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Military helicopter pilots and their aircraft form a unique system relied upon to be 

highly functioning. This work explores an aspect of the system largely ignored by the industrial 

developers of these systems, namely the mental workload of the pilots during flight. Supported 

by a systematic review of previously-published works, it is reasoned that mental workload is 

experienced uniquely by each individual and that it cannot be deduced through an analysis of 

the task load alone.  

A technical solution is developed and tested for predicting pilot mental workload in 

real-time which processes and fuses psychophysiological data from multiple sources 

supporting a multi-modal assessment. Specifically, signals processed include functional near-

infrared spectroscopy (fNIRS), electrocardiography (ECG), electrodermal activity (EDA), 

respiration, and eye-movement-related signals. The unique signal processing chains are 

presented including the algorithms for extracting workload-relevant features and methods 

implemented to ensure robust data acquisition and processing.  

Experimentation of the system with ten operational military helicopter pilots and ten 

university students shows a moderate linear correlation between subjective and predicated 

mental workload (average Pearson’s correlation coefficient of 0.36±0.21). The individual 

feature with the strongest linear correlation to subjective mental workload is an instantaneous 

standard deviation of all deoxygenated hemoglobin channels recorded from the pre-frontal 

cortex. This discovery is significant as this feature has not been identified by previously-

published works as being sensitive to mental workload.  

The developed system (including an in-cockpit display) demonstrates a high level of 

transparency required for effective human-machine systems. At last, a gauge in the cockpit for 

the most important sub-system in the human-machine team – the human!  

Abstract
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Militärhubschrauberpiloten und ihre Flugzeuge bilden ein einzigartiges System, das in 

hohem Maße funktionsfähig sein muss. Diese Arbeit untersucht einen Aspekt des Systems, der von 

den industriellen Entwicklern dieser Systeme weitgehend ignoriert wird, nämlich die mentale 

Arbeitsbelastung der Piloten während des Fluges. Gestützt auf eine systematische Durchsicht 

bereits veröffentlichter Arbeiten wird argumentiert, dass die mentale Arbeitsbelastung von jedem 

Individuum auf einzigartige Weise erlebt wird und nicht allein durch eine Analyse der 

Aufgabenbelastung abgeleitet werden kann.  

Es wird eine technische Lösung zur Prädiktion der mentalen Arbeitsbelastung von Piloten 

in Echtzeit entwickelt und getestet, die psychophysiologische Daten aus verschiedenen Quellen 

verarbeitet und zusammenführt, um eine multimodale Bewertung zu ermöglichen. Zu den 

verarbeiteten Signalen gehören die funktionelle Nahinfrarotspektroskopie (fNIRS), die 

Elektrokardiographie (EKG), die elektrodermale Aktivität (EDA), die Atmung und 

augenbewegungsbezogene Signale. Die einzigartigen Signalverarbeitungsketten werden 

vorgestellt, einschließlich der Algorithmen zur Extraktion von belastungsrelevanten Merkmalen 

und der implementierten Methoden zur Gewährleistung einer robusten Datenerfassung 

und -verarbeitung.  

Die Erprobung des Systems mit zehn Militärhubschrauberpiloten und zehn 

Universitätsstudenten zeigt eine mäßige lineare Korrelation zwischen der subjektiven und der 

prädiktierten mentalen Arbeitsbelastung (durchschnittlicher Pearson-Korrelationskoeffizient von 

0,36±0,21). Das individuelle Merkmal mit der stärksten linearen Korrelation zur subjektiven 

mentalen Arbeitsbelastung ist die momentane Standardabweichung aller desoxygenierten 

Hämoglobinkanäle, die vom präfrontalen Kortex aufgezeichnet wurden. Diese Entdeckung ist 

bedeutsam, da dieses Merkmal in früheren Arbeiten nicht als empfindlich für mentale 

Arbeitsbelastung identifiziert worden war.  

Das entwickelte System (inklusive eines In-Cockpit-Displays) weist ein hohes Maß an 

Transparenz auf, das für effektive Mensch-Maschine-Systeme erforderlich ist. Endlich eine 

Anzeige im Cockpit für das wichtigste Subsystem im Mensch-Maschine-Team - den Mensch! 

Kurzfassung 
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The concepts of human-centered systems [1] and subsequently human-centered 

automation [2], [3] were born from the belief that humans possess unique capabilities that can 

be augmented by various tools, including automation, to enhance overall system effectiveness. 

One such system, requiring acute synergy between humans and machines is the aircraft. The 

highly complex system, dynamic environment, and severity of potential error necessitate a 

close coupling between the pilot and the aircraft’s digital and mechanical systems. It is here in 

the aviation space that these concepts of human-centered systems and human-centered 

automation have largely been developed and refined. In addition to the highly-focused activity 

in the aviation space, these principles have been studied and applied in a wide range of fields 

to maximize system usability and overall performance. 

A pioneering report compiled in 1951 by Dr. Paul M. Fitts presents many of the 

fundamental principles in the field still discussed today [4]. One such principle is that systems 

should be designed to account for the respective strengths and weaknesses of the human and 

machine sub-systems. Included in this report are lists of functions or capabilities he argued 

were either better suited for humans or machines. He offered, however, that any arrangement 

of functions between humans and machines “must, of course, be hedged with the statement that 

we cannot foresee what machines can be built to do in the future.” This is an important caveat 

as it accounts for future technological developments changing the distribution of functions 

between humans and machines. His assessment for example, that “sensory functions” such as 

identifying objects in a scene or hearing a faint noise are best performed by man is arguably no 

longer true due to advancements in sensing technologies since his writing. Regardless of the 

allocation, however, the principle maintains its validity – human-operated systems should be 

designed to account for the relative strengths and weaknesses of the human and the mechanical 

sub-systems. 

1 Introduction 
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Since the publication of Dr. Fitt’s capability allocation between humans and machines, 

the number of tasks for which human capabilities outperform those of machines has decreased. 

Subsequent research by Dr. Charles E. Billings at the National Aeronautics and Space 

Administration (NASA) largely reduced the tasks for which humans outperform machines to 

those related to high-level cognitive functions. Published in 1991, Billings suggested the 

“invaluable attributes” maintained by human operators are 1) their ability to detect a signal in 

a noisy environment 2) their ability to effectively reason in the face of uncertainty, and 3) their 

abilities of abstraction and conceptual organization [2]. He reasoned these invaluable attributes 

were precisely those essential to anyone wishing to pilot an aircraft. Regardless of how the 

unique abilities of humans are defined, it is clear one’s ability to utilize these and other similar 

cognitive abilities is not constant. Many factors influence one’s ability to perform these 

functions such as fatigue, fear, or mental workload [5]. Additionally, it is generally accepted 

that there are limits to human ability to process information and that information overload can 

lead to degraded performance in cognitive tasks (note that the “invaluable attributes” 

maintained by human operators are all cognitive abilities) [6]. This work aims to address an 

often-overseen aspect of human-machine systems – that of monitoring the human operator’s 

state to ensure they remain capable of fulfilling their uniquely-human roles. To harness the 

maximum utility of human pilots, they ought to be monitored and aided in a way that supports 

their ability to remain in a state of maximum cognitive function. For example, states of high 

anxiety or stress should be identified and controlled as these states are less conducive to 

effective cognitive functioning [7]. 

In many fields, technological advancements in areas such as sensing, computing, 

robotics, machine learning, and artificial intelligence have resulted in both software and 

hardware-based tools taking on a more teammate-like relationship with their users. In the field 

of military aviation, research and development efforts into human-autonomy teaming (HAT) 

and human-machine teaming (HMT) technologies have led to multiple national militaries 

pursuing “loyal wingman” programs in which one or more unmanned aircraft teams with a 

human-piloted aircraft to pursue a common objective. In this relationship, the human is not to 

simply use the machine as a tool, but rather, the two are to develop a cooperative relationship 

in the pursuit of a desired outcome. Using the nomenclature established by Schulte et al. in [8] 

to describe various human autotomy teaming architectures, Fig. 1.1 depicts multiple human-

machine system architectures in which the relationship between the human and the 
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technological systems varies from a purely hierarchical relationship (a) to one of cooperation 

with a “cognitive agent” working together with the human to achieve the given objective (c).  

These system architectures can be used to analyze human-machine relationships in a 

wide variety of applications. This work focuses on one application of a human-machine system 

in which the machine could cooperatively support the human in the pursuit of a common 

objective – namely a piloted military aircraft. In the highly complex and rapidly changing 

environment of flight, especially true in the military setting, the “adaptive assistant system” 

would act as a co-pilot to the human pilot assisting in the planning and execution of a successful 

flight. The ultimate realization of such an adaptive assistant system supporting the human crew 

of an aircraft would be the actualization of R2-D2 from the movie Star Wars. How such systems 

ought to behave is a question of much research and ethical debate. One proposed structure for 

the design of cognitive automation given by Onken and Schulte [9] suggests an assistant system 

should take a tiered approach to assisting with the goal of minimizing assistance. First, if 

deemed necessary, the system should direct the human operator’s attention to a task. Next, if 

unsuccessful in its design, the system should simplify the task in some way enabling the human 

operator to accomplish the task. Finally, as a last resort, the tasks should be allocated to the 

assistant system and completed autonomously.  

In addition to the fundamental principles guiding the behavior of the autonomous 

system, the particulars of its implementation are critically important for achieving the effective 

and necessary relationship between the pilot and the machine. For example, the timing and 

manner in which such a system provides feedback or intervention is critical to its effective 

realization. An inappropriately timed interruption can negatively impact an operator’s mental 

state and increase human error rates [10]. To inform the timing and manner in which feedback 

Fig. 1.1 Multiple human-machine architectures depicting various relationship structures between the human and technological 
systems where a green arrow represents a hierarchal relationship and a blue line represents a cooperative relationship. (a) 
depicts a hierarchal relationship between the human and basic tools. (b) introduces a “cognitive agent” capable of directing 
lower-level tools which is yet directed in a hierarchal relationship. (c) depicts a cognitive agent working cooperatively with 
the human to achieve the given objective. Adapted with permission from [8].  
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or intervention is provided, significant contextual knowledge is required. Context-aware 

operator feedback and notification systems have been shown to improve coordination and 

performance between human-machine teams [11]. In the realm of military aviation, the 

“context” of the system at any given moment is highly complex with many clearly defined 

system states and others which are more ambiguous. Examples of states which are clearly 

defined are groundspeed, windspeed, angle of attack, the position of the landing gear, enemy 

position, etc. Even the binary state of whether or not a pilot is currently speaking with their 

copilot is clearly defined and can be determined. Other elements of the system’s “context” 

which are more ambiguous and less easily measured include the pilot’s current mental picture 

of the situation and their surroundings (i.e. their situational awareness), and their cognitive 

strain or mental workload. Despite the difficulty, it is hypothesized that obtaining even an 

approximate assessment of the pilot’s mental state would significantly enhance a system’s 

ability to provide relevant and useful context-sensitive assistance.  

As anyone who has sat in the passenger seat of a car knows, comprehending the mental 

state of the driver is critical for providing productive assistance to the driver. However, even 

for the most highly trained psychologists, teachers, or parents, assessing the mental or cognitive 

state of another human being is a very complex and difficult task. Furthermore, acting on 

incorrect conclusions as to a person’s mental state often leads to confusion, frustration, and 

ultimately a less-than-optimally functioning system. This is true in a human-to-human 

relationship as it is in a human-to-machine relationship.  

The challenges associated with assessing a pilot’s mental workload and acting upon 

that assessment are steep, yet the potential benefits are significant. A review article published 

in 2018 which assessed a random sampling of over 200 commercial air transport accidents and 

incidents from 2000 to 2016 reported that “human factors contribute to approximately 75% of 

aircraft accidents and incidents” and that situational awareness and non-adherence to 

procedures were the most significant factors contributing to these incidents [12]. If pilots could 

be supported by a never-sleeping co-pilot with super-human observation skills, many of these 

accidents and incidents could be avoided and the efficiency of the crew could be improved.  

To move in this direction, this work pursues the idea of introducing 

psychophysiological measures into the cockpit’s human-machine interface providing the 

system with a view into the operator’s mental state, specifically their cognitive or mental 

workload. Psychophysiological measures refer to the subset of physiological signals that are 



5 
 

influenced by psychological or emotional states [13]. The integration of physiological 

measures and signals into computer systems and applications to provide valuable information 

and enable adaptive computer interfaces or systems is known as “physiological computing” 

[14]. Specifically, this work investigates the utility of various psychophysiological monitoring 

technologies and processes to infer the mental workload of an operator during simulated 

helicopter flight. It is anticipated that with an accurate model of the pilot’s mental workload, 

an adaptive assistant system could be developed which could optimize the human-machine 

team. Due to the extreme complexity of a person’s mental workload, a multi-modal approach 

is pursued in which various signals and features are extracted to shed light on this construct. 

By integrating many sensing technologies and methods, it is hypothesized that one can generate 

a more complete picture of the person’s mental workload than by any one method alone. 

1.1 Theory to Practice: Operationalizing Mental Workload 

If the goal of a human-machine system is to optimize performance, it is reasonable to 

question why some metric of system performance could not be assessed in real-time and used 

as feedback in the system to correct for errors. Certainly, this is an appropriate tactic when the 

task is simple and well-defined. If, for example, the task is for a pilot to maintain a specific 

speed, heading, and altitude, a simple control system can be built to detect and trigger 

corrections when deviations from the task objective are observed – and yes, such auto-pilot 

systems exist in abundance. However, in highly complex and dynamic situations where 

“performance” is ill-defined and correction is not possible via a simple control loop, an 

assistant system could support most by evaluating the state of the human operator and assisting 

when appropriate. In fact, in these situations where uncertainty is guaranteed and the cognitive 

abilities of the human operator are the critical enabler for mission success, it could be argued 

that the cognitive state of the operator is precisely the metric or state to be controlled. 

Pioneering work by Yerkes and Dodson in 1918 with mice demonstrated a relationship 

between task difficulty, arousal (stimulus intensity), and learning rate [15]. With an easy task, 

where objects to be differentiated significantly differed in brightness, the speed of learning 

increased with increasing stimulation intensity. With medium and high-difficulty tasks, where 

the difference in brightness between objects was not as significant, the fastest learning occurred 

at some intermediate level of stimulation intensity whereas “the weak and strong stimuli were 

less favorable to the acquirement of the habit than the intermediate stimulus.” In these more 

difficult tasks, the majority of mice given a weak-intensity stimulus did not learn the intended 
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behavior, all of the mice given a medium-intensity stimulus learned the behavior quickly, and 

the mice given a strong-intensity stimulus performed similarly to those who received the weak-

intensity stimulus and did not learn the intended behavior. This relationship between “arousal” 

and performance is shown in Fig. 1.2 (published in 2007 in [16]). Although initially studied 

with mice and a particular visual learning task, this relationship between arousal and 

performance has become widely accepted for explaining human behavior in a variety of 

environments. In modern human factors and psychology literature, the term “arousal” has 

largely been replaced by the more general term “mental workload.” In general, when 

confronted with a difficult task, too little or too much mental workload experienced by the 

human operator yields sub-optimal performance. It then follows that a system that could 

reliably maintain an operator’s mental workload at some optimal level would aid in producing 

maximum performance. Even if not capable of maintaining an optimal level of mental 

workload, such systems could prevent overload and underload situations where poor 

performance is likely. Such systems are known as adaptive assistant systems or systems built 

with adaptive automation capabilities.  

Before further discussing adaptive assistant systems, however, it is important to better 

understand mental workload. A model developed by German occupational science researchers 

Rohmert and Rutenfranz in 1975 known as the “Belastungs-Beanspruchungs-Modell” 

(translated as the “Stress-Strain-Model”) does well to establish a fundamental model of mental 

workload [17]. The English words “stress” and “strain” are not helpful in this discussion as 

they are often used interchangeably and with varying meanings. Rather, “Belastung” is 

translated as “task load” and “Beanspruchung” is translated as “mental workload.” A general 

depiction of this model is provided in Fig. 1.3. The model provides a relationship between the 

Fig. 1.2 Plot showing a relationship between arousal and performance which has come to be called the “Yerkes-Dodson-Law” 
originally presented in 1908  suggesting the quality of performance on difficult tasks (not simple tasks) is an inverted U-shaped 
function of arousal [15] (the plot is was published in 2007 in [16]). Although not synonymous, “arousal” has been largely 
replaced by “mental workload” in modern human factors and psychology vernacular.  
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task load, the unique traits of the operator, and the mental workload experienced by that person. 

As can be visualized in the figure, the same task load can induce varying levels of mental 

workload in a population of operators based on their unique traits, capabilities, skills, and other 

personal factors.  

This model highlights multiple important aspects of mental workload. It suggests that 

mental workload is experienced uniquely by an individual and cannot be deduced through an 

analysis of the task load alone. The model depicts well the argument made by Durantin et al. 

in [18] that mental workload should be defined “in terms of the interaction between the task 

and the individual performing the task.” Mental workload may be defined as the subjective 

experience of a given task load.  

Given the nebulous nature and complexity of mental workload, yet desirous to quantify 

the measure for various practical applications, researchers have developed or implemented a 

wide range of measurement techniques. Most of these measurement techniques can be 

categorized into four means of assessment: physiological measurements, behavioral actions, 

task performance, and subjective ratings. These four primary methods for measuring mental 

workload are depicted in Fig. 1.4. Each may provide a unique perspective into the true nature 

of subjective mental workload. Physiological measurements capture the objective response of 

the body to a given workload. Examples of these measurements include (but are not limited 

to): heart rate (HR), electroencephalography (EEG), electrodermal activity (EDA), respiration 

rate, body temperature, and pupil size. Behavioral measurements capture physical actions or 

movements of the body such as eye fixation location, grip strength, posture, linguistics (tone, 

vocabulary), and facial expression. Next, insight into one’s mental workload can be gleaned by 

Fig. 1.3 A model depicting the relationship between “task load” and “mental workload.” This relationship was presented as 
the “Belastungs-Beanspruchungs-Modell” (translated as the “Stress-Strain-Model”) in [17]. 
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monitoring the execution performance of a task. Generally, if task performance declines (while 

other factors such as commitment to the task remain constant), one can conclude an increase 

in mental workload. Obtaining a metric for real-time task performance is possible for simple 

tasks such as station-keeping while flying, but may not be feasible in a highly dynamic scenario 

with ill-defined performance parameters. If performance on the primary task cannot be 

continuously assessed, another strategy to assess mental workload is to evaluate the 

performance of a secondary task for which performance can be measured. Finally, subjective 

ratings can provide a unique perspective into a person’s mental workload. Multiple published 

methods for collecting subjective mental workload metrics exist including the NASA Task 

Load Index (TLX), Subjective Workload Assessment Technique (SWAT), and the Modified 

Cooper Harper Rating scale (mCHR). By virtue of the method, these questionnaire-based 

techniques cannot obtain a continuous metric throughout task execution. If implemented mid-

task, they are disruptive and often counterproductive. Additionally, they can be overly 

complicated for the untrained subject. 

Accepting the idea that mental workload is a result of the given task (and all relevant 

environmental factors) as well as the unique characteristics, thoughts, and perceptions of the 

individual performing that task, practitioners aiming to assess mental workload are confronted 

with a significant challenge. Previous work by Honecker et al. has investigated a task-based 

approach to assess the state of the pilot in the context of a helicopter simulator [19]–[21]. By 

mapping gaze fixation location to elements of the display as well as by monitoring the physical 

manipulation of the cockpit by the pilot, “evidences” could be generated suggesting the 

Fig. 1.4 A diagram showing the four primary methods for measuring mental workload The figure is an adaptation of one 
published in [87]. The lack of a boundary around “Mental Workload” represents the nebulous nature of the construct.  
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execution of various tasks which were utilized in an online task recognition system. The utility 

of the resulting task prediction is highly reliant on a complete and accurate task model capturing 

all tasks which could possibly be performed by the user. Assuming an accurate task prediction 

(an accurate assessment of the task load), an operator’s mental workload was predicted by 

accumulating subjectively-inferred and static mental resource demands of the currently-

executed tasks. Additionally, the group assessed whether or not simultaneously-executed tasks 

conflicted with one another in a way that would compound the resulting mental workload. As 

with the reliance on a comprehensive task model, the workload prediction step in this approach 

relied on an accurate mapping of task demand to workload. Considering Fig. 1.3, this task-

centered approach discounts the effect of the unique traits, skills, emotions, or experiences of 

the operator on the experienced mental workload. Arguably, some of these unique operator 

capabilities and attributes influencing mental workload (such as pilot training level) could be 

learned and used to create operator-specific task-to-workload prediction models as I and my 

colleagues have previously suggested (see [22]). Doing so, however, would likely fail to 

incorporate the wide variety of unpredictable and rapidly-changing conditions such as the 

pilot’s emotional state which would likely make this an unfruitful endeavor.  

Although the model depicted in Fig. 1.3 highlights appropriately the idea that mental 

workload is a function of more than task load alone and should encourage a practitioner to 

move beyond a purely task-based approach to mental workload prediction, the model does not 

capture the idea that the personal factors of the operator (represented by the spring) can vary 

with time. In other words, some personal factors contributing to mental workload can change 

significantly throughout task execution. Factors such as a person’s commitment to a high level 

of performance (and hence their level of effort) for example may not be constant over time 

resulting in a varying level of mental workload throughout task execution given a constant task 

load. Veltman and Jansen in [23] support this reasoning suggesting the relation between task 

load, mental workload, and operator performance is unique for each individual and is time-

variant. They suggest the relation can change due to talent, training, fatigue, external stressors, 

or other factors. 

Rather than relying on fixed task and workload models, it is argued in this work that a 

more reliable method of determining mental workload is through the real-time monitoring of 

psychophysiological signals. The approach taken in this work to quantify a person’s mental 

workload is not to assess task load nor the individual’s traits, capabilities, and skills, but rather 

to infer the person’s mental state through an analysis of various psychophysiological signals 
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which correlate with the person’s mental workload. Thus, the strategy taken here is to assess 

mental workload by observing the resulting physiological state induced by a task load given 

the operator’s unique traits, capabilities, and skills.  

1.2 Real-Time Pilot Monitoring for Mental State Estimation: 

Current State of the Art 

Real-time monitoring of pilots in the cockpit has been a growing line of research for 

decades. Although pursued for reasonable and significant purposes, the assessment of the 

pilot’s physical state is not a concern of this work. Rather, this work is focused on assessing 

the pilot’s mental state, specifically their mental workload, to optimize the human-machine 

team. Although a subject of research for decades, real-time pilot monitoring technologies 

remain largely confined to academic environments. This is especially true when the review is 

limited to real-time pilot mental state or mental workload assessment technologies. The 

following section will present the current state-of-the-art of this field in the academic, 

commercial, and military settings.  

Many academic pursuits are documented in which sensing technologies are applied to 

simulated and actual flight scenarios to measure or assess pilot mental workload. The 

subsequent section, Section 1.3, provides a systematic review of many of these publications 

highlighting the sensing techniques employed to assess mental workload. As can be expected, 

most of the academic work in the field has been conducted in simulators of various fidelity, yet 

multiple have been conducted in real aircraft and during actual flight. Although these articles 

highlight unique challenges with actual flight, they consistently reaffirm the early finding 

reported in [24] that physiological responses to changes in mental workload are similar across 

simulated and actual flight [25]–[29].  

Rather than reporting a continuous-valued metric of pilot mental workload over time, 

many of the recent publications classified or predicted discrete mental workload states 

(primarily “low” vs “high”) [25]–[28], [30], [31]. The reported classification accuracies of 

these efforts range from 67% ([27]) to 87% ([25]). These results demonstrate the fair, but 

imperfect ability to use physiological data to classify mental states. Perhaps it is the case, that 

existing published literature does not present a continuous-valued metric of pilot mental 

workload over time due to the difficulty in validating such a metric. One can experimentally 

set the relative difficulty of consecutive tasks and validate through a post-execution survey 

(e.g. NASA-TLX [32]) that the tasks were perceived as designed. It is more difficult, however, 
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to validate a task’s difficulty continuously throughout task execution. Further details as to the 

academic state of this research are provided in Section 1.3.  

Perhaps due to the high variability of results across these academic efforts, the 

commercial sector for supplying real-time pilot monitoring solutions remains weak. Designers 

and manufacturers of commercial aircraft (particularly the cockpit) largely do not consider the 

monitoring of the pilot into the design of the aircraft forcing research groups and commercial 

sensing companies to implement custom integration solutions. Despite the difficulty of 

integration, may stand-alone commercial sensing technologies for real-time pilot monitoring 

do exist. For example, the Canary Pilot Physiological Monitoring System by the Israeli 

company Elbit Systems is advertised as a non-invasive system fully integrated into a pilot’s 

helmet capable of providing pilots with early warning of developing hypoxia and G-Force 

Induced Loss of Consciousness (G-LOC). Additionally, when integrated with the aircraft’s 

flight controls, engages the autopilot engagement if the pilot loses consciousness. Wearable 

health monitors capable of measuring cardiovascular and respiratory features are also 

commercially available and could potentially be utilized for real-time pilot monitoring through 

custom integration solutions.  

