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Abstract: Modern manufacturing processes are characterized by growing product diversities and
complexities alike. As a result, the demand for fast and flexible process automation is ever increasing.
However, higher individuality and smaller batch sizes hamper the use of standard robotic automation
systems, which are well suited for repetitive tasks but struggle in unknown environments. Modern
manipulators, such as collaborative industrial robots, provide extended capabilities for flexible
automation. In this paper, an adaptive ROS-based end-to-end toolchain for vision-guided robotic
process automation is presented. The processing steps comprise several consecutive tasks: CAD-
based object registration, pose generation for sensor-guided applications, trajectory generation for
the robotic manipulator, the execution of sensor-guided robotic processes, test and the evaluation
of the results. The main benefits of the ROS framework are readily applicable tools for digital twin
functionalities and established interfaces for various manipulator systems. To prove the validity
of this approach, an application example for surface reconstruction was implemented with a 3D
vision system. In this example, feature extraction is the basis for viewpoint generation, which, in
turn, defines robotic trajectories to perform the inspection task. Two different feature point extraction
algorithms using neural networks and Voronoi covariance measures, respectively, are implemented
and evaluated to demonstrate the versatility of the proposed toolchain. The results showed that
complex geometries can be automatically reconstructed, and they outperformed a standard method
used as a reference. Hence, extensions to other vision-controlled applications seem to be feasible.

Keywords: 3D metrology; robotic process automation; robot operating system (ROS); vision-guided
process control; surface resconstruction

1. Introduction

Robotic process automation is a growing field with applications in different industrial
sectors. Typical tasks range from automated optical inspection for quality control in
industrial production to vision-controlled process automation in assembly. One of the
main challenges is flexibility with respect to varying product properties, changing process
environments or human–machine interaction, while manufacturing and assembly are areas
where fully automated robotic systems are already well-established, quality control is
a field that remains dominated by semi-automatic inspection processes, which combine
manual tasks with robotic assistance.

High product variance, small lot sizes as well as the complexity of manipulation tasks,
such as peg-in-hole processes have thus far prevented the use of robotic process automation
especially in small- and medium-sized companies. The demand for frequent adaptations
of control algorithms and programs can only be addressed by highly skilled workers.
Unfortunately, human intervention remains error prone, time consuming and expensive.
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Hence, it would be desirable to equip vision-based control and inspection systems with
more autonomous planning and task execution capabilities.

Different frameworks, such as the Robot Operating System (ROS) [1], an independent
operating system for closed loop robotic systems, and software libraries for sensor data
processing, such as OpenCV [2] and PointCloudLibrary [3], have been developed to provide
open access to algorithms. Nevertheless, integrated approaches to combine object and
sensor data processing with task and trajectory planning as well as the evaluation of
measurement results are still scarcely available. In addition, the fusion of different data
sources, e.g., different sensor systems or CAD and sensor data, is still an open topic in
many applications.

In the particular case of quality inspection, typical challenges for process automation
are nonstandardized inspection procedures due to high variations in object geometry,
surface properties and customer requirements. As shown in Figure 1, quality inspection is
a process involving the following entities:

• Inspected object.
• Inspection system.
• Inspection task.

Figure 1. Automated quality inspection can be described as the combination of the three interdepen-
dent entities: the (a) Inspected Object, (b) Inspection System and (c) Inspection Task. Each of these
entities has its own components and properties.

The inspected object is characterized by its physical properties. The most important is
its geometry as this directly affects all measurement systems. During the entire inspection
task, defined spatial configurations between the selected measurement system and the
surface of the inspected object have to be maintained. The material and surface properties
of the inspected object also have to be considered for the planning of an inspection task
because they affect the suitability of an inspection system to capture the surface and
determine the accuracy of the measurement.

The inspection system generates the data to be evaluated by the inspection task.
Depending on the task an appropriate inspection instrument has to be selected. The
instrument comprises of the measurement system itself as well as the according manipulator.
The main task of the manipulator is to position the measurement system in a defined
configuration relative to the inspected object and keep this configuration stable. The
inspection scene entails all environmental aspects of the inspection, such as the lighting,
temperature and humidity.

These parameters have to be kept in a range where the instrument generates data
that can be used in subsequent evaluation tasks. The inspection task specifies how the
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inspection system has to be arranged around the inspected object in order to generate
measurement results and and ensure these data are further evaluated in order to produce a
representative result.

