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Abstract: Fiber reinforced thermoplastics are widely used for thermoforming and injection moulding processes, since their high
strength to mass ratio is favorable for various industrial applications such as, for example, automotive engineering. Semi-crystalline
polymers, as the composites matrix material, make up a subcategory of thermoplastics, which partly crystallize after cool-down
from the molten state. They are reinforced with glass or carbon fibers to enhance their material performance. Nevertheless,
during the thermoforming process, unwanted residual stresses can arise, due to the complex material behavior of semi-crystalline
polymers under different temperatures and strain rates. The interaction between matrix and reinforcement being another unknown
factor. Therefore, computational models are needed to predict the material response reliably and minimize production errors.
This work presents a thermomechanically consistent phenomenological material formulation for thermoplastics at finite strains.
In order to account for the highly nonlinear material behavior, elasto-plastic and visco-elastic contributions are combined in
the model formulation. To account for the crystalline regions, a hyperelastic-plastic framework is chosen and extended with a
tension-compression asymmetry in yielding. The material parameters, characterized using experimental results, depend on both,
the temperature as well as the degree of crystallinity. Together with a linear elastic material model for glass fibers, the matrix
formulation is embedded in a representative volume element with unidirectional fiber reinforcement to demonstrate the capabilities
of the modeling framework in a multiscale context. A comparison of the virtual testing at varying temperatures and degrees of
crystallinity to experimentally obtained results is planned as future work.
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1 Introduction

In the class of polymers, thermoplastics, in contrast to thermosets or elastomers, can undergo reversible thermoplastic deformation
due to their monomer arrangement on the microlevel, making them suitable for various industrial applications, such as forming
processes or injection moulding. In addition, their high strength to weight ratio is attractive for use in cost-effective mass production
of for instance car parts. Thermoplastics can be further subdivided into amorphous and semi-crystalline polymers (SCPs), where the
latter show a complex visco-elastic, elasto-plastic material behavior in the finite strain regime due to their biphasic microstructure.
During cool-down from the melt, the amorphous part slightly crystallizes, resulting in amorphous and crystalline phases. Hereby,
the processing conditions, such as cooling rate, applied stress etc., influence the resulting degree of crystallinity (DOC) cf. Fornes
and Paul (2003). The material behavior of SCPs is influenced not only by the deformation and temperature, various other factors
such as loading rate (see e.g. Van Dommelen et al. (2003); Hao et al. (2022)), moisture content (cf. Sharma et al. (2020)), aging
effects (cf. Rodriguez et al. (2020)) or the amount of crystalline phases (see e.g. Dusunceli and Colak (2008); Ayoub et al. (2011);
Lion and Johlitz (2016); Felder et al. (2020a)) change the overall material response.
Resulting from the complex material behavior, the need for computational models arises, which can accurately predict the material
response. Over the last decades, several constitutive frameworks were developed, based on the idea of Haward and Thackray (1968)
and later Boyce et al. (1988) to decompose the total stress into contributions from molecular and intermolecular resistance. This
approach has been used widely to model amorphous (e.g. Anand and Gurtin (2003); Barriere et al. (2019)) and semi-crystalline
(e.g. Boyce et al. (2000); Felder et al. (2020b)) polymers rheologically. Several mechanical effects can be observed in SCPs, as for
example a significant Bauschinger-like effect upon unloading Hasan and Boyce (1995) or pressure dependent yielding behavior
Ghorbel (2008). Additionally, some works consider temperature effects e.g. Arruda et al. (1995); Anand et al. (2009); Johnsen et al.
(2019) by introducing a coupling with the temperature field or investigating specific thermal effects, such as material self-heating
for nylon (PA66) and polyamide 6 (PA6) at high loading rates (e.g. Maurel-Pantel et al. (2015); Hao et al. (2022) ). The complex
morphology of the underlying microstructures is taken into account by using modeling schemes that consider molecular dynamics
Pisani et al. (2019) or the microstructural constituents using analytical homogenization Nikolov et al. (2002) or two-scale methods
such as the FE2 or FE-FFT-based method Gierden et al. (2022) to arrive at the macroscopic material response. Nevertheless,
model identification of SCPs with experimental results remains challenging, since in most cases only limited comprehensive
experimental studies exist, that take into account multiple influencing factors Felder et al. (2020a). Especially the DOC is difficult
to test over a wide range, since specimen with a constant, temperature stable amount of crystallinity can’t be obtained by relatively
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Fig. 1: a) Schematic illustration of the constitutive model b) Multiplicative splits of the deformation gradient

