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Abstract
The paper deals with numerical analysis of the effect of stress state and loading direction with respect to the rolling direction
on damage and fracture behavior of anisotropic metals. The continuum damage model has been enhanced to take into account
the influence of production-induced anisotropies and loading direction on damage criteria and on evolution equations of
damage strains. Constitutive parameters are determined using experimental results taken from tests with uni- and biaxially
loaded specimens. The focus of the paper is on three-dimensional micro-mechanical numerical analyses of micro-defect-
containing representative volume elements covering a wide range of stress states. These calculations lead to more insight in
the different damage and failure processes on the micro-scale and their influence on the macroscopic damage laws. With the
obtained numerical results it is possible to detect general trends, to propose governing equations for the damage criteria, to
develop evolution equations for the damage strains, and to identify constitutive parameters of the anisotropic material model.
It is shown that the anisotropic behavior and the loading direction with respect to the principal axes of anisotropy affect the
evolution of damage mechanisms on the micro-level as well as the corresponding damage strains.

Keywords Ductile damage · Stress state dependence · Anisotropic metals · Micro-mechanical numerical analysis ·
Macroscopic damage strains

1 Introduction

Numerical analysis of inelastic deformations as well as of
damage and fracture processes on different scales must be
based on accurate modeling of material behavior. Therefore,
differentmaterial approaches and corresponding efficient and
robust numerical models have been published during the
last decades, see for example [7, 8, 15, 25, 38]. Based on
several experimental observations it is well known that dam-
age and fracture in ductile metals are a result of nucleation,
growth and coalescence of micro-defects which can accumu-
late to macro-cracks leading to final failure of engineering
structures. Thus, a straight-forward way to develop appro-
priate material models is based on the numerical analysis of
the deformation behavior of individual elastic–plastic repre-
sentative volume elements (RVE) containing micro-defects
revealed by scanning electron microscopy [6, 30, 33, 39].
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Three-dimensional finite element analyses of microscopic
cell models have been proposed to get insight in damage
and fracture processes in isotropic materials and to study the
evolution, growth and deformation of micro-defects under
different loading conditions [3, 10, 17, 18, 26, 27, 34]. It
has been shown that the current stress state has a remarkable
influence on damage mechanisms on the micro-scale and
the corresponding macroscopic failure behavior. Using the
results of the numerical calculations on the micro-level it is
possible to developmacroscopic phenomenological constitu-
tive theories which can be used to numerically propose safety
and life time of engineering structures [10]. The results can
also be considered to validate evolution equations for dam-
age variables or to identify micro-mechanically motivated
material parameters.

In ductile metal sheets often anisotropies occur during
production processes caused by internal changes in the crys-
tallographic structure. Since these manufacturing-induced
anisotropies remarkably affect the inelastic deformations
they have to be taken into account in constitutive approaches
to be able to realistically simulate the deformation and fail-
ure behavior of thin metal sheets. In the literature different
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anisotropic yield conditions have been discussed, for exam-
ple, considering quadratic [1, 22, 35], non-quadratic [2, 4, 5,
20, 24] or spline functions [36] of stresses with independence
of hydrostatic stress to adequately simulate experimentally
observed deformation processes. In addition, for hydrostatic-
stress-dependent materials the Hoffman yield criterion [23]
has been introduced. This anisotropic yield criterion has been
used to propose a damage criterion characterizing onset of
damage based on numerical simulations of experiments with
differently biaxially loaded cruciform specimens [14].

In the present paper an anisotropic material model is pre-
sented to numerically study the inelastic deformation and
damage behavior of micro-defect-containing representative
volume elements. Evolution of macroscopic damage strains
is examined based on unit cell calculations under different
three-dimensional loading conditions. In the present investi-
gation the well-known 3D-unit-cell-analysis is enhanced for
materials with plastic anisotropy and results for formation
of damage strains for different load ratios and loading direc-
tions are discussed. The numerical results are used to propose
a stress-state-dependent damage rule for anisotropic metals
and to identify the corresponding material parameters.

