggerated so that the thermal boundary conditions would have some influence on
the seal relaxation. Whereas studies apart from silicon rubber address the dependence
of the Mooney-Rivlin parameters on the temperature [119] as well.

100



Even though material modelling is essential for FEM simulations of seals, the
boundary conditions related to the striker displacement can be highlighted as the main
sources of failure in the conceptual design. An increase from 49.0% to 93.1% of the
sealing efficiency arises from the lower occurrence of leakage and collapse occurrences
during valid runs. As much as the ’best’ and original designs are highly similar in terms
of aspect ratios, heights, and angles, minor changes to the wall thicknesses are very
effective to improve the sealing efficiency against leakage. Ideally, the seal could be
as rigid as possible to maintain cabin pressure. However, trade-offs between reaction
forces and structural stability are important for the door operation as reducing the
door closure force is reflected in decreasing the weight of the adjacent door and fuselage
structures, which is crucial to an airliner’s maximum take-off weight. Furthermore, as
the seal design was based on solutions employed for PAX and CARGO doors, that are
mostly operated by crew and ground staff, the forces must be within the operating
limits. Thus, only inflatable seals were targeted for the design investigations to balance
force and leakage. For a pure lip seal, contrasted with a hollow design in figure 1.2, the
optimisation should be carried out without any problem due to the reduced number
of design variables. Another possibility, instead of dealing with geometric parameters,
could be to consider local reinforcements in parts of the cross-section of the seal. Figure
6.10 presents the design optimisation proposal that could also be used to modify the
material stiffness based on 11 independent sections (Si). By changing the hardness
of the seal or adding fibre reinforcement, the profile could also be strengthened or
weakened depending on the mechanical response.
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Figure 6.10. – Proposal for local reinforcements based on sections.
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One topic that is not addressed in this work is the aspect of the corner and radii
of the aircraft door seals. The load path is changed directly by the door contour and
hence the striker interface frequently does not remain constant as it does in straight
sections of the sealing line. A 2D plane-strain modelling approach provides a good
representation of straight sections, which covers most of the interface between the door
and fuselage. Previous studies with different types of striker geometries demonstrated
that the contact pressures are disturbed simply by the seal profile sweep [74]. The
modelling of curved sections can be realised with explicit analyses considering 3D
FEM elements. However, this prevents the prescription of the internal cabin pressure
with FPP interaction as discussed in Chapter 4. To demonstrate the complexity of
these analyses, the seal geometry used in civil aircraft doors was simulated by only
considering the striker closure kinematics. Figure 6.11 shows the contour plot of the
seal deformation in the latched position, highlighting buckling areas along the seal.
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Z

Figure 6.11. – Seal corner simulation employing the dynamic explicit solution.

From the computational cost perspective, an explicit dynamic simulation takes
days to weeks to be concluded due to the number of elements and the small increments
of time required by the scheme. As an informative note, the result of the 3D seal anal-
ysis presented took 2 days to complete using a 120-core cluster on a supercomputer.
This type of analysis requires additional attention regarding material properties, as
anisotropy might play an important role in the modelling of the elastomer compo-
nent. The aircraft door seal specimens used in the characterization tests in Chapter 3
were extracted from the seal component shown in Figure 6.11. Due to confidentiality
restrictions and agreements with the project partner, the seal’s dimensions, the door
type, and the aircraft model on which this component is employed are not mentioned
in this work. Nevertheless, it is possible to grasp the number and complexity of the
design features considered in a real seal and either in the seal geometry or the striker
surface there should be manifold contact interactions that are not captured by 2D.
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6.3.2. Method considerations
The applied method proved to be capable of generating quick solutions that can

help in the development of seals with a robust design. Clearly, the presented work
was focused on aircraft door sealing problems. However, the CAE tools employed in a
combination of FEM with Parametric Optimisation can be extended to several types
of elastomeric components. Tyres, dampers, shock absorbers, medical equipment and
more sensitive seals used in nuclear power plants [120] are all suitable case studies for
the development of safer designs using current commercial CAE tools. The level of au-
tomation and integration between analysis tools, along with user-friendly interfaces,
allows structural engineers to analyse components more rapidly and systematically.
Although not used to its full potential, the modules of the ISIGHT features include a
range of optimisation techniques mostly based on model parametrisation. The justi-
fication behind avoiding the use of nonparametric optimization methods [121] lies in
the difficulty to implement the process with nonlinear problems. Preliminary studies
have been carried out with the TOSCA software [122] to evaluate the capabilities for
obtaining a conceptual seal geometry with topology optimisation. Starting from a
delimited design space using a fixed striker interface, the main problem is that conver-
gence is not always reached, which yields to intermediary or unfeasible solutions from
the manufacturing perspective. Figure 6.12 depicts a couple of trials with TOSCA
using the topology optimisation process with different striking interfaces for an elas-
tomeric seal enclosed in an initial design space of 40×40mm attached on the bottom.
Both attempts display the contour plots with elements density varying between 0 and
1, to normalise the hyperelastic model parameters. The idea was to minimise the re-
action force by compressing the seal across the section by 1mm with 50% of the initial
mass as a constraint. However, both solutions are incomplete due to the divergence.
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Figure 6.12. – Topology optimisation attempts with TOSCA.
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Even though new 3D printing technologies with silicone are currently in develop-
ment to produce complex geometries [123], it is hard to consider topology optimisation
solutions as feasible designs. To ensure the seal’s robustness, it is necessary to investi-
gate the seal under various loading scenarios as done in the parametric studies. From
boundary conditions that are not easily determined to nonlinear material modelling
with contact problems, Multi-Parametric Optimisation operates in a more congruent
and realistic manner with the design philosophies employed by seal manufacturers. On
the other hand, designers have to start from an initial concept, which is based on the
seal developer’s experience. Neither genetic nor gradient-based algorithms are able to
generate solutions from scratch; they can only provide suitable modifications to the
design to increase the efficiency of sealing systems. Another aspect is that leakage
and collapse indicators as part of the objective function are not easy to implement in
the TOSCA tool as this software is not compatible with the CPRESS model outputs,
which prevents seal efficiency improvements. Thus, considerations for optimisation
tasks based on contact outputs may not be tangible.

The freedom of using various FEM inputs and outputs in the parametric process
encourages different approaches to further optimise seal geometries while considering
other objectives and design constraints. Safety factors and residuals were not given
to the optimisation tasks but could be used as part of the multi-objectives to be, re-
spectively, maximised and minimised by inserting additional optimisation loops. From
previous studies using ISIGHT for designing the ’best’ seal [77], the collapse constraint
was formulated based on displacements instead of contact outputs. Material density
integrated through the cross-section was also employed for the weight reduction of the
sealing component. Apart from the option of effortlessly updating multi-objectives
for nonlinear and discontinuous design spaces, various optimisation techniques can be
used in parallel. A library of exploratory (DOE), evolutionary (NSGA-II) and nu-
merical (LSGRG) techniques facilitates to balancing algorithm capabilities. In fact,
DOE could also be employed to optimise the seal geometry, although it would require
too many simulations to cover the completeness of design spaces. Neither a factorial
combination nor a Latin Hypercube would select small design nuances to improve the
seal’s efficiency. A DOE should thus be the method of choice to start surface based
approximations. However, as seen by the optimisation runs with NSGA-II, the number
of unfeasible runs does not allow fitting representative meta-models with polynomial
order functions. Despite not being well-suited for long simulations since all the runs
are not fully independent, NSGA-II is faster than standard genetic techniques. The
main issue is that the start population can influence the ’best’ design candidates for
a reduced number of simulations, resulting in different solution variants each time
the process is randomly initiated, and hence discretion is advised when comparing
multiple results to select a single candidate. On the other hand, while LSGRG is
faster than the other techniques, it is even more dependent on the initial design due to
the convergence criteria of the method. Despite having different philosophies, genetic
algorithms combined with gradient-based methods may achieve satisfactory results.
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7. Summary and outlook
This work presented relevant topics to contribute to the development of door seals

essentially applied in civil aircraft. The main idea was to derive the methods for the
analyses and to understand the physical quantities that govern the seal performance
based on CAE tools. Despite superficially covering research topics of FEM modelling
to structural optimisation, the commercial tool ABAQUS was employed to highlight
the analysis capabilities using stress, displacements and contact pressure from dif-
ferent solutions, such as static, dynamic, and temperature coupling. Each chapter
was structured to add elements for the quantification of variables towards the goal of
finding the ’best’ seal solution from a conceptual design. The efficiency improvement
of an elastomeric seal using 2D simulations was restricted to a virtual environment,
that still requires validations on a component level. Nevertheless, material investiga-
tions served as a fundament to start the simulations from the analytical formalism of
continuum mechanics. By means of uniaxial tests, hyper-viscoelastic material models
were fitted according to the loading conditions of elastomeric door seals. Due to a lack
of experiments with temperature and load conditions, the gaps to be filled should be
covered by future research on reinforced silicone seals. Subsequently, a recapitulation
of the key findings is presented in the following.

Chapter 1 discusses the thematic aspects of aircraft door seals. The require-
ments are basically related to leakage and operability, with a strong dependency on
the boundary conditions and design philosophy. Due to the cabin pressure in cruise
flights, the motivations arise from the necessity for a robust solution against external
disturbances, to avoid air leakage and cabin depressurisation. In Section 1.2 a strat-
egy was developed to understand the physical quantities that can play a role in the
mechanical behaviour of seals. For this purpose, the planning of experiments, tools,
and working points was outlined in an analysis process diagram. Based on references
on the current state of the art regarding elastomers and material modelling, it is in-
dispensable to formalise the motion and deformation description of an elastic body.
Chapter 2 introduces the basics of continuum mechanics. By assuming the existence
of a deformation gradient, the constitutive relations are described in current and orig-
inal configurations under a mechanical process. Free-energy models based on the first
two invariants from the deformation gradient were envisaged given their suitability in
FEM tool ABAQUS. Incomperssibility and isotropy aspects were supported by tests
and known phenomena concerning elastomers. Furthermore, the linear viscoelastic
theory was proposed under assumptions only considering temperature effects of stress
relaxation based on Prony series.