straightforward techniques, such as annealing. Here, more advanced approaches are necessary already during specimen production,
as for example introducing a blending partner or crystallization agents.
In this work, a thermodynamically consistent material formulation for SCPs is developed (see Sec.2). Elasto-plastic and visco-elastic
contributions are combined, to account for the highly nonlinear material behavior at large strains. In terms of influencing factors,
both temperature and degree of crystallinity are considered. The resulting model framework is identified against experimental
results (see Sec.3), conducted with an emphasis on the range of DOC for PA6. First computational results show good agreement
with the experimental findings and the ability of the model to serve in structural simulations in the context of multiscale approaches
(see Sec.4).

2 Constitutive modeling of semi-crystalline polymers

2.1 Kinematics

To describe the kinematic relations in a finite strain context, the deformation gradient 𝑭 is introduced as well as the right
Cauchy-Green tensor 𝑪 = 𝑭𝑇𝑭 as the symmetric deformation measure in the reference configuration. In order to account for
the influence of the biphasic microstructure on the macroscopic material behavior, a split of the deformation gradient into an
elastic and a plastic part 𝑭 = 𝑭𝑒1 𝑭𝑝 (see e.g. Eckart (1948); Kröner (1959); Lee (1969)) is proposed corresponding to the
materials’ underlying intermolecular resistance. In terms of the molecular network, a split into elastic and viscous contribution
𝑭 = 𝑭𝑒2 𝑭𝑣 (see e.g. Sidoroff (1974); Lubliner (1985); Reese and Govindjee (1998)) is introduced (see Fig.1). According to the
aformentioned split of 𝑭 the corresponding intermediate configurations 𝑖𝑐1 and 𝑖𝑐2 are intoduced, alongside the elastic and plastic
right Cauchy-Green tensors

𝑪𝑒1 = 𝑭𝑇
𝑒1 𝑭𝑒1 = 𝑭−𝑇

𝑝 𝑪 𝑭−1
𝑝 , 𝑪𝑒2 = 𝑭𝑇

𝑒2 𝑭𝑒2 = 𝑭−𝑇
𝑣 𝑪 𝑭−1

𝑣 , 𝑪 𝑝 = 𝑭𝑇
𝑝 𝑭𝑝 . (1)

2.2 Constitutive relations

The total Helmholtz free energy is decomposed into an elasto-plastic 𝜓1 and a visco-elastic 𝜓2 energy based on the ideas of Haward
and Thackray (1968); Boyce et al. (1988) regarding molecular network and intermolecular resistance. Additionally, a caloric
energy contribution 𝜓𝑐 related to the temperature-dependent specific heat is added

𝜓 = 𝜓1 + 𝜓2 + 𝜓𝑐 . (2)

In the above expression, the energy associated with elasto-plastic material behavior is the sum of an elastic contribution 𝜓𝑒1 and a
defect energy 𝜓𝑝 associated with plastic deformations to account for the Bauschinger-effect observed in semi-crystalline polymers

𝜓1 = 𝜓𝑒1 (𝑪𝑒1, 𝜒, 𝜃) + 𝜓𝑝 (𝑪 𝑝 , 𝜒, 𝜃). (3)

Both energies depend on the temperature 𝜃 as well as the degree of crystallinity 𝜒, that is introduced as a constant input parameter
for the formulation. The visco-elastic part on the other hand, consists of an elastic energy only

𝜓2 = 𝜓𝑒2 (𝑪𝑒2, 𝜃). (4)

Notworthy, in this part the dependence on the DOC is neglected, since the visco-elastic contribution is related to the amorphous
parts of the microstructure. To ensure positive dissipation, the constitutive equations are derived in a thermodynamically consistent
manner from the Clausius-Duhem inequality

