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A B S T R A C T

This paper presents a scalable approximate block factorization preconditioner for mixed-
dimensional models in beam-solid interaction and their application in engineering. In particular,
it studies the linear systems arising from a regularized mortar-type approach for embedding
geometrically exact beams into solid continua. Due to the lack of block diagonal dominance of
the arising 2 × 2 block system, an approximate Block-LU preconditioner is used. It exploits the
sparsity structure of the beam sub-block to construct a sparse approximate inverse, which is
then not only used to explicitly form an approximation of the Schur complement, but also acts
as a smoother within the prediction and correction step of the arising Block-LU preconditioner.
The Schur complement equation is tackled with an algebraic multigrid method. Although, for
now, the beam sub-block is tackled by a one-level method only, the multi-level nature of
the computationally demanding Schur equation delivers a scalable preconditioner in practice.
In numerical test cases, the influence of different algorithmic parameters on the quality of
the sparse approximate inverse is studied and the weak scaling behavior of the proposed
preconditioner on up to 1000 MPI ranks is demonstrated. In addition, the robustness of the
proposed method regarding material parameters and geometric properties is shown, before the
preconditioner is finally applied for the analysis of steel-reinforced concrete structures in civil
engineering.

1. Introduction

Originating from evolution in nature or human design processes, thin fibers embedded into solid continua can enhance the
onstitutive or functional properties of systems in science, engineering, and biomedicine. Applications can be found in different
ields: In civil engineering for example, steel-reinforced concrete is used to amplify the load bearing capacity of concrete structures
uch as bridges. In aerospace engineering, fiber-reinforced composite materials are often used due to their unique combination
f a high stiffness, but low specific weight. In biological tissues, collagen fibers are distributed throughout the arterial walls of
he circulatory system. For all these application areas, finite element simulations can provide detailed insight in the system’s
ehavior and potentially assist in improving or optimizing the system’s design. While various mathematical models of fiber-enhanced
ontinua are available in literature, their efficient solution on parallel computing clusters has not been studied in detail. To this
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Fig. 1. Spectrum of modeling techniques for fibers embedded into three-dimensional solids [1].

end, this paper sets out to develop an efficient and scalable multi-level block preconditioning framework for a penalty-regularized
mixed-dimensional approach recently proposed by Steinbrecher et al. [1,2].

Fig. 1 illustrates the range of modeling techniques for fully embedded fibers in solid bulk volumes. On the one hand, homogenized
formulations as depicted in Fig. 1(a) incorporate all fiber information into the bulk constitutive law, usually leading to anisotropic
formulations with preferential directions along the fiber orientation [3,4]. On the other end of the spectrum, both bulk field and
fibers are resolved as three-dimensional (3D) continua, cf. Fig. 1(c), which allows the reuse of existing constitutive models and
finite element technology from classical 3D computational solid dynamics. This approach enables the analysis of very detailed
micro-mechanical features of individual fibers and the incorporation of advanced physical effects at the fiber-solid interface, though
it comes at significant computational cost. Finally, to unify the high model quality of fully resolved models with the efficiency of
homogenized models, fibers can be represented by dimensionally reduced structural models such as beams or trusses, which are
embedded at arbitrary positions into a 3D solid domain (cf. Fig. 1(b)). In such mixed-dimensional 1D/3D models, the bulk field still
portrays the same effects as in the fully resolved 3D model, but fibers are now reduced to a computationally efficient one-dimensional
(1D) representation, making such models good candidates to study fiber-enhanced continua at large scale.

For the enforcement of coupling conditions in mixed-dimensional models, embedded mesh techniques are required. Although the
imposition of constraints through Lagrange multipliers is well established in computational solid mechanics for both boundary-fitted
meshes [5,6] and embedded meshes [7,8] as well as in computational contact mechanics [9–12], the construction of stable Lagrange
multiplier spaces for mixed-dimensional beam-solid coupling still poses an open research question. Consequently, mixed-dimensional
models for solid problems so far either use a penalty regularization to enforce the fiber-solid coupling constraints [1,2,13–15],
employ a variationally consistent overlapping domain decomposition approach [16], or directly link embedded fibers to the
surrounding volume discretization via the extended finite element method (XFEM) [17,18]. Similarly, mixed-dimensional 1D/3D
odels are also available for other types of physics, e.g., in fluid-beam interaction (FBI) [19–21] to counteract 3D/3D fluid-solid
nteraction (FSI) models such as [22,23].
Naturally, computational benefits of mixed-dimensional 1D/3D models are expected, since beam models require much fewer

egrees of freedom (DOFs) than solid models to represent the embedded fibers. In [20], the mixed-dimensional approach reduces
he number of DOFs for fiber modeling by 96% while keeping the L2 error of the bulk field below 1.5%. Yet, the solution process
f mixed-dimensional models at large scale is not widely studied in literature, but will be tackled in this contribution. In particular,
hen using Krylov methods to iteratively solve the arising linear systems, suitable preconditioners are required to sufficiently
mprove the spectral properties of the linear system [24]. A few approaches can be found in literature: Block diagonal preconditioners
or saddle point systems arising from 1D/2D coupling are investigated in [25]. A simplified model problem of 1D/3D coupling
ielding a 3 × 3 saddle point system is studied in [26], where a fractional Laplacian is used to approximate the Schur complement and
block diagonal preconditioner is employed for the coupled problem. An additive multigrid preconditioner for the arising fractional
aplacian is proposed in [27]. With mixed-dimensional 1D/3D couplings as one application area of interface-driven multi-physics
roblems, uniform convergence, parameter robustness and scalability have been achieved through a suitable subspace splitting and
ustom smoothers in [28]. Based on the framework of operator preconditioning [29], robust preconditioners have been proposed
or 1D/3D domains coupled with Lagrange multipliers for applications in micro-circulation [30]. For 2 × 2 systems, the use of
uge–Stüben algebraic multigrid (AMG) methods to solve a Schur complement equation for the 3D bulk domain, while tackling
he 1D domain by a direct solver, is briefly discussed in [31]. For penalty-based 1D/3D models and in particular for beam models
erving as 1D models, preconditioners are yet to be developed.
In this paper, we will focus on our prior work on a regularized mortar-type embedding of geometrically exact nonlinear beams

nto 3D solids [1,2] and will devise scalable preconditioners for the arising systems of linear equations. We will study key properties
f the linear systems, in particular their loss of both diagonal dominance and block diagonal dominance due to the penalty
ontributions, and design a preconditioner that is mostly agnostic to these challenges. To this end, we will interpret the system
atrix containing solid and beam contributions as a 2 × 2 block matrix and employ approximate block factorizations to arrive at
Block-LU preconditioner. For the approximate inversion of the beam sub-block of the coupled system matrix, we will construct a
PAI [32], which will not only allow us to explicitly form an approximate Schur complement, but will also serve as a smoother within
he application of the Block-LU preconditioner. The original SPAI algorithm will be equipped with filtering and static enrichment
lgorithms to amplify its performance and robustness. To achieve scalability on parallel computing clusters, we will tackle the Schur
omplement equation itself with AMG methods from Trilinos/MueLu [33]. We will then study the computational performance and
emonstrate weak scalability, robustness under changes of physical parameters, and applicability to practical use cases in a series
2
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of numerical experiments and investigate savings in wall clock time due to the reuse of the preconditioner throughout the entire
load step. In sum, this contribution builds upon our prior work [1,2] and equips these models with scalable iterative solvers to
facilitate their efficient application to large models and systems with thousands of embedded fibers. Furthermore, this contribution
constitutes the first presentation of a scalable, preconditioned iterative solver for truly 1D/3D models applied to beam-solid coupling
with weak scalability demonstrated on a distributed memory cluster using the message passing interface (MPI) on up to 1000 MPI
ranks.

The remainder of this manuscript is organized as follows: Section 2 introduces the underlying mechanical problem of mixed-
dimensional couplings of slender fibers embedded into solid continua and outlines the finite element discretization and the resulting
linear systems. Relevant properties of these linear systems are then discussed in Section 3. The design of the preconditioner and its
building blocks, in particular the SPAI algorithm, will be detailed in Section 4 along with a brief comparison to existing methods
from literature. In Section 5, we will study the numerical properties of individual components of the preconditioner and assess its
erformance and scalability when applied to academic and engineering test cases. Section 6 will summarize our findings and hint
at future research directions.

2. Mixed-dimensional modeling of fiber/solid systems

Since this manuscript concerns itself with preconditioner development for the mixed-dimensional modeling of the interaction
of solid continua with slender fibers, we only give a brief introduction into the governing equations, discretization and coupling
approach presented in [1,2]. For a broader overview of the fundamentals of beam-solid interaction, the interested reader is referred
to [34].

2.1. Pure solid problem

The 3D solid bodies considered in this work are modeled as hyperelastic Boltzmann continua. The weak form of the equation of
elastostatics describing the deformation of the solid body is given as

𝛿𝑊  = ∫𝛺
𝑺 ∶ 𝛿𝑬 d𝑉 − ∫𝛺

𝒃 ⋅ 𝛿𝒖 d𝑉 − ∫𝛤
𝒕 ⋅ 𝛿𝒖 d𝐴 = 0

with 𝒖 being the solid displacement field, 𝑺 and 𝑬 representing the second Piola–Kirchhoff stress tensor and the Green–Lagrange
strain tensor, 𝒃 denoting the body forces, 𝒕 standing for the external traction field, and 𝛿 indicating virtual, but kinematically
admissible quantities in line with the concept of virtual work. Furthermore, 𝛺 is the solid domain and 𝛤  is the Neumann
boundary of the solid domain. In this work, all quantities denoted with an (⋅) are associated with the solid continuum. For the
spatial discretization of the solid domain, we employ displacement-based isoparametric finite elements interpolated by Lagrange
polynomials resulting in the following discretized linear system

𝐊
𝑠𝑠𝛥𝐝

 = −𝐟𝑠

to be solved in every iteration of the Newton solver. Therein, 𝐟𝑠 represents the nonlinear residual vector and 𝐊
𝑠𝑠 denotes its

linearization, i.e., the solid stiffness matrix. The discrete displacement vector and its increment are given by 𝐝 and 𝛥𝐝 , respectively.

2.2. Coupled beam-solid system with Simo–Reissner beam formulation

In the scope of this publication, Simo–Reissner (SR) and torsion-free Kirchhoff–Love (TF) beam theories are considered. With
respect to the coupled beam-solid problem, the SR beam theory results in the most general coupling formulation. We first describe
the coupled problem based on a SR beam formulation and defer the use of TF beam formulations to Section 2.3.

The general weak form for a 1D Cosserat continuum (applicable to SR and TF beam theory) is given by

𝛿𝑊  = 𝛿𝛱
𝑖𝑛𝑡,(⋅) − 𝛿𝑊 

𝑒𝑥𝑡 = 0,

where 𝛿𝛱
𝑖𝑛𝑡,(⋅) denotes the variation of the internal elastic energy function and 𝛿𝑊 

𝑒𝑥𝑡 is the external virtual work acting on the beam.
All quantities denoted with the superscript (⋅) are associated with beam contributions. The internal elastic energy for a SR beam,
i.e., a shear-deformable beam with six local modes of deformation, reads

𝛿𝛱
𝑖𝑛𝑡,SR = 1

2 ∫𝛺
𝛤 T𝑪𝐹𝛤 +𝛺T𝑪𝑀𝛺 d𝑠.