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Chapter 3 supports the material theory regarding hyper- and viscoelastic mod-
elling based on experimental findings from uniaxial load conditions. The limit of 50%
of strain was employed for parametric identification in quasi-static and relaxation
processes. Furthermore, an ultimate strength of 8MPA in engineering stress was esti-
mated for the silicone samples with a single rupture test. The generalised form of the
Mooney-Rivlin free-energy was employed, resulting in a conservative representation by
model 4 with two parameters (C10 and C02). Another fit was done for the relaxation
test by adding multiple series of Prony as a kernel function for the fading memory
functional depending on two parameters in each summation term. Therefore, it was
concluded that at least seven Maxwell elements in parallel were necessary. By fixing
the relaxation times (τi), the dimensionless coefficients (gi) were fitted to represent
the transient dissipative behaviour of the seal. Some hypotheses were made to incor-
porate the material and process changes of the silicone, as well as the temperature
behaviour. Mostly driven by the Shore hardness A, the first hyperelastic material pa-
rameter may affect the linear elastic moduli, while the WLF function was introduced
using an exaggerated glass transition temperature of -60◦ for the silicone.

Chapter 4 evokes the FEM analysis principles for the model using a conceptual
door seal design. By assuming the relevant boundary conditions in a flight mission,
the simulation steps were constructed to cover different ground and flight conditions,
including manoeuvrers during a long-range mission. Therefore, the models inputs were
parametrised in ABAQUS to be managed by the ISIGHT tool. Basic control options
are explained, notably by highlighting the importance of pressure load definition by
contact interactions. Due to the necessity of using an implicit scheme for the FPP,
a combination of transient static and dynamic solutions was exploited to apply the
pressure load while avoiding divergence problems. Mesh size and test comparisons with
FEM models were made to increase the level of confidence in the numerical solutions.
The outputs coming from FEM analysis were post-processed to obtain the performance
indicators: force, leakage, collapse, safety factors and residual displacement. These
results were further combined with DOE and Parametric Optimisation in Chapters 5
and 6 for design improvements. These last two analysis chapters explored different
techniques in the design space of boundary conditions (displacement and temperature)
and material and geometry of the seal. The goal of increasing seal efficiency started
by understanding the influencing factors on seal performance. By using the DOE
with 500 simulations from an Optimised Latin Hypercube sampling technique, the
critical loading cases were filtered using of Spearman’s correlation coefficients. With
a confidence interval of 99.9%, a mitigation of the input variables was performed to
assume three scenarios for the optimisation whereby the genetic algorithm NSGA-
II was considered for the first optimisation rounds to minimise the leakage and force
together, within a fixed design space while avoiding collapse occurrences. Additionally,
two design candidates were refined by using LSGRG gradient-based technique in a
’best’ design choice, after an evaluation of the results and a DOE re-run.
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Open points concerning the material modelling, simulations, and optimisation
techniques are recalled in this last paragraph. This work combined research topics to
improve a seal design in a superficial but meaningful way. Concerning the material
modelling topic, it is still necessary to look deeper into the behaviour of fibre-reinforced
elastomers. Experiments in multiple directions as well as in other loading modes are
necessary for the consideration of anisotropy and at least shear or biaxial tests should
be employed to identify the material model parameters of the elastic behaviour in
multiple directions. In addition, the effect of temperature may also play an important
role in the elastic mechanical characteristics of elastomers as previously mentioned. A
modelling approach that takes at least two flight cycles of the aircraft into account
would be ideal for capturing the influence of the deformation history from one flight to
another. Considering the long time span of an aircraft’s structural goal, damage and
ageing effects should not be neglected for understanding the behaviour of the seal and
these may be incorporated in further research by means of user defined subroutines for
transient models. In fact, time was an important aspect of this work in the attempt
to reduce the number of simulations for the calculations. Although 2D models were
easily parametrised for the optimisation rounds, this simplification that was made to
increase the data acquisition does not cover problematic parts of the seal on the door