𝑺 :
1
2
¤𝑪 − 𝜌0 ( ¤𝜓 + 𝜂 ¤𝜃) − 1

𝜃
𝒒0 · Grad(𝜃) ≥ 0, (5)
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defined with respect to the reference configuration, incorporating the second Piola-Kirchhoff stress tensor 𝑺 and the density 𝜌0.
Taking the time derivative of the total Helmholtz free energy (2) and inserting it back into (5), yields

𝑺 :
1
2
¤𝑪 − 𝜌0

(
𝜕𝜓

𝜕𝑪𝑒1
: ¤𝑪𝑒1 +

𝜕𝜓

𝜕𝑪 𝑝

: ¤𝑪 𝑝 + 𝜕𝜓

𝜕𝑪𝑒2
: ¤𝑪𝑒2

)
− 𝜌0

(
𝜕𝜓

𝜕𝜃
+ 𝜂

)
¤𝜃 − 1

𝜃
𝒒0 · Grad(𝜃) ≥ 0. (6)

Using the plastic and viscous velocity gradient 𝑳∗ = ¤𝑭∗𝑭
−1
∗ , ∗ = 𝑝, 𝑣, the equation can be reformulated and expressed in terms

of the symmetric part of the velocity gradient, namely the rate of deformation 𝑫∗ = sym(𝑳∗). In addition, several stress quantities
are introduced. Following the Coleman Noll procedure Coleman and Noll (1961), the total second Piola-Kirchhoff stress tensors is
defined as 𝑺 = 𝑺1 + 𝑺2, containing the contributions from elasto-plastic 𝑺1 and visco-elastic 𝑺2 part

𝑺1 = 2𝜌0𝑭
−1
𝑝

𝜕𝜓𝑒1
𝜕𝑪𝑒1

𝑭−𝑇
𝑝 , 𝑺2 = 2𝜌0𝑭

−1
𝑣

𝜕𝜓𝑒2
𝜕𝑪𝑒2

𝑭−𝑇
𝑣 , (7)

respectively. Similarly, the Mandel stress tensors 𝑴1 and 𝑴2 in the plastic and inelastic intermediate configuration, are defined as

𝑴1 = 2𝜌0𝑪𝑒1
𝜕𝜓𝑒1
𝜕𝑪𝑒1

, 𝑴2 = 2𝜌0𝑪𝑒2
𝜕𝜓𝑒2
𝜕𝑪𝑒2

(8)

and the back stress 𝑿 related to kinematic hardening follows to

𝑿 = 2𝜌0𝑭𝑝

𝜕𝜓𝑝

𝜕𝑪 𝑝

𝑭𝑇
𝑝 . (9)

To a priori fulfil the inequality, the entropy is stated as 𝜂 = −𝜕𝜓/𝜕𝜃. The heat conduction is introduced following Fourier’s law

𝒒0 = −𝐽 𝜆𝑇 𝑪−1 Grad(𝜃), (10)

with 𝐽 = det𝑭 and 𝜆𝑇 (𝜃) denoting the temperature dependent heat conductivity. Inserting the aforementioned quantities back into
Eq. (6) yields the reduced form of the Clausius-Duhem inequality

(𝑴1 − 𝑿) : 𝑫 𝑝 + 𝑴2 : 𝑫𝑣 ≥ 0. (11)

In the following, the evolution equations for the plastic and viscous (rate of deformation 𝑫 𝑝 and 𝑫𝑣 are derived to prove positive
dissipation for the inelastic cases. According to Tschoegl (1971); Melro et al. (2013), a Tschoegl-type yield criterion

Φ𝑝 = 3𝐽2 + (𝑚 − 1)𝜎𝑡 𝐼1 − 𝑚 𝜎2
𝑡 ≤ 0 (12)

is introduced, including the first 𝐼1 = tr(𝑴1 − 𝑿) and second 𝐽2 = 1/2 tr((dev(𝑴1 − 𝑿))2) invariant and thus accounting for the
effects of hydrostatic pressure on the yielding behavior (see e.g. Ghorbel (2008)). Here, a tension-compression flow asymmetry is
accounted for by introducing the ratio between compression 𝜎𝑐 and tension 𝜎𝑡 yield strengths

