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Abstract—This article presents the scientific outcomes of the
2023 Data Fusion Contest (DFC23) organized by the Image Analy-
sis and Data Fusion Technical Committee of the IEEE Geoscience
and Remote Sensing Society. The contest consists of two tracks
investigating the fusion of optical and synthetic aperture radar
data for: 1) fine-grained roof type classification and 2) height
estimation. During the development phase, 1000 people registered
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for the contest, while at the end 55 and 35 teams competed during
the test phase in the two tracks, respectively. This article presents
the methods and results obtained by the first and second-ranked
teams of each track. In Track 1, both winning teams leveraged
pretraining, modern network architectures, model ensembles, and
measures to cope with the imbalanced class distribution. The solu-
tions to Track 2 are more diverse and are characterized by modern
multitask learning approaches. The data of this contest is openly
available to the community for further research, development, and
refinement of machine learning methods.

Index Terms—Convolutional neural networks, data fusion,
deep learning, fine-grain building classification, transformers,
monocular height estimation (MHE).

I. INTRODUCTION

UILDINGS play a vital role in urban areas, yet the focus
B of research in the extraction and 3-D reconstruction from
remote sensing data often neglects detailed information about
the specific roof types of buildings. This oversight restricts
the potential for in-depth analysis, particularly in the context
of urban planning applications. Classifying building roof types
at a fine-grained level using satellite imagery poses significant
challenges due to the presence of ambiguous visual features
within the images. Furthermore, the lack of datasets specifically
designed for fine-grained building roof type classification exac-
erbates the difficulty of this task.

The 2023 IEEE GRSS Data Fusion Contest (DFC23), or-
ganized by the Image Analysis and Data Fusion Technical
Committee (IADF TC) of the IEEE Geoscience and Remote
Sensing Society (GRSS), the Aerospace Information Research
Institute under the Chinese Academy of Sciences, the Universitit
der Bundeswehr Miinchen, and GEOVIS Earth Technology
Company, Ltd. aims to push current research on building ex-
traction, classification, and 3-D reconstruction towards urban
reconstruction with fine-grained semantic information of roof
types and height information.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1.

To this aim, the DFC23 establishes a large-scale, fine-grained,
and multimodal benchmark for the classification of building
roof types [1]. It consists of two challenging competition
tracks investigating the fusion of optical and synthetic aper-
ture radar (SAR) data focusing on roof type classification
and building height estimation, respectively. The data provided
by the DFC23 includes several novel properties. They are as
follows.

1) Globally Distributed and Large-Scale: Buildings are dis-

tributed across seventeen cities on six continents to cover
a wide range of different building styles. This allows
capturing the heterogeneity of cities in different continents
with various landforms.

2) Fine-grained Roof Type Categories: The buildings are la-
beled according to a detailed (fine-grained) categorization
of roof types. The DFC23 provides nearly 300k instances
with twelve different types of building roofs, which ren-
ders building roof-type classification significantly more
challenging.

3) Multimodal Data: To facilitate multimodal data fusion,
optical imagery and SAR images are provided. The in-
formation captured by these different modalities can be
jointly exploited, potentially resulting in the development
of more accurate building extraction and classification
models.

The contest is designed as a benchmark competition following
previous editions [2], [3], [4], [5], [6], [7] and consists of two
parallel tracks as follows.

1) Track I: Building Detection and Roof Type Classification.

2) Track 2: Multitask Learning of Joint Building Extraction
and Height Estimation.

Track 1: Building Detection and Roof Type Classification

This track focuses on the detection and classification of build-
ing roof types from high-resolution optical satellite imagery and
SAR images. The SAR and optical modalities are expected to
provide complementary information. The given dataset covers
seventeen cities worldwide across six continents. The classifica-
tion task consists of twelve fine-grained, predefined roof types.
Fig. 1 shows an example.

Output

Example image tile of the provided multimodal data (optical and SAR) for building detection and roof type classification.

Track 2: Multitask Learning of Joint Building Extraction and
Height Estimation

This track defines the joint task of building extraction and
height estimation. Both are fundamental tasks for building re-
construction. Asin Track 1, the input data are multimodal optical
and SAR satellite imagery. Building extraction and height esti-
mation from single-view satellite imagery depend on semantic
features extracted from the imagery. Multitask learning provides
a potentially superior solution by jointly analyzing features
from the different data sources and forming implicit constraints
between multiple tasks compared to conventional single-mode
methods. Satellite images are provided with reference data, i.e.,
building annotations and normalized Digital Surface Models
(nDSMs). The participants are required to reconstruct build-
ing heights and extract building footprints. Fig. 2 shows an
example.

II. DATASET

The images of the DFC23 dataset are acquired by the
SuperView-1 (or “GaoJing” in Chinese), Gaofen-2 and Gaofen-3
satellites, with spatial resolutions of 0.5 m, 0.8 m, and 1 m,
respectively. nDSMs provided for reference in Track 2 are
produced from stereo images captured by Gaofen-7 and World-
View 1 and 2 with a ground sampling distance of roughly
2 m. Data was collected from seventeen cities on six continents
to provide a large and representative dataset of high diversity
regarding landforms, architecture, and building types. Roof type
categories are organized according to twelve fine-grained roof
type classes based on the geometry of the roof.

The data of this contest remains openly available to the
community'.

III. CONTEST ORGANIZATION AND SUBMISSIONS

The contest consisted of two phases as follows.

