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1. Introduction

Let us consider a domain Q@ C R? with a polygonal boundary I'. We are
concerned with the Neumann boundary control problem

() min J0) =3 [ (@) = a(o)* do+ 5 [

u€Uuq T

wt(a) dot [ yu()g(e) do
r
where yy € L?(Q) and g, € L?*(T) are given functions, v > 0,
Usa = {u € L*(Q) : uy < u(r) < upfor a.ex € Q}

with —oo < u, < up < +00, and ¥y, is the solution of

Ay +b(z) - Vy+ag(x)y=0 in Q,
On,y=u onl.

(1.1)

Assumptions regarding the symmetric second order differential operator A and
the coefficients b and ag will be described later. Let us just emphasize now that
we will make no assumptions on b and ag that would imply coerciveness of the
associated bilinear form.

The main objective of this paper is to discretize the optimal control prob-
lem using the finite element method and to obtain error estimates for the ap-
proximations of the optimal control in terms of the discretization parameter
h. The paper aims to minimize assumptions to better capture their essence.
The results are valid for possibly non-convex domains and both quasi-uniform
and graded meshes. Although the theory for Neumann boundary optimal con-
trol problems governed by elliptic equations is quite complete, to the best of
our knowledge, the issues that arise when the elliptic operator governing the
equation is not coercive have not been addressed yet; see Casas, Mateos and
Troltzsch 2005 [1], Casas and Mateos 2007 [2], Mateos and Rosch 2011 [3],
Apel Pfefferer and Rosch 2012 and 2015 [4,5], Krumbiegel and Pfefferer 2015
[6] or the thesis by Winkler 2015 [7]. The only papers, we are aware, that deal
with optimal control problems governed by a non-coercive elliptic equation
are about distributed controls; see Casas, Mateos and Rosch 2020 and 2021
[8,9]. In both papers, this fact and the convexity of the domain are used in an
essential way in some of the proofs, and hence those results are not applicable
to our problem.

We will see that problem (P) has a unique solution u, and that it satisfies
the optimality conditions, which we state now in an informal way: there exist
g and @ such that

Ay +b(z) Vy+ao(z)y=0 inQ,
{ B y—% onl, (1.2a)
Ap—V - (b(z)@) + ao(x)p = § —ya in Q, (1.2b)
Ouap+eb-n= g, onT, '

/(@ +rva)(u—1a) dz >0 Vu € Uy. (1.2¢)
r
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Since (P) is a linear-quadratic strictly convex problem, existence and unique-
ness of the solution follow in a standard way once we have proved existence
and uniqueness of solution of the state equation and continuity of the control-
to-state mapping. But, since we will not formulate any assumptions on b or ag
that would lead to a coercive operator, this task is not standard. In particular,
div b may be large, such that the usual assumption ag — %div b>co > 0isnot
satisfied. This will be done in Sect. 2.

In Sect. 3 we investigate the regularity properties of the solutions of the
state equation and the adjoint state equations. Since these are different, we
perform this task in two steps resulting in Theorems 3.4 and 3.5, respectively.
We obtain results in Hilbert—Sobolev, in Sobolev—Slobodeckii and in weighted
Sobolev spaces, with our focus on treating the numerical approximation of (P)
in non-convex domains. The regularity results in non-weighted spaces serve
us as intermediate results to prove the error estimates in weighted Sobolev
spaces, but they are also of independent interest. Note that, although regu-
larity results for elliptic boundary value problems are widely investigated, see,
e. g., the monographs [10-14], the particular results which we need for our ap-
proximation theory were not available for non-coercive problems with variable
coefficients.

In Sect.4 we study the numerical discretization of both the state and
adjoint state equation. We obtain existence and uniqueness of the solution as
well as error estimates. Our results are valid in convex and non-convex domains
and for quasi-uniform and graded meshes, with possibly a non-optimal grading
parameter f.

With these results at hand, we will be able to deduce existence, unique-
ness, and optimality conditions in Sect. 5. Moreover, regularity properties of
the optimal solution and its related state and adjoint state are given in terms
of weighted Sobolev spaces. Finally, we will discretize the control problem. The
control is approximated using piecewise constant functions whereas the state
and adjoint state are discretized by continuous piecewise linear functions. A
close inspection of the proofs in the above mentioned papers about Neumann
control problems, suggests that, if no postprocessing step is done, the order
of convergence of the error in L?(T") for the control variable will be limited by
the order of convergence of the finite element error in H'(f2) for the state or
the adjoint state equation; see e.g. the proof of Lemma 4.7 in [1]. This means
that, for a non-convex domain and a quasi-uniform mesh, the order of conver-
gence that can be obtained—applying the usual techniques in optimal control
together with the regularity results and the finite element error estimates pro-
vided in this paper—is approximately h*, where 1/2 < A < 1. For instance,
in the problem shown as an example in Sect. 6, h?/3 would be expected. Nev-
ertheless, the numerical experiments show clearly order h, and we are able to
get that in Theorem 5.7: If the corner singularities are of type 7%, the index j
counting the corners, and the mesh is graded near the corners with parameter
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/45, then the approximation order of the control is s* < 1 with s* < %, i.e.,
J

s* = 1 is achieved if p; < %)\j for all j. In the works by Apel, Pfefferer and
Rosch [4,5] a stronger grading p; < A; is used to obtain an optimal control of
convergence for the so-called post-processed control, i.e., the pointwise projec-
tion onto the admissible set of —@y, /v, where @), is the discrete adjoint state
associated to the discrete optimal control. In Theorem 4.2.1 of the thesis of
Winkler [7] it is shown that for quasi-uniform meshes, i.e., y; = 1, the order
s* =1 is achieved for any angle.

2. Existence, Uniqueness and Continuous Dependence of the
Solution of the State and Adjoint State Equations

On A, b and ag we make the following assumptions.

Assumption 2.1. A is the operator given by

2
Ay = — Z Opp (aik (1) 0y, y) with ag, € L(Q),
ik=1

a;r = ag; for 1 < i,k < 2, and satisfying the following ellipticity condition:
2

JA > 0 such that Z aip ()&, > AE]* VE € R? and for a.a. z € Q. (2.1)
ik=1

The function b : Q — R? satisfies b € LP(Q2)? with p > 2 and there exists § > 1
such that V-b € LI(Q) and b-n € LI(T). For the function ag : Q@ — R it is
assumed that ag € LI(S2), ag(x) > 0 for a.e. z €  and there exists E C Q
with |E| > 0 such that ag(z) > A/2 for all z € E.

Remark 2.2. Note that this assumption does not lead to a coercive bilinear
form. While Assumption 2.1 is sufficient for the purposes of proving existence
and uniqueness of solution, to establish adequate regularity results for the
solution, further regularity must be imposed on the coefficients. The reader
is referred to the results of Sect.3 for the details required in the different
scenarios.

Before addressing the main results of this section, we recall some well
known inequalities that will be used throughout this paper.

We will often use the following form of Holder’s inequality: for ¢, p1, ...,
pr € [1,00] such that 1/py + -+ 1/pr < 1/q and f; € LPi(Q), i =1,...,k
there exists a constant Cq = |Q[Y/9=(1/P1++1/pe) "such that || f1 - - fil pe(q) <
Callfillzer ) - 1 fxllLee )

The inequality

Iyl ) < CellVyllrz@) + lyllz2m) Yy € H'(Q) (2.2)
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is a generalization of Poincaré’s inequality and can be found, e.g., in [15, The-
orem 11.19]. In dimension 2, Sobolev’s embedding theorem gives that for all
7 < 00 there exists Kq , > 0 such that

Iyl < Korllylm@ VYye H(Q). (2.3)

We will denote by (-, -)q the duality product in H'(Q)" x H'(Q) and
by (-,-)r the duality product in H'/2(TI") x H'/?(T'). We notice that any g €
H'/2(I") defines an element in H'(2)’, which will be denoted in the same way
by

(g,2)q = (g, trz)r Yz € H'(Q). (2.4)

In this case, we will simply write (g, z)r. Also notice that for any fixed ¢ > 1,
the functions f € L9() and g € LI(T") define elements in H'(Q)’ and H/?(T)’
respectively by

(f,2)a = /szdx7 (g9,2)r = /ng dz Vz € H'(Q). (2.5)

For every y € H'(Q2), we define Ay by

(Ay,z)o = / @ik Or; YOz, 2z da + / (b-Vy)zdz +/ aoyzdax Vz € H' (Q).
Q, Q Q

2
i,k=1
(2.6)

Using this operator, we have that the weak form of the state Eq. (1.1) is: find
yu € HY(Q) such that

(Ayu, 2)q = (u, 2)r ¥z € H(Q). (2.7)

We first prove continuity of the operator A4 and Garding’s inequality. We adapt
the proof of [8, Lemma 2.1]

Lemma 2.3. Under Assumption 2.1 we have that A € L(H*(Q), H*(Q)") and
there exists a constant Ca gy such that

A
(Az,2)q > @HZ’H%MQ) - CA,E,bHZH%?(Q) Vz € Hl(Q) (2.8)
where A and Cg are the constants from (2.1) and (2.2), respectively.
Proof. Let us show that A is a linear continuous operator. Denote S = {z €

HY(Q) : ||2]|g1(q) = 1}. We split A into three parts A;, i = 1,2,3.

