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Insect diversity is a good indicator of biodiversity
status in Africa
Tobias Landmann 1✉, Michael Schmitt2, Burak Ekim 2, Jandouwe Villinger 1, Faith Ashiono 1,

Jan C. Habel3,4 & Henri E. Z. Tonnang1,4

Reliable metrics to monitor human impacts on biodiversity are essential for informing con-

servation policy. As insects are indicators of global change, whose declines profoundly affect

ecosystems, insect diversity may predict biodiversity status. Here we present an unbiased

and straightforward biodiversity status metric based on insect diversity (richness) and

landscape naturalness. Insect diversity was estimated using spatially explicit earth obser-

vation data and insect species assemblages across microhabitats in two agro-ecological

zones in Africa. Landscape naturalness was estimated using various human impact factors.

Biodiversity status values differed considerably (p < 0.05) between protected and non-

protected areas, while protected areas, regardless of agro-ecology, shared similar biodiversity

status values. The metric is consistent when using richness from different indicator taxa (i.e.,

stingless bees, butterflies, dragonflies) and independent data for landscape naturalness. Our

biodiversity status metric is applicable to data-scarce environments and practical for con-

servation actions and reporting the status of biodiversity targets.
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Accelerated declines in biodiversity are of major concern
globally1. As for most taxa, insect population declines are
largely driven by habitat loss, including loss in habitat

quality2. Moreover, losses in insect biodiversity can lead to
declines in other species that feed on insects, as well as to crop
yield losses due to scarcity of pollinators3,4. In some African
countries, 15–40% of all calories, protein, and iron nutrient
intakes come from pollinator dependent crops5. Thus, insect
declines can result in yield gaps that can be 59% or more for some
seed crops6. Overall, biodiversity in African ecosystems is
increasingly imperiled, and likely more so in the future7. Spatially
explicit indicators and metrics that make use of biotic inputs are
needed to quantify the status of biodiversity at local levels
throughout Africa8.

To varying degrees, depending on the taxonomic rank, insect
diversity and abundance can be used to estimate overall
ecosystem-level biodiversity and environmental integrity, espe-
cially when philopatric or indicator species are chosen for
biomonitoring9,10. For instance, within the order Lepidoptera
(butterflies and moths), some species may be generalists and
hence adaptable, while others might become extinct or migrate to
other places11,12. But the diversity and habitat suitability of many
insect indicator families and/or orders is likely to correlate with
overall ecosystem diversity and integrity13. In some cases, shifts in
insect habitats can be used as early warning indicators of
ecosystem-level environmental change14 before extinction risks or
declines at upper trophic levels are measurable from other groups.
Trophic responses to human transformations that affect species
distributions and richness are more rapid at the micro-scale (i.e.,
insect mapping unit) than at national or regional scales15. A
micro-scale for a species is characterized by a very specific
vegetation structure as well as abiotic conditions (e.g., presence of
raw soil, deadwood) and by a specific microclimate, whereby the
spatial scale of a microhabitat is relative and species-specific2.
Localized and/or sudden land transformation often abruptly
affect insect life cycles, nesting (i.e., oviposition sites), and fora-
ging behavior16,17.

The post-2000 Global Biodiversity Conservation (GBC) Fra-
mework of the UN proposes several indicators and corresponding
targets that include species or ecosystem-specific biodiversity
status information. These are set to guide member countries until
205018 and help to establish important biodiversity status base-
lines. The Essential Biodiversity Variables 2020 (EBV2020)
Initiative19, which supports the post-2020 GBC initiative, has
established that easy-to-use indicators of habitat size, resilience,
connectivity, and biodiversity integrity must be developed and
updated. The EBV2020 approach promotes the addition of new
species groups and the need for metrics that consider functional
traits and ecosystem composition20.

Most biodiversity measures use parametric species richness
estimates for various ecosystem or land use types7,21. They often
disregard structural landscape or explicit habitat patterns,
including landscape fragmentation11 and actual ecosystem and
habitat structural aspects of biodiversity22. Many biodiversity
measures render different trends at local and regional levels. This
leads to a hindrance in the adoption of relevant policies. In part,
inconsistent biodiversity measures are due to the exclusion of
localized biotic data, the effects of landscape patterns, and low
sensitivity (or over-sensitivity) to biodiversity status over a range
of human impacts23.

The insect-based biodiversity status (iBS) metric, introduced
herein, exhibits various specific novelties, differences, and com-
plementarities over existing composite biodiversity indicators
such as the Biodiversity Habitat Index, the Living Planet Index,
the PREDICTS assessment framework, or dissimilarity modeling
methodologies for predicting beta-biodiversity15,19,21,24–26. The

iBS metric does not consider the composition of species and their
changes in time and space (as considered in beta biodiversity
dissimilarly approaches), nor aspects related to interspecies
interactions or population structure as determined by genetic
processes and structure26,27. Unlike the case for dissimilarity/
similarity model approaches28, the iBS does not aim to compare
different species or species communities and quantify these dif-
ferences between two sites and their ecological conditions. Rather,
the metric aims to provide an earth observation (pixel-based) and
straightforward measure (i.e., computationally easy) for local
biodiversity based on insect assemblages as collective orders that
represent indicator species for intact landscapes. Like many
indicators, it combines biotic elements (habitat-based suitability)
with various human impacts (for sensitivity to both biotic and
human impact, see Supplementary Notes 1: Understand patterns
of the contributing layers, illustrate visual patterns for the two
components that make up the iBS and the metric result for each
study area).However, it uses readily available and spatially explicit
earth observation and insect data to help determine local-scale
biodiversity patterns and status. These localized patterns are
defined by landscape level disturbances and landscape type29, not
directly by gene pools and their structure. Unlike most other
indicators investigated, the iBS is not affected by broad taxonomic
datasets that are ecologically restricted, not covering larger
landscapes or ecologically diverse areas22. Given dense insect
occurrence data is used for model training, our metric produces
seamless localized outputs from pixel-based explicit geospatial
data and models. Moreover, our pixel-based and data-driven
metric does not use expert knowledge on land use intensity as a
factor for biodiversity richness within one or several coarse-scale
(>1 km pixel resolution) land use categories19. Essentially, most
indicators and metrics investigated used generalized and pub-
lished data with assumptions about the coordinates, often
extracted from scientific papers or reports15.