Depending on the inspection tasks different sources of information about the inspected
object need to be combined for correct evaluation. Possible tasks range from 3D measure-
ments on the object to be inspected over matching of CAD-models to the detection of defects
in the inspected object. As an example, the task of finding surface defects of a defined type
is briefly explained. Depending on the size and shape of the surface defects, an appropriate
camera can be selected. The surface properties of the object (e.g., reflective/non-reflective)
set the inspection scene with regards to the illumination and the position of the camera rel-
ative to the surface. Most other inspection processes can be described by specific instances
of the named components in a similar way.

Based on the idea of breaking up complex processes into small, clearly defined tasks,
the main contribution of this paper can be described as follows: A flexible end-to-end
toolchain for visual inspection processes was developed that can be used to acquire and
analyze measurement data in a fully automated fashion with interfaces to different robotic
manipulator systems and simulation capabilities for the robotic inspection task. The main
focus was to create a universal toolchain that can be adopted for different inspection
systems, inspected objects and inspection tasks. To demonstrate the versatility of the
developed toolchain, an exemplary application in the area of surface reconstruction was
chosen; however, the concept can seamlessly be applied to other inspection tasks as well.

This paper is organized as follows: First, we summarize the state of the art of vision-
based quality inspection and task planning for robotic process automation in industrial
applications. Section 3 presents the universal robotic system architecture for automated
vision-based process control and inspection and the integrated processing toolchain. For
the specific use case of the surface reconstruction of a cast component from the automotive
sector, the integrated algorithms for feature extraction and viewpoint generation are also
outlined.

The results of the successive processing phases and the final reconstruction accuracy
are presented in Section 4. The validity of the proposed end-to-end toolchain for robotic
process automation in industrial applications is discussed, and extensions to further apply
and test the toolchain are outlined in Section 5.

2. State of the Art

Various inspection systems for 3D metrology have been proposed in the literature. The
capabilities of a flexible 3D laser scanning system using a robotic arm were demonstrated
in [4]. Similarly, a 3D reconstruction automation system was introduced in [5], and an in-
line 3D inspection system was presented in [6]. Wang et al. developed an inspection system
for large-scale complex geometric parts in [7]. Almadhoun et al. conducted an extensive
survey of robot-based inspection systems [8]. Their main finding was that programming
environments for applications set very rigid boundaries and do not allow for flexible
adaptations of the tasks of such systems. There are some approaches towards plug-and-
play solutions for robotic applications [9]; however, no universal framework has been
established yet. The limitation of most systems is that their rigid architecture is tailored for
a particular task and hence cannot easily be extended or adapted to meet the requirements
of different use cases.

Model-based viewpoint generation techniques are a class of techniques that use the
geometric information about the object that is to be inspected and output a set of suitable
viewpoints for the complete inspection task [10]. Based on how this geometric information
is made available, these techniques can be subdivided into two categories. The first category
uses a CAD model of the object to be inspected as input.

The standard triangle language (STL) file format is widely used in industry as a quasi-
standard for the exchange of geometric data in form of surface meshes. This file format
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does not contain any explicit information about curvatures or neighborhood information
about the meshes [11].

Wu et al. proposed a laser-scanner-based optical inspection system, which takes the
geometrical information in form of a STL file as input [12] and subsequently improved
their algorithms to handle more complex geometries [13]. If a different CAD file format
that contains both curvature and surface normal information is available, other techniques,
such as those demonstrated by Liu et al. [14], can be used.

When the CAD model of the object is not available, Coordinate Measuring Machines
(CMMs) or 3D-scanners can be used to create a digital model of the object. Such models are
often created in the form of point clouds. A point cloud can also be extracted by subsam-
pling a surface mesh. The geometric information of the point cloud then corresponds to the
geometric information of the object.

Point clouds have been gaining popularity among researchers in the field of inspection
planning because operations based on point clouds are computationally less expensive
than those on meshes. This was exploited by Zou et al. to create isoparametric tool paths on
surfaces [15]. The structure of point clouds can be used to create and optimize viewpoints
for image acquisition systems satisfying different needs, e.g., surface coverage ratio [16].
Ref. [17] developed an adaptive algorithm for autonomous 3D surface reconstruction based
on point clouds. The trajectories of the robotic inspection system were generated and
simulated in MATLAB.

Feature points can be identified in point clouds to mark points with special properties.
These properties can, e.g., concern surface variations in the vicinity or point densities in
the surrounding volume element. They can be estimated by using numerical optimization
approaches or other methods, such as Voronoi-based algorithms. A Voronoi-based method
for the extraction of normals from a point cloud was proposed by Amneta and Bern in [18].
This was then extended to ensure robustness against noise in [19]. Mérigo et al. built upon
this work and proposed a method that can not only provide the normal information of the
point cloud but also the underlying curvature information [20].