𝑚 =
𝜎𝑐 (𝜒, 𝜃)
𝜎𝑡 (𝜒, 𝜃)

. (13)

Note here, that both yield strengths depend on the temperature as well as the degree of crystallinity. Under the assumption of
associative plasticity, the plastic flow rule follows to

𝑫 𝑝 = ¤𝜆𝑝

𝜕Φ𝑝

𝜕𝑴1
= ¤𝜆𝑝

(
3dev(𝑴1 − 𝑿) + (𝑚 − 1) 𝜎𝑡 𝑰

)
, (14)

where ¤𝜆𝑝 denotes the plastic mutiplier. Finally, the Karush-Kuhn-Tucker conditions ¤𝜆𝑝 ≥ 0, Φ𝑝 ≤ 0, ¤𝜆𝑝 Φ𝑝 = 0 complete the
elasto-plastic framework. Regarding the visco-elastic part, the evolution of the viscous deformation is chosen in line with Reese
and Govindjee (1998) as

𝑫𝑖 =
1

2𝜏𝜇2
dev(𝑴2) +

1
9𝜏𝐾2

tr(𝑴2)𝑰, (15)

incorporating the bulk modulus 𝐾2 (𝜃) and the shear modulus 𝜇2 (𝜃). Here, the relaxation time 𝜏(𝝉2, 𝜃) is assumed to be a positive
convex nonlinear function depending on the Kirchhoff stress in the current configuration 𝝉2 and the temperature. A specific
function for the relaxation time is identified in Sec.3.2 with respect to experimental findings. As a next step, that is omitted here for
brevity, the derived quantities are pulled back to the reference configuration to end up with two symmetric internal variables 𝑪 𝑝

and 𝑪𝑖 . For a detailed description of the pull-back operations, the reader is referred to Vladimirov et al. (2008); Brepols et al.
(2020). To achieve a fully thermomechanically coupled framework, the energy balance must be exploited additionally, to derive the
internal heat sources that allow modelling of for example self-heating phenomena. Since the scope of the paper lies predominantly
on the model identification of the isothermal model, this step is omitted here.
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Note on thermodynamic consistency

A more detailed derivation of the elasto-plastic model part, can be found in e.g. Vladimirov et al. (2008); Brepols et al. (2020).
Here, the classical von-Mises yield criterion is exploited in a framework considering isotropic as well as kinematic hardening, to
derive the plastic flow rule and prove the thermodynamic consistency. In the same manner, the thermodynamic consistency of the
presented model equations can be demonstrated using Reese and Govindjee (1998) as well.

2.3 Specific choice of the Helmholtz free energies

Up to this point, the constitutive equations were derived in a quite general manner. In this way, the ability of the model to adapt
to varying thermoplastics is preserved. To proceed with the model identification to experiments, performed on PA6, however a
specific choice of energies is needed. For the elasto-plastic part, a combination of a compressible Neo-Hookean type energy

𝜓𝑒1 =
𝜇1
2

(tr(𝑪𝑒1) − 3) − 𝜇1ln (𝐽𝑒1) +
Λ1
4

(det(𝑪𝑒1) − 1 − 2 ln(𝐽𝑒1)) − 3𝐾1𝛼𝑇 (𝜃 − 𝜃0) ln(𝐽𝑒1), (16)

based on the two Lamé constants 𝜇1 (𝜃, 𝜒) and Λ1 (𝜃, 𝜒) and a nonlinear plastic defect energy of Arruda-Boyce type

𝜓𝑝 = 𝜇∗
5∑︁
𝑖=1

𝑐𝑖

𝜆2𝑖−1
𝑚

(𝐼 𝑖1𝑝 − 3𝑖), 𝑐𝑖 =

{
1
2
,

1
20
,

11
1050

,
19

7000
,

519
673760

}
, (17)

is chosen. Here, 𝜆𝑚 (𝜃, 𝜒) and 𝜇∗ (𝜃, 𝜒) are material specific parameters (see e.g. Kaliske and Rothert (1997)) and 𝐼1𝑝 = tr(𝑪 𝑝)
is the first invariant of the plastic right Cauchy-Green tensor. In terms of the visco-elastic contribution, again a compressible
Neo-Hookean energy is introduced