Lastly, the iBS is uniquely tied to taxonomic insect orders (i.e.,
Lepidoptera) that function as known indicators of micro-habitats’
biodiversity status30. This differentiates it from composite indi-
cators that use broad taxonomic groups with various interactions
with human impacts, thereby reducing the appropriateness of the
indicator as a measure of overall biodiversity31. The choice of
assemblages as indicator species allows the pixel-based results to
be averaged for ecosystems or key habitat areas (i.e., forests)
within the area of interest, where sufficient insect data is available
for model training. When using our metric approach, the pre-
requisite is that the area of interest lies within a common climate
zone. Current trends show that regional to global biodiversity
studies relying on indicators from big data (species and predictor
variables), model biodiversity for narrow taxonomic ranges (i.e.,
all bird species). These results, however, are not applicable to
determine the overall biodiversity status over broader scales32.

This work aimed to propose a practical, bottom-up, and easy-
to-calculate metric that is sensitive to the status of local biodi-
versity, using indicator insect species as assemblages. As a result,
the metric provides a comprehensive biodiversity status baseline
that is applicable using existing data and responsive to incre-
mental improvements when data sets are updated. This study
does not aim to validate the metrics over a range of underlying
socio-ecological conditions and ascertain its applicability over a
broad scale. Data requirements and how users can apply the
metrics and test its local scale validity and implementation risks
are alluded to in the method protocol.

We found that irrespective of insect taxa, microhabitat inves-
tigated within a nested agro-ecological unit, and even over dis-
tinct climate zones, the proposed metric shows stability in value
distributions and is thus suitable for localized biodiversity status
mapping. The results also showed that the diversity of stingless
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bees, butterflies and dragonflies is higher in protected areas than
in unprotected areas within various agro-ecological zones in
Kenya and South Africa. In conclusion, the metric provides a
biodiversity baseline measure that can be implemented in insect
data dense regions to ascertain the micro-habitat-based biodi-
versity status of landscapes.

Results
In implementing the iBS metric for butterflies (BF) and moths
(Moth) and rove beetles assemblages (termed BF/Moth/Rove_N)
independently in two distinct agro-ecological climates (Kaka-
mega in Kenya and St. Lucia in South Africa), we found that iBS
values differed considerably between Protected (P) and Non-
protected (NP) areas. The dissimilarity was confirmed using the
Kruskal–Wallis multi-pairwise test, using class-specific variances
in the iBS values (p= 0.001). However, we obtained value dis-
tributions that were comparable between the two agro-ecologies,
both within P and within NP areas (Fig. 1). Specifically, in
Kakamega (humid climate), the values for P ranged between 0.38
and 0.95, with a mean of 0.64 (n= 500 random samples); the
value ranges for P were similar in semi-humid St. Lucia
(0.49–0.89; mean = 0.53; n= 500).

Agroforestry (AF), only present in Kakamega, exhibits iBS
values (0.2–0.51, mean = 0.31) that are closer to the protected
category than the NP category (0.004–0.08; mean = 0.04) (Fig. 1).
This is because agro-forestry sites provide a high degree of habitat
heterogeneity, which results in more diverse ecological niches for
various species33.

The spatial iBS pattern maps for BF/Moth/Rove_N (Fig. 2)
showed interesting and realistic patterns of biodiversity status in
both areas that clearly map sentinel habitats (i.e., gallery forests and
wetlands) and how they have been affected by human activity.
Moreover, the similarity/dissimilarity results (Fig. 1) are apparent;
the stark differences between the Kakamega P (dark green shades;
Fig. 2a) and NP areas (other shades) are well visible. Inset a illus-
trates that residual near-natural vegetation (gallery forests) and agro-
forestry areas alongside the Kakamega P areas are clearly visible and
have the same color shades (and iBS values) as the woody cover in

the Kakamega P itself. In St. Lucia (Fig. 2b), low density settlement
areas are characterized by a moderate to high insect-based iBS
(0.2–0.82, n= 55). Although the insect assemblages used do not
prefer transformed areas, low-density urban areas (buildings inter-
mixed with urban gardens or urban agriculture) can sustain high
insect species richness and diversity34. High iBS values in St. Lucia
were also associated with both coastal forests and some wetland
areas, often in proximity (inset b, Fig. 2). Although wetlands in St.
Lucia are mostly regularly flooded grasslands, and not forested areas,
the high biodiversity status of wetlands is due to the inclusion (in the
species modeling) of some rove beetle families (e.g., Staphylinidae).
These prefer waterline fringes and wetlands as habitat zones. This
confirms that biodiversity status information should be compre-
hensive enough to include species that prefer various micro-habitats
(when using assemblages).

As a result, our biodiversity status metric considers the role
insects can play as bio-indicators for the status of a whole land-
scape or region. Wetlands are considered highly important areas
for biodiversity. Using the spatially explicit Earth Observation
(EO) data, that includes wetness spectral features, helped in the
identification of fine-scaled habitat zones most suitable for these
semi-aquatic indicator species. This also confirms that biodi-
versity status is not only determined by forest cover, but also by
habitat suitability.

Inset a for Kakamega shows associations of gallery forests and
seepage lines with higher iBS values than the surrounding non-
protected landscape. The inset b for St. Lucia shows a seasonally
flooded grassland wetland (W) and an alongside forest (F). Both
land cover features have similar iBS values. Google earth imagery
is shown corresponding to each inset, respectively. Due to the
skewness of the distribution, the iBS data are mapped with a
linear color stretch, truncated at one standard deviation.

Spatially explicit and coherent data on insect biodiversity status
is not available for cross comparison. However, an area-specific
study that linked local butterfly assemblages (diversity/richness)
to utilization intensity and land use in Miombo woodlands,
Tanzania (semi-arid climate), found a mean butterfly species
diversity of 88% for Forests (graded as low utilization) and 81%

Fig. 1 iBS BF/Moth/Rove_N value distributions, as violin plots, for Kakamega and St. Lucia and representative land cover categories.Means (black dot
at the center), standard errors (dark teal line intervals), and 95% confidence intervals (red intervals), standard deviation (gray intervals), for randomly
sampled pixels are shown for land cover categories protected (P) (n= 500), non-protected (NP) (n= 500) and agroforestry (AF) (n= 57). The violin plot
scores (numbers in parenthesis) illustrate how similar the distributional plots are, i.e., categories that can be grouped into one category.
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for Gallery Forests (slight utilization)35. The percentages in that
study were expressed as the mean score attained compared to the
maximum diversity value given for that land cover class. In our
case, the values were favorably comparable; 88% for Forest and
79% for Gallery Forest. These percentage means were derived
from the pixel means for each category in relation to the max-
imum value found in each category for the Kakamega site. We
used Kakamega in the comparison, since it has larger and with
comparable proportions of these two land cover categories.