Here, 𝛤 represents the material deformation, 𝛺 the material curvature, and 𝐂𝐹 as well as 𝐂𝑀 are the respective constitutive matrices
for the translational and rotational deformation modes. We refer the interested reader to [35,36] for more details on the SR beam
theory and its finite element discretization.

The weak form of the beam is defined on the undeformed 1D centerline domain 𝛺. The spatial interpolation of the beam finite
elements is tailored to the particular beam model in order to ensure objectivity of the discrete formulation. The interpolation of the
beam centerline position employs 𝐶1-continuous third-order Hermite shape functions [36]. An objective interpolation of the finite
3

cross section orientations is a non-trivial task and results in a nonlinear and deformation-dependent interpolation strategy. For a
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more detailed description of this topic, the reader is referred to [36] and the references therein. The resulting linearized system of
a pure SR beam problem reads

(

𝐊
𝑟𝑟 𝐊

𝑟𝜃
𝐊

𝜃𝑟 𝐊
𝜃𝜃

)(

𝛥𝐝
𝛥𝜽

)

= −
(

𝐟𝑟
𝐟𝜃

)

.

To clarify the following equations and simplifications in the TF case, the global discrete beam centerline degrees of freedom 𝐝
are gathered together as are the global beam orientational degrees of freedom 𝜽. Therefore, the beam stiffness matrix is written
s a 2 × 2 block system with the individual blocks 𝐊

𝑎𝑏 with indices 𝑎, 𝑏 ∈ {𝑟, 𝜃}. Similarly, the residual is split into positional and
rotational contributions 𝐟𝑟 and 𝐟𝜃 , respectively.

To fully embed the beam in the solid matrix, the following six local coupling constraints are defined:

𝟎 = 𝒓 − 𝒙 on 𝛺, (1)

𝟎 = 𝝍 on 𝛺. (2)

Here, 𝒓 is the beam centerline position vector, 𝒙 is the solid position vector, and 𝝍 denotes the (pseudo-)rotation vector
describing the relative rotation between a suitable orthonormal triad field in the solid domain and the beam cross section orientation.
The constraints given in (1) are referred to as the positional coupling constraints, since they enforce the position of the beam cross
ection centroid to be coupled to the underlying solid. In a similar manner, (2) is referred to as rotational coupling since a vanishing
elative rotation enforces the beam cross section orientation to be coupled to the solid domain. For a more elaborate discussion on
he coupling constraints, the interested reader is referred to [1,2]. The coupling constraints (1) and (2) are enforced via a Lagrange
ultiplier method. The total Lagrange multiplier potential reads

𝛱𝜆,SR = ∫𝛺
(𝝀 )T(𝒓 − 𝒙 ) d𝑠 + ∫𝛺

(𝝀)T𝝍 d𝑠, (3)

here 𝝀 and 𝝀 are the Lagrange multiplier fields introduced to enforce the positional and rotational coupling, respectively.
ccordingly, quantities denoted with (⋅) and (⋅) refer to positional and rotational coupling, respectively.
For the spatial interpolation of the Lagrange multiplier fields, we resort to the mortar-type approach and software implementation

f [1,2]. There it is shown that a linear interpolation of the Lagrange multiplier field with a subsequent penalty regularization of
he saddle point system results in a stable coupling formulation for our envisioned application range. The resulting global discrete
agrange multiplier vectors for positional and rotational coupling are denoted with λ and λ, respectively. Variation of the coupling
otential (3) and insertion of the spatially discretized quantities results in the weak form of the coupling formulation. With that we
an now state the global discretized residual vector for the coupled problem:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐟𝑟 + 𝐟𝑚𝑡,𝑟
𝐟𝜃 + 𝐟𝑚𝑡,𝜃

𝐟𝑠 + 𝐟𝑚𝑡,𝑠 + 𝐟𝑚𝑡,𝑠
𝐠
𝐠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 𝟎.

ere, 𝐠 and 𝐠 are the constraint residual vectors for positional and rotational coupling, respectively. Moreover, 𝐟 (⋅)𝑚𝑡,(⋅) are the
iscrete coupling force contributions required to enforce the action of the Lagrange multipliers on the beam and solid degrees of
reedom. We resort to a penalty regularization with the penalty parameters 𝜖 > 0 and 𝜖 > 0 to express the Lagrange multiplier
nknowns λ and λ in terms of beam and solid unknowns, i.e.,

λ ≈ 𝜖 (𝐕 )−1𝐠 , (4)

λ ≈ 𝜖(𝐕)−1𝐠. (5)

herein, the diagonal matrices 𝐕 and 𝐕 are scaling matrices to scale the regularized equations in order to pass patch-test like
roblems, cf. [1]. With the penalty regularization, the Lagrange multipliers are no longer unknowns. Thus, we can state the final
inearized system to be solved in every Newton iteration:

⎛

⎜

⎜

⎝

𝐊
𝑟𝑟 + 𝜖𝐃T(𝐕 )−1𝐃 𝐊

𝑟𝜃 −𝜖𝐃T(𝐕 )−1𝐌
𝐊

𝜃𝑟 𝐊
𝜃𝜃 +𝐐𝜃𝜃 + 𝜖𝐐𝜃𝜆(𝐕)−1𝐐𝜆𝜃 𝐐𝜃𝑠 + 𝜖𝐐𝜃𝜆𝐕−1𝐐𝜆𝑠

−𝜖𝐌T(𝐕 )−1𝐃 𝐐𝑠𝜃 + 𝜖𝐐𝑠𝜆(𝐕)−1𝐐𝜆𝜃 𝐊
𝑠𝑠 +𝐐𝑠𝑠 + 𝜖𝐌T(𝐕 )−1𝐌 + 𝜖𝐐𝑠𝜆(𝐕)−1𝐐𝜆𝑠

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝛥𝐝
𝛥𝜽

𝛥𝐝

⎞

⎟

⎟

⎠

= −
⎛

⎜

⎜

⎝

𝐟𝑟
𝐟𝜃
𝐟𝑠

⎞

⎟

⎟

⎠

.

(6)

ere, 𝐃 and𝐌 are the so called mortar matrices for positional coupling, which only depend on the reference configuration, i.e., they
re constant. The matrices 𝐐𝑎𝑏 with 𝑎, 𝑏 ∈ {𝑠, 𝜃, 𝜆} are the coupling matrices for rotational coupling, which depend on the current
onfiguration. We refer to the original publications [1,2] for details of the linearization procedure.
4
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2.3. Coupled beam-solid system with torsion-free (TF) beam formulation

The torsion-free Kirchhoff–Love (TF) beam formulation (see [35,36]) represents a special case of the Simo–Reissner beam theory,
here the assumptions of vanishing shear and torsion deformations are incorporated in the beam model and the resulting finite
lement formulation can be described solely by displacement degrees of freedom. The assumptions are valid for fibers with high
lenderness ratios, a double symmetric cross section and a straight centerline in the reference configuration. For such fibers, the TF
eam formulation results in an even more efficient numerical model than the SR formulation presented in the previous section. The
nternal energy of a TF beam reads

𝛿𝛱
𝑖𝑛𝑡,TF = 1

2 ∫𝛺
𝐸𝐴𝜀2 + 𝐸𝐼𝜅2 d𝑠

with 𝐸 denoting the Young’s modulus, 𝐴 the cross section area, 𝐼 the moment of inertia, 𝜀 the axial tension and 𝜅 the scalar
curvature, respectively. The TF beam formulation requires a 𝐶1-continuous centerline interpolation of centerline positions 𝒓, which
is realized with third-order Hermite polynomials [35].

As the only field of unknowns along the TF beam centerline is a translation field, the total Lagrange multiplier potential of the
coupling constraints in (3) simplifies to

𝛱𝜆,TF = ∫𝛤
(𝝀 )T(𝒓 − 𝒙 ) d𝑠

i.e., there is no rotational coupling for TF beams. The same penalty regularization as stated in (4) is employed, resulting in the
following global linearized system :

(

𝐊
𝑟𝑟 + 𝜖𝐃T(𝐕 )−1𝐃 −𝜖𝐃T(𝐕 )−1𝐌
−𝜖𝐌T(𝐕 )−1𝐃 𝐊

𝑠𝑠 + 𝜖𝐌T(𝐕 )−1𝐌

)(

𝛥𝐝
𝛥𝐝

)

= −
(

𝐟𝑟
𝐟𝑠

)

. (7)

Again, for a more detailed information on the derivations, the interested reader is referred to [1]. It should be noted, that the
coupling contributions in (7), i.e., 𝐃 and 𝐌, are constant due to the coupling taking place in the reference configuration.

3. Characteristics of linear systems arising in beam-solid coupling

To be able to construct efficient algebraic block preconditioning techniques to accelerate the convergence of the outer Krylov
solver, certain matrix properties of the underlying linear systems 𝐱 = 𝐛 specified in (6) and (7) are of particular interest. A
short explanation regarding conditioning, block diagonal dominance, symmetry and sparsity pattern is given below. For the sake of
simplicity, the block systems in (6) and (7) are both abbreviated with the compact notation

(

𝐀 𝐁T
1

𝐁2 𝐂

)(

𝐱
𝐱

)

=
(

𝐛
𝐛

)

with 𝐫 =
(

𝐫
𝐫

)

=
(

𝐛
𝐛

)

−
(

𝐀 𝐁T
1

𝐁2 𝐂

)(

𝐱
𝐱

)

(8)

throughout the remainder of this manuscript, where we have grouped the unknowns based on their physical meaning, i.e., being
associated with the beams or the background solid. The concrete identification of individual matrix blocks in (8) with the linear
systems from Sections 2.2 and 2.3 depends on the employed beam theory. In the case of a SR beam theory, the individual blocks
are defined such that (8) represents (6) with 𝐛 = (𝛥(𝐝)T, (𝛥𝜽)T)T and 𝐛 = 𝛥𝐝 . For the TF case, (8) represents (7) with 𝐛 = 𝛥𝐝

and 𝐛 = 𝛥𝐝 . Generally speaking, 𝐀 denotes the matrix block containing the beam stiffness matrices 𝐊
𝑎𝑏 as well as stiffness and

penalty contributions of the coupling constraints. In similar fashion, the sub-block 𝐂 refers to the sum of the solid stiffness matrix
𝐊

𝑎𝑏 and the respective interaction terms. The off-diagonal sub-blocks 𝐁T
1 and 𝐁2 represent the remaining coupling terms between

both fields, respectively.

3.1. Ill-conditioning due to penalty regularization

Due to the discretization and coupling approach introduced in Section 2, the linear system of equations suffers from ill-
conditioning, which directly originates from the penalty parameters 𝜖 and 𝜖, that are steering the strength of the interaction
between solid and fibers. Naturally, larger values of 𝜖 and 𝜖 lead to a more accurate constraint enforcement, however enlarge
the eigenvalue spectrum of the matrix and, thus, worsen the conditioning problems. To show this exemplarily, a small eigenvalue
study is done for test cases I and IV introduced later in Section 5.1 with all parameters fixed despite 𝜖 and 𝜖 as shown in Table 1.