2 Anisotropic material model

Analysis of finite inelastic deformation, damage and fracture
behavior of metals is based on the phenomenological con-
tinuum model [8] which has been enhanced for anisotropic
plasticity by [11, 13, 14]. It is based on several experimen-
tal observations [9, 16] as well as on results from numerical
studies on the micro-level [10, 12, 21]. The theoretical mate-
rial approach is briefly summarized in the present paper to
demonstrate the need of experimental investigations with
uniaxially and biaxially loaded specimens as well as of
numerical simulations on the micro-scale to develop and to
validate yield and damage criteria as well as evolution equa-
tions for plastic and damage strain tensors.

The continuum damage model considers damaged and
corresponding fictitious undamaged configurations [31, 32,
37, 38]. In the initial undeformed configuration the base vec-

tors
o
gi and in the current inelastically deformed and damaged

configuration the base vectors gi are introduced. This leads

to the definition of the deformation gradient F = gi ⊗ o
g
i
.

In the present continuum model all stress and strain tensors
are referred to the current configuration, see [8] for further

details. The base vectors
o
gi are chosen to be the Cartesian

base. For plastic anisotropic materials the base vector
o
g1 cor-

responds to the rolling direction (RD) of themetal sheet,
o
g2 to

the transverse direction (TD) and
o
g3 to the normal direction

(ND).

Furthermore, the basic idea of the phenomenological
framework is the introduction of the damage strain ten-
sor,Ada , characterizing the evolution of macroscopic strains
caused by damage mechanisms on the micro-level. In the
kinematical approach, the strain rate tensor is separated into

elastic, Ḣ
el
, effective plastic, ˙̄Hpl

, and damage parts, Ḣ
da

[8].
Elastic–plastic constitutive equations are formulated with

respect to the effective undamaged configurations. The effec-
tive Kirchhoff stress tensor

T̄ = 2G Ael +
(
K − 2

3
G

)
trAel 1 (1)

characterizes the stress state in the undamaged matrix mate-
rial where Ael represents the elastic strain tensor and G and
K are the constant shear and bulk modulus, respectively.
For the investigated aluminum alloy EN AW-2017A these
parameters have been determined as G = 28,500 MPa and K
= 61,700 MPa based on numerical analysis of uniaxial ten-
sion testswithflat unnotched specimens [11]. The anisotropic
plastic behavior is described by the Hoffman yield condition
[23]

f pl = C · T̄ +
√
1

2
T̄ · D T̄ − c = 0, (2)

where the tensor of coefficients

C = Ci
. j gi ⊗ g j = C(i) gi ⊗ gi (3)

with the components (in Voigt notation)

[
Ci

. j

]
= [C1 C2 C3 0 0 0]T (4)

taking into account the different yield stresses in uniaxial
tension and compression tests. In addition, further material
parameters in the tensor

D = Di . k
. j . l gi ⊗ g j ⊗ gk ⊗ gl (5)

with

[
Di . k

. j . l

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

C4 + C5 − C4 − C5 0 0 0
−C4 C4 + C6 − C6 0 0 0
−C5 − C6 C5 + C6 0 0 0
0 0 0 C7 0 0
0 0 0 0 C8 0
0 0 0 0 0 C9

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

model the plastic anisotropy. The anisotropy parametersCi in
Eqs. (3) and (5) are determined considering stress and plastic
strain behavior of unnotched, uniaxially loaded specimens
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Table 1 Anisotropy parameters C1 C2 C3 C4 C5 C6 C7 C8 C9

−0.0424 −0.0102 0.0000 0.8123 1.3607 1.3103 3.7580 3.0000 3.0000

Table 2 Plastic material parameters

co [MPa] Ro [MPa] R∞ [MPa] b

RD 333 488 142 19

cut in different directions with respect to the rolling direction
[14]. These parameters are listed in Table 1.

In addition, in Eq. (2)

c = co + Roγ + R∞
(
1 − e−b γ

)
(7)

is the equivalent yield stress of the undamagedmetalwhich in
the present analysis is taken to be the yield stress of the ten-
sile test with the uniaxially loaded specimen cut in rolling
direction of the thin metal sheet, c = cx . In Eq. (7) co
denotes the initial yield stress, Ro and R∞ are the harden-
ing moduli, b represents the hardening exponent and γ is the
equivalent plastic strain measure. For the investigated ductile
anisotropic aluminum alloy EN AW-2017A the parameters
are listed in Table 2. They have been determined by a uniax-
ial tension test of a flat dog-bone-shaped specimen, see [11]
for further details.

