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Abstract

Climate change has become a noticeable mega-trend in the 21ˢᵗ century, with widespread adverse

effects on the environment and socioeconomic development. In Ethiopia, where over 85% of

the population depends on agriculture, the vulnerability to climate change is high. The agrarian

sector faces significant threats from shifting weather patterns and long-term climatic variations,

impacting the livelihoods of millions in the country. Thus, this study aimed on assessing hydro-

climatic trends, climate change, and the potential impacts of future climate change and land

use land cover (LULC) dynamics on headwater catchments in the Wabi Shebele River Basin

(WSRB) in Ethiopia. Historical hydro-climatic variability and trends were analyzed using the

modified MK test and the Sen Slope estimator. Rainfall and maximum temperature exhibited

mixed trends, while minimum temperature showed a clear increasing trend, except in the high-

land part of the basin. Streamflow displayed mixed trends across seasons and gauging stations.

To project future climate change, eight CMIP6 Global Climate Models (GCMs) were employed

under four shared socioeconomic pathways (SSPs) scenario. Future climate data were down-

scaled and bias-corrected, revealing an anticipated increase in mean annual precipitation, max-

imum and minimum temperatures across various Agro-Climatic Zones (ACZs). Notably, the

rate of change in minimum temperature exceeded that of maximum temperature in most ACZs.

The research also investigated land use land cover changes using Landsat images and the Semi-

Automatic Classification Plugin. Significant transformations were observed over the past 30

years, including the depletion of natural vegetation and an increase in cultivated and built-up

areas. Future projections using the Multi-Layer Perceptron Artificial Neural Network (MLP-

ANN) model indicated further increases in built-up areas, dense shrubs, grasslands, agricultural

land, and barren land, with reductions in water bodies, forestland, and open shrublands.

The SWAT model, a semi-distributed river basin model, was calibrated and validated to simu-

late hydrological processes. The model effectively captured streamflow pattern within accept-



able ranges. Hydrological responses to climate change and land use land cover alterations in six

headwater catchments were predicted using the calibrated model. The results demonstrated that

observed changes contributed to increased streamflow, with projected climate changes exerting

a greater impact than observed land use land cover changes. The combined impact of climate

and land use land cover changes resulted in a substantial increase in streamflow across all studied

headwater catchments. Overall, valuable insights into the complex interactions between hydro-

climatic variabilities, climate and land use land cover changes, and their cumulative effects on

streamflow in the WSRB were provided by this study.

Keywords: Climate change, LULC, Headwater catchment, SWAT, GCMs, WSRB

xiv



Kurzfassung

Der Klimawandel ist im 21. Jahrhundert zu einem spürbaren Megatrend geworden, der weitre-

ichende negative Auswirkungen auf die Umwelt und die sozioökonomische Entwicklung hat.

In Äthiopien, wo über 85% der Bevölkerung von der Landwirtschaft abhängig sind, ist die

Anfälligkeit für den Klimawandel hoch. Der Agrarsektor ist erheblichen Bedrohungen durch

wechselnde Wetterbedingungen und langfristige Klimaschwankungen ausgesetzt, die sich auf

die Lebensgrundlage von Millionen Menschen im Land auswirken. Daher zielt diese Studie auf

die Bewertung hydroklimatischer Trends, des Klimawandels und der möglichen Auswirkungen

des zukünftigen Klimawandels und der Dynamik der Landnutzungslandbedeckung (LULC) auf

die Quellgebiete im WSRB in Äthiopien ab. Mithilfe des modifizierten MK-Tests und des Sen-

Slope- Schätzwertes wurden historische hydroklimatische Variabilität und Trends analysiert.

Niederschlag und maximale Temperatur zeigten gemischte Trends, während die minimale Tem-

peratur einen deutlich steigenden Trend zeigte, mit Ausnahme des im Hochlandes des Beckens.

Streamflow zeigte über die Jahreszeiten und Messstationen hinweg gemischte Trends.

Um zukünftigeKlimaszenarien zu projizieren, wurden acht globale CMIP6-Klimamodelle (GCMs)

im Rahmen von vier gemeinsamen sozioökonomischen Pfaden (SSP) verwendet. Zukünftige

Klimadaten wurden herunterskaliert und systematische Fehler korrigiert, was einen erwarteten

Anstieg des durchschnittlichen Jahresniederschlags sowie der Höchst- und Tiefsttemperaturen in

verschiedenen Agrarklimazonen (ACZs) offenbarte. Bemerkenswert ist, dass die Änderungsrate

der Mindesttemperatur in den meisten ACZs die der Höchsttemperatur überstieg. Die Forschung

untersuchte auchÄnderungen der Landnutzung und Landbedeckungmithilfe von Landsat-Bildern

und dem Semi-Automatic Classification Plugin. In den letzten 30 Jahren wurden bedeutende

Veränderungen beobachtet, darunter der Rückgang der natürlichen Vegetation und eine Zu-

nahme der landwirtschaftlicher und bebauten Flächen. Zukünftige Prognosen unter Verwen-

dung des MLP-ANN-Modells deuten auf eine weitere Zunahme bebauter Flächen, Flächen mit

dichtem Buschland, Grasland, landwirtschaftlicher Flächen und unfruchtbarer Flächen hin, mit



einer Verringerung von Gewässern, Wäldern und offenem Buschland.

Das SWAT-Modell, ein Flussgebietsmodell das teilweise hochaufgelöste und teilweise flächengemit-

telte Daten nutzt, wurde kalibriert und validiert, um hydrologische Prozesse zu simulieren. Das

Modell erfasste effektiv die Strömungsdynamik innerhalb akzeptabler Toleranz. Mithilfe des

kalibrierten Modells wurden hydrologische Reaktionen auf den Klimawandel und Veränderun-

gen der Landnutzung und Landbedeckung in sechs Quellgebieten vorhergesagt. Die Ergeb-

nisse zeigten, dass beobachtete Veränderungen zu einem erhöhten Wasserfluss beitrugen, wobei

prognostizierte Klimaveränderungen größere Auswirkungen hatten als beobachtete Änderungen

der Landnutzung und Landbedeckung. Die kombinierten Auswirkungen von Klimaänderungen

und Änderungen der Landnutzungslandbedeckung führten zu einem erheblichen Anstieg des

Abflusses in allen untersuchtenQuellgebieten. Insgesamt liefert diese Studie wertvolle Einblicke

in die komplexen Wechselwirkungen zwischen hydroklimatischen Variablen, Landnutzungsän-

derungen und deren kumulativen Auswirkungen auf den Wasserfluss im WSRB.
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Chapter 1

Introduction

1.1 Background and Justification

Anthropogenic climate change has risen to prominence as a mega-trend in the 21ˢᵗ century be-

cause of its far-reaching and adverse impacts on the environment and socioeconomic develop-

ment across nations, despite variations in the degree of impact. In the past half-century, humans

have driven unprecedented and extensive changes in ecosystems, primarily driven by the increas-

ing demand for food, freshwater, timber, fiber, and fuel (Millennium Ecosystem Assessment,

2005). The Intergovernmental Panel on Climate Change report (IPCC, 2014b) warns that the

global average temperature likely rise by 1.5 ◦C to 4.5 ◦C by 2100, with severe consequences on

global resources and water supply. Climate change has already begun to impact food security by

increasing temperatures, shifting precipitation patterns, and increasing the frequency of extreme

weather events (IPCC, 2019). The IPCC firmly asserts that the lion’s share of this temperature

rise can be attributed to the increasing concentration of greenhouse gases in the atmosphere,

primarily originating from human activities.

Africa’s vulnerability to climate change is particularly pronounced for several reasons (Giorgi

et al., 2009; IPCC, 2021a). Firstly, many critical sectors in the region, such as agriculture, water

management, and public health, rely heavily on climate conditions, making them highly suscep-

tible to climate variability. Additionally, Africa’s economies generally possess lower adaptive

capacities, exacerbating the challenges posed by climate change. Moreover, the impact of cli-

mate change on Africa extends beyond direct temperature and precipitation shifts. It interacts

with other environmental stressors like land-use change, desertification, and aerosol emissions,

creating complex challenges. These interactions, in turn, threaten agricultural production and

food access in numerous African nations, as outlined by (IPCC, 2007), thereby compounding



food security concerns and aggravating malnutrition. Furthermore, climate change and its asso-

ciated variability introduce additional pressures on water availability and accessibility across the

continent. These pressures are expected to be particularly acute in regions like the Horn of Africa

(Ayele et al., 2016). In general, Africa faces a multi-faceted and urgent climate challenge that en-

compasses not only its environmental but also its socio-economic and humanitarian dimensions.

The Eastern Africa region frequently deals with severe precipitation events, which have the po-

tential to result in property and environmental damage, as well as loss of lives (Akinsanola et al.,

2021). Meanwhile, in North Eastern Africa (NEAF), the impact of climate change is strikingly

apparent, as reported in the Sixth Assessment Report (AR6) (IPCC, 2021b). This is evidenced

by a documented reduction in precipitation, the decline of snow and glaciers, the anticipation of

more intense rainfall leading to pluvial flooding, and a reduced risk of meteorological drought,

particularly in scenarios projecting a 4 ◦C global warming. These trends emphasize substantial

climate-related challenges that the NEAF region is confronting.

Throughout its history, Ethiopia’s economic well-being has been closely tied to the availabil-

ity of rainfall and water resources. This dependence on agriculture remains a fundamental as-

pect of the country’s economic landscape (Amsalu et al., 2006). Notably, more than 85% of

Ethiopia’s population relies on agrarian activities, rendering them highly vulnerable to the im-

pacts of climate change (Wagino and Amanuel, 2021). Climate change poses a significant threat

to this sector, primarily due to shifting weather patterns and long-term climatic variations. The

country has experienced periods of economic growth and poverty reduction that coincided with

more predictable rainfall and increased public investments in agriculture. Conversely, previous

drought episodes have severely constrained economic progress and exacerbated food insecurity.

Recent research estimates highlight the potential for climate change and rainfall variability alone

to erode Ethiopia’s GDP by a range of 0.5% to 2.5% annually. Furthermore, the demand for water

in Ethiopia is on an upward trajectory, driven by population growth and economic development.

However, this trend contrasts with some countries where water demand is diminishing due to

enhanced efficiency in water utilization (IPCC, 2001).

Similarly, Ethiopia is on the brink of a significant demographic transformation, with its popula-

tion expected to nearly double by 2050. This demographic expansion will inherently intensify

the nation’s demand for water resources. Ethiopia’s forthcoming economic expansion plans are
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intricately linked to the enlargement of irrigated agriculture, manufacturing, hydropower, and

municipal water supply – all of which hinge on the availability of water resources that can be

consistently relied upon (National Planning Commission, 2016). To achieve this, a substantial

initiative is underway, involving the development of over 4 million hectares of land through the

enhancement of irrigation infrastructure. This ambitious project is set to be led by smallholder

farmers during the GTP II period.

In recent years, climate change has triggered far-reaching consequences for human and natural

systems (IPCC, 2014a). Among the significant effects of this global phenomenon, there is a

growing likelihood of shifts in hydrologic cycles and alterations in the availability of water re-

sources (Abdo et al., 2009; Setegn et al., 2011a). Consequently, any alterations in the spatial

and temporal patterns of water resources have profound implications for crucial sectors such as

agriculture, industry, and urban development. Climate change stands out as one of the most

pressing global challenges of our time, with its far-reaching effects extending to fundamental

hydrological processes like precipitation and evapotranspiration. These changes, in turn, carry

direct implications for stream flow and groundwater recharge, emphasizing the intricate and sub-

stantial impact of climate change on hydrological systems and, by extension, human well-being

and the environment.

Numerous studies have highlighted that in addition to climate change, alterations in land use

land cover (LULC) are predicted to exert substantial influence on runoff and flooding within

catchment areas. This is attributed to the capacity of LULC changes to modify the path of

rainfall, thereby impacting the generation of basin runoff by modifying critical components of

the water balance, including groundwater recharge, infiltration, interception, and evaporation.

LULC changes are known to have notable effects on evapotranspiration, groundwater infiltra-

tion, and streamflow. Additionally, they elevate the risk of climate extremes (Dong et al., 2019)

and contribute to carbon emissions (Dong et al., 2019; Kim, 2016). The rapid increase in the

transformation of natural landscapes into cultivated land, accompanied by the intensified use of

these lands, is being witnessed as the global population continues to grow and socio-economic

needs expand (Lambin et al., 2003; Meyer and Turner, 1992; Reis, 2008).

When viewed at a global scale, changes in land use land cover have profound impacts on funda-

mental aspects of Earth’s ecological functioning. The ongoing expansion of human-induced al-
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terations in land ecology through LULC changes emphasizes the urgency of comprehending and

managing these changes in a sustainable and responsible manner. It is essential to recognize that

not all these impacts are negative; many of these changes in land use land cover are associated

with ongoing improvements in food and fiber production, resource efficiency, and overall wealth

and well-being (Lambin et al., 2003)). Understanding the consequences of these land use land

cover shifts is a fundamental aspect of sustainable land planning and development (Memarian

et al., 2014; Wang et al., 2020). Therefore, data on land use land cover changes are invaluable

for informed decision-making in environmental management and future planning. Moreover,

anticipating the changes in land use land cover within watersheds and their effects on water re-

sources is a pivotal concern in watershed management and policy (Marshall and Randhir, 2008).

Recent research has explored the combined impact of climate change and land use land cover

on hydrological regimes in various regions across the globe. Both climate fluctuations and al-

terations in land use land cover play significant roles in shaping the hydrological response of

watersheds (Dwarakish and Ganasri, 2015). The dynamics of land use change and climate vari-

ability stands as a pivotal factor in shaping watershed hydrology, which, in turn, has a profound

bearing on the availability of water resources and the sustainability of local ecosystems (Zhang

et al., 2016). Of particular importance, water resources in arid and semi-arid regions are notably

affected by the combined forces of land use land cover changes (LULC) and climate shifts. This

dual impact, emphasizes the critical role of understanding the complex relationship between

LULC transformations and climate variations in maintaining water resource equilibrium within

these environmentally sensitive areas (Yin et al., 2017).

Thus, quantitative assessments of hydrological implications resulting from changes in climate

and land use land cover (LULC) are paramount for addressing sustainable water resource man-

agement challenges. These challenges encompass the assurance of adequate water supply for

domestic and industrial needs, power generation, and agriculture, while also addressing the de-

mands of future water resource planning, design, management, and preservation of the natural

environment. Despite the abundant potential for irrigation and other developmental activities

in the Wabi Shebele River basin (WSRB), existing information on the impacts of climate and

LULC change on the basin’s hydrological processes is limited and fragmented. Researchers and

governmental organizations have allocated insufficient attention to the WSRB because of its re-

mote location and paucity of data within the region. Consequently, well-documented studies on
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the basin, whether at the national or international level, are scarce.

Therefore, to gain a comprehensive understanding of the historical trends of hydro-climatic vari-

ables and the effects of climate and LULC changes on hydrological responses, it is imperative

to accurately estimate their impact in the WSRB by selecting appropriate hydrological models.

These allow planning appropriate adaptation measures that must be taken ahead of time and give

an overall insight to improve sustainable water resource management and improve the livelihood

of the society in a region/basin. Moreover, this will give enough room to consider possible future

risks in all phases of water resource development projects.

1.2 Objectives

General objective
The primary objective of this research is to evaluate the influence of climate variabilities and

changes, both in historical and future scenarios, on the hydrology of the basin. Simultaneously,

it aims to assess the impacts of land use land cover (LULC) dynamics on the hydrological re-

sponse of headwater catchments within the WSRB in Ethiopia.

Specific objectives

F To analyze the variability and trends in hydro-climatic time series records within the Wabi

Shebele River Basin (WSRB);

F To assess the extent of climate change in WSRB by employing the ensemble mean from

eight chosen CMIP6 Global Climate Models (GCMs) across four different Shared Socioe-

conomic Pathways (SSPs) scenarios;

F To examine the historical and anticipated changes in land use land cover dynamics in the

upstream and central parts of the basin;

F To evaluate the performance of the SWAT model in simulating hydrological processes

within headwater catchments of the basin; and

F To quantify the potential impacts of climate and LULC changes, and their interaction on

streamflow within six headwater catchments in the WSRB.
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1.3 Outline of the Thesis

This thesis is structured into eight interconnected chapters, with this introductory chapter setting

the stage. Each subsequent chapter focuses on a key research theme, offering a thorough analysis

that includes an overview, methodology, results, and discussion, followed by the conclusions.

Chapter one provides a broad introduction to the thesis, offering essential background informa-

tion to support the research and outline clearly defined objectives. Chapter two is dedicated to an

in-depth review of the relevant literature, covering topics such as hydroclimatic variability and

trends, climate change analysis, satellite image-based land use land cover (LULC) classification,

and the selection of hydrological models for future climate and LULC change impact modeling.

Chapter three provides a comprehensive description of the study area, detailing the topography,

climate, basin hydrology, land use, soil, and sources of hydroclimatic data. Chapter four presents

the assessment of seasonal and yearly hydro-climatic variabilities and trends within the agrocli-

matic zones of the study basin. Additionally, streamflow variability and trends are discussed for

a selected headwater catchment based on available records. Climate change analysis was also

introduced, utilizing the multi-model ensemble mean of eight CMIP6 GCMs. In Chapter Five,

the approach to developing land use land cover maps spanning three decades (1990, 2000, 2010,

and 2020) is presented. The future LULC map for 2040 was projected based on six explanatory

factors using the MLP-ANN projection model. Chapter six focuses on evaluating the perfor-

mance of the SWAT model through sensitivity, calibration, validation, and uncertainty analyses

to model the impact of climate and LULC changes on streamflow. Chapter seven assesses the im-

pact of climate and LULC changes on streamflow in a selected headwater catchment of the Wabi

Shebele River Basin during the second, third, and fourth quarters of the 21ˢᵗ century. Finally,

chapter eight summarizes the conclusions drawn from the study and provides recommendations

for future research and applications.
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Chapter 2

Basin Dynamics Under Changing Climate
and LULC: State of the Art

2.1 Hydro-Climatic Trends and Climate Change

2.1.1 Historical Hydro-Climatic Variability and Trends

Climate variability

The climate variability, includes all forms of climate inconsistency (i.e. deviations from long-

term statistics) and can be considered as a natural phenomenon and happens occasionally from

time to time. The most common approaches to understand rainfall and temperature variability

have been put into application either or a combination of descriptive statistics and various in-

dices. There are several studies done in Ethiopia whether at the national or regional level.

In a study conducted by Elzopy et al. (2021), several key indices, including the Precipitation Con-

centration Index (PCI), Seasonality Index (SI), Rainfall Anomaly Index (RAI), and Departure

Analysis Rainfall (DAR), were employed to gain insights into the long-term climatic patterns of

rainfall in Ethiopia. The research findings, based on the analysis of the Coefficient of Variation

(CV), led to the conclusion that the variations in both seasonal and annual rainfall in Ethiopia

are not notably severe. In addition, Asfaw et al. (2018) conducted a comprehensive examination

of climate data in the Woleka sub-basin in north-central Ethiopia, utilizing CV and PCI. Their

findings indicated that, in this region, ’Belg’ rainfall displays more pronounced inter-annual

variability than the ’Kiremt’ rainfall pattern.

In the watersheds of Choke Mountain, Ademe et al. (2020) highlighted the applicability of CV,



PCI, and RAI in characterizing rainfall patterns within the agricultural regions of Ethiopia’s

highlands. Furthermore, this research noted a significant spatiotemporal anomaly in maximum

temperature, minimum temperature, and rainfall, with a pronounced trend of warming observed

since the 2000s. Similarly, CV, PCI, and Standardized Rainfall Anomaly (SRA) were employed

to assess the inter-annual and intra-annual variability in rainfall within the Alwero watershed in

western Ethiopia (Alemayehu et al., 2020). The study’s findings led to the conclusion that cli-

matic variability and trends in rainfall are notably localized within the country. The application

of SRA has helped in understanding the inter-annual rainfall variability within the Omo-Ghibe

River Basin, Ethiopia (Degefu and Bewket, 2015). The research findings revealed that regions

characterized by bimodal rainfall patterns exhibit notably higher inter-annual variability in rain-

fall.

In the northern district of the middle WSRB, Bayable et al. (2021) investigated the spatiotempo-

ral variability of rainfall and its correlation with Pacific Ocean Sea Surface Temperatures (SST)

in the West Harerge Zone of eastern Ethiopia. They employed satellite-based rainfall data and

relied on key metrics such as the CV and SAI. Their research findings revealed significant spa-

tial and temporal variations in rainfall patterns across monthly, seasonal, and annual timeframes.

Similarly, in the upper and middle regions of the basin, Harka et al. (2021) investigated the spa-

tiotemporal distribution and variability of rainfall using a combination of the CV, PCI, and SAI,

in conjunction with station data. Their investigation highlighted a consistent trend where the

majority of rainfall stations experienced high annual rainfall during the Kiremt (wet) season,

while the Bega (dry) season exhibited notable variability in rainfall amount.

Climatic trends

Statistical methods have become widely adopted for the detection of time-series trends within

hydro-meteorological data, encompassing variables like temperature, precipitation, and stream-

flow. In recent research focused on climate data analysis, both in Ethiopia and worldwide, the

prevailing approach often combines the Mann-Kendall (MK) trend test along with Sens’s slope

estimator (Mann, 1945; Sen, 1968) and the Spearman Rank Correlation Coefficient (Gauthier,

2001). Notably, these techniques offer the advantage of being nonparametric and rank-based,

although they necessitate data preprocessing to account for serial correlation and seasonal ef-

fects (Gauthier, 2001). Additionally, many researchers have employed indices provided by the

World Meteorological Organization’s Expert Team on Climate Change Detection and Indices

(ETCCDI) for trend analysis (Berhane et al., 2020; Esayas et al., 2018; Teshome and Zhang,
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2019). A more recent graphical technique, Innovative Trend Analysis (ITA) Şen (2012), is gain-

ing attention for its ability to detect trends without the need for data preprocessing regarding

serial correlation.

In Ethiopia, researchers, both at the national and international levels, have consistently employed

the Mann-Kendall (MK) and Sen’s slope approach for hydro-climatic trend analysis in various

studies (Ademe et al., 2020; Asfaw et al., 2018; Bayable et al., 2021; Degefu and Bewket, 2015;

Eshetu, 2020). These investigations have revealed a noteworthy warming trend, with maximum

temperatures exhibiting a more substantial increase compared to minimum temperatures, con-

sequently leading to raised average temperatures across all agroecosystems and seasons in the

Ethiopian highlands. Moreover, there is an apparent decreasing trend in rainfall Ademe et al.

(2020), a result supported by Elzopy et al. (2021) for temperature but with no significant trend

noted in seasonal and annual rainfall. Cheung et al. (2008) used the t-test parametric method

and regression for annual time- series and found no significant changes in rainfall within an

Ethiopian watershed. For the seasonal rainfall the test found significant decreases in June to

September rainfall.

When considering regional trend analyses, Asfaw et al. (2018) observed an increase in annual

temperatures in the Woleka Sub-basin, North-Central Ethiopia, attributed to rising minimum

temperatures and a simultaneous decrease in both the ’Kiremt’ season and annual rainfall. In the

West Harerge Zone, Eastern Ethiopia, Bayable et al. (2021) noted a decreasing trend in rainfall

for most months over the study period (1983-2019), though it wasn’t statistically significant. On

the other hand, (Degefu and Bewket, 2015) identified an increasing trend in the areal-averaged

rainfall series for the bimodal regions of the Omo-Ghibe River Basin, Ethiopia.

When examining climatic extremes, Esayas et al. (2018) found a noticeable trends in climate

extremes in Wolaita Zone, Southern Ethiopia. This study reveals a consistent increase in warm

extremes, accompanied by a corresponding decrease in cold extremes. In contrast, there was no

significant trend observed in rainfall extremes. Further insights from the CMIP5 database, as

analyzed by Teshome and Zhang (2019), indicate a general decline in rainfall extremes, encom-

passing metrics such as annual total precipitation (PRCPTOT), Consecutive Wet Days (CWD),

and the number of heavy rainfall days (R10 andR20), alongside a concurrent rise in the frequency

of Consecutive Dry Days (CDD). This comprehensive analysis also underscores the presence of
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a warming trend in Ethiopia when considering temperature extremes.

Hydrological variability and trend

In line with the analysis of climatic time series, the assessment of streamflow variability and

trends can also be conducted using the range of techniques mentioned earlier. Tadese et al.

(2019), in their study, employed a combination of graphical methods, descriptive statistics (in-

cluding CV, Kurtosis, and Skewness), and the Mann-Kendall (MK) test. Their findings showed

significant streamflow variability during the MAM and JJAS seasons, with an observed upward

trend at the majority of monitoring stations in the upper and middle parts of the Awash Basin

and a declining trend in the lower part of the basin.

The Mann–Kendall trend test, preceded by the correction of serial correlation, was employed

in the study of streamflow variability within the Omo-Ghibe River basin (Degefu and Bewket,

2017). This analysis was conducted alongside the utilization of 14 indices derived from the

daily streamflow data collected from 15 gauging stations. The results of the trend test revealed

weak and non-systematic patterns of change in the annual, wet (Kiremt) season, and high flow

magnitudes. However, a distinct increasing tendency was observed for low-flow magnitudes. In

a separate investigation by Degefu et al. (2019), a combination of 10 streamflow indices and the

Mann-Kendall test was used to assess the temporal characteristics of streamflow across various

watersheds in Ethiopia. The study outcomes indicated a significant trend of increasing changes

in mean annual and mean seasonal streamflow magnitudes for streams and rivers situated in the

Ethiopian highlands.

2.1.2 Future Predicted Climate Change and Impacts

According to IPCC (2007), climate change is defined as a shift in climate conditions attributed

either directly or indirectly to human activities. This alteration affects the composition of the

global atmosphere and occurs in addition to natural climate variability observed over compara-

ble time periods, which can arise from either natural or human-induced factors. Climate itself

can be understood as the ”average” weather conditions prevailing in a specific location or region.

It captures typical weather patterns for a given area, relying on long-term averages, often span-

ning decades or more. For instance, climate change might manifest as alterations in the climate

normal, which represent the expected average values for temperature and precipitation. Climate

change refers to transformations in the climate state that are apparent through shifts in the mean

and/or variability of its properties. These changes typically persist for an extended period of
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time, often spanning a decade or more.

Climatic models

Climatemodels serve as the fundamental tools for exploring how the climate system reacts to var-

ious forces. They enable us to make predictions about climate patterns over short-term (seasonal

to decadal) and long-term (over the next century and beyond) timeframes (Flato et al., 2013).

These projections of future climate changes are pivotal not only for enhancing our comprehen-

sion of the climate system but also for assessing the potential risks to society and identifying

possible actions and strategies for addressing these challenges (O’Neill et al., 2016).

Climate models are mathematical representations of crucial processes within Earth’s climate

system (IPCC, 2014c). Like any mathematical model of natural phenomena, climate models

simplify reality because our understanding of climate physics is not complete, and this simplifi-

cation is necessary for computational efficiency. However, this simplification introduces inher-

ent uncertainties or randommodel errors when comparingmodel-simulated statistical properties,

such as mean and variance, to climatological observations. Consequently, using raw model data

in impact studies can be limited (Cochard et al., 2018). Climate research employs a wide spec-

trum of models, ranging from straightforward energy balance models to complex Earth System

Models (ESMs) that demand cutting-edge high-performance computing capabilities (Flato et al.,

2013).

In the 1960s, scientists embarked on the development of the earliest primitive climate models,

which featured basic representations of the atmosphere and ocean. These initial models were

often one-dimensional and considerably less complex than their modern counterparts. However,

climate modeling has seen substantial progress in recent years, driven by significant advance-

ments in supercomputing technology, computational efficiency, and a deeper understanding of

the Earth system. The latest generation of climate and Earth system models, such as those in the

CMIP6 initiative, have incorporated numerous enhancements, includingmore accurate represen-

tations of physical, chemical, and biological processes, as well as increased spatial resolution.

These improvements have led to more accurate simulations of recent climate conditions, encom-

passing key climate change indicators and various aspects of the Earth system (IPCC, 2021a).

Climate models can be categorized based on their spatial boundaries into two main types: re-

gional climate models (RCMs) and global climate models (GCMs). RCMs offer higher spatial
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resolution compared to GCMs, making them well-suited for simulating climate patterns at a

more localized level. They can be integrated within a global model to provide finer-scaled sim-

ulations for specific regions. This becomes especially important when considering the impact

of local topographical features, like mountains, on local climate changes. GCMs, due to their

coarser resolution, may not capture small-scale topographical effects effectively, which high-

lights the importance of RCMs in providing a more detailed perspective.

Selecting suitable climate variables is a pivotal phase in climate change modeling, depending on

the specific goals of the project or research at hand. For many investigations pertaining to cli-

mate change impacts and the assessment of water resource availability, historical and future data

on precipitation and temperature constitute primary considerations. Precipitation serves as the

driving force behind numerous processes that influence water resource availability, functioning

as the principal input for the water balance equation. Simultaneously, temperature substantially

influences the magnitude of water loss, particularly in tropical and subtropical regions world-

wide.

Climate Change scenarios

Due to the inherent complexity of the Earth’s climate system and our limited understanding of

its complexity, precise predictions of climate change remain challenging. As a result, climatol-

ogists often rely on climate change scenarios as a valuable tool in their research (IPCC, 2007).

These scenarios offer insights into potential future trajectories of key factors driving climate

change, including greenhouse gases, chemically reactive gases, aerosols, and land use. Sig-

nificantly, these scenarios are customized to align with various socioeconomic developments,

making them essential inputs for climate model simulations (O’Neill et al., 2016). Furthermore,

climate scenarios serve as the foundation for assessing potential climate impacts and identifying

strategies for mitigation, along with their associated costs (van Vuuren et al., 2011).

In the year 2000, the Intergovernmental Panel on Climate Change (IPCC) released its Special

Report on Emissions Scenarios (SRES), presenting four distinct scenario families designed to

encompass a spectrum of potential future conditions (IPCC, 2007). Identified using alphanu-

meric combinations like A1, A2, B1, and B2, each scenario was crafted through a complex

interplay between socioeconomic factors influencing greenhouse gas and aerosol emissions and

the projected magnitudes of these emissions over the course of the 21st century. Subsequently,

the IPCC Third Assessment Report (TAR) and Fourth Assessment Report (AR4), published in
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2001 and 2007 respectively, relied on these SRES scenarios.

In 2013, climate scientists reached a consensus on a fresh set of scenarios, which placed their

focus on the anticipated levels of greenhouse gases in the Earth’s atmosphere by the year 2100

(IPCC, 2014c). This collective set of scenarios is now widely recognized as the Representative

Concentration Pathways, or simply RCPs. Each RCP is a numerical representation of the cli-

mate forcing potential, quantified in Watts per square meter, that would arise from greenhouse

gases present in the atmosphere by the year 2100 (van Vuuren et al., 2011). These values, along

with their associated rate and trajectory of forcing, are crucial components used in configuring

climate models, much like their predecessors.

Global atmospheric general circulation models (GCMs) have been developed to simulate the

current climate and predict future climatic changes, particularly leading up to the IPCC AR6.

In parallel, the energy modeling community has introduced a novel set of emissions scenarios,

known as Shared Socioeconomic Pathways” (SSPs), driven by diverse socioeconomic assump-

tions. These SSP scenarios were selected to drive the climate models for CMIP6. Specifically, a

subset of scenarios was selected to provide a spectrum of potential end-of-century climate out-

comes. In IPCC AR5, four Representative Concentration Pathways (RCPs) were used to explore

various future greenhouse gas emission possibilities. These scenarios, namely RCP2.6, RCP4.5,

RCP6.0, and RCP8.5, have updated versions in CMIP6. These revised scenarios are referred to

as SSP1-2.6, SSP2-4.5, SSP3-7.0 (newly introduced), and SSP5-8.5, each of which results in

2100 radiative forcing levels comparable to their predecessors in AR5.

Downscaling and bias correction of climate model data

GCMs typically possess a relatively coarse spatial resolution, which poses a challenge when ap-

plying them to regional ecohydrological studies. Consequently, a process known as downscal-

ing becomes essential to obtain accurate input data for hydrological models (Hesse et al., 2015).

Moreover, direct utilization of GCM outputs in impact studies is uncommon due to inherent

systematic errors, or biases, present in these models. These biases can arise from factors such as

limited spatial resolution, simplified representations of physical and thermodynamic processes,

numerical schemes, or incomplete knowledge of climate system intricacies (Navarro-Racines

et al., 2015). Therefore, it becomes imperative to downscale and bias-correct the raw outputs

from climate models to generate climate projections better suited for impact modeling.
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High-resolution projections of the Earth’s future climate are of paramount significance in vari-

ous climate-related studies, encompassing investigations into climate extremes, water resources,

agriculture, air quality, and wind power. Several common approaches have been employed to

produce such high-resolution projection data, including interpolation, statistical downscaling,

dynamical downscaling, and hybrid statistical-dynamical downscaling.

Simultaneously, bias adjustment plays a crucial role by statistically transforming climate model

data to mitigate systematic discrepancies when compared to a reference dataset typically de-

rived from observations (Berg et al., 2022). Various methodologies have been proposed to per-

form these adjustments, ranging from straightforward scaling techniques to more advanced ap-

proaches based on multivariate distribution mapping (Maraun, 2016; Teutschbein and Seibert,

2012). Primary adjustment methods include adjustments based on the mean, mean and vari-

ance, and quantile values. Notable techniques include linear scaling, local intensity scaling,

power transformation, distribution mapping, and quantile mapping (Teutschbein and Seibert,

2012).

Climate change impact on basin hydro-climatic

The impacts of climate change on the hydrological cycle in general and on water resources in

particular are of high significance due to the fact that all natural and socio/economic system

critically depends on water. The direct impact of climate change can be variation and chang-

ing pattern of water resources availability and hydrological extreme events such as floods and

droughts, with many indirect effects on agriculture, food and energy production and overall wa-

ter infrastructure. To this end, several individual researches have been done to study the impacts

of climate change on the water resources of Ethiopian river basins from one or more GCMs,

emission scenario(s), and downscaled GCM output for driving a hydrological model.

Abebe and Kebede (2017) assessed climate change impacts in the Megech River catchment,

Ethiopia, using the Regional Climate Model (REMO) for future periods (2015-2050) under the

A1B and B1 emission scenarios. They downscaled the REMO data to the station level with

SDSM v5.1.1 for the HBV-Light hydrological model. Projected mean monthly maximum tem-

peratures are expected to increase (A1B: +0.1 ◦C to +0.51 ◦C, B1: +0.12 ◦C to +0.57 ◦C). The

mean monthly precipitation was projected to decrease (A1B: -1.14% to -31.88%, B1: -1.6% to

-36.42%). The results also indicate a reduced peak discharge in August and September, a shift

in the wet season to May-July, and a decreasing trend in dry season low flow, except for April,
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which increased.

Ayele et al. (2016) evaluated the influence of climate change on the Gilgel Abbay watershed

through the application of statistical downscaling and the GWLF hydrological model. Seven

distinct climate models (GCMs) were utilized to examine the watershed’s response. The study

considered both RCP 8.5 and RCP 4.5 scenarios, focusing on two time frames: 2021-2040 and

2081-2100. The results indicated an estimated reduction of approximately 11.6% and 10.1%

in runoff volume during the wet season for the 2080s, depending on the emission scenario. It

was further observed that alterations in precipitation patterns significantly impacted the seasonal

flow variability, subsequently affecting the storage and discharge capacity of Lake Tana.

WaleWorqlul et al. (2018) assess climate change’s impact on water availability and variability

in two upper Blue Nile basin subbasins in Ethiopia, using the HBV model. It compared future

climate data downscaled from HadCM3, considering A2 and B2 scenarios, with a 1961–1990

baseline. The findings indicated potential alterations in rainfall patterns, with no consistent

trends in primary rainy months (June and July), a decline in May and June, and an increase in

September, October, and November. Additionally, a steady increase in both minimum and max-

imum temperatures was observed across all timeframes (2030s, 2060s, and 2080s), intensifying

toward the century’s end. This temperature rise is expected to disrupt the hydrological cycle,

leading to a 2% increase in evapotranspiration by the 2030s, 4.7% by the 2060s, and 7.8% by

the end of the century. Furthermore, the monthly streamflow hydrograph suggested potential

dry season increases in both subbasins, with the most substantial monthly flow surge projected

for November in the 2060s and 2080s. However, it’s essential to acknowledge study limitations,

including uncertainties tied to climate change projections, GCM models, emission scenarios,

and hydrological modeling.

Taye et al. (2018) quantified the potential impact of climate change on water availability within

the Awash basin across various seasons. They employed three climate models sourced from the

Coupled Models Inter-comparison Project phase 5 (CMIP5) and examined three future periods

(2006–2030, 2031–2055, and 2056–2080). The findings across these future periods consistently

pointed to an increase in water deficiency across all seasons andwithin specific parts of the basin.

This unfavorable trend was primarily attributed to the projected increase in temperature coupled

with a decrease in precipitation. The research highlights the significant implications of climate
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change on water resources within the Awash basin, particularly heightening water stress in the

irrigation sector and posing challenges for water allocation practices.

Tesfaye et al. (2014) examined surface runoff sensitivity to climate change in Ethiopia’s Geba

catchment for the 2020s, 2050s, and 2080s within the Geba catchment, situated in the Tekez

Basin of Ethiopia. They used SDSM 4.1 to downscale HadCM3 GCM data for A2a and B2a

scenarios and the WetSpass model for runoff estimation. Interestingly, downscaled precipitation

data showed no consistent trend, but all scenarios indicated significant warming. This warm-

ing trend is expected to substantially reduce annual runoff, leading to pronounced seasonal and

monthly variations. During the main rainy season (June-September), runoff is projected to de-

crease by 12.9% (A2) and 11.1% (B2) in the 2080s, highlighting the impact of climate change

on the Geba catchment’s hydrology.