For both beam models, an increase of the penalty parameters results in an increasing maximum eigenvalue 𝜆𝑚𝑎𝑥 of the overall
system, while the minimum eigenvalue 𝜆𝑚𝑖𝑛 remains constant. This results in growing condition number estimates given by the
well-established definitions 𝜆𝑚𝑎𝑥∕𝜆𝑚𝑖𝑛 and ‖‖1

‖

‖

‖

−1‖
‖

‖1
. Despite the bad conditioning, sub-block 𝐀 is still nonsingular, being an
5

essential requirement for factorizations of the block matrix .
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Table 1
Minimum and maximum eigenvalues 𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥 of the given block system with condition number estimates for different
beam models and varying positional and rotational penalty parameters 𝜖 , 𝜖.

Beam model 𝜖 𝜖 𝜆𝑚𝑖𝑛 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥∕𝜆𝑚𝑖𝑛 ‖‖1
‖

‖

‖

−1‖
‖

‖1

TF 1 – 0.3920 × 10−7 1.0000 2.5510 × 107 4.0078 × 107

TF 10 – 0.3920 × 10−7 1.5042 3.8372 × 107 4.7060 × 107

TF 100 – 0.3920 × 10−7 14.915 3.8048 × 108 4.6951 × 108

TF 1000 – 0.3920 × 10−7 149.03 3.8018 × 109 4.6868 × 109

SR 1 0.1 0.1047 × 10−6 4.7644 4.5505 × 107 1.9389 × 106

SR 10 1 0.1047 × 10−6 47.199 4.5081 × 108 1.9089 × 107

SR 100 10 0.1047 × 10−6 471.55 4.5039 × 109 1.8604 × 108

SR 1000 100 0.1047 × 10−6 4715.1 4.5034 × 1010 1.9031 × 109

3.2. Loss of block diagonal dominance

Independent of the actual choice of the beam model within beam-solid interaction, the matrices in the arising linear systems
n (6) and (7) exhibit a 2 × 2 block structure based on a physically motivated grouping of unknowns into beam unknowns 𝐱 and
solid unknowns 𝐱 , respectively. This becomes particularly evident in the unified notation of (8). For a closer look at the arising
matrices, we adopt the concept of block diagonal dominance for block matrices from [37]:

Definition 3.1 (Block Diagonal Dominance). Let 𝐇 ∈ C𝑁R×𝑁R be a square block matrix with 𝑁R block rows and block columns,
respectively. With a given matrix norm ‖(∙)‖, we assume 𝐇 to only contain nonsingular matrix blocks 𝐇𝜄𝜄 on its main diagonal, i.e.,
det𝐇𝜄𝜄 ≠ 0 ∀𝜄 ∈ 1,… , 𝑁R. Then, a matrix 𝐇 is referred to as block diagonally dominant, if

𝑁R
∑

𝜁=1
𝜁≠𝜄

‖

‖

‖

𝐇𝜄𝜁
‖

‖

‖

≤ ‖

‖

‖

𝐇−1
𝜄𝜄
‖

‖

‖

−1
for 𝜄 = 1,… , 𝑁R. (9)

In general, the matrices in (6) and (7) do not satisfy the conditions for block diagonal dominance as outlined in Definition 3.1. For
illustration purposes, we consider the mixed-dimensional modeling approach from Section 2 in the practical case of fiber-reinforced
solids, where the stiffness of the fibers is much higher than the stiffness of the embedding solid, i.e., 𝐸 ≫ 𝐸 . To this end, we
assume a fixed geometry and mesh, constant material parameters, and fiber and solid constitutive properties satisfying 𝐸 ≫ 𝐸 .
Since the projection operators 𝐃 and 𝐌 solely depend on the mesh, the only variable parameters left are 𝜖 ≫ 0 and 𝜖 ≫ 0. With
increasing penalty parameters 𝜖 and 𝜖, the norm of the off-diagonal matrix blocks increases, too. In addition, the inversion of the
diagonal matrix blocks results in denser matrices with a rapid growth of the norm and, thus, decreasing values on the right-hand
side of inequality (9). For positional coupling, the block diagonal dominance property of the matrix becomes harder to achieve
with an increasing penalty parameter 𝜖 , especially for 𝜖 ≈ 𝐸 as recommended for practical computations. The same holds true
for the rotational coupling contributions for the recommended choice 𝜖 ≈ 𝐸𝑅2 with 𝑅 being the radius of the beam along the
centerline (see [14]). To support this argument, we assess the property of block diagonal dominance for the first block row in
(8), i.e., specifically the contribution of 𝐀, by anticipating a small numerical example, in particular test case I introduced later in
Section 5.1. Therein, the off-diagonal matrix block 𝐁1 exhibits a norm ‖

‖

𝐁1
‖

‖

= 1.0153, while the main diagonal block 𝐀’s contribution
evaluates to ‖

‖

‖

𝐀−1‖
‖

‖

−1
= 3.9202 ⋅ 10−8, hence violating the condition outlined in (9).

Due to this lack of block diagonal dominance, conventional block preconditioning methods based on block Jacobi or block
Gauß–Seidel schemes are not applicable without major convergence problems (or even divergence) as already evidenced in [38,39].
Independently, the individual matrix blocks on the main diagonal lose their diagonal dominance as well due to the penalty
contributions. Hence, conventional relaxation-based smoothers cannot be applied on individual blocks either.

3.3. Potential loss of symmetry

The symmetry of 𝐀 is governed by the beam formulation at hand: TF beam models always result in a symmetric 𝐀, while all
other beam models yield a non-symmetric beam sub-block 𝐀. For pure positional coupling as applied for TF beam models, the
off-diagonal matrix block are symmetric, i.e., 𝐁1 = 𝐁2. In contrast, the additional coupling of rotational degrees of freedom for SR
beams introduces non-symmetric off-diagonal terms.

3.4. Sparsity pattern

Of special interest is the matrix graph  (𝐀) of the sub-block 𝐀 related to the beam problem. Since we restrict ourselves so far to
cases where the embedded fibers do not interact with each other but only with the surrounding solid, the matrix 𝐀 features a block
diagonal sparsity structure, where the size of the small blocks depends on the number of beam finite elements used to discretize
each individual fiber. We will illustrate and study the sparsity pattern  (𝐀) for different test cases in Section 5.1, in particular in
6

Fig. 4.
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4. Block preconditioning for beam-solid interaction

The construction of a preconditioner, that captures the coupling interactions properly and is tailored to the specific matrix
roperties, is crucial for an efficient and scalable solution process. Preconditioners based on approximate block factorizations have
een shown to be suited for similar problem types such as contact problems [12], incompressible flow [40,41], FSI [42,43], or
magneto-hydro dynamics [38,44,45].

4.1. Preconditioning based on a block factorization of the system matrix

Due to the lack of block diagonal dominance and the ill-conditioning of the matrix discussed in Section 3, we resort to a block
factorization preconditioner. Specifically, we perform a block factorization into a lower triangular matrix , a diagonal matrix ,
and an upper triangular matrix  . The  decomposition of the system matrix reads

(

𝐀 𝐁T
1

𝐁2 𝐂

)

=
(

𝐈 𝟎
𝐁2𝐀−1 𝐈

)(

𝐀 𝟎
𝟎 𝐒

)(

𝐈 𝐀−1𝐁T
1

𝟎 𝐈

)

ith the Schur complement 𝐒 ∶= 𝐂− 𝐁2𝐀−1𝐁T
1 . To this end, the preconditioning matrix 𝐏 based on the above factorization is given

by

𝐏 ∶=
(

𝐀 𝟎
𝐁2 𝐒

)(

𝐈 𝐀−1𝐁T
1

𝟎 𝐈

)

.

Expressing the application of the preconditioner as a fixed-point iteration over the index 𝑘, one application of the preconditioner
yields

(

𝐱,𝑘+1
𝐱 ,𝑘+1

)

=
(

𝐱,𝑘
𝐱 ,𝑘

)

+ 𝐏−1
(

𝐫,𝑘
𝐫,𝑘

)

=
(

𝐱,𝑘
𝐱 ,𝑘

)

+
(

𝐀 𝐀𝐀−1𝐁T
1

𝐁2 𝐁2𝐀−1𝐁T
1 + 𝐒

)−1 [(𝐛
𝐛

)

−
(

𝐀 𝐁T
1

𝐁2 𝐂

)(

𝐱,𝑘
𝐱 ,𝑘

)]

.

It is usually executed via a predictor–corrector scheme by first solving an equation related to the beam contribution, afterwards one
related to the Schur complement, and lastly a correction step to the beam solution. To this end, after having to form an explicit
representation of the Schur complement, a total of three linear systems have to be solved in every application of the preconditioner.
The overall algorithm is given as Algorithm 1.

Since an exact version of a block factorization preconditioner is hard to achieve due to its immense computational cost, the
following sections are devoted to the construction of an approximate block factorization preconditioner and its application to
mixed-dimensional beam-solid interaction.

Algorithm 1: Full block factorization preconditioner for fiber-solid coupling
Procedure Preconditioner(𝑘𝑚𝑎𝑥)

// Form explicit Schur complement
𝐒 = 𝐂 − 𝐁2𝐀−1𝐁T

1
for 𝑘 = 1,… , 𝑘𝑚𝑎𝑥 do

(

𝐫,𝑘
𝐫 ,𝑘

)

=
(

𝐛
𝐛

)

−
(

𝐀 𝐁T
1

𝐁2 𝐂

)(

𝐱,𝑘
𝐱 ,𝑘

)

// Prediction step: solve for 𝐱,𝑘+
1
2

𝐀𝐱,𝑘+
1
2 = 𝐫,𝑘

// Schur complement step: solve for 𝐱 ,𝑘+1

𝐒𝐱 ,𝑘+1 = 𝐫 ,𝑘 − 𝐁2𝐱
,𝑘+ 1

2

// Correction step: solve for 𝐱,𝑘+1
𝐀𝐱,𝑘+1 = 𝐫,𝑘 − 𝐁T

1𝐱
 ,𝑘+1

end

return
(

𝐱,𝑘𝑚𝑎𝑥
𝐱 ,𝑘𝑚𝑎𝑥

)

4.2. Explicit sparse inverse approximation

The first major step of the preconditioner calculation consists of finding an explicit approximation of the Schur complement
𝐒 ∶= 𝐂−𝐁2�̂�−1𝐁T

1 with �̂� denoting an easy-to-invert approximation of 𝐀. Both quality and computational cost of the preconditioner
are mainly governed by the choice �̂� and �̂� to approximate 𝐀 and 𝐒, respectively. In traditional Schur complement based block
reconditioners, the inverse �̂�−1 ≈ 𝐀−1 appearing due to the block factorization and also in the Schur complement calculation
7

tself is often approximated by some diagonal matrix, since the inversion of a diagonal matrix comes at a negligible computational
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cost. The most simple approach is to base the inverse approximation on the diagonal part of the 𝑀 × 𝑀 matrix 𝐀 resulting in
̂ = diag

(

𝑎𝑖𝑖
)

, 𝑖 = 1,… ,𝑀 . Another well-known approach takes the row sums of 𝐀 [46], reading

�̂� = diag

( 𝑀
∑

𝑗=1

|

|

|

𝑎𝑖𝑗
|

|

|

)

, 𝑖 = 1,… ,𝑀.