Phase 1: Participants are provided training data and addi-
tional validation images (without corresponding reference data)
to train and validate their algorithms. Participants can submit re-
sults for the validation set to the CodaLab competition websites

![Online]. Available: https:/ieee-dataport.org/competitions/2023-ieee- grss-
data-fusion-contest-large-scale-fine- grained- building- classification
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Fig. 2. Example of joint building extraction and height estimation.
TABLE I
REGISTRATION AND SUBMISSION STATISTICS OF THE TWO TRACKS
Development phase Test phase
Registrations | Submissions | Teams | Submissions
Track 1 680 4921 55 420
Track 2 320 1692 35 274

for Track 12 and Track 23 to get feedback on their performance.
The performance of the best submission from each account will
be displayed on the leaderboard. In parallel, participants submit
a short description of the approach used to be eligible to enter
Phase 2.

Phase 2: Participants receive the test dataset (without the
corresponding reference data) and submit their results within
seven days from the release of the test dataset. After evaluation
of the results, four winners for each track are announced. We
received 1000 registrations at the CodaLab competition website
during the development phase (see Table I).

For Track 1, there were 680 unique registrations at the Co-
dalLab competition website during the development phase, and
55 teams entered the test phase after screening the descriptions
of their approaches submitted by the end of the development
phase. 4921 submissions were received during the development
phase, with active participation from all registered teams. During
the test phase, the maximum number of submissions per team
was limited to 5 per day, and 420 submissions were received.

For Track 2, there were 320 unique registrations at the Co-
daLab competition website during the development phase, and
35 teams entered the test phase after screening the descriptions of
their approaches submitted by the end of the development phase.
Intotal, 1692 submissions were received during the development
phase, with active participation from all registered teams. During
the test phase, the maximum number of submissions per team
was limited to 5 per day, and 274 submissions were received.

Participants of the two tracks come from 32 countries. The
specific number and proportion of participants in each country
are shown in Fig. 3.

The first- to fourth-ranked teams were awarded as winners
of the DFC2023 for each track and were invited to present

2CodalLab Track 1: https://codalab.lisn.upsaclay.fr/competitions/8987
3CodaLab Track 2: https://codalab.lisn.upsaclay.fr/competitions/8988

Reference: Building Extraction
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Reference: nDSM

their solutions during the 2023 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS 2023). However,
the fourth-ranked team of Track 1 decided to withdraw from
the contest. In the following, we list the winning teams of the
DFC2023 in Track 1 as follows.

1) Ist place: PIESAT-AI team—Guozhang Liu, Baochai
Peng, Ting Liu, Pan Zhang, Mengke Yuan, Chanran Lu,
Ningning Cao, Sen Zhang, Simin Huang, Tao Wang from
PIESAT Information Technology Company, Ltd., Beijing,
China [8].

2) 2nd place: IPIU-XDU team—Xiaoqiang Lu, Licheng
Jiao, Qiong Liu, Lingling Li, Fang Liu, Xu Liu, Yuting
Yang from Xidian University, China [9].

3) 3rd place: carryhjr team—Jiarui Hu (Wuhan University),
Zijun Huang (Guangdong University of Technology), Fei
Shen (Nanjing University of Science and Technology),
Dian He (Tsinghua University), Qingyu Xian (Tsinghua
University) [10].

and in Track 2 as follows.

1) Istplace: PIESAT-AI ttam—Chaoran Lu, Ningning Cao,
Pan Zhang, Ting Liu, Baochai Peng, Guozhang Liu,
Mengke Yuan, Sen Zhang, Simin Huang, Tao Wang, from
PIESAT Information Technology Company, Ltd., Beijing,
China [11].

2) 2ndplace: IPIU-XDU team—Xiaoqiang Lu, Licheng Jiao,
Qiong Liu, Lingling Li, Fang Liu, Xu Liu, Yuting Yang
from Xidian University, China [12].

3) 3rdplace: ZheWang team—Yuxuan Guo, Zhe Wang from
Wuhan University, China [13].

4) 4th place: carryhjr team—1Jiarui Hu (Whuhan Univer-
sity), Zijun Huang (Guangdong University of Technol-
ogy), Fei Shen (Nanjing University of Science and Tech-
nology), Dian He (Tsinghua University), Qingyu Xian
(Tsinghua University) [14].

The two best-ranked teams in both tracks are invited to provide

a deeper discussion on their respective approaches to win the
DFC23 in this article.

IV. TRACK 1—FIRST PLACE: TEAM PIESAT-AI

A. Method

Team PIESAT-AI introduced an effective instance segmen-
tation framework designed to tackle the complex challenges of
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Fig. 3. Nationality statistics of participants of the two tracks.
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fine-grained building roof classification. The approach builds
upon the Cascade Mask R-CNN [15] architecture and is en-
hanced with domain-adapted pretraining and a modernized
dual-backbone structure. These techniques collectively address
a range of issues, such as the significant interclass imbalance
of roof types, the diversity of building styles of global cities,
and the distinction of imaging satellites. The overall structure is
shown in Fig. 4. To improve training stability and to realize
effective weight initialization, a domain-adaptive pretraining
model is employed to optimize the parameter initialization. A
composite dual-branch backbone structure is integrated as a
more robust and discriminative feature extractor. The newly de-
signed backbone mitigates problems associated with small-size
instance segmentation and classification of minority categories.
The dual-branch backbone is applicable for optical, as well as
SAR inputs, which enhances the multimodal data fusion per-
formance. A tailored data augmentation pipeline is adopted that
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‘weights ;
= |

Overview training workflow and network structure of the Track 1 winning approach.