2
HAly”Hl(Q)’ = SUIS)/Q Z i 0, YOu, z dx
ze

ik=1

< ; [eS)
< ilelg 4 | ax ) lairl Lo ) VYl L2 ()2 | V2| L2 ()2

- . .
_412%22”&@“& @ llvlla @)
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Take now s, > 1 such that 1/s, = 1/p + 1/2. From (2.3) and Hdlder’s
inequality we infer for every y € H'(£2)

sl ayr = sup [ (b= V9)zda < - Dylaen 2],
< Ko 12202 VYl L2 ()2 < Ka,s [0l 2o @2 1Y 510,

Fix now some s, € (1,§) and take r € (1,+00) such that 1/ + 1/r = 1/s,.
From (2.3) we infer that

I Asyll a2y = sup / aoyz dz < [laoyl| Lo 12
z€S JQ

La(Q)

@) < Ko, Karllaol La) Yl m1(0)-

< Ko llaol|aco [yl

Hence, we have that A is a well-posed linear and continuous operator.
Let us prove (2.8). Using Assumption 2.1, (2.2), and Young and Holder
inequalities we get

A
(Az,2)a > AIVz||72(q)2 + §||Z||2L2(E) = IV2llL2(0)2 [1b2]| L2 ()2

V

A A 1
> Szl + S I2ll3a g — 55 16272y

A 2 1 2 2
2 @”Z“Hl(ﬂ) - ﬂHb”Lﬁ(Q)'Z”Z”L%(Q)'
2p

Observe that the assumption p > 2 implies that 2 < < 00. Now, we

apply Lions’ Lemma [16, Chapter 2, Lemma 6.1], to the chain of embeddings
H(Q) cc Lit () € L%(Q), the first one being compact and the second one
continuous, to deduce the existence of a constant Cy depending on A, C'r and
16/ L+ ()2 such that

A

Y T TE—— 1 C 2
|| H —2(9) 23/2||bHLﬁ(Q)QCE”Z”H (Q)+ OHZHL ()

From the last two inequalities we conclude (2.8) with

Callol|?
Capp = L@ ALP(Q

and the proof is complete. ]

Remark 2.4. Notice that, to prove Lemma 2.3, we use neither V - b € Li(Q)
nor b-n € Li(T) for some ¢ > 1.

The adjoint operator of A is A*. We have A*z € H*(Q)' for every z €
H'(Q). In the next lemma, we justify that under the mild Assumption 2.1, we
can integrate by parts and use the expected form of the adjoint Eq. (1.2b).
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Lemma 2.5. Suppose that Assumption 2.1 holds. Then

2
(A*2,9)a :/ Z akiﬁzizamkydx—/yv-(bz) d:c—|—/yzb~ndm—|—/ aoyz dx.
Q.52 Q r Q

for ally € HY(Q).
Proof. By definition
(A*z,y)0 = (Ay, 2)a Yy, 2 € H'(Q)

and we only have to justify that, under Assumption 2.1, we can do integration
by parts to get

/(b-Vy)zdx:—/yV-(bz)dx—i—/yzb-ndx.
Q Q r

This is equivalent to proving that we can apply the Gauss theorem to obtain

/V~(yzb)dx=/yzb-ndx.
Q r

Using that y,z € H'(Q) — L"(Q) for all r < +o0, b € LP(Q)? for some p > 2
and V -b € Li(Q) for some § > 1, applying Hélder’s inequality, we have

2p a1
V(yz) - b=2Vy -b+yVz-be L2+ (Q) and yzV-be L2 (),
9% §
pﬂ i+t satisfies 1 < s < 2.
2+p 2
From Assumption 2.1, it is also clear that yzb € L*(Q)?, and using [17, Lema
11.1.2.2], we deduce that yzb has a normal trace yzb-n defined in the space of

(W1=1/5"5"("))’ via Gauss theorem: for every v € Wb ()

so V - (yzb) € L*(), where s = min{

<yzb . n, U>(W1_1/S/YS/ (F)),)Wl_l/slysl (F) = A V . (vyzb) dI’

Since we are assuming that b-n € L4(T) for some § > 1, then yzb-n €
L%(F) — L*(T'). Therefore, we have that

<yzb ‘n, U>(W171/s’,s’(F))/,Wl—l/s/,s’(F) = / vyzb -n dx.
r

Taking v = 1 in the above equalities, we have that

/V~(yzb)da::/yzb-ndx,
Q r

and the proof is complete. O

Next, we adapt the proof of [8, Theorem 2.2] to show existence and
uniqueness of the solution of the state equation.

Lemma 2.6. Under Assumption 2.1, the linear operator A : H*()) — H(Q2)’
s an isomorphism.
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Proof. Let us first see that A is injective. Consider y € H?'(f) such that
Ay = 0. We will prove that y < 0. The contrary inequality follows by arguing
on —y. Suppose there exists some O C 2 with positive measure such that
y(z) > 0if x € O. Take 0 < p < esssup,cqy(x) < +oo and define y,(z) =
(y(z) — p)™ = max{y(xz) — p,0}. Denote Q, = {z € Q: Vy,(x) # 0}. Notice
that y, € H(1Q),
Vy(z) if y(z) > p

Voo(@) = { 0 if y(z) < p,
which means that Q, C {z : y(z) > p}. We also remark that y,(z) =
0if y(z) < 0, and that y(z) > y,(x) > 0 if y(x) > 0. Using these proper-
ties, and Holder’s and Young’s inequalities, we have that

2
0= (Ay,y,)0 =/ > aik0s,y0a,yp dx+/(b~Vy)ypdw+/ aoyy, dz
Q Q

Qi k=1

2
Z/ > aikaziypamkypdfﬁ/ (b~Vyp)ypdfv+/aoypypdw
Q Q Q

P4 k=1 p

A
> AIVylZaca,) — ”bHLf’(Qp)ZHvyPHL2(Qp)”yPHLp2% + §||yp||%2(E)

2(2)

V

[

A 1
> §HVyPH%2(Qp) - ﬁHbH%p 2[|Yp + §||yﬂ||%2(E)

I =5,

A
= SIVlEs@) — o WlEaca, el + SlupliEae)

Next we use that €, C 2, (2.3), (2.2) and the just proved inequality to obtain:
2 2

. <
A Y

P

2 2
2 o < KQ,ID%HZ/;)HHI(Q)

<22 O (IV0al220y + 1002 )
2[(32 2 CF
< — T bl 32 Il 22,

' p—2

( )

We can deduce from this a positive lower bound for the norm of b in L?(£2,)?
independent of p:

A
[0l ,)2 > NI o n > 0.
But we have that [Q,] — 0 as p — esssup,cq y(z); see [8, Theorem 2.2]. So
we have achieved a contradiction.

Finally we have just to check that the range of A is dense and closed.
Since we already have established Garding’s inequality (2.8) for the operator
A, the proof of closeness done in [8, Theorem 2.2] applies to our case changing
the norms in H{ () and H~1(Q) respectively by the norms in H'(Q) and its
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dual space, and thus it is omitted. By a well known duality argument, the
denseness of the range of A follows from the injectivity of A*.

The argument used above to obtain the injectivity of A does not work
for A*. Notice that at one moment we use that [,(b- Vy)y,dz = fﬂp(b

Vy,)y, dez. When dealing with the adjoint operator, we would find the term
Jo(b - Vz,)zdx, which in general is different from pr(b -Vz,)z,dz. But we

can obtain injectivity of the adjoint operator as follows. Consider z € H' ()
such that A*z = 0. For all € > 0 define

F={zeQ: |z(x)]>e}

Let us see that |Q°| = 0, which readily implies that z = 0. Let us define
z°(x) = Proji_. .)(2()). Using integration by parts, that z = 0 in 0\ QY that
Vzf =0in Qf and V2° = Vz in Q\Q°, and that z2° > (2°)2, we have

0= (A*z 25)0

/ Z i O, 200, 2° dx—/ V-(bz)dx—i—/zgzbondx—«—/aozazdx
r Q

i,k=1
/ Z Q)i Og, 204, 2° dx+/zb~Vzed:r+/aoz€zdx
Qi k=1 Q Q
= AIV2°[|L2(0)2 — (16l Lo @o\ae) V25 (| L2 (02 (|27l é||25||22
72(90\95 9 L3(E)
A
2 2
*HV'ZEHN(Q)“’ - 2A||b||Lp 20\QE)HZ || Q(QO\Q ) §||ZEHL2(E)~

So, using this and that |2%(z)| < € for a.e. x & Q° we get

12° 131 () < 20125 (V2% L2z + 112517 2(m))

< 2 Pl acaman 151 s,

20
< 22 bl 000 |2°

On the other hand, using that |2°| = ¢ in Q¢ and the previous inequality, we
have
1
|QF| = = 25(x)* da < *HZEHLz(Q 2||Z 171 o)

20%
E”b”LP QO\QE>IQO\Q | v

Since [QY\Qf| = meas{z € 2: 0 < |2(z)| < e} — 0 as € — 0, we have proved
that |Q°| — 0 as ¢ — 0 and hence |Q°| = 0. O

\ /\

Corollary 2.7. Under Assumption 2.1, the linear operator A* : H*(Q) —
HY(Q) is an isomorphism.
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3. Regularity of the Solution of the State and Adjoint State
Equations

To obtain further regularity, from now on we will suppose

Assumption 3.1. The coefficients a;; belong to C%!(Q), 1 < i, k, < 2.

Let us denote by m the number of sides of I' and {S;}]L, its vertices,
ordered counterclockwise. For convenience denote also Sg = S, and S;,,+1 =
S1. We denote by I'; the side of I' connecting S; and S;41, and by w; €
(0,27) the angle interior to © at S;, i.e., the angle defined by I'; and T'j_4,
measured counterclockwise. Notice that I'y = I';,,. We use (7, 6;) as local polar
coordinates at S;, with r; = | — S;| and 6; the angle defined by I'; and the
segment [S;, z]. In order to describe and analyze the regularity of the functions
near the corners, we will introduce for every j € {1,...,m} the infinite cone

Ki={zeR*:0<r;,0<0; <w}.

For every j € {1,...,m} we call A; the operator with constant coeffi-
cients, corresponding to the corner S;, given by

We denote by A; the leading singular exponent associated with the operator
Aj at the corner Sj, i.e., the smallest A\; > 0 such that there exists a solution

of the form y; = T;\j ©;(0;), with ¢; smooth enough, of

For instance, for Ay = —Ay we have \; = 7/w;. We denote A = min{};}.