However, such simple diagonal approximations cannot be used in the present scenario since 𝐀 lacks diagonal dominance, cf.
ection 3.2. Since 𝐀 resembles the sub-block related to the beam equations, which themselves yield a block diagonal structure
f 𝐀, a more sophisticated explicit approximation scheme of the inverse can be applied taking this particular sparsity structure into
ccount.
Although in general the inverse of the sparse matrix 𝐀 cannot be expected to be sparse as well, explicit SPAIs aim at creating an

xplicit matrix representation 𝐀∗ of the approximation of the exact inverse 𝐀−1, that itself is still a sparse matrix. Ideally, nnz (𝐀∗),
he number of non-zeros of 𝐀∗, does not exceed nnz (𝐀), since a matrix–vector product with 𝐀∗ must be performed at each Krylov
iteration [32]. Although incomplete LU factorizations fall into that category, they require considerable effort to parallelize [47].

To take advantage of the block diagonal structure of 𝐀, we pursue a fully parallelizable approach to construct an explicit sparse
approximate inverse 𝐀∗ of the matrix 𝐀 based on the minimization of the Frobenius norm of the residual matrix 𝐀𝐀∗−𝐈, see [32,48].
y choosing an appropriate sparsity pattern  (𝐀∗) for the SPAI 𝐀∗ from the set  describing all known patterns, the following
east-squares problem needs to be solved:

min
 (𝐀∗) ∈ 

‖

‖

𝐀𝐀∗ − 𝐈‖
‖F (10)

e represent the minimization procedure to compute 𝐀∗ by the operation 𝐀∗ ←  (𝐀, (𝐀∗)). To this end, (10) requires to select
an appropriate sparsity pattern  (𝐀∗) and a practical approach to the minimization of the Frobenius norm in a distributed memory
environment, which we will address in Sections 4.2.1 and 4.2.2, respectively.

4.2.1. Selection of a sparsity pattern for the sparse approximate inverse calculation
The main challenge in (10) is the selection of a sparsity pattern  (𝐀∗) to be used as input into the minimization procedure.

n appropriate pattern needs to contain enough information of the inverse by retaining high values, but should also act as a filter
o remove small entries in order to reduce fill-in. Straightforward approaches are based on a static sparsity pattern selection and
nclude the choices  (𝐀∗) ∶=  (𝐀) and  (𝐀∗) ∶= 

(

𝐀T), which are easy to obtain, but do not guarantee a good approximation
uality. Especially in cases with a partially known sparsity structure of the inverse, e.g., for block-diagonal matrices such as 𝐀
n (8), more advanced static selections are able to deliver a satisfying approximation, yet not requiring dynamic pattern selection
pproaches as proposed in [32].
In this work, we follow the static pattern selection proposed in [49] and use powers of a sparsified version  (𝐀) of the graph  (𝐀)

f the original matrix 𝐀 to obtain an enriched sparsity pattern to be used for the minimization in (10). First,  (𝐀) is obtained
through a thresholding of  (𝐀) based on the entries in 𝐀 and using a drop-off tolerance 𝜎. We represent this thresholding by the
filter operation

 (𝐀) ←  (𝐀, 𝜎)

delivering individual entries 𝑗 (𝐀)𝑖𝑗 of the filtered graph via

𝑗 (𝐀)𝑖𝑗 ∶=
⎧

⎪

⎨

⎪

⎩

1 if 𝑖 = 𝑗 or
|

|

|

|

|

𝑑
− 1

2
𝑖 𝑎𝑖𝑗𝑑

− 1
2

𝑖

|

|

|

|

|

> 𝜎,

0 otherwise,
where 𝑑𝑖 ∶=

{

|

|

𝑎𝑖𝑖|| if |
|

𝑎𝑖𝑖|| > 0,
1 otherwise.

(11)

The additional Jacobi scaling in (11) simplifies the thresholding and choosing of 𝜎 if 𝐀 is poorly scaled. In a second step, a refined
sparsity pattern 

(

𝐀𝓁
)

is calculated by taking powers 𝓁 of the sparsified graph  (𝐀), reading


(

𝐀∗) ← 
(

 (𝐀),𝓁
)

.

he matrix 𝐀𝓁 is never calculated explicitly, but the powers are directly computed on its sparsified graph  (𝐀).

4.2.2. Evaluation of the Frobenius norm on a parallel computer
Due to the 2-norm compatibility of the Frobenius norm, the problem can be decoupled into a sum of Euclidian norms, reading

min
 (𝐀∗) ∈ 

‖

‖

𝐀𝐀∗ − 𝐈‖
‖F =

𝑀
∑

𝑖=1
min

 (𝐀∗) ∈ 
‖

‖

‖

(

𝐀𝐀∗ − 𝐈
)

𝐞𝑖
‖

‖

‖

2

2
=

𝑀
∑

𝑖=1
min


(

𝐀∗
𝑖
)

∈ 𝑖
‖

‖

𝐀𝐀∗
𝑖 − 𝐞𝑖‖‖

2
2 ,

which can be solved independently for each row 𝑖 = 1,… ,𝑀 of 𝐀∗. Since the matrix 𝐀 is usually stored in a row-wise distribution,
where each parallel process stores a subset of all rows of 𝐀, this decomposition renders the method, besides an initial communication
step, inherently parallel. To this end, calculating a row of the SPAI means solving a small least-squares problem by applying a dense
8

QR factorization.
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Fig. 2. Optional (gray) and mandatory (orange) steps of the SPAI computation and its flow of information with computed data (in boxes) and user parameters
(in circles). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.2.3. Practical algorithm
In practice, one usually does not solve (10) directly, but rather combines it with some pre- and post-operations, foremost the

graph computation from Section 4.2.1 and the handling of the Frobenius norm outlined in Section 4.2.2. In addition, it appears
beneficial to perform a post-filtering of 𝐀∗ by dropping all entries with |

|

|

𝑎∗𝑖𝑗
|

|

|

< 𝜎 ∀𝑖, 𝑗 = 1,… ,𝑀 to further reduce fill-in of �̂�−1

nd, thus, the cost of applying the preconditioner [49]. The post-filtering will be denoted by the operator 𝐀 (𝐀∗, 𝜎).
We summarize all the steps to compute the sparse approximate inverse 𝐀∗ in Fig. 2. Therein, optional steps are marked in gray,

hile the mandatory computation of 𝐀∗ is highlighted in orange. User-given data to configure the individual steps is depicted in
ircles, while computed input and output data is put into rectangular boxes. The arrows indicate the flow of data between the
ndividual steps.
Even though the method can be steered quite effectively by the refinement level 𝓁 and threshold tolerance 𝜎, there are still

everal problems to avoid. The method can still produce rather dense matrices with poor approximation quality. Depending on the
hreshold parameter 𝜎, an aggressive dropping of values might result in a loss of information, which again results in a poor result
nd the approximation of the inverse might even be singular.

.3. One-level approach for the predictor and corrector step

As outlined in Algorithm 1, the first and last linear equation to be solved during the application of the block preconditioner
esemble the predictor step

𝐀𝐱,𝑘+
1
2 = 𝐫,𝑘 (12)

and the corrector step

𝐀𝐱,𝑘+1 = 𝐫,𝑘 − 𝐁T
1𝐱

 ,𝑘+1, (13)

respectively. Both use the beam matrix 𝐀 to update the beam unknowns. Following the assumptions made in Section 3.2, traditional
smoothing approaches are not applicable to approximate the solutions of the linear systems in (12) and (13) without a major loss
in convergence properties.

Based on the explicit SPAI calculation for the approximation of the Schur complement, a rather good approximation �̂�−1 is
lready available. Following [50], the sparse approximate inverse is reused as a smoother by applying the fixed-point iteration over
ndex 𝑚 to (12), reading

𝐱,𝑘+
1
2 ,𝑚+1 = 𝐱,𝑘+

1
2 ,𝑚 + �̂�−1𝐫,𝑘, (14)

nd to (13), reading

𝐱,𝑘+1,𝑚+1 = 𝐱,𝑘+1,𝑚 + �̂�−1 (𝐫,𝑘 − 𝐁T
1𝐱

 ,𝑘+1) . (15)

comparison to more traditional smoothers, e.g., Jacobi and Gauß–Seidel methods, can also be found in the original publica-
ion [50].
9
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Remark 4.1 (Challenges for Multilevel Methods). Expanding the solution procedure of the predictor and corrector steps to an AMG
pproach to solve the beam-related equation is challenging, as there are still several open questions around the construction of
MG hierarchies for beam models: The beams are represented as 1D elements, for which a suitable coarsening scheme to form
ggregates for coarser multigrid (MG) levels is still part of active research. Even with appropriate coarsening, fibers discretized with
nly a few elements would quickly form single-node aggregates being suboptimal for the restrictor and prolongator construction
s well as effectively stalling the coarsening process. The addition of rotational components into the beam equation introduces
nother difficulty, as nodes with a different number of DOFs exist, hindering the application of conventional aggregation strategies.
o project and, thus, treat important error modes correctly on coarser levels, a proper near nullspace has to be constructed, which
trongly depends on the underlying beam formulation. For the use cases presented in this manuscript, which mostly feature a small
umber of beam elements used to discretize a fiber, the SPAI smoother from (14) and (15) proved to be very competitive in terms
f approximation quality of the inverse, computational efficiency, robustness, and weak scaling behavior, see Section 5.

.4. Multilevel approach for the Schur complement step

The computationally most demanding part of the preconditioning algorithm involves the solution procedure for the Schur
omplement equation given as

𝐒𝐱 ,𝑘+1 = 𝐫 ,𝑘 − 𝐁2𝐱
,𝑘+ 1

2 .

ue to the explicit sparse approximation of the inverse of 𝐀 used to form the approximate Schur complement �̂� ∶= 𝐂 − 𝐁2�̂�−1𝐁T
1 ,

the resulting matrix �̂� is rather dense compared to calculations using one of the diagonal approximation approaches for 𝐀 given in
Section 4.1. The inverse of the Schur complement is approximated by a standard aggregation-based AMG method. As level smoother,
a one-level domain decomposition with overlap 𝛿 and an incomplete LU factorization with fill-in 𝑝 and thresholding 𝜏 of small
entries is applied, often abbreviated as ILUT [51]. To accelerate convergence, a smoothing of the tentative prolongation operator
basis functions can be done, also known as smoothed-aggregation algebraic multigrid (SA-AMG) [52]. This however leads to a
higher fill-in of the coarse system matrix representations increasing the computational cost of the preconditioner setup. Especially
the Galerkin product for the calculation of the coarse level operator and the incomplete LU factorization smoother are negatively
influenced by the additional fill-in. Furthermore, the operator smoothing is classically based on a Jacobi method, which heavily
relies on diagonal dominance. Thus, in some cases it makes sense to skip the prolongator smoothing and take advantage of the
robustness of plain-aggregation algebraic multigrid (PA-AMG) by applying aggregate-wise constant basis functions [53]. Caused
by the additional mixed-dimensional coupling terms in the bulk field’s matrix, a similar increase in the fill-in of the coarse level
operators of a Ruge–Stüben AMG method has been observed in [31].