{ Densely connected“‘-:

; + > i

vi % |

- g l—T/ : > @ Addition(Nearest(x)) |
5 N <D &« Feature map %

H T I |

| Z \ = |

| : == /

FPN-Neck

CE loss

=
=
e
Y ;
— — Smooth
A A ce 11

incorporates modified copy-paste techniques, Stochastic Weight
Average (SWA [16]) training strategy, and a novel instance seg-
mentation model aggregation method during inference. These
strategies enhance the precision of the fine-grained roof instance
segmentation.

Domain adapted pretraining: The strategy for initializ-
ing model weights holds a pivotal role within the optimiza-
tion framework. The utilization of pre-trained weights from
ImageNet-22 k has two advantages: 1) convergence accelera-
tion and 2) overall performance improvement. The Fully Con-
volutional Masked Autoencoder (FCMAE) [17] demonstrates
a superior performance by improving the domain adaptation
capacity for specific datasets with self-supervised pretraining
tailored to convolution-based models. To this end, the pretrain-
ing weights of ConvNeXt V2 on the RGB modality dataset
are leveraged and form the bedrock for initializing the dual
subbackbones. This elaborated weight initialization, coupled
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with the FCMAE pretraining, boosts the detection performance
and domain-specific adaptability.

Composite dual-backbone feature extractor: To obtain a
robust feature extractor, a dual-branch backbone is used en-
compassing two interconnected subbackbones. This structure
is validated in CBNet [18]. The configuration exhibits remark-
able adaptability across both single-modality and multimodal-
ity inputs. The lead subbackbone and auxiliary subbackbone
are densely connected, where high-level low-resolution feature
maps undergo nearest interpolation before the fusion with low-
level high-resolution ones. The fusion scheme is defined by

L
. . ’ 1
Ez:ad - Gljead E N(Faux) + Fi]ead (1)
i=j

where L represents the number of downsampling stages of the
subbackbone, F,., Fi_, represent the feature map of the ith and
Jjth stages in the auxiliary subbackbone and lead subbackbone,
respectively, Gi.,4() represents a model block of the jth stage
in lead subbackbone, and N represents the nearest neighbor
interpolation operator.

The composite dual-backbone design promotes the extraction
of global context and local details and achieves notable feature
extraction capability.

Modified copy-paste: Copy-paste [19] is a simple yet power-
ful technique for instancing-level data augmentation. To enhance
the diversity of the dataset, PIESAT-AI presents an improved
modification of this approach. The design involves an initial
extraction of instances from images, followed by the application
of randomized resizing, rotation, and flipping to these pixel-level
instances. Subsequently, these augmented instances are seam-
lessly integrated into the selected images. This synthesizing pro-
cess preserves the authenticity of the nadir-viewing images. Due
to the risk that synthetic images might introduce distributional
shifts, PIESAT-Alimplements a two-phased training pipeline. In
the initial phase, the model is trained using the dataset enriched
by the modified copy-paste technique, covering 90% of the total
training epochs. The subsequent phase focuses on fine-tuning,
during which the model refines its performance over the re-
maining 10% of epochs without the modified copy-paste data
augmentation. In addition to the distinctive augmentation strate-
gies, PIESAT-AI's data augmentation pipeline encompasses
various routine techniques, including random rotation, resizing,
cropping, etc.. This holistic augmentation approach synergizes
diverse methodologies to ensure the model’s adaptability to a
wide range of real-world scenarios. Additional training strategy:
To effectively tackle the challenges arising from the long-tailed
distribution of roof categories and the distributional disparities
between the training and validation datasets, the approach fo-
cuses on the construction of a more generalized model involving
the strategic incorporation of diverse training techniques to
strengthen the model’s performance as follows.

1) Tactics for long-tail distribution: The statistics of the
Track 1 training dataset (see Fig. 5) reflect the practical
difficulty that there are significant proportion disparities
for different classes. Thus, a balanced sampling strategy
is utilized with the aim of increasing the probability

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024
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Fig. 5. Distribution of instance pixels among predefined roof categories of
DFC 2023. Gray, orange, and blue represent large, medium and small instances,
respectively.

of selecting minority-class samples. Furthermore, the
see-saw loss [20] mechanism is employed to alleviate the
impact of gradients stemming from less common negative
class samples.

2) SWA:The SWA [16] technique with cyclical learning rates
is employed during 12 further epochs after all training
epochs are completed. The weights of the models of these
12 epochs are averaged to obtain the final model weights.

3) Model ensemble: To improve the generalization capability
of the model, a model ensemble strategy is employed to
fuse several different models. When it comes to object
detection, the widely adopted methodology of weighted
boxes fusion (WBF) [21] has emerged as a prevalent
strategy for orchestrating model ensembles. PIESAT-AI
introduces Weighted Segmentation Fusion (WSF), which
is suitable for instance segmentation: First, the WBF strat-
egy is adapted to obtain fused bounding boxes. Then, the
masks from different models are fused to obatin the final
results.

4) Multimodality input: Several experiments have been car-
ried out to evaluate the potential of employing multimodal
inputs, i.e., using both RGB and SAR data. However,
the outcomes of the multimodal approach fail to match
the high performance achieved through utilizing the RGB
modality only.