In the Upper Wabe Shebele River Basin, Gurara et al. (2021) assessed climate change’s impact

on streamflow using the SWAT model and CORDEX-Africa climate model data for RCP4.5 and

RCP8.5 scenarios. Their analysis covered two future periods: 2041–2070 and 2071–2099. The

results indicated substantial climate shifts, with mean temperatures projected to rise by 3.46 ◦C

and 5.15 ◦C (RCP4.5) and 4.78 ◦C and 5.88 ◦C (RCP8.5) in the mid and long-term periods.

Annual precipitation showed a pronounced upward trend, with anticipated increases of +26.3%

(RCP4.5) and +31.85% (RCP8.5) by the century’s end. During the Kiremt (rainy) season, pre-

cipitation substantially increased by +44.28% (RCP4.5) and +59.34% (RCP8.5). Conversely,

the Bega (dry) season exhibited a declining trend. Crucially, annual streamflow projections

consistently showed increases under both scenarios across both projection periods. These find-

ings underscore the significant climate-induced transformations anticipated in the Upper Wabe

Shebele River Basin, carrying implications for water resource management and ecosystem dy-

namics in the region.

Probst and Mauser (2023) assessed climate change’s impact on key hydrological factors in

the Danube River Basin (DRB). It considered parameters like temperature, precipitation, soil

water content, plant water stress, snow water equivalent (SWE), and runoff dynamics. Using

the PROMET model driven by EURO-CORDEX climate projections, it examined RCP2.6 and

RCP8.5 scenarios for the near (2031–2060) and far (2071–2100) future against a reference period

(1971–2000). Results showed moderate impact under RCP2.6 and severe under RCP8.5, with

16



year-round warming trends, wetter winters in the Upper Danube, drier summers in the Lower

Danube, reduced summer soil water, increased plant stress, and less SWE. River discharge sea-

sonality shifted, raising high flow risks throughout the Danube mainstream and low flow risks

in the Lower Danube River. These findings feature climate change’s profound impact on the

DRB’s hydrology.

2.2 Land Use Land Covers Change

Since the beginning of civilization, humans have deliberately managed and converted the land-

scape to derive valuable natural resources such as food, fiber, fresh water, and pharmaceutical

products (Goldewijk and Ramankutty, 2004). Since humans have controlled fire and domesti-

cated plants and animals, they have cleared forests to wring higher value from the land. About

half of the ice-free land surface has been converted or substantially modified by human activi-

ties over the last 10,000 years (Lambin et al., 2003). Thus, the footprint of human disturbance

on the land ecological through land use land cover change is becoming larger and larger. Con-

cerns about land use land cover change emerged in the research agenda on global environmental

change several decades ago with the realization that land surface processes influence climate

(Lambin et al., 2003; Swarna Latha and Rao, 2020).

Although the terms land cover and land use are often used interchangeably, their actual meanings

are quite distinct. Land cover refers to the surface cover on the ground, whether vegetation,

urban infrastructure, water, bare soil or other. Land use refers to the purpose the land serves, for

example, recreation, wildlife habitat, or agriculture. Identification of land cover establishes the

baseline from which monitoring activities (change detection) can be performed, and provides

the ground cover information for baseline thematic maps. Land use applications involve both

baseline mapping and subsequent monitoring, since timely information is required to knowwhat

current quantity of land is in what type of use and to identify the land use changes from year to

year. This knowledge will help develop strategies to balance conservation, conflicting uses, and

developmental pressures. Issues driving land use studies include the removal or disturbance of

productive land, urban encroachment, and depletion of forests.

2.2.1 Data Sources and Classification Techniques

The studies of LULC change has used different source of data based on the advancement of

remote sensing and GIS technologies. In first of 19 centuries, Arial photo captured from lower
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altitude using short range camera mounted on birds and small aircraft were the data source before

1980 (source). Later, due to the development of aviation industries, high altitude aircraft were

used to collect aerial photo covering vast area. In 1972, land observational satellite named Land-

sat1 were launched by NASA even though the data has been made public in 1984 (Loveland and

Dwyer, 2012). In late 2008, following changes to the USGS-NASA Landsat data policy, the U.S.

Department of the Interior announced that all Landsat data would be “web-enabled”, meaning

that a standard Landsat product would be made available from the USGS archives via electronic

distribution at no cost to the end user (Loveland and Dwyer, 2012). In the short time since the

USGS made their entire Landsat archive available to anyone at no cost via the Internet, signifi-

cant benefits are already being realized within the Landsat data user community (Loveland and

Dwyer, 2012). Currently, Landsat images are by far the most utilized sources of satellite images.

Thus, land use land cover studies covering period starting from 1984 relies on satellite images.

Satellite image is a relatively inexpensive and rapid method of acquiring up-to-date informa-

tion over a large geographical area owing to its synoptic coverage and repetitive measurements.

Remote-sensing data usually acquired in digital form are easier to manipulate and analyze; they

can be acquired not only from visible but also from spectral ranges that are invisible to human

eyes; they can be acquired from remote areas where accessibility is a concern; and they provide

an unbiased view of land use/land cover. Remote sensing data and geographic information sys-

tem are increasingly becoming important tools in hydrology and land use land cover analysis.

This is due to the fact that most of the data required for hydrological and land use land cover

analysis can easily be obtained from remotely sensed images. Remote sensing has the capability

to acquire signatures instantaneously over large areas. The selection of the satellite data mainly

relays on the objective of the study and the quality of the data required.

After acquiring and preprocessing the satellite image for land use land cover change analysis,

Classifying remote sensing imageries to obtain reliable and accurate land use land cover (LULC)

information still remains a challenge that depends on many factors such as complexity of land-

scape, the remote sensing data selected, image processing and classification methods, etc (Man-

andhar et al., 2009). There are several methods and techniques for satellite image classification

(Abburu and Golla, 2015). Broadly, classified into land use land cover mapping through image

classification per-pixel image classification and Object-based image analysis.
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Likewise, pixel based classification further categorized into supervised and unsupervised tech-

niques. Unsupervised classification is a means by which pixels in an image are assigned to spec-

tral classes without the user having foreknowledge of the existence or names of those classes.

It is performed most often using clustering methods. The analyst then identifies those classes

afterwards by associating a sample of pixels in each class with available reference data, which

could include maps and information from ground visits. Whereas, supervised classification re-

lays on prior knowledge of the study area to assign training sites for each LULC classes on the

ground. Supervised classification can be much more accurate than unsupervised classification,

but depends heavily on the training sites, the skill of the individual processing the image, and the

spectral distinctness of the classes (Tempfli et al., 2013). A variety of algorithms is available for

this, ranging from those based upon probability distribution models for the classes of interest to

those in which the multispectral space is partitioned into class-specific regions using optimally

located surfaces (Richards and Jia, 2006). The choice of the algorithm depends on the purpose

of the classification, the characteristics of the image, and training data (Tempfli et al., 2013).

There is no standard method for choosing and applying classification techniques and algorithms

in satellite image classification. Supervised classification is the procedure most often used for

quantitative analysis of remote sensing image data (Richards and Jia, 2006). It rests upon using

suitable algorithms to label the pixels in an image as representing particular ground cover types,

or classes. Similarly, numerous researchers have used supervised classification technique for

satellite image classification in Ethiopia (Kenea et al., 2021; Markos et al., 2018). Whereas, the

hybrid classification technique, which combines both unsupervised and supervised classification

techniques, was used to improve the accuracy of the classification (Betru et al., 2019; Gashaw

et al., 2017; Shawul and Chakma, 2019; Wang et al., 2020).

Finally, a fundamental feature of significance to the user of the land use land cover data is its

quality. Therefore, classification of satellite image should be reported with a standard method

of evaluation of classified thematic map. Kappa statistics the common index to evaluate the

classified image with existing high resolution map or training ground control points (GCPs)

(Olofsson et al., 2014; Richards and Jia, 2006; Rwanga and Ndambuki, 2017). In data scarcity

area, high-resolution images from Google Earth Engine were also used as a supplementary tool

(Betru et al., 2019).
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2.2.2 Future LULC Prediction Methods

Modeling of future changes in land use cover over time is important for multiple reasons. Firstly,

these models serve as invaluable tools for predicting future land use land cover patterns. Such

predictions find application across various domains, including hydrological modeling, where

impermeable surfaces play a pivotal role, landscape assessments concerning their impact on

conservation and biodiversity, and the evaluation of forthcoming carbon budgets. Secondly,

retrospective modeling of historical land use and cover changes offers valuable insights into un-

derlying processes and the effectiveness of land use planning policies.

In the literature, there are two commonly usedmethods for projection of future LULC projection;

the first one is based on theoretical/planned/expert assumption or storyline, and the second one

is based on modeling using different algorithms capable of temporal and spatial transformation.

Future land use is greatly influenced by current land use, autonomous socio-economic devel-

opments, and spatial policies, and long-term climate changes, and other changes in the physical

environment (Dekkers and Koomen, 2005). By using scenarios, hypotheses about developments

in government policy, socio-economic factors, the climate, and the physical environment can be

combined. Various studies have already begun developing these scenarios (Hu et al., 2019; Pik-

ounis et al., 2003). Under this approach, a panel of experts is convened to consider possible

‘alternative futures’ affecting the underlying drivers of land use / cover change. This expert

panel will develop a set of possible concrete future scenarios for the underlying drivers that

could affect land use land cover in a given area.

The other method of future land use land cover projection includes Markov chain and cellular

automata modeling. A Markov chain is a relatively simple means of modelling how land use

cover changes over time. In a classic Markov chain, the probability that a given area will change

its land use land cover between one time period and the next depends on only one thing: its

land use land cover in the initial time period. In order to model the relationship between land

use/cover in an initial time period, and land use land cover in a subsequent time, a transition

probability matrix is often used. Such a matrix shows the probability of a land use land cover

change from one state to another taking place within a specified time period.

Whilst Markov chains are attractive because of their simplicity, they do make a number of as-

sumptions that are unlikely to be met in ‘real world’ situations. For this reason, other approaches
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have been adopted that relax some of these assumptions. One such approach is the cellular au-

tomata methodology, in which the future state of a given grid square or parcel depends not only

on its current state, but also on the current state of surrounding grid squares. The approach can

be further modified so that – for example, transition probabilities depend on the suitability of a

given grid square for a particular land use. Numerous researcher have used cellular automata to

project future LULC in Ethiopia and abroad (Baig et al., 2022; Girma et al., 2022; Islam et al.,

2023; Lukas et al., 2023; Kafy et al., 2021; Kamaraj and Rangarajan, 2022). Some used hybrid

classification techniques to analyse the satellite images and CA-Markov models for predicting

land use changes (Gashaw et al., 2017).

The land use land cover maps that are generated can serve as input data for specialized hydrologi-

cal tools, enabling the assessment of how changes in land use affect water scarcity (Dekkers and

Koomen, 2005). The anticipated consequences of these impacts could potentially necessitate

revisions to existing policies.

2.2.3 LULC Change and Impact Studies

Understanding and monitoring land use land cover change is vital for addressing issues such as

land degradation, deforestation, and climate change at both local and global levels. This knowl-

edge helps predict future changes, informs effective land management policies, and underscores

the critical role that land use and cover changes play in shaping the environment (Muluneh,

2010). These changes impact ecosystems by directly altering both aquatic and terrestrial systems

and contribute significantly to climate change by emitting carbon (Muluneh, 2010). Over the

past three decades, research on land use land cover change has becomewidespread across various

regions, reflecting their increasing importance in addressing pressing environmental challenges.

LULC Changes

To use land and land resources optimally, it is not only necessary to have the information on

existing land use land cover but also the capability to monitor the dynamics of land use re-

sulting out of both changing demands of increasing population and forces of nature acting to

shape the landscape. Numerous researcher have tried to quantify the magnitude and rate change

in LULC change in Ethiopia, and abroad. Conversion of vegetated land into cultivated, built-

up/settlement, and degraded land was the most reported in different parts of the world which

become a general truth.
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According to Lambin et al. (2003), FAO estimated that tropical regions lost 15.2 million hectares

of forests per year during the 1990s. In the past few decades, significant losses in forests and

shrub land and significant increase in agricultural land reported (Amsalu et al., 2006; Betru et al.,

2019; Garedew et al., 2009; Gashaw et al., 2017; Hailemariam et al., 2016; Kenea et al., 2021).

Unlike, significant loss of agricultural land was found in the Kathmandu district of Nepal (Wang

et al., 2020). Water body converges also showed decreased pattern (Shawul and Chakma, 2019;

Wang et al., 2020). Similarly, grass land coverage depicted a decreasing pattern (Gashaw et al.,

2017; Meshesha et al., 2016; Shawul and Chakma, 2019).

LULC change impacts on hydrological processes

Land use land cover changes have a wide range of impacts on environmental and landscape at-

tributes including the quantity and quality of water, land and air resources, ecosystem processes

and functions. The impacts of land use land cover change on water resources are influenced by

interactions with other factors, including climate variability and anthropogenic activities. Re-

searchers have been studying the impact of land use land cover change on hydrological processes.

Alibuyog et al. (2009) used the SWAT model to assess land-use changes in Philippine water-

sheds. Results showed a 3% to 14%increase in runoff volume and a 200% to 273% increase in

sediment yield when converting 50% of pasture and grasslands to agriculture. This led to a 2.8%

to 3.3% decrease in baseflow, with the higher value indicating no soil conservation intervention.

Converting the entire sub-watershed to agriculture increased runoff volume by 15% to 32%.

Mango et al. (2011) found land use changes, particularly deforestation, have resulted in reduced

baseflow and average flow in river basins in the upper Mara River Basin, Kenya. Their study

also suggested, the conversion of forest to agricultural and pasture lands has led to a decrease

in precipitation and an increase in evapotranspiration, which reduces runoff. This dynamic is

further exacerbated by projected increases in temperature.

Similarly, Wang et al. (2014) found inverse relationships between forest cover and water yield

whereas this indicates that land use changes, such as urbanization and deforestation, can lead

to an increase in runoff. Getahun and Haj (2015) assessed land use-cover change impacts on

the Melka Kuntrie sub-basins hydrology in the Upper Awash River Basin. They used the semi-

distributed HBV hydrological model and Landsat imagery for 1986 and 2003. The results indi-

cated reduced evapotranspiration in the 2003 land use. Streamflow increased by 25% in June,

4% in July, 6% in August, and 9% in September, corresponding to 0.065mm/day, 0.077mm/day,
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0.07 mm/day, and 0.039 mm/day, respectively, during the main rainy season compared to 1986

land use.

In their study, Gessesse et al. (2019) explored the hydrological impact of land use land cover

changes in the Choke mountain range, utilizing remote sensing and the SWAT model in Muga

and Suha watersheds. Their findings indicated that between 1985 and 2004, total annual surface

and lateral streamflows increased by 1.2 mm/year and 0.57 mm/year, respectively. Meanwhile,

annual groundwater flow and percolation decreased by 1.6 mm/year and 1.77 mm/year. The re-

duction in streamflowwas more notable during the dry season (October toMay), with significant

baseflow declines of 0.37 m3/year in Muga and 0.73 m3/year in Suha watersheds. Conversely,

in the wet season (June to September), peak flow exhibited a 50% increase in Muga and a 94%

increase in Suha watersheds. Näschen et al. (2019) examined historical LULC patterns and pro-

jected future LULCC impacts on water quantities in a complex Tanzanian tropical catchment.

They employed the Land Change Modeler (LCM) for LULC analysis until 2030 and the SWAT

model to simulate water balance under diverse LULC conditions. Findings indicate a 6-8% de-

crease in low flows under LULC scenarios, while high flows increase by up to 84% in combined

LULC and climate change scenarios.

Engida et al. (2021) highlighted the profound impacts of land use land cover changes in Ethiopia’s

Upper Baro Basin. These changes, including reduced forest cover due to logging and agricul-

tural expansion, conversions of grasslands and bushes to farmland, and increased settlements,

occurred over three decades. These alterations significantly affected the basin’s hydrological

regime, impacting streamflow characteristics like flood frequency, peak flows, base flow, soil

erosion, and annual mean discharge. Notably, they led to increased surface runoff, reduced

groundwater and lateral flow, and soil erosion, resulting in the loss of essential nutrients. Aredo

et al. (2021) observed that the mean monthly streamflow exhibited an increase during the wet

season, contrasting with a decrease during the dry season as a consequence of a significant ex-

pansion of settlement and agricultural area, while there was a decrease of bare land, forest, and

bushland in the Shaya catchment by employing the MIKE SHE hydrological model the catch-

ment.

Contrary to others, Owuor et al. (2016) investigated the effect of land use land cover changes

on groundwater recharge and surface runoff in semi-arid environments. Studies have shown that
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the conversion of forest land or native vegetation to managed land use types, such as agricul-

tural fields, can lead to increased groundwater recharge. Forests have been found to have lower

groundwater recharge rates and runoff compared to other land uses in semi-arid regions. On the

other hand, the conversion of grassland to forest vegetation can result in reduced surface runoff.

In addition, the effects of land use change on groundwater recharge and surface runoff are influ-

enced by factors such as soil texture and the specific types of land use involved. Additionally,

Birhanu et al. (2019) quantified the rate of LULC in the Gumara catchment, an important trib-

utary of Lake Tana in northwest Ethiopia. Landsat images from three years (1986, 2001, and

2015) were processed using the supervised classification method. Contrary to the expected im-

pact of LULC changes on hydrology, only a slight change in water balance components (±5%)

was observed using the HBV model. Runoff and all other water balance components remained

stable despite considerable LULC changes.

Overall, it’s important to note that the impacts of LULCC can vary widely depending on the

specific changes and the context in which they occur. Sustainable land management practices

and informed land-use planning are essential for minimizing negative impacts and promoting

environmental and societal well-being.

Drivers of land use land cover change

Land use land cover change (LULCC) is driven by a complex interplay between natural and hu-

man forces (Amsalu et al., 2006). Natural drivers, such as climate change, exert their influence

gradually over extended periods, whereas human drivers often manifest more immediately and

can be quite extreme. One of the foremost human-driven factors behind LULCC, globally, in-

cluding Ethiopia, is population growth. The increasing population necessitates increased land

for agriculture, fuelwood production, charcoal production, and infrastructure development (Am-

salu et al., 2006; Betru et al., 2019; Kenea et al., 2021; Reis, 2008). In various parts of Ethiopia,

such as the central Rift Valley, Garedew et al. (2009) identified population growth, recurrent

droughts, rainfall variability, and declining crop productivity as the key drivers of LULCC.

Moreover, in the Derekolli catchment, factors such as population growth, drought, limited culti-

vated land availability, and land tenure systems have collectively contributed to observable land

cover changes (Belay Tegene, 2002).

In the Bale mountain eco-region of Ethiopia, Hailemariam et al. (2016) pinpointed farmland

expansion and population growth as major drivers of LULCC and deforestation. These alter-
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ations in land cover are closely tied to human activities such as forest clearance for agriculture

and housing (Kenea et al., 2021). Betru et al. (2019) categorized LULCC drivers in western

Ethiopia into proximate and underlying causes. Proximate drivers, including agricultural ex-

pansion, over-extraction of forest resources (e.g., fuelwood and charcoal), and forest fires, are

instrumental in deforestation. Meanwhile, the increasing human population has served as a

significant underlying cause, driving both agricultural expansion and overexploitation of forest

resources.

Furthermore, a decline in per capita cropland and limited increases in crop yields prompted

farmers to explore alternative land uses, such as grazing land and plantations, influenced by

socio-economic factors, policy changes, and the introduction of crossbred cattle (Amsalu et al.,

2006; Gashaw et al., 2017). These complex interactions underline the multifaceted nature of

LULCC drivers and their implications in land and resource management.

2.3 Hydrological Models Classification and Selection

Hydrological models play a crucial role in understanding and managing water resources, mak-

ing them indispensable tools in environmental studies and water management. These models

serve as simplified representations of the hydrological cycle or/and its components (Refsgaard,

1996; Singh, 2018). Moreover, hydrologic models are rooted in our interpretation and com-

prehension of hydrologic processes. They make use of numerous mathematical equations that

incorporate parameters and variables to effectively represent hydrological phenomena (Devia

et al., 2015). In this context, a variable can be defined as any characteristic of a system that

exhibits variations in numeric value over time or space (Singh, 1988), with examples including

daily precipitation, evaporation, and temperature. On the other hand, a parameter represents a

quantity that characterizes a hydrologic system and tends to remain constant over time include

hydraulic conductivity, time of concentration, and Manning’s roughness factor (Clarke, 1973;

Singh, 1988).

The complexity of hydrologic models varies from simpler data-driven models to more intricate

process-oriented ones. The optimal model is the one that closely approximates reality while em-

ploying minimal parameters and model complexity (Devia et al., 2015). Models are commonly

employed to predict system behavior and enhance our understanding of diverse hydrological pro-

cesses. Nowadays, hydrological models are regarded as indispensable tools for effective water
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and environmental resource management. The classification of hydrologic models holds signif-

icance due to their distinctive as well as shared properties (Pechlivanidis et al., 2011). Previous

studies have explained various methods for categorizing hydrological models, considering their

inherent characteristics.

2.3.1 Classifications of Hydrological Models

Hydrologic models can be classified as deterministic or stochastic models based on the presence

of randomness (Pechlivanidis et al., 2011; Singh, 2018). Deterministic hydrological models

produce similar outputs for the same input data and fixed parameter values, functioning without

accounting for randomness. These models are primarily oriented towards making forecasts and

can be further categorized into steady flow and unsteady flow hydrological models. Conversely,

stochastic hydrological models introduce an element of variability by generating different out-

put values for a single set of input parameters. These models inherently incorporate randomness

into their outputs, reflecting varying degrees of uncertainty. The output of a stochastic model

follows a statistical distribution, effectively capturing uncertainties originating from input vari-

ables, boundary conditions, or model parameters (Refsgaard, 1996; Singh, 2018). These models

are utilized for making predictions and can be classified into various subtypes, including time-

independent, time-correlated, and space-correlated variations. A mixed deterministic-stochastic

model, achieved by integrating stochastic error models into deterministic models (Pechlivanidis

et al., 2011). This integration enables the combination of deterministic predictive capabilities

with the stochastic representation of uncertainties, enhancing the model’s overall utility and ac-

curacy.

Deterministic hydrological models can be classified based on spatial representation: Lumped,

Distributed, and Semi-Distributed models (Pechlivanidis et al., 2011; Singh, 2018; Sitterson

et al., 2017). Lumped models work based on treating an entire basin as a single entity, disre-

garding spatial variability in their approach (Singh, 2018; Sitterson et al., 2017). In such hy-

drological models, the input parameters do not represent the physical features of hydrological

processes. Instead, they utilize spatially averaged or mean values to depict watershed charac-

teristics, including factors such as soil type, land use, and slope. A defining characteristic of

lumped models is their focus on simulating total runoff and streamflow solely at the outlet point,

without examining into specific flows within a catchment (Sitterson et al., 2017). Due to their

simplicity, these models necessitate minimal input data to operate effectively. Their design re-

volves around a straightforward representation of hydrological behavior in a catchment, making
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them suitable for scenarios where a broad overview suffices.

In contrast, distributed models are the most complex because they account for spatial hetero-

geneity in inputs and parameters (Sitterson et al., 2017). These models achieve this by dividing

catchments into multiple grid cells or elements and then solving the equations that define the

state variables for each element or grid cell (Pechlivanidis et al., 2011). Distributed models

offer the advantage of addressing the spatial variability of catchment characteristics, input vari-

ables, and parameters to a certain extent. The governing physical processes occurring in nature

are modeled in detail in these models (Singh, 2018). Typically, distributed models are governed

by partial differential equations. However, distributed models do come with certain drawbacks.

One of these is the substantial amount of data and computing power required to accurately ac-

count for the spatial variability of model parameters.

Semi-distributed models combine the advantages of distributed and lumped models. The input

parameters in a semi-distributed model are allowed to vary in space partially by dividing the

basin into several smaller sub-basins (Pechlivanidis et al., 2011; Singh, 2018). The unique ad-

vantage of a semi-distributed model lies in its ability to strike a balance between computational

efficiency and spatial detail. With this model, computational time remains relatively short, and

the reliance on data inputs and parameters is reduced compared to a fully distributed model

(Pechlivanidis et al., 2011). Often, these models are preferred due to constraints related to data

availability. They cover a wide spectrum ranging from lumped to distributed models, accom-

modating various degrees of spatial resolution and complexity.

Deterministic hydrological models can also be categorized based on their structural nature, en-

compassing empirical, conceptual, and physically-based models. Empirical or metric models

primarily focus on observation data without considering the complicated features and processes

of the hydrological system (Singh, 2018). Consequently, these models are often referred to as

data-driven models (Sitterson et al., 2017). In these models, equations are constructed based on

the observed input-output relationships, rather than being derived from the physical properties

of catchments or hydrologic processes. Statistical techniques like regression and correlation are

employed to establish these input-output correlations.

Conceptual models serve as simplified representations of the complex runoff generation pro-
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cesses within a catchment (Dwarakish and Ganasri, 2015; Singh, 2018; Sitterson et al., 2017).

Thesemodels describe the various hydrological processes, presenting an overview of the compo-

nent interactions (Pechlivanidis et al., 2011). Comprising interconnected reservoirs, conceptual

models match the physical elements of a catchment. These reservoirs are replenished by factors

like rainfall, infiltration, and percolation, while they are depleted by processes such as evapo-

ration, runoff, and drainage (Singh, 2018). The functionality of a conceptual model rests on

two fundamental criteria. First, the model’s structure is defined prior to the commencement of

the modeling process. Second, it is often not feasible to determine all model parameters based

solely on the physical properties of the watershed. Consequently, certain parameters within the

model are established through a calibration process. These models demonstrate how conceptual

approaches can effectively capture key hydrological behaviors while accommodating the limi-

tations inherent to empirical derivations.

On the other hand, Physical models, also called process-based or mechanistic models, are based

on the understanding of the physics related to the hydrological processes (Refsgaard, 1996;

Singh, 2018; Sitterson et al., 2017). These models rely on established physics laws and prin-

ciples, incorporating water balance equations, principles of mass and energy conservation, mo-

mentum considerations, and kinematics (Sitterson et al., 2017). Notable equations such as St.

Venant, Boussinesq’s, Darcy, and Richard’s equations are harnessed by physical models (Pech-

livanidis et al., 2011; Refsgaard, 1996). The distinctive feature of physically-based models lies

in their capability to offer continuous runoff simulations using quantifiable parameters, often

without requiring extensive calibration. These parameters are typically derived from laboratory

experiments or small-scale in-situ studies. It’s worth noting that the spatial heterogeneity present

in larger catchments poses limitations on the applicability of physically-based models, making

themmore suitable for small-scale investigations. Nevertheless, their greatest strength lies in the

direct link between model parameters and the physical characteristics of the catchment, which

enhances their realism.These models showcase how a physics-based approach can offer a robust

representation of complex hydrological dynamics while being grounded in well-established sci-

entific principles.

2.3.2 Choosing Appropriate Hydrological Model

Numerous studies revealed the uses, abilities, and performances of different models in simulat-

ing the hydrological processes of watersheds under changing climate and land use land cover.
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Each type of hydrological model serves a specific purpose, and it’s important to note that no

particular model type can be universally considered more suitable than others in every scenario.

The appropriateness of a model structure is greatly influenced by the intended function it is sup-

posed to fulfill (Merritt et al., 2003). However, it is a quite challenging task to select the right

hydrological model which can simulate specific watershed hydro-climatological and geophysi-

cal processes. This selection process often takes into account factors such as data availability,

spatial representation, computational complexity, and the model’s overall robustness (Pechli-

vanidis et al., 2011). In general, physically-based semi distributed models are very flexible to

represent the real ground features and simulating the hydro-geophysical processes of watersheds

(Arnold et al., 1998; Chen and Mackay, 2004; Gebreyohannes et al., 2013; Yen et al., 2016). In

this study, the Soil and Water Assessment Tool (SWAT) was chosen as the most suitable model

(Arnold et al., 2012; Neitsch et al., 2011; Gassman et al., 2007). Moreover, hydrological models

are valuable to simulate watershed hydrology and sediment yield in data-scarce regions.

In general, when deciding on a hydrological model, one should consider the research or project’s

objectives and scale. Given the extensive studies conducted using the SWAT model, its consis-

tently satisfactory performance, adaptability in data-scarce regions, and access to global datasets,

and the choice to employ the SWAT model for this study in the WSRB was well-founded. The

following sections detail the attributes of the SWAT model that substantiate its selection for this

research effort.

2.4 SWAT Model Description

The Soil and Water Assessment Tool (SWAT) model, developed to predict the impact of land

management practices on water, sediment, and agricultural chemical yields in large watersheds

with varying soils, land use, and management conditions over long periods, is a crucial tool

for hydrological research (Arnold et al., 2012, 1998). This hydrological model, created by the

United States Department of Agriculture’s Agricultural Research Service (USDA-ARS), op-

erates as a continuous-time, semi-distributed, process-based river basin model (Arnold et al.,

2012; Gassman et al., 2007) . Since its inception in the early 1990s as version 94.2, SWAT has

undergone significant development and refinement, with continued reviews and expansion of its

capabilities (Neitsch et al., 2011; Gassman et al., 2007).

The model encompasses a comprehensive range of components, totaling eight major categories:
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weather, hydrology, soil temperature and properties, plant growth, nutrients, pesticides, bacte-

ria and pathogens, and land management (Neitsch et al., 2011; Gassman et al., 2007). Within

the realm of hydrological processes, SWAT provides a multifaceted simulation that covers a

spectrum of phenomena. These processes include canopy storage, surface runoff, infiltration,

evapotranspiration, lateral flow, tile drainage, redistribution of water within the soil profile, and

potential consumption through pumping, return flow, and recharge by seepage from surface wa-

ter bodies, ponds, and tributary channels (Arnold et al., 2012).

In SWAT, the approach to address the large-scale spatial heterogeneity of the study area involves

dividing the watershed into sub-basins (Arnold et al., 2012; Neitsch et al., 2011; Gassman et al.,

2007). Each of these sub-basins is further refined by discretizing them into a series of hydro-

logic response units (HRUs), each characterized by unique combinations of soil type, land use,

and slope (Arnold et al., 1998; Neitsch et al., 2011). Within these HRUs, the model simulates

various parameters, including soil water content, surface runoff, nutrient cycles, sediment yield,

crop growth, and management practices. These individual HRU simulations were then aggre-

gated for the sub-basins using a weighted average approach (Arnold et al., 2012). Moreover,

physical characteristics such as slope, reach dimensions, and climatic data were carefully con-

sidered for each sub-basin to ensure a comprehensive representation of the spatial variability of

the study area.

The hydrological cycle, which plays a pivotal role in SWAT’s modeling framework, is primar-

ily influenced by climatic factors. These climate-driven processes deliver crucial moisture and

energy inputs, including daily precipitation, maximum/minimum air temperature, solar radia-

tion, wind speed, and relative humidity, all of which control the water balance within the system

(Arnold et al., 2012, 1998; Srinivasan et al., 1998). SWAT retrieves climate data from the near-

est weather station located to the center of each sub-basin. These data can be directly obtained

from files containing observed records, or SWAT has the capability to generate simulated data

in runtime based on observed monthly statistics. This flexibility allows SWAT to effectively in-

corporate climate influences into hydrological modeling processes.

SWAT employs a variety of modeling techniques to comprehensively address the different as-

pects of watershed dynamics. SWAT relies on theModifiedUniversal Soil Loss Equation (MUSLE)

established by Williams (1975) to predict sediment yield from the landscape. This approach
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provides a valuable tool for estimating the sediment loss within watersheds. Moreover, SWAT

simplifies its vegetation model by employing a single plant growth model capable of simulating

all types of land cover while distinguishing between annual and perennial plants. This versatile

plant growth model plays a pivotal role in assessing various processes, including the removal

of water and nutrients from the root zone, transpiration, and biomass/yield production. Beyond

plant growth, SWAT extends its modeling process to encompass the movement and transfor-

mation of several critical elements within the watershed, including different forms of nitrogen

and phosphorus, pesticides, and sediment. This holistic approach allows the SWAT to provide

a comprehensive understanding of the complex dynamics within the watershed.

SWAT allows the user to define management practices taking place in every HRUs (Folle et al.,

2007; Waidler et al., 2009). After establishing the quantities of water, sediment, nutrients, and

pesticides transferred from the land phase to the primary channel, these loadings are then di-

rected through the streams and reservoirs situated throughout the watershed (Arnold et al., 2012).

In the context of reservoirs, the water balance for reservoirs includes inflow, outflow, rainfall on

the surface, evaporation, seepage from the reservoir bottom, and diversions. Calculated flow,

sediment yield, and nutrient loading obtained for each sub-basin are then routed through the

river system. Channel routing is simulated using the variable storage or Muskingum method

(Neitsch et al., 2011). This method aids in accurately depicting the movement of water and its

associated constituents through the river network, facilitating a holistic understanding of water-

shed behavior.

2.4.1 Theoretical Description of SWAT Model

For a comprehensive understanding of the SWATmodel’s key components, processes, and equa-

tions, interested parties can refer to the SWAT theoretical documentation available at https:

//swat.tamu.edu/docs/ (Neitsch et al., 2011; Srinivasan et al., 2010). This documentation

serves as a valuable resource for gaining insight into the intricacies and functionalities of the

model. In the context of this study, the focus is on describing specific processes and equations

that are particularly pertinent to this research objectives.

Hydrological simulation in SWAT model

In the SWAT model, simulation of the hydrology of a watershed is done in two separate com-

ponents. One is the land phase of the hydrologic cycle that controls the water movement in the

land and determines the water, sediment, nutrient, and pesticide amount that will be loaded into
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the mainstream. The second component is the routing phase of the hydrological cycle in which

the water is routed in the channels network of the watershed, carrying the sediment, nutrients,

and pesticides to the outlet. Major hydrological processes that can be simulated include evap-

otranspiration (ET), surface runoff, infiltration, percolation, shallow aquifer, and deep aquifer

flow, and channel routing (Neitsch et al., 2011). The land phase of the hydrologic cycle is based

on the water balance equation 2.1.

𝑆𝑊𝑡 = 𝑆𝑊0 +
𝑡∑
𝑖

(𝑅𝑑𝑎𝑦 −𝑄𝑠𝑢𝑟 𝑓 − 𝐸𝑇𝑎 − 𝑤𝑠𝑒𝑒𝑝 −𝑄𝑔𝑤) (2.1)

where 𝑆𝑊𝑡 is the final soil water content (mm H2O), 𝑆𝑊0 is the initial soil water content (mm

H2O), t is the time (days), 𝑅𝑑𝑎𝑦 is the amount of precipitation on day i (mm H2O), 𝑄𝑠𝑢𝑟 𝑓 is the

amount of surface runoff on day i (mm H2O), 𝐸𝑇𝑎 is the amount of evapotranspiration on day

i (mm H2O), 𝑤𝑠𝑒𝑒𝑝 is the amount of percolation and bypass flow exiting the soil profile bottom

on day i (mm H2O), and 𝑄𝑔𝑤 is the amount of return flow on day i (mm H2O).

Surface runoff occurs whenever the rate of precipitation exceeds the rate of infiltration. SWAT

offers two methods for estimating surface runoff: the SCS curve number and the Green and

Ampt infiltration method. Using daily or sub-daily rainfall, SWAT simulates surface runoff

volumes and peak runoff rates for each HRU and antecedent moisture condition. Peak runoff

predictions are based on a modification of the Rational Formula. The watershed concentration

time is estimated using Manning’s formula, considering both overland and channel flow. In this

document, only the SCS curve number method is explained (Neitsch et al., 2011). The SCS

curve number equation is:

𝑄𝑠𝑢𝑟 𝑓 =
(𝑅𝑑𝑎𝑦 − 0.2𝑆)2

(𝑅𝑑𝑎𝑦 + 0.8𝑆) (2.2)

In which, 𝑄𝑠𝑢𝑟 𝑓 is the accumulated runoff or rainfall excess (mm), 𝑅𝑑𝑎𝑦 is the rainfall depth for

the day (mm), S is the retention parameter (mm).

The retention parameter, S, varies spatially due to changes in soils, land use, management and

slope and temporally due to changes in soil water content (Arnold et al., 1998). The parameter

S is related to curve number (CN) by the SCS equation (USDA-SCS, 1972). The retention

parameter is defined by equation 2.3:

𝑆 = 25.4 ∗ (1000
𝐶𝑁

− 10) (2.3)

SWAT2009 version includes two methods for calculating the retention parameter; the first one

is retention parameter varies with soil profile water content and the second method is the re-

tention parameter varies with accumulated plant evapotranspiration. Calculation of the daily
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CN value as a function of plant evapotranspiration was added because the soil moisture method

was predicting too much runoff in shallow soils using equation 2.4. But calculating daily CN

as a function of plant evapotranspiration, the value is less dependent on soil storage and more

dependent on antecedent climate.

𝑆 = 𝑆𝑚𝑎𝑥 ∗
(
1 − 𝑆𝑊

(𝑆𝑊 + exp(𝑤1 − 𝑤2 ∗ 𝑆𝑊

)
(2.4)

where S is the retention parameter for a given day (mm), 𝑆𝑚𝑎𝑥 is themaximum value the retention

parameter can achieve on any given day (mm), SW is the soil water content of the entire profile

excluding the amount of water held in the profile at wilting point (mm), and 𝑤1 and 𝑤2 are shape

coefficients. The maximum retention parameter value, 𝑆𝑚𝑎𝑥 , is calculated by solving equation

2.5 using 𝐶𝑁1.