The value distributions for P, NP, and AF were similar when
based on three data sets using (i) BF/Moth/Rove_N in Kakamega
and St. Lucia (ii) stingless bees (tribe level) (SB) amplified by the
Forest Integrity (FI) index (SB_FI) in Kakamega and (iii) dra-
gonfly (sub-orders) amplified by FI data (DF_FI) in St. Lucia
(Fig. 3).

The observed similarities were confirmed by the
Kruskal–Wallis pairwise test. For the SB-FI and BF/Moth/
Rove_N comparison, no class-specific variance discrimination
(p > 0.05) was found for Kakamega. This same was true for the St.
Lucia when comparing the independently predicted DF_FI to the
BF/Moth/Rove_N outputs. For all D and N variable combina-
tions, the value ranges were also higher in P than in the NP
category. These differences in iBS values confirm the biodiversity
integrity and human impacts, as realistically expected for P and
NP areas.

The consistencies of the iBS across the two agro-ecological
zones, despite dis-aggregating the metric along various taxonomic
levels and using various human influence variables (i.e., FI and
the Naturalness Index) shows the relevance of the metric as a
reliable proxy for micro-scale biodiversity status. The metric
values are comparable between taxa and sites despite different
underlying landscape patterns. As stipulated, indicator insects can
be used as a proxy for overall site-specific biodiversity status.

Discussion and conclusions
Biodiversity status measures or indicators need to be reproducible
and moderately sensitive to drivers and consequences of biodi-
versity loss36. Moreover, these measures need to be easy to
implement and robust enough to capture all inherent variations
in data quality, even if not applicable to all species or purposes21.
The metric developed herein can provide a framework to monitor
localized micro-habitat-based biodiversity status conditions. As
implemented, only one biodiversity component (insect assem-
blages) was considered.

The insect orders used herein (i.e., butterflies and moths) are
considered sensitive to overall habitat changes as they require
very specific habitats and microhabitat structures during larval
development37. Micro-habitat quality and quantity can only be
considered in a context where ecosystem structures are well
discerned2. Our iBS metric made this possible by using EO
techniques, since high-resolution and detailed ecosystem and
landscape structure information could be considered and pro-
jected over wide areas. Furthermore, by pairing diversity-based
species richness to spatially explicit naturalness information, we
enhanced the iBS sensitivity to various tangible consequences of
localized human impacts on biodiversity38. This is an advance-
ment over sum of human pressure indicators such as the human
footprint and/or the use of the Naturalness Index39 on its own as
a proxy for biodiversity status.

Conceptually, the iBS is like the Biodiversity Intactness Index
(BII)7 and the The Nature Index (NI) produced by the Norwegian
Institute for Nature Research40. Both also relate human impact to
species abundance data. Both the BII and the NI use biome-
specific species abundances and relate this to average changes in
biodiversity using high resolution land use data to predict bio-
diversity changes over time. As opposed to these species fraction
estimates for specific land units (i.e., parametrically), the iBS has

Fig. 2 iBS metrics maps for the BF/Moth/Rove_N assemblage.Map a illustrates the iBS result for Kakamega in Kenya, area size approximately 2000 km2,
and map b is the result for St. Lucia in South Africa, same approximate area size. The map insets show specific zoomed sub-sections within each area. The
letters F (Forest) and W (Wetland) for the St. Lucia inset illustrate the location of these specific land cover features. iBS values are color coded according to
respective value ranges, as shown. The violin plot scores (numbers in parenthesis) illustrate how similar the distributional plots are, i.e., categories that can
be grouped into one category.
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the advantage that it uses non parametric per pixel spectral fea-
tures (i.e., abundances of greenness and wetness in each 20-m
pixel) and high resolution tree heights data (from the Global
Ecosystem Dynamics Investigation mission) to predict explicit
insect species abundance and diversity patterns. This is then
weighted by the human impact component using the 10-meter
high-resolution naturalness index. The result (iBS) as a measure,
and not indicator, for biodiversity status41. Our metric is suitable
for characterizing the current localized biodiversity status base-
line, without making use of an intact baseline reference site. Insect
indicator species are specific to the overall biodiversity status of a
localized site30. Furthermore, the use of taxonomic orders of
indicator insects has the advantage that species-specific weights
for human impact responses for certain ecosystems do not have
to be pre-emptively determined40. Such species weights in
ecosystem-based assessments can be biased. Some biases are even
more problematic if they are based on expert knowledge and
statistical confidence limits associated to expert’s reasoning42.
Essentially, parametric assessments of relative species richness
loss per ecosystem and expert judgment can lead to under-
estimation of biodiversity loss43.

In terms of applicability over any site and area coverage in
Africa, our metric should be used with clear understanding that it
relies on localized data. Regarding D, predictions would not be
accurate in areas of low taxonomic data densities and evenness.
Further, if used in areas with dramatic shift in climate regimes,
the landscape-based species diversity models, as used herein,
would produce inaccurate model outputs44. In our case, the
assemblage diversity models are produced for each specific cli-
mate zone and area, and only then compared (Kakamega, humid
climate; and St. Lucia, semi-humid). For both areas and climate
zones, the Area Under Curve (AUC) prediction accuracies for D
were >0.95 (+−0.02). The availability of the used EO data

(spectral features from 10–20-meter Sentinel-2 data and 25-m
GEDI tree heights) are not site-specific constraints. Due to this
spatial explicitness (pixel-based), the metric values can be
straightforwardly, and meaningfully averaged across various
landscapes of interest (within a common agro-ecological zone) to
effectively establish the overall zone-specific local biodiversity
status. To increase its applicability and stability over wider
regions, we recommend that the iBS be used in conjunction
with regional and ecosystem-based biodiversity measures. For
instance, it could be used as a site-specific reference for country-
specific biodiversity intactness information such as the Natural
Capital Index (NCI). The NCI uses region-specific bird and
butterfly abundances (at various taxonomic levels) to estimate
ecosystem quality45.