One ongoing project led by the U.S. Air Force seems to be bridging the gap between 

the laboratory and operational environments. The Integrated Cockpit Sensing (ICS) program 

aims to incorporate flight environment and pilot physiology data to improve pilot safety and 

performance [33]. Specifically, the program aims to assess pilot state through the measurement 

of respiratory and cardiovascular measurements and detect conditions conducive to 

unexplained physiological episodes (UPEs). According to the 2020 National Commission on 

Military Aviation Safety report, from 2013 to 2018, 718 UPEs were reported in fighter and 

trainer aircraft in which pilots across many airframes report unexplainable hypoxia-like 

symptoms [34]. The ICS program began in June 2020 and will complete its initial development 

and testing and November 2023. In a personal interview on 30 November 2022, the ICS 

Program Manager disclosed that the program aims to develop five prototype systems which 

will be distributed across three target customers: Air Education and Training Command 

(AETC), the 412th Operations Group within Air Force Material Command (AFMC), and Air 

Combat Command (ACC). The system is intended to be flown on AETC’s T-6 Texan II trainer 

aircraft, ACC’s F-16 Fighting Falcon fighter aircraft, and support the various testing activities 

of the 412th Operation Group and its flight test squadrons. Although the primary function of 

the system will be to enable post-flight analysis of aircraft and pilot state data, it is anticipated 
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that the system will provide real-time notifications to the pilot of various states (presumably 

those related to hypoxia such as low blood saturation). Determining how and when these 

notifications will be presented to the pilot remains an ongoing effort. The ICS sensing suite 

includes the Canary Pilot Physiological Monitoring System by Elbit Systems discussed 

previously.  

In summary, a significant amount of research has been conducted over the last few 

decades showing strong correlations between physiological measures and various mental 

workload states, yet whether in commercial industry or the military environment, no fielded 

system currently exists to enable the real-time mental workload prediction of pilots. Such a 

system could have significant utility for training purposes, for optimizing the safety and 

performance of pilots and their crews, and for the development of pilot-assistant systems 

capable of providing context-sensitive assistance. 

1.3 Summary of Potential Physiological and Behavioral Signals 

for Evaluating Pilot Mental State 

As presented previously, the four primary methods for assessing mental workload are 

through physiological measurements, an assessment of behavioral actions, evaluating task 

performance, and through subjective ratings. This section presents a systematic review of 

previously-published original academic research which employed these methods in various 

ways as well as a summary of multiple review articles on the topic. Table 1.1 presents a 

summary of original research sorted by publication year showing the environment in which the 

study was conducted (simulated flight, real flight, or other), the number of participants included 

in the study, and which measurements were collected to evaluate mental workload. Table 1.2 

highlights the main findings of these selected articles as it relates to the evaluation of mental 

workload. Table 1.3 provides the conclusions reached by published review articles assessing 

the utility of various psychophysiological signals to measure mental workload. Finally, 

summarizing the findings of the original research articles as well as the review articles, Table 

1.4 provides a summary of sensing modality utility across multiple physiological and 

behavioral collection methods in supporting a real-time mental workload assessment system in 

a cockpit. Together, the data and analysis presented in these tables provide a valuable picture 

of the current state of academic research on this topic.  
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Table 1.1 A sampling of published research aiming to assess mental workload through physiological, behavioral, and 

subjective measures. Terms: HR-heart rate, HRV-heart rate variability, EDA-electrodermal activity, EEG- 
Electroencephalography.  
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Roscoe et al. [24] 1988 Sim 9 x             x 

Hankins et al. [35] 1998 Real 15 x   x      x    x 

Miyake et al. [36] 2001 Other* 12  x       x     x 

Wilson [37] 2002 Real 10 x x  x     x x    x 

Veltman [29] 2002 Sim & Real 20 x x x x        x x x 

Lee et al. [38] 2003 Sim 10 x             x 

Nickel et al. [39] 2003 Computer 14  x             

Di Nocera et al. [40] 2007 Sim 10        x      x 

Dehais et al. [41] 2008 Real 6      x  x       

Kikukawa et al. [42] 2008 Real 4           x    

Girouard et al. [43] 2009 Packman 9           x   x 

Luigi et al. [44] 2010 Sim (drive) 18       x       x 

Power et al. [45] 2010 Other** 10           x    

Dahlstrom et al. [46] 2011 Real 7 x   x x     x    x 

Tokuda et al. [47] 2011 N-Back 14      x x        

Durantin et al. [18] 2014 Computer 12  x         x    

Herff et al. [48] 2014 N-Back 10           x    

Derosière et al. [49] 2014 Computer 7           x    

Gateau et al. [50] 2015 Sim 19           x    

Dehais et al. [51] 2015 Sim 7       x        

Causse et al. [52] 2016 Computer 24      x    x     

Mansikka et al. [53] 2016 Sim 26 x x             

Aghajani et al. [54] 2017 N-Back 17          x x    

Causse et al. [30] 2017 Sim 26           x   x 

Hidalgo-Muñoz et al. [55] 2018 Sim 21 x x             

Scannella et al. [31] 2018 Real 11 x x     x x      x 

Dehais et al. [25] 2018 Sim & Real 4          x x    

Gateau et al. [26] 2018 Sim & Real 28           x    

Verdière et al. [27] 2018 Sim 12           x    
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Dehais et al. [28] 2019 Real 22          x     

Alaimo et al. [56] 2020 Sim 23  x            x 

Hebbar et al. [57] 2021 Sim 12      x  x  x     

*Puzzle, tracking, and numerical logic 
**Mental arithmetic and music imagery 

 

Table 1.2 Key findings/conclusions of published original research aiming to assess mental workload through physiological, 
behavioral, and subjective measures. Abbreviations: EDA-electrodermal activity, EEG-Electroencephalography, fNIRS-
functional near-infrared spectroscopy, HR-heart rate, HRV-heart rate variability. 

Citation Key Findings/Conclusions 

Roscoe et al. [24] Failures in simulated flight induce a similar HR response as failures in real flight.  

Hankins et al. [35] Multiple psychophysiological measures provide a “comprehensive picture” of the mental 
demands of flight. It may be possible to develop systems that provide on-line monitoring of 
mental workload that can provide feedback to the pilot and aircraft systems. Blink rate is sensitive 
to visual demand. EEG theta band power is sensitive to mental workload. HR is not specific to 
demand resource. 

Miyake et al. [36] Feelings of one’s performance may influence assessments of subjective mental workload yet the 
correlation between such feelings and the physiological responses during the task may be low. 

Wilson [37] Cardiac and electrodermal measures are highly correlated and exhibit changes in response to 
flight demands. HRV is less sensitive than HR. EEG alpha and delta bands show significant 
changes to varying demands. Blink rate decreases during visually demanding flight. 

Veltman [29] HR, HRV, and respiratory rate behaved similarly across simulated and real flight. A combination 
of blink parameters provides more information about mental workload than blink rate alone. 
Cortisol was not affected by simulated flight yet increased greatly following real flight suggesting 
that cortisol is not affected by mental effort. 

Lee et al. [38] HR correlates with subjective mental workload ratings (NASA-TLX).  

Nickel et al. [39] HRV is an indicator of time pressure or emotional strain - not mental workload. 

Di Nocera et al. [40] Eye fixation distribution is more variable during takeoff and landing than during level flight. 
Subjective ratings (NASA-TLX) correlate to high and low workload phases. 

Dehais et al. [41] Shorter fixation time on instruments and fixations on fewer instruments in high workload 
conditions. Average pupil diameter is larger during higher workload conditions.  

Kikukawa et al. [42] fNIRS (especially O2Hb measurements), provides a sensitive method for the monitoring of 
cognitive demand in helicopter pilots. 

Girouard et al. [43] Prefrontal cortex oxygenated hemoglobin decreased during activity as compared to a rest state. 
94% classification accuracy between play and rest. 61% classification accuracy between easy and 
hard. Large inter-subject variability.  

Luigi et al. [44] Saccadic peak velocity correlates strongly with mental workload while saccade amplitude and 
duration do not. Saccadic peak velocity decreased as the mental workload increased. 

Power et al. [45] Prefrontal cortex fNIRS classification of mental arithmetic vs musical imagery yielded 77.2% 
accuracy. 

Dahlstrom et al. [46] Increased HR in high mental workload conditions during low-G flight. Blink rate and eye 
movement do not correlate with mental workload. EEG proved difficult to analyze due to muscle 
artifacts and yielded no correlation with mental workload.  

Tokuda et al. [47] More saccadic intrusions (SI) with increased mental workload. SI count is more informative than 
pupil diameter changes which were very minimal. 

Durantin et al. [18] Unable to discriminate between the easiest and hardest conditions using fNIRS and HRV. Pre-
frontal cortex oxygenated hemoglobin increases with task difficultly until the most difficult task 
when it decreases significantly.  

Herff et al. [48] fNIRS is used to classify task difficulty in N-back tests with a 2-class accuracy of 78% and a 4-
class accuracy of 45%.  
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Citation Key Findings/Conclusions 

Derosière et al. [49] fNIRS is used to classify pilot attentional states with a 2-class accuracy of 65-95% (low vs high).

Gateau et al. [50] fNIRS is used to classify "working memory" states (easy vs hard ATC instructions) with a 2-
class accuracy of 80%.  

Dehais et al. [51] The ratio of short saccades to long saccades correlates with periods of “mental conflict.” 

Causse et al. [52] High "working memory load" correlates with increased pupil size and lower EEG P600 
amplitude. 

Mansikka et al. [53] HR and HRV varied significantly across tasks where performance remained steady suggesting  

Aghajani et al. [54] EEG and fNIRS are used to classify N-back difficulty with 2-class accuracy of 90.9% (EEG only 
85.9%, fNIRS only 74.8%). A window size of 20 seconds yields the highest accuracy.  

Causse et al. [30] Increased task difficulty resulted in an increased O2Hb and decreased HHb (for a task with two 
difficulty levels). 

Hidalgo-Muñoz et al. [55] Increased cognitive task difficulty as modulated by a secondary task results in an increased HR 
and decreased HRV. 

Scannella et al. [31] Saccade rate and HR are used to classify flight phases (takeoff, downwind, land) with 75% 
accuracy. The classifier was trained on one flight and applied to a second. Saccade rate helps 
discriminate between tasks that HR cannot.  

Dehais et al. [25] fNIRS and EEG are used to classify the first two traffic patterns (“low fatigue”) from the second 
two patterns (“high fatigue”) achieving 87% accuracy in simulated and real flight.  

Gateau et al. [26] fNIRS features used to classify ATC commands (simple or difficult) achieving 77% and 78% 
accuracy for simulated and real flight respectively. O2Hb concentration increased under a more 
difficult task load. A larger increase in HbO2 concentration in real flight than in the simulator. 

Verdière et al. [27] fNIRS connectivity features used to classify automated vs manual landings achieving 67% 
accuracy.  

Dehais et al. [28] Dry-electrode EEG system measured higher P300 amplitude and higher alpha and theta power in 
the low load condition than in the high load condition. Classification of the two states using EEG 
features achieved 70%.   

Alaimo et al. [56] Subjective assessment of mental workload often does not match objective measurements. For 
only 11 of the 23 pilots did subjective scoring (NASA-TLX) match recorded objective 
measurements (HRV features). The relationship between mental workload, biometric data, and 
performance indexes are characterized by intricate patterns of nonlinear relationships. Mental 
workload cannot be evaluated by subjective measures alone.  

Hebbar et al. [57] Pupil, eye movement, and EEG features are sensitive to changes in task difficulty. EEG beta and 
theta band power increase with increasing task difficulty. 

 

The studies highlighted in Table 1.1 and Table 1.2 each contribute to an improved 

understanding of the sensitivity and diagnostic potential of these various physiological, 

behavioral, and subjective measurements as they relate to mental workload. It is important to 

recognize for example, that some measures, like heart rate, are quite sensitive to mental 

workload, yet lack the diagnostic potential to differentiate between the cause of the workload 

while others, such as eye-movement features are less sensitive to mental workload, but are 

specific to changes in visual demands [35]. Likewise, these studies highlight what was 

summarized in [37] that “the complexity of flying requires that the pilot use numerous 

cognitive processes, and determining the pilot’s mental workload requires more than one 

measure. Any one measure should not be expected to give full insight into the multifaceted 

nature of piloting.”  
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Multiple review articles have been published similarly evaluating previously-published 

original research on the topic of assessing pilot mental workload in the cockpit. Table 1.3 

summarizes the key findings and conclusions of these review articles.  

The “review of reviews” presented in Table 1.3 further suggests that the scientific 

community has coalesced in its understanding that multiple physiological measurements are 

sensitive to mental workload, yet there is no “silver bullet” ([58]) for measuring a pilot’s mental 

workload. This conclusion further substantiates the claim made previously that a more robust 

assessment of a pilot’s mental workload is obtained through the measurement of multiple 

signals rather than relying on only one source.  

Citing the original research given in Table 1.1 and Table 1.2, as well as the review 

articles in Table 1.3 which represent existing literature on the topic, Table 1.4 provides a 

summary of the utility for the sensing modalities considered in Table 1.1. Although an 

incomplete list of all possible sensing modalities, it represents the majority of modalities 

seriously considered for this use. Thus, Table 1.4 provides a summary of the general 

conclusions that can be made from the existing literature on the utility of these particular 

sensing modalities.  

Citation Year Key Findings/Conclusions 

Roscoe [80] 1992 Lengthy presentation of a small number of real flight tests. Extensive section on the historical 
testing of HRV showing an increased mental load correlates with a decreased HRV. Suggest a
high HRV may indicate the onset of under arousal or reduced vigilance. Review of respiration 
work since 1963. Respiration rate is sensitive to mental workload, but is often distorted by speech. 

Jorna [81] 1993 HR and HRV well suited for mental state inference. The low frequency component of HRV is 
reduced under mentally taxing conditions. 

Togo et al. [88] 2009 An increase in mental workload (“work stress” or “job strain”) was associated with decreases in 
the HF component of HRV and an increase in the LF/HF ratio. 

Borghini et al. [60] 2014 An increased task load results in an increased EEG theta band power, a decreased EEG alpha 
band power, a decreased blink rate, a decreased blink duration, and an increased HR. 

Charles et al. [58] 2019 No single physiological signal can provide a single true measure of mental workload (there is no 
“silver bullet”). Physiological signals measure the "experience" of the person. An increase in 
mental workload is associated with an increased HR, a reduced HRV (studies differ on which 
band reduces most significantly), an increased respiration rate, an increased blood pressure, a 
decreased P300 amplitude, a decreased EEG Alpha-band power, and an increased EEG Theta-
band power. Blink frequency and duration decreases under high visual workload. EDA is 
sensitive to sudden changes in mental workload.  

Tao et al. [89] 2019 Cardiovascular measures, eye movement measures, EEG measures, respiration measures, skin 
conductance, and neuroendocrine measures were assessed in 91 studies identifying 78 
physiological measures. Of the 403 instances in which a particular physiological measure was 
used to assess mental workload, 292 (72%) showed a statistically significant relation to mental 
workload. Recommended the use of HR and HRV measures in future work. Concluded that most 
physiological measures can discriminate changes in mental workload, but they are not universally 
valid in all task scenarios.  

 

Table 1.3 Key Findings/conclusions of published review articles assessing the utility of various psychophysiological signals 
to measure mental workload.  
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Table 1.4 Summary of Modality Utility in Supporting a Real-Time Mental Workload Assessment System in a Cockpit 

Modality Summary of Utility  

HR Increased mental workload → Increased HR [24], [35], [37], [46], [55], [58], [60] 

HRV Increased mental workload → Decreased HRV [37], [55], [58], [81]. HRV is sensitive to time-
pressure or emotional strain, not mental workload [39]. Conflicting reports of the sensitivity of 
LF/HF to MWL ([81] and [88]) 

Blood pressure Increased mental workload → Increased blood pressure [58]. Blood pressure is difficult to collect in 
real flight [29] 

Blink features Increased visual demand → Decreased blink frequency [35], [37], [58], [60]. No correlation with 
mental workload [46] 

Eye movement No correlation with mental workload [46] 

Pupil size Increased mental workload → Larger pupil diameter [41]. Very weak correlation [47] 

Saccade features Increased mental workload → Saccadic peak velocity decreased [44]. More saccadic intrusions with 
increased MWL [47]. 

Fixation features Increased mental workload → Shorter fixation time, fewer instruments fixated upon[41] 

EDA Increased mental workload → Increased EDA events [37]. EDA is sensitive to sudden changes in 
mental workload [58] 

EEG Increased mental workload → Decreased Alpha band (8–12 Hz) [28], [37], [58], [60], decreased 
Theta band [28], increased Theta band [58], [60], decreased P300 amplitude [28], [58].  

fNIRS Increased mental workload → Decreased O2Hb [43], increased O2Hb [26], [30], [42], increased 
O2Hb then decreased O2Hb [18]. Two-state mental state classification yields fairly high 
classification results [26], [27], [43], [45]. Sensitivity g-forces may limit utility in real-flight 
conditions [90].  

Respiration Increased mental workload → Increased respiration rate [29], [58] 

Saliva cortisol Cortisol unaffected by simulated flight (only real flight) thus likely unaffected by mental workload 
[29] 

Subjective HR correlated with NASA-TLX scores [38]. Subjective assessment of mental workload often does 
not match objective measurements [56]. Nonlinear relationship between workload, physiological 
data, and performance indexes [56]. Mental workload cannot be evaluated by subjective measures 
alone  [56]. Subjective assessment of mental workload is likely influenced by one’s performance 
[36]. 
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The following sections describe the signal acquisition processes implemented for 

individual modalities and the feature-extraction methods employed in an attempt to obtain 

signals relevant to the evaluation of a person’s mental state. This section is not a comprehensive 

presentation of all possible psychophysiological signal processing chains, but rather it is a 

presentation of the processing chains developed for those modalities selected for further 

experimentation and integration into the testing environment. Additionally, each sub-section 

not only provides a general overview of the sensing technology but also presents the unique 

processing methods developed and employed in this work. The presentation of this analysis is 

ordered according to the location from which it is collected on the human body, from head to 

foot. Functional Near Infrared Spectroscopy (fNIRS) is recorded from the head, eye movement 

is analyzed through eye-tracking technologies, respiration is analyzed though a chest-mounted 

stretch sensor, an electrocardiogram (ECG) is obtained through electrodes on the chest, and 

finally, electrodermal activity (EDA) is monitored and analyzed through electrodes on the foot.  

FNIRS was selected for further experimentation due to its unique proximity to the 

object of investigation – namely the brain. Compared to the other non-invasive brain-activity-

monitoring tool electroencephalography (EEG), FNIRS was assessed to be less sensitive to 

head movement and other movement-related artifacts which are anticipated in the cockpit. 

Previously-published work has confirmed the difficulty of processing EEG in actual flight [46]. 

Additionally, fNIRS has a higher spatial resolution than EEG at approximately 1 cm2 

depending on the sensor geometry [59]. This resolution enables the observation of specific 

structures of the brain believed to be responsible for high-level cognitive processes including 

focused attention, namely the pre-frontal cortex [59]. Finally, its application in the cockpit 

environment could be more easily envisioned as it requires less expertise in placement and 

setup than typical EEG systems.  

2 Real-Time Acquisition and Processing of 
Selected Physiological and Behavioral Signals 
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Eye movement and other ocular-related features were included because an eye-tracking 

system had previously been integrated into the laboratory’s testing environment and multiple 

studies had shown a correlation between various features and mental workload [41], [47]. 

Cockpit-mounted eye-tracking systems also have the advantage of being completely non-

invasive to the user. It is noted, however, that eye-related features have not been shown to be 

robust markers of mental workload in the cockpit scenario (see Section 1.3). 

Respiration was chosen for experimentation due to the consistent finding in previously-

published works that it was sensitive to mental workload [29], [58]. It was also postulated that 

the signal could be acquired robustly from a sitting pilot and would not be strongly influenced 

by other factors such as physical exertion. 

 ECG was included to enable the extraction of heart rate and other cardiovascular-

related features which have consistently been shown to be sensitive to mental workload  [24], 

[35], [37], [46], [55], [58], [60]. Of all psychophysiological signals extracted to assess mental 

workload, these features are most commonly researched in published scientific works. It was 

postulated these signals could be used to assess the general validity of the other extracted 

signals.  

EDA was selected for its robustness in detecting sudden changes in mental workload 

[37], [58]. A person’s surprise or anxiety felt in response to a visual or auditory stimulus is 

often clearly manifest in recorded EDA within 2-5 seconds. This transitory element of an EDA 

signal is known called a skin conductance response (SCR). However, because GSR is sensitive 

to many external factors including temperature, humidity, and time of day, slower-responding 

elements of the signal are likely not suitable for mental workload determination in an aircraft 

cockpit. Of all physiological signal signals measured, EDA has the unique ability to capture 

transient responses occurring within only a few seconds.  

2.1 Functional Near-Infrared Spectroscopy (fNIRS) 

The following introduction on fNIRS theory and applicability to the fields of operator 

mental workload estimation and adaptive assistant systems is taken largely from my 

previously-published work [61].  

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique, similar to 

fMRI, that measures changes in blood oxygenation in the superficial layer of the cortex (to a 

depth of approximately 1-2 cm) [62]–[65]. Because blood oxygenation changes are due in part 
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to the neuronal activity of the local brain tissue, this method can be used to non-invasively 

probe the activity of the brain in real-time.  

Many research groups have shown the ability to discriminate between various mental 

states using fNIRS data. Operator attentional states among seven subjects have been 

distinguished with an accuracy of 65-95% (low vs. high) [49]. Levels of cognitive fatigue 

among four participants could be discriminated with an accuracy of 87% both in a flight 

simulator and in actual flight (low vs. high) [25]. Working memory across 19 pilots was 

classified at an 80% accuracy (low vs. high load) [50]. Game difficulty level across 9 subjects 

was determined with accuracies of 94% (play vs. rest) and 61% (easy vs. hard) [43]. Lastly, 

whether a person was performing mental arithmetic or imagining an emotional musical 

arrangement was classified with an average accuracy of 77% [45].  

Although this is only a very limited sampling of the work being done in this field, it is 

clear that fNIRS-based mental state classification is being applied to a wide range of problem 

sets. It is apparent, however, that the majority of the work involving mental state classification 

is concerned with discriminating between two or three well-defined and unique states (e.g., rest 

vs. non-rest) in laboratory settings. Additionally, many studies report significant inter-subject 

variability. Additionally, despite the limited complexity of the two and even three-class 

classification problem, a wide range of accuracies are reported – including those below chance 

levels.  

2.1.1 fNIRS Data Acquisition and Pre-Processing 

Multiple commercial fNIRS acquisition systems exist ranging in price from $12,000 to 

more than $99,000. The following systems were evaluated for use in this work: the Brite-24 

system from Artinis ($30,000), the NirsSport2 8x8 from NIRx ($55,000), and the fNIR203C 

from fNIR Devices ($12,000). Prices reported are those quoted from the respective companies 

in 2019. Notably, the variations in hardware and software between these devices may likely 

contribute to the variability in results reported by published studies as previously noted (see 

Section 1.3). Inconsistent product features across these devices include the number of channels, 

sensor design, sensor comfort, sensor placement, emitted and collected IR frequencies, emitter-

detector separation, the existence of short channels, the ability to vary emitter power and 

detector gains, and the ability to manipulate what is considered the “baseline” when computing 

change in hemoglobin.  
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With price and comfort weighed heavily in the evaluation of which system to purchase, 

the fNIR203C headband from fNIR Devices was selected and used throughout the majority of 

this research. The device emits 730 nm and 850 nm wavelength light and has 16 channels with 

25 mm optode spacing and two “short channels” with 10 mm optode spacing. The optodes are 

mounted in a headband to measure from the pre-frontal cortex (PFC). The layout of emitters 

and detectors for this device is depicted in Fig. 2.1. 

A depiction of the fNIRS signal acquisition and processing chain is provided in Fig. 

2.2. Raw light intensity for the 730 nm, 850 nm, and “ambient light” signals was sampled at 

10 Hz from the 18-channel system and passed via Transmission Control Protocol (TCP) to 

custom software written in Python for processing. A block diagram showing the processing 

steps taken after raw signal acquisition is given in Fig. 2.3. 

The first step in the signal processing pipeline following raw signal acquisition is 

removing the interference induced in the fNIRS data by the eye-tracking system used in the 

simulator. The interaction of these two systems resulted in significant noise on each of the three 

raw signals in each of the 18 channels. This interference can be seen in Fig. 2.4. Approximately 

every 19.5 seconds, each signal exhibits a dramatic rise and fall of intensity lasting 

Fig. 2.1 Optode layout of the 18-Optode forehead sensor pad from fNIR Devices as if viewed from behind the wearer (channel 
1 is on the wearer’s left). Optodes 17 and 18 have a 10 mm emitter-detector separation of while optodes 1 through 16 have a 
25 mm separation. 