𝑆𝑚𝑎𝑥 = 25.4 ∗ (1000
𝐶𝑁1

− 10) (2.5)

when the retention parameter varies with plant evapotranspiration, equation 2.6 is used to update

the retention parameter at the end of every day

𝑆 = 𝑆𝑝𝑟𝑒𝑣 + 𝐸0 ∗ exp
(−𝑐𝑛𝑐𝑜𝑒 𝑓 ∗ 𝑆𝑝𝑟𝑒𝑣

𝑆𝑚𝑎𝑥

)
− 𝑅𝑑𝑎𝑦 +𝑄𝑠𝑢𝑟 𝑓 (2.6)

where S is the retention parameter for a given day (mm), 𝑆𝑝𝑟𝑒𝑣 is the retention parameter for

the previous day (mm),𝑐𝑛𝑐𝑜𝑒 𝑓 is the weighting coefficient used to calculate the retention co-

efficient for daily curve number calculations dependent on plant evapotranspiration, 𝑆𝑚𝑎𝑥 is the

maximum value the retention parameter can achieve on any given day (mm). The initial value

of the retention parameter is defined using equation 2.7.

𝑆 = 0.9 ∗ 𝑆𝑚𝑎𝑥 (2.7)

The SCS curve number is a function of the soil permeability, land use, and antecedent soil

water condition. SCS defines three antecedent moisture conditions: I —dry (wilting point),

II—average moisture, and III—wet (field capacity). The moisture condition I curve number is

the lowest value the daily curve number can assume in dry conditions. The curve numbers for

moisture conditions I and III are calculated with equations 2.8 and 2.9, respectively.

𝐶𝑁1 = 𝐶𝑁2 −
20 ∗ (100 − 𝐶𝑁2)

(100 − 𝐶𝑁2 + exp[2.533 − 0.0636 ∗ (100 − 𝐶𝑁2)])
(2.8)

𝐶𝑁3 = 𝐶𝑁2 ∗ (exp(0.00673 ∗ (100 − 𝐶𝑁2))) (2.9)
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where 𝐶𝑁1 is the moisture condition I curve number, 𝐶𝑁2 is the moisture condition II curve

number, and𝐶𝑁3 is themoisture condition III curve number. Typical curve numbers formoisture

condition II are listed in various tables Neitsch et al. (2011), for various land covers and soil

types. These values are appropriate for a slope of 5%. Williams (1995) developed an equation

2.10 to adjust the curve number to a different slope:

𝐶𝑁2𝑠 =

(
𝐶𝑁3 − 𝐶𝑁2

3

)
∗ (1 − 2 ∗ exp(−13.86 ∗ 𝑠𝑙 𝑝)) + 𝐶𝑁2) (2.10)

where 𝐶𝑁2𝑠 is the moisture condition II curve number adjusted for slope, 𝐶𝑁3 is the moisture

condition III curve number for the default 5% slope, 𝐶𝑁2 is the moisture condition II curve

number for the default 5% slope, and slp is the average percent slope of the sub-basin.

The model computes evaporation from soils and plants separately. Potential evapotranspiration

can bemodeled with the Penman-Monteith, Priestley–Taylor, or Hargreaves methods, depending

on data availability. Potential soil water evaporation is estimated as a function of potential ET and

leaf area index (area of plant leaves relative to the soil surface area). Actual soil evaporation is

estimated by using exponential functions of soil depth andwater content. Plant water evaporation

is simulated as a linear function of potential ET, leaf area index, and root depth, and can be

limited by soil water content. More detailed descriptions of the model can be found (Neitsch

et al., 2011).

Sediment simulation in SWAT model

SWAT uses Modified Universal Soil Loss Equation (MUSLE) Williams (1975) to estimate soil

erosion and sediment yield caused by rainfall and runoff. Sediment yield prediction is improved

because runoff is a function of antecedent moisture conditions as well as rainfall energy. The

modified universal soil loss equation (Williams, 1975) is given by equation 2.11

𝑠𝑒𝑑 = 11.8∗ (𝑄𝑠𝑢𝑟 𝑓 ∗𝑞𝑝𝑒𝑎𝑘 ∗𝑎𝑟𝑒𝑎ℎ𝑟𝑢)0.56∗𝐾𝑈𝑆𝐿𝐸 ∗𝐶𝑈𝑆𝐿𝐸 ∗𝑃𝑈𝑆𝐿𝐸 ∗ 𝐿𝑆𝑈𝑆𝐿𝐸 ∗𝐶𝐹𝐺𝑅 (2.11)

where 𝑠𝑒𝑑 is the sediment yield on a given day (metric tons), 𝑄𝑠𝑢𝑟 𝑓 is the surface runoff volume

(mm/ha), 𝑞𝑝𝑒𝑎𝑘 is the peak runoff rate (m3/s), 𝑎𝑟𝑒𝑎ℎ𝑟𝑢 is the area of the HRU (ha), 𝐾𝑈𝑆𝐿𝐸 is

the USLE soil erodibility factor, 𝐶𝑈𝑆𝐿𝐸 is the USLE cover and management factor, 𝑃𝑈𝑆𝐿𝐸 is the

USLE support practice factor, 𝐿𝑆𝑈𝑆𝐿𝐸 is the USLE topographic factor and 𝐶𝐹𝑅𝐺 is the coarse

fragment factor.
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2.4.2 SWAT Calibration and Validation/ Performance Evaluation

The ability of a watershed model to mimic specified watershed processes is assessed through

the calibration and validation process after model parameter sensitivity analysis (White and

Chaubey, 2005). The first step in the calibration and validation process in SWAT is the deter-

mination of the most sensitive parameters for a given watershed or sub-watershed. Sensitivity

is measured as the response of an output variable to a change in an input parameter, with the

greater the change in output response corresponding to a greater sensitivity. Sensitivity anal-

ysis evaluates how different parameters influence a predicted output. SWAT input parameters

are process based and must be held within a realistic uncertainty range (Arnold et al., 2012).

Parameters identified in sensitivity analysis that influence predicted outputs are often used to

calibrate a model. Model calibration entails the modification of parameter values and compari-

son of predicted output of interest to measured data until a defined objective function is achieved

(James and Burges, 1982). After achieving the objective function for calibration, validation of

the model ensues. Validation procedures are similar to calibration procedures in that predicted

and measured values are compared to determine if the objective function is met. However, a

dataset of measured watershed response selected for validation preferably should be different

than the one used for model calibration, and the model parameters are not adjusted during vali-

dation. Validation provides a test of whether the model was calibrated to a particular dataset or

the system it is to represent. If the objective function is not achieved for the validation dataset,

calibration and/or model assumptions may be revisited. The sensitivity, calibration and valida-

tion can be performedmanually and automatically using appropriate software. Althoughmanual

approaches are still frequently used for calibration, they are tedious, time consuming, and require

experienced personnel (Muleta and Nicklow, 2005).

2.4.3 Application and Limitation of SWAT Model

The Soil and Water Assessment Tool (SWAT) has been tested in different environment around

the world, especially in research related to include hydrology, erosion, climate, soil, tempera-

ture, plant growth, nutrients, pesticides and land management. The model has been applied in

various regions worldwide and has contributed significantly to the understanding of watershed

processes and the development of sustainable water resources management practices. Up to date,

more than 6000 peer-reviewed papers was published on SWAT model worldwide nearly 200 in

Ethiopia. The SWAT model has been widely used for various applications, including water re-

sources management, environmental assessment, and climate change impact studies. The wide

35



application of SWAT model at both domestic and abroad has confirmed that it is a powerful and

comprehensive hydrological model. The model was selected because of its robust approach of

soil water balance at the watershed/basin scale.

Hydrological process

The first and most application of the SWAT model is to predict streamflow from small to large

gauge and ungauged basin (Arnold et al., 2012; Gassman et al., 2007; Neitsch et al., 2011; Schuol

et al., 2008; Srinivasan et al., 1998; Wang et al., 2019). Liew and Garbrecht (2003) evaluated

SWAT’s ability to predict streamflow under varying climatic conditions for three nested sub-

watersheds in the 610 𝑘𝑚2 Little Washita River experimental watershed in southwestern Okla-

homa. In Ethiopia, Setegn et al. (2008) applied SWAT2005 to the Lake Tana Basin for modeling

the hydrological water balance. The main objective of this study was to test the performance and

feasibility of the SWAT model for the prediction of streamflow in the Lake Tana Basin. In ad-

dition, Lee et al. (2011) applied the model to estimate the freshwater inflow to coastal bays,

including Galveston Bay and Matagorda Bay in Texas, in order to obtain information on water

quantity, quality, and temporal variation to help understand estuary hydrology.

Watershed scale soil erosion assessment and prioritization

The SWAT model has been used to assess the risks of soil erosion (Betrie et al., 2009; Chekol

et al., 2007), sediment yield (Ayana et al., 2012; Setegn et al., 2009; Yesuf et al., 2015) and

prioritization of intervention area (Betrie et al., 2009; Setegn et al., 2009). Chekol et al. (2007)

used the model to identify hotspot sediment sources within the Hombole sub watersheds and to

simulate the effect of management/conservation measures on water and sediment yield in the

Upper Awash River watershed. The Lake Tana Basin is one of the most affected area by soil

erosion, sediment transport and land degradation. Setegn et al. (2009) used SWAT model to

estimate the sediment yield within each sub-basin and identify the most sediment contributing

areas in the Lake Tana Basin, Ethiopia. Betrie et al. (2011) used SWAT to model soil erosion,

identify soil erosion prone areas and assess the impact of BMPs on sediment reduction. Ayana

et al. (2012) applied SWAT model to simulate the sediment yield from the Fincha watershed,

located in Western Oromiya Regional State, Ethiopia. Yesuf et al. (2015) successfully applied

SWAT model to quantify sediment yield at a monthly time-step in Maybar hydrometric station.

36



Land use land cover change impact

Study of the land use changes and their effects on runoff and sediment patterns for the water-

shed level are essential in water resource planning and management. The land use land cover

and climate change impact on hydrology and water quality is the major issue that has been ad-

dressed using SWAT as well as other hydrological models (Gessesse et al., 2019; Näschen et al.,

2019). Chaemiso et al. (2016) simulated the hydrological responses due to land use and climatic

changes in theOmo-Gibe river basin, Ethiopia utilizing anArcSWATmodel. The studies showed

that there is an overall increasing trend in future annual temperature and significant variation of

monthly and seasonal precipitation from the base period 1985–2005. Also, the annual potential

evapotranspiration showed an increasing trend for future climate change scenarios. Similarly,

the surface water decreases in terms of mean monthly discharge in the dry season and increases

in the wet season.

In addition, Gessesse et al. (2019) assessed the hydrological response of the Choke mountain

range to land-use dynamics using integrated applications of remote sensing and the Soil Water

Assessment Tool (SWAT) in Muga and Suha watersheds. Näschen et al. (2019) investigated

historic land use land cover (LULC) patterns as well as potential future LULCC and its effect

on water quantities in a complex tropical catchment in Tanzania. Pikounis et al. (2003) used

the SWAT model to simulate the main components of the hydrologic cycle, to study the effects

of land-use changes. Three land-use change scenarios were examined, namely the expansion

of agricultural land, complete deforestation of the Trikala sub-basin, and expansion of urban

areas in the Trikala sub-basin. The model was applied to quantify the impacts of implementing

Water Quality Management Plans (WQMPs) in the West Fork Watershed of Trinity River Basin

in Texas, USA on sediment and nutrients (Santhi et al., 2006).

Climate change impact assessment

Assessing impact of future climate change on hydrology and water quality is the major issue that

has been addressed using SWAT as well as other hydrological models. Improved understanding

of future impact helps towards establishments of watershed management plans and provides

a guideline for effective dealing with climate changes. Tuppad et al. (2011) used the Global

Climate Model (GCM) MIROC3.2 for simulating future weather conditions and downscaled

with bias correction and local adaption studies. Climate change scenarios such as A1B, B1, or

both, set by the Intergovernmental Panel on Climate Change (IPCC), were selected to simulate
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various levels of future greenhouse gas emissions. The estimate future climates were applied

into a calibrated SWAT model to assess impacts of climate change in the watersheds hydrology.

Setegn et al. (2011b) investigated the sensitivity of water resources to climate change in the Lake

Tana Basin, Ethiopia, using outputs from global climate models (GCMs). Climate change has

the potential to reduce water resource availability in the Nile Basin countries in the forthcoming

decades.

Simulation of BMPs

SWAT also allows for the simulation of different land use and management scenarios to assess

their impact on water resources and the environment.SWAT is widely used in assessing soil ero-

sion prevention and control, non-point source pollution control, and regional management in

watersheds. A key strength of SWAT is a flexible framework that allows the simulation of a

wide variety of conservation practices and other BMPs, such as fertilizer and manure applica-

tion rate and timing, cover crops (perennial grasses), filter strips, irrigation management, grassed

waterways, and wetlands (Folle et al., 2007; Waidler et al., 2009). The majority of conservation

practices can be simulated in SWAT with straightforward parameter changes (Gassman et al.,

2007). In different parts of the world, different land management practices were evaluated for

the redaction effect on non-point sources pollution in the critical sub-basins. Kirsch (2002) de-

scribed SWAT results showing that improved tillage practices could result in reduced sediment

yields of almost 20 % within the Rock River in Wisconsin, USA. Chaplot (2014) found that

adoption of no-tillage, changes in nitrogen application rates, and land-use changes could greatly

impact nitrogen losses in the Walnut Creek watershed in central Iowa, USA.

Similarly, Bracmort et al. (2006) showed results of three 25-year SWAT scenario simulations

for two small watersheds in Indiana, USA where the impacts of no BMPs, BMPs in good con-

ditions, and BMPs in varying conditions are reported for streamflow, sediment, and total phos-

phate. Betrie et al. (2011) applied the SWAT model to assess spatially distributed of soil ero-

sion/sedimentation processes at daily time step and to assess the impact of three Best Manage-

ment Practices (BMPs) scenarios on sediment reductions in the Upper Blue Nile River basin.

Folle et al. (2007) evaluated various BMPs to reduce upland sediment loads to the Le Sueur

River Watershed, South-Central Minnesota, and its tributaries using the SWAT model. The

BMPs tested for specific land use and potential sediment source areas are conservation tillage,

vegetative filter strip, and cover crops. The scenarios that were most effective at reducing sedi-

ment loss (53 % reduction from the baseline scenario) included a combination of cover crops and
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filter strips on steep croplands as well as conservation tillage on all cropland in the watershed.

SWAT model limitations

SWAT is widely used in many aspects of water cycle simulation, but it still has certain limita-

tions. Despite the strengths mentioned SWAT model has some known weaknesses (Folle et al.,

2007). It is incapable of simulating single flood events, while its database must be modified

when used in different study areas (Adu and Kumarasamy, 2018; Folle et al., 2007). Targeted

placement of BMPs like filter strips, grassed waterways, riparian buffer zones, wetlands, grass-

land, or other land use within a given sub-watershed is not possible and cannot specify actual

areas to apply fertilizers (Adu and Kumarasamy, 2018). It is unable to simulate daily changes of

dissolved oxygen in water bodies. The tile drainage routine of SWAT does not account for the

drain spacing and depth of the shallow water table (Folle et al., 2007). Besides, during model

development the number of free model parameters (used for calibration) shall be kept to a min-

imum. But, in SWAT model higher number of model parameters open for calibration.
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Chapter 3

Wabi Shebele River Basin

3.1 Research Area

3.1.1 Location of Study Site

Ethiopia, situated in East Africa, holds the distinction of being the most populous landlocked

country in the world. Within its borders, theWabi Shebele River Basin (WSRB) stands out as one

of the nation’s largest river basins in terms of its expansive coverage. WSRB is located southeast

of Ethiopia. Covering a vast area of 189,655 𝑘𝑚2, it encompasses nearly 17% of Ethiopia’s total

land area. Geographically, the basin stretches between 4.91° and 9.59° N latitude and 38.69°

and 45.33° E longitude, as illustrated in Figure 3.1. It is bordered to the north by the Awash

River and Rift Valley lake basins, to the west by the Genale Dawa River basin, to the east by the

Ogaden dry basin, and to the south by a section of the Ethio-Somali boundary. Administratively,

the Wabi Shebele River Basin encompasses multiple regional states within Ethiopia, including

Oromiya in the NorthWest covering 72,465.9 𝑘𝑚2, Somali in the South East spanning 116,786.1

𝑘𝑚2, Harari in the northeastern part with 373.4 𝑘𝑚2, Sidama in the northwestern area covering

21.4 𝑘𝑚2, and Dire Dawa Administration, encompassing 8.2 𝑘𝑚2 in the north.

3.1.2 Water Resource Potential and Wabi Shebele River Basin

Ethiopia, referred to as the water tower of East Africa, with an annual surface water potential

of 124.4 billion cubic meters (BCM) (Berhanu et al., 2013). The country is endowed with 12

major basins, 12 large lakes, and variously sized water bodies (Berhanu et al., 2013; Awulachew

et al., 2007) . It is significant that out of the total runoff, only 3% of it remains within Ethiopia,

while a significant 97% is lost as runoff to the lowlands of neighboring countries. These basins

are categorized into three principal drainage systems, all originating from the central highlands.



Figure 3.1: Location map of Wabi Shebele River basin

The first and most substantial is the western system, rich in water resources (68%), encompass-

ing the basins of Abay (Blue Nile), Tekeze, and Baro-Akobo, all flowing westward into the Nile

Basin. The second system is the rift valley internal drainage system, which includes the Awash,

rift Lakes, and the Omo-Ghibe basins. Lastly, the third system consists of the Wabi-Shebele and

Genale-Dawa rivers, ultimately draining into the Indian Ocean through Somalia. Notably, the

surface water potential of the Wabi Shebele and Genale Dawa basins stands at 3.14 𝐵𝑀3 and 6

𝐵𝑀3, respectively.

Despite its extensive geographical coverage, the Wabi Shebele river basin grapples with water

scarcity issues. Within this basin, there are ten major sub-basins, including Melka Wakena,

Alkeso, Robe, Golocha, JawesLabu, Ramis, Errer-Mojo, Daceta, FafenJerer, and Lower Wabi,

as depicted in Figure 3.2. The basin remains underdeveloped due to a combination of natu-

ral and socioeconomic challenges. Specifically, the basin holds the potential for 237,905 ha of

irrigable land, representing 5.4% of the country’s total irrigable area potential. However, irri-

gation is currently limited to the downstream portion of the basin, primarily along the flooding

plain (Awulachew et al., 2007). Similarly, despite a hydropower potential of 5,400 GWh/year

(Berhanu et al., 2013), only 153 GWh/year has been developed to date.

42



Figure 3.2: Major sub basins/tributary in Wabi Shebele River Basin

3.1.3 Topography of WSRB

TheWabi Shebele River Basin (WSRB) displays a diverse topography, encompassing flat plains,

undulating terrain, rolling landscapes, and steep-sloped valley regions. This basin extends across

a wide range of elevations, starting at 179 meters above sea level (m.a.s.l) along the Ethio-

Somalia border in the south and rising to more than 4,188 m.a.s.l in the northwestern Bale

Mountains area (as shown in Figure 3.3). Within the WSRB, over 80% of the area is situated

at elevations below 1,500 meters, classifying it as lowland, typically characterized by arid and

semi-arid conditions with limited surface water contributions to the river (as depicted in Figure

3.4a). The basin’s features transition as one moves from the upstream to the middle section, with

the former dominated by steep slopes gradually giving way to gentler slopes in the lowland (as

illustrated in Figure 3.4b). As a result, the middle stretch of the basin is primarily defined by its

steep valley slopes, marked by abrupt faults. These varied physical conditions and elevation dis-

parities contribute significantly to the basin’s wide-ranging climates, soil types, and vegetation.

The Wabi Shebelle River stretches for a length of 1,200 kms within Ethiopia, extending from its

source to the end of the Ethio-Somali border. Most of its tributaries within this region originate

along the northern and northwestern boundaries of the basin, specifically in the Arsi Bale and

43



Figure 3.3: Topographic map of the Wabi Shebele River basin

Hararghe Plateau areas. These tributaries then flow with a pronounced steep gradient towards

the east and southeast, eventually merging with the Wabi Shebele River. The main river initially

flows in an eastern direction before turning to the southeast and ultimately reaching the border

with Somalia.

3.1.4 Climate Characteristics of WSRB

Ethiopia’s climate is a product of its complicated topography and the seasonal movement of the

Inter-Tropical Convergence Zone (ITCZ) and associated atmospheric circulations. Similarly,

the Wabi Shebele River Basin (WSRB) experiences substantial variations in rainfall due to both

altitude and the influence of air masses linked to the ITCZ. The climate in this region is notably

diverse, encompassing semi-arid desert conditions in the lowlands and a more humid, temper-

ate climate in the northwestern highlands. Owing to the variations in altitude across the basin,

annual rainfall varies substantially, from approximately 227 mm in the southeast to 1240 mm in

the northwest.

The eastern basin in Ethiopia stands out for its distinctive bimodal rainfall pattern. In WSRB,

This unique pattern results in two distinct rainy seasons. The primary rainy season, known
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Figure 3.4: Elevation vs Area (a) and elevation vs slope (b) relationship in WSRB

as ”Kiremt” or ”Summer,” spans from June to September, while the secondary rainy season,

referred to as ”Belg” or ”Spring,” extends from March to May. Besides, the basin displays a

wide range of mean annual temperatures, with values ranging from 6.29◦C in the northwest

to 35.98◦C in the southeast. Furthermore, potential evapotranspiration, like rainfall, exhibits

considerable variations, primarily associated with altitude. On average, the annual potential

evaporation in the basin stands at approximately 1500 mm (Awass, 2009).

3.1.5 Major Land Use Land Cover and Soil Types in WSRB

In the WSRB, forested areas are limited in extent, primarily concentrated in the North-Western

highlands. Unfortunately, much of the forested land has been cleared for cultivation or used as

a source of household energy, particularly for firewood. The dominant land cover in the basin

is open shrubland, prevalent in the semi-arid regions, characterized by patches of shrubs inter-

spersed with grasslands and occasional low trees. The dominant land cover in the basin is open

shrubland, mainly found in the semi-arid regions, characterized by patches of shrubs interspersed

with grasslands and occasional low trees. Cultivation is the primary land use land cover in the

highland areas of the WSRB, with seasonal crops such as maize, barley, wheat, and sorghum

being the primary focus. Additionally, perennial crops such as coffee, chat, and a variety of

fruit trees are cultivated. Lastly, certain parts of the southeast, particularly in Bale and Hararghe

lowlands, exhibit exposed rock or sand surfaces.
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Figure 3.5: Spatial distribution of major soils in WSRB

According to FAO Harmonized World soil database, the dominant soil types in WSRB are Lep-

tosols, Calcisols, Gypsisols, and Vertisols covering 80.3% of the basin. The major soil types

in the WSRB are highlighted in Figure 3.5, and their respective area coverages are provided in

Table 3.1. Leptosols dominate the region, encompassing the largest area at 29.1%. Calcisols,

which cover 25.7% of the land, making it the second most prevalent soil type. Gypsisols hold the

third position with an area coverage of 13.0%, while Vertisols come in fourth, occupying 12.5%

of the landscape. In addition, Cambisols, Luvisols, Fluvisols, and Solonchaks cover 7.6%, 3.3%,

1.6%, and 1.2% of WSRB respectively. A considerable area (5.9%) is occupied by an addition

10 types of soil that cover an area less than 1% of the basin. The wide ranges of topographic and

climatic factors, parent material and land use have resulted in extreme variability of soils. This

distribution of soil types provides insight into the varying ecological characteristics within the

area, with Leptosols and Calcisols being the dominant soil types in this landscape.

3.1.6 Population and Livelihood in WSRB

The elevation of this region plays a crucial role in determining the availability of adequate rainfall

for agricultural activities, making it a favorable environment in Ethiopia. Significantly, agricul-

tural production and higher population density are predominantly concentrated in the highland
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Table 3.1: Areal distribution of major soil types in WSRB

No Soil Name Area (Km2) Area (%)
1 Calcaric Fluvisols 3128.2 1.6
2 Chromic Cambisols 2587.4 1.4
3 Eutric Cambisols 5646.1 3.0
4 Eutric Leptosols 4637.1 2.4
5 Eutric Vertisols 23679.4 12.5
6 Haplic Calcisols 40626.2 21.4
7 Haplic Gypsisols 9552.6 5.0
8 Haplic Solonchaks 2238.2 1.2
9 Lithic Leptosols 31023.2 16.4

10 Petric Calcisols 8237.2 4.3
11 Petric Gypsisols 15168.2 8.0
12 Rendzic Leptosols 19558.1 10.3
13 Vertic Cambisols 6044.2 3.2
14 Vertic Luvisols 6250.9 3.3
15 Others (less than 1%) 11278.0 5.9

Total 189655.0 100

areas of the WSRB. In the upstream part of the basin, cultivation is the predominant agricultural

practice, while animal husbandry is more prevalent in the middle and lower regions (Figure

3.6a). In between, there’s a mixed form of production known as agro-pastoral production. The

lower valley of the Wabi Shebele River basin is known for its common practice of irrigated crop

production. Population distribution is also significantly influenced by elevation (Figure 3.6b).

The highlands, particularly in the northeastern part, show the highest population density, with

550 persons per square kilometer, whereas the middle and lower parts of the basin have a much

lower population density, as low as one person per square kilometer. Additionally, pastoralist

communities often need to relocate in search of water and grazing resources, particularly during

periods of drought, which are frequent in the area. In summary, the population distribution can

be categorized into highland and lowland residents. A considerable percentage of the highland

population relies on agriculture, whereas the lowlanders are primarily pastoralists.

3.2 Hydro-Meteorological Data Sources

In this study, hydro-meteorological data served three primary purposes. Firstly, it was essential

for the analysis of historical hydro-climatic variability and trends. Secondly, the data played

a crucial role in downscaling the CMIP6 GCMs for climate change projections. Thirdly, it

served as the input for the SWAT model in hydrological model simulation, as well as calibration
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Figure 3.6: Map of livelihood (a) and population density (b) in WSRB

and validation. To achieve these objectives, hydro-meteorological data were obtained from the

Ethiopian National Meteorological Agency (NMA) and the Ministry of Water, Irrigation and

Electricity (MoWIE).

3.2.1 Meteorological data

Rainfall and temperature represent the two most essential variables in climate and hydrological

studies. In this research, daily rainfall data were collected from 45 stations, and minimum and

maximum temperature data were collected from 27 stations situated within the basin. Addi-

tionally, data from 22 rainfall stations and 13 minimum and maximum temperature stations, all

located within a 20 km proximity of the basin, were obtained from the National Meteorological

Agency (NMA) Figure 3.7. The station selection criteria were based on minimizing data gaps

within the period from 1987 to 2016. Climate data are recorded on a daily time scale at different

meteorological station. Thus, it is important to obtain them in sufficient temporal and spatial

resolution. Within the WSRB, meteorological stations are primarily concentrated in the north-

western and northeastern parts of the basin, primarily following the major roads and towns. In

contrast, the central and southern regions of the basin are lacking in climatic stations. Due to lim-

ited data availability within the basin, TAMSAT reanalysis climate data with a spatial resolution

of 4 × 4 km covering the time span from 1987 to 2016, sourced from the NMA, was employed

to address data gaps at the station level. Furthermore, the inherent climate unpredictability in

tropical regions emphasizes the enhanced reliability of TAMSAT dataset compared to statistical

methods. The locations of all weather stations within the WSRB and its vicinity are showed in

Figure 3.7. Specific details about the meteorological stations utilized in this study can be found
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Figure 3.7: Hydro-Meteorological stations in and nearby the WSRB

in Appendix Table A.1.

3.2.2 Streamflow data

Streamflow data records play a crucial role in the calibration and validation of models, as well as

in examining the statistical features of time series. To realize these objectives, available records

were obtained from the Ministry of Water, Irrigation and Electricity (MOWIE). However, it’s

worth noting that out of the 13 stream gauging stations with daily records in the basin, most are

currently non-operational, and a few have limited recorded data. These records are based on

staff gauge water level measurements, which are then converted into discharge using established

rating curves at specific stations. However, it’s essential to acknowledge the potential limitations

of manual measurements, particularly in accurately capturing both low and high discharges,

especially during extremeweather conditions. Furthermore, the records have limitations in terms

of their temporal coverage, and the spatial distribution of gauging stations across the basin is

uneven, with many clustered in the northwestern and northeastern part. The gaps in the data

were imputed by using the long-term monthly averages specific to each gauging station. The

spatial distribution of stream flow gauging stations within the WSRB is depicted in Figure 3.7.
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Chapter 4

Agroclimatic Zone-Based Analysis of
Hydroclimatic Trends and Climate Change
in the Wabi Shebele River Basin, Ethiopia

4.1 Overview

Climate change became a mega trend in 21ˢᵗ century due to its global coverage (No nation spared

from climate change). Climate change is already affecting every inhabited region across the

globe with human influence contributing to many observed changes in weather and climate ex-

tremes (IPCC, 2021a). In many regions, agricultural production is being adversely affected by

rising and variability of temperatures, changes in amounts and frequency of precipitation, the

increasing intensity of extreme weather events, rising sea levels, and the salinization of arable

land and freshwater (FAO, 2016). Africa is one of the most vulnerable regions highly affected

and to be affected by the impacts of climate change (IPCC, 2014b). Due to its low adaptive

capacity and high sensitivity to socio-economic systems. Similarly, Ethiopia relies on subsis-

tence rainfed agriculture as the main source of national income (Asfaw et al., 2018; World Bank,

2010); consequently, the importance of the timing and amount of rainfall that occurs cannot be

overstated (Cheung et al., 2008).

Besides, Ethiopia generates most of the energy needed from hydropower plants which depend on

the amount of water stored in the reservoirs. The government of Ethiopia is currently implement-

ing large-scale investments in hydropower and irrigation projects along the major river basins

(Degefu and Bewket, 2017). Thus, the country is vulnerable to climate variability, and climate

change is likely to increase the frequency and magnitude of climate disasters (Addisu et al.,



2015; Admassu and Seid, 2006; NMSA, 2007). These have made the country most susceptible

to famine usually caused by drought (Degefu and Bewket, 2017). As a result, climate variabil-

ity and trend analysis at appropriate spatial and temporal scales are crucial for understanding

and mitigating problems in hydrology and water resources, such as water resource development,

environmental protection, and ecological balance (Alemayehu et al., 2020; Hänsel et al., 2016;

Yang et al., 2011).

In the past three decades, climate variability and trend analysis in hydro-meteorological data

has been conducted by numerous researchers using different methods, data sources, and spatial

and temporal scales. Among the methods, the Mann–Kendall test is the most widely used test

for detecting monotonic upward or downward trends in hydrometeorological and environmental

data on the assumption that the observations in the time series are independent (Mann, 1945).

Accordingly, checking autocorrelation in the time series became a common practice before any

analysis of trend detection is performed using theMK test. This test is mostly supported by Sen’s

slope estimator for estimating the magnitude of a trend in the time series (Sen, 1968). Both tests

are non-parametric tests that do not require the data set to be normally distributed. A score of

studies used this method to estimate temporal trends for different climatic variables (Aamir and

Hassan, 2018; Addisu et al., 2015; Ademe et al., 2020; Admassu and Seid, 2006; Ahmad et al.,

2015; Alemu and Dioha, 2020; Bayable et al., 2021; Berhane et al., 2020; Chattopadhyay and

Edwards, 2016; Hänsel et al., 2016). Simulation experiments demonstrated that the existence of

autocorrelation in the time series alters the Mann–Kendall (MK) statistics (Collaud Coen et al.,

2020; Hamed and Rao, 1998; Hamed, 2009; Yue et al., 2002). Accordingly, checking autocor-

relation in the time series became a common practice before any analysis of trend detection is

performed using the MK test.

Even though, most of the researchers adapted commonly usedMK tests the spatial discretization

resolution (size, spatial scale) and data source used for trend analysis varies. Different studies

used a different spatial frames for analysis including station (Aamir and Hassan, 2018; Addisu

et al., 2015; Ahmad et al., 2015; Bayable et al., 2021; Berhane et al., 2020; Asfaw et al., 2018;

Beyene, 2015; Gedefaw et al., 2018), agroecosystem zonation (Ademe et al., 2020; Esayas et al.,

2018; Taye et al., 2019), temperature-based zonation (Aamir and Hassan, 2018), and subbasin

(Addisu et al., 2015; Ahmad et al., 2015; Alemayehu et al., 2020; Cheung et al., 2008). Sim-

ilarly, the sources of the data used for the trend analysis also vary based on availability and
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accessibility. Observed station data is the most common source of data in climatic variabil-

ities and trend analysis studies (Aamir and Hassan, 2018; Admassu and Seid, 2006; Ahmad

et al., 2015; Alifujiang et al., 2020; Beyene, 2015; Taye et al., 2019) in recent years, reanalyzed

gridded satellite climatic data have been used in different studies (Addisu et al., 2015; Ademe

et al., 2020; Alemayehu et al., 2020; Asfaw et al., 2018; Bayable et al., 2021; Esayas et al., 2018).

Numerous studies were conducted on climate variability and trend analysis in Ethiopia River

basins. Some of the studies include, in Abay basin (Addisu et al., 2015; Ademe et al., 2020;

Gedefaw et al., 2018; Tekleab et al., 2013), in Awash basin (Admassu and Seid, 2006; Eshetu,

2020; Shawul and Chakma, 2020; Tadese et al., 2019; Taye et al., 2019), in Omo Gibe basin

(Degefu and Bewket, 2015, 2017; Esayas et al., 2018), and Tekeze basin (Berhane et al., 2020;

Beyene, 2015; Gebrehiwot, 2013). Those studies revealed that the variabilities and trends of

rainfall vary at different localities. The rainfall amount showed a general statistically decreas-

ing trend (Aamir and Hassan, 2018; Addisu et al., 2015; Ademe et al., 2020; Admassu and Seid,

2006; Berhane et al., 2020), insignificant trends (Ahmad et al., 2015; Eshetu, 2020), and increas-

ing trend (Alemayehu et al., 2020). In general, these studies revealed that there is no uniform

temporal and spatial rainfall pattern in Ethiopia’s river basins.

Although climate variability and change have location-specific impacts especially in Ethiopia

due to spatial and temporal variation of rainfall and topography variation, few studies have been

carried out regarding precipitation variabilities and change in the Wabi Shebele River basin

(WSRB). In the upper and middle part of the basin, Harka et al. (2021) assessed the spatiotem-

poral distribution and variability of rainfall in seasonal and annual time series using station data

inMK and ITA tests. In the northern district of middleWSRB, Bayable et al. (2021) investigated

the spatiotemporal variability and trends of rainfall and its association with Pacific Ocean SST

in the West Harerge Zone of eastern Ethiopia using satellite-based rainfall data and the Mann-

Kendall Trend Test. Regarding to climate change, Gurara et al. (2021) evaluated the change

in streamflow in two future projection scenarios (2041–2070 and 2071–2099) using regional

climate models and SWAT model. Because of unevenly distributed rainfall recording stations

in the basin, a study based on station data may not be sufficient for water resources planning

and decision-making. Therefore, this study investigated variations, trend, and change of hydro-

climatic variables over time in WSRB, at each agro-climatic zone. In general, a study based

on local agroclimatic zonation overcomes the data scarcity challenge and simplifies sharing the
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findings with the local community.

4.2 Material and Methods

4.2.1 Study Site

Wabi Shebele River Basin (WSRB) is one of the largest river basins in Ethiopia in terms of area

coverage. The basin, which occupies a total area of 189,655 𝑘𝑚2 comprising nearly 17% of the

country’s total land area, lies between 4.91° and 9.59° N latitude and 38.69° and 45.33° E lon-

gitude (Figure 4.1). The basin is characterized by a broad range of elevations varying from 179

m.a.s.l along the Ethio-Somalia border in the south to more than 4188 m.a.s.l in the northwest

part of the Bale mountains. More than 80% of the area has an elevation of less than 1500 m

considered low land (arid and semi-arid) in the country. The basin, the upstream is character-

ized by steep valley slopes while the lowland has gentle slopes. Annual average precipitation

over the state varies from 227 mm in the southeast to 1240 mm in the northwest with average

annual temperature ranging from 6.29 ◦C in the northwest to 35.98 ◦C in the southeast. Due

to bimodal rainfall distribution in the basin, there are two rainy seasons, the main rainy sea-

son (Kiremt/summer) spans from June to September and the short rainy season (Belg/spring)

extends from March to May. The dominant soil types are Gypsisols, Calcisols, and Leptosols

covering 68% of the basin. A large percentage of the population in the highlands depends on

crop cultivation while the lowlanders, in general, are pastoralists.

4.2.2 Data Source and Agroclimatic Zonation

In this research, historical hydro-climatic variability and trends were analyzed using observed

daily rainfall, minimum and maximum temperature data obtained from the meteorological sta-

tions (as described in section 3.2.1), along with streamflow gauging data (as discussed in section

3.2.2). To project future climate changes in theWabi Shebele River Basin (WSRB), the ensemble

mean derived from eight CMIP6 Global Climate Models (GCMs) was employed, as explained

in section 4.2.4.

Agroclimatic zonation

There are 17 local agroclimatic zones (ACZs) in Ethiopia based on the annual average rainfall

(AARF) amount and elevation of the area (Bekele-Tesemma, 2007). Similarly, DEM of 30 m

grid size and annual average rainfall were used for agroclimatic zonation of WSRB. No data

and sink values of the DEM were filled using the QGIS tool. The annual average station rain-
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Figure 4.1: Location map of study area

fall data was converted to a spatial rainfall map using an interpolation algorithm in the QGIS

environments. The elevation (filled DEM) and rainfall spatial data were reclassified based on

the value range given in Table 4.1. Then, the reclassified maps merged to create new classes

representing the unique agroclimatic zone. The basin consists of 9 out of 17 ACZs in Ethiopia.