B. Results

Table II contains the accuracy of different experiments. These
ablation studies show that the best result with an mAPsq of
50.6% is achieved by fusing several strong detectors trained
under different hyperparameters and backbones with WSF. No-
tably, SAR data does not enhance model performance, but accu-
racy drops significantly compared to the single RGB modality
input. The visualization results depicted in Fig. 6 demonstrate
the model’s capability to accurately identify and delineate the
boundaries of roofs, even for small-scale and poorly defined
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TABLE II

DETAILS OF TEAM PIESAT-AI’S ABLATION STUDY, CMR=CASCADE MASK

RCNN, SCP=SIMPLE COPY-PASTE, MCP=MODIFIED COPY-PASTE,

DB=DUAL-BACKBONE, DAP=DOMAIN ADAPTED PRETRAINING, CNV2=CONVNEXT V2, WSF= WEIGHTED SEGMENTATION FUSION

Method Development phase (mAP50)  Test phase (mAP50)

CMR + db-swin-base 0.443 /

CMR + db-swin-base + SAR-input 0.371 /

CMR + db-swin-base+ seesaw 0.461 /

CMR + db-swin-base + seesaw + SCP 0.469 /

CMR + db-CNV2-base-DAP+ seesaw + SCP 0.476 /

CMR + db-CNV2-base-DAP + seesaw + SCP + SWA 0.485 /
CMR + db-CNV2-base-DAP + seesaw + MCP + SWA 0.496 0.426
CMR + db-CNV2-base-DAP + seesaw + MCP+finetune + SWA / 0.441
CMR + db-CNV2-large-DAP + seesaw + MCP+finetune + SWA / 0.448
WSF based model ensemble 0.5510 0.5060

TABLE III

Source Images

Detected Instances

Fig. 6.

Qualitative results of the first place of Track 1.

targets. Despite these promising results, some instances of
misclassification persist and indicate the potential of further
refinement and optimization of the model.

C. Discussion

An extensive series of experiments led to a robust and suc-
cessful model tailored for fine-grained building roof instance
segmentation. The approach integrates domain-adapted pre-
training and a dual backbone framework. It utilizes optical satel-
lite imagery as the primary input source. The inherent misalign-
ment and heterogeneity between optical and SAR data presents
great challenges to enhance performance in a multimodal data
fusion setting.

V. TRACK 1—SECOND PLACE: TEAM IPIU-XDU
A. Method

To address the problem of a long-tailed class distribution,
general data insufficiency, interclass similarity, and intraclass
differences in the DFC23 dataset, team IPIU-XDU proposes a
three-stage learning framework consisting of pretraining, super-
vised training, and semisupervised training shown in Fig. 7.

Pretraining: Several computer vision approaches make ex-
tensive use of models pretrained on ImageNet. However, there
are considerable differences between natural and remote sensing
images, such as less-defined shapes and a rather dispersed dis-
tribution of objects in remote sensing imagery. Team IPIU-XDU
cropped every building box to create a fine-grained classification
dataset used to fine-tune the ImageNet pretrained model into

CLASS-INSTANCE AND CLASS-IMAGE DISTRIBUTIONS

| Category id |  Nins Tins | Nimg Timg |
Flat 1 109460  0.5635 3461  0.9304
Gable 2 57426  0.2956 2965  0.7970
Gambrel 3 5087  0.0262 524 0.1409
Row 4 943 0.0049 477  0.1282
Multiple 5 738  0.0038 176 0.0473
Hipped_v1 6 4320  0.0222 1083  0.2911
Hipped_v2 7 10220  0.0526 1422 0.3823
Mansard 8 510  0.0026 339 0.0911
Pyramid 9 1520  0.0078 631  0.1696
Arched 10 833  0.0043 536  0.1441
Revolved 11 154 0.0008 138 0.0371
Other 12 2872 0.0148 1099  0.2954

a building-specific model. BEiTv2-L [22] is used as a feature
extractor. Following the process of fine-tuning, a vision trans-
former adapter [23] is used to enhance the representations of the
model.

Supervised training: The following three techniques aim
to improve the supervised model to derive a better result for
semisupervised training.

1) Long-tailed data distribution: Table III shows that the
UBC [24] dataset is severely imbalanced. To address
this issue, image-level resampling and object-level bal-
anced copy-paste strategies are introduced. Specifically,
the number Vi, of each class instance is used to compute
the ratio ri,s of class instances and the ratio r,,s of class
images. Two thresholds dins = 0.005 and §ime = 0.1 are
defined to determine whether to copy-paste and resample,
respectively, i.e., depending on 74y, OF i, being less than
6ins or 6irng-

2) Cross-modal fusion: The key obstacles in building detec-
tion and classification include occlusions, shadows, and
diverse roof types of urban coverings. In terms of the ben-
efits and drawbacks of various forms of data, RGB images
provide excellent spatial resolution and textural informa-
tion but are vulnerable to weather, whereas SAR images
work in all weather conditions and highlight foreground
items. As a result, using them both augments the input
feature space and might potentially improve the resulting
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Ilustration of the three-stage learning framework of the second place for Track 1.

model. To that end, a simple but effective cross-modal
fusion (CMF) module is created that independently con-
catenates hierarchical features extracted from RGB and
SAR. Feature fusion and channel dimensionality reduction
are achieved by using 1 x 1 convolutions and residual
connections to improve the RGB feature representation.
MHEM loss and training optimization: The majority
of currently used fine-grained visual classification tech-
niques overfit challenging examples in the training set but
do not learn to generalize to unseen examples in the test
set. In order to effectively modulate the hard instances
and encourage the model to avoid overfitting them, a
moderate hard example modulation (MHEM) loss is incor-
porated [25]. Except for the bounding box classification
head loss L, the losses of the bounding box regression
head L, semantic head L, and mask head Ly, are
set according to [26].