corner areas. Further development of optimisation tools with nonparametric methods
may be important to develop robust seals, even for complex 3D nonlinear simulations.
Nevertheless, a reduced number of computational experiments based on DOE is a
good starting point to understand the influencing variables on seal performance.
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A. Appendix 1

Table A.1. – Design matrix containing all 500 samples for DOE simulations.

Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
1 2.2 1.9 -6.1 -0.3 -4.9 -3.1 53.0 0.3 -9.7 -16.6 19.3
2 -2.7 3.5 -3.6 -2.0 -5.7 -3.5 56.0 0.3 37.6 -37.5 38.4
3 -3.7 3.6 -3.3 -0.3 1.4 -3.6 55.5 0.2 -22.0 -19.5 -8.4
4 -1.6 -1.0 -4.5 -0.1 -6.1 -3.8 55.1 0.3 -28.1 -18.3 -35.2
5 2.9 3.2 -0.9 -1.8 -4.3 -3.9 54.6 0.3 -6.8 -15.7 -21.4
6 0.6 -1.1 -0.5 -0.7 -6.6 -3.9 52.8 0.2 22.4 -43.8 20.0
7 -0.5 3.6 -6.2 -3.2 -3.4 -3.8 51.6 0.2 23.2 -17.9 7.0
8 2.2 -1.3 -6.6 -1.8 2.5 -3.2 52.8 0.2 -33.0 -37.2 26.4
9 0.3 3.0 -1.9 -2.7 3.4 -3.0 53.4 0.2 38.9 -31.8 15.0
10 1.6 0.2 -2.4 -1.9 -0.3 -3.1 60.0 0.2 -30.5 -48.9 3.8
11 -3.0 -1.2 -3.2 -0.2 -1.0 -3.2 51.3 0.4 -32.1 -35.5 -20.4
12 0.7 2.9 -0.4 -3.2 -1.8 -3.5 53.3 0.2 -35.8 -42.5 -28.3
13 3.1 1.0 -1.7 -3.8 1.4 -3.1 52.0 0.2 4.4 -28.2 -33.3
14 3.2 1.2 -0.3 -3.7 -5.0 -3.4 55.4 0.3 5.1 -39.6 38.6
15 -2.5 1.0 -5.9 -1.7 -5.3 -3.8 58.4 0.1 -30.2 -30.7 2.8
16 -3.0 -0.5 -1.8 -2.3 1.9 -3.2 50.5 0.2 -31.2 -45.0 -5.2
17 0.4 2.9 -4.1 -2.6 -7.1 -3.6 53.8 0.4 22.7 -48.1 -27.5
18 -3.1 2.6 -3.8 -3.1 2.0 -3.2 51.4 0.3 18.8 -48.5 -0.1
19 -0.5 2.2 -0.6 -0.3 -0.2 -3.4 53.4 0.3 -34.9 -49.0 11.9
20 -3.3 3.4 -0.9 -1.0 1.9 -3.2 52.9 0.3 -2.7 -36.8 -33.6
21 2.0 0.8 -5.1 -1.4 -5.3 -3.0 57.7 0.4 -37.3 -33.0 6.2
22 -2.4 1.3 -3.9 -1.8 4.7 -3.0 55.0 0.4 -4.1 -23.7 -11.0
23 3.2 1.2 -6.4 -2.1 3.0 -3.8 58.2 0.4 11.3 -37.4 12.3
24 2.7 -2.0 -3.3 -2.6 -2.4 -3.7 58.5 0.3 37.9 -47.0 -31.2
25 -2.6 2.3 -0.7 -3.5 3.0 -3.3 57.0 0.2 4.3 -18.6 -31.3
26 -2.9 -1.4 -2.7 -3.4 -3.3 -3.5 53.5 0.3 32.5 -16.3 36.0
27 -1.1 2.1 -2.7 -3.7 4.4 -3.6 52.5 0.1 16.9 -42.2 -7.9
28 2.7 3.0 -6.3 -2.4 3.5 -3.6 53.9 0.2 -9.2 -22.0 40.0
29 2.4 -2.2 -1.9 -3.4 3.6 -3.6 55.5 0.2 -38.2 -46.9 10.3
30 3.3 -3.0 -6.8 -2.3 -3.5 -3.5 59.4 0.4 3.6 -26.0 -7.8
31 2.6 -1.1 -3.9 0.0 -0.4 -3.9 57.8 0.3 -1.7 -31.0 -30.9
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
32 1.7 0.5 -3.5 -3.5 1.3 -3.7 51.5 0.2 36.3 -31.4 39.4
33 -2.7 2.0 -1.3 -0.6 -7.7 -3.3 56.7 0.3 3.3 -48.6 -0.2
34 3.1 -2.8 -4.1 -2.0 4.1 -3.8 51.7 0.1 -4.9 -31.6 13.6
35 -0.7 -0.5 -6.7 -3.0 -3.8 -3.9 56.8 0.3 39.2 -28.4 23.7
36 -3.9 -2.5 -6.9 -0.7 -4.2 -3.2 55.1 0.2 28.1 -34.7 4.4
37 -2.4 3.6 -4.3 -2.1 -6.2 -3.2 52.7 0.3 -33.1 -43.5 0.4
38 1.6 -3.7 -0.7 -0.8 -0.7 -3.3 50.8 0.2 -5.1 -46.8 4.7
39 0.3 -1.9 -5.3 -0.8 -3.9 -3.1 51.6 0.1 11.6 -42.6 -35.8
40 1.5 -2.9 -4.3 -1.3 2.8 -3.8 53.4 0.2 -14.5 -12.6 -36.2
41 3.4 -0.8 -0.6 -2.9 2.1 -3.8 50.6 0.3 -23.2 -25.9 -18.0
42 3.7 -0.6 -5.3 -1.7 -7.8 -4.0 54.4 0.2 13.1 -36.5 -18.8
43 0.0 -1.4 -3.9 -3.5 -6.4 -3.6 58.1 0.4 -11.1 -34.0 -39.5
44 0.8 1.0 -3.1 -4.0 -4.7 -3.1 52.5 0.3 38.2 -33.9 9.2
45 2.9 0.1 -4.6 -0.2 -1.9 -3.8 51.4 0.2 -22.7 -47.4 23.8
46 -1.7 0.5 -3.2 -1.4 -3.8 -3.1 50.4 0.2 37.4 -18.8 26.7
47 -0.6 -1.9 -6.1 -0.2 2.0 -3.8 52.3 0.2 33.8 -30.1 25.1
48 0.3 -1.5 -3.2 -0.7 -7.7 -3.5 59.5 0.1 12.4 -38.0 -29.1
49 -0.8 2.3 -6.7 -2.0 -7.3 -3.7 55.9 0.4 -11.0 -38.0 21.2
50 -1.9 -2.3 -5.5 -0.4 -3.9 -3.8 58.6 0.2 27.3 -17.0 5.2
51 -1.8 1.5 -5.9 -0.8 -1.3 -3.3 58.1 0.1 3.1 -49.2 -14.7
52 3.3 -0.8 -2.5 -1.5 0.1 -4.0 51.5 0.3 34.9 -25.2 -0.4
53 3.3 -3.9 -6.8 -1.7 2.1 -3.8 54.1 0.3 17.2 -41.5 -15.0
54 -2.2 -1.9 -0.8 -1.7 2.3 -3.0 51.7 0.3 10.5 -35.1 34.2
55 -2.2 -4.0 -2.5 -1.0 0.2 -3.2 56.8 0.2 -12.8 -48.7 -28.0
56 -3.2 -0.9 -4.6 -1.8 4.2 -3.0 58.9 0.3 15.8 -44.3 5.1
57 -2.1 -2.8 -2.9 -0.2 -1.2 -3.4 56.1 0.3 33.9 -46.6 28.6
58 3.1 -0.5 -5.7 -1.6 2.3 -3.6 59.0 0.2 26.9 -25.9 -39.2
59 -3.3 -0.4 -6.0 -2.6 -5.4 -3.2 51.8 0.3 3.9 -37.7 37.6
60 -1.1 -3.9 -4.9 -1.7 -4.4 -3.8 55.9 0.2 38.4 -45.3 -7.0
61 -2.0 -3.7 -3.1 -3.5 -7.4 -3.6 57.2 0.1 -13.9 -36.0 -11.6
62 2.6 -1.1 -4.3 -0.9 -7.8 -3.7 54.8 0.4 -2.0 -13.7 4.1
63 0.9 -0.2 -4.2 -3.0 4.8 -3.4 50.1 0.2 26.2 -14.1 -10.8
64 -1.6 0.6 -0.1 -2.1 0.4 -3.2 53.1 0.3 35.5 -15.1 -6.7
65 1.2 -2.6 -5.9 -3.9 -1.1 -3.9 50.8 0.3 5.4 -24.6 -20.1
66 -0.9 2.5 -3.0 -1.1 4.9 -3.7 59.0 0.3 -15.6 -20.8 35.4
67 3.6 -0.9 -2.7 -3.2 -4.8 -4.0 51.9 0.2 -24.0 -37.9 23.3
68 -1.0 0.4 -5.5 -3.3 -0.7 -3.2 50.0 0.3 -23.7 -33.2 -33.4
69 3.2 3.7 -4.4 -2.4 1.7 -3.1 53.0 0.3 -33.3 -24.8 -1.4
70 1.4 -0.9 -3.1 -1.3 -2.8 -3.6 57.5 0.4 -29.7 -49.2 39.8
71 3.2 -0.6 -5.0 -0.7 3.5 -3.1 58.3 0.3 24.3 -21.3 2.2
72 -1.1 3.1 -2.2 -3.4 -0.4 -3.6 50.4 0.3 17.1 -26.9 -36.6
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
73 -3.5 2.0 -0.1 -2.5 -1.3 -4.0 54.1 0.2 -10.0 -25.6 -21.2
74 -2.3 1.6 -4.0 -3.3 -2.8 -3.7 50.4 0.1 -28.0 -34.2 9.4
75 4.0 1.6 -2.4 -1.0 -1.2 -3.7 51.0 0.2 -19.3 -13.6 23.5
76 3.6 2.0 -2.1 -2.5 1.7 -3.3 50.8 0.2 -11.9 -44.4 19.2
77 -3.8 -0.7 -1.7 -3.3 -4.1 -3.1 52.0 0.4 -10.2 -27.9 1.5