𝜓2 =
𝜇2
2

(tr(𝑪𝑒2) − 3) − 𝜇2 ln(𝐽𝑒2) +
Λ2
4

(det(𝑪𝑒2) − 1 − 2 ln(𝐽𝑒2)) − 3𝐾2𝛼𝑇 (𝜃 − 𝜃0)ln(𝐽𝑒2), (18)

depending on the Lamé constants 𝜇2 (𝜃, 𝜒) and Λ2 (𝜃, 𝜒). Both elastic energetic contributions are extended with a term related to
the volumetric elastic thermal expansion with the coefficient of thermal expansion 𝛼𝑇 (𝜃), the reference temperature 𝜃0 and the
elasto-plastic and visco-elastic bulk moduli 𝐾1 and 𝐾2, respectively. The determinants of the elastic deformation gradients are
given as 𝐽𝑒1 = det(𝑭𝑒1) and 𝐽𝑒2 = det(𝑭𝑒2).

3 Model identification and validation

3.1 Experimental data base for polyamide 6

All experimental results used in this work, were conducted at the Institute of Mechanics, University of the Federal Armed
Forces, Munich. The samples (type 1BA, DIN EN ISO 527-2:2012) were injection moulded from PA6 type B granulate, kindly
provided by Bond Laminates (Lanxess), at Polymer Service GmbH Merseburg (PSM). To achieve temperature stable samples
with a broad range of DOCs, a blending technique was used, where the PA6 granulate was compounded with an amorphous
co-polymer (cyclic olefin copolymer (COC)) in a step prior to injection moulding. Here, four different ratios of PA6:COC (100:0,
85:15, 70:30, 55:45) were produced. The amorphous co-polymer was chosen such, that the mechanical and thermal material
properties are comparable to pure PA6. In this way, sprecimen with four different DOCs (0.29, 0.24, 0.18, 0.15), were obtained.
The corresponding differential scanning caliometry (DSC) measurement was taken from the first heating run and measured with a
Q2000 machine from TA instruments. An additional measurement on pure COC showed a DOC lower than 1%, which proves
that no additional crystallization happens in the specimen due to the addition of COC. The tensile and relaxation tests used for
model identification, were obtained using a Zwick/Roell Z020 machine with 2000 N and 500 N force sensors. Prior to testing, the
specimen were stored in a dry chamber (MP Dry Cabinet IV ST) at 40◦ C, until the moisture content measured less then 0.1 %.

E
t
o
t
[M

P
a]

E
t
o
t
[M

P
a]

χ [−]

100◦C

130◦C

150◦C

Fig. 2: Crystallinity dependence of the total Young’s modulus above the glass transition temperature. The exponential trend line is
of the form 𝐸tot (𝜒) = 𝐶1 exp(𝐶2 𝜒).
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3.2 Parameter identification

In this section, a staggered parameter identification scheme is described, to achieve a unique set of parameters for each experimentally
tested temperature, independent of the DOC. Note here, that the identification for the mechanical parameters is performed on the
isothermal model. Throughout the identification procedure, only data from three DOCs (0.29, 0.24, 0.15) is used, leaving the data
from 𝜒 = 0.18 for validation purposes.

1. Elastic quantities: The elastic constants are obtained from the initial purely elastic material response, measured in
monotonic tensile tests. Here, the total Young’s modulus 𝐸tot is taken according to DIN EN ISO 527-2:2012 and plotted
against the DOC (see Fig. 2 a). Then, the Trust-Region algorithm is exploited, to obtain the dependence of the Young’s
modulus on the crystallinity. The identified exponential relation (𝐸tot (𝜒) = 𝐶1 exp(𝐶2 𝜒)) is further implemented in the
formulation. To determine the Poisson’s, ratio several 2D digital image correlation (DIC) measurements were conducted,
using the LIMESS Q400 DIC system. In this work, the Poisson’s ratios of elasto-plastic and visco-elastic model part are
assumed to be equivalent 𝜈𝑡𝑜𝑡 = 𝜈1 = 𝜈2.