To characterize the stress state in the anisotropic ductile
metal generalized invariants of the effective Kirchhoff stress
tensor T̄ are defined based on the yield condition (2)[14]: the
first Hoffman stress invariant can be expressed in the form

Ī H1 = 1

a
C · T̄ with a = 1

3
trC (8)

whereas the second and third deviatoric stress invariants are
given by

J̄ H
2 = 1

2
T̄ · D T̄ (9)

and

J̄ H
3 = det

(D T̄
)

. (10)

With these definitions the Hoffman yield criterion (2) is
rewritten in the form

f pl = a Ī H1 +
√
J̄ H
2 − c = 0 . (11)

Furthermore, evolution of isochoric plastic strains is given
by the flow rule

˙̄Hpl = γ̇ N̄. (12)

with the equivalent plastic strain rate γ̇ and the normalized
deviatoric effective stress tensor

N̄ = D T̄∥∥D T̄
∥∥ . (13)

Moreover, the damaged configurations are examined to
model the behavior of the anisotropically damaged ductile
metals. It has been shown in many experiments [28, 29] that
the elastic behavior is also affected by damage and, thus, the
elastic material equation is taken to be a function of both the
elastic and the damage strain tensor, Ael and Ada . Then, the
Kirchhoff stress tensor is given by

T = 2
(
G + η2 trAda

)
Ael

+
(
K − 2

3
G + 2η1 trAda

)
trAel 1

+ η3

(
Ada · Ael

)
1

+ η3 trAelAda + η4

(
AelAda + AdaAel

)
(14)

where the additional material parameters η1, η2, η3 and η4
are introduced describing deterioration of the macroscopic
elastic properties causedbydamage and fracturemechanisms
on the micro-scale. To be able to characterize the stress state
in the damaged configurations invariants of the Kirchhoff
stress tensor (14) for anisotropic material behavior are also
defined based on the Hoffman yield condition (2): the gen-
eralized first stress invariant is defined as

I H1 = 1

a
C · T with a = 1

3
trC (15)

and the second and third deviatoric stress invariants are
expressed in the form

J H
2 = 1

2
T · DT (16)

and

J H
3 = det (D T) . (17)
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Alternatively, based on these equations further stress param-
eters can be defined to characterize the current stress state of
the investigated anisotropic aluminum alloy: the generalized
Hoffman stress triaxiality

ηH = I H1

3
√
3J H

2

(18)

and the generalized Hoffman Lode parameter

LH = −3
√
3 J H

3

2 (J H
2 )(3/2)

. (19)

With these stress parameters the damage condition

f da = α I H1 + β

√
J H
2 − σ = 0 (20)

can be formulated describing the onset and evolution of
damage in the investigated plastically anisotropic ductile
material. In Eq. (20) σ represents the equivalent damage
stressmeasure. The parametersα andβ depend on stress state
and loading direction and have been determined by series of
experiments performed with different biaxially loaded speci-
mens, see [14] for further details. Analyzing onset of damage
for different stress states and loading directions, it has been
shown that the parameter α only depends on the stress triax-
iality ηH

α(ηH ) =
{
0 for ηH ≤ 0
1
3 for ηH > 0

. (21)

whereas for the parameter β additional dependence on the
loading direction has been detected:

β(ηH , θ) =
{
1 for ηH ≤ 0
k(θ) ηH + 1 for ηH > 0

(22)

with the loading-direction-dependent factor

k(θ) = −0.167 cos2θ − 0.062 cosθ − 1.467 (23)

where θ represents the angle with respect to the rolling direc-
tion (RD) of the metal sheet.