The use of neural networks for feature point extraction from point clouds has recently
gained popularity. PointNet [21], PointNet++ [22] and Dynamic Graph Convolutional Neu-
ral Networks (DGCNN) [23] are primary neural network architectures for convolutional
operations on point cloud data. The DGCNN architecture was used for feature extraction
in [24,25]. A PointNet-based architecture for feature extraction was implemented in [26].

3. Methods

The foundation for a modular and flexible toolchain for component inspection is a
continuous and fully digital representation of the inspection entities. This section explains
the digital model and breaks down the different tasks along the toolchain. The digital sys-
tem covers the inputs to the system, the necessary processing steps and the execution of the
system using ROS tools. The application-specific evaluation of the acquired measurement
results is explained in Section 4.

3.1. Toolchain

The term toolchain refers to the sequence of all operations involved in an automated
inspection process. Figure 2 depicts the developed toolchain for an automated optical
metrology task. The toolchain can be subdivided into three procedural units—processing,
execution and evaluation. The processing step takes the geometry of the measurement
object, parameters of the inspection system and the manipulator system parameters as
inputs and performs feature detection, segmentation and viewpoint generation, as well
as path optimization. Data acquisition is conducted in the execution step. The execution
depends on the ROS-based architecture described in Section 3.4. This is followed by an
application-specific evaluation step. In the following, the methods employed in each of the
steps for this specific application are described.
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Figure 2. Toolchain of the Inspection System showing the flow of data from the Inputs to the
system and the Processing of this information, to the Execution of the inspection process and the
application-specific Evaluation of the results.

3.2. Inputs
3.2.1. Geometry

For any kind of inspection planning the key information is that about the object to be
analyzed. Information about the geometry can be provided in multiple formats, each with
their own depth of information. As explained in Section 2, there are two main forms of
geometry representations—meshes and point clouds.

Mesh files contain information about the planar elements on the surface of the object.
These polygons consist of points (vertices), which are connected by lines creating shapes
with at least three corners [27]. In the case of a polygon with exactly three corners, the
mesh M can also be referred to as a simplex mesh. A widely used file format for simplex
meshes is the STL format. This file format exists in human readable ASCII or binary form.
As of its performance advantages the binary form is more commonly used. The structure
of an STL file is independent of the representation form and consists of an unordered list
of polygons. Each polygon has the following two attributes: the normal vector~n and the
according vertices ~vi.

Point clouds, on the other hand, do not contain information about the connections
between points but only about the vertices. A point cloud P is an unordered set of three-
dimensional points in a frame of reference (Cartesian coordinate system) on the surface
of objects.

P =
{
~xi ∈ R3 | i ∈ N

}
=


 xi

yi
zi

 | i ∈ N


Depending on the field or software used, there are many different file formats for

storing the spatial information in form of point clouds. Some of the most used include OBJ,
STEP and PCD file formats. Some file formats support the storing of additional information
about points, such as color, normal direction or analysis results in form of scalar fields.

3.2.2. Inspection System

In order to perform any kind of inspection task a measurement system is needed.
Although different measurement systems produce different outputs their main features
can be described in a generalized form. Independent of the data produced, every mea-
surement system has an optimal working distance for a specific type of operation that
can be determined either analytically or through experiments. Depending on the kind of
signal-guiding system mounted on the individual measurement system, the field of view
(FOV) parameters can be determined. Examples of these parameters are the horizontal and
vertical opening angles of camera optics or the directional angle of the wedge of ultrasonic
transducers as well as the working distance.
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The determination of the working parameters for the systems to be used are not part of
this contribution but were found through experiments prior to the measurements. In order
to be able to create consistent and complete representations of the measurement results,
the signal output of an inspection system can be treated as a matrix representation with
its reference point in the principal point of the measurement system. Using this kind of
representation, a single-source ultrasonic transducer can be treated in the same way as a
3D scanning system.

3.2.3. Manipulation System

For complex inspection tasks, modern manipulation system with several degrees of
freedom have to be used to be able to reach the acquisition poses around the inspected
object. Six degrees of freedom (DOF) robotic arms are the most frequently used manipulator
type in the inspection of medium-sized components. Such robotic systems can also be
referred to as serial-link manipulators, which consist of rigid links connected by joints.
Every joint moves the link it is connected to along its degree of freedom and can either be
categorized as a rotational (revolute) or translational (prismatic) joint. The entire kinematic
chain of such a manipulation system connects the robot base with its tool tip, more formally
known as its end effector.