Fig. 2.2 A general depiction of the fNIRS signal acquisition and processing chain. Raw light intensity was sampled at 10 Hz 
by the fNIR203 system from fNIR Devices and sent from the proprietary COBI software via Transmission Control Protocol
(TCP) and received and processed in custom software written in Python. There raw light intensity for the 730 nm, 850 nm
channels was converted into change in oxygenated and deoxygenated hemoglobin and features of these signals were extracted 
and transmitted via Lab Streamling Layer (LSL) for subsequent incorporation in multi-modal mental workload prediction (see
Chapter 3).  
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approximately two seconds. After simulated testing, it is believed this interference is caused 

by the periodic alignment of the fNIRS detection frequency (10 Hz) (and its associated 

collection duration) and the eye-tracking IR pulse emission frequency (approximately 60 Hz). 

Simulating the eye-tracking system pulsing IR at 60.05128 Hz (rather than exactly 60 Hz) 

reproduces the observed interference period of 19.5 seconds.  

To account for this interference, a rolling 50-sample (5-second) median filter was 

applied to the raw light intensity data resulting in an approximate 2.5 s delay. The effect of this 

filter on the raw data can be seen in the bottom plot of Fig. 2.4. A filter of any shorter duration 

was incapable of robustly removing the interference from the eye-tracking system.  

Following the application of the median filter, a 2nd order low-pass filter with a cutoff 

frequency of 1 Hz is applied resulting in an additional 0.2 s delay. This filter is applied to 

remove unwanted signals that arise in fNIRS data from physiological processes such as cardiac 

activity and respiration.   

Fig. 2.4 fNIRS light intensity data being distorted by the eye tracking system mounted in the simulator. Areas in grey represent 
periods during which the eye-tracking system was off. It is noted that each of the three signals on each of the 18 fNIRS
channels is distorted approximately every 19.5 seconds.  

Fig. 2.3 Block diagram of fNIRS processing chain. A median filter is applied to remove noise induced by the eye-tracking 
system. A low-pass filter is applied to remove physiological noise (cardiac activity, respiration, etc.). The Modified Beer-
Lambert Law (MBLL) is used to calculate change in oxygenated and deoxygenated hemoglobin concentration. “Short-channel
subtraction” is performd to remove surface-layer contributions to concentration change calclulations. Features are extracted 
as shown. 
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2.1.2 fNIRS Feature Extraction 

Following these pre-processing steps, the change in oxygenated hemoglobin 

concentration (∆𝑐 ) and change in deoxygenated hemoglobin concentration (∆𝑐 ) 

relative to the median concentration over the previous two minutes were calculated using the 

Modified Beer-Lambert Law (MBLL) [66]. This law relates the absorbance of a turbid medium 

(exhibits absorption and scattering) to the medium’s absorption coefficient, the concentration 

of the absorbing species, and the path length of the light through the medium and is given by 

equation (2.1).  

 𝐴 = log
𝐼

𝐼
≈ 𝜀 · 𝑐 · 𝐷𝐹𝑃 · 𝜌 + 𝐺 (2.1) 

Where:  

𝐴 is the absorbance or Optical Density of the medium, 

𝐼  is the light intensity at the source,  

𝐼  is the light intensity at the detector,  

𝜀 is the molar extinction or absorption coefficient of the medium, 

𝑐 is the concentration of the absorbing molecule, 

𝐷𝐹𝑃 is the Differential Pathlength Factor, 

𝜌 is the source-detector separation distance, 

and 

𝐺 is a constant attenuation factor attributable to the scattering properties of the 

medium. 

Assuming all variables remain constant except the concentration of the absorbing 

molecule, the MBLL can be manipulated to account for a change in absorbance as shown in 

equation (2.2). 

 ∆𝐴 = log
𝐼

𝐼
− log

𝐼

𝐼
≈ ∆𝑐 · 𝜀 · 𝐷𝐹𝑃 · 𝜌 (2.2) 

Which can be reduced to 
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 ∆𝐴 = log
𝐼

𝐼
≈ ∆𝑐 · 𝜀 · 𝐷𝐹𝑃 · 𝜌 (2.3) 

Where:  

∆𝐴 is a change in absorbance or Optical Density of the medium, 

𝐼  is the light intensity at the detector at time 𝑡 = 0, 

𝐼  is the light intensity at the detector at time 𝑡, 

and 

∆𝑐 is a change in the concentration of the absorbing molecule. 

Finally, if the medium contains more than one light-absorbing molecule, the 

contribution of each molecule to the overall change in absorbance is modeled by (2.4). 

 ∆𝐴 = log
𝐼

𝐼
≈ 𝐷𝐹𝑃 · 𝜌 · ∆𝑐 · 𝜀  (2.4) 

Where:  

𝑛 designates a particular molecule in the medium. 

Because the absorbance of human tissue is largely attributable to the concentration of 

oxygenated and deoxygenated hemoglobin in red blood cells, for the application of fNIRS, 

equation (2.4) can be written as 

 ∆𝐴 = log
𝐼

𝐼
≈ 𝐷𝐹𝑃 · 𝜌 · (∆𝑐 · 𝜀 + ∆𝑐 · 𝜀 ) (2.5) 

If absorbance changes are measured at two or more wavelengths, equation (2.5) can be 

used for each wavelength to approximate these concentration changes using the resulting 

system of linear equations. As presented previously, the frequencies emitted by the fNIRS 

system used in this work are 730 nm and 850 nm resulting in the following system of equations:  

 log
𝐼 , 

𝐼 , 
≈ 𝐷𝐹𝑃 · 𝜌 · ∆𝑐 · 𝜀 , + ∆𝑐 · 𝜀 ,  (2.6) 

 log
𝐼 , 

𝐼 , 
≈ 𝐷𝐹𝑃 · 𝜌 · ∆𝑐 · 𝜀 , + ∆𝑐 · 𝜀 ,  (2.7) 

Equations (2.6) and (2.7) can be solved for ∆𝑐  and ∆𝑐  resulting in equations 

(2.8) and (2.9). 
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∆𝑐 =  

𝜀 , ∗ log
𝐼 , 

𝐼 , 
− 𝜀 , ∗ log

𝐼 , 

𝐼 , 

(𝜀 , ∗ 𝜀 , − 𝜀 , ∗ 𝜀 , ) ∗ 𝜌 ∗ 𝐷𝑃𝐹
 

(2.8) 

 
∆𝑐 =  

𝜀 , ∗ log
𝐼 , 

𝐼 , 
− 𝜀 , ∗ log

𝐼 , 

𝐼 , 

(𝜀 , ∗ 𝜀 , − 𝜀 , ∗ 𝜀 , ) ∗ 𝜌 ∗ 𝐷𝑃𝐹
 

(2.9) 

Where:  

𝜀 ,  = 1.1022, 

𝜀 ,  = 0.39, 

𝜀 ,  = 0.69132, 

𝜀 ,  = 1.058, 

𝜌 = 0.025, 

and 

𝐷𝑃𝐹 = 1.38. 

It is noted that the DPF used here (1.38) was selected to yield an output consistent with 

the offline output from the commercial software to aid in the validation of the real-time 

implementation. Although lower than typically used by others who report using values between 

three and six [67], varying this constant would only affect the magnitude of hemodynamic 

changes which are not relevant to subsequent processing as all data is normalized prior to use 

in mental workload prediction processes.  

The decision to calculate the change in concentration with respect to the median of each 

channel over the previous two minutes is significant and was made deliberately. Calculating 

the change in hemoglobin concentration with a different reference will yield vastly different 

results. Although it could be argued that calculating the change in hemoglobin from some rest 

state observed at the beginning of a session might be reasonable, doing so introduces significant 

error due to the drift in the signal over time. This drift may be due to slowly changing light 

conditions, movement of the emitters or detectors, or other factors. By calculating the 

difference over the last two minutes, it is anticipated that observed hemodynamic responses 

would reflect neuronal activity changes in the brain occurring within this time-scale which are 

precisely those events of particular interest in this research.  
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As depicted in Fig. 2.3, following the application of the MBLL to calculate hemoglobin 

changes, short-channel subtraction was then performed. This was done by subtracting the right 

and left short-channel signals from the other signals on their respective hemisphere. In other 

words, the signal from the short-channel located on the right hemisphere was subtracted from 

each of the other signals collected from the right hemisphere and vice versa for the signals 

collected from the left hemisphere.  

Finally, features were extracted from the processed fNIRS signals as noted in Table 2.1 

and as defined in equations (2.10) through (2.14). Each feature was calculated as an 

instantaneous measurement without the application of a sliding window due to the nature of 

the processed fNIRS signals already representing a window of time. In addition to the mean 

and standard deviation features, one spatial asymmetry measure was extracted as noted by 

“Spatial Asymmetry O2Hb”. This feature provides the difference between the mean O2Hb of 

the right and left hemispheres which has been suggested by other work to correlate with 

approach-related motivational tendencies [68]. 

 𝜇 =  
1

𝑁
𝑂2𝐻𝑏  (2.10) 

 𝜇 =  
1

𝑁
𝐻𝐻𝑏  (2.11) 

 𝜎 =  
1

𝑁
𝑂2𝐻𝑏 − 𝜇  (2.12) 

 𝜎 =  
1

𝑁
𝐻𝐻𝑏 − 𝜇  (2.13) 

Table 2.1 Features extracted from fNIRS data. 

Feature Description 

µHHb Mean change in deoxygenated hemoglobin across all 16 fNIRS channels 

µO2Hb Mean change in oxygenated hemoglobin across all 16 fNIRS channels 

σHHb Instantaneous standard deviation across all 16 deoxygenated hemoglobin signals 

σO2Hb Instantaneous standard deviation across all 16 oxygenated hemoglobin signals 

Spatial Asymmetry O2Hb Difference between right and left hemisphere mean change in oxygenated hemoglobin 
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𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑂2𝐻𝑏

=  
1

𝑁
𝑂2𝐻𝑏

|
−  

1

𝑁
𝑂2𝐻𝑏

|
 

(2.14) 

The filtered change in hemoglobin signals and these extracted features were 

subsequently broadcasted on the network via the open-source network streaming middleware 

Lab Streaming Layer1 (LSL) for subsequent retrieval and use (see Chapter 3).  

2.1.3 fNIRS Sensitivity to Head Position 

During preliminary testing, it was found that significant changes in hemoglobin 

concentration were attributable to changes in the participant’s head position, specifically its 

pitch. Fig. 2.5 shows the dramatic effect a large downward tilt of the head (negative pitch angle) 

can have on the recorded change in hemoglobin concentrations. To enable the potential 

correction of this influence on fNIRS signals, an inertial measurement unit (IMU) was used in 

conjunction with an Arduino-based microcontroller to record head roll, pitch, and yaw. A 

depiction of the processing chain and a photograph of the custom-built sensor is provided in 

Fig. 2.6. The sensor, housed in a 3D printed case, was built using an MPU-6050 IMU (~5€) 

and was controlled using a Teensy 4.0 microcontroller (~23€) running Arduino firmware. The 

well-documented “gimble lock” issue was overcome by mounting the IMU such that the pitch 

axis would remain between -90 and 90 degrees of rotation during standard wear.  

 
1 Lab Streaming Layer (LSL) is an overlay network for real-time exchange of time series between applications. 
The Python interface is “pylsl” and its source can be found here: https://github.com/labstreaminglayer/liblsl-
Python 

Fig. 2.5 A representative plot showing the effect of head tilt on fNIRS data. Pitching the head forward causes a large increase 
in the measured change in hemoglobin concentrations.  
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Due to the late identification of this relationship in the experimental preparations, these 

IMU measurements were not incorporated into the real-time mental workload prediction 

algorithm presented in subsequent sections of this work. As presented in greater detail in 

Section 4.3 however, an offline analysis following simulated flight scenarios showed only a 

weak average correlation between head pitch and change in oxygenated hemoglobin (-

0.08±0.16). The lack of a strong negative correlation between head tilt and change in 

oxygenated hemoglobin in the pre-frontal cortex shown through this analysis suggests the 

influence of head tilt on recorded fNIRS signals is not a significant confounding factor in the 

designed experiment. This is potentially due to the limited range of head tilt required during 

the execution of the flight scenarios. It was found that the average standard deviation of head 

tilt across all participants was only 5.77 degrees. Thus approximately 95% of the head tilt 

angles fell within approximately 20 degrees. The head tilt movements made during the 

experiment are thus much less extreme than that depicted in Fig. 2.5. A stronger negative 

correlation may have been observed if the task required more substantial vertical movements 

of the head. The small degree of head tilt in this scenario may explain the minimal impact this 

movement had on the recorded fNIRS signal. 

In addition to this analysis suggesting head tilt does not significantly impact recorded 

fNIRS signals in the cockpit setting, the only identifiable published work on this topic similarly 

concluded that head tilt is likely not detrimental to the utility of uncorrected-fNIRS signals in 

this setting [42]. In this work, it was determined that the extracted fNIRS signals returned to 

baseline levels within three seconds of the operator’s head returning to its pre-tilt position. 

Thus, it is argued that by calculating the change in hemoglobin over a longer duration of time, 

signal variation due to transient head tilt can be mitigated. 

Despite these findings, future work could explore a more robust correction for head tilt 

in the processing of fNIRS signals. 

Fig. 2.6 A depiction of the IMU data acquisition and processing chain. Raw data was collected from the IMU sensor using an 
Arduino-based microcontroler (right). Roll, pitch, and yaw values were filtered in a custom python script and transmitted over 
the network using at 10 Hz for retrieval and use in subsequent processes. To the right is a photograph of the custom-built IMU 
sensor attached to the fNIRS headband. 
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2.2 Eye Tracking 

“The eyes are a window to the soul.” This old proverb suggesting that the eyes reveal 

clues to a hidden state within a being has been rigorously tested in many scientific settings. 

One early theory regarding the connection between the eyes and mind is the Eye-Mind 

Hypothesis (EMH) which posits “there is no appreciable lag between what is fixated and what 

is processed” [69]. Although a strong relationship has been shown to exist between fixation 

and cognitive processing, the theory has been challenged in various ways and is generally not 

accepted without multiple caveats. For example, it is well studied and understood that attention 

can be directed towards things or ideas not fixated upon (known as “covert attention”) [70]. 

Although a perfect association between the eyes and mind cannot be made, strong correlations 

certainly exist and can be leveraged in this application.  

As summarized in Section 1.3, many have experimented with extracting various 

features of eye-related movement or activity to deduce the mental workload of a subject. Blink 

frequency has been shown to generally decrease with higher visual demand ([35], [37], [58], 

[60]), pupil size has been shown to increase with an increased mental workload ([41], [47]), 

saccade peak velocity has been shown to decrease with increased workload [44], and fewer and 

shorter fixations have been observed with increased workload [41]. Due to these and other 

promising results, eye-tracking features were extracted in this work to aid in real-time mental 

workload prediction.  

In conjunction with previous experimentation within the laboratory, a Smart Eye Pro 

eye-tracking system was integrated into the helicopter simulator. Various elements of this 

Fig. 2.7 Various elements of the eye-tracking system. Sub-figure (a) shows the IR transmitter (left) and camera (right) used in 
the Smart Eye Pro eye tracking system. Sub-figure (b) shows the real-time pupil and iris detection used in the SmartEye Pro 
system. Sub-figure (c) is a photograph of the helicopter simulator with the three eye-tracking cameras on the right cockpit 
circled in red.  

(a) (c) 

(b) 
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system are shown in Fig. 2.7. Sub-figure (a) shows the IR transmitter (left) and camera (right) 

used in the Smart Eye Pro eye tracking system. Sub-figure (b) shows the real-time pupil and 

iris detection used in the SmartEye Pro system. Finally, sub-figure (c) is a photograph of the 

helicopter simulator with the three eye-tracking cameras on the right cockpit circled in red. A 

depiction of the eye-tracking signal acquisition and processing chain implemented in this work 

is provided in Fig. 2.8.  

Data from the SmartEye Pro eye-tracking system is received into custom data 

processing software written in C++ denoted in Fig. 2.8 as “Gaze Processing.” This program 

receives the “real-time” and “non-real-time” output of the proprietary SmartEye software at 60 

Hz and extracts the desired features listed in Table 2.2. The full list of variables broadcast from 

SmartEye is provided in Appendix A. The first signal listed in Table 2.2, “gazeDataAge,” 

represents the time in seconds since the arrival of the last valid sample from the SmartEye 

system. At times, the system loses track of the user’s eyes and hence cannot update its gaze 

prediction. Rather than withholding transmission of data as might be expected, the proprietary 

software continues transmission of the last-valid sample until tracking is re-established. Hence, 

to inform downstream processing of the loss of tracking, the duration since the arrival of the 

last valid sample is extracted. Transmitting this signal as opposed to simply withholding 

transmission until data is available enables the differentiation between loss of eye tracking and 

a more significant failure in the proprietary eye-tracking system. As presented hereafter in 

Section 3.2, warning messages and other pilot-assisting procedures can be effectively triggered 

by gaze data. Having an accurate representation of the data’s currency is essential to such 

triggers.  

Fig. 2.8 A depiction of the eye-tracking feature extraction processing chain. 
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The remaining features are calculated by summing the number of respective events 

detected by the SmartEye software over a given window of time. Blinks and saccadic 

movements are not extracted from the raw video data as part of this work. Rather, these events 

are utilized as delivered by the proprietary SmartEye software. Multiple features are extracted 

using both a 5-second and 60-second window in an attempt to capture unique information at 

these different time scales. For example, the 60-second saccade rate is extracted by summing 

the number of saccadic movements over the previous 60 seconds while the 5-second saccade 

rate is extracted by summing the movements over the previous 5 seconds.  

Table 2.2 Features extracted from the eye-tracking system. 

Feature Description 

gazeDataAge Time in seconds since arrival of last valid eye-tracking sample from SmartEye 

gazeLocation Binary output reporting whether the pilot is looking within or out of the cockpit 

gazeDuration Duration in seconds that the pilot maintains their gaze either within or out of the cockpit 

gazeBlinkPerMin_60s Number of eye blinks in the last minute 

gazeChangePerSec_5s Frequency of fixation change from above to within cockpit in the last 5 seconds 

gazeChangePerSec_60s Frequency of fixation change from above to within cockpit in the last 60 seconds 

gazeSaccadePerSec_5s Frequency of saccades in the last 5 seconds 

gazeSaccadePerSec_60s Frequency of saccades in the last 60 seconds 

 

Fig. 2.9 Representative plot of various eye-related featuresover the course of approximately 22 minutes in a helicopter 
simulator. Regions in grey represent periods during which the helicopter was on the ground. 
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The frequency at which the pilot switches their fixation between objects internal to the 

cockpit and those external to the cockpit is also extracted. This was performed utilizing the 

returned fixation “object” from the SmartEye system having been previously calibrated to the 

geometry of the simulator. This feature is extracted with the intent of capturing the cognitive 

load associated with task-switching.  

Table 2.2 provides the complete list of the extracted features and their descriptions. 

These features are subsequently broadcast via LSL at 10 Hz for subsequent incorporation in 

multi-modal mental workload prediction (see Chapter 3). Fig. 2.9 provides a representative plot 

of these eye-related featuresover approximately 22 minutes of flight in a helicopter simulator. 

Respiration 

A custom respiration sensor was built using a conductive rubber cord, a voltage divider 

circuit, and a microcontroller. Fig. 2.10 subfigures (a) and (b) show the initial and final 

hardware implementation respectively. In the final implementation, stretch sensors mounted in 

straps around the stomach and chest are integrated such that a person’s breathing is captured 

whether the expansion of the abdomen is localized to the stomach or the chest. The combination 

of signals from the stomach and chest sensors can be seen in subfigure (c). 

The signal processing chain of the respiration data is depicted in Fig. 2.11. Raw stretch 

intensity from both the chest and stomach sensors is captured via an Arduino-based 

microcontroller at approximately 500 Hz. Light Emitting Diodes (LEDs) mounted in the 

microcontroller housing are lit to assist in the proper placement of the sensors. If the sensor is 

stretched too tightly such that the signal saturates and breath information cannot be captured, 

the LED is lit red. When the signal resides in a range effective for gathering breath fluctuations, 

the LED is lit green and increases in brightness until saturation. 

(a) (b) (c) 

Fig. 2.10 Custom-built double-strap respiration sensor.Subfigure (a) shows the first version of the sensor using a standard 
Arduino-based microcontroller for easy prototyping. Subfigure (b) shows a the latest version using a microcontroller housed 
in a 3D-printed housing with two stretch sensors integrated into the sensor. Subfigure (c) shows data collected by the sensor 
in which data from the chest and stomach sensors are combined and filtered in to a single stretch value.  
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After the collection of raw stretch data from each sensor, the data streams are added to 

each other and smoothed by averaging over the last 100 samples (0.2 seconds). This single 

filtered respiration signal is then transmitted via a serial connection to a host PC at 10 Hz. 

Processing continued via custom-developed software written in Python on the host computer. 

There, a high pass filter is applied to remove the DC offset after which respiration rate was 

calculated and unusually large breaths were detected. These features are summarized in Table 

2.3. Respiration rate was calculated using an adaptive IIR notch filter (ANF) as presented in 

[71] and [72]. Additionally, a 3rd-order low-pass Butterworth filter with a cutoff frequency of 

0.2 Hz was applied to smooth the output. Respiration rate was calculated using the ANF method 

as opposed to more traditional frequency estimation techniques due to the findings published 

in [73] that the ANF method “could not only estimate [respiration rate] more quickly and more 

accurately than the conventional methods, but also is most suitable for online RR monitoring 

systems, as it does not use any overlapping moving windows that require increased 

computational costs.” One such conventional method for computing the frequency of a signal 

is through the periodogram technique (as implemented in [74] for example) which utilizes the 

fast Fourier transform (FFT) to implement the discrete Fourier transform (DFT). As seen in 

Fig. 2.12, the periodogram approach is limited in its resolution by the data window size and 

the DFT length which limitation can prevent the detection of small changes in respiration rate.  

Fig. 2.11 Respiration processing chain diagram. Stretch data from chest and stomach stretch sensors are used to determine 
respiration rate and to detect abnormally large breaths. The smoothed stretch value, respiration rate, and the time in seconds 
since the last large breath are transmitted via LSL for incorporation in down-stream processes.  

 

Table 2.3 Features extracted from the respiration system. 

Feature Description 

RespRate Breaths per minute 

SecSinceAbnormal Time in seconds since the last abnormally large breath 
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Unusually large breaths were detected using a custom algorithm of the following 

structure: 

1. Compute the difference in stretch over the last 5 seconds (max-min), 

2. Compute the median of this difference over the last 60 seconds, 

3. Flag as “large breath” if the current difference is greater than 2 times this median 

difference, 

4. Calculate the time since the last “large breath” was detected. 

These processed signals and features (smoothed stretch value, respiration rate, and 

seconds since the last large breath) are transmitted via LSL for downstream processing. Fig. 

2.12 provides a representation of these data. Also included in the plot is respiration rate as 

calculated using the commonly-implemented FFT method.  

2.4 Electrocardiography (ECG) 

Recording of the electrocardiogram (ECG) enables the extraction of some of the most 

important psychophysiological features related to stress and mental workload. Specifically, 

one’s heart rate and heart-rate-variability have been shown by many independent researchers 

in a variety of contexts to be sensitive to mental workload (see section 1.3 and specifically 

Table 1.4 for references). 

Fig. 2.12 Time series plot of processed respiration data. The upper-most plot shows raw stretch data as collected by the dual-
strapped respiration sensor. The middle plot shows respiration rate calculated using both the Fast Fourier Transform (FFT) 
method and the adaptive IIR notch filter (ANF) method. The bottom-most plot shows the time since an abnormally large 
breath. Before the first large breath at approximately 1.5 minutes, this value is undefined and hence not plotted.  
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2.4.1 ECG Data Acquisition 

A depiction of the ECG signal acquisition and processing chain implemented in this 

work is provided in Fig. 2.13. A single-channel ECG signal is collected at 200 Hz using the 

BIOPAC MP160 data acquisition system. ECG data are collected using single-use disposable 

Ag/AgCl pre-gelled electrodes arranged on the participant’s chest arranged to sample the Lead 

II vector as depicted in Fig. 2.14. Lead II is sampled due to the large R-wave amplitude 

observed on this lead during testing which facilitates a robust peak detection. The participant’s 

skin is cleaned using alcohol wipes and slightly abraded using a roughened sponge-like 

material prior to electrode placement.  

Inspection of the acquired raw ECG data acquired by the BIOPAC system showed a 

data acquisition issue that had to be overcome to facilitate accurate peak detection and 

Fig. 2.14 Electrode placement yielding a Lead II ECG recording. The gray block is the wireless transmitter to which each of 
the three electrodes is connected. The transmitter is mounted to a flexible strap worn around the chest (which also houses one 
of the two respiration sensors).   