The spatial coverage and characteristic of each ACZ are presented in Figure 4.2 and Table 4.1

respectively. Based on annual rainfall amount, ACZ1, ACZ2, ACZ3, and ACZ4 are categorized

as dry regions covering 81.2% of the basin whereas ACZ5, ACZ6, and ACZ7 are categorized as

humid regions covering only 18.8% of the basin. This makes the basin significantly vulnerable

to climatic-related issues, especially drought. On other hand, ACZs are grouped as Low land

(ACZ1, ACZ2, and ACZ5), Mid-Highland (ACZ3 and ACZ6), and Highland (ACZ4, ACZ8,

ACZ7, ACZ9) based on the elevation.

55



Ta
bl
e
4.
1:

Su
m
m
ar
y
of

A
gr
o-
cl
im

at
ic

zo
ne

sa
nd

se
le
ct
ed

sta
tio

ns

AC
Z:

Ag
ro

cli
m

at
ic

Zo
ne

s
M

AR
(m

m
)

El
ev

at
io

n
(m

)
Ar

ea
Se

lec
te

d
st

at
io

n

K
m
²

%
Si
te

La
tit
ud

e
Lo

ng
itu

de
El

ev
at
io
n
(m

)

AC
Z1

:D
ry

Be
re
ha

(H
ot
-lo

w
la
nd

s)
Le

ss
th
an

90
0
(D

ry
=

A
rid

an
d

Se
m
i-A

rid
)

<
50

0
42

11
3.
71

22
.2
0

G
od

e
5.
92

43
.5
8

29
0

AC
Z2

:D
ry

K
ol
la

(L
ow

la
nd

s)
50

0-
15

00
10

43
50

.7
55

.0
0

D
eg

ah
ab

ou
r

8.
22

43
.5
6

10
70

AC
Z3

:D
ry

W
ey

na
D
eg

a
(M

id
la
nd

s)
15

00
-2
30

0
11

97
3.
94

6.
31

G
ur
su

m
9.
35

42
.4

19
00

AC
Z4

:D
ry

D
eg

a
(H

ig
hl
an

ds
)

23
00

-3
20

0
79

5.
35

0.
42

In
de

to
7.
57

39
.9

24
16

AC
Z8

:D
ry

W
ur
ch

(F
ro
st

zo
ne

s)
32

00
-3
70

0
37

.4
6

0.
02

N
ot

Av
ai
la
bl
e

AC
Z5

:M
oi
st

K
ol
la

(L
ow

la
nd

s)
G
re
at
er

th
an

90
0
(M

oi
st=

hu
m
id
)

50
0-
15

00
75

99
.3
7

4.
01

G
ol
ol
ch

a
8.
26

40
.1
3

13
72

AC
Z6

:M
oi
st

W
ey

na
D
eg

a
(M

id
la
nd

s)
15

00
-2
30

0
12

48
9

6.
59

Be
de

ss
a

8.
91

40
.7
7

17
03

AC
Z7

:M
oi
st

D
eg

a
(H

ig
hl
an

ds
)

23
00

-3
20

0
93

35
.5
7

4.
92

A
rs
iR

ob
e

7.
88

39
.6
2

24
41

AC
Z9

:M
oi
st

W
ur
ch

(F
ro
st

zo
ne

s)
32

00
-3
70

0
96

0.
6

0.
51

N
ot

Av
ai
la
bl
e

To
ta

lA
re

a
18

96
55

.7
10

0

56



Figure 4.2: Agroclimatic Zone map of Wabi Shebele River basin

Rainfall distribution in each ACZ

After local agroclimatic zonation, one station from each ACZ was selected based on the long-

term availability of records and less than 10% of missing records. Dry Wurch and humid Wurch

agroclimatic zone were excluded from the analysis due to the unavailability of a rainfall record-

ing station. Besides, these zones cover less than 0.6% of the basin. Thus, rainfall data represent-

ing only 7 ACZs were considered for further analysis. The details of the meteorological stations

used in this study are presented in Table 4.1.

Rainfall distribution in the area is bimodal where two rainfall seasons are recordedMarch, April,

and May (MAM) and June, July, August, and September (JJAS) as spring (light rainy) and sum-

mer (heavy rainy) seasons respectively Figure 4.3. But, in the low land area, spring is a heavy rain

season than summer which is occurred in September, October, and November (SON). The major

concern of this research was water resources-related climatic parameters such as Belg/Spring,

Kiremt/Summer, and annual precipitation were considered in the analysis. The monthly values

were summed up to arrange the seasonal precipitation as required for the analysis.
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Figure 4.3: Rainfall monthly distribution in WSRB at each agroclimatic zone

The reliability and quality of the data to be used in the analysis should be checked statistically.

In this study, Standard Normal Homogeneity Test (SNHT) (Alexandersson, 1986) and Pettitt

tests (Pettitt, 1979) were used for detecting the inhomogeneity of seasonal and annual rainfall

data. Due to uneven distribution and scarcity of stations in the study area, only the station found

inhomogeneous in each test was eliminated from further analysis. The result of the SNHT and

Pettitt test is summarized in Table 4.2

Table 4.2: Summary of rainfall data homogeneity test result

Zone
Spring Summer Annual

Pettitt SNHT Pettitt SNHT Pettitt SNHT

ACZ1 0.19 0.36 0.30 0.21 0.74 0.63
ACZ2 0.51 0.08 0.56 0.69 0.21 0.78
ACZ3 0.31 0.14 0.25 0.04* 0.02* 0.11
ACZ4 0.04* 0.13 0.27 0.46 0.54 0.35
ACZ5 0.53 0.13 0.69 0.49 0.82 0.42
ACZ6 0.02* 0.93 0.68 0.11 0.29 0.36
ACZ7 0.73 0.33 0.23 0.04* 0.41 0.59

Note: * Non-homogeneous at a 5% significant level.
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Figure 4.4: monthly distribution of Minimum and Maximum Temperature in each ACZ

Minimum and Maximum Temperature

Figure 4.4 presents a comprehensive overview of the monthly maximum and minimum tem-

perature distributions across various Agro-climatic Zones (ACZs). ACZ1 consistently registers

the highest maximum temperatures, particularly peaking from March to May, while ACZ3 and

ACZ4maintain lower maximum temperatures year-round. In contrast, ACZ2, ACZ5, ACZ6, and

ACZ7 fall within an intermediate temperature range. In terms of minimum temperatures, ACZ1

retains relatively warmer values year-round, with ACZ2 and ACZ5 showing similar patterns but

slightly cooler temperatures during the months of December January, and February. ACZ3 and

ACZ4 consistently experience cooler minimum temperatures throughout the year. ACZ7 dis-

tinguishes itself with consistently cooler temperatures, notably during December and January.

This dataset proves invaluable for climate analysis and regional planning, offering insights into

temperature variations across these locations.

4.2.3 Hydro-Climatic Time-series Trend and Climate Change Analysis

Seasonal and annual variability

For each ACZ and period, descriptive statistics for the long-term temporal data were computed

using standard statistical procedures using Microsoft excel including mean, minimum, maxi-

mum, variance, standard deviation (SD), and Coefficient of Variation (CV). The sample CV is

defined as the standard deviation of the sample divided by the mean of the sample. It is dimen-

sionless and it can be very useful in characterizing the degree of variability in datasets. The CV

is a statistical measure of the inter-annual variation of climate variables in the data series. In

this study, the coefficient of variation (CV) was calculated on rainy seasons, and annual precip-

itation, to investigate the inter-annual variability of rainfall distribution. Greater values of CV

indicate larger variability and vice versa. The CV (%) value for each series can be computed as
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follows:

𝐶𝑉 =
𝜎

𝜇
× 100 (4.1)

where 𝜎 is the annual precipitation standard deviation and 𝜇 is the mean annual precipitation.

The degree of variability of rainfall events classified as low (CV < 20), moderate (20 < CV <

30), and high (CV > 30) (Addisu et al., 2015; Ademe et al., 2020; Elzopy et al., 2021).

Trend analysis

The assessment of temporal and spatial trends in hydroclimatic variables across seasonal and

annual timeframes in theWabi Shebele River basinwas conducted usingmodifiedMann-Kendall

and Sen’s slope estimator methods. This analysis encompassed time series data for rainfall,

minimum and maximum temperatures spanning from 1987 to 2016. For the trend analysis of

streamflow, four gauging stations in the headwater catchment, each with more than 20 years of

records, were selected. The specific methodology for these analyses is detailed in the subsequent

subsections.

Modified Mann-Kendall (MK) test : is perhaps the most widely used non-parametric test for de-

tecting trends in hydro-meteorological and environmental data. It is a nonparametric test for

monotonic trends where data is either consistently increasing or decreasing over time. It does

not assume the data to be normally distributed and is flexible to outliers in the data. The test

assumes a null hypothesis, 𝐻𝑂 , of no trend and an alternate hypothesis, 𝐻𝐴, of increasing or

decreasing monotonic trend. The mathematical equations for Mann-Kendall Statistics S, V(S),

and standardized test statistics Z are as follows (Aamir and Hassan, 2018; Hamed, 2009; Mann,

1945).

𝑆 =
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑘+1

𝑠𝑔𝑛
(
𝑥 𝑗 − 𝑥𝑖

)
(4.2)

𝑠𝑔𝑛
(
𝑥 𝑗 − 𝑥𝑖

)
=


+1, if

(
𝑥 𝑗 − 𝑥𝑖

)
> 0

0, if
(
𝑥 𝑗 − 𝑥𝑖

)
= 0

−1, if
(
𝑥 𝑗 − 𝑥𝑖

)
< 0

(4.3)

𝑉 (𝑆) = 1
18

𝑛 (𝑛 − 1) (2𝑛 + 5) −
𝑞∑
𝑝=1

𝑡𝑝
(
𝑡𝑝 − 1

) (
2𝑡𝑝 + 5

) (4.4)
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𝑍 =



𝑆−1√
𝑉 (𝑆)

, if 𝑆 > 0

0, if 𝑆 = 0

𝑆+1√
𝑉 (𝑆)

, if 𝑆 < 0

(4.5)

In these equations, 𝑥𝑖 and 𝑥 𝑗 are the time series observations in chronological order, n is the

length of the time series, 𝑡𝑝 is the number of ties for 𝑝𝑡ℎ value, and q is the number of tied

values. A positive (negative) value of Z indicates that the data tend to increase (decrease) with

time. The strength of the trend is proportional to the magnitude of the Mann–Kendall Statistic.

The null hypothesis of no trend is rejected if the absolute value of Z is higher than 1.65, 1.96,

and 2.58 at 10%, 5%, and 1% significance levels respectively.

Sen’s slope estimates : Sen (Sen, 1968) developed more robust and non-parametric procedure

for estimating the magnitude of a trend in the time series. The slopes of data value pairs were

calculated to get the Sen’s slope estimate 𝑄𝑖 by the relationship:

𝑄𝑖 =
𝑥 𝑗 − 𝑥𝑘
𝑗 − 𝑘 , for 𝑖 = 1,2,3...N (4.6)

where 𝑥 𝑗 and 𝑥𝑘 are the data values at times j and k (j > k). If there is only one datum in each time

period, then 𝑁 = 𝑛(𝑛−1)
2 , where n is the number of periods. If there are multiple observations in

one or more time periods, then 𝑁 < 𝑛(𝑛−1)
2 , where n is the total number of observations.

The N values of 𝑄𝑖 are ranked from smallest to largest and the median of slope or Sen’s slope

(𝑄𝑚𝑒𝑑) estimator is computed as:

𝑄𝑚𝑒𝑑 =


𝑄 [

(𝑁+1)
2

] , if N is odd.
𝑄 [ (𝑁 )

2
]+𝑄 [ (𝑁+2)

2
]

2 , if N is even.
(4.7)

Positive/negative values of 𝑄𝑚𝑒𝑑 indicate an increasing/decreasing trend, respectively, while its

value indicates the steepness of the trend.

Simulation experiments demonstrated that the existence of serial correlation alters the variance

of the estimate of the Mann–Kendall (MK) statistic; and the presence of a trend alters the esti-

mate of the magnitude of serial correlation (Yue et al., 2002). Several modifications in the MK

test have been proposed by different authors to remove the influence of the autocorrelation proce-

dure including variance correction Hamed and Rao (1998), effective sample size (Yue andWang,

2004), and trend-free pre-whitening (TFPW) (Hamed, 2009; Yue et al., 2002). In this study for
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the time series where serial correlations were detected in the data, Hamed and Rao (1998) pro-

cedure was applied to eliminate the autocorrelation before performingMann- Kendall trend tests

and Sen slope estimation. Serial autocorrelation was calculated with an autocorrelation func-

tion (modifiedmk package) (Patakamuri and O’Brien, 2021) using R software. Detrending was

performed for some analysis and was applied as a simple removal of the linear trend calculated

over the full period of record. Numerous researchers have also used this approach to eliminate

serial correlation in time series data (Aamir and Hassan, 2018; Admassu and Seid, 2006; Alemu

and Dioha, 2020).

Finally, interpolation of station trend z score was performed to prepare the spatial trend map of

the study area. The interpolation was conducted using inverse distance weighted interpolation

tool in QGIS.

4.2.4 Climate Change Analysis

Climate models are the primary tools available for investigating the response of the climate sys-

tem to various forcings, for making climate predictions on seasonal to decadal time scales and

for making projections of future climate over the coming century and beyond (Flato et al., 2013).

These models simulate the physics, chemistry and biology of the atmosphere, land and oceans

in great detail, and require some of the largest supercomputers in the world to generate their

climate projections.

Global climate model (GCM) projections are the primary sources of information on future cli-

mate change. Currently, CMIP6 climate model was developed with better knowledge on re-

alization, initialization method, physics and forcing than its predecessor (CMIP5). More than

100 climate projection model results are published in CMIP6 from different climate institutions

(centers). Unfortunately, climate model expririance uncertenty on the prediction due to less

simulation real system. Thus, climate change studies involves selection of climate models and

bias correction before applied on any climate change analysis and impact modelling. In this

study, the timeframe was segmented into quarters covering the 21st century. The initial quarter

has already passed, prompting the investigation to encompass the remaining three quarters of

the century, specifically the second quarter Q2 (2026-2050), third quarter Q3 (2051-2075), and

fourth quarter Q4 (2076-2100).
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Climate model selection

The absence of standard procedure and recommendation for the selection of climate models for

climate impact studies made the selection of future projection climate model cumbersome for

climate researchers.The number of climate model made consideration of all model very diffi-

cult because of resource and time available to extract and analysis climate data. Thus, climate

researcher devised two methods for selection of GCMs, the first one is to consider more num-

ber of climate models and select one best model among considered model whereas others have

used less number of models than the former group, in this method the ensemble mean value of

climate models were used it can be single model or multiple models ensemble. It is known that

single-GCM projections of the long-term trend give greater uncertainty than the MME mean

(Xu et al., 2021).

Thus, in this study, the multi-model ensemble mean approach was implemented after select-

ing 8 CMIP6 GCMs for climate change and impact study. Multi-model ensemble approach has

an advantage for minimizing uncertainties that most GCMs experienced when they are down-

scaled at station/local level studies. The choice of eight GCMs was based on data availability

for Historical and 4 scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) at the time of

the analysis for precipitation and temperature both minimum and maximum. The evaluation of

climate change projection under all SSP scenarios in CMIP6 GCM, available during the study

period, was conducted. Further, selection were also made based on the temporal frequency

(days) and nominal spatial resolution (100 km). In general, 120 climate data (3 parameters, 8

climate models, 1 historical and 4 scenarios) data were accessed from the ESGF archive of the

Program for Climate Model Diagnosis and Intercomparison (https://esgf-data.dkrz.de/

search/cmip6-dkrz/ and https://esgf-node.llnl.gov/search/cmip6/) as a contribu-

tion to CMIP6 through the World Climate Research Programme’s (WCRP) working group on

coupled modelling. Additional information on selected CMIP6 GCMs are shown on Table 4.3.

Spatial downscaling and bias correction

Even though, climate models are the primary sources of information, direct application of model

results for impact studies are limited due to course resolution and systematic bias resulted from

partial model of Earth system. Commonly, the impacts of climate change are evaluated using

hydrological models which need high resolution (station based) unbiased input data. Measured

(observed) climate data are only available at station level (point data). Thus, gridded climate
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Table 4.3: List of CMIP6 GCMs used in the study

No Climate model Institution Country Resolution Sources/Reference

1 CMCC-ESM2 Fondazione Centro Euro-
Mediterraneo sui Cambiamenti
Climatici (CMCC)

Italia 1.25°×0.9° Lovato et al. (2021)

2 EC-EARTH3 EC-EARTH consortium Europe 0.70×0.70 EC-Earth (2019a)
3 EC-EARTH3-Veg EC-EARTH consortium Europe 0.70×0.70 EC-Earth (2019b)
4 GFDL-ESM4 Geophysical Fluid Dynamics

Laboratory (GFDL)
USA 1.25×1.00 John et al. (2018)

5 INM-CM4-8 Russian Institute for Numerical
Mathematics

Russia 2.0×1.5 Volodin et al. (2019)

6 MPI-ESM1-2-HR Max Planck Institute for Meteo-
rology (MPI-M)

Germany 0.94×0.94 Schupfner et al. (2019)

7 MRI-ESM2-0 Meteorological Research Insti-
tute (MRI)

Japan 1.125×1.125 Yukimoto et al. (2019)

8 NorESM2-MM Norwegian Climate Centre Norway 1.25×0.9 Bentsen et al. (2019)

model data should be spatially and temporally downscaled using spatial interpolation and tem-

poral downscaling (bias correction) techniques. Thus, many users of climate model data apply

some form of spatial downscaling and bias correction (Maraun, 2016).

Spatial downscaling is remapping course resolution grid climate model data into existing sta-

tions. Numerous interpolation method was employed by climate change and impact studies.

Similarly, in this study, distance-weighted average remapping interpolation method was used

to extract historical and future projected daily precipitation and temperature for corresponding

observed stations using climate data operator (CDO). The Climate Data Operator (CDO) soft-

ware is a collection of many operators for standard processing of climate and forecast model

data. The operators include simple statistical and arithmetic functions, data selection and sub-

sampling tools, and spatial interpolation.

Whereas, bias adjustment is the practice of statistically transforming climate model data in or-

der to reduce systematic deviations from observed values (Berg et al., 2022). Teutschbein and

Seibert (2012) reviewed several available bias correction procedures that can easily be imple-

mented by any impact modeler to correct for GCM and RCM biases. Bias correction procedures

include simple scaling approaches and advanced multi-variate distribution-based mapping. Ex-

isting bias correction methods are assumed to be stationary, i.e. the correction algorithm and its

parametrization for current climate conditions are assumed to be valid for future conditions as

well (Teutschbein and Seibert, 2012).
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Even though the latest CMIP6 models were developed based on new and better representation

of physical, chemical and biological processes, as well as higher resolution, bias correction is

a critical step for improving the accuracy of regional climate projection and for the applica-

tion of these models in research using downscaling to study issues related to water resources,

flooding, and drought projection (Akinsanola et al., 2021). Then, bias correction was performed

using quantile mapping based on statistical distribution correction method. Quantile mapping

algorithms are commonly used to bias correct daily precipitation series from climate models so

that distributional properties more closely match those of historical observations (Cannon et al.,

2015). Quantile mapping bias correction algorithms are commonly used to correct systematic

distributional biases in precipitation outputs from climate models (Cannon et al., 2015). Quan-

tile mapping using distribution derived transformations to adjust the distribution of a modelled

variable (Pm) such that it matches the distribution of an observed variable ( 𝑃𝑜). The distribution

derived transfer function is defined as 4.8 (Gudmundsson et al., 2012).

𝑃𝑜 = 𝐹
−1
𝑜 (𝐹𝑚 (𝑃𝑚)) (4.8)

where F is a CDF and F−1 is the corresponding quantile function (inverse CDF). The subscripts

o and m indicate parameters of the distribution that correspond to observed and modelled data

respectively. For bias correction at the station level, the qmap r package was utilized (Gud-

mundsson, 2016).

Climate change detection

After downscaling and bias correction, the average annual projected GCM climate data for the

future period of the 21st century were compared with the observed annual mean in the baseline

period (1987 - 2014).Thus, the change in mean precipitation and minimum and maximum tem-

peratures for three periods Q2 (2026-2050), Q3 (2051-2075), and Q4 (2076-2100) for the four

selected scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 were evaluated with the base-

line period for each ACZ. The changes were expressed as a percentage change in precipitation

and relative change in temperature. Changes were calculated using equation 4.9 and 4.10:

Δ𝑃𝑖 (%) = ((𝑃𝑖) − (𝑃ref))
(𝑃ref)

× 100 (4.9)

Δ𝑇𝑖 (°𝐶) = (𝑇𝑖) − (𝑇ref) (4.10)

where, Δ𝑃𝑖 (%) and Δ𝑇𝑖 (°𝐶) are change in precipitation and temperature respectively, (𝑃𝑖 )

future period annual mean precipitation, (𝑇𝑖 ) is future period annual average temperature, (𝑃ref)
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and (𝑇ref) are reference period precipitation and temperature respectively, i is future periods (Q2,

Q3, and Q4).

4.3 Results and Discussion

4.3.1 Hydro-Climatic Variability Analysis

Table 4.4 presents the statistical analysis results for rainfall in each Agroclimatic Zone (ACZ).

The results from the rainfall time series analysis reveal a minimummean annual rainfall of 227.2

mm in ACZ1 and a maximum of 1047.6 mm in ACZ6. Interestingly, ACZ5, despite its lower

elevation, recorded relatively higher rainfall, likely attributable to its position on the windward

side of the topography. Seasonally, a significant amount of rainfall was observed during the

Kiremt/Summer period, except for ACZ1 and ACZ2. The coefficient of variation (CV) results

indicate that the annual rainfall exhibits substantial inter-annual variability, ranging from 16.7%

to 46.7% across the basin. Notably, Belg/Spring rainfall exhibited the highest inter-annual vari-

ability in all ACZs. However, the most pronounced inter-annual variability was observed in the

Kiremt rainfall of ACZ1 (87.4%) and ACZ2 (68.9%). In comparison, annual rainfall exhibited

lower CV values across all ACZs. ACZ1, in particular, displayed higher seasonal and annual

variability in rainfall. Interestingly, the ACZs at higher elevations generally exhibited lower

inter-annual variation (CV < 20%), while ACZs at lower elevations displayed moderate to high

variation (CV > 20%) in annual rainfall.

In terms of spatial distribution, the northwestern and northern regions of the basin exhibit rela-

tively high amount of rainfall, whereas the southern and southeastern parts experience consid-

erably lower precipitation. The results of this study are generally consistent with others research

findings that were conducted in different parts of the country. These research documents re-

ported that rainfall in Belg/Spring exhibits higher inter-annual variability than Kiremt/Summer

rainfall (Asfaw et al., 2018; Elzopy et al., 2021; Eshetu, 2020; Gedefaw et al., 2018). Similarly,

previous studies found that the areas with high rainfall amounts exhibit a low coefficient of vari-

ations at different time series (Ademe et al., 2020; Cheung et al., 2008; Elzopy et al., 2021;

Esayas et al., 2018; Eshetu, 2020; Harka et al., 2021). Generally, Rainfall is highly variable in

both time and space over the east Africa (Akinsanola et al., 2021).

The statistical analysis of maximum temperatures across various Agroclimatic Zones (ACZs)

indicates that ACZ1 consistently recorded the highest temperatures during the spring, summer,
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Table 4.4: Statistical summary on annual rainy seasons, and annual rainfall

Temporal
Scale

ACZ Minimum Maximum Mean Variance SD CV (%)

Spring

ACZ1 26.9 300.4 126.4 3378.2 58.1 46.0
ACZ2 59.9 374.8 192.1 5597.7 74.8 39.0
ACZ3 172.7 620.8 302.9 11528.2 107.4 35.4
ACZ4 94.3 620.1 269.6 12519.6 111.9 41.5
ACZ5 176.7 568.1 352.4 13764.8 117.3 33.3
ACZ6 160.0 818.4 333.3 17183.4 131.1 39.3
ACZ7 115.0 429.0 260.3 7020.0 83.8 32.2

Summer

ACZ1 0.0 338.8 95.5 6966.1 83.5 87.4
ACZ2 16.7 299.3 106.7 5397.0 73.5 68.9
ACZ3 154.8 631.7 379.4 11143.4 105.6 27.8
ACZ4 275.9 851.3 456.0 15727.2 125.4 27.5
ACZ5 334.0 1009.7 527.8 17850.9 133.6 25.3
ACZ6 181.5 882.2 563.7 23640.9 153.8 27.3
ACZ7 205.3 801.4 510.2 12350.2 111.1 21.8

Annual

ACZ1 100.1 535.3 227.2 11275.1 106.2 46.7
ACZ2 161.4 564.3 326.3 12731.6 112.8 34.6
ACZ3 459.1 1538.4 797.2 45085.9 212.3 26.6
ACZ4 646.1 1505.2 892.0 29667.9 172.2 19.3
ACZ5 778.4 1440.3 1047.2 33181.4 182.2 17.4
ACZ6 732.4 1667.5 1047.4 42891.4 207.1 19.8
ACZ7 576.9 1326.3 926.0 23943.1 154.7 16.7

Note: ACZ = Agroclimatic Zone, SD = Standard Deviation, CV = Coefficient of Variation.

and annual periods, as detailed in Table 4.5. Conversely, ACZ4 registered the lowest maximum

temperature values, attributable to its lower annual rainfall and elevated location. Additionally,

a coefficient of variation (CV) analysis was conducted for all ACZs across different temporal

periods, revealing that the CV values were consistently less than 20. This finding suggests that

the annual variation in maximum temperature across the WSRB exhibited minimal inter-annual

variation.

Similarly, an analysis of minimum temperatures reveals that ACZ1 consistently registered the

highest temperatures during the spring, summer, and annual periods, as illustrated in Table 4.6.

In contrast, ACZ7 displayed the lowest minimum temperature values, which can be attributed

to its elevated location. Moreover, the coefficient of variation (CV) was calculated for all ACZs

across different temporal periods, and the results consistently showed values below 20. This

indicates that the inter-annual variation in minimum temperatures across the WSRB remained

notably low, with values falling below 10 in ACZ1, 2, 3, 5, and 6, and ranging between 10 and 20

in ACZ4 and 7. Notably, minimum temperatures exhibited relatively higher variation compared

with the maximum temperature. The values in parentheses represent the average station values
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Table 4.5: Statistical summary on rainy seasons, and annual maximum temperature

Season Zone Minimum Maximum Mean Variance Kurtosis Skewness CV

Belg/ Spring

ACZ1 33.1 37.3 35.9 0.7 2.4 -1.1 2.4
ACZ2 30.2 34.1 32.6 0.8 0.5 -0.4 2.8
ACZ3 24.1 28.1 25.6 1.0 0.3 0.7 3.9
ACZ4 20.4 23.3 21.9 0.5 -0.4 -0.1 3.3
ACZ5 27.8 36.9 34.3 5.5 0.6 -1.1 6.8
ACZ6 26.9 30.2 28.6 1.0 -1.1 0.0 3.5
ACZ7 21.7 24.9 23.2 0.8 -0.9 -0.1 3.9

Kiremt/ Summer

ACZ1 33.2 35.4 34.2 0.2 0.7 0.2 1.3
ACZ2 29.1 32.7 30.7 0.9 -0.3 0.5 3.1
ACZ3 22.9 25.9 24.1 0.5 -0.2 0.2 3.0
ACZ4 20.3 22.1 21.2 0.2 -0.1 -0.1 2.1
ACZ5 29.0 34.8 33.0 3.3 -0.6 -1.0 5.5
ACZ6 25.8 29.0 27.3 0.5 0.6 0.7 2.6
ACZ7 20.6 23.2 21.9 0.4 -0.1 0.3 2.8

Annual

ACZ1 34.1 35.6 35.0 0.1 -0.3 -0.6 1.1
ACZ2 30.3 33.2 31.8 0.4 0.4 0.2 2.0
ACZ3 24.1 26.1 25.0 0.3 -0.3 0.4 2.1
ACZ4 20.4 22.4 21.3 0.2 0.6 0.3 1.9
ACZ5 29.4 35.2 33.3 3.7 -1.2 -0.6 5.8
ACZ6 27.0 29.6 28.0 0.4 0.0 0.7 2.3
ACZ7 21.4 24.0 22.5 0.3 1.9 0.6 2.4

within a given agroclimatic zone.

The Table 4.7 provides these statistical measures for each station during the spring, summer,

and annual periods, allowing for a comprehensive analysis of streamflow characteristics and

variations across different seasons and locations. These statistics are vital for understanding the

behavior of streamflow in each region and can be invaluable for various hydrological and en-

vironmental assessments. All stations show an increase in streamflow from spring to summer,

with the highest streamflow values consistently observed during the summer season. Wabi@

Bridge exhibits a substantial increase in streamflow from spring to summer, with the highest

values during the summer season. The annual streamflow typically falls between the spring and

summer values, indicating a seasonal pattern in streamflow that is common to these stations.

The magnitude of this seasonal variation varies from station to station.

On evaluation of CV, Hararo has the highest CV values in all seasons, indicating relatively high

variability in streamflow. Spring and summer exhibit particularly high CVs. Ukuma follows

with moderately high CV values, with spring showing the highest variability. Fruna and Wabi@

Bridge have lower CV values in comparison. Fruna’s CV values are similar in spring and sum-
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Table 4.6: Statistical summary on rainy seasons, and annual minimum temperature

Season Zone Minimum Maximum Mean Variance Kurtosis Skewness CV

Belg/ Spring

ACZ1 23.4 25.6 24.5 0.4 -0.9 -0.1 2.5
ACZ2 13.1 20.4 18.8 2.3 8.7 -2.8 8.1
ACZ3 11.3 15.1 13.1 0.6 1.4 0.3 5.8
ACZ4 6.1 13.2 10.4 2.9 0.3 -0.8 16.2
ACZ5 13.5 18.8 16.8 0.9 3.2 -1.0 5.8
ACZ6 9.9 15.9 13.6 1.8 1.2 -1.1 10.0
ACZ7 7.2 13.3 9.0 1.6 3.8 1.4 14.0

Kiremt/ Summer

ACZ1 23.6 25.2 24.1 0.2 1.0 1.0 1.7
ACZ2 15.3 21.0 19.1 1.1 4.6 -1.6 5.5
ACZ3 11.4 14.0 12.8 0.4 0.2 -0.6 4.9
ACZ4 5.3 14.3 10.6 3.8 1.7 -1.1 18.3
ACZ5 12.6 18.1 16.7 1.2 6.8 -2.1 6.5
ACZ6 11.4 15.2 13.8 1.1 0.2 -1.1 7.6
ACZ7 7.3 11.3 8.8 0.9 0.6 0.7 10.7

Annual

ACZ1 22.8 24.0 23.5 0.1 0.3 -0.7 1.3
ACZ2 14.5 19.1 17.9 0.9 6.1 -2.2 5.2
ACZ3 11.3 13.9 12.8 0.4 -0.3 -0.7 5.0
ACZ4 5.4 13.5 10.0 3.1 1.0 -0.8 17.8
ACZ5 11.8 16.9 15.5 0.9 7.4 -1.9 6.0
ACZ6 9.5 14.6 12.4 1.2 0.7 -0.6 8.7
ACZ7 6.2 9.9 7.8 1.0 -0.4 0.4 12.7

mer, while Wabi@ Bridge has the highest CV in spring.

In terms of Kurtosis and Skewness analysis, Hararo tends to have relatively light-tailed distribu-

tions and is closer to symmetry. Ukuma and Wabi@Bridge exhibit right-skewed distributions,

but Ukuma’s annual data shows a heavier tail. Fruna, especially during spring, exhibits heavy-

tailed and right-skewed distributions, indicating a greater presence of extreme values in this

period.

4.3.2 Trend Analysis

To identify trends within a time series, statistical tests require that subsequent data points in the

series are treated as independent. Therefore, serial autocorrelation was assessed for Belg (short

rainy season), Kiremt (heavy rainy season), annual rainfall, minimum and maximum tempera-

tures, and streamflow data. In the case of a time series comprising 30 observations, the critical

value is set at ± 0.358 within a 95% confidence interval. Consequently, if a time series exhibited

statistically significant serial autocorrelation, a pre-whitening process was performed before ap-

plying trend analysis methods. This procedure ensured that any correlated data patterns were

appropriately addressed before trend detection.
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Table 4.7: Summary of streamflow data in selected stations in WSRB (𝑚3/s)

Station Period Minimum Maximum Mean Variance Kurtosis Skewness CV

Fruna
Spring 1.96 4.79 2.67 0.50 4.72 2.13 26.6

Summer 2.53 6.53 4.43 1.42 -1.09 0.29 26.9
Annual 2.31 4.54 3.21 0.26 0.56 0.49 15.9

Hararo
Spring 0.14 3.71 1.50 0.91 -0.30 0.62 63.3

Summer 1.39 4.79 3.26 0.81 -0.44 -0.11 27.6
Annual 0.85 3.05 2.03 0.37 -0.83 -0.17 30.0

Ukuma
Spring 0.27 1.00 0.48 0.03 0.91 1.20 39.6

Summer 0.66 1.43 0.96 0.04 0.07 0.82 21.9
Annual 0.45 1.02 0.63 0.02 1.30 1.24 22.2

Wabi@ bridge
Spring 1.70 14.21 4.95 9.47 1.48 1.35 62.2

Summer 6.67 22.33 13.40 15.91 -0.34 0.42 29.8
Annual 4.05 12.26 7.46 4.52 -0.35 0.58 28.6

Rainfall

TheMK and Sen Slope analyses conducted for spatial and temporal assessments of seasonal and

annual trends revealed a mixed results, indicating both increasing and decreasing trends across

various Agroclimatic Zones (ACZs), as shown in Table 4.8. Particularly, the declining trend

in Belg/Spring rainfall was found to be statistically insignificant in all ACZs, except for ACZ4.

In ACZ7, ACZ3, and ACZ4, the most maximum rate of change in Belg/Spring rainfall was ob-

served, with values of -2.22, -2.38, and -4.11 mm/year, respectively. Regarding Kiremt/Summer

precipitation, only ACZ3 exhibited a statistically significant decreasing trend at a 5% signifi-

cance level, while the remaining ACZs indicated statistically insignificant increases. The anal-

ysis further revealed that three ACZs (ACZ2-4) displayed decreasing trends in annual rainfall,

with ACZ3 being the only one found to be statistically significant. The highest annual decreasing

rates were observed in ACZ2, ACZ4, and ACZ3, with values of -0.59, -1.96, and -12.3 mm/year,

respectively, between the years 1987 and 2016. In contrast, the highland area represented by

ACZ6 exhibited the most substantial increase in annual rainfall, with a positive trend of 3.73

mm/year. These findings provide insights into the dynamic and diverse nature of rainfall trends

across different regions and seasons within the study area.

In the WSRB, non-uniform trend was detected among ACZs that were considered at different

temporal scales using the MK method. The finding agrees with previous studies conducted

in the different river basins of the country (Elzopy et al., 2021; Eshetu, 2020; Gedefaw et al.,
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2018; Harka et al., 2021; Shawul and Chakma, 2020; Tadese et al., 2019; Taye et al., 2019). In

Lake Tana Sub-basin, Addisu et al. (2015) revealed a general decreasing trend in annual rain-

fall. Ademe et al. (2020) reported dominantly decreasing trends in small and main rain seasons

and annual rainfall in the Choke Mountain Watersheds (1981–2016). Eshetu (2020) found an

increasing trend in the Kiremt season and annual rainfall in most of the stations investigated,

however, the Belg season rainfall showed a non-significant declining trend in four of the five

representative stations in Modjo River Watershed, Awash River Basin of Ethiopia. Similarly,

Berhane et al. (2020) reported a decreasing trend in all stations located in the semi-arid areas of

Western Tigray, Ethiopia. Harka et al. (2021) found mixed results of increasing and decreasing

seasonal and annual rainfall in the Upper Wabi Shebelle River Basin, Ethiopia. On the contrary,

Alemayehu et al. (2020) found annual and seasonal rainfall totals showed increasing trends in

the Alwero watershed, in western Ethiopia.

Table 4.8: Mann- Kendall and Sen Slope trend analysis results for different time series

ACZ
Spring Summer Annual

Z-Value Sen’s Slope Z-Value Sen’s Slope Z-Value Sen’s Slope

ACZ1 -0.82 -1.00 1.53 3.27 0.46 0.85

ACZ2 -0.62 -0.85 0.14 0.16 -0.29 -0.59

ACZ3 -1.03 -2.38 -2.00* -3.97 -8.59** -12.30

ACZ4 -2.32* -4.11 1.46 3.36 -0.86 -1.96

ACZ5 -0.25 -0.47 1.46 3.33 0.21 0.97

ACZ6 -0.36 -1.10 1.36 5.84 0.77 3.73

ACZ7 -0.86 -2.22 1.61 3.65 0.32 1.54
Note: *, ** statistically significant at 0.05 and 0.01 alpha levels.

In a spatial context Figure 4.5, the monthly analysis revealed distinct trends within the study

area. July and August exhibited increasing trends, which, in turn, contributed to an overall rise

in Kiremt/Summer rainfall. On the other hand February, March, and April displayed decreasing

trends, leading to a reduction in Belg/Spring rainfall across the basin. The decreasing pattern in

February rainfall was notably widespread, encompassing a significant portion of the basin. Ad-

ditionally, May and November demonstrated an increasing trend in rainfall, indicating a notable

shift in rainy seasons. This shift has implications for various hydrological and agricultural prac-

tices throughout the entire basin, highlighting the significance of these findings in the context of

regional climate and water resource management.
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Figure 4.5: Spatial distribution of z score for monthly, rainy seasons, and annual rainfall

Temperature

The trend analysis of maximum temperatures within the WSRB did not reveal clear and con-

sistent patterns during the spring, summer, and on an annual basis, as presented in Table 4.9.