Taking the example of the articulated manipulator, a uniquely defined pose in Carte-
sian space can be reached by setting the joint angles θ1, θ2, θ3 . . . θ6 within their ranges
θi ∈ Ui, i = 1, . . . , 6. The entire space of possible valid combinations of joint angles is called
joint space~q,

~q ∈ U ⊂ R6.

The sequential addition of poses given by the individual joint angles is referred to as
Forward Kinematics and always yields a unique solution for a pose in Cartesian space. The
reverse operation of finding a set of valid joint angles for a given pose in task space ξ is
called Inverse Kinematics,

~ξ ∈ R3 × SO(3).

Figure 3 shows the relations between Joint Space and Task Space through Forward
and Inverse Kinematics respectively.

Figure 3. Forward and inverse kinematic transformations from joint space to task space and vice
versa. A pose in Joint Space is defined by the Joint Angles of the system, while in Task Space, it is
defined by Cartesian Coordinates.

For the six-DOF serial robotic arm, there can be poses of the end-effector in task space
for which no unique solution for a combination of joint angles exist; however, multiple or
even infinitely many combinations can be found. Finding valid combinations analytically
can be cumbersome. Frameworks, such as ROS, use numerical solvers to find solutions for
these systems of equations.
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3.3. Processing

The previously explained input parameters are handled in the following processing
step. This process consists of three single operations:

• Feature Point Detection.
• Segmentation and Viewpoint Generation.
• Path Optimization.

3.3.1. Feature Point Detection

The developed system is characterized by its high flexibility that allows for application-
specific customization of different functional blocks. To demonstrate this flexibility, two
different methods that can be employed for feature point detection, Voronoi Covariance
Measure (VCM) and Dynamic Graph Convolutional Neural Network (DGCNN), and their
integration in the proposed toolchain are presented.

Feature Point Detection Using Voronoi Covariance Measure

The estimation of the curvature of the underlying surface denoted by the point cloud
relates to the estimation of the shape of the Voronoi cell around an individual point [20].
Let~p,~q ∈ C be the points of a point cloud, then the Voronoi cell of a point~p is defined is a
region in 3D space containing all the points~x, where the following property holds true:

V(~p) =
{
~x ∈ R3 : ∀~q ∈ C, ‖~x−~p‖ ≤ ‖~x−~q‖

}
(1)

If a point lies on a sharp edge, the shape of the Voronoi cell is that of a triangle. At
the corner, the Voronoi cell is cone-shaped, and it is pencil-shaped if the point lies on the
surface. This shape information can be captured using the eigenvalues of the Voronoi cell
because the ratio of the eigenvalues determines the shape of the underlying surface. For
example, if a point lies on a sharp edge, it will have two larger eigenvalues and one smaller
one. The covariance matrix can be used for this analysis. Recall that, for a bounded finite
volume E ⊂ R3, the covariance matrix can be calculated with respect to a point~p as

cov(E,~p) :=
∫

E
(~x−~p)(~x−~p)Td~x (2)

The eigenvectors of the covariance matrix capture the principal axes of the region, and
their ratio captures its anisotropy. By nature, Voronoi cells are globally influenced. Voronoi
cells of the outer points of the point cloud are unbounded because they extend infinitely
in R3. To extract the local information from these cells, the notion of intersecting ball is
introduced by Merigot et al. [20]. Formally, the ball B(p̃, r) around a point p̃ with radius r
is defined as

B(~p, r) =
{
~x ∈ R3 | ‖~x−~p‖ ≤ r

}
(3)

To bound the Voronoi cell V(~p), consider its intersection with the ball B(~p, r), V(~p) ∩
B(~p, r). Then, the Voronoi Covariance Measure is defined as:

VCM(~p, r) := cov(V(~p) ∩ B(~p, r),~p) (4)

The VCM(~p, r) of any point~p in the point cloud C is a symmetric matrix that contains
information about the Voronoi cell of the point. To address the noise-related deviation of
the shape of the Voronoi cell, the VCM of the points in the spherical neighborhood with
radius R of point~p are summed together. Formally,

VCMc(~p, r, R) := ∑
~q∈B(~p,R)

VCM(~q, r) (5)

for some R > 0 that can be used as a design parameter. Once the VCM has been calculated,
the features can be extracted using the algorithm derived in [20]. The choice of suitable ball
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radii r, neighborhood radii R and threshold parameters is essential for valid results. The
selection of r depends on the expected geometry of the underlying point cloud. Provided
that r is a smaller than the one-sided reach of the object, all the sharp edges will be identified,
and its value should be chosen as the largest possible lower bound on the one-sided reach
of the underlying surface.