In addition, formation of macroscopic irreversible strains
caused by damage and failure processes on the micro-scale
is described by the damage rule

Ḣda = μ̇

(
1√
3
α̃1 + β̃N

)
(24)

where

N = DT
‖DT‖ (25)

Fig. 1 Finite element mesh of one eighth of the unit cell

is the normalized deviatoric part of the Kirchhoff stress ten-
sor, μ̇ is the rate of the equivalent damage strain measure
representing the increase of amount of damage strains, and
the parameters α̃ and β̃ characterize the stress and loading
direction dependence of the damage strain rate tensor (24). In
Eq. (24) the first (volumetric) term corresponds to growth of
micro-voidswhereas the second (deviatoric) term is related to
formation ofmicro-shear-cracks. It was not possible to detect
the respective stress- and loading-direction-dependent func-
tions for the damage rule by the performed experiments and,
thus, an alternative way is followed. For isotropic material
behavior these dependencies have been revealed by numeri-
cal simulations on the micro-level analyzing the deformation
behavior of micro-defect-containing representative volume
elements [10, 12, 21]. This proceeding is also used for the
investigated anisotropicmetal to detect the inelastic deforma-
tion of unit cells and damagemechanisms on themicro-level.
This will render possible to develop stress-state- and loading-
direction-dependent functions for the macroscopic damage
strain rates.

3 Numerical analysis

Theproposedphenomenological continuumdamagemodel
is based on macroscopic damage strains describing the cur-
rent state of damage caused by different damage and failure
mechanisms on themicro-scale. The formation of these dam-
age strains is governed by the damage rule (24) which takes
into account the parameters α̃ and β̃ modeling the depen-
dence of macroscopic stress state and loading direction with
respect to the rolling direction of the damage strain rates.
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To detect these dependencies numerical simulations with
the representative volume element containing an initially
spherical void shown in Fig. 1 have been performed. The
initial void volume fraction is chosen to be 3% and dif-
ferent three-dimensional loading conditions are considered.
The respective numerical calculations are performedwith the
finite element programANSYSwhich has been enhanced by
a user-defined material subroutine corresponding to the pro-
posed phenomenological anisotropic elastic–plastic material
model. In particular, the numerical analysis is based on eight-
node solid elements of type SOLID185. During the loading
process the initially plane surfaces of the unit cell remain
plane. With these symmetry boundary conditions the RVE
simulates the behavior of a pre-damaged structural element
with regular and equidistant distribution of uniform micro-
defects. Numerical studies taking into account variation of
void shape and of distribution of voids showed that the anal-
ysis with the spherical void with 3% porosity leads to the
mean value for the parameters α̃ and β̃ [21]. Therefore, only
the behavior of the unit cell with initially spherical void in
its center with 3% initial void volume fraction is numeri-
cally analyzed. For the investigated anisotropic material the
x-direction is taken to be the rolling direction (RD), the
y-direction is the transverse direction (TD) whereas the z-
direction is the thickness direction of the metal sheet. It is
worthy to note that these numerical studies on the micro-
level only give an idea for the formulation of constitutive
equations. Afterwards, they have to be validated by vari-
ous experiments and eventually to be modified if results
of numerical simulations do not coincide with experimen-
tal data.

The kinematics of the continuumdamagemodel takes into
account the decomposition of the strain rate tensor into elas-

tic Ḣ
el
, effective plastic, ˙̄Hpl

, and damage parts, Ḣ
da
. This

leads to the additive decomposition of the components of the
macroscopic strain rate tensor in the principal directions (i)

Ḣunit−cell
(i) = Ḣ el

(i) + Ḣ pl
(i) + Ḣda

(i) (26)

into elastic, plastic and damage strain rates.During loading of
the unit cell the finite solid elements only undergo elastic and

plastic strain rates on the micro-level, ḣ
el
and ḣ

pl
. This leads

to corresponding elastic–plastic macroscopic strain rates

Ḣ
ep = Ḣ

el + Ḣ
pl = 1

V

∫
Vmatri x

(
ḣ
el + ḣ

pl
)
dv (27)

where V is the current volume of the representative volume
element and Vmatri x means the current volume of the matrix
material (solid elements). With Eq. (26) the macroscopic
damage strain rate tensor is then given by