Semisupervised training: Semisupervised learning (SSL)
for visual dense prediction in the downstream tasks has been
established to be effective [27], [28], [29]. Self-training, which
is a key branch of SSL, can help a model that was only
trained on a small amount of labeled data by expanding it to
new situations and training samples. However, because of the
complex unlabeled data and model bias, it suffers greatly from
noise being present in the initial pseudolabels. To this end,
two core denoising techniques are proposed to explore a safe
boundary for using unlabeled data: 1) Image-level denoising

by global average filtering (GAF) and 2) object-level denoising
by intraclass adaptive thresholding (IAT) are performed in a
global-to-instance manner.

1)

2)

Global average filtering: Given the ¢th unlabeled image x;
and a trained model F', the initial pseudolabels of z-; can be
formulated as y; = F(z;). The maximum total number of
image objects is set to Ngeis = 2000. The pseudolabel of
the jth object in y; consists of a corresponding confident
score s; and a 4-D coordinate representing the position.
An image-level confidence S, of x; is computed as

1 Ners

Ndets 1
j_

Sz, @)

Sj-.

A threshold dgar = 0.01 is used to determine whether to
drop z; depending on S, being less than dga¥F.
Intraclass adaptive thresholding (IAT): For class ¢, aclass-
level confidence S5 of x; can be formulated as

1 Niass
Sh= e 2% 3)
dets j=1

where N§,, represents the number of objects belonging to
class c. A majority class m; of x; can be derived by m;
arg max(S§ ). For m;, by comparison with a threshold
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d1aT = 0.2, the ratio r; is computed as

N
1 dets »
Ti = ~mr Z 1 (s > d1ar) @
dets j=1

where 1(-) is the indicator function. Finally, for any other
class ¢ (c # m;), S, is sorted in descending order and
only the top r; objects are kept ensuring reliable pseu-
dolabels with the same confidence-level. The correspond-
ing thresholds can be selected for each class and each
unlabeled image in an adaptive manner.

Two-stage results ensemble pipeline: As shown in Fig. § ,
for n predictions from n trained models, (WBF [21]) is used to
ensemble the corresponding bounding boxes predictions, result-
ing in more accurate proposals. These are then passed to the best
model’s mask head to perform segmentation, deriving the final
result. Fifteen models trained with different hyperparameters are
assigned equal weights for integration in the test phase of the
contest.

B. Results

All experiments are conducted on 8 NVIDIA V100. The pre-
training setting is based on [22], except for batch size and learn-
ing rate using a linear scale. For supervised and semisupervised
training, the model is optimized by AdamW with a base learning
rate of 0.0002, and batch size of 8. The training image base size
is set to 1024—-1536, and the test multiscale size is increased by
0, 64, 128, 192, 256 based on the base size. Random flipping
contains horizontal and vertical flipping, both with a probability
of 0.25. The training assigner is set to three times the default
setting. The test-time nonmaximum suppression uses a score
threshold of 0.00001 and a maximum object number of 2000.

To investigate each component of the proposed method, exten-
sive experiments are performed on the UBC dataset. Table IV
shows the results which led to the first place (AP5¢ = 0.559)
in the development phase and second place (AP5q = 0.495)
in the test phase. Table V shows the effectiveness of the three
supervised training strategies.
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Two-stage test-time augmentation results ensemble pipeline used by the second place of Track 1.

TABLE IV
ABLATION STUDY ON VARIOUS COMPONENTS OF TRACK 1’S SECOND PLACE

| Baseline Pre Sup Semi TTA | APso(val) APsq(test) |

0.438 —

0.447 —

0.508 -

v 0.530 -

v 0.534 —
v v 0.559 0.495

Pre: Pretraining. Sup: Supervised training. Semi: Semisupervised training. TTA:
Test-time augmentation.

NN NN
SENENENEN
NN

TABLE V
ABLATION STUDY ON THE THREE SUPERVISED TRAINING STRATEGIES OF
TRACK 1’S SECOND PLACE

| Baseline + Pre  BCP CMF  MHEM | APsp(val) |
v 0.447
v v 0.489
v v v 0.501
v v v v 0.508

Pre: Pretraining. BCP: Balanced copy-paste. CMF: Cross-modal fusion. MHEM:
Moderate hard example modulation loss.
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Fig. 9. Qualitative results of the second place of Track 1.
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Fig. 10.

Misaligned Example in DFC2023 Dataset.

Fig. 9 visually demonstrates that the method of Track 1’s
second place can accurately extract and identify various building
instances. Moreover, thanks to the cross-modal fusion module,
the method is capable of mitigating the negative effects caused
by cloud occlusion.

C. Discussion

Team IPIU-XDU addressed several challenges that hinder a
good performance of building classification detectors, including
long-tailed class distributions, data insufficiency, interclass
similarity, and intraclass differences. Specifically, IPIU-XDU
proposed a three-stage training framework consisting of
pretraining on the cropped buildings, supervised training with
a strong vision transformer adapter with added cross-modal
fusion module, and semisupervised training with two image- and
object-level denoising techniques. In addition, a two-stage test-
time ensemble pipeline is designed to further boost the perfor-
mance and generalization of the model. Extensive experiments
on the DFC23 data demonstrate the effectiveness of the method.