The neighborhood radius R should be chosen in such a way that every ball B(~p, r)
with~p ∈ C contains at least 20 to 30 points. The point~p is a feature point if the ratio of the
eigenvalues fulfills the following condition:

ratio(p) ' α2

12
(6)

where α is the maximum detectable dihedral angle. In order to select the point on the
curved surface with dihedral angle of α, the following criteria should be fulfilled [20]:

α ≥ 2
√

3T1/2 (7)

The mathematical proof as well as further explanations for the statements in this
section can be found in [20].

Feature Point Detection Using Dynamic Graph Convolutional Neural Network

The concept of Dynamic Graph Convolutional Neural Networks was introduced
by Wang et al. [23], and its architecture is shown in Figure 4. The EdgeConv operation
builds the core of the feature point detection model used in this paper. The model takes a
three-dimensional point cloud as input. The point cloud is passed through three layers of
EdgeConv. The output of each layer is then pooled together and then passed through a
Multi-Layer Perceptron (MLP). The output of the MLP is then passed through a linear layer,
called Output, which calculates a probability value for the points of the point cloud. This
result is subsequently used to determine whether a point is a feature-point or a non-feature
point.

Figure 4. Architecture of DGCNN-based feature point detector (based on [28])

The model is implemented using the PyTorch Geometric Library. The EdgeConv
operator is implemented using a Multi-Layer Perceptron consisting of linear layers, which
are arranged sequentially. ReLU is used as the activation function, and batch normalization
is enabled. The hyperparameter k, which determines the number of nearest neighbors
considered by EdgeConv operator is set to 30. Random noise is introduced in the point
cloud by translating and rotating the points of the point cloud up to ±2 mm/m and ±15◦

along the x−, y− or z−axis, respectively.
This ensures that the model can deal with perturbations in the acquired data. The

point cloud is normalized into a unit sphere, for better generalization. The model is then
trained for feature detection using the ABC dataset. The ABC dataset is a collection of one
million Computer Aided Design (CAD) models for research of geometric deep-learning
methods and applications [29].

Each model in the dataset has details on explicitly parameterized curves and surfaces
and provides ground truth for patch segmentation, shape reconstruction and geometric
feature detection. Sharp feature curves are defined in the ABC dataset as the interface
between any two regions for which normal orientation for either region differs by more
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than 18◦. This places the inherent limitation on the model that it can only detect sharp
features that are greater than 18◦.

3.3.2. Segmentation

Segmentation is the process of subdividing the geometry under inspection into several
regions with similar properties, further on referred to as segments S. Any segmentation
algorithm that satisfies the application specific requirements can be selected for this process.

Based on the satisfying results of the Topological Mode Analysis Tool (ToMATo)
algorithm and visual feedback possibilities, it was chosen for this demonstrative application.
ToMATo is a segmentation algorithm based on persistence homology, which comes with
theoretical guarantees and visual feedback [30]. Regarding these properties, the ToMATo
algorithm is a good choice for the segmentation of point clouds.

For the initial segments, the geodesic distance of Rips complexes between each point
in the point cloud and its nearest feature point is used. The initial segments are then refined
using the cosine similarity measure to subdivide each segment according to their normal
deviation. The cosine similarity is calculated as the Euclidean dot product between each
point in the segment and the mean normal of the segment.

3.3.3. Viewpoint Generation

Once the segments Si ⊂ C, i = 1, 2, . . . of the point cloud C have been determined
using an appropriate algorithm, viewpoints for the individual segments can be generated.
A viewpoint V ∈ SE(3) is defined as a 4 × 4 homogeneous matrix that describes the
position and orientation of the reference point of a measurement system with respect to
the global coordinate system of the inspection scene. It is assumed that the measurement
system has a principal direction that can be used to position the device in space with respect
to the inspected object. This principal direction is aligned with the mean normal~nM of each
individual segment.