With the usual technique of taking a partition of the unity to localize
the problem in the corners, freezing the coefficients and doing an appropriate
linear change of variable, the classical results for the Laplace operator are also
valid in our case; see, e.g. [18, Section 2.1] for a detailed example of application
of this technique. Notice that the symmetry hypothesis a;; = ax; introduced
in Assumption 2.1 implies that the same change of variable that transforms A;
into —A will transform the conormal derivative 0,,, into the normal derivative
O, in the new variables, and not in an oblique derivative.

We continue with regularity results for problems with b = 0 and a9 =
0 and use the standard Sobolev and Sobolev—Slobodetskii spaces but also
weighted Sobolev spaces as follows. Let £k € Ny, 1 < p < oo, and 5 =
(Br...,Bm)" € R™, j € {1,...,m}. For ball-neighborhoods Qp, of S; with
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radius R; <1 and Q°:=Q\ Um_ R, /2 we define norms via

B,
100ty = 22 177 D0l
=2 || <k
Bi—k+
100 gy = 2 777" D0 g
la| <k

where the standard modification for p = oo is used. The spaces Wg’p (Q) and
Vg’p (©) denote the set of all functions v such that

HU”WS‘”(Q) [Vl w0y + Z ||UHWk 20 )
Jj=1

lollysr@) = Iellwn o + Z 1olysrcon,)
J:

respectively, are finite. The corresponding seminorms are defined by setting
|a| = k instead of |«| < k. For the definition of the corresponding trace spaces

Py, v (Ey), wETYPP(D) and VETVPP(D) we refer to [13,

Sect. 6.2.10], see also [19, Section 2.2]. We will also use the notation L%(Q) for
WE”’(Q).

Lemma 3.2. Suppose that Assumption 3.1 holds. Consider f € H(Q)" and
g € HY2(T') such that
<f7 1>Q + <g7 1>F =0,
and let y € HY(Q) be the unique solution, up to a constant, of
2

|3 antuyonzdo=(f2)at o Ve e HY(Q).
Q

ik=1
We have the following regularity results.
(a) If f € H>7Y(Q)', and g € HHt_?’/Q(Fj) for some 1l <t <1+ X t<2,

j=1
then

y € BYQ) and [ylme@) < Caa(If 2wy + 3 lglmessaqr) )-
j=1

m

(b) If fe L™(Q) and g € HWl_l/T’T(Fj) for some 1 <r <
j=1

r > 1 arbitrary if A\ > 2, then

2
, 2
2_)\zf/\< ,

m
y € W2T(Q) and |ylw=ra) < CA,T(”fHLT(Q) + ||9||W1*“”<Ff>>'
J=1
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- 2 2
(¢) Consider s € (1,00) and B such that2—g—/\- < B <2—;, B; >0 for
allje{l,...,m}.lffeLs( )andge]_[ b 1/SS( T';), then

2,s .
v €W (Q) and [ylyze(q) < 5

1—-1/s,s )
ATV (ry)

Remark 3.3. Let us briefly comment on the function spaces appearing in the
lemma. Notice that for t = 2, H'=2(Q) = H>71(Q) = L?(Q2), and for 3/2 < t,
H?*7Y(Q) = H;'(Q) and hence H'"2(Q) = H?>~'(Q)’. Nevertheless, for 1 <
t < 3/2, H>=4(Q) # H'=2(Q). Also take into account that

HHt 2 =HTVAI) it < 2, le Vrrry) = wYnTI) if r < 2.

We remark that the mapping y +— 0, ,¥ is linear and continuous from H?(£2)
onto [T7L, H'Y2(T;); see [10, Theorem 1.5.2.8].

Regardlng Welghted spaces, we notice that V1 Ves(ry = %71/8’5(1") if

B >1-— g or fB; < —g for all j € {1,...,m}, Whlle these spaces diﬁer by a

constant in the vicinity of each corner Sj where —% <Bj<1-— 57 see [12,
Theorem 2.1] or [14, page 131].

Proof of Lemma 3.2. The result in (a) can be deduced from [20, Theorem
9.2] for 1 < ¢t < 3/2, from [21, Theorem (23.3)] for 3/2 < t < 2, and from
[10, Corollary 4.4.4.14] for ¢t = 2. The case t = 3/2 follows by interpolation.
Statement (b) follows from [10, Corollary 4.4.4.14]. Part (c) follows by standard
arguments but we did not find this particular result in the literature. Therefore
we sketch the proof here for the case of constant coefficients. As said above,
the result in the case of Lipschitz coefficients follows from this one using the
localization-and-freezing technique.

We will use [13, Theorem 1.2.5] stating a similar result for a cone K and
weighted V-spaces. For the problem under consideration and in our notation
it says that y € VE’S(K) if feLz(K)andge Vﬁl_l/s’s(aK\O) provided that
s€(l,o)and 2 — 2 -3 ¢ {k‘)\,k € Z}. To satisty the latter condition we
assume 2 — 2 — ); <6J<2 2 forall j € {1,...,m}.

The reformulatlon from the vicinity of a vertex of the domain  is
achieved by using cut-off functions (; : Q© — [0,1] with {; = 1 in Qg /s,
¢; =0in Q\Qpg,, and Ona, G =0 on QN IR, We split y € H'() into

y=>Y yj+w, where y;=¢(y—uy(S)).

With this construction we get y;(S;) = 0 and suppy; = Qr, such that we can
consider the problem Ay; = f; with Neumann boundary condition 0, A, ¥ =
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g; = (g in the cone K. For f;, we have

Gf in Qg, /2
fi =AWy —y(S8)) =G f—b; - Vy—a;(y—y(S;)) inQr, \ Qg2
0 in Kj \QRj

with smooth functions b; and a; due to the constant coefficients in A. From
fe L%(Q) and y € H'(Q2) we conclude f; € L%j(K), § = min(s, 2) where we
use that §; > 0. Moreover, the assumption g € H;"zl Vg_l/s’s(I‘j) leads to g; €
Vﬁlj_}/s’s(é'Kj\Oj) such that [13, Theorem 1.2.5] leads to y; € V;JS(K]) —
WEJS(K ;). Since the function w does not contain corner singularities, hence
w € W25(Q), we obtain y € W;S(Q) If s <2 we are done.

Otherwise, when s > 2, we have y € H*(Qg,\Qg, 2) — W (Qr,\Qg, /2),
and we reiterate f; € Lj (K) and y; € VﬁQj’s(Kj) — WEJS(KJ) leading to
ye WE’S(Q). O

Theorem 3.4. Suppose that Assumptions 2.1 and 3.1 hold. Consider f € H*(2)’
and w € HY2(T') and let y € HY(Q) be the unique solution of

(Ay,z)a = (f,2)a + (u,2)r Vz € H'(Q). (3.1)

We have the following regularity results.
(a) If ag € L9(), f € H* Q) and u € [[}2, H""3/*(T;) for some t such
2

thatl<t<l—i—>\,t§2(mdq:ﬁ

constant C 44 > 0 such that

, then y € HY(Q) and there exists a

m
Illze) < Cat(llfllzz-t @)y + Z lwllge-s/2(r,))-

Jj=1

(b) If ap € L™(Q), f € L"(Q) and u € [}, WA=1/rr (T, for some r € (1, ]

2
3 in case of A\ < 2, then y € W2"(Q) and there exists a
constant C 4 > 0 such that

satisfying r <

L7 (Q) + Z ”uHWl*l/r,r(r‘j)).
=1

[yllw2r) < Car([If]

(c) If ap € L%(Q), f € L(Q) and u € [T}, Wé‘”””’(rj) for some p € (1,2]

" 2 2
and some [ such that 2———\; < 3; < 2—; and B; > 0 forall j € {1,...,m},
p
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2, ,
then y € Wﬁp(Q) and there exists a constant Cy 5 > 0 such that

Il @y < €Il + 3 Wl )
e

Proof. Let us define
F=-b-Vy—apy.

From the proof of Lemma 2.3, we know that F' € H*(2)'. Also, taking z = 1
in (3.1), we have that

<f+F71>Q+<U71>F :07
so the conditions of Lemma 3.2 apply to the problem
<Ay72>Q: <f+FaZ>Q+<U'aZ>F VZEHl(Q)

We have to investigate the regularity of F.
(a) For 1 <7 <t, define S ={z € H>"(Q) : ||z]| g2-+() = 1}. We have that
F € H*7(Q) if and only if

||F||H27T(Q)/ = SLGIFS) |<F‘7 Z>Q| < +00.

Applying Hoélder’s inequality, we can deduce the existence of a constant C >
0, that may depend on the measure of 2, such that

[(F, 2)al =

/ (b-Vy+ apy)zdx
Q

< Ca(lIbll s )2 VYl Lro0) + llaoll ooy Iyl Lra @) 12l o) (3:2)
where
1 1 1 1 1 1
T N (3.3)
p T S q T4 S
Let us also notice that H2~7(Q) < L*(Q) if and only if
2
T=1+-. (3.4)
s

We will apply a boot-strap argument.
Step 1. We know that y € H'(Q), so r, = 2 and for r, we can take any real
number. Noting that ¢ > 1, using (3.3) and taking

we have that 1/s > 0 for r, big enough and both conditions in (3.3) are
satisfied. Hence we deduce that F € H*~7(Q)'. Since u € [}~ H'3/2(T;),

a direct application of Lemma 3.2 yields that y € F™™{:7HQ). If 7 > ¢, the
proof is complete.
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Step 2. Otherwise we have that Vy € H™~1(Q)? — L™ (Q)? for

——1-__
Tp 2

and, since 7 > 1, we can take 7y = +00. As before, we select

1 1 1 1
:min{l—A—,l—}.
s p 7 q

We have two possibilities now.