Fig. 2.13 A depiction of the ECG feature extraction processing chain. Raw ECG is collected from the participant’s chest via 
a BIOPAC physiological data acquisition system which transmits the signal wirelessly to a receiver. The raw data is then read 
and processed by a custom-written ECG processing and feature extraction program. Features relevant to mental workload are 
extracted and broadcast via LSL at 1 Hz for subsequent use.  
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subsequent feature extraction. It was found that the sampling from the ECG electrodes was 

consistent (200 Hz), but the rate at which samples were made accessible for retrieval by the 

host computer was not. This can be seen in Fig. 2.15 where it is noted that the R-wave is smooth 

when plotted by sample number, but distorted when plotted by timestamp of data receipt. It is 

unclear whether this issue is unique to the particular BIOPAC hardware used in the lab or was 

a more general software or networking issue. Only though the use of a function in BIOPAC’s 

proprietary “dynamic link library” (DLL) can the sampled data be read into memory. To 

account for this issue, raw ECG data is read into memory using the DLL-provided function as 

fast as samples were made available and placed into a first-in-first-out (FIFO) buffer or 

“queue,” while at the same time, a second muti-processing thread reads from this queue and if 

the time between samples is less than 80% of the expected period according to the set sampling 

rate, a delay was imposed increasing the period to 80% of the expected period. Thus, a 

minimum of 0.80 ∗  
 

 
= 0.004 seconds was imposed between samples. These data 

were then sent forward for subsequent processing. The result of this data acquisition strategy 

is to smooth the ECG waveform naturally without imposing a time-delay thus allowing for 

accurate identification of R-wave peaks used for subsequent feature extraction processes. 

2.4.2 ECG Peak Detection 

In this work, ECG feature extraction including heart rate (HR), heart rate variability 

(HRV), and other HRV-related features is reliant on an accurate and robust detection of R-

Fig. 2.15 Representative plots of the ECG data sampling issue and its correction. The upper plot shows the even sampling of 
the ECG signal as plotted by sample number. The middle plot shows the inconsistent retrieval of data samples from the 
BIPOAC system. The bottom plot shows the corrected waveform after inducing a mandatory delay between samples.  
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wave peaks. With a robust detection of peaks, the intervals between consecutive peaks, or inter-

beat-intervals (IBI), can be derived and the aforementioned features can be determined. Fig. 

2.16 shows the relationship between R-wave peaks in a raw ECG signal and an IBI. In pursuit 

of this goal, a custom peak detector was developed using a series of conditions on the ECG 

signal, the amplitude of the detected peak compared to previously-detected peaks, and the 

duration of the IBI compared to preceding IBIs. This algorithm was tested and developed on a 

large number of datasets collected from over 20 individuals and proved highly effective at 

detecting valid R-wave peaks while rejecting noise. Other open-source algorithms were found 

to be less robust to noise and/or took more time to re-acquire peak detection after loss. This 

novel peak detection algorithm and the determination of “valid” peaks is performed using the 

following procedure (and can be visualized in Fig. 2.17): 

1. A local maximum or “peak” is identified. A peak is identified when an ECG local 

maximum is found to exist above a 3-second rolling 98th percentile threshold updated 

every second. Due to the high variability of ECG data and its susceptibility to noise, 

the small rolling window served to ensure the threshold remained current and useful.  

2. The amplitude of the peak is compared with the amplitude of those detected in the last 

5 seconds. If it falls below 75% or above 125% the mean amplitude of the peaks in this 

window, the detected peak is labeled as having an amplitude that is “too different” from 

the others and is not considered further as a potential “valid” peak. If “valid” peaks 

have been identified in the last 5 seconds, this comparison is made with the mean 

amplitude of these peaks. If no “valid” peaks have been identified in the last 5 seconds, 

the comparison is made with all observed peaks during this time.  

3. The IBI is calculated as the time in milliseconds since the last peak.  

4. A determination is made weather or not the IBI falls between 400 ms and 1500 ms 

which corresponds to a maximum and minimum heart rate of 150 and 40 beats per 

minute (bpm) respectively. If the IBI is outside this range, the peak is labeled “IBI out 

of range.” If within the range, the peak is considered further as a potential “valid” peak. 

Fig. 2.16 Raw ECG recording with R-wave peaks highlighted. An inter-beat-interval (IBI) is the time between consecutive R-
wave peaks.  
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5. The IBI is compared with IBIs of the last 5 seconds. If it falls below 75% or above 

160% of the mean IBI of those in the last 5 seconds, the peak is labeled as having an 

IBI that is “too different” from the others. If within the range, the peak is considered 

further as a potential “valid” peak. As with the amplitude comparison, this comparison 

is made with “valid” IBIs if they exist; otherwise, it is made with all IBIs regardless of 

label.  

6. Finally, if the current peak meets the above-stated criteria but the previously-detected 

peak did not, the current peak is labeled “standby.” If the current peak meets the above-

mentioned criteria and the previously-detected peak was labeled “standby” or “valid,” 

than the current peak is labeled “valid.” This check ensured some stability in the system 

before declaring a “valid” peak.  

2.4.3 ECG Feature Extraction 

As is true with all feature engineering endeavors, great care must be taken to generate 

features of the most value given the signal from which a feature is being extracted and the 

environment in which the system is to be deployed. In the case of ECG feature extraction, one 

must balance the stability of the feature with the desired time resolution. For example, when 

extracting heart rate for use in a pilot monitoring application, one could obtain a highly stable 

Fig. 2.17 Visualization of the “valid” ECG peak detection algorithm. The upper plot shows the ECG signal, the threshold used 
to identify local maxima, and the automated labeling of peaks. The lower plot gives the IBI of “valid” peaks which signal is 
used in subsequent feature extraction methods. The dashed grey line shows the rolling threshold above which local maximum 
are identified which begins the peak detection process. As visualized in this dataset, increased noise in the ECG signal lowers 
the threshold thus capturing local maxima not corresponding to R-Wave peaks making filtering essential for subsequent feature 
extraction relying on an accurate IBI signal. Seen at approximately 16 seconds, a peak is labeled as having an amplitude that 
is “too different” than the preceding peaks and is rejected as a “valid” peak. Next, whether from a sampling error or a skipped 
heartbeat, the peak detected next is found to have a very large IBI (approximately two times the previous IBIs) and hence is 
labeled as having an IBI that is “too different” from the preceding (valid) IBI’s. Following this peak, the next meets all the 
criteria except that its predecessor was not labeled “valid” or “standby” so it is labeled “standby.” The following meets all the 
criteria and its predecessor was “standby” so it is labeled “valid” and an IBI for this peak is carried forward into subsequent 
feature extraction processes.  
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heart rate using a sliding window of 10 minutes. This long window, however, would prevent 

one from observing changes to a pilot’s heart rate at shorter time-scales such as might happen 

when an unexpected emergency light is seen but is understood and resolved after only a few 

seconds. On the other hand, using a very short window for heart rate estimation results in a 

highly variable heart rate signal susceptible to data acquisition noise or other non-

psychophysiological factors. Thus, for each of the ECG-extracted features, windows of varying 

duration were examined and a subjective determination was made as to the appropriate window 

size. As implemented in other sections of this work (EDA feature extraction and eye tracking 

feature extraction), features can be extracted with multiple window lengths in the hopes of 

capturing unique information from each, but this was not done in the case of the ECG-extracted 

features.  

Table 2.4 provides a summary of the features extracted from the ECG in this work. We 

can take advantage of the fact that “a healthy heart is not a metronome” [75]. At any given 

time, one’s HR is the result of the interplay between the neural activity of the sympathetic 

(SNS) and parasympathetic nervous systems (PNS) where sympathetic neural activity 

increases HR and parasympathetic neural activity decreases it. First and foremost, heart-rate is 

extracted as the mean IBI (of “valid” peaks) over the last 20 seconds. Windows of varying 

duration were examined and it was subjectively determined that a window of 20 seconds was 

responsive to stimuli within approximately 10 seconds which aligns with the timescale of 

mental workload variations expected in the environment. Additionally, it was found that a 

window of this duration yielded a heart rate signal which was not overly sensitive to IBI 

variability induced by noise or other non-psychophysiological factors.  

In addition to heart rate, heart rate variability (HRV) features in both the time and 

frequency domains are also extracted as they have likewise been shown to be sensitive to 

mental workload (see Section 1.3). In the time domain, the HRV feature extracted is the Root 

mean square of successive heart beat interval differences (RMSSD) over a sliding window of 

30 seconds. The RMSSD reflects the beat-to-beat variance in HR and is the primary time-

domain measure used to estimate the vagally mediated changes (parasympathetic nervous 

Table 2.4 Features extracted from the ECG system. 

Feature Description 

HR Heart rate calculated as the mean inter-beat-interval (IBI) over the last 20 seconds 

RMSSD Root mean square of successive RR interval differences over the last 30 seconds (a HRV feature) 

LF/HF Low-frequency to high-frequency power ratio of the IBI over last 120 seconds (a HRV feature) 

LF/HF_slope Change in LF/HF over one second (a HRV feature) 
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system) reflected in HRV [76]. Although, HRV features are typically extracted at timescales 

of tens of minutes or even hours, previously published works have proposed short-term periods 

of 60, 30, and even 10 seconds [76].  

The RMSSD is calculated using equation (2.15) and is measured in milliseconds.  

 𝑅𝑀𝑆𝑆𝐷 =
1

𝑛 − 1
(𝐼𝐵𝐼 − 𝐼𝐵𝐼 )  (2.15) 

Where: 

IBI is the inter-beat-interval between successive R-wave peaks 

and 

n is the number of samples in the window of question. 

In addition to the time-domain feature RMSSD, a feature in the frequency domain is 

also extracted namely the ratio of low-frequency to high-frequency power (LF/HF). As 

explained in [76], “the assumptions underlying the LF/HF ratio is that LF power may be 

generated by the SNS while HF power is produced by the PNS.” Thus, a low LF/HF ratio may 

reflect parasympathetic dominance which occurs when relaxed and engaging in “tend-and-

befriend behaviors.” On the other hand, a high LF/HF ratio may indicate sympathetic 

dominance, which occurs when stressed and engaging in “fight-or-flight” behaviors. It is 

cautioned however against putting too much weight behind this rationale, especially in short-

Fig. 2.18 Power Spectral Density of the IBI signal. Absolute power for the low (0.04 and 0.15 Hz) and high frequency (0.15 
and 0.4 Hz) bands are calculated by approximating the area under the curve of the PSD within these respective bands. Finally, 
LF/HF is calculated as the ratio between these two values.  
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term (<5 min) recordings due to the complexity of the system not fully accounted for by this 

simplistic model.  

In this work, LF/HF is calculated every second by estimating the power spectral density 

of IBI over a window of the previous two minutes using Welch’s method [77]. As with the 

extraction of HR, this window size was selected after a subjective evaluation of the signal over 

a wide range of window sizes. Absolute power in the low frequency (0.04 and 0.15 Hz) and 

high frequency (0.15 and 0.4 Hz) ranges were calculated by approximating the area under the 

curve of the power spectral density of these ranges. These ranges can be seen in Fig. 2.18. The 

LF/HF signal is then smoothed using a 2nd order low pass Butterworth filter with a cutoff 

frequency of 0.5 Hz. Additionally, the instantaneous rate of change, or slope, of LF/HF was 

extracted due to its potential to signal LF/HF.  

Fig. 2.19 shows all ECG-extracted features over the course of a simulated helicopter 

flight.  

The aforementioned ECG processing chain is made accessible to an experimenter 

through a graphical user interface (GUI) depicted in Appendix B. The GUI provides the 

following capabilities to the experimenter: 

Fig. 2.19 Representative plot of ECG-extracted features over the course of approximately 31 minutes in a helicopter simulator. 
Regions in grey represent periods during which the helicopter was on the ground. Periods of high mental workload can be 
inferred from an analysis of the ECG-extracted features. The few minutes leading up to landing for example, show an increased 
HR, a decreased RMSSD, an increasing LF/HF, and a positive LF/HF slope, all of which have been shown to correlate with 
an increased mental workload.  
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 The collection and processing of ECG (and EDA) data from two participants 

simultaneously.  

 The playback of previously-recorded ECG and EDA data as if being received in real-

time.  

 The viewing of raw ECG (and EDA) and extracted features in plotting windows. 

 The logging of raw ECG (and EDA) and extracted features. 

 The transmission of ECG (and EDA) features via Lab Streaming Layer. 

 

2.5 Electrodermal Activity (EDA) 

Electrodermal Activity (EDA), or the recording of the galvanic skin response is a 

measure of skin conductance. When the pores on the surface of the skin expand and sweat is 

excreted, the skin’s conductance increases. As presented in Section 1.3, EDA has been shown 

to be sensitive to changes in mental workload. Specifically, it has been shown that an increased 

mental workload leads to an increased frequency of EDA events where an EDA event is the 

rapid rising and falling of EDA over a few seconds [37]. Additionally, and more significantly 

relevant to this work, EDA has been shown to be particularly sensitive to sudden changes in 

mental workload [58]. Unlike some of the other signals and features extracted, EDA provides 

sensitivity to events occurring at small time-scales. For example, a startling event, such as the 

realization that one was within seconds of collision with the terrain but which could be quickly 

resolved may not result in a change of heart rate, yet it almost certainly would result in a 

dramatic EDA event. This situation has been observed on countless occasions in the simulator 

and a representative time series of this event is provided in Fig. 2.20.  

Fig. 2.20 EDA event profile following a sudden and surprising stimulus. Shown here is an EDA event captured in response to 
a pilot observing the need to redirect their aircraft to avoid collision with mountainous terrain. It is noted the peak of the EDA 
event occurs approximately 4.4 seconds after the stimulus (even after corrective action had been taken to avoid collision).  
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2.5.1 EDA Data Acquisition 

A depiction of the EDA signal acquisition and processing chain implemented in this 

work is provided in Fig. 2.21. Single-channel EDA is collected at 200 Hz using the BIOPAC 

MP160 data acquisition system. EDA data are collected using single-use disposable Ag/AgCl 

electrodes pre-gelled with isotonic gel secured to the medial arch of the participant's right foot 

with approximately 8 cm spacing between electrodes. The raw sampled data, measured in 

microsiemens (µS) is transmitted wirelessly from the transmitter worn on the participant’s 

ankle to the receiver and MP160. The same tool developed to receive and process ECG data is 

also used to receive and process EDA data.  

2.5.2 EDA Feature Extraction 

Features extracted from EDA in this work are listed in Table 2.5. The signals were 

extracted with the aim of obtaining information sensitive to events over various durations. Raw 

EDA is smoothed using a rolling average filter of 50 samples. Thus, sampled raw at 200 Hz, 

the mean of every 50 samples is calculated and passed forward at 4 Hz as the first EDA 

“feature” for subsequent processing. This slightly-smoothed EDA signal is potentially sensitive 

to long-term (low frequency) changes in EDA, yet it retains its sensitivity to high-frequency 

EDA events. Next, the instantaneous rate of change, or slope, of the smoothed EDA signal is 

also calculated as the difference in EDA magnitude of consecutive samples. This feature 

extracts information only at the current moment so is sensitive to current and transient (2-5 

second) events. Finally, the time-domain waveform length (WL) of EDA over the last 20 

seconds is also calculated as the sum of the magnitude of differences between consecutive 

Table 2.5 Features extracted from the EDA system. 

Feature Description 

EDA Smoothed electrodermal activity 

EDA_slope Change in EDA over one second 

EDA_WL_20s Time-domain waveform length of EDA over last 20 seconds 

Fig. 2.21 A depiction of the EDA feature extraction processing chain. Raw EDA is collected from the participant’s foot via a 
BIOPAC physiological data acquisition system which transmits the signal wirelessly to a receiver. The raw data is then read 
and processed by a custom-written EDA processing and feature extraction program. Multiple features are extracted and 
broadcast via LSL at 1 Hz for subsequent use.  
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samples in this window. This feature is intuitively the cumulative length of the waveform over 

the segment and is calculated with equation (2.16).  

 𝑊𝐿 = |𝐸𝐷𝐴 − 𝐸𝐷𝐴 | (2.16) 

Where:  

𝑊𝐿 is the extracted waveform length feature, 

𝐸𝐷𝐴 is the raw instantaneous EDA signal,  

and 

𝑛 is the number of samples in the feature extraction window. 

This feature was extracted with the aim of obtaining a metric that accumulated the 

effects of small, transient, EDA events. In this way, the feature would be sensitive to EDA 

activity over a longer time-scale than the previous “EDA slope” feature which has no temporal 

memory.   

Although not used in subsequent mental workload estimation processes due to its 

discrete (and not continual) nature, EDA event peaks are also extracted. EDA event peaks are 

found by identifying local maxima in the slope of the EDA that exceed a given threshold. In 

this work, EDA peaks were extracted when the slope exceeded 0.02 µS/second. As presented 

hereafter in Section 3.2, the system described in that section can react to these detected events 

in a manner defined by the operator. Potential reactions to these events include auditory 

notification to the pilot, the co-pilot, or both.   

  Fig. 2.22 shows the EDA-extracted features over the course of a simulated helicopter 

flight. It is evident that the three features each highlight different aspects of the signal and may 

potentially inform an assessment of mental workload across different time scales.   
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Fig. 2.22 Representative plot of EDA-extracted features over the course of approximately 28 minutes in a helicopter simulator. 
Regions in grey represent periods during which the helicopter was on the ground.  
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To enable experimentation in the flight simulator utilizing the various physiological 

and behavioral signals described in the previous section, a central control tool needed to be 

designed and developed. Through an iterative design process, both functional and non-

functional requirements were established. Functional requirements are those which specify 

what the system should be able to do while non-functional requirements are those which 

describe the attributes or characteristics of the system and specify the constraints for how the 

system should be built [78]. Functional requirements for the system included: 

 The tool must present the status of the individual signal-processing sub-systems and 

data streams. 

 The tool must continuously plot the incoming data streams to enable rapid identification 

of sub-system issues and provide the experimenter with a consolidated overview of the 

incoming data. 

 The tool must enable the synchronized collection and logging of all incoming data 

streams. This synchronized logging shall enable the collection of “baseline” 

measurements of all incoming data streams prior to simulated flight and the storage of 

sub-system data during flight for offline processing and analysis.  

 The tool must fuse incoming data streams into a single-valued metric representative of 

the pilot’s instantaneous mental workload. 

 The tool must enable the creation and manipulation of conditional states which, when 

met, initiate or “trigger” subsequent notifications or actions.  

Non-functional requirements for the system included: 

 The tool should be intuitive and transparent to the experimenter without requiring a 

comprehensive understanding of the algorithms or processes applied in the background. 

 The tool should be viewable and controllable through a graphical user interface (GUI). 

3 PhysHub: A Pilot Physiological Monitoring 
and Mental Workload Prediction Tool 
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 The tool must interface with the existing simulator control software to ensure the 

logging of physiological data is initiated and terminated in unison with the other 

systems.  

 The triggering sub-system should likewise be transparent to both the experimenter and 

the pilot. 

The tool created to satisfy these requirements is known as “PhysHub” and a screenshot 

of the tool while collecting and processing physiological data from a participant flying a 

helicopter simulator is provided in Fig. 3.1. Through significant iterative development, 

PhysHub meets or exceeds all of the design requirements set forth above. Most fundamentally, 

however, it serves as the centralized control system for fusing the many physiological and 

behavioral measurements into a single-valued metric representing the operator’s mental 

workload. Although employed in a simulated aircraft cockpit, the tool is agnostic to the 

particular application environment and could serve a similar purpose across a wide variety of 

environments. The tool itself is not intended for use or display to the operator, but rather to an 

external experimenter. As presented in Section 3.4 however, an in-cockpit interface was 

designed and implemented to facilitate transparency between the pilot and the tool. 

The tool was written using Object Oriented Programming (OOP) in Python using a 

multitude of data-processing, multi-processing, and multi-threading libraries including 

NumPy,2 pandas,3 pylsl,4 threading,5 and multiprocessing.6 The GUI was designed using 

PyQt5.7 The high-level software architecture of the tool consists of a PyQt5 QMainWindow 

GUI class containing methods and attributes for proper GUI functionality as well as an instance 

of a “PhysHub” class through which all the data retrieval and processing is performed. The 

GUI class contains 46 methods while the PhysHub class contains 31 methods. To facilitate a 

responsive, continually-updating GUI as well as to enable the simultaneous reception and 

processing of multiple datastreams, the tool relies extensively on the multiprocessing library to 

spawn and terminate subprocesses that run in parallel to the main parent process. For the 

subprocesses which share objects, such as those which monitor and pull data from the incoming 

Lab Streaming Layer (LSL) streams transmitted by the processing tools described in Section 

 
2 https://numpy.org/doc/stable/ 
3 https://pandas.pydata.org/ 
4 https://github.com/sccn/labstreaminglayer/ 
5 https://docs.python.org/3/library/threading.html 
6 https://docs.python.org/3/library/multiprocessing.html 
7 https://wiki.python.org/moin/PyQt 
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2, server processes are created (using the library’s “Manager” method), which “hold Python 

objects and allow other processes to manipulate them using proxies.”8  

The following sub-sections describe the multiple elements of the tool and how the pre-

established design requirements were met.  

3.1 Visual Inspection of System and Pilot State 

The most basic function provided by PhysHub is its receipt and display of system state 

information. Seen on the upper left-hand side of Fig. 3.1, the status of individual data streams 

is noted. In the figure, the green text “yes” is seen below each stream name denoting that the 

LSL streams broadcast from each of the sub-systems (HR/HRV, EDA, fNIRS, Respiration, 

IMU, Gaze Statistics, and Collision) are all visible to PhysHub and that data can be retrieved. 

The red button in the upper-left with the text “Stop Pulling Data” would pause the acquisition 

of data from these streams.  

Below the system state labels, data streams from the individual sub-systems are 

visualized continuously in real-time over the past 60 seconds with the latest-received data 

shown to the right. A live view of the interface would show the signals slowly scrolling to the 

left. For those streams with multiple features, the user can select which feature to plot via the 

selector button to the left of the plot. For example, through the selector button, it is possible to 

 
8 https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Manager 

Fig. 3.1 The Phys Hub graphical user interface (GUI) providing a view of the incoming signals and data streams, and enabling 
the experimenter to collect baseline measurements, fuse the incoming data into a single-valued mental workload metric, set 
and manipulate “triggers” for interacting with the pilot, the co-pilot, and other systems. 
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switch between “Resp” and “Resp Rate” to see raw respiration data or the extracted respiration 

rate. The visualization of these real-time streams allows the experimenter to assess the validity 

of the incoming streams. Additionally, plotted on the bottom-most sub-plot is the single-valued 

mental workload metric derived through the fusion of the many individual physiological 

signals as discussed in detail hereafter in section 4. Through a brief scan of these many signals, 

the experimenter can identify sub-system errors and glean information about the pilot’s state 

by noting the trends in the signals.  

3.2 Transparent Triggering System 

A triggering system was developed which allows the experimenter to set conditions 

upon which desired actions can be performed. For example, the experimenter can cause a 

custom notification message to be spoken to the pilot when their heart rate exceeds a particular 

threshold. The triggering system was developed with the goal of being completely transparent 

as to when and why a particular action was performed. It has been designed in a way that the 

custom set of conditions and actions can be imported from and exported to excel files for 

readability and manipulation outside the tool. The utility of this system is made clear by 

understanding the first trigger listed on the right-hand side of Fig. 3.1. This trigger contains the 

following three conditions: 

 GazeDataAge < 2. Thus, to be evaluated as to be true, the data from the eye tracking 

system has to be current within 2 seconds. 

 SecLookingDown > 2. Thus, to be evaluated as to be true, the pilot must be looking 

down in the cockpit for more than 2 seconds.  

 SecToImpact < 15. Thus, to be evaluated as true, the helicopter must be within 15 

seconds of impact given no course correction. 

When each of these conditions evaluates to true, an immediate text-to-speech message 

is transmitted to the pilot with the text “Warning. Collision imminent.” Thus, this trigger 

prevents the collision warning message from being delivered when the pilot is looking up out 

of the cockpit and is arguably aware of their situation. Conditions can easily be edited or added 

to upon experimenter or pilot request.  

Additionally, the system was built with limited speech-to-text functionality making it 

possible for a trigger to cause a question to be posed to the pilot and for the system to receive 

an answer from the pilot. This feature was utilized when testing the utility of an automated 

mental workload verification system which would request the pilot’s subjective mental 
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workload at pre-determined intervals or upon the meeting of pre-defined signal thresholds. The 

table in Fig. 3.1 shows two such triggers in which the pilot’s subjective mental workload level 

is requested when the predicted mental workload value is above 0.8 or below 0.2 (on a scale of 

0 to 1).  

In this work, other than to provide collision warning notifications, the triggering system 

was used occasionally to notify the pilot of their perceived mental workload level. In this case, 

a trigger was set to execute when the predicted mental workload value exceeded an established 

threshold (e.g., 0.8 on a scale of 0 to 1). When this threshold was exceeded, the pilot would be 

notified with the message “Your workload appears high, consider taking a deep breath and 

radio for help if needed.”  