For each point~pj ∈ Si, the normal with respect to the object surface has to be computed.
Depending on the feature extraction method, it is obtained either from the eigenvectors
associated with the Voronoi covariance measure VCMc(p̃, r, R) or in case of the DGCNN-
based feature point extraction from the normal information of the nearest vertex in the point
cloud. The mean normal direction~nM(Si) of each segment is computed as the average of
all points in the segment Si,

~nM(Si) =
∑m

j=1~n(~p
j
i)∣∣∣∑m

j=1~n(~p
j
i)
∣∣∣ . (8)

For each segment Si, all the points are then projected on the plane P through the global
origin perpendicular to the normal direction~nM(Si),

P =
{
~x ∈ R3 | ~nM(Si) ·~x = 0

}
. (9)

For the projected points ~p′j the minimum enclosing rectangle MER of is then calcu-
lated. The orientation of the MER with respect to the global coordinate system defines
the rotational part of the homogeneous transformation matrix. To find the translational
component of the viewpoint, the original points~pj of the segment are first projected onto
the line passing through the center of the rectangle MER and with the direction vector of
~nM(Si). The top most projected point is taken as the reference point for the calculation of
the viewpoint position. The known working distance of the measurement system is added
in the direction of ~nM(Si) and determines the translational component of the viewpoint.
The operations for viewpoint generation are visualized in Figure 5.
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Figure 5. Projection (left) and viewpoint generation (right).

3.3.4. Path Optimization

After the viewpoints have been generated according to the procedure defined in the
preceding section, an optimal sequence for the viewpoints is determined. A completely
connected graph is therefore constructed with the edge costs defined as the spatial distances
between two viewpoints. Other edge costs can be used for the generation of this completely
connected graph, such as the total joint movement or torque. The minimum spanning
tree of the graph, which connects all the vertices of the graph with the minimum possible
edge-cost, is then used to find the sequence of the viewpoints.

3.4. Execution
ROS-Based Control Architecture

Figure 6 depicts the ROS-based control architecture. The architecture takes the Unified
Robot Description Format (URDF) model of the robot as input. URDF is a file format
containing information about the serial link of a robotic system and its motion properties,
which is used as a primary type in ROS. The visualization of the created model can be
conducted using RViz, a visualization tool in the ROS ecosystem. This is the workspace
generation step.

The kinematics information contained in the URDF model can then be used by MoveIt!
to generate a trajectory between any two poses. MoveIt! is a set of packages and tools for
mobile manipulation in ROS that contains state-of-the-art algorithms for motion planning,
manipulation, 3D perception, kinematics, collision checking, control and navigation [31].
The generation of the trajectory between the poses is conducted using the Pilz Industrial
Motion Planner [32]. For collision checking, the Flexible Collision Library (FCL) is used [33].

Once the trajectory is generated, its execution can be conducted in Gazebo or using the
real robot. Gazebo is an open-source 3D simulator for robotics with the ability to simulate
real-life sensors and can be used to verify and test robot algorithms in realistic scenarios.
This ability can be leveraged to verify the generated path in a simulated environment before
executing the path with a physical robot. For the execution of the path using the real robot,
the robot-sensor interface (RSI) communication interface provided by KUKA is used. This
facilitates the communication between the ROS master and the KUKA KRC4 controller.

RSI is a real-time capable interface between external components and the robot con-
troller. The viewpoint information is sent to the robot by a ROS-node, which takes a list
of viewpoints in XML format as an input and converts this data to the KUKA data types
and sends it over the ethernet-based RSI interface. The viewpoints sent to the robot via
this interface are converted to the according joint angles by the robot controller. In order to
acquire data from a measurement system a ROS-node, which subscribes to the topics of the
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data acquisition system is used. This node stores the data sent from the sensor as soon as
the manipulation system has reached its next acquisition pose.

Figure 6. ROS-based end-to-end toolchain for automated robot-based inspection tasks.

4. Results

To demonstrate the feasibility and possibilities of the previously described toolchain,
it was tested on a sample component. The part to be inspected was a cast automative
component with a complex geometry featuring sharp edges, different sized radii and
various connected components. The experiments were conducted in a robotic measurement
cell consisting of a six-DOF KUKA KR10-R1100 robotic arm with a mounted 3D scanner.

The maximum working radius of this articulated manipulatior is 1100 mm for payloads
up to 3 kg. The used scanner was the monochrome stereoscopic Roboception Visard 65
system with a fixed optical focal length of 4 mm. The working distance of the measurement
system was set to 500 mm to compare the results obtained with different methods in the
processing steps and to provide the best possible depth resolution of the system. Figure 7
depicts the described test environment.