1 1

Step 3. If — =1 — —, then, applying (3.4) and taking into account our choice
s q )

of ¢, we have that y € H” () with

. 2 2
T=14+-=3—-=1,
S q
and the proof is complete.
1 1 1 R
Step 4. Otherwise, — = 1 — — — — and we will have y € H™(Q2) with
S D Tp
2 2

2
T=1+-=142—---2-7)=7+1——,
S p p

2
and we have advanced a fixed amount 1 — —. If 7 > ¢, the proof is complete.

Step 5. In other case, we can redefine 7 = fand go back to step 2.

Every time we repeat the process, either we finish the proof or we incre-
ment the size of 7 by the fixed amount 1 — %, so the proof will end in a finite
number of steps.

(b) From the Sobolev embedding theorem, we have that

feL’(Q) = H*'(Q) andue [[W'V/r(Ty) — [[H ()
j=1

j=1

for t = min{2,3—2/r}. The conditions imposed on r imply that 1 < ¢ < 1+ A,
t < 2, so we can apply Theorem 3.4(a) to obtain y € H*(Q2) and we readily
have that y € L>°(Q) and hence agy € L"(2). Let us investigate the regularity
of b- Vy. We use again a boot-strap argument.
We have that Vy € H'=1(Q) — L7°7(Q). Therefore b-Vy € L*(£2) where
1 12—t
=+
s p 2
Applying Lemma 3.2(b), we have that y € W2min{s7}(Q). If s > r, the proof
is complete. Otherwise, we have that Vy € Wh*(Q) < L (Q), with

1 1 1

s* s 2
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Therefore b- Vy € L¥(Q2) where

1 1 1 1 1 1 1 1 1
==+ —==4+-—===-—=|=-==].
s p st p s 2 s 2 P

If % < %, then the proof is complete. Otherwise, we can rename s := § and

1 1
repeat the argument subtracting at each step the positive constant 573 until
p

1 1
<=

{Sc) Tg obtain this result, we want to apply Lemma 3.2(c), but the boundary
datum in that result is in the space [}, Vgl_l/p’p(l“j), while the boundary
datum in this result is in 7", Wé_l/p’p(f‘j). Taking into account Remark 3.3,
it is clear that for p < 2, the condition §; > 0 implies that 3; > 1 —2/p and
hence Wﬁlf“l’*’(rj) = Vé*l/”’p(rj) for all j € {1,...,m}. If p = 2, we define

Us = Z qu7

ﬁj >0

where the (; are the cutoff functions introduced in the proof of Lemma 3.2(c).
Taking into account again Remark 3.3 and noting that us = 0 in a neigh-
bourhood of the corners S; with 8; = 0, it is readily deduced that u, €

I, Vﬁl_l/p’p(I‘j). We also have that the function u, = u —us € [[/%,

Wl_l/p’p(I‘j), because u, = 0 in a neighbourhood of the corners S; such
that 8; > 0. In the same way we define

fo = ﬁzo G € L5(Q) and fr = f — f, € LX(Q),
>

and consider y,,y, € H'(Q) such that

(Ayr, 2)0 = (fr, 2)0 + (ur, 2)r, and (Ays, 2)a = (fs, 2)a + (us, 2)r ¥z € H'(),
so that y = y, +ys. As an application of Theorem 3.4(b), y, € W22(£), which
is continuously embedded in W;Q(Q) because 3; > 0 for all j € {1,...,m}.

Taking into account the above considerations, in the rest of the proof we
assume that 5, > 1 —2/p. If p < 2 then this holds, as discussed before. If
p = 2, we denote u; = u to treat both cases simultaneously, and hence we can
use both that u € H;nzl Wé_l/p’p(l"j)7 which is needed to have an embedding

in a non-weighted Sobolev space, and u € H;nzl Vﬁ1 —1/pp (T'j), which is needed

to apply Lemma 3.2(c).
From [19, Lemma 2.29(ii)], we deduce that L%(Q) — L"(Q) for all

r < ﬁ < ﬁ = p for all j € {1,...,m}. On the other hand, using the
definition of the []}, Wﬁlfl/p’p(f‘j)—norm and [19, Lemma 2.29(i)], we have
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the embedding [}~ VV1 1/pp( ry) — [/~ L WA=L/mr (1) for the same r as
above. We notice at thls point that the assumption §; < 2 — % implies that

2
>1,and 2 -2 — \; < §; implies r < 5 for all j, therefore we can

ﬁj+2/p
choose some r > 1 satlsfymg the assumptions of Theorem 3.4(b) and we have
that ag € L"(Q), f € L"(Q), and u € [}, W'=1/""(T';). By Theorem 3.4(b)
we obtain y € W27 (Q) for some r > 1.

In particular, the result y € W27 (Q) implies y € L°(£2), and hence

2
apy € L%(Q). We also have that Vy € W17 (Q)? — L% (Q)? for s, = Tt
—r
r < 2,any s, < 400 if r =2 and s, = 400 if 7 > 2. From this we deduce that
b-Vy € L*(Q) for

1

1
5 D sy
Now we use that § > 0 to deduce that b- Vy € L%(Q) and hence F =
—b-Vy —apy € Lgin{s’p}(ﬁ). By applying Lemma 3.2(c), we have that y €
W;’min{s’p} (Q). If s > p, the proof is complete.

Otherwise, in case s < p < 2, from Sobolev’s embedding theorem, we
have that Vy € WB}S(Q) < L7(Q) for
1 1 1 s—2 2s

_ = —- — - = > §, = —.
Sy s 2 s Yoos—2

1

Since 3 > 0, using that b € LP(£2), we have that b- Vy € L%, where

1 1 1 1 1 1
5 sy D s 2 p

By applying Lemma 3.2(c), we have that y € VV2 mm{p’g}(Q). If § > 2, the
proof is complete. Otherwise, we redefine s := § and repeat the last step. Since
1 1
at each iteration we subtract the positive constant 375 the proof will end
p
in a finite number of steps. O
We conjecture that the result of Theorem 3.4(c) holds for p € (1,p], but
the proof is limited to p < 2.
Notice that the operator A* is different from 4, and hence the results in
Theorem 3.4 are not immediately applicable. For the adjoint state equation,

we will need another assumption on b - n, which is a result of the boundary
term obtained due to integration by parts.

Theorem 3.5. Suppose Assumptions 2.1 and 3.1 hold. Consider f € H ()
and g € HY?(T) and let ¢ € H(Q) be the unique solution of

(A*p,2)q = (f,2)q + {g,2)r Vze€ HY(Q). (3.6)
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(a) If ag, V- b € LI(Q), b-n € LI (T)N H3/2(T), f € H>YQ), and g €

2
TLLHTEATG) for 1<t <14+ A, t<2,q= T and qr = min{2,1/(2 —
t)}, then o € H'(Q), and there exists a constant Cx= ¢ > 0 such that

Ipllar oy < Car e (Il + 3 lgllesraqe,))-
j=1

(b) If ag, Vb, f € L™(Q), and g,b-n € H;nzl WA=1/rr(T,) for some r € (1,7

2
satisfying r < SR in case of A < 2, then ¢ € W27 (Q), and there exists a

constant C 4= » > 0 such that

Iellwer@) < Carir (Il + D lgllwr-ssnrce,) )
j=1
(¢c) Ifap, Vb, f € L%(Q), andb-n, g € H;nzl Wéfl/p’p(lﬂj) for somep € (1,2]
and some 3 such thatQ—%—)\j < Bj <2—%, B; >0, forall j € {1,...,m},
then ¢ € Wé’p(Q) and there exists a constant Cy. 5 >0 such that

M%g@<%ﬁAM@@+2MW;WmJ
=

Proof. The expression for (A*p, z)q is derived in Lemma 2.5. Using the prod-
uct rule, we have that the function ¢ satisfies

2
/ Z akiazigoawkzdx—/(b-Vga)zdx—i—/aoapzdx
Q Q Q

i k=1

Z/Q(V-b)apzdx—/go(b-n)z dz+ (f,2)a + (9, 2)r

r
and we can apply Theorem 3.4 to this problem provided ¢V - b and b - n are
in the appropriate spaces.
Notice that statement (a) for ¢ = 2 is the same than statement (b) for
r = 2. We will prove (a) for ¢t < 2, and refer to (b) for ¢ = 2.
Step 1: First, we prove W1°(Q) regularity for some & > 2.
Let us write the equation as

Ap+o=f+¢V-b+b-Vo—app+¢ inf
On,p=—-b-np+g onT.
This is a Neumann problem posed on a Lipschitz domain. We will apply the

regularity results in [22]. To that end, we first investigate the existence of

ry > 2 and gr > 1 such that f € WL (Q) and b-n € L (T). In each of the
three cases, we have:
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(a) f € H>HQ) — W' (Q) for Ty = % > 2 since 1 < ¢t < 2. The

exponent gr is given in the theorem.

(b) f € L"(Q) — W (Q) for rp= % >2ifl <r<2andallry <400

if » > 2. In this case we take gr = r > 1.

(c) fe L%(Q) C L"(Q) for r < @3_2 for all j € {1,...,m}. The condition
P

2 2
Bj < 2 — — implies that ————= > 1, so we can choose 7 > 1 and
p

7Ty
/ 2 /
L7(Q) — WYH(Q) for rp = 2—7" > 2. Therefore f € W17 (Q) for
2p
all 2 < ry < ——————. In this case we take qp =r > 1.
U (AT i

Note that also in each of the three cases we have different assumptions on ag

and V - b, but in any case there exists gg > 1 such that ag, V- b € L9 (Q).