78 2.7 3.1 -3.0 -1.5 3.8 -3.7 52.0 0.1 -3.3 -35.5 -38.7
79 -1.0 -3.0 -4.4 -3.9 3.1 -3.3 50.2 0.3 3.8 -35.8 17.2
80 0.0 -1.0 -2.5 -2.2 2.2 -3.6 50.1 0.3 -39.7 -29.8 37.1
81 -3.2 -2.9 -4.2 -3.3 -0.2 -3.8 54.9 0.4 -30.1 -39.0 29.9
82 1.8 -1.1 -1.2 -0.1 -2.2 -3.6 50.9 0.4 -8.4 -32.3 17.9
83 3.5 1.1 -2.9 -3.5 0.9 -3.9 54.5 0.1 16.4 -18.9 -13.7
84 -3.3 0.2 -1.8 -2.0 -1.7 -3.7 56.3 0.4 6.8 -17.0 -38.9
85 -0.3 -3.8 -1.7 -0.4 -1.4 -3.6 57.5 0.4 14.4 -16.5 24.5
86 -0.7 -3.5 -5.5 -0.6 -4.5 -3.3 56.3 0.1 -30.1 -19.4 5.7
87 -0.9 2.2 -3.7 -1.6 4.9 -4.0 51.3 0.2 1.0 -20.4 7.6
88 -2.1 2.6 -4.2 -0.1 -3.3 -3.4 59.1 0.3 -28.8 -34.5 32.3
89 -0.4 -3.9 -1.0 -3.4 -2.5 -3.4 51.9 0.3 -33.9 -39.4 -23.2
90 0.7 2.8 -3.5 -0.6 1.8 -3.5 52.6 0.2 29.9 -47.8 36.2
91 2.8 -3.0 -5.7 -0.1 -5.6 -3.4 55.4 0.2 15.5 -19.5 -29.3
92 -0.3 0.2 -2.9 0.0 4.8 -3.1 53.5 0.1 6.3 -36.4 -1.2
93 0.2 -0.3 -5.3 -1.3 -4.0 -3.1 59.5 0.3 11.9 -44.1 -36.0
94 -3.9 3.7 -1.8 -3.5 -3.7 -3.5 57.4 0.3 5.9 -37.6 -13.2
95 -3.9 -0.1 -2.9 -3.8 -4.6 -3.5 55.2 0.2 -39.0 -21.5 -30.2
96 2.1 -3.2 -0.1 -3.6 0.6 -3.4 52.2 0.1 -1.2 -27.4 21.6
97 2.3 -1.3 -1.2 -3.1 -5.2 -3.1 57.8 0.3 22.0 -14.3 15.2
98 1.3 3.2 -1.4 -3.4 1.6 -3.9 55.4 0.2 -35.2 -25.3 20.3
99 -3.4 -1.7 -3.3 -1.2 -0.3 -3.6 51.3 0.1 11.5 -44.7 30.9
100 3.6 0.3 -5.7 -0.1 3.5 -3.5 50.9 0.3 -0.4 -27.8 -8.6
101 0.9 1.1 -2.4 -3.7 1.0 -3.3 59.8 0.4 25.3 -32.2 -14.8
102 -1.3 -2.0 -5.9 -0.1 3.2 -3.4 56.2 0.3 30.2 -39.5 -30.5
103 0.6 -3.2 -1.4 -0.4 4.0 -3.3 54.3 0.4 7.6 -24.3 -26.1
104 2.8 -0.2 -0.3 -2.4 -4.8 -3.4 53.7 0.4 29.3 -27.7 -36.5
105 1.5 -2.5 -3.1 -3.5 3.1 -3.5 59.9 0.1 0.1 -32.6 -10.7
106 -3.2 3.0 -3.5 -3.6 1.6 -3.3 50.8 0.3 -2.3 -19.7 24.0
107 0.6 0.6 -0.5 -1.4 4.7 -3.5 50.2 0.3 24.9 -40.6 -8.9
108 2.8 -2.8 -2.8 -0.1 1.4 -3.2 59.1 0.2 -15.5 -28.9 -18.4
109 0.8 0.7 -3.5 0.0 4.4 -3.6 59.3 0.3 -0.9 -48.8 10.2
110 -3.3 2.5 -5.2 -1.1 1.5 -3.5 51.8 0.1 38.1 -33.3 -9.1
111 -0.3 -1.6 -0.6 -4.0 -3.1 -3.5 56.8 0.1 40.0 -28.1 -7.6
112 2.4 -2.6 -2.3 -1.1 -3.6 -3.4 57.6 0.3 -35.7 -18.5 -30.1
113 1.6 -3.3 -4.9 -3.3 3.3 -4.0 58.5 0.3 -16.1 -24.6 -16.8
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
114 2.7 3.1 -6.1 -1.3 -6.3 -3.7 59.5 0.3 -17.7 -28.3 -23.7
115 -2.3 1.1 -0.6 -3.6 0.9 -3.1 58.0 0.3 10.3 -29.1 35.2
116 -2.5 0.4 -4.5 -1.5 -6.9 -3.4 50.6 0.3 -36.8 -16.0 7.1
117 2.5 -2.2 -3.1 -1.3 0.3 -3.1 50.6 0.1 -18.0 -19.9 -10.5
118 -0.2 -0.4 -3.0 -1.6 4.5 -3.5 54.9 0.4 39.0 -26.7 36.5
119 0.1 -0.3 -3.7 -0.1 3.0 -3.2 54.4 0.3 -39.4 -14.9 13.2
120 -3.2 1.4 -4.2 -1.1 -6.9 -3.2 58.3 0.2 -11.5 -13.8 -16.1
121 1.1 3.7 -2.4 -3.2 5.0 -3.5 57.3 0.3 -5.9 -47.1 16.1
122 1.4 1.4 -4.7 -3.6 -2.7 -3.3 56.6 0.1 25.4 -15.0 27.2
123 1.3 -3.1 -6.2 -2.2 -1.6 -3.2 51.3 0.2 37.3 -40.1 24.6
124 0.6 -3.6 -1.6 -0.5 -7.6 -3.6 56.2 0.4 11.8 -38.5 -20.1
125 4.0 -0.2 0.0 -1.6 -3.4 -3.3 54.6 0.3 -39.8 -32.0 14.7
126 -1.9 2.7 -4.1 -3.9 0.3 -3.2 59.7 0.2 18.5 -37.1 -0.9
127 -3.0 2.2 -3.5 -1.0 -5.9 -3.9 52.7 0.2 -20.9 -41.9 37.3
128 3.9 -3.1 -5.4 -0.9 -4.4 -3.3 56.7 0.3 -8.9 -49.7 1.7
129 0.5 -2.7 -5.6 -1.8 -0.1 -3.7 55.2 0.4 36.8 -14.0 -26.4
130 -0.2 -3.1 -0.4 -2.9 1.8 -3.9 54.6 0.3 19.5 -12.5 -15.6
131 0.6 -1.2 -2.0 -3.9 -0.1 -3.9 59.0 0.3 8.7 -42.8 18.8
132 -1.6 -2.2 -5.6 -2.0 -3.9 -3.9 59.2 0.3 -26.4 -17.6 15.8
133 0.8 0.8 -4.0 -0.6 -5.6 -3.8 59.4 0.3 28.6 -44.9 10.8
134 1.8 -2.6 -4.8 -3.7 -5.9 -3.1 55.0 0.3 -27.8 -15.2 -3.5
135 -1.4 -2.4 -2.5 -0.2 -3.5 -3.8 58.6 0.2 -24.5 -45.6 12.4
136 1.8 -0.4 -5.4 -0.3 3.9 -3.7 57.1 0.1 1.2 -14.4 14.8
137 -2.4 -3.7 -4.5 -1.6 0.1 -3.8 58.8 0.4 13.7 -38.3 -9.4
138 -1.3 -3.7 -0.3 -0.4 -0.4 -3.5 56.6 0.1 23.7 -29.1 2.3
139 0.2 -2.8 -2.8 -2.5 -0.4 -3.1 57.9 0.2 37.1 -30.3 39.7
140 -3.8 1.5 -0.8 -1.4 3.5 -3.5 56.7 0.2 30.9 -43.7 8.7
141 -3.7 -1.7 -5.0 -2.6 -7.1 -3.9 53.2 0.2 14.7 -27.5 22.2
142 -0.3 -2.4 -6.4 -2.2 -7.7 -3.3 54.5 0.2 19.0 -13.1 22.5
143 -2.8 -3.2 -1.1 -2.3 -7.7 -3.6 56.0 0.3 -7.5 -13.1 0.1
144 3.5 3.2 -4.7 -2.5 0.7 -4.0 54.7 0.2 6.5 -46.7 10.7
145 0.5 0.3 -4.7 -0.6 -2.8 -3.1 57.4 0.1 34.7 -20.0 -3.9
146 1.2 -0.3 -1.0 -1.9 -1.3 -3.2 50.3 0.3 -24.3 -13.8 -19.2
147 -0.4 -1.7 -1.2 -0.2 -0.8 -3.0 57.6 0.4 -12.6 -38.7 9.5
148 4.0 2.4 -4.3 -3.2 -0.6 -3.4 57.7 0.2 -3.9 -45.7 -36.8
149 2.1 2.0 -5.7 -1.5 3.3 -3.8 56.4 0.3 -36.5 -16.0 -15.3
150 2.5 2.5 -1.9 -0.7 2.9 -3.1 55.3 0.3 -7.1 -31.9 39.5
151 1.9 -3.8 -0.3 -2.3 3.7 -3.7 55.1 0.2 9.5 -41.1 -31.8
152 -4.0 3.3 -4.3 -2.8 0.1 -3.8 57.5 0.1 8.9 -21.9 25.6
153 0.4 0.7 -1.6 -4.0 -2.2 -3.0 53.1 0.2 -40.0 -26.9 14.5
154 -2.9 -1.0 -5.4 -1.1 3.8 -3.3 58.8 0.2 -39.5 -33.6 -3.6
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
155 -2.1 -1.5 -0.3 -3.0 -2.8 -3.9 54.9 0.2 -27.2 -42.3 29.3
156 2.0 3.5 -0.2 -3.0 -0.7 -3.7 55.4 0.2 34.4 -41.5 -17.9
157 -1.9 3.0 -2.0 -0.7 -6.7 -3.8 51.4 0.2 5.7 -14.8 7.3
158 2.5 1.8 -3.8 -0.5 -2.9 -3.9 51.0 0.1 31.2 -29.7 7.5
159 -4.0 -0.2 -3.5 -2.1 -6.6 -3.9 57.1 0.3 -23.5 -44.6 -15.2
160 -2.7 -1.7 -2.0 -2.5 3.2 -3.1 52.8 0.2 31.5 -36.1 -32.0
161 2.1 1.9 -3.2 -3.4 -2.9 -3.2 58.3 0.2 33.0 -17.9 -36.3
162 -1.4 4.0 -1.1 -0.8 1.3 -3.3 59.0 0.4 23.0 -31.6 8.4