4.5. Approximate block factorization preconditioner for beam-solid interaction

The components described in Sections 4.1–4.4 are now put together to tailor the block preconditioner from Algorithm 1 to the
specifics of mixed-dimensional beam-solid interaction, yielding the final preconditioner summarized in Algorithm 2.

In a pre-computation step, an explicit representation �̂�−1 of the SPAI of the beam matrix 𝐀 is formed and also used to compute an
approximation �̂� to the Schur complement. Based on the sweep index 𝑘 of the preconditioner, the main computation loop consists of
the three steps: First, we predict the beam unknowns 𝐱,𝑘+

1
2 by using the SPAI as a smoother. Then, we solve the Schur complement

equation for the solid unknowns 𝐱 ,𝑘+1 using an AMG method. Finally, we again use the SPAI as a smoother to correct the beam
nknowns to their final values 𝐱,𝑘+1.
In terms of computational effort, the computation of the SPAI as outlined in Section 4.2 comes at a certain cost, however is

erfectly parallelizable and is used at three steps in Algorithm 2: once in the approximation of the Schur complement and twice
o update the beam solution in the predictor and corrector step. A single application of SPAI as a smoother for the predictor or
orrector step boils down to a sparse matrix–vector multiplication.

.6. Comparison to existing methods in literature

Having discussed all the details of our proposed preconditioner, we now want to outline its commonalities and differences
ompared to preconditioners available in the literature. In particular, we will discuss the work in [25–27,30,31].
In contrast to our work, the preconditioners from [25–27,30] are all tailored to saddle point systems. In the construction of a

lock diagonal preconditioner, they use only the diagonal part of an  factorization of the original matrix. In [26,27,30], the
rising Schur complement is approximated by a spectrally equivalent fractional Laplacian. AMG is used to tackle matrices arising
rom the 3D bulk field, while the embedded 1D domains are always handled by a direct solver.
The case of 2 × 2 systems as they arise for example from a penalty regularization is covered in [31]. Due to the low cost of

nverting the matrix of the 1D domain, they use an exact factorization to represent the Schur complement.
Similar to [31], we base the construction of the Schur complement on the original block matrix, however avoid the exact inversion

̂−1
10

f the beam sub-block 𝐀 and rather use its SPAI 𝐀 . In line with all available preconditioners, the matrix block associated with
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Algorithm 2: Approximate block factorization preconditioner for fiber-solid coupling
Procedure Preconditioner(𝑘𝑚𝑎𝑥)

// Pre-compute SPAI of 𝐀
�̂�−1 ← 𝐀

(


(

𝐀,
(

 (𝐀, 𝜎) ,𝓁
))

, 𝜎
)

// Form explicit, approximate Schur complement
�̂� = 𝐂 − 𝐁2�̂�−1𝐁T

1
for 𝑘 = 1,… , 𝑘𝑚𝑎𝑥 do

(

𝐫,𝑘
𝐫 ,𝑘

)

=
(

𝐛
𝐛

)

−
(

𝐀 𝐁T
1

𝐁2 𝐂

)(

𝐱,𝑘
𝐱 ,𝑘

)

// Prediction step: solve for 𝐱,𝑘+
1
2 with SPAI smoother

for 𝑚 = 1…𝑚𝑚𝑎𝑥 do
𝐱,𝑘+

1
2 ,𝑚+1 = 𝐱,𝑘+

1
2 ,𝑚 + �̂�−1𝐫,𝑘

end
// Schur complement step: solve for 𝐱 ,𝑘+1 with AMG
�̂�𝐱 ,𝑘+1 = 𝐫 ,𝑘 − 𝐁2𝐱

,𝑘+ 1
2

// Correction step: solve for 𝐱,𝑘+1 with SPAI smoother
for 𝑚 = 1…𝑚𝑚𝑎𝑥 do

𝐱,𝑘+1,𝑚+1 = 𝐱,𝑘+1,𝑚 + �̂�−1 (𝐫,𝑘 − 𝐁T
1𝐱

 ,𝑘+1)

end
end

return
(

𝐱,𝑘𝑚𝑎𝑥
𝐱 ,𝑘𝑚𝑎𝑥

)

the 3D bulk discretization is tackled by an AMG method. In our work though, the matrix arising from the 1D discretization is never
explicitly inverted or factorized, but also treated in an approximate fashion (i.e., using the SPAI as a smoother, cf. Section 4.3)
to facilitate large numbers of embedded fibers as well as finely resolved fiber discretizations. Regarding the underlying physical
problems and applications, existing work is concerned with transport problems on the 1D domain, while our work is the first
preconditioner tailored to multi-dimensional partial differential equations (PDEs) on the 1D domain, in particular geometrically
exact beam models with up to nine DOFs per mesh node depending on the actual beam model at hand.

5. Numerical experiments

We present numerical examples to illustrate the influence of the different algorithmic parameters of the SPAI computation
proposed in Section 4.2, to study and demonstrate the weak scaling behavior of the proposed preconditioner, to investigate the
robustness of the proposed method regarding material parameters and geometric properties and to showcase its applicability to
practical problems in civil engineering. All computations are done with our in-house multi-physics code 4C [54], which is built upon
he Trilinos project [55,56]. All preconditioning operations are done through the multigrid package MueLu [33] and its dependencies
ithin the Trilinos project. For the generation of the beam geometries, we rely on MeshPy [57].

.1. Numerical study of the sparse approximate inverse calculation for the beam sub-block

A major component of a Schur complement based preconditioner is the approximation of the inverse appearing in the Schur
omplement calculation itself. In the presented approach, the combination of the drop-off tolerance 𝜎 of small values and the allowed
ill-in (indirectly described by the refinement level 𝓁) during the sparse approximate inverse calculation have a great influence on
he quality of the sparse approximate inverse 𝐀∗ and, thus, on the convergence behavior of the block preconditioning method. In
he following, we investigate test cases with different sparsity patterns of the sub-matrix 𝐀 and study the impact of different choices
f both 𝜎 and 𝓁 on the quality of the sparse approximate inverse as well as on the convergence behavior of the preconditioned
inear solver.
To this end, we consider a simple 3D beam-solid interaction problem as shown in Fig. 3: A solid cube with edge length 𝑙 = 1m

s filled with randomly placed straight fibers, such that the beam-solid volume ratio is 𝑉 ∕𝑉  ≈ 0.2% and that the fibers do not
tick out of the solid volume. The cube is clamped at its bottom surface and loaded with a constant tensile load of 𝑞 = 1N∕m2 at
ts top face. The solid is modeled by a St.-Venant–Kirchhoff material (Young’s modulus 𝐸 = 1N∕m2, Poisson’s ratio 𝜈 = 0.3) and
iscretized by first-order hexahedral finite elements. The fibers are represented by either torsion-free Kirchhoff–Love beams (TF)
r Simo–Reissner beam elements (SR) using the following parameters: Young’s modulus 𝐸 = 10N∕m2, radius 𝑅 = 0.005m and
ength 𝑙 = 0.25m. In addition, a Poisson’s ratio of 𝜈 = 0.0 is used in the cases with SR beam models. The coupling conditions are
nforced with penalty parameters 𝜖 = 10N∕m2 and 𝜖 = 10Nm∕m, if applicable.
For the calculation of the sparse approximate inverse, the matrix block 𝐀 describing the contribution of the fibers is of particular

interest. Therefore, six test cases with different beam formulations and varying number of beam finite elements per fiber are set up
11
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Fig. 3. Geometry and setup for the numerical study of the sparse approximate inverse calculation: a solid cube with edge length 𝑙 = 1m is randomly filled
with fibers of the same length 𝑙 = 0.25m, clamped at its bottom and loaded with a distributed external load 𝑞 = 1N∕m2.

Table 2
Matrix size of 𝐀 and number of non-zeros of the graph  (𝐴) for the six
different test cases.

Beam model Size(𝐀) nnz ( (𝐀))

Test case I TF 1224 × 1224 14 688
Test case II TF 3060 × 3060 55 077
Test case III TF 1854 × 1854 28 546

Test case IV SR 2142 × 2142 44 982
Test case V SR 5814 × 5814 184 518
Test case VI SR 3402 × 3402 92 862

to trigger different sparsity patterns  (𝐀). In the test cases I and IV, the fibers are discretized by just one beam element, resulting in
a block-diagonal matrix with fully populated sub-blocks. For test cases II and V, four beam elements are used per fiber, resulting in
bigger and sparser sub-blocks. Test cases III and VI mix the other scenarios by randomly using between one and four beam elements
per fiber. All test cases and their respective matrix sizes and number of non-zeros of  (𝐀) are summarized in Table 2. The resulting
parsity patterns are illustrated exemplarily for the test cases I–III in Fig. 4.
The overall simulation is of quasi-static nature and imposes the total load over the course of two load steps, which is sufficient for

nvestigating the key features of the linear solver like the iteration count and setup/solve timings. The nonlinear solver converges, if
he nonlinear residual ‖𝐟‖2 drops below 10−6 and if the full displacement increment ‖𝛥𝐝‖2 is smaller than 10−8. In each nonlinear
teration, a linear system is solved using a preconditioned GMRES method [58]. The preconditioner is configured as follows: the
umber of sweeps through the preconditioner is set to 𝑘 = 1, and the number of iterations for the SPAI smoother is chosen as 𝑚 = 1.
he Schur complement equation is solved with a SA-AMG scheme with an ILUT smoother with overlap 𝛿 = 1, fill-in level 𝑝 = 1 and
rop-off tolerance 𝜏 = 10−4. The linear solver is assumed to be converged if the relative residual ‖𝐫𝑛‖2 ∕

‖

‖

‖

𝐫0‖‖
‖2
falls below 10−8. All

imulations are done in serial on a single processor.
Using SPAIs, the convergence of the linear solver is tightly related to the parameters chosen for the SPAI calculation. In Table 3,

ifferent combinations of the drop-off tolerance 𝜎 and refinement level 𝓁 are given for each of the six test cases. Each value pair
epresents the largest possible drop-off value 𝜎 possible for a fixed refinement level 𝓁, such that the linear solver still converges.
or certain values of 𝓁, no convergence could be a achieved at all for some test cases, even with a very small drop-off tolerance 𝜎.
n these situations, an appropriate value of 𝜎 is chosen, such that only explicit zero values are dropped from the matrix graph to
till be able to make a fair comparison with the other test cases regarding the error norm and number of non-zero entries in the
pproximate inverse. In addition, the number of non-zero entries of the filtered graph  (𝐀) used as starting point for the sparsity
pattern construction as well as the number of non-zero entries of the graph of the inverse approximation  (𝐀∗) are given. The
number of non-zeros for the unfiltered graph, nnz ( (𝐀)), is illustrated in Table 2 for comparison. The behavior of the iterative linear
solver is assessed by the averaged number of iterations per nonlinear solver step and three timings concerning the preconditioner
setup time 𝑇setup, the time spent for solving the linear system 𝑇solve, and the total time 𝑇total = 𝑇setup + 𝑇solve. The overall quality of
the inverse approximation 𝐀∗ is quantified by the error norm relative to the exact inverse 𝐀−1.