Let us check that also F' = @V -b+b- Ve —agp + ¢ € Wha(Q) for

some 7q > 2. To this end define r,, sq and rq by
1 1 1 1 1 1 1 1 1
— =—=min{=-(1-—=),=—=-%€(0,2 d—==—-—¢€¢(0,2
so Ty mm{2( q0> 2 p} (0,3) an ro 2 sq (0,3
such that

1

1 1 1 1 1
—+ -+ —<land - +-+—<1
Ty qo SO P 2 SO

and Whre(Q) — L*2(Q). Using Lemma 2.6, we have that ¢ € H'(Q) —

L7#(Q). Denote S = {z € Wh2(Q) : | 2| (@ = 1}. Then

Wl,rb
||F||W1vT§2(Q)’ - jgg/ﬂ (¢V-b+b-Vo+aop —¢)zdx
< ngg (lellzre @11 + a0 + V - bl Lao ) + [1bll e @) Vel L2()) 12l 220 (@)
< Cig sup (el re @) (11 + a0 + V - bl Lao @)) + 16l o 2 IVl L20)) Il

= Crg (lellzre @) (11 + a0 + V- bl Lao @) + [1Bllzr () [ Vel L2())-

Lo ()

On the boundary, we want to check that b-ne € W1/ () =

Wwl/reore (T")" for some rp > 2. To this end, define 7, sr and rr by

such that
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and W1/t (T) < L*r(T). From Lemma 2.3 and the trace theorem, we have
that ¢ € H'/2(I') < L (T'). Denote S = {z € W/ (T) : |z||
1}. Then

Wl/TT’Tl/" (1) =

b+ ey = 50 [ - mpz do < sup o+ mlar eyl ol o
I z€

zeS
< Crpsup 16 7l ar @y [0l e o) 120 1ot 0y (D) = Corell@l oo 0y 1 - 2| Lor -

Noting that for a general Lipschitz domain the W9(Q) regularity is limited
to & < 4, see [22], from the previous estimates, we can deduce that, for § =
min{4,rs,rq,rr} > 2, ¢ € WH2(Q).

Step 2: Let us check that ¢V-b and pb-n satisfy the regularity assumptions

for the source and the Neumann data respectively of the different cases of
Theorem 3.4.
(a) On one hand ¢ € W%(Q) < L>(Q) and the assumption V - b € LI(Q)
imply ¢V -b € L1(Q) — H?*7'(Q)’, by the definition of ¢. On the boundary,
by the trace theorem ¢ € W'=V/&(T'). If 1 < t < 3/2, then we use that
W1=1/95(T) < L>°(T) to conclude that pb-n € LI (T') — H'=3/%(T). The last
inclusion follows by duality and the Sobolev imbedding H3/2~4(T) — L1 (T).
If 3/2 < t < 2, we use that W'=1/%9(T) < H*(T) for s, = 1 —1/§ > 1/2.
Since we are assuming that b-n € H®*(I') with s, =¢ —3/2 € (0,1/2), from
the trace theorem and the multiplication theorem [23, Theorem 7.4], we have
that @b-n € H3/2(T).

The result follows from Theorem 3.4(a).

(b) Using again that ¢ € L>=(£2), we readily deduce that ¢V -b € L"(Q). Let
us check that b -n €[], Wi=1/rr(T;).

For all j € {1,...,m}, by the trace theorem and the assumption on b-n
we deduce the existence of B; € W (Q) such that the trace of Bj on I'; is
b-n.

Suppose first that » < 2. Then, a straightforward application of the
multiplication Lemma 3.6 below (in the case 3; = 0) yields pB; € W (1),
and hence, its trace on T'; belongs to W'=1/""(T;). Therefore, b -n € [},
W1=1/m7(T;) and the result follows from Theorem 3.4(b).

If r > 2, from the previous paragraph we have that ¢ € W22%(Q) —
WhI(Q) for all § < +oo. Repeating the previous argument, we obtain the
desired result.

(c) Since ¢ € L>®°(Q) and V- b € L%(Q), we have that ¢V -b € L%(Q). Next,

we show that ¢b-n € [}~ Wﬁl_l/p’p(I‘j).

For all j € {1,...,m}, by the trace theorem and the assumption on b-n
we deduce the existence of B; € Wﬁl’p(ﬂ) such that the trace of B; on I'; is

b-n.
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Since p < 2 < 4, a straightforward application of the multiplication
Lemma 3.6 below yields ¢pB; € Wé’p(Q), and hence, its trace on I'; belongs
to Wﬁl_l/p’p(Fj). Therefore, pb-n € H;n:1 Wé_l/p’p(I‘j) and the result follows
from Theorem 3.4(c). O

It remains to prove the multiplication theorem used in the proofs of cases
(b) and (c) in Theorem 3.5.

Lemma 3.6. (A multiplication theorem in weighted Sobolev spaces) Let 1 <
q < +oo. Consider ¢ € W2(Q) for some § > max{2,q} and ¢ € Wﬂl’q(Q)
forsomegsuch that 2 — % - < B <2-— %, B; >0 forall j € {1,...,m}.
Then ¢p € W3(€2).

Proof. Since § > 2, ¢ € L*>(Q). Also it is clear that ¢ € ng(ﬂ), and hence
Yo € L%(Q).

Let us check that also |V ()| € ng(Q). We write V() = @V +1pVp.
Using again that ¢ € L*(Q) it is immediate to deduce that |Vi)| € L%(Q)
implies that |pV| € L%(Q).

Checking that the term ¢|Vy| € Lqﬁ(Q) is more involved. By localizing
the problem at corner x;, and applying Hélder’s inequality we obtain

/ R P | PP

QRJ- —1(Qr

[
and therefore it is sufficient to prove that % € L35 (R, ). Let us introduce
1<¢s < qand 2 <g; <4oo such that

1 .11 1 1 . 1 1 1 1 1

— =minq-,—— <, and —=min< 1, -+ - — - p = —+ =

a5 2°q 0 @ ¢ 2 o) ¢ 2
so that ¢§ > 5‘%}, and Whas(Qp ) < L% (Qp,) — L%(QR].). We are going
to prove that r%i¢y € W (Qp)).

First of all we notice that V(rfi¢) = r% Ve + pVrfi. By definition of
Wg’qm), we have that 1% V| € LI(Qg,) < L9 (Qg, ).

For the second term we notice that |)Vr%i | ~ r#i =14, Since 1 — 2/q5 =
max{—1,2 — %} < 0 < f;, we have that Wé’qé (Qr,) — ngfll(QRJ_); see
e.g. [19, Lemma 2.29(i)]. We deduce that ¢ € Wé’q(QR]_) — Wé’q‘; QR;) —
L%‘il(QRJ). This means that r% ~1¢ € L9 (Qp,), and we gather that [ Vr?i| €
L%(Qg,).

Therefore V(r#i¢) € L9 (Qp, ), so we have that r%i¢ € W (Qp,).

Using this, we conclude that ¢|V| € L%(Q) and consequently |V (¢p)| €
ng(ﬂ), which leads to the desired result. O
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4. Discretization

Consider a family of regular triangulations {7} graded with mesh grading
parameters p; € (0,1], j € {1,...,m} in the sense of [24, Section 3.1], see also
[25]. As usual, Y;, € HY(Q2) N C(RQ) is the space of continuous piecewise linear
functions.

Lemma 4.1. There exists a constant cz > 0 such that

1Y — InY|l o) < CﬁhSWHW;‘Z(Q) Vi € W;’Q(Q),

where I, is the Lagrange interpolation operator, the wvector E satisfies that
1-X<pj<landp; >0 forallje{l,...,m} and the exponent s satisfies
that s <1 and s < % forall j € {1,...,m}.

J

Proof. The case p1; = 1 (quasi-uniform mesh) is classical. For p; < \; see [4,
Lemma 4.1]. The case A; < p; < 1 can be proved with the same techniques
and the additional idea that hp ~ hsrle“wj, 1—sp; = B > 1—\;; see equation
(3.14) in [24, Theorem 3.2], where it was used for a Dirichlet problem. O

Define the bilinear form a(y, z) = (Ay, z)q. For a datum u € H'/?(T),
the discrete state equation reads

a(yn, zn) = (u, zn)r Vzn € Yy, (4.1)

Existence and uniqueness of the solution of this equation is not immediate
since a(-, ) is not coercive over Yj.

Theorem 4.2. There exists hg > 0 that depends on A, b, ag, 2 and the mesh
grading parameter [i, such that the system (4.1) has a unique solution for
every h < hg and every u € H/?(T')'. Further, there exists a constant K, that
depends on A, b, ag, Q and is independent of [i and h such that

||yh||H1(Q) < K0||A71u||H1(Q) Vh < hyg. (4.2)

The scheme of the proof is similar to that of [9, Lemma 3.1] for dis-
tributed control problems with homogeneous Dirichlet boundary conditions,
but that proof is done for quasi-uniform meshes and uses this fact explicitly;
see equations (3.8) and (3.9) in [9]. Since the mesh grading and the bound-
ary terms imply some extra technicalities, we include a complete proof for the
convenience of the reader.