163 2.1 3.5 -6.9 -1.6 -0.5 -3.4 57.4 0.3 -23.8 -47.6 17.4
164 -2.3 -3.5 -5.5 -1.4 4.8 -3.4 50.5 0.2 -9.5 -30.0 -11.1
165 3.4 1.2 -2.1 -2.6 4.3 -3.5 55.9 0.4 7.0 -15.0 -28.5
166 2.6 -1.5 -3.4 -2.6 -7.8 -3.6 59.7 0.2 -37.1 -32.0 5.9
167 -1.4 1.7 -3.4 -2.1 -2.9 -3.4 54.7 0.1 -35.0 -12.0 32.5
168 -1.7 0.5 -5.2 -0.9 -6.7 -3.6 50.7 0.3 31.0 -48.9 3.5
169 -3.6 -2.8 -5.7 -2.9 4.4 -3.8 54.2 0.3 19.6 -21.7 13.7
170 -1.3 3.3 -2.0 -3.4 4.1 -3.8 55.6 0.3 37.0 -22.1 6.3
171 0.9 2.8 -2.0 -3.1 -6.6 -3.9 54.0 0.4 28.9 -27.5 16.0
172 -3.0 -2.2 -3.9 -2.3 4.2 -3.6 54.7 0.3 -32.5 -31.0 -37.0
173 2.4 -3.0 -3.4 -1.2 2.6 -3.9 59.0 0.2 35.4 -32.4 18.4
174 2.7 2.1 -6.5 -3.9 3.0 -3.2 55.7 0.3 29.1 -28.7 -2.0
175 -1.4 3.1 -7.0 -3.2 -1.6 -3.3 53.3 0.1 13.2 -44.8 20.8
176 0.5 -2.5 -2.6 -1.2 -8.0 -3.0 53.8 0.2 -32.8 -36.3 -14.2
177 -1.4 1.7 -6.2 -1.2 4.6 -3.4 53.0 0.3 -18.2 -47.9 -24.1
178 1.7 2.8 -2.8 -0.3 -5.1 -3.4 50.9 0.2 -31.8 -27.2 -25.6
179 -0.2 2.6 -2.9 -2.2 -6.7 -3.8 51.1 0.1 10.0 -36.9 -37.4
180 -0.5 0.4 -2.9 -3.9 -6.7 -3.2 51.9 0.2 -0.6 -46.3 -13.6
181 -1.5 -3.5 -3.8 0.0 -5.4 -3.5 50.3 0.2 7.5 -23.3 1.4
182 1.0 -0.1 -1.2 -0.5 -2.3 -3.4 59.6 0.3 27.2 -16.2 -29.6
183 -2.6 -1.6 -6.6 -2.9 1.7 -3.1 54.0 0.3 -32.0 -18.2 9.7
184 3.8 1.0 -6.4 -1.5 -2.1 -3.6 55.2 0.2 38.7 -15.4 13.9
185 -2.4 2.0 -5.1 -2.9 -7.2 -3.6 57.3 0.1 36.2 -31.5 -15.8
186 1.5 1.5 -6.5 -2.8 -0.3 -3.7 50.4 0.2 35.8 -42.5 -22.0
187 -0.8 -2.7 -6.0 -3.1 0.3 -3.0 56.7 0.4 26.5 -24.0 13.1
188 -2.2 3.2 -1.9 -2.7 1.2 -3.6 52.5 0.4 -38.4 -33.2 -4.3
189 1.5 -3.4 -3.5 -0.7 2.4 -3.5 51.1 0.2 39.5 -28.0 -25.9
190 -2.5 0.1 -6.6 -0.8 3.6 -4.0 58.1 0.2 -6.7 -26.4 -17.1
191 -1.7 2.7 -4.0 -3.6 -5.1 -3.7 59.2 0.2 -21.1 -36.7 38.2
192 0.5 2.0 -0.4 -1.5 3.2 -3.3 58.7 0.3 -36.6 -27.2 -13.9
193 3.6 -3.8 -1.7 -2.1 -2.4 -3.9 55.8 0.4 -16.9 -33.9 3.1
194 0.5 3.4 -5.3 -0.8 -3.6 -3.7 56.1 0.2 14.0 -16.3 -31.5
195 -1.2 -2.1 -6.3 -0.9 2.8 -3.4 58.1 0.4 -11.3 -30.8 34.4
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
196 -2.9 0.6 -2.4 -3.8 -7.9 -3.2 55.9 0.2 8.4 -25.4 26.2
197 1.9 0.5 -4.5 -2.8 -3.3 -4.0 55.7 0.2 -38.1 -26.6 -38.1
198 -0.7 -0.2 -0.9 -0.2 -0.6 -3.9 51.5 0.1 -23.3 -30.4 8.3
199 -3.9 0.6 -3.1 -0.5 4.8 -3.6 53.0 0.3 -9.4 -37.7 21.1
200 3.0 2.7 -1.0 -3.4 2.2 -3.2 58.7 0.2 -6.3 -22.6 13.4
201 2.9 -0.7 -5.9 -1.5 4.0 -3.7 57.5 0.1 -27.5 -43.5 -19.8
202 -1.6 1.8 -5.7 -0.7 2.3 -3.5 59.3 0.2 37.8 -29.4 28.3
203 -2.0 -1.9 -2.4 -2.1 -4.4 -3.1 58.2 0.3 -36.3 -19.6 33.8
204 3.0 2.8 -1.8 -0.4 0.5 -3.1 53.2 0.3 17.9 -23.1 -22.7
205 -2.2 -2.7 -5.1 -1.0 0.8 -3.3 59.2 0.3 -9.1 -12.3 -20.0
206 -3.4 -1.0 -5.1 -3.5 -5.1 -3.4 57.3 0.3 31.7 -47.7 -0.1
207 3.9 0.0 -0.2 -1.2 0.1 -3.5 57.5 0.4 24.0 -40.9 7.9
208 -3.5 0.1 -2.3 -0.8 -5.8 -3.4 53.9 0.1 -25.4 -39.9 -25.1
209 2.9 3.4 -2.2 -3.2 -4.1 -3.7 57.6 0.4 -22.9 -41.2 -1.7
210 -0.1 2.4 -3.2 -1.4 -3.1 -3.9 54.2 0.4 -29.4 -18.4 38.7
211 3.9 2.3 -2.8 -1.0 -1.8 -3.4 59.2 0.3 -15.0 -12.2 12.8
212 3.7 -1.8 -0.2 -0.1 -2.4 -3.7 53.0 0.2 1.5 -22.8 -24.6
213 1.4 0.8 -2.1 -0.6 -7.3 -4.0 54.3 0.3 -38.9 -37.4 -2.8
214 2.9 -0.7 -5.6 -4.0 -3.1 -3.3 50.1 0.2 -6.2 -26.1 6.7
215 -1.5 -0.6 -1.2 -3.6 -6.4 -3.3 57.2 0.3 -27.3 -48.0 11.1
216 -2.2 0.8 -3.9 -2.4 2.1 -3.1 55.0 0.3 -34.6 -44.1 34.6
217 -0.7 2.8 -6.9 -1.6 -7.2 -3.1 58.8 0.2 15.2 -33.7 10.0
218 1.1 1.2 -0.8 -0.4 -2.7 -3.3 59.1 0.2 19.2 -43.1 28.8
219 0.4 2.6 -1.6 -3.9 -5.8 -3.7 58.8 0.1 -10.7 -22.9 -14.0
220 0.1 -1.0 -3.3 -3.0 -3.2 -3.9 53.1 0.4 -37.6 -16.6 -17.6
221 -1.7 0.8 -2.3 -3.4 2.6 -3.1 56.4 0.3 -20.6 -46.0 -35.4
222 -1.5 -0.3 -3.6 -3.8 5.0 -3.4 56.4 0.2 -18.7 -28.5 37.0
223 -3.7 0.9 -2.7 -0.2 -0.3 -3.5 59.9 0.3 -7.9 -35.3 -32.3
224 -0.4 -0.2 -4.8 0.0 -3.6 -3.0 53.3 0.2 -7.8 -47.3 26.1
225 0.8 0.8 -6.4 -3.2 -5.2 -3.8 60.0 0.2 4.1 -46.5 -6.5
226 3.6 1.5 -1.3 -0.8 -3.2 -3.8 51.9 0.3 6.7 -48.2 -28.8
227 -0.1 3.4 -4.2 -0.5 -1.6 -3.9 56.5 0.2 -28.6 -45.1 -30.4
228 -2.0 -3.2 -1.8 -2.7 3.7 -3.4 54.5 0.4 -16.6 -13.9 19.0
229 2.3 -2.6 -2.1 -1.2 -4.2 -3.7 54.0 0.2 -32.6 -45.4 -35.5
230 -1.2 -0.1 -3.3 -3.1 -1.5 -3.7 58.7 0.1 22.5 -47.6 32.1
231 -1.8 1.6 -5.8 -2.5 4.9 -3.2 56.5 0.1 10.8 -13.2 -7.1
232 -1.9 0.0 -1.2 -0.9 2.8 -3.1 59.9 0.2 -1.8 -17.3 11.5
233 -2.4 -3.1 -5.0 -3.5 1.4 -3.1 54.4 0.1 1.4 -43.9 9.9
234 3.5 1.9 -2.2 -1.1 4.1 -3.8 54.3 0.3 -29.1 -38.6 12.9
235 0.3 -0.5 -6.5 -1.0 -4.2 -4.0 52.3 0.2 -14.8 -14.2 15.3
236 0.0 0.0 -3.5 -3.8 -7.9 -3.6 53.2 0.3 18.4 -13.0 -25.7
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
237 -2.2 4.0 -0.9 -1.3 -3.5 -3.3 58.3 0.1 13.9 -31.2 -18.7
238 3.5 3.8 -4.8 -3.7 -7.3 -3.5 54.4 0.2 20.0 -35.2 -4.6
239 1.3 -0.9 -1.0 -2.5 -6.8 -3.7 52.2 0.1 -23.0 -16.7 -10.3
240 1.9 -2.2 -0.5 -0.9 3.8 -3.8 57.0 0.2 -29.3 -19.2 8.6
241 2.4 -3.7 -6.7 -2.6 1.7 -3.2 55.3 0.2 13.4 -17.7 -6.8
242 -1.6 -1.8 -5.9 -0.5 1.1 -3.8 51.6 0.4 -14.7 -18.0 -0.6
243 2.7 -3.9 -0.9 -2.2 -4.5 -3.6 58.2 0.2 7.8 -45.4 18.2
244 -1.0 -4.0 -0.1 -2.8 -1.7 -3.3 55.8 0.4 24.8 -36.4 6.8
245 -0.4 -1.5 -6.8 -2.9 0.4 -3.9 51.2 0.2 -4.3 -46.3 27.7
246 2.5 -0.1 -2.7 -3.8 1.0 -3.6 52.1 0.4 2.3 -49.4 -22.9
247 -0.3 -0.7 -0.4 -1.7 -1.1 -3.7 56.6 0.4 -26.2 -49.5 -27.3