VI. TRACK 2—FIRST PLACE: TEAM PIESAT-AI
A. Method

Asdepicted in Fig. 10, there are several spatial misalignments
between building footprints and stereo-reconstructed nDSM
height labels in the DFC2023 datasets. To address this issue, first,
a Height-hierarchy Guided Dual-decoder Network (HGDNet)
is proposed to estimate building height. In contrast to methods
like PopNet [30] and SCENet [31], which rely on high-quality
aligned semantic labels for height estimation, HGDNet performs
the joint task of height estimation and hierarchical classification
by utilizing hierarchical information about heights. Under the
guidance of a synthesized discrete height-hierarchical nDSM,
an auxiliary height-hierarchical building extraction branch en-
hances the height estimation branch with implicit constraints,
yielding an accuracy improvement of more than 6% on the
DFC2023 Track 2 dataset. Second, to achieve a precise building
instance segmentation, an additional two-stage cascade archi-
tecture is adopted to extract individual building contours. The
improved feature extraction and the fusion of outcomes from
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distinct structural models significantly contribute to the perfor-
mance increase.

Height Estimation: The architecture of HGDNet is shown in
Fig. 11. A ConvNeXt V2 base is adopted as the encoder module.
The dual decoders consist of the height estimation branch and the
height-hierarchical segmentation branch. They are as follows.

1) Height Estimation Branch: Building heights exhibit an un-

even distribution, primarily concentrated within the range
of 0-50 m and even as low as in the range of 0—10 m. To
address this issue, a logarithmic transformation is applied
to the nDSMs labels to approximate a Normal distribution
as

In (nDSMs)

D Mrenorm = .
S max(In (nDSMs))

&)

UPerNet [32] is employed as the foundational decoding
layer. The up-down pathway and lateral connections work
cooperatively to enhance multiscale features extracted
from the backbone. These augmented features are sub-
sequently upsampled to a predetermined scale and then
fused. This fusion process generates the final feature for
accurate height estimation. Additionally, to accommodate
the height regression task, an additional one-channel con-
volutional layer is appended to the height branch, followed
by a sigmoid layer at the end of the network.

2) Height-hierarchical Segmentation Branch: An additional
height-hierarchical segmentation branch is seamlessly in-
tegrated into the network architecture to enhance the
precision of height estimation. This branch leverages the
same UPerNet decoder employed in the height estimation
branch. However, the fused features are fed to a single
convolutional layer comprising n channels, where n corre-
sponds to the number of height hierarchies. The proposed
methodology avoids the direct employment of instance
segmentation annotations featuring only a single class.
Instead, the nDSM is partitioned into a discrete hierar-
chy. This partitioning is achieved through the distribution
analysis of nDSMs and the application of clustering algo-
rithms. Subsequently, nDSMs are classified into n classes,
thereby establishing height-hierarchy labels. These dis-
tinct labels are used to steer the process of building height
estimation.

3) The Weighted Loss Function: The height-hierarchical seg-
mentation branch uses a cross-entropy loss while the
height branch uses a smoothed L1 loss. Given the dis-
parity in magnitudes between the different loss functions,
weighting coefficients «, 5 are introduced to balance the
influence of the two branches. The final form of the loss
function is

Loss =a - Lo + B+ Lymoothy ;- (6)

Building Extraction: To extract accurate contours of build-
ings, various two-stage cascade detection frameworks and back-
bones are employed as follows and is shown in Fig. 11.

1) Cascade Framework: The approach integrates several

efficient cascade networks, including Cascade Mask R-
CNN [33] and HTC++[34]. These networks perform target
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extraction in two stages. The initial stage emphasizes
locating the targets to generate proposals and then clas-
sifying, segmenting, and refining the proposals.

2) Backbone: After conducting comparative experiments,
ConvNeXt V2-Base [17] and BEiT V2 [22] networks are
selected to extract semantic features. These backbone net-
works extract profound features across distinct scales from
the input data, ensuring robust extraction for buildings of
various styles.

3) Loss Function: To enhance the fidelity of bounding box
prediction, the model employs the smoothed L1 and GIOU
loss functions. For building mask learning, the cross-
entropy loss function is employed.

4) Model Ensemble: A modified version of WBF ensembles
all results from different models. First, WBF is employed
to fuse bounding boxes. Subsequently, the segmentation
masks are combined. Finally, the fused masks are cropped
using the merged boxes. This strategy facilitates the inte-
gration of diverse models and is applicable for multiscale
scenarios.

B. Results

The performance of HGDNet is compared with other
methods. Table VI shows the specific quantitative compar-
ison. Notably, while “ConvNextv2+Uper” and the proposed
“HGDNet:ConvNeXt V2~ differ only in the presence of a height-
hierarchical semantic branch, the discernible 6% performance
gap underscores the clear effectiveness of the height-hierarchical
semantic branch.

The accuracy metrics of each model are shown in Table VII.
The optimal performance is attained through a selection of seven
models, not necessarily the top seven highest-scoring ones, but
rather a set encompassing diverse architectural configurations.

—

Overview of the building extraction (top) and height estimation (bottom) framework proposed for the winning solution in Track 2.