However, statistically significant differences were observed. Specifically, during spring, ACZ

3 and 5 displayed a significant decreasing trend in maximum temperature, while ACZ 4 and

6 exhibited a statistically significant increasing trend. ACZ2 and ACZ1-2-6 showed statisti-

cally insignificant decreasing and increasing trends, respectively. In the summer, statistically

insignificant increasing patterns were detected in ACZ1, ACZ2, ACZ6, and ACZ7, with ACZ3

demonstrating a decreasing trend in maximum temperature. Furthermore, ACZ5 displayed a

statistically significant decreasing trend, while ACZ4 showed a statistically significant increas-

ing trend in maximum temperature during the summer season. On an annual basis, ACZ3 and

ACZ5 exhibited a statistically significant decreasing trend, while ACZ4 and ACZ7 showed a

statistically significant increasing trend in maximum temperature. ACZ2 and ACZ 6 displayed

a statistically insignificant increase. The rate of change in maximum temperatures across the

various ACZs ranged from -0.5 to 0.7 ◦C, except for ACZ5, which recorded the most substantial

rate change during both seasonal and annual periods.
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Figure 4.6: Spatial distribution of z score for monthly, rainy seasons, and annual maximum Temperature

From a spatial perspective Figure 4.6, the trend values of maximum temperatures exhibited ir-

regularity when compared to the patterns observed in rainfall and minimum temperatures within

the basin. In particular, October and November revealed a decreasing trend in maximum temper-

atures, highlighting the variability in temperature patterns across different months and regions.

Table 4.9: Annual and seasonal trends in mean maximum temperature in each agroclimatic zone of WSRB

Zone
Spring Summer Annual

Z-Value Sen’s Slope Z-Value Sen’s Slope Z-Value Sen’s Slope

ACZ1 0.68 0.01 1.53 0.02 -0.75 -0.01
ACZ2 -0.02 0.00 1.28 0.03 1.20 0.01
ACZ3 -2.60** -0.05 -0.68 -0.01 -3.07** -0.02
ACZ4 16.49** 0.06 3.89** 0.04 17.57** 0.04
ACZ5 -3.89** -0.15 -2.98** -0.13 -3.93** -0.14
ACZ6 1.50 0.03 0.04 0.00 0.71 0.01
ACZ7 2.82** 0.07 1.39 0.02 2.59** 0.03

The trend analysis for the rainy seasons and annual minimum temperature in the WSRB fol-

lowed a similar procedure as the maximum temperature Table 4.10. During spring, there were

no significant increasing trends in minimum temperature observed in ACZ1 and ACZ2, with

the computed Z-values falling below the significance level of α = 0.05. However, ACZ 3-6 dis-
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played statistically significant increasing trends. This pattern extended to the summer season

and the annual average basis, where ACZ1, 3, 4, and 8 exhibited statistically significant increas-

ing trends, while ACZ2 and 5 showed statistically insignificant increasing patterns. On the other

hand, ACZ7 displayed a statistically insignificant decreasing trend during spring, summer, and

annually. Based on Sen slope result, the rate of change in minimum temperature fell within

the range of -0.03 to 0.11 ◦C per year or 0.1 to 0.5 ◦C per decade, which translates to 1 to 5 ◦C

per century. This observed trend emphasizes the widespread nature of rising minimum tempera-

tures across the study area, underscoring the significance of these temperature changes over time.

In the spatial monthly trend analysis Figure 4.7, a mixed result emerged, with the central and

downstream regions of the basin showing decreasing trends in August and September. How-

ever, the Z-score interpolation map revealed that a vast area of the basin exhibited an increasing

trend in minimum temperature. These findings highlight the complexity and spatial variability

of temperature trends across different seasons and regions within the basin.

Table 4.10: Annual and seasonal trends in mean minimum temperature in each agroclimatic zone of WSRB

Zone
Spring Summer Annual

Z-Value Sen’s Slope Z-Value Sen’s Slope Z-Value Sen’s Slope

ACZ1 1.57 0.02 13.06** 0.03 3.70** 0.01
ACZ2 1.50 0.01 0.76 0.00 0.00 0.00
ACZ3 3.95** 0.03 4.72** 0.03 7.89** 0.05
ACZ4 4.30** 0.11 2.82** 0.07 4.62** 0.10
ACZ5 2.14* 0.04 0.64 0.01 1.78 0.03
ACZ6 2.50* 0.06 8.53** 0.07 10.00** 0.07
ACZ7 -0.46 -0.02 -1.21 -0.03 -0.71 -0.01

Various researchers have reported a range of findings regarding the trends in minimum and max-

imum temperatures based on different time series. A generally increasing trend in mean, maxi-

mum, and minimum temperatures within the Lake Tana Sub-basin (Addisu et al., 2015). Addi-

tionally, in the mountainous Choke area, most agroecosystems showed a statistically significant

increasing trend in both minimum and maximum temperatures (Ademe et al., 2020). In the Up-

per Blue Nile basin, Tekleab et al. (2013) found that among climate variables, the minimum

temperature exhibited a more significant increase compared to maximum and mean tempera-

tures. Conversely, Alemayehu et al. (2020), using gridded monthly data, identified statistically

non-significant decreasing trends in mean annual minimum and maximum temperatures. In
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Figure 4.7: Spatial distribution of z score for monthly, rainy seasons, and annual minimum Temperature

contrast, the MK trend test conducted by Shawul and Chakma (2020) revealed that maximum

temperatures at most stations showed statistically increasing trends, whilemost stations upstream

of the Awash River basin exhibited decreasing trends in minimum temperature. These varying

outcomes highlight the importance of considering local contexts and research methodologies

when interpreting temperature trends.

Streamflow trend in headwater catchments

The summarized results of the seasonal and annual trend analysis for headwater catchment

streamflow, conducted using the MK test and Sen’s slope estimator, are presented in Table

4.11. The analysis of trends during the spring season yielded a mix of results for the exam-

ined catchments. Harero and Ukuma catchments displayed statistically significant decreasing

trends, whereas Furuna and Wabi@Bridge catchments exhibited statistically significant increas-

ing trends in spring streamflow. In the context of summer streamflow, Furuna stations showed a

decreasing trend, whereas Harero, Ukuma, and Wabi@bridge stations demonstrated an increas-

ing trend. Ukuma station displayed a statistically significant increasing trend during the summer

season. Similarly, the mean annual streamflows for the examined catchments displayed a combi-

nation of increasing and decreasing trends. Furuna stations exhibited a decreasing trend, while

Harero and Wabi@bridge stations indicated statistically insignificant increasing trends. How-

75



ever, Ukuma station revealed a statistically significant increasing trend in annual streamflow.

Based on the value of Sen slope result Table 4.11, themaximum annual change in streamflowwas

found to be 0.02 𝑚3/s/year for Furuna, 0.11 𝑚3/s/year for Wabi@bridge, and 0.05 𝑚3/s/year for

Wabi@bridge station, considering both spring, summer, and annual streamflow. These mixed

results suggest that the changes in streamflows may be influenced by a range of factors, including

human interventions and natural causes, which may vary across the examined catchments. Ad-

ditionally, the limited and relatively short streamflow data available for analysis may contribute

to these variations. It’s important to note that a comparative assessment among Agroclimatic

Zones (ACZs) was not feasible due to the concentration of all streamflow gauging stations with

record periods exceeding 20 years within a single ACZ.

Table 4.11: Streamflow trend statistic summary for selected gauging stations

Gauge Station
Belg/Spring Kiremt/Summer Annual

Z score Sen’s slope Z score Sen’s slope Z score Sen’s slope

Fruna 1.38 0.02 -1.42 -0.06 -1.05 -0.02
Hararo -0.07 -0.01 1.52 0.05 1.19 0.02
Ukuma 1.26 0.00 3.02** 0.01 3.26** 0.01
Wabi@bridge -0.09 -0.01 1.68 0.11 1.22 0.05

The discovery of mixed trend results in the analyzed headwater catchments is consistent with

findings from several other studies conducted in Ethiopian basins. For example, Tekleab et al.

(2013) reported both statistically significant increasing and decreasing streamflow trends in sea-

sonal and extreme flow within upper Blue Nile tributaries. Degefu and Bewket (2017) identified

mixed annual and wet season streamflow trends in 8 out of 15 stations in the Omo-Ghibe River

Basin. Conversely, they observed an increasing trend in dry season flow in 9 out of the 15 sta-

tions. Similarly, a mixed trend was observed in the upper and middle Awash, with most stations

showing an increasing trend, while a decreasing trend was revealed in the lower Awash (Tadese

et al., 2019). These findings highlight the variability in streamflow trends across different regions

and seasons, emphasizing the complex nature of hydroclimatic changes in Ethiopian basins.

4.3.3 Climate Change

Future climate change signals for rainfall, maximum, and minimum temperature were assessed

by utilizing a multi-model ensemble mean derived from eight CMIP6 GCMs. This assessment
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was carried out across each agroclimatic zone in the WSRB, within four shared socioeconomic

pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) scenario. In this analysis the period

from 1987 to 2014 considered as the baseline, using observed data as the reference for future

climate change signals.

Rainfall

In the SSP1-2.6 scenario projection, there was an observed pattern of precipitation change de-

picted in Figure 4.8. In ACZs 1, 4, 6, and 7, there was an increase in precipitation during the Q2

and Q3, followed by a decrease during the transition from the Q3 to the Q4. In contrast, ACZ2

experienced a decrease in precipitation during the Q2 and Q3, followed by an increase during

the transition from the Q3 to the Q4. On the other hand, both ACZ 3 and ACZ 5 consistently

experienced a decrease in precipitation throughout the study period. In a broader context, the

multimodal ensemble projection of precipitation in the SSP1-2.6 scenario depicted a mixed pat-

tern when compared to the baseline periods across all ACZs within the WSRB.

In the context of the SSP2-4.5 scenario projection, there was a noticeable alteration in precipi-

tation patterns shown in Figure 4.8. Specifically, in ACZs 1, 2, and 3, there was an increase in

precipitation during the Q2 and Q3, followed by a decrease during the transition from the Q3 to

the Q4. Conversely, ACZs 4, 5, 6, and 7 consistently experienced an increase in precipitation

throughout the study period.

In contrast to the precipitation trends seen in SSP1-2.6 and SSP2-4.5, the SSP3-7.0 and SSP5-

8.5 scenarios exhibited a clear upward trend in precipitation during the Q2, Q3, and Q4 of the

21ˢᵗ century, as compared to the baseline period. This pattern was consistently observed across

all ACZs within theWSRB. Across all the scenarios for future precipitation projections, the most

significant percentage increase from the baseline scenario was projected during the Q3 and Q4

in ACZ1.

Due to recent release of CMIP6 GCM projection less number of studies conducted in Ethiopian

and abroad compare to previous version of IPCC acknowledged climate projection. In this study,

precipitation projection of three quarter of 21ˢᵗ century, showed mixed in pattern in SSP1-2.6

and SSP2-4.5, but an apparent increasing projection were observed in SSP3-7.0 and SSP5-8.5 or

with higher emission scenarios. In the Upper Blue Nile Basin of Ethiopia, Alaminie et al. (2021)

investigated historical and projected climate trends for the 21ˢᵗ century using various CMIP6-
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Figure 4.8: Future projected precipitation change in percent for four scenario in agro-climatic zone of WSRB

SSPs scenarios and selected CMIP6 models. They employed quantile mapping for systematic

bias correction and the Mann–Kendall trend test. Among the 12 models assessed, MRI-ESM2-0

was chosen to represent temperature, and BCC-CSM-2MR was chosen for precipitation due to

their strong performance. The study projected an increase in precipitation by 5.9 (6.1)%, 12.8

(13.7)%, 9.5 (9.1)%, and 17.1(17.7)% for the near(long)-term period under SSP1-2.6, SSP2-4.5,

SSP3-7.0 and SSP5-8.5 scenarios, respectively.

Minimum and maximum Temperature

The significance of temperature as a crucial and sensitive parameter in climate science cannot

be overlooked. In this study, all scenarios generated by CMIP6 Global Climate Models (GCMs)

consistently depict an increase in both maximum and minimum temperatures across three future

periods, covering all Agro-Climatic Zones (ACZs) as shown in Figure 4.9 and Figure 4.10. When

the temperature changes within Q2, Q3, and Q4 are examined across the four Shared Socioe-

conomic Pathway (SSPs) scenarios, distinctive trends emerge. In Q2, SSP1-2.6 and SSP2-4.5

initiate with comparatively lower temperatures, while SSP3-7.0 and SSP5-8.5 exhibit more sub-

stantial temperature changes, with SSP5-8.5 consistently demonstrating the most pronounced

changes. As the transition to Q3 occurs, temperature increases are experienced in most scenar-
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ios, with SSP2-4.5 often displaying significant changes. In Q4, the temperature continues to rise

across the ACZs, but SSP5-8.5 frequently demonstrates the most substantial increase, leading to

the highest temperature by the end of the century.

The results revealed that ACZ3 and ACZ4 will experience comparatively less fluctuation in

minimum and maximum temperatures across all scenarios and time periods. When the changes

in minimum and maximum temperatures among the SSPs scenario and future time intervals are

compared, a higher increase in minimum temperature than in maximum temperature is observed

in all ACZs, with the exception of ACZ3. In general, the temperature increments follow a pro-

gressive trend for all scenarios over time within each ACZ. These comparisons highlight how

different SSP scenarios can lead to diverse trajectories for temperature values across the three

quarters, reflecting the distinct socioeconomic pathways considered within these scenarios.

The temperature increase towards the end of the 21ˢᵗ century has been reported by numerous

researchers, which aligns with this findings. In the Upper Blue Nile Basin of Ethiopia, Alaminie

et al. (2021) investigated historical and projected climate trends for the century using various

CMIP6-SSPs scenarios and selected CMIP6 models. They employed quantile mapping for sys-

tematic bias correction and the Mann–Kendall trend test. Among the 12 models assessed, MRI-

ESM2-0 was chosen to represent temperature due to its strong performance. The study indicated

that temperature could increase by 1.1 (1.5) ◦C, 1.3 (2.2) ◦C, 1.2 (2.8) ◦C, and 1.5 (3.8) ◦C for

the near (long)-term period under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios, re-

spectively. In similarly, WaleWorqlul et al. (2018) found a consistent increasing trend for both

minimum and maximum temperature in all studied headwater catchments. In contrary to this

study findings, the rate of change of maximum temperature is higher than the rate of change of

minimum temperature.

4.4 Conclusions

For the countries, rainfed agriculture is a major source of income generation and employment

opportunities, any change in the amount and distribution of rainfall causes a major economic,

environmental, social, and political failure. Understanding spatial and temporal variability and

trends of rainfall in the WSRB remain a challenge to assess. This is due to a combination of

complex topography, higher climatic variation, and low spatial coverage of observation stations.

Therefore, this study investigated agroclimatic zone-based variability and trend in rainy seasons,
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Figure 4.9: Future projected maximum temperature (Tmax) changes across four scenarios within the ACZ of

WSRB.

Figure 4.10: Future projected minimum temperature (Tmin) changes across four scenarios within the ACZ of

WSRB.
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and annual time series of rainfall in the Wabi Shebele River basin over a 30-year study period

(1987–2016) using modified MK methods. From the agroclimatic zonation of the WSRB, arid

and semi-arid cover 81% of the area whereas only 19% is considered as humid. This study shows

the annual rainfall distribution in the basin is entirely bimodal. In this study, low land and low

rainfall areas tend to experience high rainfall variability than highland and higher annual rainfall

areas. The trend tests found decreasing in Belg/Spring precipitation, an insignificant increase in

Kiremt/Summer precipitation, and a decreasing trend in annual precipitation in ACZs covering

more than 70% of the basin.

Future climate projections from eight CMIP6 Global Climate Models (GCMs) corresponding to

SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were utilized, selected for their su-

perior spatial and temporal resolutions from diverse global climate modeling institutions during

accessing period. Downscaling and bias correction procedures were applied at meteorological

stations using distance-weighted average remapping interpolation and non-parametric quantile

mapping respectively. To address uncertainties associated with climate models, a multi-model

ensemble mean approach was employed, incorporating results from all eight CMIP6 GCMs for

climate change and impact assessments. The findings reveal projected increases in mean annual

precipitation during Q2, Q3, and Q4 for all emission scenarios across each ACZ. Similarly, mean

annual maximum and minimum temperatures are expected to rise during these periods across

all ACZs. Notably, the rate of increase in minimum temperatures exceeds that of maximum

temperatures in nearly all ACZs.

In line with this, agricultural practices in Belg/Spring season will be affected if a similar trend

continues especially in low land areas where Belg is the main rainy season. In general, the

amount of water resources shows a decreasing trend with higher interannual variability. Cou-

pling with climate change, a decreasing trend of rainfall severely impacts the livelihoods of the

rural communities relying on subsistence rainfed agriculture. Compared to rainfall and temper-

ature variability and trend, most of stations showed increasing trend in temperature than precip-

itation. The analysis revealed that temperature increase both minimum and maximum will leads

to spike in evaporation and increase water stresses for crops production. In general, the find-

ings of this study provide valuable information on the characteristics and variability of rainfall

in the WSRB essential for planning and designing sustainable water management strategies and

minimizing the impact of extreme climate events.
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Chapter 5

Assessment of Land Use Land Cover
Changes and Future Predictions Using
MLP-ANN Simulation for Upper and

Central WSRB

5.1 Overview

Land and water resources stand as critical foundations for supporting life, serving as indis-

pensable sources of food, fiber, and minerals essential for the survival of all living organisms.

The ever-expanding global population and increasing socio-economic demands place substan-

tial pressure on the management of land use land cover (Reis, 2008). Human activities, encom-

passing agriculture, energy production, construction, and various other endeavors, constantly

transform the Earth’s surface. Particularly in Ethiopia, there is a notable and rapid increase in

cultivated land at the expense of natural vegetation (Ayele et al., 2016; Betru et al., 2019; Gare-

dew et al., 2009; Gashaw et al., 2017; Kenea et al., 2021; Shawul and Chakma, 2019). The

degradation of Ethiopia’s forests is closely linked to the ongoing population growth (Reusing,

2000). As the population continues to rise, the demand for land for both residential and agricul-

tural purposes intensifies. Human-induced changes in land use land cover have the potential to

disrupt the integrity of the natural resource system and affect the delivery of ecosystem goods

and services (Memarian et al., 2014).

Human activities that alter land use land cover can significantly impact the water cycle and



its dynamics within a given watershed (Descroix and Amogu, 2012). Vegetation cover plays a

pivotal role in shaping the behavior of precipitation, determining whether it becomes surface

runoff, infiltrates into the soil, or is lost through evapotranspiration. Extensive research has

been conducted to understand the ramifications of land use land cover changes on hydrologi-

cal processes. The conversion of vegetated land, including grasslands, forests, and shrubs, into

agricultural land has been associated with several hydrological transformations. Such conver-

sions have been observed to result in increased runoff volumes (Alibuyog et al., 2009; Aredo

et al., 2021; Engida et al., 2021; Gessesse et al., 2019; Getahun and Haj, 2015; Mango et al.,

2011), a decrease in baseflow (Alibuyog et al., 2009; Gessesse et al., 2019; Mango et al., 2011),

reduced annual groundwater flow and percolation (Engida et al., 2021; Gessesse et al., 2019),

lower low and higher high flows (Näschen et al., 2019), and an increase in sediment yield (Al-

ibuyog et al., 2009; Engida et al., 2021) across various regions worldwide. However, in contrast

to these findings, Owuor et al. (2016) have reported that the conversion of forested land or na-

tive vegetation into managed land use types, such as agricultural fields, can lead to increased

groundwater recharge, particularly in semi-arid regions.

The utilization of satellite data gained popularity in the 1980s, as a result of the increasing and

consistent availability of satellite imagery to the general public. Significant progress in remote

scanning and camera technology has been made since the launch of the first Earth observatory

satellite in 1972 (Loveland and Dwyer, 2012). The introduction of Geographic Information Sys-

tems (GIS) and remote sensing has greatly advanced the processing and application of satellite

images for monitoring and assessing land resources. The classification of land use land cover

from satellite imagery primarily falls into two broad categories: supervised and unsupervised

techniques, with hybrid methods also in use (Abburu and Golla, 2015; Richards and Jia, 2006).

Notably, the accurate classification of satellite images, which relies on the recorded spectral

reflectance of objects on Earth, has been made possible through significant advancements in

classification algorithms, particularly those related to machine learning. Furthermore, various

machine learning algorithms have been developed to predict future changes in land use land

cover based on existing explanatory factors in specific geographic locations.

Land use land cover maps are used in numerous natural resource applications to describe the

spatial distribution and pattern of land use land cover, to estimate the areal extent of various

cover classes, or as input into habitat suitability models, land use land cover change analyses,
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hydrological models, and risk analyses (Stehman and Czaplewski, 1998). Furthermore, under-

standing the future land use land cover within watersheds and its implications for water resources

is of paramount importance in watershed management and policy development (Marshall and

Randhir, 2008). In recent years, hydrologists have been increasingly focused on quantifying the

impact of land use land cover changes on runoff dynamics in river basins (Wang et al., 2014).

In line with this, a considerable amount of research has been dedicated to studying land use

land cover dynamics in Ethiopian basins. However, within the WSRB, no prior studies have

been published concerning changes in land use land cover and their associated impacts using the

conventional methods. Consequently, this study aims to fill this knowledge gap by investigating

the dynamics of land use land cover and future projection using MLP- ANN in the upper and

central parts of WSRB, making use of freely available Landsat imagery. The findings of this

research are anticipated to provide essential knowledge that can support local-level planning,

environmental monitoring, and the effective management of natural resources within the water-

shed. In this study, the classified image, following established protocols, is utilized as input for

hydrological modeling, a crucial tool for evaluating the impact of land use land cover changes,

in conjunction with climate change, on the hydrological responses of headwater catchments in

WSRB.

5.2 Material and Methods

5.2.1 Location of study area

Geographically, the upper and central parts of WSRB encompass the area between 6.11° and

9.52°North latitude and 38.67° to 43.34°East longitude, as illustrated in Figure 5.1. Specifically,

the upstream and central part of the Wabi Shebele covers 92,349.85 𝑘𝑚2, constituting 48.7% of

the total area of WSRB, which spans 189,655 𝑘𝑚2. The elevation in this area varies between

366 and 4,188 m above sea level.

5.2.2 Data and its Sources

The Landsat series of satellite sensors are one of the longest-running Earth observation pro-

grams and it is still monitoring the Earth. Thus, the satellite images were obtained from the

US Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS)

found at http://glovis.usgs.gov/. To investigate changes in the spatiotemporal patterns of

land use land cover in the central and upper parts of the Wabi Shebele river basin, 11 scenes of

Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational Land Imager (OLI) images with
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Figure 5.1: Location map and selected scene of Landsat image with Path/Row

a 30 m resolution were obtained for the years 1990, 2000, 2010, and 2020. The selected satellite

image path/row covering the study area are depicted in Figure 5.1.

The dry period, typically spanning December, January, and February, is frequently utilized for

land use and land cover analysis in Ethiopia due to the distinct variations in reflectance and

vegetation cover across seasons (Birhanu et al., 2019; Garedew et al., 2009; Hailemariam et al.,

2016). Utilizing images from a similar season helps reduce misclassification (Markos et al.,

2018). Moreover, the quality of images for analysis is significantly compromised during the rainy

season because of high cloud cover. Therefore, satellite images withminimal cloud cover (≤ 5%)

were accessed between December and February for the study years to ensure quality and uniform

weather conditions throughout the study period. Detailed information on the downloaded and

used satellite images is presented in Appendix Table A.2.

5.2.3 Image Preprocessing

Satellite image preprocessing is normally executed before further manipulation, and analysis of

the image data to extract specific information. Preprocessing functions involve the process re-

quired before the classification of land use land cover or final data analysis to improve the ability
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Figure 5.2: False color image of 1990, 2000, 2010, and 2020

to interpret the image components qualitatively and quantitatively. Images acquired by Landsat

sensors are subject to distortion owing to sensor, solar, atmospheric, and topographic effects

(Young et al., 2017). In general, preprocessing attempts to minimize these effects to the desired

extent for a particular application. However, preprocessing steps are time-consuming, and have

the potential to introduce additional sources of error (Young et al., 2017).

Thus, the highest-quality Landsat image collection 2 (Tier 1) data was used in this study. Tier

1 products are consistently georeferenced within a radial root mean square error of ≤ 12 m,

making them suitable for time-series pixel-level analyses (Young et al., 2017; Loveland and

Dwyer, 2012). They have precise terrain processing and have been calibrated across Landsat

sensors. Cloud cover in the satellite images was removed by masking the images with the nearest

images of the required area. Finally, selected raw images for the study years were projected to

be similar to the UTM zone 37 N for the time-series analysis. The preprocessed false-color

composite Landsat images for the years 1990, 2000, 2010, and 2020 in upper and central WSRB

are depicted in Figure 5.2.
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5.2.4 Image Classification

Satellite image classification involves labeling the pixels as belonging to particular spectral (and

thus information) classes using the spectral data available (Abburu andGolla, 2015; Richards and

Jia, 2006). Several satellite image classification methods and techniques are available. There are

two broad classes of classification procedure and each finds application in the analysis of remote

sensing image data (Richards and Jia, 2006). The first one, supervised classifications require a

priori knowledge of the scene area in order to provide the computer with unique material groups

or what are called ”training classes”. The second one, unsupervised classification compare pixel

spectral signatures to the signatures of computer-determined clusters and assign each pixel to

one of these clusters. These can be used as alternative approaches but are often combined into

hybrid methodologies. Thus, hydrid method, both supervised and unsupervised were employed

in this study.

In this study, the Maximum Likelihood Classification has been applied as the most commonly

utilized per-pixel method. The maximum likelihood algorithmwas used to classify land use land

cover because the algorithm takes the distributions of the classes into account via a variance-

covariance matrix (Richards and Jia, 2006). Based on the multivariate Gaussian distribution the

algorithm estimates the probability that a given pixel belongs to a specific land use land cover

class (Richards and Jia, 2006). It is a common and powerful classifier in remote sensing and

machine learning. Larger deviations from the centre point is allowed where a pixel is not in the

area of a contesting category.

The ML-supervised classification techniques work with Bayes theorem and uses a discriminant

function to assign the pixel to the class with the highest probability. Each image pixel belongs

to the land cover class for which they have the highest membership likelihood following the

Gaussian normal distribution function. Although the ML classifier is slow in computation and

sometimes unsafe in assuming Gaussian-distributed input data classes, yet, it is a more accurate

statistical decision criterion in classifying overlapping signatures.

Maximum Likelihood algorithm calculates the probability distributions for the classes, related

to Bayes’ theorem, estimating if a pixel belongs to a land cover class (Richards and Jia, 2006).

The Bayes theorem is given as follows: Let the spectral classes for an image be represented by

𝜔𝑖
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𝑝(𝜔𝑖 | 𝑥) =
𝑝(𝑥 | 𝜔𝑖) · 𝑝(𝜔𝑖)

𝑝(𝑥) (5.1)

where 𝑝(𝜔𝑖 | 𝑥) is the likelihood function, a posteriori distribution, ie, the probability that a pixel

with feature vector x belongs to class 𝜔𝑖; p(𝜔𝑖)) is the priori information, ie, the probability that

class 𝜔𝑖 occurs in the study area (either made equal, or they are given values from prior mapping

information) and p(x)is the probability that x is observed. p(x) can be written as follows:

𝑝(𝑥) =
𝑚∑
𝑖=1

𝑝(𝑥 | 𝜔𝑖) · 𝑝(𝜔𝑖) (5.2)

where m is the number of classes. p(x) is a normalization constant to ensure that 𝑝(𝜔𝑖 | 𝑥) sums

to l. Any pixel x is assigned to class 𝜔𝑖 by the following rule:

𝑥 ∈ 𝜔𝑖 if 𝑝(𝑥 | 𝜔𝑖) · 𝑝(𝜔𝑖) > 𝑝(𝑥 | 𝜔 𝑗 ) · 𝑝(𝜔 𝑗 ) for all 𝑗 ≠ 𝑖 (5.3)

Maximum likelihood classification assumes that the statistics for each class in each band are

normally distributed and calculates the probability that a given pixel belongs to a specific class

(i). The following discriminant functions as described by Richards and Jia (2006), is calculated

for each pixel in the image:

𝑔𝑖 (𝑥) = ln(𝑝(𝜔𝑖)) −
1
2

ln( |Σ𝑖 |) −
1
2
(𝑥 − 𝜇𝑖)𝑇Σ−1

𝑖 (𝑥 − 𝜇𝑖) (5.4)

where, x is n-dimensional data (where n is the number of bands), p(𝜔𝑖)) is probability that class

𝜔𝑖 occurs in the image and is assumed the same for all classes 𝜔𝑖 ; |Σ𝑖 | is determinant of the

covariance matrix of the data in class 𝜔𝑖, Σ−1
𝑖 is inverse of the covariance matrix; 𝜇𝑖 is spectral

signature vector of class i.

Unless a probability threshold is selected, all pixels are classified. Each pixel is assigned to the

class that has the highest probability (that is, the maximum likelihood). If the highest probability

is smaller than a threshold value specified, the pixel remains unclassified.

In this study, owing to the lack of existing high-resolution land use land cover maps, before con-

ducting supervised classification, unsupervised classification was performed to identify possible

spectrally different classes. Several clustering methods can be used for unsupervised classifica-

tions. The Iterative Self-Organizing Data Analysis Technique (ISODATA) is the most com-

monly used method. The ISODATA clustering method uses the spectral distance of pixels and
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iteratively clusters pixels, redefines the criteria for each class, and classifies them again so that

spectral distance patterns in the data gradually emerge (Leica, 2002a).

To process the resulting data, the Semi-Automatic Classification Plugin (SCP) and the Quantum

Geographic Information System (QGIS3) were used to classify the satellite images. SCP is a

free open-source plugin for QGIS that allows for the semi-automatic classification (also known

as supervised classification) of remote sensing images (Congedo, 2021). It provides several tools

for downloading free images, preprocessing, post-processing, and raster calculation.

For supervised classification eight land use land cover classes were identified from local knowl-

edge, literature, and existing studies in the area typical for Ethiopian case. This is the first study

on land use land cover change analysis in the basin. Eight different types of land use land covers

have been identified for upper and central part of WSRB. These are water bodies, builtup, forest,

open shrub, dense shrub, grass land, cultivated land, and bare land. The shrub class was divided

into dense and open shrub to consider shrub and shrub with grassland. In this document, the

terms ”agricultural land” and ”cultivated land,” as well as ”bare land” and ”degraded land,” are

used interchangeably. The brief description of each land use land cover class are given in Table

5.1.

5.2.5 Image Postprocessing

Post-classification refinement was conducted in order to improve classification accuracy and to

reduce the number of inconsistent misclassifications. The classified images were then sieved,

clumped, and filtered before yielding a final output. Finally, after accuracy assessment, class

statistics of each classified image were computed in using SCP QGIS plugin.

Classification accuracy assessment

Accuracy assessment or validation has become an important step in evaluating the performance

of a land use land cover classification using remotely sensed data (Congalton, 2005). It involves

comparing the results of a classification to a reference dataset to determine the degree of agree-

ment between the two (Foody, 2002; Stehman and Czaplewski, 1998). The error matrix, also

known as the confusionmatrix, is a commonly usedmethod for assessing the accuracy of satellite

image classification (Richards and Jia, 2006; Congalton, 2005). It is performed by comparing

the result created by remote sensing analysis to a reference data for selected sample points (Con-

galton, 2005; Foody, 2002; Kim, 2016; Olofsson et al., 2014; Stehman and Czaplewski, 1998).
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Table 5.1: Descriptions of LULC classes identified in the study area

 No Land Use classes Brief description Code

1 Waterbody Area covered by a small dammed lake fed by rainfall and
small streams (lakes, dammed reservoir )

WtB

2 Built-ups The settlement comprises all developed land, including areas
of human habitation and transportation infrastructure.

BtU

3 Forest Land Areas covered by trees forming closed or nearly closed
canopies; natural forest; plantation forest; forest along the
banks of streams, rivers, and open bodies of water.

Forest

4 Open Shrubs Areas covered with sparse small trees, bushes, and shrubs,
with grass open canopy areas

OpSH

5 Dense Shrubs Areas covered with small trees, bushes, and shrubs, mainly
ranged from closed canopy to open canopy areas are consid-
ered shrub land

DeSH

6 Grasslands Grasslands are those areas that are predominantly covered
with grass. Areas covered with grass with some scattered
trees and pastures are assumed as grassland.

GrSS

7 Cultivated Land The land area that is either arable under permanent crops or
land used primarily for the production of food and fiber

AgRL

8 Barren Land Areas with little or no vegetation cover consisting of exposed
soil and/or bedrock

BaRL

The error matrix was employed by numerous researchers for evaluating the accuracy of land use

land cover maps derived from satellite images (Garedew et al., 2009; Kenea et al., 2021; Meshe-

sha et al., 2016; Wang et al., 2020). The error matrix can be used to calculate various accuracy

metrics such as overall accuracy, kappa coefficient, producer accuracy, and user accuracy, etc.

Using an error matrix to represent accuracy has been recommended by many researchers and

should be adopted as the standard reporting convention. An error matrix is a square array of

numbers set out in rows and columns which express the number of sample units (i.e., pixels,

clusters of pixels, or polygons) assigned to a particular category relative to the actual category

as verified on the ground (Congalton, 1991). The columns usually represent the reference data

while the rows indicate the classification generated from the remotely sensed data.

Overall accuracy and the kappa coefficient were used to evaluate the accuracy of the classified

images based on the elements of the error matrix. Overall accuracy has a direct interpretation
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in terms of the area of the region of interest (ROI), representing the proportion of the area that

is correctly classified (Foody, 2002; Olofsson et al., 2014). Even though, overall accuracy pro-

vides a very coarse assessment because it aggregates information over all map classes thereby

obscuring important class-specific information. Consequently, it is strongly recommended to

provide estimates of user’s and producer’s accuracies or to provide the error matrix when re-

porting an accuracy assessment so that these class-specific measures can be estimated by others

if desired (Foody, 2002; Olofsson et al., 2014). Whereas, the Kappa coefficient is used to mea-

sure the agreement between two sets of categorizations of a dataset while correcting for chance

agreements between the categories (Jenness andWynne, 2007). All performance metrics can be

calculated based on the provided error matrix in Table 5.2.

In this matrix, each cell represents the number of sample points that were classified as i and

observed to be j. The diagonal (where i = j) represents cases where the predicted value agreed

with the observed value. The off-diagonal cells contain misclassified values, and the row and

column describe exactly how those values were misclassified (Jenness and Wynne, 2007).

Table 5.2: Error matrix for LULC classification accuracy assessment

j = Columns(Reference Row To-
tals User Accuracy (UAi)

i=
Ro

ws
(C

la
ss

ifi
ed

) j1 j2 jk ni.

i1 n11 n12 n1k n1. UAi1=n11/n1.

i2 n21 n22 n2k n2. UAi2=n22/n2.

ik nk1 nk2 nkk nk. UAik=nkk/nk.

ColumnTotals n.j n.1 n.2 n.k n..=n

Producer ac-
curacy (PAj)

PAj1=n11/n.1 PAj2=n22/n.2 PAjk=nkk/n.k

The overall accuracy of the model is simply defined as the total number of correct classifications

divided by the total number of sample points, and is calculated using equation 5.5:

Overall Accuracy =

∑𝑘
𝑖=1 𝑛𝑖𝑖

𝑛
(5.5)
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Kappa coefficient was calculated using equation 5.6;

Estimated Kappa 𝐾 =
𝑛
∑𝑘
𝑖=1 𝑛𝑖𝑖 −

∑𝑘
𝑖=1 𝑛𝑖·𝑛·𝑖

𝑛2 − ∑𝑘
𝑖=1 𝑛𝑖·𝑛·𝑖

(5.6)

where, i is the class number; n is the total number of classified pixels that are being compared to

actual data; 𝑛𝑖𝑖 is the number of pixels belonging to the actual data class i; that were classified

with a class i; Ci is the total number of classified pixels belonging to class i ;and Gi is the total

number of actual data pixels belonging to class i.

The major problem during reference data sampling is the proportion of classes in thematic map

produced. That is, large classes tend to be represented by a larger number of sample points than

the smaller classes; indeed some very small classes may not be represented at all (Richards and

Jia, 2006). Relative area proportion of waterbody, built-up, and bare land class is very small in

the basin. To ensure small classes are represented adequately, minimum of 30 samples per class

was considered during stratified random sampling. Stratified random sampling were conducted

using thematic classes for stratification. Stratified random sampling has historically prevailed

for assessing the accuracy of remotely sensed maps (Congalton, 2005). The Google Earth image

was the only available reference for the study areas and served as the primary reference image.

AcATaMa was used to perform accuracy assessment more interactively on several sources (ex-

isting images considered for land use land cover classification accuracy assessment). AcATaMa

(sort for Accuracy Assessment of ThematicMaps) is a QGIS plugin that provides comprehensive

support for sampling, response design, and estimation in a design-based inference framework

(Llano, 2022).

LULC dynamics analysis

The estimated conversion of one land use land cover class to other land use land cover class was

compared with the total estimation of LULC conversion of respective pair of years for each land

use land cover. Cross tabulation analysis was conducted in order to determine the quantitative

conversions from a particular category to another LULC category and their corresponding area

over the evaluated period (1990 and 2000, 2000 and 2010, 2010 and 2020, and 1990 to 2020)

on pixel to pixel basis. The magnitude of change and percent changes in land use land cover

(LULC) were calculated using equations 5.7 and 5.8 respectively:

Δmagnitude(ℎ𝑎) = 𝐴 𝑓 − 𝐴𝑖 (5.7)
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ΔLULC(%) =
𝐴 𝑓 − 𝐴𝑖
𝐴𝑖

× 100 (5.8)

where 𝐴 𝑓 is area of LULC (ha) in final year, 𝐴𝑖 is area of LULC (ha) in initial year. ΔLULC is

the change in LULC between the final and initial years. Finally, the LULC conversion matrix

between 1990 and 2020 was generated using SCP in QGIS.