Proof. Due to the linearity of the system, to show existence it is sufficient to
prove uniqueness of solution in the case u = 0. Suppose y, € Y}, satisfies

a(yn, zn) = 0 Vzp, € Y. (4.3)

Taking z;, = yp and using Garding’s inequality established in Lemma 2.3, we
have that

A
0= alyn,yn) = (Ayn, yn)o = WHyh”%ﬂ(Q) — Caeollynlze(q)-
B
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Therefore

2CA,B,b
lynll ) < 2CE TE||thL2(Q)~ (4.4)

Since y, € L3(Q) C L%(Q) for all # > 0 such that 1 — Aj < pBj for all
j €{1,...,m}, from Theorem 3.5(c), we have that there exists a unique v €
WEQ(Q) such that

a(z, ) = /thzdm Vz e HY(Q) (4.5)

and there exists a constant C',, K such that
”d’”wg’z(ﬂ) < CA*ﬁ”thL%(Q)-
Let us denote 1% € Y}, the Ritz—Galerkin projection of ¥ onto Y}, in the sense
of HY(), i.e., 1y, is the unique solution of
/ (Vo Vzp, 4 pzp)dz = / (VVzp, + zp)dx Yz, € Vi,
Q Q

From [5, Eq. (4.2)], Theorem 3.5(c), and the embedding L?(£2) — L%(Q), with
embedding constant 1 due to the choice R; < 1, we have that there exists a

constant ¢z such that

1% — ¥nll 1 ey < Aﬁhs\llﬁllwgvz(g) < éﬂCA*ﬁhSHthL%(Q) < &aCax gh° lynllL2 (@),
(4.6)

where s <1 and s < 2—; for all j € {1,...,m}; see Lemma 4.1. Taking z =y

in the adjoint Eq. (4.5), and z, = 1, in the homogeneous discrete Eq. (4.3),
we deduce

lynll3 20y = alyn, ) = alyn, v = n) < AN ynllz @ I = dnllm @
< &0 sl ANy L @) P lynll L2 @)
Along the proof we will denote || Al = || All (a7 (@), m1(Q))- Choosing hg such

that
. < 1 1 |/ A
¢iC 4 gllAllRG = 2205\ 2Ch 50’ (4.7)

we have that, for all h < hg

1 1 A
< —— .
||thL2(Q) =990, 2CA’E,bHyh||H1(Q)

Using this and estimate (4.4), we deduce that

1
lynlla ) < §||yh|\H1(sz) Vh < hg,
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and hence y; = 0.

Take now u € H'/?(T") and denote y = A~ u. For h < ho, let y;, be the
solution of (4.1). Taking z = yj, in the adjoint Eq. (4.5), and z, = ¢}, in the
discrete Eq. (4.1), we deduce

ynll 72 = alyn, ¥) = alyn, ¥ — ¥n) + (u,n)r = a(yn, ¥ — ¥n) + aly, ¥n)
<A (Hyh||H1(Q)||1/J - 1Z}hHH1(Q) + Hy”Hl(Q)H/‘/;h”Hl(Q))
< ¢aC o gl ARl 1 @) P lynllL2 @) + e5C A« gAY @ 1ynllL2 @),
where we have used that HzﬁhHHl(Q) < |l < éEHQZ’HWE'Z(Q) < ¢

C 4o gllynllz2(a); see [19, Lemma 2.29(i)] for the embedding W2’2(Q) — H(Q).
Now, using that h < hg and (4.7) we have

lynllLze) < 3 20 e\ e ”thHl(Q) + c5C 4 Al 2 (0),

and applying Young’s mequahty we deduce
1 1 A
Il o) < 1507 g Il o + 25C% AARI @ (49
Using Garding’s inequality, the discrete Eq. (4.1) and y = A~ u, we infer
A
@Hyhniﬂ(m — CnzpllunllFz) < alyns yn)
— (wynir = aly ) < ANyl lonlmoy (49)

Multiplying (4.8) by Ca g, and using the resulting inequality in (4.9), we
obtain

A
Tocz 19l @) < 2¢65C5. SIAIPIYIG: @ + TNyl @ lgnllm @)
E

8C% A
< 257 AP Il @) + = IAIR Y o) + 3202 lyn 17 (@)

where in the second step we have used Young’s inequality. Gathering the terms
with ||yh||?{1(9) and taking the square root, we finally obtain:

2 8012«3 e 1
lonllney < oA (2655 5+ 552 ) 14 ula
Notice that the constant depends on 5, which is itself limited by the value of
A, and hence the constant will finally depend on A. O

Theorem 4.3. There exists hi; > 0 that depends on A, b, ap, Q2 and the mesh
grading parameter i, such that the discrete adjoint problem

azn,en) = (Y, 2n)a Vzn €Yy, (4.10)
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has a unique solution for every y € H'(Q) and every 0 < h < h;. Further,
there ezists a constant K that depends on A, b, ag, 2 and is independent of
L and h such that

lenllm @) < KA yllm @) Vh < hg. (4.11)

Proof. Existence and uniqueness of solution of the discrete adjoint Eq. (4.10)
follows for all 0 < h < hg due to the finite-dimensional character of the
problem. To get the estimate (4.11), we follow the steps of the proof of Theorem
4.2. Notice that in this case, the value of hf, which is used explicitly in the
proof, may be different from the value of hg provided in (4.7). O

The following estimate is an immediate consequence of the previous re-
sults, Lemma 2.6, Corollary 2.7 and the trace theorem.

Corollary 4.4. Let h = min{hg, h}} with ho from Theorem 4.2 and hj from
Theorem 4.3. For u € L*(T) let yy, € Yy, be the unique solution of (4.1). There
exists a constant co > 0 that depends on the data of the problem, but not on
the mesh grading parameters ji or on h, such that, for all h < h

lynll2ry < callullzr)- (4.12)

Proof. Let us denote Ctg the norm of the trace operator from H'(Q2) to L?(T').
We use Theorem 4.2, Lemma 2.6, and the fact that « can be seen as an element
of H'(Q) and ||u|| g1 (o) < CrrllullL2(r), cf. (2.4) and (2.5). A straightforward
estimation shows that

lynll2ry < Crrllynlla @) < CrrEOIA™  ullg1 (o) < CrrEol AT ICrrllull L2 (1),

where || A7!|| denotes the norm in L(H(Q), H*(£2)). The result follows for
2 = Ca Kol A1 0

Theorem 4.5 (Error estimates in the domain). For 0 < h < h, where h is
defined in Corollary 4.4, and v € HY?(T), let y, € Y}, be the solution of (4.1)
and y € H'(Q) be the solution of (3.1) for f = 0. There exists C > 0 that
depends on A, b, ag, Q but is independent of h such that

||y — yh||L2(Q) < Chs||u||H1/2(F)/. (413)
If further u € H;n:1 W%/2’2(Fj)7 where 1 — \; < B; < 1 and B; > 0 for all

Jj € {1,...,m}, there exists C > 0 that depends on A, b, ag, Q, 5, and the
mesh grading parameter [i, but is independent of h and u such that

m

s 2s 2s
ly = ynllrzo) + h°lly = yull i) < Ch ||y\|wg~2(g) <Ch Z; HUHWB{/M(FJ,)
j:

(4.14)

forall s <1 ands<2—jf0rallj€{1,...,m}.
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Furthermore, for all f € L%(Q) and g € H;’;l WE/Z’Q(F), letp € WéQ(Q)
be the solution of (3.6) and pp be the unique solution of
a(zn, on) = / fzndr + / gzpdx Vz, € Y),.
Then ’ )
e = enllzz@) + PNl = enllm (o) < ChQS”(pHWé‘z(Q)

<Cr* | Ifllez Q)+Z||g||wl/2z r |- (4.15)

=1

Proof. We will prove (4.13) and (4.14). The proof of (4.15) follows the same
lines.
We first prove that

ly = ynllr2) < Cas plall ARy — ynllar (o) (4.16)
Consider ¢ € Wgz(Q) the solution of the adjoint problem

a(z, ) = /Q(y —yp)zdx Vz € HY(Q)

and let w;; €Y}, be its Ritz—Galerkin projection onto Y}, in the sense of H'(2),
as in the proof of Theorem 4.2. We have, with (4.6), that
ly = unll32) = aly — yn ¥) = aly — yn, ¥ — n)
<[ Alllly - yh||H1(Q)||7ﬁ - tﬁhHHl(Q)
< Ca= pCall AR ly — ynllar o lly — ynll2 )
and (4.16) follows. Estimate (4.13) follows from this, Theorem 4.2 and Lemma
2.6.

Using Garding’s inequality established in Lemma 2.3, estimate (4.16),
and the definition of hg > 0 in (4.7), we have that for all h < hg

A
8C% ly — ynllEn @y < aly — yn,y — yn) + Caeslly — ynll T2
~ s 2 2
a(y = ynsy = u) + Cap (Ca ol AR ) lly =yl
1A ,
a(y —Yh,Y — yh) + Z@Hy - yh”}{l(n)7
and hence
3A )
SQC%’||y—yh\\H1(Q) <aly—yn,y—yn) (4.17)

Using Theorem 3.4(c) and Lemma 4.1

m
ly = Tyl @) < Eah*yllwe2(q) Z |U||W1/2 2,y (4:18)
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Using that a(y, Inyn) = a(yn, Inyn), (4.17) and the above inequality, we have
that

3A
3202 |y — yh”Hl(Q) < a(y —yn.y — Inyn) < | Alllly — yrllzr@)lly — Inynll o)

< ¢ Aﬁ||A||h"Hy yh||Hl(Q)7
and the result follows. 0

Corollary 4.6. There exists C' > 0 that depends on A, b, ag, 2, and the mesh
grading parameter [i, but is independent of h such that for 0 < h < h

ly — yhlle < Ch**P|ul| 2(ry Yu € L*(T) (4.19)
forall s <1 ands< for all j €{1,...,m}.

Further, for all f € L%(Q) and g € H] 1 Wl/2 2(T') and all 6 € (0,1),
then

lo = @nllme (@) < ChE=* Hf||L2(Q)+ZHgHW1/22F) ;o (420
7j=1

where C' is independent of 6.
Proof. If w € H'*(T), then, by (4.14) and the embedding H'/?(I') —
5/2’2(F) — [1j=, W$/2’2(I’j) for some § with 3; > 0,1 - )\; < 3; < 1,
we obtain
1y = ynllz2 (@) < Ch*ull grar).-

The first result follows by complex interpolation between this estimate and

(4.13).
The second one follows by interpolation between the estimates for 8 = 0
and 0 = 1 that follow from (4.15). O

5. Analysis of the Control Problem

Now, we turn to the analysis of the control problem

(P)  min J(u /(yu (x) — yq(x))? dz + = / ) dz + / Yu(x)gp(z) dz,

u€U,q

where y,, € H'(Q) solves (2.7). For every u € H'/*(I')/, we define ¢, € H*(Q)
as the unique solution of

(2, A%pu) =/

(Yu — ya)zdx + / gpzdaVz € Hl(Q).
Q r

We have that
J (u)v = / (pu + vu)vde.
Q



227 Page 28 of 44 T. Apel et al. Results Math

Theorem 5.1. For any yq € L*(Q) and g, € L*(T), problem (P) has a unique
solution u € Uyq and there exist ¥, cﬁ € HY(Q) such that
zdx

2o = [ a
r

<Z,A*@>Qz/(g—yd)zdx+/g¢zdx Vz e HY(Q),
Q r

Vz e HY(Q),

/(@4’1/1_1,)(11,7’[2)(1%20 VYu € Usud,
r

and @ € H'*(I).