Such a system could be studied and expanded upon with more robustness in the future 

to assess the utility of an assistant system that interacts with the pilot via text-to-speech. 

3.3 Baseline Collection 

PhysHub enables the collection of baseline measurements from all sub-systems other 

than the eye-tracking system. This baseline measurement is utilized in subsequent feature 

scaling operations as part of the mental workload estimation process. As seen in Fig. 3.1, the 

experimenter can set the duration of the baseline measurement, start and manually stop (if 

necessary) baseline data collection, view the baseline statistics, and plot the signals recorded 

during the baseline collection for validation of data integrity.  

Obtaining an accurate baseline measurement of psychophysiological signals in an 

experimental setting is difficult. Factors such as being in a new place, being anxious about an 

unknown experience, and perhaps desiring to please the experimenter may all lead to a 

physiological state unique from a true “baseline.” In an effort not to exacerbate this situation, 

baseline measurements were collected outside the cockpit. It was postulated that an in-cockpit 

collection would lead to an artificially stressed state. Because the collection was done outside 

the cockpit, baseline eye-tracking features could not be collected as the eye-tracking hardware 

was mounted within the simulator. Even if it was available outside the simulator, the utility of 

eye-tracking baseline metrics collected before flight would be of questionable utility. The 

features extracted from the eye-tracking signals are highly specific to the environment in which 

they are collected (e.g., saccade movements are likely very different when looking around a 

classroom than when flying a helicopter).  
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3.4 In-Cockpit Pilot Interface to PhysHub 

It is surprising that among the plethora of in-cockpit displays available to a pilot to 

assess the state of their system, there is no known commercial system in use today that presents 

information on the mental or even physical state of the pilot, co-pilot, or crew during flight. 

Taking a step in this direction, a prototype in-cockpit display was created to present the pilot’s 

and co-pilot’s physiological data and predicted mental workload level in real-time and is 

depicted in Fig. 3.2. This touch-screen display provides functionality that begins to incorporate 

real-time monitoring of pilots into the human-machine system of the cockpit. Through this 

display, the pilot and co-pilot can view their own respective data, but perhaps more 

significantly, they can view the data of the other. This information may aid each in quickly 

assessing the mental state of the other – a critical task left today to be performed completely 

without technological aid. In a survey of ten operational German military helicopter pilots 

conducted in conjunction with this work, only one objected to their physiological data being 

viewable to either their co-pilot or ground-station personnel, all others welcomed the idea and 

considered it a practical aid to enhance crew coordination.  

Fig. 3.2 In-cockpit display of physiological data and predicted mental workload. Through this display, pilots can see 
physiological states and predicted mental workload for themselves and their co-pilot. They can also set the parameters for 
receiving notifications of their own workload level and for that of their co-pilot. This screenshot was taken with only a single 
pilot in the cockpit thus is only populated for “self.”  
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Various physiological data and the predicted mental workload from PhysHub are 

visualized in the prototype display. To aid in rapid state assessment, a “z-score” showing how 

many standard deviations above or below the mean the current value is from the baseline mean 

is provided for all physiological data for which a baseline measurement was taken. Although 

reviewing this column alone can aid in quickly identifying unusual states, these summary 

statistics are nevertheless likely overly complex and unnecessary in a future implementation. 

Future optimization of the display could more prominently highlight the current predicted 

mental workload level. To encourage acceptance and support ease of use, this could be done 

through the use of an analog gauge which gauges are ubiquitous in the cockpit.    

In the prototype display, following the presentation of individual physiological metrics, 

a timelapse plot of the predicted mental workload over the last five minutes is provided. This 

is shown to aid in assessing the temporal characteristics of the data and support an evaluation 

of the current state as compared to the past.   

Finally, as seen at the bottom of the prototype display, the pilots can set parameters for 

receiving notifications of their own mental workload level and for that of their co-pilot. In the 

situation depicted, the pilot (“self”) has selected to receive notifications for themselves and for 

their co-pilot (note the check boxes are both checked). Notifications are set to trigger when the 

predicted mental workload exceeds a value of 8 (out of 10) with a frequency of no more than 

one notification per minute. 

These options are provided to allow the pilots maximum control over the system. Future 

experimentation and usability studies are required to determine the utility of the pilot-directed 

notification system. Controlling various aspects of the automation from the cockpit provides a 

custom experience for the pilots and one that ensures ultimate human supervisory control. 
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This section significantly expands upon my published work “Physiological Sensor 

Fusion for Real-Time Pilot Workload Prediction in a Helicopter Simulator” published in the 

Proceedings of the AIAA SciTech 2022 Forum [79]. 

4.1 Introduction 

As summarized and discussed in Section 1, numerous studies have been conducted to 

evaluate pilot mental state using psychophysiological data during actual or simulated flight 

yielding a wide range of results. Generally, however, the results converge suggesting that some 

metric of human mental workload, stress, arousal, or otherwise can be predicted (at least 

weakly) using one or more psychophysiological signals. The early review article by Roscoe in 

[80] concluded that heart rate, heart rate variability, and respiration rate are three variables that 

can be used in simulated and real flight to assess a pilot's arousal. The review article by Jorna 

in [81] similarly concluded that cardiovascular measures such as heart rate and heart rate 

variability can help to identify different mental states and observe dynamic responses to mental 

workload changes in both simulated and actual flight. Additionally, a review article on the topic 

considered other psychophysiological data including electroencephalography (EEG), 

electrooculography (EOG), eye blinks, and cardiovascular measures and found correlations 

among these signals with induced task load [60]. Most recently, Charles and Nixon, in their 

review article, concluded that there was not a single particular measure that most effectively 

characterizes mental workload, but rather they suggest that physiological measures “capture 

the experience of the user” which may prove useful in developing a functional system [58]. 

Non-review articles presenting original research pursuing a multi-modal approach to assessing 

mental state during real and simulated flight are summarized in Section 1.3. 

4 Experimental Testing of a Real-Time
Multimodal Mental Workload Prediction
System During Simulated Helicopter Flight 
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This section presents original research aiming to predict mental workload in-real time 

during simulated helicopter flight. Participants in this study include fully-trained military 

helicopter pilots as well as un-trained university students. This study applies the novel methods 

for acquiring and processing various signals as presented in Section 2 of this work. It also 

utilizes the physiological monitoring and mental workload prediction tool PhysHub presented 

in Section 3.  

 The primary aim of this study is to apply and evaluate a real-time mental workload 

prediction algorithm during simulated helicopter flight. This is done by fitting or training a 

model to predict subjective mental workload from one mission and applying that model in real-

time to data from a second mission yielding a continuous prediction of mental workload. It is 

hoped that the output of this system could have potential utility to an automated pilot assistant 

system. The system’s effectiveness is evaluated primarily by assessing the linear correlation 

between the predicted mental workload and the participant’s subjective mental workload 

provided post-mission execution. Secondary research questions include:  

 Which features extracted from multiple physiological and behavioral signals are most 

useful in predicting a pilot’s subjective mental workload? 

 How frequently and significantly will participants change their subjective mental 

workload assessment after viewing a system-predicted mental workload? 

 How would study participants respond to receiving notifications of perceived high 

mental workload 

 How would the system be subjectively perceived by the active-duty military helicopter 

pilots and the university students who participated in the study and what is their 

readiness to engage with such a system in real-flight operations? 

This work builds upon the author’s previous work investigating the utility of ECG-

derived signals, EDA, and various eye-related features in predicting the subjective mental 

workload of pilots in a helicopter simulator [82]. The authors have additionally published work 

investigating the utility of fNIRS in pursuit of this objective [61]. The complexity of data 

collection and synchronization was significantly greater in this work than in these previous 

studies. Data originating from multiple sensors and sources are collected at different rates and 

unique processing is applied to each signal enabling the extraction of relevant features. These 

processed signals are then time-synchronized and merged with a common sampling rate 

enabling the application of supervised machine learning algorithms which predict the mental 
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workload of the study participants in real-time. The prediction is then used to update an in-

cockpit display and is used to trigger notifications to the pilot. 

In some instances, when the prediction of mental workload exceeds a set threshold, 

study participants are provided real-time feedback on their perceived high mental workload. 

This feedback is provided via a text-to-speech interface which verbally informs the participant 

of their current perceived mental state and suggests they make an effort to relieve perceived 

tension. The pilots are also encouraged to observe their predicted mental workload level along 

with other physiological metrics through a display integrated into their glass-cockpit. The 

current implementation of this display can be seen in Section 3.4. It is hypothesized that by 

providing pilots (or others such as ground station personnel) with real-time pilot-state 

information, they will be supported in remaining in a state suited to fulfill the uniquely human 

roles they are to perform. This support may come in the form of adaptive automation [83], [84], 

but is also anticipated to come through improved crew communication as well as through self-

regulation strategies of the pilots themselves.  

4.2 Methods 

Ten operational helicopter pilots of the German Air Force and ten university students 

with various levels of experience with simulated helicopter flight participated in this 

experiment. After a thorough explanation of each sensing modality and the experimental 

protocol, each participant provided voluntary and informed consent for participation in the 

Table 4.1 Participant Summary 

ID Age Gender Flight Experience 
Pilot 1 43 M 1900 hrs 
Pilot 2 29 M 170 hrs 
Pilot 3 51 M 3000 hrs 
Pilot 4 43 M 3000 hrs 
Pilot 5 43 M 2200 hrs 
Pilot 6 51 M 3600 hrs 
Pilot 7 44 M 2500 hrs 
Pilot 8 48 M 4000 hrs 
Pilot 9 25 M Test Flight Engineer. Many hours helicopter simulator 
Pilot 10 44 M 2000 hrs 
Student 1 21 F 2 hrs lab simulator 
Student 2 22 F Flight screening tests, 15 min lab simulator 
Student 3 23 M 120 hrs glider and motor aircraft 
Student 4 25 M 100 hrs home computer simulator, 1 hr lab simulator 
Student 5 22 M No flight experience (real or sim) 
Student 6 22 M 200 hrs glider and motor aircraft, 1 hr lab simulator, flight screening test 
Student 7 23 M 600 hrs glider, home computer simulator, 30 min lab sim 
Student 8 24 M Flight screening tests, 4 hrs helicopter simulator 
Student 9 20 M Flight screening tests 
Student 10 25 M Flight screening tests, home computer simulator 
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study. The form used to provide this consent (the “Einverständniserklärung”) is provided as 

Appendix C. Each participant completed the experiment with no prior knowledge of the 

experiment design. Table 4.1 provides a summary of the participant demographics including a 

short description of their flight experience. The experiment was conducted in a research-

focused helicopter simulator equipped with touch-screen multi-function displays and three 

projector-based external views. Although the cockpit can seat both a pilot and a co-pilot, the 

experiment was conducted individually with a single pilot in the cockpit (the study participant). 

A photograph of the simulator’s cockpit is given in Fig. 4.1. Visible in the photograph are the 

right and left Multi-Function Displays (MFDs), the Central Panel Display System (CPDS), the 

Control and Display Units (CDUs), as well as the flight control elements including the pedals, 

the cyclic, and the collective.  

Utilizing a “page selector” on the touch-sensitive MFD, the pilot can access multiple 

elements of information including standard IFR/VFR displays, dynamically-updating maps, 

system settings, preflight and landing checklists, and the in-cockpit PhysHub pilot interface as 

presented in Section 3.4. Views of these MFD “pages” are given in Appendix E.  

A high-level overview of the experiment design is depicted in Fig. 4.2. Following 

simulator familiarization, training, and setup, two consecutive simulated training missions are 

flown each lasting approximately 20 to 30 minutes during which physiological and behavioral 

signals are recorded. The details of these missions and the tasks required of the participants are 

provided hereafter in Section 4.2.1. Immediately following each simulated mission, 

Fig. 4.1 A photograph of the helicopter simulator used in this study. Although the simulator has positions for a pilot and a co-
pilot, study participants executed the simulated missions alone in the cockpit aas a single pilot.  
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participants are guided in providing an assessment of their subjective mental workload over 

the course of the mission. The details of how this assessment was made are given hereafter in 

Section 4.2.2. Following the first mission, parameters are learned for a model aimed at 

predicting the participants subjective mental workload given the various recorded 

physiological and behavioral signals. This model is then applied in real-time during the second 

mission to predict the participant’s mental workload. Details regarding the model selection, 

training, and real-time implementation are provided in Section 4.2.3. Following the second 

subjective mental workload evaluation, sensors are removed and participants complete a post-

experiment questionnaire. In total, participation in the experiment spans approximately three 

hours. Following the completion of the experiment, offline analysis is conducted to assess the 

degree to which the participants’ subjective mental workload assessment correlated with the 

predicted mental workload measurement provided by the model. 

4.2.1 Simulated Mission Design 

Two simulated military helicopter training missions were designed to elicit varying 

degrees of mental workload throughout each mission. The missions were designed using the 

military training simulation software Virtual Battlespace 3 (VBS 3) by Bohemia Interactive 

Simulations.9 The helicopter chosen for simulation was the Sikorsky S-76c and its dynamics 

were simulated using X-Plane.10 The use of this particular aircraft was selected by previous 

researchers and integrated into the laboratory’s simulator. The use of VBS enabled the 

manipulation of multiple elements of the simulated environment including ground vehicles, 

aircraft, ground personnel, point sources of smoke, and weather. Maps of the two missions are 

shown in Fig. 4.3.   

 
9 https://bisimulations.com/products 
10 https://www.x-plane.com/ 

Fig. 4.2 High-level experiment design block diagram.Following simulator familiarization, training, and setup, the experiment 
consists of two simulated missions each followed by a subjective evaluation of mental workload. A prediction model is trained
on data from the first mission to predict the mental workload of the pilot in real-time during the second mission.  
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As previously stated, the two missions were each designed to elicit mental workload 

states across the arousal continuum from relaxed, to focused, to overwhelmed. Additionally, 

each was designed to briefly induce a feeling of confusion in the participants. How the 

elicitation of these states was designed into each mission is summarized in Table 4.2. Relaxed 

states were designed into each mission during rest periods on the ground and in the air during 

unconstrained free flight. Focused states were induced through visual search and constrained 

manual flight tasks. Situations of high mental workload were elicited through low-level canyon 

Fig. 4.3 Maps of the two simulated helicopter missions designed to elicit varying levels of mental workload. Mission 1 is 
shown to the left while Mission 2 is shown to the right. 

Table 4.2 Mission Design - Elicitation of Various Mental States 

Intended Elicited Mental State Mission 1 Mission 2 
Relaxed (non-flight) On ground post-mission On ground post-mission 

Relaxed (simple unconstrained flight) Unconstrained flight to specified 
area 

Unconstrained flight to final landing 
site 

Focused Visual Search Search for colored smoke Search for downed aircraft 
Focused Manual Control Hover Follow path while maintaining set 

altitude 
Overwhelmed Narrow canyon with poor weather 

Turbulence at landing 
Maintain set altitude while using 
UAVs to reconnoiter for target 

Confused Inexecutable command Long and complex command 
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flight in poor weather conditions and through the tasking of unmanned aerial vehicles (UAVs) 

from the cockpit’s touchscreen Multi-Function Display (MFD) while maintaining a given 

altitude.  

Following a high-level pre-brief of each mission (provided in its original form in 

Appendix F), study participants were led through the execution of each mission by means of 

verbal direction given by the experimenter at pre-defined stages of each mission. In general, 

the participants were directed to particular waypoints identifiable on their MFD where, upon 

arrival, they received additional instruction. The specific conditions and resulting actions for 

each mission are provided in Appendix G. 

4.2.2 Subjective Mental Workload Assessment  

Supervised learning requires that a training dataset be provided in which the outcome 

variable is “known” to train a model and learn the weights of unknown predictors. In this case, 

where the objective is to predict mental workload, training data is required with an associated 

mental workload “truth.” However, because mental workload is largely a subjective 

phenomenon, generating a continuous-valued “perfectly true” metric of mental workload over 

some duration of time is impossible complicating the application of supervised machine 

learning in this scenario. Despite the challenge, however, approximations can be reasoned. As 

presented in Section 1.1, researchers in the field apply a wide range of techniques for assessing 

mental workload in these scenarios including via performance on secondary tasks ([55]), 

questionnaires (e.g. NASA-TLX) ([38], [40], [56]) and intermittent requests of the participant 

for a subjective assessment ([82]). However, assessing mental workload using these 

approaches, is not ideal for this scenario. Measuring mental workload based on the performance 

of a secondary task may distract from or hinder performance on the primary task. On the other 

hand, assessing mental workload through questionnaires or intermittent requests provides only 

discrete snapshots in time where it is difficult to extrapolate between samples. Thus, in this 

work, an approximation of subjective mental workload is obtained through a novel approach 

yielding a continuous value throughout the flight scenario. The resulting metric can then be 

applied as the “known” outcome variable by which a variety of supervised learning prediction 

models can be trained.  

In this work, a continuous subjective mental workload rating is provided over the course 

of a simulated helicopter mission by the participant following mission execution. Fig. 4.4 

subfigure (a) shows the Likert scale provided to the participants to evaluate their subjective 
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mental workload on a scale from 1 to 10. The coloring of the scale and the adjectives used to 

describe a low, intermediate, and high mental workload level provide a common reference for 

all participants when using the scale. Care was taken in the selection of adjectives presented in 

conjunction with the scale. “Relaxed,” “focused,” and “overwhelmed,” describe unique 

positions on a continuum of arousal. Others have suggested that “boredom” may be an 

appropriate adjective for the far left position on the spectrum [57], [80], [85]. Boredom, 

however, describes a lack of interest or engagement and is not a state of arousal. Yes, a lack of 

arousal may lead to boredom and this state should certainly be avoided in aircraft operations, 

but boredom was not a focus of study in this work. 

With the Likert scale in mind, participants provided their subjective assessment while 

viewing a video and audio playback of the executed mission immediately following mission 

completion. Each participant was supported by the same experimenter during this phase of the 

experiment who attempted to remain neutral and indifferent to the participant’s input. As part 

of this work, a tool was built to facilitate this subjective mental workload data collection. This 

tool is shown in Fig. 4.4. To aid the participant in their immersion and recall, the video playback 

portion of the tool provides views of the external and internal displays as recorded during flight. 

A snapshot of the video playback is shown in the upper section of subfigure (b). During video 

playback, the pilot’s gaze fixation location is also displayed (as seen by the green marker in 

the upper third of the display). These visual and auditory cues support the participant in their 

ability to recall their state of mind during the mission and provide a continuous subjective 

mental workload assessment over the duration of the mission. The plot in the lower portion of 

subfigure (b) is manipulated with the support of the experimenter to reflect the participant’s 

subjective mental workload throughout the recently-concluded simulated helicopter mission. 

The process of reviewing the previously-flown mission and obtaining the participant’s 

subjective mental workload assessment using this tool typically requires approximately one-

quarter of the total mission duration. Thus, for a 20-minute mission, it could be expected that 

this process would last approximately 5 minutes.  
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After the participant’s subjective mental workload assessment had been provided and 

the data was recorded, a plot of the system-generated predicted mental workload was overlaid 

on the plot with their subjective assessment. Each participant was then asked by the 

experimenter “According to what you see here, would you like to change your initial 

assessment in any way?” Participants were then permitted to re-consider their assessment and 

re-address any portion of the mission they desired. If changes were requested, they were made 

and the data was saved separately from the initial assessment. This procedure facilitated the 

collection of data required to determine what proportion of the participants would edit their 

subjective assessment after having seen a system-generated prediction, one of the study’s 

secondary research questions.  

(a) 

(b) 

Fig. 4.4 Tool developed to gather a participant’s subjective mental workload post-flight. Subfigure (a) shows the Likert scale 
used by the participants to evaluate their own subjective mental workload on a scale from 1 to 10. Subfigure (b) shows the 
graphical user interface (GUI) used by the experimenter and participant to collect the subject’s subjective mental workload 
over the duration of a recently-concluded simulated helicopter mission. Views internal and external to the cockpit are provided 
along with the pilot’s gaze location (green icon) providing rich contextual information to aid in subjectively assessing mental 
workload. The data in the plot is edited by the experimenter as directed by the participant to reflect the participant’s subjective 
mental workload over the course of the simulated mission.  
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4.2.3 Physiological and Behavioral Data Acquisition and Baseline Measurement 

Many signals and features were extracted from functional near-infrared spectroscopy 

(fNIRS) recordings, a cockpit-mounted eye-tracking system, electrocardiography (ECG) 

recordings, electrodermal activity (EDA) recordings, and recordings from stretch-based 

respiration belts. The wearing of these sensors can be seen in Fig. 4.5. A list of all extracted 

signals and features is given in Table 4.3. The extraction of these signals and features are 

described in detail in Section 2 of this work. A summary of these data acquisition and feature 

extraction methods is provided here for readability.  

fNIRS is collected from the subject’s pre-frontal cortex using the fNIR203C headband 

from fNIR Devices. The device transmits 730 nm and 850 nm wavelength light and has 16 

channels with 25 mm optode spacing and two “short channels” with 10 mm spacing. Before 

calculating the change in oxygenated and deoxygenated hemoglobin, signal pre-processing and 

filtering is conducted on the raw light intensity data to remove interference caused by the 

cockpit-mounted eye-tracking system (see Section 2.1.1 for the details of this noise removal 

process). Following noise removal, change in oxygenated and deoxygenated hemoglobin 

concentrations are calculated using the modified Lambert-Beer law. Change in concentration 

was calculated with respect to the median of each channel over the previous two minutes. The 

short channels were then subtracted from the signals on their respective hemisphere. Finally, 

features were extracted as noted in Table 4.3. 

Fig. 4.5 All sensors worn by each participant during simulated missions. 



63 
 

Eye movement is captured using the commercial SmartEye Pro eye-tracking system. 

System outputs including blink occurrences, saccadic movements, and gaze location are 

utilized to extract the eye-related features noted in Table 4.3. 

Single-channel ECG and EDA data are collected at 200 Hz using the BIOPAC MP160 

data acquisition system. ECG data are collected using single-use disposable Ag/AgCl pre-

gelled electrodes on the participant’s chest arranged to sample the Lead II vector. The 

participant’s skin is cleaned using alcohol wipes and slightly abraded prior to electrode 

placement. EDA data are collected using single-use disposable Ag/AgCl electrodes pre-gelled 

with isotonic gel secured to the medial arch of the participant's right foot with approximately 8 

cm spacing between electrodes.  

Finally, respiration is captured using two custom-built stretch sensors worn across the 

chest. The signals from the individual belt sensors are aggregated and filtered before respiration 

rate is extracted using an adaptive IIR notch filter (ANF) [71], [72].  

Abbreviation Description 

Baseline 

Taken 

Used in 

MWL 

Pred. 

HR Mean inter-beat-interval (IBI) over the last 20 seconds   

HRV Heart rate variability calculated using RMSSD [76] over last 30 seconds   

LF/HF IBI low-frequency to high-frequency power ratio over last 120 seconds   

LF/HF_slope Change in LF/HF over one second   

EDA Electrodermal activity  - 

EDA_slope Change in EDA over one second   

EDA_WL_20s Time-domain waveform length of EDA over last 20 seconds   

respRate Respiration rate calculated using an adaptive IRR notch filter [72], [73]   

µHHb Mean deoxygenated hemoglobin across all 16 fNIRS channels   

µO2Hb Mean oxygenated hemoglobin across all 16 fNIRS channels   

σHHb Instantaneous standard deviation across all 16 deoxygenated hemoglobin signals   

σO2Hb Instantaneous standard deviation across all 16 oxygenated hemoglobin signals   

Spatial Asymmetry O2Hb Difference between right and left hemisphere mean oxygenated hemoglobin   

gazeBlinkPerMin_60s Number of eye blinks in the last minute -  

gazeChangePerSec_5s Frequency of fixation change from above to within cockpit over last 5 seconds -  

gazeChangePerSec_60s Frequency of fixation change from above to within cockpit over last 60 seconds -  

gazeSaccadePerSec_5s Frequency of saccades in the last 5 seconds -  

gazeSaccadePerSec_60s Frequency of saccades in the last 60 seconds -  

 

Table 4.3 Summary of Extracted Features 
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A selection of all the extracted features over the course of a simulated helicopter 

mission collected in preparation for the experiment documented in this work are plotted in Fig. 

4.6. In addition to the extracted physiological signals, a system-generated predicted mental 

workload plot is also provided. As can be visually appreciated by the plot, it is evident that 

each signal exhibits a unique temporal profile over the course of the mission. Some signals 

change rapidly with high-frequency components such as “EDA” and “Gaze Change Rate,” 

while others exhibit more gradual temporal changes, such as “HR” (heart rate).  

As noted in Fig. 4.2, immediately before the execution of each simulated mission, a 

four-minute baseline measurement of all physiological signals was collected. It was reasoned 

that once seated in the cockpit, the participant may experience a heightened level of stress or 

arousal in anticipation of task execution. Thus, the baseline measurement was collected before 

the participant entered the cockpit. Signals and extracted features for which a baseline 

measurement was taken can be seen in Table 4.3. The data collected during the baseline 

measurement are a critical element of the mental workload prediction as described in the 

subsequent section.  