The replicability and the implementation of the iBS metric is
aided using readily and freely available EO data and species
assemblages from citizen science portals (i.e., iNaturalist.org).
Both data sets are now more accessible than in the last decades.
As more EO and species data becomes available, it can be
effectively and increasingly integrated in spatial models for pro-
spectively updating biodiversity status for various areas within
common climate zones46. The development of big data processing
platforms with advanced algorithms, such as Google Earth
Engine, supports cloud-processing of EO data at planetary
scales47. This is of particular importance for practitioners in
developing countries, i.e., in so called data scarce environments
and poorly studied areas of the world.

The policy domain has several demands regarding credible
biodiversity status measures and indicators20. With the approach
presented here, average values for a landscape unit or conserva-
tion area can be computed to determine its biodiversity status.
This can be used to address policies that require address area
under protection estimates or progress made in this regard48.

Fig. 3 iBS value distributions as violin plots for various insect assemblages for Kakamega and St. Lucia. The distributions for BF/Moth/Rove_N (mean,
range) for randomly selected pixels for protected (P) (n= 500), and non-protected (NP) (n= 500) and agroforestry (AF) (n= 57) are shown as black
violin plots. Distributions for SB_FI (n= 50–500, random samples) for Kakamega are illustrated for P, NP, and AF in orange color. Distributions for DF_FI
(n= 50–500, random samples) for St. Lucia are illustrated for each of the categories in blue color. Means (black dot at the center), standard errors (dark
teal line intervals), and 95% confidence intervals (red intervals), standard deviation (gray intervals) are illustrated for each violin plot. The violin scores
(numbers in parenthesis) exhibit how similar the distributional plots are, i.e., categories that can be grouped into one class.
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The metric can be dis-aggregated and weighted to specific species
of concern to assess vulnerability or extinction risks (e.g., Red
Data Lists). As implemented herein, our results show that the iBS
demonstrates a similar sensitivity to various insect sub-orders and
families (e.g., stingless bees and dragonflies) (Fig. 3). Further-
more, given densely available species data, the metric allows for
the rapid assessment of indicator groups or orders to provide a
current baseline. This helps to ascertain conservation hot spots,
including identifying last wild places49. Implementation of the
Aichi Biodiversity Goals in Africa has shown that data deficiency
gaps exist for undervalued species50, such as insects. Imple-
menting the iBS can help to address these gaps in an
effective way.

Methods
Characteristics and implementation of the metric. The metric is based on spatial
distributions of insect assemblages—species, groups, or orders—as they occur
within various habitats and land uses. As insect habitat demands are more-fine
scaled than for plant or vertebrate communities, the measure is best implemented
with data that more suitably characterizes insect micro-habitats. This includes data
on vertical habitat structure, and spatially explicit data that can discern actual, as
opposed to modeled, insect habitat suitability zones. Data would also have to
consider habitat modifications by various human activities (including human
impacts from past human activities). Ideally, spatially explicit habitat patterns
would consider degraded versus non-degraded areas and land fragmentation pat-
terns. Both are critical parameters of the micro-habitat status of insects and other
taxa23. At the landscape level (<20-m grid cell or pixel resolution), spatial metrics
can encompass micro-habitats of insect assemblages. For certain indicator species,
generalists and species that are less tolerant to disturbances can be considered with
appropriate spatial metrics3,12.

Within similar climate zones, and given that reliable data on taxa are used,
biodiversity metrics or indicators should be scale appropriate in time and space.
Moreover, the metric values should be comparable within a given local site, given
the use of common measuring units and well-calibrated geospatial data. Given this
scalability, taxonomic adaptability and computations include uncertainty; the
measure can be a reliable proxy for overall and current localized biodiversity status
(within common climate nesting zones). Thus, the iBS metric can help to address
various conservation strategies at different political and administrative levels.

For insect assemblages i in agro-ecological zone j, the insect-based biodiversity
status (iBS) metric is defined as;

iBS ¼
Y1

n¼0

Dij Nij ð1Þ

Where iBS is the actual (current) insect-based biodiversity status and D denotes
species diversity (species richness), predicted from 0 to 1, where 1 is the most
species rich (diverse) space. Diversity/richness (D) includes local habitat structure
and species composition. Landscape naturalness (N), which denotes various human
impacts scaled from 0 to 1, where 1 refers the highest naturalness. This occurs
through human impact manifestation from current and past human activities and
disturbances. N is also sometimes referred to as human footprint51. Information
from various existing sources can be used for both variables (i.e., for N, readily
available human footprints data can also be used). The two variables can be
expressed as percentages or proportions if common measuring scales are
consistent. For insect micro-habitat monitoring, only high-resolution data for N is
appropriate. We suggest the use of taxonomic orders that represent indicator
species for ecosystem intactness. By using only two variables with given
uncertainties, the metric is easy to understand.

The metric can be disaggregated for taxonomic levels of interests (i.e.,
International Union for Conservation of Nature red list species)52. This can be
done by using insect or other occurrence data from any given taxonomic level, such
as specific orders or families of interest. Moreover, weightings can also be
straightforwardly applied by using exponents or multiplications for individual taxa
of interest.

Climate variability is excluded by implementing the metric only within specific
agro-ecological zones. Furthermore, local results from the iBS can be feasibly
integrated into spatial species models that use bio-climate variables over wider
areas for regional biodiversity pattern assessments, including future projections.

Sites and input data. Two sites, each about 2000 km2 in size, were selected to
implement the metric. The sites lie in two agro-ecological zones (a semi-humid site
in eastern South Africa, and a humid site in western Kenya). The iNaturalist
platform (iNaturalist.org) was used to acquire open source and research graded (R)
data on insect occurrence (species for a specific location). The export tool provided
was used to export the tabular species data (as orders and sub-orders). The areas
selected for this work show high species numbers (>1600 in all sites) and spatially
balanced spreads (evenness) for the Lepidoptera order (butterflies and moths) and

the Polyphaga sub-order (Rove beetles, some of which prefer semi-aquatic habi-
tats). These (sub-) orders represent indicator species for overall landscape integrity.

For the two sites, freely available 10–20-m resolution European Space Agency
(ESA) Sentinel-2 satellite data for 2019 to 2021 were acquired and cloud processed
(see Description of methods and overall approach and Procedure sections below).
Newly developed and freely available gridded 25-m tree height data metrics (Level
2A product) from the Global Ecosystem Dynamics Investigation (GEDI) mission
(available only for 2019) were added as predictor bands53. Tree height and stand
maturity is an important life cycle variable for the orders that were investigated54.
All data sets are freely available through the cloud-based Google Earth Engine
(GEE) data repository.