Ḣda
(i) = Ḣunit−cell

(i) − Ḣ ep
(i) . (28)

This leads to the principal components of the damage strain
tensor

Ada
(i) =

∫
Ḣda

(i) dt . (29)

In the numerical investigations the amount of strains and
strain rates can be described with the definition of cor-
responding scalar-valued measures: the equivalent plastic
strain rate

ε̇pl =
√
2

3
Ḣ

pl · Ḣpl
(30)

and the equivalent plastic strain

εpl =
∫

ε̇pl dt . (31)

The effect of loading of the void-containing representative
volume elements (RVE) for different load ratios Fx/Fy/Fz
on deformation and damage behavior is examined in detail.
Different loading conditions are numerically analyzed and
results are qualitatively compared with available experi-
mental observations taken from tests with biaxially loaded
specimens [11, 13].

In particular, for the load ratio Fx/Fy/Fz = 1/0/0 the
numerically predicted formation of the principal components
of the damage strain tensor is shown in Fig. 2(a) where load-
ing in rolling direction (RD), diagonal direction (DD) and
transverse direction (TD) is considered, respectively. With
increasing deformation the damage strain Ada

x increases up
to 0.032 for loading in RD and TD whereas slightly smaller
damage strains can be seen under loading in DD. In this load-
ing case, the damage strain Ada

y reaches −0.005 for loading
in RD and TD and here about 20% larger negative damage
strains occur in DDwhereas the damage strain Ada

z decreases
up to−0.010 with only marginal differences for the different
loading directions. The load ratio Fx/Fy/Fz = 1/0/0 corre-
sponds to uniaxial loading leading for loading in RD to the
stress triaxiality ηH = 0.44 and the Lode parameter LH =
−0.70 on the macro-scale based on the Hoffman yield crite-
rion. These results for the damage strain components detected
by numerical simulations on the micro-level considering the
behavior of void-containing RVEs agree with experimental
observations taken from biaxially loaded specimens for load-
ing cases with moderate positive stress triaxialities [11, 13].
Increase in pores has been seen after the tests for loading
in RD and TD whereas after loading in DD smaller voids
are revealed by scanning electron microscopy (SEM) corre-
sponding to smaller damage strain components.

In addition, Fig. 2b shows numerical results from micro-
mechanical analysis for the load ratio Fx/Fy/Fz = 1/0/−1
corresponding to shear loading conditions.Thedamage strain
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Fig. 2 Formation of principal damage strain components for a Fx/Fy/Fz = 1/0/0, b Fx/Fy/Fz = 1/0/−1, c Fx/Fy/Fz = 1/0.63/0.27, d Fx/Fy/Fz
= −1/−1/0.5

Ada
x increases up to 0.016 with increasing deformation of the

RVE whereas Ada
z decreases up to −0.029 and Ada

y nearly
remains 0.0. In this case only marginal effect of the loading
direction with respect to the principal axes of anisotropy can
be seen. For this load ratio the Hoffman stress parameters
for loading in RD are ηH = 0.21 and LH = 0.00. After the
respective experiments with theX0- and theH-specimen [11,
13] under shear loading conditions shear deformation on the
micro-level with only very few initial voids has been revealed
by SEM corresponding to the numerically predicted compo-
nents of the damage strain tensor and also no influence of the
loading direction has been seen.

Furthermore, for the load ratio Fx/Fy/Fz = 1/0.63/0.27
the evolution of the damage strain components is shown in
Fig. 2c. Remarkable increase of the damage strains is numer-
ically predicted up to 0.064 for Ada

x , 0.037 for Ada
y and 0.011

for Ada
z . For Ada

x and Ada
z larger increases occur for loading in

TD and DD compared to RD whereas only larger increase in
TD can be seen for Ada

y . For this load ratio the stress triaxial-

ity ηH = 0.75 and the Lode parameter LH = 0.23 based on the
Hoffman criterion are computed for loading in RD indicating
high hydrostatic stress state. In the experiment with the X0-
specimen under biaxial tension loading similar stress state
is reached [11] and SEM pictures show remarkable growth
of voids with slightly smaller ones appeared after loading in
RD.