4.2.4 Real-time Mental Workload Prediction through Supervised Learning 

One primary objective of this work was to generate a scalar metric that represents a 

pilot’s mental workload in real-time from multiple input physiological signals and features 

Fig. 4.6 Extracted signals and features over the course of a simulated helicopter mission from an active-duty military helicopter 
pilot (Pilot 2). Areas shaded in grey denote time during which the helicopter was on the ground. 
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with the intent that it could then be used as a form of pilot feedback or as an input to some form 

of an assistant system. As discussed in Section 1.1, mental workload is a rather nebulous 

concept and is influenced by multiple factors including task load (and all relevant 

environmental factors) as well as the unique characteristics, thoughts, and perceptions of the 

individual performing the task. It could be reasoned then, that mental workload cannot or 

should not be distilled into a scalar metric. This reasoning however prevents effective 

operationalization and system development. Of course, it must be acknowledged that any 

single-valued metric purporting to “be” mental workload is incomplete. However, as suggested 

by Honecker et al. in [85], an absolute metric is required for an adaptive system to “make in-

situ deliberative, and hence, absolute decisions.” As further argued in that work, to 

subsequently utilize the absolute metric, however, a considerable understanding of the context 

is required. Given then a rich contextual understanding, whether from a human co-pilot or an 

advanced autonomous system, a single-valued metric would support simple and transparent 

rules for triggering assistance or intervention.  

Initially, attempts were made to apply various classification algorithms for producing a 

discrete mental workload output (e.g., “low,” “medium,” and “high”). This initial 

experimentation (some of which was published in [61]) yielded inconclusive results. 

Supervised machine learning classification methods tested included: Linear Discriminate 

Analysis (LDA), Support Vector Machine (SVM), Convolutional Neural Networks (CNN), 

and decision tree classifiers. An analysis of these initial results suggested that pursuing a 

continuous single-valued output may be more fitting for the desired use case. Rather than pre-

maturely binning mental workload into a small number of discrete levels, a continuous value 

may provide greater transparency to an operator and would allow for greater flexibility to a 

system (human or machine) utilizing the value to provide support or assistance. Because of the 

desire for a continuous output, regression models capable of producing a continuous output 

were pursued including linear regression, lasso regression (linear regression with L1 

regularization), ridge regression (linear regression with L2 regularization), lasso regression 

with polynomial features, K-Nearest Neighbors regression, and Support Vector Regression. 

Prior to experimentation with active-duty helicopter pilots, preliminary experimentation was 

conducted with multiple students and researchers at the German Armed Forces University of 

Munich to determine the best candidate for effective prediction during real-time 

implementation. Through this testing, it was found that the mental workload prediction 

generated through linear regression most strongly correlated with the user’s subjective mental 
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workload. This analysis highlighted the strength of linear models over higher-order, kernel-

based, or neural-network-based models in this application. Although this may, in part, be due 

to an insufficient quantity of data on which the more complex models were trained, it is also 

unlikely that complex, higher-order relationships between the signals exist thus suggesting a 

linear model may not only be adequate, but appropriate.  

 Due to these findings as well as the algorithm’s ease of interpretation and visualization 

(which ultimately increases transparency and trust), subsequent mental workload prediction 

experimentation was conducted utilizing multivariate linear regression. The outcome variable 

y (subjective mental workload) would be regressed onto the predictors X (multivariate 

physiological data) to learn the unknown model parameters. Once trained, the model could be 

applied to predict subjective mental workload given new physiological data.  

The potential success of a linear regression approach to predicting subjective mental 

workload using physiological measures can be assessed by determining whether or not linear 

correlations exist between the outcome variable (subjective mental workload) and the 

individual predictors (physiological measures). A common method for assessing the linear 

correlation between two signals is by calculating Pearson’s Correlation Coefficient for the two 

signals. This metric ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 

indicates no correlation, and 1 indicates a perfect positive correlation. Pearson’s Correlation 

Coefficient (𝑟) is calculated according to equation (4.1). 

 𝑟 =  
∑(𝑥 − �̅�) (𝑦 − 𝑦)

∑(𝑥 − �̅�) ∑(𝑦 − 𝑦)
 (4.1) 

 Where:  

𝑟 is the correlation coefficient,  

𝑥  are the values of the x-variable in a sample, 

�̅� is the mean of the values of the x-variable, 

𝑦  are the values of the y-variable in a sample,  

and 

𝑦 is the mean of the values of the y-variable. 
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Fig. 4.7 provides a matrix of Pearson’s Correlation Coefficients for a variety of 

physiological measures and a participant’s subjective mental workload for a dataset collected 

during preliminary testing. As noted in the highlighted row of data, linear correlations between 

subjective mental workload and physiological measures exist between -0.01 and 0.39. 

Significantly, it is also noted that the correlation between subjective mental workload and the 

predicted (or “learned”) mental workload assessed through linear regression, is greater than the 

correlation of any one signal. This suggests that a linear combination of physiological features 

provides more predictive value than any individual feature alone. 

Armed with the confirmation that linear correlations exist between physiological 

signals and subjective mental workload, a procedure was established to apply linear regression-

based prediction to two consecutive simulated flights each lasting approximately 20 to 30 

minutes. This procedure is illustrated in Fig. 4.8. Following the first simulated mission during 

which physiological data is recorded (see Table 4.3 for a complete listing of signals and 

extracted features), the participant’s subjective mental workload is obtained through a mission 

playback and analysis tool as outlined in Section 4.2.1. Using the data collected during the first 

training mission and the participant’s subjective mental workload evaluation over the course 

of the mission, the model’s parameters are subsequently fitted using ordinary least-squares 

linear regression [86]. This process would ideally establish a model with parameters unique to 

Fig. 4.7 Correlation coefficient matrix showing the linear relationship between subjective mental workload and various 
physiological signals.  
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that participant. The learned weights for one example participant are plotted in the bar plot of 

Fig. 4.8. Finally, during the second simulated mission, the pilot-adapted model is applied to 

generate a real-time prediction of mental workload. 

It is noted, that for this participant, the fitted weights generally align with previously-

reported correlations (see Section 1.3). For example, the weight learned for heart rate is rather 

large and positive (0.44) suggesting that this feature correlates strongly with the participant's 

subjective mental workload which aligns with the oft-published relationship between heart rate 

and mental workload. Similarly, the weight for heart rate variability is negative and the weight 

for increased electrodermal activity is positive which both agree with previously-published 

generalizations about these physiological signals and their relation to mental workload. Other 

weights are less easily interpreted, however, such as that for blink frequency. In this case, the 

large learned weight suggests that for this participant, an increased blink frequency is positively 

correlated with an increased mental workload. This relationship contradicts the general 

findings of others which typically show blink frequency decreases with an increased mental 

workload (again see Section 1.3). These findings highlight the potential value of this pilot-

adapted mental workload prediction approach. It may be possible to generate a pilot-specific 

mental workload prediction model which outperforms a pilot-agnostic model by accounting 

for individual peculiarities.  

Fig. 4.8 Procedure for fitting and applying a linear regression model to two consecutive simulated helicopter missions.
Following the first mission, the participant provides their subjective mental workload assessment as described previously 
(upper-left). Parameters for a linear regression model are fitted using the data obtained from the first mission (right). During 
the second simulated flight, mental workload is predicted in real-time using the pilot-adapted linear model. The data shown 
here is from participant Pilot 10. 
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 As stated previously, a secondary objective of this experiment was to determine the 

proportion of the participants who would change their subjective mental workload assessment 

after having been presented with a system-generated mental workload prediction. To generate 

more data for this analysis, in addition to the presentation of a subject-specific mental workload 

prediction following the second mission, a subject-agnostic mental workload prediction was 

presented following the first mission as well. Mental workload prediction during the first 

mission was performed using a linear regression model with default weights having been 

obtained through prior data collection and model fitting and are shown in Fig. 4.9. The default 

weights were used from a model which performed particularly well on a dataset collected from 

a student researcher who was not a participant in the final experiment. Thus, each participant 

was asked twice whether or not they would update their subjective mental workload after 

having been presented with a system-generated prediction. This procedure resulted in 40 

samples on which this particular analysis could be performed. It was hypothesized that the 

mental workload prediction on the second mission would be more strongly correlated with the 

Fig. 4.9 Default model weights used to predict mental workload for each study participant during the first of two simulated 
helicopter missions. Mental workload prediction on the first mission supplemented the data available for assessing how 
frequently study participants changed their subjective mental workload assessment after having been shown a system-
generated prediction.  
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participant’s subjective mental workload than that from the first for which the default model 

was used. 

To enable the use of the default linear model during the first mission by all participants, 

it is necessary to scale the input features. Scaling the input features accounts for the variability 

in baseline measurements across participants. For example, a participant with a baseline heart 

rate of 60 bpm whose current heart rate is 60 bpm should not be predicted as having a lower 

mental workload than a participant with a baseline heart rate of 70 bpm whose current heart 

rate is 70 bpm (if heart rate was the only input feature). Rather, both should be predicted as 

having the same level of mental workload. To facilitate this normalization across participants 

(as well as the application of a wide variety of machine learning prediction methods, some of 

which require scaled/standardized data), min-max scaling was applied to the collected data 

which scales the range of each feature to [0, 1]. Minimum and maximum values observed 

during the baseline data collection before mission execution were used to initialize this scaling 

for real-time processing. During mission execution, the minimum and maximum values used 

for feature scaling were dynamically updated as new data was received.    

4.2.5 Post-Flight Questionnaire and Data Analysis 

Following the execution of the second simulated flight and the corresponding mental 

workload assessment, each participant completes a post-flight questionnaire. Questions are 

posed to assess the participant’s engagement with each mission and their commitment to a 

successful outcome. As discussed in Section 1.1, a person’s personal engagement and/or 

commitment to a task influences the experienced mental workload. In addition to these 

questions, others are posed to elicit subjective perceptions and beliefs regarding the 

physiological monitoring of pilots in actual flight. Multiple questions are presented only to the 

active-duty military pilots as they are uniquely suited to address the topic. All questions, as 

well as participant responses, are provided in Appendix D. 

After all participants had completed the experiment, subsequent analysis is performed 

to evaluate the study’s research questions. The strength of the real-time mental workload 

prediction is assessed by determining Pearson’s Correlation Coefficient between the predicted 

and subjective mental workload for both Mission 1 and Mission 2.  

To assess the relative utility of each feature in predicting the participants’ subjective 

mental workload, the correlation between the participant’s subjective mental workload and 

each feature for both Mission 1 and Mission 2 is determined and sorted by the magnitude of 
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their average correlation. Thus, the relative contribution of each feature to a linear model of 

subjective mental workload could be assessed. 

Additionally, as introduced in Section 2.1.3, offline analysis is conducted to determine 

the relationship between head tilt and change in oxygenated hemoglobin. This analysis is 

performed to assess whether head tilt should be accounted for in future fNIRS signal extraction 

procedures. For each participant and each mission, the linear correlation between the two 

signals is calculated using Pearson’s Correlation Coefficient. An average coefficient and its 

standard deviation are then reported across all trials. 

To appraise the willingness of participants to modify their assessed subjective workload 

after being presented with a system-generated prediction, the proportion of participants who 

changed their assessment is provided. Additionally, the magnitude of these changes is 

evaluated by noting the change in correlation between their subjective assessment and the 

system-generated prediction before and after making these changes.  

Next, to evaluate how study participants would objectively respond to receiving 

notifications of perceived high mental workload, all scenarios in which a real-time auto-

notification is triggered due to a predicted mental workload greater than 0.8 out of 1 are 

analyzed. This analysis involves extracting the mental workload signal before and after each 

notification for all scenarios, time-synchronizing the data to the moment of notification, and 

plotting the resulting data. A grand average curve is also plotted to show the mean response 

over all scenarios.  

Finally, responses to the post-flight questionnaires are evaluated to assess the 

participant’s subjective perceptions of an in-cockpit mental workload prediction system.  

4.3 Results 

Through the post-flight questionnaire, participant engagement and commitment to the 

successful completion of each mission were assessed to be sufficiently high to facilitate 

subsequent mental workload analysis for all participants. To the question “On a scale from 1 

to 5 where 1 is “fully disengaged” and 5 is “fully invested,” to what extent do you feel you 

were mentally invested in the successful completion of the first mission?” the average response 

is 4.6±0.58. Regarding the second mission, the average response is 4.7±0.46. Only one 

participant (Student 3), reported a value less than “4” and this response (of “3”) was reported 

for only the first mission. See Table A.0.3 in Appendix D for the complete list of responses for 
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all participants. Additionally, through short answer responses, pilot participants provided 

mixed responses regarding the difference between the mental workload induced in the 

simulator and during actual flight. Three participants reported experiencing more stress in the 

simulator, six reported experiencing more stress during actual flight, and one was indifferent. 

In general, pilot participants expressed that the level of concentration required is similar in both 

scenarios, but the overall mental workload is less in the simulator than in actual flight (see 

Question 9 in Appendix D for complete responses).  

Initial evaluation of the collected data uncovered five of the forty simulated missions 

flown for which the system-generated mental workload prediction needed to be re-calculated 

before computing the correlation between participant subjective workload and the system-

generated predicted mental workload. These five corrections are explained below. 

 Student 4, Mission 2: Due to an undetermined cause, the real-time mental workload 

prediction was not logged. The prediction was made offline as if it were being done in 

real-time including the use of the baseline measurements to initialize scaling and the 

continual updating of the minimum and maximum scaling values as is performed in the 

real-time system. 

 Student 8, Mission 2: Due to a pilot-induced helicopter crash during Mission 1 causing 

unforeseen issues, only approximately one-half the data from Mission 1 was used to 

train the linear regression model applied during Mission 2. To correct for this, the model 

was re-trained using the complete dataset from Mission 1 and applied during Mission 

2 simulating real-time techniques to predict the subject’s mental workload.  

 Student 10, Mission 2: For an unknown reason, the saccade rate was not calculated for 

much of Mission 1. The resulting model, fit using data from only the short amount of 

time during which all features including saccade rate were available, was ineffective. 

To correct for this error made during real-time processing, saccade rate was extracted 

using the raw eye tracking data, the prediction model was re-trained, and the new model 

was applied to Mission 2 as if executed in real-time.  

 Pilot 4, Mission 1 and Mission 2: Due to a uniquely noisy and previously-unseen ECG 

waveform, the ECG-extracted features (HR, HRV, LF/HF, LF/HF_slope) were not 

extracted properly. Thus, the prediction model trained on Mission 1 and applied to 

Mission 2 in real-time lacked an accurate representation of these parameters as it was 

trained on the small portion of data for which these and all other features existed. To 

correct this error, the ECG-related features were extracted from the logged raw ECG 



73 
 

signal using a manual process to ensure accurate peak extraction, the model was re-

trained, and the new model was applied to Mission 2 as if executed in real-time.  

These offline corrections were possible due to the meticulous logging of all individual 

data streams.  

After making the necessary corrections and concluding that no participant data would 

be excluded from use, analysis was conducted to assess the study’s multiple research questions 

beginning with the correlation between subjective and predicted mental workload. 

Representative plots from two participants showing the participants’ subjective and predicted 

mental workload over the course of a simulated helicopter mission are given in Fig. 4.10. 

Plotted are the datasets with the largest and smallest Pearson correlation coefficients of all 

collected (0.69 and -0.31 respectively). The other datasets are well represented by these two 

examples.  

For each study participant and both missions, Pearson Correlation Coefficients were 

calculated between the system-generated predicted mental workload and each participant’s 

assessed subjective mental workload (both before, and after they had been shown the system-

generated prediction). These correlation coefficients are given in Table 4.4. For the five 

missions for which the system-generated predicted mental workload was corrected post-

mission execution, the coefficients for both the real-time and the corrected datasets are 

provided. Summary statistics for data provided in Table 4.4 are given in Table 4.5. 

Fig. 4.10 Subjective and predicted mental workload over the course of simulated helicopter missions. The participant’s 
subjective mental workload both before and after seeing the system-generated prediction are plotted. The top plot shows the 
data yielding the highest Pearson’s correlation coefficient (0.69) and the bottom plot shows the data yielding the lowest 
Pearson’s correlation coefficient (-0.31).  
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Table 4.4 Complete mental workload correlation statistics for each participant 

Participant 
ID 

Mission 
ID 

Real-Time/Uncorrected Corrected 
Before View 
Prediction 

After View 
Prediction 

Before View 
Prediction 

After View 
Prediction 

S1 
M1 0.3601 0.3601   

M2 0.5742 0.6486   

S2 
M1 0.3745 0.4595   

M2 0.1045 0.1284   

S3 
M1 0.6576 0.6576   

M2 0.6095 0.6095   

S4 
M1 0.4007 0.3947   

M2 - - 0.5184 0.5184 

S5 
M1 0.1916 0.2933   

M2 0.2127 0.4063   

S6 
M1 0.5083 0.5013   

M2 0.1828 0.1828   

S7 
M1 0.2722 0.3045   

M2 0.4422 0.4601   

S8 
M1 0.3993 0.4248   

M2 0.4101 0.4166 0.4755 0.4527 

S9 
M1 0.3850 0.4808   

M2 0.3815 0.4787   

S10 
M1 0.2359 0.2457   

M2 -0.1350 -0.1284 0.3855 0.3199 

P1 
M1 0.3362 0.3362   

M2 0.1962 0.4024   

P2 
M1 0.4935 0.4935   

M2 0.4544 0.4544   

P3 
M1 0.1910 0.2590   

M2 0.4154 0.4154   

P4 
M1 0.5126 0.5126 0.5077 0.5077 

M2 0.2444 0.2470 0.3352 0.2894 

P5 
M1 0.0699 0.0699   

M2 0.0492 0.0492   

P6 
M1 0.4108 0.4108   

M2 0.1418 0.1418   

P7 
M1 0.4518 0.4677   

M2 0.5880 0.6054   

P8 
M1 -0.1866 -0.1441   

M2 -0.3291 -0.3125   

P9 
M1 0.2667 0.2765   

M2 0.1271 0.1720   

P10 
M1 0.4002 0.4677   

M2 0.6121 0.6904   

All values represent the Pearson Correlation Coefficient between participant-provided subjective 
mental workload and system-generated predicted mental workload.  
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Table 4.5 Complete summary statistics of all mental workload correlation coefficients 

  Real-time/Uncorrected Corrected 

  Mission 1 Mission 2 Both Mission 1 Mission 2 Both 

Before 
View 

Prediction 

All Participants 0.34±0.18 0.28±0.25 0.31±0.21 0.34±0.18 0.32±0.23 0.33±0.21 

Students 0.38±0.13 0.31±0.23 0.35±0.18 0.38±0.13 0.39±0.16 0.38±0.15 

Pilots 0.29±0.21 0.25±0.27 0.27±0.24 0.29±0.21 0.26±0.27 0.28±0.24 

After 
View 

Prediction 

All Participants 0.36±0.17 0.32±0.26 0.34±0.22 0.36±0.17 0.36±0.24 0.36±0.21 

Students 0.41±0.11 0.36±0.24 0.39±018 0.41±0.11 0.42±0.16 0.42±0.14 

Pilots 0.31±0.20 0.29±0.28 0.30±0.24 0.31±0.20 0.29±0.28 0.30±0.24 

All values show the population mean and one standard deviation from the mean. 

 

  

Table 4.6. Focused summary of the correlation analysis between subjective and predicted mental workload. The data 
in this table is taken from the lower-right quadrant of Table 4.5 representing the correlation between the participant’s 
subjective workload after viewing the real-time prediction and the system-generated prediction (corrected in 5 of the 

40 cases).  

 Mission 1 Mission 2 Both 

All Participants 0.36±0.17 0.36±0.24 0.36±0.21 

Students Only 0.41±0.11 0.42±0.16 0.42±0.14 

Pilots Only 0.31±0.20 0.29±0.29 0.30±0.24 
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A focused summary of the correlation analysis between participant subjective mental 

workload and predicted mental workload is provided in Table 4.6. Across all participants and 

missions, the average Pearson correlation coefficient is 0.36 with a standard deviation of 0.21. 

Correlation coefficients for each participant across both missions (given numerically in Table 

4.4) are visualized in Fig. 4.11. This figure enables the visual assessment of how well subjective 

mental workload was predicted for each participant individually. To determine whether or not 

there was a statistical difference between Mission 1 and Mission 2 across all participants, paired 

t-tests were performed. The assumption that the differences between pairs should be 

approximately normally distributed was verified via a Shapiro-Wilk test for normality which 

concluded there was insufficient evidence to reject this hypothesis. The paired t-tests yielded 

p-values greater than 0.05 providing insufficient evidence to reject the null hypothesis of 

identical averages. Thus, it cannot be concluded that the mean correlation coefficient differed 

from Mission 1 to Mission 2.  

The results of the feature utility analysis are summarized in Table 4.7. It is noted that 

the feature yielding the largest average correlation coefficient (in magnitude) was σHHb. Thus, 

on average, this feature correlated most strongly with the participant’s subjective mental 

workload. It is also noted that this feature’s average correlation of -0.41 is greater in magnitude 

Fig. 4.11 Grouped scatter plots of the correlation between subjective and predicted mental workload. The plots show the 
increase or decrease in correlation between the first and second simulated missions for student (left) and pilot (right) 
participants. 
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than the average correlation coefficient between subjective and predicted mental workload of 

0.36. The table also provides the summary statistics for the paired difference between Mission 

1 and Mission 2 across participants in the right-most column “Paired ∆.” From this dataset, it 

is noted that “gazeBlinkPerMin_60s” yielded correlation coefficients of the greatest difference 

between missions. 

A portion of the data presented in Table 4.7 is visualized in Fig. 4.12 with paired box-

and-whisker plots of the linear correlation between individual features and subjective mental 

workload. There, again sorted by the magnitude of the mean correlation coefficient across 

participants, one can visualize the linear correlation between individual features and subjective 

mental workload. 

Pertaining to the relationship between head tilt and fNIRS introduced in Section 2.1.3, 

the correlation between head tilt and change in oxygenated hemoglobin across all participants 

and missions resulted in an average Pearson’s correlation coefficient of -0.08 with a standard 

deviation of 0.16. Of the 40 missions flown by the 20 participants, the correlation was found 

to be weakly positive for 12 of the 40 missions. The correlation was found to be weakly positive 

Table 4.7 Correlation summary statistics between subjective mental workload and individual features. All values are 
mean Pearson correlation coefficients and one standard deviation from the mean across all participants. The individual 
features are sorted by the absolute value of the aggregate mean correlation coefficient.  

Feature Aggregate Mission 1 Mission 2 Paired ∆ 

Pred. Mental Workload* 0.36±0.21 0.36±0.17 0.35±0.24 -0.01±0.18 

σHHb -0.41±0.20 -0.43±0.22 -0.39±0.18 0.04±0.19 

σO2Hb -0.38±0.20 -0.38±0.22 -0.37±0.18 0.00±0.14 

HR 0.27±0.24 0.25±0.25 0.29±0.24 0.04±0.24 

HRV -0.23±0.24 -0.24±0.23 -0.22±0.25 0.01±0.20 

respRate 0.19±0.17 0.22±0.16 0.15±0.18 -0.06±0.16 

gazeBlinkPerMin_60s -0.18±0.21 -0.26±0.18 -0.11±0.21 0.14±0.24 

gazeSaccadePerSec_60s 0.16±0.28 0.13±0.31 0.19±0.24 0.06±0.33 

gazeChangePerSec_60s -0.14±0.27 -0.20±0.26 -0.07±0.27 0.13±0.39 

gazeSaccadePerSec_5s 0.08±0.16 0.06±0.17 0.10±0.15 0.04±0.19 

EDA -0.07±0.27 -0.07±0.30 -0.06±0.24 0.01±0.27 

EDA_WL_20s -0.06±0.22 -0.06±0.25 -0.07±0.19 -0.01±0.24 

mean_O2Hb 0.06±0.15 0.04±0.16 0.09±0.15 0.04±0.19 

gazeChangePerSec_5s -0.06±0.15 -0.09±0.15 -0.03±0.14 0.07±0.21 

LF/HF -0.04±0.25 -0.01±0.26 -0.07±0.25 -0.05±0.22 

Spatial Asymmetry O2Hb 0.03±0.17 0.01±0.15 0.05±0.19 0.03±0.27 

LF/HF_slope 0.02±0.10 0.01±0.11 0.02±0.10 0.00±0.14 

EDA_slope -0.01±0.04 -0.02±0.05 -0.01±0.03 0.00±0.04 

µHHb 0.00±0.13 0.03±0.12 -0.02±0.14 -0.04±0.16 
* Predicted Mental Workload is not an individual feature but the prediction resulting from the 

linear regression model fusing all listed features.  
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for 8 of the 20 participants during at least one of the two missions. It is noted that the average 

standard deviation of head tilt across all participants is 5.77 degrees.  