The Naturalness Index (N) consists of four human influence proxies namely,
population density, land transformation, accessibility, and electrical power
infrastructure that are measured with the geodata Gridded Population of the World
v4.11, WorldCover V100, OpenStreetMap, and VIIRS Stray Light Corrected
Nighttime Day/Night Band Composites Version 155, respectively. While the
GPW, WorldCover and Night-time Lights data sets are available globally in the
Google Earth Engine platform, OSM data were extracted manually from www.
openstreetmap.org. For the two test sites and processed into the accessibility maps
required by the fusion algorithm. The data were then combined using a heuristic
data fusion approach described in39. The input geodata were converted to weights
by applying preprocessing steps and summed up on a pixel level. The resulting
product is then inversely normalized to the range [0;100] to form the
Naturalness Index.

Description of the methods and overall approach. We implemented the metric
using earth observation (EO) and other spatially explicit geo-spatial data for two
agro-ecological/climate zones: Kakamega in western Kenya (humid climate) and St.
Lucia in South Africa (semi-humid climate). Lepidoptera orders (butterflies (BF)
and moths (Moth)) and Polyphaga sub-orders (rove beetles) were used as indicator
species assemblages. The insect assemblages were sourced from the open source
iNaturalist platform52. As predictors, 10–20-m resolution EO variable metrics on
per pixel greenness (measurement value for chlorophyll active vegetation), wetness
(measurement value for surface water), brightness (measurement value of interac-
tions between soil and canopy moisture, usually sensitive to bare soil surfaces) were
computed from Sentinel-2 time-line data. In addition, 25-m resolution per pixel tree
heights were used to model D for the assemblages. For N, a 10-m Naturalness Index
was predicted as described above. The Naturalness Index we produced measured the
naturalness of land surfaces, defined not by biodiversity, flora, or fauna, but by the
absence of human impacts. The spatial data frames corresponding to the D outputs
were, respectively, used to compute the naturalness index.

For modeling D, a random forest species diversity regression model was used at
both sites56. Random forest regressions are part of the ensemble learning concept,
that uses decision trees to forecast values related to, in this case, species diversity of
the used insect assemblages.. To avoid overfitting, we performed a k-fold cross
validation technique57. Model performance was estimated for both sites using the
Area Under Curve (AUC)58.The total species counts were separated into training
and model evaluation data using a ratio of 30% (evaluation) to 70% (training data).
The D and the N prediction results, as pixel raster layers, were then normalized
using the formula described in the procedure section as number 10. Several
arithmetic combinations of N and D were tested, and by visual inspection of the
value distributions of the results (Supplementary Fig. 1 and Fig. 2) and descriptive
histogram assessment (Supplementary Figs. 5, 6). Using visual inspection, a
multiplication function rendered the most realistic results in terms of predicting
biodiversity or conservation status. Multiplication was according to the
mathematical formulae (1). The descriptive statistics showed that the product of
the two variables produced results that included both the biotic component (D) and
the human impact component, through N (Supplementary Fig. 3 and Fig. 4).

Our approach includes a statistical descriptive assessment of iBS value
distributions over two different agro-ecological zones. Moreover, independent
models were predicted for both sites using stingless bees (SB) (for Kakamega) and
the dragonfly (DF) (for St. Lucia) insect assemblages. The comparison was
performed to assess if our measure is realistic and useful to be used across various
human impact and agro-ecological zones and robust enough when using various
taxonomic rankings. Specifically, for Kakamega (humid agro-ecological zone), an
existing pixel-explicit data set (250-meter resolution) predicting SB species
distributional patterns was used59. The SB model exhibited AUC accuracies > 0.9
and various ecological predictors and tribe level insect occurrence data from 2017
to 2021 were used. The diversity model (variable D) for SB was amplified with a
newly available global 30-m Forest Integrity (FI) data set60. SB_FI was produced
according to the same mathematical function (1) that was used for the Lepidoptera/
Polyphaga (sub-) orders. For St. Lucia, dragonflies (DF) sub-order assemblage data
from the iNaturalist platform (N= 575) (collected from 2017 to current) were
amplified with the FI data set, to produce DF_FI, also according to (1). Randomly
sampled pixels (N= 50–500) were extracted from each model results, for
Kakamega and St. Lucia, respectively. The random samples were extracted for
functional land cover categories at each site. These were the protected (P) (national
reserve with minimal human impact), the non-protected (NP) (areas around
national reserves with various human impacts that are present in both St. Lucia
wetland and Kakamega), and the agroforestry (AF, only for Kakamega) categories.
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AF constitutes a 5-km buffer around the Kakamega reserve. For each land cover
category, site and insect assemblage grouping, diamond shaped distribution
diagrams and associated statistics were computed. The statistics included land
cover category means, standard deviation, standard errors, and confidence
intervals. Moreover, the statistical differentiation between values attributed to these
categories (from the category-based random sampling) was done using the
Kruskal–Wallis rank sum test (with continuity correction)61 and by visualizing of
the class-based variances. The Kruskal-Wallis test is used when the samples do not
follow a normal distribution.

The statistical assessment per land cover category and taxonomic group aid to
support the aggregation of the metric for functional categories or ecosystems. The
error bars for the iBS values from various agro-ecological zones provide confidence
in the credibility of the metric. Error bars in can be used to assess if biodiversity
status ambitions can be reached, and with what associated uncertainty21.

Lastly, to furthermore, support aggregation over larger areas and create
confidence in the scalability of the metric, various data gap assessments regarding
the evenness of the insect occurrence data from the iNaturalist were performed (see
Guidance on data and model requirements, and uncertainties of the approach).
Specifically, for the (sub-) orders Lepidoptera/Polyphaga from the iNaturalist,
point data densities from 2017 to current were computed for the two study sites
using the total number of points divided by the entire area of the study site62. Using
the same method, point weighted data density was also computed for the whole of
Africa and going forward, assuming that more data will be available in future in the
iNaturalist (current year + x). For the future projections, improvements of data
density were assumed, within and alongside existing data points that are currently
available in the iNaturalist. Furthermore, bootstrapped confidence limits for the
used insect order Lepidoptera and the Polyphaga sub-order were computed to
confirm the suitability of the two chosen sites in terms of insect occurrence data
density. Lastly, 25% of the total insect occurrents data points were successively
removed and the accuracy for D was re-computed with less data. This was done for
both study sites to assess how data density affects model accuracies (for D). The
data density computation and model sensitivity to the number of data point’s
analysis were done to re-affirm the selection of the study sites and provide guidance
on implementing the iBS elsewhere in Africa.