248 2.6 0.6 -3.6 -2.0 -8.0 -3.0 51.9 0.2 18.2 -20.9 -20.8
249 -3.8 -1.2 -6.0 -2.7 -5.0 -3.0 56.2 0.2 -12.4 -37.1 -28.6
250 3.8 3.9 -3.6 -2.3 1.0 -3.5 52.1 0.4 28.5 -34.6 11.8
251 -3.1 -1.3 -4.2 -3.8 -2.3 -4.0 58.3 0.2 16.0 -23.4 -22.4
252 2.6 -3.4 -5.4 -3.8 -4.6 -3.8 56.9 0.2 16.1 -29.5 23.0
253 0.2 4.0 -4.4 -2.4 -0.6 -3.1 56.7 0.3 21.1 -13.4 24.1
254 1.2 -1.3 -6.7 -0.4 -4.0 -3.3 54.2 0.4 30.5 -34.1 14.0
255 -1.3 1.0 -7.0 -3.6 -7.9 -3.7 52.9 0.2 -15.2 -35.9 -19.5
256 -2.0 -2.3 -2.7 -3.1 -4.5 -3.9 52.6 0.4 39.4 -35.6 -17.4
257 -0.6 0.0 -0.4 -1.3 4.5 -4.0 57.7 0.4 12.3 -31.3 -6.2
258 -2.1 3.9 -1.0 -3.0 -1.6 -3.3 54.3 0.2 -7.0 -45.9 30.2
259 3.5 1.2 -2.8 -3.2 -7.8 -3.4 51.6 0.3 -26.9 -33.5 -21.7
260 2.3 -0.7 0.0 -2.3 -3.4 -3.1 55.9 0.1 -5.4 -36.7 -23.0
261 -4.0 -0.6 -4.7 -2.1 -1.5 -3.8 50.9 0.2 9.9 -12.7 -24.9
262 -2.7 -3.5 -3.8 -3.6 -0.2 -3.3 59.9 0.3 -22.4 -32.6 -5.4
263 -2.5 0.0 -1.4 -1.6 1.0 -3.4 56.6 0.4 36.6 -46.1 -30.7
264 -2.8 -0.6 -0.5 -1.9 -1.0 -3.9 50.0 0.4 -1.0 -20.5 6.5
265 -3.8 -2.5 -4.7 -2.9 -2.6 -3.6 50.8 0.2 7.3 -45.1 -29.7
266 3.2 2.6 -5.6 -0.3 -2.6 -3.4 55.6 0.2 33.3 -43.3 -16.9
267 -2.5 2.5 -0.9 -2.3 -5.3 -3.6 58.0 0.2 32.3 -12.8 2.0
268 -1.2 2.9 -3.8 -2.5 -6.0 -3.3 59.7 0.2 -31.5 -39.7 -33.8
269 2.9 1.3 -4.5 -3.9 -2.6 -3.4 57.1 0.1 -24.8 -40.4 22.7
270 3.9 0.6 -0.7 -2.1 -0.5 -3.9 59.7 0.2 -14.0 -37.3 -16.6
271 1.7 -3.0 -2.0 -1.9 -5.3 -3.7 53.4 0.2 35.2 -15.6 26.9
272 0.4 -3.4 -1.6 -2.5 4.9 -3.0 55.5 0.2 -27.0 -29.0 -8.3
273 2.8 -1.9 -4.9 -2.6 4.6 -3.2 52.4 0.2 9.7 -45.5 -22.5
274 0.2 2.7 -5.0 -1.5 -7.4 -3.7 58.5 0.2 4.9 -14.6 33.4
275 -2.6 0.4 -5.2 -3.8 0.5 -3.6 57.0 0.2 -34.4 -49.6 -5.1
276 -1.3 -3.8 -4.1 -2.5 -6.3 -3.3 58.7 0.3 36.0 -24.0 -23.5
277 0.1 0.9 -1.1 -1.5 -7.0 -3.3 50.2 0.2 -19.0 -33.8 31.7
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
278 1.4 -1.6 0.0 -4.0 -0.9 -3.5 58.0 0.3 -26.5 -21.2 -9.2
279 -1.5 -3.1 -2.2 -3.8 -5.0 -3.5 52.3 0.2 22.9 -45.7 30.5
280 3.6 1.2 -5.9 -1.2 -5.8 -3.2 57.2 0.1 -20.8 -31.1 -16.3
281 2.1 -1.5 -6.0 -3.1 -4.4 -3.1 57.8 0.1 27.5 -41.9 -10.2
282 -1.4 -0.8 -6.7 -2.3 1.2 -3.5 51.2 0.1 7.9 -18.9 35.8
283 0.7 3.3 -2.1 -3.3 -4.7 -3.2 56.6 0.3 -17.9 -15.9 -27.8
284 -2.7 3.9 -4.4 -2.4 -5.7 -4.0 56.5 0.3 -16.4 -17.8 -14.4
285 -1.8 2.2 -6.4 -0.9 -7.4 -3.4 52.0 0.1 -0.1 -28.4 0.7
286 1.3 1.7 -1.5 -1.5 4.5 -3.2 58.9 0.2 20.3 -38.2 -33.0
287 0.4 3.3 -3.8 -3.1 -0.8 -3.6 50.5 0.2 -30.4 -12.4 -21.1
288 -1.5 2.9 -2.5 -0.5 -3.1 -3.1 50.4 0.4 16.8 -35.7 16.4
289 -3.6 -3.2 -1.1 -1.1 -5.4 -3.4 52.9 0.3 -20.1 -42.1 24.9
290 1.9 0.2 -6.6 -0.9 -5.5 -3.7 57.1 0.1 17.4 -39.6 31.0
291 3.7 -2.7 -5.5 -1.3 -4.8 -3.6 50.7 0.3 -35.5 -25.8 -6.3
292 -3.1 -3.4 -3.3 -2.4 3.7 -3.9 56.9 0.1 -1.5 -41.4 -3.1
293 -2.0 0.7 -0.2 -1.6 -7.6 -3.6 51.8 0.3 -16.3 -30.7 -34.6
294 -3.9 3.0 -4.9 -0.8 -3.0 -3.8 50.5 0.3 -13.6 -35.4 -24.3
295 -2.6 0.2 -1.3 -1.1 -0.1 -4.0 55.2 0.2 27.0 -24.9 38.9
296 0.0 2.9 -4.1 -2.7 2.9 -3.0 55.3 0.1 -28.3 -36.1 -16.0
297 -2.3 -2.7 -0.7 -1.8 3.7 -3.5 59.1 0.3 -13.4 -40.7 29.6
298 0.3 2.3 -1.5 -2.9 -6.2 -3.9 54.4 0.1 15.6 -28.8 33.3
299 -3.2 1.9 -5.4 -2.2 -0.5 -3.3 58.8 0.3 35.7 -21.8 -30.1
300 -3.4 3.8 -3.9 -2.8 0.7 -3.2 58.8 0.3 -33.4 -21.4 8.1
301 -0.1 -0.1 -6.9 -2.8 2.7 -3.9 56.3 0.1 32.8 -31.3 3.3
302 -0.9 -1.6 -3.0 -3.9 -0.8 -3.9 52.6 0.2 -11.6 -12.8 25.7
303 -1.2 -0.6 -3.4 -2.7 -6.5 -3.7 50.0 0.4 -17.6 -46.4 3.9
304 -3.7 -3.6 -6.4 -2.9 -5.2 -3.6 53.5 0.4 -5.7 -23.3 -9.7
305 0.9 -0.9 -6.5 -2.9 -6.0 -3.6 59.2 0.2 -3.8 -13.4 -20.3
306 2.8 0.5 -0.3 -2.7 0.7 -3.8 55.5 0.3 8.1 -14.7 35.7
307 1.5 3.9 -5.8 -2.8 1.5 -3.7 59.8 0.2 -12.1 -24.3 -4.9
308 3.0 3.2 -2.6 -0.5 0.9 -3.5 57.1 0.1 -30.7 -32.7 11.0
309 1.1 3.3 -4.6 -3.9 -2.3 -3.5 51.5 0.3 -18.5 -41.6 33.1
310 0.4 1.3 -7.0 -1.0 1.2 -3.5 53.1 0.1 -37.9 -21.7 -20.6
311 3.7 -3.3 -3.0 -3.8 2.6 -3.5 55.2 0.3 31.8 -28.8 4.3
312 -1.6 -3.1 -5.8 -2.2 -0.9 -3.2 53.9 0.4 -10.8 -49.8 -5.7
313 3.3 -1.5 -1.1 -1.8 3.4 -3.3 56.2 0.2 29.7 -15.8 -1.0
314 1.0 -3.3 -4.9 -1.9 -7.6 -3.6 51.8 0.1 -8.7 -42.4 11.3
315 1.4 -1.2 -5.1 -2.3 1.2 -4.0 58.6 0.2 -25.3 -35.8 37.9
316 0.0 0.9 -0.3 -1.7 -6.4 -3.6 59.6 0.4 -7.3 -27.8 20.9
317 2.3 -2.7 -3.6 -3.1 -4.1 -3.2 51.8 0.3 -26.1 -47.3 31.2
318 -2.3 -0.3 -3.1 -2.7 2.9 -3.8 58.6 0.2 -33.6 -12.9 -11.9
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
319 -0.2 -1.5 -6.2 -3.3 -6.4 -3.6 53.8 0.2 -37.4 -26.3 37.8
320 -2.1 0.9 -5.1 -3.6 -6.6 -3.4 59.3 0.4 2.8 -16.9 8.9
321 -3.7 -0.1 -0.5 -3.0 -1.0 -3.3 58.9 0.1 -27.7 -34.4 1.0
322 -0.1 -4.0 -6.1 -0.8 2.4 -3.4 57.7 0.1 6.0 -41.0 20.4
323 0.1 0.1 -4.9 -0.5 1.5 -3.9 52.7 0.4 16.3 -49.3 -4.7
324 -0.5 3.1 -6.6 -3.6 -4.7 -3.1 54.9 0.2 -20.0 -18.7 -2.7
325 -3.4 -0.5 -2.8 -1.1 -4.8 -3.0 58.0 0.3 28.8 -23.2 20.6
326 3.4 1.4 -5.3 -3.7 -4.3 -3.9 56.1 0.3 -12.3 -16.8 14.2
327 -1.1 0.5 -2.7 -2.2 2.9 -4.0 51.0 0.2 -24.9 -48.4 -12.6
328 -0.6 -1.4 -1.6 -1.7 -4.3 -3.1 50.7 0.3 14.8 -49.5 -26.2
329 0.7 -0.8 -0.5 -0.2 -4.9 -3.1 54.5 0.2 -2.8 -14.5 9.1
330 2.4 3.2 -5.5 -2.1 -2.1 -4.0 50.7 0.3 -15.8 -32.9 -16.4
331 -1.5 3.7 -5.1 -2.0 2.2 -3.8 58.5 0.3 28.3 -46.2 -18.2
332 0.6 -3.9 -4.1 -0.3 3.1 -3.7 54.2 0.3 -35.4 -40.6 0.2