The geometry of the object to be inspected is available in form of a STL model and
is shown on the left side of Figure 8. To convert the surface mesh to a point cloud, a
uniform point cloud sampling of the STL file was performed. The results are shown in the
center of Figure 8. The resulting point cloud has points distributed evenly over the entire
surface area.

Due to the layout of the test cell, the object cannot be moved and thus can only be
analyzed from one side at a time. The points that are occluded when viewed from the
principal inspection hemisphere and thus have to be be removed using the hidden point
removal algorithm as described in [34]. The result is shown on the right side of Figure 8.
This point cloud is one of the inputs to the toolchain, which was explained in Section 3.
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Figure 7. Test cell at Fraunhofer IGCV showing the KUKA KR10 robot with a quick change system
on the flange, adjustable flicker-free LED panels and threaded grid plate on the inspection table for
the flexible positioning of objects.

Figure 8. Surface mesh model of the component to be analyzed (left), its point cloud representation,
(center) and the point cloud after hidden point removal (right).

Using this point cloud as input, feature detection was conducted. As mentioned in
earlier sections, to demonstrate the flexibility of the designed system, the feature detection
step was conducted using two dedicated methods—Voronoi Covariance Measure and
Dynamic Graph CNN. To illustrate the relationship between the amount of the points in
the input point cloud and the amount of resulting feature points, one sparse and one dense
point cloud with 10,000 and 50,000 sample points, respectively, were generated.

The resulting feature points are shown in Figure 9. As expected, the quality of the
calculated feature points increases with the density of the point cloud. For the sparse input
point cloud of N = 10,000 the VCM algorithm found a satisfying amount of feature points,
which can be used for the following segmentation of the object (top left) while the neural
network is not able to produce satisfying results for the small number of points (bottom left).
For the denser point cloud, the results of both the VCM and DGCNN methods produced
comparable and good results (top right and bottom right). However, the computational
complexity of both algorithms increased with the number of points in the point cloud.
Hence, a good balance between quality of feature detection and computation time must
be found.
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Voronoi Covariance Measure (VCM)

Dynamic Graph Convolutional Neural Network (DGCNN)

Figure 9. Detected feature points using VCM (top left) and DGCNN (bottom right) for a sparse point
cloud with 10,000 samples and detected feature points using VCM (bottom left) and DGCNN (bottom
right) for a dense point cloud with 50,000 samples.

To ensure comparability between the two methods, the features of the dense point
cloud were consequently used to generate the segments using the ToMATo algorithm. For
the construction of the Rips complex on the point cloud, the neighborhood parameter was
set to a value representing the average dimension of the present feature variations. The
initial results of the segmentation step are shown on the left side of Figure 10.

The number of segments correlates directly with the number and density of the
detected feature points. The segments show a clear result for the front part of the component
but do not segment the back side of the part sufficiently. These initial segments from the
ToMATo algorithm are further subdivided using normal-based refinement as required.
Clusters are formed taking the mean normal into account and only adding points to a
cluster if the differences in the normal direction are below a certain threshold. For this
geometry, 21 segments were generated using VCM, and 20 segments were generated using
DGCNN as shown on the right side of Figure 10.

Viewpoints were generated for every individual cluster based on the parameters of
the used acquisition system. Since the number of viewpoints is very similar for both feature
extraction methods, the generated viewpoints were also closely matched. The resulting
poses are shown in Figure 11 for the VCM-based clusters (left) and the DGCNN-based
clusters (right).
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Voronoi Covariance Measure (VCM)

Dynamic Graph Convolutional Neural Network (DGCNN)

Figure 10. The initially generated segments from the detected feature points using VCM (top left) and
the segments after normal-based refinement (top right). The generated segments from the detected
feature points using DGCNN (bottom left) and the segments after normal refinement (bottom right).

Figure 11. Generated viewpoints arranged around the test object for the the segments derived from
the VCM (left) and DGCNN (right) methods.

Finally, data could be acquired from the generated viewpoints using the ROS interface
of the Roboception 3D scanner. Communication and acquisition were performed using the
methods described in Section 3.4. The point clouds hadto be further registered in order to
be able to perform analysis operations on them. Once the data was collected from each of
the viewpoints, a multi-way registration using the technique presented by Choi [35] was
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applied. To deal with the noise present in the acquired data a set of filters was applied. The
following operations were performed sequentially on the merged data set:

• Plane filtering.
• Statistical outlier removal.
• Nearest-neighbor outlier removal.

Figure 12 shows the results for the VCM- (left) and the DGCNN- (right) based clusters
after these operations.