TABLE VI
COMPARISON OF TEAM PIESAT-AI’S METHOD AND OTHER METHODS ON THE
VALIDATION SET

‘ Method | & 02 o3 |
Baseline® 0.7042  0.7613  0.7922
DSMNet [35] 0.7339 0.7866  0.8110
SCENet-50 [31] 0.7731  0.8214  0.8438
ConvNextv2+Uper 0.7313  0.7822  0.8084
HGDNet:Without seg branch | 0.7313  0.7822  0.8084
HGDNet:ResNet-50 0.7824  0.8037  0.8502
HGDNet:ConvNeXt V1 Base | 0.7930  0.8371  0.8544
HGDNet:ConvNeXt V2 Base | 0.7966  0.8383  0.8581

TABLE VII

METRICS FOR SEVEN BUILDING EXTRACTION MODELS AND THEIR FUSION
RESULT ON THE TEST SET

| Method id | APsp mAP |
HTC++_BEiT V2 1 0.730 0.402
HTC++_ConvNeXt V2-Base 2 0.710 0.388
HTC_BEiT V2 3 0.722 0.400
Cascade_BEiT V2 4 0.751 0.428
Cascade_ConvNeXt V2-Base 5 0.737 0.422
HTC_ConvNeXt V2-Base 6 0.732 0.420
Cascade_ ConvNeXt V2-Base 7 0.721 0.410

| WSF based model ensemble | 0773  0.450 |

Fig. 12 illustrates the high performance of the proposed
method in building extraction and height estimation. For down-
stream tasks such as 3-D reconstruction of buildings, it is essen-
tial to further refine the segmentation of building edges and to
ensure the smoothness of building heights.

C. Discussion

A straightforward yet highly efficient architecture termed
HGDNet is introduced for accurate building height estimation.
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Fig. 12.  Qualitative results of the first place of Track 2.

Using an advanced backbone, the architecture unifies semantic
segmentation and height estimation tasks and leverages shared
multiscale features and implicit constraints to enhance the over-
all performance. Furthermore, the fusion of outcomes from
multiple two-stage instance segmentation models boosts the
model’s capability to discern buildings of various styles. The
efficacy of the proposed approach is validated through extensive
experimentation on the DFC2023 dataset.

VII. TRACK 2—SECOND PLACE: TEAM IPIU-XDU
A. Method

To address the problems of data limitation and foreground-
background confusion of the DFC23 datasets, team [PIU-XDU
proposes a novel trident cooperation network (TCNet) to per-
form end-to-end building extraction and height estimation using
RGB and SAR data, as shown in Fig. 13.

Trident cooperation network: The proposed TCNet contains
a CMF module and three task-specific heads [26], [36], [37]. To
perform end-to-end building extraction and height estimation,
the shared encoded features play an essential role in multitask
learning. Therefore, a simple yet effective CMF module is pro-
posed to derive more representative features. To perform each
visual subtask, the following three task-specific decoders are
introduced.

1) Hybrid task cascade (HTC): HTC [26] is an efficient
cascade architecture for instance segmentation, which
is mainly used in natural image interpretation. The key
components include a cascade structure that detects in-
stances at different scales and refines the results from
the previous stages, a semantic segmentation branch that
helps to improve the detection accuracy of small objects
in crowded scenes, and a feature alignment module that
aligns the features of the semantic segmentation and the
bounding box regression tasks to generate spatial context
to better utilizing the shared features. Based on this strong
detection baseline, a robust training pipeline consisting
of single-scale training is constructed leveraging random
flipping and edge enhancement as used in [28]. The losses
of the bounding box classification head L5, bounding box
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regression head L., semantic head L., and mask head
Lyask are defined according to [26].

2) All-MLP: Unlike traditional segmentation decoder archi-
tectures that use convolutional layers, the AIl-MLP [36]
decoder utilizes a series of pure multilayer perceptrons
to decode the features from the encoder, which avoids
the hand-crafted and computationally demanding com-
ponents. This additional binary segmentation branch is
introduced to highlight the foreground predictions and to
suppress the wrong background predictions in the height
estimation maps. The used loss Ly, is the standard cross-
entropy loss.

3) PixelFormer: Monocular height estimation, similar to
monocular depth estimation (MDE), aims to predict pixel-
wise height given a single-view image. PixelFormer [37]
is used as an efficient MDE network. It proposes a skip
attention module to fuse the encoder and decoder features
and a bin center predictor module that estimates bin centers
adaptively per image using the global information from
the coarsest-level feature maps. Since PixelFormer uses
a typical encoder-decoder architecture, its original input
features are replaced with the shared hierarchical features
extracted from RGB and SAR data. Its optimization target
is further weighted by the binary mask predicted by the
All-MLP segmentation head to force the model to focus
on the foreground building objects. The height estimation
loss Lye; is the scale-invariant loss used in [37].

Finally, the total loss is the uniformly weighted sum of each

subtask loss.

Self-training:  Semisupervised learning (SSL) has been
proven to be effective for downstream dense prediction visual
tasks [27], [28], [29]. Self-training, as a main branch of SSL, can
achieve better performance and robustness by expanding various
scenarios and training samples to assist the model trained only
on limited labeled data. Since the dataset of the DFC23 Track 2
is a subset of the dataset of the DFC23 Track 1, the difference
set of them can be a suitable unlabeled dataset as it has similar
scenarios and data distribution.

Given several trained models, the following two-stage trident
cooperation results fusion pipeline is used to derive more reliable
initial pseudolabels. From the pseudolabels of the detection
task, predicted bounding boxes with confidence scores lower
than 64 = 0.8 are removed while their initial pseudolabels are
maintained for the binary segmentation and height estimation
tasks. Finally, by combining both labeled data and unlabeled data
with their corresponding processed pseudolabels, the proposed
TCNet is retrained to boost the performance and generalization
capabilities.