2. Viscous properties: Following the identification of the elastic regime, the relaxation time 𝜏 is identified in a nonlinear
manner, based on a post-processing scheme from Amin et al. (2006). To this end, the overstress 𝝈2 under large deformations
(Y𝑚𝑎𝑥 = 0.15) is obtained from the long-term relaxation test data (see Felder et al. (2020b)) and further utilized to identify
the inelastic strain as well as the relaxation time for each experimental time step with Eq. 15. Note here, that an exponential
map was used for time discretization. The governed nonlinear relation between relaxation time and Kirchhoff overstress 𝝉2
(see Fig. 3b) showed no clear trend regarding the DOC. Therefore, the relaxation time is approximated by means of an
exponential law Schmid et al. (1935)

𝜏 = 𝜏0 exp (−𝛿 | |𝝉2 | |), (19)

where | |𝝉2 | | =
√
𝝉2 : 𝝉2, depending only on 𝜏0 and the exponent 𝛿, omitting the dependence on the DOC. The additional

material parameters are obtained by simultaneously minimizing the summed square of the difference between the relaxation
time data obtained from the post-processing procedure and the fitted model response. To this end, a Trust-Region algorithm is
utilized and the three DOCs are identified simultaneously without additional weighting factors. Fig. 3 shows the verification
for 𝜒 = 0.18 as well.

ε̇x = 1 [%/s]

σ
x
[M

P
a]

t [s]
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χ = 0.15

εx = 0.15 [−]

a)

τ
x
[s
]

τ2,x [MPa]

χ = 0.29

χ = 0.24

χ = 0.18

χ = 0.15

b)
Fig. 3: a) Longterm relaxation results at Y𝑥 = 0.15 and 130◦C b) Relaxation time overstress relation: Experimental data,

characterization results (0.29, 0.24, 0.15) and validation (0.18) at 130◦C.

3. Plastic parameters: In order to obtain the plastic material properties, the proposed framework is implemented into the
commercial FEM software ABAQUS as a user material subroutine UMAT. The derivatives are generated via automatic
differentiation utilizing the Mathematica plug-in AceGen. A monotonic, uniaxial tension test is performed on a single
element, where the loading axis corresponds with the element’s 𝑥-axis. Next, the obtained 3D stress-strain response is
used, to simultaneously minimize the sum of the least-square residuals (defined as the difference between experimental
and fitted Cauchy stress) for three degrees of crystallinity. For the identification, the Genetic algorithm in series with the
Downhill-Simplex algorithm from the commercial software tool MATLAB are used, to determine the following material
parameters: 𝜎𝑐, 𝜇

∗, 𝜆𝑚, 𝐸1. Note here, that the Young’s modulus from the viscous part 𝐸2 can be deduced from 𝐸2 = 𝐸tot−𝐸1.
Due to the high test temperatures, the yield stress could not be identified directly from the experimental curves and is
therefore treated as an additional identification parameter.

The results of the mechanical identification procedure are shown exemplary for 130◦ C in Fig. 4 and the corresponding
parameter set in Tab. 1. In general, the results are well fitted to the experimental data, given the large span of DOC that is
depicted by the model. Especially the prediction is in good agreement with the experimental findings. However it should
be noted, that the onset of yielding could be improved in further calculations. The sudden change of stiffness at the yield
onset, in combination with the high fitted ratio between 𝐸1 and 𝐸2 (see Tab. 1) suggests, that the elasto-plastic part needs
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further flexibility in terms of the hardening law, which could be overcome by for example additionally introducing isotropic
hardening.

ε̇x = 0.05%/s

σ
x
[M

P
a]

εx [−]
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χ = 0.29

χ = 0.24

χ = 0.18

χ = 0.15

a)

x

y

z

ux

1

1

1

b)
Fig. 4: a) Monotonic, uniaxial tension - Experimental data and corresponding characterized (green) and predicted (red) model

response at 130◦C. b) Single element test - boundary value problem.