If, further, g, € H;”Zl Wéﬂ’z(Fj) for some 3 such that 1 — A< B <1
and B; > 0 forallj € {1,...,m}, theny,p € Wg’Z(Q)OC( ), ¢ € W3/2 ()N
cm), ueCl).

If, moreover, the weights also satisfy 5; < 1/2, for all j € {1,...,m}
then ¢,u € HY(T).

Proof. The existence of the solution follows from the appropriate continu-
ity properties of the involved operators that are deduced from Lemma 2.6.
Uniqueness is deduced from the strict convexity of the functional. The first
order optimality conditions are deduced, hence, in a standard way from the
Euler-Lagrange equation J'(u)(u — @) > 0 for all u € U,q and Corollary 2.7.
The H!(Q) regularity of 3 follows from Lemma 2.3 and the regularity of the ad-
joint state from Lemma 2.6. By the trace theorem, we have that ¢ € HY/?(I).
This and the projection formula

i(x) = Projp, u] (—@(x)) : (5.1)

v

which follows in a standard way from the third optimality condition, imply
the regularity of .

Suppose now that g, belongs to L?(I') N H;"Zl W%/Q’Q(Fj) for some (3
such that 1 — X; < 8; < 1 and §; > 0 for all j € {1,...,m}. The W;z(Q)
regularity of the state and adjoint state follow from a bootstrapping argument:
since y € H'(Q) and 3; > 0 for all j, we have that § — yq € L*(Q) — L%(Q)
From Theorem 3.5(c) we deduce that ¢ € WE’Q (€2). This readily implies that
P € W3/22( I'). Using that L%(Q) C L"(Q) for all 1 < r < 2/(1+ f;), we

deduce from Theorem 3.5(b) that ¢ € W27(Q) — C(Q), so ¢ € C(T). Again
the projection formula leads to @ € C(T").

If B; < 1/2, then 2/(1 + ;) > 4/3, so there exists r > 4/3 such that
@ € W2T(Q) — H372/7(Q). Since 3—2/r > 3/2, by the trace theorem we have
that ¢ € C(I) Ny, H'(T;) = H'(T'). This last equality follows because T' is
one-dimensional and polygonal. This regularity is preserved by the projection
formula, and therefore u € H*(T). O
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Notice that for any polygonal domain A\; > 1/2 for all j € {1,...,m}, so
the condition #; < 1/2 may be a constraint in the regularity of the datum g,
but it is not a constraint on the domain. Although some of the intermediate
results below can be proved for g, € L*(T), since the main result requires
H(T') regularity of the optimal control, in the rest of the work we will do the
following assumption.

Assumption 5.2. We assume that g, € [[/_, Wé/2’2(1"j) for some 3 such that
1-X<B;<1/2,8; >0forall j €{l,...,m}. We denote

Md = ||deL2(Q) + Z Hgtp||wé/2~2(r\j) + 1
j=1

For every u € L*(T), we will denote y(u) the solution of the discrete
state Eq. (4.1) and ¢p(u) the solution of

a(zn, on) = /(yh(u) — Yd)Zn dx/ gpzn dz Vz), € Yy,
Q r

Our discrete functional reads like

1 v

D) =5 [ o -y do+ § [ wdos [ g, de.

2 Jo 2 Jr r
To discretize the control, we notice that every triangulation 75 of € defines a
segmentation &, of I' and define Uy, nq = U, N U,q, where

Up = {up, € L*(T) : wpp € P(E) VE € &}

Here and elsewhere P?(K) is the set of polynomials of degree i in the set K.
For every u € L'(T"), we define Q,u € Uy by

1

Qru(z) = —/ udz if x € E,
he Jg

where E € &, and hg is the length of E. Notice that u € U,q implies Qpu €

Uh.ad-

Lemma 5.3. For every u € H(T') there exists a constant C' > 0 independent
of h such that

llu = Quullrrryy + hllu — Quullz2ry < CR?[|ull g ().
If Assumption 5.2 holds, then we also have that

[t ) u = Q) da| < O (Julsry + M3).

Proof. It is well known that for every E € &, we have [u — Quul[2(p) <
Chg|u| g1 (). Using that hp < ch, we have

= Quleey = 32 llu— Quulldasy <€ S Wb llulld sy < CH2uld oy,
Eeéy Ee&n
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The estimate for the norm in H'(T')' follows now by duality since [.(u —
Qru)wp dx = 0 for all wy, € Uy,. This estimate implies the third one taking
into account that, using the same arguments as in the proof of Theorem 5.1,
o, € HY(T'), and

lpull 1y < C||90||w§v2(9) <O llyu = deL}(Q) + Z ”g‘P”W;/Z’z(Fj)
=1

< C | lIyullzay + llyallze@) + ||9¢HW[§/2=2(FJ.) < C (JJull p2(ry + My) .
j=1

Therefore, we obtain

/(gou +vu)(u — Qpu) dx
r

< lou + vull gy llu — Quul| gy
< C (Mg + |Jull 2oy + viwl aiey) W2 ulla
and the result follows using Young’s inequality. O

Our discrete problems reads like

(Pr)  min  Jy(up).

up€UR,aa

Existence and uniqueness of solution of problem (Pj), as well as first order
optimality conditions follow in a standard way. We state the result in the next
theorem for further reference.

Theorem 5.4. For every 0 < h < h, problem (P,) has a unique solution iy €
Uhaa. Further, if we denote gp = yn(un) and @p = on(ap), then

/(@h + vap)(up — ap) de > 0 Yup, € Up ad. (5.2)
r

Before stating and proving the main theorem of this section, we prove
two auxiliary results.

Lemma 5.5. There exists C' > 0 independent of h, ya and g, such that for all
0<h<h,

19l 1 @) + 8l vz oy + 100l 1) + EnllL2 @y < C <HdeL2(Q> +llgell2 @y + 1) .
If, moreover, Assumption 5.2 holds, then
]| g1 (ry < CMy.

Proof. Consider a fixed uaq € U,q such that uaq € Upaq for all A > 0. Us-
ing that ||gn — yd||%2(ﬂ) > 0 and the optimality of @ together with Young’s
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inequality and estimate (4.12), we have for all £ > 0 that

V — — —
Sl ) < Jntan) = | wntan)g, do

_ 1
< T (Uad) + ellyn(@n) |72y + @llgcpHQp(r)
1 v
< iHyh(uad) - de%Z(Q) + §||Uad|\2L2(r) +/F1/h(uad)9<p dz

_ 1
+ EC§HU’LHQL2(F) + I ||g<p||i2(r)

14
<y (uad) 720y + lall72(0) + (5 + &) |tadl 2

_ 1+e¢
+€C§||Uh||2L2(r)+?||9¢H%2(r)

where ¢3 is introduced in (4.12). Taking ¢ = v/(4c3), we readily deduce that
{un} is uniformly bounded in L?(I). The estimate for ||7p | z1(q) follows from
this one and estimate (4.2).

Estimates for ||@[| 2y and ||7]| g1 () follow in a similar way. From this last
one and Lemma 2.6 an estimate for ||@[|z1(q) in terms of the data is obtained.
The trace theorem and the projection formula (5.1) lead to the estimate for

%l g1z (ry-
If Assumption 5.2 holds, then, using the estimate for |||/ 72 (o) and noting

that the condition 3; < 1/2 implies [[7, WE/Q’Q(Fj) — L?(T") and hence
lyallz2@) + l9pllL2@y +1 < My,
we obtain an estimate of HSEHWE’Q(Q) in terms of Mj. The trace theorem and
g

the projection formula (5.1) lead to the estimate for ||@|| g1 (r). O

In the rest of the work s represents any positive number satisfying s < 1
and s < \j/p;.

Lemma 5.6. Suppose Assumption 5.2 holds. Then, there exists C' > 0 indepen-
dent of h, ya4, g, and {ap} such that

lpa, — @nllL2(@) < Ch**/* M. (5.3)
Moreover, for all 0 € (1/2,1] we have the following estimate:
I, — rllzry < CRE=O5 My (5.4)
Proof. By the triangle inequality
la, — @nllrz@) < llea, — @ 2@ + o™ = @rlli2 ), (5.5)

where ¢" is the unique element in H' () such that a(z,¢") = [, (7n—ya)z dz+
Jr gz da for all z € H(), i.e., @y, is the finite element approximation of ("
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Let us estimate the first term in the right hand side of (5.5). Noting that

oz o, — 9*) = / (v — n(n))2 da Vz € HY(Q),
Q

we deduce from Theorem 3.5, the existence of C' > 0 independent of h such
that

llea, — SOhHLZ(Q) < Cllya, — yh(ﬂh)||L2(Q)~ (5.6)

Applying the finite element error estimate for the state (4.19) of Corollary 4.6
and Lemma 5.5, we have

Yan — yn(@n)llL2) < CR**/?||an| r2(r)
< CR**2(|lyall 2oy + 90|l L2y + 1) < Ch3/2 M.
This, together with (5.6) leads to
lpa, — "2 @) < Ch*/?M,. (5.7)

To estimate the second summand in the right hand side of (5.5) we apply the
finite element error estimate (4.15), the uniform boundness result in Lemma

5.5 and the embedding [T/, Wé/ 22(T) — L2(T):

" = @nllrz) < C | |9n — vall 2 + Z ||g<p||Wﬁ1/2,z(Fj) s
j=1

<C HQhHLZ(Q)+Hydlle(Q)+Z||gw|\wé/212(pj) h?®
j=1

< C | 2llyallzee) + lgellzzry + Z Hg%"”wé/"‘vz(rj) +1|n*
j=1

< C | lyallzey + 3 lge o r,) +1 | B3 = Ch** M.

j=1
Estimate (5.3) follows, hence, from (5.5) together with this last estimate and
(5.7).