Procedure.

1. For one agro-ecological and/or climate zone, source orders, sub-orders or
family level insect occurrence data from the iNaturalist platform
(iNaturalist.org) (occurrence data from other portals can also be used).
Assemblages of species that are indicators for landscape biodiversity and
integrity should be used (e.g., butterflies, moths, beetles, and/or dragonflies)

2. Review insect assemblages, orders or sub-orders, families or individual
species data points and verify that these are well spread, and the area
selected lies within one climate zone. An agro-ecological map can be
overlaid to verify the climate nesting

3. Using cloud-based services such as GEE (https://earthengine.google.com) or
SEPAL (https://sepal.io/), source European Space Agency (ESA) 10–20-
meter Sentinel-2 optical time-line data (at-sensor reflectance) that
correspond (+−3 years) to the iNaturalist occurrence data

4. Use the same cloud-platforms to compute tasseled cap spectral feature
metrics on greenness, wetness, and brightness using the tasseled cap
transformation coefficients for at-sensor data (see ref. 63), using 2–3 years of
satellite timeline data. Use a median compositing approach and a cloud
cover threshold of 25% to derive the spectral metrics representing the 2–3-
year period64

5. Source the L2A 25-m GEDI tree heights data65 set for the selected area in
the cloud platforms, and geospatially resample the data to the Sentinel-2
spectral metrics.

6. Perform a Variable Inflation Factor (VIF) and/or the Pearson correlation
analysis to probe collinearity of the variables (10–20-m Sentinel-2 metrics
and 25-m GEDI data)

7. Use a machine learning algorithm, i.e., random forest with standard
optimizations, to predict the order, sub-orders, species-based, or assem-
blages’ richness or diversity (D) using the non-collinear tasseled cap features
and the 25-m GEDI tree heights as predictors for insect taxa occurrence.
The results are insect diversity or richness data layers, termed D.

8. Using a sub-set for the insect occurrence data (i.e., 30% of the training data),
devise an accuracy score for the species-richness models (D), i.e., produce an
area under curve (AUC) graph and statistics

9. For the same area of interest, the Naturalness Index is computed (for N)
using the approach described in ref. 39

10. Rescale the D and N data layers using minimum and maximum value
differential normalization; rescaled raster = [(raster − Min value from
raster) / (Max value from raster − Min value from raster)]

11. Apply multiplication on the normalized raster layers (D * N) for the area of
interest to predict per pixel iBS

12. Overlay geographical data layers for orientation and perform geo-statistical
analysis as required, i.e., average iBS for a protected area or identify spatial
biodiversity status patterns and conservation priority zones or help with
identification of suitable sites for the establishment of protected areas

The following link also provides a link to the data and scripts used to
implement the metrics at the two sites; https://dmmg.icipe.org/dataportal/dataset/
measuring-insect-based-biodiversity-status-in-africa

Guidance on data and model requirements, and uncertainties of the approach.
This section gives a stepwise and practical guideline on how to self-implement the
iBS given data and model requirements, risks and applicability of the procedure
over larger areas.

We recommend using four main data criteria and model requirement tests
when implementing the model using butterfly, moths, and rove beetle orders
(indicator taxa). The data requirements are according to the ecological
requirements of the indicator taxa66.

Firstly, when using these indicator taxa/species, the iBS metric should only be
implemented in the humid (the Kenyan site we used; Kakamega), and the semi-
humid (the South African site we used; St. Lucia) agro-ecological zones according
to67. Together with semi-arid and arid, these four zones represent major agro
ecological zones in Africa. Numerous findings corroborate that the two selected
agro-ecological zones are most suitable for the existence and survival of ecological
indicator taxa used13. We illustrated that >90% of the area of the two sites we used
lie within the two suitable agroecological zones (Supplementary Table 3,
Supplementary notes 3). We compared our two sites to two other semi-arid areas
that exhibit similar area sizes (Pendjari Park in Benin, and Kruger Park in South
Africa). Although the two reference sites have permissible overall species data
densities (determined through visual inspection), they lie outside the two suitable
agroecological zones for the said taxa/species. Thus, the agro-ecological zoning
criteria does not hold for them.

Secondly, we downloaded all available iNaturalists data for the respective
assemblages in the study areas, including the above reference sites, and computed
the data densities. We used the density scores to confirm if the species richness
model (variable D according to 1) can feasibly be implemented. The occurrence
datasets for butterflies, moth and rove beetles in csv format were converted to GIS
point feature shapefiles. Point density calculation allows fitting two models where
the first assumes that the process intensity is a function of covariates while the
second (null hypotheses) assumes process intensity is not a function of any
covariate68. The null hypothesis is calculated by;

λðiÞ ¼ e� 4:795 ð2Þ
For individual areas, points showing spatial locations are treated as the response

variables and any other attribute information associated with them called marks are
the types of data used. The outcome is basically the observed density of occurrence
points within the study area. The R software (spatstat and maptools packages) was
used for the point pattern analysis. The study area shapefiles were loaded,
converted into a polygon feature (object of class owin) and attached with the point
features to explicitly define point pattern boundaries. By default, point density
analysis uses meters units. So, both points and polygons are rescaled to km.The null
model is thus calculated as:

H0 : ρ ¼ ðn=AÞ ð3Þ
where H0 represents the null hypothesis, ρ signifies the point density, n is the
number of observed points and A is the area of the study site.

The area weighted point data densities (Supplementary Table 4) further
confirmed the suitability of the two study sites used.

The third data criteria were to test the effect the total number of occurrence
points had on the data density. This serves to confirm the density scores
(Supplementary Table 4) and re-affirm site suitability for implementing the
diversity/richness model (variable D). For each site, the number of points for
modeling was randomly reduced by 50% and 75%, expressed as percentage of
points left (percentages, first column in Supplementary Table 5), and the point
densities were calculated respectively (according to the above formulas). The first
data row represents 100% of the insect data from the iNaturalist that was available
and used in this study for insect assemblages

If 50% of the total number of points available in the iNaturalist for the said taxa
assemblages for Kakamega (total n= 550) were to be removed, the data density
score drops by a large degree (from 0.32 to 0.16). For St. Lucia, 50% of the points
would still render a data density score of 0.42, however, for both reference areas the
density scores decreased (to near zero) when 50% or 75% of the available data
points are removed (Supplementary Table 5).