On the other hand, the formation of damage strains for the
load ratio Fx/Fy/Fz = −1/−1/0.5 is shown in Fig. 2d. The
corresponding Hoffman stress parameters for loading in RD
are ηH = −0.34 and LH = −1.00 indicating a compressive
stress state. With increasing loading the damage strain com-
ponents Ada

x and Ada
y decrease up to −0.015 whereas Ada

z
increases up to 0.017 and this deformation behavior is nearly
unaffected by the loading direction. It is worthy to note that
for this loading case the volumetric damage strain trAda is
negative and, therefore, the initial void is compressed indi-
cating that no further damage occurs. This behavior has also
been observed in experiments under compression-dominated
stress states [19].
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Since details of the damage and failure processes on the
micro-level and their influence on the macroscopic dam-
age behavior could not be revealed in the experiments,
micro-mechanical numerical analysis of the deformation and
damage behavior of the investigated void-containing unit cell
under a wide range of loading conditions in the tensile, com-
pressive and shear range as well as their combinations have
been performed. The obtained numerical results discussed
above can be seen as quasi-experimental ones which can
be used to propose and to validate constitutive equations
of phenomenological continuum models. Based on these
quasi-experiments stress-state-dependent functions for the
prediction of the damage strain rate tensor (24) are proposed.
As can be seen in Fig. 2 the effect of the loading direction
on the formation of damage strain components seems to be
very small and, therefore, it will be neglected. Analysis of
the results of the micro-mechanical numerical studies leads
to the functions

α̃(ηH ) =
⎧⎨
⎩
0.0672ηH − 0.2421 for ηH < 0.21
2.671ηH − 0.859 for 0.21 ≤ ηH ≤ 0.70
0.8ηH + 0.285 for ηH > 0.7

(32)

and

β̃(ηH , LH ) =
{
0.9821 for ηH < 0.45
1.244 − 0.9866ηH + 0.4471LH for ηH > 0.45

(33)

fitting the micro-numerically obtained damage strain curves
by the macroscopic damage rule (24). These functions are
visualized in Fig. 3.

Based on the damage rule (24) with the the stress-state-
dependent functions (32) and (33) macroscopic numerical
simulations have been performed to predict the elastic–
plastic-damage behavior of a homogeneous material element
made of the investigated aluminum alloy ENAW-2017A. As
can be seen from Eq. (24) the parameter α̃ is related to the
volumetric part of the damage strain rate tensor whereas the
parameter β̃ corresponds to its deviatoric part modeling iso-
choric strains caused by damage. To validate the functions
(32) and (33) numerical simulations covering a wide range of
stress states are performed. The results based on the numer-
ical analysis of the void-containing unit cell (RVE) and the
numerical simulations based on the continuum model (Sim)
are shown in Fig. 4.

For the load ratio Fx/Fy/Fz =1/0/0 thequasi-experimental
and numerical results are shown in Fig. 4a. The evolution
of the damage strain component Ada

x is very well numeri-
cally predicted and for Ada

y and Ada
z which are identical in

the numerical simulation only small differences can be seen.

-0.5
1

0

0.5

1

1

0

1.5

0
-1 -1

1

0
0-1

0

0.5

-11

1

Fig. 3 Damage strain parameters α̃ and β̃ in the space of the stress
parameters ηH and LH

However, these components are small and, therefore, this
deviation will not remarkably affect the predicted damage
behavior. In Fig. 4b, results for the load ratio Fx/Fy/Fz =
1/0/−1 are compared. In this shear loading case the forma-
tion of the damage strain Ada

x is nicely simulated. For Ada
z

the results show good agreement for the first loading process
and after 30% plastic deformation smaller negative damage
strains are numerically predicted. In the quasi-experiments
the damage strain component Ada

y is nearly zero whereas a
very small component of −0.007 is computed. In this case
the global trend of damage mechanisms is well simulated.
For the loading case Fx/Fy/Fz = 1/0.63/0.27 with remark-
able hydrostatic stress the results are shown in Fig. 4c. For
Ada
x and Ada