Two-stage trident cooperation results fusion pipeline: As
shown in Fig. 14, for n detection predictions from n trained
models, the proposed pipeline uses weighted boxes fusion to
only ensemble their bounding boxes predictions, resulting in
more accurate proposals, which are then passed to the best
model’s mask head to perform segmentation, deriving final
detection results. For n binary segmentation masks, a hard
voting strategy with a mask threshold of 0.5 is used to obtain
majority predictions. These are further employed to remove
wrong background predictions of the height estimation.
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Illustration of the proposed trident cooperation network (TCNet). The backbone is pretrained on the DFC23 Track-1 data for initialization. A cross-modal

fusion (CMF) module provides more informative shared features for downstream visual tasks. Finally, the trident task-specific heads are leveraged, consisting of
a detector [26], a lightweight all-MLP decoder [36], and a pixel query regression head [37]. The binary mask predicted by the all-MLP is additionally used to

alleviate fore-background confusion existing in the estimated map.
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Fig. 14.

Tllustration of the two-stage trident cooperation results fusion framework proposed by the second place of Track 2 consisting of task-specific ensemble

strategies, including weighted boxes fusion [21], hard voting, and pixel-wise maximum for merging the detection results, the binary masks, and the DSM results,
respectively. The merged binary masks are employed to element-wise multiply with the height nDSM maps to filter the confusing background.

B. Results

Table VIII shows the effectiveness of each component
of Team IPIU-XDU’s method, indicating that the proposed
TCNet can benefit from shared information of multitask
learning.

Fig. 15 visually demonstrates that the method of Track 2’s
second place can accurately extract various building instances
and estimate their corresponding height. Moreover, thanks to the
cross-modal fusion module, the method is capable of mitigating
the negative effects caused by cloud occlusion.

C. Discussion

Team IPIU-XDU proposed a novel trident cooperation net-
work, TCNet, to perform end-to-end building extraction and
height estimation. TCNet has a strong vision transformer adapter
backbone that added a cross-modal fusion module, which pro-
vides more informative shared hierarchical features for the fol-
lowing trident task-specific decoders. To boost the performance
and robustness of TCNet, team IPIU-XDU introduced a simple
yet effective self-training. In addition, a two-stage trident co-
operation results fusion framework including three task-specific
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TABLE VIIT
ABLATION STUDY ON VARIOUS COMPONENTS

| Baseline Sup Semi TCNet TTA | APso(val) APso(test) | di(val) di(test) |

v 0.7230 - 0.7561 -

v v 0.7460 — 0.7708 —

v v v 0.7510 — 0.7722 -

v v v v 0.7570 — 0.7746 -

v v v v v 0.7790 0.7830 0.7766  0.7855
Sup: Supervised training. Semi: Semisupervised training. TTA: Test-time augmentation.

Building Outline Building Height

Optical Images
\ d

|

Qualitative results of the second place of Track 2.

Fig. 15.

ensemble strategies is designed to further improve the proposed
TCNet. Extensive experiments on DFC23 demonstrate the ef-
fectiveness of the proposed method.

VIII. CONCLUSION

The capability to classify fine-grained building types
according to different roof typologies promises to offer valuable
insights into the urban fabric that are useful for urban planning
and management. Furthermore, the capability to estimate build-
ing heights provides an additional layer of spatial information,
enabling a 3-D understanding of urban structures. Elevation data,
when integrated with other geospatial information, contributes
to the creation of realistic 3-D city models and digital twins,
fostering a virtual representation that mirrors the physical
world.

This article summarized the outcomes of the DFC23, describ-
ing the methodological choices made by the teams that ranked
first and second in the contest. The strategies adopted by the
winning teams provide valuable insights, including advanced
deep learning methods, as well as best practices to boost the
performance of instance segmentation and monocular height
estimation techniques. For Track 1, team PIESAT-AI adopted an
instance segmentation framework based upon the Cascade Mask
R-CNN [15] architecture enhanced with domain-adapted pre-
training and a modernized dual-backbone structure. Team IPIU-
XDU resorted to a three-stage learning framework containing
pretraining, supervised training, and semisupervised training.
They adopted the BEiTv2-L [22] network for feature extraction,
followed by fine-tuning with a vision transformer adapter [23]
used to enhance the representations of the model. Both teams
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paid attention to the imbalance of class distributions adopting
resampling and copy-paste data balancing/augmenting strate-
gies. Interestingly, both teams improved the model performance
adopting an ensemble strategy to combine multiple models.

For Track 2, team PIESAT-AI proposed a HGDNet to estimate
building heights. HGDNet performs a joint task of height esti-
mation and hierarchical classification by utilizing hierarchical
height information. Team IPIU-XDU proposed a novel trident
cooperation network, TCNet, to perform end-to-end building
extraction and height estimation. In addition, a fusion framework
including three task-specific ensemble strategies is designed to
further improve the results.

All in all, DFC23 has fostered the development of advanced
image analysis and data fusion techniques to tackle complex
tasks such as building instance segmentation with fine-grained
roof type classification and height estimation. The methods
adopted by the two winning teams reveal many relevant contribu-
tions in terms of deep learning architectures, learning strategies,
class balancing techniques, ensemble modelling, and several
tricks and tweaks to boost the model performance.

The datasets remain open to the scientific community to
further advance the development of image analysis and data
fusion methods.
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