5.2.6 Future LULC Projection

Future land use land cover predictions are essential for various stakeholders involved in the sus-

tainable development of a basin. To this end, a future land use land cover projection for the study

basin was conducted to assess potential changes in these aspects and their combined impact on

streamflow in the context of climate change. To accurately project future LULC, it is crucial to

model both temporal and spatial pattern changes while considering influencing factors within the

study area. This comprehensive approach provided valuable insights into potential alterations

in land use land cover over time and their environmental implications. Consequently, it serves

as a crucial tool for informed decision-making and planning in the context of basin sustainability.

The MOLUSCE plugin, integrated into the QGIS software, was designed to analyze the changes

in land use land cover and to predict potential future changes. This model is based on a mul-

tilayer perceptron-artificial neural network (MLP-ANN), Weights of Evidence (WoE), Logistic

Regression (LR), and Multi-Criteria Evaluation (MCE) (Akdeniz et al., 2023; Amgoth et al.,

2023; Girma et al., 2022; Kafy et al., 2021; NextGIS, 2017). Using MLP-ANN algorithms, po-

tential LULC changes for the year 2040 were predicted and determined in the study area. These

projections were then applied to future impact modeling. The MOLUSCE user interface offers

an easy-to-use interface with specific modules and functions (NextGIS, 2017). These modules,

which include Area Analysis, Modeling, Simulation, and Validation, enable the comprehensive

analysis and simulation of future land use land cover changes.

The first step in the model involves utilizing the LULC maps for both the initial year (2000) and

the final year (2010), and spatial variables, including DEM, slope map, distance from streams,

distance from roads, distance from built-up areas, and population density maps, are incorporated

into the model. These inputs were used to generate a land use land cover change map, which

served as the foundation for establishing the changing patterns within the study area between

2000 and 2010. Importantly, all explanatory maps share the same raster format across datasets,
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maintaining consistent geographical projected coordinates in UTM 37 N and a pixel resolution

of 30 m to align with classified Landsat images.

An evaluation of the correlation among the driving factors, which are the spatial variables, was

proceeded with after ensuring that the projections of all classified Landsat images matched those

of the explanatory maps. In MOLUSCE, three techniques are available for conducting this cor-

relation analysis: Pearson’s correlation, Cramer’s coefficient, and joint information uncertainty.

It is worth noting that Cramer’s coefficient and joint information uncertainty are specifically

designed to work with categorical data (NextGIS, 2017). Therefore, in the analysis, Pearson’s

correlation coefficient was used to assess the relationships among the explanatory datasets. Any

spatial variable with a correlation greater than 0.8 was exempted from further analysis. Subse-

quently, the Area Analysis module within MOLUSCE was utilized to generate a class statistics

table and a transition matrix. These outputs provide valuable insights into the initial and final

LULC change areas as well as the proportion of pixels transitioning from one LULC category

to another.

The modeling module offers four distinct algorithms designed to establish a relationship be-

tween input and output data for predicting future LULC transitions. In this study, MLP-ANN

algorithms were employed to project and determine potential land use land cover changes for the

year 2040. During the modeling process, users have the flexibility to define several key parame-

ters, including the number of samples and the sampling mode, as well as specifications such as

the number of neighboring pixels, learning rate, momentum, maximum iteration, and number of

hidden layers for ANNmodeling. As the module progresses, it generates a learning curve, which

serves as a valuable tool for assessing the dataset properties and representativeness. The ANN

algorithm analyzes the accuracy achieved on both the training and validation sets of samples,

storing the best-performing neural network in memory. The training process continues until it

reaches either the maximum specified number of iterations or attains the best accuracy, ensuring

that the model optimally captures the relationships between the input and output data for future

LULC transitions.

After the model is trained using ANN algorithms, the Cellular Automata simulation module

comes into play, enabling the simulation of future LULC scenarios based on the best-performing

neural network stored during training. However, it is important to note that this simulation relies
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on a major assumption – the stationarity of existing patterns and dynamics, as indicated by the

transition matrix–in the future period. Additionally, the prediction of LULC transitions for 2040

was based on the analysis of classified Landsat images from 2000 and 2010. These historical

data serve as the foundation for projecting how land use land cover will evolve in the future,

considering past patterns.

Finally, the validation module provides a means to assess the accuracy of the simulation. This

validation process took place after loading both the reference and simulated land use land cover

maps (NextGIS, 2017). Within this module, three types of kappa statistics are calculated: Kappa

overall (K), Kappa location (𝐾loc), and Kappa histogram (𝐾ℎ). These statistics help evaluate the

degree of agreement between the simulated and reference land use land cover maps, providing

valuable insights into the reliability of the simulation results. Equations (5.9)-(5.14) were used

to calculate kappa statistics are:

𝐾 =
𝑃(𝐴) − 𝑃(𝐸)

1 − 𝑃(𝐸) (5.9)

𝐾loc =
𝑃(𝐴) − 𝑃(𝐸)
𝑃max − 𝑃(𝐸)

(5.10)

𝐾ℎ =
𝑃max − 𝑃(𝐸)

1 − 𝑃(𝐸) (5.11)

where

𝑃(𝐴) =
𝑐∑
𝑖=1

𝑝𝑖𝑖 (5.12)

𝑃(𝐸) =
𝑐∑
𝑖=1

𝑝𝑖 · 𝑝 𝑗 (5.13)

𝑃max =
𝑐∑
𝑖=1

min(𝑝𝑖𝑇 , 𝑝𝑇 𝑗 ) (5.14)

and 𝑝𝑖 𝑗 is the i.j-th cell of contingency table, 𝑝𝑖𝑇 is the sum of all cells in i-th row, 𝑝𝑇 𝑗 is the

sum of all cells in j-th column, c is the count of raster categories. The accuracy of the agreement

in all kappa indices ranges from 0 to 1 and a value closer to 1 is a better agreement between

the modeled and predicted maps whereas when closer to 0, then the simulation is considered

imperfect.
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In general, MOLUSCE, a user-friendly plugin for QGIS, provides a convenient and efficient

solution for simulating potential future land use land cover changes. A detailed description of

MOLUSCE’s methods and algorithms can be found at this link: https://wiki.gis-lab.

info/w/Landscape_change_analysis_with_MOLUSCE_-_methods_and_algorithms.

5.3 Result and Discussion

The LULC classification was performed using satellite images obtained from the USGS Land-

sat open-source portal. Thus, both Landsat 5 and 8 were used to study the time series trends of

LULC changes in the upper and central parts of the Wabi Shebele River Basin (WSRB). This

study employs a hybrid approach, combining unsupervised and supervised classification tech-

niques, for satellite image classification. A widely used supervised classification technique, the

maximum-likelihood classification algorithm, was applied after collecting the training data. Af-

ter the classification, the accuracy of the thematic maps was evaluated. Finally, the magnitude

and rate of change, along with the transition matrix, were generated and the results are presented

in the following sections.

5.3.1 LULC Classification Accuracy

After classification of Landsat images for four epochs, the classification images were validated

against a reference map using standard image accuracy metrics, including the user and produced

accuracy, overall accuracy, and kappa coefficient. The AcATaMa QGIS3 plugin was used for

stratified random sampling and accuracy assessments. Stratified random samplingwas employed

to sample points proportional to the area of each land use class, implying that a large number of

random points are generated for the land use class with a larger area and vice versa. The total

number of samples collected in 1990, 2000, 2010, and 2020 were 893, 890, 888, and 889, re-

spectively. Finally, an error matrix was generated for the validation of classified thematic images

for 1990, 2000, 2010, and 2020, and the accuracy metrics were estimated. The error matrices

for each year are presented in the Appendix Table A.3.

The summary of the classification accuracy analysis results is provided in Table 5.3. The es-

timated accuracy metric values showed higher agreement between the classified and reference

maps for all years of study. All user and producer accuracy values were above the recommended

limit (greater than 0.8). Overall, the LULC classification performed well throughout the study

period, with high overall accuracy and significant agreement with the reference data, as in-
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dicated by the kappa coefficient. The results showed that accuracy and kappa coefficients of

0.94/0.92, 0.95/0.93, 0.93/0.90, and 0.94/0.91 were achieved for 1990, 2000, 2010, and 2020

LULC, respectively (Table 5.3). The slight fluctuations observed in the overall accuracy and

kappa coefficient values between different years could be attributed to changes in land use land

cover patterns, data quality, or classification methodology. Based on these ranges, the classifica-

tion results in this study exhibited strong concurrence with the validation dataset and satisfied the

minimum accuracy criteria necessary for conducting subsequent change detection and impact

analysis.

Table 5.3: Summary of LULC classification accuracies for the 1990, 2000, 2010 and 2020

LULC Classes
1990 2000 2010 2020

UA PA UA PA UA PA UA PA

WtB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BtU 0.93 1.00 0.93 1.00 0.87 1.00 0.94 1.00
Forest 0.95 0.91 1.00 0.95 0.94 1.00 0.91 0.97
OpSH 0.94 0.97 0.96 0.95 0.97 0.92 0.95 0.95
DeSH 0.96 0.88 0.87 0.90 0.84 0.90 0.96 0.84
GrSS 0.95 0.92 0.94 0.94 0.81 0.81 0.84 0.91
AgRL 0.90 0.99 0.94 0.98 0.88 0.97 0.90 0.94
BaRL 0.97 0.77 0.95 0.88 1.00 0.91 0.95 0.84

Overall Accuracy 0.94 0.95 0.93 0.94

Kappa Coefficient 0.92 0.93 0.90 0.91
UA= User’s Accuracy and PA = Producer’s accuracy

5.3.2 LULC Classification

The final classified maps are shown in Figure 5.3, and the areal distribution of each land use land

cover class is summarized in hectares and percentages for 1990, 2000, 2010, and 2020 in Table

5.4. Based on the classification results, open shrublands were the major LULC type in all study

years, covering more than 65% of the land. Cultivated land was the second most dominant land

use land cover type, accounting for 13.6%, 16.8%, 24.8%, and 27.1% in 1990, 2000, 2010, and

2020, respectively. Following open shrubs and agricultural land, dense shrubs covered 11.4%

in 1990, 7.9% in 2000, 5.4% in 2010, and 4.0% in 2020. Forest, grass, and bare land cover 1

– 5% of the area in all study periods. In addition, the proportion of water bodies, and built-up

areas in the basin is relatively small (less than 0.1%).
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Spatially, the distribution of land use land cover classes in the basin is apparent based on the

topography of the area shown in Figure 5.3. Cultivated land was the dominant land cover in the

highlands, whereas open shrubs were dominant in lower elevation areas. Forest lands exist only

in the highlands part of the basin. Dense shrubs were found on the steep middle slope of the

basin, and degraded land in the lower part of the basin. In general, open shrubs and cultivated

land cover the dominant parts of the basin, greater than 75% in all study years.

Table 5.4: Areal coverage of Land Use Land cover classes in Upper and Central WSRB

LULC Class
1990 2000 2010 2020

ha % ha % ha % ha %
WtB 9863.3 0.1 8576.1 0.1 6592.6 0.1 7646.7 0.1
BtU 607.5 0.0 1240.9 0.0 3983.9 0.0 11486.7 0.1
Forest 214766.9 2.3 119416.9 1.3 87202.8 0.9 79416.5 0.9
OpSH 6111938 66.2 6350824 68.8 6091083 66.0 5935513 64.3
DeSH 1055812 11.4 725605.2 7.9 495467.5 5.4 372646.9 4.0
GrSS 485169.3 5.3 344925 3.7 111850.6 1.2 117783.5 1.3
AgRL 1258042 13.6 1547361 16.8 2292871 24.8 2498732 27.1
BaRL 98785.3 1.1 137036.9 1.5 145933.9 1.6 211760.5 2.3
Total 9234985 100 9234985 100 9234985 100 9234985 100

5.3.3 Magnitude and Rate of LULC change

The magnitude and rate of decadal LULC changes were evaluated for the periods 1990-2000,

2000-2010, 2010-2020, and 1990-2020 to assess the trends of each LULC class in the upstream

and central parts of the Wabi Shebele River Basin. These changes were calculated in terms of

area (hectares) and percentage, as presented in Table 5.5 and Figure 5.4. The implications of

each LULC change for environmental sustainability are explained in detail in this section.

The coverage of water bodies decreased by 1,282.2 hectares (-13.1%) from 1990 to 2000, and

by an additional 1,983.5 hectares (-23.1%) from 2000 to 2010. However, from 2010 to 2020,

there was an increase of 1,054.1 hectares (16.0%). Overall, from 1990 to 2020, there was a net

decrease of 2,216.7 hectares (-22.5%).

From 1990 to 2000, there was an increase of 633.4 hectares of built-up area, which accounted

for a growth of 104.3% in relation to the initial area in 1990. There was a substantial increase
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Figure 5.3: Classified LULC map of 1990, 2000, 2010, and 2020

in built-up areas with 2,743.0 hectares and 7,502.8 hectares and 221.0% and 188.3% from 2000

to 2010 and 2010 to 2020 respectively. Overall, from 1990 to 2020, there was a cumulative in-

crease of 10,879.2 hectares, which corresponded to a remarkable growth of 1,790.8% compared

to the initial area in 1990.

From Table 5.5, land use land cover change analysis showed that from 1990 to 2020, there was

a cumulative decrease of 135,350.4 hectares in forested areas, corresponding to a significant

decline of 63.0% compared to the initial forested area in 1990. In terms of area in hectares, forest

areas decreased substantially by 95,349.9 hectares, 32,214.2 hectares, and 7,786.3 hectares from

1990 to 2000, 2000 to 2010, and 2010 to 2020, respectively. In terms of percentage, there was

a decline in the forest area by 44.4%, 27.0%, and 8.9% compared to the preceding years. These

results suggest a considerable loss of forested land over the entire period under consideration.

According to Table 5.5 and Figure 5.4, the open shrub land experienced various changes over the

examined periods. From 1990 to 2000, there was an increase of 238,885.7 hectares, accounting

for a growth of 3.9% relative to the initial area in 1990. However, from 2000 to 2010, there was

a significant decrease of 259,740.5 hectares, representing a decline of 4.1% compared to the

area in 2000. From 2010 to 2020, the category showed a further decrease of 155,570.4 hectares,

100



Table 5.5: Magnitude and rate of decadal LULC change in the Upper and Central WSRB

LULC Class
1990 -2000 2000-2010 2010-2020 1990-2020

ha % ha % ha % ha %

WtB -1287.2 -13.1 -1983.5 -23.1 1054.1 16.0 -2216.7 -22.5
BtU 633.4 104.3 2743.0 221.0 7502.8 188.3 10879.2 1790.8
Forest -95349.9 -44.4 -32214.2 -27.0 -7786.3 -8.9 -135350.4 -63.0
OpSH 238885.7 3.9 -259740.5 -4.1 -155570.4 -2.6 -176425.3 -2.9
DeSH -330207.2 -31.3 -230137.7 -31.7 -122820.6 -24.8 -683165.6 -64.7
GrSS -140244.3 -28.9 -233074.4 -67.6 5932.9 5.3 -367385.8 -75.7
AgRL 289318.1 23.0 745510.2 48.2 205861.0 9.0 1240689.3 98.6
BaRL 38251.6 38.7 8897.0 6.5 65826.5 45.1 112975.2 114.4

indicating a decline of 2.6% compared to the area in 2010. Overall, from 1990 to 2020, there

was a cumulative decrease of 176,425.3 hectares, corresponding to a decline of 2.9% relative to

the initial area in 1990. These results indicate a complex pattern of changes in the open shrub

land, with an initial increase followed by significant decreases in subsequent periods.

The results showed that dense shrub land decreased substantially during the study period. There

was a decrease of 330,207.2 hectares, 230,137.7 hectares, and 122,820.6 hectares in dense shrub

land areas during the period of 1990 to 2000, 2000 to 2010, and 2010 to 2020 respectively. These

represented a decline of 31.3% in 2000, 31.7% in 2010, and 24.8% in 2020 compared to 1990,

2000, and 2010, respectively. Overall, from 1990 to 2020, there was a cumulative decrease

of 683,165.6 hectares in the dense shrub land, corresponding to a substantial decline of 64.7%

compared to the initial area in 1990.

Grassland experienced a significant decrease of 140,244.3 hectares from 1990 to 2000 and

233,074.4 hectares from 2000 to 2010, accounting for declines of 28.9% and 67.6% compared

to the initial areas in 1990 and 2000, respectively. However, from 2010 to 2020, there was a

modest increase of 5,932.9 hectares, indicating a growth of 5.3% relative to the area in 2010.

Overall, from 1990 to 2020, there was a cumulative decrease of 367,385.8 hectares, correspond-

ing to a substantial decline of 75.7% compared to the initial area in 1990. These results suggest

a significant loss in grassland during the first two decades, followed by a slight recovery in the

last decade.

According to Table 5.5 and Figure 5.4, cultivated land showed significant and consistent ex-

pansion throughout the study period. There was an increase of 289,318.1 hectares from 1990
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Figure 5.4: Rate of LULC change in the upper and central WSRB

to 2000, 745,510.2 hectares from 2000 to 2010, and 205,861.0 hectares from 2010 to 2020.

In percentage terms, cultivated land expanded by 23.0% in 2000, 48.2% in 2010, and 9.0% in

2020 compared to the preceding periods. Overall, from 1990 to 2020, there was a cumulative in-

crease of 1,240,689.3 hectares in cultivated land coverage, corresponding to a substantial growth

of 98.6% compared to the coverage in 1990.

From the analysis results, the coverage of bare land in the upper and central Wabi Shebele River

basin increased by 38,251.6 hectares, 8,897.0 hectares, and 65,826.5 hectares between 1990 and

2000, 2000–2010, and 2010–2020, respectively. Similarly, the rate of change was 38.7% in

2000, 6.5% in 2010, and 45.1% in 2020, compared to 1990, 2000, and 2010, respectively. Over-

all, during the study years, there was a cumulative increase of 112,975.2 hectares in the coverage

of degraded land in the basin, corresponding to a growth of 114.4% compared to the initial area

in 1990.

Overall, the results indicate a significant expansion in built-up areas, cultivated land, and bare

land, while forest land and dense shrubs experienced a substantial and consistent decline through-
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out the study period. Water bodies, open shrubs, and grasslands exhibited fluctuating patterns

during this time.

5.3.4 LULC Dynamics Analysis

Table 5.6 presents the transition matrix in LULC classes between consecutive periods (1990-

2000, 2000-2010, and 2010-2020) and the whole period (1990 - 2020). The coverage of the

water body and built-up area was insignificant compared to the total area of the study. Thus,

the conversion result table might not show the figure correctly. However, the Water body and

built-up area mainly shifted to open shrub and agricultural land. Similarly, a substantial cov-

erage of forest land transformed into open and dense shrub, grassland, and cultivated land with

17%, 12%, 2%, and 34%, respectively, during the study period. The open shrub also expanded

to cultivated land with a maximum of 10% during the 2000 to 2010 period.

A considerable percentage of bare land was also converted to open shrub land in the study area.

Overall, 13% of open shrubs shifted to cultivated land during the 1990 to 2020 period. Dense

shrub diminished mainly to open shrub land. Grassland expanded to open shrub and cultivated

land. Cultivated land, the second major category of the land use land cover classes in the basin,

expanded at the expanse of all LULC classes except degraded land. During the study period

(1990 – 2020), cultivated land expanded at the expense of 16% of the water body, 24% of built-

up, 34% of forest, 13% of open shrub, 18% of dense shrub, and 60% of grassland. Finally, bare

land expanded at the expanse of mainly from open shrub land with 3% based on this study.

5.3.5 Future LULC Projection

Future land use land cover changes in the basin were predicted using the MLP-ANNmodel, em-

ploying the MOLUSCE software. Six explanatory factors, comprising both physical and socioe-

conomic elements, were incorporated to enhance the accuracy of the predictions. The evaluation

of Pearson’s correlations among these spatial variable factors revealed significant relationships,

particularly between distance from town and distance from road, as well as between distance to

stream and distance to town. Pearson’s correlation results are summarized in Table 5.7. Conse-

quently, due to the collinearity between distance from road and distance from town, as well as

distance from stream and distance from town, the decision was made to exclude distance from

road and distance from stream from further analysis. The transition model simulation relied on

the initial classified image from 2000, the final classified image from 2010, and the remaining

four explanatory maps.
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Table 5.6: LULC transition matrix for 1990-2000, 2000-2010, 2010-2020 and 1990-2020

Period LULC WtB BtU Forest OpSH DeSH GrSS AgRL BaRL

2000

19
90

WtB 0.62 0.00 0.00 0.18 0.04 0.03 0.12 0.01
BtU 0.00 0.45 0.00 0.02 0.00 0.02 0.51 0.00
Forest 0.00 0.00 0.51 0.12 0.13 0.07 0.17 0.00
OpSH 0.00 0.00 0.00 0.91 0.02 0.01 0.04 0.01
DeSH 0.00 0.00 0.00 0.40 0.51 0.01 0.07 0.00
GrSS 0.00 0.00 0.00 0.32 0.01 0.51 0.15 0.00
AgRL 0.00 0.00 0.00 0.09 0.02 0.02 0.87 0.00
BaRL 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.64

2010

20
00

WtB 0.53 0.00 0.00 0.30 0.01 0.05 0.11 0.00
BtU 0.00 0.56 0.00 0.21 0.00 0.00 0.23 0.00
Forest 0.00 0.00 0.60 0.16 0.07 0.03 0.14 0.00
OpSH 0.00 0.00 0.00 0.86 0.02 0.01 0.10 0.01
DeSH 0.00 0.00 0.01 0.41 0.46 0.00 0.12 0.00
GrSS 0.00 0.00 0.01 0.43 0.01 0.09 0.47 0.00
AgRL 0.00 0.00 0.00 0.07 0.00 0.00 0.92 0.00
BaRL 0.00 0.00 0.00 0.44 0.00 0.00 0.01 0.55

2020

20
10

WtB 0.71 0.00 0.00 0.25 0.02 0.00 0.00 0.02
BtU 0.00 0.71 0.00 0.28 0.00 0.00 0.00 0.00
Forest 0.00 0.00 0.77 0.00 0.22 0.00 0.00 0.00
OpSH 0.00 0.00 0.00 0.89 0.02 0.00 0.08 0.01
DeSH 0.00 0.00 0.02 0.46 0.51 0.00 0.00 0.00
GrSS 0.00 0.00 0.00 0.02 0.00 0.94 0.03 0.00
AgRL 0.00 0.00 0.00 0.13 0.00 0.01 0.86 0.00
BaRL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

2020

19
90

WtB 0.54 0.00 0.00 0.23 0.02 0.04 0.16 0.01
BtU 0.00 0.69 0.00 0.07 0.00 0.00 0.24 0.00
Forest 0.00 0.00 0.34 0.17 0.12 0.02 0.34 0.00
OpSH 0.00 0.00 0.00 0.82 0.01 0.01 0.13 0.03
DeSH 0.00 0.00 0.00 0.55 0.27 0.00 0.18 0.00
GrSS 0.00 0.00 0.00 0.32 0.01 0.07 0.60 0.00
AgRL 0.00 0.01 0.00 0.07 0.00 0.00 0.92 0.00
BaRL 0.00 0.00 0.00 0.39 0.00 0.00 0.03 0.58
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To ensure representative sampling using the sampling tab, 50,000 sample pixels were extracted

using stratified sampling procedures, encompassing all categories of the LULC classes. In the

ANN modeling approach, the default settings were adhered to, including a 3 × 3 pixel neigh-

borhood, a learning rate of 0.001, a momentum of 0.001, and 1000 iterations, with 10 hidden

layers. The performance of the model was reassuring, as indicated by the excellent fit observed

between the training and validation sets, as depicted in the ANN learning curve presented in

Figure 5.5. These comprehensive steps and results strengthen the reliability of the predictions

for future land use land cover changes in the basin.

Table 5.7: Pearson’s correlation between the explanatory factors

DEM PopD DfRoad DfTown Slope DfStream

DEM − 0.59 -0.53 -0.53 0.21 -0.53

PopD − -0.47 -0.47 0.22 -0.47

DfRoad − 1.00 -0.13 1.00
DfTown − -0.13 1.00
Slope − -0.13

DfStream −
Note: DEM = Digital Elevation Model, PopD = Population Density, DfRoad = Distance from a Road, DfTown = Distance from a Town,

DfStream = Distance from a stream

Table 5.8: Projected magnitude and rate of land use land cover change 2020 to 2040

LULC Class
2020 2040 2020-2040

𝑘𝑚2 % 𝑘𝑚2 % 𝑘𝑚2 %

WtB 76.5 0.1 60.4 0.1 -16.1 -21.0

BtU 114.9 0.1 151.9 0.2 37.0 32.2

Forest 794.2 0.9 716.7 0.8 -77.5 -9.8

OpSH 59355.1 64.3 54435.8 58.9 -4919.3 -8.3

DeSH 3726.5 4.0 4290.1 4.6 563.6 15.1

GrSS 1177.8 1.3 1233.2 1.3 55.4 4.7

AgRL 24987.3 27.1 28769.8 31.2 3782.5 15.1

BaRL 2117.6 2.3 2692.0 2.9 574.4 27.1

Total 92349.9 100 92349.9 100

Following the training of the model using the ANN algorithms, a Cellular Automata simulation
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Figure 5.5: ANN learning curve for LULC projection in Upper and central WSRB

module was employed. This module enabled the simulation of LULC for 2020, utilizing the

best-performing neural network that had been stored during the training process. The assess-

ment of the resulting LULC maps for the year 2020 yielded promising outcomes. Specifically,

an overall kappa coefficient value of 81%, kappa histogram of 89% and kappa location of 82%

were achieved. These metrics indicate the quality of the reference and projected LULC maps

for 2020, suggesting a high degree of agreement between the predicted and actual LULC images

for that year. Such favorable results sustained confidence in the model’s ability to accurately

forecast future land use land cover patterns up to 2040.

Once an acceptable performance is achieved, a LULC map for 2040 is predicted. Subsequently,

the analysis of land use land cover change, along with the magnitude and rate of change, was

conducted between 2020 and 2040 using the classified and projected images presented in Table

5.8. The prediction of LULC changes for the year 2040, carried out using MLP − ANN revealed

several apparent trends. Notably, there might be an increase in a built-up areas, dense shrubs,

grasslands, agricultural land, and barren land. In contrast, the categories of the water body, for-

est land, and open shrub land exhibited a substantial reduction in the upper and central parts of
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the Wabi Shebele River basin.

According to the LULC transitionmatrix in Table 5.9, significant land use land cover changes are

projected between 2020 and 2040. Notably, 35% of water bodies are expected to convert to open

shrublands. Forest land will also transform substantially, with 18% transitioning to denseshrub

lands and another 18% converting to agricultural land. Additionally, 12% of open shrublands are

projected to become agricultural land. Dense shrub areas will experience significant changes,

with 36% transitioning to open shrublands and 21% shifting to agricultural areas. Grasslands

are expected to convert 46% to open shrublands and 16% to agricultural land. Furthermore, 16%

of agricultural land is projected to change to open shrublands. Lastly, barren land is primarily

expected to shift to open shrublands, with a notable transition of 4%.

Table 5.9: Projected land use land cover change matrix 2020 to 2040

Period LULC WtB BtU Forest OpSH DeSH GrSS AgRL BaRL
2040

20
20

WtB 0.50 0.00 0.00 0.35 0.01 0.06 0.08 0.00
BtU 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Forest 0.00 0.00 0.59 0.03 0.18 0.02 0.18 0.00
OpSH 0.00 0.00 0.00 0.82 0.04 0.01 0.12 0.01
DeSH 0.00 0.00 0.04 0.36 0.38 0.01 0.21 0.00
GrSS 0.00 0.00 0.02 0.46 0.01 0.34 0.16 0.00
AgRL 0.00 0.00 0.00 0.16 0.00 0.00 0.83 0.00
BaRL 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.96

Similarly, notable trends have been reported for future land use land cover changes. Lukas et al.

(2023), found a discernible increase in built-up areas, which contrasts with a decrease in forest

cover and shrubland in the upper Omo-Gibe river basin over the period from 2022 to 2067. This

transformation aligns with the findings of another study conducted in the Gidabo River Basin

(GRB) within the Main Ethiopian Rift Valley, as noted by Girma et al. (2022). In their study,

significant gains in agricultural land and settlements were observed, accompanied by a decrease

in forests, shrubs, and grasslands. However, unlike this study and the results presented by Lukas

et al. (2023), the coverage of water bodies is predicted to increase in their study area. These

distinct findings highlight regional variations in land use land cover dynamics. These collec-

tive insights contribute to a broader understanding of LULC changes in diverse ecosystems.The

outcomes of the model should not be interpreted as fixed predictions for particular locations

but rather as probable spatial patterns. Moreover, the results of these studies hold promise for
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the development of more effective watershed and basin management techniques, particularly in

the context of natural resource preservation, including sustainable management of freshwater

resources.

5.4 Conclusion

Land use land cover changes in the upper and central parts of the WSRB, Ethiopia, were evalu-

ated over the past three decades, from 1990 to 2020. A hybrid image classification methodology

was employed using the Semi-Automatic Classification Plugin (SCP) in the QGIS environment.

This approach involves the use of the ISODATA algorithm for unsupervised classification and

the ML classification algorithm for supervised classification. Raw satellite imagery from Land-

sat 5 TM and Landsat 8 OLI was processed to generate land use land cover maps for 1990, 2000,

2010, and 2020. Comprehensive preprocessing and processing activities were conducted before

the Landsat images were classified to enhance the accuracy of the classification results. Accu-

racy validation was performed on the classified thematic maps using an error matrix and kappa

index to test the accuracy of the classified imagery. Additionally, future land use land cover

changes in the basin were predicted using the MLP-ANN model within MOLUSCE software

for 2040. Four out of six explanatory factors were incorporated to enhance the accuracy of the

model predictions due to the higher degree of correlation among three factors. The accuracy of

the predicted images was evaluated using similar indices.

The results of the validation indices applied to compare the reference Land Use Land Cover

(LULC) with the predicted LULC consistently exceeded the acceptable threshold for prediction

accuracy in both classified Landsat images and future LULC projections. The analysis of the

classified Landsat images for the years 1990, 2000, 2010, and 2020 revealed significant LULC

changes in the upper and central parts of WSRB. Notably, a substantial expansion of agricultural

lands over the years was observed in the upper basin, attributed to the increasing encroachment

on forests and shrublands driven by rapid population growth in the country. Meanwhile, exten-

sive open shrubland was found to be covering the central part of the basin.

However, the predominant change in land use land cover observed throughout the entire period

was the increase in cultivated and built-up areas, particularly in the upper part of the basin, ac-

companied by an overall decline in forested areas, grasslands, and woodlands. Between 1990

and 2020, the results of the classified images revealed a 22.5% reduction in water bodies, a sig-
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nificant 1,790.8% increase in built-up areas, a 63.0% reduction in forest cover, a 67.6% decrease

in open and dense shrubland, a 75.7% reduction in grasslands, a substantial 98.6% increase in

agricultural land, and a remarkable 114.4% surge in bare land in the upper and central regions

of the basin. Similarly, between 2020 and 2040, the future projected image indicated an antic-

ipated 21% reduction in waterbodies, a 32.2% increase in built-up areas, a 9.8% reduction in

forest cover, an 8.3% decrease in open shrubland, a 15.1% increase in dense shrubland, a 4.7%

increase in grasslands, a 15.1% increase in agricultural land, and a substantial 27.1% expansion

in bare land coverage.

In general, the expansion of cultivated and built-up areas at the expense of forest and shrub-

land is a foreseeable scenario in the future, highlighting the need for the anticipated adverse

impacts of LULC changes to be addressed by planners and policymakers. Due to the reduction

in vegetation cover, which leads to decreased infiltration and increased surface runoff, the en-

tire hydrological regime of the basin is significantly altered. Therefore, the implementation of

extensive afforestation programs and projects should be considered to restore the natural ecosys-

tem of the basin. Therefore, chapter 7 conducts the assessment of the impact of LULC changes,

both individually and combined with climate change, on the hydrological regime of headwater

catchments in WSRB. This follows chapter 6, which focuses on the calibration and evaluation

of the SWAT model for each respective headwater catchment.
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Chapter 6

Calibration and Validation of SWAT
Model for Headwater Catchments

6.1 Overview

Modeling of the streamflow under changing climate and human impact is a significant part of

watershed planning and sustainable water resource management (Dwarakish and Ganasri, 2015;

Kale and Sönmez, 2019). Hydrological models are important for a wide range of applications,

including water resources planning, development and management, flood prediction and design,

and coupled systems modelling including, for example, water quality, hydro-ecology and cli-

mate (Pechlivanidis et al., 2011). Many hydrological models have been developed to understand

hydrological processes on local and global spatial scales. Thus, selection and application of ap-

propriate hydrological model to examine the impact of climate and land use land cover change

is crucial.

Hydrological models have different degrees of complexity and conceptualization of physical pro-

cesses. They can be classified, considering their spatial distribution, as lumped or distributed

models. In a lumped model, the catchment is regarded as a unit. The variables and parameters

thus represent average values for the entire catchment. On the other hand, a distributed model

takes spatial variations into account (e.g., topography, vegetation, and soils) in all variables and

parameters. As previously mentioned, hydrological models also differ in their representation of

physical processes: a physically-based model describes the natural system using mathematical

formulations of physical processes while a conceptual model is constructed based on physical

processes, in which physically-based equations are used along with semi-empirical equations

(Refsgaard, 1996).



On a temporal scale, models are also classified as event-based and continuous models. The

former produces output only for specific periods while the latter produces a continuous output.

One of the most important classifications is empirical model, conceptual models, and physically

based models (Devia et al., 2015). Also, hydrological models can be grouped into determinis-

tic and stochastic types (Refsgaard, 1996). Recent research in hydrological modeling tried to

take a more physically-based approach to understand hydrologic systems’ behavior to make bet-

ter future streamflow predictions and to face major challenges in water resource management

(Velázquez et al., 2015).

Numerous studies revealed the uses, abilities, and performances of different models in simulat-

ing the hydrological processes of watersheds under changing climate and land use land cover.

However, it is a quite challenging task to select the right hydrological model which can simu-

late specific watershed hydro-climatological and geophysical processes. In general, physically-

based distributed models are very flexible to represent the real ground features and simulating

the hydro-geophysical processes of watersheds (Arnold et al., 1998; Chen and Mackay, 2004;

Gebreyohannes et al., 2013; Yen et al., 2016). Moreover, hydrological models are valuable

to simulate watershed hydrology and sediment yield in data-scarce regions. Headwater catch-

ments serve as the primary freshwater sources in a basin, characterized by mountainous terrain

and seasonal rainfall, particularly in Ethiopia. This study was focused on evaluating the Soil and

Water Assessment Tool (SWAT) model within selected headwater catchments of the Wabi She-

bele River Basin. The goal is to analyze the impact of climate and land use land cover (LULC)

changes on streamflow in these specific catchments.

Model Description

In this study, the SWAT model was applied to simulate the hydrological processes on the head-

water catchments. The SWAT model is a physically based, computationally efficient, semi-

distributed watershed model that is designed to simulate and predict the impact of land manage-

ment practices on water, sediment, and agricultural chemical yields in large complex watersheds

with varying soils, land use, and management conditions over long periods (Arnold et al., 2012;

Gassman et al., 2007). SWAT is a continuation of nearly 40 years of modeling efforts conducted

by the United States Department of Agriculture (USDA) Agricultural Research Service (ARS)

(Abbaspour et al., 2018). A large number of SWAT-related papers have appeared in Institute

for Scientific Information (ISI) journals, building a worldwide consensus around the model’s
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stability and usefulness. In SWAT, the target watershed is divided into sub-basins linked by the

channel network, which are further subdivided into several hydrological response units (HRUs)

of homogeneous land use, slope, management, and soil characteristics (Arnold et al., 2012;

Gassman et al., 2007; Neitsch et al., 2011). Using the HRU as the basic unit, the hydrological

components, nutrients, and sediment yield were simulated and aggregated for each sub-basin.

This model can be used for various applications, such as streamflow simulation and forecasting,

and can predict the environmental impacts of land use land cover, land management practices,

and climate change. SWATmodels have beenwidely applied to simulate similar problemsworld-

wide and have shown excellent performance.

The model was selected in this research because of its minimum input data and capacity to pro-

vide continuous, long-term simulations. Moreover, the model has been widely used in different

watersheds worldwide and has proven to be an effective tool for examining hydrological re-

sponses to land use and climate change (Betrie et al., 2011; Kim and Kaluarachchi, 2009; Kim,

2016; Stehman and Czaplewski, 1998; Zhang et al., 2016). Akoko et al. (2021) reviewed the

SWAT model application in Africa using published papers and found that the SWAT model is

widely used in Africa, particularly in Ethiopia. In addition, it is a user-friendly model that tech-

nical documentation, executable programs, open source codes, pre- and post-processing tools,

and software manuals can be downloaded from https://swat.tamu.edu/.