Regarding the changing of one’s subjective mental workload when presented with a 

system-generated prediction, 16 of the 20 participants (80%) modified their subjective mental 

workload assessment to more closely align with the system-generated prediction after being 

presented with the system’s predicted mental workload for at least one of the two simulated 

missions flown (9 of the 10 student participants and 7 of the 10 trained pilots). Across both 

missions, 26 of the 40 subjective assessments (65%) were modified (15 of the 20 missions 

flown by the student participants and 11 of the 20 missions flown by the pilots). Shown 

previously, Fig. 4.10 presents representative plots of these changes. In the upper plot, it can be 

seen that Participant P10 modified their initial assessment at multiple points to more closely 

match the predicted value. In the lower plot, it is shown that Participant P8 modified their initial 

assessment only once (near the 19-minute mark) and only slightly. The data in Table 4.5 

quantifies the effect of these changes. Before viewing the system-generated prediction, across 

all participants and both missions, the average correlation coefficient between predicted and 

subjective mental workload is 0.33±0.21. After viewing the system-generated prediction and 

having an opportunity to update their subjective assessment, the average correlation coefficient 

increases slightly to 0.36±0.21.  

Fig. 4.12 Paired box-and-whisker plots of the linear correlation between individual features and subjective mental workload.
Features are sorted by the absolute value of their mean Pearson correlation coefficient. Plotted are the nine features with 
correlation coefficients of the largest magnitude. Additionally, the correlation between predicted and subjective mental 
workload is also plotted (far left). Box edges show the quartiles of the dataset while the whiskers extend to show the rest of 
the distribution (except for points determined to be outliers which are denoted as small diamonds).  
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Next, to assess the objective response of participants to aural notifications of perceived 

high mental workload, all scenarios in which a real-time auto-notification were triggered due 

to a predicted mental workload greater than 0.8 out of 1 are time-synchronized and plotted in 

Fig. 4.13. The plot includes 58 scenarios across 8 study participants during which the 

aforementioned criteria were met and the notifications were delivered. No form of assistance 

was provided to the participants following notification of high mental workload. The figure 

illustrates that, on average, the notifications bring about a rapid and significant reduction in the 

participant’s predicted mental workload. It is hypothesized that upon receiving the 

notifications, the study participants applied self-regulatory strategies which influenced the 

recorded physiological signals used to predict mental workload.  

Finally, from the post-flight questionnaire, it is concluded that the subjective workload 

analysis tool facilitated the acquisition of responses from the participants. To the question “On 

a scale from 1 to 5 where 1 is “very easy” and 5 is “very hard,” how difficult was it for you to 

subjectively assess your mental workload after mission completion using the provided video 

playback tool?” the average response is 2.1±0.62 suggesting it was moderately simple to 

provide the assessment. The highest rating of “4,” from Participant P2, suggests that even with 

the video playback tool, the process remains difficult for some.  

The post-flight questionnaire provided the pilot and student participants an opportunity 

to share their subjective perceptions and feelings about various aspects of an in-cockpit mental 

workload prediction system (not necessarily the specific system tested in this experiment). 

Although not a large population from which to establish engineering or design requirements, 

the responses provide a considerable range of thoughtful responses and are given in Appendix 

Fig. 4.13 Time-synchronized plots of predicted mental workload centered on notifications of high workload. Time t = 0 
corresponds to the moment notifications of perceived high workload were provided aurally to study participants. From the 
grand average plot, it is evident that despite the large variability across scenarios, on average, the notifications have a rapid 
and significant impact on the temporal dynamics of the predicted mental workload signal. It is hypothesized that study 
participants applied self-regulatory strategies to regulate the recorded physiological signals used to predict mental workload. 
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D. Responses range from the negative (“such systems will be more of a distraction than a help”) 

to the positive (“such systems could significantly increase flight safety”), and include multiple 

suggestions to future system researchers and developers. In general, the surveyed active-duty 

military pilots are receptive to and welcome the technology.  

4.4 Discussion 

This work presents the first known study in which fNIRS, ECG, EDA, respiration rate, 

and eye movement data were used to predict the mental workload level of pilots during 

simulated flight. Previous studies have used one or more of these sensors for related purposes 

yet this work demonstrates a furthering of the work by applying a practical multi-modal 

approach to predicting the pilot’s mental workload in real-time using this set of 

psychophysiological signals. 

Across all participants and both missions, the average Pearson correlation coefficient 

between the participant’s subjective mental workload and the system’s real-time predicted 

mental workload is 0.36 with a standard deviation of 0.21. This value suggests that the multi-

modal physiological-based mental workload prediction correlates moderately with the 

participant’s subjectively-assessed mental workload throughout simulated flight.  

It was determined that the mean correlation coefficient did not differ statistically 

significantly from Mission 1 to Mission 2. This finding speaks against the hypothesis that the 

prediction model tuned to the individual pilot would outperform a model with default weights. 

Possible explanations for this observation include: 1) differing workload-contributing factors 

between Mission 1 and Mission 2) the inability of the participants to provide a reliable 

subjective mental workload assessment.  

This first explanation centers around the idea that if mental workload is induced which 

requires focused visual attention outside the cockpit for example (such as low-level flight 

through a canyon), and a prediction model is trained on this dataset, it will be “tuned” for this 

visually-demanding environment. If then a high level of mental workload is induced in another 

setting not requiring focused visual attention, the trained prediction model would be inaccurate. 

This, in essence, describes a foundational requirement for supervised machine learning, that 

the test environment very nearly resembles the training environment. The data presented in 

Table 4.7 supports this argument. It is noted that the eye-movement-related features 

(specifically “gazeChangePerSec_60s”) differed more between Mission 1 and Mission 2 than 

the other features. Early work on pilot mental workload prediction showed that eye-related 
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features were sensitive to visual workload [35]. The finding that these eye-movement-related 

features differed between missions suggests that the visual demands were different between 

the two missions.  

The second possible explanation for the observed result points to another foundational 

requirement for supervised machine learning – that the “truth” is properly labeled. In this case, 

the model is trained on a subjective evaluation of mental workload which, although great care 

was taken to assess as accurately as possible, is imperfect. It is likely the reported assessment 

is influenced by the participant’s perceived performance and not an unbiased reflection of their 

actual mental workload experienced during flight. This influence has been suggested and 

reported by others in previously-published works [36]. Additionally, after observing significant 

deviations between physiological responses during flight and participant assessment of mental 

workload, support is given to the conclusion presented in [56] that it is not possible to evaluate 

a pilot’s mental workload by subjective measures alone. Thus, we cannot assume that the 

subjective assessment is the “truth” we are seeking to predict. The difficulties of training a 

model on the entire flight-experience envelope and of obtaining properly-labeled “truth” 

highlight the challenge associated with this approach.  

Another interesting aspect of these results is the fact that the predicted mental workload 

signal yields an average correlation coefficient of less magnitude than the individual features 

σHHb and σO2Hb (see Table 4.7). This is an unexpected result. It was hypothesized that a signal 

incorporating a variety of physiological inputs would correlate more strongly with subjective 

mental workload than any one signal alone. It may thus be suggested that a system aimed at 

predicting subjective mental workload should utilize these features alone and set aside the 

others. Furthermore, it could be suggested that σO2Hb could be used over σHHb as a single 

indicator of subjective mental workload due to the minimal difference in mean correlation 

between missions (mean paired difference of 0.00±0.14). This conclusion may be misleading, 

however. First of all, as discussed previously, the subjective mental workload assessment 

provided by the participants is very likely not the absolute “truth” being sought. Rather, it is 

likely that variations in the other signals contain information predictive of mental workload of 

which the participants are less cognizant. Additionally, it may be found that the fused signal is 

more robust to variations in mental workload conditions as is suggested by the data reported in 

Table 4.7 where it is noted that the difference in mean correlation between missions is very 

small. 



82 
 

The finding that the two fNIRS features (σHHb and σO2Hb) correlated more strongly with 

participant subjective mental workload than any of the other features is significant. The 

significance of these features has not been previously reported. This is an exciting finding. 

Existing literature suggests that µHHb and µO2Hb are sensitive to mental workload, yet the 

correlation results summarized in Table 4.7 suggest these particular features correlate quite 

poorly with subjective mental workload. Indeed, µHHb is determined to be the feature 

correlating least strongly of all eighteen features analyzed. On the other hand, the instantaneous 

variance of oxygenated and deoxygenated hemoglobin concentration changes across channels 

are most strongly correlated with subjective mental workload of all features analyzed. Although 

the acquisition and extraction of these fNIRS features is more challenging than others such as 

heart rate, there is reason to believe it may be possible to incorporate an fNIRS acquisition 

system into a pilot’s helmet enabling the use of these signals in actual flight. Between EEG and 

fNIRS cortical-activity-monitoring technologies, fNIRS is more likely to be realized 

operationally due to its ease of setup and its robustness against motion artifacts. Although 

preliminary testing showed a relationship between head tilt and fNIRS signals (see Section 

2.1.3), data from this study showed only a weak correlation between head tilt and change in 

oxygenated hemoglobin in the pre-frontal cortex suggesting the influence of head tilt on 

recorded fNIRS signals in this environment is not a significant confounding factor. This is 

likely because approximately 95% of the time, participants’ heads were tilted within the small 

range of only approximately 20 degrees (four times the standard deviation of 5.77 degrees). 

Certainly, challenges remain related to the acquisition of fNIRS signals in real-flight conditions 

which have not been addressed in this work such as variations in ultraviolet light (UV) exposure 

and movement-induced g-forces.  

Additionally, the finding that 80% of participants changed their subjective assessment 

of workload after having been presented with a system-generated prediction provides evidence 

that such subjective assessments can be aided by the use of objective physiological data. 

Reviewing one’s physiological data supports recall when evaluating one’s mental workload. It 

was poignant that one of the participants would state in their post-flight questionnaire regarding 

the post-flight workload analysis “[the system] seemed to capture my mental state better than 

I could…”   

Finally, visualizing the rapid effect notifications of high workload have on a prediction 

of mental workload is exciting. As seen in Fig. 4.13, across many instances in which such 

notifications were given, the average response shows a marked response within seconds of 
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notification delivery. It is noteworthy that the near immediate interruption of the increasing 

predicted mental workload and its subsequent decline following notification is not the result of 

task elimination or simplification assistance. Rather, the effect is attributed to the participant’s 

self-regulation of their physiological state. This self-regulation may be just what is needed to 

ensure a pilot remains in a productive and effective mental state while flying. The generation 

of this compelling illustration was enabled by the novel real-time continuous mental workload 

prediction system and online and transparent triggering system presented in this work.  
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As the aircraft cockpit tends towards single-pilot operations, the monitoring of pilot 

mental state must be augmented by tools designed for this purpose. This work has presented 

an approach to estimating pilot mental workload in real-time through an analysis and 

aggregation of various physiological and behavioral signals through a linear model. The 

estimated, or predicted, mental workload signal correlated moderately with the subjective 

evaluation provided by the student and active-duty pilot participants. Correlation between 

predicted and subjective mental workload averaged 0.36±0.21 across all participants with the 

strongest correlation being 0.69.  

Due to the lack of precision with the measurement, it is suggested that the metric be 

used as a broad indicator, rather than a sole driver of a multi-level adaptive automation system. 

It may likely be effectively used as a trigger to notify a crew member, supporting ground-

station personnel, or even the pilot themselves of potentially undesirable states. Although not 

rigorously tested in this experiment, notifications of high mental workload were provided on 

multiple occasions and it was noted that these notifications resulted in the near-immediate 

application of self-adaptive strategies which yielded a decrease in predicted mental workload. 

These self-adaptive strategies included weight shifting, deep breathing, and verbalization of 

the situation. Future experimentation may determine these observations were not 

circumstantial and that such notifications aid the pilot in maintaining a safe and productive 

mental workload level.  

Additionally, it is offered that the moderate correlation between predicted and 

subjective mental workload is not as insignificant as it may appear. As mentioned previously, 

the subjective mental workload provided by the participants may not be the full “truth” we aim 

to predict. Rather, the fusion of various physiological signals shown to respond to stress and 

mental workload may generate a metric even more sensitive to experienced mental workload 

than the participant can effectively assess. This argument is strengthened noting that of the 20 

participants, 16 modified their subjective mental workload assessment after having been 

5 Conclusion
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presented with the predicted value without any significant encouragement to do so. When 

comparing their subjective assessment with the newly-displayed predicted value, many would 

express ideas such as “Yes, I suppose that was more difficult during that time than I previously 

noted” or “Yes, I did start feeling anxious about the situation earlier than I reported.” These 

edits to the participants’ subjective mental workload support the idea that the physiological-

based mental workload metric may, at times, be more representative of a person’s mental 

workload than they can express themselves. 

5.1 Summary of Contributions 

This work has furthered both the theoretical and scientific basis as well as the practical 

application of physiological monitoring in the cockpit to assess pilot mental workload in real-

time. 

5.1.1 Theoretical and Scientific Contributions 

First, a theoretical basis for monitoring physiological measures of pilots was established 

and supported by a systematic review and summary of previously-published works. This 

foundational work established a relationship between task difficulty, performance, and mental 

workload. It supported the conclusion that mental workload is experienced uniquely by an 

individual and that it cannot be deduced through an analysis of the task load alone. Ultimately, 

this theoretical work concluded that physiological monitoring may provide an important input 

source to a human-machine system aimed at optimizing performance. The summary of 

previously-published works illustrated the potential utility of various physiological signals in 

the pursuit of this goal. 

Next, a unique combination of physiological signals was selected and utilized for real-

time mental workload prediction. The selected signals supported a “full-body assessment” by 

monitoring many of the human body’s physiological sub-systems. The central nervous system 

was probed through functional near-infrared spectroscopy (fNIRS). The activity of the 

sympathetic nervous system was observed through the collection of electrodermal activity 

(EDA). The respiratory system was monitored through chest and stomach stretch sensors. Data 

pertinent to the cardiovascular system was collected through 3-lead electrocardiography 

(ECG). Finally, multiple features related to eye movement were also collected. Through the 

utilization of these many signals and extracted features, a prediction of mental workload was 

generated correlating with the participants’ subjective mental workload with an average 

Pearson’s correlation coefficient of 0.36 across all 20 participants. 
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An assessment was conducted of the 18 features utilized in the real-time mental 

workload prediction system. It was shown that features representing the instantaneous variance 

of the signals measuring oxygenated and deoxygenated hemoglobin in the outer surface of the 

prefrontal cortex had the strongest linear correlation with participant subjective mental 

workload. Previously-published works have not presented this fNIRS-extracted feature as 

being sensitive to mental workload. Although this finding is significant, it is also argued that 

the other signals which did not have as strong a linear correlation with subjective mental 

workload may nonetheless be sensitive to or predictive of mental states not captured by one’s 

subjective assessment of mental workload. 

This work presented a novel approach for evaluating subjective mental workload and 

obtaining a continuous metric of its value over the course of a defined period. Rather than 

through mid-task questioning, post-task questionnaires, or other methods used commonly in 

the field, this work utilized a post-task immersion to enable the continuous assessment of 

mental workload over the duration of the task. This immersion was supported by a video and 

audio playback of the mission (including all displays in and out of the cockpit) as well as a 

presentation of the gaze location of the participant. This continuous-valued metric could then 

be used in conjunction with the other continuous-valued physiological signals in various 

machine learning and statistical applications. The continuous-valued metric, in conjunction 

with the transparent triggering system (built into PhysHub), also enabled the novel analysis of 

mental workload following notifications of high workload. The resulting figure (Fig. 4.13) and 

the clarity by which it illustrates the potential benefit of real-time workload notifications in the 

cockpit is original in the field.   

Finally, the results presented in this work highlight the challenge associated with 

generating a predictive model from one flight scenario and applying it in a second flight 

scenario when the flight conditions are not identical between flights. The differences in high-

workload-producing tasks between the first and second experimental missions likely 

contributed to the result that the correlation between subjective and predicted mental workload 

on the second mission was not as strong as expected. It is thus noted that future work ensures 

all sources of mental workload are considered in designing a training mission on which a pilot-

adapted model is trained. 
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5.1.2 Practical Application Contributions 

This work furthered the practical implementation of a real-time pilot physiological 

monitoring system in multiple ways. The work demonstrated a working system integrated into 

a research helicopter simulator capable of real-time physiological signal processing and 

visualization. The developed system incorporates the simultaneous processing and exploitation 

of more physiological signals than any previously documented system. The system’s code was 

written in multiple programming languages including C++, Python, and other shell scripting 

languages. The system demonstrated an edge-computing paradigm where low latency, high-

frequency data processing was conducted at the nodes and compressed results were transmitted 

to a centralized monitoring and processing center (“PhysHub”) at low frequencies. 

One specific element of the implemented system of particular novelty is the prototype 

in-cockpit display and pilot interface. Through this display, pilots could gain insights into their 

physiological state and that of their co-pilot. These systems (the humans) are arguably the most 

important systems within the human-machine team and until now, the assessment of these 

systems in the cockpit of a helicopter was unsupported by technological means. It is strongly 

suggested that space be allocated to the presentation of this important information within 

cockpits. The prototyped display also provides the pilots with an interface to the mental 

workload notification system. Through the display, the pilots can set the mental workload 

threshold and frequency at which they wish to receive notifications both for themselves and for 

their co-pilot. This feature allows for the personal customization of the human-machine team 

by the pilots in real-time. 

Another practical contribution made by this work is the design and implementation of 

the centralized monitoring and processing center, “PhysHub.” This tool enables a rapid 

assessment of the system including its many sub-systems. It also offers a novel approach for 

implementing a transparent and customizable triggering system capable of reacting to various 

measured states. Triggers can be easily imported, exported, and modified with unique 

thresholds for each pilot or mission. For example, a collision warning trigger can be easily 

modified by the pilot based on their preferred risk tolerance. Additionally, the tool supports the 

live activation or deactivation of individual triggers. 

Together, the centralized processing center “PhysHub,” and the in-cockpit system 

interface provide transparency for both the pilots and the experimenter. For an effective human-

machine team, transparency into system states, modes, and settings is critically important. I 
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believe any pilot adaptive-assistant system designed without the transparency of these tools 

will not be accepted or found useful to the pilots for whom they are intended to assist. 

5.2 Future Work 

The tools and findings presented in this work could be built upon in multiple avenues 

to further advance the field.  

5.2.1 Longitudinal Studies of Pilot Physiological Data and Subjective Mental 

Workload            

Pilot physiology as recorded through the various means presented in this work as well 

as their subjective assessment of mental workload should be assessed over multiple simulated 

flights spanning multiple days or weeks. Rather than observing each pilot during only two 

missions, it would be informative to assess these metrics over the course of many (e.g., 10) 

missions spanning multiple weeks. Longitudinal studies of this sort would provide critical 

insights into the utility of a system over these longer timescales. It is hypothesized that taking 

into account the pilot’s baseline physiology (as was done in this work) is very important. It 

may, however, also be found that taking into account the pilot’s baseline state alone is 

insufficient for informing the prediction model and that some method of online re-training of 

the prediction model is required. Of particular value would be the assessment of pilot subjective 

mental workload over these missions. It would be informative to see how participants assessed 

their mental workload on identical (or nearly identical) missions flown days apart. 

Additionally, analyzing the stability of individual physiological features over these many 

missions would help identify features of most utility in this setting.  

5.2.2 Further Exploration of fNIRS Features 

This work found two previously unreported fNIRS features more strongly correlated 

with participant subjective mental workload than any of the other more traditional features such 

as heart rate or respiration rate. Specifically, it was found that the instantaneous variability of 

all oxygenated and deoxygenated hemoglobin channels declined as subjective mental workload 

increased. Because this finding is unique among the published literature, further exploration of 

these features should be conducted to validate or contradict this finding. Additionally, 

experimentation could be conducted to determine the task conditions which most significantly 

affect this feature. It could be determined that the feature is more sensitive to tasks of one type 

than another.  
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5.2.3 Suitability Studies of fNIRS in Real Flight Conditions 

Existing published literature suggests it is possible to collect and extract features from 

fNIRS in real flight conditions [25], [26]. Due to the significant interference observed between 

the eye-tracking and fNIRS systems however (documented in section 2.1.1), substantial 

challenges are anticipated in processing the fNIRS signal given the impact of g-forces, head 

tilt, and changing light conditions (specifically infrared light) experienced during actual flight. 

If it is found that the extraction of robust workload-relevant features from fNIRS in real flight 

conditions is not feasible, effort could be directed toward the utilization of the signals in 

stationary systems such as training simulators or remotely-piloted aircraft control systems.  

5.2.4 Integration into an Assistant System and Acceptability Studies 

Finally, this work could be advanced by applying the developed mental workload 

prediction algorithm to a pilot assistant system based on transparent and editable triggering. 

The triggering system described in sections 3.2 and 3.4 could be further developed to enable 

the pilot full control of all triggers while in the cockpit. Additionally, the eye-related features 

could be removed as inputs to the overall mental workload prediction. Instead, these features 

could be used as inputs to a “visual capacity” metric with other applications. As discussed in 

section 4.4, these features are highly situation dependent and may be more appropriately 

applied to assessing the visual modality of workload (when looked at through the lens of 

Multiple Resource Theory [6]). 

In addition to other potential triggers built into the system, notifications of high mental 

workload should be explicitly evaluated for their utility and acceptability. Situations should be 

simulated which lead to the triggering of these notifications and quantitative and qualitative 

assessments should be conducted to evaluate their impact on the participant and their 

performance. The physiological data of the participants should be assessed for signs of self-

adaptive strategies to lower their physiological strain. Task performance should be assessed 

throughout the increase in predicted mental workload and moments following notification of 

high mental workload. Additionally, questionnaires should be utilized to evaluate the 

subjective acceptability of the notifications.  

Another aspect of the triggering system which could be studied is the appropriate 

recipient of high mental workload notifications and how they should be delivered. It may be 

determined that a co-pilot or ground-station operator is a more appropriate recipient of this 



90 
 

information than the pilot experiencing the high mental workload. These individuals could then 

adapt to the situation and communicate with the pilot if necessary and appropriate.  

 Ultimately, the system will need to be intuitive, reliable, and valuable to the human 

pilots for whom it is intended to support. As with all human-machine systems, assessing and 

achieving this state will require ergonomic and usability studies. 
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Appendix A Output Variables Broadcast by the Proprietary 

SmartEye Pro Software 

Table A.0.1 provides a list of the variables broadcast by the proprietary SmartEye Pro 

software over Transmission Control Protocol (TCP). The non-real-time stream was found to 

follow the real-time stream by approximately 0.74 seconds. For a description of each variable, 

readers are directed to the company’s User’s Guide. 

Table A.0.1 Output variables from the proprietary SmartEye Pro software.  

Real-time output Non-real-time output 

timestamp timestamp 

object saccade 

object x (pixel) fixation 

object y (pixel) blink 

object stdev x (pixel) frame number 

object stdev y (pixel) estimated delay 

pearson rho real-time clock 

gaze direction x frame rate 

gaze direction y  

gaze direction z  

gaze heading  

gaze pitch  

head position x  

head position y  

head position z  

head heading  

head pitch  

head roll  

pupil diameter  

pupil diameter quality  

filtered pupil diameter  

filtered pupil diameter quality  

frame number  

estimated delay  

real-time clock  

frame rate  
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Appendix B Custom-Built ECG and EDA Processing GUI 

Below is a screenshot of the graphical user interface (GUI) enabling the experimenter 

to manipulate the various ECG and EDA processing tools developed for this work. The tool 

can process and display real-time ECG and EDA from two participants simultaneously (“Pilot 

Left” and “Pilot Right”).  
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Appendix C Study Participant Consent Form 
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Appendix D Pre- and Post-Experiment Questionnaire Results  

All study participants completed pre- and post-experiment questionnaires in 

conjunction with the experiment presented in Section 4 of this work. The pre-experiment 

questionnaire was conducted to assess flight experience and determine participant readiness to 

engage in the experiment. The post-experiment questionnaire was conducted to assess 

subjective assessment of the experience and gather feedback regarding an in-cockpit 

physiological monitoring and notification system. Questions and answers have been translated 

from German into English for this report.  

Pre-Experiment Questionnaire  

Questions of and participant responses to the pre-experiment questionnaire are shown 
in Table A.0.2. 

Table A.0.2 Participant responses to the pre-experiment questionnaire 

Participant Age Gender Flight Experience 
Pilot 1 43 M 1900 hrs 
Pilot 2 29 M 170 hrs 
Pilot 3 51 M 3000 hrs 
Pilot 4 43 M 3000 hrs 
Pilot 5 43 M 2200 hrs 
Pilot 6 51 M 3600 hrs 
Pilot 7 44 M 2500 hrs 
Pilot 8 48 M 4000 hrs 
Pilot 9 25 M Test Flight Engineer. Many hours helicopter simulator 

Pilot 10 44 M 2000 hrs 
Student 1 21 F 2 hrs lab simulator 
Student 2 22 F Flight screening tests, 15 min lab simulator 
Student 3 23 M 120 hrs glider and motor aircraft 
Student 4 25 M 100 hrs home computer simulator, 1 hr lab simulator 
Student 5 22 M No flight experience (real or sim) 
Student 6 22 M 200 hrs glider and motor aircraft, 1 hr lab simulator, flight screening test 
Student 7 23 M 600 hrs glider, home computer simulator, 30 min lab sim 
Student 8 24 M Flight screening tests, 4 hrs helicopter simulator 
Student 9 20 M Flight screening tests 

Student 10 25 M Flight screening tests, home computer simulator 

Participant 
Current 

local time 
How do you currently feel? 