Let us prove (5.4). First we notice that for 1/2 < 6 < 1, the trace operator
is continuous from H%(Q) to L?(T), so

lpa, — @nllez@y < Cllea, — @nllme@)-

To estimate the term |¢a, — @nl go(q), we first introduce ¢, € Y3, the finite
element approximation of ¢y, , that satisfies a(zp, ¢pn) = fQ(yah — yaq)zn dx +
fr gpzn da for all z;, € Yj. The difference ¢y, — @y, satisfies a(zn, on — @n) =
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fQ(yﬂhy —yp)zp da for all z;, € Yy,. From the continuity estimate for the discrete
adjoint equation of Theorem 4.3 we deduce that

lén — @ullar @) < Cllya, — Unllr2)- (5.8)
Using the triangle inequality, the fact that § < 1, the finite element error
estimate for the adjoint estate Eq. (4.19) of Corollary 4.6, (5.8), and the finite

element error estimate for the state equation (4.20), together with the uniform
boundness of ||t || z2(ry provided in Lemma 5.5, we obtain

lea, — rllae) < llva, — onllae@) + llén — Grllar (@)
< C( C=93 My + |lya, — ﬂhHm(Q))

< C (RO My 4 B2y ey ) < CRE02 My,

where the last inequality is a result of Lemma 5.5 and the
condition > 1/2. O

We are now in position to prove the main result of this section.

Theorem 5.7. Suppose Assumption 5.2 holds. Then, there exists a constant
independent of h, yq and g, such that, for all 0 < h < h

|z — ﬂh”Lz(p) < OhS*]Wd7

3\
for all s* <1 such that s* < 5#—3 forall j €{1,...,m}.
J

Proof. Testing the equality a(z,¢ — va,) = [o(J — ya,)zdz for z = § — ya,
and using the state equation, we have that

0 < Hg - yﬁh||%2(9) = a@ — Yy, ()5 - (pﬂh) = /(’U’ - ah)((tZj - %‘m) dz.
r
So we can write

vl — anllZaqy < / (& — @an + (@ — @) (@ — n) dz
N

= [e=en+vta—a)@-anda+ [ (o pa)@—w)de =T +11

T
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Let us bound the first term. First we insert in appropriate places Qnu and
. Next, we apply the first order optimality conditions for the continuous and
discrete problem. Finally we insert ¢z, to obtain

1= [@-ntvta-m)a-Qudst [ (6 pntvla—a)Qua - a)ds

— [@-pn s va-m)a- Qua)do+ [ (p+va)(@ua - m)da
+/F(¢h+uah))(ah—czha)dm

— [e—en+vta—a)(@- Quids+ [ (p+va)Qua - a)do
+/F(¢+m)(afah)dm+/r(¢h+uah))(ah — Quit)dz

< /F(@—gbh+u(a—ah))(a—Qha)dx+/r(¢+ua)(c2ha—a) dz

— [+ va- ) - Qe+ [ (ps, - on)la - Qun)ds
+/F(¢+yﬂ)(Qha—fa)dx:IA+IB+IC.

From Lemmas 5.3 and 5.5, it is clear that I < C’h2M3.

Let us study I4. Testing the equality a(z, @ —¢a,) = [o (¥ — Ya, )z dz for
z = § — yQ,u and using the state equation, Cauchy-Schwarz inequality, and
Theorem 3.4(a), we obtain

[0 = va)@ - Qua) do = a5~ vo5. 9~ ) = [ (5= 95,05~ vy

< Nla—quallLz@ 1Ya—a, 2 () < Clla — Qnill L2y l|a — tn |l L2(r)
Using this and Lemmas 5.3 and 5.5, we obtain

In = [ (¢ u, +vla = m))(a - Qua) do < Chla — anll o Ma

r
Next we bound Ip and I1. By the Cauchy-Schwarz inequality, we have that,
for every v € L*(T),
[ o = oo < liga, - enlla lolzacey (5.9)

Taking v = @ — Qx4 in (5.9) and using (5.4) and Lemmas 5.3 and 5.5, we
conclude that

I < lpa, = @nllee 1@ — Quill 2y < CRE=P* AL,
Finally, taking v = @ — @y, in (5.9) and using (5.4), we have
11 < Ch(Q_e)sHﬂ — ah”L?(F)Md-
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Gathering all the estimates we have that
vl|a — @) < CCOhE — n| 2ry Ma + R0
+ h2M3 + hP=0% @ — ap || 2y Ma)

and the proof concludes using Young’s inequality. Notice that the appearance

of the terms h||% — || 12 (ry Mg and hQML% implies that the resulting exponent

s* is less or equal than one. On the other hand, since § > 1/2; the term
3 3\

R~ |15 — || 2 (ry Mg yields the bound s* < (2 — 6)s < 25 < 5—] Finally,
Hj

from the term h(2=9s+11/2 we obtain the bound s* < min{(2 — 6)s, 1}, so no

new conditions are imposed on s*. O

6. A Numerical Example

Let © be the L-shaped domain Q = {z € R? : r < v/2,0 < 37/2} N (—1,1)2.
We consider a functional of the form

I =5 [ o) =) do+ 5 [ u@Pdo+ [ p(@)g (o) do

Ay, +b-Vy, +aoy, = f in €2,
Ony =u+g, onl.

with data v, Y4, g5, b, ao, g, described below. The inclusion of data f and
gy is useful to write a problem with known exact solution. Notice that, if we
denote yo € L?(Q) the state related to u = 0 and redefine yq := yq — yo and
Yu ‘= Yu — Yo, the problem fits into the framework of problem (P) and Eq.
(1.1).

Let (r,6) be the polar coordinates in the plane, r > 0, 8 € [0,2x]. The
interior angle at the vertex of the domain located at the origin isw = w; = 37/2
and we denote A =\ =7/wy =2/3. For j =2,...,6, w; =7/2 and \; = 2.

We introduce § = 7*cos(\), # = —y and @ = —@/v on I' and, for
some o > —3/2 and some § > 0, we consider b(x) = 67" (cos#,sinf)” and
ap(x) =re.

The data for this problem are defined as f =b-Vy+ aoy, g, = Ony — u
on Fa Yd :§+V'((ﬁb)—ao<? andgap = n‘p"’(b@) - n.

For all & > —2, b € LP() for some p > 2 (Assumption 2.1). For a >
—1-0,a0,V-b, f,yq € L%(Q) and b-n, gy, g, € Wé/Q’Z(I‘), so the assumptions
of Theorems 3.4(c) and 3.5(c) hold. If we impose 8 < 1/2 (assumption in
Theorem 5.1), we have that for « > —3/2 all the assumptions of the paper
hold. In our experiments, we fix « = —1.25.

The given @ is the solution of the control problem

P) min J(u),
()ueng(lF) (u)
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with related state y and adjoint state ¢, which satisfy the optimality system
—Ay+b-Vy+apy /o in{,
On,y =gy +u onl,

~Ap =V - (bg) +app =y —ya in
Ohp+@b-n = g, onl,

u=—@/v onl.

It is clear that 7, ¢ € Wg’z(ﬂ) and @ € Hl(r)mwﬁi/zvz(r) for 3 = (3,0,0,0,0,0)
forall 5>1-X>1/3.

For § = 6, we have checked numerically that the operator is not coercive,

To discretize the problem we use the finite element approximation de-
scribed in the work. We use a family of graded meshes obtained by bisection;
see, e.g., [25, Figure 1.2]. This meshing method does not lead to superconver-
gence properties in the gradients. The code has been done with Matlab on a
desktop PC with Interl(R) Core(TM) i5-7500CPU at 3.4GHz with 24GB of
RAM. The meshes have been prepared using functions provided by Johannes
Pfefferer. The finite element approximations are obtained with code prepared
by us and the linear systems are solved using Matlab’s [L,U,P,Q,D] = 1u(S)
method. The optimization of the resulting finite-dimensional quadratic pro-
gram is done using Matlab’s pcg.

First we check estimates (4.14) and (4.15) for the error in the solution of
the boundary value problem. For appropriately graded meshes, p < 2/3 = ),
we expect order h? in L?(Q) and order h in H*(£2). For a quasi-uniform family,
pu =1, we have s < 2/3, so we expect order h*33 in L?(Q) and order h%-%6
in H'(£2). We summarize the results in Tables 1, 2, 3 and 4. We include
results for both the state and adjoint state equation. Notice that ¢y is the
finite element approximation of @, obtained using the exact g, i.e., a(zp, Pp) =
Jo = ya)zn dz + [ 9oz dz for all zj, € Y.

Next, we turn to the control problem and check the estimate in Theorem
5.7. Notice that we should obtain order of convergence h for both graded-
meshes and quasi-uniform meshes. We summarize the results in Table 5.

Note that in this example the regularity of the adjoint state is even ¢ €
W;"”(F) for ¥ = (v,0,0,0,0,0) with v > 4/3. This leads to superconvergence
properties in the convergence in the norms of L?(2) and L?(T") of both the
state and adjoint state variable, where, despite expecting order of convergence
1, as for the control, we obtain the same order of convergence as the one
for the boundary value problem, i.e, 1.33 or almost 2 in our examples. This
phenomenon will be studied in a future paper.
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