6.2 Material and Methods

6.2.1 Study Site

The selected catchments are predominantly situated in the northwest, with one exception in the

northeast, within the Wabi Shebele River basin. Specifically, the headwater catchments are de-

fined by their geographic coordinates as follows: Errer catchment spans between 9.24° and 9.49°

North latitude and 42.11° to 42.31° East longitude. Furuna catchment is located between 6.92°

and 7.02° North latitude and 39.42° to 39.54° East longitude, while Harero catchment lies within

the region of 6.87° to 7.00°North latitude and 39.26° to 39.35°East longitude. TheMaribo catch-

ment covers the area between 6.79° and 7.00° North latitude and 39.33° to 39.42° East longitude,

the Robe catchment extends from 7.85° to 7.97° degrees North latitude and 39.50° to 39.63° East

longitude, andWabi@Bridge catchment encompasses the region between 6.85° and 7.02° North

latitude and 38.73° to 39.03° East longitude. This study was limited in its scope to cover the

entire basin due to the absence of streamflow records with acceptable temporal coverage. The
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Figure 6.1: Location map of the selected headwater catchments in the WSRB

geographical location of each headwater catchment is depicted in Figure 6.1.

6.2.2 Model Input Preparation

The SWATmodel is a semi-distributed continuous model that requires spatial and temporal data

(Arnold et al., 2012; Gassman et al., 2007). Spatial data include the Digital Elevation Model

(DEM), soil data, land use, and stream network layers with similar projection, whereas tempo-

ral data include climate (rainfall, minimum and maximum temperatures, solar radiation, wind

speed, and relative humidity) and stream flow (Neitsch et al., 2011; Srinivasan et al., 2010;

Wang et al., 2019). The first set of data was required for watershed delineation and discretiza-

tion, whereas the second set of data was required for continuous hydrological simulation, model

calibration, and validation. The performance of the model highly relies on the quality and quan-

tity of input data. Inputs are used to model processes at the basin, sub-basin or HRU level. The

preparation and sources of each input of the SWATmodel are described in the following section.

Digital elevation model (DEM)

The DEM is one of the main inputs of the SWATmodel. The Shuttle Radar TopographyMission

(SRTM) 30 m grid size DEM, latest openly available, dataset was accessed from USGS website
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https://earthexplorer.usgs.gov. The DEM data is required to delineate the watersheds

and define the location of the streams in the watershed. In addition, terrain parameters such

as slope gradient and slope length, and stream network characteristics such as channel slope,

length, and width were derived from the DEM for each subbasin.

Land use land cover data (LULC)

The land use land cover (LULC) of a watershed significantly impacts runoff, evapotranspiration,

and surface erosion (Neitsch et al., 2011). LULC data can be obtained from two primary sources,

existing records and satellite imagery. In Chapter 5, LULCmaps for 1990, 2000, 2010, and 2020

were prepared using Landsat images, employing a hybrid classification algorithm. For the SWAT

model simulation, the LULC map from 2000 was used as the baseline. To accurately represent

land use land cover, the LULC map was reclassified based on SWAT predefined land use land

cover types, and the corresponding crop/plant growth and urban parameters were selected from

the SWAT databases. A lookup table was prepared that associates the land use land cover map

grid values with the 4-letter SWAT code for different land use land cover categories. This code

is printed to the output files. SWAT also calculate the area covered by each land use category

during HRU definition. Table 6.1 provides a comprehensive summary of the land use land cover

categories within each headwater catchments.

Table 6.1: LULC classes distribution in selected headwater catchments in WSRB

LULC Class SWAT code
Errer Furuna Harero Maribo Robe Wabi_bridge

ha % ha % ha % ha % ha % ha %

BtU URBN 35.8 0.1 2.9 0.0 43.9 0.3 91.0 0.1

Forest FOEB 4400.2 48.0 7843.2 65.0 13349.5 63.5 1981.3 12.3 4311.5 4.4

OpSH BSVG 7536.4 15.8 2561.0 27.9 268.9 2.2 216.0 1.0 811 5.0 101.7 0.1

DeSH SHRB 2062.5 4.3 0.4 0.0 0.6 0.0 6.8 0.0 1567.0 1.6

GrSS GRAS 1233.4 13.5 2027.1 16.8 4700.1 22.3 298.6 1.9 76177.2 78.5

AgRL AGRL 38064.5 79.7 973.8 10.6 1928.9 16.0 2769.3 13.2 12971.8 80.5 14799.0 15.2

BaRL BARR 66.9 0.1

Total 47766.0 100 9168.3 100 12071.3 100 21035.5 100 16113.5 100 97047.4 100

Soil data

Soil is a three phase material cover the surface of the earth with different physicochemical prop-

erties. The physical properties of the soil govern the movement of water and air through the

profile and have a major impact on the hydrological process/water cycling. Whereas the chemi-

cal properties plays a major role in nutrients cycling in the soil profile. In Ethiopia, the accesses
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of soil information is very limited or small scale coverage which impractical to use in any hydro-

logical model for land surface simulation. The soil physicochemical properties required by the

SWAT model include soil texture, available water content, hydraulic conductivity, bulk density,

and organic carbon content for each soil type and its layers. Inputs for chemical characteristics

are used to set initial levels of the different nutrients in the soil. While the physical properties are

required for hydrological simulations in SWAT, information on chemical properties is optional.

Table 6.2 provides a comprehensive summary of major soil coverage within each headwater

catchments.

Table 6.2: Major soil coverage in selected headwater catchments in WSRB

Soil Name SWAT code
Errer Furuna Harero Maribo Robe Wabibrige

ha % ha % ha % ha % ha % ha %

Chromic Luvisols LVx 39792.4 83.3 5903.4 64.4 6625.7 54.9 14875.4 70.7 2776.8 17.2 2876.2 3.0

Haplic Luvisols LVh 3146.2 34.3 3687.7 30.5 2935.1 14.0 1329 8.2 26821.6 27.6

Eutric Cambisols CMe 762.5 6.3 1828.2 8.7

Eutric Vertisols VRe 118.7 1.3 995.4 8.2 1396.9 6.6 12007.7 74.5 30722.2 31.7

Humic Nitisols NTu 830.2 1.7 36627.4 37.7

Lithic Leptosols LPq 7143.4 15

Total 47766.0 100 9168.3 100 12071.3 100 21035.5 100 16113.5 100 97047.5 100

The soil and land cover data are important to define the subbasin into the HRUs. Soil information

at a higher resolution is not available in developing countries including Ethiopia. Since, prepa-

ration of soil at higher resolution is expensive and cumbersome. Thus, the soil data was prepared

from primary and secondary data sources available in national and international data sources.

After reviewing the SWAT model application in Africa, Akoko et al. (2021) found that the Food

and Agricultural Organization (FAO) soil database was the most common source of soil data in

the SWAT model simulation. In this study, the Harmonized World Soil Database (HWSD v1.2)

was used to prepare the spatial map and extract soil parameters for the SWATmodel. The HWSD

was developed by FAO and IIASA and is organized for applications in biophysical models and

agro-ecological assessments. The additional parameters were extracted using the pedo-transfer

formula using Soil-Plant-Air-Water (SPAW) software. For the SWAT model simulation, it is a

common practice that the user should prepare the soil parameter table (usersoil), soil lookup

table, and soil spatial map in a tiff or grid format.
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Climate data

The climatic variables required by the SWAT model for driving hydrological and nutrient bal-

ance are daily precipitation, maximum/minimum air temperature, solar radiation, wind speed,

and relative humidity. The model allows climatic values to be input from records of observed

data or generated during the simulation (Neitsch et al., 2011). Records of daily rainfall and

minimum and maximum temperature for the study catchment were obtained from the National

Meteorological Agency (NMA). The period of observation 1987 - 2016 was retained as the sim-

ulation period because it is common to all stations and available stream flow data. Hence, the

long-term daily mean filling method was used to impute the missed data for analyzing rainfall

data of selected stations. A user weather generator database was created to store local weather

stations including their statistics. These statistics parameters are needed by the SWAT weather

generator to fill in missing values during the running time. The location and some statistical

parameters of the stations are presented in Chapter 4. The model utilizes text files for input,

which include gauge location tables specifying station positions. Precipitation and temperature

data files with daily measurements were also prepared with text format. These files were edited

to provide essential climate data for the model. The SWAT model assigns gauging stations to

subbasins based on proximity to the subbasin’s centroid for efficient spatial allocation.

Hydrological data

The SWAT model parameters must be calibrated and validated for specific areas to minimize

the uncertainty of the simulation results. But, relative to the size of the basin, the distribution

of operational streamflow gauging station is very poor/sparse in WSRB. The common practice

for calibrating hydrological model parameters is to use the observed streamflow and sediment

yield. Sequentially, the SWAT model should first be calibrated for the flow pattern and then for

the sediment yield parameters (Abbaspour, 2015). The observed daily runoff data at the outlets

of the study catchments were obtained from the Hydrology Department of theMinistry ofWater,

Irrigation and Electricity of Ethiopia. Daily data were summarized into a monthly time series for

calibration and validation. The missing records were filled through multiple method considering

monthly long term average the missing month and relating with presence and absence of rainfall

in respective month. The location of the gauging stations is depicted in Figure 3.7.
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6.2.3 Model Setup and Simulation

The QGIS interface was employed to configure the SWAT model and conduct hydrological sim-

ulations on a monthly time series basis. The initial step in the model setup process involved

establishing a project for each selected headwater catchment under study. Subsequently, the

catchment was demarcated and subdivided into sub-catchments, relying on a corrected Digital

Elevation Model (DEM) with a resolution of 30 meters. A designated threshold drainage area

of 1000 hectares was maintained, and additional outlets were introduced at the sites of stream

gauging stations. This enabled a comparison between observed and simulated streamflow re-

sults when evaluating the model’s performance. Except for the sub-catchment at the outlet of the

catchment, any sub-catchment area that was less than 10% of themean area of all sub-catchments

was merged with an upstream sub-catchment. The model also generated a comprehensive stream

network, including its pertinent characteristics such as length, width, depth, slope, and elevation

difference.

Following the delineation of catchment and sub-catchments, land use land cover, soil types, and

slope characteristics were imported, superimposed, and linked with the corresponding SWAT

databases using the lookup table. This overlaying led to the subdivision of each sub-catchment

into Hydrological Response Units (HRUs). These HRUs were distinct areas characterized by

unique combinations of soil, land use land cover, and slope attributes. The classification of

slope classes was categorized into four ranges (0-8%, 8-16%, 16-30%, and greater than 30%) as

per the guidelines of the Food and Agriculture Organization (FAO). This classification facilitated

the study of the effects of Land Use Land Cover (LULC) changes, as well as diverse management

practices, on the hydrological processes of the catchment. HRUs with coverage percentages of

soil, LULC, and slope class below 10% were subject to filtering and subsequently merged with

the dominant HRU present within each sub-catchment. This stage of the process allowed for the

division and exemption of specific LULC classes during the simulation.

After this, climate data were imported into the model, and the nearest weather station to the

centroid of each sub-catchment was chosen for further simulation purposes. To accommodate

the nature of the SWAT model, text tables were generated for simulation, given its text-based

framework. Before the initiation of the simulation, it was essential to ensure that every datasets

was incorporated into the model’s text file whenever adjustments were made to model parame-

ters or input data.
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To establish appropriate initial conditions and stabilize the model, the first three years of the sim-

ulation were designated as a warm-up period. An exception was made for the Errer catchment,

where only one year was utilized for model warm-up due to the limited streamflow record avail-

able for model calibration and validation. For calculating surface runoff volume, a modified Soil

Conservation Service (SCS) curve number method was adopted. Flow routing through channels

was determined using the variable storage coefficient method, and the estimation of potential

evapotranspiration was calculated through the Penman-Monteith method. Finally, simulations

were conducted over the stipulated study period for each headwater catchment, and a compre-

hensive assessment of the model’s hydrological balance was undertaken using the SWATcheck

tool.

6.2.4 SWAT Model Parameter Sensitivity Analysis

Complex environmental/hydrological models are controlled by a large number of parameters

such as SWAT. An accurate estimation of the values of all these parameters is almost impos-

sible. Sensitivity analysis (SA) results enable the selection of parameters to be included in a

calibration procedure, but can also assist in the identification of the model processes (Arnold

et al., 2012). It is the process of determining the rate of change in the model output with respect

to changes in the model inputs (parameters). The uniqueness of each watershedmust be captured

by model parameters to properly represent the physical processes at work.

Additionally, sensitivity analysis can yield crucial information on the use and meaning of the

model parameters. Two general types of sensitivity analysis are typically performed. These

include one-at-a-time (OAT), local sensitivity analysis, and all-at-a-time (AAT) or global sensi-

tivity analyses (Abbaspour et al., 2018). In OAT, all parameters are held constant while changing

one to identify its effect on some model output or objective functions. In this case, only a few

(3–5) model runs are sufficient. In the AAT, however, all parameters change; hence, a larger

number of runs (500–1000 or more, depending on the number of parameters and procedure) are

needed to determine the impact of each parameter on the objective function.

Numerous SWATmodel modelers utilized various flow parameters, including CN2, SOL_AWC,

SOL_K, ESCO, GWQMN, GW_REVAP, REVAMPM, HRU_SLP, CH_N2, OV_N, SLSUB-

BSN, CH_K2, CANMX, SURLAG, and EPCO, to assess their sensitivity during the simulation

of the SWAT model (Abbaspour, 2015; Addis et al., 2016; Chekol et al., 2007; Leta et al., 2016;
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Liew and Garbrecht, 2003; Negewo and Sarma, 2021; Setegn et al., 2009; Betrie et al., 2011;

van Griensven et al., 2006). During parameter sensitivity analysis, only streamflow data were

available and major consideration was given to parameters related to surface runoff and baseflow

processes in the SWAT models. In this study, 16 commonly used flow parameters were selected

for sensitivity analysis in six headwater catchments of the WSRB. The list of parameters is pre-

sented with a description, and the value range is listed in Table 6.3.

Table 6.3: Description of selected SWAT flow parameters for sensitivity analysis.

Parameter Name Description Curve Value Range
Parameter

Minimum Maximum Default

R_CN2.mgt Moisture condition II curve number -0.2 − 0.2 35 98 *
V_ESCO.hru Soil evaporation compensation factor 0.4 − 0.95 0 1 0.95
R_OV_N.hru Manning’s ”n” value for overland flow -0.1 − 0.1 0.01 30 0.15
R_SOL_K.sol Saturated hydraulic conductivity (mm/hr) -0.3 − 0.3 0 2000 *
R_SOL_BD.sol Soil bulk density -0.2 − 0.2 0.9 2.5 *
R_SOL_AWC.sol Available water capacity -0.3 − 0.3 0.01 1 *
V_GW_REVAP.gw Ground water “revap” coefficient 0.02 − 0.2 0.02 0.2 0.02
V_ALPHA_BF.gw Baseflow recession constant 0 − 1 0 1 0.048
V_GWQMN.gw Threshold water level in shallow aquifer for base flow (mm H2O) 0 − 2000 0 5000 1000
V_REVAPMN.gw Threshold water level in shallow aquifer for revap (mm H2O) 0 − 1000 0 1000 750
V_GW_DELAY.gw Delay time for aquifer recharge 30-450 0 500 31
R_CH_K2.rte Effective hydraulic conductivity in main channel -0.1 − 0.1 -0.01 500 0
R_CH_N2.rte Manning’s “n” value for the main channel -0.1 − 0.1 -0.01 0.3 0.014
V_ALPHA_BNK.rte Bank flow recession constant 0-1 0 1 0
V_SURLAG.bsn Surface runoff lag coefficient 1 − 10 1 24 4
V_EPCO.bsn Plant uptake compensation factor 0.4 − 0.95 0 1 1
The qualifier (v) refers to the substitution of a parameter by a value from the given range. The qualifier (r) refers to a relative change in the

parameter where the value from the SWAT database is multiplied by 1 plus a factor in the given range.

The global sensitivity analysis was performed on selected model flow parameters using the

SWAT Calibration and Uncertainty Programs SWAT-CUP version 2012 applying Sequential

Uncertainty Fitting version 2 (SUFI-2) (Abbaspour, 2015; Abbaspour et al., 2007). In SWAT-

CUP, AAT uses a multiple regression approach to quantify the sensitivity of each parameter,

which regresses the Latin hypercube-generated parameters against the objective function values

(in file goal.txt) (Abbaspour et al., 2007):

𝑔 = 𝛼 +
𝑚∑
𝑖=1

𝛽𝑖𝑏𝑖 (6.1)

where g is the objective function value, 𝛼 is the regression constant, and 𝛽 is the coefficient of

parameters.

A t-test is then used to identify the relative significance of each parameter 𝑏𝑖. The sensitivities

given above are estimates of the average changes in the objective function resulting from changes
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in each parameter, while all other parameters are changing. This gives relative sensitivities based

on linear approximations and, hence, only provides partial information about the sensitivity of

the objective function to model parameters. In this analysis, the largest absolute value of the

t-stat, and the smaller the p-value, the more sensitive the parameter. The p-value is an indicator

to judge the level of statistical significance of the sensitivities.

6.2.5 Model Calibration and Validation

After sensitivity analysis, the SWAT model was calibrated using the parameters to which the

model showed high sensitivity. Calibration is an effort to better parameterize a model to a given

set of local conditions, thereby reducing the prediction uncertainty (Abbaspour, 2015; Arnold

et al., 2012; Refsgaard, 1997; Van Liew and Veith, 2010; Wang et al., 2019). Calibration of

watershed models is a long and often tedious process of refining the model for processes and

calibrating parameters (Abbaspour et al., 2018). Commonly, hydrological model calibration can

be done manually, automatically, and a combination of the two methods. The manual calibra-

tion uses trial and error techniques in parameter adjustment through several simulation runs.

Manual procedure is when the modeler modifies model parameters manually whereas automatic

procedure is when the modeler limit the realistic range of parameter and parameter values are

generated based on different sampling techniques. Automatic calibration is computer-based and

involves the use of a numerical algorithm that maximizes and minimizes a given numerical

objective function. Since, manual calibration of distributed watershed models like SWAT is dif-

ficult and almost infeasible in many large-scale applications (Arnold et al., 2012; Gupta et al.,

1999).

Whereas, model validation is the process of demonstrating that a given site-specific model is

capable of making sufficiently accurate simulations, although “sufficiently accurate” can vary

based on project goals (Refsgaard, 1997). Validation involves running a model using parameters

that were determined during the calibration process, and comparing the predictions to observed

data not used in the calibration.

In this study similar to sensitivity analysis, automatic calibration and validation were performed

within the SWAT Calibration and Uncertainty Programs SWAT-CUP version 2012 using Se-

quential Uncertainty Fitting version 2 (SUFI-2) (Abbaspour, 2015). The daily streamflow of six

gauging stations in the headwater part of the WSRB was obtained from the MWIE of Ethiopia.

Daily streamflow data were summarized into monthly time series and split into two datasets for
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calibration and validation based on the length of the records. A more extended recording period

was considered during the calibration than during the validation. It is commonly accepted that

the measured data should be split for calibration and validation in the SWAT model (Arnold

et al., 2012; Refsgaard, 1997). During the calibration process, the model parameters were ad-

justed until a reasonably good fit between the observed and simulated variables was achieved,

which was measured using the selected statistical methods/objective functions. To standardize

the number of simulations, 1000 simulations were performed each during the calibration and

validation of the selected headwater catchments.

6.2.6 Model Performance Evaluation Criteria

Model performance evaluation is necessary for the verification of the robustness of the model.

The goodness of fit evaluation is a common practice during hydrological model simulation and

application. Hydrological models performance evaluation is performed using graphical and sta-

tistical method. The advantage and disadvantage of different performance evaluation criteria

were reviewed (Moriasi et al., 2015). Statistical method is adopted by numerous researchers.

Due to varied strengths of the different performance measures, Moriasi et al. (2015) recommend

the use of multiple graphical and statistical measures.

Accordingly, during the calibration and validation periods of this study, both graphical and statis-

tical methods were employed to assess the quality of model predictions. Scatter and probability

plots were used for the graphical evaluation of model performance. The statistical performance

measures were used included 𝑅2 (Krause et al., 2005), Nash-Sutcliffe Efficiency (NSE) (Nash

and Sutcliffe, 1970), Percentage Bias (PBIAS) (Gupta et al., 1999), and Kling-Gupta Efficiency

(KGE) (Gupta et al., 2009). In addition to the recommended performance measures, the mean

and standard deviation of the observed and simulated outputs are presented for a relative com-

parison. A detailed description of each statistical performance measure selected in this research

is presented considering o as the observed data and s as the simulated data.

Coefficient of determination (𝑅2) is the squared ratio between the covariance and the multiplied

standard deviations of the observed and predicted values (Krause et al., 2005). 𝑅2 ranges from

0 to 1, with higher values indicating less error variance, and typically values greater than 0.5 are

considered acceptable. Moriasi et al. (2015) recommended that the regression line gradient and

intercept to be reported when 𝑅2 is used as a performance measure. For a good agreement, the

intercept should be close to zero and the gradient should be close to one (Krause et al., 2005).
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𝑅2 =


∑𝑛
𝑖=1(𝑂𝑖 − 𝑂̄)(𝑆𝑖 − 𝑆)√∑𝑛

𝑖=1(𝑂𝑖 − 𝑂̄)2
√∑𝑛

𝑖=1(𝑆𝑖 − 𝑆)2


2

(6.2)

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that was calculated to determine

the relative magnitude of the residual variance compared to the measured data variance (Nash

and Sutcliffe, 1970). NSE indicates how well the plot of observed versus simulated data fits the

1:1 line. NSE ranges between -∞ and 1.0 (1 inclusive), with NSE = 1 being the optimal value.

NSE is computed by equation 6.3:

𝑁𝑆𝐸 = 1 −
∑𝑛
𝑖=1(𝑂𝑖 − 𝑆𝑖)2∑𝑛
𝑖=1(𝑂𝑖 − 𝑂̄)2

(6.3)

Percent bias (PBIAS %) measures the model’s average tendency to predict higher or lower val-

ues than the observed data (Gupta et al., 1999). The optimal value of PBIAS is 0.0, with low-

magnitude values indicating accurate model simulation. Positive values indicate model under-

estimation bias, and negative values indicate model overestimation bias (Gupta et al., 1999).

PBIAS is calculated with equation 6.4:

𝑃𝐵𝐼𝐴𝑆(%) =
∑𝑛
𝑖=1(𝑂𝑖 − 𝑆𝑖) × 100∑𝑛

𝑖=1𝑂𝑖
(6.4)

Additionally, the Kling–Gupta efficiency (KGE) is based on a decomposition of NSE into its con-

stitutive components (correlation, variability bias and mean bias), addresses several perceived

shortcomings in NSE and is increasingly used for hydrological model calibration and evaluation

(Gupta et al., 2009). A value of KGE = 1, indicates a perfect agreement between simulations and

observations. If the mean flow is used as a KGE benchmark, all model simulations with -0.41

< KGE < 1 could be considered as reasonable performance (Knoben et al., 2019). A slightly

revised version of the KGE statistic suggested by (Kling et al., 2012) was used to ensure that the

bias and variability ratios were not cross-correlated when measuring the agreement between the

simulated values and observations. KGE is calculated using equation 6.5:

𝐾𝐺𝐸 , = 1 −
√
(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (6.5)

𝛽 =
𝜇𝑝

𝜇𝑜
(6.6)

𝛾 =
𝐶𝑉𝑠
𝐶𝑉𝑜

=

𝜎𝑆
𝜇𝑆
𝜎𝑜
𝜇𝑜

(6.7)
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where KGE, is the modified KGE-statistic (dimensionless), r is the correlation coefficient be-

tween simulated and observed runoff (dimensionless), 𝛽 is the bias ratio (dimensionless), 𝛾 is

the variability ratio (dimensionless), 𝜇 is the mean runoff in 𝑚3/s, CV is the coefficient of vari-

ation (dimensionless), 𝜎 is the standard deviation of runoff in m3/s, and the indices s and o

represent simulated and observed runoff values, respectively. KGE„ r, 𝛽 and 𝛾 have their opti-

mum at unity.

Moriasi et al. (2015) established certain statistical tests and performance ratings to determine

the fit of a model to the observed hydrological variables in the watershed. A summary of the

evaluation metrics are provided in Table 6.4.

Table 6.4: Performance evaluation criteria for selected statistical performance measures

Measure
Performance Evaluation Criteria for Discharge

SourcesVery good Good Satisfactory NotSatisfactory

R2 𝑅2 > 0.85 0.75 < 𝑅2 ≤ 0.85 0.60 < 𝑅2 ≤ 0.75 𝑅2 ≤ 0.60
Moriasi et al. (2015)NSE 𝑁𝑆𝐸 > 0.80 0.70 < 𝑁𝑆𝐸 ≤ 0.80 0.50 < 𝑁𝑆𝐸 ≤ 0.70 𝑁𝑆𝐸 ≤ 0.50

PBIAS 𝑃𝐵𝐼𝐴𝑆 < ±5 ±5 < 𝑃𝐵𝐼𝐴𝑆 < ±10 ±10 ≤ 𝑃𝐵𝐼𝐴𝑆 < ±15 𝑃𝐵𝐼𝐴𝑆 ≥ ±15

The above statistical metrics only apply to the comparison of two signals and are not adequate

when outputs are expressed as uncertainty bands (Arnold et al., 2012). Identifying all accept-

able model solutions considering all input uncertainties allows to express model uncertainty in

SWAT-CUP as the 95% prediction uncertainty (95PPU) Abbaspour et al. (2018). The 95PPU

is calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output variable

obtained through Latin hypercube sampling. In this case, as the simulation results are usually

expressed by the 95% prediction uncertainties (95PPU), they cannot be compared with the ob-

servation signals using traditional performance statistics.

For this reason, Abbaspour et al. (2018, 2007) devised two measures, referred to as the p-factor

and the r- factor based on 95% prediction uncertainty (95PPU) to account for all sources of

uncertainties such as uncertainty in driving variables (e.g., rainfall), conceptual model, parame-

ters, and measured data. The p-factor is the percentage of measured data bracketed by the 95PPU

band. The r-factor is a measure of the thickness of the 95PPU band and is calculated as the aver-

age 95PPU thickness divided by the standard deviation of the corresponding observed variable.

The goodness of calibration and prediction uncertainty is judged based on the closeness of the

p-factor to 100% (i.e., all observations bracketed by the prediction uncertainty band) and the
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r-factor close to 0 (less than 2 for monthly streamflow) Abbaspour et al. (2018).

𝑝factor =
𝑁𝑄in
𝑛

× 100 (6.8)

𝑟factor 𝑗 =

(
1
𝑛 𝑗

𝑛 𝑗∑
𝑖=1

𝑥𝑡𝑖 ,97.5%
𝑠 − 𝑥𝑡𝑖 ,2.5%

𝑠

)
/𝜎𝑜 𝑗 (6.9)

where 𝑁𝑄in is the number of observed discharge falling in the 95PPU, 𝑥𝑡𝑖 ,97.5%
𝑠 and 𝑥𝑡𝑖 ,2.5%

𝑠 are

the upper and lower boundary of the 95PPU at time-step t and simulation i, 𝑛 𝑗 is the number of

data points, and 𝜎𝑜 𝑗 is the standard deviation of the 𝑗 𝑡ℎ observed variable.

6.3 Result and Discussion

6.3.1 SWAT Model Simulation

The headwater catchments were discretized into subbasins using a Digital Elevation Model

(DEM), and Hydrological Response Units (HRU) were generated using the DEM, Soil map,

and Land Use Land Cover (LULC) map prior to simulating streamflow at the catchment outlet.

Consistent threshold criteria were applied for generating streams, determining the number of

sub-basins and HRUs based on the total area of the basin, as summarized in Table 6.5.

Table 6.5: SWAT model discretisation result for selected headwater catchments

Catchment Area (ha) Number of Subbasin Number of HRUs

Errer 47,766.01 20 133

Furuna 9,168.28 5 57

Harero 12,071.26 7 67

Maribo 21,035.53 11 98

Robe 16,113.48 7 44

Wabi@bridge 97,047.45 62 468

6.3.2 Parameter Sensitivity

Global sensitivity analysis supports determining the dominant processes within a watershed,

thereby identifying the most influential parameters by evaluating how alterations in input pa-

rameters value correspond to changes in model outcomes. This research undertook a sensitivity

analysis for 16 hydrological parameters using the parameter solution optimization technique via
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auto-calibration in the SWAT-CUP software. The outcomes of this analysis are depicted in Fig-

ure 6.2 and detailed in Appendix Table A.4.

The findings from this study revealed that during hydrological modeling of headwater catch-

mentswithin theWSRB, themost crucial parameters were CN2.mgt, GW_DELAY.gw, ESCO.hru,

GW_REVAP.gw, and GWQMN.gw, as illustrated in Figure 6.2. Notably, CN2 stands out as the

parameter with the highest sensitivity in streamflow simulation across all catchments except

Furuna, where GW_delay.gw took precedence, as depicted in Figure 6.2. CN2 substantially in-

fluences the generation of high and low runoff from HRUs, thus predicting a relatively elevated

sensitivity index across most basins (Abbaspour, 2015).

Among groundwater parameters, GW_DELAY.gw exhibited notable sensitivity, followed by

GW_REVAP.gw, predominantly impacting baseflow volumes in the catchment. Concerning

HRU parameters, ESCO emerged as the most sensitive (within the top five) across all study

catchments. Among soil parameters, Sol_BD.sol displayed relatively high sensitivity, except

in Maribo and Robe catchments, where Sol_AWC.sol and Sol_K respectively took precedence.

In a broader context, groundwater parameters were found to be considerably more sensitive

compared to soil parameters. Furthermore, channel parameters demonstrated relatively lower

sensitivity in headwater catchment SWAT simulations.

Overall, CN2 emerged as the most sensitive parameter within the selected headwater catch-

ment in the WSRB. This outcome was consistent with numerous similar studies, confirming

that these five parameters are crucial for water balance and streamflow Abbaspour (2015); Ad-

dis et al. (2016); Chekol et al. (2007); Leta et al. (2016); Liew and Garbrecht (2003); Setegn

et al. (2009). However, Setegn et al. (2009) identified ESCO as highly sensitive in the Gilgel

Abay River, Megech River, Ribb River, and Gumera River. Unlike other studies, Alpha-bf.gw

exhibited relatively lower sensitivity in the studied headwater catchments. Finally, the top 10

sensitive parameters were considered for model calibration and validation in the selected head-

water catchment.

6.3.3 Calibration and Validation

After conducting the sensitivity analysis, the SWAT model was automatically calibrated (auto-

calibration) using the Sequential Uncertainty Fitting (SUFI-2) procedure, based on the 10 most

sensitive SWAT parameters of the headwater catchment. The comparison of simulated and ob-
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Figure 6.2: Relative sensitivity of SWAT model parameters in selected Headwater catchments

served streamflow was analyzed on a monthly time series. For each catchment, the simulation

was performed for 1,000 runs in SWAT-CUP 2012. Different calibration periodswere considered

for each selected headwater catchment, depending on the availability and quality of streamflow

data during the simulation period (1987 to 2016).

In this study, four statistical performance metrics were calculated during calibration to assess the

accuracy and performance of the SWAT model simulation for six headwater catchments in the

WSRB. These statistical measures were designed to provide comprehensive information about

the model’s performance. The results of the statistical performance measures and the scatter plot

for the calibration period are presented in Table 6.6 and Figure 6.3, respectively.

In the Errer catchment, the results indicated a good fit between the model simulations and ob-

served streamflow (𝑅2 = 0.81, NS = 0.8), with a slight tendency to over-predict (PBIAS = 3.3).

Overall, the model’s performance was considered good (KGE = 0.89). In the Furuna catchment,

the model performed moderately well, with 𝑅2 = 0.65, NS = 0.64, PBIAS = 5.3%, and KGE

= 0.78. The model also showed a slight tendency to over-predict, as indicated by the positive

PBIAS value of 5.3%.
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For the Harero catchment, the 𝑅2, NS, and KGE values were greater than 0.5, indicating a rea-

sonable fit with the observed records. The catchment had a PBIAS value of 6.6, showing the

model slightly overpredicted the observed data by approximately 6.6%. In the Maribo catch-

ment, the 𝑅2 and NS values were above 0.7, indicating a relatively good fit with the observed

records. However, the model showed a significant overprediction tendency, as indicated by the

relatively high positive PBIAS value of 18.3%.

In the Robe catchment, the 𝑅2 and NS values were greater than 0.6, indicating a reasonable fit

with the observed data. Despite the model showing a notable overprediction tendency (PBIAS =

11.7%), the overall model performance was still considered relatively good (KGE = 0.78). In the

Wabi@Bridge catchment, the 𝑅2 and NS values were greater than 0.6, indicating a reasonable

fit with the observed data. The model showed a slight tendency to underpredict, as indicated by

the negative PBIAS value of -7.2%. Overall, the model’s performance was considered relatively

good, with a KGE value of 0.77.

Table 6.6: Performance measures for the SWAT model during calibration in headwater catchments

Catchment p-factor r-factor
Mean_sim StdDev_sim

𝑅2 NS PBIAS KGE(Mean_obs) (StdDev_obs)

Errer 0.87 1.69 3.02(3.13) 3.36(3.44) 0.81 0.8 3.3 0.89
Furuna 0.83 0.87 1.00(1.06) 1.15(1.26) 0.65 0.64 5.3 0.78
Harero 0.77 1.21 1.95(2.09) 1.46(1.60) 0.60 0.57 6.6 0.75
Maribo 0.71 0.91 2.44(2.99) 2.70(3.29) 0.74 0.71 18.3 0.71
Robe 0.94 1.59 1.20(1.36) 1.50(1.64) 0.69 0.68 11.7 0.78
Wabi@bridge 0.94 2.11 7.28(6.79) 4.88(5.37) 0.65 0.63 -7.2 0.77

Overall, the model demonstrated varying levels of performance across the different headwater

catchments in the WSRB during the SWAT model calibration. The Errer and Robe catchments

exhibited the best overall performance, with higher 𝑅2, NS, and KGE values, indicating a better

fit and greater accuracy in predicting the observed data. The Furuna, Harero, and Wabi@bridge

catchments showed moderate performance, while the Maribo catchment had the lowest overall

performance, primarily due to a relatively high PBIAS value, indicating significant overpredic-

tion.

After calibrating the model for each headwater catchment, it was validated against an indepen-

dent data set that was not used during the calibration. The validation used the best parameter
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range identified during the calibration period. Similar performance statistics and scatter plots

were employed during the validation period, considering different periods for each headwater

catchment and a similar number of simulations. The results of the statistical performance mea-

sures and scatter plots during validation period are presented in Table 6.7 and Figure 6.4, re-

spectively.

In the Errer catchment, the results demonstrated a good fit between the model predictions and

observed data, with 𝑅2 = 0.72 and NS = 0.71, and a slight tendency to overestimate (PBIAS =

5.4). Overall, the model’s performance was considered good, with a KGE of 0.80. In the Furuna

catchment, the model performed relatively poorly, with 𝑅2 = 0.49 and NS = 0.49. A minimal

underestimation tendency was indicated by a negative PBIAS value of -1.5%. Despite this, the

KGE value showed good model performance (KGE = 0.62). For the Harero catchment, the 𝑅2,

NS, and KGE values were greater than 0.5, suggesting a satisfactory fit with the observed data.

However, the model showed a notable underestimation, evident from the substantial negative

PBIAS value of approximately -17.2%.

In the Maribo catchment, the 𝑅2 and NS values were 0.55 and 0.47, respectively, indicating a

relatively poor fit with the observed data. The model also showed a significant overprediction

tendency, with a relatively high positive PBIAS value of 13.0%. However, the KGE value was

within the acceptable range (KGE= 0.71). In the Robe catchment, 𝑅2 andNS values were greater

than 0.6, indicating a reasonable fit with the observed data. The model had an overestimation

tendency, highlighted by a positive PBIAS of 3.1%. Despite this, the overall model performance

was relatively good (KGE = 0.78). Similarly, in the Wabi@bridge catchment, 𝑅2 and NS values

surpassed 0.6. There was a slight underestimation tendency, shown by the negative PBIAS of

-7.4%. Overall, the model performed well, as reflected by the KGE value of 0.71.

Table 6.7: Performance measures for the SWAT model during validation in headwater catchments

Catchment p-factor r-factor Mean_sim
(Mean_obs)

StdDev_sim
(StdDev_obs)

𝑅2 NS PBIAS KGE

Errer 0.67 1.33 2.56(2.70) 2.74(3.11) 0.72 0.71 5.4 0.80
Furuna 0.71 1.19 1.48(1.46) 1.01(1.30) 0.49 0.49 -1.5 0.62
Harero 0.75 1.21 2.34(2.00) 1.68(1.60) 0.61 0.49 -17.2 0.72
Maribo 0.77 1.18 2.63(3.02) 3.03(3.04) 0.55 0.47 13.0 0.71
Robe 0.90 1.15 1.07(1.10) 1.12(1.28) 0.68 0.67 3.1 0.78
Wabi@bridge 0.74 1.57 10.07(9.38) 6.15(7.95) 0.69 0.68 -7.4 0.71
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Figure 6.3: Scatter plot between observed and simulated streamflow during the calibration phase

Figure 6.4: Scatter plot between observed and simulated streamflow during the validation phase
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6.3.4 Model Uncertainty

Hydrological model inherently introduces uncertainties, primarily due to simplification of the

model structure, input data variability, and parameter uncertainty (Abbaspour, 2015). These un-

certainties must be acknowledged, and it is important to recognize that not all can be precisely

quantified. Therefore, the findings of this research should be approached with due caution. A

valuable benchmark for assessing the model’s performance is comparing it against the uncer-

tainties present in the available field observations (Refsgaard and Henriksen, 2004). Figures 6.5

and 6.6 illustrate the 95% Prediction Uncertainty (95PPU) bands of the model during both the

calibration and validation periods for each headwater catchment.

(a) (b)

(c) (d)

(e) (f)

Figure 6.5: 95PPU band plot during the calibration period for (a) Errer (b) Furuna (c) Harero (d) Maribo (e) Robe

(f) Wabi@bridge

To evaluate the performance of the SWAT model, the p-factor and r-factor were used, based on

the 95% prediction uncertainty (95PPU) band. The results are presented in Tables 6.6 and 6.7
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for the calibration and validation phases, respectively. During calibration, the p-factor, which

represents the percentage of measured data falling within the 95PPU band, ranged from 0.71 at

Maribo to 0.94 at Robe andWabi@bridge. The r-factor, indicating the width of the 95PPU band,

ranged from 0.87 at Furuna to 2.11 at Wabi@bridge.