In test case I, the dense sub-blocks of the block-diagonal sparsity pattern of 𝐀 already lead to the exact graph of the inverse,
which makes the approximation rather simple. For the given parameter combinations the upper bound of number of non-zeros to
12
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Fig. 4. Partial visualization of the sparsity structure  (𝐀) of matrix 𝐀 for test cases I–III.

Table 3
Comparison of the influence of different values of 𝜎 and 𝓁 on the number of linear solver iterations and timings.

𝜎 𝓁 nnz
(

 (𝐀)
)

nnz ( (𝐀∗)) #iter CPU time (s) rel. error norm

𝑇setup 𝑇solve 𝑇total
‖
𝐀∗−𝐀−1

‖F

‖
𝐀−1

‖F

Test case I 10−10 1 14 572 14 572 10 3.390 0.755 4.145 2.100 ⋅ 10−3

10−8 2 11 576 14 688 10 3.338 0.754 4.092 1.248 ⋅ 10−12

10−6 3 9552 14 688 10 3.464 0.750 4.214 1.248 ⋅ 10−12

Test case II 10−11 1 44 335 44 335 – – – – 7.653 ⋅ 10−1

10−10 2 37 222 86 861 10 3.863 0.781 4.644 6.000 ⋅ 10−12

10−9 3 32 436 91 592 10 3.732 0.800 4.532 1.981 ⋅ 10−14

Test case III 10−12 1 26 966 26 966 20 3.559 1.463 5.022 1.415 ⋅ 10−1

10−10 2 23 919 35 961 10 3.859 0.819 4.678 3.433 ⋅ 10−13

10−8 3 17 544 35 814 10 3.830 0.839 4.669 3.433 ⋅ 10−13

Test case IV 10−12 1 26 662 26 662 – – – – 9.277 ⋅ 10−1

10−11 2 26 614 44 978 9 3.901 0.719 4.620 1.082 ⋅ 10−12

10−7 3 16 748 42 641 9 4.100 0.761 4.861 1.081 ⋅ 10−12

Test case V 10−12 1 92 731 92 731 – – – – 9.519 ⋅ 10−1

10−12 2 92 731 249 034 – – – – 1.528 ⋅ 10−1

10−11 3 87 453 331 152 9 5.172 0.834 6.006 1.954 ⋅ 10−7

Test case VI 10−12 1 49 614 49 614 – – – – 9.530 ⋅ 10−1

10−12 2 49 614 109 705 – – – – 5.970 ⋅ 10−2

10−9 3 38 420 121 400 10 4.187 0.794 4.981 3.829 ⋅ 10−12

exactly compute 𝐀−1 is quickly reached resulting in low iteration counts and error norms. For the given problem, the setup timings
re nearly identical, with only the solver timings for the first parameter combination taking a bit longer due to a not fully populated
parsity pattern.
The second test case is based on rather sparse sub-blocks of bigger size compared to test case I. Without a pattern refinement,

he linear solver did not converge as the approximation quality of the inverse is not sufficient. For higher refinement levels, the
umber of non-zeros in  (𝐀∗) quickly increases resulting in convergence of the method with still acceptable timings. Yet, there is
ot a lot of flexibility in choosing the drop-off tolerance 𝜎 to still retain convergence.
As test case III is a combination of the first two problems, the resulting behavior is a mix of these. Using the initial sparsity graph

or the inverse approximation results in 20 linear solver iterations until convergence, which explains the high solving time 𝑇solve.
n the other hand, the setup time 𝑇setup is comparable to the other tests. For increased refinement levels 𝓁, a similar behavior as in
est cases I and II is observed.
For test case IV, the beam elements are switched to a Simo–Reissner formulation, which contributes additional rotational degrees

f freedom into 𝐀. In contrast to test case I, this results in already sparse sub-blocks for using one beam element per fiber. Therefore,
sing just the graph  (𝐀) results in a poor approximation of the sparsity pattern of the inverse and, thus, leads to no convergence.
sing higher refinement levels 𝓁 to enrich the input graph for the SPAI computation quickly heals this problem and even allows
ne to work with a more aggressive dropping scheme, i.e., using larger values for 𝜎.
Test cases V and VI show a similar behavior and only converge with 𝓁 = 3. The additional beam elements used per fiber increase

he block size of each sub-block and thus leave more room for possible sparse approximations for the inverse. The static approach
13
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Fig. 5. Intersections of all cubes (IDs 1–9) of the weak scaling studies with planes spanned by basis vectors 𝒆𝜉 and 𝒆𝜂 , 𝜉, 𝜂 ∈ {1, 2, 3}, 𝜉 ≠ 𝜂 in the cartesian
frame of reference. Orientation of the cutting planes is sketched in the top left.

Table 4
Mesh refinement schedule for the weak scaling study.
ID 𝑛proc 𝑛𝑆𝐷𝑂𝐹 𝑛𝐵𝐷𝑂𝐹 𝑛𝑡𝑜𝑡𝑎𝑙𝐷𝑂𝐹 𝑛𝑡𝑜𝑡𝑎𝑙𝐷𝑂𝐹∕𝑝𝑟𝑜𝑐

1 8 397 953 9132 407 085 50 885.6
2 27 1 316 928 31 824 1 348 752 49 953.8
3 64 3 090 903 74 916 3 165 819 49 465.9
4 125 6 001 128 146 724 6 147 852 49 182.8
5 216 10 328 853 257 448 10 586 301 49 010.7
6 343 16 355 328 413 976 16 769 304 48 890.1
7 512 24 361 803 621 876 24 983 679 48 796.2
8 729 34 629 528 892 932 35 522 460 48 727.7
9 1000 47 439 753 1 222 320 48 662 073 48 662.1

for choosing an appropriate sparsity pattern for the inverse presented in Section 4.2.3 is still able to produce good approximations,
thus leading to convergence of the linear solver, but only for rather dense representations of 𝐀∗.

In conclusion, a robust parameter combination is highly problem dependent and necessary to achieve convergence of the linear
olver. In the presented cases, a refinement level of 𝓁 = 3 and a drop-off tolerance of 𝜎 = 10−9 to get rid of small values polluting
the sparsity pattern showed to be sufficient to enable convergence even for challenging cases.

5.2. Weak scaling behavior

To study the performance of the proposed block preconditioner also for large-scale examples and on parallel computing clusters,
we now conduct a weak scaling study. The problem setup is similar to test case I from Section 5.1. To guarantee that large problems
exhibit the same fiber distribution at least in parts of the domain, the meshes are setup as follows: We first create the geometry and
mesh for the largest problem by placing a cube with edge length 10m inside a cartesian frame of reference, such that the cube’s
center of mass coincides with the origin 𝑂 and its edges are oriented along the cartesian axes. Then, the cube is filled with randomly
positioned and oriented straight fibers with length 𝑙 = 0.25m and radius 𝑅 = 0.005m. Only fibers, which are fully contained in the
cube, are considered. This problem will be solved on 1000 MPI ranks. For smaller problems, the geometry is cut out of this initial
cube. Also for the cut out problem, only fully contained fibers are considered. Fig. 5 shows the intersections of the series of cubes
ith each coordinate plane spanned by basis vectors 𝒆𝜉 and 𝒆𝜂 , 𝜉, 𝜂 ∈ {1, 2, 3}, 𝜉 ≠ 𝜂. This process not only yields an almost constant
eam-solid volume ratio for all problem sizes, but also guarantees that larger meshes are just extensions of the smaller meshes. The
oad per processor is kept constant at around 50𝑘 degrees of freedom. Meshing details are given in Table 4.
The boundary conditions are identical to test case I from Section 5.1, i.e., the bottom surface is clamped and the top surface

oaded with a constant tensile load of 𝑞 = 1N∕m2. The solid is again modeled by a St.-Venant–Kirchhoff material (Young’s
odulus 𝐸 = 1N∕m2, Poisson’s ratio 𝜈 = 0.3) and discretized with first-order hexahedral finite elements. The fibers are modeled
sing torsion-free Kirchhoff–Love beam elements with Young’s modulus 𝐸 = 10N∕m2. The positional coupling condition is enforced
ith a penalty parameter of 𝜖 = 10N∕m2.
The overall simulation is again of quasi-static nature and imposes the total load over the course of two load steps. The nonlinear

olver converges, if the nonlinear residual ‖𝐟‖2 drops below 10−6 and the full displacement increment ‖𝛥𝐝‖2 is smaller than 10−8.
14

or the solution of the linear system arising in each nonlinear iteration, a preconditioned GMRES method is applied with the
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proposed preconditioner. Hereby, the parameters are set as follows: to increase the robustness of the smoothers in the parallel
setting, the number of sweeps through the preconditioner is changed to 𝑘 = 3 as well as the number of iterations for the SPAI
smoother to 𝑚 = 3 (in contrast to the parameter choice in Section 5.1). The SPAI computation for the beam sub-matrix 𝐀 uses
drop tolerance 𝜎 = 10−8 and a refinement level 𝓁 = 2 to enrich the sparsity pattern. This choice is inspired by the results of
he test case I in Section 5.1. Due to the inherently parallel nature of the SPAI computation (cf. Section 4.2.2), it has a marginal
nfluence on the weak scalability compared to the other components of the overall preconditioner, especially the AMG components.
herefore this part of the algorithm is kept constant without parameter variation. The Schur complement equation is solved with an
ggregation-based AMG method. Coarsening is performed until the number of unknowns on the coarsest level drops below 6500.
he AMG hierarchy is traversed using a V-cycle with level transfer operators arising from either PA-AMG or SA-AMG. On all but the
oarsest level, the level smoother is chosen as ILUT with overlap 𝛿 = 1, fill-in level 𝑝 = 1 and drop-off tolerance 𝜏 = 10−4. The coarse
evel is solved with a direct solver using the distributed memory version of SuperLU [59]. The outer GMRES solver is assumed to
e converged if the relative residual ‖𝐫𝑛‖2 ∕

‖

‖

‖

𝐫0‖‖
‖2
falls below 10−8.