4. Thermal quantities: To distinguish the thermal conductivity of the PA6 compounds Hot Disk measurements are conducted
at various temperatures. The resulting thermal conductivity 𝜆𝑇 is plotted over the DOC (see Fig. 5). In a second step the
relation between 𝜆𝑇 and the DOC is estimated, using the Trust-Region algorith in Matlab. The results suggest a linear
dependence of the DOC, which is incorporated in the model equations. In a similar manner, the crystallinity dependence of
the other temperature related material parameters 𝜌0 and 𝛼𝑇 is identified, based on experimental findings (see Tab. 2).

χ [−]

λ
T
[W

/
m
K
]

Fig. 5: Crystallinity dependence of the thermal conductivity. The linear trend line is of the form 𝜆𝑇 (𝜒) = 𝐶1 𝜒 + 𝐶2.

Tab. 1: Set of mechanical material parameters for 130 ◦C

𝐸tot (𝜒) = 𝐶1 (𝜃) exp(𝐶2 (𝜃) 𝜒) 𝜈tot (𝜃) = 𝜈1 = 𝜈2 𝜎𝑐 = 𝜒𝜎0
𝑐 (𝜃) 𝜎𝑡 = 𝜒𝜎

0
𝑡 (𝜃) 𝜇∗ = 𝜒𝜇∗0 (𝜃) 𝜆𝑚 (𝜃) 𝜏 = 𝜏0 (𝜃) exp (−𝛿(𝜃) | |𝝉2 | |)

= (1 − 𝑚𝐸 (𝜃))𝐸2 + 𝑚𝐸 (𝜃)𝐸1
𝐶1 = 88.55 [MPa] 0.4 [-] 𝜎0

𝑐 = 22.861 [MPa] 𝜎0
𝑡 = 22.861 [MPa] 97.907 [MPa] 1.541 [-] 𝜏0 = 15048.09 [s]

𝐶2 = 5.771 [-] 𝛿 = 1.0183 [-]
𝑚𝐸 = 0.847 [-]

4 Numerical example: Glass fiber reinforced PA6

To demonstrate the models abilities in a structural example, a unit cell with unidirectional glassfiber reinforcement is chosen. The
glass fiber distribution is randomized, using the random sequential adsorption (RSA) method (see e.g. Illian et al. (2008); Schneider
et al. (2016)) to achieve a realistic fiber distribution from a production point of view. Here, a single ply is simulated, rather then
a a laminate, therefore effects like for example delamination between plies are not considered. The interface bonding between
fiber and matrix is chosen to be perfect in line with industry standards, where bonding agents are used frequently. A fiber volume
fraction of 40% is assumed and the elastic fiber properties follow to 𝐸fiber = 72 [GPa] and 𝜈fiber = 0.21, the matrix properties are
chosen according to Tab. 1. As in the model formulation elaborated above, the elastic fiber energy is chosen as of Neo-Hookean
type. The unit cell geometry is generated in a periodic manner, as is the mesh, therefore periodic boundary conditions can be
applied using so called equation constraints in ABAQUS. A schematic drawing of the unit cell and the two load cases is shown in
Fig. 6. Two examples with different boundary conditions are conducted, in-plane tension and in-plane pure shear (see Fig. 6), for a
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maximum strain of 10%. The contour plots show the Cauchy stress in 𝑥 and 𝑥𝑦 direction at maximum strain. In the pictures, the
stiffness contrast between fiber and matrix material is well represented. Additionally, pronounced compression regions are visible,
especially for the pure shear case. In the regions, where fibers are being pushed closer together, localization phenomena are visible.
Here, the use of finite element technology as for example using single Gauss point elements could help to overcome these problems.
In order to verify the unit cell response, experimental tests on glass fiber reinforced PA6 at various temperatures are planned and
will be compared to a statistically evaluated unit cell in terms of mesh and size convergence, similar to Melro et al. (2013).