Figure 12. Reconstructed point cloud using the data collected from viewpoints generated using VCM
(left) and DGCNN (right) after filtering of the measurement results.

Thus, far, this paper focused on the comparison of the DGCNN- and VCM-based
methods for viewpoint generation as two possible methods of the proposed versatile
toolchain. In order to evaluate the quality of the reconstructed surfaces, the generated point
clouds were compared to a feature ignorant method for viewpoint generation as reference.
This reference method used viewpoints on a half-sphere with a radius of 500 mm relative
to the center of mass of the inspected part for data acquisition.

Different metrics for the evaluation of point cloud quality exist. Depending on the
intended application deviations from a known geometry (CAD matching), geometric
features, such as planarity or volume density can be used. In this use case, the volume
density, i.e., the number of points in the vicinity of every point of the point cloud, is
evaluated for spherical volume elements of radius of 10 mm.

The results are shown in Figure 13 for the two feature-based methods and the reference.
The point clouds show similar distributions for both the VCM- and DGCNN-based methods,
while the spherical viewpoints resulted in a higher overall density of the part on the top
part and it failed to capture the corner areas of the object. This can be seen in the front
left and right corners. The feature-based methods thus accomplished a complete scan
of the part with a more even density distribution over the entire object. Given the low
depth resolution of the Roboception 3D scanner of ±200 µm, the overall quality of the
reconstructed part and the volume density of around 100 points per cm3 were acceptable.

However, the goal of this work was not to create a system with an optimized accuracy
but to show the capabilities of a fully automated and flexible toolchain for component
inspection. Future work will focus on the optimization of the methods used in this work
and to enhance the overall system performance by the use of a higher resolution measure-
ment system.
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Figure 13. Density of the reconstructed point cloud using VCM (left), DGCNN (center) and spheri-
cally arranged viewpoints (right). (%) (100 points per cm3 as basis).

5. Discussion

The main goal of this work was to create a flexible toolchain, and the involved pro-
cesses and components for automated optical 3D metrology tasks were presented. Inter-
changeability of the specific methods within the toolchain and a high level of adaptibility
are the defining features of this system. This was demonstrated by implementing two
different feature extraction methods for subsequent viewpoint generation for a digital
surface reconstruction of the inspected part.

To achieve this goal, an ontology of inspection processes was derived using the Unified
Modeling Language (UML). UML has long been established as the modeling language for
ontologies [36]. An ontology was defined as “an explicit specification of conceptualization”
in [37] and “can be used to formally model the relevant entities and their relations within
a system” [38]. The class/subclass hierarchies, inter-class relationships, class attribute
definitions and axioms that specify constraints can easily be represented using UML, which
was originally designed for object-oriented programming [36].

As becomes clear from Figure 14, the complexity of a model increases dramatically
with the number of components and methods. At the same rate, the interpretability for
engineers and researchers to find suitable and successful combinations decreases. However,
when used in combination with suitable compilers, ontological models can provide a robust
framework for the model-based design of variable systems.

Ontological models along with the design language compiler DC43 have been used
successfully to design an extraterrestrial satellite and the engine for a satellite [39,40].
Other ontological models for NDT systems were designed and implemented in [41]. The
ontology-based toolchain of Figure 14 should therefore be adoptable to a wide-range of
applications provided that suitable interfaces for the connected components are defined.

Future research efforts will be focused on the extension of the presented system.
Different measurement systems call for different algorithms for viewpoint generation and
data analysis. In order to fully exploit the potential of the ontological model, a design
language compiler, such as the Design Cockpit 43, will be used to further evaluate the
ROS-based toolchain.

Another aspect of interchangeability is the format of the provided input information
to the system. In times of rising individuality of products, the existence of an exact CAD
model for the part to be inspected can not always be guaranteed due to the manual post-
processing of manufactured parts or automatic adaptations to the product design made by
software.

The toolchain can also be used for the inspection of geometries for which reconstructed
point cloud data from measurements are available. Using the VCM algorithm for feature
point detection and ToMATo algorithm for segmentation, even noisy point cloud data can be
processed to reconstruct complex geometries. The results of these operations are shown in
Figure 15. The proposed toolchain can thus also be used for the planning of inspection tasks
based on low-resolution models created by hand-held or portable measurement systems.
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Figure 14. An overview of the developed extendable system.

Figure 15. Feature detection using VCM (left) and segmentation using ToMATo (right) based on a
noisy point cloud captured with an optical 3D scanner.
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