Hours of sleep 
last night 

Coffee/caffeine 
today?  

Pilot 1 07:01 Good/As Usual 6 No 
Pilot 2 07:14 Good/As Usual 7 No 
Pilot 3 07:02 Good/As Usual 6 No 
Pilot 4 06:49 Good/As Usual 7-8 No 
Pilot 5 06:55 Good/As Usual 7.5 No 
Pilot 6 07:06 Good/As Usual 8 No 
Pilot 7 07:02 Good/As Usual 6 No 
Pilot 8 07:01 Good/As Usual 6 No 
Pilot 9 06:55 Good/As Usual 6 No 

Pilot 10 07:01 Good/As Usual 7 No 
Student 1 09:14 Good/As Usual 7 No 
Student 2 08:17 Somewhat more tired than usual 6.5 No 
Student 3 11:06 Good/As Usual 7.5 1 cup, 4 hr prior 
Student 4 13:59  Good/As Usual 8.5 No 
Student 5 10:42 Good/As Usual 8 No 
Student 6 14:06 Good/As Usual 8 1 cup, 5 hr prior 
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Student 7 07:58 Good/As Usual 8 No 
Student 8 11:00 Good/As Usual 7.5 No 
Student 9 14:02 Good/As Usual 8 No 

Student 10 07:55 Good/As Usual 7.5 No 
* Answer options for “How do you currently feel” included: “more tired than usual,” “good/as usual,” and 

“more alert than usual.”  

 

Post-Experiment Questionnaire  

Participant responses to the first four questions of the post-experiment questionnaire 

are shown in Table A.0.3. Questions 5 through 8 were asked of all participants while questions 

9 through 14 were asked only of the operational military helicopter pilots.  

Q1 On a scale from 1 to 5 where 1 is “fully disengaged” and 5 is “fully invested,” to 
what extent do you feel you were mentally invested in the successful completion of 
the first mission? 

Q2 On a scale from 1 to 5 where 1 is “fully disengaged” and 5 is “fully invested,” to 
what extent do you feel you were mentally invested in the successful completion of 
the second mission? 

Q3 On a scale from 1 to 5 where 1 is “very easy” and 5 is “very difficult,” how difficult 
was it for you to subjectively assess your mental workload after mission completion 
(using the provided video playback tool)? 

Q4 Has your physiological data ever been monitored during simulated or actual flight? 

Table A.0.3 Participant responses to questions 1-4 of the post-experiment questionnaire 

Participant Q1 Q2 Q3 Q4 
Pilot 1 4 4 2 no 
Pilot 2 5 5 4 no 
Pilot 3 4 4 3 no 
Pilot 4 4 4 2 no 
Pilot 5 5 5 2 YES 
Pilot 6 5 5 2 no 
Pilot 7 4 4 1 no 
Pilot 8 5 5 1 YES 
Pilot 9 4 5 3 no 

Pilot 10 5 5 2 YES 
Student 1 5 5 2 - 
Student 2 3 4 2 - 
Student 3 5 5 2 - 
Student 4 5 5 2 - 
Student 5 5 4 2 - 
Student 6 5 5 2 - 
Student 7 5 5 2 - 
Student 8 5 5 2 - 
Student 9 4 5 2 - 

Student 10 5 5 2 - 

* Q4 was not asked of student participants 

 

Q5 What do you think of a highly automated system that could respond to your 
physiological state while flying? 

P1 In principle, this could be very helpful. However, like everything in aviation, the interaction between 
pilot and machine must be thoroughly established. 

P2 I hold the promise of the technology in high regard. It could significantly increase flight safety 
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P3 It would be ok if it reacted with tips or notifications, but not ok if it would physically intervene.  

P4 Very interesting. 

P5 Sounds interesting if it was made to work effectively and if there was a benefit. 

P6 Determining how it would react is important. Providing suggestions makes sense. Suggestions to turn on 
the autopilot during a holding pattern or to simplify UAV command tasks could be nice. 

P7 I like it. People often don't accurately assess their own mental state. Receiving a reminder of my high 
stress could be helpful. At times, people may not know they are at their limit. 

P8 I’m not excited about the technology. What do I do with the data it provides? I suppose my acceptance 
would depend on how the system reacts. I must have trust in the system. I would appreciate receiving 
options to resolve problems.  

P9 I support autonomous assistance systems with warnings. Active intervention could only be performed 
with appropriate training of the aircrew (including override capabilities) 

P10 This would be a very good improvement to a cockpit. It is perfect for increasing flight safety. 

S1 I see both sides. Could be overbearing. Important to avoid falsely reporting a high workload. Could 
help to avoid burnout or assist with high workload.  

S2 Hard to say. Seems interesting.  

S3 Reviewing the data after flight could benefit those in training.  

S4 It seems extremely difficult to make it reliable. However, it seemed to capture my mental state better 
than I could after the fact.  

S5 The feedback is perhaps more useful after flight. 

S6 Such a system would be good as long as it only provided suggestions. If it could override pilot controls, 
it would be stressful.  

S7 Difficult to judge. Reporting or acting upon incorrect conclusions would be problematic. 

S8 Well, it was fun today. I think it would be cool.  

S9 As a feedback system, it makes lots of sense. It need not necessarily take action, however.  

S10 I wouldn’t have a problem with it. Could alert someone when they are at their workload limit.  

 

Q6 What benefit could you see in a system that could accurately determine your mental 
workload during flight? 

P1 This would be very beneficial, especially for the post-flight debrief.  

P2 It could prevent excessive demands on the pilot. 

P3 It could give advisory information and display abnormalities. 

P4 It could lead to better situational awareness concerning the remaining capabilities within the 
crew. Improvement of Crew Resource Management (CRM). From my work as a test pilot, I have seen 
this before. 

P5 I can’t imagine such a system helping. Any warnings would likely be distracting when they come right at 
the moment when the workload is high. 

P6 Could benefit training situations by providing feedback. It is possible to get tunnel mental vision while 
flying but student pilots don’t notice this. 

P7 Answered in my previous question. 

P8 It could also warn of low mental workload. It could prevent boredom. 

P9 It could benefit pilots by helping them train to better handle difficult situations. 

P10 It could result in a higher level of air traffic control/mission fulfillment, as it could relieve the pilot in 
critical situations (of high workload) 

S1 Could help to avoid burnout.  

S2 Unsure.  

S3 By reviewing the data after flight, stressful situations could be identified, discussed, and practiced.  

S4 I’m not sure how it could help.  

S5 It could help identify the difficult aspects/moments of flight. These moments could then be trained and 
improved.  

S6 It could be useful for training. It could hide/suppress superfluous information in stressful situations and 
later show it only when I have time to see and process it. 

S7 It could reduce the burden upon me when I have too much. It could allow me to perform a pre-landing 
checklist verbally for example when my hands are needed for manual flight. 

S8 (No answer) 
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S9 I think the system could be helpful/meaningful in routine situations. In combat scenarios, however, I 
know there are situations when you have a high workload and any intervening system would be 
disturbing. 

S10 It could detect pilot performance limits and issue warnings. You could then think about whether to fly or 
not. It could be used to support targeted training. 

 

Q7 What problems could you see with a system that responds to your perceived mental 
workload? 

P1 Warning... psychologizing here… I think you need qualified peer co-pilots with considerable flying 
experience to provide solutions to workload peaks. For example, sequencing. 

P2 It could be too heavily focused on an average pilot and not adapted enough to the particular person. 
Early or false notifications or alarms would result in a loss of trust in the system. 

P3 It could be more of a distraction than a help. Task saturation. 

P4 It could cause the pilot to rely too heavily on the system which is dangerous if a bias exists. 

P5 It could be distracting. When assistance or warnings are given should be established by each pilot 
individually. 

P6 Notification or feedback could be incorrect leading to a loss of trust and system acceptance.  

P7 Trust problems. Trust is lost quickly in computerized systems. 

P8 I see a potential conflict between the pilot’s subjective workload and the system’s prediction. False 
positive warning would be really bad leading to a quick loss of confidence in the system. 

P9 It could distract from the actual situation. 

P10 Workload is very subjective and difficult to determine by measurements. Thus, it is likely alarms would 
annoy or disrupt the pilot. 

S1 Incorrect assessments would be problematic. The pilot must be able to take control. It should be 
calibrated for each pilot individually. 

S2 (No answer) 

S3 It could be wrong and not know it. 

S4 Reliability seems nearly impossible.   

S5 It could be disturbing/distracting during the flight. 

S6 When someone is consciously trying to keep their workload load, it could lead to greater stress.  

S7 False positives are certainly a significant issue. Poorly designed/implemented interventions would do 
more harm than help.  

S8 (No answer) 

S9 People become insecure when they are told they have a high workload. 

S10 Incorrect assessments would be problematic leading to even more mental strain and/or confusion. 

 

Q8 Explain how you felt while subjectively assessing your workload post-flight using 
the video playback tool with the associated editable plot. Was it easy or difficult? 

P1 It was easy because the tool helped me remember almost everything and also the emotions I had at the 
time. 

P2 It was hard for me to remember the details of each situation. More significant events such as landing or 
the tasking of the UAVs were easy to remember and assess. 

P3 It was a bit challenging due to the completely subjective nature of the task. It is easier to do 
comparisons between my experience and physiological data (such as heart rate). 

P4 It wasn’t too difficult. Due to my work as a test pilot, I have done similar things to this in the past.  

P5 Undecided. Not bad, but the fundamental problem is still there. See previous responses.  

P6 I had to get back into the same head-space as when I was flying. 

P7 I could easily make the assessment without issue.  

P8 It was easier to do after flight than during flight as I have done before. Doing it afterward didn’t add an 
additional strain as is the case when asked during flight.  

P9 Quite challenging. Trying to remember after the fact was more difficult than had I been asked in the 
moment. 

P10 It was fairly easy because I could go through the whole mission in a relaxed state. Additionally, I could 
compare the different situations over the entire period. 
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S1 I found watching the situation with the video helped and it afforded me more time to think.  

S2 The playback tool gave a different angle of insight. I could better compare situations with each other. 

S3 With the video, I could put myself back into the situation. I got the feeling back from when I was flying.  

S4 The playback let me see more of the situation. I could compare each situation better with the others. I 
could compare each situation with the entire mission.  

S5 Putting myself back into the situation was exhausting. I think assessing the truth in real-time would have 
been easier. 

S6 The tool allowed me to fill the time between situations of high and low workload/stress with a workload 
assessment.  

S7 I liked being able to make comparisons over the entire flight. This helped me differentiate better between 
different situations. 

S8 Looking back, I could look at the situation more fully/completely and make a better assessment. 

S9 I could think back on the entire flight. This allowed me to better compare the individual moments. 

S10 It was a bit challenging having to “put myself back” into the situation, but it also wasn’t very difficult 
being able to do it while relaxed.  

 

Pilot-only Questions (student participants were not asked) 

Q9 How would you compare the level of mental strain/concentration required or 
experienced during these simulated flights to real flight in an actual helicopter? 
Please explain. 

P1 I think I am calmer in real flight because I feel I have a better command of the system. The visual 
references (when looking outside the cockpit) are (obviously) more realistic and the very helpful 
physical sensations of flight (the “butt meter”) reduces stress considerably. 

P2 Stress during take-off and landing was comparable to a real flight. In the simulator, the flight 
parameters were more difficult to maintain and I was more easily/frequently distracted by small things 
because I was yet familiar with the aircraft. 

P3 I experienced less mental strain in the simulator than in real flight. This is because the consequences of 
mistakes are different. I found it important not to take the "flight behavior" of the simulator too seriously 
so I wouldn’t get too frustrated. The simulator is a training device to evaluate new concepts. 

P4 A simulator never reflects reality and therefore the personal attitude towards flight is also different. I 
knew I could fly a bit more aggressively without anything serious happening. 

P5 My concentration level is similar in both situations. The mental load (“die Belastung”) is higher in 
actual flight however as there are consequences with real flight. 

P6 Real flight requires considerably more mental strain/concentration. In the simulator, I could think “Oh 
it doesn’t matter too much” while during real flight it must be done right. The focus of flight in the 
simulator is different. In the simulator, the focus is on fulfilling the simulated mission. In real flight, the 
main priority is flying. 

P7 Less mental strain/concentration in the simulator than in real flight. In the simulator, there is no danger 
to life. Also, more factors to consider during actual flight such as the co-pilot, weather, radio, visual 
distractions, glare, and other disturbances.  

P8 This is difficult to assess. The simulator is unrealistic, but regardless I find myself getting into the 
scenario. There is a greater basic load (“die Grundbelastung”) in the simulator than in actual flight.  

P9 The two situations are not quite the same because the simulator is artificial, but they are close. The 
mental demand (“der Anspruch”) is similar. 

P10 The simulator is realistic, but the workload in real flight is greater because of the “real” consequences. 
I found myself thinking “Oh it's just a simulation.” However, the difference in workload between the 
simulator and real flight is not great. 

 

Q10 If you answered "yes" to Question 4 about whether or not your physiological data 
has previously been monitored during flight, please describe the situation. 

P1 n/a 

P2 n/a 

P3 n/a 

P4 n/a 
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P5 I participated in a “simulator sickness experiment about 13 years ago. I did not see or discuss the data 
as we did today. 

P6 n/a 

P7 n/a 

P8 I was monitored in both a simulator and actual aircraft for personal health reasons (details omitted for 
participant confidentiality) 

P9 n/a 

P10 I participated in a workload study in an A320 simulator where EEG was measured/collected. I had ECG 
collected during a centrifuge flight. ECG and pulse oximeter measurements were taken during a 
pressure chamber “flight” without oxygen. 

 

Q11 If data collection would not bother or interfere with you, how would you feel about 
your physiological data being monitored by an autonomous system during flight? 

P1 It wouldn’t bother me at all. 

P2 Well, as I said before, I think it would be okay because with such monitoring, the training of certain 
situations could be improved.  

P3 It would be okay. 

P4 I would be very interested in it. 

P5 I would ask why. In principle, I have nothing against it. If it does me some good, then don't mind. but I 
wouldn’t like it if it was just for science or something. Drowsiness detectors in cars are not robust. I 
suppose if it really worked, it could be helpful. 

P6 I would not have a problem with it. 

P7 I think it would be a good thing. It would improve flight safety. Pilots bleed to death. A new flight suit 
with integrated sensors, even with pilot-healing properties/capabilities, would be great. 

P8 I would have no problem with this. 

P9 This would be perfectly fine as long as the data is processed securely (data protection) and reliably. 

P10 If the data could be used as part of an assistance system, then this would be okay for me. 

 

Q12 If data collection would not bother or interfere with you, how would you feel about 
your physiological data being monitored by a human (such as someone in a ground 
station) during flight? 

P1 This would also be okay with me. The monitoring would likely completely fade into the background 
given the demands of flight. 

P2 This is also conceivable. I imagine the human would have a difficult time making an objective 
assessment of the data though.  

P3 This would also be okay.  

P4 I wouldn't have any problems with this. 

P5 Same as my previous answer. If it helps me, then it’s okay. 

P6 I would not have a problem with this. 

P7 Same as above. This would be good. 

P8 This would be strange. I would have the feeling I was being controlled. I would feel uncomfortable.  

P9 This would be fine as long as it was evaluated the same as by the autonomous system. 

P10 Same answer as previous. 

 

Q13 If it were to exist in your cockpit, what could a highly-automated assistant system 
do for you? What should it respond to? 

P1 It should ensure that the limit values of the system are complied with. 

P2 It could provide fatigue warning, degree of exhaustion in operational flight, vital states such as 
temperature and the need for fluids (water/drink/injury). 

P3 Notifications (provide information). Show abnormalities. 
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P4 It could display an indication of the body’s physical load limits. This would require several 
measurements to be carried out to determine minimum/maximum loads. 

P5 If it detects that I am only looking down (within the cockpit), it could give a warning. This wouldn’t 
make sense for Tiger pilots though because they always fly as a pair and one often looks down while the 
other looks up and out.  

P6 I don't know if anything could really help. 

P7 It could provide “high workload” warnings. It could be a “limit indicator” for humans. It could share 
physiological states between the pilot and co-pilot. 

P8 When experiencing high mental workload, it could ask how it could help. It would be best to have a 
system that does exactly what I tell it to do. Siri in the cockpit. 

P9 It could provide warnings to interrupt tunnel vision. 

P10 The system should recognize if I am no longer able to act due to too high a workload and then support 
me by completing checklists, indicating abnormal system states, or autonomously executing tasks (e.g., 
putting down the landing gear). 

 

Q14 How much time would be acceptable for putting on sensors to monitor the 
physiological state during a normal flight? 

P1 15 minutes 

P2 5 minutes 

P3 15 minutes 

P4 Maximum 3 hours. Basically, I don't care, because it’s the job that counts. Due to my work as a test 
pilot, I have already done this for the most part.  

P5 5 minutes if casual training flight. It depends though what kind of a flight it is. For some flights, it would 
need to be integrated into clothes (helmet, gloves, shirt).  

P6 15 minutes 

P7 0 additional minutes. Sensors must be integrated into clothing (e.g., the flight jacket). The 
sensors/system would not be accepted if it was uncomfortable or took additional time. 

P8 3 minutes 

P9 2 minutes 

P10 5 - 10 minutes 
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Appendix E Selectable Pages of the Multi-Function Display  

Both the left and right Multi-Function Display (MFD) allow the pilot to navigate 

between “pages” by selecting the corresponding page in the “page selector” shown below. The 

pilot has the option of displaying two pages side-by-side or a single page spanning the entirety 

of the MFD. Below are snapshots of each page and a short description of the contents of each.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

View/set communication 
frequencies 

 

View/set system states 
(Landing gear, parking 

brake, etc.) 

PFD MAP 

COM SYS 

Interactive map with marked 
routes & UAV tasking tools 

Standard IFR/VFR 
displays 

PFD 

Page 
Selector 
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View pilot physiological 
state. Set triggers. 

Selectable checklists (pre-
takeoff, after takeoff, etc.) 

PHYS CHECK 

Simulator-relevant control 
(pause, restart, etc.) 

SIM 
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Appendix F Pre-Brief Slides Presented to Participants Before 

Mission Execution 
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Appendix G Conditions and Triggered Actions for Simulated 

Missions 

Mission 1 

Condition 
Group 

Condition(s) Triggered Action(s) 

1 Helicopter is on the ground 
Helicopter is within 500 m of START 
Loading ramp is open 

Move soldiers to helicopter 
 

2 Condition Group 1 is complete 
Loading ramp is closed 

Move solders into helicopter 
 

3 Pre-flight checklist is complete   
4 Condition Groups 2 and 3 are complete Radio to Boomer: "Hello Boomer, R2 here. The assault team 

has boarded and the checklist is complete. Depart out of 
radio control point November at an altitude of 400 feet 
AGL." 

5 Helicopter is within 1000 m of radio control 
point November 

Radio to Boomer: "R2 here. Fly northeast into Area 51. 
Once there, locate the red smoke and drop off the assault 
team by hovering at that location." 

6 Helicopter is inside Area 51 Start continuous red smoke 
Radio to Boomer: "R2 here. Again, locate the red smoke and 
drop off the assault team by hovering at that location at an 
altitude of 200 feet AGL. I repeat hover at an altitude of 200 
feet AGL." 

7 Helicopter is within 500 m of red smoke 
Helicopter altitude is less than 250 feet AGL 
Helicopter speed is less than 10 knots 

Release soldiers 
Radio to Boomer: "The assault team is exiting the aircraft. 
Maintain this hover for 30 seconds then fly south to Point 
Sierra at the entrance of the canyon." 

8 Helicopter is within 500 m of Point Sierra 
(entrance of the canyon) 

Radio to Boomer: "R2 Here. Nice flying. Now fly east 
through the canyon to point Echo at an altitude of 200 to 300 
feet A.G.L." 

9 Helicopter is within 500 m of hidden 
weather marker 

Weather quickly degrades (rain, wind, turbulence).  

10 Helicopter is within 500 m of 2nd hidden 
weather marker 

Weather degrades further.  

11 Helicopter is within 500 m of 3rd hidden 
weather marker  

Weather improves slightly. 

12 Helicopter is within 500 m of 4th hidden 
weather marker (at end of canyon) 

Weather returns to nominal conditions (no rain, no wind, no 
turbulence). 
Radio to Boomer: “R2 here. You made it through the 
canyon. Nice job. Now follow the marked route as closely as 
possible to the airport where you will land." 

13 Helicopter is within 500 m of hidden marker 
“confusing_command”. 

Radio to Boomer: "R2 here. Change of plans. Fly north to 
Point Alpha. I repeat, fly south to point Bravo." 

14 Helicopter is greater than 1000 m from 
hidden marker “confusing_command”. 

Radio to Boomer: "R2 here. Sorry for the confusion.  
Correction. Continue your approach to MOB Chineh and 
land at the airport. I repeat, continue your approach to MOB 
Chineh and land" 

15 Helicopter is within 1000 m of MOB Chineh Light turbulence induced 
16 Helicopter lands at MOB Chineh Turbulence stopped 

Radio to Boomer: "Well done! Please remain seated and 
calm for approximately two minutes." 
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Mission 2 

Condition 
Group 

Condition(s) Triggered Action(s) 

1 Helicopter is on ground 
Helicopter is within 500 m of MOB 
SHOCKCENTER 
Loading ramp is open 

Move soldiers (TURTLE) to helicopter 

2 Condition Group 1 is complete 
Loading ramp is closed 

Move solders (TURTLE) into helicopter 

3 Pre-flight checklist is complete   
4 Condition Groups 2 and 3 are complete Radio to Boomer: "Hello Boomer, R2 here. The assault team 

has boarded and the checklist is complete. Depart out of 
radio control point November at an altitude of 400 feet 
AGL." 

5 Helicopter is within 1000 m of radio control 
point November 

Radio to Boomer: "BOOMER this is your assistant R2. 
TURTLE has loaded and the checklist is complete. Depart 
via radio control point SIERRA at 400 feet AGL. I repeat, 
depart via radio control point SIERRA at 400 feet AGL." 

6 Helicopter is within 500 m of point SIERRA Radio to Boomer: "R2 here. Fly east to point FOXTROT at 
600 feet AGL and wait for further instruction. I repeat, fly 
east to point FOXTROT at 600 feet AGL and wait for 
further instruction" 

7 Helicopter is within 500 m of point 
FOXTROT 

Radio to Boomer: "Ok. Now use your UAVs to reconnoiter 
the marked points in the H.O.A. - Alpha, Bravo, Charlie, 
and Delta. Determine which location is displaying green 
smoke. After locating the green smoke, fly to that location 
and unload TURTLE there. While doing this maintain 600 
feet AGL. I repeat, use your UAVs to reconnoiter the 
marked points in the H.O.A. - Alpha, Bravo, Charlie, and 
Delta. Determine which location is displaying red smoke. 
After locating the red smoke, fly to that location and unload 
TURTLE there. While doing this maintain 600 feet AGL." 

8 Helicopter is within 500 m of location of red 
smoke 

Radio to Boomer: "BOOMER this is R2. Change of plans. 
This is no longer a training mission, but is now an active 
search and rescue mission. We have been asked to locate 
and evacuate two pilots who crashed south of our position. 
Their call sign is AAROW. The crash site is marked on your 
map. Transport TURTLE to the crash site, evacuate the 
pilots, then return to MOB SHOCKCENTER. I repeat, 
transport TURTLE to the crash site, evacuate the pilots, then 
return to MOB SHOCKCENTER." 

9 Helicopter is within 1500 m of crash site Start continuous blue smoke near crash site 
Radio to Boomer: "BOOMER this is R2. ARROW has 
thrown blue smoke. Unload TURTLE at that location and 
evacuate AAROW." 

10 Helicopter is within pre-defined crash site 
area 
Helicopter is on the ground 
Loading ramp is open 

Downed pilots (AAROW) approach the helicopter 

11 Condition Group 10 complete 
Loading ramp is closed 

Downed pilots (AAROW) moved into helicopter.  
Radio to Boomer: "BOOMER, ARROW has boarded. 
Return immediately to MOB SHOCKCENTER. Intelligence 
has reported hostile activity in the area. For maximum 
security, fly the marked route as closely as possible at an 
altitude of 400 feet AGL. I repeat, return immediately to 
MOB SHOCKCENTER. Intelligence has reported hostile 
activity in the area. For maximum security, fly the marked 
route as closely as possible at an altitude of 400 feet AGL." 

12 Helicopter lands at MOB SHOCKCENTER Radio to Boomer: “Welcome back. Let out AAROW then 
remain seated and calm for approximately two minutes. 
Thank you.” 

 