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: 95PPU band plot during the validation period for (a) Errer (b) Furuna (c) Harero (d) Maribo (e) Robe

(f) Wabi@bridge

During the validation phase, the p-factor ranged from 0.67 at Errer to 0.90 at Robe, while the

r-factor varied from 1.15 at Robe to 2.11 at Wabi@bridge headwater catchment. According

to Abbaspour et al. (2018), it is recommended that the p-factor should exceed 0.70 and the r-

factor should remain below 2 for monthly flow simulations. Overall, the p-factor values were

within the recommended range during both calibration and validation periods for monthly flow,

except for the Errer catchment. Similarly, the r-factor values were within the recommended

limits during calibration and validation for monthly flow, except for theWabi@bridge catchment.
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This discrepancy highlights the high uncertainty in simulated streamflow, likely stemming from

various sources of error. In summary, the SWAT model simulations generally showed favorable

agreement between observed and simulated flows across all simulated headwater catchments.

6.4 Conclusion

The SWAT model simulation was conducted and evaluated for six headwater catchments in the

Wabi Shebelle River Basin (WSRB). The study included sensitivity analysis of model parame-

ters, calibration, validation, and uncertainty analysis using the SUFI-2 algorithm within SWAT-

CUP. During calibration and validation, the NS efficiency served as the objective function, com-

puted by comparing simulated and observed monthly streamflow data. Sensitivity analysis con-

sidered sixteen SWAT model parameters, with ten selected for subsequent calibration and val-

idation. Graphical and statistical techniques were employed to assess the model’s performance

during both calibration and validation phases.

Statistical evaluation of the SWAT model performance was carried out across all selected head-

water catchments, using metrics including 𝑅2, NSE, PBIAS, and KGE. Results from this evalu-

ation during both the calibration and validation periods demonstrated satisfactory performance

meeting acceptable criteria. In addition to statistical assessments, the model’s performance was

visually inspected, revealing a generally uniform distribution on scatter plots, albeit with some

exceptions observed at higher and lower values. To assess simulation uncertainty, an evalua-

tion was conducted to determine how well the simulation results fit within the 95% Prediction

Uncertainty (95PPU) band (p-factor), and the average width of this band (r-factor). These eval-

uations indicated that the results fell within acceptable ranges for the majority of the headwater

catchments evaluated in this study.

The models’ underperformance may be attributed to inadequate spatial and temporal distribu-

tion of input data during the modeling process. Uneven distribution of meteorological stations

across the basin poses challenges, potentially leading to diminished model performance during

calibration and validation. Additionally, maintaining consistent land cover and soil properties

throughout simulation periods significantly impacts the precision of streamflow projections in

the basin. Moreover, shortcomings in gauge station maintenance and observational oversight

by personnel could further contribute to model underperformance (Haile et al., 2022). These

factors collectively underscore the challenges in achieving optimal model outcomes.

133



In conclusion, the SWAT model demonstrated strong performance across all evaluation metrics

within the six selected headwater catchments of the Wabi Shebelle River Basin (WSRB). This

highlights the model’s robustness, especially for smaller catchments. Additionally, numerous

studies, both in Ethiopia and internationally, have evaluated the SWAT model across varied hy-

droclimatic, topographic, and landscape settings, consistently reporting performance that meets

or exceeds acceptable standards. In the subsequent chapter, all calibrated SWAT model parame-

ters will remain constant to assess the impacts of land use land cover (LULC) and climate change

on future streamflow in the selected headwater catchments.
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Chapter 7

Hydrological Impact of Climate and Land
Use Land Cover Change in Headwater

Catchments

7.1 Overview

Rivers and streams play a crucial role in flood prevention and mitigating various damages caused

by climate change and human activities (Kale and Sönmez, 2019). In Ethiopia, headwater

streams, although the smallest components of river and stream networks, comprise the majority

of river due to the country’s mountainous terrain. These headwater catchments, situated at high

altitudes with substantial rainfall, serve as the primary freshwater sources for the basin.

The combined impact of climate and land use land cover (LULC) change on headwater catch-

ments in Ethiopia has been insufficiently studied. Most hydrological research in the country

has focused on potential streamflow alterations due to climate change, with an emphasis on the

Abaya/Nile and Awash River basins. Consequently, there is a significant gap in understanding

the comprehensive effects of both climate and LULC change on hydrological components in

Ethiopian headwater catchments. Research in this area has been limited, with only a few studies

addressing this critical issue. One notable study by WaleWorqlul et al. (2018) examined the im-

pact of climate change on water availability and variability in two headwater catchments of the

upper Blue Nile basin. However, further research is needed to gain a more holistic understand-

ing of the interactions between climate and LULC change in Ethiopian headwater catchments.

The insights gained from assessing the potential impacts of climate change, land use land cover



(LULC) change, and their combined effects are crucial for advancing nature-based mitigation

and adaptation measures and sustainable environmental planning. These measures are consis-

tent with the Paris Climate Agreement, highlighting the importance of nature-based strategies for

climate change mitigation and adaptation. This study provides valuable knowledge for compre-

hensively understanding headwater catchments within the dynamic interplay of changing climate

and LULC due to both natural and human factors. By exploring these complex interactions, the

research offers essential information to inform strategic decision-making and the implementation

of effective measures to address environmental challenges and promote sustainability.

7.2 Scenario Development

7.2.1 Impact of Climate Change Scenario

To investigate the impacts of climate change on six headwater catchments, a structured approach

with a series of interconnected steps was adopted. First, the ensemble means of the eight CMIP6

GCMs were subjected to downscaling and bias-correction procedures. These processed cli-

mate datasets were then used in hydrological impact analyses. The study examined four distinct

CMIP6 shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) across

three future periods within the 21st century: Q2 (2026–2050), Q3 (2051–2075), and Q4 (2076–

2100). This temporal division allowed for a comprehensive assessment of the effects of climate

change on six headwater catchments in the WSRB.

For a detailed explanation of the methodology, including climate model selection, downscaling,

and bias correction, refer to Chapter 4. Throughout the simulation, land use land cover and

calibrated SWAT model parameters were kept constant, using the year 2000 LULC data as the

baseline. Additionally, a calibrated model covering the period from 1990 to 2014 served as the

baseline simulation. The changes resulting from climate change were quantified by calculating

the percentage change in the annual mean streamflow relative to the baseline period, and these

findings were subsequently presented for each headwater catchment.

7.2.2 Land Use Land Cover Change Scenario

To study the impact of Land Use Land Cover (LULC) changes on mean streamflow, two distinct

LULC datasets representing the years 2020 and 2040 were used for six selected headwater catch-

ments. Detailed procedures for image classification and prediction for these years are explained

in Chapter 5. As a reference point, LULC data from 2000, derived through hybrid classification
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techniques (also detailed in Chapter 5), was used in alignment with historical climate data from

1990 to 2014. A baseline simulation was established using a calibrated SWAT model cover-

ing this period. To quantitatively assess the impacts of LULC changes, the percentage variation

in annual mean streamflow relative to the baseline period was calculated for each headwater

catchment, and the findings were summarized in tables.

7.2.3 Integrated Impact of Climate and LULC Change Scenario

To comprehensively investigate the integrated impact of climate change and land use land cover

(LULC) changes in six headwater catchments within the WSRB, using projected climate change

and LULC datasets. The approach utilized the ensemble mean of eight CMIP6 GCMs across

four future projection scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) during three

future periods: Q2 (2026–2050), Q3 (2051–2075), and Q4 (2076–2100). Two LULC datasets

were used, representing 2020 and 2040 years. The LULC data for 2020 were combined with the

Q2 (2026-2050), while the LULC data for 2040 were integrated with Q3 (2051–2075) and Q4

(2076–2100) projected climate data. This approach allowed for the assessment of the sensitivity

of mean streamflow in headwater catchments to the combined impact of future climate condi-

tions and LULC changes.

Throughout this simulation, consistency was maintained by keeping the calibrated parameters of

the SWAT model constant. The year 2000 LULC dataset was used as the baseline, aligning with

historical climate data available from 1990 to 2014. The calibrated SWATmodel for 1990–2014

served as the baseline streamflow simulation. To quantify changes due to these integrated factors,

the percentage variation in mean streamflow relative to the baseline period in each headwater

catchment was estimated, and the results were then presented.

7.2.4 Assumptions and Limitations

Even though periodic changes in soil properties are natural processes or can be aggravated by

land degradation, this study assumed that soil properties and landscape topography remain con-

stant.
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7.3 Result and Discussion

7.3.1 Impact of Climate Change on Streamflow

To assess the impact of climate change on annual streamflow within the highlands of the Wabi

Shebelle River Basin (WSRB), this study employed a comprehensive approach. Climate change

was evaluated by calculating the area-averaged values of observed climate data and the ensemble

mean of eight CMIP6 global climate model (GCM) datasets. This analysis included future sce-

narios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, examining changes in rainfall, minimum

temperature, and maximum temperature across six headwater catchments in the upper WSRB.

Three future periods of the current century—Q2 (2026-2050), Q3 (2051-2075), and Q4 (2076-

2100)—were applied to evaluate the changes. The study compared climate change indicators

in terms of the percentage change in precipitation and relative change in temperature against a

baseline period from 1990 to 2014. The results of this analysis are summarized in Table 7.1 for

precipitation and Table 7.2 for minimum and maximum temperatures.

Table 7.1: Projected future changes in rainfall based on multimodel ensemble mean

Catchment
SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Q2 Q3 Q4 Q2 Q3 Q4 Q2 Q3 Q4 Q2 Q3 Q4

Errer 12.8 12.1 9.5 10.3 15.7 15.9 9.0 14.2 21.4 11.9 20.7 28.0

Furuna 4.8 6.5 5.5 2.9 8.5 12.0 2.1 7.0 12.4 4.1 13.3 19.9

Harero 5.1 5.7 5.4 2.7 7.9 10.7 2.0 6.0 11.4 4.2 12.0 18.0

Maribo 4.8 6.5 5.5 2.9 8.5 12.0 2.1 7.0 12.4 4.1 13.3 19.9

Robe 16.7 16.6 16.1 13.9 19.1 22.0 12.6 19.5 23.9 16.1 24.0 31.0

Wabi@bridge -6.6 -7.1 -6.2 -9.3 -3.4 0.1 -9.9 -5.3 1.8 -7.7 1.9 8.4

Under the SSP1-2.6 scenario, Table 7.1 reveals a mixed pattern of precipitation changes across

all headwater catchments, with the exception of Wabi@bridge. These catchments generally dis-

played a decreasing trend in precipitation when compared to the baseline period. However, in the

remaining catchments, an increase in precipitation was observed during the Q2 and Q3 periods,

followed by a decrease in the Q4 period. In contrast, under the SSP2-4.5, SSP3-7.0, and SSP5-

8.5 scenarios, precipitation exhibited a consistent upward trend throughout all studied periods,

except in the case of the Wabi@bridge catchment. The findings also show a consistent increas-

ing trend for both minimum and maximum temperature in all studied headwater catchments

Table 7.2. The minimum temperature exhibited a larger increase compared to the maximum
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Table 7.2: Projected future Tmin and Tmax change using multimodel ensemble in selected headwater catchments

Catchment
SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Q2 Q3 Q4 Q2 Q3 Q4 Q2 Q3 Q4 Q2 Q3 Q4

Tmax

Errer 0.29 0.37 0.48 0.27 0.61 0.88 0.33 0.77 1.17 0.42 0.69 0.94
Furuna 0.42 0.46 0.53 0.38 0.68 0.89 0.40 0.77 1.10 0.52 0.72 0.88
Harero 0.37 0.42 0.49 0.34 0.63 0.85 0.36 0.73 1.06 0.48 0.68 0.85
Maribo 0.42 0.46 0.53 0.38 0.68 0.89 0.40 0.77 1.10 0.52 0.72 0.88
Robe 0.43 0.50 0.55 0.42 0.67 0.88 0.43 0.76 1.09 0.53 0.75 0.91
Wabi@bridge 0.67 0.73 0.79 0.63 0.95 1.19 0.66 1.07 1.45 0.79 1.02 1.21

Tmin

Errer 0.39 0.42 0.50 0.39 0.68 0.86 0.43 0.85 1.17 0.50 0.93 1.31
Furuna 0.53 0.55 0.65 0.57 0.95 1.24 0.67 1.27 1.64 0.73 1.36 1.75
Harero 0.60 0.63 0.72 0.64 0.99 1.25 0.73 1.27 1.61 0.81 1.37 1.73
Maribo 0.53 0.55 0.65 0.57 0.95 1.24 0.67 1.27 1.64 0.73 1.36 1.75
Robe 0.59 0.60 0.69 0.61 0.93 1.18 0.70 1.19 1.53 0.76 1.28 1.65
Wabi@bridge 0.85 0.87 0.95 1.26 1.69 1.98 1.35 2.00 2.43 1.47 2.14 2.59

temperature. These climate shifts are anticipated to significantly impact the hydrological cycle,

leading to alterations in streamflow and potentially affecting the availability of freshwater re-

sources within a catchment.

The results of this study alignwith previous research, indicating varying patterns of precipitation—

decreasing (Abebe and Kebede, 2017), mixed (Tesfaye et al., 2014; WaleWorqlul et al., 2018),

and increasing (Gurara et al., 2021) across all projection scenarios. Additionally, a consistent

trend of rising minimum and maximum temperatures has been observed throughout the country

(Abebe and Kebede, 2017; Ayele et al., 2016; Taye et al., 2018; Tesfaye et al., 2014;WaleWorqlul

et al., 2018). Variations in these findings may be attributed to differences in climate model se-

lection and the methods used for downscaling and bias correction.

To study the impact of climate change on streamflow, the calibrated SWAT model was executed

using the ensemble mean of eight CMIP6 GCMs under four future scenarios across three 25-

year periods for six headwater catchments in theWSRB. The future scenarios included SSP1-2.6,

SSP2-4.5, SSP3-7.0, and SSP5-8.5. This study compared the baseline period (1990-2014) with

three future periods: Q2 (2026-2050), Q3 (2051-2075), and Q4 (2076-2100). The changes in

streamflow were assessed on an annual average timescale, and the results are presented in Table
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7.3.

Across all headwater catchments and under the four future prediction scenarios, a consistent in-

crease in streamflow was observed for all study periods, except for the Wabi@bridge catchment

(see Table 7.3). The Wabi@bridge catchment presented mixed outcomes. Specifically, under

the SSP1-2.6 scenario, streamflow decreased during all three future periods compared to the

baseline. In the remaining scenarios, streamflow decreased during the Q2 period but increased

during the Q3 and Q4 periods.

A similar pattern emerged in the Errer catchment under the SSP2-4.5 scenario, while the Fu-

runa, Harero, Maribo, and Robe catchments demonstrated a consistent increase in streamflow

across all periods and scenarios. Under the SSP3-7.0 and SSP5-8.5 scenarios, a continuous

rise in streamflow was observed in all headwater catchments except for Wabi@bridge. For

Wabi@bridge, streamflow decreased during Q2 but increased during Q3 and Q4 relative to the

baseline period.

The observed patterns in streamflow align with the identified precipitation trends, reflecting

overall consistency. In catchments where precipitation is projected to increase under all future

scenarios, streamflow also tends to increase. Conversely, in catchments where precipitation is

expected to decline, streamflow tends to decrease. These findings are consistent with results re-

ported by various researchers in different parts of the country. Previous studies have documented

decreasing streamflow (Taye et al., 2018; Tesfaye et al., 2014), mixed trends (Ayele et al., 2016),

and increasing streamflow (Gurara et al., 2021), highlighting the sensitivity of streamflow pat-

terns to changes in precipitation across diverse geographical regions.

7.3.2 Land Use Land Cover Change Impact on Streamflow

With historical climate data (1990 to 2014) and SWAT-calibrated parameters held constant, this

study aimed to evaluate the impact of Land Use Land Cover (LULC) changes on the average

streamflow in six headwater catchments. The approach involved altering LULC maps for the

years 2000, 2020, and 2040 while keeping all other variables constant. The annual mean stream-

flow for each scenario was then computed and compared with the baseline simulation of the

SWAT model using the 2000 LULC data. The summarized results of this simulation are pre-

sented in Table 7.4.
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Table 7.4: Impact of LULC Change on mean Streamflow in Headwater Catchments

Catchments
Average streamflow for the period Change in streamflow (%)

2000 (Baseline) 2020 2040 2000 to 2020 2000 to 2040

Errer 1.77 1.80 1.20 1.98 -32.17

Furuna 1.33 1.31 1.31 -0.93 -1.51

Harero 2.00 2.03 2.02 1.33 0.87

Maribo 2.66 2.72 2.70 2.31 1.43

Robe 1.44 1.44 1.43 0.27 -0.60

Wabi@bridge 9.17 9.48 9.49 3.32 3.45

The results highlight variations in streamflow responses to LandUse LandCover (LULC) changes,

with the Errer catchment demonstrating a larger percentage change during 2020 and 2040 com-

pared to the baseline period. Specifically, between 2000 and 2020, an increasing trend in

streamflow was observed in all headwater catchments except for the Furuna catchment, with

streamflow changes ranging from -0.93% to 3.32%. The most significant change occurred in

the Wabi@bridge catchment, with a 3.32% increase.

However, a mixed pattern emerged between 2000 and 2040. The Errer, Furuna, and Robe catch-

ments exhibited a projected decrease in streamflow, while the Harero, Maribo, andWabi@bridge

catchments showed an increase. Notably, the Errer catchment experienced a substantial shift in

streamflow between 2020 and 2040, ranging from a 1.98% increase to a significant 32.17% de-

crease compared with the baseline period of 2000.

The LULC changes simulation resulted in a mixed trend in mean streamflow across all head-

water catchments in the WSRB. The Harero, Maribo, and Wabi@bridge catchments showed

increasing streamflow, while the Furuna catchment exhibited a decrease. The Errer and Robe

catchments displayed an increasing trend followed by a decrease when using the 2020 and 2040

LULC data, respectively. It’s essential to note that a catchment’s response to LULC alterations is

closely tied to its specific characteristics and size. These factors can modify the degree to which

LULC changes affect streamflow, making it crucial to consider catchment-specific attributes

when assessing hydrological responses.
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7.3.3 Integrated Impact of Climate and LULC Change on Streamflow

In addition to individually examining the impacts of climate change and land use land cover

(LULC) change on mean streamflow, this study adopted a holistic approach by combining these

two factors to assess their combined hydrological response in six headwater catchments within

the WSRB. Recognizing the simultaneous occurrence of these conditions in the real world, the

objective was to understand their combined effects on the streamflow. To estimate the combined

impacts of LULC and climate change on streamflow, seven simulations were conducted, incor-

porating four climate change and three LULC scenarios.

This study focuses on three future periods in the 21st century: Q2 (2026–2050), Q3 (2051–

2075), and Q4 (2076–2100). The results were compared with a baseline scenario involving cli-

mate data from 1990 to 2014 and LULC data from 2000. Table 7.5 provides a concise overview

of these combinations, revealing the complex relationship between climate change and LULC

change, and their cumulative influence on streamflow in the investigated headwater catchments.

The findings fromTable 7.5 highlight that the Errer and Robe catchments exhibit a comparatively

higher sensitivity to the combined effects of climate change and land use land cover (LULC)

change. These catchments consistently demonstrated an increasing streamflow trend under all

Shared Socioeconomic Pathways (SSPs) across all future periods. For the Furuna, Harero, and

Maribo catchments, a modest overall increase in annual mean streamflow was observed under

all SSP scenarios and future periods, except for Furuna under SSP3-7.0 during Q2, where a de-

crease was found.

In contrast, Wabi@bridge displayed mixed results regarding the impact of climate and LULC

changes on annual mean streamflow. Specifically, during Q2, all SSP scenarios indicated a

decreasing pattern in the Wabi@bridge catchment. A similar decreasing trend was observed

under the SSP1-2.6 scenario for all periods. These results underscore the variability of impacts

across different landscapes and periods.

7.4 Conclusion

In this chapter, a calibrated and validated SWATmodel was employed to simulate future changes

in streamflow over three distinct periods: Q2 (2026–2050), Q3 (2051–2075), and Q4 (2076–

2100). The simulation incorporated three input conditions: climate change, land use land cover
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(LULC) change, and their combined influence. To project future climate change, the ensemble

mean of eight CMIP6 GCMs across four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-

8.5) was utilized for headwater catchments. These models were subsequently downscaled and

bias-corrected to ensure their applicability in hydrological impact analysis.

For predicting future LULC, the MLP-ANN transition algorithm, using six explanatory factors,

was employed. This algorithm was crucial in projecting LULC changes for the year 2040 across

the six headwater catchments. By integrating these components into the SWATmodel, the study

aimed to comprehensively assess and understand potential alterations in streamflow dynamics

over the specified future periods, considering the impacts of climate change, LULC change, and

their combined effects.

The study reveals that, in the Errer and Furuna catchments, the combined impact of climate and

land use land cover (LULC) change led to a reduction in streamflow compared to the impact of

climate change alone across all SSPs scenarios and future periods. Conversely, in the Harero

catchment, the combined impact resulted in greater streamflow than the impact of climate change

alone across all SSP scenarios and future periods. In the Robe catchment, the separate impact

of climate change induced more significant changes than the combined impact under SSP1-2.6,

SSP2-4.5, and SSP3-7.0 during the Q2 period (2026-2050). Notably, Maribo and Wabi@bridge

exhibited similar trends compared to the baseline period owing to the impacts of climate change

and the combined impact of climate and LULC change.

In SSP1-2.6 and SSP2-4.5 scenarios, the impact of climate change on streamflow exceeded

the combined impact of climate and LULC change for all future periods in the Maribo and

Wabi@bridge catchments. Conversely, in the SSP3-7.0 and SSP5-8.5 scenarios, the impact of

climate change was less than the combined impact on streamflow throughout all future periods.

Overall, the study found mixed results between the impacts of climate change and the combined

impacts of climate and LULC change in headwater catchments. The examination of the separate

impact of land use land cover change resulted in an insignificant change in future mean stream-

flow. However, a significant change was observed due to climate change, with precipitation

change identified as the most crucial driving factor for the alteration of mean streamflow in all

headwater catchments.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

This study focused on evaluating hydro-climatic trends, climate change, and the potential im-

pacts of future climate change and land use land cover (LULC) dynamics on the hydrological

response of headwater catchments in the WSRB in Ethiopia. To achieve this, a comprehensive

analysis of historical hydro-climatic seasonal and annual variability and trends within theWSRB

was conducted, utilizing two non-parametric statistical methods: the modified Mk test and the

Sen Slope estimator. The modified MK test was employed to assess monotonic trends in the

seasonal and annual rainfall, minimum and maximum temperatures, and streamflow. The Sen

Slope estimator was used to quantify the magnitude of the changes in the time series. The basin

was spatially discretized into local agro-climatic zones, with each zone representing the avail-

able climatic data.

The assessment revealed a mixed trend in rainfall and maximum temperature during the rainy

season and annual time series. In contrast, the minimum temperature exhibited a clear increasing

trend, except for ACZ7, which is located in the highland part of the basin. Similarly, streamflow

exhibited mixed trends in the seasonal and annual analyses. Out of the four streamflow gauging

stations, two showed increasing trends and two showed decreasing trends during spring seasons.

In contrast, during the summer season and the annual flow, the three stations displayed an in-

creasing trend. These findings provided valuable insights into the trends and changes associated

with rainfall and temperature in the WSRB.

The assessment aimed to evaluate the scope of climate change by examining rainfall and min-

imum and maximum temperatures under four shared socioeconomic pathway (SSPs) scenarios



across all Agro-Climatic Zones (ACZs) during three future time periods. Future climate data

projected from eight CMIP6 Global Climate Models (GCMs) corresponding to SSP scenarios

(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were utilized. The selection of GCMs is con-

sidered to have superior spatial and temporal resolutions from diverse global climate modeling

institutions. Downscaling and bias correction procedures were applied at each meteorological

station to refine the data. This involved a distance-weighted average remapping interpolation

and non-parametric quantile mapping. Recognizing the uncertainties associated with climate

models, a multi-model ensemble mean approach was employed on selected eight CMIP6 GCMs

for climate change and impact studies. The findings indicate a projected increase in the mean

annual precipitation during Q2, Q3, and Q4 for all emission scenarios across each ACZ. Sim-

ilarly, the mean annual maximum and minimum temperatures are expected to increase during

the same future periods in each ACZ. Notably, the rate of change in the minimum temperature

is higher than that of the maximum temperature in nearly all the ACZs.

In addition, this research focused on investigating the long-term dynamics of land use land cover

changes in the upstream and central parts of the WSRB while also projecting future LULC

changes. The study employed the Semi-Automatic Classification Plugin (SCP) within the QGIS

environment, utilizing hybrid classification techniques, specifically, maximum likelihood algo-

rithms. Landsat 5 TM and Landsat 8 OLI satellite images from 1990, 2000, 2010, and 2020 were

processed to produce land use land cover maps. The analysis uncovered significant changes in

land use land cover over the past 30 years (1990 – 2020) within the basin. Notable transforma-

tions included the depletion of natural vegetation, expansion of cultivated and built-up areas, and

a slight increase in bare land, largely at the expense of forests and shrublands. The MLP-ANN

model was employed to project future changes, predicting an anticipated increase in built-up

areas, dense shrubs, grasslands, agricultural land, and barren land by 2040. Conversely, water

bodies, forestland, and open shrublands are expected to undergo substantial reduction.

Hydrological models play a crucial role in understanding and simulating the processes within a

catchment, particularly for sustainable management of natural resources, with a primary focus

on water resources. Among these models, the SWAT model serves as a continuous-time, semi-

distributed, process-based river basin model. Key spatial inputs encompass a 30-meter Digital

Elevation Model (DEM), soil data, land use, and stream network layers with similar projections.

Temporal inputs include rainfall, minimum and maximum temperatures for model simulation,
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and streamflow for calibration and validation. During the calibration process, 10 model param-

eters were identified as essential for representing the hydrological dynamics of the headwater

catchments, with a particular emphasis on parameters related to surface runoff processes. CN2

emerged as the most sensitive parameter influencing streamflow simulation across all headwater

catchments. Graphical and statistical metrics of model performance and uncertainty indicated

that the model effectively simulated streamflow within an acceptable range. The calibrated and

validated SWATmodel was subsequently employed to predict hydrological responses to climate

change, land use land cover alterations, and their integrated impacts in six headwater catchments

within the WSRB.

Subsequently, to assess the impacts of climate and land use land cover changes on streamflow, the

1990 to 2014 runoff model was utilized as a baseline for comparison. During this analysis, the

calibrated parameters remained constant, and climate and/or land use land cover changes were

incorporated. Climate data were replaced with the ensemble mean of eight CMIP6 Global Cli-

mateModels (GCMs) under four Shared Socioeconomic Pathways (SSPs): SSP1-2.6, SSP2-4.5,

SSP3-7.0, and SSP5-8.5, spanning three future periods - Q2 (2026-2050), Q3 (2051-2075), and

Q4 (2076-2100). The results revealed that the observed climate and land use land cover changes

contributes to an increase in annual mean streamflow across all headwater catchments. How-

ever, projected climate changes projected to have a higher impact than observed land use land

cover changes. Furthermore, the combined impact of climate and land use land cover changes

demonstrated a more substantial increase in streamflow across all studied headwater catchments.

8.2 Recommendations

The findings of this research hold promising implications for the development of nature-based

solutions aimed at mitigating the impacts of climate change and addressing the challenges aris-

ing from rapid population growth, which exerts considerable pressure on the natural resources

within the basin/catchment. The insights gained from this analysis have the potential to inform

and enhancemanagement policies, particularly those focused onmitigating the changes in hydro-

logical responses and their associated consequences. Based on these results, decision-makers,

including land use planners, can implement effective strategies. For instance, measures to con-

trol the rapid expansion of agriculture and address land degradation in the upstream, as well as

in the central parts of the basin, can be devised and executed to ensure sustainable resource use

and ecosystem resilience.
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Advancements in climate science and enhanced computational efficiency of climate models

have contributed to significant improvements in the understanding of climate dynamics. Con-

sequently, there is an increased capability to assess the impacts of climate change and human

activities on the environment. It is imperative to conduct continuous examinations to evaluate

the availability of water resources, as this is crucial for proper functioning of the environment.

By regularly monitoring and assessing evolving climate scenarios, a better comprehension of the

implications for water resources can be achieved, and informed decisions can be made to ensure

the sustainable management of the environment.

A significant limitation of Global Climate Models (GCMs) for impact studies is their coarse spa-

tial resolutions. To address this, spatial downscaling and bias correction of climate models are

crucial following established methods. However, the absence of a standard method introduces

subjectivity to these processes. Therefore, to enhance the accuracy of forecasting hydrological

responses to climate change in the basin/catchment, it is imperative to assess projections from

different methods, including dynamic downscaling.

Beyond focusing solely on the annual mean streamflow, it would be beneficial to consider param-

eters such as minimum and maximum annual flows, extreme flow events, and frequency of rainy

days. Moreover, to offer more meaningful representations of future hydrological responses, it

is advisable to extend the analysis to monthly and seasonal periods by considering the available

information. This comprehensive approach will contribute to a better understanding of the com-

plicated interactions between climate patterns, land use land cover changes, and hydrological

dynamics in the WSRB.

While projecting future land use land cover changes using a land use dynamics model, it is

crucial to acknowledge that such models may not precisely estimate actual future changes. To

enhance the accuracy and relevance of these projections, it is recommended to supplement the

projection models with a comprehensive development plan.This plan should consider all locally

anticipated socioeconomic changes expected in the future. By integrating these aspects, the

modeling process becomes more robust thereby providing a more realistic foundation for future

scenarios.
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River discharge/Streamflow data for the basin are spatially and temporally limited. Installing au-

tomatic gauging stations in strategic locations, coupled with skilled personnel and proper main-

tenance, can significantly enhance data availability and quality. Additionally, improving the

distribution of meteorological stations, particularly in the central and lower basins, is crucial

for future water resource assessment and planning. Establishing a publicly accessible hydro-

climatic data database addresses challenges in data quality and accessibility, promoting more

effective modeling and sustainable water resource management.

This study incorporated multiple models and their respective outputs, each accompanied by a

certain degree of uncertainty. Consequently, it is crucial to approach the results with caution,

viewing them as indicative of potential future trends rather than as precise predictions. To en-

hance the comprehensiveness of the study, future research should expand its scope to include

variations in soil and other climate variables, along with changes in precipitation and tempera-

ture. Moreover, there is a need to delve into the impacts of climate change on socio-economic

sectors reliant on water resources. This broader approach will contribute to a more holistic

understanding of the complex dynamics involved in climate change.
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Appendices



Table A.1: List of meteorological stations used in each agroclimatic zones

Agroclimatic zone No Station Name Latitude Longitude Elevation (m) AnnRF (mm)
ACZ1: Dry Bereha 1 Gode* 5.92 43.58 290 227.2
(Hot-lowlands) 2 Kelafo 5.60 44.21 246 166.2

3 Bisidmo 9.21 42.21 1379 679.9
4 Degahabour* 8.22 43.56 1070 326.3

ACZ2: Dry Kolla 5 Fafem 9.24 42.60 1450 596.7
(Lowlands) 6 Huse 8.66 41.85 1124 539.0

7 Kebri Dehar 6.73 44.27 505 289.0

ACZ5: Moist Kolla
(Lowlands)

8 Gololcha* 8.26 40.13 1372 1047.2

9 Babile 9.22 42.32 1657 630.1
10 Chinaksen 9.50 42.60 2062 557.4
11 Combolcha 9.43 42.12 2122 815.2
12 Fedis 9.13 42.08 1690 752.4

ACZ3: DryWeyna Dega 13 Gursum* 9.35 42.40 1900 806.9
(Midlands) 14 Haramaya 9.42 42.04 2020 800.3

15 Harar 9.31 42.12 1977 829.0
16 Jijiga 9.35 42.79 1775 589.5
17 Keberebeya 9.10 43.17 1738 381.3
18 Kersa 9.45 41.87 1995 760.3

19 Bedeno 9.12 41.64 2200 939.2
20 Bedessa* 8.91 40.77 1703 1047.4
21 Chelenko 9.39 41.56 2178 980.4
22 Deder 9.32 41.44 2290 980.7

ACZ6: Moist Weyna Dega 23 Delosebro 7.25 40.47 2200 971.5
(Midlands) 24 Gelemso 8.81 40.53 1739 974.8

25 Hirna 9.22 41.10 1822 971.6
26 Jara 7.37 40.50 2044 1126.6
27 Mechara 8.60 40.34 1780 1018.4

28 Adele 7.75 39.90 2466 816.2
29 Indeto* 7.57 39.90 2416 892.0

ACZ4: Dry Dega 30 Hunte 7.05 39.40 2380 774.9
(Highlands) 31 Kulubi 9.42 41.69 2419 824.0

32 Meraro 7.40 39.25 2940 875.0
33 Tereta 7.57 39.60 2350 777.7

34 Adaba 7.02 39.40 2420 920.9
35 Arsi Robe* 7.88 39.62 2441 926.0
36 Chole 8.14 39.90 2700 1070.7
37 Diksis 8.05 39.56 2724 1103.5
38 Edo Dodola 6.98 39.18 2450 1211.8

ACZ7: Moist Dega 39 Girawa 9.13 41.83 2479 936.2
(Highlands) 40 Gobesa 7.63 39.50 2400 1240.4

41 Kofele 7.07 38.80 2620 1002.4
42 Seletana 7.40 39.39 3120 1127.9
43 Seru 7.68 40.20 2469 1134.8
44 Sidika 7.63 39.81 2414 996.6
45 Ticho 7.81 39.52 2553 996.4
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Table A.2: Information on downloaded satellite images

Image (Sensor) Landsat 5 (TM) Landsat 5 (TM) Landsat 5 (TM) Landsat 8 (OLI)

Acquisition date 1990 2000 2010 2020

Path/Row

165/054 19900127 20000107 20100118 20210217

165/055 19900127 20000107 20100118 20210217

166/054 19901220 20000114 20100125 20210224

166/055 19901220 20000114 20100125 20210224

166/056 19901220 20000114 20100125 20210224

167/053 19901227 20000105 20100201 20210215

167/054 19901227 20000105 20100201 20210215

167/055 19901227 20000105 20100201 20210215

168/054 19910119 20000112 20110110 20190116

168/055 19910119 20000112 20110110 20190116
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Table A.3: Error matrix for 1990, 2000, 2010, and 2020 LULC in Upper and Central Wabi Shebele Basin

Classified Image
Reference Image

WtB BtU Forest OpSH DeSH GrSS AgRL BaRL Total UA Wi

19
90

WtB 31 0 0 0 0 0 0 0 31 1.00 0.00
BtU 0 28 0 2 0 0 0 0 30 0.93 0.00
Forest 0 0 42 0 1 1 0 0 44 0.95 0.02
OpSH 0 0 1 414 11 2 1 11 440 0.94 0.66
DeSH 0 0 1 2 97 1 0 0 101 0.96 0.11
GrSS 0 0 0 3 0 60 0 0 63 0.95 0.05
AgRL 0 0 2 8 1 0 103 0 114 0.90 0.14
BaRL 0 0 0 0 0 1 0 36 37 0.97 0.01

Total 31 28 46 429 110 65 104 47 860

PA 1.00 1.00 0.91 0.97 0.88 0.92 0.99 0.77

20
00

WtB 31 0 0 0 0 0 0 0 31 1.00 0.00
BtU 0 28 0 1 0 0 1 0 30 0.93 0.00
Forest 0 0 38 0 0 0 0 0 38 1.00 0.01
OpSH 0 0 0 439 8 2 2 5 456 0.96 0.69
DeSH 0 0 1 9 69 0 0 0 79 0.87 0.08
GrSS 0 0 0 3 0 50 0 0 53 0.94 0.04
AgRL 0 0 1 6 0 1 126 0 134 0.94 0.17
BaRL 0 0 0 2 0 0 0 37 39 0.95 0.01

Total 31 28 40 460 77 53 129 42 860

PA 1.00 1.00 0.95 0.95 0.90 0.94 0.98 0.88

20
10

WtB 30 0 0 0 0 0 0 0 30 1.00 0.00
BtU 0 26 0 0 0 1 3 0 30 0.87 0.00
Forest 0 0 34 2 0 0 0 0 36 0.94 0.01
OpSH 0 0 0 424 5 4 1 4 438 0.97 0.66
DeSH 0 0 0 9 53 0 1 0 63 0.84 0.05
GrSS 0 0 0 6 1 30 0 0 37 0.81 0.01
AgRL 0 0 0 20 0 2 162 0 184 0.88 0.25
BaRL 0 0 0 0 0 0 0 40 40 1.00 0.02

Total 30 26 34 461 59 37 167 44 858

PA 1.00 1.00 1.00 0.92 0.90 0.81 0.97 0.91

20
20

WtB 31 0 0 0 0 0 0 0 31 1.00 0.00
BtU 0 29 0 0 0 0 2 0 31 0.94 0.00
Forest 0 0 32 0 2 0 1 0 35 0.91 0.01
OpSH 0 0 1 408 4 1 6 8 428 0.95 0.64
DeSH 0 0 0 1 53 0 1 0 55 0.96 0.04
GrSS 0 0 0 5 0 32 1 0 38 0.84 0.01
AgRL 0 0 0 14 4 2 177 0 197 0.90 0.27
BaRL 0 0 0 1 0 0 1 42 44 0.95 0.02

Total 31 29 33 429 63 35 189 50 859

PA 1.00 1.00 0.97 0.95 0.84 0.91 0.94 0.84
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