y nearly perfect agreement of quasi-experimental
and numerical results can be seen and only the prediction of
the at the beginning of the loading process nearly zero and
then slightly increasing damage strain component Ada

z show
small deviation but later also good agreement. In Fig. 4d
results for the load ratio Fx/Fy/Fz = −1/−1/0.5 can be
compared. In this loading case with high hydrostatic pres-
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Fig. 4 Numerical simulation of the formation of damage strains for a ηH = 0.44 and LH = −0.70, b ηH = 0.21 and LH = 0.00, c ηH = 0.75 and
LH = 0.23, d ηH = −0.34 and LH = −1.00, e ηH = 0.66 and LH = 1.00, f ηH = 0.33 and LH = 1.00
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sure perfect agreement for the evolution of all damage strain
components Ada

x , Ada
y and Ada

z are visible. In addition to the
quasi-experimental results shown in Fig. 2 two further inter-
esting load cases are shown in Fig. 4. For example, results for
the load ratio Fx/Fy/Fz = 1/1/0.25 leading to the Hoffman
stress parameters ηH = 0.66 and LH = 1.00 are shown in Fig.
4(e). This case is in contrast to the other load ratios charac-
terized by high stress triaxiality and high Lode parameter. It
can be seen that the damage strain components Ada

x and Ada
y

only show marginal differences of quasi-experimental and
numerical results and only the nearly zero component Ada

z
have slight deviations. The alternative load ratio Fx/Fy/Fz =
1/1/−0.5 (Fig. 4f) is also considered with the moderate stress
triaxiality ηH = 0.33 and the high Lode parameter LH = 1.00.
In this case, all numerically predicted damage strain compo-
nents agree very well with the quasi-experimental ones.

In the numerical analysis a wide range of stress states
has been considered with stress triaxialities between ηH =
0.75 and −0.34 as well as Lode parameters between LH

= 1.00 and −1.00. In Fig. 4 in all cases very good agree-
ment of quasi-experimental and numerical results has been
achieved demonstrating the accuracy of the proposed dam-
age rule (24) with the stress-state-dependent parameters (32)
and (33). Thus, these equations of the continuum model are
validated by results of numerical simulations on the micro-
scale.

4 Conclusions

In the present paper the effect of the stress state and of
the loading direction with respect to the principal axes of
anisotropy on deformation behavior as well as on damage
and failure processes on the micro- and macro-level has been
examined. A continuum damage model including the Hoff-
man yield criterion for anisotropic plasticity as well as a
stress-state- and loading-direction-dependent damage crite-
rion has been discussed. For the investigated aluminum alloy
EN AW-2017A the stress state is characterized by the gener-
alized stress triaxiality and the generalized Lode parameter
both related to the Hoffman yield criterion. Since it is diffi-
cult to reveal information on damage and failure processes on
the micro- and the macro-scale as well as their interaction by
experiments alone numerical simulations on the micro-level
have been performed. In these studies the deformation behav-
ior of micro-void-containing representative volume elements
have been multiaxially loaded and variation of load ratios in
different directions with respect to the rolling direction has
been taken into account. Based on these calculations on the
micro-scale formation of components of the damage strain
tensors are detected. These results have been qualitatively
compared with pictures from scanning electron microscopy
published in the literature. The numerically predicted evo-

lution of principal damage strain components can be seen
as quasi-experimental results. They clearly demonstrate the
influence of the stress state and of the loading direction on
damage evolution. Using these quasi-experimental results
stress-state-dependent functions for the damage rule describ-
ing the formation of macroscopic damage strains have been
proposed. These equations have been validated by numerical
simulation of the quasi-experiments covering a wide range
of stress triaxilities and Lode parameters. In all cases, very
good agreement of the results have been achieved. Of course,
in the present paper the damage rule has only been validated
by results of numerical analysis on the micro-level. But with
these studies it was possible to propose constitutive equations
which in the next step must be validated by experiments with
biaxially loaded specimens also covering a wide range of
stress states. This will be the subject of a forthcoming paper.
Then, with this theoretical framework it will be possible to
perform numerical studies to examine the deformation, dam-
age and failure behavior of structural components built with
anisotropic sheet metals.
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