333 -0.9 -2.3 -2.6 -3.3 -2.5 -3.0 57.3 0.1 -5.5 -12.5 -12.1
334 -2.3 -3.8 -2.9 -2.1 -3.7 -4.0 51.7 0.2 -34.1 -29.7 -12.9
335 -3.6 -0.2 -3.3 -0.6 -7.3 -3.8 54.1 0.4 17.6 -27.3 15.5
336 -1.7 1.4 -0.7 -2.3 -1.1 -3.6 54.0 0.4 11.0 -47.5 33.0
337 -0.4 2.3 -2.3 -3.6 3.4 -3.9 58.1 0.3 -16.8 -34.8 -35.0
338 -2.0 1.1 -5.2 -0.7 0.3 -3.1 51.1 0.2 3.0 -15.5 -26.9
339 -1.1 3.9 -4.6 -0.7 0.9 -3.3 50.1 0.2 -24.1 -30.4 25.4
340 3.0 -0.9 -6.6 -0.1 -2.3 -3.7 57.7 0.3 -34.2 -26.8 18.7
341 0.0 2.3 -0.1 -1.9 4.7 -3.3 52.1 0.2 -21.6 -20.1 3.0
342 -3.8 -0.4 -6.5 -1.4 -1.4 -3.8 57.8 0.3 5.2 -46.6 29.4
343 -3.4 -2.4 -4.3 -1.3 0.5 -3.3 50.6 0.4 33.6 -30.2 -5.5
344 1.2 0.3 -6.2 -1.9 0.0 -3.1 59.7 0.2 -17.4 -21.1 32.6
345 -1.0 3.5 -2.6 0.0 -4.9 -3.4 55.5 0.4 -17.2 -20.3 -11.5
346 -1.7 3.8 -1.4 -0.6 -1.7 -3.9 53.3 0.3 34.6 -34.2 -14.5
347 -1.8 2.2 -0.9 -3.7 -7.5 -3.7 52.7 0.3 -25.6 -24.7 18.5
348 1.2 3.6 -1.9 -1.9 -7.1 -3.1 57.9 0.2 -20.4 -27.1 19.6
349 2.5 -1.4 -6.5 -3.0 -2.5 -3.8 55.0 0.4 -37.0 -44.5 -6.0
350 -1.5 -1.8 -5.4 -2.3 -6.2 -3.2 58.4 0.2 -20.1 -45.8 31.5
351 -2.8 2.4 -5.3 -2.0 0.0 -3.8 50.3 0.4 25.9 -32.1 28.1
352 -1.2 -2.1 -6.6 -3.6 2.7 -3.4 57.2 0.2 14.5 -38.3 -37.3
353 -3.1 0.3 -2.5 -0.2 -5.7 -3.3 54.1 0.2 36.5 -29.3 -32.1
354 -0.5 -1.1 -6.2 -0.5 -1.0 -3.9 51.7 0.1 -0.7 -38.9 -27.2
355 -0.8 -2.4 -5.6 -2.5 -6.0 -3.3 51.4 0.2 -21.7 -18.2 -37.1
356 -0.9 -2.0 -2.3 -3.7 2.5 -3.5 52.2 0.1 -18.4 -24.9 -34.2
357 -3.0 -2.3 -4.6 -1.4 0.0 -3.5 56.9 0.1 10.7 -23.8 -37.9
358 1.9 0.3 0.0 -2.0 4.3 -3.8 55.6 0.2 9.4 -39.1 32.0
359 3.5 -2.7 -3.4 -1.4 -2.1 -3.2 51.0 0.3 30.7 -17.4 2.7
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
360 -3.6 2.9 -6.1 -0.4 -1.4 -3.3 55.8 0.4 12.1 -43.0 -1.8
361 -3.6 -1.0 -1.2 -2.8 2.5 -3.4 53.6 0.1 21.9 -17.3 16.3
362 2.3 -1.7 -2.2 -2.7 -5.4 -3.9 59.6 0.3 26.7 -19.1 -4.1
363 -2.5 0.0 -1.7 -2.9 -2.0 -3.6 57.6 0.2 13.6 -49.1 -39.0
364 -3.0 -1.6 -1.3 -0.4 -1.1 -3.8 56.9 0.4 -38.7 -25.5 3.6
365 3.4 1.3 -5.8 -1.9 -3.6 -3.0 50.5 0.3 3.5 -43.4 -0.7
366 1.0 -3.3 -1.8 -0.9 -6.2 -3.7 53.9 0.2 -30.9 -21.1 37.4
367 1.1 -1.3 -0.8 -3.7 2.0 -3.1 56.1 0.2 19.3 -49.9 5.4
368 3.0 -2.5 -3.9 -1.1 4.1 -3.2 52.9 0.3 8.3 -46.0 22.0
369 3.0 3.4 -5.6 -1.8 0.8 -3.2 51.7 0.1 15.0 -22.4 -2.3
370 1.0 -1.1 -0.1 -3.5 -7.0 -3.9 54.7 0.3 0.2 -40.8 -19.3
371 -3.3 3.6 -5.0 -2.4 -7.0 -3.3 52.4 0.3 21.4 -22.1 -8.7
372 3.3 0.9 -1.9 -0.3 -3.3 -4.0 57.6 0.2 -1.4 -29.9 35.5
373 3.8 -1.9 -3.6 -0.1 -1.3 -3.3 53.5 0.2 15.3 -29.4 34.7
374 -0.8 -1.6 -4.4 -1.3 -6.3 -3.0 53.8 0.4 6.2 -19.2 -28.1
375 2.2 0.0 -0.4 -3.3 3.4 -3.2 52.6 0.4 -9.9 -32.9 17.1
376 -3.8 -2.2 -6.1 -3.0 -1.9 -3.4 59.5 0.2 8.6 -22.2 22.4
377 3.2 3.3 -2.6 -0.4 4.0 -3.8 56.4 0.2 26.4 -25.6 -3.8
378 3.4 -2.6 -3.0 -2.6 -6.9 -3.1 55.6 0.1 -11.8 -23.7 27.5
379 0.7 1.3 -6.2 -0.9 0.2 -3.4 51.3 0.4 -31.7 -39.0 22.9
380 2.0 -0.4 -2.4 -0.6 1.1 -3.8 56.0 0.1 25.7 -48.3 -17.2
381 3.8 -2.3 -2.1 -3.2 -4.1 -3.1 57.0 0.4 -6.0 -40.6 -12.8
382 1.8 1.7 -2.0 -1.5 -0.5 -3.3 56.9 0.1 -25.1 -13.3 -38.6
383 1.7 -2.1 -1.4 -1.4 -7.5 -3.1 53.2 0.3 21.7 -38.8 31.3
384 0.2 3.6 -1.8 -0.9 0.5 -3.5 55.3 0.1 20.4 -17.6 34.1
385 -0.1 -1.9 -1.1 -2.7 -2.7 -3.7 59.8 0.2 -5.2 -18.1 33.6
386 0.7 0.7 -6.6 -3.1 -2.2 -3.4 50.9 0.4 5.5 -17.5 12.1
387 -2.9 -2.0 -1.5 -1.8 -5.5 -3.0 55.8 0.1 24.1 -45.3 4.9
388 1.3 3.7 -0.2 -2.5 -3.2 -3.0 54.1 0.3 -2.5 -42.8 -7.3
389 0.9 -0.8 -4.8 -3.2 3.2 -3.6 59.8 0.3 18.7 -12.1 23.2
390 1.8 0.7 -4.9 -1.7 -7.5 -3.7 50.1 0.3 12.9 -28.1 39.2
391 -0.2 -3.8 -4.0 -2.9 -7.2 -3.5 57.8 0.4 4.6 -34.3 35.0
392 -0.7 3.5 -6.8 -1.4 3.6 -3.6 53.1 0.3 20.9 -21.4 -25.4
393 -0.6 1.4 -0.5 -0.6 -5.9 -3.7 58.6 0.2 -29.6 -20.2 -2.2
394 -0.2 1.9 -0.8 -1.5 -0.1 -3.5 52.1 0.1 32.1 -17.1 -32.8
395 2.1 1.8 -6.0 -2.2 -3.2 -3.5 51.1 0.1 -28.9 -48.6 -22.2
396 3.3 3.7 -3.2 -0.6 -6.8 -3.4 54.5 0.3 -3.5 -42.7 25.3
397 1.6 1.9 -1.5 -0.3 -4.6 -3.5 54.6 0.3 39.7 -19.8 28.0
398 4.0 -1.4 -1.9 -2.7 -4.2 -3.5 51.2 0.2 35.0 -41.2 -8.1
399 -1.1 0.1 -0.7 -1.1 4.6 -3.6 56.8 0.1 -28.5 -39.8 -27.0
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
400 -0.3 2.7 -1.4 -1.6 -6.3 -3.9 59.3 0.3 14.2 -35.2 -38.2
401 1.6 3.8 -3.7 -1.2 1.5 -3.5 56.0 0.4 -4.4 -40.3 -35.7
402 2.2 -0.7 -3.7 -2.8 2.2 -3.0 52.6 0.2 -0.2 -14.7 38.1
403 1.9 -0.5 -5.0 -2.2 2.4 -3.2 52.9 0.4 33.1 -36.2 -34.9
404 -3.3 -1.8 -6.7 -1.1 -3.0 -3.5 52.3 0.2 -39.2 -42.0 6.0
405 -2.7 1.0 -6.3 -3.3 0.8 -3.8 53.7 0.4 0.7 -42.2 -23.3
406 -0.9 -3.2 -2.8 -3.7 0.6 -3.2 54.0 0.3 9.1 -19.0 -38.4
407 -3.5 -2.9 -4.0 -0.8 1.6 -3.8 55.3 0.2 -22.2 -20.7 32.8
408 -1.0 -2.1 -1.2 -2.7 -0.9 -4.0 50.3 0.1 23.8 -33.4 -4.4
409 -2.1 -1.1 -0.2 -2.2 -4.8 -3.1 58.4 0.3 -3.0 -29.6 -33.1
410 -1.9 -3.6 -4.6 -0.6 2.8 -3.1 54.8 0.2 21.6 -15.7 19.8
411 0.3 3.8 -6.5 0.0 -1.2 -3.9 54.8 0.3 2.0 -32.3 17.6
412 -2.9 2.1 -3.4 -0.2 -4.5 -3.9 56.5 0.1 22.2 -39.3 -1.5
413 0.2 2.4 -6.3 -4.0 -2.9 -3.1 56.8 0.4 -10.5 -41.3 -9.5
414 -2.7 -0.8 -2.5 -0.4 -7.5 -3.4 56.5 0.1 7.1 -26.2 36.6
415 -3.2 3.1 -5.7 -3.0 0.6 -3.6 54.7 0.2 -7.6 -30.5 -39.4
416 -2.8 2.7 -1.6 -2.6 -4.6 -3.1 51.6 0.1 -10.3 -20.1 -19.0
417 -2.6 1.7 -6.9 -1.7 -2.7 -3.4 56.3 0.4 -32.3 -25.1 -32.6