The scaling study is run on our in-house cluster (16 nodes with 2x Intel Xeon Cascade Lake CPUs with 26 cores, 20 nodes
ith 2x Intel Xeon Skylake CPUs with 24 cores, 1312 cores in total, Mellanox Infiniband Interconnect). The overall weak scaling
erformance is quantified by the averaged number of iterations per nonlinear Newton iteration and the timings for setting up the
reconditioner 𝑇setup, for solving the linear system 𝑇solve, and the total solver time 𝑇total = 𝑇setup + 𝑇solve. Since the setup of the
reconditioner is expected to be expensive, we also examine the option of reusing the preconditioner throughout all Newton steps
f a load step with the aim to reduce 𝑇setup and, thus, also reduce 𝑇total.
Fig. 6 summarizes the results of the weak scaling study. We first discuss the case where the preconditioner is built in every

ewton step. Looking at the iteration counts in Fig. 6(a), the SA-AMG method delivers iteration counts independent of the problem
ize (with mostly 13 iterations per solve), while PA-AMG exhibits an increase in iterations by a factor of 2× (from 26 to 52 iterations)
hen increasing the problem size by 120×, i.e., from mesh ID 1 to mesh ID 9, cf. Table 4. Regarding the setup time 𝑇setup required to
uild the preconditioner shown in Fig. 6(b), PA-AMG is more than twice as fast as SA-AMG due to the smaller support of PA-AMG
nterpolation functions and, thus, less fill-in in coarse level operators. In contrast, the time to solve the linear system is more than
× smaller for SA-AMG due to the better approximation properties of smoothed interpolation functions in SA-AMG, cf. Fig. 6(c).
hen looking at the combined time 𝑇total = 𝑇setup+𝑇solve as shown in Fig. 6(d), both types of transfer operators result in very similar
imings.
With a moderate increase of 𝑇setup for PA-AMG for an increasing number of parallel processes, the increase in solver time 𝑇solve

s well as total time 𝑇total of the PA-AMG scheme appears to be directly linked to the number of iterations required to achieve the
esired tolerance of the iterative linear solver. In contrast, SA-AMG requires a rather constant number of iterations for all problem
izes and spends most of its time in the preconditioner setup, thus resulting in total solver timings 𝑇total that are dominated by
he preconditioner setup time. This hints at potential savings when setting up the preconditioner once and then reusing it to solve
ultiple subsequent linear systems, e.g., through the course of a Newton scheme.
We now look at the option of building the preconditioner only in the first Newton step and then reusing it throughout an entire

oad step. In the present study, each load step requires two Newton steps, hence we expect to save 50% of 𝑇setup and hope to not
orsen in terms of iteration numbers and solver time 𝑇solve. When looking at the setup time in Fig. 6(b), setup costs for both SA-AMG
nd PA-AMG are reduced by ≈ 50% as expected. Furthermore, the iteration numbers as well as the solver time 𝑇solve stay nearly the
ame for both SA-AMG and PA-AMG, cf. Figs. 6(a) and 6(c). Overall, the reuse of the preconditioner positively impacts the total
olver time 𝑇total with the best option being SA-AMG with reuse of the preconditioner, which appears to be roughly 30% faster
han the variant without reuse of the preconditioner. We note that the actual benefit of reusing the preconditioner depends on the
umber of nonlinear solver iterations per load step: The more Newton steps are required, the greater savings are to be expected
rom reusing the preconditioner.
In conclusion, this example has shown weak scalability of the proposed preconditioner. The iteration numbers remain perfectly

onstant for SA-AMG. Due to the overlap 𝛿 = 1 of the ILUT smoother in the MG hierarchy, the setup time 𝑇setup increases by a factor
f ≈ 5× when increasing the problem size by 120×, i.e., from mesh ID 1 to mesh ID 9, cf. Table 4. We stress that the choice of transfer
perators has a great influence on the total weak scalability of the preconditioner. In the presented test cases, the best scalability in
erms of the iteration count were obtained by SA-AMG transfer operators and when reusing the preconditioner though all Newton
teps of a load step. In sum, SA-AMG appears as the method of choice to demonstrate weak scalability and keep the iteration count
ow. For more complex application scenarios however, it might be beneficial to fall back to PA-AMG due to its reduced fill-in during
oarsening. Given the intricate nature of beam-solid applications and their arising systems of linear equations, we deem the present
eak scaling behavior acceptable and adequate.

.3. Robustness of the preconditioner under varying physical parameters

To assess the preconditioner’s robustness, we now study its behavior w.r.t. iteration numbers of the linear solver under changes
f critical physical parameters. Therefore, a composite plate with four fiber layers is considered, where the beam-solid stiffness
atio as well as the beam radius are varied. This allows to cover a wide range of possible parameter combinations for the coupled
roblem.
The geometrical setup is identical to the composite plate presented in our prior work [1] with a length of 2m, a width of 1m and

total thickness of 𝑡 = 0.04m, where two layers are oriented in 45◦ and −45◦ angles, respectively. The solid bulk domain is modeled
 
15

s St.-Venant–Kirchhoff material with fixed constitutive properties (𝐸 = 1GPa, 𝜈 = 0.3). The embedded fibers are modeled as
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Fig. 6. Weak scaling behavior.
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Fig. 7. Model problem for the robustness study. The left figure is adapted from our previous work [1], permissions granted under the Creative Commons (CC BY)
license.

Fig. 8. Robustness study of the preconditioning regarding the beam to solid stiffness ratio and plate thickness to beam radius ratio: Iteration numbers are not
affected by changes in physical parameters.

torsion-free Kirchhoff–Love beams, where we vary the beam radius 𝑅 ∈ {0.001m, 0.002m, 0.004m, 0.008m} and the beam’s Young’s
odulus 𝐸 ∈ {2GPa, 8GPa, 32GPa, 128GPa, 256GPa, 512GPa}. The examined beam-solid stiffness ratios 𝐸∕𝐸 span a wide array of
ractical applications, ranging from natural fiber composites with low ratios to steel-reinforced concrete and carbon fiber composites
ith high ratios. The penalty parameter is chosen as 𝜖 = 𝐸 to properly enforce the positional coupling constraints. Considering
oundary conditions, the left side of the plate is fixed and a distributed tensile load 𝑞 is applied to the right side. The problem
etup and the deformed configuration (exemplary for 𝐸 = 8GPa and 𝑅 = 0.004m) are depicted in Fig. 7. For a more detailed
escription of the problem, the reader is referred to [1]. Since the overall compound plate stiffness changes with the different
arameter combinations described above, the load 𝑞 is adapted such that the axial deformations of the plate are the same for each
arameter combination and match the example shown in [1]. The overall simulation is of quasi-static nature and the load is applied
ncrementally over the course of 10 load steps.
The nonlinear solver converges for all test cases if the nonlinear residual ‖𝐟‖2 drops below 10−6 and the displacement

ncrement ‖𝛥𝐝‖2 falls below 10−6. For the solution of the linear system arising in each nonlinear iteration, a preconditioned GMRES
ethod is applied with the proposed preconditioner. Hereby, the parameters for the block method are similar to test case I from
ection 5.1: We set the number of applications of the preconditioner per linear solver iteration to 𝑘 = 1, build the preconditioner once
er load step and then reuse it in every nonlinear iteration of this load step. Due to the rather long fibers appearing in this example,
he settings for the SPAI smoother are changed to 𝑚 = 3. In addition, the SPAI computation for the beam sub-matrix 𝐀 uses a drop
olerance 𝜎 = 10−8 and an increased refinement level 𝓁 = 4 to handle the larger individual beam sub-blocks properly. Similar to
efore, the Schur complement equation is solved with an aggregation-based AMG method. Coarsening is performed until the number
f unknowns on the coarsest level drops below 6500. The AMG hierarchy is traversed using a V-cycle with level transfer operators
rising from SA-AMG. On all but the coarsest level, the level smoother is chosen as ILUT with overlap 𝛿 = 1, an increased fill-in
evel 𝑝 = 2.5 (again necessary due to the length of the fibers and their discretization with sometimes more than ten beam elements,
esulting in a denser Schur complement matrix) and drop-off tolerance 𝜏 = 10−4. The coarse level is solved with a direct solver using
he distributed memory version of SuperLU [59]. The linear solver is assumed to be converged if the relative residual ‖𝐫𝑛‖2 ∕

‖

‖

‖

𝐫0‖‖
‖2

alls below 10−6. All simulations are done in serial on a single processor.
Averaged iteration counts of the linear solver are shown in Fig. 8. At global scope, the number of iterations appears to be

ndependent of the stiffness ratio 𝐸∕𝐸 as well as the geometric ratio 𝑅∕𝑡. This is particularly true for a larger beam radius, i.e.,
17
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Fig. 9. Geometric configuration of a steel-reinforced concrete wall.

∕𝑡 = 1∕5. While smaller beam radii are expected to be more challenging to handle, their impact on the solver performance is very
imited: the increase in iterations is very small compared to the case of 𝑅∕𝑡 = 1∕5. Intermediate geometric ratios 𝑅∕𝑡 = {1∕10, 1∕20}
xhibit slight changes in the iteration number under an increasing stiffness ratio 𝐸∕𝐸 , though neither outliers nor a trend towards
ncreasing iteration numbers has been observed. Considering the smallest beam radius, i.e., 𝑅∕𝑡 = 1∕40, the iteration count remains
ather constant for all but the largest stiffness ratio. Only the largest stiffness ratio 𝐸∕𝐸 = 512GPa in combination with the
smallest radius results in an outliner in iteration numbers that is slightly above all other cases. The challenges of small radii for the
iterative solvers have also been reported in [30]. Overall, this study reveals a satisfying robustness of the proposed preconditioner
in relevant application scenarios.

5.4. Application: Concrete wall with steel reinforcements

To show the applicability of the proposed block preconditioner to real-world problems, we study an example from civil
engineering, in particular the loading of a steel-reinforced concrete wall. The problem setup and its dimensions are shown in Fig. 9.

Since we are focusing on the performance of the linear solver and the proposed preconditioner, we restrict ourselves in this
example to an idealized, fully elastic constitutive behavior of concrete. Therefore, it suffices to model the solid with a St.-Venant–
Kirchhoff material (𝐸 = 30GPa, 𝜈 = 0.3). In this study, we, thus, refrain from using more elaborate constitutive models, that
also cover inelastic effects, such as the Drucker–Prager model [60], which could serve as a smeared, phenomenological model for
concrete undergoing damage or crack initiation. Yet, we study a complex reinforcement design: The initially curved reinforcement
bars are modeled as Simo–Reissner beams (𝐸 = 210GPa, 𝜈 = 0.0) with a fiber cross section radius of 𝑅 = 0.005m. The bottom and
left side of the wall are clamped, restricting the displacement of the solid and fibers. Additionally, a distributed load of −3×107 N∕m2

is applied on the top surface in 𝒆2 direction and 1.5 × 105 N∕m2 on the back surface in 𝒆3 direction. The reinforced concrete wall is
discretized with first-order hexahedral finite elements for the solid domain and Simo–Reissner beam elements for the reinforcement
fibers, respectively. We study this problem for three different mesh sizes (coarse, medium, fine), where each refinement quadruples
the total number of unknowns. Details on these meshes including the resulting number of degrees of freedom for each field are given
in Table 5 along with the computational resources, i.e., number of MPI ranks 𝑛proc, used for each mesh. The penalty parameters for
positional and rotational couplings are set to 𝜖 = 2.1×1011 N∕m2 and 𝜖 = 5.25×106 Nm∕m, respectively. We perform a quasi-static
simulation and impose the total load over the course of four load steps.