Fig. 6: a) Unit cell geometry with random fiber distribution and boundary value problems: in-plane tension (blue) and in-plan pure
shear (green) b) Stress contour plots for in-plane tension and in-plane pure shear

5 Conclusion and outlook

In this work, a constitutive framework for the thermomechanical material behavior of semi-crystalline polymers is presented
and characterized on the basis of an extensive experimental study on polyamide 6 at various temperatures. The proposed
material model, consisting of a parallel arrangement of an elasto-plastic and viso-elastic part valid for finite strains, is developed
in a thermodynamically consistent manner. Furthermore, the temperature and displacement field are fully coupled and the
microstructure of PA6, represented via the degree of crystallinity is considered as an additional input parameter. The material
parameters are governed using a staggered parameter identification scheme. Particular attention is paid on the determination of
a unique parameter set per temperature, by simultaneously identifying multiple crystallinities. Compared to earlier works, the
use of a blending technique during sample production, allowed testing on a wide range of crystallinities. In consequence, the
model is characterized and validated for a crystallinity range of about 15%, here shown exemplary for 130◦ C, which to the authors
knowledge has not been done yet. Due to a lack of a complete experimental database, further temperatures have not been validated
until this point. However, the first results were in good agreement with experimental findings and showed the capability of the
framework to predict the visco-hyperelastic elasto-plastic material response of PA6 at finite strains.
To fully characterize the material model in a mechanical and thermal sense, further experiments for other temperatures below and
above the glass transition temperature are needed. After completion of the experimental data base, the remaining temperatures
can be identified in a straightforward manner, using the proposed strategy. Here, the investigation of multiple strain rates is of
particular interest. Furthermore, thermal and mechanical validation experiments for complex multidimensional stress states, as
well as shear tests and infrared thermography measurements need to be conducted to validate the model further. Based on these
results, the energetic contribututions can be revised, as for example proposed in Sec.3.2 to incorporate isotropic hardening or
additional Maxwell elements if needed. The implementation in AceGen provides a flexible framework for that.
Regarding the use of the model formulation in a multiscale context, further experimental investigation is planned on a glass fiber
reinforced PA6 single ply at various temperatures, as well as comparison to statistically generated unit cells. Hopefully these
results lead to an insight of the material behavior on the mesoscale, that can be used to extend the presented formulation to an
anisotropic macroscopic formulation in the future.

Tab. 2: Set of thermal material parameters for 130 ◦C

𝜆𝑇 = 𝜒𝜆0
𝑇

𝛼𝑇 (𝜃) 𝜌0 (𝜃) 𝑐𝑝 (𝜃)
𝜆0
𝑇
= 1.32 [W/mK] 8.76 · 10−5 [1/K] 1.05 ·103 [g/mm3] 2.2 [J/gK]

Acknowledgment and Funding Information

The author gratefully acknowledges the experimental data base conducted by Sameer Kulkarni at the Institute of Mechanics,
University of the Federal Armed Forces, Munich. Financial support by the German Research Foundation (DFG) (RE 1057/52-1,
project number 454873500) is gratefully acknowledged.

217



M. Reuvers, S. Kulkarni, M. Johlitz, A. Lion, T. Brepols and S. Reese Tech. Mech., Vol. 43, Is. 2, (2023), 211–219

References

A.F.M.S. Amin, A. Lion, S. Sekita, and Y. Okui. Nonlinear dependence of viscosity in modeling the rate-dependent response
of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification.
International Journal of Plasticity, 22(9):1610–1657, 2006.

L. Anand and M.E. Gurtin. A theory of amorphous solids undergoing large deformations, with application to polymeric glasses.
International Journal of Solids and structures, 40(6):1465–1487, 2003.

L. Anand, N.M. Ames, V. Srivastava, and S.A. Chester. A thermo-mechanically coupled theory for large deformations of amorphous
polymers. part i: Formulation. International Journal of Plasticity, 25(8):1474–1494, 2009.

E.M. Arruda, M.C. Boyce, and R. Jayachandran. Effects of strain rate, temperature and thermomechanical coupling on the finite
strain deformation of glassy polymers. Mechanics of Materials, 19(2-3):193–212, 1995.
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