418 3.9 0.6 -6.3 -3.2 -5.6 -3.2 56.2 0.3 4.7 -30.0 36.3
419 0.8 0.4 -3.7 -3.6 4.3 -4.0 52.5 0.4 -3.1 -29.2 18.0
420 -0.1 -3.6 -5.8 -0.7 -6.1 -3.9 53.7 0.3 -8.1 -39.9 20.1
421 -2.8 -0.6 -5.8 -3.9 -2.2 -3.2 52.5 0.2 32.6 -23.0 -11.3
422 -1.9 1.8 -5.0 -1.8 1.8 -3.7 59.4 0.4 -34.7 -41.8 0.6
423 -3.9 1.6 -6.3 -0.8 -1.5 -3.4 54.8 0.3 2.2 -14.1 27.3
424 3.7 1.1 -6.7 -2.4 -2.6 -3.4 53.5 0.3 -3.6 -18.5 -39.7
425 -3.5 -2.4 -0.6 -1.0 0.4 -3.4 53.4 0.2 -22.5 -17.2 -21.6
426 3.6 -3.5 -2.3 -1.9 1.6 -3.3 58.9 0.3 -13.2 -27.0 31.8
427 -1.3 -0.4 -3.6 -2.2 4.2 -4.0 53.7 0.2 32.0 -33.1 -40.0
428 -1.8 3.5 -0.6 -1.6 -0.7 -3.9 58.9 0.2 -12.9 -43.2 14.4
429 -0.2 -4.0 -1.6 -1.8 2.3 -3.9 52.1 0.3 10.2 -41.7 27.8
430 -3.1 0.3 -2.7 -0.1 3.6 -3.6 55.1 0.3 30.4 -15.3 -11.8
431 2.2 3.0 -0.7 -3.3 -3.7 -3.4 51.4 0.2 16.6 -15.4 12.6
432 1.2 -2.4 -6.9 -0.7 0.8 -3.0 55.0 0.3 -21.2 -31.0 -26.5
433 -3.6 -1.2 -0.4 -3.8 3.3 -3.7 53.6 0.3 2.7 -38.4 -7.5
434 0.0 -2.1 -1.4 -1.2 0.6 -3.2 55.7 0.1 -31.0 -34.9 36.8
435 1.6 -3.3 -5.9 -3.1 -7.2 -3.3 52.4 0.3 17.7 -38.1 -21.9
436 1.1 1.3 -1.5 -3.0 -7.9 -3.2 59.5 0.2 27.8 -43.1 -5.9
437 1.9 2.8 -5.3 -3.4 -1.9 -3.9 57.0 0.3 30.1 -26.5 -32.5
438 -2.3 0.2 -6.8 -1.2 -6.0 -3.8 56.1 0.3 25.1 -32.8 -34.4
439 -1.8 1.4 -5.5 -4.0 2.7 -3.6 55.7 0.3 -6.5 -12.2 -18.5
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
440 -4.0 1.8 -4.3 -1.6 -0.2 -3.0 55.6 0.1 0.6 -30.9 28.9
441 -0.6 2.3 -4.8 -0.9 -0.9 -3.8 59.3 0.4 19.8 -16.4 2.5
442 1.3 1.8 -4.6 -0.5 -5.5 -3.6 50.2 0.3 28.0 -21.6 -26.7
443 2.3 -1.8 -4.0 -0.4 -7.0 -3.2 60.0 0.3 11.1 -26.5 24.3
444 0.9 2.6 -0.8 -0.4 -3.9 -3.2 51.5 0.1 20.8 -44.2 -9.9
445 -2.4 2.5 -3.5 -3.7 -3.4 -4.0 53.6 0.2 18.0 -47.0 5.5
446 2.6 -3.5 -5.6 -2.0 0.4 -3.8 53.6 0.3 -0.1 -19.8 39.0
447 -0.6 -3.4 -6.8 -1.5 -3.5 -3.7 58.4 0.2 -21.4 -40.2 -34.1
448 1.1 4.0 -0.4 -1.9 -2.0 -3.9 50.2 0.3 -4.7 -37.0 17.7
449 -0.8 -1.4 -4.5 -2.9 4.6 -3.6 55.1 0.3 39.8 -50.0 11.6
450 0.6 -2.3 -1.0 -0.6 3.9 -3.6 50.7 0.2 12.6 -16.1 25.9
451 1.0 -3.3 -3.7 -1.3 -1.8 -3.7 50.3 0.4 -2.2 -34.8 -39.8
452 1.0 1.5 -4.2 -2.0 -1.7 -3.1 57.9 0.4 24.5 -47.9 29.7
453 -0.6 3.8 -4.8 -2.3 -2.5 -3.0 53.8 0.2 23.5 -39.2 -37.8
454 2.0 -2.9 -5.3 -3.5 -2.1 -3.2 55.7 0.2 -37.8 -39.3 -25.3
455 3.1 -2.8 -5.1 -2.8 3.9 -3.4 52.4 0.4 -25.9 -23.9 -10.0
456 -2.9 2.1 -6.8 -2.6 1.3 -3.9 53.3 0.3 -36.0 -26.2 16.6
457 1.7 0.2 -5.2 -3.2 2.4 -3.1 59.6 0.3 -21.9 -20.5 -27.7
458 -3.7 2.4 -0.1 -1.2 -2.0 -3.3 54.3 0.3 -16.0 -22.3 30.4
459 -0.4 1.6 -1.5 -0.3 2.6 -3.8 52.4 0.3 -24.6 -23.6 -33.9
460 -2.8 2.4 -6.3 -3.4 2.7 -3.5 57.4 0.3 12.8 -33.6 30.7
461 3.8 1.7 -1.3 -1.3 -6.8 -3.5 57.2 0.1 24.6 -22.7 -2.5
462 2.7 3.2 -3.2 -2.8 -1.9 -3.7 59.9 0.3 33.4 -31.7 28.5
463 0.5 3.6 -5.8 -0.2 2.0 -3.2 58.4 0.2 -8.3 -25.7 -17.7
464 3.1 1.9 -1.3 -0.2 -5.2 -3.3 58.2 0.3 -14.4 -38.7 -29.4
465 2.2 2.1 -3.7 -2.1 -5.9 -3.1 53.9 0.1 27.7 -40.5 33.9
466 2.3 -2.3 -4.0 -2.0 4.5 -3.4 59.1 0.4 -13.1 -43.8 -24.0
467 2.8 -3.2 -3.8 -1.1 -3.8 -3.9 57.4 0.1 -8.6 -24.1 -3.0
468 -0.8 -1.7 -1.7 -1.0 -6.5 -4.0 54.6 0.2 29.4 -20.6 -31.7
469 -1.9 2.5 -4.7 -1.4 4.2 -3.7 55.4 0.1 -20.3 -44.4 24.8
470 3.2 2.7 -4.4 -1.7 -6.5 -3.2 57.3 0.4 29.6 -24.4 -12.4
471 3.4 -1.2 -4.4 -2.7 -4.0 -3.7 53.6 0.4 26.1 -48.2 27.0
472 -3.6 0.9 -1.3 -3.4 0.2 -3.9 58.2 0.3 -13.7 -19.3 19.5
473 -1.2 -3.6 -1.0 -1.7 -2.0 -3.8 59.6 0.2 -17.1 -27.6 -34.7
474 -1.1 -3.4 -7.0 -3.3 0.2 -3.8 55.0 0.1 -26.7 -25.0 -3.3
475 2.5 3.9 -5.4 -1.9 -6.5 -3.7 53.7 0.2 -36.2 -28.6 16.9
476 -3.5 1.6 -0.2 -2.6 -5.0 -3.5 51.0 0.2 31.3 -36.6 1.8
477 3.9 -3.6 -2.6 -3.1 -4.0 -3.5 55.8 0.2 2.5 -22.4 -37.6
478 3.7 1.1 -4.8 -1.9 3.9 -3.3 57.9 0.1 20.6 -40.9 21.4
479 3.1 -0.3 -2.2 -1.2 2.1 -3.2 52.3 0.3 -31.3 -43.6 -31.0
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Run# Rx Ry Px Py Mx My SHA µ T1 T2 T3
480 0.8 0.4 -6.0 -0.3 -6.9 -3.5 53.2 0.3 -19.8 -44.0 -28.9
481 1.7 -2.6 -6.4 -3.7 1.9 -3.3 58.0 0.3 -4.6 -44.7 26.5
482 -0.7 1.1 -1.7 -1.7 1.8 -3.9 59.8 0.1 23.3 -22.5 -13.4
483 3.8 -1.3 -4.1 -3.0 1.1 -3.5 56.0 0.2 -38.6 -14.4 7.8
484 -1.0 -3.6 -0.6 -2.4 -5.6 -3.3 51.2 0.2 21.2 -23.5 -23.8
485 1.5 2.2 -2.1 -1.8 -7.6 -3.7 56.4 0.1 -14.2 -49.8 4.6
486 1.8 -2.0 -4.5 -3.8 -1.5 -3.9 54.2 0.1 1.7 -47.2 -24.8
487 1.1 -2.0 -6.0 -2.4 -5.1 -3.7 52.2 0.1 34.1 -21.0 -20.9
488 -2.6 -2.9 -2.0 -2.5 4.3 -3.4 59.4 0.3 34.2 -24.5 -12.3
489 1.5 0.7 -4.3 -3.5 1.1 -3.4 57.9 0.4 -33.8 -24.2 30.1
490 -3.1 -3.7 -3.0 -2.8 -3.8 -3.2 51.1 0.2 -19.2 -22.7 21.7
491 2.0 -3.0 -1.5 -3.4 -5.8 -3.6 50.6 0.3 0.4 -23.0 16.8
492 2.4 -2.9 -2.3 -0.8 -1.5 -3.0 56.3 0.2 38.6 -40.0 -15.5
493 1.4 2.1 -2.2 -2.4 -6.1 -3.2 52.7 0.4 -15.3 -20.8 34.9
494 -3.2 -2.5 -5.2 -0.5 -7.1 -3.3 58.5 0.3 -19.5 -35.0 1.2
495 0.1 -3.9 -4.7 -1.0 -3.0 -3.1 52.0 0.4 -18.8 -25.3 29.1
496 2.0 1.5 -6.1 -3.9 4.7 -3.7 52.8 0.2 -25.7 -34.5 -13.1
497 -3.5 -1.8 -0.8 -2.1 -5.7 -3.8 59.4 0.3 25.6 -37.8 10.5
498 0.2 3.4 -2.6 -1.0 3.3 -3.5 51.2 0.4 1.8 -13.5 15.6
499 -3.4 -2.1 -1.1 -0.3 -0.8 -3.8 52.8 0.3 9.2 -42.9 -24.5
500 -0.5 1.5 -6.9 -1.3 4.0 -3.1 52.2 0.3 20.1 -32.5 21.9
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