Point density criteria is important in this metric because of the small-scale
nature of the habitats of the insect species being used. Thus, density scores are an
important consideration in insect diversity/richness models as they are linked to
localized habitat suitability. Insect habitat suitability (from species diversity
models), furthermore, is linked to biodiversity or conservation status. Also, low
data densities reduce species diversity model accuracies. For instance, in Kakamega
in Kenya, a high AUC score was attained (AUC= 0.95) when 100% of occurrence
points were used but diversity model performed was poor (AUC= 0.56) when only
25% of the occurrence data was used (Supplementary Table 6).

The fourth data criteria were canopy height and water availability. Butterflies
and moths rely on trees in every phase of their entire life cycle. Majorly, they
require mature trees during their larval stage development to increase their chances
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of survival, shelter, and protection69. Due to this reliance, tree height data was then
factored in as a major factor of habitat suitability criteria. In addition, according to
research done by70, insect species abundance and density were positively correlated
with high canopy cover, high tree density and, closeness to water bodies. Rove
beetles, specifically, require intact ecosystems often located next to freshwater
habitats. As a result, study area suitability was furthermore assessed by the
availability of water bodies within the area and if >50% of the area exhibits tree
canopy heights > 3 m (using the GEDI tree heights data). Compared to the two
reference sites, Kakamega and St Lucia fulfilled these criteria (Supplementary
Table 7).

AUC accuracy scores for the insect assemblage-based diversity models (variable
D) showed AUC > 0.95 for the two sites investigated, while the two reference sites,
Pendjari National Park in Benin, and Kruger National Park in South Africa, had
lower accuracies of 0.49 and 0.48 respectively. The lower accuracies for the two
reference sites are due to lower iNaturalists data densities, the lower fractional
coverages of mature trees at these sites (Supplementary Table 7), and the fact that
the reference sites are characterized as semi-arid (Supplementary Table 3).

Finally, a filter encompassing the two most important input data criteria and
requirements (agro-ecological zones and data densities from the iNaturalist), relevant
to the used insect assemblages, was applied to Africa (Fig. 4). Using this, suitable
areas in which the iBS can be implemented were identified on a map (iii in Figure a).
In b, Africa-wide future suitability is illustrated (current year + x) (iii in Figure b),
under the assumption that more insect occurrence data is collected in future
(iNatulalist data density for insect species increases). Biodiversity data densities
within citizens’ portals are expected to increase around or within areas already well
sampled71. The suitability is shown separately as an inset for the two study sites and
one of the reference areas (Kruger National Park in South Africa), respectively, for
current (a) and for future data densities (b). Even with increasing data density, the
Kruger National Park area will not be suitable since it is in the semi-arid agro-
ecological zone. For all of Africa, the iBS implementation suitability using these
insect taxa is currently 5.2% (iii in a, Fig. 4) of the total land mass (excluding
Madagascar), while this may increase to 8.8% in the future scenario model (iii in b).

Other biases associated with the iNaturalist data and site selection that users
should consider are dealt with from here onwards.

According to research28,72 concerns about potential biasness in collated
biological datasets from sites such as the iNaturalist are mainly around uneven
sampling efforts over space and time and uneven species detectability.

Apart from the data density assessment, the bias on uneven detectability was
herein addressed by selecting a wide range of species within the order Lepidoptera
and the sub-order Polyphaga. Grouped, they have been proven to be generally good
indicator species instead of using a specific single species.

In this regard, proper selection of study sites is important. Both sites, selected
herein, are important habitats for a wide range of butterflies, moths, and rove
beetles73,74. Kakamega forest, is a natural reserve and one of the most continuous
rainforests in Kenya. Due to its different habitat types with different ecological
conditions, it harbors a large abundance of insect communities, including
specifically butterflies and moths. Despite rapid human modification in the last
decade, the Kakamega forest itself is still largely intact75. The St. Lucia site
comprises areas of high human impact, coastal forests, and wetlands including
Lake St Lucia which lies within the iSimangaliso wetland park. St, Lucia is an insect
biodiversity hotspot according to UNESCO76.The St. Lucia site is characterized by
a large beetle abundance and diversity, including rove beetles77.

Butterflies, moths, and rove beetles are suitable ecological indicator taxa for
ecological intactness, and as stipulated found in great abundance in both sites78.
According to ref. 79, areas highly endowed with butterflies and moths are highly
likely also to be rich in other macroinvertebrates.

To further probe possible sampling bias in the iNaturalist insect data for both
study sites, we calculated the species diversity scores and bootstrapped confidence
limits for the used insect order Lepidoptera and the Polyphaga sub-order. The
Shannon-Weiner Index (H’), Brillouin Index (HB) and the Simpson’s Index (λ) are
three major indices published in measuring data specific species diversity in
ecology. Based on randomness of insects’ data on both sites, the Brillouin Index,
which is an improvement of the Shannon Index, was used to calculate the diversity
scores as data collection randomness is unguaranteed.

The formula for Brillouin Index is;

B ¼ ln N!�∑ln ni!
N

ð4Þ

For instance, the diversity scores for order Lepidoptera for sites Kakamega
(Kenya) and St Lucia (South Africa) were 3.9 and 4.9, respectively (Supplementary
Table 8). We also calculated uncertainty of diversity scores by calculating the
bootstrap resampling method. We performed a 1000 resampling on diversity scores
calculated using the Brilloiun’s index formula80. The bootstrap method estimates
confidence intervals and uncertainty at site level (alpha diversity) without the need
of assuming the normal or non-normal distribution of occurrence data from bio-
collections such as the iNaturalist81. A 95% confidence interval, which indicates the
range of values that are likely to include the true diversity value with a 95%
probability was calculated. Our diversity scores for both insect taxa orders and sites
lie within the confidence intervals insinuating high precision of estimates.

To overcome temporal bias, only the most recent iNaturalist insect occurrence
data (from 2017 to 2022) were used for diversity modeling (D variable), for both

Fig. 4 Current and future suitability for implementing the iBS using the insect assemblages investigated herein. Part a is the current implementation
suitability for the iBS (gray areas) and b is the future implementation suitability (gray areas) for various data criteria, that are shown in images i–iii,
respectively. Specifically, images i, in both figures (a, b), illustrate the suitable agro-ecological zones (semi- humid and humid), and images ii illustrate the
iNaturalist point data densities for the used assemblages (as per km2 grid cell). Images iii represent the overlay products of the two criteria given the
current data densities (a), and based on anticipated (future) data densities (b). The zoomed areas, forth images in both (a) and (b), show the current and
future implementation suitability results for the two study areas (extracted from iii) in comparison to the Kruger National Park reference area (also
extracted as a zoomed inset from iii).
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sites. The assumption was made that in the last 5 years, ecological transformation
in the two sites was minimal.