Exemplarily, Fig. 10 depicts the sparsity pattern of the system matrix for the coarse mesh. The 2 × 2 blocking as introduced
in (8) is highlighted through colors. The beam sub-block 𝐀 (orange) internally exhibits block diagonal structure as illustrated in
Fig. 4, which allows for an efficient construction of the SPAI, since the sparsity pattern of the inverse can be estimated very well
based on the block-diagonal structure of 𝐀. Arising from the penalty contributions assembled into 𝐂, the solid sub-block 𝐂 (white)
contains many entries far away from its diagonal, exemplifying the attested lack of diagonal dominance, cf. Section 3.2. Both beams
nd solid are connected through the coupling blocks 𝐁T

1 and 𝐁2 (gray), which are the main reasons for the loss of block diagonal
ominance, again see Section 3.2.
For all simulations, the nonlinear solver converges if the nonlinear residual ‖𝐟‖2 drops below 10−8 and the displacement

ncrement ‖𝛥𝐝‖2 falls below 10−8. To get an idea of the effectiveness of the proposed preconditioner in an application scenario,
e compare different methods to solve the arising linear system in each Newton step, in particular a direct solver (by applying the
18
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Fig. 10. Sparsity pattern of the linear system arising from the coarse mesh of the concrete wall (cf. Table 5) with the block-diagonal beam sub-block 𝐀 (orange),
he solid sub-block 𝐂 (white), and the off-diagonal coupling blocks 𝐁T

1 and 𝐁2 (gray). (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Table 5
Comparison of averaged linear solver timings per nonlinear iteration for a steel-reinforced concrete wall (methods: Direct — direct solver based on an LU
actorization, Naive — a naive-preconditioned GMRES solver using an ILU factorization as preconditioner, Block — a GMRES solver using the block preconditioner
proposed in Section 4).
𝑛proc 𝑛𝐷𝑂𝐹 𝑛𝐷𝑂𝐹 𝑛𝑡𝑜𝑡𝑎𝑙𝐷𝑂𝐹 Method Reuse #iter CPU time (s) Speedup

𝑇setup 𝑇solve 𝑇total
𝑇 𝑑𝑖𝑟𝑒𝑐𝑡
total

𝑇 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒
total

8 180 888 45 894 226 782

Direct no – 1070 2.8 1072.8
Naive no no convergence
Block no 25 100.9 13.9 114.8 ≈ 9
Block yes 26 19.4 13.3 32.7 ≈ 33

32 844 545 45 894 890 439

Direct no – 5358 8.3 5366.3
Naive no no convergence
Block no 25 145.9 17.6 163.5 ≈ 33
Block yes 26 29.2 18.9 48.1 ≈ 112

128 3 323 565 45 894 3 369 459

Direct no not feasible
Naive no no convergence
Block no 22 198.3 20.4 218.7 n/a
Block yes 23 38.5 21.1 59.6 n/a

distributed memory version of SuperLU [59]), a naive approach represented by a GMRES solver with an ILU preconditioner, and
a GMRES solver with the proposed block preconditioner from Section 4. Where applicable, we also study the effect of reusing the
preconditioner over multiple invocations of the linear solver within a single load step to better amortize the potentially expensive
setup of the block preconditioner. In case of GMRES, we assume convergence of the linear solver, if the full relative residual
norm ‖𝐫𝑛‖2 ∕

‖

‖

‖

𝐫0‖‖
‖2
drops to at least 10−6.

In case of the block preconditioner, we apply 𝑘 = 3 sweeps of the proposed preconditioner within each GMRES iteration. The
PAI computation for the beam sub-matrix 𝐀 uses a drop tolerance 𝜎 = 10−8 and a refinement level 𝓁 = 4 to enrich the sparsity
attern. For the predictor and corrector step, the described SPAI smoother is applied with 𝑚 = 3 sweeps. The Schur complement
quation is tackled with a PA-AMG hierarchy with a maximum size of the coarse level problem of 6500 unknowns, which results in
hree MG levels for all meshes. Prolongator smoothing (as proposed by [52] and usually beneficial for problems in solid mechanics)
s explicitly disabled to reduce the fill-in of the coarse level matrices; see [53] for a detailed comparison. An ILUT method with 𝛿 = 1,
= 2.5, and 𝜏 = 10−4 is used as level smoother. The coarse level equations are solved directly using the distributed memory version
f SuperLU [59].
The solver options and their iteration counts and timings are summarized in Table 5. Each of the four load steps requires five

ewton iterations to reach convergence of the nonlinear solver. The reported iteration counts and timings have been averaged
ver all load steps and Newton steps, such that the numbers now give a good estimate for the cost of a single invocation of the
inear solver. For the direct solver, the coarse and medium mesh could be solved, while the fine mesh was infeasible, i.e., one load
tep taking more than three days of wall clock time on a cluster, such that we do not report the final result. For the out-of-the-box
19

terative solver using a GMRES method preconditioned with an incomplete LU factorization, the iterative solver was not able to reach
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convergence within 1000 iterations. Only GMRES with the proposed block preconditioner from Section 4 was able to solve all three
levels of mesh refinement. Moreover, the iterative method outperforms the direct solver in the sense that it is roughly 9× faster than
the direct method for the coarse discretization. When moving to the medium-sized mesh, the discrepancy in solver timings increases
even further: the direct method requires a total solver time 𝑇total = 5366.3 s for a single solve, while the total solver time 𝑇total of the
preconditioned GMRES only takes 163.5 s, resulting in a speed-up of approximately 33×. Increasing the problem size even further
makes the application of a direct method infeasible, as memory consumption and computing time become prohibitively high, leaving
the iterative approach as the sole viable option. In all working cases, the linear iterations for the preconditioned iterative method per
Newton step remain almost constant over the whole simulation for each problem and in addition also stay almost constant for each
mesh size. For the coarse and medium meshes, approximately 25 iterations are necessary to achieve the desired tolerance, whereas
the large setup requires 22 iterations on average. Still, the discrepancy between 𝑇setup and 𝑇solve is rather large for the iterative
method, as most of the computation time is spent in the construction of the factorization of the ILUT level smoother. To better
amortize the expensive setup cost, one can build the preconditioner only once per load step and then reuse it for each Newton step
with the goal of decreasing the overall simulation time. This shows to be an effective option, as it reduces the setup time 𝑇setup by a
factor of 5× in each case, which is perfectly in line with using the preconditioner five times, but only building it once per load step.
Due to the reuse, the preconditioner is not perfectly fitting the system matrix anymore, occasionally resulting in a slight increase in
iteration numbers (#iter) and solver time 𝑇solve. Overall though, the total solver time 𝑇total is reduced, which also manifests itself in
the speed-up factors of 33× and 112× in Table 5 for the coarse and medium mesh. The infeasibility of a direct solver for the fine mesh
prevents the calculation of a speed-up factor (n/a), however clearly testifies to the beneficial impact of the proposed preconditioner
on the solvability of large-scale application examples. For both rebuilding or reusing the preconditioner, the iteration counts appear
to be independent of the mesh size also in this example from engineering practice.

Overall, this example demonstrates not only the applicability of the proposed preconditioner in engineering problems, but also
its benefits in terms of efficiency and speed-up, ultimately enabling the analysis of large and complex fiber-solid systems, which
have not been accessible with existing linear solvers so far.

6. Concluding remarks

In this paper, we have proposed a physics-based multi-level block preconditioner for the scalable solution of mixed-dimensional
models in beam-solid interaction, specifically tailored to systems with many independent fibers being embedded into a solid domain.
The regularized mortar-type coupling approach leads to 2 × 2 block systems exhibiting particular properties, most prominently the
lack of block diagonal dominance stemming from the penalty terms on the off-diagonal coupling blocks, which render classical
block relaxation preconditioners inapplicable. To precondition an outer Krylov solver, we utilize an approximate block factorization
to enable the tackling of the individual blocks and their coupling within the preconditioner. To this end, we exploit the beam-
related sub-block’s sparsity structure resembling a block diagonal matrix to explicitly construct a sparse approximate inverse (SPAI)
by solving a minimization problem over the Frobenius norm on a given sparsity pattern, which in practice is decomposed into
row-wise minimizations to be solved in parallel. To increase its robustness and approximation quality, the SPAI computation is
equipped with pre-processing steps such as a filtering of small entries and a static enrichment of the sparsity pattern as well as a
post-filtering of small entries. This approximation has then not only been used for the explicit formation of an approximation to
the Schur complement, but also as a smoother in the Block-LU’s prediction and correction steps. To solve the Schur complement
equation, we have employed an AMG hierarchy. Due to the Schur complement’s fill-in stemming from the SPAI matrix as well as the
penalty contributions, an ILUT factorization with fill-in 𝑝, threshold 𝜏, and overlap 𝛿 serves as level smoother on all levels except
for the direct solver on the coarse level. All building blocks of the proposed preconditioner have been implemented in Trilinos and
are available as open-source software to the entire scientific community.

We have studied the influence of the SPAI algorithm’s parameters and have found, that a static enrichment of the graph  (𝐀)
of at least 𝓁 = 2 greatly improves the quality of the approximation as well as the performance of the iterative solver, while more
enrichment might be required for particularly challenging problems. Regarding the scaling behavior, we were able to demonstrate
weak scalability up to 1000 MPI ranks. While the iteration count is completely independent of the problem size and number
of MPI ranks for SA-AMG, the setup and solver time exhibit a minor increase with an increasing problem size. This is mainly
attributed to the use of an ILUT level smoother within the Block-LU’s Schur complement step. We have demonstrated the robustness
of the preconditioner by showing that the iteration counts remain constant when changing critical physical parameters such as
the stiffness ratio between fibers and bulk field or the fiber radii. Finally, we have investigated an application example from
civil engineering, in particular a steel-reinforced concrete wall, and have compared the performance of the proposed multi-level
preconditioner to established one-level preconditioners and direct solvers. Even for a coarse mesh, the one-level preconditioner
failed to converge. The proposed multi-level preconditioner delivered a speed-up by a factor up to 112× compared to the direct
solver on small and medium sized meshes, whereas the application of a direct method on the finest mesh was not feasible anymore,
leaving the proposed preconditioned iterative method as the only working option. Again, the iteration count is independent of the
mesh size. While intractable for existing solvers, the proposed preconditioner enables the analysis of mixed-dimensional fiber-solid
systems with complex reinforcement structures for the first time. Considering computational performance, the option of building
the preconditioner only once per load step and then reusing it in every iteration of the nonlinear solver has shown to cut down the
setup time 𝑇setup at the expected rate, while still delivering a strong preconditioning effect, such that the convergence of the linear
solver is not impeded and the total solver time 𝑇 is reduced significantly.
20
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In future work, the proposed preconditioner and its building blocks can be extended to other types of beam-solid interaction
henomena such as the coupling of beams onto a solid’s surface [14] or the contact between beams and solid bodies [34]. Similarly,
ther mixed-dimensional multi-physics systems such as fiber-fluid interaction are likely to be amenable to such a methodology. It
eems worthwhile to use semi-structured grids to discretize the solid domain, if applicable, which in turn allow one to further
nhance its computational performance in many application scenarios [61]. Performance and scalability bottlenecks associated
ith the evaluation of the beam-solid coupling terms on a distributed-memory parallel computing cluster need to be addressed,
.g., following ideas from mortar methods for contact mechanics to improve data locality and load balancing [62].
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