Other troubleshooting. Possible problems that can be encountered are listed, with
possible reasons and solutions.

● Problem: In areas with large areal coverage of managed forests, the species
diversity results may be biased towards these sites, specifically in semi-arid
areas. The reasons are that managed forest in singular year data (satellite
metrics based on one or two years only), exhibit spectral responses like
intact forest, thus the model would predict these areas as highly suitable or
diverse. The solution is to increase the satellite data compositing period (>2
years). This would normalize forest management practices such as clearing
and re-growth periods that are not found in intact forests.

● Problem: For the calculation of the Naturalness Index (for N), accessibility
maps processed from OSM data are a crucial input source. These OSM data
need to be manually imported into Google Earth Engine, imperiling the
end-to-end formation of N. Although this is a bottleneck, there are third-
party libraries addressing this specific limitation and facilitate working
pipeline in which the OSM data are seamlessly integrated, namely OSMnx
(https://osmnx.readthedocs.io/en/stable/) and geemap (https://geemap.
readthedocs.io/en/latest/).

Time taken. For predicting D, an experienced operator takes about 12 h for one
site being about 25% of one Sentinel-2 tile (2000 km2). The most time is spent on
geo-location of the 25-meter GEDI to the 10-m Sentinel-2 observations (metrics),
and optimizing the tasseled cap transformations composites, based on cloud cover
contamination over the observation/compositing period. For N, the processing
time taken for areas as used in this study is estimated to be about 1 h. However,
since the Naturalness Index is a measure of naturalness from various anthro-
pogenic factors, the geo-data sources used to infer N are site-specific and vary in file
size from area to area. This variability arises mainly due to the file size of the OSM
data within the area of interest. Essentially, if the area lies in a less populated area
(less human influence, thus less artificial structures), less processing time is used.

The iBS computation itself is performed in <1 min in any given cloud-
processing or geospatial data processing software.

Anticipated results. The procedure is anticipated to produce accurate insect-
micro-habitat-based biodiversity status results for individual areas across Africa,
given insect data availability. Since some insect assemblages, like the once used
herein, are indicator species for landscape integrity, the results are expected to
ascertain actual and overall biodiversity status of a landscape. Also, there is little
sense in monitoring individual species to assess the conservation status of specific
ecosystems since some species may be less or more adaptable to global change
effects. Within the local sites where the iBS is modeled, the metric values can then
be aggregated for features of interest, such as protected areas. Between sites,
landscape feature-specific biodiversity status can be compared and used to monitor
progress towards conservation objectives or to identify current areas of concerns
(i.e., land degradation sites within protected areas).

The main intermediate results, before computing the iBS, are the tasseled cap
transformations modeled on the Sentinel-2 optical time series data, the species
richness (D) outputs, based on species assemblages, and the Naturalness Index (N)
for the corresponding area of interest. The number of insect occurrences points
used in our case were as follows; n= 646 for the insect order assemblages
(Lepidoptera and Polyphaga orders) at the Kakamega site in western Kenya and
n > 1600 for the order assemblages (Lepidoptera order and Polyphaga orders) at
the St. Lucia site in South Africa. For the diversity models (D), specifically, the VIF
scores before performing the model run are the most important statistics needed.
VIF is a measure of collinearity between the independent variables. In our case, VIF
scores for all variable combinations were <5, meaning the variables were non-
collinear. Regarding the overall accuracies of the random forest-based diversity
models (for D), model AUC scores >0.95 could be attained for the two insect
assemblages’ models. These scores indicate high statistical accuracy of the
models60. The random forest model analysis also showed that the 25-m GEDI tree
heights layer was the most relevant predictor, over the 10–20-m Sentinel-2 spectral
tasseled cap predictors.

Through visual inspection, the dragonfly spatial diversity/richness patterns (D)
matched well with the Lepidoptera/rove beetle diversity/richness results for the St.
Lucia site (South Africa, semi humid climate). Likewise, the stingless tribe diversity
models (D) matched well with the Lepidoptera/Polyphaga results for Kakamega
(Kenya, humid climate). High accuracies (AUC > 0.95) were also attained for the
two independent D outputs (SB_FI and DF_FI).

As evident, two different iBS reference insect diversity models were produced at
the two areas, i.e., in Kakamega a SB-FI model was produced, while in St. Lucia the
DF-FI model was produced. This is expected dueto unequal taxa data distributions
across the two sites, i.e., in St. Lucia enough DF data points were available, while this
site did not have sufficient data for SB. Thus, data availability and spread for D as
well as model accuracy has ramifications for which sites to model and the scalability
of the procedure. Furthermore, in our case, we anticipated that the D results would

be moderately accurate if only Polyphaga sub-orders were used. Thus, we combined
the occurrence data for the Polyphaga sub-order with the Lepidoptera order data (as
assemblages). The Naturalness Index results (N) are less affected by input data
variances, since the method relied on mostly globally homogeneous, not site-specific
geodata, such as population density maps, land cover maps, and night-time lighting
maps. The only exception is formed by the accessibility maps created from public
OSM data. In this case, studies have shown increasing lack of quality and
completeness for less developed regions of the world82.

It can be anticipated that, as evident from the iBS value distributions belonging
to the P, NP and AF land cover categories, the iBS value distributions for the
various land cover categories are statistically similar. This is irrespective of the
agroecological zone.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The iBS outputs, input satellite feature maps and other intermediate data can be accessed
by using the following Data Warehouse (CKAN) link–https://dmmg.icipe.org/dataportal/
dataset/measuring-insect-based-biodiversity-status-in-africa. All insect taxa data can be
sourced from the iNaturalist.org portal. The Naturalness Index data used in this study is
freely available online at: https://doi.org/10.5281/zenodo.7323837.

Code availability
The custom produced code for the iBS is available through the following Data
Warehouse (CKAN) link https://dmmg.icipe.org/dataportal/dataset/measuring-insect-
based-biodiversity-status-in-africa. The tasseled cap processing code is available through
the same warehouse link. QGIS version 3.16.16 was used to implement the iBS code; the
tasseled cap code is implementable through the Google earth Engine platform, the
current online version. No specific parameters are needed to run the codes.
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